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General Introduction 

 

 

 

This chapter discusses the overall outlook of this thesis from the framework of the EU ITN-

ENHANCE project. The main objectives and goals of this thesis are laid out. 

Thesis Overview 

The overall aim of this Ph.D. work under the ITN-ENHANCE project is the investigation of the 

electrical power harvested from ambient vibrations at relatively low frequencies (< 500 Hz) using 

lead-free materials for low-power sensors or actuators that are used in automotive. The “Internet 

of Things” IoT [1]–[3] concept comprises “smart structures” with autonomous self-powered 

sensors, actuators, and associated low-power electronics circuits that are spread across a network 

of Wireless Sensor Nodes (WSNs) that can sense and share data among one another and the master 

unit. The global IoT market is evaluated to be nearly 250 billion Euros in 2019, and with the 

growing interest in areas such as smart structures, precision farming, autonomous vehicles, and 

Artificial Intelligence (AI), the market is projected to reach nearly 1,200 billion Euros by 2027 [4]. 

IoT has an overall impact of up to 9.3 trillion Euros in 2020 in the economic world. 

To achieve fully autonomous status for the WSNs, it is very important that they are powered 

independently and, therefore, it is needed to replace the depleted energy in the batteries. 

Harnessing and storing the ambient energy available in the environment to power such WSNs 

would help to replace batteries needed for the autonomous WSNs. In this situation, the use of 

ubiquitous ambient mechanical vibrations to generate electricity for powering the WSNs is a 

promising choice compared to the conventional battery-based powering system that needs 

intermittent replacement. Further, the battery-less approach helps to reduce the environmental 

issues caused by batteries. Among various techniques to convert vibrations to electricity namely 

piezoelectric, electromagnetic, and electrostatic based techniques, [5]–[8] the piezoelectric energy 

harvesting is more convenient for micro-energy harvesting due to the high energy density 

(300µW/cm2/g2) in practical applications, material deposition compatibility with MEMS process 

[9]. However, state of the art Piezoelectric Energy Harvesters (PEHs) are mostly based on lead-
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based materials such as PZT[10] which contains Pb, a toxic element that does not comply with 

REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) and RoHS 

(Restriction of Hazardous Substances) regulations[11]. For this reason, there is a growing need in 

the electronics industry to explore new environment-friendly materials and processes for next-

generation "green" PEHs based on lead-free materials[11]. In this thesis, the piezoelectric energy 

harvesting solutions based on lead-free materials for powering battery-free and energy-

autonomous sensors, are therefore explored. 

Thesis Structure 

 

Figure 1: Thesis structure 

The structure of this thesis from material to device design, realization and characterization is 

divided into six chapters and the outline of each one is as follows: 

 General Introduction: sets the overall outlook of this thesis and discusses the main 

objectives and goals.  

 Chapter 1: gives a literature review, identifying the current state-of-the-art energy 

harvesting devices at the microscale with a focus on vibration energy harvesting and the 

challenges that this thesis will address. Different applications and energy sources for 

harvesting are discussed before going into further detail into piezoelectric energy 

harvesting. Strategies and outlooks toward a lead-free piezoelectric energy harvester are 

laid out. 

 Chapter 2: This chapter focuses on the microscale characterization of new lead-free 

piezoelectric materials deposited by a sol-gel process. Lithium Tantalate, Sodium 

Potassium Niobate, Tantalum doped Sodium Potassium Niobate thin films and fibres are 

studied and their electromechanical properties and energy harvesting Figures of Merit 

(FoM) are compared with Lithium Niobate single crystal. The techniques that have been 
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used to characterize the piezoelectric properties, morphologies such as Atomic Force 

Microscopy (AFM) are detailed. Also, a brief discussion on the processing and deposition 

of these piezoelectric materials is discussed. 

 Chapter 3: Discusses the fabrication and characterization of a lead-free microgenerator 

based on a lead-free Lithium Niobate single crystal wafer. In this chapter, we develop an 

electromechanical equivalent circuit model of the piezoelectric energy harvester and in 

addition, the voltage conditioning and device interfacing for controlled and stable DC 

output is discussed. An efficient architecture to maximize the power transferred to the load 

with a Maximum Power Point Tracking (MPPT) is also investigated, with a specific focus 

on low power circuits. 

 Chapter 4: The application of the harvester to power a battery-free IoT WSN based on 

Bluetooth Low Energy-(BLE) connectivity with ambient vibration is demonstrated. In 

addition, the operating principle and system implementation of the Energy Autonomous 

Wireless Sensor (EAWVS) based on the STM32 [12] microcontroller is detailed. The 

ability of the harvester in sensing input acceleration is demonstrated. Finally, the 

application scenario of the EAWVS is laid out. 

 Conclusion and perspectives: Finally, the overall findings of the thesis are laid out and 

the perspectives are discussed briefly. 

Context 
With the increasing need for comfort and functionalities, the new generation of cars usually 

requires more sophisticated sensing and communication systems. The sensors and actuators, based 

on Micro Electro Mechanical Systems (MEMS), are widely used to control various sections of 

automobiles, such as the rotors, shafts, powertrain, and chassis control, advanced areas of driver 

assistance systems[13]–[16]. Low-power MEMS sensors, based on silicon technology, became the 

devices of choice offering cost-effective solutions and high yield in the automotive and aerospace 

industry. Currently, the need of the hour in the car industry is to reduce the total weight of cars and 

fuel consumption, to reduce carbon emissions. For instance, the reduction in car weight by 100 kg 

cuts the CO2 emission by 4-6 g/km (in 2020, the standard for the average value of CO2 emission 

by cars fabricated in the EU is 95 g/km). To supply the required power, as well as to transmit the 

output signal from these sensors, vehicles require a complex web of wires (several kilometers in 

length) [17]. These wires often contribute around 50 kg, and in addition, create complexity in 
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installation and maintenance[17]. Significant maintenance costs are related to wiring and contact 

problems. Further, the wire connections are prone to damage to solder from heat, close to the 

engine side.  

Therefore, the EU-ENHANCE project focus on the development of power sources for autonomous 

self-powered wireless sensors that can be handy in places that are difficult to reach or have harsh 

working conditions. One of the best possible ways to implement such install and forget type sensor 

concept is, by harnessing the power from the ambient environment, such as vibrations, thermal or 

solar energies.  

Piezoelectric Energy Harvesters (PEHs) are an attractive choice for the powering of autonomous 

sensor networks due to the prospect of integration with electronic circuits & sensor nodes [18]. 

Recently, the miniaturization of harvesters using MEMS technology with thin piezoelectric films 

or nanocomposites attracted interest to power small low power systems. Also, it is necessary to 

ensure that the operating frequency of these harvesters is in the range of ambient vibration in the 

environment (<500Hz). This means along with ensuring high FoM of materials, it is equally 

necessary to have an appropriate design of mechanical and electrical parts to have better 

performance of the energy harvesting system. To obtain high power output from piezoelectric 

harvesters, a high electromechanical coupling K2 value is required. Currently, most of such PEHs 

with higher K2 are employing bulk PbZr1-xTixO3 (PZT), and piezoelectric bulk composites [10]. 

Higher K2 ensures that the input mechanical energy is efficiently converted to usable electrical 

energy by the material. However, in the future, PZT has to be replaced by lead-free materials, even 

for thin films due to growing environmental concerns. 

ENHANCE project, therefore, focus on the development of energy harvesters for automotive 

sensors based on lead-free piezoelectric materials. However, project results could also be 

important for other industries such as aerospace and heavy industries. Ferroelectric lead-free 

material, such as LiNbO3 (LN) shows FoM similar to that of PZT [19]. Moreover, LN is 

compatible with high-temperature applications (up to 500 °C) [20]. Bismuth Ferrite (BFO) is also 

a potential candidate for high-temperature PEH (up to 500 °C) [21]. This makes LN and BFO two 

key materials, particularly attractive for the PEHs, since the elevated working temperature is 

possible (in engine oil, exhaust pipe, where, the temperature can reach up to 600 °C), whereas PZT 

and similarly popular materials lose their piezoelectric properties at these temperatures.  One of 

the highest notable power densities (300 µW/cm2/g2) achieved among the wide bandwidth (~Hz) 
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micro-PEHs was achieved by EH based on lead-free Sodium Potassium Niobate (KNN) films [22]. 

However, these materials are relatively new compared to the industrial standard PZT and the 

application of these materials in PEHs is still poorly investigated. Therefore, more efforts must be 

done towards their integration of novel lead-free piezoelectric materials into the conventional 

processing of MEMS structures. This thesis will address the issue of realizing high performing 

lead-free piezoelectric energy harvesters for scavenging vibrational energy, for the application in 

energy autonomous wireless sensors. 
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1 On the interest of ambient energy harvesting 

 

 

 

This chapter discusses the current state-of-the-art energy harvesting devices at microscale such as 

piezoelectric, electrostatic, and electromagnetic energy harvesting with a focus on vibration energy 

harvesting. Strategies and outlooks towards a lead-free piezoelectric energy harvester are laid out. 

1.1 Energy Harvesting at Microscale 

Throughout the history of technological advancements during human evolution, there have been 

attempts to obtain energy from the ambient atmosphere and surroundings. The cavemen used 

friction to create sparks and fire producing electric charge; the waterwheel was a main source of 

energy during the medieval periods and windmills were widely used to grind grains. As technology 

developed the devices became more efficient and smaller and their energy consumption also 

reduced proportionally. The recent developments in micro and nanoelectronics have resulted in 

the miniaturization of devices that have power requirements in the order of several microwatts. 

IoT is one of the recent technologies with a direct and evident influence on several domains such 

as industry, healthcare, agriculture, automobile and smart homes. In IoT, WSNs, consisting of 

microcontrollers, memory chips and frequency transmitters, play a key part that collecting and 

transmitting data and MEMS relays that consume power in the order of several microwatts [23], 

[24]. Therefore, along with the Internet of Things (IoT), and equally with the developments in 

artificial intelligence, the need of the day is to develop self-powered sensors and circuits that 

consume infinitesimal power and, also, that these devices and sensors are powered from ambient 

energy sources [2], [11]. It is equally important that these WSNs are independently powered and 

disconnected physically from the master nodes to ensure full autonomy of the IoT. In addition, the 

availability of sensors that use a minimum number of cables to interconnect the electrical 

architecture of the vehicle could prove to be a significant advantage for the automotive industry, 

as this could lead to saving of the carbon footprint is a key criterion in the future vehicle design. 

Therefore, the energy devices that can generate power from ambient energy sources and that can 
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be integrated into the sensor systems, offer great scope for further development of autonomous 

sensor networks.  

1.2 Power requirement of WSNs 

 Autonomous WSN is depicted in terms of four general functional boxes namely: (i) sensor section 

(ii) microcontroller section (iii) transmission section and finally the (iv) harvester section as shown 

in Figure 1.1. An IoT node will run through several operational cycles, which typically, involve 

several tasks such as sensing, actuation, processing, transmission, and consume similar amounts 

of energy at every operation sequence. Various types of sensors are used in condition monitoring 

such as accelerometers, thermal sensors, and bio-sensors for health monitoring, etc. [1], [2], [5] 

The power requirements for active sensing are generally on the micro-watt level [25]. However, 

the main power consumption of the system is from the microcontroller unit and the transmitter 

section. Therefore, to reduce the overall power consumption of the WSN, it is important to ensure 

that the microcontroller and the transmitter consume minimum power. 

 

Figure 1.1:Block diagram of an Autonomous wireless sensor (WSN) 

There has been a significant advancement in ultra-low power microcontrollers & RF Radio in 

recent years from the manufacturers. Some of the most popular microcontroller for low power 

applications are STM32L0-STMicroelectronics [12], PIC12LF1571-Microchip [26], 

MSP432P401-Texas Instruments [27] etc. For example, the STM32L0 series [12] microcontrollers 

from ST Microelectronics consume a quiescent current of only a fraction of microamperes while 

working in an operating voltage range of 1.8 V-3.6 V in the standby mode drawing power of few 
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microwatts. STM32L0 is based on a 32-bit Arm Cortex processor designed for a broad range of 

embedded applications which work in three operation modes: main/active, low power and power 

down/standby mode. In standby mode the current consumption is less than 1µA, corresponding to 

a power consumption of ~3 µW. The active mode power consumption of these microcontrollers 

can be in the order of 50 µW-500 µW depending upon the processing needs and the duty cycle of 

operation. The total energy consumed by the processor is in the range of 50-500 µJ per 

transmission event and is controlled by the duration of active mode operation, which could last 

several milliseconds. 

Regarding the transmission section, the most common wireless communication technologies are 

Bluetooth, ZigBee, and Near-Field Communication (NFC) as shown in Table 1.1.  

Table 1.1: Wireless transmission protocols and specifications 

 
Transmission Protocol 

Power Data rate Distance 

Wi-Fi >500 mW >100 Mb/s 10 m 

LoRa 100 mW 1 kb/s 500 m 

ZigBee 50 mW 250 kb/s 25 m 

Bluetooth 10 mW 1 Mb/s 10 m 

The total amount of energy required for the processing and the wireless transmission of the WSNs 

are typically in the order of 40-500 µJ that could change depending upon the RF protocol used for 

transmission. Bluetooth® Low Energy (BLE) consumes significantly less power during a 

transmission event compared to Wi-fi, LoRa and ZigBee. So, BLE is most suitable for applications 

requiring a transmission range less than 10 m, which is sufficient for IoT systems. For example, 

BLUENRG-2:Bluetooth® Low Energy wireless System-on-Chip (SoC) from ST Microelectronics 

[28], which is used in our work has an average advertising current consumption of about 15 µA 

during the transmitting phase while working at 2 V supply consuming power of 30 µW, at 8 dBm 

transmission power. 

The total power consumption of all the components together (sensor, transmitter and 

microcontroller units) in a WSN during one duty cycle could be in the order of 100 µW to 1 mW 
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[1] depending on the duty cycle of operation. The power consumption of WSNs in comparison 

with various typical low-power devices are given in Table 1.2. 

Table 1.2: A comparison of power consumption in various low-power electronic modules  

Electronic module Power range ON-Time 

Watch 1 μW continuous 

RFID tag 10 μW < 10 ms 

Remote 100 μW 1-5 ms 

WSNs 1 mW < 5 ms 

Bluetooth Device 10 mW Continuous 

GPS 100 mW Continuous or intermittent 

 

The total power consumed by an IoT device PWSN in each cycle can be characterized by the power 

consumed by its components and their processes and expressed as: 

𝑃 = 𝑃 + 𝑃 + 𝑃 + 𝑃  1.1 

where PSB is the standby power consumption, PMCU is the power consumed by the processor unit 

PS is the power consumed by the sensor, and PTX is the power consumed by the transmission 

section. Although the microscale ambient energy harvesters may not be able to provide the power 

for continuous operation, it is sufficient to power these WSN nodes in an intermittent manner. For 

instance, the system goes to a standby mode when the energy from the harvester is stored in a 

capacitor and can be used to discharge as soon as enough energy is stored for the operational mode. 

For an IoT sensor device in a standby state, its power drawn can be extremely low (few 

microwatts). Therefore, the WSN can be designed smartly with low power consumption while 

awake, and negligible power consumption during sleep mode. 

1.3 Ambient power sources for Energy harvesting 

The ambient energy available in the environment can be broadly classified into mechanical sources 

(vibrations, stress), radiant sources (solar, infrared, and RF) and thermal sources (temperature 

gradients or fluctuations). The range of available power densities expressed in (µW/cm2) of these 

sources is shown in Figure 1.2.  
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Figure 1.2: Range of available power densities of ambient energy sources 

Although the power density of solar energy is high, harvesting is not possible in practical sensor 

application areas such as inside the machine, where the solar radiations cannot reach. Likewise, it 

is also difficult to harvest energy from thermal gradients where there is an absence of temperature 

gradient. However, for instance, automobile exhaust pipes can reach up to 700°C and can be used 

for harvesting thermal energy. Similarly, RF energy harvesting has also some limitations in the 

implementation in the machinery due to the strong absorption of RF energy by the metals, thus 

limiting the available power density. Therefore, the ambient energy harvesting is strictly 

application-specific, depending on the availability of the power source within the location of the 

installation target. Therefore, to power such sensor networks, that is to be installed especially in 

indoor applications, automotive and mechanical structures, the ambient mechanical energy can be 

a perfect choice. A comparison of the advantages and disadvantages of various microscale energy 

harvesting technologies are outlined in Table 1.3. 
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Table 1.3: Comparison of micro scale energy harvesting technologies 

Technologies Advantages Disadvantages 

Photovoltaic  Green,  
 Renewable 

 Affected by weather 
 low output inside. 

Piezoelectric  High power density 
 MEMS, CMOS compatible 
 Compact size 

 Ceramics prone to break 
 Narrow operating frequency  

Electromagnetic  High output current 
 Easy to scale up 

 Not MEMS compatible  
 Interference issues 

Electrostatic  High output voltage 
 Compatible with MEMS 

 Electret need external source 
 Small power output 

RF  Long distance transfer 
 Prolonged lifetime  
 Easy integration 

 Ultra-low output power 
 Output power varies  

Thermoelectric  High durability 
 Small volume 

 Not MEMS compatible 
 Low output 

 

1.3.1 Vibration Energy Harvesting (ViEH) 

Vibration Energy Harvesting is the technique to convert vibrations into usable electrical power by 

a two steps conversion. Initially, the vibration is transformed into a relative motion between two 

elements, with the aid of an equivalent mass-spring system as shown in Figure 1.3. The relative 

motion is then converted to electric power by a mechanical-to-electrical conversion mechanism 

(mainly piezoelectric, electromagnetic or electrostatic). The equivalent spring-mass system creates 

a phenomenon of resonance, amplifying the relative spring displacement z(t) compared to the input 

vibrations amplitude y(t), leading to an increasing harvested power at resonance [29]. 
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Figure 1.3: Representation of the electromechanical model of a ViEH 

In the equivalent mechanical model, a mass (M) is suspended in a frame by a spring (stiffness ks) 

and damped by dashpot C with an affective damping coefficient of dm+de, where dm is the 

mechanical and de is the electrical contribution to the damping respectively. The differential 

equation of the system can be described as [7]: 

𝑀�̈�(𝑡) + (𝑑 + 𝑑 )�̈�(𝑡) + 𝑘𝑧(𝑡) =  −𝑀�̈�(𝑡) 1.2 

The energy that can be extracted from the above system, attains a maximum when the excitation 

frequency ω of the is equal to the natural resonant frequency ωr of the spring-mass system, that is 

given by: 

𝜔 =
𝑘

𝑀
 

1.3 

The power converted by a vibration energy harvester to the electricity is equal to the power 

absorbed by the electrical induced damping de component of the dashpot C, given by: 

𝑃 =
𝑀𝜁 𝑌

𝜔
𝜔

𝜔

1 −
𝜔
𝜔

+ 2𝜁
𝜔
𝜔

 

1.4 

where ζT is the total damping ratio, ζT = (ζm + ζe) = (dm+de)/2Mꞷ 
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Y0 is the amplitude of vibration, ζm is the mechanical and ζe is the electrical damping of the system 

respectively. The maximum electrical power that can be extracted at the resonant frequency 

(ꞷ=ꞷr) can therefore, be given as: 

𝑃 =
𝑚𝜁 𝑌 𝜔

4𝜁
 

1.5 

The several vibrating structures available in the environment present rich sources of usable energy 

for low power applications. Base accelerations of such structures vary from 0.01 to 10 g, with 

frequencies ranging between 1 and several kHz as shown in Table 2.3 [9]. 

Table 1.4: Available vibration level in various ambient sources 

Vibration source Available 

acceleration (g) 

Available frequency 

range (Hz) 

Reference 

Aircraft Up to 10 1-1000 [30] 

Car Engine 1-1.5 200-500 [13] 

Refrigerator 0.1 240 [9] 

Microwave 0.2-0.3 100-200 [31] 

Machines (heavy) Up to 10 200 [32] 

Bridge 0.01-3.71 1-50 [33] 

Human movement 5-10 20 [34] 

 

The ambient mechanical energy can be transduced to electrical energy by main mechanisms 

namely piezoelectric, electrostatic, electromagnetic, and triboelectric energy harvesters. For 

example, the typing in keyboard can generate power of the order of few milliwatts, energy 

generation by the motion of upper limbs is about 10 mW. Walking can generate as much as 10 W. 

The microscale Electro-Magnetic Energy Harvesters (EMEHs) tend to produce very low AC 

voltages in the order of millivolts. Furthermore, the output voltage reduces as the size is reduced.  

While comparing the output power of all the vibrational energy harvesting technologies, 

Electrostatic Energy Harvesters (EEHs) have a limitation of implementation that the device 

vibrates with a magnitude of several hundreds of microns while maintaining a minimum capacitive 

air gap of 0.5 mm to produce similar performance [32]. For both piezoelectric and electrostatic 
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generators, the output current will reduce with size due to the reduction of the capacitance of the 

device which decreases with decreasing size. Furthermore, piezoelectric generators have the 

advantage that it produces high voltages. Out of all these microscale vibration energy harvesting, 

PEHs, therefore, have an upper edge due to higher output voltage, relatively high output power 

density, and simplicity in design over their counterparts such as EMEHs and EEHs. Moreover, the 

piezoelectric transduction mechanism does not need any moving parts and, thus, is easy to 

maintain. 

1.3.1.1 Electromagnetic Energy Harvesters (EMEHs) 

EMEHs can be used to convert the vibration energy available in the ambient environment to 

electrical energy using the principle of Faraday's law of electromagnetic induction. When a 

conductor move in a magnetic field (Figure 1.4), a voltage is induced across it. The conductor may 

be in the shape of a coil that is planar or wound. Generally, the magnet that is used to provide the 

field could be permanent magnets such as neodymium (NdFeB) [35] or Alnico (AlNiCo) [36].    

 

 

       

      

 

 

The amount of induced voltage VEM (peak to peak) in the electromagnetic coil can be computed 

by: 

𝑉 =  −𝑁
𝑑𝜙

𝑑𝑡
 

1.6 

where, N is the number of turns, and 𝜙 is the total flux linkage between the magnet and the coil. 

The power generated by the EMEH is extracted by connecting a load resistance across the two 

ends of the coil. The energy harvested by the EMEH is influenced by the damping offered by the 

coil to the input vibrations. Also, EMEHs produce maximum power when the relative motion 

between the magnet and coil is maximum. 

Magnet 
Springs 

Coils 

Vibration 

Figure 1.4: Illustration of an Electromagnetic Energy Harvester 
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From an interesting application point of view as depicted in Figure 1.5a,b Gao et al. in 2017, 

proposed a novel Rail-Borne Energy Harvester for powering wireless sensor networks in the 

railway industry [37]. The authors proposed a magnetic levitation harvester that offers broadband 

harvesting at a low-frequency (3–7 Hz) for a given rail displacement of 0.6 to 1.2 mm. The 

harvester provided an output power of 119 mW and the output peak-peak voltage of 2.32 V is 

achieved with the rail displacement of 1.2 mm. Beeby et al. [35] reported a micro-EMEH of a 

cantilever type structure, with four magnets made from NdFeB bonded to the free end (Figure 

1.5c). The coil is positioned between the two magnets, with the beam and magnets able to move 

relative to each other. The magnets move vertically relative to the coil that is adhesively bonded 

to the plastic base. The authors claimed to harvest output power of 46 µW at a relatively low 

acceleration of 0.06 g which is a large value compared to other EMEH reported so far. Also, the 

aeroelastic EMEH has received widespread attention in recent years with the advancement of 

MEMS technologies [14]. 

  

 

Figure 1.5: (a) Top view and (b) side view of the Rail-Borne Energy Harvester proposed by Gao 
et al. [37](c) 3D view of the EMEH proposed by Beeby et al.[35]. 

(a)                                                            (b) 

(c) 
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The disadvantage with an EM harvester is that its power production capacity reduces sharply with 

a decrease in its size [6]. But at the micro-scale, the materials used for the magnets are not CMOS 

compatible, and it is difficult to manufacture metallic coils with a large number of turns.  

1.3.1.2 Electrostatic energy harvesters (EEHs) 

EEHs uses the principle that a variable capacitor electrode induces the charge on the electrode 

plates when there is a relative motion between two plates that are separated by a dielectric or air 

[7]. Generally, a variable capacitor consists of a movable and a fixed electrode that is separated by 

a dielectric layer of permittivity ℇ with a spacing d. The micro scale capacitive transducers are 

usually represented by two parallel plate or comb drive electrodes as shown in Figure 1.6.  

 

 

 

 

 

 

 

In order to have a variation of charges, the capacitance CES has to change. The capacitance of the 

parallel plate configuration of the EEH can be given as:  

𝐶 = 𝜖
𝐴

𝑑
 

1.7 

 

𝐸 =
1

2
𝑄𝑉 =

1

2
𝐶𝑉  

1.8 

 

where ℇ is the permittivity, A is the area, and d, are the spacing between the electrodes of the 

capacitor. If the charge is held constant, the voltage can be increased by reducing the capacitance, 

and if the voltage is held constant, the charge can be increased with the capacitance. In both cases, 

the energy stored EES on the capacitor increases accordingly. 

The main ways to alter the capacitance are: 

E 

Area A +

- 
Electric Field 

Vertical motion  

Horizontal  motion   

Fixed Electrodes 

Movable Electrodes 

Figure 1.6: Illustration of electrostatic energy harvesting principle with different electrode 
configurations: (a) parallel plate electrode (b) comb-drive configuration 

V 
d 

(a)                                                            (b) 
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a) Change the gap d between the electrodes 

b) Change the facing area A 

c) Change the permittivity ℇ 

The EEHs can be classified into two groups:  

(1) Electret-free EEHs: These are EEHs whose performance is dependent on an external 

voltage that is supplied to one of its electrodes:  To achieve a maximum efficiency of the 

EEH, a high voltage polarization (>100V) is necessary that need to be supplied from an 

external voltage source such as battery or capacitor. 

(2) Electret-based EEHs: Electrets are pre-charged dielectric materials that can store the 

surface charge inside the structure for several years similar to the permanent magnets in 

the electromagnetic EHs. The word electret was coined by O. Heaviside in 1885 and is 

inspired from the term “electricity magnet”. The most commonly used electrets in electret-

based EEHs are Teflon [38], SiO2 [39] and CYTOP [40]. The electret-based generators 

have the advantage over the electret-free EEHs that they can convert the ambient 

mechanical vibration to electricity without any external supply.  

R. Salem et al. [41] designed a micro-scale EH having a switchable dielectric constant capacitor 

to enhance the power output. It is observed from their study that a thousand times more power is 

generated in this configuration than the conventional EH. Models of different EEH designs were 

developed by S. Roundy [42] and showed that the optimal structure for EEHs was in the plane 

movement of the interdigitated comb drive structure with a variable air gap between the fingers. It 

was also shown in the same study that the EEH would be able to harvest up to 100 µW/cm³ at an 

acceleration of 2.25 m/s² at an operating frequency of 120 Hz. In 2005, Despesse et al. developed 

a macroscopic device able to work on low vibration frequencies and able to harvest a high power 

of 1 mW at a vibration acceleration amplitude of 0.2 g at a low frequency of 50 Hz [7]. Basset et 

al. [43] in 2014 developed a MEMS harvester (Figure 1.7) that can work at low frequency (150 

Hz) and can generate 2.2 µW at an acceleration of 1 g.  
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Figure 1.7: Electrostatic energy harvester (with SEM in inset) realized by Basset et al. [43]. 

The key advantage of electrostatic converters is their compatibility for integration with 

microelectronics. At the same time, the main disadvantages of EEHs are that the design, such as 

comb drive structure, imposes a mechanical limit during fabrication. Further, the gaps could be 

too close and gradually could come into contact and short the circuit due to electrostatic forces. 

1.3.2 Piezoelectric Energy Harvesting (PEH) 

Among various transduction mechanisms, piezoelectric transduction has drawn considerable 

attention because of its simplicity in structure, high energy density and good compatibility with 

micro/nano fabrication techniques [44]. The direct piezoelectric effect, discovered by Pierre and 

Jacques Curie in 1880, is the ability of certain crystalline materials to produce an electrical charge 

proportional to an externally applied force. With their knowledge of crystallography 

pyroelectricity, they postulated and demonstrated the ability of various materials such as quartz, 

to generate electrical charges under the application of pressure. The piezoelectric effect is 

reversible in materials, i.e., by the converse piezoelectric effect, the generation of a mechanical 

strain results from an applied electrical field. Until 1916, when P. Langevin developed the first 

notable application of the piezoelectric effect in the submarine detectors, piezoelectricity was 

considered as a laboratory curiosity. In the following years, the crystal microphone was introduced 

which again created interest in piezoelectric research and this resulted in major development of 

several kinds of piezoelectric devices. Quartz for instance, because of its high mechanical and 

thermal stability, is still being used widely in watches, oscillators, and so on. Additionally, 

piezoelectric ceramics are widely used in ultrasonic devices [45], precision instruments such as 
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Atomic Force Microscopy (AFM) [46], non-destructive testing, piezoelectric transformer [47] etc. 

Piezo sensors convert mechanical energy into electrical energy and therefore are often also referred 

to as "generators". 

1.3.3 Piezoelectric Vibration Energy Harvesters 

The global market value of piezoelectric devices was estimated to be ∼20 billion Euros in 2019 

and is expected to continue to increase at an annual growth rate of ∼6.2% over the next five years 

[19]. The energy harvesting based on piezoelectricity become very popular for vibration energy 

harvesting in recent years due to its relatively higher power density over its counterparts such as 

electrostatics and electromagnetic energy harvesting. Broadly speaking PEHs can be treated as 

resonant PEHs or non-resonant PEHs based on their mode of operation. 

1.3.3.1 Modes in cantilever beam piezoelectric harvester 
Based on the relationship between the applied stress and polarization direction of the piezoelectric 

material, the PEHs can be classified into d31, d33, and d15 operational modes. The electrode 

configurations and poling direction of the d31 devices and the d33 devices are, respectively, shown 

in Figure 1.8. 

 

 

 

 

 

 

 

 

 

In d31 and d33 modes, the piezoelectric material is subjected to bending stress whereas in the d15 

mode it is the shear stress that comes to play. The PEHs possess parallel plate electrodes in d31 

mode with the direction of polarization perpendicular to the direction of applied stress. A d33 mode 

PEH consists of interdigital electrodes as the polarization direction is parallel to the direction of 

applied stress. The d31 mode is more commonly implemented than the d33 mode owing to its 

simplicity of fabrication [48]. However, d33 is normally larger than d31 coefficient in piezoelectric 

materials. So, the d33 mode generates higher output voltage; but the d31 mode PEHs have the 

Bottom 
emlectrode 

Top 

electrode 

d33 mode d31 mode 

Bottom 

IDEs 

substrate (a) (b) 

Figure 1.8: schematic top view of various electrode configurations (a) d31 mode (b) d33 mode 
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advantage of generating a larger electric current [48]. This is because, typically, the piezoelectric 

material in the PEH is thin, which leads to a smaller distance between electrodes of the d31 mode 

device compared to that of the d33 mode device. 

1.3.3.2 Resonant mode PEH 
In resonant PEHs, the most employed mechanism is a cantilever-type with one or two piezoelectric 

layers placed on a substrate. Among cantilever beam type PEH, the widely used harvester design 

is the single-clamped cantilever with a proof mass at the free end. It is because it is relatively easy 

to fabricate such designs using the standard silicon-based technology and the frequency is tunable 

by optimizing the weight of the proof mass. In resonant mode PEH, unimorph or bimorph 

cantilevers systems are mostly used because they provide large stress on the PM, therefore, 

reducing the size of the devices. In unimorph configuration, a piezoelectric layer is deposited onto 

an elastic material (metal, silicon or oxide layer) as shown in Figure 1.9 a. In bimorph, an elastic 

layer is sandwiched between two piezoelectric layers, and two piezoelectric layers act as two 

generators in series as in Figure 1.9 b. The fixed end is mounted onto a vibrating body. It is 

relatively easy to fabricate using the standard CMOS processes and the resonance frequency is 

tunable by adjusting the weight of the proof mass. 

 

 

 

 

 

 

The difficulties in designing and optimizing the transducer resonance frequency, vibration modes, 

and the electromechanical coupling factor (K), is due to various factors like the uneven transducer 

topology and material properties. The PEH structure can be modeled as an SDOF system, that is 

comprised of a seismic mass (M= m+0.23mc) where ‘m’ is the mass of proof mass and mc the mass 

of cantilever, a spring with constant ks, a dashpot with damping coefficient C and a vibrating base. 

Electrodes 

Figure 1.9: Schematic of (a) Unimorph and (b) bimorph PEHs 
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Therefore, the resonance frequency (fr) of the cantilever can be tuned by varying the proof mass 

(m):[49]  

𝑓 =  
1

2𝜋

𝑘

(𝑚 + 0.23𝑚 )
 

 1.9 

𝑘 =
𝑌𝑤𝑡

4𝑙
 

 1.10 

where, in Equations (2.13) and (2.14) ‘ks’ is the stiffness constant of the beam of width ‘w’, 

thickness ‘t’ and length ‘l’, and ‘Y’ being Young’s modulus of the beam respectively. According 

to Equation (2.12), it is possible to alter the resonance frequency by reducing the spring stiffness 

coefficient ks or by increasing the proof mass. Increasing the thickness of the cantilever will also 

increase the frequency, while increasing its length will decrease it. However, the length of the 

cantilever beam is limited in MEMS devices. In some particular cases, it is therefore impossible 

to reduce the resonant frequency of the PEHs by such means. Therefore, in recent years, several 

frequency up-conversion techniques have been proposed to match the frequency between the 

external excitation and the energy harvester fundamental resonance frequency [50]. Liu et al [50] 

developed MEMS-based, broadband frequency band PEHs that can convert low-frequency 

vibrations to high-frequency by frequency up-conversion method. In the first design, the lower 

resonant frequency cantilever (LRF) was quenched to broaden its bandwidth to 22 Hz under 0.8 g 

input acceleration, with the high-frequency resonant beam (HRF) made to vibrate at 618 Hz. 
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Figure 1.10: (a) Schematic drawing of EH-I system; (b) fabricated LRF cantilever; (c) 
fabricated HRF cantilever; (d) arrangement and (e) vibration behavior illustration of EH-I 

system [46] 

The frequency of the second design was shifted from 22 to 26 Hz to achieve resonance with a 

lower frequency. They obtained power densities of 61.5 and 159.4 μW/cm3 at operating 

frequencies of 20 and 25 Hz, respectively, at an acceleration of 0.8 g acceleration. 

 Another main challenge faced by resonant PEHs, is the narrow bandwidth of operating frequency 

as the output voltage and power reduce drastically from moving away from the resonant frequency 

[51]. This mismatch can also occur when the resonant frequency of PEH vary due to the aging or 

temperature variations of the environment. The PEH produces AC output voltage in phase with 

the applied frequency of the mechanical force and voltage needs to be rectified before it can be 

stored for practical applications [52]. Thus, if the voltage generated is under the diode threshold 

drop of the rectifier, the power is not utilized. Since the frequency of typical ambient 

environmental vibration sources is low (less than 300 Hz) and susceptible to variation to a certain 

extent, PEHs with low resonant frequencies and broadband operation capabilities are necessary 

for reliable performance [8]. Several methods have been proposed to achieve broadband energy 

harvesting in piezoelectric harvesters. Although nonlinear or bistable mechanical harvesters are 

effective in overcoming the narrow bandwidth limitation of classical resonator-based vibration 

energy harvesters, they are dependent on the input amplitude and multi-degree of freedom 
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harvesters suffer from low power densities. A comparison of various piezoelectric broadband 

energy harvesting techniques is given in Table 1.5. 

Table 1.5: Various commonly used piezoelectric broadband energy harvesting techniques 

Broadband mechanism Schematic Bandwidth Reference 

 

Force induced resonance tuning 

with a magnet 

 ~60 Hz [53] 

 

Multi-modal frequency tuning 

 7 Hz [54] 

Multi-modal degrees of 

freedom using spring-mass 

 16-28 Hz [55] 

 

Induced non-linearity 

 

4-12 Hz [56] 

There are several reports of piezoelectric microgenerators with various complex configurations 

such as membrane structure [57], multiple stacked piezoelectric layers, etc. [51], [58] for forcing 

non-linearity in the system and to push towards a broader frequency regime. Recently, electrical 

techniques using impedance matching, to tune the resonant frequency of piezoelectric harvesters, 

have been proposed as a solution for broadband harvesting and opens new perspectives. Compared 

to the non-linear and bi-stable technique of broadband energy harvesting, electrical technique is 

less complex in fabrication and operation. However, this approach requires energy harvesters with 

very strong global electromechanical coupling coefficients K2, whose design remains a challenge 

today. Strongly coupled energy harvesters are considered as a solution to further extend the 

frequency bandwidth, due to resonance splitting. However, “green PEHs” with high coupling K 

magnet 
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and simple configuration working at low ambient frequencies with a broadband operational 

capability are rarely reported. Therefore, this thesis aims to achieve a highly coupled lead-free 

piezoelectric energy harvesting, for broadband energy harvesting.  

There have been numerous studies on the optimization of output power of resonant energy 

harvesting transducers at resonance. Some of them include the study of the effect of the cantilever 

topology on energy harvesting efficiency [59]. Some studies conclude that triangular beams are 

better than rectangular beams for the same maximum amplitude and output power [60]. There are 

also studies on the effect of size and shape of the piezoelectric transducer on the performance of 

harvesters [49], [61]. Adhikari et al. studied the impact of geometry of the piezoelectric layer on 

the output power where the width was changed along the beam length during the optimization 

which showed transducer shape to be affected by the capacitance and coupling factor [62]. Another 

similar work reported a better performance for a cantilever beam with a wide free tip has than the 

simple rectangular or the tapered cantilever [63]. A cantilever with a proof mass at the free end 

exhibited higher conversion efficiency and a wider bandwidth compared to a standalone bimorph 

[64]. 

1.3.3.3 Non-resonant PEH 
There are several advantages for the non-resonant mode sensor especially in the case of energy 

transducers as it can utilize random loads effectively compared to the resonant mode that requires 

a near resonance condition i.e., a force with a frequency near to the resonance frequency of the 

cantilever structure. The non-resonant piezoelectric transducers utilize the direct piezoelectric 

effect along with certain conditioning circuits that can be used for dynamic measurement or 

random force power generation as it is not suitable for static operation as there can be leakage on 

the material [38]. The resonant mode is based on electromechanical response analysis in time or 

the frequency domain which can work in approximate proximity of their resonance frequency.  

Nanoscience has enabled the fabrication of novel next-generation nanogenerators for piezoelectric 

energy harvesting [65]. Semiconductor nanowires (NWs), due to their size and surface-to-volume 

ratio offer a wider range of very attractive physical properties [66]. A simple nanogenerator 

consists of a nanowire array of semiconductors like GaN [67]or ZnO [68] deposited over an 

electrode immersed in an insulating layer such as PMMA that protects it from the electrical 

leakages and short circuits onto which an electrode is deposited. Nanoscale devices have several 

advantages over the bulk such as: 
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(1) Enhanced Piezoelectric Effect [69]: The nanowires exhibit an enhanced piezoelectric effect 

compared to bulk which is of several orders of higher magnitudes and also offers more robustness. 

(2) Superior Young’s Modulus(Y) [70]: Nanowires can withstand larger strains resulting in higher 

flexibility in bending more compared to the bulk. Young’s modulus increases with an increase in 

NW’s diameter with values ranging from 118 to 183 GPa.  

The major work in this area leading to its popularity was conducted by Z. L Wang at Georgia-tech 

by the experiments in measuring the voltage output from zinc oxide (ZnO) nanowire by AFM tip 

[71]. This is supposed to be due to the Schottky junction between the platinum tip and n-type ZnO 

nanowire. The Schottky junction conducts electrons only when the ZnO is negatively charged 

along the compressed side of the wire. When a piezoelectric nanowire is strained, a potential is 

originated along the sides because of the lattice distortion. Nanogenerators have been implemented 

with several piezoelectric semiconductor materials such as ZnO, indium nitride (InN) [30] gallium 

nitride (GaN) [72], Cadmium Sulphide (CdS), and piezoelectric ferroelectric materials, such as 

PZT [65], and organic piezoelectric materials like PVDF [73], [74], have received extensive 

attention as nanomaterials for transduction. 

 

Figure 1.11: Schematic of nanogenerator fabrication by electrospinning process: (a) to obtain 
the aligned fibers; (b) to obtain the random fiber [65]. 

Nanogenerators offer excellent flexibility, making them an ideal low-cost option over their other 

counterparts. Several types of research into innovative designs have been performed for improving 

the performance and efficiency of the nanogenerators. Choi et al. [75] have demonstrated the 

working of a flexible hybrid cell, that can absorb both solar energy piezoelectric power consisting 

of ZnO nanostructures, serving as both piezoelectric material, and absorbing material for a solar 

(a)                            (b) 
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cell. Further, there is a piezoelectric nanogenerator based on lead-free electrically poled 

ferroelectric single-crystalline KNbO3 nanorod of 1 μm mixed with polydimethylsiloxane (PDMS) 

that has a large piezoelectric constant (d33 of 55 pmV-1). When the applied strain of 0.38%, the 

composite device has an open-circuit voltage of 3.2 V and a closed-circuit current of 67.5 nA with 

a current density of 9.3 nA cm-2, which could be enough to power an LCD. 

1.4 Power Management circuits for PEH 
PEH generates an AC voltage at the output. Therefore, a Power-Management Circuit (PMC) is 

needed to rectify, store, and regulate the AC output before it can be used to power WSNs. Since 

the microgenerators produce power in the order of microwatts, that is just enough to power the IoT 

nodes, such devices need to be efficient for low-power applications. PMC with the Integrated 

Circuit (IC) solutions on-chip obtain a better performance than implementations with off-the-shelf 

discrete components [76]. PMC acts as an interface between the Piezoelectric energy harvester 

(PEH) and the connected load. Figure 1.12 shows a general block diagram of power conversion 

circuits for piezoelectric energy harvesting applications. 

 

Figure 1.12: General block diagram of piezoelectric energy harvesting with power conversion 

circuits 

Further, WSN circuits usually work at voltages different from the open-circuit voltage of the PEH 

which could fluctuate depending on conditions such as input acceleration and frequency. Hence, 

the PMC has to ensure a smooth operation of the WSNs irrespective of changing input conditions. 

PMC primarily consists of AC–DC converters to convert the AC output of the PEH to a usable 

DC output followed by a DC-DC converter to convert the stored voltage into required DC levels. 

In addition, a storage device such as a supercapacitor or battery is also required. Finally, a power 

management block such as a Maximum power point tracking (MPPT) is employed to ensure that 

the power is delivered at the optimal load. To maximize the harvested energy, the electronic 

interface must appropriately match the output reactance of the piezoelectric element. The reactance 

of the PEH is generally capacitive and therefore to obtain perfect impedance matching, the load 
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reactance should be an inductor. However, in practical cases, a resistor is used as the load due to 

the impracticality of obtaining a high value of the inductor. The optimal load resistance (R) can be 

obtained by [77]: 

𝑅 =  
1

𝜔𝐶
 

1.11 

 

The efficiency in the storage of piezoelectric energy harvesting devices can be enhanced through 

efficient interfacing circuit design. When the piezoelectric materials connect to the electrical load, 

the electrical load will absorb the energy from the piezoelectric and it will increase the damping 

factor for the piezoelectric system. The interface circuit has a greater role in regulating the AC into 

DC and indirectly affects the efficiency of the energy harvester. 

With regard to Standard Energy Transfer rectifier circuits (SET) in PEH, the main schemes that 

are discussed in the literature, are 1) Full-Bridge Rectifiers (FBR) [78] and 2) voltage doubler [79] 

including those using a) MOSFET and other active switches (e.g., CMOS diode) [80] and b) diode-

only passive schemes. However, in MOSFET-based circuits, a gate voltage is required for 

switching operations, which consumes additional power. In addition, since the power generated 

by vibration is low (in microwatts), and typically in an FBR the efficiency is only close to 80%, 

excessive consumption in the rectification circuits should be minimized. In addition to the standard 

rectifier circuit mentioned above, resonant PEH rectifiers are one of the several harvesting 

interfaces that have been suggested to maximize power extraction [81], [82]. Such resonant 

techniques exploit a resonance effect to efficiently rectify the piezoelectric voltage and the PEH is 

intermittently disconnected to the resonant electronic interface for a small interval of time. 

The main criteria adopted to evaluate the performance of an energy harvesting circuitry can be 

described as follows [78]: 

1. The power loss (Ploss) in harvesting circuit should be minimal compared to input power (Pin). 

2. Low circuit complexity: minimum components should be employed in such circuits since 

input power is approximately < 50 µW, otherwise this could prove insufficient to power up 

complex electronic control schemes. Further, the interconnection with wires should be 

avoided to reduce resistive losses. 
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3. Adaptability: These schemes need to adapt to the variations in input frequency and the 

amplitude of the input conditions of the PEH during real-time operation, which might change 

with time. 

4. Minimum forward operating voltage Vp of the conditioning circuit: ensures the output voltage 

Vout is greater than the threshold voltage Vth of the passive components such as diodes. 

1.5 Summary 
The state-of-the-art of micro-scale energy harvesting for powering autonomous WSNs has been 

detailed, with a focus on vibration-based energy harvesting. It is to be noted that the choice of the 

energy harvesting solution largely depends on the working conditions and available power density 

at the target location of installation of these WSNs. Therefore, the choice of ambient energy 

harvesters is largely application-specific and should be dealt with case by case. The vibration 

energy can be harnessed by various transduction mechanisms such as electrostatic, 

electromagnetic, and piezoelectric transductions. Among these various mechanical vibration-

based energy harvesting options, piezoelectric energy harvesting is the most common and feasible 

option due to its high-power density, high output voltage, and relatively better compatibility with 

MEMS-based fabrication process. Piezoelectric energy harvesters (PEHs) are widely studied in 

the literature. The two approaches for the piezoelectric energy harvesting namely the resonant and 

non-resonant modes have been detailed. Several prototypes with different approaches to improving 

the harvested power and operating frequency range, which has been proposed in the literature, 

have been detailed. However, since most of the previous research in this area is focused on lead-

based materials such as PZT, there is an urgent need for exploring new environment-friendly 

materials as active materials in piezoelectric energy harvesters. Further, some of the disadvantages 

of the piezoelectric energy harvesting technique such as low operating bandwidth need to be 

addressed, to meet the criteria in real time application. In real time applications such as powering 

IoT wireless sensor nodes using ambient vibrations, broadband harvesting capabilities are 

essential. Compared to the existing non-linear and bi-stable techniques to achieve broadband 

energy harvesting, strongly coupled PEHs are more promising solution to extend the frequency 

bandwidth, due to their simplicity. However, “green PEHs” with high global electromechanical 

coupling K, simple configuration, working at low ambient frequencies, and with a broadband 

operational capability are rarely reported. Therefore, this thesis aims to achieve highly coupled 

lead-free PEHs, for broadband energy harvesting. The next chapter will explore the 
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electromechanical properties and energy harvesting FoM of promising new lead-free piezoelectric 

materials such as Sodium Potassium Niobate (KNN), Lithium Tantalate and Lithium Niobate that 

are studied in the context of the EU ITN-ENHANCE project. 
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2 Electromechanical characterization of piezoelectric materials 

 

In this chapter, the extraction of electromechanical properties of a few lead-free piezoelectric 

materials at the microscale, to develop vibrational energy harvesting devices are discussed. The 

techniques that have been used to characterize the piezoelectric properties, morphologies such as 

Atomic Force Microscopy (AFM) are detailed. Also, a brief discussion on the processing, 

deposition of these piezoelectric materials, and the list of extracted parameters such as the Figure 

of Merit (FoM) devices is presented. 

2.1 Piezoelectric Materials 
The piezoelectric effect being an anisotropic phenomenon is exhibited by materials with no centre 

of symmetry in their crystal structure. Out of the 32 crystallographic groups, 21 groups are non-

centrosymmetric out of which 20 groups are piezoelectric. Those 20 piezoelectric point groups can 

be again classified into 10 polar and 10 nonpolar groups. The polar group exhibit a property known 

as spontaneous polarization and are also pyroelectric. For centro-symmetric crystal, the 

polarization remains zero, even under stress. Materials in which the centers of positive and 

negative charges do not coincide even without the application of an electric field are said to have 

spontaneous polarization, Ps. The spontaneous polarization is displayed by materials that have a 

unique polar axis [5], which are a subset of non-centro-symmetric point groups as shown in Figure 

2.1b. On the application of mechanical stress on a non-centro-symmetric crystal, an asymmetric 

displacement of the ions is created resulting in the modification of the internal dipoles. An example 

of the perovskite unit cell structure of ABO3 type is shown in Figure 2.1a with two positive ions 

on the A-site (in Green) and negative oxygen ions O2 (in Yellow)- forming an octahedron around 

the B-site (in Blue). 
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Figure 2.1: (a) Perovskite unite cell (b) Classification of families of dielectric materials [5] 

 The negative oxygen octahedron can be moved in the opposite direction relative to the positively 

charged A-ions along the (vertical) c-axis, thereby creating a spontaneous electric polarization. 

When the equilibrium spontaneous polarization of dielectric material can be reorientated by an 

electrical field of sufficient strength at temperatures below a characteristic temperature Tc, it is 

called a ferroelectric. The compression or expansion of the cell along the polar axis will shift the 

positive and negative charges accordingly resulting in a charge on the surfaces of the ferroelectric 

polarization direction. Also, the compression or expansion of the unit cell along the polar axis, can 

therefore distort the positive and negative charges in different directions resulting in an electric 

field in a normal direction as well. The polar axis also allows them to be pyroelectric, i.e., they can 

generate polarization of charges on the application of a temperature gradient across the material 

polarization direction. In a nutshell, all pyroelectric materials are piezoelectric, whereas only those 

piezoelectric materials whose symmetry belongs to these 10 polar groups are pyroelectric as shown 

in Figure 2.1 

 

 

 b. Since piezoelectric materials show anisotropy, their physical parameters such as elasticity, 

permittivity etc. are tensor and are associated with both directions of stress, electric field, etc. The 

Figure 2.2 presents convention used in the IEEE Standards for the piezoelectric axis: the axis 1, 2, 

and 3 indicate the translations, and 4, 5, 6 indicate the shear. By convention, the material 

polarization is taken along the 3-axis.  

(a) (b) 
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2.2 Piezoelectric constituent equations 
The constituent equations of a piezoelectric crystal are the complex relations between the 

mechanical stress Ti, the strain Sk, and the charge density displacement Di (electric charge per unit 

area), and the electric field Ei as given below: 

𝑆 = 𝑆  𝑇  +  𝑑 𝐸   2.1 

𝐷 = 𝑑 𝑇 +  𝜀 𝐸   2.2 

where, dij is the piezoelectric charge coefficient (C/N or m/V), Skl the elastic compliance matrix, 

ℇ0 the absolute permittivity, and ℇij the relative permittivity matrix of the material. The indices k 

and l through 1 to 6 (reduced index notation) and the index i and j from 1 to 3 as shown in Figure 

2.2. The upper index T indicates constant stresses. The direct piezoelectric relates the electrical 

charge to the applied mechanical stress T. The inverse effect gives the relationship between the 

applied electric field and the generated strain. 

 

Figure 2.2: Axis numbering of piezoelectric tensors 

2.3 Classification of Piezoelectric Materials: 
The Piezoelectric Materials (PM) can be broadly classified as crystalline, ceramic, and polymeric 

piezoelectric materials. In contrast to the naturally occurring piezoelectric crystals like quartz, 

piezoelectric ceramics are of “polycrystalline” structures [83]. The most commonly produced 

piezoelectric ceramics are lead zirconate titanate (PZT) [84], [85], barium titanate [86] and lead 
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titanate. Recently widespread interest has been generated in semiconducting PM like Gallium 

Nitride [87],  and Zinc Oxide [66], which can also be regarded as a ceramic due to their relatively 

wide bandgap. The semiconducting PM possesses unique advantages such as compatibility with 

the integrated circuits and semiconductor devices [68]. Also, it was shown that the transverse 

piezoelectric coefficient d31 and the FoM of the well-known piezoelectric thin film material AlN 

(001) increase considerably by substituting Al partially by Sc18. Further, inorganic ceramic PM 

has several advantages over single crystal, such as the ease of fabrication into a variety of shapes 

and sizes as single crystals require cutting along the crystallographic directions, thus minimizing 

the possibilities of cutting into different shapes [3,10]. The next class of PM namely organic 

polymer such as PVDF has low Young’s modulus compared to the inorganic PM [73]. 

Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric voltage constants (g33), 

an important parameter in sensors, even comparable with ceramics. Also, piezoelectric polymeric 

sensors and actuators with their processing flexibility and their lightweight can be readily 

manufactured into large areas, and cut into a variety of shapes. In addition, polymers also exhibit 

high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, 

thereby a high voltage sensitivity which is a desirable sensor characteristic along with low acoustic 

and mechanical impedance useful for medical and underwater applications. However, they have 

relatively low d33 which limits their application. 

Among the ceramics, PZT ceramics are very popular as they have a high sensitivity, a high g33 

value [88]. However, they have some important limitations such as: 1.) hard to process as they are 

brittle, and thereby fracture prone. 2.) the output signal they produced for a load depends on the 

temperature 3.) Thirdly, the difficulty in integration of ceramic disks into industrial appliances 

molded from plastic. This results in the development of PZT-polymer composites [89], [90] and it 

is, therefore, feasible to integrate functional PM composites in the product by simple thermal 

welding or by conforming processes. 

2.4 Poling of Piezoelectric Materials 
In contrast to the naturally occurring piezoelectric crystals like quartz, ferroelectric ceramics are 

of “polycrystalline” structures with the electric dipoles randomly orientated.  
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Figure 2.3: Domain orientation in ferroelectric ceramics (a) before poling (b) during Poling (c) 

after the poling electric field is removed 

Regions of the material with uniformly oriented spontaneous polarization are called ferroelectric 

domains. Therefore, the domains in each grain are randomly arranged in polycrystalline ceramics 

and thus result in a zero net polarization as shown in Figure 2.3a. However, during the application 

of a very high electrical field (typically 1-10 kV/mm) at a higher temperature (known as poling), 

the polarization of domains aligns in the direction of the applied Electric field as shown in Figure 

2.3b. Once the electric field is removed, the domains tend to retain their orientation as shown in 

Figure 2.3c, given the condition that the temperature is above a particular value, which is known 

as the Curie temperature Tc of the material. The poling can be performed only on ferroelectric 

materials where it is possible to switch the crystal polarization.  

2.5 Ferroelectric Hysteresis Loop and Butterfly Loop  

2.5.1 Ferroelectric Hysteresis Loop 
The ferroelectric hysteresis loop (Figure 2.4a) is a unique property of ferroelectric materials. An 

applied alternating, large electric field (surpassing the coercive field) will modify the polarization 

of the material and provoke a polarization switching in every half-cycle. 

(a) (b) (c) 
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Figure 2.4: Typical (a) Hysteresis (b) Butterfly curves of ferroelectric ceramics 

 Polarization switching is an important characteristic of a ferroelectric material during the 

application of an external electric field resulting in the exhibition of the ferroelectric hysteresis 

loop. At small values of the AC field, the polarization increases linearly. This is because the 

initially unpolarized domains become more aligned with the applied field direction. However, as 

the field exceeds a certain value, there is no further increase in polarization since the dipoles are 

fully aligned with the electric field direction. The value of the field is known as its saturation 

polarization Ps. As the field is then reversed to zero, the domains become less aligned, although 

they do not completely return to their original alignment state as they remain in the favorable state 

which is closer to the applied field. However, since most domains are in the direction of the applied 

field, the net polarization does not return to zero but to a lower value than the saturation 

polarization Ps which is known as the remanent polarization Pr. The area inside the hysteresis loop 

corresponds to the energy loss per cycle per unit volume.  

2.5.2 Butterfly loop 
Initially, at zero field (point A in Figure 2.4b), the ferroelectric material experiences no strain. 

When the electric field is then applied in the polarization direction, the domains expand due to the 

strain developed by the piezoelectric effect, as depicted by the points A–B–C. The domains extend 

linearly until the maximum field (point C). When the field is reduced to the initial value from point 

C to A the field starts to the strain is again zero. The field then changes its direction, becoming 

antiparallel to PS. As the electric field increases in the opposite direction, the ferroelectric domains 

(a) (b) 

E (kV/cm) 
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contract compared to point A. At point D the direction of polarization is switched. After switching, 

the polarization becomes parallel to the field, and the strain becomes positive again at point E. 

During further increase of the field in the opposite direction, strain increases to point F, and then 

return to point A. The strain–field curve is linear, indicating that the strain is purely piezoelectric 

except at the switching points D and G. 

2.6 Key Properties of Piezoelectric Materials 

2.6.1 Piezoelectric coefficients 
Piezoelectric coefficients with double subscripts link electrical and mechanical properties in 

piezoelectric material. The "dij" coefficients are most used in transducers, which associates the 

mechanical strain due to an applied electric field and, therefore, are also known as the strain 

constants (meters per volt). Other types of coefficients are related to other variables namely: hij 

coefficient (relating strain and charge), eij coefficient (relating strain and electric field), gij 

coefficient (relating stress and charge). The first subscript gives the direction of the electric field 

associated with the voltage applied, or the charge produced. The second subscript gives the 

direction of the mechanical stress or strain. The four piezoelectric coefficients are used to describe 

different elements of the piezoelectric conversion. For example, the coefficient dij gives the 

displacement of the material during the application of a voltage. Similarly, the coefficient eij is the 

electrical charge generated due to the straining of the piezoelectric material. The piezoelectric 

voltage constant, gij, is the electric field generated by a piezoelectric material due to the application 

of mechanical stress applied. hij coefficient indicates the voltage produced per unit strain when 

displacement is constant.  

2.6.2 Youngs Modulus 
The mechanical stiffness properties of the piezoelectric ceramics are described by the Young's 

Modulus (N/m2 or Pa). Young's Modulus is the ratio of stress (force per unit area) to strain (change 

in length per unit length). The stiffness of the piezoelectric material plays an important part in 

determining resonant frequency. The poling process of piezoelectric ceramic can also induce a 

strain that can be proportional to the polarization field. When an external electric field is applied 

to ferroelectric ceramics (poling), the dimensional change/strain developed depends on the 

stiffness of the ceramic material. For larger stress, the non-linearity should also be taken into 

account. Due to the converse piezoelectric effect, if the generated electric charge is not transported 

quickly, it may accumulate and therefore, leads to an opposing force in the reverse direction of the 
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applied stress due to which the open-circuited electrodes get stiffer than that of shorted electrodes. 

So, the effective Young's Modulus of a piezoelectric material under a short circuit is lower than 

with the electrodes open-circuited due to the electrical response that counteracts the resultant 

strain. Furthermore, the stiffness is anisotropic in all 3 directions from that in the 1 or 2 directions. 

Therefore, while representing them, both direction and boundary conditions need to be specified. 

YE33 gives the relationship between stress and strain in the 3 directions at constant electric field E 

with electrodes shorted. YD33 gives a similar relationship with the electrodes open-circuited. 

2.6.3 Dielectric Permittivity 
The permittivity, or dielectric constant, εij, for a piezoelectric ceramic material, is the dielectric 

displacement per unit electric field. The first subscript i refer to the direction of the dielectric 

displacement and the second subscript j is the direction of the electric field. A lower dielectric 

permittivity is preferred for a piezoelectric material for energy harvesting application. 

2.6.4 The electromechanical coupling factor, Kij 
The efficiency of mechanical to electrical energy conversion is a key factor for the improvement 

and optimization of PEH devices. The Kij
2 value is a measure of the effectiveness with which a 

piezoelectric material converts electrical energy into mechanical energy or the other way. The first 

subscript to K denotes the direction along which the output electrodes are placed and the second 

denotes the direction along which the mechanical force is applied or vice versa. The ratio of the 

energy stored (mechanical or electrical) to the input energy (electrical or mechanical is defined as 

the Kij2, square of the coupling coefficient. 

𝐾 =  
Energy converted or stored 

Input Energy
 

2.3 

Obtaining high power output from piezoelectric harvesters in many applications requires a high 

Kij
2. Mostly, the PEH is operating at its resonant frequency, where the important parameters for 

performance are the electromechanical coupling coefficient Kij
2, the quality factor Qm. Richards et 

al. derived an exact efficiency formula for cantilever based PEH based on a simplified Single 

degree of Freedom(SDOF) model [91]: 
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2.4 

 

The efficiency ηPEH depends only upon the quality factor Qm and the electromechanical coupling 

coefficient Kij
2 of the whole system working at resonance. The theoretical study estimated that the 

efficiency value can be over 90% with the assumed weak damping and strong coupling effects.  

2.7 Towards Lead free Piezoelectric ceramics 
For several decades, lead-based piezoelectric ceramics such as PZT, have been regarded as the 

most used piezoelectric materials due to their higher piezoelectric constants [92], high Curie 

temperature Tc [85], and relatively matured processing steps. The existence of a morphotropic 

phase boundary (MPB) between two ferroelectric phases helps in their effective poling, resulting 

in improved electromechanical properties.  

However, the adverse issues that arise due to excessive use of lead-based piezoelectric ceramics 

in commercial applications have resulted in an increased interest in the scientific community to 

investigate more novel lead-free piezoelectric materials. For instance, lead and its derivatives, like 

lead oxide (PbO), have been reported to show toxicity and are therefore regarded as hazardous 

material [93]. Also, recently there have been increasing regulations in the electronic industry to 

use green materials that are eco-friendly in nature [2]. Recently, the European Union has also 

implemented the Restriction of Hazardous Substances legislation (RoHS), which has set a strict 

standard restricting the use of lead-based piezoelectric materials in future electronic devices.  

Hence, there have been several approaches towards lead-free ceramic PM in recent years, such as 

piezoelectric single crystals [86], and ferroelectric ceramics with a perovskite structure and 

Bismuth Layer-Structured Ferroelectrics (BLSF) [94] have been extensively researched. Also, 

several ferroelectrics with perovskite-structure BaTiO3 [BT] [86], (Bi1/2Na1/2)TiO3 [BNT] [95], 

(Bi1/2K1/2)TiO3 [BKT] [96], KNbO3 [KN] [97], (K,Na)NbO3 [KNN]) [98] have been probed 

extensively. The materials used for the measurement purpose in actuators should possess desirable 

properties like stability, high output, insensitivity to extreme temperature and humidity, and ability 

to be formed or machined into any shape. But none of the materials exhibiting the piezoelectric 

effect possesses all the properties. Quartz, which is a natural crystal, is highly stable but the output 

obtained from it is very small due to low d33. It also offers the advantage of measuring very slowly 

varying parameters as they have very low leakage when they are used with high input impedance 
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amplifiers. Obtaining high power output from piezoelectric harvesters requires a high K2. 

Ferroelectric material, such as LiNbO3 (LN) presents FoM similar to that of PZT20 [99]. 

Moreover, LN is compatible with high-temperature applications of transducers (up to 1000°C) and 

energy harvesters (EHs) (up to 500 °C, further experiments are needed to find the temperature 

limit) [20]. BFO is also a potential candidate for high-temperature Vibrational (Vi)-EH (up to 500 

°C) [21]. This makes LN and BFO particularly attractive for the EHs applications where the 

working temperature is elevated (in oil, exhaust pipe, close to motor temperature can reach 600 

°C), as PZT, BTO, and KNN lose their piezoelectric properties at these temperatures. The 

comparable output power density to that of PZT films was reported for (100)-oriented BiFeO3 

(BFO) films [100]. One of the highest power density values among the wide bandwidth micro-

piezoelectric EHs was achieved by EH based on lead-free Sodium Potassium Niobate (KNN) films 

[101]. Thus, these lead-free materials present the real potential for PEHs. However, the application 

of these materials in PEHs is still very little studied and considerable efforts have to be done 

towards their integration into the conventional processing of piezoelectric materials for MEMS 

applications. 

Therefore, several lead-free piezoelectric materials especially alkaline Niobates and Tantalates, 

synthesized by sol-gel technique will be studied in this chapter. Lithium Tantalate, Sodium 

Potassium Niobate and Tantalum doped Sodium Potassium Niobate, of the morphology thin films 

and fibres are studied for their piezoelectric and energy harvesting Figure of Merit (FoM). The 

thin films are grown by a novel sol-gel route on steel substrate by spin coating. The protocol of 

deposition of the films on a stainless-steel substrate was developed by A. Verma, Ph.D. student of 

Prof. Sanjay Mathur group, UoC, under the collaboration within the ITN ENHANCE framework. 

 

2.8 Piezoresponse Force Microcopy (PFM) 

Advances in atomic force microscopy (AFM) techniques and their ability to probe matter with the 

nanometric lateral resolution have allowed the electromechanical phenomena at the nano-micro 

scale to be explored with precision. Piezoresponse Force Microscopy (PFM) has emerged as a 

powerful tool to study electromechanical properties, the switching mechanism of ferroelectric 

domains, and the piezoresponse in low-dimensional materials in recent years [46], [102]–[105]. 

The schematic of the PFM setup (Bruker, ICON 2018 [106]) is shown in Figure 2.5. 
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Figure 2.5: Schematic illustration of PFM setup 

The PFM technique is based on the contact-mode Scanning Probe Microcopy (SPM), where the 

SPM is equipped with a function generator, a lock-in amplifier, and a cantilever that is conductive 

as shown in Figure 2.5. In the PFM technique, a conductive AFM tip act as a top electrode, while 

the other side of the sample is connected electrically to the conductive chuck that is grounded and 

acts as the bottom electrode. The piezoresponse of the sample is obtained by applying a voltage 

(AC) to the tip: 

𝑉 (𝑡) = 𝑉 + 𝑉 cos(𝜔𝑡) 2.5 

The applied voltage (Vtip) results in a displacement of the sample and thereby deflection of the 

cantilever d, under contact with the sample as given below:  

𝑑 = 𝑑 + 𝐴  cos(𝜔𝑡 + Ф) 2.6 

Where, Am is the amplitude of the piezoelectric response (in photodetector voltage V) and Ф 

defines the phase-shift, generated by the ferroelectric domain located under the tip. The 

ferroelectric domains under the tip could involve several domains in different directions (in-plane 
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or a-domains, out of plane or c- domains or both) contributing to the overall phase (Figure 2.6a). 

Lateral and vertical displacements are created by in-plane and the out of plane responses from the 

sample respectively. Amplitude and phase are therefore demodulated from the piezoresponse data 

by the Lock-in Amplifier (LiA). PFM can therefore measure both out-of-plane and in-plane 

components of the piezoresponse, often also referred to as Vertical PFM (VPFM) and Lateral PFM 

(LPFM). VPFM indicates the vertical movements of the laser position on the Position Sensitive 

Photodetector (PSD), associated with the out of plane movement of the sample (buckling of the 

cantilever) as shown in Figure 2.6 b, c, while LPFM indicates the in-plane motion of the sample 

(lateral deflections) of the laser, linked to the lateral shear of the cantilever. 

 

Figure 2.6: (a) schematic illustration of the a and c-domains in a ferroelectric (b) possible 
movement of the laser spot on the photodetector (c) possible movements of the cantilever due to 
a force developed by the interaction of various domains with the applied AC voltage resulting in 

the torsional and buckling forces 

Therefore, a quantitative measure of the piezoelectric coefficient d33 is possible by calculating the 

PR amplitude A, out of cantilever resonance frequency, given the electric field produced by the 

applied voltage Vtip is homogeneous in the z-direction as given below [101]: 

𝐴 = 𝛼. 𝑑 . 𝑉  2.7 

 

 

(a) 

(b) 

(c) 
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Table 2.1 List of parameters and units 

Parameter Description Units 

A Piezoresponse amplitude V 

Vtip Applied tip voltage V 

𝛼 Cantilever inverse deflection sensitivity V/m 

d33 Piezoelectric coefficient m/V 

fCR Cantilever resonance frequency Hz 

where α is the calibration factor determined from the lock-in amplifier and the optical deflection 

sensitivity of the cantilever. The effective d33 coefficient is measured via VPFM, and d15 is 

measured by LPFM. 

2.8.1 Choice of AFM tip and operating frequency 

In PFM technique, a conductive AFM tip acts as a top electrode. A relatively high stiffness tip (>1 

N/m) is chosen to reduce the effect of electrostatics interference between tip and sample [105]. In 

this thesis conductive platinum-coated Si tip (SCMPIT-V2 from Bruker) (Details in APPENDIX 

I) with a stiffness (~3 N/m) is chosen for the PFM experiments. The cantilever resonant frequency 

of SCMPIT-V2 is 75 kHz. In the standard PFM technique, the operation frequency f of the 

excitation voltage Vac is typically in the 10–100 kHz range [105]. This ensures that f is away from 

the contact resonance frequency fCR of the cantilever-sample system generally (>100 kHz). The 

piezoresponse is nearly independent of the applied AC frequency, which is confirmed by 

performing the measurements at different frequencies of 50 kHz and below, (in Appendix 4) on 

reference sample (PPLN, Bruker). An operating frequency of 50 kHz is chosen throughout this 

characterization work for this reason. An applied AC voltage (1 V peak) is used to scan the 

domains, wherever not specified. 

2.8.2 Calibration of vertical deflection sensitivity 

Quantitative determination of the vertical and lateral displacements in PFM is a continuing 

challenge due to the inherent complexity of the contact electromechanics of piezoelectric materials 

with an AFM tip. Therefore, the proper calibration of the sensitivity of the cantilever is important. 

The calibration parameter vertical deflection sensitivity α depends on the inverse Optical Lever 

Sensitivity (inv-OLS), and the LiA gain, G (=1 in this study case), as: 
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𝛼 = 𝑖𝑛𝑣 − 𝑂𝐿𝑆.
1

𝐺
 

2.8 

The inv-OLS relates the photodetector voltage (in V) to the vertical deflection of the cantilever (in 

pm) and is determined from the contact mode force curve against a hard sapphire substrate (to 

ensure there is no deformation), a calibration sample from Bruker, before the measurement of d33. 

2.8.3 Measuring dij coefficients 

The piezoelectric coefficient d33 is measured by measuring the slope of the VPFM piezoresponse 

amplitude A (in pm) as function of applied driving AC bias (Vac) in contact mode as equation 2.7. 

The slope gives the value of d33 that is measured in picometre per volt. 

𝑑 =  
𝐴

𝛼𝑉
 

2.9 

Where   is piezoresponse in pm. 
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So, based on equations 2.8 and Error! Reference source not found., the piezoelectric coefficient 

d33 can be extracted from this slope value if the vertical inverse deflection sensitivity α is known 

as shown in Figure 2.7b. Before each PR measurement, the d33 values are checked and calibrated 

against a known reference sample (Periodically Poled Lithium Niobate-PPLN, Bruker, d33 = 7.3 

pm/V) [107] as shown in Figure 2.7 (b). 

Figure 2.7: (a) Piezoresponse amplitude vs applied AC voltage (slope =d33) (b) estimation 
of d33 in PPLN reference sample. 
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2.9 PFM Characterization of Lithium Tantalate samples 

In this chapter, the PFM characterization of Lithium Tantalate films grown by spin-coating of sol-

gel with different thicknesses is discussed. This section of the chapter has been published in [108]. 

2.9.1 On the interest of Lithium Tantalate 

Curie temperature Tc is one of the most critical parameters for piezoelectric materials as above Tc, 

material lose its ferroelectric property. Lithium tantalate (LiTaO3)-(LT) is a perovskite with a high 

curie temperature (650 °C) that can be used at elevated temperature for electromechanical energy 

harvesting, for instance, in high-temperature acoustic transducer [109]. Given its wide 

transparency range (400-500 nm), LiTaO3 has found its applications in photonic devices [110]. 

Further, single crystal LT is also widely used for the generation of surface acoustic waves and 

filters for RF applications. Despite its promising properties and lead-free composition, the use of 

LiTaO3 remains elusive mainly due to its lower piezoelectric coefficient coefficients (d33=21 

pm/V, d15=26 pm/V) [18], [111] ,when compared to other lead-free alternatives such as potassium 

sodium niobate (KNN) (d33=80 pm/V) [112]. However, LiTaO3 is a potential contender for lead-

free PEHs for high temperature applications as they have high Tc compared to other lead-free 

alternatives such as KNN (Tc = 400 °C) [113]. LT-PEHs can be used to power low-powered 

devices such as watches, microphones, sensors and high temperature transducers. In this context, 

it is interesting to study the local electromechanical properties of LiTaO3 grown by sol-gel 

techniques by PFM, for possible applications in PEHs.  

2.9.2 LT samples and topography 

The LiTaO3 piezoelectric cantilevers are fabricated by sputtering of Ti (20 nm) and Au (100 nm) 

as electrical top contacts over the LiTaO3 deposited by spin coating of the precursor sol using a 

shadow mask. The stainless-steel substrates serve also as the bottom electrodes. The specimen size 

of the piezoelectric cantilever was 16 ×1.6 mm2 area and the electrode area was 10×1.5 mm2. In 

this study the LT films of various thickness, deposited by sol-gel technique on steel substrate are 

studied for their d33 and energy harvesting Figure of Merit (FoM). The samples are named LT2, 

LT4, and LT6 to denote the increasing thickness of LiTaO3 films with the numbers denoting the 

number of spin coating steps. The SEM images (top and cross-sectional views) of the LT2, LT4, 

and LT6 cantilevers are shown in Figure 2.8, indicating the thickness of the samples. From the 
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AFM topography Figure 2.9, their average roughness is measured to be 19, 21, 26 nm for LT (2, 

4, and 6 respectively). Details are given in Table 3.1. 

 

Figure 2.8: (a, b, c) scanning electron micrograph (SEM) top view of LiTaO3 thick films (d, e, f) 

cross-sectional SEM confirming uniform deposition of thick films of the thickness [108]. 

 

Figure 2.9: AFM contact mode topography image of (a) LT2, (b) LT4 and (c) LT6 (scan size: 
2µm X 2µm) 

2.9.3 Domain polarization of LT samples 

The polycrystalline material has randomly oriented grains or crystallites and has no net domain 

polarization, however, after the application of high electric field or poling, the material gains a 
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polarizing effect as in Figure 2.10. Figure 2.10, presents a typical piezoresponse (PR) phase and 

amplitude change in the LiTaO3 samples recorded with respect to the increase in film thickness by 

VPFM and LPFM on an area of 2x2 µm2 before and after polarization at 20 V with AFM tip at a 

scan rate of 512 Hz. The PFM amplitude signal indicates the sample displacement, and the PFM 

phase signal provides information about the polarization vector of individual domains. The 

appearance of bright or dark regions in the phase image indicates a contrast in the direction of the 

polarization vector in the LT samples (Figure 2.10 b, d, f). 

 

Figure 2.10: VPFM and LPFM phase and amplitude images of LiTaO3 cantilever surface 
(lateral scale 2x2 µm2) after different polarization voltages (a) LT-2 at 0 V; (b) LT-2 at VDC=20 

V; (c) LT4 at VDC=0 V (d) LT4 at VDC=20 V; (e) LT6 at VDC=0 V, and (f) LT6 at VDC=20 V 



47 
 

The applied voltage of 20 V corresponds to Electric field of 4 kV/mm, which is greater than the 

switching coercive field Ec. However, a voltage above Ec have to be maintained for a longer time 

to achieve complete poling of the material. Maintaining a high electric field across the AFM tip 

for longer time is having limitation since it could result in heating and thereby damage the 

conductive coating. There was no clear contrast present in the VPFM phase before polarization for 

the LT films as shown in Figure 2.10 a, c, e, which indicated that the out-of-plane domains in the 

film are largely homogeneous across the entire film possessing early similar domain orientation. 

The contrast observed at lateral phase mapping in Figure 2.10 c indicated an arbitrary in-plane 

domain distribution in the case of LT4 possibly due to an in-plane strain or the surface charge 

induced polarization. Further, the spontaneous polarization in the domains was observed by the 

application of constant DC-bias of 20 V across LT thin films by the AFM tip as shown in Figure 

2.10 b, d, f, showing a clear modulation in phase between the adjacent domains as analyzed from 

the dark and bright regions in the LPFM and VPFM phase signals. The higher contrast in VPFM 

and LPFM images in the 20 V poled sample, compared to the unpoled samples is also due to the 

resulting internal stress that is generated in the sample due to poling. The local internal stress could 

induce additional internal fields inside the material [114]. It was observed that many domains 

consisted of several grains and some of the grains showed multi-domain structure as well. The 

piezoelectric properties are supposedly enhanced in the multidomain state in comparison with the 

single-domain state due to the strong orientation dependence as well as the extrinsic contribution 

from the domain wall motions that are absent in single-domain crystals [115]. The dynamic out-

of-plane and in-plane piezo-responses due to the spontaneous polarization of the corresponding 

domains of the LT film upon 20 V bias, as presented in Figure 2.10 b, d, f, also showcase their 

good ferroelectric and piezoelectric performances. Remarkably, the analysis of LPFM and VPFM 

images at 20 V showed that the in-plane enhancement was higher when compared to the out-of-

plane polarization indicating that the response was originated from the polarization of lateral 

domains aligned perpendicular to the applied electric field. The PFM results confirmed that the 

LT film possesses strong spontaneous polarization, and the polarization switching can be induced 

at a certain applied voltage. The variations of the PR amplitudes of unpoled LT films and 20 V 

poled LT films with the DC bias voltage ramped in two directions, exhibit typical “butterfly” loops 

that are observed in ferroelectric materials. This confirmed the remarkable local microscopic 

ferroelectric characteristic of the films as shown in Figure 2.11 a, c, e. Further, the ferroelectric 
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domain switching behavior in the LiTaO3 cantilevers was observed from the well-saturated 

hysteresis loop (Figure 2.11 b, d, f) indicating a 180° phase-switching of local domains under the 

AFM tip. Figure 2.11, shows the hysteresis and butterfly curve of LiTaO3 before and after 20 V 

poling for 20 minutes. Figure 2.11 a, c, and d, shows the phase vs electric field strength and Figure 

2.11 b, d, and f represent the typical butterfly curve showing the amplitude under the AFM tip that 

is in contact (tip-on process) with the LiTaO3 surface. It should be noted that due to the dissimilar 

switching mechanisms among the microscopic PFM and macroscopic P-E measurement, the 

observed coercive voltage Ec obtained from the PR hysteresis loop is generally smaller than that 

from the P-E loop as reported for the bulk phase [105].  

 

Figure 2.11: Local ferroelectric domain switching behavior in LiTaO3 cantilevers: (a, c, e) 
Butterfly (strain vs field) curve, (b, d, and f) the local hysteresis loop showing 180º switching of 

domains at 0 and 20 V polarization for cantilevers LT 2, 4 and 6 respectively [108]. 

The converse piezoelectric coefficient (d33) is recognized as an important figure of merit (FoM) 

for electromechanical applications, such as energy harvesters. The d33 coefficient was measured 

from the slope of PR amplitude (A) vs driving AC bias (Vac) according to the equation as discussed 

in section 3.14: 



49 
 

Using equation Error! Reference source not found., the piezoelectric coefficients d33 for the 

samples LT (2, 4, and 6) were estimated to be 23.23, 21.99, and 24.07 pm/V respectively, which 

were measured at 6 different points of the sample and averaged over an area of 18 x18 mm2. These 

coefficient values match well with the values reported in the literature for polycrystalline LiTaO3 

films [109], [116] as shown in Table 3.1.  

Table 2.1 summary of the electromechanical properties of the Lithium Tantalate samples 

Samples Sample 

name 

Size Extracted d33 

(unpoled) (pm/V) 

Reported 

d33 

(pm/V) 

Reference Dielectric 

permittivity 

ε33
T 

FOM (
𝒅𝟑𝟑

𝟐

𝜺𝟑𝟑
𝑻 ) 

(10-18m2/V2) 

S060-

S062 

LT2 2 µm 23 13 [111] 

[112] 

163 3.2 

LT4 3.4 µm 22 362 1.3 

LT6 4.3 µm 24 479 1.2 

 

2.10 PFM study of Sodium Potassium Niobate (KNN) thin films 

In this section the PFM study of single phase KNN films grown by a novel sol-gel route on steel 

substrate by spin coating (1680 rpm) is discussed. The samples have a thickness (7 µm) as 

deposited on a stainless-steel substrate. 

2.10.1 Introduction 

(Na-K)NbO3 ceramics- KNN have recently received a lot of attention as suitable candidates for 

lead-free ferroelectrics materials due to the high d33 (>400 pm/V) and relatively Curie temperatures 

(> 400o C) [96], [101]. The Piezoelectric Thin Films (PTFs) of lead-free materials such as KNN 

are increasing in popularity due to their increasing applications in sensors and actuators [117], 

[118], energy, [119]–[121] etc. The PTFs are generally polycrystalline and have domains arranged 

in different orientations. Polycrystalline PTFs may be brought into a polar state by poling process, 

where a large electric field 10–100 kV/cm is applied across the film, usually three times the 

coercive field Ec of the material at elevated temperatures less than the Curie temperature Tc [122]. 

Poling will not orient grains but can reorient domains within individual grains in the direction of 

the applied electric field. However, localized piezoelectric characteristics local inhomogeneity, 

and non-linearities in nanoscale properties such as piezoelectric coefficient (d33) of the KNN based 

PTFs are poorly understood. To fully understand the piezoelectric properties at the nano/micro-
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scale, detailed nanoscale characterization of the structure and piezoelectric properties is needed, 

including probing of nanodomain switching and estimation of local piezoelectric coefficients after 

poling. Earlier studies on the nonlinearity of PZT suggested that the nonlinearity is an effect of 

domain wall motions, and their contribution to the piezoelectric property throws light on 

improvement for various applications of PTF [123]. PFM permits the mapping of the domains 

along with the piezoelectric properties of PTFs with a resolution of a few nanometers. Further, this 

allows the local poling and imaging of domains with the application of an external electric field 

which can be used to determine the ferroelectric properties of a sample. A proper understanding 

of the origin and the variation in determining the piezoelectric constant after poling is important. 

The effect of free surfaces and size on ferroelectricity has been the focus of several theoretical 

studies [124]. The profound and direct impact of these side effects of local domains and their 

response to the external fields helps to design and engineer the next generation of KNN-PTF based 

devices. In contradiction to the temperature-independent MPB in PZT systems, KNN-based 

ceramics is considered to have the drawback of the high sensitivity of the piezoresponse to 

temperature [125]. Nevertheless, only a few works reported the poling temperature-dependence of 

piezoelectric coefficient d33 of KNN-based ceramics [126]. Therefore, it is necessary to carefully 

evaluate the temperature-dependent localized effect of poling piezoelectricity of KNN-based 

ceramics.  

2.10.2 KNN cantilever dimensions and topography 

The KNN piezoelectric cantilevers are fabricated by sputtering of Ti (20 nm) and Au (100 nm) as 

electrical top contacts over the KNN films (grown by sol-gel technique) using a shadow mask, 

whereas stainless steel substrates (Fe/ Cr15/ Ni 7/Mo 2.25) served as the bottom electrodes. The 

specimen size of the piezoelectric cantilever was 16×1.6 mm2 area and the electrode area was 

10×1.5 mm2. The bottom metal substrate was naturally used as a bottom electrode during the PFM 

study. The SEM and AFM topography images of the KNN films exhibited smooth and uniform 

morphology (Figure 2.12 a, b). Average surface roughness, was measured using the PFM 

topography image (Gwyddion Analysis [127]) and found to be 26 nm over a scanned length of 10 

µm (Fig. 3.8d), showing the smooth surface of the film.  
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Figure 2.12: (a) SEM image of the KNN film (b)AFM topography image (c) cross-sectional 

schematic of the cantilever sample (d) roughness profile of the AFM topography. 

2.10.3 Piezoresponse characterization of KNN films by PFM 

The KNN films grown by the sol-gel techniques are polycrystalline with randomly oriented grains 

and domains have therefore do not possess net domain polarization. However, after the application 

of a high electric field or poling, the material gains a polarizing effect. Figure 2.13 a-d, presents 

piezoresponse (PR) phase and amplitude change in the KNN samples recorded before polarization 

by VPFM and LPFM on an area of 2×2 µm2. Figure 2.13 e-h represents the VPFM and LPFM 

images of the KNN samples after polarization at 20 V by the AFM tip. The PFM amplitude signal 

indicates the sample displacement, and the PFM phase signal provides information about the 

polarization vector of individual domains. 
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Figure 2.13: VPFM and LPFM phase and amplitude images of KNN cantilever surface (scale 
2x2 µm2) before and after poling at 20V. 

There was no clear contrast present in the VPFM and LPFM phase before polarization for KNN 

film as shown in Figure 2.13 b, d which indicated that the in-plane and out-of-plane domains in 

the film are largely homogeneous across the entire film possessing early similar domain 

orientation.  However, the spontaneous polarization in the domains was observed in LPFM and 

VPFM by the application of constant DC-bias of 20 V (~3 kV/mm) across KNN thin films by the 

AFM tip as shown in Figure 2.13 f, h showing a clear modulation in phase between the adjacent 

domains as analyzed from the dark and bright regions, suggest their ferroelectric switching 

properties. The LPFM and VPFM result indicate that the in-plane enhancement was higher when 

compared to the out-of-plane polarization indicating that the response was originated from the 

polarization of lateral domains aligned perpendicular to the applied electric field. The PFM results 

confirmed that the KNN film possesses strong spontaneous polarization, and the polarization 

switching can be induced at a certain applied voltage. 

The variations of the PR amplitudes of unpoled KNN film and 20V poled KNN film with the DC 

bias voltage ramped in two directions, exhibit a well-saturated hysteresis loop (Figure 2.14 b) 

indicating a 180° phase-switching of local domains under the AFM tip. Figure 2.14 b, c, d, shows 

the hysteresis and butterfly curve of KNN before and after 20 V polarization by AFM for 20 

minutes. Figure 2.14 c, d represents the typical butterfly curve showing the amplitude under the 

AFM tip that is in contact (Tip- on process) with the sample. 
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Figure 2.14: (a) PR Amplitude vs applied AC voltage (b) Hysteresis loop at 0V and 20 V (c) 
Butterfly-loop at 0V (d) Butterfly loop after 20 V polarization of KNN film (KNN6) 

The d33 coefficient is measured from the slope of PR amplitude (A) vs driving AC bias (Vtip) 

according to the method as discussed in section 3.14. The piezoelectric coefficients for the KNN 

cantilever measured at 6 different points over an area of 18×18 mm2 of the sample were estimated 

to be 23-24 pm/V. There was no significant effect of poling by the AFM tip on the d33 values of 

these films.  

Table 2.2 Piezoelectric properties of KNN thin film sample 

Sample Sample 

name 

Thickness Extracted 

d33 (pm/V) 

Reported d33 

(pm/V) 

Reference Dielectric 

permittivity 

ε33
T 

FOM (
𝒅𝟑𝟑

𝟐

𝜺𝟑𝟑
𝑻 ) 

(10-

18m2/V2) 

KNN thin 

film 

S049 7 µm 23 18,83(films)  [124],[126] 466 1.1 
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This could be due to the requirement of need for a higher poling field (7 kV/mm), compared to the 

applied field via the AFM tip which is limited to ~3 kV/mm (corresponding to 20 V DC tip 

voltage), to retain the polarization. [128]The d33 value is decent among lead-free materials for 

energy harvesting application. However, the d33 is lower than the state-of-the-art values reported 

in the literature for polycrystalline KNN films. 

2.11 External Poling of KNN PTF 

At present, irrespective of the fabrication technique, the reported piezoelectric strain coefficients 

(i.e., d33) for various KNN-based  PTFs fall in the range of 40–61 pm/V [129]. These values are 

significantly inferior compared to bulk KNN-based materials. PTFs exhibit much higher coercive 

fields (typically up to 3–10 kV mm−1) and higher breakdown voltages (20-40 kVmm−1) [130]. Wu 

et al. studied phase transitions and electrical behavior in 300-nm (K0.5Na0.5)NbO3 thin film 

deposited on the SrRuO3-buffered 〈100〉 SrTiO3 substrate by RF magnetron sputtering. The phase 

transition temperatures orthogonal to tetragonal (T-o-t = 120 °C) and Curie temperature (Tc =310° 

C) in films were shown to be lower than those in the bulk (Tc = 420° C) [96]. It is therefore possible 

to drive thin film actuators with higher poling fields (Ep) to pole without breakdown. 

Depolarization occurs when the applied field (Ep) is greater than the coercive field (Ec) or when 

the temperature is above Curie temperature (Tc). Theoretically, a poled polycrystalline PTF has 

only monodomain grains with each grain pointing vertically to the PTF film plane. Practically, it 

is very difficult to achieve this because in polycrystalline PTFs the majority of grains possess an 

unfavorable crystallographic orientation, and, thus, the orientation of the domains after poling 

cannot strictly be normal to the substrate plane. The AFM tip-based poling of the PTFs has 

limitations due to the limitation with the applied voltage between tip and sample. Therefore, it is 

interesting to study the effect of poling by an external field on the localized piezoresponse of the 

KNN PTFs. The samples poled by an external field at elevated temperature are explained in the 

following section, and the local effects of poling are studied by PFM, which could help to improve 

the performance of KNN based devices. 

2.11.1 Poling process: 

The KNN sample of thickness 7 µm is deposited on a steel substrate (bottom electrode). Au layer 

was sputtered as the top electrode. The sample is placed on the probe station with a hot plate with 
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adjustable temperature control as shown in Figure 2.15. A DC voltage source (Keithley 236 

electrometer) is used between the two electrodes of the sample for poling.  

 

 

 

 

 

 

Figure 2.15: Illustration of poling setup of KNN film with probe station with hot plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: (a) Poling Temperature vs Time and (b) Poling Voltage (V) vs Time (minute) 
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Before each poling measurement, the KNN film sample is depolarized completely by heating at 

420 ℃ for 20 minutes. The sample is cooled down to the required temperature and is maintained 

(80 ℃ or 160 ℃) while applying the DC bias of 30 V (4.2 kV/mm). KNN-80P refers to the KNN 

sample poled at 80 ℃ and KNN-160P refers to the KNN sample poled at 160 ℃. A Compliance 

of 1 mA is set to the voltage source to detect any breakdown of the sample and limit the applied 

bias in this case. The applied field was ramped slowly in steps. At the beginning at approx. rate of 

20 mV/s till 5 V, 0.06 V/s till 5 V-10 V, 0.1 V/s till 10 V-15 V and then to 1 V/s for 15-30 V as 

shown in 2.16b. A voltage of 30 V is maintained for 30 minutes to complete the poling process as 

shown in 2.16 b. 

2.11.2 PFM study of the poled KNN PTF 

2.11.2.1 Topography studies 

Two typical domain configurations and lamellae zig-zag structure in 90° domains (Figure 2.17) 

and a wavy herringbone in 180° domains (Figure 2.18) where the coupling is head-to-head (or tail 

to tail) was observed by the AFM 3D topography images as shown in Figure 2.18. 90° domains 

are aligned in the plane antiparallel direction with the applied field, whereas 180° domains are 

aligned out of plane in the direction of applied field. The grain size in lamellar 90° domains stripes 

is found to be close to 200 nm. Similar complex domain patterns consisting of typical lamellar 

ferroelectric, with small domain width with irregular shapes, even nanodomains domains are 

reported in the literature [131]. Such domain sites generally possess ultralow domain wall energy, 

which is expected at these small domain sites because the domain wall energy is proportional to 

the square of domain width. Nevertheless, a close look at the topography image shows the 

existence of a few zig-zag-shaped 90° domain walls [125] indicating a distance of 100 nm between 

two walls as shown in Figure 2.17. This result is also in agreement with a previous study of the 

90° domains of orthorhombic (Li, K, Na)NbO3 ceramics [132]. 
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Figure 2.17: Domain patterns in KNN-80P films with cut line view of topography on the right 

 

                   

Figure 2.18: (a) PFM amplitude and (b) 3D topography of the 5µm X 5µm scanned surface after 
poling at 160 ℃(KNN-160P) 

(b) 180° domains 

90° domains 

(a) 
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2.11.2.2 PFM Analysis of domains after poling 

The domain structure and switching phenomena in KNN-PTF were studied by the piezoresponse 

(PR) of the films as demonstrated in Figure 2.19. For PFM measurements, an AC electric field is 

applied with a 2 V peak at a frequency of 50 kHz. Figure 2.19 displays the PR image of the film 

which contains both the PR amplitude  Figure 2.19 (a, c) and phase response Figure 2.19 (b, d) of 

the films on the probed area. The PR image of the film primarily consists of a matrix largely 

covered with a range of values, mostly corresponding to 180° or 90° domains with a polarization 

direction perpendicular to the electrode and left to right in the plane of the electrode respectively. 

 

Figure 2.19: (a) PR amplitude (b) Phase of KNN PTF poled at 80 ℃ (KNN-80P) (c) PR 
Amplitude (d) Phase of KNN poled at 160 ℃ (KNN-160P) (scan size: 1 µm x 1µm) 

(a) (b) 

(c) (d) 
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Figure 2.20: (a) The PR amplitude and Phase profile of the sample across 1µm width: KNN-80 
P and (b) KNN-160 P respectively 

Note that the phase angle (degree), which can be linked to the poling degree, reaches close to the 

highest ideal possible value of 90° and 180° that can be obtained on complete poling.  This is 

supposed to be due to the poling process that induces switching which can induce the distortion of 

adjacent domains. The angles between two polarization vectors for KNN can be 90° and 180° as 

in a tetragonal system or 60° and 120° for orthorhombic crystals [125]. By poling, we increase the 

polarization degree. Thus, the domain switching creates lattice distortion and internal stress, 

impeding further domain switching and domains become balanced and the poling process reaches 

a saturation, although the phase angle is not accurately 90° or 180° [133]. The bright domains in 

the PR image indicates the 180° domains, and the dark region mostly correspond to the 90° 

domains respectively as shown in Figure 2.19. The cut line view of the PR shown in Figure 2.20 

clearly shows simultaneously the PR amplitude and phase across the two domain regions with a 

phase difference of 90° across the two domains. The PR amplitude and therefore the d33 in KNN-

80 P and KNN-160P shows significant variation across 90° and 180° domains. Note that the ratio 

of the PR Amplitude to the applied AC bias (2 V) should give the average d33 across the sample. 

It is observed that along the 90° domains the PR amplitude and the d33 ~23 pm/V remains relatively 

unchanged before and after the poling at both the poling temperatures (80℃ and 160℃ 

respectively).  

However, it can be noted that along the 180° domain region the PR amplitude and therefore the 

d33 shows a significant enhancement with poling temperature. The enhancement can be attributed 

to the formation of smaller domains or nanodomains [134] of average size ~100 nm as in Figure 
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2.17,  which is supposed to have improved d33 values compared to the larger domains. The domain 

morphology also plays an important role in determining the piezoelectric and ferroelectric 

responses. The reduction of domain dimensions (domain thickness dt) in PZT material can be 

attributed to the decrease in the domain wall energy coefficient (Wd), following the classical theory 

[134], [135]: 

𝑑  𝛼 𝑊 /  2.10 

The reduced domain wall energy thus enables the enhanced PR amplitude of the 180° domains, 

which are relatively smaller in size (nano-domains) to external excitations, such as electrical or 

mechanical fields as discussed in the following section. The average d33 values across 180° 

domains show a significant enhancement in poling which can be estimated to be around 100 pm/V 

and ~260 pm/V at KNN-80P and KNN-160P respectively (Figure 2.19, Figure 2.20). The average 

d33 of 27 pm/V for KNN-80P and 106 pm/V for KNN-160 P was estimated for the 1 µm x 1 µm 

scan area in the PTF. Thus, the formation of 180° domains after HT poling possibly leads to an 

increase in the overall average macroscopic d33 of the KNN PTF as shown in Figure 2.20.  

Table 2.3 Poling conditions and piezoelectric coefficient (d33) 

Sample Poling 

Temperature 

Poling 

Voltage 

d33- 90° domain d33-180° domain Average d33 

d33 (%) d33 % 

KNN   

thin film 

(S049) 

0 ℃ 30 V 23 pm/V 100 - 0 23 pm/V 

80 ℃ 30 V 23 pm/ V 85 100 pm/V 15 27 pm/V 

160 ℃ 30 V 23 pm/V 22 260 pm/V 78 106 pm/V 

 

The origin of the formation of mutual occurrence of 180° and 90° domains in the PTF after poling 

can be explained by the presence of nonstoichiometric defects in these crystals generated after 

poling process that led to anomalous local electromechanical properties across these domains. 

Further, as a result, a single domain state is unstable because of the high elastic energy that is 

associated with 90° domains leading to the formation of 180° domains. Wang et al [136] proposed 

a mechanism of aging and re-poling induced enhancement of piezoelectricity after re-poling in 

KNN ceramics which could explain the origin of the 180° and 90° domains after poling.  Because 

of inevitable volatilization of the alkali species during heating A site (VA’) and Oxygen vacancies 

inside KNN (ABO3 perovskite structure) [137], are formed during high-temperature annealing, 
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leading to an aging-assisted switching of the tetragonal 90° domains. The aging process could be 

accelerated at elevated temperatures, especially above Tc. It should be noted that the Tc and phase 

transition temperatures of the KNN thin film, namely those from orthorhombic to tetragonal phase 

and then from tetragonal to cubic phase, are lower than those in the bulk ceramic counterpart. 

Domain switching does not change the crystalline structure of the ceramics, but it does have a 

striking influence on the macroscopic orientation of the local atom arrangement and vice versa and 

affect the rotation of domains [138]. The increase in d33 measurements as discussed before also 

offers solid evidence for this assumption, with an increasing d33 and decreased Ec for the same 

sample after the first and second poling, respectively. 

2.11.2.3 Polarization switching and non-linearity in piezoresponse  

The PR amplitude consists of both intrinsic and extrinsic contributions [139]. The intrinsic 

contribution, associated with the field-induced lattice distortion (linear effect), is linked with the 

change in the polarization of the unit cell by polarization extension or polarization rotation. 

Whereas the extrinsic contribution is largely associated with the domain wall motion (non-linear 

effect). Domain walls can be categorized as either 180° or non-180° domain wall types based on 

the crystallinity of the PTF, such as the 90º domain walls found in tetragonal perovskite 

ferroelectrics in this case. The extrinsic contribution due to domain wall motion is supposed to be 

the key factor to the macroscopic piezoelectric properties at room temperature. The below 

methodology distinguishes between the intrinsic contribution, related to the field-induced lattice 

distortion, and the extrinsic contributions, related to domain wall motion. In order to determine the 

effect of varying AC fields on the sample and thereby variation in piezoresponse inside the 180° 

and 90° domains, the AC bias across the tip was ramped against the PR amplitude and Phase at 6 

different locations in the sample as shown in Figure 2.21. Points 1, 2 and 6 corresponds to the 180° 

domains and the remaining corresponds to the 90° domains. 
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Figure 2.22: PR phase image vs AC bias indicating the switching of domains from 180° to 
90° at low Ec for KNN-160P. 

Figure 2.21 (a) Point and shoot locations at 180° domains (1,2,6) and 90° domains (3,4,5) on 
the KNN 160P sample (b) PR amplitude vs AC bias indicating high non-linearity and non-

reversible switching at low Ec for KNN-160P. 
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Figure 2.23: PR Amplitude vs Applied AC Voltage for KNN-80P 

Figure 2.21 b clearly shows variation in the PR Amplitude and Figure 2.22 shows the variation in 

PR phase across the two domains (180° and 90°) for KNN-160P. The piezoelectric coefficient d33 

can be estimated by taking the slope of the PR Amplitude vs Applied AC bias of the sample as in 

Figure 2.23. The 180° domains in KNN-160P have increased d33 on poling compared to the 90° 

domains (23 pm/V), that do not show any significant increase in d33. KNN-160P show a localized 

increase in the d33 values as shown in Figure 2.21. It should be noted that the 180° domains in 

KNN-160P shows high non-linearity as shown in Figure 2.21. Nonlinearity in PR amplitude in a 

ferroelectric ceramic is generated by strain generated by domain wall motion (extrinsic 

contribution) [136]. Also, the non-reversible switching of 180° domains to 90° domains is 

observed from the phase image at a low AC coercive field of 0.1 kV/mm as shown in Figure 2.22 

suggesting an electric field induced [140] phase transition. The result of this study and similar 

studies elsewhere suggests that domains can respond to such high frequency as 50 kHz, and their 

contributions of them are not negligible in the overall performance of a PTF device. The AC 

coercive switching field can be estimated as low as 0.1 kV/mm in this case. Many models define 

the polarization switching in piezoelectric materials. Hwang et al. [141][22] proposed the model 

that is simple and successful at predicting the homogeneous average response of piezoelectric 

materials. According to this model, the direction of a spontaneous polarization Ps of each grain 

can change by 90° or 180° by ferroelectric switching or by the nucleation and growth of new 
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antiparallel domains induced by a sufficiently large electric field (field-induced) that is generated 

under the tip. 

Also, the ferroelastic switching from 180° to 90° might be induced by a sufficiently large stress 

field (stress-induced) that is pre-existing or generated inside the crystal lattice during the 

measurement [142]. The polarization switches when the combined electrical and mechanical work 

exceeds a critical value; that is: 

𝜎 ∆𝑠 + 𝐸 ∆𝑃 ≥ 2𝑃 𝐸  2.11 

where Ec is a coercive electric field, Ei internal field, σij is the stress tensor, and ∆sij and ∆Pi are 

the changes in the spontaneous strain and spontaneous polarization during switching, respectively. 

It is to be noted that the strain part is very high in the case as seen from, which could result in the 

requirement of low switching fields for the switching from 180° to 90° to take place leading to low 

coercive fields (Ec) as observed in the case. Further, the size of the miniaturized domain is easily 

prone to switching under an applied electric field, and the low degree of polarization anisotropy 

energy in the multi-phase zone allows easy polarization rotation. The decrease in Ec with a 

decrease in the domain wall-size wd can also be partially interpreted by observing the role of 

domain walls in the nucleation process of new inverse domains that are nucleated during the 

application of an applied bias, as reported elsewhere [132]. 

2.11.2.4 Conclusion 

In summary, this study has shown that the internal stresses generated during high-temperature 

poling, due to the thermal gradient and structural transitions in KNN PTFs, influence large 

variations in properties of the ferroelectric domains, and thus the electromechanical properties such 

as d33. The PR image of the PTF after the poling consists of 180° or 90° domains with different 

piezoelectric coefficients. Along with the 90° domains, the d33 ~23 pm/V remains relatively 

unchanged before and after the poling at both the poling temperatures (80oC and 160oC 

respectively).  However, it can be noted that along the 180°-domain region the PR amplitude and 

therefore the d33 shows a significant enhancement with poling temperature with a final value of 

100 pm/V in KNN-80P and ~260 pm/V for KNN 160P. There is strong nonlinearity associated 

with d33 in KNN-160P possibly due to domain wall motion. This study could be useful for the 

understanding and optimization of piezoelectric properties of PTFs for various applications and 

thereby to improve the performance of PTFs devices. 
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2.12 PFM study of Sodium Potassium Niobate (KNN) thin films doped with Tantalum 

In this section, PFM study of single phase KNN film cantilever doped with 7% tantalum, by a 

novel sol-gel route on steel substrate by spin coating on stainless steel substrate, is discussed. The 

KNNT piezoelectric cantilevers are fabricated by sputtering of Ti (20 nm) and Au (100 nm) as 

electrical top contacts over the KNNT films (grown by sol-gel technique) using a shadow mask, 

whereas stainless steel substrates (Fe/ Cr15/ Ni 7/Mo 2.25) served as the bottom electrodes. The 

as deposited KNN samples have a thickness (7 µm) on a stainless-steel substrate.  

2.12.1 Introduction 
In the case of polycrystalline ceramics, the orientation of the grains is fixed and randomly 

distributed. Therefore, most grains do not have an available dipole orientation that is perfectly 

aligned with the applied electric field, and hence the piezoelectricity is limited. The construction 

of phase coexistence has become the most efficient method of improving piezoelectricity. In order 

to increase the piezoresponse of the material, the KNN phase transition from the orthorhombic (O) 

to the tetragonal (T) phase should be close to room temperature. The energy barrier between the 

two phases is minimum at the phase transition temperature, so the electric-field-induced local 

phase transition (polarization rotation) can enhance dipole alignment. This is essentially achieved 

by doping KNN (ABO3) with the donor atoms at A-site as well as the acceptor on the B-site to 

influence the dielectric properties as well as figure of merit. Ta has a similar valance, ionic radius, 

and similar electro-negativity to niobium (Ta, 1.5; Nb, 1.6). These properties make Ta an ideal 

candidate to act as a B-site substituent in KNN. When Nb+5 is replaced in KNN with Ta+5, the 

density and piezoelectric properties of the doped KNN-ceramic improve.[109], [143] This effect 

of Ta doping on KNN has been studied in the form of single crystals, ceramics, and thin films. 

Among these methods, chemical modification is the most frequently used approach to achieve high 

piezoelectric coefficients. Moreover, Ta-doped KNN material has been tested for different dopant 

concentrations to obtain superior piezoelectric properties at the Ta-doping concentration of 6-8 %, 

which is ascribed to a phase transition from monoclinic phase to tetragonal phases at x>6 mol % 

[144]. However, studies on the comparison of Figures of Merit (FoM) of KNN and Ta-doped KNN 

for energy harvesting applications remain elusive. The cross-sectional schematic and the SEM 

image of the KNNT sample are given in Figure 2.24. The average surface roughness of the KNNT 

films was determined to be 250 nm, indicating the surface being rougher than the KNN films of 

similar thickness. The increased surface roughness is associated with homogeneously distributed 
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minor cracks possibly formed due to fast shrinkage and the mismatch of thermal coefficient 

between the steel substrates and deposited film. 

 

Figure 2.24: (a) cross-sectional schematic (b) SEM image of KNNT before Au deposition. 

2.12.2 Piezoresponse characterization of KNNT film by PFM 

Figure 2.25a-d presents piezoresponse (PR) phase and amplitude change in the KNN samples 

recorded before polarization by VPFM and LPFM on an area of 2 x 2 µm2. Figure 2.25 e-h 

represents the VPFM and LPFM images of the KNNT samples after polarization at 20 V by the 

AFM tip. The PFM amplitude signal indicates the sample displacement, and the PFM phase signal 

provides information about the polarization vector of individual domains. 
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Figure 2.25: Figure 2.20 VPFM and LPFM phase and amplitude images of KNNT cantilever 
surface (lateral scale 2 X 2 µm2) after different poling voltages: KNNT-VPFM Amplitude at (a) 

Vp=0 V; (e) at Vp=20 V (b): KNN-VPFM Phase at Vp=0 V, (f) Vp=20 V; LPFM Amplitude at 
(c)Vp=0 V, (g)Vp=20 V (d)LPFM Phase at Vp=0 V, (h) Vp=20 V 
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There is no clear contrast present in the VPFM and LPFM phase before polarization for KNNT 

film as shown in Figure 2.25 which indicates that the in-plane and out-of-plane domains in the 

film is largely homogeneous across the entire film possessing early similar domain orientation.  

However, the spontaneous polarization in the domains was observed in LPFM and VPFM after 

the application of constant DC-bias of 20 V across KNNT thin films by the AFM tip as shown in 

Figure 2.25 f, h showing a clear modulation in phase between the adjacent domains as analyzed 

from the dark and bright regions, suggest their ferroelectric switching properties. The LPFM and 

VPFM results indicate that the in-plane enhancement was higher when compared to the out-of-

plane polarization indicating that the response was originated from the polarization of lateral 

domains aligned perpendicular to the applied electric field. The PFM results confirmed that the 

KNN film possesses strong spontaneous polarization, and the polarization switching can be 

induced at a certain applied voltage. The variations of the PR amplitudes of unpoled KNNT film 

and 20 V poled LT film with the DC bias voltage ramped (-5 V to +5 V) in two directions, exhibit 

a well-saturated hysteresis loop (Figure 2.26 a, b) with a 180° phase-switching of local domains 

under the AFM tip. Figure 2.26 c, d represents the typical butterfly curve showing the amplitude 

under the AFM tip that is in contact (Tip-on process) with the sample. 
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Figure 2.26: Hysteresis loop obtained by ramping DC bias vs PR Phase: at (a)before and 
(b)after 20 V polarization(c)Butterfly loop(c): before (0 V) (d) after 20 V polarization 

(a) (b) 

(c) (d) 
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The unpoled sample generally possesses smaller domains that may be exposed to several 

nucleation sites upon the application of the electric field through the tip, providing the possibility 

for rapid nucleation, thus resulting in a reduction of the overall coercive field. Thus, as a result, 

when the domain size (Wd) decreases, the shapes of the hysteresis loops tend to be slim and Ec 

decreases significantly. The wider hysteresis loop (Vc> 1 V) of the 20 V poled KNNT compared 

to the unpoled sample (Vc < 1 V) could therefore be an indication of increased domain size after 

poling. Asymmetric butterfly curves are observed for poled samples in the domains having 

different shapes and degrees of asymmetry as seen in Figure 2.26 d. 

The d33 coefficient was measured from the slope of PR amplitude (Am) vs driving AC bias (Vtip). 

The piezoelectric coefficients for the KNNT cantilever were estimated to be 46 pm/V and 221 

pm/V before and after polarization at 20 V respectively, which were measured at 6 different points 

of the sample and averaged over an area of 18 x 18 mm2. 

Table 2.4 Extracted piezoelectric properties of KNNT film 

Sample Sample 

name 

Size Extracted d33 

(pm/V) 

(virgin/unpoled)  

Reported 

d33 

(pm/V) 

Reference Dielectric 

permittivity 

ε33
T 

FOM (
𝐝𝟑𝟑

𝟐

𝛆𝟑𝟑
𝐓 ) 

(10-18m2/V2) 

KNNT 

Films 

S054 7 µm 48 60 [145] 397 5.9 

 

These coefficient values match well with the values reported in the literature for polycrystalline 

KNNT films. The FoM of KNN has improved 3 folds upon the doping with Ta. The spin coating 

is an industrially scalable method of deposition of thin films. The KNNT films on steel are 

therefore promising candidate for the fabrication of high-performance lead-free energy harvesting 

devices at low cost. 

2.12.3 Conclusion 
In summary, the effect of Tantalum doping on the piezoelectric properties of KNN films was 

studied. 7% Ta doped KNNT films showed improved the d33 of 48 pm/V compared to 23 pm/V in 

pure undoped KNN films. In addition, the poling of KNNT films at 20 V enhanced the d33 

significantly from 48 pm/V to 221 pm/V. The KNNT devices outperformed KNN devices due to 

lower permittivity in the range of 17 %. Furthermore, KNNT devices showed a four-fold higher 

Figure of Merit (FOM) compared to KNN films, making them a better candidate for PEHs. 
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2.13 PFM study of Sodium Potassium Niobate (KNN) and KNN-Ta doped (KNNT) fibres   

A collaborative effort within the ENHANCE project with Arun Ichangi, Ph.D. student of Prof. 

Sanjay Mathur Group, University of Cologne; whose individual contributions are as follows: 

KNN and KNNT fibre samples are provided by Arun Ichangi, who developed the protocols for 

depositing single-phase KNN fibers and KNN fibers doped with 10% Ta (referred to as KNNT 

hereafter) by electrospinning process on a Pt/Si substrate. 

2.13.1 Introduction 

Potassium sodium niobite (KNN) is an environmentally-friendly bio-compatible piezoelectric 

ceramic with a piezoelectric coefficient (d33) comparable to lead zirconate titanate (PZT) in 

transducer [101], [146]. The concept of smart composite materials with integrated fibers for 

sensing and actuation leads to the increasing interest in the study of piezoelectric ceramic fibers 

[65]. The doping of the KNN (with Ta) [147] leads to the enhancement of the dielectric and 

piezoelectric properties [144]. This is due to Ta acting as an ideal candidate for B-site substituent 

in KNN due to the closeness to valance, ionic radius, and similar electro-negativity to niobium 

(Ta, 1.5; Nb, 1.6) [144]. The fibers are a promising material for sensing due to higher 

electromechanical coupling coefficient Kp, and higher flexibility compared to ceramic counterparts 

[88], [148]. The so-called 1-3 composites can be used for sonar, hydrophones, energy harvesting 

systems or medical diagnostic applications [121]. The piezoelectric transformer (PT) technology 

[47] is a viable alternative to magnetic transformers in various applications, e.g., power supplies 

that employ PT rather than the classical magnetic transformers, resulting in smaller-sized power 

supplies with better self-cooling. A significant enhancement in the piezoelectric response of KNN 

ceramics through phase boundary engineering was reported by incorporating Li, Ta and Sb to form 

solid-solutions [147]. However, efforts to enhance the piezoelectric response by doping at B-site 

in the perovskite unit cell structure, which is widely explored in bulk ceramics and thin films, 

remain unexplored in case of fibres. 

In this study, KNN and KNN-Ta doped (KNNT) nanofibers prepared through electrospinning 

technique, of high aspect ratio, with a diameter between 300 nm and 500 nm, were evaluated. Their 

electromechanical properties, such as piezoelectric coefficient (d33), polarization evolution (P-E) 

loop and strain evolution (S-E) loop are also extracted.  
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2.13.2 Experimental setup and procedure 

The schematic illustrating the study of the electromechanical properties of the KNN and KNT fiber 

is shown in Figure 2.27 a. An AC voltage at 50 kHz (or also DC voltage during poling) is applied 

radially to the fiber between the AFM tip and the bottom Pt/Si electrode that is electrically 

connected to the AFM chuck with silver based glue. 

2.13.3 Topography of KNN fibers 

 

 

 

 

 

 

 

 

 

Figure 2.28: (a) AFM contact mode topographic image (10 µm X 10 µm) (b) Zoomed image 
(2µm x 2µm) (c) Cut-Line profile for diameter extraction (Tip details: see Annex 2) 

From AFM and SEM topography images the diameter of the nearly cylindrical fibre is roughly 

estimated to be 600 nm. The diameter was obtained by the averages of the profiles of 10 horizontal 

cut-lines as shown in Figure 2.28 c. 

Figure 2.27: (a) Schematic view of the PFM experiment of fibre (b) SEM topography image 
of KNN micro-fibre. 
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2.13.4 PFM study of the KNN fibres before poling 

In order to understand the domains from a microstructure point of view for the piezoelectric 

performance, the domain structure measurement was performed by PFM. PFM can be used to 

visualize the in-plane and out of plane response of ferroelectric domains to the applied AC bias in 

the lateral direction (LPFM) and vertical direction (VPFM) since the piezoelectric response 

depends on the polarization magnitude and direction. An AC drive voltage of 1 V peak at 50 kHz 

frequency was applied to the tip (SCM-PIT V2) at a scan rate of 1 Hz and the sample was grounded 

to obtain the amplitude and phase response from the domains 

 

 

 

 

 

 

 

 

 

 

 

PFM images (amplitude and phase) of the KNN fibres are shown in Figure 2.29 (a) and (b), where 

two regular domains are observed in the fibre along the radius as seen from the phase response. A 

high piezoresponse is observed in the middle of the fibre as evident from the cut-line view in the 

amplitude image. A 180° phase contrast between the domains (cut-line view) indicates the 

directions of the out-of-plane (OP) polarization components for the middle and side domains are 

opposite. The local ferroelectric switching responses give a comprehensive analysis of collective 

domain switching behavior.  

Figure 2.29:  comparison of (a) piezoresponse amplitude and (b) Phase responses of 
KNN fibers. 
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Figure 2.30: VPFM and LPFM Amplitude and phase image of the KNN fiber before poling 

To investigate the po within the fiber an area of 400 x 400 nm2 was scanned at a rate of 0.5 Hz by 

the tip at 1 V AC, 50 kHz before and after poling with 5 V DC tip bias. It can be noted that the 

domains are distributed randomly between +90o and -90o as seen from the VPFM phase before 

poling.  

2.13.5 Radial Poling of KNN fibres 

In the study of the polarization switching behavior, poling processes with DC biases (+5 V) are 

applied between the tip and the sample. The DC poling process was achieved by applying a 

positive bias to the conductive tip, and the bottom Pt electrode of the sample was grounded. By 

applying a 5 V DC bias between the tip and sample, it is possible to switch the polarization inside 

the region under the tip and thereby observe the bright contrast in the LPFM and VPFM phase 

between the local domains as shown in Figure 2.31. After the poling, the fiber is imaged by 

scanning at 1 V AC, at a scan rate of 1 Hz. After applying a poling tip bias of 5 V DC, the phase 

image clearly shows that most domains are aligned in the upward direction of the applied field 

with a 180º phase difference with the unpolarized domains (refer cut line view Figure 2.31). 

Further, there is increased piezoresponse in the PR amplitude image upon poling, and almost all 

polarizations under the scanning area are rotated to the upward direction. 
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Figure 2.31: VPFM and LPFM Amplitude and phase image of the KNN fiber after poling at 5 V. 

2.13.5.1 Polarization Switching curves of KNN fibres 

 

Figure 2.32: comparison of KNN fiber (a) Hysteresis and (b) strain evolution (S-E) butterfly 
loops as a function of the applied DC Voltage (at 1 Hz) showing before (0 V) and after poling at 

5 V 

The voltage necessary to induce a polarization switching, known as the ‘coercive voltage’ Vc, 

should be defined as (Vc
+ - Vc

-)/2, where Vc
+ and Vc

- are the right- and left quadrant coercive 

voltages in the hysteresis loop, respectively [149]. The value of Vc before and after poling is 
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estimated to be nearly 1 V for poled fiber and 0.7 V for the unpoled respectively from the hysteresis 

loop.  The unpoled sample possessing several tiny domains may be exposed to several nucleation 

sites due to the increase in the domain wall density, providing the possibility for rapid nucleation, 

thus resulting in a reduction of the overall coercive field Ec. Thus, when the domain wall width 

(Wd) decreases, the shapes of the hysteresis loops tend to be narrow and Vc decreases significantly. 

The wider hysteresis loop (larger Vc) of the 5 V poled KNN fiber compared to the unpoled is an 

indication of increased domain size after poling [150]. Asymmetric butterfly curves are observed 

for both the poled and unpoled samples in the domains having different shapes and degrees of 

asymmetry as seen in Figure 2.32 b. The maximum PR amplitudes are lower for the unpoled when 

compared with poled samples. The hysteresis loop in Figure 2.32 shows a tilt present after poling, 

which is attributed to the probability that KNN ceramics may transform from a normal ferroelectric 

to a relaxor ferroelectric, exhibiting a slim and tilted loop. There is a shift in the loop along the 

positive voltage axis possibly due to unintentional and intentional defects, which can be present in 

the system. Such defects are stabilized in preferred lattice sites, creating an internal bias within, 

that constrains the switching of the polarization along specific directions. 

2.13.5.2 Estimation of piezoelectric coefficients (d33) 

The d33 is estimated at 5 locations inside the fiber within a scan size of 300 nm by measuring the 

slope of the PR amplitude ramping against the AC voltage as shown in Figure 2.33. 

 

Figure 2.33: (a) Point and shoot of KNN fibers at 5 locations (b) PR amplitude vs AC bias. 

The d33 is determined at 5 locations vary between 18-33 pm/V with an average of 25 pm/V.  

(a) (b) 
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2.13.6 PFM study of KNNT (KNN doped with 10% Ta) Fibers 

2.13.6.1 Topography of KNNT fibers 

The topography of the KNNT fiber is shown in Figure 2.34 diameter of the KNNT fibers can be 

roughly estimated to be between 500 - 600 nm with the roughness of 5 nm from the AFM images. 

The image shows one fiber overlapping over another one. 

 

Figure 2.34: AFM image (topography) of the KNNT fiber 

2.13.6.2 Analysis of phase and amplitude of KNNT fiber before and after poling process 

PFM imaging (Amplitude and phase) of the KNNT fibers before poling are shown in Figure 2.35. 

Two regular domains are observed in the fiber along the radius (0 and 180 degrees polarized) as 

seen from the phase image.  However, the domains are small and not well oriented as seen from 

the spikes. A high piezoresponse is observed for the left side of fiber as seen in the PR amplitude 

image which is in phase with the applied field as seen in Figure 2.35. 
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Figure 2.35: VPFM and LPFM Amplitude and phase image of the KNN fiber before poling 

PFM imaging (Amplitude and phase) of the KNNT fibers after poling are shown in Figure 2.36 

and where two regular domains are observed in the fiber along the radius (0 and 180 degrees 

polarized) as seen from the phase image. A higher piezoresponse is observed for the poled KNNT 

fiber compared to the unpoled as seen in the amplitude image in Figure 2.36. 

1 µm 

1 µm 1 µm 

1 µm 
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Figure 2.36: VPFM and LPFM Amplitude and phase image of KNNT fiber after poling at 5 V. 

A clear 180° phase contrast between the two domains indicates the directions of the out-of-plane 

polarization components domains are opposite. The local ferroelectric switching responses are 

collected for the analysis of collective domain switching behavior. To understand the various 

domain polarization of KNNT inside the scanned area, the polarization switching and the 

1 µm 

1 µm 1 µm 

1 µm 



78 
 

corresponding measurement of variations of the PR amplitude are performed at 5 points inside the 

scanned area as shown in Figure 2.37. The d33, PFM phase, hysteresis, and amplitude butterfly 

loops are directly associated with the polarization switching of the local regions of 1, 2, 3, 4, and 

5, where the characterizations were done. Figure 2.37c shows that the phase changes for the phase 

are about 180°, which further indicates unambiguous ferroelectric switching for regions under an 

applied AC bias. 

 

Figure 2.37: (a) Point and shoot locations at 5 different points (b) PR Amplitude vs AC bias, 
(c)hysteresis (phase vs DC bias), and (d) S-E butterfly curves (PR Amplitude vs DC bias) at 5 

different points in the fiber 

This trend describes the variation in the point of polarization switching point within the scanned 

area (Figure 2.37a) at different regions of 1, 2, 3, 4 and 5 in the sample, indicating an influence of 

(d) 

(a) 

(b) 

(c) 
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the domain size on polarization switching voltage that is larger domains are more difficult to 

switch. The coercive voltage is roughly Vc =1 V for both poled and unpoled samples. The decrease 

in switching voltage with a decrease in the domain radius (Wd)  can be partially attributed to the 

role of domain walls in the nucleation process, where novel spots of inverse domains are generated 

under an applied bias [151]. PR amplitude in Figure 2.37b increases linearly with an increase in 

the lower applied bias regime till a point (~2 V in this case) and then abruptly changes in 

magnitude. The non-linearity at a larger voltage (3 V) corresponds to the quick growth of the 

nucleated domains through sidewise domain wall motion until it spreads to the specimen, where it 

is well saturated [152]. Thus, the unpoled sample possessing several tiny (in nm) domains may be 

exposed to several nucleation sites due to the increase in the domain wall density, providing the 

possibility for rapid nucleation, thus resulting in a lower coercive field (below 1 V). 

 

Figure 2.38: Hysteresis and butterfly curves of KNNT fibers before (red) and after poling at 5 V 

(Black) by PFM. 

The microscopic hysteresis loops (Figure 2.38a) are observed when the applied electric field 

nucleates new domains by the voltage between the tip and surfaces and strongly depends on the 

number of nucleation sites, termed as ‘soft spots’ located around the domain walls [153]. The 

shape modifications of unsymmetric hysteresis loops before poling (0 V) are represented by 

pinched loops (constricted P-E loops in the region E ≈ 0), asymmetric loops (shift of the P-E 

“hysteresis” loops along with the E- and P-axis, Figure 2.38a, suppression of left or right wing of 

the S-E “butterfly” loop, Figure 2.38b) which have been found in different ferroelectric systems 

in both polycrystalline ceramics and single crystal generated by aging and fatigue [154]. 
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2.13.6.3 Estimation of d33 

The d33 is estimated in a similar way as mentioned in the case of KNN fibres obtaining the slope 

of the piezoresponse amplitude with the AC bias voltage. KNNT fibers showed significant 

improvement in d33 upon poling. The average d33 at 5 different points can be estimated to be nearly 

75 pm/V for unpoled fibers and 130 pm/V for the 5 V poled samples as shown in Figure 2.39. 
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Figure 2.39: Dispersion of d33 values of KNNT fibers 

2.13.7 Conclusion 

In summary, the piezoelectric and ferroelectric properties of the KNN and KNNT fibers have been 

studied by the AFM method. The piezoelectric coefficient (d33) has been determined for the KNN 

and KNNT fiber samples before and after poling are given in table 3.5. The KNN fibres have a d33 

of 25 pm/V and do not show significant improvement upon poling. However, Ta doping of KNN 

fibers lead to a nearly 3-fold enhancement in the d33 compared to pure undoped KNN films. 

Further, the poled KNNT films showed a piezoelectric coefficient (~130 pm/V) compared to the 

undoped KNNT fibers (75 pm/V). 

Table 2.5 Piezoelectric properties of KNN and KNNT fibers 

Material Morphology Size Reported d33 

(pm/V) 

Reference Extracted d33 (pm/V) 

(unpoled) Poled (5 V) 

KNN  fiber 500 nm 26 (nanowire)  [155] 25 28 

KNNT  fiber  600 nm 87 (fiber)  [147] 75 130 
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The excellent piezoelectric properties of the KNN/KNNT fibers suggest that the fibers could be 

excellent candidate for fabricating novel flexible PEH devices, and nanogenerators. 

2.14 Comparison of the Figure of Merit of the cantilevers. 

There is significant interest in the application of ferroelectric materials in energy harvesting and 

therefore several definitions of Figure of Merit (FoM) have been devised to compare their 

performances [156].  A variety of FoMs has been postulated for piezoelectric materials for energy 

harvesting applications [157]–[159]. The efficiency of a piezoelectric energy-harvesting device is 

generally related to both its piezoelectric and elastic responses and generally expressed in terms of 

FoMij
S [156], [160]. 

𝐹𝑜𝑀 =
𝑑

𝜀 𝑆
 

2.12 

 However, when the thickness of the piezo layer is small compared to the substrate layer, the elastic 

compliance part 𝑆  is neglected [156], [160]. When a piezoelectric is subjected to mechanical 

vibrations at low frequencies away from the electromechanical resonance, the relevant FoM is 

[156], [161], [162]: 

𝐹𝑂𝑀 =
𝑑

𝜀
 

2.13 

This FoM depends on the square of the piezoelectric coefficient (dij) and ε33
T, which is the 

permittivity at constant stress. T, and subscripts i and j follow conventional piezoelectric matrix 

notation. Therefore, the piezoelectric materials showing high piezoelectric constants and low 

dielectric constant can provide higher power output for MEMS energy harvesters. To determine 

FoM of the LT, KNN and KNNT thin-film cantilevers, the dielectric permittivity was measured 

from the capacitance of the parallel plate configuration of the cantilever at room temperature away 

from its resonant frequency at 1 kHz [163], [164] using an Agilent E4980A precision LCR meter. 

The dielectric permittivity was measured to be 366, 466 and 397 for LT (4.3 µm), KNN (7 µm) 

and KNNT (7 µm) cantilevers respectively at 1 kHz applying a signal of 2 V (DC). The FoM of 

these sol-gel processed, lead-free piezoelectric materials are compared with a commercially 

available Lithium Niobate (LN) single crystal wafer (YXlt)/128°/90° cut (from Roditi) [165]. 

There are several advantages as well as disadvantages of the ceramic materials grown by the sol-
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gel process and the particular material choice is governed by the application requirements. The 

comparison of FoM, would, therefore, permit us to compare the usefulness of these materials from 

an energy harvesting application point of view. A higher FoM indicate a higher energy conversion 

efficiency. The summary of the extracted electromechanical properties and the figure of merits of 

the various samples (KNN film, KNNT film, KNN fiber, KNNT fiber, LN) are given in Table 2.6.  

Table 2.6: summary of the electromechanical properties of the lead-free piezoelectric materials 

Material Morphology Size Extracted 

d33 (pm/V) 

(unpoled) 

Reported d33 

(pm/V) 

Reference Dielectric 

permittivity 

ε33
T 

FOM (
𝒅𝟑𝟑

𝟐

𝜺𝟑𝟑
𝑻 ) 

(10-18m2/V2) 

Lithium 

Tantalate 

Films 2 µm 23 13- 28  [111], 

[112] 

163 3.2 

3.4 µm 22 362 1.3 

4.3 µm 24 479 1.2 

KNN Films 7 µm 23 18 (films) [164], 

[167], 

[168] 

466 1.1 

KNNT Films 7 µm 48 60 [145] 397 5.9 

KNN Fiber 500 nm 28 26 (nanowire) [155] - - 

KNNT Fiber 600 nm 75 87 (fiber) [147] - - 

Lithium 

Niobate 

Single 

crystal 

27 µm - 27 [165] 50.5 14.8 

 

A lower value of dielectric constant is desired for a higher energy harvesting FoM. The KNN films 

have the lowest FoM among the sol-gel processed lead-free piezoelectric materials, which is 

essentially due to the higher dielectric permittivity compared with LT and KNNT films. Pure KNN 

films have 17% higher dielectric permittivity compared to KNNT due to its lower density, along 

with a slight deficiency of alkali metal, when compared to dense KNNT [169]. Further, the KNNT 

film also has nearly two-fold higher d33, compared to KNN samples. Therefore, a five-fold increase 

in FoM is observed in Tantalum doped KNN films. The Lithium Tantalate FoM decreased with an 

increase in thickness due to the increase in the dielectric permittivity with the thickness. This is 

because the polarization in the piezoceramic films decrease with increasing film thickness due to 
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relaxation of strain [170]. Further, with the increasing film thickness, the grain boundary volume 

also increases, which consequently decreases the net electron mobility in the system due to 

intergranular charge trapping [171]. In comparison, the FoM of Lithium Niobate single crystal is 

superior to sol-gel processed KNN and KNNT films, and nearly three-fold of KNNT film, thanks 

to lower dielectric permittivity of LN. 

2.15 Summary 

In summary, the electromechanical properties and polarization switching of lead-free ferroelectric 

materials namely Lithium tantalate (thin films), Sodium Potassium Niobate (KNN), and KNN 

doped with Ta (films and fiber) have been studied using PFM. The energy harvesting FoM of these 

materials are compared with the Lithium Niobate crystal, for potential fabrication of highly 

coupled PEHs. Although the KNN films did not show any improvement in d33 by poling by AFM 

tip at 3 kV/mm (20 V Vtip), the poling at elevated temperatures at 4 kV/ mm was found to increase 

the piezoelectric coefficient (d33) from 23 pm/V to 100 pm/V. Although the d33 values of the 

unpoled samples are lower than the state-of-the-art values that have been reported so far (detailed 

in Table 2.6), the increase in d33 upon poling is a promising sign of the use of these materials in 

energy harvesting applications. Further, the study of KNNT films shows that the B site substitution 

by Ta can lead to a significant increase in the d33 compared to pure KNN samples. The d33 of the 

unpoled KNNT cantilever was found to be 48 pm/V, which increased to 221 pm/V upon poling at 

3 kV/mm. These values are close to the d33 values of KNNT films reported so far and therefore 

can be exploited to be used in energy harvesting applications in the future. This study of the 

piezoresponse of these films could be useful for the understanding and optimization of 

piezoelectric properties of PTFs for various applications and thereby the performance of PTFs 

devices. Additionally, the ferroelectric properties and polarization switching (hysteresis and 

butterfly curves) of the KNN and KNNT fibers have been studied before and after poling by AFM. 

The KNNT fibers showed piezoelectric coefficient d33 (~130 pm/V) compared to the undoped 

KNN fibers (28 pm/V). The good piezoelectric properties of the KNN/KNNT fibers suggest that 

they could be used for fabricating novel flexible PEH devices working in non-resonant mode. It 

was observed that the FoM of the Lithium Tantalate cantilevers increases with the thickness, which 

is due to the increase in the dielectric permittivity. Among all the sol-gel processed films, KNNT 

film shows higher FoM due to its higher d33 and lower dielectric permittivity values. Finally, the 

FoM of the sol-gel processed lead-free films was determined for the possible evaluation as a 
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candidate for energy harvesting applications. The FoMs of these sol-gel processed films on steel 

are compared with commercially available lead-free Lithium Niobate single crystal. In 

comparison, the energy harvesting FoM of Lithium Niobate single crystal is superior to sol-gel 

processed KNN and KNNT films, thanks to their lower dielectric permittivity. This makes Lithium 

Niobate crystals as the favorite candidate material for the fabrication of highly coupled lead-free 

PEHs. Also, even though the sol-gel processed piezoelectric films on steel have advantages such 

as lower resonance frequency and low cost in comparison with single crystals, they may not be 

compatible with CMOS and MEMS technologies. In addition, sol-gel processed materials are 

polycrystalline and anisotropic and therefore their electromechanical properties depend usually 

much more on the temperature than it is for single-crystals. Sol-gel processed polycrystalline 

materials are therefore not the best choice in the high temperature applications such as car engines. 

Further, in real-time applications as harvesters, the sol-gel process has some limitations such as 

hygroscopic nature of the precursors and volatilization of K and Na elements during high 

temperature sintering. These issues with sol-gel processed lead-free piezoelectric materials needed 

to be addressed before it can be made industrially viable. Single crystals on other hand, are less 

prone to such issues. Although Lithium Niobate crystals are widely utilized for optical and RF 

applications, their application in vibration energy harvesting is seldom studied. For this reason, a 

lead-free piezoelectric energy harvester based on Lithium Niobate single crystal on a silicon 

substrate will be explored in the next chapter. 
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3 Piezoelectric Microgenerator based on lead-free Lithium Niobate 

single crystal 

 

 

 

In this chapter, the fabrication and characterization of a lead-free microgenerator based on lead-

free Lithium Niobate single crystal on Si is discussed. Further, we develop an electromechanical 

equivalent circuit model of the piezoelectric energy harvester and, in addition, the voltage 

conditioning and device interfacing for controlled and stable DC output is discussed. An efficient 

architecture to maximize the power transferred to the load with a Maximum Power Point Tracking 

(MPPT) is also investigated, with a specific focus on low power circuits. 

 

3.1 Introduction 
Keen interest has been generated in recent years to harvest power from ambient vibrations to power 

low power sensors or actuators that are used in the “Internet of things” (IoT) networks to replace 

traditional batteries [172], [173]. Piezoelectric Energy Harvesters (PEHs) that produce the voltage 

on the application of strain across the electrodes have gained a lot of attention in this regard due 

to their high power density and conversion efficiency at the microscale as well as its simple design. 

Currently, most of the high performing PEHs are based on lead-based materials such as PZT [10], 

[148], [174] and there has been little effort towards the development of next-generation “green 

PEHs” with high K despite the growing consensus in the electronics industry for the use of 

environment-friendly materials such as Lithium Niobate (LN) that is used in our present work. 

Indeed, innovative, lead-free materials and structures represent a tremendous challenge and 

opportunity to enable energy harvesters or self-powered sensors. Concerning piezoelectric LiNbO3 

(lithium niobate - LN), it was demonstrated that the electro-mechanical properties of LN single 

crystals highly depend on the orientation, and is comparable to PZT ceramics [175]. LN (YXl)/128 

has been scarcely investigated in the energy harvesting field, even though it presents a much lower 

dielectric constant than the PZT family (ℇ33 = 50.5) and a higher piezoelectric coefficient compared 

to other Pb-free materials (d23=27 pC/N) [176].  Another main challenge faced by PEHs is the 

narrow bandwidth of operating frequency as the output voltage and power reduce drastically from 
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moving away from the resonant frequency [177]. The PEH produces AC output voltage in phase 

with the applied frequency of the mechanical force and voltage needs to be rectified before it can 

be stored for practical applications [52]. Thus, if the voltage generated is under the diode threshold 

drop of the rectifier, the power is not utilized. Since the frequency of typical ambient 

environmental vibration sources is low (less than 300 Hz) and susceptible to variation to a certain 

extent, PEHs with low resonant frequencies and broadband operation capabilities are necessary 

for reliable performance [8]. There are several reports of piezoelectric microgenerators with 

various complex configurations such as membrane structure [57], multiple stacked piezoelectric 

layers, etc.[58], [177] for forcing non-linearity in the system and to push towards a broader 

frequency regime. However, such multi-degree freedom approaches generally have limitations like 

reduced power density due to low-quality factor Q. Recently, a new interest emerged with the 

tuning of the operating frequency of PEHs by exploiting the high electromechanical coupling 

effect [178]. Strongly coupled PEHs is therefore considered as a solution to enhance the frequency 

bandwidth of PEHs. For PEHs with large K2, resonance splitting gives two well-separated output 

power peaks between thereby extending the harvesting BW [178], [179]. Badel and Lefeuvre [180] 

showed that it is possible to largely tune the resonant frequency of highly coupled piezoelectric 

energy harvesters to achieve broadband energy harvesting with the aid of interface circuits. Such 

promising perspectives for broadband vibration energy harvesting can only be achieved through 

the design and the fabrication of PEHs with a strong global electromechanical coupling coefficient 

K. However, most of the highly coupled PEHs reported so far are based on lead-based materials 

such as PZT and PMN-PT. Lead-free “green PEHs” with simple configuration, working at low 

ambient frequencies with high coupling K, exhibiting a broadband operational capability are rarely 

reported. 

Hence, this chapter address the study of a microgenerator green PEH with Lithium Niobate as 

active piezoelectric material that operates at low resonant frequency (~200 Hz) has a broadband 

operation frequency range. The design aspect and considerations such as geometry, choice of open 

circuit voltage and power of the harvester from an application point of view of an Energy 

Autonomous Wireless Vibration Sensor (EAWVS), will be detailed in chapter 5. The 

characterization of the device performances such as output voltage, power at optimal load at 

various accelerations is presented along with the extraction of internal parameters such as 

electromechanical coupling K and mechanical quality factor Qm. Further, the overall Masons 
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electromechanical model of the device is derived from the impedance analysis and the results are 

compared with the LT-SPICE simulations. Finally, an appropriate rectification circuit output is 

chosen to convert the AC voltage to DC based on extracted device parameters (K2Qm). 

3.2 Microgenerator geometry and Fabrication process 

The Lithium Niobate single crystal samples on Silicon wafer were obtained from Giacomo 

Clementi, Ph.D. student, workgroup of Prof Auserine Bartesyte, Femto-ST Besancon under the 

collaborative framework of ITN- ENHANCE project. 

A standard 4-inch Si substrate 525 ± 25 µm thick was Au-Au bonded to 350 µm thick LiNbO3 

(YXl)/128° crystal using an EVG bonding machine. A 200 nm thick Au layers with Cr adhesive 

layers, were deposited on one side of the LiNbO3 wafer and on one side of a 500 mm thick Si 

wafer. This is to facilitate the mechanical compression of Au layers by Au-Au bonding using an 

EVG wafer bonder. The standard 4-inch wafer (525 ± 25 µm thick) is chosen as substrate for 

bonding, due to the compatibility with the available photolithography process. The piezoelectric 

LiNbO3 layer is thinned down by lapping and then micro-polishing steps until the thickness 

reaches 27 ± 2 µm. The top electrodes (200 nm thick Cr/Au), deposited by electron-beam 

evaporation, are patterned by UV lithography, and finally lift-off. The Cr/Au layer used for wafer 

bonding was also acting as bottom electrode of the device. The wafer is diced to form a cantilever 

(dimensions in Table 4.1) is finally glued to the clamping side and made free to vibrate. The 

cantilever device is wire bonded to obtain a device as shown in Figure 3.1. The Lithium Niobate 

layer is carefully scratched from the top using a diamond tip to obtain the bottom electrode. The 

top and bottom electrodes are then wire-bonded to the designed PCB, to obtain the final PEH 

device. A Tungsten proof mass cube 0.125 cm3 (2.3 grams) is added to the free side end of the 

cantilever. When an input vibration is applied to the cantilever beam structure, the effective mass 

transforms the input acceleration into force. The strain generated along the beam due to applied 

force is converted to the electrical voltage across the electrodes through the transverse mode (d31) 

piezoelectric effect. 
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Figure 3.1: Process flow of fabrication steps of the microgenerator 

Table 3.1 Cantilever and electrodes geometrical details of the microgenerator 

cantilever electrodes Si LN Proof 

mass 

Length(mm) Width(mm) Length(mm) Width(mm) Thickness(µm) Thickness(µm) weight(g) 

22 5 22 4.9  525 ± 25 27 ± 2 2.3 

 

A photograph of the final diced cantilever 22 mm long and 5 mm wide, wire bonded and soldered 

onto the PCB is presented in Figure 3.2.a, and Fig. 4.2 b shows a cross sectional schematic of the 

harvester with proof mass. 



89 
 

                                                                                     

Figure 3.2: (a) Photograph top view of the PEH (b) cross sectional schematic of the 

microgenerator with a proof mass 

3.3 Dynamic Electrical Characterization 

This part of the work was carried out at Federation of Micro Nano Technology (FMNT), in the lab 

of Prof. Skandar Basrour, Grenoble. In this part, the electro-mechanical response of the device 

such as the behavior at high frequencies, and the resonance frequencies of the given geometry is 

identified using the impedance analyzer. The impedance analyzer measures the electrical response 

of the device when an AC voltage signal is applied to the sample. The voltage across the electrodes 

and the current flowing through it are measured, from which the modulus and the phase of the 

impedance can be estimated. The impedance analyzer can therefore be used to measure the 

electrical impedance of the device and analyze the electro-mechanical resonance frequencies. The 

impedance of the device was measured with a HIOKI -IM3570 impedance analyzer as shown in 

the schematic in Figure 3.3. 

 

Figure 3.3 Schematic of the measurement with an impedance analyzer 

 The resonance occurs when the frequency of the applied voltage is identical to the natural 

mechanical resonance frequency of the piezoelectric device which is determined by the geometry 

(a) (b) 
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and stiffness of the cantilever beam. A sinusoidal signal with low AC amplitude (1 V) is applied 

on the device and the voltage and current on the electrodes are measured to deduce the impedance. 

In piezoelectric materials, there exists resonance and anti-resonance as shown in Figure 3.4, which 

can be taken as electrical short circuit condition and open circuit condition respectively. The 

impedance modulus and phase of the cantilever are shown in Figure 3.4 showing clearly the 

antiresonance and resonance peaks for the device. 

 

Figure 3.4 Impedance modulus and phase of the PEH without proof mass 

3.4 Estimation of Mechanical Quality Factor (Qm) based on impedance curve 

Loss in piezoelectric materials can be described in terms of electrical and mechanical dissipation 

factors [181]. ‘Hard’ ceramics are characterized by small displacement at off-resonance, low 

dielectric loss, and high mechanical quality factor (Qm). On the contrary, ‘soft’  ceramics present 

a large mechanical strain at off-resonance or have a broad peak, high dielectric loss, and a low 

mechanical quality factor [182]. Therefore, the Qm value is used as a figure of merit for the losses 

in piezoelectric materials. Quality factor (Qm) is a measure of the time constant for the decay of a 

resonating system’s amplitude to its resonance period. It is generally defined as [183]: 

 

𝑄 =
Average energy dissipated per cycle

Energy stored
 

 3.1 
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At resonance in PEH, the mechanical losses are the significant among other losses and it has been 

shown that the mechanical quality factor Qm, is inversely proportional to the mechanical loss 

factor, ‘tanϕ’ [184]. The Qm can be obtained from the resonator measurements by determining the 

electrical impedance as a function of frequency. Resonance frequency (fr) and anti-resonance 

frequency (fr’), the capacitance, and the dissipation factor in the desired frequency range are 

required to determine the material constants. 

 

Figure 3.5: Resonant frequency fr = 1440 Hz at Zmax = 92.75 kΩ and antiresonant frequency 
fr’= 1410 Hz at Zmin =71.8  kΩ respectively after subtracting the baseline. 

 

Figure 3.6: Impedance (a) anti-resonance and (b)resonance in the PEH with no proof mass after 
fitting the baseline. 

3dB 

(a) (b) 
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Taking a narrow frequency range close to the resonance and anti-resonance, we can define the 

resonance quality factor (QR) and the anti-resonance quality factor (QAR) as shown in equation (4.2 

and 4.3) [185]. Here the difference between two quality factors, QR and QAR calculated at resonance 

(fr) and antiresonance (fr
’) respectively were investigated [186], [187]. 

𝑄  =  
𝑓1 − 𝑓2

𝑓𝑟
 

𝑄𝐴𝑅 =
𝑓 ′ − 𝑓

𝑓 ′
 

3.2 

3.3 

where, (f1 – f2) or (f1’ – f2’), is the 3 dB bandwidth of the impedance or admittance curve of 

resonance and anti-resonance respectively. 

QR =50 

QAR =49 

A higher-quality factor indicates broadband harvesting capabilities of the harvester, ensuring 

efficient harvesting over a broad frequency range. 

3.5 Electromechanical coupling coefficient (k33 and k31) 

If there is no load resistance on the output of the transducer, then the square of the coupling 

coefficient is simply the energy stored at the output port divided by the total energy put into the 

system. The electromechanical coupling factors k31 and k33 were obtained using the following 

equations defined in the IEEE standards [182], [187]: 

𝐾  =  

𝜋 𝑓
2𝑓𝑟

𝜋𝑓𝑟
2𝑓𝑟

− 𝑡𝑎𝑛
𝜋𝑓𝑟
2𝑓𝑟

 

3.4 

𝐾  =  
𝜋 𝑓

2 𝑓
𝑐𝑜𝑡

𝜋 𝑓

2𝑓
 

3.5 

K31 =0.22 

K33 = 0.23 

3.6 Design of Proof mass  

Since most ambient mechanical vibrations available in the environment are less than 300 Hz, it is 

advantageous to set the operating frequency of the PEH in this regime. 
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Figure 3.7: SDOF model of the electrotechnical equivalent for PEH 

The piezoelectric harvester considered here is a seismic resonant electromechanical device 

converting mechanical energy into electrical energy. Therefore, a lumped-parameter modeling 

method is suitable for system behavior analysis [172]. The PEH structure was modeled as a Single 

Degree of Freedom (SDOF) system Figure 3.7, which comprises a seismic mass (M= m+0.23mc) 

where ‘m’ the mass of proof mass and mc is the mass of cantilever, a spring with constant Ks, a 

dashpot with damping coefficient C and a vibrating base. Therefore the resonance frequency (fr) 

of the cantilever can be tuned by varying the mass of the added proof mass (m):[49]  

𝑓𝑟 =  
1

2𝜋

𝑘

(𝑚 + 0.23𝑚 )
 

3.6 

𝑘𝑠 =
𝑌𝑤𝑡

4𝑙
 

3.7 

where, in Equations (4.6) and (4.7) ‘ks’ is stiffness constant of the beam of width ‘w’, thickness ‘t’ 

and length ‘l’, and ‘Y’ being Young’s modulus of the beam respectively. Eigen-frequency analysis 

was performed with the Finite Element Analysis (FEM) to obtain the resonance frequencies and 

the stress distribution for various proof mass weights. The variation of the resonance frequency fr 

of the PEH with the proof mass weight determined by analytical equation is in good agreement 

with the FEM as shown in Figure 3.8a. The resonance frequency fr decreases sharply from 1.26 

kHz to 187 Hz when the mass of the proof mass increases from 0.01 g to 2.3 g. Thus, by selecting 
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a proof mass of 2.3 g, the resonance frequency of the piezoelectric energy harvester is significantly 

lowered to a value close to 200 Hz. It is equally important to ensure that the stress developed inside 

the cantilever beam is within the breaking stress of the substrate material (Si). The maximum stress 

distribution inside the cantilever beam for various proof mass weights at 1g (g =9.81 m.s-2) 

acceleration as determined by FEM is given in Figure 3.8b. The maximum stress ~2 GPa 

developed at the bottom corner of the Si cantilever as shown in Figure 3.8c which is within the 

limit of breaking stress in Si plates (>3 GPa) [188], [189].  
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Figure 3.8: (a) Resonance frequency (fr) vs proof mas weight (b) Max. stress developed vs proof 
mass (c) stress distribution inside the Si cantilever beam obtained from FEM at 1g acceleration. 

3.7 Equivalent Circuit model of Piezoelectric Energy Harvester (PEH) 

This part of the work was done at INSA Lyon under the supervision of Prof. Michael Lallart, 

during the secondments under the collaborative framework of ITN-ENHANCE.  

A piezoelectric energy harvester (PEH) converts the mechanical vibration energy into AC 

electrical power. Since the storage devices such as supercapacitors and rechargeable batteries 

generally need a DC power supply. A rectification and power conditioning circuitry are necessary 

to rectify the AC power to stable DC power [47]. The overall performance of the piezoelectric 

devices can be evaluated by the global parameters represented in the form of an electromechanical 

equivalent circuit [190]. This work aims to model the PEH by a one-dimensional 

electromechanical circuit inspired by Mason’s model [177]. The first part is devoted to the 

derivation of global parameters of the PEH experimentally from the impedance analysis using an 

impedance analyzer. The analogies between electrical and mechanical systems are used to obtain 

Piezoelectric material 

Substrate 

Proof 
mass 

Electrodes 

V 

Force 

(c) 
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the full Masons piezoelectric electromechanical equivalent circuit model which can precisely 

describe the global performance of the device. The model is validated by comparing the 

experimental results with the LT-Spice simulation. Then, the optimal load resistance for the 

maximum power harvest is obtained through experimental methods and is compared with the 

simulation using the electromechanical equivalent circuit. Finally, the voltage doubler rectifier is 

implemented, and the results are compared with the LT Spice model under given base excitation 

and operating frequency for a given load. The equivalent circuit models with an overall impedance 

Zin can be used for the analysis and design of piezoelectric systems. The equivalent circuit model 

is based on an analogy between mechanical and electrical state variables. The first model of the 

piezoelectric transducer was proposed by W.G. Cady (1922) [191] which was later expanded by 

Van Dyke (1925), that introduced mechanical losses indicated by a resistor R suggesting an RLC-

series network in parallel to the capacitor of the electrical system as shown in Figure 3.9 [190]: 

 

Figure 3.9: Van Dyke model for the electrical part of the piezoelectric element [192] 

Cp is the capacitance of the PEH. Generally, the leakage resistance Rp is large and several orders 

of magnitude higher than capacitive impedance and is neglected. The parameters used in models 

(Cp, L, R, C) are extracted using impedance analysis and are represented in the form of Mason’s 

equivalent circuit. The “global” state variables of the system are force F, displacement x, charge 

flow Q, and voltage V. The quasi-static electro-mechanical behavior of a piezoelectric system can, 

on a global scale, be described by [190]: 

F = Ks x – αV 3.8 

Q = α x + CV 3.9 
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where Ks is the mechanical stiffness of the system with short-circuited electrodes. The electro-

mechanical coupling is expressed by the coupling factor α which has the dimension N/V or As/m. 

Using mechanical (or electrical) standard elements, Equations (4.8 and 4.9) can be displayed as a 

system of electrical components and transformers as shown in Figure 3.10. Considering the 

analogies between the electrical and the mechanical domains, the mechanical force is considered 

to be analog to the electric voltage and the velocity is equivalent to the electric current. The 

parameters describing the electrical properties are the shunted capacitance Cp and resistor Rp, 

which represents dielectric losses. Mason (1935) introduced an ideal transformer (N turns ratio) 

[190]. In the mechanical circuit that can be represented by an ideal lever with a coupling factor α 

of dimension [N/V] as shown in Figure 3.10. This model decouples the mechanical and electrical 

sides of the harvester and, thus, it is made possible to predict the electrical output with various 

load resistance conditions and to optimize the power harvested and conditioning circuit. 

 

Figure 3.10: Masons model with both electrical and mechanical side of the PEH coupled by a 
transformer [193] 

On the mechanical side, a voltage generator (F = m a) represents the effective force induced by the 

base vibration acceleration a where m is the effective mass term. The equivalent inductance Lm 

indicates the modal mass (m) of the first mode. The resistance Rm and the capacitance Cm represent 

the mechanical damping(dm) and stiffness (1/cm) of the beam respectively. The electromechanical 

coupling is represented as a transformer with the turn-ratio N representing the piezoelectric 

coupling coefficient α. 

3.7.1 Experimental Parameter Identification 

As a first step, the amplitude and phase of the impedance of the device are estimated using the 

impedance analyzer. For the electrical side, the electrical circuit parameters of the PEH in the Van 

Dyke model (Figure 3.9) are estimated using the impedance measurements as shown in Figure 

3.11. 
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Figure 3.11: Van Dyke model of the electrical side determined from the impedance analysis  

Here, the mechanical branch has been converted to the electrical side resulting in the Butterworth–

Van Dyke topology. For the mechanical side, to obtain the mechanical parameters (m1, dm and 

1/cm) in electrical equivalent form (Lm, Rm,1/Cm) the conversion factor α is used [193]: 

Rm = α2R 3.10 

1/Cm = Ca/ α2  

Lm= α2 L 3.11 

To determine the parameter α the PEH is fed by a sinusoidal voltage with peak amplitude V in 

open circuit condition, (V=11.4 V). The vibration amplitude peak (x) is measured using a Laser 

setup, (x=31 µm). The system is mechanically unloaded, i.e., F=0. The capacitance C is determined 

from the impedance analyzer, (C=1.4 nF). 

From the equation (8): 

𝑑𝑄

𝑑𝑡
 =  𝛼 

𝑑𝑥

𝑑𝑡
+  𝐶

𝑑𝑉

𝑑𝑡
 

3.12 

In open circuit Ip =0,   

𝛼 
𝑑𝑥

𝑑𝑡
=  𝐶

𝑑𝑉

𝑑𝑡
 

3.13 

𝛼 =  = 4.9x10-4 3.14 
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Table 3.2: Extracted parameters  

Parameters C0 C Cm R Rm L Lm α 

 1.4 nF 18.8 pF 78 uF 9 MΩ 300 mΩ 29 kH 7 mH 4.9x10-4 

 

The final equivalent circuit is given in Figure 3.12: 

 

Figure 3.12: Masons equivalent for the PEH 

3.7.2 Analysis of the impedance of the equivalent circuit in SPICE 

The validity of the extracted equivalent circuit of the device is ascertained by performing the 

impedance analysis in LT-Spice (XVII) (Figure 3.13) using model parameters extracted from the 

experiment are listed in Table 3.2 and comparing it with the experimental impedance analysis 

results obtained using an impedance analyzer for the given frequency range of 100-300 Hz.  

 

Figure 3.13: Spice model for the electromechanical equivalent circuit (transformer is replaced 
by an alternate current-controlled voltage source). 

The Spice simulation of the full Masons model closely agrees with the theoretical impedance of 

the reduced circuit as well as the experimental results obtained from the impedance analyzer as 

shown in Figure 3.14. 
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Figure 3.14: Comparison of the (a)impedance modulus and (b) phase from theoretical (reduced 

circuit), experimental, and full Masons model in Spice. 

3.8 Estimation of the mechanical quality factor (Qm) and coupling coefficient K with 

proof mass 

At resonance in PEH, mechanical losses are the most significant. The mechanical quality factor 

Qm, therefore, is used as a figure of merit for losses in piezoelectric materials.  

(a) 

(b) 
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Figure 3.15: (a) Resonant frequency  fr = 220 Hz at Zmax = 540  kΩ and (b) antiresonant 

frequency fr’= 214 Hz at Zmin =460  kΩ respectievely. 

Taking a narrow frequency range close to the resonance (fr) in Figure 3.15, the resonance quality 

factor (QR) is determined to be 44 [185]. The electromechanical coupling factor k31=0.26 is 

obtained using the following equations defined in the IEEE standards [182], [187]: 

3.9 Optimal load resistance for maximum output power 

One of the most important characteristics of an energy harvesting circuit is the maximum power 

output Pout. The harvested power can be maximized, when the input impedance of the harvesting 

circuit matches the output impedance of the PEH. Since a piezoelectric generator exhibits a large 

capacitive reactance, a complex conjugate matching requires a large inductance for the load to 

cancel the capacitive term. An alternative solution to complex conjugate matching is to adopt 

resistive matching. The optimal load resistance Ropt at which maximum power Pmax is delivered is 

determined theoretically and is compared with experimental simulations.  

3.9.1 Theoretical prediction 

The voltage on the piezoelectric element can be expressed in the frequency domain as a function 

of the displacement, where ω is the angular frequency [194]: 

𝑉 =
𝛼𝑅

1 + 𝑗𝑅𝐶𝜔
(𝑗𝜔𝑢) 

3.15 
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where α is the electromechanical conversion coefficient, C is the parallel capacitance, and u is the 

amplitude of the displacement of the beam. The theoretical harvested power P is given by:  

𝑃 =  
𝑉

2𝑅
=

𝑅𝛼 𝜔 𝑢

2 (1 + (𝑅𝐶𝜔) )
 

3.16 

it is possible to give a general expression of the harvested average power P as a function of the 

external force amplitude F, the load R, and the various model parameters 

𝑃 =  
𝐹  

2

𝑅𝛼

1 + (𝑅𝐶𝜔)

1

 𝐶 +
𝑅𝛼

1 + (𝑅𝐶𝜔)

 
3.17 

In this case α= 4.9 x 10 -4 (table 4.2). 

So, 
( )

 term can be neglected, which leads to a simplified expression of the theoretical 

harvested power P reaching a maximum Pmax for an optimal load Ropt: 

𝑃 =  
𝑅𝛼 𝐹

2𝐶  (1 + (𝑅𝐶𝜔) )
 

3.18 

𝑅 =  
1

𝐶𝜔
 

3.19 

3.9.2 Experimental determination of optimal load 

The PEH was excited by an arbitrary acceleration and the optimal load was determined by varying 

the load resistance Rload and obtaining the output power PRMS for different load resistances as 

shown in Figure 3.16. The terminal output voltage (V) was measured for different load resistances 

(Rload) and RMS power (PRMS) was determined from: 

𝑃 =
 𝑉

2𝑅
 

3.20 

3.9.3 Optimal load by LT-SPICE  

The optimal load at resonant frequency was simulated by the transient analysis of the full Masons 

equivalent circuit (Figure 3.13) by LT Spice at different load resistances (Rload) at the resonant 

frequency. The optimal load was also determined experimentally. The PEH is excited by an 
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arbitrary acceleration and the terminal output voltage (V), and RMS power (PRMS) dissipated in 

the load was determined as shown in Figure 3.16.  

 

Figure 3.16: Normalized harvested power vs load resistances for different models 

The optimal load vs normalized power for the simulation, experimental and theoretical results are 

shown in Figure 3.16. The spice simulations, experimental results closely agree with the theoretical 

model of the harvester indicating the optimal load Ropt ~550 kΩ.  

3.10 Output Voltage and RMS power of the harvester  

The open circuit voltage Voc response and power (PPEH) are determined by the shaker system, 

TIMA Lab, FMNT. It consists of a vibration exciter (electrodynamic shaker, Signalforce 

DataPhysics), an accelerometer with a charge amplifier (PCB Piezotronics 355B04), a 100 W 

power amplifier (PA100, DataPhysics), an oscilloscope a signal generator (Agilent 335095B), and 

along with the data acquisition software to display the output in the computer. The schematic and 

photo of the experimental setup are shown in Figure 3.17. An accelerometer is fixed on the 

vibration exciter together with the PEH device for the acceleration measurement. The signal from 

the signal generator is amplified by the power amplifier and set the vibration amplitude and 

frequency of the shaker. The output voltage signal from the PEH corresponds to the input signal 

from the signal generator which is recorded to the oscilloscope and acquired by the software. 
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Simultaneously, acceleration will also be amplified by the charge amplifier and then shown on the 

monitor of the computer. 

 

Figure 3.17: (a) Schematic and (b) photo of the shaker experimental setup. 

3.11 Test Results and Analysis 

The peak output voltage V and RMS power PRMS at various accelerations from 0.2 g to 1 g at the 

optimal load Ropt= 550 kΩ. are presented in Figure 3.18. For the resonant peak at the optimal load, 

the peak voltage V and RMS power (PRMS) at 1 g are found to be close to 6 V and 35 µW 

respectively.  

(b) 
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Figure 3.18: Experimental results: (a) RMS power and (b) voltage at optimal load for the 
frequency range 175 Hz to 215 Hz (c) Peak Voltage and maximum RMS Power for various input 

accelerations from 0.2g to 1g. 

In several application scenarii, the input vibration spectrum of the PEH fluctuates. For instance, 

the vibration frequency range of a water pump in a combined heat and power plant varies in the 

range of 210 Hz to 219 Hz (~5%) as the speed of the pump changes [195]. Therefore, the power 

bandwidth BW, an important parameter to determine the operating frequency range is defined by 

the half-power cut-off frequencies fB1 and fB2 (for which PPEH = 0.5 PPEH_max) as[196]: 

BW =  
𝑓 − 𝑓

𝑓
 

3.21 



106 
 

where, f0 is the corresponding frequency at maximum power PPEH_max. The device has a full width 

half maximum bandwidth of 10.8% at resonance. This is a clear advantage as it can be used to 

extract energy from a broader spectrum of the input frequency. The overall power density of the 

PEH-PM can be estimated to be 36 µW/cm2/g2. 

Table 3.3 Performances of the fabricated prototype and comparison to the highly coupled state-
of-the-art PEHs in terms of operating frequency, power and bandwidth. 

Piezoelelctric 

Material 

Power 

(µW) 

Acceleration 

(g) 

Fr 

(Hz) 

Qm K231 Bandwidth 

PZT[197] 670 5.6 253 50 15.4% 7.5% 

PZT[198] 90 0.4 152 95 6.7% 10.5% 

PMN-PT[178] 0.58 0.019 29 130 16% 10.1% 

PZN-PT[199] 1.3 0.017 32 91 16.4% 11.3% 

PMN-PT[199] 32.7 0.1 31 58 17.6% 8.4% 

LN(This work) 35 1g 187 44 7.2% 10.8% 

 

3.12 Power harvesting circuit for Piezoelectric Energy Harvester 

The load requires a stabilized DC voltage and the output of the PEH is AC, the desired output 

needs to be rectified, filtered, and regulated to ensure the usable power output for various 

applications. Several types of electronic interfaces have been proposed in literature such as 

standard model, series and parallel Synchronized Switch Harvesting on Inductor (SSHI), Hybrid 

SSHI, Double Synchronized Switch Harvesting (DSSH) etc.[200]–[202] for collecting the DC 

output, based on the coupling (K2Qm) of the device [203]. The concept of nonlinear circuits or 

synchronized switch harvesting on inductor (SSHI) has shown significant improvement in power 

extracted from the PEH for relatively low coupled systems with K2Qm <2. In comparison to the 

standard rectifier circuit, the parallel SSHI circuit provides higher output voltage. The optimal load 

resistance is also higher in parallel-SSHI, than with the standard rectifier circuit. This voltage 
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amplification property may be used to get high voltages, or to reduce the energy losses related to 

the voltage drop of the diodes in the rectifier bridge. This is particularly interesting in the case of 

low-voltage PEH microsystems, whose open-circuit voltage is typically lower than 1 V. In series 

SSHI, the output voltage and the optimal load resistance are smaller than those of the standard 

rectifier circuit. The DSSH circuit implementation is complicated than both the SSHI and standard 

circuits. The performances of DSSH is better than that of the standard and SSHI techniques in the 

case of PVEH with small K2Qm. In our case, the K2Qm is determined to be nearly equal to 3, 

therefore, we have chosen the standard rectification scheme employing a full bridge as shown in  

Figure 3.19, since the standard rectification circuit is more efficient when the K2Qm >2 [82]. To 

maximize the efficiency of rectification, the forward conduction voltage of the voltage rectifier 

diode Vf must be as low as possible. However, since the current harvested by the PEH is low in 

the order of microamperes, the diode reverse current Ir should be as low as possible. Therefore, 

there is a compromise between the forward voltage and reverse current performance of the diode 

and for this reason, an ultra-low leakage diode (FJH1100) with a maximum reverse current of 10-

30 pA, and a forward voltage Vf of 0.6 V with a forward current of 10 µA is chosen. The charging 

profile across a 220 µF capacitor at 1 g acceleration is shown in Figure 3.20. The PEH could charge 

the capacitor to nearly 6 V in 500 s. 

  

Figure 3.19: Standard rectification scheme with a full bridge rectifier 
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Figure 3.20: Charging voltage profile across a 220 µF capacitor after rectification at 1 g 

acceleration. 

3.13 A novel three-terminal harvester concept with Maximum Power Point Tracking 

(MPPT) for ultra-low power applications 

3.13.1 Introduction 

The amount of power generated from a PEH system mainly depends on the factors, such as input 

frequency and amplitude of the input vibration. The variations in input vibrations change the 

optimal operating point or the Maximum Power Point Tracking (MPPT) of a PEH significantly 

with time [52], [78], [204]. Since the microgenerators produce power in the order of microwatts 

that is just enough to power the IoT nodes, its operation at the MPP irrespective of the input 

conditions such as frequency, acceleration, or load variations must be ensured. Several MPPT 

techniques have been investigated in literature for PEH systems to have automatic control of the 

optimal power delivery to the load [78], [205]–[209]. 

MPPT ensures that the voltage at the output of the converter (Vload) is properly regulated. The 

commonly used power conditioning architecture is based on the use of a bridge rectifier followed 

by a DC/DC converter whose duty cycle is determined by the MPPT as shown in Figure 3.21 [77], 

[210]. 
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Figure 3.21: Functional block diagram of the piezoelectric Energy harvesting solution with an 

MPPT 

Among various techniques for MPPT algorithms in energy harvesting, the hill-climbing method 

or perturb and observe method [209], [211] and the Fractional Open-Circuit (FOC) method[205], 

[206], [212] have been commonly used. In the hill-climbing method, the instantaneous output 

power is usually computed using a microcontroller by sampling the values of the current and 

voltage in real-time. Since Voc is difficult to be measured when the PEH is connected to a load, the 

current flowing through the load is usually measured and used as the feedback signal to the 

controller. This necessitates the use of the complicated sampling circuit as well as the need for 

momentary breaking of the circuit, making this approach unsuitable for micro-scale energy 

harvesting. The FOC method is relatively simple and is based on the concept that the MPP voltage 

of PEH (VMPP) is a fraction of its open circuit voltage (Voc). The rectifier, that is used to convert 

the AC voltage from the PEH to DC, has an optimal output voltage (VMPP) that is a fraction of the 

open circuit voltage (Voc), that corresponds to the maximum harvested electrical power (Pmax). In 

this method, the Maximum Power Point (MPP) voltage is computed by sensing its open circuit 

voltage (Voc) in real-time.  

Ottman et al. proposed MPPT schemes by using DC-DC converters and complex signal processing 

and intensive control algorithms to adaptively adjust the duty cycle of the DC-DC converters to 

match the load [212]. To reduce the power dissipation, the signal processor is replaced with 

discrete components and the step-down converter running at a fixed duty ratio. Chao et al. 

presented an MPPT scheme based on a time-multiplexing mechanism that adaptively senses the 

vibration status and directly generates an optimal output reference voltage of the AC-DC rectifier 

for maximum power harvesting [210]. Kong et al. [213] applied a dynamic resistive matching to 
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achieve MPP that employs a microcontroller unit, where the switch ON-time is sampled, and the 

required input resistance Rin is evaluated by software. But the system only evaluates Rin without 

precisely detecting the PEH output voltage. Similarly, Hu et al. [214] proposed a double-sampling 

technique, in which the  Voc is predicted based on the point-slope formula. With the increase in 

complexity of the circuit, MPPT tracking speed also varies. There is a trade-off between the 

complexity of the control circuitry that is used to determine the MPP and power consumption by 

this circuitry. Complex MPPT algorithms such as perturb and observe algorithms could increase 

the overall conversion efficiency of the system if the harvested power is relatively high (mW 

range). If a PEH (microgenerator) provides low input power levels (~ tens of μW), custom IC 

designs of simplified MPPT control schemes such as FOC might be a good option [215]. In 

ultra-low power applications, such as battery-free sensor nodes based on vibration energy 

harvesting, the level of power to be transferred is often so low that makes it quite difficult for the 

design of a typical MPPT circuitry efficient enough to consider its implementation worthwhile 

[216]. Therefore, it is necessary to design a viable energy efficient energy harvester circuit, 

minimizing the non-scalable losses in the circuitry, especially for low-power applications. 

Therefore, it should be noted that to use piezoelectric conversion with micropower applications, it 

is vital to develop a novel MPPT method that is simple and low-cost in approach and has an ultra-

low power consumption. To make MPPT worthwhile in ultra-low power energy harvesting 

applications, a negligible portion of the harvested power has to be accounted for in the 

implementation of this function. Since this may represent a tough challenge for the IC designers, 

we mean to propose a novel three-terminal piezoelectric energy harvester with one of the terminals 

exclusively dedicated to sensing the open circuit voltage (Voc). Thus, we explore a novel approach 

to the FOC method to determine the open circuit voltage (Voc) in real-time using a third additional 

terminal that acts as a Voc sensor. This approach can be advantageous as long as the Voc sensing 

cell is designed with area occupancy smaller or even negligible compared to the main harvester so 

that the area being used for measurement purposes, rather than for energy production is 

insignificant. According to this designed harvester design, the loss in the produced power by the 

harvester, due to the presence of the sensing cell is less than 1%. From the system point of view, 

this loss in power and the presence of an extra pin may be compensated by various advantages, 

including the simplification of the circuit architecture associated with MPPT functions (such as 

pre-regulation, sampling, series switch and logic), and the relative reduction of the power 
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absorption. With this new concept of the harvester, the power management IC can be greatly 

simplified to a simple, ultra-low power comparator, used to compare the voltage provided by the 

main harvester with the voltage provided by the sensing cell used as a reference. 

3.13.2 Theory and working principle 

A vibrating piezoelectric element is electrically considered as a capacitive ac source which must 

be rectified at a desired DC voltage level before it is stored for powering an electronic device as 

shown in Figure 3.22. The maximum power that can be extracted by a PEH, in given vibration 

frequency fr, closely depends on the value of the open circuit voltage Voc and therefore there exist 

an optimal value of the load voltage VMP (= X*Voc) for harvesting the maximum power from the 

PEH, where X is a fraction.  Based on load conditions or the input vibration conditions deviate, 

the VMPP changes and, therefore, it needs to be tracked by Voc.  

 

Figure 3.22: Simplified electrical equivalent circuit of a PEH with a rectifier 

The system architecture of this harvester consists of two different sections, namely the main 

harvester, with larger area occupancy which contributes to the output power, and a sensing cell 

exclusively dedicated to sensing the open circuit voltage Voc of the main harvester. Since the power 

transferred by the piezoelectric transducer is sensitive to the electrical load, the operating 

frequency and the applied mechanical power to be transduced, an effective MPPT is used to deliver 

power with the maximum efficiency to the external load (Rload) regardless of the variation of those 

parameters. The PEH converts the mechanical vibration energy into electrical energy 

corresponding to a sinusoidal mechanical excitation that is equivalent to an AC source i(t)=Ipsin 
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(2πft) (Figure 3.22), connected in parallel with the internal capacitance Cp of the harvester where 

Ip is the peak current and f=ꞷ/2π is vibration frequency of the harvester.  

Ip(t) = Ip. Sin (ꞷt) 3.22 

A full-bridge rectifier then converts the AC output voltage of the PEH to a DC voltage the diodes 

are assumed to exhibit ideal behavior. A full bridge rectidier results in a forward voltage drop of 

1.4 V. A fast switching diode with a minimum leakage current should be chosen. In the case of a 

1N4148, the reverse leakage current is guaranteed to be less than 25 nA, making it an apt choice. 

Assuming that the capacitance of the rectifier is large compared to the internal parasitic capacitance 

Cp, Cr>>Cp, most of the current Ip will be delivered. If Ip (DC) is the DC component of Ip, and Ir 

(DC) is the DC component of Ir, the net DC component of output Iout(t) is given in terms as: 

Iout(t)= Ip (DC) - Ir (DC) 3.23 

𝐼 (𝑡) =
2𝐼

𝜋
 −

2𝑉 𝜔𝐶

𝜋
 

3.24 

The output power (Pout) varies with the output voltage of the rectifier (Vr) as: 

𝑃  =   𝑉 ∗  𝐼 (𝑡) 3.25 

𝑃 =  
 2𝑉 (𝐼  − 2 𝑉 𝜔𝐶 )

(𝜋)
 

3.26 

 

where Cp is the internal parasitic capacitance of the PEH. 

From 3.26, it follows that the peak output power occurs when: 

𝑉 =
 𝐼

2𝜔𝐶
 

3.27 

This is one-half the peak open-circuit voltage of the PEH. We utilize this concept that the 

maximum power transfer of a piezoelectric transducer to the load takes place at half the open 

circuit voltage (Voc) of the harvester[216]–[218]. A DC-DC converter is introduced between the 

rectifier output and the storage that will enable the rectifier output voltage (Vr) held at its optimal 

value, which is one-half the open-circuit voltage of the PEH to achieve MPPT.  
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3.13.3 Design considerations  

To implement the three-terminal PEH with this novel MPPT concept, we require two different 

sections namely: 

1) the main harvester, with larger area occupancy that contributes to the output power along with  

2) a smaller area sensing cell that is exclusively dedicated to sensing the Voc.  

Apart from the above requirements, we need to cater to certain design rules to implement the 

proposed idea. Firstly, the sensor cell and the main harvester should be working at the same 

resonance frequency, so that they work in phase synchronization and produce similar Voc under 

the given mechanical excitation. One of the most important design parameters in designing a 

vibration energy harvesting device is the resonant frequency. The output voltage attains a peak 

value if the excitation frequency matches the resonant frequency of the cantilever. This reduces 

drastically when it changes from the resonant frequency of the device. Secondly, from the system 

engineering point of view, the area efficiency (loss of power due to the area consumed by the 

sensor cell) needs to be low. To satisfy the above design constraints, we have considered a 

harvester design with two top electrodes in the same harvester with the same length and thickness 

but with different widths, with the sensor cell occupying the minimum possible width. 

3.13.4 The feasibility study of 3 terminal harvester 

The feasibility of the 3 terminal MPPT Model was first analyzed by lumped parameter approach 

and verified by Finite element analysis in COMSOL Multiphysics. When a Piezoelectric material 

is mechanically deformed, an electrical charge is produced in it. The piezoelectric constitutive 

equations in IEEE standard in the strain-charge form are as follows [219]: 

S = SET + dE  3.28 

D= dT + ɛTE 3.29 

S: Mechanical strain.  

SE: Elastic compliance tensor (1/stiffness- N/m),  

T: Mechanical stress vector (Nm-2)  

E: Electric field vector (Vm-1) 
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D: Electrical Displacement (Cm-2) 

ɛT: Dielectric permittivity tensor (Fm-1)  

d: Electro-mechanical coupling factor (CN-1) 

A cantilever beam can have many different modes of vibration, each with a different resonant 

frequency. The first mode of vibration has the lowest resonant frequency, and typically provides 

the most deflection and therefore the most electric energy.  

3.13.5 Bending-Mode Resonance Frequency 

The bending-mode vibration of the unimorph obeys the following differential equation [220]: 

𝐷𝛥 ℎ =
 −𝑚  𝜕

𝜕𝑡
 

3.30 

The resonant frequency of this system (fr) can be calculated by following equation: 

𝑓 =  
  1 

(2𝜋𝐿 )

𝐷

𝑚
 

3.31 

where, L is the length, ma is the mass per unit area which depends on thicknesses and densities, 

𝑚  = 𝜌 𝑡  +  𝜌 𝑡  3.32 

ρp and ρs are the densities of the piezoelectric and substrate, material respectively. The bending 

modulus (Dp) is a function of Young’s modulus (E) and thickness and is expressed by [220], [221]: 

𝐷 =
(𝐸 𝑡 + 𝐸 𝑡 + 2𝐸 𝐸 𝑡 𝑡 (2𝑡 + 2𝑡 + 3𝑡 𝑡 ))

12(𝐸 𝑡 +𝐸 𝑡 )
 

3.33 

 

where Ep and Es are Young’s modulus of piezoelectric and substrate materials and tp and ts their 

thicknesses. 

𝑓𝑟 𝛼 
  𝑡 𝑡

𝐿
 

3.34 

This relation shows that the resonant frequency is independent of the width of the unimorph 

cantilever and depends only on the length and thickness. Also the Voc can be written as [222]: 
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Voc =  3.35 

Assuming that the same acceleration is experienced throughout the mass, which is homogeneous, 

the stress on the piezoelectric element can be given as the force experienced by unit area: 

σij =ƍ g tp 3.36 

g is the input acceleration, ƍ the density and tp the thickness of the piezoelectric layer. From 

equation (4.36), the open circuit voltage Voc is independent of the width of the beam and 

proportional to the applied stress σij, the piezoelectric coefficient dij, and the gap distance between 

electrodes ge, εr and ε0 are the relative dielectric constant and the permittivity of vacuum, 

respectively. The most important aspect of the MEMS piezoelectric generator is its capability to 

deliver an electric current because of the stress it is subject to. Because of the direct piezoelectric 

effect, the electric displacement inside the material caused by the mechanical stress is given by: 

𝐷 = 𝑑31𝜎1 3.37 

𝜎1 is the stress in the beam. This relationship holds for an infinitesimal element of the film. To find 

the total electric charge generated because of the strain, it is necessary to integrate over all the film 

along the 3-direction and use Hooke’s law as follows: 

𝑄 = ∫𝐷3𝑑𝐴3 3.38 

Since the amount of current delivered by the PEH, Ip α Q, the current scale linearly with the width. 

This shows that a cantilever beam can be designed to serve this purpose in such a way that along 

with a main cell that harvest the power, a reference cell with a smaller width can be employed to 

serve the purpose of sensing of Voc. This will mean that we can sense the open circuit voltage in 

real time without the need for disconnecting the load as the sensor electrode is disconnected from 

the load all the time. 

3.13.6 Finite element Analysis 

The above model was verified by Finite Element Method (FEM) [223]. The variation of the open 

circuit voltage with various widths of the cantilever beam was simulated. The design under study 

was a unimorph cantilever structure with piezoelectric material Lithium Niobate, placed on a 
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silicon (Si) cantilever based on an SOI wafer on a 350 µm handle layer and 1 µm oxide layer as 

shown in Figure 3.23. 

 

Figure 3.23: schematic of the PEH device simulation 

3.13.7 Boundary Conditions  
The device is modeled such that one end of the unimorph cantilever is fixed when the other is free 

to vibrate. The substrate is assumed to be linear elastic material that bends according to the stress 

produced. The fixed constraint condition is applied to the bottom face of the fixed handle layer, 

while all other faces are free to move. The d31 mode is selected by applying floating potential for 

the upper face and grounding the lower face of the piezoelectric layer while all other faces of the 

piezoelectric layer are kept at zero charge constraint. The body load is given an acceleration of 1g 

to the device to generate a strain. 
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Figure 3.24: (a) open circuit voltage Voc at various frequency ranges (b) open circuit voltage Voc 
vs width of cantilever [52] 

A sinusoidal mechanical force is applied as the input to the energy harvester. The open circuit 

Voltage (Voc) and the output power at then evaluated as a function of frequency. The frequency 

response analysis was performed at 1g acceleration to determine the resonant frequency and the 

output voltage for different cantilever width at open circuit condition as shown in Figure 3.24. The 

output voltage was determined as a function of frequency and the results clearly indicate that the 

resonant frequency fr and Voc is independent of the width at open circuit condition (R~ ∞). This 

implies that since Voc and resonant frequency of a PEH is independent of the width of the cantilever 

beam, an electrode of minimum possible width and the same geometry harvester (thickness and 

length) of the main can be implemented as a sensor cell in order to supply the reference voltage to 

the low power comparator as shown in Figure 3.25. 
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Figure 3.25: Proposed electrical schematic of the 3 terminal PEH with MPPT 

However, due to the presence of the extra sensor cell that does not contribute to the overall power 

output of the system, there is a reduction in the system efficiency. Therefore, the additional loss 

due to the area consumed by the sensor cell and the gap between the main harvester and sensor 

cell was expressed in terms of area efficiency that is defined as follows: 

Area Efficiency =
  𝐴  

𝐴( )
 

3.39 

where, Amh is the area main harvester and A(Ws+Wmh+Wg) is the overall area of a harvester without 

the reference electrode that takes into account of area of the sensor cell and the gap. The evaluated 

area efficiency was found to be 98% with a sensor cell of 50 µm and a main harvester cell of 4.9 

mm in width.  

3.13.8 Experimental results 

A three-terminal harvester was designed and fabricated to test the theoretical model discussed in 

earlier section, considering a practical area efficiency of 98%. The harvester consists of Lithium 

Niobate (27 µm) as the active piezoelectric layer on Si substrate (525 µm) and gold top electrode. 

The dimensions of the harvester fabricated for testing are different from the simulated device, due 

to the intrinsic limitation in thinning down the LN below 27 µm. The LN is carefully scratched 

from the top using a diamond tip to obtain the bottom electrode. A Tungsten proof mass cube 0.125 
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cm3 (2.3 grams) is added to the free side end of the cantilever. The fabrication steps are detailed 

in section 4.2.  

             

Figure 3.26: Illustration of the (a) top view (b) cross sectional view of the three terminal PEH 

Table 3.4 Geometry of the 3 terminal PEH 

Length 

cantilever 

(mm) 

Width 

cantilever 

(mm) 

Length 

electrodes 

(mm) 

Width 

electrodes 

(mm) 

Thickness 

Si (µm) 

Thickness 

LN (µm) 

Proof 

mass 

weight(g) 

22 5 22 4.9 & 0.05 525 27 2.3 

3.13.9 Measurement of Open circuit voltage 

The measurement of open circuit voltage from the reference cell has some challenges due to its 

very high impedance due to its low surface area. The impedance of the reference (Zref) cell can be 

given as: 

𝑍 =
1

𝜔𝐶
 

3.40 

𝐶 = ℇ
𝐴

𝑑
 

3.41 

(a) (b) 

Main electrode 

LN Top electrodes 

Reference 
Bottom electrode 

Si  
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where, ℇ is the permittivity, Aref the reference electrode area and d the thickness of the piezoelectric 

material. Since the area of the reference electrode is nearly 1% of the main electrode, the 

impedance of the harvester is nearly 40 MΩ. The measurements with standard oscilloscopes (input 

resistance 1-10 MΩ) thus leads to a lower estimation of the voltage than actual measurements. 

Therefore, a buffer amplifier was implemented using an operational amplifier TL081 to isolate the 

measurement circuit from loading the device under test as shown in Figure 3.27. 

.  

Figure 3.27: Circuit diagram of the measurement circuit with buffer amplifier with TL081 opamp 

The open circuit voltage of the main and the reference electrode (with buffer circuit) was measured 

simultaneously using an oscilloscope by vibrating the harvester with a shaker setup at various 

accelerations. It can be observed that the peak open circuit voltage of the reference (Vref) electrode 

is less than the open circuit voltage of main (Vmain). The ratio of the open circuit voltage of the 

reference and the main electrodes for various accelerations from 0.1 g to 1 g is given in Figure 

3.28. The ratio was found to be close to 0.8 for the given range of accelerations. 
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Figure 3.28: Ratio of the open circuit voltage from reference and main electrode for various 
accelerations from 0.1 g to 1g. 

This proves that with the addition of the reference electrode, we achieve real-time tracking of the 

Voc without unloading the main electrode without the need for disconnecting the circuit 

momentarily. The reference voltage can therefore be used to track VMPP (= 0.5 Voc) in real time 

without loading the main harvester, without the need for complicated sampling circuits and 

algorithms. 

3.13.10 Conclusion 

In summary, we have proposed a three terminal PEH that consists of a novel MPPT architecture 

whose primary purpose is to render MPPT worthwhile in sub microwatt power systems. With the 

proposed architecture Power Management IC (PMIC), the power harvesting circuit can be 

simplified to a minimal ultra-low power comparator without any oscillators, sensing or pre-

regulation circuits. It leads to a considerable simplification of the PMIC circuitry at the expense of 

a small complication in the harvester structure. The feasibility of this new PEH was proven 

theoretically and verified by using finite element simulations and experimental results of the open 

circuit voltages. The resonant frequency fr and the open circuit voltage Voc are nearly independent 

of the width w of the cantilever beam provided the geometry parameters such as length L and 

thickness t remain the same. A PEH with a minimum process width can therefore be implemented 

as a Voc sensor cell, to be used as a reference voltage for the MPPT circuitry of the PMIC, which 

in relation to the main harvester can contribute to a negligible power loss of less than 1%. Since 
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the ultralow power circuits is efficient only when implemented in ASIC rather than implemented 

with discrete components, the fabrication of a three terminal PEH based on the proposed design 

with the new MPPT architecture is being carried out, and in future, the performance will be 

compared with the existing MPPT architectures. 

3.14 Summary 
In summary, A unimorph single clamped cantilever based piezoelectric energy harvester based on 

a lead-free Lithium Niobate crystal has been designed and conceived and its performance was 

evaluated. By taking advantage of the addition of proof mass, the device operational frequency 

was tuned to be in the range of available ambient vibrations (~200 Hz). The harvester has a quality 

factor Q=50, and a high coupling K2Qm=3, giving an output voltage of 6V and an overall power 

density of the PEH was estimated to be 36 µW/cm2/g2 at an optimal load of ~550 kΩ, at resonance. 

The device has a full width half maximum bandwidth of 10.8% at resonance. This is a clear 

advantage as it can be used to extract energy from a broader spectrum of the input frequencies.  

The electromechanical Mason’s equivalent circuit model was developed for the harvester from the 

impedance analysis and was simulated in SPICE. The validity of the model was confirmed with 

theoretical and experimental analysis. In addition, the optimal load for the harvester to deliver the 

maximum power was derived experimentally to be ~550kΩ and was compared with the theoretical 

and SPICE models. Furthermore, a comprehensive comparison between the proposed MEMS 

harvester and the recently published vibration energy harvesters from the literature shows that our 

conceived harvester is well comparable with the state of the art, to offer a promising vibration 

energy harvesting system for being deployed in the real environment from a lead-free aspect. 

Further, a three terminal PEH has been proposed that consists of a novel MPPT architecture whose 

primary purpose is to render MPPT worthwhile. With the MPPT architecture, the Power 

Management IC (PMIC) and the power harvesting circuit can be simplified to a minimal ultra-low 

power comparator without any oscillators, sensing or pre-regulation circuits The resonant 

frequency fr and the open circuit voltage Voc are found to be nearly independent of the width w of 

the cantilever beam provided the geometry parameters such as length L and thickness t remain the 

same. It is shown that a PEH with a minimum process width can therefore be implemented as a 

Voc sensor cell, to be used as a reference voltage for the MPPT circuitry of the PMIC, which in 

relation to the main harvester can contribute to a negligible power loss of less than 1%. The 
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feasibility of this new PEH has been proven theoretically and verified by using finite element 

simulations and experimental results of the open circuit voltages at various accelerations.  

In the next chapter, the Lithium Niobate based lead-free vibration energy harvester will be 

demonstrated to be used in a real-time application, in terms of an Energy Autonomous Wireless 

Vibration Sensor (EAWVS). 
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4 Energy Autonomous Wireless Vibration Sensor based on Piezoelectric 

Microgenerator 

 

 

 

In this chapter, the harvester is demonstrated to power a battery free IOT-WSN based on Bluetooth 

Low Energy-(BLE) connectivity with ambient vibration is demonstrated. Also, the operating 

principle and system implementation of the Energy Autonomous Wireless Sensor (EAWVS) based 

on STM32 [12] microcontroller is detailed. The ability of the harvester in sensing input 

acceleration is demonstrated. Finally, the application scenario of the EAWVS is laid out. 

 

4.1 Introduction 

Autonomous Wireless sensors (WSNs) are the key part of an IoT system that collects and 

exchanges data remotely with the master node for ensuring smarter and faster wireless data 

transfer[15], [23]. IoT infrastructure makes wide use of WSNs that can perform simultaneously as 

sensors, communication and information process. However, currently, WSNs are mostly based on 

bulky, expensive batteries for powering that have limited charge/discharge cycles. This hinders 

the IoT devices to be used for their continuous and uninterrupted operation [224]. Further, in the 

case of heavy machinery, such nodes are often placed in locations that are difficult to reach, which 

require human interventions with specialized tools thus contributing to increasing costs. For 

powering such WSNs without the use of batteries, energy harvesting from ambient sources such 

as solar, vibration, thermal, and radiofrequency waves has been investigated in recent years [16], 

[225], [226]. Therefore, where possible energy-autonomous and battery-free WSN should be 

considered a suitable choice for a sustainable and autonomous IoT. In industries employing heavy 

machinery and automobiles, the failure of the components such as shaft may result in serious 

damage during operation [227]. Such faults can often be identified in real-time by monitoring the 

vibration pattern of the selected parts. 

These vibration monitoring systems based on a non-contact technique employing WSNs could 

prove to be of great advantage over conventional contact methods that require a direct connection 

between a sensor and the control system. The non-contact techniques employed so far are based 
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on magnetostrictive sensors [227], [228], optical sensors [229], [230]. However, most of such non-

contact sensors have limitations due to the requirement of an external battery source apart from 

the difficulties in operating in a harsh environment. 

The use of a battery could be eliminated by introducing an energy harvester that harnesses energy 

from the location where the WSN is mounted. The harvester selection usually depends on the 

energy density of the available ambient energy source such as mechanical vibration, solar, 

electromagnetic, RF, etc. [8], [52], [231]. A piezoelectric transducer is one of the most convenient 

ways to convert the ambient mechanical energy of such structures into electrical energy. PEH can 

be a simple cantilever beam with a piezoelectric material and a substrate that can be used as a self-

powered sensor that can monitor vibration and power the data transmission circuits simultaneously 

[232], [233]. In this chapter, we explore a battery-free system - Energy Autonomous Wireless 

Vibration Sensor (EAWVS) for monitoring the vibrations and faults which consists of a PEH, and 

a radio transmission system based on a Bluetooth Low Energy (BLE) scheme which is self-starting 

and fully autonomous. Since defective parts have a more pronounced acceleration profile than non-

defective parts, this work introduces a failure detection methodology based on measuring 

acceleration and its deviation from nominal values of non-defective parts. The EAWVS consists 

of only a PEH for power supply and a Bluetooth Low Energy (BLE) radio for connectivity. The 

sensor node can be connected wirelessly to a Base Station (BS) that performs data processing and 

continuous data transfer to the cloud. BLE is used as the communication standard because of its 

low power consumption and the compatibility and ease of BLE use in portable devices to 

communicate with the WSNs. The sensor node is designed to transmit beacons intermittently, and 

thus the radio is shut down after every transmission to minimize the overall energy consumption. 

The peculiarity of this system is that the PEH plays the dual role of energy transducer and 

vibrational sensor.  The fabrication and characterization of the PEH based on Lithium Niobate is 

discussed in chapter 4. The monitoring of the input vibration is realized by measuring the time 

between successive beacons, also known as advertising time (tadv), emitted by the EAWVS radio 

to the BS as shown in Figure 4.1. 
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Figure 4.1: Application Scenario with BS and several EAWVSs 

This method avoids the use of a specific sensor for vibration monitoring. The main advantage is to 

reduce power consumption and consequently also reduce the energy to be stored. Furthermore, it 

has the advantage of using fewer components and no need for a battery or supercapacitors with a 

consequent reduction in costs, dimensions, and weight.  The EAWVS has a limit of detection 

(LOD) as low as 0.6 g and can successfully monitor the acceleration within an error limit of 15%. 

The fault detection can be performed by monitoring the rate of increase of the input acceleration 

is sensed by the EAWVS as the vibration characteristic of the parts under fault would experience 

a sudden surge in the amplitude of vibration. The chapter is organized as follows. Firstly, system 

description is given in terms of circuit implementation and functionality. Then, the design aspects 

of the PEH are discussed whose fabrication and characterization is described in chapter 4. It is 

followed by the techniques and the method based on energy to time conversion used to measure 

vibrations. Then finally, sensor calibration is discussed followed by the experimental results and 

conclusion.  
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4.2 System description 

Figure 4.2 shows the block diagram of the system which includes the energy-autonomous wireless 

vibration sensor (EAWVS) and the receiving/base station (BS). 

 

Figure 4.2: schematic of the EAWVS 

The EAWVS consists of a piezoelectric energy harvester (PEH) that is used to convert the ambient 

vibration and kinetic energy into electrical energy. The harvested AC voltage is rectified using a 

bridge rectifier and is used to charge a capacitor, Cstor. The energy stored in the capacitor is used 

to power the Bluetooth Low Energy (BLE) radio system to transmit data from the EAWVS. The 

Bluetooth radio is implemented with the low-energy SoC BLUENRG-2 (provided by 

STMicroelectronics) as it consumes low power at low cost and provides easy connection and 

human interfacing via smartphone. The system implements a Programmable Voltage Detector 

(PVD) with the STM32L0 ultra-low-power microcontroller (STMicroelectronics). This circuit 

detects the voltage Vstor across the storage capacitor Cstor. 

The BS is powered by a stable power source, such as a battery located remotely from the 

application target. Its function is to process the data received wirelessly by one or more EAWVSs 

and process the subsequent implementation phases to control the machinery, including sending 

data to the cloud. 
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Figure 4.3: Charging and discharging voltage profile across the storage capacitor 

As Figure 4.3 reveals, as soon as the voltage Vstor reaches the highest value VH = 3.0 V, the system 

turns to the transmission phase where the microcontroller supplies the BLE through one of its 

General-Purpose Input/Output (GPIO) pins. Soon after the transmission phase, when the voltage 

drops to the lowest values VL = 2.0 V, the microcontroller shuts down the BLE radio, turns in sleep 

mode and the whole system returns to the energy harvesting phase. The sensor works on the 

principle that the time delay between two successive beacons depends on the input acceleration of 

the PEH. The values of VL and VH are chosen such that the voltage never exceeds or is lower than 

the rated maximum(3.6 V) and a minimum supply voltage (1.6 V) of the microcontroller 

respectively. Since the minimum energy requirement Eharvested of the EAWVS is ~100 µJ per 

beacon, the minimum value of the storage capacitor Cstor can be determined by: 

𝐶  ( ) =  
𝐸

𝑉 − 𝑉
= 40 𝜇𝐹 

4.1 

To allow some margin and extra energy capability to optionally activate other embedded sensors 

and thereby render the system performance less sensitive to the inevitable parametric variations of 

the various components involved, the chosen value for the Cstor capacitor is 200 µF. In addition to 

meeting the extra leakage losses in capacitor, larger storage capacity will also ensure that, in future, 

additions sensors can be added to the system. Additional sensors require more data bytes to be sent 

and therefore more power is consumed by the transmitter. 

ttadv trise tfall 
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4.3 Piezoelectric Energy Harvester Design 

 To sense the input vibrations, the input mechanical energy is converted to the electrical domain 

using a piezoelectric harvester. The PEH was designed to meet the typical vibration levels of most 

transportation and industrial environments (cars, trains, heavy machinery, and the like), that 

typically show frequency peaks between 100 Hz and 300 Hz, and with an acceleration of 0.1 g up 

to 2 g.  Besides, the harvester should also ensure that the minimum current delivered should 

overcome that consumed by the voltage monitoring section in the microcontroller, that consumes 

a continuous current in the order (~100 nA). The harvester is designed in such a way that it works 

in a lower frequency regime (200 Hz) that is available in the ambient environment and produces 

enough voltage (Voc) required to charge the storage capacitor after considering the rectification 

drop of 1.4 V in the diodes. Further, the PEH must produce a minimum power PPEH_min to supply 

the EAWVS during the energy harvesting phase under the minimum vibrational acceleration acc_min 

which could define the Limit of Detection (LoD) of the system in its function as a vibration sensor. 

To ensure that the capacitor Cstor effectively gets charged from VL to VH, the harvester generated 

power PPEH must be greater than the quiescent power Pq consumed by the voltage monitoring 

circuit (PPEH > Pq). During the harvesting phase, the only current consumption is due to the voltage 

detection unit of the STM32L0 microcontroller, which is programmed to operate in sleep mode 

and has a quiescent current consumption Iq ≈ 1 µA. The voltage Vstor varies between the values VH 

and VL providing the average voltage Vstor_avg given by: 

𝑉 _ =
𝑉 − 𝑉

2
= 2.5 𝑉 

4.2 

The quiescent power consumption Pq of the EAWSN during the harvesting phase is given by: 

𝑃 =  𝑉 _ . 𝐼 = 2.5 𝜇𝑊 4.3 

Therefore, the minimum power PPEH_min that the PEH must generate at the minimum acceleration 

acc_min is given by: 

𝑃 _ >
𝑃

ɳ
 

4.4 
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 ηrectifier is the power conversion efficiency of the full-bridge voltage rectifier at the PEH resonance 

frequency and under minimum acceleration acc_min, whose theoretical maximum value is equal to 

8/π2 given by: 

𝜂 =
𝑃

𝑃
= 0.81 

𝑉 _

2𝑉 +  𝑉 _
 

4.5 

The factor 0.81 is added because the maximum theoretical efficiency of a full bridge diode rectifier 

is 81%. Equation 4.5 suggests that to maximize ηrectifier, the forward conduction voltage of the 

voltage rectifier diode Vf must be as low as possible. This choice, however, contrasts with the other 

requirement that the diodes have a reverse current Ir as low as possible (i.e., Ir << Iq) and requires 

a compromise between the forward voltage and reverse current performance of the diode. These 

considerations led to the choice of an ultra-low leakage diode (FJH1100) with a maximum reverse 

current of 10-30 pA, and a forward voltage Vf of 0.6 V with a forward current of 10 µA. With this 

choice, from equation 4.5 arises the theoretical power conversion efficiency of the voltage rectifier 

of ≈ 81 %. Equation 4.4 shows that the specification for the minimum power that PEH must 

generate when stressed by vibrations with minimum acceleration acc_min is given by: 

𝑃 _   

𝑃

8 
𝜋  ~3 𝜇𝑊 

4.6 

Another electrical parameter to specify for the PEH design is the PEH Voc open-circuit voltage. 

The specification of the value of Voc is defined both to be greater than the minimum supply voltage 

of the voltage detector circuit (Vdd_min = 1.8 V) and to ensure the maximum power transfer between 

the PEH and the rest of the EAWVS system, at the minimum acceleration acc_min. The maximum 

power transfer of a PEH is at half the open circuit voltage as described in chapter 3. So effectively, 

maximum efficiency of the system is when the half open circuit voltage across the PEH equals 

sum of forward drop in diode (Vf) and the average voltage across the microcontroller ((𝑉 + 𝑉 )/2) 

given by: 

(𝑉 − 2𝑉 )

2
=  𝑉 _  

4.7 

 Equation  4.8 defines the condition of Voc to achieve maximum power transfer: 
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𝑉 = 2𝑉 + 𝑉 + 𝑉 = 6.2 V  4.8 

The maximum detectable acceleration acc_max by the EAWVS is related to the highest stress level 

that the PEH substrate material can withstand (Si 3-6 GPa)[234]. The maximum limit of the input 

acceleration was determined to be 2 g from the Finite Element Method (FEM) simulations as 

discussed in chapter 4. However, in this work, the device testing has been limited to 1.2 g, which 

is 60% of the theoretical maximum acceleration of 2 g to ensure some safety margin in not 

exceeding the material stress reliability limits. In chapter 3, the characterization of the PEH with 

regard to the output power PPEH and Voc measurements as the function of the input acceleration acc 

has been detailed. At resonance condition and at the minimum acceleration acc_min of 0.5 g, the 

PEH provides an open circuit voltage Voc of 6 V and can supply the minimum power PPEH_min of 

12 µW enough to compensate for the quiescent power consumption Pq and successfully charge the 

storage capacitor Cstor. The open circuit output voltage Voc and power PPEH for various acceleration 

levels in the log scale are shown in  Figure 4.4 and Figure 4.5 respectively, to indicate the power 

law as indicated by the slope. Output voltage Voc of the harvester increases linearly and power PPEH 

is shown to vary quadratically. 

 

Figure 4.4: Open circuit voltage Voc of the PEH vs input acceleration acc in g in log scale 
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Figure 4.5: Generated power PPEH in µW vs acceleration acc in g in log scale 

4.4 Energy Autonomous Wireless Vibration Sensor Working Principle 

The PEH generates an electrical field/voltage across its electrodes during the application of 

mechanical stress according to the direct piezoelectric effect: 

𝑆 = 𝑠  𝑇 + 𝑑 𝐷 4.9 

𝐸 = −𝑔 𝑇 +  𝜀 𝐷 4.10 

Where D is electric displacement, E the electric field, T mechanical stress and S mechanical strain 

and −𝑔   /ℇ  is the piezoelectric voltage coefficient. Under open circuit conditions, the 

dielectric displacement D is zero. Therefore from equation 5.9, the open-circuit voltage VPEH (V), 

or electric field E (V m−1), from a piezoelectric device in d31 mode that results from the applied 

mechanical stress and is defined as [235]: 

𝑉 = E x t =
𝐹. 𝑑

𝐴𝜀
𝑙  

4.11 

where, F = equivalent mass (m) x acceleration (a), lp the length of piezo with a resistive external 

impedance load Zload (Ω), the generated power PPEH is given as [236]: 

𝑃 =
𝑉

2𝑍
 

4.12 
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𝑃 =
𝑚𝑑 𝑙

2𝐴 𝜀 𝑍
𝑎  

  4.13 

 d33 is the piezoelectric coefficient of Lithium Niobate (27 pm/V). 

 m is the effective mass of the proof mass-cantilever system (2.3 g).  

 acc is the input acceleration 

 A is the area of the electrode (1 cm2) 

 ℇ is the dielectric permittivity of Lithium Niobate (50.5) 

 tp is the thickness of piezoelectric transducer (30 mm). 

During the harvesting phase, the load Zload is constant, hence PPEH varies proportionally with the 

power of two of the acceleration acc as given by: 

𝑃 = 𝐾 𝑎  4.14 

Where Kacc is a constant of proportionality given by: 

𝐾 =
1

2. 𝑍
.

𝑚. 𝑑 . 𝑙

𝐴. 𝜖
 

4.15 

The power harvested after each beacon in the Cstor capacitor is given by: 

𝑃 =  𝜂 𝑃  4.16 

where hp is the power efficiency conversion of the EAWVS system when converting the power 

PPEH into the power Pharvested harvested in the storage capacitor Cstor. By combining equations 4.14 

and 4.17, the power Pharvested can be related to the acceleration acc: 

𝑃 =  𝜂 . 𝐾 . 𝑎  4.17 

Equation 4.18 relates Pharvested, Eharvested and the time trise that it takes to charge the Cstor capacitor 

from the voltage value VL to the voltage value VH during the energy harvesting phase. 

𝑃 =  
𝐸

𝑡
 

4.18 

The communication between the EAWSN and the base station is made through Bluetooth wireless 

beacons. The time distance between two successive beacons is called the advertising time tadv. 
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The time tadv is remotely measured by the BS while receiving the beacons and is used to measure 

indirectly the acceleration acc induced on the PEH. The time trise is related to the advertising time 

tadv as: 

𝑡 = 𝑡 − 𝑡  4.19 

The fall time tfall is related to the parameters of the system, VH, VL, Cstorage and Ible as: 

𝑡 =
𝐶 .(𝑉 − 𝑉 )

𝐼
 

4.20 

The parameter Ible represents the average current consumption of the BLE radio during the 

transmission phase and has a constant value of ~9 mA with the BLE radio configured in non-

connectable advertising mode to transmit an out power of 8 dBm and a data length of 20 bytes. 

Therefore, tfall is also constant, and in this implementation is 45 ms. By combining equations, 4.1, 

4.16, 4.17, 4.18 and 4.19, the acceleration acc can be indirectly derived from the measurement of 

the time tadv as: 

𝑎 =
𝐶 . (𝑉 − 𝑉 )

𝐾 . η . (𝑡 − 𝑡 )
 

4.21 

The parameter ηp is specific to the EAWVS system and is experimentally derived from its post-

production characterization. Figure 4.6 shows the experimental characterization of the parameter 

ηp while varying the acceleration acc. The high initial variation of ηp at low acceleration levels 

between 0.5 g, and 0.6 g affects the linearity of the EAWVS in its sensor function. Therefore, even 

though the EAWVS is self-powered starting from an input acceleration of 0.5 g, the system 

efficiency is so low and variable that the use of the EAWSN as a sensor is greatly compromised. 

Therefore, the LoD of the EAWVS is at the higher level of 0.6 g where the ηp is higher and remains 

almost constant (max variation < 15%) in the range. Figure 4.6 reveals that ηp remains nearly 

constant within the acceleration range [0.6 g - 1.2 g]. 
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Figure 4.6: EAWVS Power conversion efficiency ηp vs acceleration acc. (Inset: ηp vs acc nearly 
constant starting from 0.6 g). 

Therefore equation 4.21 can be rewritten as: 

𝑎 =
𝑆

(𝑡 − 𝑡 )
 

4.22 

where Sv, is the sensitivity of the EAWVS given by: 

𝑆 =
𝐶 . (𝑉 − 𝑉 )

𝐾 . 𝜂
 

4.23 

Furthermore, the high imbalance between the current produced by the PEH during the harvesting 

phase (mA) and that consumed by the EAWVS during the transmission phase (mA) results in a 

big difference between the time tadv (seconds) and tfall (msec). Hence, it is possible to assume that 

in a real application scenario tadv > tfall implying that, with negligible error, it is possible the 

approximation tadv - tfall ~ tadv so that Equation 4.22 can be simplified as: 

𝑎 ≈
𝑆

𝑡
 

4.24 

Equation 4.24 can be implemented in the embedded firmware of the BS so that the acceleration 

acc_BS can be remotely and indirectly measured at the BS that can measure the time tadv from the 

received beacons. It is worth highlighting that, since the EAWVS exploits measurements in the 

time domain, the data reading interface is inherently digital. This feature is very convenient 
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because it gives less complicated electronics for data reading than analog architectures, and above 

all, lower energy consumption, which is a fundamental characteristic of energy-autonomous and 

battery-free systems [43]. Since the BS can measure the time tadv, the only unknown parameter to 

calculate the acceleration acc_BS via equation 4.24 is Sv, that will be derived experimentally through 

the characterization of the EAWVS in section 5.5. 

4.5 Experimental Results 

Figure 4.7 a show the System on Chip (SoC) with PEH and Figure 4.7 b shows the block diagram 

of the experimental setup. 

 

 

 

 

 

 

 

 

 

(a) 
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Figure 4.7: (a) Image of the system on Chip (SoC) with the PEH (b) Block diagram of the 
experimental setup with shaker 

The EAWVS characterization in terms of LoD and sensitivity in response to the vibrational 

acceleration has been carried out at room temperature in the air ambient. The EAWVS, positioned 

on the shaker, has been subjected to various vibration levels with the acceleration acc_in varying in 

the range [0.5 g - 1.2 g]. Several measurements have been performed as shown in Figure 4.8 by 

probing the output voltage Vblue and measuring the time tadv with an oscilloscope. Figure 4.8 reveals 

how the time tadv decreases with the increase of the acceleration acc in agreement with Equation 

4.24. 

(b) 
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Figure 4.8: Experimental results of Vstor and Vblue vs time at three different accelerations 0.6g, 

0.8g and 1g respectively. 

Figure 4.9 reports the calibration of the EAWVS from the measured data. The solid line reveals 

the linear fit of the experimental data. 
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Figure 4.9: Linear Fit of the experimental measurement data 

The EAWVS sensitivity Sv is the inverse of the fitting line slope reported in Figure 4.9. Hence, 

from the EAWVS characterization Sv = 5.27 g.s1/2, therefore, the acceleration at the BS can be 

indirectly measured by the knowledge of Sv and the measurement of the time tadv by: 

𝑎 _ ≈
5.27

𝑡
 

4.25 

The intrinsic error that is committed with the proposed measurement technique is indicated with 

Errora and calculated through equation 4.26, representing the acceleration measurement error, 

between the acceleration acc_BS, indirectly measured at the BS and the forced acceleration acc_in at 

the EAWVS. 

Errora = 100
(𝑎 _ − 𝑎 _ )

𝑎 _
 

4.26 

Figure 4.10 shows the variation of acc_in and acc_BS with respect to the advertising time tadv. 
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Figure 4.10: variation of acc_in and acc_BS vs tadv for three different tests 

Figure 4.11 shows the variation of the error Errora as the input acceleration ain varies in the range 

[0.6 g - 1.2 g]. 

 

Figure 4.11: Errora in measurement vs input acceleration acc for three different tests 

The test measurements unveil that it is possible to measure remotely and wirelessly at the BS the 

acceleration forced onto the EAWVS. The measurement results are repeatable with an error 

consistently below 11%. The BS can therefore receive beacons from one or more EAWSNs, placed 

on the vibrating parts of machines under test, and exercise predictive maintenance or fault 

detection by simply measuring the advertising time tadv of the received beacons as shown in Figure 

4.1. For long-term predictive diagnosis of machines, the EAWVS can be embedded in specific 

mechanical parts that require regular maintenance as bearings, gears, conveyors, turbines, shafts, 

valves, and the like. In case of a mechanical fault, there is a sudden increase in the rate of change 

in the acceleration. The rate can be monitored by the base station measuring the vibration 

accelerations at two successive time intervals.  
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Rate (Kt) = 
 ( ) ( )

( )
 4.27 

The base station upon sensing can sent interrupt or standby signals to the machine control and also 

alarm signals to the user if the measured rate Kt is above a critical threshold Kc as shown in Figure 

4.12. 

 

Figure 4.12 Application scenario of the predictive maintenance with EAWVS (a) acc vs time (b) 

application algorithm 

4.6 Conclusions 

 In summary, a novel self-powered and battery-free device for vibration sensing method based on 

vibration energy to time conversion was explored, that have potential application in automotive 

and heavy industries. The working principle of the sensor has been explained with theoretical and 

analytical equations. The EAWVS provides the added flexibility, that allows the measurement 

readout remotely and wirelessly by exploiting the BLE communication and transmitting beacons 

at a remote BS with the sensor reading based on the easy-to-implement time-domain readout by 

measuring the advertising time Tadv. The PEH performs the dual function of energy harvester and 

vibrational sensor and as shown by the experimental results, it can perform vibrational sensing in 

the acceleration range [0.5 g - 1.2 g] with LoD of 0.6 g. Further, experimental tests have shown 

that the system, based on the EAWVS and the BS, can perform repeatable and accurate sensing 

capabilities within an error limit of 11%. It has been shown how the simplicity of the EAWVS 

architecture translates into several advantages such as eco-friendliness, size, cost, and above all 

the feature to be used as a maintenance-free install-and-forget device in practically every 

(a) (b) 
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application where vibration energy is available. Finally, all experimental measurements were 

performed on a 2 cm x 2 cm PCB with a thickness of 0.45 cm, implemented, except for PEH, with 

standard components only to demonstrate the feasibility of a proof of concept whose operational 

performance could be further improved by upcoming advances that the research of both materials 

and electronic components will bring in the future. 
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Conclusion and Perspectives 
 

 

 

 

The work presented in this manuscript focuses on the exploitation of ambient vibration to harvest 

power at microwatt level using lead free piezoelectric energy harvesters in order to power 

standalone WSNs. First, a comprehensive survey on recent state of the art and principles of 

vibration-based energy harvesting devices was carried out. In addition, the need for a lead-free 

approach in future energy harvesting devices and the challenges faced are outlined. The 

piezoelectric-based energy harvesting technique, thanks to the compatibility of material deposition 

with the existing micromachining process and relatively higher output voltage, has received more 

attention compared to its counterparts for implementation in vibration energy harvesting 

applications. 

Further, the piezoelectric and electromechanical properties of various lead-free ferroelectric 

materials such as alkaline Niobates and Tantalates (Lithium Tantalate, KNN, KNNT, LN) have 

been studied. The microscale electromechanical properties such as piezoelectric coefficient(d33) 

and Figure of Merit of various morphologies such as fiber and thin films of these materials has 

been studied using Piezoresponse Force Microscopy (PFM). In addition, the effect of poling of 

these structures on localized piezoelectric properties has been investigated. It has been shown that 

the piezoelectric properties such as d33 of these polycrystalline films grown by sol-gel techniques, 

can be improved by poling. KNN films was found to have d33 of 23 pm/V before poling. By poling 

externally at elevated temperatures at 4 kV/ mm was found to increase the piezoelectric coefficient 

(d33) of KNN films from 23 pm/V to 100 pm/V. Further, the study of KNNT films shows that the 

B site substitution of KNN by Ta can lead to a significant increase in the d33 compared to pure 

KNN samples. The d33 of the unpoled KNNT cantilever was found to be 48 pm/V, which increased 

to 221 pm/V upon poling at 3 kV/mm by AFM tip. Further, ferroelectric nature of these materials 

is investigated by ferroelectric hysteresis and butterfly loops, verified by 180-degree polarization 

switching. The enhanced piezoelectric properties (d33) of these materials are comparable with lead-

based materials such as PZT thin films. Also, the ferroelectric properties and piezoresponse of 

KNN and KNNT electro-spun fibres were investigated. The KNNT fibers showed enhanced 
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piezoelectric coefficient d33 (~130 pm/V) compared to the undoped KNN fibers (28 pm/V). The 

good piezoelectric properties of the KNN/KNNT fibers suggest that they could be used for 

fabricating novel flexible PEH devices. These coefficients and FoMs values can be valuable 

information for the optimization of properties and also a tool for selection of lead-free materials 

for future devices and energy harvesting applications. The FoMs of various sol-gel processed 

alkaline Niobates and Tantalates on steel substrate namely KNN, KNNT and LT was compared 

with a commercially available Lithium Niobate single crystal. The LT single crystal showed 

superior FoM, compared to the sol-gel processed films. A higher FoM requires a lower permittivity 

and higher d33. This lower FoM in sol-gel processed films are essentially due to the higher 

dielectric permittivity. This indicates that the sol-gel processed films need further optimization 

before it can be used for real-time industrial applications. 

Therefore, to obtain a realistic harvester from an application point of view, a unimorph single 

clamped cantilever based piezoelectric energy harvester based on a lead-free Lithium Niobate 

crystal has been designed and conceived and its performance was evaluated. Finite element and 

SDOF analytical models are used to identify the appropriate proof mass weight and the maximum 

stress developed in the beam, to tune the harvester operating resonant frequency. Thus, by taking 

advantage of the addition of proof mass, the device operational frequency was tuned to be in the 

range of available ambient vibrations (~200 Hz) in car engines or industrial motors. We have 

realized a harvester possesses a quality factor Q=50, and a high coupling K2Qm=3, which indicates 

the higher electromechanical conversion efficiency of the harvester. The harvester is found to be 

capable to oscillate in the multiple modes with a strong nonlinear behavior. These two factors, ie, 

the coupling and non-linearity, aid the broadband energy harvesting capabilities of the harvester. 

The PEH gives an output voltage of 6V and an overall power density of the PEH was estimated to 

be 36 µW/cm2/g2 at an optimal load of ~550 kΩ, at resonance. The device has a full width half 

maximum bandwidth of 10.8% at resonance. This is a clear advantage as it can be used to extract 

energy from a broader spectrum of input frequency.  

 An electric modelling circuit such as Mason equivalent circuit is very practical to represent 

physically the harvester and its impedance. Hence, the electromechanical Mason’s equivalent 

circuit model was developed for the harvester from the impedance analysis and was simulated in 

SPICE. The validity of the model was confirmed with theoretical and experimental analysis. In 

addition, the optimal load for the harvester to deliver the maximum power was derived 
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experimentally to be ~550 kΩ and was compared with the theoretical and SPICE models. 

Furthermore, a comprehensive comparison between the proposed MEMS harvester and the 

recently published vibration energy harvesters from the literature shows that our conceived 

harvester is well comparable with the state of the art, to offer a promising vibration energy 

harvesting system for being deployed in the real environment from a lead-free aspect. A standard 

rectification circuit with a full bridge rectifier was developed based on the K2Qm value to convert 

the AC output of the harvester to DC power that is eventually stored in a 220 µF capacitor. 

To ensure a maximum conversion efficiency in sub microwatt power systems, a three terminal 

PEH has been proposed that consists of a novel MPPT architecture whose primary purpose is to 

render MPPT worthwhile. With the MPPT architecture, the Power Management IC (PMIC) and 

the power harvesting circuit can be simplified to a minimal ultra-low power comparator without 

any oscillators, sensing or pre-regulation circuits. It leads to a considerable simplification of the 

PMIC circuitry at the expense of a small complication in the harvester structure. The resonant 

frequency fr and the open circuit voltage Voc are found to be nearly independent of the width w of 

the cantilever beam provided the geometry parameters such as length L and thickness t remain the 

same. A PEH with a minimum process width can therefore be implemented as a Voc sensor cell, to 

be used as a reference voltage for the MPPT circuitry of the PMIC, which in relation to the main 

harvester can contribute to a negligible power loss of less than 1%. The feasibility of this new PEH 

has been proven theoretically and verified by using finite element simulations and experimental 

results of the open circuit voltages at various accelerations.  

 

Finally, the harvester is used to power a novel self-powered and battery-free wireless sensor for 

vibration monitoring. It can perform vibrational sensing in the acceleration range [0.6 g - 1.2 g]. 

The working principle of the novel sensing method based on vibration energy to time conversion 

was explained with theoretical and analytical equations. The conceived Energy Autonomous 

Wireless Vibration Sensor is shown to provide flexibility of measurement of vibration via remote 

wireless readout, by exploiting the BLE communication. The sensor reading based on the easy-to-

implement time-domain readout by measuring the advertising time Tadv, has an LoD of 0.6 g. 

Moreover, the experimental tests indicate the repeatability of measurements and accurate sensing 

capabilities within an error limit of 11%. The EAWVS is therefore ideal for condition monitoring 
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and predictive maintenance industrial applications due to its the eco-friendly, compact, and 

maintenance-free install-and-forget capabilities.  

 

The present work offers several perspectives. First of all, the possibilities of improving the 

piezoelectric energy harvester performance by better design and possible miniaturization of the 

harvester needs to be explored. This could be achieved by exploring new fabrication processes 

steps compatible with the MEMS/microelectronics industry. The main difficulty with Lithium 

Niobate crystals are the limitations with the thinning down of the LN wafer below 27 µm. This 

makes it difficult to achieve LN thin films and thereby optimize the stress distribution beyond a 

certain level. New process like dry and wet etching may be investigated in the future to obtain and 

pattern LN films on silicon. The enhancement in harvester output can thereby improve the LoD of 

the EAWS. In addition, the performance of other harvesters based on sol-gel processed lead-free 

materials such as KNN and Lithium Tantalate need to be explored from an application point of 

view of a sensor. The drawback of the current sol-gel processed devices are the low output voltage 

and power due to the lower FoM. Although ways such as Ta doping improved the FoM of sol-gel 

processed thin films to several fold, it is still not comparable with single crystals like Lithium 

Niobate. The low FoM is essentially due to the higher dielectric permittivity of these sol-gel 

processed materials, and ways to optimize them needed to be explored to make it practically 

applicable to industrial scenario. Another key prospect is to explore the possible ways of physical 

implementation of the three terminal harvesters based on novel MPPT architecture, whose proof 

of concept has been detailed in this thesis. It is unworthy to implement the interface circuits with 

discrete electronic components in the case of microelectronic circuits where the operating current 

is just in the order of several microamperes. In this regime, the switching as well as connection 

and leakage losses becomes predominant. Therefore, the 3-terminal harvester with the novel 

MPPT architecture could be implemented with ASIC in consultations with IC design engineers at 

ST Microelectronics in future to make it worthwhile. Finally, the application of EAWVS from a 

condition monitoring point of view, and ultimately conceptualization of the idea into a viable 

product can be explored. The three terminal MPPT concept can be implemented with the EAWS 

to improve its Limit of Detection (LoD). Finally, the EAWVS needed to be tested in the real 

environment under various conditions such as varying frequency and amplitude. This would 

essentially lead to the optimization of the performance in real environment. 
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Résumé  

Cette thèse présente de travaux de recherché relatifs au matériau, à la conception, la réalisation, la 

caractérisation et l'application du dispositif. Elle est divisée en six sections avec quatre chapitres. 

Le schéma de chacun est le suivant : 

 Introduction générale : Définit les perspectives générales de cette thèse et discute des 

principaux objectifs. 

 Chapitre 1 : Donne une revue de la littérature, identifiant les dispositifs de récupération 

d'énergie de pointe actuels à l'échelle microscopique en mettant l'accent sur la récupération 

d'énergie vibratoire et les défis a relever. Différentes applications et sources d'énergie pour 

la sont discutées avant d'entrer plus en détails dans la récupération d'énergie 

piézoélectrique. Des stratégies et des perspectives vers un récupérateur d'énergie 

piézoélectrique sans plomb sont présentées. 

 Chapitre 2 : Ce chapitre porte sur la caractérisation à l'échelle microscopique de nouveaux 

matériaux piézoélectriques sans plomb déposés par un procédé sol-gel. Le tantalate de 

lithium (LT), le niobate de sodium et de potassium (KNN), les couches minces et les fibres 

de niobate de sodium et de potassium dopés au tantale (KNNT) sont étudiés et leurs 

propriétés électromécaniques et leurs valeurs de récupération d'énergie sont comparées au 

monocristal de niobate de lithium (LN). Les techniques qui ont été utilisées pour 

caractériser les propriétés piézoélectriques et leur les morphologies telles que la 

Microscopie à Force Atomique (AFM) sont détaillées. En outre, une brève discussion sur 

le traitement et le dépôt de ces matériaux piézoélectriques sont discutés. 

 Chapitre 3 : Discute de la fabrication et de la caractérisation d'un microgénérateur sans 

plomb basé sur une plaquette monocristalline de niobate de lithium sans plomb. Dans ce 

chapitre, nous développons un modèle de circuit équivalent électromécanique du 

récupérateur d'énergie piézoélectrique et, en outre, le conditionnement de tension et 

l'interfaçage du dispositif pour une sortie CC contrôlée et stable sont discutés. Une 

architecture efficace pour maximiser la puissance transférée à la charge avec un Maximum 
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Power Point Tracking (MPPT) est également étudiée, avec un accent particulier sur les 

circuits à faible puissance. 

 Chapitre 4 : La possibilité d’ alimenter un WSN IoT sans batterie basé sur la connectivité 

Bluetooth Low Energy (BLE) avec vibration ambiante est démontrée. En outre, le principe 

de fonctionnement et la mise en œuvre du système du capteur sans fil autonome en énergie 

(EAWVS) basé sur le microcontrôleur commercial STM32 sont détaillés. La capacité de 

la moissonneuse à détecter l'accélération d'entrée est démontrée. Enfin, le scénario 

d'application de l'EAWVS est présenté. 

 Bilan et perspectives : Enfin, les conclusions générales de la thèse sont exposées et les 

perspectives sont brièvement discutées. 

Introduction générale 

L'objectif général de ce travail de doctorat dans le cadre du projet ITN-ENHANCE est l'étude de 

la puissance électrique récoltée à partir de vibrations ambiantes à des fréquences relativement 

basses (< 500 Hz) en utilisant des matériaux sans plomb pour des capteurs ou des actionneurs de 

faible puissance utilisés dans l'automobile. Le marché mondial de l'IoT est évalué à près de 250 

milliards d'euros en 2019, et avec un intérêt croissant pour des domaines tels que les structures 

intelligentes, l'agriculture de précision, les véhicules autonomes et l'intelligence artificielle (IA). 

Pour obtenir un statut entièrement autonome pour les WSN, il est très important qu'ils soient 

alimentés indépendamment et, par conséquent, il est nécessaire de remplacer l'énergie puisée dans 

les batteries. Exploiter et stocker l'énergie ambiante disponible dans l'environnement pour 

alimenter ces WSN aiderait à remplacer les batteries nécessaires aux WSN et a les rendre 

autonomes. Dans cette situation, l'utilisation de vibrations mécaniques ambiantes omniprésentes 

pour générer de l'électricité pour alimenter les WSN est un choix prometteur par rapport au système 

d'alimentation conventionnel à base de batterie qui nécessite un remplacement intermittent. De 

plus, l'approche sans batterie aide à réduire les problèmes environnementaux causés par les 

batteries. Parmi diverses techniques pour convertir les vibrations en électricité: les techniques 

piézoélectriques, électromagnétiques et électrostatiques, la récupération d'énergie piézoélectrique. 

Cette dernières est la plus pratique pour la récupération de micro-énergie en raison de la densité 
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d'énergie élevée (300µW/cm2/g2) et de la compatibilité du dépôt de matériau avec le processus 

MEMS. Cependant, les collecteurs d'énergie piézoélectriques (PEH) de pointe tels que le PZT sont 

principalement basés sur des matériaux à base de plomb, un élément toxique qui n'est pas conforme 

à REACH (enregistrement, évaluation, autorisation et restriction des produits chimiques) et RoHS 

(réglementation sur la limitation des substances dangereuses). Pour cette raison, il existe un besoin 

croissant dans l'industrie électronique d'explorer de nouveaux matériaux et procédés respectueux 

de l'environnement pour les PEH "verts" de nouvelle génération basés sur des matériaux sans 

plomb. Dans cette thèse, 

Projet ITN-ENHANCE 

Le projet EU-ENHANCE se concentre sur le développement de sources d'alimentation pour des 

capteurs sans fil autonomes et auto-alimentés qui peuvent être pratiques dans des endroits difficiles 

d'accès ou dans des conditions de travail difficiles. L'un des meilleurs moyens possibles pour la 

mise en œuvre d'un tel concept de capteur de type installer et oublier consiste à exploiter la 

puissance de l'environnement ambiant, comme les vibrations, les énergies thermiques ou solaires. 

Pour obtenir une puissance de sortie élevée avec des collecteurs piézoélectriques, une valeur de 

couplage électromécanique K2 élevée est requise. 

En plus d'assurer une haute (Figure of Merit) FoM des matériaux, il est également nécessaire 

d'avoir une conception appropriée des pièces mécaniques et électriques pour avoir une meilleure 

performance du système de récupération d'énergie. Actuellement, la plupart de ces PEH avec un 

K2 plus élevé utilisent du PbZr1-xTixO3 (PZT). Cependant, à l'avenir, le PZT devra être remplacé 

par des matériaux sans plomb, même pour les couches minces en raison des préoccupations 

environnementales croissantes. 

Le projet ENHANCE se concentre donc sur le développement de récupérateurs d'énergie pour les 

capteurs automobiles basés sur des matériaux sans plomb ; cependant, les résultats du projet 

pourraient également être importants pour d'autres industries telles que l'aérospatiale et les 

industries lourdes. Le matériau ferroélectrique sans plomb, tel que le LiNbO3 (LN) présente une 

FoM similaire à celle du PZT et est compatible avec les applications à haute température (jusqu'à 

500 °C). L'une des densités de puissance notables les plus élevées (300 µW/cm2/g2) obtenues parmi 

les micro-PEH à large bande passante (~10 Hz) a été obtenue par EH à base de films de niobate 
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de sodium et de potassium (KNN) sans plomb. Cependant, ces matériaux sont relativement 

nouveaux par rapport au PZT standard industriel et l'application de ces matériaux dans les PEH est 

encore mal étudiée. Dans cette these, nous avons pour objectif de développer un micro PEH sans 

plomb avec une valeur de couplage électromécanique K2 élevée et une récupération large bande.                                             

Chapitre 1 : Revue de la littérature 

Ce chapitre traite des dispositifs de récupération d'énergie de pointe actuels à l'échelle 

microscopique, tels que la récupération d'énergie piézoélectrique, électrostatique et 

électromagnétique, en mettant l'accent sur la récupération d'énergie vibratoire. Des stratégies et 

des perspectives vers un récupérateur d'énergie piézoélectrique sans plomb sont présentées. 

Le WSN autonome se compose d'un capteur, d'un microcontrôleur, d'une section de transmission 

et enfin du transducteur. La principale consommation électrique du WSN provient du 

microcontrôleur et de la section émettrice. La quantité totale d'énergie requise pour le traitement 

et la transmission sans fil des WSN est généralement de l'ordre de 40 à 500 µJ et peut varier en 

fonction du protocole RF utilisé pour la transmission. La consommation électrique totale de tous 

les composants réunis (capteurs, émetteurs et microcontrôleurs) dans un WSN pendant un cycle 

de service peut être de l'ordre de 100 µW à 1 mW selon le rapport cyclique de fonctionnement. 

Bien que les récupérateurs d'énergie ambiante à l'échelle microscopique puissent ne pas être en 

mesure de fournir l'alimentation pour un fonctionnement continu, il suffit d'alimenter ces nœuds 

WSN de manière intermittente. Par exemple, le système passe en mode veille lorsque le l’énergie 

est stockée dans un condensateur et peut être utilisée pour se décharger dès que suffisamment 

d'énergie est stockée pour le mode opérationnel. Pour un capteur IoT en état de veille, sa puissance 

consommée peut être extrêmement faible (quelques microwatts). Par conséquent, le WSN est 

conçu intelligemment avec une faible consommation d'énergie lorsqu'il est éveillé et une 

consommation d'énergie négligeable en mode veille. 

L'énergie ambiante disponible dans l'environnement peut être largement classée en sources 

mécaniques (vibrations, contraintes), sources rayonnantes (solaire, infrarouge et RF) et sources 

thermiques (gradients ou fluctuations de température). Dans le cas de l’énergie solaire, bien que la 

densité de puissance de l'énergie solaire soit élevée, la récupération n'est pas possible dans certains 
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domaines d'application pratiques des capteurs tels que l'intérieur des machines, où les 

rayonnements solaires ne peuvent pas atteindre. De même, il est également difficile de récupérer 

de l'énergie thermique là où il y a une absence de gradient de température. De même, la 

récupération d'énergie RF présente également certaines limitations dans la mise en œuvre en raison 

de la forte absorption de l'énergie RF par les métaux, limitant ainsi la densité de puissance 

disponible. Par conséquent, la récupération d'énergie ambiante est strictement spécifique à 

l'application, en fonction de la disponibilité de la source d'alimentation à l'emplacement de la cible 

d'installation. Par conséquent, pour alimenter de tels réseaux de capteurs, qui doivent être installés 

notamment dans des applications intérieures, des structures automobiles et mécaniques, l'énergie 

mécanique ambiante peut être un choix judicieux. 

La récupération d'énergie vibratoire est la technique permettant de convertir les vibrations en 

énergie électrique utilisable par une conversion en deux étapes. Dans un premier temps, la 

vibration est transformée en un mouvement relatif entre deux éléments, à l'aide d'un système 

masse-ressort équivalent. Le mouvement relatif est ensuite converti en énergie électrique par un 

mécanisme de conversion mécanique-électrique (principalement piézoélectrique, 

électromagnétique ou électrostatique). L'énergie mécanique ambiante peut être transformée en 

énergie électrique par des mécanismes principaux, à savoir des récupérateurs d'énergie 

piézoélectriques, électrostatiques, électromagnétiques et triboélectriques. Les micro-récupérateurs 

d'énergie électromagnétique (EMEH) ont tendance à produire des tensions alternatives très faibles 

de l'ordre du millivolt. De plus, la tension de sortie diminue au fur et à mesure que la taille est 

réduite. Tout d’abord, nous avons compare la puissance de sortie de toutes les technologies de 

récupération d'énergie vibratoire. Nous mel tons en avant que les récupérateurs d'énergie 

électrostatique (EEH) ont une limitation de mise en œuvre lorsque l'appareil vibre avec une 

magnitude de plusieurs centaines de microns tout en maintenant un  espacement en électrodes  

minimum de 0,5 mm pour produire des performances similaires. Pour les générateurs 

piézoélectriques et électrostatiques, le courant diminuera avec la surface en raison de la réduction 

de la capacité du dispositif. Les générateurs piézoélectriques ont l'avantage de produire des 

tensions élevées. Parmi toutes ces récupérations d'énergie vibratoire à l'échelle microscopique, les 

PEH ont donc un avantage supérieur en raison d'une tension de sortie parti relèvement élevée, 

d'une densité de puissance de sortie relativement élevée et d'une conception simple par rapport à 

leurs homologues tels que les EMEH et les EEH. 
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Pendant plusieurs décennies, les céramiques piézoélectriques à base de plomb, telles que le PZT, 

ont été considérées comme les matériaux piézoélectriques les plus utilisés en raison de leurs fortes 

constantes piézoélectriques, de leur température de Curie élevée Tc et de leurs étapes de traitement 

relativement matures. L'existence d'une limite de phase morphotrope (MPB) entre deux phases 

ferroélectriques contribue à leur polarisation efficace, ce qui améliore les propriétés 

électromécaniques. Néanmoins, le plomb et ses dérivés, comme l'oxyde de plomb (PbO), ont été 

signalés comme présentant une toxicité et sont donc considérés comme des matières dangereuses. 

Récemment, l'Union européenne a également mis en œuvre la législation sur la restriction des 

substances dangereuses, qui a établi une norme stricte limitant l'utilisation de matériaux 

piézoélectriques à base de plomb dans les futurs appareils électroniques.  En conséquence, 

plusieurs approches sont étudiées vers les matériaux céramiques sans plomb ces dernières années. 

Par exemple, telles que les monocristaux piézoélectriques et les céramiques ferroélectriques à 

structure pérovskite et les ferroélectriques à structure en couche de bismuth, ont fait l'objet de 

recherches approfondies. Également, plusieurs ferroélectriques à structure pérovskite BaTiO3 

[BT], (Bi1/2Na1/2)TiO3 [BNT], (Bi1/2K1/2)TiO3 [BKT], KNbO3 [KN], (K,Na)NbO3 [KNN]) ont fait 

l'objet de nombreuses recherches. 

Sur la base de la relation entre la contrainte appliquée et la direction de polarisation du matériau 

piézoélectrique, les PEH peuvent être classés en modes de fonctionnement d31, d33 et d15. Dans les 

modes d31 et d33, le matériau piézoélectrique est soumis à une contrainte de flexion alors que dans 

le mode d15 c'est la contrainte de cisaillement qui entre en jeu. Les PEH possèdent des électrodes 

à plaques parallèles en mode d31 avec la direction de polarisation perpendiculaire à la direction de 

la contrainte appliquée. Un PEH en mode d33 est constitué d'électrodes interdigitées car la direction 

de polarisation est parallèle à la direction de la contrainte appliquée. Le mode d31 est plus 

couramment mis en œuvre que le mode d33 en raison de sa simplicité de fabrication. Cependant, 

d33 est normalement supérieur au coefficient d31 dans les matériaux piézoélectriques. Ainsi, le 

mode d33 génère une tension de sortie plus élevée. Précisions qu’Ir PEH génère une tension 

alternative à la sortie. Par conséquent, un circuit de gestion de l'alimentation (PMC) est nécessaire 

pour rectifier, stocker et réguler la sortie CA avant qu'elle ne puisse être utilisée pour alimenter les 

WSN. Étant donné que les microgénérateurs produisent de l'énergie de l'ordre des microwatts, ce 

qui est juste suffisant pour alimenter les nœuds IoT, ces dispositifs doivent être efficaces pour les 

applications à faible consommation. Les PMC avec les solutions de circuits intégrés (IC) sur puce 
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obtiennent de meilleures performances que les implémentations avec des composants discrets prêts 

à l'emploi. PMC agit comme une interface entre le récupérateur d'énergie piézoélectrique (PEH) 

et la charge connectée. 

Chapitre 1 : Caractérisation électromécanique des matériaux piézoélectriques 

Dans ce chapitre, l'extraction de propriétés électromécaniques telles que d33 et la figure de mérite 

(FoM) de récupération d'énergie de matériaux piézoélectriques sans plomb à l'échelle 

microscopique, pour développer des dispositifs de récupération d'énergie vibratoire sont discutées. 

Les résultats sont comparés au monocristal de niobate de lithium sans plomb disponible dans le 

commerce, pour la fabrication de récupérateurs d'énergie. Les techniques qui ont été utilisées pour 

caractériser les propriétés piézoélectriques, les morphologies telles que la Microscopie à Force 

Atomique (AFM) sont détaillées. 

La microscopie à force de réponse piézoélectrique (PFM) est devenue un outil puissant pour 

étudier les propriétés électromécaniques, le mécanisme de commutation des domaines 

ferroélectriques et la réponse piézoélectrique dans les matériaux de faible dimension ces dernières 

années. La technique PFM est basée sur la microcopie à sonde à balayage (SPM) en mode contact, 

où le SPM est équipé d'un générateur de fonctions, d'un amplificateur de verrouillage et d'un porte-

à-faux conducteur. Dans la technique PFM, une pointe AFM conductrice agit comme une électrode 

supérieure, tandis que l'autre côté de l'échantillon est connecté électriquement au mandrin 

conducteur qui est mis à la terre et agit comme l'électrode inférieure. 

Le PFM peut donc mesurer à la fois les composants hors plan et dans le plan de la réponse 

piézoélectrique, souvent également appelés PFM vertical (VPFM) et PFM latéral (LPFM). VPFM 

indique les mouvements verticaux de la position du laser sur le photodétecteur sensible à la 

position (PSD), associés au mouvement hors plan de l'échantillon. La caractérisation à l'échelle 

microscopique de nouveaux matériaux piézoélectriques sans plomb déposés par un procédé sol-

gel est réalisée. Le tantalate de lithium (LT), le niobate de sodium et de potassium (KNN), les 

couches minces et les fibres de niobate de sodium et de potassium dopés au tantale (KNNT) sont 

études et leurs propriétés électromécaniques et leurs potentiels a récupération d'énergie sont 

comparées au monocristal de niobate de lithium (LN). 
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Les principales propriétés piézoélectriques telles que d33 et la figure de mérite (FoM) de 

récupération d'énergie sont extraites. Les propriétés électromécaniques et la commutation de 

polarisation des matériaux ferroélectriques sans plomb, à savoir le tantalate de lithium LT (films 

minces), le niobate de sodium et de potassium (KNN) et le KNN dopé au Ta (films et fibres) ont 

été étudiés à l'aide de PFM. Le tantalate de lithium (LiTaO3)-(LT) est une pérovskite à température 

de Curie élevée (650 °C) qui peut être utilisée à température élevée pour la récupération d'énergie 

électromécanique. De même, Le niobate de potassium et de sodium (KNN) sont des céramiques 

piézoélectrique biocompatibles respectueuses de l'environnement avec un coefficient 

piézoélectriques (d33) comparables au titanate de zirconate de plomb (PZT) dans le transducteur. 

Bien que les films KNN n'aient montré aucune amélioration de d33 par polarisation sous pointe 

AFM à 3 kV/mm (20 V Vtip), la polarisation à des températures élevées à 4 kV/mm s'est avérée 

augmenter le coefficient piézoélectrique (d33) à partir de 23 pm /V à 22h/V. Bien que les valeurs 

de d33 des échantillons non polarisés soient inférieures aux valeurs de pointe qui ont été rapportées 

jusqu'à présent, l'augmentation de d33 lors de la polarisation est un signe prometteur de l'utilisation 

de ces matériaux dans les applications de récupération d'énergie. De plus, l'étude des films de 

KNNT montre que la substitution du site B par Ta peut conduire à une augmentation significative 

du d33 par rapport aux échantillons de KNN purs. Le d33 du porte-à-faux KNNT non polarisé s'est 

avéré être de 48 pm/V, qui a augmenté à 221 pm/V lors de la polarisation à 3 kV/mm. Ces valeurs 

sont proches des valeurs d33 des films KNNT rapportées jusqu'à présent et peuvent donc être 

exploitées pour être utilisées dans des applications de récupération d'énergie à l'avenir. Cette étude 

de la réponse piézoélectrique de ces films pourrait être utile pour la compréhension et 

l'optimisation des propriétés piézoélectriques des PTF pour diverses applications et ains permettre 

d`évaluer les performances des dispositifs PTF. De plus, les propriétés ferroélectriques et la 

commutation de polarisation (hystérésis et courbes papillon) des fibres KNN et KNNT ont été 

étudiées avant et après la polarisation par AFM. Les fibres KNNT ont montré un coefficient 

piézoélectrique d33 (~130 pm/V) par rapport aux fibres KNN non dopées (28 pm/V). Les bonnes 

propriétés piézoélectriques des fibres KNN/KNNT suggèrent qu'elles pourraient être utilisées pour 

fabriquer de nouveaux dispositifs PEH flexibles. Il a été observé que le FoM des porte-à-faux au 

tantalate de lithium augmente avec l'épaisseur, ce qui est dû à l'augmentation de la permittivité 

diélectrique. Parmi tous les films traités sol-gel, le film KNNT présente une FoM plus élevée en 

raison de ses valeurs de permittivité diélectrique plus élevées. Enfin, le FoM des films sans plomb 
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traités sol-gel a été déterminé pour une éventuelle évaluation en tant que candidat pour des 

applications de récupération d'énergie. Les FoM de ces films traités sol-gel sur acier sont comparés 

au monocristal de niobate de lithium sans plomb disponible dans le commerce. En comparaison, 

le FoM du monocristal de niobate de lithium est supérieur aux films KNN et KNNT traités sol-

gel, grâce à leur faible permittivité diélectrique. Bien que les cristaux de niobate de lithium soient 

largement utilisés pour les applications optiques et RF, leur application dans la récupération 

d'énergie vibratoire est rarement étudiée. Pour cette raison, un récupérateur d'énergie 

piézoélectrique sans plomb basé sur un monocristal de niobate de lithium sera exploré dans le 

chapitre suivant. 

Chapitre 3 : Microgénérateur piézoélectrique à base de monocristal de niobate de lithium 

sans plomb 

Dans ce chapitre, la fabrication et la caractérisation d'un microgénérateur sans plomb basé sur une 

plaquette monocristalline de niobate de lithium sans plomb sont discutées. En outre, un modèle de 

circuit équivalent électromécanique du récupérateur d'énergie piézoélectrique est développé et, en 

outre, le conditionnement de tension et l'interfaçage du dispositif pour une sortie CC contrôlée et 

stable sont discutés. Une architecture efficace pour maximiser la puissance transférée à la charge 

avec un Maximum Power Point Tracking (MPPT) est également étudiée, avec un accent particulier 

sur les circuits à faible puissance. Concernant le LiNbO3 piézoélectrique (niobate de lithium - LN), 

il a été démontré que les propriétés électromécaniques des monocristaux de LN dépendent 

fortement de l'orientation, et sont comparables aux céramiques PZT. Le LN (YXl)/128 a été peu 

étudié dans le domaine de la récupération d'énergie, même s'il présente une constante diélectrique 

beaucoup plus faible que la famille PZT (ℇ33 = 50,5) et un coefficient piézoélectrique plus élevé 

par rapport aux autres matériaux sans Pb (d23=27 pC/N). Un autre défi majeur auquel sont 

confrontés les PEH est la bande passante étroite de la fréquence de fonctionnement, car la tension 

et la puissance de sortie diminuent considérablement en s'éloignant de la fréquence de résonance. 

Le PEH produit une tension de sortie CA en phase avec la fréquence appliquée de la force 

mécanique et la tension doit être redressée avant de pouvoir être stockée pour une application 

pratique. Ainsi, si la tension générée est inférieure à la chute de seuil de diode du redresseur, la 

puissance n'est pas utilisée. Étant donné que la fréquence des sources de vibrations 

environnementales ambiantes typiques est faible (moins de 300 Hz) et susceptible de varier dans 
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une certaine mesure, des PEH avec de faibles fréquences de résonance et des capacités de 

fonctionnement à large bande sont nécessaires pour des performances fiables. Il existe plusieurs 

rapports de microgénérateurs piézoélectriques avec diverses configurations complexes telles 

qu'une structure de membrane, plusieurs couches piézoélectriques empilées, etc. pour forcer la 

non-linéarité dans le système et pousser vers un régime de fréquence plus large. Cependant, ces 

approches à plusieurs degrés de liberté ont généralement des limitations telles qu'une densité de 

puissance réduite en raison d'un facteur Q de faible qualité. Récemment, un nouvel intérêt est 

apparu avec le réglage de la fréquence de fonctionnement des PEH en exploitant l'effet de couplage 

électromécanique élevé. Les PEH fortement couplés sont donc considérés comme une solution 

pour améliorer la bande passante en fréquence des PEH. Pour les PEH avec un grand K2, la division 

de résonance donne deux pics de puissance de sortie bien séparés entre eux, étendant ainsi la plage 

de récolte. Badel et Lefeuvre [180] ont montré qu'il est possible d'ajuster largement la fréquence 

de résonance des récupérateurs d'énergie piézoélectriques fortement couplés pour obtenir une 

récupération d'énergie à large bande à l'aide de circuits d'interface. De telles perspectives 

prometteuses pour la récupération d'énergie vibratoire à large bande ne peuvent être atteintes que 

par la conception et la fabrication de PEH avec un fort coefficient de couplage électromécanique 

global K. Cependant, la plupart des PEH hautement couplés signalés jusqu'à présent sont basés sur 

des matériaux à base de plomb tels que le PZT et le PMN-PT. Les « PEH verts » sans plomb avec 

une configuration simple, fonctionnant à de basses fréquences ambiantes avec un couplage K élevé 

et présentant une capacité opérationnelle à large bande sont rarement repartes dans la literature. 

Par conséquent, ce chapitre aborde l'étude d'un microgénérateur PEH vert avec du niobate de 

lithium comme matériau piézoélectrique actif qui fonctionne à basse fréquence de résonance (~ 

200 Hz) sur une large plage de fréquences de fonctionnement. L'aspect de conception et les 

considérations telles que la géométrie, le choix de la tension en circuit ouvert et la ou circuit de 

récupération d'un point de vue d'application d'un capteur de vibrations sans fil autonome en énergie 

(EAWVS), seront détaillés au chapitre 5. La caractérisation des performances de l'appareil telles 

que la tension de sortie, la puissance à charge optimale à différentes accélérations est présentée 

ainsi que l'extraction de paramètres internes tels que le couplage électromécanique K et le facteur 

de qualité mécanique Qm. En outre, le modèle électromécanique global de Masons de l'appareil est 

dérivé de l'analyse d'impédance et les résultats sont comparés aux simulations LT-SPICE. Le 

modèle est validé en comparant les résultats expérimentaux avec la simulation LT-SPICE. Ensuite, 
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la résistance de charge optimale pour la récupération de puissance maximale est obtenue par des 

méthodes expérimentales et est comparée à la simulation à l'aide du circuit équivalent 

électromécanique. Enfin, le redresseur doubleur de tension est mis en œuvre et les résultats sont 

comparés avec le modèle LT-Spice sous une excitation de base et une fréquence de fonctionnement 

données pour une charge donnée. Les modèles de circuits équivalents avec une impédance globale 

Zin peuvent être utilisés pour l'analyse et la conception de systèmes piézoélectriques. Le modèle 

de circuit équivalent est basé sur une analogie entre les variables d'état mécaniques et électriques. 

Enfin, une sortie de circuit de redressement appropriée est choisie pour convertir la tension 

alternative en courant continu en fonction des paramètres extraits de l'appareil (K2Qm). En prenant 

une plage de fréquences étroite, proche de la résonance (fr), le facteur de qualité (QR) est évalué à 

44. Le facteur de couplage électromécanique k31 = 0,26 est obtenu, ce qui donne un K2Qm = 3. 

Pour le pic de résonance à la charge optimale Ropt =550 kΩ, la tension de crête Vêt et la puissance 

RMS (PRMS) à 1 g d'accélération se trouvent respectivement proches de 6 V et 35 µW. Dans 

plusieurs scénarios d'application, le spectre de vibration d'entrée du PEH fluctue. Par conséquent, 

la largeur de bande de puissance BW, qui est un paramètre important pour déterminer la plage de 

fréquences de fonctionnement, est définie par les fréquences de coupure à mi-puissance. L’appareil 

a une demi-bande passante maximale pleine largeur de 10,8 % à la résonance. C'est un avantage 

évident car il peut être utilisé pour extraire l'énergie d'un spectre plus large de la fréquence d'entrée. 

La densité de puissance globale du PEH-PM peut être estimée à 36 µW/cm2/g2. 

De plus, un nouveau concept de circuit à trois bornes avec suivi du point de puissance maximale 

(MPPT) pour les applications à très faible puissance a été exploré. La quantité de puissance générée 

à partir d'un système PEH dépend principalement de facteurs tels que la fréquence d'entrée et 

l'amplitude de la vibration d'entrée. Les variations des vibrations d'entrée modifient 

considérablement le point de fonctionnement optimal ou le suivi du point de puissance maximale 

(MPPT) d'un PEH avec le temps. Étant donné que les microgénérateurs produisent une puissance 

de l'ordre du microwatt, ce qui est juste suffisante pour alimenter les nœuds IoT, son 

fonctionnement au MPP, (quelles que soient les conditions d'entrée telles que la fréquence, 

l'accélération ou les variations de charge) doit être assuré. Pour rendre le MPPT intéressant dans 

les applications de récupération d'énergie à très faible puissance, une partie négligeable de la 

puissance récupérée doit être prise en compte dans la mise en œuvre de cette fonction. Étant donné 

que cela peut représenter un défi difficile pour les concepteurs de circuits intégrés, nous proposons 
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un nouveau récupérateur d'énergie piézoélectrique à trois bornes avec l'une des bornes 

exclusivement dédiées à la détection de la tension en circuit ouvert (Voc). Ainsi, nous explorons 

une nouvelle approche de la méthode FOC pour déterminer la tension en circuit ouvert (Voc) en 

temps réel à l'aide d'une troisième borne supplémentaire qui agit comme un capteur Voc. Cette 

approche peut être avantageuse tant que la cellule de détection de Voc est conçue avec une 

occupation de zone plus petite ou même négligeable par rapport au collecteur principal, de sorte 

que la zone utilisée à des fins de mesure, plutôt que pour la production d'énergie, est insignifiante. 

Selon cette conception, la perte de puissance produite par la récolteuse, due à la présence de la 

cellule de détection, est inférieure à 1 %. Du point de vue du système, cette perte de puissance et 

la présence d'une bonne supplémentaire peuvent être compensées par divers avantages, dont la 

simplification de l'architecture du circuit associée aux fonctions MPPT (comme la pré-régulation, 

l'échantillonnage, le commutateur série et la logique), et la réduction relative de l’absorption de 

puissance. Avec ce nouveau concept, le circuit intégré de gestion de l'alimentation peut être 

grandement simplifié en un simple comparateur ultra-basse consommation, utilisé pour comparer 

la tension fournie par le circuit principal avec la tension fournie par la cellule de détection utilisée 

comme référence. 

Chapitre 5 : Capteur de vibrations sans fil autonome en énergie basé sur un microgénérateur 

piézoélectrique 

Dans ce chapitre, il est démontré que le circuit de récupération d énergie alimente un IOT-WSN 

sans batterie basé sur la connectivité Bluetooth Low Energy (BLE) avec vibration ambiante. Nous 

explorons un système sans batterie - Energy Autonomous Wireless Vibration Sensor (EAWVS) 

pour surveiller les vibrations et les défauts qui se composant d'un PEH et d'un système de 

transmission radio basé sur un schéma Bluetooth Low Energy (BLE) qui est auto-déclenchiez et 

entièrement autonome. Étant donné que les pièces défectueuses ont un profil d'accélération plus 

prononcé que les pièces non défectueuses, ce travail introduit une méthodologie de détection de 

défaillance basée sur la mesure de l'accélération et sur son écart par rapport aux valeurs nominales 

des pièces non défectueuses. L'EAWVS se compose uniquement d'un PEH pour l'alimentation et 

d'une radio Bluetooth Low Energy (BLE) pour la connectivité. Le nœud du capteur peut être 

connecté sans fil à une station de base (BS) qui effectue le traitement des données le transfert 

continu des données vers le cloud. BLE est utilisé comme norme de communication en raison de 
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sa faible consommation d'énergie et de la compatibilité et de la facilité d'utilisation de BLE dans 

les appareils portables pour communiquer avec les WSN. Le nœud de capteur est conçu pour 

transmettre des ondes par intermittence, et ainsi la radio est arrêtée après chaque transmission pour 

minimiser la consommation d'énergie globale. La particularité de ce système est que le PEH joue 

le double rôle de transducteur d'énergie et de capteur vibratoire. La fabrication et la caractérisation 

du PEH à base de niobate de lithium sont abordées au chapitre 4. Le suivi de la vibration d'entrée 

est réalisé en mesurant le temps entre balises successives, également appelé advertising time (tadv), 

émis par la radio EAWVS vers la BS. Et ainsi la radio est arrêtée après chaque transmission pour 

minimiser la consommation d'énergie globale. 

L'EAWVS offre une flexibilité supplémentaire, qui permet la lecture des mesures à distance et 

sans fil en exploitant la communication BLE et en transmettant des balises à une BS distante avec 

la lecture du capteur basée sur la lecture dans le domaine temporel facile à mettre en œuvre en 

mesurant le tadv. Le PEH remplit la double fonction de collecteur d'énergie et de capteur de 

vibration et, comme le montrent les résultats expérimentaux, il peut effectuer une détection de 

vibration dans la plage d'accélération [0,5 g - 1,2 g] avec une Limit of Detection (LoD) de 0,6 g. 

De plus, des tests expérimentaux ont montré que le système, basé sur l'EAWVS et la BS, a des 

capacités de détection reproductibles et précises dans une limite d'erreur de 11 %. Il a été démontré 

comment la simplicité de l'architecture EAWVS se traduit par plusieurs avantages tels que le 

respect de l'environnement, la taille, le coût, et surtout son utilisation comme dispositif 

«installation et oubli» sans entretien dans pratiquement toutes les applications où l'énergie de 

vibration est disponible. Enfin, toutes les mesures expérimentales ont été réalisées sur un PCB de 

2 cm x 2 cm d'une épaisseur de 0,45 cm, implémenté, à l'exception du PEH, avec des composants 

standards uniquement pour démontrer la faisabilité d'une preuve de concept dont les performances 

opérationnelles pourraient être encore améliorées par de prochains progrès que la recherche des 

matériaux et des composants électroniques apportera à l'avenir. 

Conclusion et perspectives 

Le travail réalisé au cour ou la thèse aborde plusieurs aspects de la récupération d'énergie 

piézoélectrique, du point de vue des matériaux, des dispositifs, des systèmes et des applications. 

Les propriétés électromécaniques à l'échelle microscopique telles que le coefficient 
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piézoélectrique (d33) et le facteur de mérite peuvent être des informations précieuses pour 

l'optimisation des propriétés et également un outil pour la sélection de matériaux sans plomb pour 

les futurs dispositifs et applications de récupération d'énergie. Aussi, il explore les moyens 

d'améliorer ces propriétés par dopage et « poling ». Un récupérateur d'énergie piézoélectrique 

monobloc unimorphe basé sur un cristal de niobate de lithium sans plomb a été conçu et ses 

performances ont été évaluées. Pour assurer une efficacité de conversion maximale dans les 

systèmes d'alimentation sous le microwatt, un PEH à trois bornes a été proposé qui consiste en une 

nouvelle architecture MPPT dont le but principal est de rendre le MPPT intéressant. Avec 

l'architecture MPPT, le circuit intégré de gestion de l'alimentation (PMIC) et le circuit de 

récupération d'énergie peuvent être simplifiés en un comparateur de puissance ultra-faible minimal 

sans oscillateurs, circuits de détection ou de pré-régulation. Enfin, un circuit de récupération est 

utilisée pour alimenter un nouveau capteur sans fil auto-alimenté et sans pile pour la surveillance 

des vibrations qui peut effectuer une détection vibratoire dans la plage d'accélération [0,5 g - 1,2 

g], dans une limite d'erreur de 11 %. Le présent travail offre plusieurs perspectives. Tout d'abord, 

il propose de améliorations des performances du récupérateur d'énergie piézoélectrique par une 

meilleure conception et une éventuelle miniaturisation du récupérateur qui pourraient être 

explorées par de nouvelles étapes de procédés de fabrication compatibles avec l'industrie 

MEMS/microélectronique. L'amélioration du rendement de l'abatteuse peut ainsi améliorer la LoD 

de l'EAWS. De plus, les performances d'autres collecteurs basées sur des matériaux sans plomb 

tels que le KNN et le tantalate de lithium peuvent être explorées du point de vue de l'application 

d'un capteur. Deuxièmement, les voies possibles de mise en œuvre physique des trois collecteurs 

de terminaux basés sur la nouvelle architecture MPPT, dont la preuve de concept a été détaillée 

dans cette thèse, doivent être explorées. Il n’est pas judicieux de mettre en œuvre des circuits 

d'interface avec des composants électroniques discrets dans le cas de circuits microélectroniques 

où le courant de fonctionnement est juste de l'ordre de quelques microampères. Par conséquent, le 

moissonneur à 3 terminaux avec la nouvelle architecture MPPT pourrait être mis en œuvre avec 

l'ASIC en consultation avec les ingénieurs de conception de circuits intégrés de ST 

Microelectronics à l'avenir pour le rendre intéressant. Enfin, l'application de l'EAWVS du point de 

vue de la surveillance de l'état et, finalement, la conceptualisation de l'idée en un produit viable 

sont explorées. Le collecteur à 3 terminaux avec la nouvelle architecture MPPT pourrait être mis 
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en œuvre avec l'ASIC en consultation avec les ingénieurs de conception de circuits intégrés de ST 

Microelectronics à l'avenir pour le rendre intéressant. 
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APPENDIX 1 

 

ABBREVATIONS 

Internet of Things IoT 

wireless sensor nodes WSNs 

Maximum Power Point Tracking MPPT 

Bluetooth Low Energy  BLE 

Atomic Force Microscopy AFM 

Figure of Merit FoM 

Energy Autonomous Wireless Vibration Sensor EAWVS 

Micro Electro Mechanical Systems MEMS 

Piezoelectric Energy Harvesters PEH 

Vibrational Energy Harvesters Vi-EH 

Sodium Potassium Niobate KNN 

Lead Zirconate Tantalate PZT 

Lithium Niobate LN 

Radio Frequency RF 

System-on-Chip SoC 

Vi-Energy Harvester ViEH 

Electromagnetic Energy Harvesters EMEHs 

Electrostatic energy harvesters EEHs 

cyclic transparent optical polymer CYTOP 

Piezoelectric Materials PM 

Polyvinylidene fluoride PVDF 

Alternating Current AC 

Single Degree of Freedom SDOF 

Poly(methyl methacrylate) PMMA 

Polydimethylsiloxane PDMS 

Liquid Crystal Display LCD 

Power-Management Circuit PMC 
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Full-Bridge Rectifiers FBR 

Standard Energy Transfer SET 

Complementary Metal Oxide Semiconductor CMOS 

Metal Oxide Semiconductor Field Effect Transistor MOSFET 

Pezoresponse PR 

Scanning Probe Microcopy SPM 

Piezoresponse Force Microcopy  PFM 

Lateral Piezoresponse Force Microcopy  LPFM 

Vertical Piezoresponse Force Microcopy VPFM 

Lock-in Amplifier LIA 

Position Sensitive Photodetector PSD 

inverse optical lever sensitivity inv-OLS 

Periodically Poled Lithium Niobate PPLN 

Lithium tantalate LT 

Piezoelectric Thin Films PTFs 

High Temperature HT 

Sodium Potassium Niobate Tantalate KNNT 

Printed Circuit Board PCB 

Finite Element Method FEM 

Root Mean Square RMS 

Synchronized Switch Harvesting on Inductor SSHI 

Double synchronized switch harvesting DSSH 

Fractional Open-Circuit FOC 

Silicon on Insulator SOI 

Integrated Circuit IC 

Power Management IC PMIC 

Application-Specific Integrated Circuit ASIC 

Base Station BS 

Limit of Detection LOD 

Programmable Voltage Detector PVD 

General-Purpose Input/Output GPIO 
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APPENDIX 2 

AFM tip and cantilever qualifications: Model SCM PIT V2 from Bruker* 

*Source: Bruker website 

 

 

 

CL Shape Resonant Freq. 
(kHz) 

Spring Const. K 
(N/m) 

Length (µm) Width (µm) 

Rectangular Nom Min Max Nom Min. Max. Nom. Min. Max. Nom. Min. Max 

75 50 100 3.0 1.5 6.0 225 215 235 35 33 37 
        

 

Tip 
Geometry 

Tip 
Height 

(h) (µm) 

Tip 
Radius 
(nm): 

Tip 
Coating 

Material 
Properties 

Electrical 
Sp. (Ωcm) 

CL Thickness 
(µm) 

Rotated 10 - 15 25 Pt/Ir N doped-Si 
Antimony (n) 

doped Si 

0.01 - 0.025 2.80 ± 0.75 

:  
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APPENDIX 3 

 

 

Research interactions between consortium members and partner organizations of ENHANCE 

The main aim of the ENHANCE project is to spur a multidisciplinary joint research activity 

involving chemistry, materials science, physics, mechanics, engineering and electronics to 

fabricate harvesters with high-power density and their systems offering stabilized output voltage 

in 1-3 V range, and adapted to specific needs of sensors, with high autonomy and working in 

elevated temperature ranges from room temperature to 600 °C in vehicles. In a nutshell, the project 

aims to develop methods of scavenging of energies available in the ambient atmosphere such as 

heat (pyroelectric), light (photovoltaic), vibrations and/or to use a combination of hybrid sources 

(piezoelectric-pyroelectric-electromagnetic- photovoltaic) with sufficient power at a reasonable 

price for real industrial applications such as automotive industry. 
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d33 of PPLN reference sample at 15 kHz 

        

d33 of PPLN reference samples at 50 kHz 
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