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INTRODUCTION 

1 Picropodophyllin 

Picropodophyllin (also known as picropodophyllotoxin (PPP)), is a cyclolignan alkaloid 

(Figure 1) found in the mayapple plant family (Podophyllum peltatum), and a small-

molecule inhibitor of the insulin-like growth factor 1 receptor (IGF1R) with potential 

antineoplastic activity. IGF1R is a receptor tyrosine kinase overexpressed in a variety of 

human cancers and plays a critical role in the growth and survival of many types of cancer 

cells. PPP specifically inhibits the activity and downregulates the cellular expression of 

IGF1R without interfering with the activities of other growth factor receptors, such as 

receptors for insulin, epidermal growth factor (EGFR), platelet-derived growth factor 

(PDGFR), fibroblast growth factor (FGFR) and mast/stem cell growth factor (KIT). This 

agent shows potent activity in the suppression of tumor cell proliferation and the induction 

of tumor cell apoptosis (Linder et al., 2007; Stromberg et al., 2006).  

PPP is currently being tested as an orally administrated single-agent treatment in an open-

label combined Phase I/II clinical study in advanced cancer patients with solid tumors 

which progress despite several lines of treatment. In addition, it effectively inhibits 

rhabdomyosarcoma tumor proliferation and metastasis in vitro and in an animal model 

(Ekman et al., 2011). 

 

Figure 1. Picropodophyllin chemical structure depiction. (C22H22O8 - PubChem) 
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2 Insulin-like growth factor 1 receptor 

The insulin-like growth factor 1 receptor (IGF-1R) is a protein found on the surface of 

human cells. It is a transmembrane receptor that is activated by a hormone called insulin-

like growth factor 1 (IGF-1) and by a related hormone called IGF-2. It belongs to the large 

class of tyrosine kinase receptors. This receptor mediates the effects of IGF-1, which is a 

polypeptide protein hormone similar in molecular structure to insulin. IGF-1 plays an 

important role during fetal development and adolescent growth, and continues to have 

anabolic effects in adults – meaning that it can induce hypertrophy of skeletal muscle and 

other target tissues. Mice lacking the IGF-1 receptor die late in development, and show a 

dramatic reduction in body mass, underlining the strong growth-promoting effects of this 

receptor (Garcia-Mato et al., 2021). 

In the insulin-like growth factor (IGF) family system, the IGF-1R is the most important 

member. It plays a role in up-regulating expression or increasing kinase activity in a variety 

of neoplasms mediating tumor development and infiltration (Gable et al., 2006). IGF-1R is 

also related to infestation with pathogenic factors such as Echinococcus multilocularis, 

nematodes (Hemer et al., 2014), and schistosomiasis (You et al., 2010). These properties 

make IGF-1R an attractive potential target for antitumor and antiparasitic therapy. 

2.1 Structure 

Human IGF-1R is a transmembrane tetrameric glycoprotein containing 2674 amino acids, 

whose gene is located at 15q25-26, synthesized in the ribosome, and its precursor is a 

single-chain polypeptide. The extracellular alpha subunit and the 626 amino acid 

transmembrane beta subunit constitute a glycoprotein. The α and β subunits form an αβ 

half-receptor through a disulfide bond, which together with another αβ half-receptor, also 

connected through a disulfide bond, constitutes a complete and mature α2β2 receptor 

(Figure 2). 
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Figure 2. Schematic diagram of the IGF-1R structure. (Wikipedia) 

2.2 Function 

IGF-1R contains three partial functional domains: the extracellular domain, the 

transmembrane domain and the tyrosine protein kinase domain (cytoplasmic domain). In 

most species, including humans and mice, IGF-1R consists, as mentioned, of 2 α subunits 

and 2 β subunits (Adams et al., 2000). The α subunit of IGF-1R is an extracellular part of 

the receptor that constitutes the binding region for the ligands IGF-1 and IGF-2, and 

determines the specificity of ligand binding. The β subunit is a transmembrane structure, 

located in the intracellular part that is responsible for signal transduction into the cell after 

receptor activation. It contains the catalytic subunit of tyrosine (Tyr) kinase, which can 

cross-catalyze the phosphorylation site on the corresponding β subunit for 

phosphorylation. Different regions of the β subunit can mediate distinct biological activities 

of IGF-1R, among which the ATP-binding site at K1003 and the tyrosine kinase active 

regions Y1131, Y1135 and Y1136 are particularly important for the corresponding 

biological effects of IGF-1R. Mutation of these sites can render IGF-1R unfunctional 

(Navarro and Baserga, 2001). The binding of ligands to the receptor induces an allosteric 

interaction between the α and β subunits of the molecule, which activates its tyrosine 

kinase activity and leads to the self-phosphorylation of multiple tyrosines in the 

intracellular region. Activation of IGF-1R can activate insulin receptor substrate (IRS)-1, 

IRS-2, PI3-kinase (PI3-K) and other substrates, and the activation of these substrates 
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initiates different cell signal transduction pathways, which respectively mediate the 

biological function of ligands (Yu and Rohan, 2000). 

2.3 IGF-1R signaling pathway 

When the ligand binds to and activates the receptor, a series of biological effects are 

triggered. Upon ligand binding to the α subunit of IGF-1R, the β subunit undergoes 

autophosphorylation, activating the phosphatidylinositol-3-kinase (PI3K)/serine-threonine 

protein kinase (Akt) pathway and the mitogen-activated protein kinase (MAPK) pathway. 

On the one hand, the PI3K/Akt pathway promotes the anchorage-independent growth 

(AIG) of tumor cells, which indicates the metastasis of malignant tumors; on the other 

hand, the MAPK pathway transmits signals to the nucleus, which is a target involved in 

cell proliferation. Genes are activated one after another for transcription and expression, 

which ultimately promotes cell proliferation, infiltration, and metastasis. IGF-1R can also 

directly bind to phosphatidyl-3,4,5-triphosphate after autophosphorylation of the (PIP3) 

kinase P85 subunit (Navarro and Baserga, 2001). In addition, in some cells, cell 

proliferation and apoptosis are also related to the phosphorylation of signal transducer 

and activator of transcription (STAT) activator caused by IGF-1R. IGF-1R signal 

transduction can also change cell adhesion and cause malignant growth of cells (Hartog 

et al., 2007). Therefore, IGF-1R is considered to be an effective target for the treatment 

of tumors. 

2.4 IGF-1R expression in tumor cells 

IGF-1R is not only related to normal cell proliferation, apoptosis, body growth and 

development, but also plays a key role in the formation and maintenance of the malignant 

phenotype of cells. Occurrence, development, invasion and metastasis are closely related. 

The proliferation of cells is proportional to the number of IGF-1R molecules on the cell 

membrane; decreased expression levels or loss of IGF-1R can lead to massive apoptosis 

of tumor cells; on the contrary, an increase in the expression of IGF-1R can inhibit cell 

apoptosis. Expression of IGF-1R has been detected in a variety of tumors. Waksmanski 

et al. (Waksmanski et al., 2001) showed that compared with normal tissues, the 

expression of IGF-1 and its receptors in endometrial cancer was significantly increased, 

and they also found that estrogen can promote the expression of IGF-1R in endometrial 
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cancer Ishikawas cells. Steller et al. detected the expression of IGF-1R in cervical cancer 

cell lines. 12 kinds of small cell lung cancer (SCLC), 14 kinds of non-small cell lung cancer 

(NSCLC) and 2 kinds of breast cancer cell lines were found to express IGF-1R. Tai et al. 

(Tai et al., 2003) reported that the IGF-1R enzyme participates in actin's entry into the 

intercellular junction through the signaling pathway of phosphatidylinositol 3-kinase (PI3K) 

to α-actinin, and promotes the spread of cancer cells, thereby affecting the growth of 

tumors. Activated and highly expressed IGF-1R can protect cells from apoptotic 

responses induced by various factors. The results of Nakamura et al. (Nakamura et al., 

2004) confirmed that the expression of IGF-1R on the cell membrane can be used to 

predict the high risk of tumor recurrence in primary tumors, especially in the presence of 

liver metastases. 

2.5 IGF-1R and oncogenes 

IGF-1R plays a potential mitogenic and anti-apoptotic role in cell transformation and tumor 

growth. IGF-1R can regulate cell proliferation by acting on oncogenes and tumor 

suppressor genes, and then lead to tumor formation and growth. The post-IGF-1R 

signaling pathway and the expression of Ras, cMYC, FOS and other oncogenes have 

multiple junctions, which can promote each other and lead to tumorigenesis. p53 and 

others play a carcinogenic role by increasing the activity of the IGF-1R gene, and IGF-1R 

can prevent tumor cell apoptosis by downregulating the expression of Fas. Girnita et al. 

(Girnita et al., 2003) found that the p53 gene indirectly down-regulates the expression of 

IGF-1R through the mouse gene protein-2 (Mdm2), inhibits tumor cell growth and induces 

tumor cell apoptosis. Larsson et al. (Larsson et al., 2005) also pointed out that the 

dysregulation of the p53/Mdm2/IGF-1R pathway is beneficial to the growth of cancer cells, 

and blocking the expression of p53/Mdm2 can inhibit the signal transduction of IGF-1R.  

2.6 IGF-1R inhibitor in cancer therapy 

At present, IGF-1R inhibitors are mainly divided into the following types: 

benzimidazopyridine compounds, pyrrolopyrimidine compounds, pyrazolopyrimidine 

compounds, pyrrole-5-carbaldehyde compounds, imidazopyrazine compounds, natural 

sources of small molecule kinase inhibitors and diarylurea compounds. 
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The benzimidazole pyridine inhibitors BMS-536924 and BMS-554417 developed by 

Bristol-Myers-Squibb Company are among the compounds with better biological activity, 

and the current data show that they are still in the preclinical research stage. Wittman et 

al. (Wittman et al., 2005; Wittman et al., 2007) found that BMS-536924 can effectively 

inhibit the proliferation of prostate cancer, breast cancer, and lung cancer tumor cells in 

vitro and in clinical trials, and there is sufficient evidence to prove that IGF-1R signal 

transduction is involved in the above-mentioned proliferation process. Haluska et al. 

(Haluska et al., 2006) studied the anticancer activity of BMS-554417 in vitro and in vivo, 

and found that it can reduce the phosphorylation activity of Akt to block the PI3K/Akt 

pathway, and ultimately inhibit the activity of IGF-1R and insulin receptor IR. It has been 

shown to inhibit tumor proliferation in vitro and in vivo, and it can reduce the volume of 

xenografted tumor cells. 

The pyrrolopyrimidine compounds NVP-AEW541 and NVP-ADW742 developed by 

Novartis are still in the stage of preclinical research. Mitsiades et al. (Mitsiades et al., 2004) 

conducted a pathobiological study on the anti-IGF-1R biological activity of NVP-ADW742, 

and found that NVP-ADW742 had a very good inhibitory effect on various tumor cells, 

especially against multiple bone marrow cancer cells with conventional therapy (IC50 is 

0.1-0.5 μmol/L). The study also found that the PI3K/Akt pathway is an important pathway 

for NVP-ADW742 to exert its efficacy. Warshamana-Greene et al. (Warshamana-Greene 

et al., 2005) discovered that the combination of NVP-ADW742 with etoposide and 

carboplatin can also enhance its sensitivity to small cell lung cancer. Scotland et al. 

(Scotlandi et al., 2005) showed that NVP-AEW541 could block MAPK, PI3K/Akt2 

pathways and completely inhibit the biological activity of IGF-1R and downstream 

transduction signals. García-Echeverría et al. (Garcia-Echeverria et al., 2004) found 

through in vivo experiments that NVP-AEW541 can inhibit the signal transduction of IGF-

1R in tumor xenografts, and at the same time reduce the growth of IGF-1R-driven 

fibrosarcoma (IC50 of 0.086 μmol/L), The IC50 of the inhibitory ability to insulin receptor 

was 2.3 μM, and it had good selectivity. 

Abbott has synthesized and studied a series of pyrazolopyrimidine IGF-1R inhibitors. 

These compounds can inhibit the autophosphorylation of IGF-1R and show moderate drug 

properties towards IGF-1R. At the same time, these inhibitors have been tested in vivo. 
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The activity was shown to be at least 3 times stronger than the IR inhibitory effect (Mulvihill 

et al., 2007). 

Merck synthesized and studied pyrrole-5-formaldehyde IGF-1R inhibitors (Bell et al., 

2005), which are ATP-competitive inhibitors. Studies have found that a reversible covalent 

complex is formed between a part of the aldehyde groups and lysine residues to mediate 

and inhibit the signal transduction of IGF-1R (Mulvihill et al., 2008). 

Ji et al. (Ji et al., 2007) and Mulvihill et al. (Mulvihill et al., 2009) of OSI Pharmaceuticals 

synthesized imidazolipizide compounds and studied their IGF-1R inhibitory activity. 

Among them, PQIP, AQIP and OSI-906 had better activity and effect on inhibiting IGF-1R. 

Studies have found that these compounds have stronger affinity for IGF-1R than 

pyrrolopyrimidines, and have stronger molecular solubility. PQIP inhibits the downstream 

signal transduction and biological activity of IGF-1R by blocking the Akt pathway. At the 

same time, the activity of other protein kinases is also very low, and it is currently in the 

late stage of preclinical research. AQIP also prevents cell proliferation and proliferation by 

blocking the Akt pathway, and then induces cell apoptosis. It not only has high selectivity 

for IGF-1R, but also its metabolites are very stable (Mulvihill et al., 2009). At the same 

time, OSI Pharmaceuticals discovered the compound OSI-906 (a novel small-molecule 

IGF-1R inhibitor) through mixed basic structural design and empirical discovery on the 

basis of the lead compound. OSI-906 effectively and selectively inhibits IGF-1R 

autophosphorylation by blocking MAPK and PI3K/Akt2 pathways. Mulvihill et al. (Mulvihill 

et al., 2009)  found that OSI-906 had a very significant anti-tumor effect when taken orally 

once a day. Currently, OSI-906 is used in clinical phase III trials in locally advanced or 

metastatic adrenal cortical carcinoma, and in combination with paclitaxel in clinical phase 

I/II trials in recurrent epithelial ovarian cancer. At the same time, in vivo experiments found 

that OSI-906 could well inhibit the proliferation and spread of tumor cells. 

Insmed reports that inM-18 (NDGA), a small molecule kinase inhibitor, is the first small 

molecule IGF-1R inhibitor to enter clinical phase I studies. It is a polyphenol substance 

extracted from the creosote bush Larrea divaricatta, acting as a dual inhibitor of IGF-1R 

and HER2 receptors, and has been shown to have strong inhibitory effects on prostate 

cancer, pancreatic cancer, breast cancer and lung cancer (Mulvihill et al., 2009). NDGA 
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has entered a clinical phase II study (Hartog et al., 2007). Youngen et al. (Youngren et al., 

2005) found that picropodophyllin (PPP) inhibited the IGF-1R transduction pathway by 

blocking the PI3K/Akt pathway, thus inhibiting the growth of tumor cells. The study also 

found that PPP had no inhibitory effect on IR, so it could avoid the occurrence of diabetes. 

Lu et al. (Lu et al., 2013) found that PPP is a specific IGF-1R tyrosine kinase inhibitor, 

which can effectively block the IGF-1R-mediated intracellular signal transduction pathway, 

thereby inhibiting the growth of tumor cells and promoting apoptosis, but not affecting the 

growth of normal cells (Youngren et al., 2005). PPP, developed by Biovitrum, is currently 

in preclinical studies. 

Gable et al. (Gable et al., 2006) first discovered diaryl urea compound PQ401 in 2006, 

which structurally belongs to the group of urea small molecule compounds. In vivo 

experiments confirmed that PQ401 inhibited the growth of mammary adenocarcinoma 

cells by blocking IGF-1R signaling pathway. In vitro, PQ401 was used on human breast 

cancer MCF-7 cells (with an IC50 between 10 mmol/L to 12 mmol/L, depending on the 

cell line). 

3 Autophagy 

Autophagy is a lysosome-dependent catabolic process in cells to meet the metabolic 

cellular needs and to allow for the renewal of organelles. This process usually relieves 

cellular damage and nutritional stress. In addition to the physiological role of autophagy in 

normal cells, autophagy also plays an important role in cancer and other pathological 

processes. In recent years, people have gradually realized that autophagy plays a 

complex role in the occurrence and development of cancer. On the one hand, autophagy 

plays a protective role by removing aged proteins and potentially harmful organelles. On 

the other hand, autophagy alleviates cell survival, which is harnessed by malignant cells, 

thus promoting the growth and proliferation of tumors (Dunlop and Tee, 2014). However, 

the complex role of inducing or inhibiting autophagy in cancer therapy depends on the 

type of cancer and its microenvironment. 

Since its discovery, autophagy has been regarded as a cytoprotective mechanism capable 

of maintaining cellular homeostasis, facilitating cell survival, and playing a role in the self-

digestion of proteins and organelles and the degradation of pathogens under conditions 
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of cellular nutrient deficiency (Glick et al., 2010). Studies have shown that dysregulation 

of autophagy is closely related to a variety of diseases including cancer, cardiovascular 

diseases and autoimmune diseases (Lavandero et al., 2015; White, 2015; Yang et al., 

2015b). Autophagy can be divided into macroautophagy, microautophagy, and 

chaperone-mediated autophagy, depending on the content of the package and the mode 

of transport (Figure 3). The process of macroautophagy involves two stages, one is to 

encapsulate the cytoplasmic components to be degraded into double-membrane vesicles 

called autophagosomes, and the other is to transport them into lysosomes. 

Autophagosomes then fuse with lysosomes, thereby releasing the components to be 

degraded for lysosome degradation (Glick et al., 2010). Microautophagy is the 

phagocytosis and degradation of cytoplasmic components by lysosomes directly through 

the invagination of the lysosomal wall (Li et al., 2012). Chaperone-mediated autophagy is 

different from the former two in that it is selective (the former two are not selective), and 

the components to be degraded are degraded directly through the lysosomal wall through 

chaperone proteins (Bejarano and Cuervo, 2010). 

 

Figure 3. Different types of autophagy. (Mizushima et al., 2008) Microautophagy refers 

to the sequestration of cytosolic components directly by lysosomes through invaginations 

in their limiting membrane. The function of this process in higher eukaryotes is not known, 
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whereas microautophagy-like processes in fungi are involved in selective organelle 

degradation. In the case of macroautophagy, the cargoes are sequestered within a unique 

double-membrane cytosolic vesicle, an autophagosome. Sequestration can be either 

nonspecific, involving the engulfment of bulk cytoplasm, or selective, targeting specific 

cargoes such as organelles or invasive microbes. The autophagosome is formed by 

expansion of the phagophore, but the origin of the membrane is unknown. Fusion of the 

autophagosome with an endosome (not shown) or a lysosome provides hydrolases. Lysis 

of the autophagosome inner membrane and breakdown of the contents occurs in the 

autolysosome, and the resulting macromolecules are released back into the cytosol 

through membrane permeases. CMA involves direct translocation of unfolded substrate 

proteins across the lysosome membrane through the action of a cytosolic and lysosomal 

chaperone hsc70, and the integral membrane receptor LAMP-2A (lysosome-associated 

membrane protein type 2A). 

3.1 The process of autophagy 

Macroautophagy (hereafter referred to as autophagy) can be mediated by many factors. 

Nutrient deficiency is a recognized autophagy-inducing factor: cells under nutrient-

deficient conditions can use the important proteins and amino acids provided by 

autophagy to survive (Onodera and Ohsumi, 2005). Hypoxia, infection and DNA damage 

are also thought to be activators of autophagy, however, whether these factors promote 

cell survival or induce cell death is controversial (Zhang et al., 2008). 

Autophagy is regulated by proteins encoded by more than 30 autophagy-related genes 

(ATGs) (Feng et al., 2014). The autophagic process includes the formation of 

autophagosomes, the transport of autophagy substrates to lysosomes, and the 

degradation of lysosomes in three parts (Kuma and Mizushima, 2010), which are 

subdivided into initiation of autophagy, vesicle nucleation, vesicle extension, vesicle 

retraction, autophagosome-lysosome fusion and envelope degradation. The formation of 

the autophagosome membrane is the first step of autophagy, and the proteins and lipids 

that form the autophagosome membrane are continuously recruited under the action of 

the Beclin1-PI3K III complex (He and Levine, 2010), so Beclin1, an ATG member, is one 

of the key players in autophagy initiation. The resulting small membranous structures, 
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called pre-autophagosomes, are formed by a specialized region of the endoplasmic 

reticulum (Nascimbeni et al., 2017), and the Golgi apparatus, mitochondria and other 

cellular structures may also contribute to the formation of pre-autophagosomes (Bernard 

and Klionsky, 2013). Recent studies have shown that an elongating synaptotagmin also 

acts as a regulator of pre-autophagosome formation (Nascimbeni et al., 2017). After the 

formation of the pre-autophagosome, with the participation of ubiquitin-activating enzyme 

E1, ubiquitin-conjugating enzyme E2 and ubiquitin-ligase E3 analogs, the bilayer 

membrane of the pre-autophagosome begins to stretch, and finally encapsulates 

damaged proteins and organelles, forming autophagosomes (Otomo et al., 2013). 

The exact mechanism of autophagosome formation in mammalian cells is unclear, but the 

LC3 protein family has been shown to play an important role in the formation of 

autophagosomes. When autophagy is induced, microtubule-associated protein light chain 

3 (LC3B) is cleaved to form LC3B-I, which is then further processed to form LC3B-II (Glick 

et al., 2010). LC3B-II localizes to the inner and outer parts of the autophagosome 

membrane and is involved in the final membrane fusion step and localization of the 

autophagosome (Hansen and Johansen, 2011). Once formed, autophagosomes are 

transferred to, and fused with, lysosomes; autophagosomes can form anywhere in the 

cytoplasm, however, lysosomes are almost exclusively found in the perinuclear region. 

The movement of autophagosomes along microtubule trajectories in the cytoskeleton to 

lysosomes in the perinuclear region is controlled by a variety of proteins including RAB 

GTPases, membrane fusion proteins (SNAREs) and coat proteins (COPs) (Cardoso et al., 

2009; Kimura et al., 2008; Molino et al., 2017; Nakamura and Yoshimori, 2017). Among 

them, RAB7 is involved in the whole process of autophagosome maturation, tracking and 

fusion (Guerra and Bucci, 2016). Finally, autophagosomes fuse with lysosomes and 

release the cellular components to be degraded into lysosomes for degradation. 

3.2 Autophagy-related signaling pathways 

3.2.1 Mammalian target of rapamycin (mTOR) signaling pathway 

Among the various pathways regulating autophagy, the mTOR signaling pathway is 

crucial. Research has identified an important role for this pathway in regulating cell growth, 

protein synthesis, metabolism and cell death. mTOR is a kind of serine/threonine kinase 
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with a molecular weight of 300,000 that is mechanistically located downstream of the 

phosphoinositide 3-kinase/ protein kinase B (PI3K/Akt) pathway, which significantly 

regulates cell proliferation. It can bind to a variety of different proteins and form two 

different mTORs complexes: mTOR1 and mTOR2 (Yang et al., 2015a). When nutrients 

and growth factors are abundant, mTOR1 is activated and phosphorylates key autophagy-

related proteins, resulting in the inhibition of autophagy. On the contrary, when mTOR1 is 

inhibited, which occurs upon deficiency of energy, amino acids and/or other nutrients, 

autophagy is induced. The role of mTOR2 in autophagy is unclear (Lu et al., 2015). 

mTOR1 is regulated by AMP-activated protein kinase (AMPK), and stimulation of AMPK 

by reducing cellular ATP levels or cellular stress leads to the inhibition of mTOR1. mTOR1 

inhibition can prevent the site-specific inhibitory phosphorylation of unc-51-like autophagy-

activating kinase 1 (ULK1), which then can freely interact with AMPK, resulting in the 

phosphorylation of ULK1 at the activation site and leading to autophagy induction. The 

fact that AMPK regulates both mTOR1 and ULK1 shows the key role of AMPK in 

autophagy initiation (Sridharan et al., 2011). 

3.2.2 Rat sarcoma (RAS) signaling pathway 

The RAS protein family consists of guanosine triphosphatase enzymes involved in the 

control of cell growth and survival. RAS signaling regulates autophagy through two major 

cellular pathways. Activation of RAS leads to increased stimulation of the PI3K/Akt 

pathway and upregulation of mTOR1, leading to inhibition of autophagy (Schmukler et al., 

2014). Conversely, RAS activation can also be increased by reducing the mitogen-

activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK) pathway. It 

has been demonstrated that HT-29 colon cancer cells induce autophagy when the 

MAPK/ERK signaling pathway is stimulated (Ogier-Denis et al., 2000). 

3.2.3 MAPK signaling pathway 

MAPK is a family of serine-threonine kinases that are involved in the regulation of broad 

cellular responses to growth factor receptor signaling (Lim et al., 2019). Activation of 

stress-activated protein kinase signaling by MAPK results in the activation of key 

transcription factors, which in turn regulate the expression of anti-apoptotic genes such as 
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B-cell lymphoma-2 (Bcl-2). Studies have shown that the binding of Bcl-2 to Beclin-1 can 

lead to the inhibition of autophagy (Chiang et al., 2018). 

3.2.4 FoxO signaling pathway 

The FoxO family is a relatively well conserved group of transcription factors. The human 

FoxO family includes FoxO1 (FKHR), FoxO2 (FoxO6), FoxO3 (FKHRLl) and FoxO4 (AFX). 

When cells are under stress and starvation conditions, these transcription factors promote 

autophagy to alleviate this unfavorable condition. Studies have shown (van der Vos et al., 

2012) that FoxO3 can enhance the activity of glutamine synthase, and glutamine synthase 

can inhibit the localization of mTORC1 on lysosomes, so FoxOs may inhibit the mTOR 

signaling pathway, thereby inducing autophagy. In addition to inducing autophagy, FoxOs 

also interacts with other related autophagy pathways, thereby regulating the occurrence 

of autophagy (Webb and Brunet, 2014). 

3.2.5 p53 signaling pathway 

The p53 gene is a common mutation site in human tumors, and the protein it encodes has 

four major functional regions: 1. N-terminal transcriptional activation region, which can 

bind to p53 negative regulators; 2. Central DNA core region; 3. tetramerization domain; 4. 

C-terminal non-specific DNA binding region (Dai and Gu, 2010). p53 has a dual regulatory 

effect on autophagy. Under normal circumstances, the level of p53 is regulated by the 

Beclin1 target sites USP10 and USP13 to deubiquitinate, thereby activating or inhibiting 

autophagy. Studies have shown (Liu et al., 2011) that the activities of USP10, USP13, 

Beclin1 and Vps34 are closely related to the expression of p53, and down-regulating its 

activity can inhibit the expression of p53. When cells are under metabolic stress conditions, 

p53 can phosphorylate AMPK (Thr127), which in turn inhibits mTOR activity, thereby 

activating autophagy. 

3.3 Measurement of autophagy 

The detection and quantitative analysis of autophagy in eukaryotic cells plays an important 

role in studying the effect of autophagy on eukaryotic growth and development and the 

relationship between autophagy and disease. At present, there are three main methods 

for the measurement of autophagosomes: electron microscopy, Western blotting and LC3 
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immunofluorescence microscopy. Autophagosomes are ultrastructurally defined as 

double-membrane structures that contain undigested cytoplasm or small organelles (e.g., 

mitochondria, part of the endoplasmic reticulum) and are not fused to lysosomes. Using 

electron microscopy to observe the structure of autophagosomes can qualitatively or 

quantitatively measure the volume of autophagosomes from early to late stages (Yla-

Anttila et al., 2009). Autophagy is a dynamic process, and the measurement of the number 

of autophagosomes can only describe a certain static moment in the process of autophagy, 

but cannot reflect its overall dynamic activity. Based on this defect, the concept of 

autophagic flux was introduced to describe autophagic activity, which refers to the entire 

process of substrates being packaged by autophagosomes and transported to lysosomes 

for degradation and reuse. The changes in concentration of microtubule-associated 

protein 1 light chain 3 (LC3) under different conditions are described. In the process of 

autophagy, LC3 first excises the C-terminal amino acid and converts it into LC3-I scattered 

in the cytoplasm. LC3-I then combines with phosphatidyl ethanolamine (PE) to form LC3-

II that exists stably on the inner and outer membranes of autophagy. LC3-II thus plays an 

important regulatory role in the entire process of autophagy (Nakatogawa et al., 2009). 

LC3 is the homolog of the yeast Atg8 gene in mammalian cells, which is located on the 

surface of pre-autophagic vacuoles and autophagic vacuoles. During the formation of 

mammalian autophagic vacuoles, LC3 is coordinated by Atg3, Atg5, Atg7, Atg10, Atg12. 

The composition of ubiquitin-like proteins plays an important role in the processing and 

modification process, and its expression and the degree of conversion of LC3-I to LC3-II 

have become important markers of autophagy levels (Wild et al., 2014). Therefore, 

green fluorescent protein-LC3 (GFP-LC3) can be used as a specific marker for the 

detection of autophagosomes in cells. However, the increased level of LC3 in cells may 

be caused by the increase of autophagy activity, or it may be caused by the blocking of 

autophagosome in the later degradation process. It cannot accurately reflect the 

autophagic activity of cells. In experiments, it is thus usually necessary to measure the 

difference in LC3 content between basal autophagy and autophagy-blocked conditions to 

accurately reflect the dynamic activity of autophagy. The widely used autophagy inhibitors 

are Chloroquine, Bafilomycin A1 or lysosomal proteases, etc., which lead to the 

accumulation of autophagosomes by blocking the fusion of autophagosomes and 
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lysosomes (Kimmelman, 2011). Using western blotting and immunofluorescence 

microscopy to detect the content of LC3 at the basal level of target cells and normal cells 

can reflect the autophagy activity of cells, and the measurement of autophagy in the 

induced state can reflect the autophagy potential of cells. In recent years, in addition to 

LC3, p62 protein detection has also been used in the evaluation of autophagy levels. 

p62/SQSTM1 is a multifunctional protein that participates in various signaling pathways 

(including apoptosis and autophagy), and it contains a domain that binds to LC3 protein. 

If autophagy is inhibited, SQSTM1 levels rise. The level of p62/SQSTM1 is inversely 

correlated with the basal autophagy level, and the activity of autophagy can be reflected 

by continuous measurement of p62 using cellular immunohistochemistry, staining, 

western blotting and GFP labeling methods (Pircs et al., 2012). 

3.4 Autophagy and tumorigenesis 

Studies have shown that autophagy plays a "double-edged sword" role in the occurrence 

and development of tumors, that is, autophagy can both inhibit early tumorigenesis and 

promote tumor development, and its function depends on the genetic background, 

developmental stage, and cancer type (Dikic and Elazar, 2018). As a "quality controller" 

of normal cells, autophagy can limit abnormal mutations caused by metabolic stress 

damage and genomic instability, thereby inhibiting carcinogenesis. Studies by Liang XH 

et al. found that the loss of function of ATG proteins, such as Beclin-1, is associated with 

increased tumor risk (Liang et al., 1999; Qu et al., 2003); studies by Takamura A et al. 

found that inhibition of ATG protein expression in a mouse model can cause the formation 

of multiple benign liver tumors (Takamura et al., 2011). However, once the primary tumor 

has formed, the role of autophagy in tumor cells changes. A growing number of studies 

have shown that autophagy can be used by tumor cells to adapt to various stressors such 

as hypoxia or nutrient deprivation, providing support for the metabolism necessary for 

tumor survival and rapid proliferation, and promoting the growth of most advanced tumors 

(Guo et al., 2013; Kenific and Debnath, 2015). Studies have also found that autophagy 

levels in various types of advanced tumors such as pancreatic cancer or activated Ras 

tumors are significantly higher than the basal autophagy activity in normal tissues (Guo et 

al., 2011; Yang et al., 2011), thereby helping tumor cells to adapt to treatment-induced 

stress. This causes such tumors to become resistant to treatment, which is also one of 
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the main clinical challenges of current tumor treatment. In addition, Vera-Ramirez L et al. 

found that autophagy is closely related to the survival of dormant cancer cells and the 

recurrence of metastatic tumors (Vera-Ramirez et al., 2018). Autophagy plays multiple 

roles in tumor initiation, growth and maintenance. 

3.5 Autophagy and tumor therapy 

In recent years, more and more studies have shown that autophagy is induced by a variety 

of tumor treatment methods, including chemotherapy, radiotherapy, and targeted therapy 

(Chiu et al., 2016; Choi et al., 2012; Michaud et al., 2011; Parodi et al., 2015; Qin et al., 

2016; Rosenfeldt et al., 2013). Autophagy stimulated by tumor therapy has a context-

dependent effect on tumor cells as it can induce cytotoxicity and cytoprotection. On the 

one hand, autophagy activation can sensitize tumor cells to chemotherapy and 

radiotherapy: autophagy induced by chemotherapy in dying tumor cells can facilitate the 

recruitment of immune effector cells into the tumor through the active release of ATP 

(Michaud et al., 2011), thereby triggering a tumor-specific immune response to induce 

tumor cell death. Another study suggested that the inhibition of mTORC1 by calorie 

restriction, an effective autophagy inducer, also enhances tumor immune surveillance, but 

this effect was only seen in tumors with high autophagy activity (Pietrocola et al., 2016). 

Chiu HW et al. found that the autophagy inducer YCW1 could induce ER stress to increase 

autophagy and enhance the radiosensitivity of breast cancer cells (Chiu et al., 2016), 

suggesting that radiotherapy-induced autophagy may also have cytotoxic effects. On the 

other hand, most studies have shown that autophagy promotes chemoresistance. In order 

to relieve chemotherapy-induced stress, tumor cells can activate autophagy to resist 

stress and produce cytoprotective effects, resulting in chemoresistance (Choi et al., 2012; 

Qin et al., 2016). Choi J et al. found that autophagy can promote the resistance to 5-FU 

treatment in colon cancer (Choi et al., 2012), and autophagy also plays a role in promoting 

the resistance of ovarian cancer during cisplatin treatment (Qin et al., 2016). In recent 

years, more and more studies have found that autophagy also plays an important role in 

promoting the resistance of many targeted therapy drugs. The occurrence of resistance 

to gefitinib/erlotinib in human lung cancer cells (Han et al., 2011; Jiang et al., 2018), the 

emergence of imatinib resistance during leukemia treatment (Shingu et al., 2009), the use 

of temozolomide in the treatment of astrocytoma (Goncalves et al., 2019) and trastuzumab 
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in the treatment of breast cancer (Cufi et al., 2013) and other processes, have been linked 

to autophagy playing a role in promoting drug resistance. A study also found that the 

autophagy inhibitor CQ not only enhanced the anti-tumor effect of radiotherapy in 

glioblastoma (Huang et al., 2017), but also enhanced the radiosensitivity of bladder cancer 

cell lines (Wang et al., 2018a), suggesting that radiotherapy induces autophagy in tumor 

cells.  

4 Immunogenic cell death 

Over the past decade, scientists have studied the main mechanisms of immunogenic cell 

death (ICD), a specific mode of cell death that develops in response to antigenic 

stimulation of dead cells, to achieve a therapeutic effect similar to the injection of an "anti-

tumor vaccine". The main mechanism of ICD is that certain characteristic protein 

molecules on the surface of apoptotic cells can be up-regulated after tumor cells undergo 

apoptosis stimulated by chemotherapy drugs, which induce dendritic cells to mature and 

activate tumor-specific T lymphocyte toxicity to kill tumor cells (Galluzzi et al., 2018). It is 

now well established that radiation therapy, hyperthermia, and certain chemotherapeutic 

agents induce tumor cell death by means of ICD (Zhou et al., 2019). ICD can induce dead 

tumor cells to release damage-associated molecular patterns (DAMPs), leading to the 

activation of tumor-specific immune responses, thereby activating anti-tumor immunity or 

directly killing tumor cells, exerting long-term efficacy of anti-cancer drugs (Zitvogel et al., 

2011). DAMPs of tumor cells include the exposure of calreticulin (CALR) on the surface 

of pre-apoptotic cells, the secretion of adenosine triphosphate (ATP), and the release of 

high mobility group box protein B1 (HMGB1) (Colangelo et al., 2016; Martins et al., 2014; 

Yamazaki et al., 2014). Among them, CALR exposure will release a series of molecular 

signals, which can not only promote the phagocytosis of tumor cells by dendritic cells, but 

also induce tumor antigen presentation and tumor-specific T lymphocyte toxicity (Chao et 

al., 2010). In addition, autophagy of tumor cells needs to be achieved by releasing ATP, 

to achieve the purpose of aggregation, degradation and destruction of organelles 

(Michaud et al., 2014). HMGB1 is a non-histone chromatin-binding protein. It has been 

reported in the literature that its binding to related receptors expressed on dendritic cells 

is crucial for activating dendritic cells and promoting antigen presentation by dendritic cells 
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to T cells (Apetoh et al., 2007) (Figure 4). Therefore, these features can accurately predict 

whether chemotherapeutic drugs have the effect of inducing ICD in tumor cells, which 

provides an important basis for clinical judgment of ICD inducers. The treatment modalities 

also provide a new way for the clinical treatment of cancer. 

 

Figure 4. Molecular mechanisms of immunogenic cell death (ICD) in anticancer 

chemotherapy. (Wang et al., 2018b) ICD inducers stimulate tumor cells to undergo 

apoptosis; apoptotic cells present certain danger-associated molecular patterns (DAMPs), 

including exposure of calreticulin (CALR), secretion of adenosine triphosphate (ATP), and 

release of high mobility group box 1 (HMGB1). These DAMPs lead to the recruitment of 

dendritic cells (DCs) to the tumor bed, where they engulf tumor cells. Mature DCs then 

present antigens to tumor-specific cytotoxic T lymphocytes (CTLs), eventually leading to 

killing of the tumor cells by CTLs. 

4.1 ICD-related molecules 

4.1.1 ATP 
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ATP is a direct energy source for cells, but during the ICD process, dying tumor cells 

release ATP, where it acts as an endogenous danger signal. Several studies have shown 

that autophagy is essential to the release of high levels of ATP from cells undergoing ICD, 

but the exact molecular mechanism by which autophagy promotes ATP secretion has not 

been clarified (Gebremeskel and Johnston, 2015). The release of ATP involves a series 

of processes such as activation of autophagy, apoptosis, and lysosomal exocytosis before 

cell death (Martins et al., 2014). Extracellular ATP released by tumor cells acts as a "find 

me" signal with dual roles of recruiting and activating APCs and inflammasome pathways. 

The ATP released to the outside of the cell binds to P2X7 and P2Y2 purinergic receptors 

on APCs (especially dendritic cells, DCs), stimulating their phenotypic maturation and 

mediating strong chemotaxis (Serrano-Del Valle et al., 2020). Extracellular ATP also 

activates the caspase-1-dependent NLRP3 complex inflammasome, triggering the 

secretion of interleukin-1β (IL-1β) (Serrano-Del Valle et al., 2020). The generated IL-1β 

can prompt γδT cells to produce IL-17, which acts on cytotoxic T lymphocytes (CTLs), 

thereby producing an IFNγ-mediated anti-tumor immune response (Ma et al., 2011). In 

addition, extracellular ATP also stimulates DCs and macrophages to release pro-

inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), IL-1β and IL-18, to 

produce tumor-killing activities (Lin et al., 2017). 

4.1.2 Calreticulin 

CALR is a highly conserved multifunctional calcium-binding protein located within the 

endoplasmic reticulum (ER), whose main functions are protein chaperones and 

maintenance of Ca2+ homeostasis. CALR is exposed before apoptotic execution on the 

cell membrane surface, that is, during the process of ICD, CALR translocates from the ER 

lumen to the cell membrane surface. CALR exposure is one of the key factors for ICD to 

drive anti-cancer immunity (Gebremeskel and Johnston, 2015; Tanaka et al., 2016). As a 

powerful "eat me" signal, CALR exposed on the cell membrane surface (ecto-CALR) can 

enhance the immunogenic recognition and phagocytosis of dead cancer cells by APCs 

(Sethuraman et al., 2020). Endoplasmic reticulum (ER)-stress is necessary to induce the 

translocation of ICD-related CALR to the cell membrane surface (Gebremeskel and 

Johnston, 2015), but the molecular mechanism involves protein kinase R-like ER kinase 

(PERK)-mediated ER-stress that can phosphorylate eukaryotic translation initiation factor 
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2α (eIF2α) (Wang et al., 2018c), leading to subsequent signaling events, including 

caspase-8-dependent proteolysis of the ER protein BAP31, activation of the pro-apoptotic 

protein BAX, transport of CALR from the ER to the Golgi apparatus, and exocytosis of 

CALR-containing vesicles, ultimately leading to SNARE-mediated relocalization of CALR 

on the cell surface (Panaretakis et al., 2009; Wang et al., 2018c). CALR forms a stable 

complex with disulfide isomerase (ERp57) and co-translocates to the cell membrane. Loss 

of ERp57 can lead to the loss of surface CALR and reduce the phagocytosis of 

macrophages (Liu et al., 2019). ecto-CALR can bind to multiple receptors on APCs, 

including CD91, thrombospondin, complement component 1, q subcomponent (C1q) 

receptors and glycan-binding lectin (Montico et al., 2018), among which ecto-CALR is 

mainly recognized, phagocytosed and bound by CD91-expressing cells, which can trigger 

a series of immune events to promote the recruitment of antigen-presenting cells (such as 

DCs), antigen presentation, and pro-inflammatory cytokines (such as TNF-α and IL-6) 

release and type 17 helper T cells (Th17) activation (Pawaria and Binder, 2011). Ecto-

CALR can induce a series of immune responses, its effects are antagonized or inhibited 

by small interfering RNA (siRNA)-mediated down-regulation of PERK, which inhibits the 

phosphorylation of eIF2a and ER stress, and thereby blocks anthracycline-induced CALR 

exposure. In addition, the antiphagocytic CD47 as a "don't eat me signal" also antagonizes 

the effect of ecto-CALR. When there is a high level of CALR on the surface of tumor cells, 

the expression of CD47 will also increase accordingly. Therefore, blocking or antagonizing 

CD47 while increasing the plasma membrane exposure of CALR is a strategy to induce 

ICD, thereby enhancing antitumor therapy. 

4.1.3 HMGB1 

HMGB1 is a highly conserved and widely distributed nuclear protein in mammalian cells, 

which plays roles in gene transcription regulation, nucleosome stabilization, and DNA 

repair. In addition, HMGB1 plays a role as an extracellular signaling molecule in the 

process of inflammatory cell differentiation, migration and tumor metastasis (Fachri et al., 

2021); HMGB1 also promotes DCs maturation, migration, TAA presentation to T cells and 

production of pro-inflammatory cytokines (Ruan et al., 2020). HMGB1 secreted by tumor 

cells in the late stage of death binds to a variety of PRRs, including Toll-like receptor 4 

(TLR4) and the receptor of advanced glycation end product (RAGE), thereby activating 
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the receptor of advanced glycation end product (RAGE) in DCs. Mitogen-activated protein 

kinase (MAPK, p38 and ERK1/2) and nuclear factor kappa B (NF-κB) (Ruan et al., 2020), 

promote immune cells to release cytokines such as IL-6 and IL-10, which are then involved 

in an inflammatory response. HMGB1 can activate the major response genes of myeloid 

differentiation (MyD88)-dependent signal transduction pathway, inhibit the phagosome-

lysosome fusion, thereby promoting the processing and presentation of tumor antigens 

(Garg et al., 2015; Yamazaki et al., 2014). HMGB1 can also inhibit the activity of 

immunosuppressive Treg cells (Garg et al., 2015). Studies have shown that in chronic 

HBV infection, HMGB1 can induce autophagy in peripheral Treg cells through the RAGE-

ERK and mTOR pathways (Cheng et al., 2017). HMGB1 was significantly up-regulated in 

the tumor microenvironment (TME) and positively correlated with patient survival. Tumor 

cells lacking HMGB1 exhibited impaired ability to induce ICD and antitumor immune 

responses (Ashrafizadeh et al., 2020). 

4.1.4 IFN I 

As a group of broad-spectrum antiviral cytokines, IFN I have antiviral infection and immune 

regulation effects. IFN I is a key family of cytokines that activate effector T lymphocytes 

and NK cells in the initiation phase of the immune response, can affect the progress of 

innate and adaptive immune responses, and are essential for microbial defense 

responses (Ivashkiv and Donlin, 2014; Minute et al., 2020; Serrano-Del Valle et al., 2020). 

IFN I can induce tumor cell apoptosis and anti-angiogenesis through signal transduction 

after binding with type I interferon receptor (IFNAR), and can also directly affect the cells 

of the immune system (Schirrmacher et al., 2019). IFN I directly inhibit the proliferation of 

tumor and virus-infected cells, and increase the expression of MHC-I class, thereby 

enhancing antigen recognition, and can also affect the differentiation, maturation and 

migration of DCs (Hervas-Stubbs et al., 2011). Activation of IFN I responses in tumor cells 

has become one of the hallmarks of ICD, and the production of IFN I triggers autocrine 

and paracrine circuits in tumor cells by binding to IFNα and IFNβ receptors on tumor cells, 

resulting in cxc-chemokine ligand 10 (CXCL10) release, play an immunostimulatory effect 

(Galluzzi et al., 2017; Sistigu et al., 2014). The release of IFN I involves a variety of 

mechanisms. During chemotherapy, tumor cells will respond to endogenous IFN I due to 

the release of RNA during cell death (De Beck et al., 2018). DNA-damaging agents also 
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induce IFN I production in the cytoplasm through dsDNA (De Beck et al., 2018). Yang et 

al (Yang et al., 2020) found that the sequential combination of IFNβ and cisplatin could 

induce the phosphorylation of eIF2α more effectively than single treatment, and participate 

in ER stress, which is crucial for CALR translocation; secondly, upregulation of interferon 

regulatory factor 1 (IRF1) contributes to the phosphorylation of eIF2α by IFNβ and IFNβ-

cisplatin. In addition, radiation-induced IFN I enhanced the cross-presentation of DCs 

(Sato et al., 2020). 

4.1.5 HSP 

As heat stress proteins, the main function of the heat-shock protein (HSP) family is to 

assist in protein folding. HSP70 and HSP90 have functions such as stimulating tumor 

antigen uptake and DCs maturation. High expression of HSP is an important signal for 

tumor cells to develop ICD. CTLs can recognize HSP-antigen peptides during virus 

infection and tumor formation. HSP70 and HSP90 can bind to antigenic peptides and 

undergo receptor-mediated HSP endocytosis. These peptides are shuttled into the 

antigen-processing pathway of APCs and expressed on class I molecules (Hickman-Miller 

and Hildebrand, 2004). HSP70 and HSP90 carry tumor antigen peptides and are exposed 

to the cell surface in the early stage of ICD, and are passively released into the tumor 

microenvironment in the late stage, and mediate the interaction between cancer cells and 

immune cells by binding TLRs on DCs and NKG2A on NK cells (Montico et al., 2018). The 

presentation of HSP-antigen peptides to CTLs can lead to the activation of CTLs, and the 

presentation to NK cells leads to the loss of inhibitory effect, and the activation of both 

CTLs and NK cells plays a key tumor-killing role (Hickman-Miller and Hildebrand, 2004). 

4.2 ICD inducers 

At present, ICD inducers are divided into type I ICD inducers and type II ICD inducers. 

The type I ICD inducers and type II ICD inducers that have been reported in clinical and 

preclinical studies are shown in Table 1. Type I ICD inducers induce non-ER-targeted 

apoptosis in tumor cells, causing mild ER stress and release of ICD-related immunogenic 

molecules; type II ICD inducers selectively target the ER, via ROS-dependent ER stress 

release danger and apoptosis signals (Rufo et al., 2017). Most clinical antineoplastic drugs, 

such as anthracyclines, oxaliplatin, bortezomib, cyclophosphamide, and radiation therapy, 
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belong to type I ICD inducers. Hypericin photodynamic therapy, oncolytic virus therapy, 

etc. belong to type II ICD inducers. Type I and type II ICD inducers act at different stages 

of apoptosis, respectively. In the early stage of apoptosis, compared with type I ICD 

inducers, type II ICD inducers can induce a more severe ER stress response and high 

levels of ROS, and release more DAMPs, which contribute to the anti-tumor immune 

response (Pol et al., 2015). However, this long-term persistent response promotes an 

autoregulatory inflammatory cycle as well as tumor stroma degradation, leading to tumor 

cell metastasis (Radogna and Diederich, 2018). 
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Table 1. Inducers of type I and type II Immunogenic cell death and their mechanisms. 

ICD inducers DAMPs 
Target of 

inducing cell 
death 

Mechanism Reference 

Type I 
ICD 

inducers 

Mitoxantrone and 
Anthracyclines 

ecto-CALR, 
ERp57, ATP, 

HSP70, HMGB1 

Nucleus (DNA or 
DNA replication-

associated 
proteins) 

• Inserts into DNA and inhibits DNA topoisomerase II, exerts cell 
growth inhibition and cytotoxicity; 
• Apoptotic cells release ATP as a “find me” signal that recruits 
monocytes and macrophages to the site of apoptosis; 
• ATP released by dying tumor cells stimulates the purinergic 
receptor P2X7 on DCs, causing intracellular K+ efflux and 
activation of the NALP3-ASC inflammasome, driving caspase-1-
mediated maturation of pro-IL-1β and secretion of IL-1β; 
• Anthracycline-induced IL-17 production in γδT lymphocytes 
(γδT17 cells). 

(Elliott et al., 2009; 
Fucikova et al., 

2011; Ghiringhelli 
et al., 2009; Obeid 

et al., 2007; 
Radogna and 

Diederich, 2018; 
Tewey et al., 1984) 

Oxaliplatin 
ecto-CALR, 

ERp57, ATP, 
HSP70, HMGB1 

Nucleus (DNA or 
DNA replication-

associated 
proteins) 

• Interaction with DNA to form DNA adducts, DNA adducts inhibit 
transcription and inhibit mismatch repair mechanisms; 
• Induces DC maturation. 

(Raymond et al., 
1998) 

Cyclophosphamide ecto-CALR, 
HMGB1 Nucleus (DNA) 

• Stimulates increased expression of chemokines and their 
ligands; 
• Stimulates immune cells to produce cytokines and promotes the 
conversion of Th2 to Th1. 

(Schiavoni et al., 
2011) 

Shikonin 
ecto-CALR, 

HSP70, 
ectoGRP78 

Cytoplasm 
(tumor-specific 
pyruvate kinase 
M2 protein, 20S 
subunit of the 
proteasome) 

• Promotes the phenotypic and functional maturation of DCs, 
thereby stimulating T cells; 
• Promotes the differentiation of T cells into Th17 cells; 
• Restores NK cell cytotoxicity; 
• Improves CTL activity; 
• Downregulation of NF-κB signaling reduces tumor-promoting 
cytokine production. 

(Chen et al., 2012; 
Chen et al., 2011; 

Lu et al., 2011) 

7A7 (EGFR-
specific antibody) 

ecto-CALR, 
ERp57, 

HSP70, HSP90 

Cell surface 
(EGFR) 

• Inhibits tumor cell growth and induces its G0/G1 phase 
synchronization; 
• Induces tumor cell apoptosis at high concentrations; 
• Causes phenotypic maturation of DCs; 
• Increased tumor infiltration by CD4+ T cells, CD8+ T cells and 
DCs. 

(Garrido et al., 
2007; Garrido et 

al., 2011) 

Bortezomib HSP90 

Cytoplasmic 
(26S 

proteasome or 
endoplasmic 

reticulum-related 
degradation 

mechanisms, 
cancer 

suppressor 2A) 

• Generates NK cells and CD8+ T cells to inhibit tumor growth; 
• Promotes antigen cross-presentation between tumor cells and 
DCs, and tumor antigen-loaded DCs induce IFNγ production in T 
cells. 

(Chang et al., 2012; 
Davies et al., 2007; 
Spisek et al., 2007; 
Tseng et al., 2012) 
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Cardiac glycosides ecto-CALR, ATP, 
HMGB1 

Cell surface 
(Na+, K+-
ATPase) 

• Involved in the SRC kinase-EGFR-MAPK pathway, resulting in 
tumor cell growth arrest; 
• Inhibits DNA topoisomerase and glycolysis, and promotes 
apoptosis; 
• ICD can only be triggered in the body when used in combination 
with other chemotherapy drugs such as mitomycin C or cisplatin. 

(Menger et al., 
2012; Prassas and 
Diamandis, 2008) 

Ultraviolet 
radiation (UVC) 

ecto-CALR, 
ERp57, ATP, 

HSP70, HMGB1 

Nucleus (DNA or 
DNA replication-

associated 
proteins) 

• CD8+ T cell and NK cell-mediated tumor growth inhibition; 
• UVC-treated tumor cells stimulate DC phagocytosis and 
maturation, and stimulate IFNγ-producing CD8+ T cells; 
• DC antigen processing and proinflammatory cytokine production 
stimulated by UVC-treated tumor cells. 

(Brusa et al., 2009; 
Dudek et al., 2013) 

Radiation therapy 
ecto-CALR, 

ERp57, ATP, 
HSP70, HMGB1 

Nucleus (DNA or 
DNA replication-

associated 
proteins) 

• Induce DNA damage and induce tumor cell apoptosis; 
• DAMPs release, stimulate DCs, and local high-dose 
radiotherapy increases the number of tumor-infiltrating DCs; 
• Radiation therapy induces ICD, activates DCs, increases 
infiltration of CD4+ and CD8+ T cells in tumors, and inhibits Treg. 

(Huang et al., 2007; 
Selzer and Hebar, 

2012) 

High Hydrostatic 
Pressure (HHP) 

ecto-CALR, ATP, 
HMGB1, HSP70, 

HSP90 
Cellular protein 

• Stimulates DC phagocytosis; 
• Expresses high levels of costimulatory molecules that stimulate 
the production of large numbers of tumor-specific T lymphocytes. 

(Fucikova et al., 
2014) 

Type I 
ICD 

inducers 

Hypericin 
Photodynamic 
Therapy (Hyp-

PDT) 

ecto-CALR, ATP, 
ectoHSP70, 

HSP70, HSP90 

Endoplasmic 
reticulum 

• Hypericin is mainly localized to the endoplasmic reticulum, and 
after irradiation causes Phox-ER stress and activation of different 
UPR signaling pathways, ultimately leading to Bax/BAK-based 
mitochondrial apoptosis; 
• Inhibition of pro-tumor cytokine signaling NF-κB activation; 
• Inhibition of tumor cell-derived tumor-promoting cytokines such 
as TNF, IL-6 and GM-CSF; 
• Inhibit secretion of cancer-derived MMP9 that promotes tumor 
metastasis. 

(Buytaert et al., 
2006; Du et al., 

2007; Garg et al., 
2012a, b; Garg et 

al., 2010) 

Coxsackie virus B3 ecto-CALR, ATP, 
HMGB1 

Endoplasmic 
reticulum 

• Induces ER stress; 
• Increases the number of blood vessels in the tumor; 
• Increases the number of CD8+ T lymphocytes. 

(Liu et al., 2012; 
Miyamoto et al., 

2012) 
PtIIN-heterocyclic 
carbene complex 

ecto-CALR, ATP, 
HMGB1 

Endoplasmic 
reticulum • Induction of ER stress response through PERK activation. (Sukkurwala et al., 

2014) 
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4.2.1 Chemotherapy drugs 

4.2.1.1 Anthracyclines 

Anthracyclines including anthracenediones (mitoxantrone, etc.) and anthrapyrazoles 

(doxorubicin, epirubicin, daunorubicin, etc.) have been used in the treatment of pediatric 

sarcoma, leukemia, and the like. Anthracyclines mainly exert cytotoxic effects by 

intercalating DNA double-stranded bases and inhibiting DNA topoisomerase II. In 2005, 

doxorubicin was reported as the first inducer of ICD (Casares et al., 2005). Doxorubicin-

induced cell death exhibiting characteristics of ICD, such as the release of DAMPs, 

including pre-apoptotic CALR translocation, ATP secretion in the early stage of apoptosis, 

HSP70 release in the middle and late stages of apoptosis, and HMGB1 release in the late 

stage of apoptosis. 

Anthracycline-induced ER stress responses are dependent on CALR translocation (Garg 

et al., 2012a; Panaretakis et al., 2009) and ATP release (Martins et al., 2009). ATP 

released by dying tumor cells binds to the purinoceptor P2X7 on DCs, causing intracellular 

K+ efflux and inflammasome NALP3 activation, driving caspase1-mediated IL-1 secretion. 

Anthracycline-treated tumor cells produce type I IFN through autocrine and paracrine 

pathways, inducing cell death (Michaud et al., 2011). Furthermore, anthracyclines induce 

the accumulation of IL-17-producing γδ T cells at the tumor site, prior to the accumulation 

of cytotoxic T cells at the tumor site (Ma et al., 2011). 

Studies have shown that doxorubicin-liposome-microvesicle complexes can enhance 

doxorubicin-induced ICD. This complex induces increased tumor cell apoptosis, increased 

CALR exposure and DAMPs release, while further promoting DC maturation (Huang et 

al., 2018). In addition, studies have shown that the combination of doxorubicin and DC 

vaccine can enhance the anti-tumor immune response. Mice treated with DC vaccine and 

doxorubicin had increased numbers of CD8+ T lymphocytes in metastases, increased 

serum IFNγ levels, and inhibited tumor metastatic growth (Kawano et al., 2016). 

Anthracyclines are a class of effective ICD inducers, but their clinical application is limited 

due to their large side effects. Therefore, it is currently necessary to find a therapeutic 

scheme that can induce ICD and has few side effects. 
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4.2.1.2 Cyclophosphamide 

Cyclophosphamide is one of the most widely used alkylating agents for the treatment of 

hematological and solid malignancies. Cyclophosphamide possesses significant 

immunomodulatory activities, most notably its ability to inhibit Treg, thereby eliminating 

immunosuppression in the tumor microenvironment (Ahlmann and Hempel, 2016). 

Cyclophosphamide can also induce features that exhibit ICD, including changes in cell 

surface markers and release of soluble DAMPs (Pol et al., 2015), leading to activation of 

tumor-specific immune responses. 

4.2.1.3 Bortezomib 

The proteasome inhibitor bortezomib was approved by the FDA in 2003 and is 

recommended as a first-line treatment for patients with multiple myeloma. Co-incubation 

of bortezomib-treated tumor cells with DCs results in antigen-loaded DCs that can induce 

T cells to produce IFNγ, but addition of HSP90 inhibitors to bortezomib-treated tumor cells 

reduces the number of IFNγ-producing T cells (Nawrocki et al., 2005). However, the 

mechanism of action of Bortezomib as an inducer of ICD remains to be further studied. 

4.2.1.4 Platinum-based chemotherapy drugs 

Platinum-based chemotherapy drugs are crucial in the clinical treatment of tumors. 

Oxaliplatin directly induces ICD in tumor cells, whereas cisplatin requires an additional 

inducer to activate its immunogenicity (Martins et al., 2011). Both platinum drugs trigger 

CALR translocation and release of HSP70, ATP, and HMGB1, but oxaliplatin is an 

established ICD-inducing drug. Oxaliplatin prevents DNA synthesis by targeting nuclear 

DNA, inhibits transcription, and inhibits mismatch repair mechanisms (Tesniere et al., 

2010). In vitro studies showed that co-incubation of DCs with oxaliplatin resulted in 

increased expression of programmed death receptor ligand 1 (PD-L1) in DC cells, thereby 

inhibiting T cell proliferation (Tel et al., 2012). This phenomenon suggests that combining 

oxaliplatin with an anti-PD-L1 antibody for cancer therapy can initiate an effective anti-

tumor immune response. 

In recent years, other platinum (Pt)-based compounds have also been found to have the 

characteristics of ICD inducers. PtII N-heterocyclic carbene complexes display the 
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characteristics of type II ICD inducers, namely, induction of oxidative stress, CALR 

exposure, and HMGB1 as well as ATP release. Identified as the first small molecule 

immuno-chemotherapeutic agent, Pt-NHC is another unique cyclic metal complex that 

selectively localizes to the ER and induces ER stress responses via PERK (Wong et al., 

2015). Recently, it was found that a new platinum-based compound R, R-1, 2-

cyclohexanediamine pyrophosphate platinum (II) (PT-112) can induce ICD. Clinical 

studies have shown that PT-112 and PD-L1 immune checkpoint inhibitors have synergy 

(Kepp and Kroemer, 2020). Immunogenic or immunostimulatory Pt candidates offer 

potential for the development of platinum-based combination immunochemotherapy 

agents. 

4.2.1.5 Natural medicinal chemicals 

Cardiac glycosides (CG) belong to a large family of naturally derived compounds with 

diverse structures but a common core structure. CG is a type I ICD inducer with a primary 

target at the alpha subunit of the Na+/K+-ATPase (Diederich et al., 2017). There is a 

correlation between overexpression of specific α subunits and tumor cell reactivity 

(Lefranc et al., 2008). CG inhibits Na+/K+-ATPase, increases intracellular Na+ and Ca2+ 

levels, while depleting intracellular K+. High intracellular Na+ levels block the antiporter 

activity of Na+/Ca2+ exchanger, which is beneficial for the accumulation of Ca2+ in the ER 

and mitochondria. This results in a mild ER or mitochondrial stress response that affects 

tumor cell proliferation and activity. There is evidence that CG is involved in the SRC 

kinase-EGFR-MAPK pathway (accompanied by mitochondrial ROS production), resulting 

in tumor cell growth arrest (Diederich et al., 2017). In addition, the inhibition of DNA 

topoisomerase activity and the glycolytic pathway by CG also demonstrated the pro-

apoptotic effect of CG (Prassas and Diamandis, 2008). 

Shikonin is a naphthoquinone compound isolated from the traditional Chinese medicine 

Shikon, which is an inhibitor of proteasome activity. Shikonin inhibits the 20S subunit of 

the proteasome, leading to accumulation of polyubiquitinated proteins, and shikonin-

treated tumor cells trigger ICD through induced mitochondrial stress, which induces the 

release of HSP70, HSP90, and HMGB1. Shikonin-treated tumor cell lysates promote DC 

differentiation and maturation (Chen et al., 2012). Shikonin-treated tumor cells can 
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promote the differentiation of T cells to Th17 cells, which is very important for ICD-related 

anti-tumor immunity; in addition, shikonin restores the killing effect of natural killer cells, 

and studies have shown increased cytotoxic T lymphocyte (CTL) activity in mouse 

splenocytes immunized with DCs loaded with shikonin-treated tumor cells (Long et al., 

2012). 

Wogonin is a flavonoid found in Scutellaria baicalensis. Wogonin has been shown to 

induce ICD by triggering the ER stress response, resulting in the exposure of PERK/AKT-

dependent CALR and annexin A1 to the cell membrane (Yang et al., 2012). Wogonin 

produces a potent antitumor immune effect by inducing the release of HMGB1 and ATP, 

which subsequently activates DCs and induces the release of pro-inflammatory cytokines 

(Yang et al., 2012). 

4.2.2 Radiotherapy 

In clinical applications, radiotherapy has been found to induce DNA damage and tumor 

cell apoptosis as well as in situ ICD in tumor cells and to stimulate T cell-mediated 

antitumor effects. Radiation therapy selectively kills tumor cells within the irradiated range. 

There is growing evidence that radiation therapy can use the host's immune system to 

attack tumor cells in non-irradiated sites. This immune-driven effect not only helps to 

eliminate tumors at the local irradiation site of the disease, but also eliminates distant 

metastatic tumor cells, a phenomenon known as abscopal effects. Radiotherapy triggers 

ICD, which leads to the translocation of CALR to the cell surface and the release of 

DAMPs such as HMGB1 and ATP, and induces T cells to produce IFNγ in vitro and in 

vivo, promoting the antitumor effect of CD8+ T cells (Adkins et al., 2014). 

Clinically, radiotherapy induces ICD in tumor cells in a dose-dependent manner, usually 

2–20 Gy can effectively induce ICD (Golden et al., 2014). Local radiotherapy combined 

with immune checkpoint inhibitors, such as anti-cytotoxic T lymphocyte antigen 4 (CTLA4) 

or anti-PD-1, can take advantage of the pro-immunogenic effects of radiotherapy. In 

addition, radiotherapy combined with some chemotherapeutic drugs can also effectively 

induce ICD, but the chemotherapeutic drugs may counteract the immunogenicity of 

radiotherapy, so the specific role of these drugs in radiotherapy needs to be further 

evaluated. 
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4.2.3 Photodynamic therapy 

Photodynamic therapy (PDT) is a minimally invasive treatment method (van Straten et al., 

2017) that can induce type II ICD immune responses. PDT is a selective uptake of 

photosensitizers by tumor tissues and activated by light of a specific wavelength, resulting 

in an oxidative stress response, resulting in the destruction of tumor cells located at the 

site of the photosensitizer action (Garg and Agostinis, 2014). At present, the most 

intensively studied photosensitizer in this field that can induce ICD is hypericin, an 

anthraquinone derivative that can target the ER and induce ER stress and activation of 

the UPR signaling pathway upon irradiation, ultimately leading to cell death (Buytaert et 

al., 2006). Hypericin-mediated photodynamic therapy (Hyp-PDT) can also inhibit tumor 

NF-κB activity. At a certain dose, Hyp-PDT can down-regulate tumor cell-derived tumor-

promoting cytokines; in addition, Hyp-PDT can also inhibit the secretion of matrix 

metalloproteinase 9 (MMP-9), thereby inhibiting tumor metastasis (Du et al., 2007). 

Currently known photosensitizers that induce ICD include hypericin, 5-alanine (Ji et al., 

2015), rose bengal acetate (Panzarini et al., 2014), sugar-binding chloride (Tanaka et al., 

2016), phthalocyanines (Liu and Li, 2020), etc. It is being continuously developed and 

researched. 

4.2.4 Oncolytic virus therapy 

Viruses can induce and block a variety of cell death pathways. Envelope viruses require 

membrane proteins and lipids to produce progeny viruses. Thus, the virus induces ER 

stress and UPR. Oncolytic viruses (OVs) induce cell death similar to chemotherapy-

induced ICD. OVs generate pro-inflammatory responses by generating pathogen-

associated molecular patterns (PAMPs) and releasing tumor-associated antigens (TAAs), 

thus serving as an in situ tumor vaccine. Cell death induced by multiple OVs exhibited 

typical features of ICD, including increased surface expression of CALR and elevated 

levels of extracellular ATP and HMGB1. 

Talimogene laherparepvec (T-VEC) is a type 1 herpes simplex virus that expresses the 

granulocyte-macrophage colony-stimulating factor (GM-CSF) and is currently approved 

for the treatment of melanoma in the United States and Europe. Studies have shown that 

after in vitro infection with T-VEC, melanoma cells release increased HMGB1, increased 
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ATP, and increased surface expression of CALR. It was also found that the sensitivity of 

melanoma cells to T-VEC was negatively correlated with STING expression. Studies have 

shown that oncolytic HSV-1 can regress tumors with low STING expression. Therefore, 

T-VEC has the potential to mediate antitumor responses by expressing STING in STING-

deficient tumors (Bommareddy et al., 2019). 

In addition, coxsackievirus B3 (Liu et al., 2012; Miyamoto et al., 2012) and vaccinia virus 

(Heinrich et al., 2017) can induce ICD. Coxsackievirus B3 is an RNA virus that replicates 

in the cytoplasm of host cells, disrupting homeostasis, leading to cell death and 

accumulation of large amounts of unfolded or misfolded viral envelope proteins in the ER, 

inducing ER stress. After infection with coxsackievirus B3, non-small cell lung cancer 

(NSCLC) cells have increased CALR translocation and increased ATP and HMGB1. 

Coxsackievirus B3 can also enhance the immunogenicity of the tumor microenvironment 

by increasing the number of intratumoral blood vessels and the number of CD8+ T cells, 

DC, granulocytes, and NK cells accumulate, and the infiltration of inflammatory immune 

cells increases at the tumor site, contributing to tumor regression (Liu et al., 2012; 

Miyamoto et al., 2012). 

OVs are novel immunotherapies that replicate within solid tumors and interfere with the 

immune system. OVs replicate preferentially in tumor cells and can be genetically modified 

to inactivate interfering viral proteins and cause ER stress or activate ROS signaling to 

induce ICD (van Vloten et al., 2018). 

4.2.5 Novel ICD inducers 

In recent years, studies have found some new means to combine with ICD inducers to 

elicit broad antitumor responses, and novel ICD inducers are shown in Table 2. 

Non-thermal plasmas (NTP) have the potential to induce ICD, and studies have shown 

that NTP-treated CT26 colorectal cancer cells have increased surface expression of major 

histocompatibility complex I (MHC I) and CALR. NTP-induced cellular production of ROS 

and nitric oxide can rapidly alter the cellular oxidative state and induce ER stress. As a 

unique ROS and nitric oxide delivery system, NTP can successfully induce tumor cell ICD 

and is a potential cancer adjuvant therapy. The specific mechanism of NTP-induced ICD 
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needs to be further studied, and the treatment regimen should be further optimized. In 

addition, immunotherapy is a breakthrough in cancer treatment today, and NTP may be 

combined with chemotherapy or even therapeutic cancer vaccines (Lin et al., 2018). 

Nanoparticle-encapsulated doxorubicin and photosensitizer chlorin e6 can effectively 

stimulate DC recruitment and help DCs better expose and spread TAAs (Ni et al., 2020). 

Combining chemotherapy, PDT and immunotherapy provides new ideas for cancer 

treatment. 

Retinoic acid inducible gene I (RIG-I) helicase induces an antiviral response program by 

producing IFN, and its activated tumor cells release high levels of HMGB1, and in addition, 

its signaling in tumor cells can lead to mitochondrial oxidative stress (Duewell et al., 2014). 

Many novel therapies also promote anti-tumor immune responses by inducing tumor cells 

to undergo ICD. Studies have shown that oncolytic peptides such as LTX-315 and RT53 

can induce ICD in tumor cells and release many DAMPs, which are similar to tumor in situ 

vaccines and promote tumor regression and T cell infiltration in tumor sites (Pasquereau-

Kotula et al., 2018; Zhou et al., 2016). Compared with traditional radiotherapy, nano-pulse 

stimulation (NPS) is an effective non-thermal physical therapy, which uses ultra-short 

electrical pulses to stimulate tumor cells and inhibit tumor growth. Its mechanism of action 

is to induce the activation of caspase3/7 in tumor cells, resulting in an increased release 

of DAMPs, including CALR, ATP and HMGB1 (Nuccitelli et al., 2017). Hybrid protein 

oxygen nanocarrier therapy is an oxygen self-contained photodynamic therapy that co-

targets delivery of photosensitizer and oxygen to tumor cells, induces tumor cell ICD, and 

releases DAMPs. In a metastatic breast cancer model, hybrid protein oxygen nanocarrier 

therapy induces antitumor immunity, destroys primary tumors and effectively suppresses 

distant tumors and lung metastases (Chen et al., 2018). Other physical therapies, such as 

near-infrared photoimmunotherapy, have also shown potential to induce ICD (Gao et al., 

2019). 
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Table 2. Novel inducers of tumor immunogenic cell death and their mechanisms. 

ICD inducers DAMPs Mechanism Reference 

RIG-I helicases 

ecto-CALR, 
ERp57, ATP, 

HSP70, 
HMGB1 

• Expression of pro-inflammatory type I interferon; 
• Upregulation of MHC-I molecules and CD95; 
• CALR translocates to the cell surface; 
• Release of HMGB1 and HSP70; 
• Promotes DC maturation; 
• Promote efficient phagocytosis of apoptotic tumor cells by CD8a+ 
DC. 

(Duewell et 
al., 2014) 

Oncolytic peptides RT53 
and LTX-315 

ecto-CALR, 
ATP, HMGB1 

• Caspase- and eIF2α-dependent pathways trigger CALR exposure; 
• ATP and HMGB1 release; 
• Increased T cell infiltration. 

(Pasquereau-
Kotula et al., 
2018; Zhou 
et al., 2016) 

Nanopulse stimulation ecto-CALR, 
ATP, HMGB1 

• Stimulates the activation of caspase3/7; 
• Activation of immune response. 

(Nuccitelli et 
al., 2017) 

Oncolytic virus ecto-CALR, 
ATP, HMGB1 

• Increases the number of HER-2-specific CD8+ TILs that secrete 
IFNγ; 
• Increased intratumoral infiltration of tumor antigen-specific CD8+ T 
cells. 

(Gujar et al., 
2018; Lee 
and Gujar, 

2018) 
Hybrid protein oxygen 

nanocarriers 
ecto-CALR, 

ATP, HMGB1 
• Promotes the maturation of DCs; 
• Activation of T lymphocytes, NK cells and TDLNs. 

(Chen et al., 
2018) 

Near-infrared 
photoimmunotherapy 

ecto-CALR, 
ATP, HMGB1, 

HSP70, 
HSP90 

• Promotes the maturation of DCs; 
• Activation of host anti-tumor immune responses. 

(Ogawa et 
al., 2017) 
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AIM OF THE THESIS 

The development of tumors can be seen as the result of the inability of the human immune 

system to clear malignant cells. Numerous factors are involved in the process of tumor 

immune escape, which mainly include tumor-associated antigen loss, insufficient 

immunogenicity, and an immunosuppressive microenvironmental state caused by 

insufficient nutrients and specific metabolite accumulation (Chang et al., 2015; 

Wellenstein and de Visser, 2018). Similarly, the ability of tumor cells to widely adapt to 

different adverse environments is mainly attributed to the adaptation of the tumor cell 

metabolism, which is also the main reason for tumor proliferation and metastasis (Vander 

Heiden and DeBerardinis, 2017). Therefore, both metabolic factors and lack of tumor 

immune surveillance have been identified as factors driving tumorigenesis and the 

development of the malignant disease (Pavlova and Thompson, 2016; Vander Heiden and 

DeBerardinis, 2017). In epidemiological investigations and clinical trials, with the in-depth 

study of the mechanism of systemic nutritional status affecting immune response, the 

theory of "immunonutrition" has been developed (O'Sullivan et al., 2019). However, 

beyond vitamin deficiencies, the detailed molecular mechanisms of systemic 

macromolecular and small molecule nutrients in immune cell function remain thus far 

unexplored.  

A calorie-restricted diet has favorable anti-inflammatory effects and can improve immune 

cell function (Buck et al., 2017). Calorie restriction mimetics (CRMs) are a class of drugs 

or foods that mimic the effects of calorie restriction and are expected to improve health 

status and even prolong life (Andrejeva and Rathmell, 2017). Studies have shown that 

starvation and various potential CRMs can increase the expression of insulin-like growth 

factor-binding protein 1 (IGFBP1) and thereby reduce the level of IGF1 in the blood, 

ultimately causing changes in the systemic metabolic profile (Prieto et al., 2017); CRMs 

can reduce the proportion of regulatory T cells (Treg) in cancer nests to improve the 

efficacy of chemotherapy (Prieto et al., 2017).  

CRMs provoke the deacetylation of cellular proteins coupled to an increase in autophagic 

flux in the absence of toxicity. Pharmacological autophagy enhancement constitutes a 

preclinically validated strategy for preventing or treating most major age-associated 
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diseases. Based on these considerations, we engaged in the search for new autophagy 

inducers acting as additional CRMs by performing a high-content/high-throughput screen 

on 65 000 distinct compounds on a robotized fluorescence microscopy. 
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RESULTS 

Identification of picropodophyllin as an autophagy inducer 

Pharmacological autophagy enhancement constitutes a preclinically validated strategy for 

preventing or treating most major age-associated diseases. Driven by this consideration, 

we performed a high-content/high-throughput screen on 65 000 distinct compounds on a 

robotized fluorescence microscopy platform to identify novel autophagy inducers. Here, 

we report the discovery of picropodophyllin (PPP) as a potent inducer of autophagic flux 

that acts on-target. 

 

IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and 

immune-dependent mechanisms 

We characterize PPP as an inhibitor of the tyrosine kinase activity of the insulin-like growth 

factor-1 receptor (IGF1R). Thus, PPP lost its autophagy-stimulatory activity in cells 

engineered to lack IGF1R or to express a constitutively active AKT serine/threonine kinase 

1 (AKT1) mutant. When administered to cancer-bearing mice, PPP improved the 

therapeutic efficacy of chemoimmunotherapy with a combination of immunogenic 

cytotoxicants and programmed cell death 1 (PDCD1, better known as PD-1) blockade. 

These PPP effects were lost when tumors were rendered PPP-insensitive or autophagy-

incompetent. In combination with chemotherapy, PPP enhanced the infiltration of tumors 

by cytotoxic T lymphocytes, while reducing regulatory T cells. In human triple-negative 

breast cancer patients, the activating phosphorylation of IGF1R correlated with inhibited 

autophagy, an unfavorable local immune profile, and poor prognosis.  

 

Altogether, these results (displayed as the published article that follows) suggest that 

IGF1R may constitute a novel and druggable therapeutic target for the treatment of cancer 

in conjunction with chemoimmunotherapies.  

 



1Wu Q, et al. J Immunother Cancer 2021;9:e002722. doi:10.1136/jitc-2021-002722

Open access�

IGF1 receptor inhibition amplifies the 
effects of cancer drugs by autophagy 
and immune-dependent mechanisms

Qi Wu,1,2,3 Ai-Ling Tian,2,3,4 Bei Li,5 Marion Leduc,2,3 Sabrina Forveille,2,3 
Peter Hamley,6 Warren Galloway,6 Wei Xie,2,3 Peng Liu,2,3 Liwei Zhao,2,3 
Shuai Zhang,2,3,4 Pan Hui,2,3,4 Frank Madeo,7,8,9 Yi Tu,1 Oliver Kepp  ‍ ‍ ,2,3 
Guido Kroemer2,3,10,11,12

To cite: Wu Q, Tian A-L, Li B, 
et al.  IGF1 receptor inhibition 
amplifies the effects of 
cancer drugs by autophagy 
and immune-dependent 
mechanisms. Journal for 
ImmunoTherapy of Cancer 
2021;9:e002722. doi:10.1136/
jitc-2021-002722

►► Additional online 
supplemental material is 
published online only. To view, 
please visit the journal online 
(http://​dx.​doi.​org/​10.​1136/​jitc-​
2021-​002722).

QW, A-LT and BL are joint first 
authors.

Accepted 04 May 2021

For numbered affiliations see 
end of article.

Correspondence to
Dr Oliver Kepp;  
​captain.​olsen@​gmail.​com

Professor Yi Tu;  
​ty701105@​163.​com

Prof Guido Kroemer;  
​kroemer@​orange.​fr

Original research

© Author(s) (or their 
employer(s)) 2021. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Background  Pharmacological autophagy enhancement 
constitutes a preclinically validated strategy for preventing 
or treating most major age-associated diseases. Driven 
by this consideration, we performed a high-content/high-
throughput screen on 65 000 distinct compounds on a 
robotized fluorescence microscopy platform to identify 
novel autophagy inducers.
Results  Here, we report the discovery of picropodophyllin 
(PPP) as a potent inducer of autophagic flux that acts 
on-target, as an inhibitor of the tyrosine kinase activity 
of the insulin-like growth factor-1 receptor (IGF1R). 
Thus, PPP lost its autophagy-stimulatory activity in cells 
engineered to lack IGF1R or to express a constitutively 
active AKT serine/threonine kinase 1 (AKT1) mutant. 
When administered to cancer-bearing mice, PPP improved 
the therapeutic efficacy of chemoimmunotherapy 
with a combination of immunogenic cytotoxicants and 
programmed cell death 1 (PDCD1, better known as PD-1) 
blockade. These PPP effects were lost when tumors were 
rendered PPP-insensitive or autophagy-incompetent. 
In combination with chemotherapy, PPP enhanced the 
infiltration of tumors by cytotoxic T lymphocytes, while 
reducing regulatory T cells. In human triple-negative 
breast cancer patients, the activating phosphorylation of 
IGF1R correlated with inhibited autophagy, an unfavorable 
local immune profile, and poor prognosis.
Conclusion  Altogether, these results suggest that 
IGF1R may constitute a novel and druggable therapeutic 
target for the treatment of cancer in conjunction with 
chemoimmunotherapies.

INTRODUCTION
Macroautophagy (which we refer to as ‘auto-
phagy’) is a complex intracellular phenom-
enon in which portions of the cytoplasm 
including entire organelles are engulfed in 
autophagosomes that subsequently fuse with 
lysosomes for the digestion of the luminal 
cargo. Genetic or acquired defects in this 
process are linked to a broad spectrum of 
human diseases ranging from neoplastic 
to cardiometabolic diseases, inflamma-
tory syndromes and degenerative processes 

affecting virtually every organ system and cell 
type.1 At the physiological level, autophagy 
is part of a general stress response that facil-
itates cellular and organismal adaptation to 
changing external conditions.2 Genetic or 
pharmacological stimulation of autophagy 
can extend the healthspan and lifespan 
of model organisms, thus postponing the 
stigmata of disease and frailty.3 4 For this 
reason, there is an ever-increasing interest 
in identifying pharmacological autophagy 
enhancers.5 6

In the context of cancer, autophagy plays 
an ambiguous role.7 8 On one hand, auto-
phagy is required for maintaining cellular 
homeostasis and genomic stability,9 as well 
as for facilitating anticancer immunosurveil-
lance,5 meaning that the inhibition of auto-
phagy spurs carcinogenesis10 11 and disabled 
autophagy actually constitutes a poor prog-
nostic marker in some cancers.12 On the 
other hand, autophagy enhances the fitness 
of cancer cells and allows them to avoid cell 
death induction in response to cytotoxicants 
or targeted therapies.13 Thus, the effects of 
autophagy modulation on tumor progression 
are highly context dependent. For example, 
in pancreatic cancer, the induction of auto-
phagy has been suggested as a therapeutic 
strategy, depending on the genetic makeup 
of the cancer cells and immune factors.14–16 
Notwithstanding the ambiguous role of 
autophagy in carcinogenesis, attempts have 
been launched to stimulate autophagy for 
enhancing the therapeutic activity of immu-
nogenic chemotherapies (for instance with 
anthracyclines and oxaliplatin (OXA)) and 
immunotherapies5 17–19 In this context, it 
appears that autophagy has two major effects. 
First, it can enhance the lysosomal secretion 
of adenosine triphosphate (ATP) from dying 
cancer cells, thus enhancing the extracellular 
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ATP-mediated recruitment of dendritic cell precursors 
into the tumor.5 20 Second, autophagy can contribute 
to the maintenance of specific T lymphocyte stem cell 
properties.18

Driven by the aforementioned considerations, we set out 
to identify novel autophagy inducers. Here, we report the 
identification of picropodophyllin (PPP), a cyclolignan 
alkaloid derived from the mayapple plant, as a potent 
inducer of autophagy that acts through the inhibition 
of insulin-like growth factor-1 receptor (IGF1R). When 
administered to tumor-bearing mice, PPP enhanced the 
efficacy of immunogenic chemotherapy combined with 
immunotherapy and these effects relied on the induction 
of autophagy in malignant cells.

MATERIAL AND METHODS
Cell culture and chemicals
Culture media and supplements for cell culture were 
obtained from Life Technologies (Carlsbad, California, 
USA) and plastic materials came) from Greiner BioOne 
(Kremsmünster, Austria) and Corning (Corning, New 
York, USA). Rat adrenal gland PC12 cells stably expressing 
doxycycline-inducible Q74-GFP were cultured in Roswell 
Park Memorial Institute (RPMI)−1640 containing 5% 
fetal bovine serum (FBS) and 10% horse serum.21 Human 
neuroglioma H4 cells, human osteosarcoma U2OS 
cells, MCA205 murine fibrosarcoma and all the other 
cells were maintained in Dulbecco’s modified Eagle’s 
medium, supplemented with 10% (v/v) FBS, 10 U/ mL 
penicillin sodium and 10 µg/mL streptomycin sulfate at 
37°C in a humidified atmosphere with 5% CO2. Tran-
scription factor EB (TFEB)-deficient (TFEB−/−), tran-
scription factor 3 (TFE3)-deficient (TFE3−/−), TFEB and 
TFE3-double deficient (TFE DKO), autophagy related 
5 (ATG5)-deficient (ATG5−/−), and eukaryotic transla-
tion initiation factor 2 alpha kinase 3 (EIF2AK3, better 
known as PERK)-deficient (PERK−/−) U2OS-green fluo-
rescent protein (GFP)-microtubule associated protein 1 
light chain 3 beta (MAP1LC3B, better known as LC3) cell 
lines and TFEB and TFE3-double deficient (TFE DKO) 
in H4-GFP-LC3 cells were generated by means of the 
CRISPR/Cas-mediated genome editing, as per manufac-
turer’s recommendations.17 U2OS cells stably expressing 
RFP-LC3 bearing a mutant non-phosphorylation of 
eukaryotic initiation factor 2α (EIF2A) (eIF2αS51A) were 
constructed using the CRISPR-Cas9 technology as previ-
ously detailed.22 In addition, U2OS cells stably expressing 
GFP-TFEB were generated by our group in the past.17 23 
MCA205 cells stably expressing shRNAs interfering with 
the expression of TFE3/TFEB or ATG5, and overex-
pressing CD39 and a mutant phosphorylation AKTT308D/

S473D were also constructed as the manufacturer.5 17 24 
The polyphenol library and PPP were purchased from 
TargetMol (Boston, MA, USA); Torin1 (TOR), bafilo-
mycin A1, mitoxantrone (MTX) and OXA were obtained 
from Sigma-Aldrich (St. Louis, MI, USA). Recombi-
nant IGF1 were obtained from PROSPECBIO (CYT-216, 

Rehovot, Israel). Linsitinib (HY-10191) were obtained 
from MedChemExpress (Shanghai, China).

High-content microscopy
Human osteosarcoma U2OS and neuroglioma H4 
cells stably expressing GFP-LC3, GFP-TFEB, GFP-AKT, 
GFP-AKT R25C, RFP-GFP-LC3-tandem or RFP-GFP-
p62-tandem reporter and rat adrenal gland PC12 cells 
stably expressing doxycycline-inducible Q74-GFP were 
seeded in 384-well black imaging plates at a density of 
2000 cells per well and allowed to adapt for overnight. 
Cells were treated with the indicated agents, then fixed 
with 3.7% paraformaldehyde (PFA, w/v in PBS) (F8775, 
Sigma-Aldrich) at 4℃ overnight and stained with 1 µg/
mL Hoechst 33 342 in PBS. Subsequently, the fixative 
was exchanged to PBS and the plates were analyzed by 
automated microscopy. Image acquisition was performed 
using an ImageXpress Micro XL automated micro-
scope (Molecular Devices, Sunnyvale, California, USA) 
equipped with a 20 X PlanApo objective (Nikon, Tokyo, 
Japan), followed by automated image processing with 
the custom module editor within the MetaXpress soft-
ware (Molecular Devices). At least four view fields were 
acquired per well, and experiments involved at least trip-
licate assessment. Cellular regions of interest, cytoplasm 
and nucleus, were defined and segmented by using the 
MetaXpress software (Molecular Devices). After exclu-
sion of cellular debris and dead cells from the dataset, 
parameters of interest were normalized, statistically eval-
uated, and graphically depicted with R software. Using R, 
images were extracted and pixel intensities scaled to be 
visible (in the same extent for all images of a given exper-
iment). Cell viability was assessed as described before.25

Immunofluorescence
Human osteosarcoma U2OS cells were treated for 
6 hour to detect TFE3, then were fixed with 3.7% PFA 
at 4°C overnight. For staining, fixed cells were permea-
bilized with 0.1% Triton X100 on ice, and blocked with 
5% bovine serum albumin (BSA, w/v in PBS) for 1 hour. 
Next, cells were incubated with antibodies specific to 
TFE3 (#ab93808, 1:400, Abcam) at 4°C overnight. After 
washing with PBS twice, the cells were incubated with 
AlexaFluor conjugates (Thermo Fisher Scientific) against 
the primary antibody for 2 hour at ambient temperature. 
Then cells were washed and imaged by automated fluo-
rescence microscopy as described above. The nuclear 
intensity of TFE3 was measured and normalized to Ctrl.

Immunohistochemistry
A total of 49 formalin-fixed paraffin-embedded; tissue 
samples of triple-negative breast cancer were obtained 
from Renmin Hospital of Wuhan University, People’s 
Republic of China (online supplemental table S1). 
Patients did not receive financial compensation. Patients 
with at least 5-year follow-up were included in this retro-
spective study. All methods were performed in accor-
dance with the relevant guidelines and local regulations. 
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Immunohistochemical staining was performed by an 
automatic staining machine (Leica Bond3) or manu-
ally processed. Sections were dehydrated and antigenic 
epitopes were retrieved using a 10 mM citrate buffer 
and microwaving for 10 min. Specimen were then incu-
bated with for LC3B (#3868, 1:2000, Cell Signaling Tech-
nology), phospho-IGF1R (#orb503127, 1:100, Biorbyt, 
UK), CD163 (#93498, 1:500, Cell Signaling Technology), 
Foxp3 ((#98377, 1:100, Cell Signaling Technology), CD8 
(#70306, 1:200, Cell Signaling Technology). Primary anti-
body staining was detected by peroxidase-conjugated IgG 
(1:500 diluted P0448, Dako, Glostrup, Denmark). Posi-
tive cells were counted on nine randomly chosen tumor 
areas at 200 magnifications in a double blinded fashion. 
Quantitative analysis was performed using ImageJ soft-
ware as described.26 The receiver operating characteristic 
analysis was used to determine the optimal cut-off values 
of all proteins expression levels for survival rate.

Immunoblotting
Tissues (~30 mg) were dissociated in Precellys lysing 
tubes (#CK28_2 mL, Bertin Technologies SAS, France) 
containing 1 mL of radio immunoprecipitation assay 
buffer (RIPA) lysis buffer (#89901, Invitrogen, Carlsbad, 
California, USA) by using the Precellys 24 homogenizer 
(Bertin Technologies SAS) at 6500 rpm for 5 min, followed 
by spinning at 14 000 g for 15 min to collect the superna-
tant that contains soluble proteins. For cells, the protein 
extracts were dissolved in RIPA buffer and obtained by 
ultrasonicating for 3×10 s and centrifuging at 12 000 g for 
15 min to collect the supernatant that contains soluble 
proteins. Protein concentration was measured by means 
of by the BCA Assay (Bio-Rad, Hercules, California, 
USA). The protein solution was mixed with 4X loading 
buffer (# NP0008, Invitrogen), and denatured at 100°C 
for 15 min before subjected to western blotting. The total 
protein (~30 µg) were resolved on 4%–12% NuPAGE Bis-
Tris protein gels (#NP0322, Thermo Fisher Scientific) 
and electrotransferred to 0.2 µM polyvinylidene fluoride 
membranes (#1620177, Bio-Rad). The membranes were 
blocked with 0.05% Tween 20 (#P9416, Sigma Aldrich) 
v:v in Tris-buffered saline (TBS) (TBST) (#ET220, Euro-
medex) supplemented with 5% non-fat powdered milk 
(w:v in TBS), followed by an overnight incubation at 4°C 
with primary antibodies specific for LC3B (#2775, 1:1000, 
Cell Signaling Technology), HA (#ROAHAHA, 1:1000, 
Sigma-Aldrich), phospho-P70 (Thr389) (#9234, 1:1000, 
Cell Signaling Technology), P70 (#9202, 1:1000, Cell 
Signaling Technology), phospho-IGF1R (Tyr1135/1136) 
(#3024, 1:1000, Cell Signaling Technology), IGF1R 
(#9750, 1:1000, Cell Signaling Technology), pTFEB 
(Ser211) (#37681, 1:1000, Cell Signaling Technolo-
gy),TFEB (#4240, 1:1000, Cell Signaling Technology), 
TFE3 (#ab93808, 1:1000, Abcam), phospho-AKT (Ser473) 
(#4060, Cell Signaling Technology), AKT (#4691, Cell 
Signaling Technology), phospho-mechanistic target of 
rapamycin (mTOR) (Ser2448) (#2971, Cell Signaling 
Technology), mTOR (#2983, Cell Signaling Technology), 

H3 (#9715, 1:1000, Cell Signaling Technology). 
Membranes were washed three times for 10 min with TBST 
before incubation with HRP-conjugated goat-anti-rabbit 
secondary antibody (CliniScience) for 2 hours at room 
temperature. Then the membranes were washed again 
and subjected to chemiluminescence detection with the 
Amersham ECL Prime detection reagent kit (GE Health-
care, Piscataway, New Jersey, USA) on an ImageQuant 
LAS 4000 software-assisted imager. The membranes were 
stripped and reprobed for loading control with anti-
actin (# ab 20727, 1:10000, Abcam), anit-glyceraldeyde-
3-phosphate dehydrogenase (GAPDH)-specific antibody 
(#2118, 1:5000, Cell Signaling Technology) or anti-
vinculin antibody (#13901, 1:1000, Cell Signaling Tech-
nology). Quantification was performed by densitometry 
using the Image J software.

Plasmid transfection
Cells were seeded, let adhere for 24 hours, and following 
transfected with the CRISPR-Cas9 plasmid U6gRNA-Cas9-
2A-RFP targeting IGF1R (50-ATGATGCGATT CTTC-
GACG-30) or a plasmid coding for AKT carrying the 
T308D/S473D mutation (#14751, Addgene, Watertown, 
Massachusetts, USA), according to the manufacturer’s 
advice.

Nuclear extraction experiment
U2OS-GFP-LC3 cells were collected and processed 
with the Nuclear Extraction Kit (#ab113474, Abcam) 
following the manufacturer’s methods. The GAPDH 
antibody (#2118, 1:1000, Cell Signaling Technology) was 
used as cytoplasmic control, and H3 (#9715, 1:1000, Cell 
Signaling Technology) was selected as nuclear loading 
and quality control.

Detection of protein deacetylation
U2OS-GFP-LC3 stable expressing cells (~2000 cells/well) 
were seeded in 384-well microplates overnight. After 
experimental treatments, cells were fixed with 3.7% PFA 
containing 1 µg/mL Hoechst 33 342 overnight at 4°C. 
Thereafter, cells were incubated with an antibody specific 
for acetyl-alpha-tubulin (#5335, 1:500, Cell Signaling 
Technology) in 5% bovine serum albumin (BSA, w/v in 
PBS) for 1 hour to block non-specific binding sites and 
acetylated tubulins, followed by overnight incubation at 
4°C with specific antibody to detect acetylated proteins 
at lysines (#623402, 1:400, BioLegend, San Diego, Cali-
fornia, USA). After washing three times with PBS, cells 
were incubated in AlexaFluor-568 conjugates (Life Tech-
nologies) against the primary antibody for 2 hours at 
room temperature. Fluorescent images were acquired 
and analyzed as described before.

ATP release assays
Intracellular ATP levels were detected by quinacrine 
staining (Calbiochem), subsequently the images of quin-
acrine were observed by means of high-content micros-
copy and the cytoplasmic intensity of quinacrine was 
quantitated as described above. Extracellular ATP levels 

 on S
eptem

ber 2, 2021 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2021-002722 on 14 June 2021. D
ow

nloaded from
 

http://jitc.bmj.com/


4 Wu Q, et al. J Immunother Cancer 2021;9:e002722. doi:10.1136/jitc-2021-002722

Open access�

were measured by the ENLITEN ATP Assay System Biolu-
minescence Detection Kit (Promega, Madison, Michigan, 
USA; #FF2000) following the manufacturer’s instructions. 
Luminescence was measured by means of a Paradigm I3 
multimode plate reader (Molecular Devices).

Animal model
The animal experiments were approved by the Gustave 
Roussy ethics committee with the project number: 
24 771–2020032413235413, and all procedures were 
performed under the governmental and institutional 
guidelines and regulations. All mice were maintained in a 
temperature-controlled and pathogen-free environment 
with 12 hours light/dark cycles, with food and water ad 
libitum.

For tumor growth experiments, 7 week-old female 
wild-type C57BL/6 mice or athymic female nude mice 
(nu/nu) were obtained from Envigo, France (Envigo, 
Huntingdon, UK). AT3 wild-type, TC1 wild-type, MCA205 
wild-type (WT), overexpressing a CD39 transgene 
(CD39+) or a constitutive active variant of AKT T308D/
S473D (4×105), MCA205 with ATG5 knockout (WT, 
6×105) cells were subcutaneously injected into C57BL/6 
hosts. When tumors became palpable, mice were treated 
with 20 mg/kg PPP dissolved in corn oil (Sigma-Aldrich), 
25 mg/kg linsitinib (dissolved in 5% DMSO, 10% PEG300, 
5% Tween 80, 80% PBS) or an equivalent volume of 
vehicle alone or in combination with 10 mg/kg (OXA, 
Sigma-Aldrich) or 200 µg anti-PD-1 antibody (Clone 29 
F.1A12, BioXcell, West Lebanon, New Hampshire, USA), 
by intraperitoneal (i.p.) injection. On the following days, 
mice well-being and tumor growth were monitored and 
documented. Animals were sacrificed when tumor size 
reached endpoint or signs of obvious discomfort were 
observed following the EU Directive 63/2010 and our 
Ethical Committee advice.

Ex vivo–phenotyping of the tumor immune infiltrate
Tumors were harvested, weighed and transferred on 
ice into gentleMACS C tubes (Miltenyi Biotec, Bergisch 
Gladbach, Germany) containing 1 mL of RPMI medium. 
Tumors were dissociated first mechanically with scissors, 
then enzymatically using the mouse tumor dissociation 
kit (Miltenyi Biotec) and a GentleMACS Octo Dissoci-
ator according to the manufacturer’s instructions. The 
dissociated bulk tumor cell suspension was resuspended 
in RPMI1640, sequentially passed through 70 µm MACS 
Smart-Strainer (Miltenyi Biotec) and washed twice with 
PBS. Finally, bulk tumor cells were homogenized in 
PBS at a concentration corresponding to 250 mg of the 
initial tumor weight per mL. Prior to staining of tumor-
infiltrating lymphocytes (TILs) for flow cytometry anal-
ysis, samples (~50 mg) were incubated with LIVE/DEAD 
Fixable Yellow Dead Cell dye (Thermo Fisher Scientific) to 
discriminate viable cells from damaged cells. Fc receptors 
were blocked with anti-mouse CD16/CD32 (clone 2.4G2, 
Mouse BD Fc Block, BD Pharmingen) before staining 
with fluorescent-labeled antibodies targeting T-cell 

surface markers. Surface staining of murine immune cell 
populations infiltrating the tumor was performed with 
the following fluorochrome-conjugated antibodies: anti-
CD45-AF700, anti-CD3-BV421, anti-CD8-PE, anti-CD4-
Percp.Cy5.5, anti-CD25-PE/Cy7, and anti-PD-1-APC/Cy7 
(BioLegend). Then, cells were fixed and permeabilized 
in eBioscience Foxp3/Transcription Factor Staining 
Buffer (Thermo Fisher Scientific) and stained for intra-
cellular Foxp3. Finally, stained samples were run through 
a BD LSR II flow cytometer. Data were acquired using BD 
FACSDiva software (BD Biosciences) and analyzed using 
FlowJo software (TreeStar). Absolute counts of leuko-
cytes and tumor cells were normalized considering the 
following parameters: weight of the harvested tumor and 
total volume of the dissociated tumor cell suspension 
(cell concentration typically set to 250 mg/mL in PBS), 
proportion of the whole cell suspension and proportion 
of the cell suspension used for cytometry.

Statistical analysis
Unless otherwise mentioned, data are reported as 
means±SD of triplicate determinations and experiments 
were repeated at least three yielding similar results. 
Statistical significance was assessed by Student’s t-test. 
TumGrowth and GraphPad were used to analyze in vivo 
data arising from murine models.27 The Kaplan-Meier 
method was used to calculate patient survival and the log-
rank test was used to assess the heterogeneity for each 
prognostic factor. Univariate Cox proportional hazard 
regressions were used to obtain HRs and their respec-
tive 95% CIs to show the strength of the estimated rela-
tive risks. Pearson’s correlation was used to evaluate the 
correlation. P values of 0.05 or less were considered to 
denote significance (*p<0.05; **p<0.01; ***p<0.001; ns, 
not significant).

RESULTS
Identification of PPP as a potent inducer of autophagic flux
Human osteosarcoma U2OS cells, which are often used 
as biosensor cell lines,28 were stably transduced with 
a GFP-LC3 fusion protein and subjected to rounds of 
selection (to ensure homogeneous GFP-LC3 expression 
in most cells) and quality control (to ensure adequate 
formation of GFP-LC3 puncta in response to autophagy 
induction by the positive control torin1). In a robotized 
high-content/high throughput screening platform,28 
such cells were exposed to ~65 000 compounds (all 
tested at 10 µM) to identify agents that induce GFP-LC3 
puncta at least as efficiently as the positive control (the 
MTOR inhibitor torin1 used at 300 nM) without cell 
loss (figure  1A,B). About 200 compounds fulfilled this 
criterion. We chose to follow-up (PPP, also known as 
AXL1717) for two reasons. First, in a validation experi-
ment re-evaluating the top 400 compounds from the 
primary screen, in another smaller screen focusing on a 
library of polyphenols involving ~1000 compounds and 
in further low throughout experiments PPP was found 
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Figure 1  Identification of picropodophyllin (PPP) as autophagy inducer. (A) Human osteosarcoma U2OS stably expressing 
GFP-LC3 cells and were treated with a chemical library of 65 000 diverse compounds (10 μM) for 6 hours. Torin 1 at 300 nM 
was used as positive control for autophagy induction. The number of GFP-LC3 positive puncta was measured as a proxy 
for autophagy and the number of cells that confer a regular nuclear phenotype was assessed as an indicator for viability. We 
selected the agents that dramatically increase the expression of GFP-LC3 and whose viability is >0.5 times of its expression in 
control group, are potential autophagy activators. Data were normalized to controls, depicted as means of each campaign. (B, 
C) U2OS cells stably expressing GFP-LC3 were treated with PPP (1, 2.5, 5, 10 μM) and torin1 (300 nm) was used as control. 
the surface of GFP-LC3 positive puncta was measured as a proxy for autophagy (C) and representative images are depicted in 
B. scale bar equals 10 µm. (D, E) Rat adrenal gland PC12 cells expressing an inducible variant of Q74-GFP were treated with 
doxycycline (1 μg/mL) for 8 hours for the induction of Q74 expression. Then the medium was changed and PPP was added at 
1, 2.5, 5 and 10 μM. Torin1 (300 nm) was used as positive control. data is depicted as barchart in E and representative images 
are shown in D. Scale bar equals 10 µm. (F, G) U2OS cells were treated with PPP and the positive control torin1 (300 nm) for 
6 hours, followed by the incubation with specific antibodies to block acetylated tubulin. Thereafter, immunofluorescence was 
conducted with antibodies against acetylated lysine residues and appropriate AlexaFluor-conjugated secondary antibodies. 
representative images of acetylation are shown in F, and acetylation intensity in the cytoplasm was measured in G. Scale bar 
equals 10 µm. Data are means±SD of three replicates (**p<0.01, ***p<0.001 vs DMSO/Ctr, Student’s t-test).
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to induce autophagic flux in cells expressing distinct 
flux biosensors, namely a RFP-GFP-LC3 (online supple-
mental figure S1A), a Q74-GFP construct (online supple-
mental figure S1B), a RFP-ATG4-GFP-LC3ΔG (online 
supplemental figure S2A,B), mCherry-GFP-p62 (online 
supplemental figure S2C,D) and HA-tagged p62 (online 
supplemental figure S2E-G), confirming that PPP indeed 
induces autophagic flux. Second, PPP has been described 
as an inhibitor of IGF1R29 30 with potent antitumor effects 
in preclinical models31–33 and acceptable toxicity in clin-
ical phase I and II trials.34

Further experiments confirmed that PPP induced GFP-
LC3 puncta (figure  1B,C) and reduced the abundance 
of the autophagic substrate Q74-GFP (figure 1D,E) in a 
dose-dependent fashion. In addition, PPP reduced cyto-
plasmic protein acetylation, as determined by quantita-
tive immunofluorescence staining (figure  1F,G). These 
effects were detectable at PPP concentrations of 2.5 
to 10 µM, which did not affect cellular viability (online 
supplemental figure S2H). Of note, induction of GFP-
LC3 puncta or LC3-II by PPP was lost in ATG5-/- U2OS 
cells (figure  2A–C), was accompanied by the transloca-
tion of TFEB and TFE3 into nuclei (figure 2D–H, (online 
supplemental figure S3A,B), was partially reduced in 
TFEB-/- or TFE3-/- cells, and strongly inhibited in TFEB-

/- TFE3-/- double-knockout cells (figure  2I–Q, (online 
supplemental figure S3C–E). Hence, PPP stimulates auto-
phagic flux through a canonical, ATG5 and TFEB/TFE3-
dependent pathway.

PPP induces autophagy through IGF1R inhibition
PPP is known to block the tyrosine kinase activity of 
IGF1R.29 30 Accordingly, PPP-induced GFP-LC3 puncta 
were not prevented by addition of IGF1 (figure  3A,B), 
the agonist ligand of IGF1R. PPP efficiently blocked 
IGF1-induced IGF1R autophosphorylation, the acti-
vating phosphorylation of protein kinase B (best known 
as AKT), the phosphorylation of MTOR, and the activity 
of MTOR complex 1 (MTORC1), evaluated by assessing 
the phosphorylation of the MTORC1 substrates p70S6K 
and TFEB (figure  3C). Knock-out of IGF1R rendered 
U2OS cells resistant to the autophagy-inducing effects 
of PPP (figure  3D–F, online supplemental figure S3F). 
Conversely, transgenic expression of a constitutively active 
AKT mutant (T308D/S473D)35 abolished the proauto-
phagic activity of PPP (figure 3G–I, online supplemental 
figure S4A,B). IGF1 stimulated the membrane transloca-
tion of a GFP-AKT fusion protein (but not that of a GFP-
AKTR25C mutant that fails to translocate to phosphatidyl 
inositol-rich membranes),36 and this effect was blocked 
by PPP (figure 3J,K). Of note, on i.p. injection into mice, 
PPP inhibited phosphorylation of IGF1, AKT and mTOR, 
P70S6K and enhanced the abundancy of LC3-II in the liver 
and in the heart (online supplemental figure S5A-K). 
LC3-II was also enhanced in the brain (online supple-
mental figure S5L,M). Altogether, these results indicate 
that PPP induces autophagy through the inhibition of 
IGF1R and its downstream signals AKT and MTORC1.

IGF1R activation as a negative prognostic factor in breast 
cancer
A paucity in LC3B puncta, reflecting disabled autophagy 
in malignant cells, is associated with dismal prognosis of 
breast cancer, as well as an unfavorable ratio of tumor 
infiltrating CD8+ cytotoxic T lymphocytes (CTLs) over 
FOXP3+ regulatory T cells (Tregs) or CD163+ tumor-
associated macrophages (TAMs).12 37 In a series of 49 
stage negative breast cancer patients treated by surgical 
resection (online supplemental table S1), the activating 
phosphorylation of IGF1R detectable by immunohisto-
chemistry correlated negatively with the density of LC3 
puncta and CD8+ CTLs but positively with FOXP3+ Tregs 
and CD163+ TAMs (figure  4A–E). Phosphorylation of 
IGF1R above the median level was associated with poor 
overall survival compared with low IGF1R phosphoryla-
tion (figure 4F). The risk stratification of breast cancer 
patients could be further improved by including the char-
acteristics of the immune infiltrate. Thus, patients with 
phospho-IGF1Rhigh CD8low, phospho-IGF1Rhigh FOXP3high 
and phospho-IGF1Rhigh CD163high breast cancer exhib-
ited the worst overall survival (figure 4G–I). Altogether, 
these results indicate that activation of IGF1R signaling 
might affect autophagy as well as breast cancer immu-
nosurveillance in a clinically relevant fashion. We, there-
fore, decided to evaluate the effects of IGF1 inhibitors on 
cancer immunosurveillance.

Immune response-amplifying effects of IGF1R inhibition
Autophagy induction can increase the immunoge-
nicity of anthracycline or OXA-induced cell death by 
favoring the release of ATP.5 38 Accordingly, addition 
of PPP to U2OS cells enhanced the release of ATP 
from cells, causing a diminution of ATP-sensitive quin-
acrine fluorescence (figure 5A,B) and an increase in 
ATP concentrations in culture media in response to 
low-dose MTX. PPP similarly stimulated the release 
of ATP in response to low-dose OXA (online supple-
mental figure S6A,B). The low-dose chemotherapy-
induced ATP release was inhibited by knockout of 
ATG5, knockout of eIF2α kinase 3 EIF2AK3 (best 
known as PERK, which is required for autophagy 
induction by MTX),22 the S51A knockin mutation in 
eIF2α that renders it unphosphorylable (and blocks 
autophagy induction),22 39 as well as the expression 
of a constitutively active AKT mutant, AKTT308D/S473D 
(figure 5C–F).

Considering the fact that PPP induced autophagy in 
mouse cancer cell lines (online supplemental figure 
S6C,D), we evaluated the capacity of PPP to improve 
the efficacy of chemoimmunotherapy against cuta-
neous MCA205 fibrosarcomas that were orthotopi-
cally implanted in histocompatible C57BL/6 mice. 
PPP alone did not reduce tumor growth. PPP failed 
to improve the efficacy of immunotherapy with PD-1 
blockade, but improved that of chemotherapy with 
OXA. Moreover, the triple combination of OXA, 
PD-1 blockade and PPP was more efficient than 

 on S
eptem

ber 2, 2021 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2021-002722 on 14 June 2021. D
ow

nloaded from
 

https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
https://dx.doi.org/10.1136/jitc-2021-002722
http://jitc.bmj.com/


7Wu Q, et al. J Immunother Cancer 2021;9:e002722. doi:10.1136/jitc-2021-002722

Open access

chemoimmunotherapy with OXA and PD-1 blockade 
alone (figure  5H–I, online supplemental figure 
S7A). These effects depend on the immune system 
because no therapeutic efficacy could be measured 
in athymic nu/nu mice (that lack mature T lympho-
cytes) (figure  5J, online supplemental figure S7B). 

Immunocompetent mice that had been cured from 
MCA205 fibrosarcoma by the triple combination 
(OXA, PD-1 blockade and PPP) were resistant against 
rechallenge with MCA205 cells but readily developed 
antigenically unrelated TC1 lung cancer, meaning 
that they developed immune memory (figure 5K,L).

Figure 2  TFEB and TFE3 mediate PPP-induced autophagy. (A–C) U2OS-GFP-LC3 wild-type (WT) or ATG5 knockout cells 
were treated with PPP (10 μM) or torin1 (300 nM) for 6 hours. Then the cells were fixed and GFP-LC3 dots were quantified. 
Scale bar equals 10 μm. Data are means ± SD of four replicates ***p<0.001 vs untreated control; ###P<0.001 vs WT; Tukey’s 
multiple comparisons test). (D, E) U2OS cells stably expressing GFP-TFEB fusion protein were treated with PPP (10 μM) for 16 
hours and torin1 was used as positive control. nuclear GFP intensities were measured (E) and representative images are shown 
in D. Scale bar equals 10 µm. Data are means±SD of three replicates (**p<0.01, ***p<0.001 vs DMSO/Ctr, Student’s t-test). (F, 
G) U2OS cells were treated with PPP (10 μM) for 16 hours and torin1 was used as positive control and then endogenous TFE3 
translocation was assessed by immunostaining (F) and TFE3 nuclear intensities are depicted (G). Scale bar equals 10 µm. 
Data are means±SD of three replicates (**p<0.01, ***p<0.001 vs DMSO/Ctr, Student’s t-test). (H) U2OS cells were treated with 
PPP (10 μM) for 16 hours or were left untreated. Cytoplasmic and nuclear fractions were separated and assessed for nuclear 
translocation of TFEB and TFE3 by SDS-PAGE. band intensities of TFEB, TFE3, GAPDH and H3 were assessed and their ratio 
(TFEB or TFE3/GAPDH, and TFEB or TFE3/H3) was calculated (online supplemental figure S3). (I–Q) U2OS-GFP-LC3 cells WT 
or single as well as double knockout for TFEB and TFE3 were treated with PPP (10 μM) or torin1 for 16 H. LC3 II expression and 
TFEB/TFE3 deficiency by knockout were checked by SDS-PAGE and parallel immunoblot (K, N, Q). Band intensities of LC3-II 
and β-actin (ACTB) were assessed, and their ratio (LC3-II/actin) was calculated (online supplemental figure S3). representative 
images are shown in (I, L, O), and GFP-LC3 dots were quantified as indicator of autophagy (J, M, P). Scale bar equals 10 μm. 
Data are means±SD of four replicates (***p<0.001 vs untreated control; #P<0.05, ##P<0.01, ###P<0.001 vs WT; Tukey’s multiple 
comparisons test). PPP, picropodophyllin SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis.
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Figure 3  PPP induces autophagy via IGF1R/AKT signaling. (A, B) U2OS-GFP-LC3 cells were incubated in the absence of FBS 
overnight and were further treated with PPP (10 μM) or torin1 (300 nm) in the presence or absence of IGF1 (10 nm) for 6 hours. 
After fixation, GFP-LC3 dots were quantified in B. Scale bar equals 10 μm. Data are means±SD of three replicates (**P<0.01, 
vs DMSO/Ctr, Student’s t-test). (C) Immunoblot exploration of the IGF1R signal pathway. After U2OS cells were incubated 
in the absence of FBS overnight, then the cells were treated with PPP (10 μM) together with or without IGF1 (10 nm) for 6 
hours. Proteins were separated by SDS-PAGE and parallel immunoblots of pIGF1R (Tyr1135/1136), IGF1R, pAkt (Ser473), Akt, 
pmTOR (Ser2448), mTOR, pp70 (THR389), p70, pTFEB (Ser211), TFEB, LC3-II and were performed in parallel instances and 
β-actin (ACTB) was used as loading control (C). (D, E) U2OS wild-type (WT) or IGF1R knockout cells were treated with PPP (10 
μM) for 6 H. SDS-PAGE and immunoblots of IGF1R, LC3 and ACTB were performed (D), band intensities of LC3-II and ACTB 
were assessed, and their ratio (LC3-II/ACTB) was calculated (online supplemental figure S4). In parallel U2OS-GFP-LC3 WT or 
IGF1R knockout cells were treated with PPP (10 μM) for 6 hours then the cells were fixed and GFP-LC3 dots were quantified 
by microscopy (F). Representative images are shown in E and scale bar equals 10 μm. Data are means±SD of three replicates 
(***P<0.001 vs untreated control; ##P<0.01 vs WT; Tukey’s multiple comparisons test). (G–I) U2OS cells were transfected with 
constitutive active AKTT308D/S473D and were treated with PPP (10 μM) for 6 hours. SDS-PAGE and immunoblots of pAKT, AKT, 
LC3 and ACTB were performed (G), band intensities of LC3-II and ACTB were assessed, and their ratio (LC3-II/ACTB) was 
calculated (online supplemental figure S4). In parallel U2OS-GFP-LC3 WT or AKTT308D/S473D-expressing cells were treated with 
PPP (10 μM) for 6 H then the cells were fixed and GFP-LC3 dots were quantified by microscopy (I). Representative images are 
shown in H and scale bar equals 10 μm. Data are means±SD of three replicates (**P<0.01 vs untreated control; ##P<0.01 vs WT; 
Tukey’s multiple comparisons test). (J–K) U2OS cells stably expressing GFP-AKT or GFP-AKTR25C were incubated in absence 
of FBS overnight, then the cells were treated with IGF1 (10 nm) or PPP (10 μM) combined with IGF1 (10 nm). After 5 min, the 
membrane translocation of GFP-AKT was detected by microscopy (J) and the membrane intensity of AKT was measured (K). 
Scale bar equals 10 μm. Data are means±SD of three replicates (***P<0.001 vs DMSO/Ctr, Student’s t-test). IGF1, FBS, fetal 
bovine serum; IGF1, insulin-like growth factor-1; PPP, picropodophyllin; SDS_PAGE, sodium dodecyl sulfate polyacrylamide gel 
electrophoresis.
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Inhibition of PPP-induced autophagy by AKTT308D/

S473D or knockout of Atg5, as well as the expression of 
the ecto-ATPase CD39 abolished the anticancer effects 
of PPP (figure  5M–O, online supplemental figure 
S7C-E), supporting the involvement of autophagy-
dependent ATP release in PPP effects. PPP did not 
affect the MCA205 tumor immune infiltrate on its 
own, but did reduce PD-1 induction by OXA on CD8+ 
T cells (figure 5P–R). Moreover, the combination of 
PP OXA depleted Tregs from the tumor environment 
(online supplemental figure 5S) and improved the 
CD8/Treg ratio (figure 5T).

These immune response-associated effects of IGF1R 
inhibition were also observed for TC1 non-small cell 
lung cancer, in which PPP similarly improved the 
effects of OXA or those of an OXA+ anti-PD-1 combi-
nation (figure  6A–C, online supplemental figure 
S7F). Of note, survival of mice with TC1 cancers was 
similarly extended by PPP +OXA and PPP +OXA+an-
ti-PD-1 (online supplemental figure S7F). Mice that 
had been ridden from their TC1 tumors became resis-
tant against rechallenge with the same tumor but not 
MCA205 fibrosarcomas (figure 6D,E). In mice-bearing 
AT3 breast cancers, PPP also improve the effects of 

OXA +PD-1 blockade (online supplemental figure 
S6E-G, S7G). Moreover, PPP could be replaced by 
another IGF1R antagonist, linsitinib, to ameliorate the 
outcome of chemotherapy with OXA or a combined 
OXA +anti-PD-1 regimen (figure 6F–H, online supple-
mental figure S7H). The triple combination (OXA 
+anti-PD-1+linsitinib) induced several complete 
remissions as well as immune memory against the 
tumors that had been eliminated (figure 6I,J). These 
results underscore the capacity of IGF1R antagonist 
to enhance the efficacy of chemoimmunotherapy in 
preclinical models.

DISCUSSION
Together with the insulin receptor, IGF1R is one of the 
most important trophic receptor tyrosine kinases, stimu-
lating the uptake of nutrients into cells as well as a variety 
of anabolic reactions.40 Inhibition of IGF1R itself or that 
of the signal transduction cascade acting downstream 
of IGF1R (the PI3K/AKT/MTOR pathway) potently 
stimulates autophagy as well as other stress-adaptive 
mechanisms.41–43 Indeed, a vast literature suggests that 
chronic inhibition of this pathway by caloric restriction, 

Figure 4  IGF1R signaling correlates with immunosuppressive markers and decreased survival in breast cancer. (A–I) The 
expression of CD163, FOXP3 and CD8 as well as the phosphorylation of IGF1R and the dot formation of LC3 were quantified 
in paraffin-embedded biopsies obtained from 49 triple-negative breast cancer patients by ImageJ after staining with specific 
antibodies. Representative images of phosphorylated-IGF1R, dotted LC3B, and CD163, FOXP3 and CD8 expression are shown 
in A. The scale bar indicates 100 μm. Correlation analyses (determined by the Spearman method) of the analyzed parameters 
for each patient are depicted in B–E. (F–I) Kaplan-Meier survival analysis of patients with biomarker-positive and biomarker-
negative immunohistochemistry staining. IGF1R, insulin-like growth factor-1 receptor.
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Figure 5  PPP improves autophagy-dependent anticancer chemotherapy in a T lymphocyte-dependent manner. (A, B) Human 
osteosarcoma cells were treated with PPP (10 μM) in the presence of a low dose of the ICD inducers mitoxantrone (MTX, 1 
μM) for 6 hours. High-dose MTX (5 μM) was used as positive controls. Quinacrine staining was used to monitor intracellular 
ATP content. Representative images are shown in A and quinacrine dots were quantified in B. Scale bar equals 10 μm. Data 
are means±SD of three replicates (***p<0.001 vs untreated control; ###P<0.001 vs PPP; Tukey’s multiple comparisons test). 
(C–F) Human neuroglioma H4 cells wild-type or Atg5 knockout, human osteosarcoma U2OS wild type, PERK knockout or 
PEIF2α S51A knockin cells, murine fibrosarcoma MCA205 wild-type or AKTT308D/S473D knockin cells were treated with PPP (10 
μM) alone or in combination with low doses of the ICD inducers MTX (1 μM) for 6 H as described above. High-dose MTX (5 
μM) was used as positive controls. the extracellular ATP levels were measured in C–F. Data are means ± SD of three replicates 
(**P<0.01, ***P<0.001 vs untreated control; #P<0.05, ##P<0.01, ###P<0.001 vs WT; Tukey’s multiple comparisons test). (G–O) 
In vivo treatment of implanted murine MCA205 fibrosarcoma with oxaliplatin (OXA), anti-PD-1 antibody and PPP, alone or in 
combination (schematic view in G). (H, I) Growth kinetic of murine fibrosarcoma MCA205 cells evolving in immunocompetent 
C57BL/6 mice or athymic nu/nu mice (J) or MCA205 fibrosarcoma expressing constitutive active AKTT308D/S473D (M), Atg5 
deficient MCA205 ATG5-/- (N) or MCA205 expressing the ectoATPase CD39 (O) evolving in immunocompetent C57BL/6 mice 
were treated as indicated in (G). When tumors became palpable, mice received systemic intraperitoneal (i.p.) injections of 
ppp alone or together with OXA or PD-1 blocker. Data are depicted as growth curves (mean±SD) (H, L–O) and tumor size 
distributions at day 24 (I). Individual tumor growth curves of mice treated with OXA and PPP, combined or not with PD-1 
blockade are shown (K). The generation of immunological memory was assessed in cured animals by rechallenge with MCA205 
and TC-1. Individual tumor growth curves are depicted (L). Data were analyzed with TumGrowth. n≥6 for mice in each group. 
(*P< 0.05 or ns, not statistically significant vs OXA; #P<0.05 or ns, not statistically significant vs OXA+PD-1 blockade, Student’s 
t-test, survival plots in online supplemental figure S7). (P) Schematic overview of the treatment of implanted murine MCA205 
fibrosarcoma with OXA and PPP, alone or in combination. (P–T) Cytofluorometric analysis of tumor-infiltrating lymphocytes (TIL): 
CD3+CD8+ cytotoxic T lymphocytes (Q), CD8+PD-1+ T lymphocytes (R), CD4+FOXP3+CD25+ regulatory T cells (Treg) (S), and the 
ratio of CD3+CD8+ T cells over Treg (T). Data are means±SD (n≥5) (*p<0.05 or ns, not statistically significant vs control; #P<0.05 
or ns, not statistically significant vs OXA, Student’s t-test). PPP, picropodophyllin.
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pharmacological inhibitors or loss-of-function mutations 
has the capacity to extend the healthspan and lifespan in 
model organisms3 44–46 and perhaps in humans as well.47

Here, we identified a pharmacological IGF1R inhib-
itor, PPP, as a potent inducer of autophagic flux that acts 
on-target, as suggested by several observations. First, PPP 
inhibited all elements of the signaling cascading, hence 
reducing the activating phosphorylation of IGF1R, AKT 
and the MTOR substrate S6K, both in vitro, in cultured 
human cell lines and in vivo, in the liver and heart from 
mice, commensurate with the induction of autophagy. 
Second, PPP lost its capacity to induce autophagy after 
knockout of IGF1R, which obliges the cells to rewire their 
metabolism to support by other trophic receptors.48 49 
Third, most convincingly, artificial activation of the inhib-
ited cascade by expressing a transgene-encoded constitu-
tively active AKT mutant, abolished autophagy induction 
by PPP. These results unequivocally demonstrate that 
PPP is activating autophagy through a specific mode of 
action, without major off-target effects. Of note, as for 
other autophagy inducers,22 50–52 this pathway involved 
the obligatory phosphorylation of eIF2α as part of the 

integrated stress response. Thus, cells bearing a non-
phosphorylable eIF2α mutant or lacking the eIF2αkinase 
EIF2AK3/PERK were unable to activate the autophagic 
pathway in response to PPP.

Stimulation of autophagy by fasting or by the 
administration of CRMs enhances the efficacy of 
immunogenic chemotherapies (for instance with anth-
racyclines and OXA) as well as combination regimens 
of chemotherapies with immune checkpoint inhibi-
tors targeting PD-15 19 53 54 Accordingly, we found that 
PPP enhanced the efficacy of anticancer chemothera-
pies with MTX and OXA, alone or in combination with 
PD-1 blocking antibodies. PPP on its own had little or 
no tumor growth inhibitory effects against MCA205 
fibrosarcomas, TC1 non-small cell lung cancers and 
AT3 triple-negative breast cancer. The anticancer 
effects of PPP were only detectable in combination 
with chemoimmunotherapy and were lost in tumors 
that lacked essential genes/proteins involved in 
the autophagic process (due to knockout of ATG5 
or knock-in mutation of eIF2α) or were rendered 

Figure 6  IGF1R inhibition improves the anticancer efficacy of immunotherapy. (A) Schematic overview of the in vivo treatment 
of murine lung cancer Tc1 cells with oxaliplatin (OXA), anti-PD-1 antibody and PPP, alone or in combination. (B–E) Growth 
kinetic of Tc1 cells evolving in immunocompetent C57BL/6 mice, treated as indicated in (A). When tumors became palpable, 
mice received systemic intraperitoneal injection of PPP alone or together with OXA or PD-1 blocker. Data ae depicted as (B) 
growth curves (mean±SD); (C) tumor size distributions at day 24; (D) individual tumor growth curves of mice treated with OXA 
and PPP, combined or not with PD-1 blockade. The generation of immunological memory was assessed in cured animals by 
rechallenge with MCA205 and Tc1. Individual tumor growth curves are depicted (E). Data were analyzed with TumGrowth. 
n≥ 6 for mice in each group. (*P<0.05 or ns, not statistically significant vs OXA; #P<0.05 or ns, not statistically significant vs 
OXA+PD-1 blocker, Student’s t-test, survival plots in online supplemental figure S7). (F) Schematic overview of the in vivo 
treatment of murine fibrosarcoma MCA205 cells with OXA, anti-PD-1 antibody and the selective of IGF1R inhibitor linsitinib 
(Lins), alone or in combination. IGF1R, insulin-like growth factor-1 receptor; PPP, picropodophyllin.
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resistant to PPP (by transfection with constitutively 
active AKT). Moreover, these anticancer effects were 
accompanied by an increased infiltration of tumors by 
CTLs together with improvement in the local CTL/
Treg ratio, and were lost in immunodeficient mice 
lacking mature T lymphocytes. Of note, it appears 
that the autophagy-dependent increase in extracel-
lular ATP from tumor cells38 plays a rate-limiting role 
in the therapeutic efficacy of PPP, which indeed was 
lost when cancer cells were genetically manipulated 
to express the ATP-degrading enzyme CD39 on their 
surface. Importantly, in one tumor model (TC1), PPP 
improved the outcome of OXA-based chemotherapy, 
and this effect was not further improved by PD-1 
blockade. This might prove therapeutically relevant 
in situations where anti-PD-1 cannot be administered.

PPP could be replaced by another IGF1R inhib-
itor, linsitinib, which has undergone evaluation in 
clinical trials.55–57 Linsitinib increased the efficacy 
of immunochemotherapy in mice, suggesting that 
this type of clinical grade IGF1R inhibitor should be 
evaluated in patients for similar combination effects. 
Indeed, linsitinib has been administered to patients 
with cancer either alone55–57 or in combination with 
other anticancer agents thought to mediate direct 
effects on cancer cells such as the MTORC1 inhib-
itor everolimus,58 the EGFR inhibitor erlotinib59 or 
the chemotherapeutics paclitaxel60 and irinothecan,61 
with variable results. However, linsitinib has not been 
investigated for its potential immune effects and has 
not been combined with any kind of immunotherapy 
including PD-1 blockade.

At the clinical level, we observed that the activating 
phosphorylation of IGF1R detectable by immuno-
histochemistry correlated with a reduction of LC3B-
positive puncta in triple-negative breast cancer 
patients. This IGF1R phosphorylation also correlated 
with poor local immunosurveillance as indicated by 
scarce infiltration by CD8+ CTLs but high abundance 
of FOXP3+ regulatory T cells and immunosuppressive 
CD163+ macrophages infiltrating the tumors, as well 
as dismal prognosis. These results confirm the nega-
tive effects of IGF1R signaling on immunosurveillance 
and disease control in breast cancer patients. A recent 
report on patients with colorectal cancer treated with 
chemotherapy together with EGFR or VEGF inhibitor 
revealed that overactivation of the IGF1R also consti-
tutes a poor prognostic factor, particularly in patients 
bearing RAS wild-type tumors.62 These findings echo 
prior observations that high expression of IGF1R 
(though without proof of its activation) is a poor 
prognostic biomarker in gastric63 and breast cancer.1

In conclusion, excessive antiautophagic signaling 
via IGF1R has a major negative effect on anticancer 
immunosurveillance, thus reducing patient prog-
nosis. However, IGF1R and its downstream signals are 
amenable to pharmacological inhibition and subse-
quent improvement of cancer control by the immune 

system. These considerations should be incorporated 
into the future design of clinical trials in which inhi-
bition of the IGF1R/PI3K/AKT/MTOR pathway will 
be combined with adequate immunostimulation with 
ICD inducers and/or immune checkpoint inhibitors.
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Université Paris-Saclay, Plateforme Imagerie et Cytométrie (PFIC), UMS AMMICa 
INSERM US23-CNRS 3655.

Contributors  QW, A-LT and BL performed most of the experiments; QW, A-LT and 
WX performed in vivo experiments, ML, SF, PH and WG conceived and performed 
the large chemical drug screen, FM, YT, OK and GK conceived the study; PL, LZ, SZ 
and HP designed (parts of) the study; OK and GK wrote the paper.

Funding  QW, A-LT, WX and HP were supported by the Chinese scholarship 
council. OK receives funding by the Île de France DIM ELICIT initiative. This work 
was partially supported by a Natural Science Foundation of Hubei grant (Grant 
No: 2020CFA026) to YT. GK is supported by the Ligue contre le Cancer (équipe 
labellisée); Agence National de la Recherche (ANR)—Projets blancs; AMMICa 
US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); 
Association 'Ruban Rose'; Cancéropôle Ile-de-France; Fondation pour la Recherche 
Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European 
Joint ProgrammeProgram on Rare Diseases (EJPRD); Gustave Roussy Odyssea, 
the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation 
Carrefour; High-end Foreign Expert Program in China (GDW20171100085), 
Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; 
LabEx Immuno-Oncology (ANR-18-IDEX-0001); the RHU Torino Lumière; Seerave 
Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune 
Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine 
(CARPEM). This study contributes to the IdEx Université de Paris ANR-18-
IDEX-0001. FM is grateful to the Austrian Science Fund FWF (SFB LIPOTOX F3007 
and F3012, W1226, P29203, P29262, P27893, P31727) and the Austrian Federal 
Ministry of Education, Science and Research as well as the University of Graz for 
grants 'Unkonventionelle Forschung-InterFast and Fast4Health' as well as 'flysleep' 
(BMWFW-80.109/0001-WF/V/3b/2015). We acknowledge the support of the field 
of excellence BioHealth, of NAWI Graz and the BioTechMed-Graz flagship project 
“EPIAge”.

Competing interests  PH and WG are full-time employees of Samsara 
Therapeutics. GK, FM and OK are cofounders of Samsara Therapeutics.

Patient consent for publication  Not required.

Ethics approval  All patients included in the study wrote the informed consent, 
approved by the Institutional Ethics Committee of the Renmin Hospital of Wuhan 
University (approval no. 2018K-C09). Animal experiments were conducted in 
compliance with the European Union (EU) Directive 63/2010 and protocols 
2019_030_20590 and were approved by the Ethical Committee of the Gustave 
Roussy Campus Cancer (CEEA IRCIV/IGR no. 26, registered at the French Ministry 
of Research).

 on S
eptem

ber 2, 2021 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2021-002722 on 14 June 2021. D
ow

nloaded from
 

http://jitc.bmj.com/


13Wu Q, et al. J Immunother Cancer 2021;9:e002722. doi:10.1136/jitc-2021-002722

Open access

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available on reasonable request. All data 
relevant to the study are included in the article or uploaded as online supplemental 
information. All data supporting the findings of this study are available within the 
article and its online supplemental information files and from the corresponding 
author on reasonable request.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See http://​creativecommons.​org/​licenses/​by-​nc/​4.​0/.

ORCID iD
Oliver Kepp http://​orcid.​org/​0000-​0002-​6081-​9558

REFERENCES
	 1	 de Groot S, Charehbili A, van Laarhoven HWM, et al. Insulin-

like growth factor 1 receptor expression and IGF1R 3129G > T 
polymorphism are associated with response to neoadjuvant 
chemotherapy in breast cancer patients: results from the NEOZOTAC 
trial (BOOG 2010-01). Breast Cancer Res 2016;18:3.

	 2	 Ho CJ, Samarasekera G, Rothe K, et al. Puncta intended: connecting 
the dots between autophagy and cell stress networks. Autophagy 
2021;17:1–6.

	 3	 Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter 
of longevity: insights from model organisms. Nat Rev Mol Cell Biol 
2018;19:579–93.

	 4	 López-Otín C, Kroemer G. Hallmarks of health. Cell 2021;184:33–63.
	 5	 Pietrocola F, Pol J, Vacchelli E, et al. Caloric restriction 

mimetics enhance anticancer immunosurveillance. Cancer Cell 
2016;30:147–60.

	 6	 Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as 
a potential therapeutic target for diverse diseases. Nat Rev Drug 
Discov 2012;11:709–30.

	 7	 Galluzzi L, Pietrocola F, Bravo‐San Pedro JM, et al. Autophagy 
in malignant transformation and cancer progression. Embo J 
2015;34:856–80.

	 8	 Santana-Codina N, Mancias JD, Kimmelman AC. The role of 
autophagy in cancer. Annu Rev Cancer Biol 2017;1:19–39.

	 9	 Hewitt G, Korolchuk VI. Repair, reuse, recycle: the expanding role of 
autophagy in genome maintenance. Trends Cell Biol 2017;27:340–51.

	10	 Cassidy LD, Young ARJ, Young CNJ, et al. Temporal inhibition of 
autophagy reveals segmental reversal of ageing with increased 
cancer risk. Nat Commun 2020;11:307.

	11	 Wang Y, Xiong H, Liu D, et al. Autophagy inhibition specifically 
promotes epithelial-mesenchymal transition and invasion in Ras-
mutated cancer cells. Autophagy 2019;15:886–99.

	12	 Ladoire S, Penault-Llorca F, Senovilla L, et al. Combined evaluation 
of LC3B puncta and HMGB1 expression predicts residual risk of 
relapse after adjuvant chemotherapy in breast cancer. Autophagy 
2015;11:1878–90. doi:10.1080/15548627.2015.1082022

	13	 Amaravadi R, Kimmelman AC, White E. Recent insights into the 
function of autophagy in cancer. Genes Dev 2016;30:1913–30.

	14	 Rosenfeldt MT, O'Prey J, Morton JP, et al. P53 status determines 
the role of autophagy in pancreatic tumour development. Nature 
2013;504:296–300.

	15	 Karasic TB, O'Hara MH, Loaiza-Bonilla A, et al. Effect of gemcitabine 
and nab-paclitaxel with or without hydroxychloroquine on patients 
with advanced pancreatic cancer: a phase 2 randomized clinical trial. 
JAMA Oncol 2019;5:993–8.

	16	 Yamamoto K, Venida A, Yano J, et al. Autophagy promotes 
immune evasion of pancreatic cancer by degrading MHC-I. Nature 
2020;581:100–5.

	17	 Chen G, Xie W, Nah J, et al. 3,4-Dimethoxychalcone induces 
autophagy through activation of the transcription factors TFE3 and 
TFEB. EMBO Mol Med 2019;11:e10469.

	18	 Vodnala SK, Eil R, Kishton RJ, et al. T cell stemness and dysfunction 
in tumors are triggered by a common mechanism. Science 2019;363. 
doi:10.1126/science.aau0135. [Epub ahead of print: 29 Mar 2019].

	19	 Lévesque S, Le Naour J, Pietrocola F, et al. A synergistic triad 
of chemotherapy, immune checkpoint inhibitors, and caloric 
restriction mimetics eradicates tumors in mice. Oncoimmunology 
2019;8:e1657375.

	20	 Ma Y, Adjemian S, Mattarollo SR, et al. Anticancer chemotherapy-
induced intratumoral recruitment and differentiation of antigen-
presenting cells. Immunity 2013;38:729–41.

	21	 Wang Y, Xie W, Humeau J, et al. Autophagy induction by thiostrepton 
improves the efficacy of immunogenic chemotherapy. J Immunother 
Cancer 2020;8.

	22	 Humeau J, Leduc M, Cerrato G, et al. Phosphorylation of eukaryotic 
initiation factor-2α (eIF2α) in autophagy. Cell Death Dis 2020;11:433.

	23	 Bezu L, Sauvat A, Humeau J, et al. eIF2α phosphorylation is 
pathognomonic for immunogenic cell death. Cell Death Differ 
2018;25:1375–93.

	24	 Pietrocola F, Castoldi F, Markaki M, et al. Aspirin recapitulates 
features of caloric restriction. Cell Rep 2018;22:2395–407.

	25	 Sauvat A, Wang Y, Segura F, et al. Quantification of cellular 
viability by automated microscopy and flow cytometry. Oncotarget 
2015;6:9467–75.

	26	 Varghese F, Bukhari AB, Malhotra R, et al. Ihc Profiler: an open 
source plugin for the quantitative evaluation and automated scoring 
of immunohistochemistry images of human tissue samples. PLoS 
One 2014;9:e96801.

	27	 Enot DP, Vacchelli E, Jacquelot N, et al. TumGrowth: an open-
access web tool for the statistical analysis of tumor growth curves. 
Oncoimmunology 2018;7:e1462431.

	28	 Kepp O, Chen G, Carmona-Gutierrez D, et al. A discovery platform 
for the identification of caloric restriction mimetics with broad health-
improving effects. Autophagy 2020;16:188–9.

	29	 Girnita A, Girnita L, del Prete F, et al. Cyclolignans as inhibitors of 
the insulin-like growth factor-1 receptor and malignant cell growth. 
Cancer Res 2004;64:236–42.

	30	 Vasilcanu D, Girnita A, Girnita L, et al. The cyclolignan ppp induces 
activation loop-specific inhibition of tyrosine phosphorylation 
of the insulin-like growth factor-1 receptor. link to the 
phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene 
2004;23:7854–62.

	31	 Girnita A, All-Ericsson C, Economou MA, et al. The insulin-like 
growth factor-I receptor inhibitor picropodophyllin causes tumor 
regression and attenuates mechanisms involved in invasion of uveal 
melanoma cells. Clin Cancer Res 2006;12:1383–91.

	32	 Wu X, Sooman L, Wickström M, et al. Alternative cytotoxic effects of 
the postulated IGF-IR inhibitor picropodophyllin in vitro. Mol Cancer 
Ther 2013;12:1526–36.

	33	 Tarnowski M, Tkacz M, Zgutka K, et al. Picropodophyllin (ppp) is a 
potent rhabdomyosarcoma growth inhibitor both in vitro and in vivo. 
BMC Cancer 2017;17:532.

	34	 Bergqvist M, Holgersson G, Bondarenko I, et al. Phase II 
randomized study of the IGF-1R pathway modulator AXL1717 
compared to docetaxel in patients with previously treated, locally 
advanced or metastatic non-small cell lung cancer. Acta Oncol 
2017;56:441–7.

	35	 Berndt N, Yang H, Trinczek B, et al. The Akt activation inhibitor 
TCN-P inhibits Akt phosphorylation by binding to the pH domain of 
Akt and blocking its recruitment to the plasma membrane. Cell Death 
Differ 2010;17:1795–804.

	36	 Balla T, Várnai P. Visualizing cellular phosphoinositide pools with 
GFP-fused protein-modules. Sci STKE 2002;2002:pl3.

	37	 Ladoire S, Enot D, Senovilla L, et al. The presence of LC3B puncta 
and HMGB1 expression in malignant cells correlate with the immune 
infiltrate in breast cancer. Autophagy 2016;12:864–75.

	38	 Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-Dependent 
anticancer immune responses induced by chemotherapeutic agents 
in mice. Science 2011;334:1573–7.

	39	 Shen S, Niso-Santano M, Adjemian S, et al. Cytoplasmic 
STAT3 represses autophagy by inhibiting PKR activity. Mol Cell 
2012;48:667–80.

	40	 Thompson CB, Bielska AA. Growth factors stimulate anabolic 
metabolism by directing nutrient uptake. J Biol Chem 
2019;294:17883–8.

	41	 Gu Y, Wang C, Cohen A. Effect of IGF-1 on the balance between 
autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett 
2004;577:357–60.

 on S
eptem

ber 2, 2021 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2021-002722 on 14 June 2021. D
ow

nloaded from
 

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-6081-9558
http://dx.doi.org/10.1186/s13058-015-0663-3
http://dx.doi.org/10.1080/15548627.2020.1775394
http://dx.doi.org/10.1038/s41580-018-0033-y
http://dx.doi.org/10.1016/j.cell.2020.11.034
http://dx.doi.org/10.1016/j.ccell.2016.05.016
http://dx.doi.org/10.1038/nrd3802
http://dx.doi.org/10.1038/nrd3802
http://dx.doi.org/10.15252/embj.201490784
http://dx.doi.org/10.1146/annurev-cancerbio-041816-122338
http://dx.doi.org/10.1016/j.tcb.2016.11.011
http://dx.doi.org/10.1038/s41467-019-14187-x
http://dx.doi.org/10.1080/15548627.2019.1569912
http://dx.doi.org/10.1080/15548627.2015.1082022
http://dx.doi.org/10.1101/gad.287524.116
http://dx.doi.org/10.1038/nature12865
http://dx.doi.org/10.1001/jamaoncol.2019.0684
http://dx.doi.org/10.1038/s41586-020-2229-5
http://dx.doi.org/10.15252/emmm.201910469
http://dx.doi.org/10.1126/science.aau0135
http://dx.doi.org/10.1080/2162402X.2019.1657375
http://dx.doi.org/10.1016/j.immuni.2013.03.003
http://dx.doi.org/10.1136/jitc-2019-000462
http://dx.doi.org/10.1136/jitc-2019-000462
http://dx.doi.org/10.1038/s41419-020-2642-6
http://dx.doi.org/10.1038/s41418-017-0044-9
http://dx.doi.org/10.1016/j.celrep.2018.02.024
http://dx.doi.org/10.18632/oncotarget.3266
http://dx.doi.org/10.1371/journal.pone.0096801
http://dx.doi.org/10.1371/journal.pone.0096801
http://dx.doi.org/10.1080/2162402X.2018.1462431
http://dx.doi.org/10.1080/15548627.2019.1688984
http://dx.doi.org/10.1158/0008-5472.can-03-2522
http://dx.doi.org/10.1038/sj.onc.1208065
http://dx.doi.org/10.1158/1078-0432.CCR-05-1106
http://dx.doi.org/10.1158/1535-7163.MCT-13-0091
http://dx.doi.org/10.1158/1535-7163.MCT-13-0091
http://dx.doi.org/10.1186/s12885-017-3495-y
http://dx.doi.org/10.1080/0284186X.2016.1253866
http://dx.doi.org/10.1038/cdd.2010.63
http://dx.doi.org/10.1038/cdd.2010.63
http://dx.doi.org/10.1126/stke.2002.125.pl3
http://dx.doi.org/10.1080/15548627.2016.1154244
http://dx.doi.org/10.1126/science.1208347
http://dx.doi.org/10.1016/j.molcel.2012.09.013
http://dx.doi.org/10.1074/jbc.AW119.008146
http://dx.doi.org/10.1016/j.febslet.2004.10.040
http://jitc.bmj.com/


14 Wu Q, et al. J Immunother Cancer 2021;9:e002722. doi:10.1136/jitc-2021-002722

Open access�

	42	 Troncoso R, Vicencio JM, Parra V, et al. Energy-preserving effects of 
IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc 
Res 2012;93:320–9.

	43	 Galluzzi L, Pietrocola F, Levine B, et al. Metabolic control of 
autophagy. Cell 2014;159:1263–76.

	44	 Fontana L, Partridge L, Longo VD. Extending healthy life span--from 
yeast to humans. Science 2010;328:321–6.

	45	 López-Otín C, Galluzzi L, Freije JMP, et al. Metabolic control of 
longevity. Cell 2016;166:802–21.

	46	 Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of 
age-related disease. Nat Cell Biol 2018;20:1338–48.

	47	 Vitale G, Pellegrino G, Vollery M, et al. Role of IGF-1 system in the 
modulation of longevity: controversies and new insights from a 
centenarians' perspective. Front Endocrinol 2019;10:27.

	48	 Lee C, Raffaghello L, Longo VD. Starvation, detoxification, 
and multidrug resistance in cancer therapy. Drug Resist Updat 
2012;15:114–22.

	49	 Emdal KB, Pedersen A-K, Bekker-Jensen DB, et al. Integrated 
proximal proteomics reveals Irs2 as a determinant of cell survival 
in ALK-driven neuroblastoma. Sci Signal 2018;11. doi:10.1126/
scisignal.aap9752. [Epub ahead of print: 20 Nov 2018].

	50	 Tallóczy Z, Jiang W, Virgin HW, et al. Regulation of starvation- and 
virus-induced autophagy by the eIF2alpha kinase signaling pathway. 
Proc Natl Acad Sci U S A 2002;99:190–5.

	51	 Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress 
response. Mol Cell 2010;40:280–93.

	52	 Wengrod JC, Gardner LB. Cellular adaptation to nutrient 
deprivation: crosstalk between the mTORC1 and eIF2α 
signaling pathways and implications for autophagy. Cell Cycle 
2015;14:2571–7.

	53	 Wu Q, Tian A-L, Durand S, et al. Isobacachalcone induces autophagy 
and improves the outcome of immunogenic chemotherapy. Cell 
Death Dis 2020;11:1015.

	54	 Castoldi F, Humeau J, Martins I, et al. Autophagy-Mediated 
metabolic effects of aspirin. Cell Death Discov 2020;6:129.

	55	 Jones RL, Kim ES, Nava-Parada P, et al. Phase I study of intermittent 
oral dosing of the insulin-like growth factor-1 and insulin receptors 
inhibitor OSI-906 in patients with advanced solid tumors. Clin Cancer 
Res 2015;21:693–700.

	56	 Fassnacht M, Berruti A, Baudin E, et al. Linsitinib (OSI-906) 
versus placebo for patients with locally advanced or metastatic 
adrenocortical carcinoma: a double-blind, randomised, phase 3 
study. Lancet Oncol 2015;16:426–35.

	57	 von Mehren M, George S, Heinrich MC, et al. Linsitinib (OSI-906) for 
the treatment of adult and pediatric wild-type gastrointestinal stromal 
tumors, a sarc phase II study. Clin Cancer Res 2020;26:1837–45.

	58	 Bendell JC, Jones SF, Hart L, et al. A phase Ib study of linsitinib 
(OSI-906), a dual inhibitor of IGF-1R and IR tyrosine kinase, in 
combination with everolimus as treatment for patients with refractory 
metastatic colorectal cancer. Invest New Drugs 2015;33:187–93.

	59	 Macaulay VM, Middleton MR, Eckhardt SG, et al. Phase I dose-
escalation study of linsitinib (OSI-906) and erlotinib in patients with 
advanced solid tumors. Clin Cancer Res 2016;22:2897–907.

	60	 Oza A, Kaye S, Van Tornout J, et al. Phase 2 study evaluating 
intermittent and continuous linsitinib and Weekly paclitaxel in 
patients with recurrent platinum resistant ovarian epithelial cancer. 
Gynecol Oncol 2018;149:275–82.

	61	 Davis SL, Eckhardt SG, Diamond JR, et al. A phase I dose-escalation 
study of linsitinib (OSI-906), a small-molecule dual insulin-like growth 
factor-1 receptor/insulin receptor kinase inhibitor, in combination 
with irinotecan in patients with advanced cancer. Oncologist 
2018;23:1409–e1140.

	62	 Schirripa M, Zhang W, Heinemann V, et al. Single nucleotide 
polymorphisms in the IGF-IRS pathway are associated with 
outcome in mCRC patients enrolled in the FIRE-3 trial. Int J Cancer 
2017;141:383–92.

	63	 Matsubara J, Yamada Y, Nakajima TE, et al. Clinical significance 
of insulin-like growth factor type 1 receptor and epidermal growth 
factor receptor in patients with advanced gastric cancer. Oncology 
2008;74:76–83.

 on S
eptem

ber 2, 2021 by guest. P
rotected by copyright.

http://jitc.bm
j.com

/
J Im

m
unother C

ancer: first published as 10.1136/jitc-2021-002722 on 14 June 2021. D
ow

nloaded from
 

http://dx.doi.org/10.1093/cvr/cvr321
http://dx.doi.org/10.1093/cvr/cvr321
http://dx.doi.org/10.1016/j.cell.2014.11.006
http://dx.doi.org/10.1126/science.1172539
http://dx.doi.org/10.1016/j.cell.2016.07.031
http://dx.doi.org/10.1038/s41556-018-0235-8
http://dx.doi.org/10.3389/fendo.2019.00027
http://dx.doi.org/10.1016/j.drup.2012.01.004
http://dx.doi.org/10.1126/scisignal.aap9752
http://dx.doi.org/10.1073/pnas.012485299
http://dx.doi.org/10.1016/j.molcel.2010.09.023
http://dx.doi.org/10.1080/15384101.2015.1056947
http://dx.doi.org/10.1038/s41419-020-03226-x
http://dx.doi.org/10.1038/s41419-020-03226-x
http://dx.doi.org/10.1038/s41420-020-00365-0
http://dx.doi.org/10.1158/1078-0432.CCR-14-0265
http://dx.doi.org/10.1158/1078-0432.CCR-14-0265
http://dx.doi.org/10.1016/S1470-2045(15)70081-1
http://dx.doi.org/10.1158/1078-0432.CCR-19-1069
http://dx.doi.org/10.1007/s10637-014-0177-3
http://dx.doi.org/10.1158/1078-0432.CCR-15-2218
http://dx.doi.org/10.1016/j.ygyno.2018.01.019
http://dx.doi.org/10.1634/theoncologist.2018-0315
http://dx.doi.org/10.1002/ijc.30715
http://dx.doi.org/10.1159/000139127
http://jitc.bmj.com/


41 
 

DISCUSSION 

Fasting or calorie-restricted diets have evolved as important approaches to modulate 

metabolic responses as well as immune function. There is evidence that in mouse or 

human models of starvation, the level of protein acetylation in lymphocytes decreases, 

accompanied by activation of the autophagy process (Madeo et al., 2019). Likewise, a 

calorie-restricted diet has considerable anti-inflammatory effects and can improve immune 

cell function (Buck et al., 2017). Studies have found that the deacetylase SIRT3 is 

significantly activated in humans after 24 hours of starvation, thereby inhibiting the 

activation of the NLRP3 inflammasome, which ultimately leads to a decrease in the 

secretion of interleukin-1β (Traba et al., 2015). Conversely, a combination of cellular 

metabolites and glucose significantly increased interleukin-1β release from macrophages 

in lean mice after fasting, thereby promoting postprandial insulin release (Dror et al., 2017). 

Moreover, many studies have demonstrated that disease-associated anorexia is a highly 

evolutionarily conserved response that modulates immune responses by inducing 

systemic autophagy activation (van Niekerk et al., 2016). Next, CRMs are a class of drugs 

or foods that mimic the effects of calorie restriction with the potential of improved health 

status and a longer lifespan (Andrejeva and Rathmell, 2017). Studies have shown that 

starvation and various potential CRMs can increase the expression of IGFBP1 and 

thereby reduce the level of IGF1 in the blood, ultimately causing changes in the systemic 

metabolic profile (Prieto et al., 2017). Our study also confirmed that PPP can significantly 

induce autophagy in the brain, liver and heart. At the same time, PPP can also reduce the 

number of Treg cells and CD8+PD1+ effector T cells in the tumor microenvironment, and 

improve the immunosuppressive microenvironment. The tumor-disappeared mice 

possessed the immune memory function of the same type of tumor and could prevent the 

recurrence of the same type of tumor. Our experiment also confirmed that PPP reduced 

cytoplasmic protein acetylation, as determined by quantitative immunofluorescence 

staining. Therefore, PPP as a CRM can enhance the role of tumor immune surveillance 

in the body. 

Furthermore, the capacity of PPP to boost ATP release from cancer cells responding to 

MTX-based chemotherapy is reduced in cells lacking the ER stress sensor 
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EIF2AK3/PERK (eukaryotic translation initiation factor 2 alpha kinase 3) or its substrate 

EIF2A (eukaryotic translation initiation factor 2A), as well as in cells lacking the essential 

autophagy protein ATG5. Of note, it appears that the autophagy-dependent increase in 

extracellular ATP from tumor cells (Michaud et al., 2011) plays a rate-limiting role in the 

therapeutic efficacy of PPP, which indeed was lost when cancer cells were genetically 

manipulated to express the ATP-degrading enzyme CD39 on their surface. Adenosine 

triphosphate (ATP) is a direct donor of intracellular energy, and ATP and its derivatives 

are the main signaling molecules in the tumor microenvironment and are involved in 

cardiac function and immune regulation (Lampropoulou et al., 2016; Littlewood-Evans et 

al., 2016). When cells undergo stimuli such as death or chemical stress, mechanical 

damage, hypoxia, or cytotoxic agents, intracellular nucleotides are released to activate 

immune responses (Bambouskova et al., 2018). ATP can be released in several ways, 

including pannexin channels (Mills et al., 2018), connexin hemichannels (Weiss et al., 

2018), exocytosis (Cheng et al., 2014), and ATP transporters specific to the ATP-binding 

cassette family such as cystic fibrosis transmembrane conductance regulator (cystic 

fibrosis transmembrane conductance regulator, CFTR) mediated release across the 

membrane (Arts et al., 2016). ATP binds to P2R family receptors, including ionotropic 

P2XR and metabotropic P2YR purinergic receptors (Tomlinson et al., 2002). ATP 

released from dying cells can bind P2RY2 and P2RX7 purinergic receptors to promote 

chemotaxis and recruitment of antigen-presenting cells (APCs); in contrast, autophagy-

dependent ICD also participates in ATP release, which is associated with P2RX7 interact 

to recruit and activate dendritic cells (Delage et al., 2010; Mirsoian et al., 2014). Activation 

of purinergic signaling further activates the NLR family pyran domain of the inflammasome 

NLRP3, resulting in the proteolytic activation of caspase-1 and promoting IL-1β processing 

and release by immunostimulation, a process that further activates IL-17-mediated γδT 

cells (Delage et al., 2010). In the extracellular space, ATP is gradually broken down by 

nucleotidase CD39 and CD73 to adenosine, which is an immunosuppressive Inhibitory 

effect (Mirsoian et al., 2014). Adenosine activates the PKA signaling cascade by linking 

four G protein-coupled adenosine receptors including A1R, A2AR, A2BR and A3R, 

thereby enhancing adenylate cyclase-mediated generation of cAMP. Notably, the 

activities of A2AR and A2BR can effectively induce immunosuppression in inflammatory 
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diseases (Blewett et al., 2016). Activation of the adenosine-A2AR signaling axis promotes 

high PD-1 expression (Cancer Genome Atlas Research et al., 2015), inhibits IL- 2 receptor 

expression and TCR stimulates the proliferation of tumor-infiltrating T cells (Ye et al., 

2018), which ultimately inhibits the body's anti-tumor immune function. Meanwhile, 

activation of the adenosine-A2AR signaling axis promotes the recruitment of MDSCs and 

the expression of VEGF in mouse model tumors (Tyrakis et al., 2016), and promoted the 

high expression of PD-L2 and IL-10 in dendritic cells, which in turn inhibited Teff cell 

activity (Doedens et al., 2013). Consistently, the inhibitor of A2B receptor, PSB1115, can 

inhibit tumor angiogenesis and increase tumor accumulation of T cells in the 

microenvironment (Tyrakis et al., 2016). In many human malignancies, high levels of 

CD39 and CD73 are considered markers of poor prognosis (MacIver et al., 2013), and 

ecto-nucleoside diphosphate hydrolase inhibitors— polyoxometalate-1 have been shown 

to inhibit tumor growth (Xu et al., 2017). In addition to tumor cells, CD39 and CD73 are 

expressed in regulatory immune Treg cells and M2 macrophages (Dang et al., 2011; Xu 

et al., 2017). Treg cells and M2 macrophages can degrade ATP through CD39 and CD73 

to produce adenosine, limiting ATP-mediated pro-inflammatory effects and further 

immunosuppression through the adenosine-A2AR or adenosine-A2BR signaling axis 

(Currie et al., 2013; Dang et al., 2011). Furthermore, there is evidence that Treg cells 

inhibit the antitumor activity of NK cells in a CD39-dependent pathway, thereby promoting 

the metastasis of melanoma (Xu et al., 2017). Therefore, targeting ATP/adenosine 

metabolism is an effective strategy to alleviate tumor immunosuppression. Specifically, 

CD39 deletion results in defects in angiogenesis and the ability of melanoma cells to 

migrate, thereby inhibiting tumor progression in mouse models (Al-Khami et al., 2017). 

Adenosine 5'-(α, β-methylene) adenosine diphosphate (APCP), a specific CD73 inhibitor, 

reduces the production of adenosine to attenuate breast cancer cell migration (Osinalde 

et al., 2016). Furthermore, evidence suggests that both CD73 inhibitors and A2AR 

antagonists synergize with ICIs to inhibit tumor progression in mouse models (Cancer 

Genome Atlas Research et al., 2015; Niu et al., 2017). At present, the combination of 

drugs targeting the adenosine signaling pathways with ICI has been used in clinical trials 

of cancer patients. The A2AR inhibitor CPI-144 has been shown to be effective in 

controlling refractory renal cell carcinoma (RCC; 60% disease control rate), and combined 
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with atezolizumab can further significantly improve control (anti-PD-L1 antibody; I/ Phase 

Ib trial (100% disease prevention rate) (NCT02655822) (Thommen et al., 2018). 

In conclusion, we identified PPP as a non-toxic inducer of autophagic flux that acts on 

human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, PPP 

inhibits IGF1R as well as, downstream of AKT, the mechanistic target of rapamycin 

complex 1 (mTORC1), coupled to the activation of the pro-autophagic transcription factors 

EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively active AKT mutant failed 

to activate autophagy. PPP also stimulated the AKT-repressible activation of all three 

arms of the unfolded stress response (UPR), including the PERK-dependent 

phosphorylation of eukaryotic initiation factor 2α (eIF2α). Knockout of TFEB and/or TFE3 

blunted the UPR while knockout of PERK or replacement of eIF2α by a non-

phosphorylatable mutant reduced TFEB/TFE3 activation and autophagy induced by PPP. 

This points to crosstalk between the UPR and autophagy. Of note, administration of PPP 

to mice improved the efficacy of immunogenic chemotherapy and immune checkpoint 

inhibitors relying on ATP release, HMGB1 release, and CALR exposure. This anticancer 

effect relied on an improved T lymphocyte-dependent anticancer immune response and 

was lost upon CD39 overexpression in, constitutive AKT activation in, or deletion of the 

essential autophagy gene Atg5 from, the malignant cells. PPP is a bioavailable, potentially 

useful autophagy inducer that warrants further preclinical characterization. Excessive 

antiautophagic signaling via IGF1R has a major negative effect on anticancer 

immunosurveillance, thus reducing patient prognosis. However, IGF1R and its 

downstream signals are amenable to pharmacological inhibition and subsequent 

improvement of cancer control by the immune system. These considerations should be 

incorporated into the future design of clinical trials in which inhibition of the 

IGF1R/PI3K/AKT/MTOR pathway will be combined with adequate immune stimulation 

with ICD inducers and/or immune checkpoint inhibitors. 
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Lysosomotropic agents including azithromycin,
chloroquine and hydroxychloroquine activate the
integrated stress response
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Abstract
The integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine
residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of
autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including
azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human
cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant
(S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine.
Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such
autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and
hydroxychloroquine to elicit the integrated stress response.

Introduction
Azithromycin (AZT), chloroquine (CQ), and 3-

hydroxychloroquine (HCQ) have attracted much atten-
tion over the past months as possible (and controversial)
therapeutic agents for the treatment of coronavirus
disease-19 (COVID-19)1,2. At this point, it has not been
resolved whether the frequently administered combina-
tion regimen of AZT and HCQ (often supplemented with
zinc) itself reduces the morbidity and mortality of
COVID-19 or whether accompanying measures (such as
provision of anti-diabetic, anti-hypertensive, anti-inflam-
matory, and/or anti-thrombotic agents) or even placebo
effects account for the clinical efficiency of AZT+HCQ,

which are more frequently observed in retrospective
analyses and uncontrolled clinical studies3–5 than in
prospective randomized studies6–9.
AZT is a macrolide antibiotic, while CQ and HCQ are

antimalarial drugs. HCQ is also been widely used for the
treatment of rheumatoid arthritis and systemic lupus ery-
thematosus10,11. All the three agents are lysosomotropic12–14,
meaning that they are sufficiently lipophilic to penetrate into
cells but also weak bases so that they get protonated at low
pH to become trapped in lysosomes, hence gradually
increasing their concentration in the lysosomal lumen until
they destabilize lysosomal membranes due to detergent-like
effects, causing a loss of lysosomal acidification and blockade
of lysosomal functions15,16 that ultimately activates homeo-
static circuitries including the activation of transcription
factors such as TFEB and TFE3 for lysosomal biogenesis17. In
addition, the loss of lysosomal acidity/function observed in
cells treated with AZT, CQ, or HCQ results in the blockade
of lysosomal fusion with autophagosomes, thus stalling
autophagic flux and causing the accumulation of autopha-
gosomes that cannot be eliminated18–20. Moreover, CQ and
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HCQ can stimulate lysosomal membrane permeabilization
that secondarily elicits the mitochondrial pathway of apop-
tosis21, hence resulting in cell death, likely contributing to the
toxicity of these agents22,23.
The integrated stress response (ISR) consists in the

phosphorylation of the phylogenetically conserved
eukaryotic initiation factor 2α (eIF2α) by a series of eIF2α
kinases (EIF2K1 to 4) and plays a cardinal role in the
adaptation of stress to endoplasmic reticulum (ER) stress
(in particular, the accumulation of unfolded or misfolded
proteins in the ER lumen)24, in the innate cellular defense
against viral infections (to block the translation of virus-
encoded RNAs into protein)25–27, as well as in the
initiation of autophagy (which also can lead to the elim-
ination of intracellular pathogens)28–31. Moreover, eIF2α
phosphorylation contributes to the phenomenon of
“immunogenic cell death” (ICD)32–34, which likely plays a
major role in connecting the virus-induced death of
infected cells to immune response that ultimately lead to
the active elimination of virus-infected cells by cytotoxic
T lymphocytes35–37. This latter effect is achieved due to
the contribution of eIF2α phosphorylation to (i) autop-
hagy, which enables the lysosomal secretion of ATP
(which is a major chemoattractant for dendritic cell pre-
cursors)28,29,31,38 and (ii) the exposure of the ER lumen
protein calreticulin at the cell surface (where it acts as an
eat-me signal to render dying/dead cells palatable to
dendritic cells, allowing them to present viral antigens to
T lymphocytes)33,39–41.
In view of the considerable (patho)physiological rele-

vance of ISR, we decided to investigate whether AZT, CQ,
or HCQmay induce this phenomenon. Here, we show that
these three agents induce signs of ISR in vivo, and that ISR
contributes to the accumulation of stalled autophago-
somes as well as to the cytotoxicity of these agents.

Results
Lysosomotropic agents induce eIF2a phosphorylation
in vitro
Human U2OS osteosarcoma cells stably expressing a

GFP-LC3 fusion protein exhibit GFP-LC3 dots in the
cytoplasm (corresponding to “autophagic puncta”)42 in
response to the autophagy inducer torin1 (TOR, an
inhibitor of mechanistic target of rapamycin, mTOR)
and the lysosomal inhibitor bafilomycin A1 (BafA1, an
inhibitor of the vacuolar-type H+-ATPase (V-ATPase)
that is required for lysosomal acidification)43. Similar to
BafA1, the three lysosomotropic agents AZT, CQ, and
HCQ did not cause any cytotoxicity in the timeframe of
the experiment (Fig. 1A–D) but stimulated a dose-
dependent increase in GFP-LC3 dots. The formation of
GFP-LC3 puncta was observed in wild-type U2OS and
human glioma H4 cells but not in cells that are deficient
for the essential autophagy protein ATG5 and which

acts upstream of LC3 to facilitate lipidation and mem-
brane association (Fig. 1E, F and Supplementary Fig. 1).
Moreover, AZT, CQ, and HCQ stimulated the translo-
cation of the transcription factors TFEB and TFE3 from
the cytoplasm to the nuclei, as determined in U2OS cells
expressing a GFP-TFEB fusion protein (Fig. 1G, H) or by
immunofluorescence detection of TFE3 (Fig. 1I, J). AZT,
CQ, and HCQ inhibited autophagic flux in U2OS RFP-
GFP-LC3 tandem reporter cells, as can be expected
from agents that perturb lysosomal function (Supple-
mentary Fig. 2)15,16,44. In addition, AZT, CQ, and HCQ
induced the phosphorylation of eIF2α (as measured by
immunofluorescence and immunoblot using a
phosphoneoepitope-specific antibody) (Fig. 2A, B and
Supplementary Fig. 3)45, the activation of the tran-
scription factor CHOP (as indicated by the expression of
GFP placed under the control of the CHOP promoter)
(Fig. 2C, D), the upregulation of ATF6 (as indicated by
the expression of an ATF6-GFP fusion protein) (Fig. 2E,
F), and the activation of XBP1 (as indicated by the
expression of an XBP1-GFP/Venus fusion protein in
which GFP/Venus is only expressed after that IRE1α has
caused the splicing of the corresponding mRNA (Fig.
2G, H). However, in quantitative terms, the effects of
AZT, CQ, and HCQ on CHOP, ATF6, and XBP1 appear
relatively minor when compared to the positive controls
thapsigargin and tunicamycin employed to elicit ER
stress (Fig. 2C–H). Only the level of eIF2α phosphor-
ylation induced by AZT, CQ, and HCQ reaches that of
the positive controls (Fig. 2A, B). Similarly, CQ and
HCQ (but not AZT) induced a relatively low level of NF-
kB activation as compared to the positive control, tumor
necrosis factor-α (Supplementary Fig. 4). We conclude
that AZT, CQ, and HCQ are potent perturbators of
lysosomal function as well as potent inducers of the ISR
consisting in eIF2α phosphorylation.

eIF2a phosphorylation is required for the induction of
autophagic puncta
TFEB and TFE3 are well known pro-autophagic tran-

scription factors46,47. Accordingly, their double knockout
(DKO) attenuated the induction of GFP-LC3 puncta by
AZT, CQ, and HCQ (Fig. 3A, B). Many autophagy inducers
require eIF2α phosphorylation as a mandatory step for the
ignition of the process48. Accordingly, we observed that a
knockin mutation that renders eIF2α non-phosphorylatable
(due to the replacement of serine in position 51 by an
alanine residue: genotype eIF2αS51A/S51A) strongly inhibited
the induction of GFP-LC3 puncta by AZT, CQ, and HCQ
(Fig. 3C, D). Similarly, inhibition of ER stress with the
chemical chaperone 4-phenylbutyric acid (4-PBA)49 atte-
nuated the induction of GFP-LC3 puncta by AZT, CQ, and
HCQ (Fig. 4A, B). Conversely, treatment of the cells with
two inhibitors of eIF2α dephosphorylation, nelfinavir50 and
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salubrinal51, enhanced the formation of GFP-LC3 puncta in
response to AZT, CQ, and HCQ (Fig. 4A, B and Supple-
mentary Fig. 5).
In accord with previous work21, CQ and HCQ induces

some degree of cellular toxicity, leading to the manifes-
tation of apoptotic and necrotic events that can be dis-
tinguished by dual staining with annexin-V-FITC (which
stains apoptotic and necrotic cells) the vital dye 4′,6-dia-
midino-2-phenylindole (DAPI, which only stains necrotic
cells)52. Among the genotypes evaluated in this paper
(ATG5−/−, eIF2αS51A/S51A, TFEB−/−, TFE3−/−, TFEB/
TFE3 DKO, PERK−/−) the eIF2αS51A knockin mutation
rendering eIF2α non-phosphorylatable had the strongest
effect on apoptosis induction by CQ and HCQ (Fig. 5A),
increasing cellular killing by CQ and HCQ but not by the
general tyrosine kinase inhibitor and apoptosis inducer
staurosporin (STS) (Fig. 5B and Supplementary Fig. 6).
These results point to the ISR as central for the effects of
CQ and HCQ.

Lysosomotropic agents induce eIF2α phosphorylation
in vivo
The aforementioned results have been obtained

in vitro, calling for their in vivo validation. For this, we
injected mice intraperitoneally with HCQ (at a dose that
inhibits autophagic flux)53–56 alone or in combination
with AZT (supplemented in the drinking water). Of note,
HCQ (but less so AZT) induced a remarkable and sig-
nificant increase in eIF2α phosphorylation that was
detectable by immunoblot in liver extracts (Fig. 6A, B)
but less so in the myocardium (Supplementary Fig 7). In
addition, one single injection of HCQ was able to sti-
mulate a significant increase in eIF2α phosphorylation in
several circulating leukocyte subsets (in particular neu-
trophil granulocytes, lymphocytes, and monocytes), as
determined by immunofluorescence staining and imaging

flow cytometry (Fig. 6D, E). Thus, HCQ can induce eIF2α
phosphorylation in vivo, supporting the capacity of this
agent to activate ISR.

Discussion
As we show in this work, lysosomotropic agents

including AZR, CQ, and HCQ are capable of stimulating
the ISR. The capacity of these agents to induce the car-
dinal hallmark of ISR, eIF2α phosphorylation, is observed
at similar concentrations as those required to induce the
accumulation of autophagic puncta and to activate the
transcription factors TFEB and TFE3 in a dose of
10–40 µM. The accumulation of autophagic puncta
induced by AZT, CQ, and HCQ requires the initial steps
of autophagy, as illustrated by the fact that ATG5-
deficient cells fail to demonstrate this phenomenon. This
is in accordance with findings showing that CQ can
induce non-canonical V-ATPase-dependent LC3 lipida-
tion57. Moreover, AZT, CQ, and HCQ were unable to
elicit the accumulation of LC3-binding autophagosomes
in cells expressing a non-phosphorylatable mutant of
eIF2α, suggesting causality between ISR and the observed
phenomenon. This conjecture was further supported by
the observation that two inhibitors of the depho-
sphorylation of eIF2α enhanced autophagosome accu-
mulation in vitro. Moreover, the apoptosis-inducing effect
of CQ and HCQ was reduced in cells bearing mutant
eIF2α.
The ISR plays a major role in the inhibition of viral

replication. Indeed, multiple viruses have developed
strategies to subvert the ISR, either by directly inhibiting
eIF2α kinases or by deploying a decoy that resembles
eIF2α, hence preventing the phosphorylation of the cel-
lular protein25,58,59. In addition, a protein encoded by
coronavirus counteracts the ISR at its very core by acting
as a competitive inhibitor of the phospho-eIF2α-eIF2β

(see figure on previous page)
Fig. 1 Chloroquine, hydroxychloroquine, and azithromycin induce the formation of LC3 puncta and trigger TFEB/TFE3 translocation. A–D
Human osteosarcoma U2OS-GFP-LC3 (A, B) or human glioma H4-GFP-LC3 cells (C, D) were treated with chloroquine (CQ; 10, 20, 40 μM),
hydroxychloroquine (HCQ; 10, 20, 40 μM), azithromycin (AZT; 10, 20, 40 μM), the autophagy inducer torin 1 (TOR; 300 nM), or the inhibitor of
autophagic flux bafilomycin A1 (BafA1; 100 nM) for 6 h. After fixation, healthy cells depicted by normal nuclear morphology were enumerated.
Representative microscopical images are shown in A and C (AZT, CQ, and HCQ, 40 µM) and normalized mean data are depicted as bar charts in B and
D. Data are means ± SD of four replicates (*P < 0.05, **P < 0.01, ***P < 0.001 vs. vehicle control (Ctrl); Student’s t-test). E, F U2OS-GFP-LC3 wild type or
ATG5 knockout (KO) cells were treated with CQ, HCQ, or AZT (all at 10, 20, 40 μM), TOR (300 nM), and BafA1 (100 nM) for 6 h. After fixation, GFP-LC3
dots were analyzed as a proxy for autophagy induction. Representative microscopical images are shown in E (AZT, CQ, and HCQ, 40 µM) and
normalized mean data are depicted as bar chart in F. Data are means ± SD of four replicates (**P < 0.01, ***P < 0.001 vs. vehicle control (Ctrl), and ###P
< 0.001 vs. WT; Tukey’s multiple comparisons test). G, H U2OS cells stably expressing GFP-TFEB fusion protein were treated with CQ, HCQ, or AZT (all
at 0.1, 0.3, 1, 3, 10, 30 μM) for 6 h. TOR at 300 nM was used as a positive control for TFEB nuclear translocation. Images were analyzed and the ratio of
GFP intensities in nuclei and cytoplasm was calculated to indicate TFEB translocation to nuclei (H). Representative images are depicted in G (AZT, CQ,
and HCQ, 30 µM). I, J U2OS cells were treated as above, and then TFE3 translocation was assessed microscopically after immunostaining (I). TOR at
300 nM was used as a positive control for TFE3 nuclear translocation. TFE3 intensities in the nucleus and the cytoplasm were measured, and the
nucleo-to-cytoplasmic ratio of TFE3 intensities was calculated to indicate nuclear translocation of TFE3 (J). Data are means ± SD of four replicates (*P
< 0.05, **P < 0.01, ***P < 0.001 vs. Ctrl, Student’s t-test). Scale bars equal 10 μm.
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Fig. 2 Chloroquine, hydroxychloroquine, and azithromycin induce ER stress. A, B Human osteosarcoma U2OS cells were treated with
chloroquine (CQ), hydroxychloroquine (HCQ), and azithromycin (AZT; all at 10, 20, 40 μM) for 16 h, then fixed and imaged. Tunicamycin (TM, 3 μM)
and thapsigargin (TG, 3 μM) were used as positive controls for ER stress induction. PeIF2α was assessed by means of an immunofluorescence staining
using a phosphoneoepitope-specific antibody (A) and the cytoplasmic intensity is depicted (B) (AZT, CQ, and HCQ, 40 µM). C, D Human
osteosarcoma U2OS cells stably expressing GFP under the promoter of DDIT3 (CHOP::GFP) were treated with the indicated agents (TM (3 μM), TG
(3 μM), CQ, HCQ, or AZT (all at 0.1, 0.3, 1, 3, 10, 30 μM)) for 24 h. After fixation, CHOP::GFP fluorescence was assessed microscopically as shown in
C, and the average nuclear intensity was quantified (D). E, F U2OS cells stably expressing GFP-ATF6 were treated with the indicated agents for 24 h.
After the cells were fixed, GFP-ATF6 nuclear translocation was assessed as shown in E (AZT, CQ, and HCQ, 30 µM), and the nuclear-to-cytoplasmic
ratio of GFP-ATF6 intensity was quantified (F). G, H U2OS cells stably expressing XBP1ΔDBD-venus (for monitoring venus expression upon alternative
splicing of XBP1 mRNA) were treated as above for 24 h. After fixation, XBP1s expression was assessed via fluorescent microscopy as shown (G) (AZT,
CQ, and HCQ, 30 µM), and the average intensity was measured (H). Data are means ± SD of four replicates (*P < 0.05, **P < 0.01, ***P < 0.001 vs.
vehicle control (Ctrl), Student’s t-test). Scale bars equal 10 μm.
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Fig. 3 Chloroquine, hydroxychloroquine, and azithromycin-induced autophagy depends on TFEB/TFE3 and eIF2α. A, B Human
osteosarcoma U2OS wild type (WT) or TFEB/TFE3 double KO (TF DKO) cells both stably expressing GFP-LC3 were treated with the indicated compounds
(torin 1 (TOR; 300 nM), chloroquine (CQ), hydroxychloroquine (HCQ), and azithromycin (AZT; all at 0.1, 0.3, 1, 3, 10, 30 μM)) for 6 h. After fixation, GFP-LC3
dots were analyzed as a proxy for autophagy. Representative images are depicted in A (AZT, CQ, and HCQ, 30 µM) and normalized data are shown as bar
chart in B. Data are means ± SD of four replicates (**P < 0.01, ***P < 0.001 vs. WT; Student’s t-test). C, D U2OS WT or PeIF2α S51A knockin cells both
expressing RFP-LC3 were treated as indicated with TOR (300 nM), bafilomycin A1 (BafA1, 100 nM), CQ, HCQ, and AZT (all at 10, 20, 40 μM) for 6 h. After
fixation, RFP-LC3 dots were analyzed by fluorescent microscopy. Representative images are shown in C (AZT, CQ, and HCQ, 40 µM) and normalized data
are quantitated as a bar plot in D. Data are means ± SD of four replicates (**P < 0.01, ***P < 0.001 vs. WT; Student’s t-test). Scale bars equal 10 μm.
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interaction27. Hence, the question comes up whether the
reported in vitro antiviral effects of CQ and HCQ27,60 are
linked to their capacity to elicit the ISR, thus augmenting
an innate immune response (such as the initiation of a
type-1 interferon response61,62, beyond their action on
acidophilic cellular compartments63–65.
The ISR also has a fundamental role in ICD. In a

plausible scenario, cells infected by viruses ultimately
succumb to viral infection. If the virus (or other agents)
induce the ISR, cell death would be perceived as immu-
nogenic, hence favoring the stimulation of an immune
response that involves dendritic cells as antigen presenters
that then “educate” cytotoxic T lymphocytes to recognize
MHC class I-restricted viral peptides expressed on the
surface of infected cells37,66. By clearing infected cells, the
immune system then can remove all virus-replicative
niches from the body to subsequently establish a memory

response that protects the patient from challenges by the
same or antigenically similar viruses.
We have found in the past that artificial induction of the

ISR by agents that stimulate an ER stress response (such as
thapsigargin injected into tumors) or inhibit the depho-
sphorylation of eIF2α (such as salubrinal and a peptides
inhibiting the phosphatase PP1 interacting with its cofactor
GADD34) can vigorously stimulate anticancer immune
responses linked to ICD67–70. In this context, it is noteworthy
that agents that selectively stimulate ISR but not any other
manifestation of the unfolded stress response (such as the
activation of ATF6 and that of IRE1/XBP1) are more efficient
ICD inducers than agents with a broad effect on several arms
of the unfolded stress response33,71,72. In quantitative terms,
when compared to appropriate positive controls (thapsi-
gargin, tunicamycin), AZT, CQ, and HCQ induced a strong
ISR but scarce ATF6 and IRE1/XBP1 activation. Hence,

Fig. 4 eIF2α phosphatase inhibitors increase autophagy induced by chloroquine, hydroxychloroquine, and azithromycin. A, B Human
osteosarcoma U2OS cells stably expressing GFP-LC3 were treated with 5 mM 4-phenylbutyric acid (4-PBA), 10 µM nelfinavir (NFV), 25 µM salubrinal
(SAL), or were left untreated for 6 h in the presence or absence of 10, 20, 40 μM chloroquine (CQ), hydroxychloroquine (HCQ), or azithromycin (AZT).
After fixation, GFP-LC3 dot formation was analyzed by microscopy. Torin (TOR) at 300 nM was used as a positive control for autophagy induction and
bafilomycin A1 (BafA1) at 100 nM was used as an inhibitor of autophagic flux. Representative images are depicted in A (AZT, CQ, and HCQ (30 µM)
alone or in combination with eIF2α phosphatase inhibitors) and normalized data are shown as a bar charts in B. Data are means ± SD of four
replicates (*P < 0.05, **P < 0.01 ***P < 0.001 vs. solvent control (Ctrl), Student’s t-test). Scale bars equal 10 μm.
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these lysosomotropic agents induce a pattern of response
that would be compatible with a pro-ICD action. However,
further virological and immunological experimentation will
be required to (in)validate this conjecture.
In essence, our results demonstrate that AZT, CQ, and

HCQ stimulate the ISR. This might contribute to the
potential antiviral and immunostimulatory effects of such
lysosomotropic agents. However, to definitively prove the
mechanistic relevance of such effects, it would be neces-
sary to develop small animal models73 in which AZT, CQ,
and HCQ, alone or in combination would have significant
and reproducible antiviral activity.

Materials and methods
Cell culture and chemicals
Culture media and supplements for cell culture were

purchased from Gibco-Life Technologies (Carlsbad, CA,
USA) and plastic ware came from Greiner Bio-One

(Kremsmünster, Austria) and Corning (Corning, NY,
USA). Wild-type human osteosarcoma U2OS or human
glioma H4 cells were purchased from the American Type
Culture Collection (ATCC, Rockefeller, MD, USA), their
derivatives stably expressing GFP-LC3, RFP-LC3, or RFP-
GFP-LC3 were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% (v/v) fetal
bovine serum (FBS), 10 U mL−1 penicillin sodium, and
10 μgmL−1 streptomycin sulfate at 37 °C in a humidified
atmosphere with 5% CO2. TFEB-deficient (TFEB−/−),
TFE3-deficient (TFE3−/−), TFEB and TFE3-double defi-
cient (TF DKO), ATG5-deficient (ATG5−/−), and PERK-
deficient (PERK−/−) U2OS cells were generated by means
of CRISPR/Cas9-mediated genome editing, as per the
manufacturer’s recommendations31,74. U2OS cells stably
expressing RFP-LC3 bearing a non-phosphorylatable
mutant of eIF2α (eIF2αS51A) were constructed by means
of CRISPR/Cas9 knockin as previously detailed31. In

Fig. 5 Increase in toxic effect of chloroquine and hydroxychloroquine in eif2α mutant cells. Human osteosarcoma U2OS either WT, ATG5−/−,
TFEB−/−, TFE3−/−, TF DKO, PERK−/− or carrying an eIF2αS51A/S51A knockin mutation were treated with 10, 20, or 40 μM of chloroquine (CQ) or
hydroxychloroquine (HCQ) for 24 h. Plasma membrane integrity loss and phosphatidylserine (PS) exposure (with) were measured by flow cytometry
employing DAPI and AlexaFluor 647-coupled annexin V, respectively. DAPI+ and Annexin V+ DAPI− cellular populations were quantified and are
depicted as a heatmap A. Data are means ± SD of three replicates (*P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.05, ##P < 0.01, ###P < 0.001 vs. WT, Student’s
t-test). Data for WT and eIF2αS51A expressing mutant U2OS are depicted as bar chart in B. Staurosporine (STS) at 2 μM was used as a positive control
for cell death induction. Data are means ± SD of three replicates (*P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.05, ##P < 0.01, vs. vehicle control (Ctrl),
Student’s t-test).
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Fig. 6 Effects of hydroxychloroquine plus azithromycin in vivo. Mice were treated intraperitoneally (i.p.) with 50 mg/kg/day hydroxychloroquine
(HCQ), orally fed with azithromycin (AZT) (3 mg/L in drinking water), or their combination as illustrated in the scheme (A). Livers were excised from
three mice by group at the end of the treatment and the tissues were subjected to protein extraction for SDS–PAGE and immunoblot to detect the
phosphorylation of peIF2α (B). β-Actin (ACTB) was used as a loading control. Band intensities were quantified by densitometry and the ratio of peIF2α
to ACTB was calculated. Data are expressed as means ± SEM of three mice (C). Statistical significance is indicated as **P < 0.01 and ***P < 0.001 as
compared with untreated control (Ctrl) (Student’s t-test). D, E Mice were treated with 50 mg/kg HCQ i.p. and blood was collected after 6 h to
determine the level of peIF2α by immunofluorescence and image flow cytometry in the depicted leukocyte populations. Representative images are
shown in D. The scale bar equals 10 μm. Data are expressed as mean fluorescens intensities (MFI) means ± SEM of five mice (E). Statistical
comparisons were done by two-tailed unpaired Student’s t-test (E) comparing HCQ-treated to control mice that received PBS (*P < 0.05, **P < 0.01).
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addition, U2OS cells stably expressing GFP-TFEB, a GFP
under the DDIT3 promoter (CHOP::GFP), GFP-ATF6,
and XBP1s-ΔDBD-venus were generated by our group in
the past33,74. Chloroquine diphosphate salt (CQ, #C6628),
hydroxychloroquine sulfate (HCQ, #PHR1782), azi-
thromycin (AZT, #75199), 4-phenylbutyric acid (4-PBA,
#P21005), nelfinavir (NFV, #CDS021783), salubrinal
(SAL, #324895), thapsigargin (TG, #T9033), tunicamycin
(TM, #T7765), bafilomycin A1 (BafA1, #B1793), tumor
necrosis factor-α (TNF-α, #T6674), torin1 (TOR,
#475991), and staurosporine (STS, #S4400) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

High-content microscopy
Human osteosarcoma U2OS-GFP-LC3 wild type or

TFEB and TFE3-double deficient (TF DKO), ATG5
deficient (ATG5−/−), RFP-GFP-LC3, RFP-LC3 wild
type or mutant cells expressing a non-phosphorylatable
knockin of eIF2α (eIF2αS51A/S51A) were seeded in 384-
well µclear imaging plates (Greiner Bio-One) at a
density of 2 × 103 cells per well and allowed to adapt for
overnight. Furthermore, ATG5−/−, eIF2αS51A/S51A, and
TF DKO cells were treated for 6 h. Moreover, 2 × 103

U2OS cells either wild type or stably expressing GFP-
ATF6, CHOP::GFP, GFP-TFEB, or XBP1-ΔDBD-venus
were seeded in 384-well black imaging plates (Greiner
Bio-One) and let adhere overnight. Cells were then
treated for 6 h to assess TFEB translocation, and 24 h to
monitor abundance of ATF6 and spliced XBP1
(XBP1s), or to measure CHOP expression. Next, cells
were fixed with 3.7% formaldehyde (#F8775; Sigma-
Aldrich) supplemented with 1 μg/ml Hoechst 33342
(#H3570; Thermo Fisher Scientific) at 4 °C overnight.
After washing the cells, the plates were sealed and
analyzed by automated microscopy. Image acquisition
was performed using an ImageXpress Micro XL auto-
mated microscope (Molecular Devices, Sunnyvale, CA,
US) equipped with a ×20 PlanApo objective (Nikon,
Tokyo, Japan), followed by automated image segmen-
tation. A minimum of four images were acquired
per well, and experiments involved at least triplicate
assessments.

Image segmentation and data analysis
Upon acquisition, images were segmented and analyzed

using R. Briefly, cells were segmented and divided into
nuclear and cytoplasmic regions based on the nuclear
Hoechst staining and cytoplasmic GFP or RFP signal.
After exclusion of cellular debris and dead cells,
parameters of interest were normalized, statistically eval-
uated, and graphically depicted with R software. Using R,
images were extracted and pixel intensities scaled to be
visible (in the same extent for all images of a given
experiment).

Immunofluorescence
Cells were treated for 16 h to detect eIF2α phosphor-

ylation (PeIF2α) and TFE3 expression, or 6 h to measure
p65 nuclear translocation. Then cells were fixed with 3.7%
PFA at 4 °C overnight. For the immunostaining of TFE3,
p65, and phospho-eIF2α (Ser51), fixed cells were per-
meabilized with 0.1% Triton X-100 (#X100; Sigma-
Aldrich) on ice, and unspecific antibody binding was
blocked with 5% bovine serum albumin (BSA, w/v in PBS)
for 1 h. Then cells were incubated with antibodies specific
to TFE3 (#ab93808, 1:200; Abcam), phospho-eIF2 alpha
(Ser51) (#ab32157, 1:1000; Abcam), or p65 (#4764, 1:100;
Cell Signalling Technology) at 4 °C overnight. After
washing with PBS twice, AlexaFluor 568-conjugated sec-
ondary antibodies (Thermo Fisher Scientific) were
employed for additional 2 h at RT. Then cells were
washed and imaged by automated fluorescence micro-
scopy as described above. The nuclear-to-cytoplasm
intensity ratio of TFE3 and p65 as well as the cyto-
plasmic intensity of phospho-eIF2α (Ser51) were mea-
sured and normalized to controls.

Imaging cytofluorometric analysis
Six hundred microliters of total blood were diluted in

25mL red blood cell lysis buffer (BioLegend) and incu-
bated for 10min at room temperature. Then the cells
were washed twice in PBS, fixed with 4% PFA for 20 min
at room temperature, permeabilized with 0.25% Tween-20
for 15min at 4 °C, and blocked with 2% BSA in PBS. Cells
were incubated with anti-phospho-eIF2 alpha (Ser51) and
AlexaFluor 647-conjugated anti-mouse PTPRC/CD45
antibody (#clone 30-F11; BioLegend) for 1 h at room
temperature. Then cells were incubated for 1 h with
donkey AlexaFluor488-conjugated secondary antibody
and Hoechst 33342 (0.5 µg/µL). Multispectral imaging
flow cytometry was performed on an AMNIS Image-
Stream X Mark II equipped with 375-, 488-, 561-, and
642 nm lasers using the ×60 magnification lens. At least
6000 cells/sample were acquired for each sample. The
analysis was performed with IDEAS software v6.2.
Exclusively focused images were included in the analysis.
Selection was based on the gradient RMS feature of bright
field images. A compensation matrix was calculated using
single color fluorescent controls. This matrix was applied
to each file and singlets were then gated on aspect ratio vs.
area of bright field and leukocyte subpopulations were
gated on a pictogram indicating the intensity of PTPRC/
CD45 staining vs. dark field. Following the intensity of
peIF2α was quantified in each cell.

Quantification of cell death by flow cytometry
Cell death was assessed by means of the Alexa Fluor 647

Annexin V (#640943; BioLegend) and DAPI (#62248;
Thermo Fisher Scientific) kit following the manufacturer’s
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instructions. Briefly, cells were seeded in 12-well plates (with
5 × 104 cells per well) and incubated at 37 °C in a humidified
atmosphere with 5% CO2 for 24 h, then cells were collected
and washed in PBS containing 0.5% BSA before the cell pellet
was resuspended in 100 µL of Annexin V Binding Buffer
(#422201, BioLegend) containing Alexa Fluor 647-coupled
Annexin V. Samples were then incubated at room tem-
perature in the dark for 15min before adding 100 µL of PBS
containing 0.5% BSA and 2 µg/mL DAPI solution. Acquisi-
tions were performed on a BD LSRFortessa™ cell analyzer
(BD Biosciences, San Jose, California, USA), and data were
statistically analyzed using the FlowJo 10.5.3 software (Tree
Star, Ashland, Oregon, USA).

In vivo experimentation
The animal experiment was approved by the Gustave

Roussy ethics committee with the project number:
24771–2020032413235413, and all procedures were per-
formed in compliance with the governmental and insti-
tutional guidelines and regulations. Mice were kept in a
temperature-controlled SPF environment (12 h light/dark
cycles) with food and water ad libitum. Eight-week-old
female C57Bl/6j mice were obtained from ENVIGO
(France). To quantify the in vivo phosphorylation eIF2α
(S51), naive mice were intraperitoneally (i.p.) treated with
HCQ at a dose of 50 mg/kg/day in 200 µL PBS daily for
10 days75,76; fed with AZT in autoclaved drinking water at
a concentration of 3 mg/L (purchased from the local
pharmacy) for 5 days, and the solution was changed daily
throughout the treatment period77,78. All mice were
sacrificed at day 10, 4 h post-injection with HCQ, and
livers and hearts were snap frozen in liquid nitrogen.

Immunoblotting
Thirty milligrams of liver tissue were dissociated in Pre-

cellys lysing tubes (#CK28; Bertin Technologies SAS,
France) containing 1mL of RIPA lysis buffer (#89901;
Invitrogen) by using the Precellys 24 homogenizer (Bertin
Technologies SAS) at 6500 r.p.m. for 60 s, followed by
spinning at 14 s 103 d g for 15min to collect the supernatant
that contains soluble proteins. Protein concentration was
measured by means of by the BCA Assay (Bio-Rad, Her-
cules, CA, USA). The protein solution was mixed with 4×
loading buffer (#NP0008; Invitrogen), and denatured at
100 °C for 10min before subjected to western blotting.
Forty micrograms of total protein were resolved on 4–12%
NuPAGE Bis-Tris protein gels (#NP0336BOX; Invitrogen)
and transferred to PVDF membranes (#IPFL00010; Merck
Millipore). The membranes were blocked with 5% non-fat
dry milk in TBST for 1 h before incubating with primary
antibodies to phospho-eIF2 alpha (Ser51) (#ab32157,
1:1000; Abcam) overnight at 4 °C. Membranes were washed
several times with TBST for 10min each before incubation
with HRP-conjugated secondary antibody (#4050-05;

SouthernBiotech) for 2 h at room temperature. At last, the
membranes were washed again and subjected to chemilu-
minescence detection with the Amersham ECL Prime
detection reagent kit (#RPN2236; GE Healthcare) on an
ImageQuant LAS 4000 software-assisted imager. The
exposed membranes were stripped and re-probed with
antibodies specific to β-actin (#ab20727; Abcam) as loading
control using the procedure described above. Densitometry
was performed using the ImageQuant TL software (GE
Healthcare, Piscataway, NJ, USA).

Image and data processing
Images were segmented using the EBImage package

(available from Bioconductor repository https://www.
bioconductor.org) with the R software. The nuclear
region was defined using a polygon mask based on the
nuclear Hoechst signal, and a second polygon mask was
generated using the cytoplasmic GFP or RFP signal. For
the assessment of autophagic vesicles, a third mask was
created on cytoplasmic regions exhibiting a high intensity
signal of GFP or RFP corresponding with LC3 aggregates.
Following image segmentation, the data were extracted

and reduced using the R software. After exclusion of
cellular debris and dead cells, parameters of interest were
normalized to controls, statistically evaluated, and gra-
phically depicted with R software. Using R, images were
extracted and pixel intensities scaled to be visible (to the
same extent for all images of a given experiment).

Statistical analysis
Unless otherwise mentioned, data are reported as means ±

SD of triplicate determinations and experiments were repe-
ated at least three times yielding similar results, and statistical
significance was assessed by Student’s t-test with a P value
adjustment based on the Benjamini–Hochberg procedure.
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Isobacachalcone induces autophagy and improves
the outcome of immunogenic chemotherapy
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Abstract
A number of natural plant products have a long-standing history in both traditional and modern medical applications.
Some secondary metabolites induce autophagy and mediate autophagy-dependent healthspan- and lifespan-
extending effects in suitable mouse models. Here, we identified isobacachalcone (ISO) as a non-toxic inducer of
autophagic flux that acts on human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, ISO
inhibits AKT as well as, downstream of AKT, the mechanistic target of rapamycin complex 1 (mTORC1), coupled to the
activation of the pro-autophagic transcription factors EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively
active AKT mutant failed to activate autophagy. ISO also stimulated the AKT-repressible activation of all three arms of
the unfolded stress response (UPR), including the PERK-dependent phosphorylation of eukaryotic initiation factor
2α (eIF2α). Knockout of TFEB and/or TFE3 blunted the UPR, while knockout of PERK or replacement of eIF2α by a non-
phosphorylable mutant reduced TFEB/TFE3 activation and autophagy induced by ISO. This points to crosstalk between
the UPR and autophagy. Of note, the administration of ISO to mice improved the efficacy of immunogenic anticancer
chemotherapy. This effect relied on an improved T lymphocyte-dependent anticancer immune response and was lost
upon constitutive AKT activation in, or deletion of the essential autophagy gene Atg5 from, the malignant cells. In
conclusion, ISO is a bioavailable autophagy inducer that warrants further preclinical characterization.

Introduction
Macroautophagy (to which we herein refer as “autop-

hagy”) is a unique cell biology phenomenon that leads to
cytoplasmic vacuolization in response to nutrient depri-
vation as well as to a myriad of other cell stress-inducing
conditions1. Portions of the cytoplasm are enveloped in
two-membraned vesicles, the autophagosomes, which then
fuse with lysosomes for the digestion of the autophagic

cargo by hydrolases that operate at acidic pH2,3. Autop-
hagy allows to mobilize the cell’s energy reserves by
digestion of cytoplasmic macromolecules and even entire
organelles to recover their building blocks, including
amino acids, simple sugars, and free fatty acids4. In addi-
tion, autophagy allows for the selective degradation of
superficial, damaged, or aged cellular components,
including dysfunctional organelles and potentially patho-
genic protein aggregates. Genetic stimulation of autophagy
has potent antiaging properties, reducing the manifesta-
tion of age-associated diseases, including arteriosclerosis,
cancer, and neurodegeneration5–7. Pharmacological
induction of autophagy has similar broad healthspan and
lifespan-extending effects, as shown in model organisms
including yeast, nematodes, flies, and mice8–11.
Obviously, there is much interest in identifying novel

autophagy inducers that operate at low levels of toxicity
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and mediate broad antiaging and pro-health effects.
Chalcones belong to the chemical class of flavonoids and
are contained in multiple plants that are reputed for their
dietary virtues. Based on these considerations, we have set
out in the past to identify autophagy-inducing chalcones.
Among a homemade library of chalcones, we identified
two different agents, namely, 4,4′-dimethoxychalcone
(4,4′DMC)12 and its isomer 3,4-dimethoxychalcone (3,4-
DMC)13 as potent autophagy inducers. Of note, both
chalcones differ in their mode of action. While 4,4′DMC
inhibits autophagy-suppressive GATA transcription fac-
tors12,14, 3,4-DMC acts through the activation of the two
related pro-autophagic transcription factors EB (TFEB)
and E3 (TFE3)13. Irrespective of this difference, both 4,4′
DMC and 3,4-DMC reduce myocardial infarction in mice.
Moreover, 4,4′DMC extended the lifespan of yeast,
nematodes, and flies12, while 3,4-DMC enhanced antic-
ancer immune responses in mice13. These preclinical data
plead in favor of a potential medial utility for chalcones.
Driven by these considerations, we decided to identify

additional pro-autophagic chalcones by screening another
collection of agents. Here, we demonstrate that iso-
bacachalcone (ISO) stimulates autophagic flux, delineate
the molecular pathways involved in this effect, and sug-
gest clinical utility for this chalcone as a stimulator of
anticancer immunity in the context of immunogenic cell
death (ICD)-inducing chemotherapy.

Results
Identification of ISO as an inducer of autophagic puncta
Human neuroglioma H4 cells stably transduced with a

fusion protein containing green fluorescent protein (GFP)
in the N- and microtubule-associated proteins 1A/1B
light chain 3B (MAP1LC3B, best known as LC3) in the C-
terminus (GFP-LC3) were cultured in the presence of
each of the chalcones contained in the Polyphenolic
Natural Compound Library from TargetMol, each used at
three different concentrations (10, 25, and 50 µM). We
found that ISO, (E)-1-[2,4-dihydroxy-3-(3-methyl-2-
butenyl)-phenyl]-3-(4-hydroxyphenyl)-2-propen-1-one
or (E)-4,2′,4′-trihydroxy-3′-prenylchalcone; 2′,4,4′-trihy-
droxy-3′-prenyl-transchalcone) consistently induced
GFP-LC3 puncta at doses of 25 and 50 µM (Fig. 1A–C).
This effect was coupled to a reduction in cytoplasmic
protein acetylation that could be measured by immuno-
fluorescence assays using antibodies that recognize
acetylated lysine residues (Fig. 1D, E). ISO also induced
the lipidation of LC3, measurable by immunoblot analyses
(in which LC3 lipidation yields a band with higher elec-
trophoretic mobility, i.e., LC3B or LC3-II) that was even
observed in the presence of bafilomycin A1, an inhibitor
of autophagosome-lysosome fusion, suggesting that ISO
induces autophagic flux (Fig. 1F, G). Simultaneously, ISO
reduced the abundance of hemagglutinin (HA)-tagged

sequestosome 1 (SQSTM1, best known as p62) fusion
protein transfected into the cells, again supporting the
idea that ISO stimulates autophagic flux (Fig. 1F, H). In
human osteosarcoma U2OS cells, ISO also induced GFP-
LC3 puncta but failed to do so upon knockout of the
essential autophagy gene ATG5 (Fig. 1I–K), indicating
that the formation of GFP-LC3 puncta is indeed coupled
to autophagy. In sum, it appears that ISO is a chalcone
endowed with autophagy-stimulatory properties.

ISO induces autophagic puncta through the inhibition of
AKT
ISO is known to inhibit protein kinase B (PKB, best

known as AKT)15,16. Indeed, U2OS cells stably expressing
a GFP-AKT fusion protein responded to stimulation with
recombinant insulin growth factor-1 (rIGF1) by a partial
translocation of the fluorescent signal to the plasma
membrane, reflecting AKT activation. This effect was not
detectable for a loss-of-function mutation of AKT con-
sisting of an arginine-to-cysteine mutation in the pleck-
strin homology domain of AKT (R25C) (Fig. 2A, B). In
addition, ISO inhibited the activating phosphorylation of
AKT (Ser473) as well as, downstream of AKT, the phos-
phorylation of mechanistic target of rapamycin (mTOR)
(Ser448), and the mTOR complex 1 (mTORC1)-depen-
dent phosphorylation of S6K (Thr389) (Fig. 2C). Stable
transfection of U2OS cells with a constitutively active
AKT mutant (T308D/S473D) inhibited the formation of
ISO-induced GFP-LC3 puncta (Fig. 2D, E) as well as the
lipidation of LC3 (Fig. 2F, G). In conclusion, it appears
that ISO stimulates autophagy through the inhibition of
AKT.

ISO induces autophagic flux in vitro and in vivo
Next, we determined whether ISO induces actual autop-

hagic flux by means of several fluorescent reporter-based
assays. First, we took advantage of a cell line stably
expressing an RFP-ATG4-GFP-LC3ΔG. When expressed in
cells, the probe is cleaved into a stable/cytosolic part, RFP-
LC3ΔG (that serves as an internal control) and a degrad-
able/quenchable part, GFP-LC3 (which is destroyed by
autophagy). Hence, a diminution of the GFP-to-RFP ratio
indicates the occurrence of autophagy17. ISO consistently
induced a decrease in the GFP-to-RFP ratio of cells
expressing RFP-ATG4-GFP-LC3ΔG (Fig. 3A, C). We also
used cells stably expressing a mCherry-GFP-p62 tandem
fusion protein, in which the low pH-sensitive GFP-depen-
dent fluorescence (but less so the pH-resistant mCherry
fluorescence) was reduced upon the culture of the cells with
ISO (Fig. 1B, D). Similarly, we used a rat adrenal gland
(pheochromocytoma) PC12 cell line expressing a
tetracycline-inducible variant of Q74-GFP, meaning that the
GFP via a polyglutamine tail forms aggregates in the
cytoplasm that can be degraded by macroautophagy18.
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Again, we found that ISO reduced the number of Q74-GFP
dots in this experimental system, supporting the idea that it
indeed stimulates autophagic flux.
Encouraged by these findings, we determined whether

ISO might inhibit the AKT pathway and induce autop-
hagy in vivo. Multiple immunoblot experiments indicated
that ISO reduces AKT, mTOR, and S6K phosphorylation
while it enhances the abundance of LC3-II in the heart or
liver of mice receiving intraperitoneal (i.p.) ISO injections.
Thus, ISO can stimulate autophagy in vivo. Notably, the
in vivo effects of ISO were not accompanied by measur-
able weight loss, suggesting that ISO is not toxic.

ISO induces TFEB/TFE3 activation and ER stress
U2OS cells exposed to ISO exhibited the translocation

of a TFEB-GFP fusion protein from the cytoplasm to the
nucleus (Fig. 4A, B). Similarly, TFE3 detectable by
immunofluorescence translocated to the nucleus upon
culture with ISO (Fig. 4C, D). The nuclear translocation of
TFEB and TFE3 could be confirmed by cellular fractio-
nation and immunoblot detection of the two transcription
factors in the cytoplasm and nuclei (Fig. 4E–G).
Accordingly, knockout of TFEB alone (Fig. 4H–K), TFE3
alone (Fig. 4L–O), or their double knockout (genotype:
TFEB−/− TFE3−/−) blunted the induction of autophagic
GFP-LC3 puncta and the lipidation of LC3.
In U2OS cells equipped with biosensors of endoplasmic

reticulum (ER) stress, we found that ISO induced the
upregulation of CHOP (measured by using a GFP gene
inserted into the genome under the control of the CHOP
promoter, Fig. 5A, B) and activated the IRE1/XBP1 axis
(measured by means of an XBP1ΔDBD-venus fusion pro-
tein19 that is only in-frame for venus, a variant of GFP,
when XBP1 has been spliced by IRE1, Fig. 5C, D). Similar
results were obtained when signs of ER stress were

measured by immunofluorescence to detect the nuclear
presence of CHOP (Fig. 5E, F) and ATF6 (Fig. 5G, H), the
phosphorylation of eukaryotic initiation factor 2α (eIF2α)
on serine 51 (Fig. 5I, J) and the expression of the spliced
isoform of XBP1 (XBP1s) (Fig. 5K, L). In most of the cases,
the ISO-induced signs of ER stress were comparable in
magnitude to those induced by the positive controls thap-
sigargin (TG) and tunicamycin (TM) (Fig. 5A–L). More-
over, the expression of constitutively active AKT mutant
blunted the signs of ER stress induced by ISO (Fig. 5E–L).
Interestingly, a crosstalk between the pro-autophagic

and the ER stress-inducing activities of ISO was observed.
Thus, TFEB−/− TFE3−/− cells exhibited a reduced acti-
vation of CHOP (Supplementary Fig. S1A, B) and ATF4
(Supplementary Fig. S1C, D). Such a reduced CHOP and
ATF4 activation was also found for the single-gene
knockout of TFEB or TFE3 (Supplementary Fig. S2).
Cells lacking the eIF2α kinase 3 (EIF2AK3, best known as
PERK) exhibited reduced phosphorylation of eIF2α in
response to ISO (Supplementary Fig. S1E, F), coupled to
reduced formation of autophagic RFP-LC3 puncta (Sup-
plementary Fig. S1G, H). Both the knockout of PERK and
a knock-in mutation of eIF2α rendering it non-
phosphorylable (due to the substitution of serine 51 by
an alanine residue: S51A) significantly reduced the acti-
vation of TFE3 by ISO (Supplementary Fig. S1I–L). These
findings suggest molecular crosstalk between the TFEB/
TFE3 and the PERK/eIF2α pathways triggered by ISO.

ISO improves the outcome of immunogenic chemotherapy
Although ISO alone had rather scarce cytotoxic activ-

ities, it was able to amplify the ATP release induced by
treatment of U2OS cells with low doses of an ICD inducer
(mitoxantrone, MTX), as determined by staining of cells
with the ATP biosensor quinacrine (Fig. 6A, B) or by

(see figure on previous page)
Fig. 1 Isobacachalcone (ISO) is a candidate caloric restriction mimetic (CRM). A Human neuroglioma H4 cells stably expressing GFP-LC3 were
treated with a selection of chalcones from the TargetMol library of flavonoids at the indicated concentrations. We compared the selected agents at
different concentrations with the standard autophagy inducer torin 1 (300 nM), and identified conditions with significantly increased GFP-LC3 puncta
formation (1.25 times of the vehicle control (DMSO)) and viability of at least 80% with respect to DMSO, as potent autophagy activation. B, C H4 cells
stably expressing GFP-LC3 were treated with isobacachalcone (ISO) (10, 25, and 50 μM) for 6 h. Then the cells were fixed and imaged to assess the
formation of GFP-LC3 puncta (C). Torin 1 (300 nM) was used as a prototypical autophagy inducer. Representative images are shown in (B). Scale bar
equals 10 μm. Data are means ± SD of quadruplicates (**P < 0.01; ***P < 0.001 vs. DMSO/Ctr, Student’s t test). D, E U2OS cells were treated as described
above, followed by the incubation with specific antibodies to block acetylated tubulin. Thereafter, immunofluorescence was conducted with
antibodies against acetylated lysine residues and appropriate AlexaFluor-conjugated secondary antibodies. Representative images of lysine
acetylation are shown in (D), and the decrease of acetylation in the cytoplasm was measured in (E). Scale bar equals 10 μm. Data are means ± SD of
quadruplicates (**P < 0.01 vs. DMSO/Ctr, Student’s t test). F, H U2OS cells transfected with a plasmid expressing p62 protein fused with an HA tag (HA-
p62) were treated with ISO (25 μM) in the presence or absence of bafilomycin A1 (Baf A1, 100 nM) for 6 h. SDS–PAGE and immunoblot were
performed, band intensities of HA-p62 and β-actin (ATCB) were assessed, and the ratio (HA/ATCB) was calculated (H). In parallel samples, band
intensities of LC3-II and ATCB were assessed, and their ratio (LC3-II/ATCB) was calculated (G). Data are means ± SD of three independent experiments
(*P < 0.05, **P < 0.01 vs. untreated control; ##P < 0.01, ###P < 0.001 vs. without Baf A1; Tukey’s multiple comparisons test). I, K Human osteosarcoma
U2OS cell stably expressing GFP-LC3 either wild-type (WT) or ATG5 knockout (I) were treated with ISO (25 μM) or torin 1 (300 nM) for 6 h. The cells
were fixed, imaged, and GFP-LC3 dots were quantified (K). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (***P < 0.001 vs. untreated
control; ##P < 0.01, ###P < 0.001 vs. WT; Tukey’s multiple comparisons test).
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measuring ATP in the supernatant of the cells using a
biochemical assay (Fig. 6C–F). ATP is released from
stressed cancer cells in an autophagy-dependent fash-
ion20,21 and acts in the extracellular space as an important
chemotactic factor that attracts myeloid immune effectors
into the tumor bed, thereby setting off the molecular
cascade that permits anticancer immune responses in the
context of ICD22,23. In contrast, ISO did not affect other
autophagy-independent hallmarks of ICD24, including
surface exposure of calreticulin or the release of high
mobility group protein B1 from low-dose MTX-treated
cells (Supplementary Fig. S3). Of note, the knockouts of
ATG5 (Fig. 6C) or PERK (Fig. 6D), the S51A mutation of
eIF2α (Fig. 6E) or the expression of a constitutively active
AKT mutant (Fig. 6F) reduced the ATP release induced
by the combination of low-dose MTX and ISO, sup-
porting the idea that the aforementioned pathways are
important for this phenomenon.
Next, we determined the capacity of ISO to enhance the

efficacy of ICD-inducing chemotherapy in vivo, using
immunocompetent mice-bearing syngeneic cutaneous
MCA205 fibrosarcomas. We chose this type of
methylcholantrene-induced tumor because it is well
characterized in immunosurveillance models25,26, and
because its growth under the skin can be considered as
orthotopic. Once MCA205 tumors had been established,
the mice received the ICD inducer oxaliplatin (OXA), ISO
or the combination (OXA+ ISO) while negative controls
received vehicle alone (Fig. 6G). Of note, the combination

Fig. 2 Inhibition of AKT phosphorylation is pivotal to ISO-
induced autophagy. A, B Human osteosarcoma U2OS cells stably
expressing GFP-AKT or GFP-AKTR25C were treated serum-deprived
overnight, then the cells were treated with recombinant IGF1 (rIGF1,
10 nM) or isobacachalcone (ISO; 25 μM) combined with rIGF1. The
membrane translocation of GFP-AKT was detected after 10 min (A),
and the intensity of membranous AKT was measured (B) Data are
means ± SD of quadruplicates (***P < 0.001 vs. untreated control; ##P <
0.01, ###P < 0.001 vs. DMSO/Ctr; Tukey’s multiple comparisons test).
C Serum-deprived U2OS cells were treated with ISO (25 μM) with or
without recombinant IGF1 (rIGF1, 10 nM) for 6 h, and parallel
immunoblots were performed for detecting pAKT, AKT, pmTOR,
mTOR, pS6K, S6K, and LC3-II. β-actin (ACTB) was utilized to ensure equal
loading (C). D, E U2OS-GFP-LC3 cells transfected with a plasmid coding
for AKTT308D/S473D were treated with ISO (25 μM) or torin 1 (300 nM) for
6 h, and GFP-LC3 dots were quantified in (E). Scale bar equals 10 μm.
Data are means ± SD of quadruplicates (**P < 0.01, ***P < 0.001 vs.
untreated control; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. WT; Tukey’s
multiple comparisons test). F, G U2OS cells were transfected with a
plasmid expressing AKTT308D/S473D. Then the cells were serum-deprived
and treated with ISO (25 μM) for 6 h. Parallel immunoblot for pAKT, AKT,
and LC3-II were performed, and ACTB was used to ensure equal loading.
Band intensities of LC3-II and ACTB were assessed, and their ratio (LC3-II/
ACTB) was calculated (G). Data are means ± SD of three independent
experiments (***P < 0.001 vs. untreated control; ###P < 0.001 vs WT;
Tukey’s multiple comparisons test).

Wu et al. Cell Death and Disease         (2020) 11:1015 Page 5 of 16

Official journal of the Cell Death Differentiation Association



(OXA+ ISO) allowed for tumor growth control in con-
ditions in which ISO and OXA alone had no or little effect,
respectively (Fig. 6H). The anticancer activity depended on

the immune system since it was lost in mice lacking
mature T cells due to the nu/nu mutation that causes
athymia (Fig. 6I). Moreover, tumor cells engineered to lack

Fig. 3 (See legend on next page.)
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Atg5 or to express constitutively active AKT failed to
respond to the ISO/OXA combination treatment in the
immunocompetent setting (Fig. 6J, K). Analysis of the
immune infiltrates of the tumors treated with ISO, OXA,
or ISO+OXA (Fig. 6L) revealed that the combination
treatment was particularly efficient in reducing regulatory
T cells (Tregs, defined as CD3+CD4+FoxP3+ cells), in
improving the ratio of CD8+ cytotoxic T lymphocytes
(CTLs) over Tregs and in reducing the expression of the
exhaustion marker PD-1 on CTLs (Fig. 6M–P). In con-
clusion, ISO stimulates anticancer immunity in the con-
text of ICD-inducing chemotherapy.

Discussion
Here, we identified ISO as an autophagy inducer that

inhibits AKT and mTORC1 activity and activates the pro-
autophagic transcription factors TFEB and TFE3, which
both are known to be activated by mTORC1 inhibi-
tion27,28. We also found that ISO activates a broad ER
stress response including the PERK-dependent phos-
phorylation of eIF2α, as a sign of the integrated stress
response, which is known to be required for autophagy
induction29–31 as well as for the induction of ICD32–37.
The two pathways, autophagy and ER stress induced by
ISO exhibited crosstalk in thus far that (i) they both are
inhibited by constitutively active AKT, (ii) TFEB/TFE3
knockout does not only reduce autophagy but also signs of
ER stress, and (iii) PERK knockout or substitution of eIF2α
by a non-phosphorylable mutant reduces TFEB/TFE3
activation and autophagy. Beyond these in vitro phenom-
ena, ISO induced autophagy in vivo, in mouse tissues, and
enhanced the immune response induced by immunogenic
chemotherapy against established tumors, thus improving
tumor growth control through mechanisms that rely on
T cells as well as AKT inhibition and autophagy induction
in the cancer cells.
ISO is a chalcone that was first isolated from the mul-

tipurpose medical plant Psoralea corylifolia. Reportedly,
ISO possesses a wide spectrum of antibacterial38,39 anti-
fungal40 antiparasitic41, antiviral42,43, antitubercular44,

antithrombotic45,46, antiinflammatory47,48, antioxidant49,
antiobesity50, and phytoestrogene51 activities. Hence, ISO
has a very broad range of biological activities. In cell-free
enzymatic assays, ISO inhibits beta-secretase52, acyl-
coenzyme A: cholesterol acyltransferase53, severe acute
respiratory syndrome coronavirus (SARS-CoV) papain-
like protease54, protein tyrosine phosphatase 1B
(PTP1B)55, carboxylesterase 256, and pancreatic lipase57,
suggesting that ISO can act on multiple pharmacological
targets, shedding doubts on its specificity. Based on its
broad effects, it might be suspected that ISO has direct
immunostimulatory effects that help to improve immu-
nosurveillance in the context of ICD-inducing che-
motherapies. Indeed, autophagy induction may stimulate
dendritic and T-cell functions23,58,59.
In vitro, ISO reduces Aβ42 aggregation in SH-SY5Y

cells60 and the tumor necrosis factor-α (TNFα)-induced
atrophy of C2C12 myotubes61. In rodents, ISO attenuates
Parkinson’s disease induced by the toxin 1-methyl-4-
phenyl-1,2,3,6- tetrahydropyridine (MPTP)62, sephadex-
induced lung injury63, as well as streptozotocin-induced
diabetic nephropathy64. This suggests that ISO has a wide
range of cytoprotective effects that might be explained by
its autophagy-inducing activity.
With respect to its anticancer effects, ISO reportedly

suppresses skin tumor promotion in an in vivo two-stage
mouse skin carcinogenesis test using 7,12-dimethylbenz
[a]anthracene (DMBA) as an initiator and 12-O-Tetra-
decanoylphorbol-13-acetate (TPA) as a promoter65. ISO
has cytotoxic effects on neuroblastoma66, multiple mye-
loma cells67,68, leukemia69, as well as on chemoresistant
carcinoma and glioblastoma cell lines70, enhances TRAIL-
induced apoptosis in prostate cancer and cervical carci-
noma cells71, and reduces melanin production by B16
melanoma cells72. Here, we found that ISO failed to
inhibit the growth of fibrosarcomas in mice when used as
a standalone treatment, yet ameliorated the efficacy of
ICD-inducing chemotherapy through an improved
anticancer immune response. The absence of antitumor
efficacy of ISO, when used as a standalone treatment, may

(see figure on previous page)
Fig. 3 ISO stimulates autophagic flux in vitro and in vivo. A–D Human osteosarcoma U2OS cells stably expressing the tandem reporter construct
GFP-LC3-ATG4-RFP-LC3ΔG (A) or the tandem reporter mCherry-GFP-p62 (B) were treated with torin 1 (300 nM) or isobacachalcone (ISO; 25 μM) with
or without bafilomycin A1 (Baf A1, 100 nM) for 6 h. After fixation, GFP and RFP fluorescence was measured by automated image analysis, and the ratio
of RFP to GFP was calculated (C, D). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (*P < 0.05, **P < 0.01, ***P < 0.001 vs. untreated
control;### P < 0.001 vs. without Baf A1; Tukey’s multiple comparisons test). E, F Rat adrenal gland PC12 cells stably expressing an inducible variant of
Q74-GFP were treated with doxycycline (1 μg/mL) for 8 h for the induction of Q74 expression. Then the medium was changed, and ISO (10, 25,
50 μM) was added for 24 h. Torin 1 (300 nM) was used as a positive control. Representative images are shown in (E), and GFP-Q74 levels were
quantitated in (F). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (**P < 0.01, ***P < 0.001 vs. DMSO/Ctr, Student’s t test). G–M C57BL/6
mice received two intraperitoneal (i.p.) injections of 20 mg/kg/day ISO (n= 3 mice per condition, n= 2 experiments). Organs were collected, and
representative immunoblots showing regulators and LC3I-to-LC3-II conversion in the heart (G–K) and in the liver (L–P). AKT, mTOR, and p70
abundance was evaluated, and parallel samples were probed with phosphoneoepitope-specific antibodies. β-actin (ACTB) or vinculin levels were
monitored to ensure equal protein loading (H, J). Band intensities of pAKT and ACTB, pmTOR and Vinculin, pS6K and ACTB, as well as LC3-II and ACTB,
were assessed, and their ratios were calculated (H–K, M–P). Data are means ± SD (n= 3; (*P < 0.05, **P < 0.01 vs. DMSO/Ctr, Student’s t test).
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be linked to suboptimal dosing as well as to its pharma-
cokinetics, knowing that ISO has a half-life of ~6 h in
rats73. However, we have observed as a general pattern
that autophagy induction with non-toxic agents is not
sufficient to inhibit tumor growth of established tumors in
mice. Thus, the biological activity of ISO is reminiscent of
other autophagy inducers including 3,4-DMC13, hydro-
xycitrate, resveratrol, spermidine74,75, and thiostreptone76,
all of which can ameliorate the therapeutic activity of ICD
inducers in suitable mouse models but lack intrinsic
anticancer properties.

Although ISO has multiple pharmacological effects and
targets, several of the in vitro effects of ISO correlated
with the inhibition of the AKT/mTORC1 pathway, and
expression of a constitutively active AKT mutant largely
reversed the ISO-induced signs of cellular stress including
autophagy (with its upstream events, mTORC1 inhibition
and TFEB/TFE3 activation) and ER stress (at all levels of
the unfolded stress response, including its PERK/eIF2α/
ATG4/CHOP, ATG6, and IRE1α/XBP1 arms), as shown
in human U2OS cells. Moreover, mouse cancer cells
stably expressing a constitutively active AKT enzyme

Fig. 4 (See legend on next page.)
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(or lacking the essential autophagy gene Atg5) became
resistant against the anticancer activity of ISO combined
with ICD induction, suggesting some sort of ‘specificity’
for the ISO effect. However, at this point, it is not clear
whether ISO may directly inhibit AKT or an enzyme
upstream of AKT (such as phosphatidylinositol 3-kina-
ses). Reportedly, ISO inhibits PTP1B55, which would
result in the activation, not the inhibition of the AKT
pathway. Hence, the precise molecular target of ISO
remains elusive.
ISO was initially isolated from Psoralea corylifolia, but

has also been identified in other plants, including in
Angelica keiskei50, Artocarpus species46, Cullen cor-
ylifolium77, Dorstena barteri38, Erythrena fusca78, Fatoua
pilosa44, Morus alba79, and Piper longum72. This suggests
that ISO is rather prevalent in plants, perhaps contribut-
ing to the broad pro-health effects of plant-enriched
diets80,81. However, additional studies are required to
confirm this conjecture.
In summary, here we identified a particular chalcone,

ISO, as a potent autophagy inducer that acts in vitro and
in vivo, on human cell lines and mouse organs, respec-
tively. Through the induction of autophagy, ISO is able to
stimulate anticancer immune responses in the context of
immunogenic chemotherapy.

Materials and methods
Cell culture and chemicals
Culture media and supplements for cell culture were

obtained from Life Technologies (Carlsbad, California,
USA) and plastic materials came from Greiner Bio-One
(Kremsmünster, Austria) and Corning (Corning, NY, USA).

Rat adrenal gland PC12 cells stably expressing doxycycline-
inducible Q74-GFP were cultured in Roswell Park Mem-
orial Institute (RPMI)-1640 containing 5% fetal bovine
serum and 10% horse serum82. Human neuroglioma H4
cells, human osteosarcoma U2OS cells, MCA205 murine
fibrosarcoma, and all the other cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM), supple-
mented with 10% (v/v) fetal bovine serum (FBS), 10 UmL−1

penicillin sodium and 10 μgmL−1 streptomycin sulfate at
37 °C in a humidified atmosphere with 5% CO2. TFEB-
deficient (TFEB−/−), TFE3-deficient (TFE3−/−), TFEB and
TFE3-double deficient (TFEB−/−TFE3−/−), ATG5-deficient
(ATG5−/−), and PERK-deficient (PERK−/−) U2OS-GFP-
LC3 cell lines and TFEB and TFE3-double deficient
(TFEB−/−TFE3−/−) in H4-GFP-LC3 cells were generated by
means of the CRISPR/Cas-mediated genome editing, as per
the manufacturer’s recommendations13. U2OS cells stably
expressing RFP-LC3 bearing a mutant non-phosphorylation
of eIF2α (eIF2αS51A) were constructed using the CRISPR-
Cas9 technology as previously detailed31. In addition, U2OS
cells stably expressing GFP-TFEB, CHOP::GFP, and XBP1s-
DDBD-venus were generated by our group in the past13,36.
MCA205 cells stably expressing shRNAs interfering with
the expression of TFE3/TFEB or ATG5, and a mutant
phosphorylation AKT T308D/S473D were also constructed
as recommended by the manufacturer13,74,83. The Poly-
phenolic Natural Compound Library library and ISO were
purchased from TargetMol (Boston, Massachusetts, USA);
torin 1 (TOR), thapsigargin (TG), tunicamycin (TM), bafi-
lomycin A1 (Baf A1), mitoxantrone (MTX), and oxaliplatin
(OXA) were obtained from Sigma-Aldrich (St. Louis,
Missouri, USA).

(see figure on previous page)
Fig. 4 ISO induces TFEB- and TFE3-dependent autophagy. A, B Human osteosarcoma U2OS cells stably expressing GFP-TFEB fusion protein were
treated with torin 1 (300 nM) and isobacachalcone (ISO, 25 μM) for 6 h. Representative images are shown in (A) and TFEB translocation was assessed
by measuring GFP intensities in the nuclei (B). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (***P < 0.001 vs. DMSO/Ctr, Student’s
t test). C, D U2OS cells were treated with torin 1 (300 nM) and ISO (25 μM) for 6 h, and then, endogenous TFE3 translocation was assessed by
immunostaining (C). Nuclear TFE3 intensities are depicted in (D). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (***P < 0.001 vs.
DMSO/Ctr, Student’s t test). E–G U2OS cells were treated with ISO (25 μM) for 6 h or were left untreated. Cytoplasmic and nuclear fractions were
assessed for nuclear translocation of the transcription factors TFEB and TFE3 in parallel samples by SDS–PAGE. GAPDH and H3 were used to ensure
equal loading in the cytoplasmic and nuclear fractions, respectively. Band intensities of TFEB, TFE3, GAPDH, and H3 were assessed and their ratios
(TFEB or TFE3/GAPDH, and TFEB or TFE3/H3) were calculated in (F, G). (*P < 0.05, **P < 0.01, ***P < 0.001 vs. cytoplasmic DMSO; #P < 0.05, ##P < 0.01, ###P
< 0.001 vs. nuclear DMSO; Tukey’s multiple comparisons test). H–K U2OS cells stably expressing GFP-LC3 either wild-type (WT) or knockout for TFEB
were treated with torin 1 (300 nM) or ISO (25 μM) for 16 h. LC3-II expression and TFEB deficiency were visualized by SDS–PAGE and immunoblot (J).
Band intensities of LC3-II and β-actin (ACTB) were assessed, and their ratio (LC3-II/ACTB) was calculated in (K). Representative images are shown in (H),
and GFP-LC3 dots were quantified as indicators of autophagy (I). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (***P < 0.001 vs.
untreated control; #P < 0.05 vs. WT; Tukey’s multiple comparisons test). L–O U2OS cells stably expressing GFP-LC3 either WT or knockout for TFE3
were treated with torin 1 (300 nM) and ISO (25 μM) for 16 h. LC3-II expression and TFE3 deficiency were monitored by SDS–PAGE and immunoblot
(N). Band intensities of LC3-II and ACTB were assessed, and their ratio (LC3-II/ACTB) was calculated in (O). Representative images are shown in (L), and
GFP-LC3 dots were quantified (M). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (*P < 0.05, P < 0.001 vs. untreated control; #P < 0.05
vs. WT; Tukey’s multiple comparisons test). P–S U2OS cell stably expressing GFP-LC3 either wild-type or double knockout for TFEB and TFE3 cells were
treated with torin 1 (300 nM) and ISO (25 μM) for 16 h. LC3-II expression and TFEB/TFE3 deficiency were checked in parallel samples by SDS–PAGE
and immunoblot (R). Band intensities of LC3-II and ACTB were assessed, and the ratio (LC3-II/ACTB) was calculated (S). Representative images are
shown in (P), and GFP-LC3 dots were quantified as indicators of autophagy (Q). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (*P <
0.05, ***P < 0.001 vs. untreated control; #P < 0.05, ##P < 0.01 vs. WT; Tukey’s multiple comparisons test).
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Fig. 5 (See legend on next page.)
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High-content microscopy
Human osteosarcoma U2OS and neuroglioma H4 cells

stably expressing GFP-LC3 or RFP-LC3 and rat adrenal
gland PC12 cells stably expressing doxycycline-inducible
Q74-GFP were seeded in 384-well black imaging plates at
a density of 2000 cells per well and allowed to adapt for
overnight. Cells were treated with the indicated agents for
6 h, subsequently, cells were fixed with 3.7% paraf-
ormaldehyde (PFA, w/v in PBS) (F8775, Sigma-Aldrich) at
4 °C overnight and stained with 1 µg/ml Hoechst 33342 in
PBS. Moreover, 2000 U2OS cells either wild-type or stably
expressing HMGB1-GFP/CALR-RFP, GFP-ATF6, CHOP::
GFP, GFP-TFEB, or XBP1-DDBD-venus were seeded in
384-well black imaging plates (Greiner Bio-One) and let
adhere overnight. Cells were then treated for 6 h to detect
TFEB translocation, 16 h to assess ATF6 translocation and
spliced XBP1 (XBP1s) levels, or 24 h to measure CHOP
promoter activity. For CALR redistribution and HMGB1
release, cells were incubated for 8 h or 24 h respectively.
Next, cells were fixed with 3.7% formaldehyde supple-
mented with 1 μg/ml Hoechst 33342 (H3570, Thermo
Fisher Scientific) at 4 °C overnight. Subsequently, the
fixative was exchanged to PBS, and the plates were ana-
lyzed by automated microscopy. Image acquisition was
performed using an ImageXpress Micro XL automated
microscope (Molecular Devices, Sunnyvale, CA, USA)
equipped with a ×20 PlanApo objective (Nikon, Tokyo,
Japan), followed by automated image processing with the
custom module editor within the MetaXpress software
(Molecular Devices). At least four view fields were
acquired per well, and experiments involved at least tri-
plicate assessment. Cellular regions of interest, cytoplasm
and nucleus, were defined and segmented by using the
MetaXpress software (Molecular Devices). After exclusion
of cellular debris and dead cells from the dataset, para-
meters of interest were normalized, statistically evaluated,
and graphically depicted with R software. Using R, images
were extracted and pixel intensities scaled to be visible (in
the same extent for all images of a given experiment).

Immunofluorescence
Human osteosarcoma U2OS cells were treated for 6 h to

detect eIF2α phosphorylation (PeIF2α) and TFE3, 16 h
to assess ATF6 and spliced XBP1 (XBP1s) levels, or 24 h
to measure CHOP expression. Then cells were fixed by
3.7% PFA at 4 °C overnight. For staining, fixed cells were
then permeabilized with 0.1% Triton X100 on ice, and
blocked with 5% bovine serum albumin (BSA, w/v in PBS)
for 1 h. Next, cells were incubated with antibodies specific
to TFE3 (#ab93808, 1:400, Abcam), phospho-eIF2 alpha
(Ser51) (#ab32157, 1:1000, Abcam), ATF6 (#ab37149,
1:200, Abcam), XBP1 (#ab37152, 1:250, Abcam) or CHOP
(#2895, 1:500, Cell Signaling Technology) at 4 °C over-
night. After washed by PBS twice, AlexaFluor conjugates
(Thermo Fisher Scientific) against the primary antibody
were applied for 2 h at RT. Finally, cells were washed and
imaged by automated fluorescence microscopy as
described above. The nuclear intensity of TFE3, ATF6,
XBP1s or CHOP and cytoplasmic intensity of phospho-
eIF2α (Ser51) were measured and normalized on Ctrl.

Immunoblotting
The tissues (~30mg) were dissociated in Precellys lysing

tubes (#CK28_2 mL, Bertin Technologies SAS, Montigny-
le-Bretonneux, France) containing 1mL of radio-
immunoprecipitation assay buffer (RIPA) lysis buffer
(#89901, Invitrogen, Carlsbad, CA, USA) by using the
Precellys 24 homogenizer (Bertin Technologies SAS) at
6500 rpm for 5min, followed by spinning at 14,000×g for
15min to collect the supernatant that contains soluble
proteins. For cells, the protein extracts were dissolved in
RIPA buffer and obtained by ultrasonication for 3 × 10 s
and centrifuging at 12,000×g for 15min to collect the
supernatant that contains soluble proteins. Protein con-
centration was measured by means of the BCA Assay
(Bio-Rad, Hercules, CA, USA). The protein solution was
mixed with 4× loading buffer (# NP0008, Invitrogen), and
denatured at 100 °C for 15min before subjected to western
blotting. The total protein (~30 μg) were resolved on

(see figure on previous page)
Fig. 5 ISO stimulates ER stress via the inhibition of AKT phosphorylation. A, B Human osteosarcoma U2OS cells stably expressing GFP under the
CHOP promoter (CHOP::GFP) were treated with the indicated agents (tunicamycin, TM (3 μM), TG thapsigargin (3 μM), isobacachalcone ISO (25 μM))
for 24 h. GFP nuclear translocation is shown in (A), and the average nuclear intensity of GFP was quantified in (B). Scale bar equals 10 μm. Data are
means ± SD of quadruplicates (**P < 0.01, ***P < 0.001 vs. untreated control; Student’s t test). C, D U2OS cells stably expressing XBP1ΔDBD-venus (for
monitoring venus expression upon alternative splicing of XBP1 mRNA) were treated as indicated for 16 h. XBP1s expression is shown in (C), and the
average nuclear intensity was measured in (D). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (**P < 0.01, ***P < 0.001 vs. untreated
control; Student’s t test). E–L U2OS wild-type (WT) or knock-in for AKTT308D/S473D cells were treated with TM (3 μM), TG (3 μM), ISO (25 μM) 24 h for
assessing CHOP, 6 h for measuring peIF2α, and 16 h for monitoring ATF6 and XBP1s. After fixation, the cells were stained with corresponding primary
antibodies followed by an AlexaFluor-568 secondary antibody. Nuclei were counterstained with Hoechst 33342. CHOP nuclear expression is shown in
(E), and the average nuclear intensity of CHOP was quantified in (F). ATF6 nuclear translocation is shown in (G), and the average nuclear intensity of
ATF6 was quantified in (H). PeIF2α was assessed by means of immunofluorescence staining (I), and the average cytoplasmic intensity of cells was
depicted in (J). XBP1s activation is shown in (K), and the average nuclear intensity was measured in (L). Scale bar equals 10 μm. Data are means ± SD
of quadruplicates (*P < 0.05, **P < 0.01, ***P < 0.001 vs. untreated control; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. WT; Tukey’s multiple comparisons test).
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Fig. 6 ISO mediates improvement of anticancer chemotherapy. A, B Human osteosarcoma U2OS cells were treated with isobacachalcone (ISO,
25 μM) in the presence of low doses of the immunogenic cell death (ICD) inducer mitoxantrone (MTX, 1 μM) for 6 h. High-dose MTX (5 μM) was used
as a positive control. The ATP-sensitive agent quinacrine was used to monitor intracellular ATP content. Representative images are shown in (A), and
the abundance of quinacrine was quantified in (B). Scale bar equals 10 μm. Data are means ± SD of quadruplicates (*P < 0.05, ***P < 0.001 vs. untreated
control Tukey’s multiple comparisons test). C–F Human neuroglioma H4 cell stably expressing GFP-LC3 either wild-type (WT) or ATG5 knockout,
human osteosarcoma U2OS wild-type, PERK knockout or eIF2αS51A knock-in cells, murine fibrosarcoma MCA205 WT or AKTT308D/S473D knock-in cells
were treated with ISO (25 μM) alone or in combination with low doses of MTX (1 μM) for 6 h, as described above. High-dose MTX (5 μM) was used as
a positive control. Extracellular ATP levels were measured by luciferase conversion (**P < 0.01, ***P < 0.001 vs. untreated control; #P < 0.05, ##P < 0.01,
###P < 0.001 vs. WT; Tukey’s multiple comparisons test). G, L Schematic overview of the in vivo treatment of murine fibrosarcoma MCA205-bearing
mice with oxaliplatin (OXA) and ISO, alone or in combination. H–K Growth kinetic of murine fibrosarcoma MCA205 cells WT (H), Atg5KD (J), or
AKTT308D/S473D knock-in (K) growing in immunocompetent C57BL/6 mice, treated as indicated in (G). Athymic mice (nu/nu) mice (I) were inoculated
subcutaneously with murine fibrosarcoma MCA205 cells. When tumors became palpable, mice received a systemic intraperitoneal injection of ISO
alone or together with OXA. n ≥ 6 mice per group. Results (means ± SD tumor growth curves) are plotted (*P < 0.05 or ns, not statistically significant
vs. OXA). M–P Murine fibrosarcoma MCA205 cells were evolving in immunocompetent C57BL/6 mice, treated as indicated in (L). Cytofluorometric
characterization of tumor-infiltrating lymphocytes, in particular CD4+FOXP3+CD25+ regulatory T cells (Treg) (M), CD3+CD8+ cytotoxic T lymphocytes
(N), CD8+PD1+ T lymphocytes (O), and the ratio of CD3+CD8+ T cells over Treg (P) are depicted. Data are means ± SD (n ≥ 5) (*P < 0.05 or ns, not
statistically significant vs. OXA; Student’s t test).
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4–12% NuPAGE Bis-Tris protein gels (#NP0322, Thermo
Fisher Scientific) and electrotransferred to 0.2 μM poly-
vinylidene fluoride (PVDF) membranes (#1620177, Bio-
Rad). The membranes were blocked with 0.05% Tween 20
(#P9416, Sigma-Aldrich) v-v in Tris-buffered saline (TBS)
(TBST) (#ET220, Euromedex) supplemented with 5%
nonfat powdered milk (w:v in TBS), followed by an over-
night incubation at 4 °C with primary antibodies specific for
LC3B (#2775, 1:1000, Cell Signaling Technology), HA
(#ROAHAHA, 1:1000, Sigma-Aldrich), phospho-P70
(Thr389) (#9234, 1:1000, Cell Signaling Technology), P70
(#9202, 1:1000, Cell Signaling Technology), TFEB (#4240,
1:1000, Cell Signaling Technology), TFE3 (#ab93808,
1:1000, Abcam), phospho-AKT (Ser473) (#4060, Cell Sig-
naling Technology), AKT (#4691, Cell Signaling Technol-
ogy), phospho-mTOR (Ser2448) (#2971, Cell Signaling
Technology), mTOR (#2983, Cell Signaling Technology),
H3 (#9715, 1:1000, Cell Signaling Technology). Membranes
were washed three times with TBST for 10min each before
incubated with HRP-conjugated goat-anti-rabbit secondary
antibody (CliniScience) for 2 h at room temperature. At
last, the membranes were washed again and subjected to
chemiluminescence detection with the Amersham ECL
Prime detection reagent kit (GE Healthcare, Piscataway, NJ,
USA) on an ImageQuant LAS 4000 software-assisted
imager. Samples from cells or organs were aliquoted and
run on separate gels. Equal loading was controlled by
Coomassie staining. The abundance of control proteins
(such as β-actin (ACTB, #ab 20727, 1:10000, Abcam),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(#2118, 1:5000, Cell Signaling Technology), vinculin
(#13901, 1:1000, Cell Signaling Technology) vinculin, or
non-phosphorylated proteins such as AKT, S6K, mTOR) in
each sample was determined in parallel samples. Quanti-
fication was performed by densitometry using the Image J
software.

Nuclear extraction experiment
U2OS-GFP-LC3 cells were collected and processed with

the Nuclear Extraction Kit (#ab113474, Abcam) following
the manufacturer’s methods. The GAPDH antibody
(#2118, 1:1000, Cell Signaling Technology) was used as
the cytoplasmic control, and H3 (#9715, 1:1000, Cell
Signaling Technology) was selected as the nuclear control.

Detection of protein deacetylation
U2OS cells stably expressing GFP-LC3 (~2000 cells/

well) were seeded in 384-well microplates overnight. After
experimental treatments, cells were fixed with 3.7% PFA
containing 10 μg/ml Hoechst 33342 overnight at 4 °C.
Thereafter, cells were incubated with an antibody specific
for acetyl-alpha-tubulin (#5335, 1:500, Cell Signaling
Technology) in 5% BSA (w/v in PBS) for 1 h to block non-
specific binding sites and acetylated tubulins, followed by

overnight incubation at 4 °C with an antibody specific to
acetylated lysine residues (#623402, 1:400, BioLegend, San
Diego, California, USA). After washing three times with
PBS, cells were incubated in AlexaFluor-568-conjugated
secondary antibodies (Life Technologies) for 2 h at room
temperature. Fluorescent images were acquired and ana-
lyzed as described before.

ATP release assays
Intracellular ATP levels were detected by quinacrine

stain assay (Calbiochem) kits, subsequently, the images of
quinacrine were obtained by high-content microscopy
and the cytoplasmic intensity of quinacrine was quanti-
tated described above. Extracellular ATP levels were
measured by the ENLITEN ATP Assay System Biolumi-
nescence Detection Kit (Promega, Madison, Michigan,
USA; #FF2000) following the manufacturer’s methods.
Luminescence was detected by means of a Paradigm I3
multimode plate reader (Molecular Devices).

Animal experimentation
The animal experiments were approved by the Gustave

Roussy ethical committee with project number
24771–2020032413235413, and all procedures were per-
formed under the governmental and institutional guide-
lines and regulations. All mice were maintained in a
temperature-controlled and pathogen-free environment
with 12-h light/dark cycles, with food and water ad libitum.
Animal experiments were conducted in compliance with
the EU Directive 63/2010 and protocols 2019_030_20590
and were approved by the Ethical Committee of the Gus-
tave Roussy Campus Cancer (CEEA IRCIV/IGR no. 26,
registered at the French Ministry of Research).
For tumor growth experiments, 7-week-old female wild-

type C57BL/6 mice or athymic female nude mice (nu/nu)
were obtained from Envigo, France (Envigo, Huntingdon,
UK). MCA205 wild-type (WT), or continuous activation of
AKT T308D/S473D cells (4 × 105), MCA205 cells carrying
an ATG5 knockdown (WT, 6 × 105) were subcutaneously
injected into C57BL/6 hosts. When tumors became palp-
able, mice were treated with 20mg/kg ISO dissolved in
corn oil (Sigma-Aldrich) or an equivalent volume of
vehicle alone or in combination with 10mg/kg oxaliplatin
(OXA, Sigma-Aldrich) by intraperitoneal injection. On the
following days, mice well-being and tumor growth were
monitored and documented. Animals were sacrificed
when tumor size reached the ethical endpoint or signs of
obvious discomfort were observed following the EU
Directive 63/2010 and our Ethical Committee advice.

Ex vivo phenotyping of the tumor immune infiltrate
Tumors were harvested, weighed, and transferred on ice

into gentleMACS C tubes (Miltenyi Biotec, Bergisch
Gladbach, Germany) containing 1mL of RPMI medium.
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Tumors were dissociated first mechanically with scissors,
then enzymatically using Miltenyi Biotec mouse tumor
dissociation kit (Miltenyi Biotec) and a GentleMACS Octo
Dissociator according to the manufacturer’s instructions.
The dissociated bulk tumor cell suspension was resus-
pended in RPMI-1640, sequentially passed through 70-μm
MACS Smart-Strainer (Miltenyi Biotec), and washed twice
with PBS. Finally, bulk tumor cells were homogenized in
PBS at a concentration corresponding to 250mg of the
initial tumor weight per milliliter. Prior to staining of
tumor-infiltrating lymphocytes (TILs) for flow cytometry
analysis, samples (~50mg) were incubated with LIVE/
DEAD® Fixable Yellow Dead Cell dye (Thermo Fisher
Scientific) to discriminate viable cells from damaged cells.
Fc receptors were blocked with anti-mouse CD16/CD32
(clone 2.4G2, Mouse BD Fc Block, BD Pharmingen) before
staining with fluorescent-labeled antibodies targeting T-
cell surface markers. Surface staining of murine immune
cell populations infiltrating the tumor was performed with
the following fluorochrome-conjugated antibodies: anti-
CD45-AF700, anti-CD3-BV421, anti-CD8-PE, anti-CD4-
Percp.Cy5.5, anti-CD25-PE/Cy7, and anti-PD-1-APC/Cy7
(BioLegend). Then, cells were fixed and permeabilized in
eBioscience Foxp3/Transcription Factor Staining Buffer
(Thermo Fisher Scientific) and stained for intracellular
Foxp3. Finally, stained samples were run through a BD
LSR II flow cytometer. Data were acquired using BD
FACSDiva software (BD Biosciences) and analyzed using
FlowJo software (TreeStar). Absolute counts of leukocytes
and tumor cells were normalized considering the following
parameters: the weight of the harvested tumor and total
volume of the dissociated tumor cell suspension (cell
concentration typically set to 250mg/mL in PBS), the
proportion of the whole-cell suspension, and proportion of
the cell suspension used for cytometry.

Statistical analysis
Unless otherwise mentioned, data are reported as

means ± SD of triplicate determinations, and experiments
were repeated at least three times yielding similar results.
Statistical significance was assessed by Student’s t test.
TumGrowth and GraphPad were used to analyze in vivo
data arising from murine models84. TumGrowth is avail-
able at Github/Kroemerlab. P values of 0.05 or less were
considered to denote significance (*P < 0.05; **P < 0.01;
***P < 0.001; ns, not significant).
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Everolimus and plicamycin specifically target chemoresistant
colorectal cancer cells of the CMS4 subtype
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Colorectal cancers (CRC) can be classified into four consensus molecular subtypes (CMS), among which CMS1 has the best
prognosis, contrasting with CMS4 that has the worst outcome. CMS4 CRC is notoriously resistant against therapeutic interventions,
as demonstrated by preclinical studies and retrospective clinical observations. Here, we report the finding that two clinically
employed agents, everolimus (EVE) and plicamycin (PLI), efficiently target the prototypic CMS4 cell line MDST8. As compared to the
prototypic CMS1 cell line LoVo, MDST8 cells treated with EVE or PLI demonstrated stronger cytostatic and cytotoxic effects,
increased signs of apoptosis and autophagy, as well as a more pronounced inhibition of DNA-to-RNA transcription and RNA-to-
protein translation. Moreover, nontoxic doses of EVE and PLI induced the shrinkage of MDST8 tumors in mice, yet had only minor
tumor growth-reducing effects on LoVo tumors. Altogether, these results suggest that EVE and PLI should be evaluated for their
clinical activity against CMS4 CRC.

Cell Death and Disease          (2021) 12:978 ; https://doi.org/10.1038/s41419-021-04270-x

INTRODUCTION
Colorectal cancer (CRC) represents a continuous therapeutic
challenge calling for personalized approaches that are based on
molecular stratification systems. Thus, beyond the tumor-node
metastasis (TNM) classification of CRC stages, anatomical criteria
(right versus left, colonic versus rectal cancer), and histological
evaluation (low-grade versus high-grade), additional variables
have been used to distinguish different categories of CRC [1, 2].
For instance, CRC has been classified as a function of the activated
oncogenes (e.g., KRAS-positive versus KRAS-negative CRC) [3], as a
function of the immune infiltrates (the immunoscore reflecting the
density of CD3+ and CD8+ T cells) [4, 5] or as a function of
microsatellite instability (MSI) resulting from DNA mismatch repair
(MMR) defects [6]. All these classifications have clinical utility as
exemplified by the fact that KRAS-positive CRC are resistant
against the anti-epidermal growth factor receptor (anti-EGFR)
antibody cetuximab [7, 8], immunoscore-positive resectable CRC
have an intrinsically good prognosis and can be spared adjuvant
chemotherapy [9, 10], and MMR-deficient, MSI-high cancers are
particularly susceptible to immunotherapy with the PD-1-blocking
antibody nivolumab [11–13].

In a collective attempt to unify distinct classification systems,
the CRC subtyping consortium identified four consensus
molecular subtypes (CMS): CMS1 (microsatellite instability
immune), CMS2 (canonical), CMS3 (metabolic), and CMS4
(mesenchymal) [14]. Among the subtypes, CMS1, which is
characterized by genomic and chromosomal instability and
strong immune infiltration, has a particularly good prognosis
[15], while the CMS4 subtype has a particularly poor prognosis,
which may be explained by cancer cell-intrinsic features
reflecting epithelial–mesenchymal transition and dedifferentia-
tion [16, 17].
Of note, the susceptibility of distinct CRCs to anticancer drugs

correlates with the CMS classification, as determined in primary
colorectal cancers, cell lines, and patient-derived xenografts
[18, 19], as well as retrospective clinical studies [20, 21]. Based
on the observation that CMS4 cells are particularly resistant
against chemotherapeutic interventions, we employed high-
throughput screening to identify drugs that selectively act on
such cells. Here, we report that everolimus (EVE) and plicamycin
(PLI) are particularly efficient against a CMS4 cell line in
preclinical experiments.
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RESULTS
Identification of everolimus and plicamycin as CMS4-targeting
agents
LoVo cells represent the good-prognosis microsatellite instable-
enriched CMS1 CRC subtype, while MDST8 cells represent the
poor-prognosis mesenchymal CMS4 CRC subtype, as determined
by transcriptomic analyses [19] and validated by quantitative
reverse transcriptase-polymerase chain reactions (qRT-PCR) for a
selected panel of mRNAs (Supplementary Fig. S1). Since CMS4
tumors have a poor prognosis [14, 22] and CMS4 cells are
notoriously resistant to chemotherapeutic drugs [19], we designed
a dual-screening campaign for identifying drugs that would kill
MDST8 cells more efficiently than LoVo cells. In the first approach,
both cell lines were cultured in the presence of a collection of ~70
distinct small-molecule anticancer drugs, and the frequency of
apoptotic or necrotic cells was determined by Annexin V-AF647/
DAPI staining, considering both Annexin V-AF647+DAPI− and

Annexin V-AF647+DAPI+ cells as a desirable outcome (Fig. 1A, B
and Supplementary Fig. S2A, B). In the second approach, LoVo
cells were stably transduced with green fluorescent protein (GFP)
and MDST8 cells with red-fluorescent protein (RFP), cultured in the
presence of the drugs, and then subjected to automated
quantification of the proportion of green and red cells in each
culture (Fig. 1C, D and Supplementary Fig. S2C). Both approaches
revealed that MDST8 cells were generally more resistant against
anticancer drugs, in accord with the published literature [19], with
the notable exception of plicamycin (PLI), which was identified in
both screens as an MDST8-specific drug, and two inhibitors of the
mechanistic target of rapamycin complex 1 (mTORC1), rapamycin
and everolimus (EVE), which were identified in the second screen.
As a note, the tyrosine kinase inhibitors sunitinib (SUN) and
crizotinib (CRIZ) preferentially killed LoVo cells but not MDST8 cells
(Fig. 1E, F and Supplementary Fig. S2A, B). Clonogenic assays (Fig.
1E, F) confirmed that both PLI and EVE reduced the number of

Fig. 1 Chemical compound screen discovers that plicamycin and everolimus specifically target MDST8. A Scheme of the screening
campaigns. BMDST8 or LoVo cells were treated with 71 drugs in the anticancer library at a concentration of 0.1 μM for 72 h. The percentage of
AnnexinVhighDAPIhigh cells was measured by flow cytometry as an indicator for cell death. Each parameter depicts the mean value of three
times repeated experiments and is depicted in a hierarchically clustered heatmap. The blue and red tiles in the heatmap represent the
percentage of Annexin VhighDAPIhigh death cells range from 0 to 100%. C Identification of plicamycin, everolimus, and rapamycin as chemicals
that specifically kill MDST8 but not LoVo cells. MDST8-RFP or LoVo-GFP cells were treated with 71 drugs in the anticancer library at the
concentration of 0.1 μM for 72 h. Debris and cells depicting nuclear pyknosis were excluded, and healthy cells were enumerated. The
untreated control was normalized to 1. D Results reported in a bi-parametric plot, showing the normalized healthy cell counts after treatment
comparing between MDST8-RFP and LoVo-GFP. E Images show representative pictures of colonies formed as observed upon crystal violet
staining after treatment of MDST8 and LoVo cells with 10 nM everolimus (EVE), 10 nM plicamycin (PLI), or 2 μM sunitinib (SUN) for 3 to 4 weeks.
F The bar chart represents the number of clones with a size greater than or equal to 50 μm2. Error bars indicate SEM. Asterisks refer to
significant effects for treatments versus control (Ctrl) (paired Student’s t test, ***P < 0.001).
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viable colonies of MDST8 but not of LoVo cells. Hence, we decided
to continue the characterization of these two agents, EVE and PLI,
as potential CMS4-targeting agents.

Selective induction of MDST8 cell stress and death by
everolimus and plicamycin
We continued the comparative analysis of clinically approved EVE
and PLI on LoVo and MDST8 cells to characterize specific
vulnerabilities of the latter cell line. Annexin V-AF647/DAPI
staining revealed that MDST8 cells were selectively killed by
plicamycin while presenting both early apoptotic (Annexin
V-AF647+DAPI−) and necrotic (Annexin V-AF647+DAPI+) events.
In contrast, MDST8 cells were resistant against the anticancer
agents oxaliplatin (OXA) and sunitinib (SUN) in conditions in which
a sizeable fraction of LoVo cells died (Fig. 2A–C). The differential
PLI sensitivity (and SUN resistance) of CMS4 cells over CMS1 cells
was confirmed for another pair of human colorectal cancer cell
lines, namely, Colo320HSR and HCT116, which represent the CMS4
and CMS1 subtypes, respectively (Supplementary Fig. S3). More-
over, PLI (and to less degree EVE) induced a higher level of
caspase-3 activation (measured with a fluorogenic substrate) in
MDST8 than in LoVo cells (Fig. 2D, E), and PLI (and to less degree
EVE) caused the release of cytochrome C from mitochondria
(measured by an immunofluorescence assay that assesses the
reduction of the staining intensity) more efficiently in MDST8 than
in LoVo cells (Fig. 3). Moreover, MDST8 but not LoVo cells
manifested an elongation of mitochondria stained with Mito-
Tracker, as well as a reduction of MitoTracker staining (Supple-
mentary Fig. S4). Other cellular assays confirmed the selective
susceptibility of MDST8 cells to EVE and PLI as compared to LoVo
cells. Thus, both EVE and PLI caused an accumulation of cells in
the G0/G1 phase of the cell cycle (measured by propidium iodide
staining of ethanol-permeabilized, RNase-treated cells, and cyto-
fluorometry) with a concomitant reduction of cells in the S and
G2/M phase in MDST8 but not in LoVo cells (Fig. 4A, B). Although
neither EVE nor PLI induced DNA damage assessed by immuno-
fluorescence detection of nuclear γ-histone 2 A.X foci (Fig. 4C, D),
both agents caused a reduction in DNA-to-RNA transcription and
RNA-to-protein translation in MDST8 but not in LoVo cells, as
measured by quantifying the cellular incorporation of the RNA
precursor ethacrynic uridine (EU) and the protein precursor
L-azidohomoalanine (AHA), respectively (Fig. 4E–H). Finally, the
autophagy-association redistribution of microtubule-associated
proteins 1A/1B light chain 3B (hereafter referred to as LC3) fused
to GFP (GFP-LC3), the lipidation of LC3 causing an increase in its
electrophoretic mobility (annotated as LC3-II), and the decrease in
the autophagic substrate sequestosome-1 (SQSTM1, best known
as p62) were observed in MDST8 but not in LoVo cells cultured
with EVE or PLI (Fig. 5). Altogether, these results demonstrate that
MDST8 cells are sensitive to the induction of cytostatic cell stress
and cell death by EVE and PLI, respectively.

In vivo treatment of MDST8 tumors with everolimus and
plicamycin
As a final proof that MDST8 tumors can be treated with the drugs
identified in this study, we inoculated mice with MDST8 or, as a
control, LoVo cells. Once palpable tumors had been established, the
mice received systemic injections of either EVE or PLI on a biweekly
basis (Fig. 6A, B). While MDST8 tumors reduced their volume in
response to EVE and PLI, LoVo tumors continued their progression
(Fig. 6C, D and Supplementary Fig. S5A, B). This drug effect was not
accompanied by any manifest signs of toxicity (and in particular
weight loss, Supplementary Fig. S5C, D) and caused a significant
extension of lifespan in mice carrying MDST8 but not LoVo tumors
(Fig. 6E, F). In a limited number of cases, we stopped the treatment
of MDST8-bearing mice at day 65 post-inoculation. For those mice
that lacked palpable tumor masses after EVE or PLI treatment,
discontinuation of the drugs did not result in recurrence of the

tumors, suggesting that these animals had been definitively cured
from their cancers. In contrast, when macroscopic tumors had not
been fully eliminated, discontinuation of EVE or PLI resulted in
regrowth of most cancers, contrasting with the continuous
shrinkage of the majority of tumors that underwent further therapy
(Fig. 6G, H). These results suggest that tumors usually remained
sensitive to EVE and PLI throughout the treatment phase, for up to
3 months (from day 37 to day 117). Altogether, these results
demonstrate that MDST8 tumors can be held in check by
continuous, nontoxic administration of EVE and PLI.

DISCUSSION
This work demonstrates that two mechanistically unrelated drugs,
everolimus (EVE, an inhibitor of mTORC1) and plicamycin (PLI, a
DNA-binding agent that inhibits RNA synthesis) efficiently target
the CMS4 cell line MDST8, both in vitro and in vivo. It will be
interesting to determine the molecular mechanisms explaining
why MDST8 cells are selectively susceptible to these agents.
Moreover, it will be important to evaluate the potential clinical
utility of these agents for the treatment of CMS4 colorectal cancers.
Everolimus is FDA approved for a series of indications including

hormone receptor-positive, HER2-negative advanced breast can-
cer (in combination with aromatase inhibitors), neuroendocrine
tumors (NET) of gastrointestinal (GI) or lung origin, advanced renal
carcinoma, renal angiomyolipoma associated with tuberous
sclerosis complex (TSC), subependymal giant cell astrocytoma
(SEGA) associated with TSC [23]. Clinical trials on colorectal cancer
patients largely failed when EVE was used as a single agent
[24, 25] or combined with the anti-VEGF-A antibody bevacizumab
[26] or the insulin receptor/insulin-like growth factor R receptor
inhibitor linsitinib [27] for the treatment of refractory metastatic
colorectal cancer. However, stable disease was induced in 50% of
patients with refractory metastatic colorectal cancer when EVE
was combined with tivozanib (an oral VEGF receptor-1, -2, -3
inhibitor) [28], and a 60% response rate was reported when EVE
was combined with the chemotherapeutic agent irinotecan and
the anti-EGFR antibody panitumamab [29]. Currently, there is one
clinical trial (NCT02890069) that recruits colorectal cancer patients
to combine EVE with the PD-1-blocking antibody PDR001. It may
be interesting to apply the CMS classification to these trials and to
re-evaluate the possibility that patients bearing cancers falling into
the CMS4 category obtain clinical benefit from treatment with EVE
alone or in combination with other agents.
Plicamycin (which is often referred to as “mithramycin A”) has

been clinically evaluated for the treatment of Ewing sarcoma
(NCT01610570), as well as for the treatment of lung, esophagus,
and other thoracic cancers (NCT01624090). A Phase I/II that is
currently recruiting patients with primary thoracic malignancies or
extrathoracic neoplasias with pleuropulmonary metastases evalu-
ates the effects of continuous intravenous infusion of mithramycin
(NCT02859415). However, PLI has not been evaluated in the
context of colorectal cancer, apart from one phase II study
reporting a major regression of one rectal adenocarcinoma in
response to this agent [30]. Of note, this inhibitor of DNA-to-RNA
transcription has been reported to target colorectal cancer stem
cells [31], perhaps due to the inhibition of the transcription factor
Sp1 [32]. Interestingly, it appears that inhibition of transcription by
plicamycin is well detectable in the susceptible CMS4 cell line
MDST8 but not in the resistant CMS1 cell line LoVo.
It will be important to evaluate whether the mechanism that we

explored here comes into action in vivo and whether patients with
CMS4 colorectal cancer might benefit from PLI, alone or in
combination with EVE. Indeed, in the xenograft models, both PLI
and EVE exhibit satisfactory preclinical activity against CMS4
cancers. Future clinical trials might establish whether these two
drugs can be advantageously combined to achieve efficient tumor
shrinkage without major side effects.
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Fig. 2 Plicamycin induces cell death in MDST8.Wild-type (WT) MDST8 and LoVo cells were treated with plicamycin (PLI at 25, 50, and 100 nM
for 72 h), everolimus (EVE at 10, 100 nM and 1 μM for 72 h), oxaliplatin (OXA; 2.5, 5 and 10 μM for 48 h), 5-fluorouracil (5-FU; 2.5, 5 and 10 μM for
48 h), sunitinib (SUN; 2.5, 5 and 10 μM for 48 h). Then, cells were stained with the DAPI and Annexin V to measure apoptotic cell death (A–C). A
Representative dot plots of untreated MDST8 and LoVo controls (Ctrl) or treated with plicamycin 100 nM, EVE 1 μM, OXA 10 μM, 5-FU 10 μM,
and SUN 10 μM. Numbers indicate the percentage of cells in each quadrant. B, C The frequency of dying (DAPIlowAnnexinVhigh) and dead
(DAPIhigh) cells among the MDST8 (B) and LoVo (C) cells elicited by the corresponding drugs, as determined by analysis with the FlowJo
software. Data are depicted as mean values of three independent experiments. D, E MDST8 cells were treated with 50 nM PLI, 0.1 μM EVE or
the positive control staurosporine (STS) 0.1 μM for 48 h. Caspase-3 activation was measured by flow cytometric analysis upon staining with
specific antibodies. Representative histograms are shown in (D). Normalized mean fluorescent intensity (MFI) of cleaved caspase-3 for each
condition is depicted as bar chart (E). Error bars indicate SEM. Asterisks refer to significant effects for treatments versus control (paired
Student’s t test; **P < 0.01, ***P < 0.001).
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MATERIALS AND METHODS
Cell lines
Human colon Colo320HSR, HCT116, LoVo, and MDST8 cells were
purchased from the American Type Cancer Collection (ATCC). MDST8
and LoVo wild-type cells were transduced with LentiBrite™ H2B-RFP and
H2B-GFP lentiviral particles (Merck Millipore, Burlington, MA, USA),
respectively, following the manufacturer’s instructions, to obtain MDST8
H2B-RFP and LoVo H2B-GFP. In addition, both MDST8 and LoVo wild-type
cells were transduced with LentiBrite™ GFP-LC3 lentiviral particles (Merck
Millipore, Burlington, MA, USA), to obtain MDST8 GFP-LC3 and LoVo GFP-
LC3 cells, as described [33–35].

Cell culture
MDST8 and MDST8 GFP-LC3 cells were cultured in Dulbecco’s Modified
Eagle medium with high glucose (Thermo Fisher Scientific, Carlsbad, CA,
USA) while the medium of LoVo and LoVo GFP-LC3 was Ham’s F-12K
(Kaighn’s) (Thermo Fisher Scientific). Both media were supplemented with
10% fetal bovine serum (Gibco® Thermo Fisher Scientific), 10 U/mL
penicillin sodium, and 10 U/mL streptomycin sulfate (Thermo Fisher
Scientific), and cells were kept in a humidified incubator with 5% CO2 at
37 °C. Cell culture plastic was purchased from Corning (Corning, NY, USA)
and Greiner Bio-One (Kremsmünster, Austria).

Compounds and reagents
A custom-arrayed anticancer library was used [36]. Oxaliplatin came from
Accord Healthcare (Ahmedabad, India). Sunitinib (PZ0012), crizotinib
(PZ0191), 5-fluorouracil (F6627), everolimus (SML2282), rapamycin
(R8781), plicamycin (M6891), staurosporine (S5921), thapsigargin (T9033)
methotrexate (M7824), and DMSO were purchased from Sigma-Aldrich.
The MAD2 inhibitor M2I-1 (312271-03-7) was from Cayman. Everolimus

(HY-10218) and plicamycin (HY-A0122) for in vivo experimentation were
purchased from MedChemExpress. Hoechst 33342 (H3570) and Lipofecta-
mine® 2000 were purchased from Thermo Fisher Scientific. Propidium
iodide (P4864), formaldehyde (F8775), and Triton X-100 (T8787) were
purchased from Sigma-Aldrich (St. Louis, MO, USA).

Flow cytometric analysis
For high-throughput screening, cancer cells were seeded in 96-well
plates (1 × 104 cells/well) in 100 μL cell culture medium and let adapt for
24 h before treatment. Then cells were treated with the 71 chemicals of
the anticancer library at 0.1 μM, 1 μM, or 10 μM final concentration for
48 h or 72 h. Then cells were collected in 96-well V-shape plates (Greiner
Bio-One, Frickenhausen, Germany), washed with PBS, and then the cell
pellets were resuspended in 100 μL Annexin V Binding Buffer (422201,
Biolegend) containing 0.2 μL Annexin V (640919, Biolegend) and 0.1 μL
DAPI. Samples were then incubated in the dark for 15 min. After that,
the plates were immediately subjected to flow cytometry acquisition
using a high-throughput sampler mounted on a BD LSRFortessa flow
cytometer (Beckton Dickinson, Franklin Lakes, NY, USA). Data were
further processed with the FlowJo software (LLC, Ashland, OR, USA) to
assess the percentage of Annexin V+ and DAPI+ dying and dead cells,
respectively [37]. Then the data were imported into the free available
software R (https://www.r-project.org) and integrated with the heatmap
packages from the Bioconductor repository (https://bioconductor.org/)
to graphically depict data as a heatmap.

Assessment of caspase activity
Cells were seeded in 12-wells plates (5 × 104 cells/well). The next day, cells
were treated with 0.1 μM everolimus, 100 nM plicamycin, or 0.1 μM
staurosporine for 48 h. After that, cells were collected and fixed with

Fig. 3 Mitochondrial cytochrome c release in response to plicamycin treatment. Wild-type (WT) MDST8 and LoVo cells were treated 25, 50,
or 100 nM plicamycin (PLI) or 10 nM, 100 nM, 1 µM everolimus (EVE) for 24 h or 48 h followed by immunofluorescence staining with antibodies
specific for cytochrome c and subsequent assessment by confocal microscopy. Representative images of cells in each condition are shown.
Scale bars represent 10 μm. A, C Images were quantified of cytoplasmic cytochrome c intensity and are reported as a bar chart (B, D). Error bars
indicate SEM. Asterisks refer to significant effects for treatments versus control (paired Student’s t test Error bars indicate SEM. Asterisks refer
to significant effects for treatments versus control (paired Student’s t test; **P < 0.01, ***P < 0.001).
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intracellular (IC) Fixation Buffer (00-8222-49, Invitrogen) and permeabi-
lized with Permeabilization Buffer (00-8333-56, Invitrogen) and finally
stained with a rabbit anti-human/mouse caspase-3 Alexa Fluor® 488-
conjugated monoclonal antibody (IC835G, Invitrogen) for flow cytometric
analysis. The mean fluorescence intensity was analyzed with the FlowJo
software.

Cell cycle analysis
Cells were seeded in 12-wells plates (5 × 104 cells/well) and let adapt
overnight. The next day, cells were treated with 0.1 μM everolimus, 50 nM
plicamycin, or 5 μM sunitinib for 48 h. After the treatment, the supernatant
was discarded and the cells were collected and transferred into flow
cytometry tubes. Cells were agitated and fixed in cold 70% ethanol for
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2min and kept in the dark at 4 °C overnight. Then the cells were washed
three times with PBS and resuspended in 500 µL FxCycle™ PI/RNase
staining solution (F10797, Thermo Fisher). The samples were incubated for
15–30min at room temperature, protected from light, and finally analyzed
on a Cytoflex (Beckman Coulter) flow cytometer. Data analysis was
performed with the FlowJo software.

High-throughput screening
Wild-type cells were seeded in 384-well black imaging plates (Greiner Bio-
One) at a density of 1.5 × 103 cells/well and let adhere for 24 h. The next
day, cells were treated with drugs of an anticancer compound library in
0.1 µM concentration for 72 h. For viability assessment, cells were fixed
with 3.7% formaldehyde containing 1 μg/mL mL Hoechst 33342 for 1 h at
room temperature. The fixative was exchanged to PBS and viability was
assessed by automated microscopy.

Automated fluorescence microscopy
MDST8 GFP-LC3 or LoVo GFP-LC3 cells were seeded in 96-well black imaging
plates at a density of 1.5 × 103 cells/well. The next day, cells were treated with
everolimus (10, 100 nM, and 1 µM), plicamycin (25, 50, and 100 nM), or torin
(0.3 μM), and incubated for 6, 24 or 48 h. After that, cells were stained with
MitoTracker™ Orange (M7510, Thermo Fisher) [38] and then fixed with 3.7%
formaldehyde containing Hoechst 33342. Automated fluorescence microscopy
was conducted by means of a robot-assisted Molecular Devices IXM XL
BioImager and a Molecular Devices IXM-C (Molecular Devices, Sunnyvale, CA,
USA) equipped with either a SpectraX or an Aura II light source (Lumencor,
Beaverton, OR, USA), adequate excitation and emission filters (Semrock,
Rochester, NY, USA) and a 16-bit monochromes sCMOS PCO.edge 5.5 camera
(PCO Kelheim, Germany) or an Andor Zyla camera (Belfast, Northern Ireland)
and a ×20 PlanAPO objective (Nikon, Tokyo, Japan) were used to acquire a
minimum of four view fields per well, followed by automated image
processing with the custom module editor within the MetaXpress software
(Molecular Devices) and/or R employing the EBImage and RBioFormats
packages. Image segmentation was performed using the MetaXpress software
(Molecular Devices). Following the exclusion of cellular debris and dead cells
from the dataset, parameters of interest were normalized, statistically
evaluated, and graphically depicted with R software [39]. Cytoplasmic ROIs
were used for the quantification of cytochrome c intensity. To quantify GFP-
LC3 aggregation, a segmentation mask of high-intensity dots was generated in
the cytoplasm of cells.

Monitoring mitochondrial cytochrome c release
Wild-type cells were plated onto coverslips previously coated with 10 µg/mL
poly-l-lysine in a 12-well plate. The next day, cells were treated with 0.1 μM
everolimus, 50 nM plicamycin, or 0.1 μM staurosporine for 24 h or 48 h. After
the treatment, cells were stained with MitoTracker, fixed with 3.7%
formaldehyde, as described previously, and permeabilized with 0.2% Triton
X-100 for 10min. Then the cells were incubated with Alexa Fluor® 647

coupled anti-cytochrome c antibody (612310, Biolegend) overnight at 4 °C in
the dark. Finally, cells were washed with PBS and mounted with
Fluoromount-G™ mounting medium (00-4958-02, Thermo Fisher). Fluores-
cence confocal microscopy was carried out using a Leica TCS SP8 Confocal
Microscope with a ×63 oil immersion objective (Leica Microsystems, Wetzlar,
Germany). Images were acquired from randomly selected fields of cells.
Subsequently, the percentage of each subtype was evaluated for each
treatment and a minimum of 30 cells were considered for the analysis.
Image analysis was performed with the LAS X software (Leica) and R.

Clonogenic assay
MDST8 and LoVo cells were seeded in six-well plates at 1 × 103 cells per
well. After 24 h, cells were treated with 10 nM everolimus, 10 nM
plicamycin, or 2 μM sunitinib for 3 weeks (MDST8) or 4 weeks (LoVo).
After that, the supernatant was discarded and the cells were incubated
with 500 µL of crystal violet (Sigma) for 10min. Then, cells were washed
with deionized water, images were acquired and the area of each colony
was quantified through Fiji’s ColonyArea plugin, as described [40].

Quantitative RT-PCR
Total RNA extraction of cultured cells was performed with the GeneJET
RNA Purification Kit (Life Technologies). In total, 2.5 μg RNA was then
reverse transcribed into cDNA with the Maxima First Strand cDNA
Synthesis Kit (Life Technologies). The expression of the genes of interest
(Table 1) was analyzed by means of SYBR® green-based quantitative PCR
using the Power SYBRTM Green PCR Master Mix in a StepOnePlus Real-
Time PCR System (Applied Biosystems, Forster City, CA, USA). qRT-PCR data
were normalized to the expression levels of the housekeeping gene
hypoxanthine phosphoribosyltransferase 1 (HPRT1) and data were
depicted as a Volcano plot employing R.

Protein immunoblots
Protein was extracted with RIPA lysis and extraction Buffer (89900; Thermo
Scientific) in the presence of phosphatase and protease inhibitors (A32961;
Thermo Scientific) followed by sonication. Then, protein content was
measured by a DC™ Protein Assay Kit II (5000112; Bio-Rad) following the
manufacturer’s protocol. Protein was denatured at 100 °C, and 30 μg of
proteins and 10 μL PAGE Ruler prestained protein ladder (26616; Thermo
Scientific) were separated by polyacrylamide gel electrophoresis (PAGE)
using 4–12% Bis-Tris Novex™ NuPAGE™ protein gels (NP0336PK2;
Invitrogen) in Novex™ NuPAGE™ MES SDS migration buffer (1×)
(NP000202; Invitrogen). Afterward, proteins were transferred to EtOH‐
activated PVDF membranes (88518; Thermo Scientific) in transfer buffer
(25mM Tris; 190mM glycine; 10% ethanol in H2O) at 200mA and 120 V for
1.5 h. Membranes were washed in Tris‐buffered saline with Tween-20
buffer (TBST; 20 mM Tris, pH 7.5; 150mM NaCl; 0.1% Tween-20 in H2O) and
then blocked with 5% skim milk in TBST for 1 h. Membranes were exposed
to primary antibody (anti-LC3B antibody; ab192890; Abcam) at 1:2000;

Fig. 4 Cellular stress response to everolimus and plicamycin. A, B Alterations in the cell cycle progression in response to plicamycin (PLI) or
everolimus (EVE) were studied by flow cytometry. Human colon cancer MDST8 and LoVo cells were treated with 50 nM PLI or 100 nM EVE for
48 h, then fixed and stained with FxCycle™ PI/RNase, followed by flow cytometric assessment. Representative cell cycle histograms of MDST8
and LoVo cells are shown in (A) and the percentage of cells in each cell cycle phase are depicted as a bar chart in (B). Error bars indicate SEM.
Asterisks refer to significant effects for treatments versus control (paired Student’s t test, *P < 0.05, **P < 0.01, ***P < 0.001). C–H MDST8 and
LoVo cells were pre‐treated with EVE at 0.01, 0.1, and 1 μM, or with PLI at 12.5, 25, and 50 nM for 24 h; with mitoxantrone (MTX) at 1 μM for
16 h; with dactinomycin (DACT) at 2 μM, or cycloheximide (CHX) at 50 μM for 6 h followed by fixation and permeabilization. Then, cells were
incubated with a rabbit anti‐phospho-histone H2A.X (γH2A.X) antibody and stained with an anti‐rabbit Alexa Fluor‐488‐coupled secondary
antibody. The formation of nuclear γH2A.X+ foci is shown in (C) and the average nuclear intensity of the γH2A.X signal was quantified (D). Cells
were pre‐treated with the aforementioned compounds in a complete medium and followed by an additional hour of treatment in the
presence of 100mM 5‐ethynyl uridine (EU). After fixation, cells were permeabilized, and EU was stained with an Alexa Fluor‐488‐coupled azide.
Representative images are shown for each treatment (E). The EU intensity in the nucleus of each condition was ranked between the untreated
control (control, Ctrl, 0% transcription inhibition) and the control that was not incubated with EU (corresponding to 100% transcription
inhibition) (F). Cells were pre‐treated with the aforementioned compounds in complete medium followed by washout and treatment pursued
in the methionine‐free medium for 30min. Afterward, the treatments were continued in methionine‐free medium supplemented with 50 μM
L‐azidohomoalanine (AHA) for 1 h and AHA incorporation was detected after fixation, permeabilization, and blocking by the addition of an
Alexa Fluor‐488‐coupled azide. Then, images were acquired (G), and AHA intensity in the cells was ranked between the untreated control (Ctrl,
0% translation inhibition) and control without AHA (corresponding to 100% translation inhibition) (H). Data information: representative
images of EVE 1 μM, PLI 50 nM and MTX 1 μM are shown (C); EVE 0.1 μM, PLI 25 nM, and DACT 2 μM are shown (E); EVE 1 μM, PLI 50 nM, and
CHX 50 μM are shown (G). Scale bars represent 20 μm. One representative experiment among three is shown as mean ± SD, and P‐values
indicating differences to controls were calculated with Student’s t test: *P < 0.05, **P < 0.01, ***P < 0.001 versus untreated MDST8 control; #P <
0.05, ##P < 0.01, ###P < 0.001 versus untreated LoVo control (D, F, H).
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p62/SQSTM1 monoclonal antibody (H00008878-M01, Abnova) at 1:1000)
diluted in 5% BSA in TBST overnight at 4 °C. Next, membranes were
washed three times with TBST and then were incubated with 1:25000
appropriate horseradish peroxidase (HRP)‐coupled secondary antibody
(goat anti-rabbit IgG (H+ L) (4050-05, SouthernBiotech); goat anti-mouse
IgG (H+ L) (1031-05, SouthernBiotech)) for 1 h at room temperature.
Proteins were revealed with Amersham ECL Prime Western Blotting
Detection Reagent (RPN2232; GE Healthcare Life Sciences). Anti-beta actin
antibody (ab49900; Abcam) at 1:50,000 was used to verify equal loading.

Evaluation of DNA damage by quantification of phospho-
histone H2A.X
Two thousand cells per well were cultured in 384‐well μClear imaging
plates. The next day, cells were treated for 24 h. Following, cells were fixed
with 3.7% formaldehyde supplemented with 1 μg/mL Hoechst 33342 for
1 h, permeabilized with 0.5% Triton X‐100 for 15min and blocked with 3%
BSA for 1 h. Cells were further incubated with 1:1000 rabbit antibody
specific for phospho-histone H2A.X (γH2A.X) overnight at 4 °C. After several
PBS washing steps, 1:2000 anti‐rabbit Alexa Fluor‐488‐coupled antibodies
were added. Following several PBS washing steps, the DAPI and GFP

signals were acquired with a confocal microscope IXM‐C (Molecular
Devices) and quantified as described before [41, 42].

Evaluation of RNA transcription by EU incorporation
Transcription was analyzed by measuring the incorporation of Click‐iT
chemistry‐detectable 5‐ethynyl uridine (EU) (C10327; Invitrogen) as
described before [43]. In short, 2 × 103 cells per well were seeded in 384‐
well μClear imaging plates. The next day, cells were pre‐treated for 24 h
and washed and treatment was pursued in the presence of 1 mM 5‐ethynyl
uridine (EU) for 1 h. Following, the cells were fixed with 3.7% formaldehyde
supplemented with 1 μg/mL Hoechst 33342 for 1 h and permeabilized with
0.5% Triton X‐100 for 15min. Alexa Fluor‐488‐coupled azide was then
added for 1 h. The intensity of the GFP signal (EU) in the nucleus was
measured by microscopy, and the inhibition of transcription was calculated
as a fold change in fluorescence intensity as compared to controls.

Protein translation study by AHA incorporation
Translation was measured by assessing the incorporation of L‐azidoho-
moalanine (AHA) (C10289; Invitrogen), a labeled form of methionine by

Fig. 5 Everolimus induces autophagy in MDST8. A MDST8 and C LoVo cells stably expressing GFP-LC3 were treated with plicamycin (PLI; 25,
50, and 100 nM), everolimus (EVE; 10, 100 nM and 1 µM) or torin1 (TOR; 0.1 μM) for 6 h 24 h and 48 h. After fixation and nuclear staining with
Hoechst 33342, the images were acquired by confocal microscopy. Representative images are depicted for each cell line. The scale bar equals
20 μm. B, D GFP- LC3 dots area were quantified. For each assessed parameter and cell line, data were normalized to the untreated control.
Data represent means ± SD. Each condition was compared to the untreated control by means of a paired Student’s t test (**P < 0.01, ***P <
0.001). E–G Human colon cancer MDST8 or LoVo cells were treated with EVE (0.1 μM) or PLI (50 nM) for 72 h. TOR (300 nM) was used for 6 h as a
prototypical autophagy inducer. SDS–PAGE and immunoblot were performed, band intensities of LC3-I, LC3-II, p62, and β-actin (ACTB) were
assessed, and the ratio LC3-II/ LC3-I (F) and p62/ACTB (G) were calculated. Data are means ± SD of three independent experiments (**P < 0.01,
***P < 0.001 versus untreated MDST8 control; ###P < 0.001 versus untreated LoVo control; Tukey’s multiple comparisons test).
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Click‐iT chemistry as described [44]. In short, 2 × 103 cells per well were
seeded in 384‐well μClear imaging plates. The next day, cells were treated
for 24 h. After several PBS washing steps, the cells were incubated 30min
in the presence of methionine‐free medium. They were further treated for
1 h in methionine‐free medium in the presence of 50 μM AHA. Afterward,
the cells were fixed with 3.7% formaldehyde supplemented with 1 μg/mL
Hoechst 33342 for 1 h, permeabilized with 0.5% Triton X‐100 for 15min,
and blocked with 3% BSA for 1 h. Then, Alexa Fluor‐488‐coupled azide was
added for 1 h and AHA incorporation was measured by microscopy as a
fold change in GFP fluorescence intensity.

In vivo tumor treatment
Established tumors were assessed for their response to everolimus- and
plicamycin‐based chemotherapy. To this aim, colon cancers were
established subcutaneously (s.c.) in athymic nu/nu mice by injection of

5 × 106 MDST8 or LoVo cells. When tumors became palpable, 200 μL of the
chemotherapeutics (everolismus diluted in 90% corn oil, 4 mg/kg;
plicamycin diluted in 40% PEG300, 5% Tween-80 and 45% saline,
1.5 mg/kg) or the diluent alone were injected intraperitoneally (i.p.) and
tumor growth was monitored for the following weeks [5].

Experimental animals
In vivo experimentation. Seven- to eight-week-old female wild-type nu/nu
mice were purchased from Envigo France (Gannat, France) and were kept
at the Gustave Roussy Campus Cancer in a specific pathogen-free and
environmental temperature-controlled animal facility with 12 h day, 12 h
night cycles, and received food and water ad libitum. Animal experiments
were conducted in compliance with the EU Directive 63/2010 and were
approved by the Ethical Committee of the Gustave Roussy Campus Cancer
(CEEA IRCIV/IGR no. 26, registered at the French Ministry of Research).

Fig. 6 Everolimus and plicamycin exhibit anticancer effects against CMS4 tumors. A, B Schematic overview of the treatment schedule of
LoVo or MDST8 tumors with everolimus (EVE) and plicamycin (PLI) in vivo. C–H Five million human colon cancer MDST8 or LoVo cells were
injected subcutaneously (s.c.) into the flank of athymic immunodeficient nu/numice. When tumors became palpable, mice received a systemic
intraperitoneal injection of EVE or PLI. n ≥ 6 mice per group. Results (means ± SD tumor growth curves) are plotted (*P < 0.05, ***P < 0.001).
Overall survival is depicted, and P values (***P < 0.001) were calculated with a Log‐rank test (E, F). After EVE/PLI treatment, mice bearing
MDST8 tumors were divided into three different groups, and tumor growth was monitored upon continuation or discontinuation of the
treatment as indicated (G, H).
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Statistical analysis
Unless otherwise mentioned, data are reported as means ± SD of triplicate
determinations, and experiments were repeated at least three times
yielding similar results. Statistical significance was assessed by Welch’s and
Student’s t test. TumGrowth and GraphPad were used to analyze in vivo
data raised in murine models [5]. TumGrowth is available at https://github.
com/kroemerlab. P values of 0.05 or less were considered to denote
significance (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).

DATA AVAILABILITY
Data are available from the corresponding authors upon reasonable request.
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 Titre : L'inhibition du récepteur IGF1 amplifie les effets des médicaments anticancéreux 

par l'autophagie et les mécanismes immuno-dépendants 

Mots clés : Autophagie, picropodophylline, récepteur du facteur de croissance analogue 

à l'insuline 1, cancer 

Résumé :  

Un certain nombre de produits végétaux naturels induisent l'autophagie et médient la 

durée de vie dépendante de l'autophagie et les effets de prolongation de la durée de vie 

dans des modèles de souris appropriés. Ici, nous avons identifié la picropodophylline 

(PPP) comme un inducteur non toxique du flux autophagique qui agit sur les cellules 

humaines et de souris in vitro, ainsi que sur les organes de souris in vivo. 

Mécaniquement, PPP inhibe IGF1R ainsi qu'en aval d'AKT, la cible mécaniste du 

complexe de rapamycine 1 (mTORC1), couplé à l'activation des facteurs de transcription 

pro-autophagiques EB (TFEB) et E3 (TFE3). Les cellules équipées d'un mutant AKT 

constitutivement actif n'ont pas réussi à activer l'autophagie. Le PPP a également 

stimulé l'activation répressible par AKT des trois bras de la réponse au stress déplié 

(UPR), y compris la phosphorylation dépendante de PERK du facteur d'initiation 

eucaryote 2α (eIF2α). L'inactivation de TFEB et / ou TFE3 a émoussé l'UPR tandis que 

l'inactivation de PERK ou le remplacement de eIF2α par un mutant non phosphorylable 

a réduit l'activation de TFEB / TFE3 et l'autophagie induite par PPP. Cela indique une 

diaphonie entre l'UPR et l'autophagie. Il convient de noter que l'administration de PPP à 

des souris a amélioré l'efficacité de la chimiothérapie immunogène et des inhibiteurs de 

point de contrôle immunitaire en s'appuyant sur la libération d'ATP, la libération de 

HMGB1 et l'exposition au CALR. Cet effet anticancéreux reposait sur une amélioration 

de la réponse immunitaire anticancéreuse dépendante des lymphocytes T et était perdu 

lors de la surexpression de CD39, de l'activation constitutive de l'AKT ou de la 

suppression du gène essentiel de l'autophagie Atg5 des cellules malignes. En 

conclusion, le PPP est un inducteur d'autophagie biodisponible et potentiellement utile 

qui justifie une caractérisation préclinique plus poussée. 

 

 

 



 

 

 

 Title : IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and 

immune-dependent mechanisms 

  Keywords : Autophagy, picropodophyllin, insulin-like growth factor 1 receptor, cancer 

Abstract :  

A number of natural plant products induce autophagy and mediate autophagy-

dependent healthspan and lifespan-extending effects in suitable mouse models. Here, 

we identified picropodophyllin (PPP) as a non-toxic inducer of autophagic flux that acts 

on human and mouse cells in vitro, as well as mouse organs in vivo. Mechanistically, 

PPP inhibits IGF1R as well as, downstream of AKT, the mechanistic target of rapamycin 

complex 1 (mTORC1), coupled to the activation of the pro-autophagic transcription 

factors EB (TFEB) and E3 (TFE3). Cells equipped with a constitutively active AKT mutant 

failed to activate autophagy. PPP also stimulated the AKT-repressible activation of all 

three arms of the unfolded stress response (UPR), including the PERK-dependent 

phosphorylation of eukaryotic initiation factor 2α (eIF2α). Knockout of TFEB and/or TFE3 

blunted the UPR while knockout of PERK or replacement of eIF2α by a non-

phosphorylable mutant reduced TFEB/TFE3 activation and autophagy induced by PPP. 

This points to crosstalk between the UPR and autophagy. Of note, administration of PPP 

to mice improved the efficacy of immunogenic chemotherapy and immune checkpoint 

inhibitors relying on ATP release, HMGB1 release, and CALR exposure. This anticancer 

effect relied on an improved T lymphocyte-dependent anticancer immune response and 

was lost upon CD39 overexpression in, constitutive AKT activation in, or deletion of the 

essential autophagy gene Atg5 from, the malignant cells. In conclusion, PPP is a 

bioavailable, potentially useful autophagy inducer that warrants further preclinical 

characterization. 
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