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General Introduction 

The thorax part is found to be one of the most injured body areas under high velocity 
impacts, just second behind the head part. Thoracic injuries happen frequently in 
various frameworks of high velocity impact biomechanics such as road traffic accidents, 
sports and ballistic impacts. According to the World Health Organization (WHO), 
approximately 1.3 million people lose their lives as a result of road traffic crashes each 
year, and more people suffer from physical disabilities because of non-fatal injuries. 
Rib fractures and soft tissue injuries like lung injuries are the most common thoracic 
injuries and can be life-threatening. Specifically, rib fragments can also result in soft 
tissue injuries like pneumothorax and hemothorax by perforating soft organs. For 
vulnerable populations such as the elderly, they need longer hospital stays and have 
relatively higher fatality due to the decrease thoracic injury tolerance. Therefore, in 
order to better understand human thorax responses and injuries under high velocity 
impacts, it is of importance to investigate the dynamic responses of human tissues, 
which can provide valuable medical and forensic information and is also useful for 
designing and optimizing protecting devices. 
 
Biomechanical experiments employing Postmortem Human Subjects (PMHS) and 
anesthetized animals are in general conducted to reach the objective of understanding 
the human body responses under high velocity impacts. However, the use of human 
cadavers is limited because of the high financial costs and ethical issues. Meanwhile, 
the development of computer science allows researchers to apply numerical simulations 
such as Finite Element (FE) method to simulate and investigate the behaviors of human 
tissues. So it is essential to take advantage of numerical tools to overcome the 
limitations in biomechanical experiments. In recent years, many biomechanical FE 
models have been established and employed to repeat real-world impact loading 
conditions to investigate human tissue behaviors, which include whole human body 
models, human thorax models and individual rib models. 
 
Therefore, this thesis aims to contribute to the investigation of dynamic responses of 
human tissues under high velocity impacts using finite element modeling. Human 
tissues include soft tissues and hard tissues. In thoracic injuries, lung injuries are most 
common soft tissue injuries, and rib fractures are frequent hard tissue injuries. The 
usage of human soft tissue substitutes like rubber, clay, ballistic gelatin and polymer is 
popular in recent years, which can avoid high costs and ethical issues in human cadavers’ 
experiments. Among soft tissue substitutes, the synthetic polymer Styrene-Ethylene-
Butylene-Styrene (SEBS) gel highlights a number of benefits against the typical 
ballistic gelatin such as environmental stability and transparency. In recent years, 
researchers adopted the SEBS gel as soft tissue substitute in biomechanics impacts. Few 

1 
 



studies pay attention to the development of constitutive law of the synthetic polymer 
SEBS gel. Consequently, this thesis first aims to propose a novel strain-rate-dependent 
elasto-hydrodynamic constitutive law of the SEBS gel for the first time, which can 
interpret the dynamic behaviors of SEBS gel under various loading configurations. 
Dynamic three point bending (3PB) tests and anterior-posterior bending tests of isolated 
ribs are typically carried out to understand rib fractures, which mimic the environments 
like in car crash accidents. Only a few studies concentrate on dynamic 3PB tests of ribs 
under high velocity impacts using Split Hopkinson Pressure Bar (SHPB) apparatus, 
thus this thesis then numerically investigates the effect of geometrical and mechanical 
parameters of ribs submitted to high velocity impacts applying 3PB SHPB apparatus. 
In addition, previous numerical studies on ribs’ dynamic anterior-posterior bending 
defined human rib cortical bone material models using material data obtained from 
tensile coupon tests because of the absence of rib cortical bone compressive material 
properties in the literature. Actually, the rib suffers both tensile and compressive loading 
modes during MVCs, for instance, the cutaneous surface suffers tension while the 
pleural surface suffers compression in frontal crash conditions. Therefore, this thesis 
also develops rib FE models with various material properties including human rib 
cortical bone material properties from different loading modes (tension and 
compression), strain rates (0.5 strain/s and 0.005 strain/s) and ages as well as porcine 
rib material properties, and validates them through replicating experimental 
configurations, in order to better understand rib structural responses and fracture 
locations under dynamic anterior-posterior bending. 
 
The outline of the thesis is organized as follows: 
 
Chapter 1 presents an overview of the research background of this thesis. The 
biomechanics of human thorax is introduced, and human thorax anatomy is presented 
first. Then, soft tissues and hard tissues (especially ribs) in human thorax part are 
introduced respectively, including soft organs, rib anatomy, material properties and 
injuries of soft tissues and rib fractures. Subsequently, the literature review of 
experimental and numerical studies of impacts on soft tissues and ribs are conducted. 
Finally, we briefly summarize the bibliographical study. 
 
Chapter 2 develops a novel strain-rate-dependent elasto-hydrodynamic constitutive law 
of the synthetic polymer SEBS gel based on the mechanical characterization extracted 
from the literature. The proposed law is then implemented as a user material subroutine 
programed in Fortran in an explicit nonlinear FE software Radioss (Altair Hyperworks) 
to reproduce various loading configurations in order to validate the accuracy of the 
model, and the effect of strain rate is investigated. Numerical analysis reveals that the 
strain-rate-dependence effect is significant in SEBS gel especially for high strain rates. 
 
Chapter 3 investigates the dynamic behaviors of isolated porcine ribs under three point 
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bending (3PB) based on finite element simulations, and both porcine and human rib 
material properties are applied for comparison. A 3PB Split Hopkinson Pressure Bar 
(SHPB) apparatus is established in order to replicate the experimental configurations. 
The numerical curved beam rib models are validated and show biofidelic behaviors by 
comparing numerical and experimental results. In addition, sensitivity studies are 
conducted to study the effects of geometrical and mechanical parameters such as 
cortical thickness, curvature radius and strain rate on dynamic responses of ribs under 
high velocity impacts. Numerical analysis highlights the significant effect of 
geometrical parameters on ribs dynamic behaviors. The consideration of the effect of 
mechanical parameters like loading mode and strain rate sensitivity in FE rib models is 
also needed. 
 
Chapter 4 creates human rib FE models and validates them through replicating 
experimental configurations of ribs under dynamic anterior-posterior bending. 
Validation tests are conducted by comparing rib structural properties and fracture 
locations against experimental data of the literature based on finite element analysis. 
Human rib cortical bone material properties from different loading modes (tension and 
compression), strain rates (0.5 strain/s and 0.005 strain/s) and ages as well as porcine 
rib material properties are applied. Numerical force-displacement relationship, cortical 
strain, rotation and fracture locations correspond well with published experimental data, 
which demonstrates the robustness of the finite element rib models. Numerical rib 
structural responses are found to be sensitive to material properties from different 
loading modes, strain rates and ages. Therefore, it is necessary to consider the effect of 
material properties from different loading modes, strain rates and ages when 
establishing rib FE models. 
 
Chapter 5 summarizes the overall conclusions of this thesis, and points out the existing 
limitations, and finally discusses the openings of future work. 
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1 State of Art 

1.1 Introduction 

Thoracic injuries happen frequently in various frameworks of high velocity impact 
biomechanics such as road traffic crashes, sports and ballistic impacts [1–4]. Fig. 1.1 
shows the injury locations and severities of drivers in frontal car crashes by Cuerden et 
al. [5], it can be noted that the thorax part is one of the most injured body areas and can 
lead to severe and life-threatening injuries. As is introduced in general introduction, rib 
fractures and lung injuries are the most frequent thoracic injuries, and rib fragments can 
perforate the lung pleural surface, lung parenchyma, liver or heart, which may cause 
severe injuries such as pneumothorax and hemothorax or even death [6–8]. Specifically, 
the elderly are more likely to encounter rib fractures and serious complications, and 
they need longer recovery time or even face higher mortality owe to the decreased 
recovery capacity [9,10]. Therefore, this thesis concentrates on the investigation of 
dynamic responses of human tissues especially ribs and soft tissues under high velocity 
impacts using finite element modeling, which can help better understand the 
mechanisms of corresponding injuries and is useful for design, evaluate and optimizing 
protecting equipment. 
 
Biomechanical experiments applying Postmortem Human Subjects (PMHS) and 
anesthetized animals are generally conducted to study human injuries under high 
velocity impacts [11,12]. However, the use of human or animal cadavers needs high 
costs and has ethical issues [13]. Besides, Anthropomorphic Test Devices (ATDs) are 
typically applied for injury prediction in impact biomechanics. But ATDs only represent 
gross human body so that they are not able to predict injuries of definite parts like 
individual rib fractures. Also, it takes time to redesign, calibrate and validate ATDs with 
updated human response data [14].  
 
Consequently, numerical simulations such as Finite Element (FE) method have been 
used as alternative methods with the development of computer capacity. FE models can 
not only predict global human behaviors but also definite parts of human hard and soft 
tissues by precise modeling. In the past decades, various biomechanical FE models have 
been developed and play an important role in investigating injuries in biomechanical 
impacts [15], including full human body models and isolated thorax models. The Total 
Human Model for Safety (THUMS) [16], the Human Model for Safety (HUMOS) [17], 
the Global Human Body Models Consortium (GHBMC) [18] and the University of 
Waterloo Human Body Model (UW-HBM) [19] are some common full human body FE 
models. The first human FE thorax models were developed by Roberts and Chen [20], 
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and by Sundaram and Feng [21] in the 1970s. More refined models were developed in 
the following decades by Huang et al. [22], Plank et al. [23], Lizee et al. [24], Ruan et 
al. [2] and Kimpara et al. [25]. More recently, a biofidelic Hermaphrodite Universal 
Biomechanical yx human torso model (HUByx) was proposed by Roth et al. [26] and 
was used to replicate real-world accidents. In addition, in order to better understand 
dynamic behaviors of ribs and predict the occurrence of rib fractures, several isolated 
rib models were developed and simulated [27–32]. 
 

 
Figure 1.1: Injury regions and severity of drivers in front impact crashes, extracted from 
[5]. 
 
Therefore, the first chapter presents the literature review of the research background of 
this thesis. Firstly, the biomechanics of human thorax is introduced where human thorax 
anatomy is presented first. Then, soft tissues and hard tissues (especially ribs) of human 
thorax are introduced respectively, including soft organs, rib anatomy, material 
properties of soft and hard tissues, soft tissue injuries and rib fractures and common 
biological substitutes. Subsequently, the literature review of experimental and 
numerical studies of impacts on soft tissues and ribs are carried out, respectively. And 
we briefly summarize the bibliographical study at the end of this chapter. 

1.2 Biomechanics of Human Thorax 

1.2.1 Human Thorax Anatomy 

The human thorax part is located between the neck and abdomen parts of the human 
trunk. The human thorax is consist of the thoracic cage, internal soft organs and soft 
tissues such as muscles, fascia, skin and blood vessels. The thoracic cage shown in Fig. 
1.2 supports human thorax by its skeletal framework, and sustains the pressure from 
breathing process. The thoracic cage mainly includes sternum, vertebrae and ribs which 
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are linked by intervertebral discs and costal cartilage. Also, soft tissues like muscles, 
fascia and skin are supported by thoracic cage as well. Internal soft organs within the 
thoracic cage include the heart, lungs and great vessels, which are principal respiratory 
and circulatory organs [33]. 
 

  
(a) Lateral view (b) Front view 

Figure 1.2: Lateral (a) and front (b) view of thoracic cage, adapted from [34]. 

1.2.2 Soft Tissues 

1.2.2.1 Soft Organs 

As is shown in Fig. 1.3, the main respiratory and circulatory organs are located within 
the thoracic wall i.e. the lungs, the trachea, the heart and great vessels. Thereinto, the 
heart and lungs are two vital internal soft organs in human thorax, and are also vital 
organs of human beings second to brain. 
 
The left and right lungs are human beings’ principal respiratory organs and take up most 
space of the thoracic cavity. The left lung is consist of two lobes (upper and lower) and 
the right lung has three lobes (upper, middle and lower). The lungs’ function is to 
exchange oxygen and carbon dioxide between human body and air. Each lung is consist 
of ten bronchopulmonary segments, and each segment has a segmental bronchus (Fig. 
1.4). And the segmental bronchus divides into respiratory bronchioles where the gas 
exchange takes place at microscopic passages called pulmonary alveoli [35]. The heart 
is located between the two lung chambers. It pumps the blood to entire human body, 
including two kinds of circulations i.e. systemic and pulmonary circulation. The 
systemic circulation transfers oxygenated blood from pulmonary circulation to all 
tissues except for lungs and the pulmonary circulation pumps deoxygenated blood to 
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lungs [33,36]. 
 

 
Figure 1.3: Illustration of thoracic soft organs, adapted from [34]. 

 

 

 
 

(a) (b) (c) 
Figure 1.4: (a) Bronchopulmonary segments of lungs; (b) Bronchial tree; (c) Alveolar 
structure [33]. 

1.2.2.2 Common Soft Tissue Substitutes 

In the past decades, it has seen increasing interests for researchers to use various soft 
tissue simulants as human tissue substitutes to investigate human soft tissue behaviors 
in impact biomechanics [37–43], which can avoid practical and ethical issues in human 
cadavers’ experiments. Common human soft tissue substitutes used in the research field 
include rubber, clay, ballistic gelatin and polymer. 
 
Silicone rubber is made of silicone, hydrogen, carbon and oxygen, and has a good 
balance of mechanical and chemical properties. Despite of the excellent stability and 
little dependence on temperature, silicone rubbers are commercially unavailable 
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because of lacking of convenient transparency and high costs [39,44]. Fig. 1.5 displays 
silicone rubber impacted by a flat-bottomed punch. Clay has been used to measure the 
deformation depth in blunt ballistic armor test for predicting the risk of trauma, 
nevertheless, it is not feasible to assess dynamic deformation of clay [43,45]. Fig. 1.6 
illustrates the clay brick impacted by spherical steel spheres. 
 

 
Figure 1.5: Silicone rubber impacted by a flat-bottomed punch [44]. 

 

 
Figure 1.6: Illustration of clay brick impacted by spherical steel spheres [43]. 

 
Compared to silicone rubber and clay, ballistic gelatins are more widely used as soft 
tissue simulants in biomechanics like penetrating impact, blunt impact and blast loading 
contexts [46–50]. There are two typical ballistic gelatins according to the mass fraction, 
i.e. 10% gelatin known as Fackler gelatin and 20% gelatin known as NATO gelatin, and 
the rest is composed of water [51–53]. The ballistic gelatin allows visualization and 
representation of the impact processes due to its transparency and imaging techniques. 
Fig. 1.7 exhibits the ballistic gelatin block under impacts and the size of the temporary 
cavity is measured by high-speed camera. However, previous studies have revealed the 
disadvantages of ballistic gelatins such as aging time, significant temperature 
sensitivity and humidity instabilities, which make the mechanical analysis complicated 
due to the alterations of their mechanical properties [53,54]. 
 
In contrast, the synthetic polymer SEBS (Styrene-Ethylene-Butylene-Styrene) gel (Fig. 
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1.8) highlights a number of practical benefits against ballistic gelatin i.e. environmental 
stability, reproducibility and mechanical consistency [55,56]. It is a triblock copolymer 
and the manufacturing process of SEBS gel is straightforward. It can be obtained by 
mixing SEBS powder and mineral oil and does not need complicated equipment, and it 
is easy to recyclable through melting. It was also revealed that SEBS gel has a similar 
backface deformation with 20% ballistic gelatin by ballistic impact tests [55]. 
Consequently, researchers adopted the synthetic polymer SEBS gel as soft tissue 
substitutes in place of ballistic gelatin in biomechanics in recent years [55–60]. For 
example, a systematical research of changing the toughness and modulus of a synthetic 
polymer SEBS gel was performed by Mrozek et al. [56], in order to investigate the 
relationship between mechanical properties and penetration depth under ballistic 
impacts. Bracq et al. [58] experimentally characterized the strain rate dependent 
mechanical properties of a 30% synthetic polymer SEBS gel through tensile and 
compressive tests at diverse strain rates. Therefore, in this thesis we took SEBS gel as 
soft tissue simulant and proposed a novel strain-rate-dependent elasto-hydrodynamic 
constitutive law of SEBS gel. 
 

 
Figure 1.7: Representation of ballistic gelatin block under impacts [47]. 

 

 
Figure 1.8: Illustration of prototype SEBS gel block [55]. 
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1.2.2.3 Material Properties 

Numerical tools such as finite element methods have been widely applied in 
biomechanics, the key issues are developments of appropriate constitutive material 
laws which can describe the main material responses and their implementation in FE 
codes. Therefore, it is of increasing importance to study the material properties of 
human soft tissues and soft tissue simulants. The mechanical properties of the two vital 
internal soft organs i.e. lungs and the heart are generally represented by strain energy 
functions [61]. As is mentioned before, it has seen increasing interests for researchers 
to use soft tissue simulants as human tissue substitutes to investigate human soft tissue 
behaviors in impact biomechanics. 
 
Therefore, many studies concentrated on the development of constitutive models of soft 
tissue simulant [38,53,62–65]. Generally, tensile and compression tests are conducted 
to measure the material properties. Some show viscoelastic, hyperelastic and visco-
hyperelastic behavior. For example, Moy et al. [38] investigated the constitutive and 
failure behavior of 20% ballistic gelatin under tensile loading at different strain rates. 
Fig. 1.9 presents the tensile stress-strain relationship of ballistic gelatin and the flow 
stress increases with the increase of strain rate, which indicates that the gelatin is rate 
dependent. Cronin and Falzon [53] measured the mechanical properties of 10% ballistic 
gelatin applying compression test apparatus, and the Neo-Hookean hyperelastic 
constitutive model was used to characterize the material properties. For high strain rates, 
the well-known Split Hopkinson Pressure Bar (SHPB) apparatus was employed to 
conduct dynamic compressive tests of ballistic gelatins and obtain dynamic stress-strain 
response [63,64]. Fig. 1.10 shows the true compressive stress-strain relationships of 20% 
ballistic gelatin under various high strain rates conducted by Salisbury and Cronin [63], 
and it can be considered to have a hyperelastic behavior with strain rate dependence. 

 
Figure 1.9: Stress-strain relationship of ballistic gelatin under tensile loading [38]. 
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Figure 1.10: Compressive stress-strain relationship of ballistic gelatin at various high 
strain rates [63]. 
 
 
In recent years, the mechanical properties of synthetic polymer SEBS gel were 
investigated by researchers. Mrozek et al. [56] characterized SEBS gel using tensile 
and compression tests at low strain rates and the stress-strain data were fitted by 
hyperelastic constitutive models. Bracq et al. [58,59] also studied the mechanical 
behavior of a 30% SEBS gel at diverse strain rates through tensile tests and compressive 
experiments using SHPB apparatus, a visco-hyperelastic material law based on the 
Mooney-Rivlin model was proposed. Fig. 1.11-1.12 show the true stress-strain curves 
from tensile tests and engineering stress-strain relationships under dynamic 
compressive tests at various strain rates conducted by Bracq et al. [58]. Besides, 
Mauzac et al. [55] found that the SEBS gel exists a linear elastic mechanical 
characterization on its surface. Also, hydrodynamic behavior of the gelatins was 
considered to be more suitable at least at the beginning of penetration events [66,67], 
and it can be represented by an equation of state. 
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Figure 1.11: True stress-strain curves of the SEBS gel at different strain rates, extracted 
from [58]. 
 

 
Figure 1.12: Engineering stress-strain relationships of SEBS gel under dynamic 
compressive tests at various strain rates, extracted from [58]. 

1.2.2.4 Soft Tissue Injuries 

Thoracic injuries happen frequently in various frameworks of high velocity impact 
biomechanics such as road traffic crashes, sports and ballistic impacts, and can be life-
threatening. Soft tissue injuries are main injuries apart from rib fractures among 
thoracic injuries, and rib fragments can perforate the lung pleural surface, lung 
parenchyma, liver or heart, which may cause severe injuries such as pneumothorax and 
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hemothorax or even death. 
 
Lung injuries are the most frequent soft tissue injuries in human thorax part, and can 
cause multiple organ failure [68,69]. Pulmonary laceration, pneumothorax, hemothorax 
and pulmonary contusion are main lung injuries. Fig. 1.13 shows a thoracic CT image 
of pulmonary laceration (white arrow) and pulmonary contusion (black arrow). 
Pulmonary laceration occurs when the lung is torn at a large scale and a ruptured lung 
can release air and blood. Pneumothorax and hemothorax happen when the space 
between the lung and thoracic wall is filled with air and blood respectively. Pulmonary 
laceration can also lead to pulmonary contusion, where the alveoli is damaged and 
collapsed and filled with fluid, and may result in inflammatory reaction. Moreover, the 
possibility of Acute Respiratory Distress Syndrome (ARDS) increases if the contused 
lung volume is over 24% [70]. 
 
Heart laceration and contusion can be caused by contact the deformed hard tissues such 
as fractured ribs. Such heart injuries can affect the functionality of heart and lead to 
defective hear rhythm or even cardiac arrest [71]. Besides, similar injury types occur 
for great vessels and the aorta in human thorax under high velocity impacts, and the 
loss of blood can be life-threatening due to the rupture of the aorta [72]. 
 

 
Figure 1.13: Thoracic CT image of pulmonary laceration (white arrow) and pulmonary 
contusion (black arrow) [73]. 
 
The Abbreviated Injury Scale (AIS) based on anatomic injuries is widely used to 
describe the different injury severities [74]. The AIS has a classification of six levels: 
from AIS 1 (minor) to AIS 6 (fatal) according to the threat to life, where level 1 is 
assigned to minor injury and level 6 means fatal injury. Table 1.1 displays the soft tissue 
injury in human thorax corresponding to different levels of AIS. 
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Table 1.1: Thoracic soft tissue injuries with corresponding AIS levels, extracted from 
[72]. 
 AIS Soft tissue injury 
Minor 1 Skin abrasion, contusion, laceration 
Moderate 2 Major skin laceration, partial thickness 

tear, bronchus 
Serious 3 Minor heart contusion, unilateral lung 

contusion 
Severe 4 Severe heart contusion, intimal tear of 

aorta 
Critical 5 Major aortic laceration, heart perforation, 

ventricular heart rupture 
Fatal 6 Aortic laceration with haemorrhage 

 

1.2.3 Hard Tissues 

1.2.3.1 General Introduction of Bones 

Human thorax is supported by the skeletal framework of the thoracic cage. The bone 
tissues within thoracic cage include sternum, vertebrae and ribs which are linked by 
intervertebral discs and costal cartilage as shown in Fig. 1.14.  
 

 
Figure 1.14: Anterior view of human thoracic cage, adapted from [34]. 

 
The sternum locates at the anterior end of the thoracic cage. It is a flat bone, constituting 
the anterior median part of the thoracic cage, and articulates with the first 7 pairs of ribs. 
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As is shown in Fig. 1.15, it consists of manubrium, body and xiphoid process. The 
upper part is called manubrium, it is quadrilateral in shape. It is the strongest and 
thickest part of the sternum. The middle part which resembles the blade is the body, it 
is thinner, longer and narrower than the manubrium. And the lower part gradually 
forming the point of the sword is called xiphoid process, it is the thinnest and smallest 
part of the sternum. It is cartilaginous in the youth but its upper end becomes ossified 
in adults [33]. 
 
The 12 thoracic vertebrae and the intervening intervertebral discs are at the posterior 
end of the thoracic cage, the lateral view of typical thoracic vertebrae is exhibited in 
Fig. 1.16. The thoracic vertebrae are identified by the demi-facets on the sides of 
vertebral bodies which articulate with the corresponding ribs. 
 
Also, there are 12 ribs on each side of the thoracic cage (Fig. 1.14) and each rib 
articulates posteriorly with the thoracic vertebral column. Thereinto, the first 7 pairs of 
ribs articulate anteriorly with the sternum through corresponding costal cartilages and 
they are called true or vertebrosternal ribs. The 8th, 9th and 10th ribs are called false or 
vertebrochondral ribs, the costal cartilage end of these three ribs joins the next higher 
costal cartilage. The 11th and 12th ribs are known as floating or free ribs as they are 
free at the anterior extremity [33]. 
 

 
 

(a) Anterior view (b) Lateral view 

Figure 1.15: Anterior (a) and lateral (b) view of sternum [34]. 
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Figure 1.16: Lateral view of typical thoracic vertebrae [34]. 

 
Bone tissue is a biological collagen based tissue composed of organic materials, 
inorganic materials and water. Bone is an essential element of human musculoskeletal 
system and has a lightweight cross sectional construction which is able to stand heavy 
loads, therefore it gives structural support to other tissues. Bone consists of a dense 
cortical bone shell outside and filled with light trabecular bone inside as is shown in 
Fig. 1.17. 
 
The cortical bone is also referred to as compact bone, it has a more mineralized and less 
porous structure compared to the trabecular bone. Cortical bone is composed of the 
units called osteons. Each osteon has a cross section in which the cylindrical layers of 
lamellae enclose the Haversian canal. Inside the Haversian canal are blood vessels, 
nerves and lymph vessels [75]. 
 
The trabecular bone is less mineralized and more porous in contrast to cortical bone, 
therefore it is also called spongy or cancellous bone. It is composed of interconnecting 
trabeculae. 
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Figure 1.17: Illustration of a cross section of a long bone, extracted from [75]. 

1.2.3.2 Rib Anatomy 

As is mentioned in the previous section, there are 12 ribs on each side of the thoracic 
cage. A typical rib is composed of three anatomical regions as illustrated in Fig. 1.18, 
i.e. head, neck and body. Head locates at the anterior extremity of the rib, where two 
articular facets are separated by a wedge. The rib articulates with corresponding 
thoracic vertebra through the articular facets. Neck connects the rib head with the 
tubercle, and the tubercle articulates with corresponding thoracic vertebra via its 
articular facet. Body of the rib is flat and curved with cutaneous and pleural surfaces. 
The cutaneous surface is located closed to the skin, while the pleural surface is faced 
with the internal organs and protects them from external damage. The costal groove is 
located at the pleural surface.  
 

 
Figure 1.18: Structure of a typical human rib, adapted from [34]. 
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The ribs are located in the ribcage with an angle to the transverse plane of thorax as 
illustrated in Fig. 1.2. According to the morphological terms, each rib is different 
because the lengths and angles of orientation are different. The length of the ribs 
increases gradually from the 1st to the 7th rib and then decreases from the 8th to the 
12th rib. Similarly, the angle of orientation increases from the 1st to the 9th rib and 
thereafter it decreases to the 12th rib. The first two ribs together with the last three ribs 
are atypical ribs due to their special features, and the 3rd to the 9th ribs are typical ribs. 
Besides, the upper two ribs and the two floating ribs are the least commonly fractured 
ribs. Therefore, a middle rib is normally used to analyze the characteristics and fractures 
of ribs [33,34]. 
 

 
Figure 1.19: Transition of the rib cross section geometry, extracted from [76]. 

 
The cross section geometry of a rib has a transition feature, it has a circular shape from 
the head to the neck and translates to an elliptical cross section from the neck to the rest 
of the whole rib body as shown in Fig. 1.19. Therefore, a rib can generally be 
approximated to have an elliptical cross section. Fig. 1.20 exhibits the cross section of 
a representative human rib photographed by Granik and Stein [77], and the CT scan of  
the cross section of a 5th rib is shown in Fig. 1.21. It is obvious that the cross section 
of a rib is composed of two bone tissue, i.e. outer cortical bone layer and a more porous 
trabecular bone inside. 

 
Figure 1.20: Photograph of the cross section of a representative human rib, extracted 
from [77]. 
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Figure 1.21: CT (left) and μCT (right) scan of the cross section of a 5th human rib [78]. 
 

1.2.3.3 Common Human Rib Substitutes 

The use of human cadavers is limited because of the high financial costs and ethical 
issues. Therefore, human ribs are not easy to obtain when conducting fracture 
experiments under high velocity impacts. On the other hand, animal cadavers and 
animal ribs are readily to purchase from local butchers. Thereinto, porcine ribs are 
commonly used as human rib substitutes as they have similar geometrical and 
anatomical characteristics with human ribs [79,80]. 
 
Consequently, researchers have conducted some studies on rib fractures applying 
porcine ribs in recent years. For example, Christensen et al. [81,82] first examined the 
rib fracture patterns using eleven pigs exposed to blast loadings (Fig. 1.22), and then 
performed manual bending force fracture testing on 46 pig ribs, butterfly fractures (Fig. 
1.23) were found to be a possible indicator of blast trauma. Margaret [83] investigated 
porcine rib fracture patterns under three different loading modes i.e. end-compression 
loading, low velocity three-point bending and dynamic loadings, which verified the 
assumption that porcine ribs are a useful substitute for the study of human rib fracture 
patterns, fracturing in a similar location and mode as human ribs. More recently, 
experimental and numerical studies of porcine ribs subjected to dynamic 3PB loadings 
applying SHPB apparatus were conducted in order to help predict human rib fractures 
by Ayagara et al. [31]. 
 

20 
 



Chapter 1 

 
Figure 1.22: Schematic of pig specimen under blast loading, extracted from [82]. 

 

 
Figure 1.23: Representation of butterfly fractures of porcine ribs [82]. 

1.2.3.4 Material Properties of Ribs 

As finite element models are increasingly used to evaluate the thoracic injuries, the 
investigations of material properties of ribs help to develop appropriate constitutive 
laws which can be appropriately implemented in FE codes. Therefore, researchers have 
payed attention to the material properties of ribs for a better comprehension of the 
mechanical behaviors of ribs in the past decades. The bone cross section is composed 
of cortical bone and trabecular bone, cortical bone exhibits an elasto-plastic behavior 
while trabecular shows behavior similar to polymeric foams because of the difference 
of architectural arrangement [84,85]. Fig. 1.24 (a)-(b) shows typical mechanical 
properties of cortical and trabecular bone, respectively. 
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(a) Mechanical behavior of cortical bone, Kemper et al. [86]. 

 
(b) Mechanical behavior of trabecular bone, Carter and Hayes [87]. 
Figure 1.24: Mechanical properties of cortical and trabecular bones. 

 
Tensile and compression tests are commonly performed to characterize material 
properties of ribs. Numerous tensile coupon tests have been conducted to investigate 
the material properties of ribs [86,88–91]. For instance, Kemper et al. [86] first 
conducted 117 tensile coupon tests on human rib cortical bones from six cadavers and 
gave the complete stress-strain relationship. Subsequently, Kemper et al. [88] extended 
the sample quantity and found that rib cortical bone tensile material properties were not 
affected by rib level or region. Albert et al. [90] investigated tensile tests of 29 6th 
human rib cortical bones, the material properties of rib cortical bone were found to be 
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consistent with published data by Kemper. However, previous studies of rib cortical 
bone material properties are limited to tensile tests and no literature is about 
compressive material properties. Hence, Albert et al. [92] recently first performed 
compressive tests on human rib cortical bone and compared the compressive material 
properties with existing tensile data of the literature. They found that compression led 
to higher yield and ultimate stress while tension led to higher failure strain. 
 
Additionally, many three-point bending tests on whole rib segments have been 
performed in order to investigate material properties of ribs applying linear elastic beam 
equations[77,93–95]. For instance, Granik and Stein [77] conducted three-point 
bending tests of 6th and 7th human ribs, they obtained the average elastic modulus and 
bending failure stress as 11.5GPa and 106MPa, respectively. Yoganandan and Pintar 
[93] tested material properties of 7th and 8th ribs from 30 human cadavers using three-
point bending techniques, the average Young’s modulus of 7th and 8th rib was 2.3GPa 
and 1.9GPa respectively. Moreover, Cormier et al. [94] performed three-point bending 
tests on a total of 52 rib samples of 2nd to 12th rib taken from anterior, lateral and 
posterior regions, respectively. The average modulus and ultimate stress were found to 
be 17.7GPa and 135.4MPa, respectively. 
 
The effect of strain rate on the material properties of bones was also evaluated by many 
studies. McElhaney [96] conducted one of the first studies on the investigation of effects 
of different loading rates on human cortical bone, compression tests were performed on 
human femur, where the ultimate stress and modulus increase while the ultimate strain 
decreases with the increase of loading rate. The increase of Young’s modulus with 
increasing loading rate was also reported by some other researchers [97–99]. However, 
Ferreira et al. [100] in contrary reported a decreasing effect and Pithioux et al. [101] 
found that cortical bone behavior was not relevant to strain rates. Besides, the effect of 
age, sex and other factors on material properties of bones were investigated as well 
[86,91,92,102,103]. 
 
In general, both the cortical and trabecular bones are modeled using elasto-plastic 
constitutive material model in FE numerical analysis [28–32,104,105]. Also, it is 
assumed that cortical bone shows isotropic hardening while trabecular bone obeys 
kinematic hardening [28,106]. 

1.2.3.5 Rib Fractures 

Rib fractures are most common thoracic injuries, and rib fragments can perforate the 
lung pleural surface, lung parenchyma, liver or heart, which may cause severe injuries 
such as pneumothorax and hemothorax or even death. Specifically, the elderly are more 
likely to encounter rib fractures and serious complications, and they need longer 
recovery time or even face higher mortality owe to the decreased recovery capacity. 
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Therefore, understanding the patterns of rib fractures and prediction of rib structural 
responses and fracture location under high velocity impacts is essential. 
 
Common rib fracture types comprise transverse, oblique, buckle, butterfly, partial 
butterfly and comminuted [107], and Fig. 1.25 shows various types of rib fractures. Rib 
fracture locations can be classified as anterior, anterolateral, posterolateral and posterior 
portions. Fig. 1. 26 displays the frequencies of fracture locations alongside rib curve 
length, it can be seen that most fractures occurred in the anterolateral portion of the rib 
i.e. at the anterior and middle sections [108]. 
 
Similar to soft tissue injuries, different rib cage injury severities are represented by the 
Abbreviated Injury Scale (AIS) based on anatomic injuries. Table 1.2 displays various 
rib cage injury severities corresponding to different levels of AIS. 
 

 
Figure 1.25: Various types of rib fractures, (a) oblique, (b) transverse, (c) buckle, (d) 
comminuted, (e) butterfly, (f) partial butterfly, adapted from [83]. 
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Figure 1.26: Distribution of rib fracture location frequency, extracted from [108]. 

 
Table 1.2: Rib cage injuries with corresponding AIS levels, extracted from [72]. 
 AIS Rib cage injury 
Minor 1 Single rib fracture 
Moderate 2 2-3 rib fractures, sternum fracture 
Serious 3 >4 rib fractures, 2-3 rib fractures with 

hemothorax or pneumothorax 
Severe 4 >4rib fractures with hemothorax, 

pneumothorax or flail chest 
Critical 5 Bilateral flail chest 

1.3 Experimental Studies of Impacts on Soft Tissues and Ribs 

in the Literature 

1.3.1 Experiments on Common Soft Tissue Substitutes 

In the past decades, it has seen increasing interests for researchers to use various soft 
tissue simulants as human tissue substitutes to investigate human soft tissue behaviors 
in impact biomechanics, which can avoid the drawbacks of the use of human cadavers 
because of the high financial costs and ethical issues. As is introduced in Section 1.2.2.2, 
among the human soft tissue substitutes used in the research field, the ballistic gelatin 
is more widely used and the synthetic polymer SEBS gel is adopted by researchers in 
place of ballistic gelatin in recent years because of a number of benefits against the 
typical ballistic gelatin. Consequently, a literature review is conducted about 
experimental studies of impacts on ballistic gelatin and SEBS gel recently in the 
following two subsections. 
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1.3.1.1 Ballistic Gelatin 

Fackler was the first to compare ballistic gelatin with living tissue and found that 
ballistic gelatin was an appropriate human tissue simulant by conducting comparative 
tests with porcine legs [109,110]. Ballistic gelatins were afterwards widely used as soft 
tissue simulants in biomechanics especially in the contexts of penetrating and blunt 
impacts [41,47,48,111–117]. The ballistic gelatin allows visualization and 
representation of the temporary and permanent wound profiles and provide an 
approximation about wounds in human tissues due to its transparency and imaging 
techniques. 
 
For instance, Bree and Gotts [112] studied the compression wave propagation in 
ballistic gelatin shielded by aluminum plates and employed a twin peak theory. Bresson 
et al. [113] experimentally study the expansion dynamic behavior of 9mm Parabellum 
hollow point projectiles in 10% ballistic gelatin, they demonstrated that the knowledge 
of expansion law can be useful to investigate a gunshot in human body. Wen et al. [47] 
firstly conducted ballistic experiments of the impact penetration of steel spheres on 10% 
ballistic gelatin at moderate speeds in order to better understand the injury caused to 
human soft tissue, and subsequently studied the behind armor ballistic trauma [114], 
the temporary cavity was recorded by a high speed camera and it can be taken as 
evaluation of severity of injury caused by impacts. The schematics and photo of Wen’s 
experimental setup is displayed in Fig. 1.27, and the temporary cavity profiles in 
ballistic gelatin under impact speed of 690m/s was shown in Fig. 1.28. Liu et al. [48] 
conducted non-penetration impact tests of handgun bullets on 10% ballistic gelatin 
block behind soft armor, a viscoelastic model was established to predict the shock wave 
attenuation in ballistic gelatin. Also, Luo et al. [41] investigated the transient pressure 
and transient cavity response of 10% ballistic gelatin in the context of behind armor 
blunt trauma (BABT) through pistol bullets impacting ballistic gelatin behind the soft 
body armor. 
 

 

(a) Schematic of the experimental setup. 
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(b) Photo of the experimental setup. 

Figure 1.27: Schematic and photo of the experimental setup of impact of steel spheres 
on ballistic gelatin, extracted from [47]. 
 

 
Figure 1.28: Representation of temporary cavity profiles in ballistic gelatin under 
impact speed of 690m/s in BABT experiments [114]. 

1.3.1.2 SEBS Gel 

The synthetic polymer Styrene-Ethylene-Butylene-Styrene (SEBS) gel highlights a 
number of benefits against the typical ballistic gelatin such as environmental stability 
and mechanical consistency. In consequence, researchers adopted the SEBS gel as soft 
tissue substitute in place of ballistic gelatin in biomechanics impacts in recent years 
[55–58,118–120]. 
 
Mauzac et al. [55,57] measured the dynamic back face deformation of direct impacts 
of Less-lethal kinetic (LLKE) projectiles on SEBS gel, and afterwards conducted 
similar experiments in the context of BABT using SEBS gel, they found that SEBS gel 
can be effectively applied to assess the back face deformation. Fig. 1. 29 (a)-(b) 
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respectively shows the image of dynamic back face deformation of direct impact of 
LLKE projectile and BABT tests on SEBS gel in Mauzac’s experiments. Mrozek et al. 
[56] characterized the mechanical properties of SEBS gel and investigated the 
relationship between mechanical properties and ballistic penetration depth in SEBS gel 
via tensile, compression and penetration tests. Moreover, Bracq et al. [58,59] 
characterized the strain rate dependent mechanical properties of a 30% synthetic 
polymer SEBS gel and performed blunt ballistic experiments to validate the developed 
constitutive law. More recently, they employed SEBS gel as a reference material to 
assess blunt ballistic impacts using a wide range of LLKE projectiles [119], Fig. 1.30 
(a)-(b) exhibits the experimental setup and a photograph of the gel wall displacement 
captured by a high-speed camera during the impact of a rigid projectile. In addition, 
Veysset et al. [120] performed microscale high velocity impact experiments on SEBS 
gel using 10-24um diameter steel micro-particles with strain rates up to 107s-1 , which 
can be used in ballistic drug delivery applications. 
 

 
(a) Impact of LLKE projectile on SEBS gel. 

 
(b) BABT test on SEBS gel. 

Figure 1.29: Image of dynamic back face deformation of direct impact of (a) LLKE 
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projectile and (b) BABT tests on SEBS gel [55,57]. 
 

 
(a) Schematics of the experimental setup. 

 
(b) Photograph of the gel wall displacement of SEBS gel during blunt impacts. 

Figure 1.30: (a) Experimental setup and (b) a photograph of the gel wall displacement 
captured by a high-speed camera during the impact of a rigid projectile [119]. 

1.3.2 Experiments on Isolated Ribs 

Rib fractures are most common thoracic injuries, and rib fragments can perforate the 
lung pleural surface, lung parenchyma, liver or heart, which may cause severe injuries 
such as pneumothorax and hemothorax or even death. Consequently, it is of importance 
to investigate the dynamic responses of ribs under dynamic loadings. To better 
understand the mechanisms of rib fractures and corresponding injury criterion, 
numerous experimental studies have been conducted on isolated ribs in the past decades, 
thereinto, three-point bending and anterior-posterior bending experiments on isolated 
ribs were performed to mimic real-world impact loadings like in motor vehicle crashes 
(MVCs). So the following two subsections review these two kinds of experimental 
studies conducted in recent years. 
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1.3.2.1 Three-point Bending 

In the past decades, many experimental efforts have been done on isolated ribs under 
quasi-static or dynamic three-point bending (3PB) loadings [31,77,88,93,121–125]. For 
instance, one of the most cited works was conducted by Granik and Stein [77], they 
developed a quasi-static 3PB test methodology and tested the responses of 6th and 7th 
human ribs, the experimental setup is displayed in Fig. 1.31. Charpail [123] also 
performed quasi-static 3PB tests on human 6th, 7th and 8th ribs to study the structural 
responses and fractures of human ribs as shown in Fig. 1.32, where the author found 
that the thickness of cortical bone at a particular cross section affects bending stiffness 
and strength. Kimpara et al. [122] pointed out that there were differences of ribs 
responses and injury thresholds between female and male ribs via quasi-static 3PB tests. 
Moreover, Kemper et al. [88] investigated structural responses of human ribs by 
conducting 3PB experiments, and the results showed that there exists variations in 
structural responses with respect to anatomical region and rib level due to changes in 
local geometry. 
 
 

 
Figure 1.31: Experimental setup of 3PB test on ribs designed by Granik and Stein [77]. 
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Figure 1.32: Experimental setup of 3PB test employed by Charpail [123]. 

 
The aforementioned studies mostly concentrated on quasi-static 3PB tests and used 
human ribs in the experiments. Recently, Aubert et al. [124] used porcine ribs as human 
rib surrogates and carried out dynamic 3PB tests of porcine ribs at high velocity impacts 
using Split Hopkinson Pressure Bar (SHPB) apparatus with the aim of investigating 
dynamic behaviors of ribs. Subsequently, Ayagara et al. [31,125] conducted 
experimental studies of porcine ribs subjected to dynamic 3PB loadings applying SHPB 
apparatus as well, where force response, structural response and fracture pattern were 
studied. Fig. 1.33 exhibits the experimental configuration of porcine rib under dynamic 
3PB bending using SHPB apparatus. 
 

  
Figure 1.33: Illustration of porcine rib under dynamic 3PB bending using SHPB 
apparatus, extracted from [125]. 

1.3.2.2 Anterior-Posterior Bending 

Anterior-posterior bending loading produces tension on the external surface of the rib, 
which is different from 3PB bending where the loading is in a lateral direction and 
produces compression on the external surface [126]. Anterior-posterior bending tests 
on isolated ribs were applied by researchers to replicate real-world frontal impact 
loading conditions in order to investigate the structural responses of ribs in recent years 
[27,29,108,127–133]. Charpail et al. [27] first proposed a novel experimental protocol 
to apply dynamic anterior-posterior loads to individual ribs using a pendulum fixture in 
2005, where the sternal (anterior) end of the rib was pushed towards the vertebral 
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(posterior) end within rib’s major plane. Kindig et al. [128] then conducted anterior-
posterior bending experiments on 27 isolated rib extracted from levels 2 to 10 in order 
to identify rib level differences in fracture characteristics, rib 2 was found to be stiffer 
than other rib levels based on the methodology proposed by Charpail. The experimental 
configuration is shown in Fig. 1. 34. Also, Li et al. [29,127] then performed experiments 
of second, fourth and tenth human isolated ribs under anterior-posterior bending to 
study ribs’ structural responses and fracture tolerance. Moreover, many experimental 
studies of human isolated ribs under dynamic frontal impacts were conducted in Ohio 
State University [108,130–133], for instance, variations in structural responses of 
human isolated ribs under dynamic anterior-posterior loading were investigated by 
Agnew et al. [108] and Kang et al. [133] based on a large quantity of ribs, where 
different affecting factors of age, sex, body size and rib geometry were taken into 
account. Fig. 1.35 (a)-(b) exhibits the experimental fixture of isolated ribs under 
dynamic frontal impacts by a pendulum and rib fractures, respectively. 
 

 
Figure 1.34: Experimental configuration of anterior-posterior bending on ribs, extracted 
from [128]. 
 

 
(a) Experimental fixture of ribs under dynamic frontal impacts by a pendulum. 
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(b) A picture of rib fractures. 

Figure 1.35: Experimental (a) fixture of isolated ribs under dynamic frontal impacts by 
a pendulum and (b) rib fractures [133]. 

1.4 Numerical Simulations of Impacts on Soft Tissues and 

Ribs in the Literature 

1.4.1 Simulations on Common Soft Tissue Substitutes 

The development of computer science allows researchers to apply numerical 
simulations such as Finite Element (FE) method to simulate and investigate the 
behaviors of human tissues, which can overcome the limitations in biomechanical 
experiments. FE models can not only predict global human behaviors but also definite 
parts of human hard and soft tissues by precise modeling. In the past decades, various 
biomechanical FE models have been developed and play an important role in 
investigating injuries in biomechanical impacts. In the previous section 1.3.1, a 
literature review of the experimental studies of impacts on common soft tissue 
substitute ballistic gelatin and SEBS gel is introduced. In this section, the numerical 
simulation studies of impacts on ballistic gelatin and SEBS gel in recent years are 
reviewed. 
 
Many numerical simulations have been conducted to simulate the behaviors of ballistic 
gelatins as soft tissue simulants in the contexts of penetrating and blunt impacts in 
recent years [40,47,50,114,115,134,135]. For instance, Wen et al. [47] simulated the 
penetration of a steel sphere impacting a 10% ballistic gelatin block through finite 
element analysis, the numerical temporary cavity size and pressure time histories 
corresponded well with the experimental ones. Fig. 1.36 and Fig. 1.37 display the mesh 
discretization of the finite element models and comparison of experimental and 
numerical temporary cavity profiles, respectively. Subsequently, Wen et al. [114] also 
numerically studied the behind armor ballistic trauma using a bullet striking a shielded 
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ballistic gelatin block. Moreover, the smoothed particle hydrodynamics (SPH) method 
combined with finite element method was used by Taddei et al. [40] and by Al.Khalil 
et al. [50] to numerically interpret the penetrating impacts on 20% and 10% ballistic 
gelatin, respectively 
 

 
Figure 1.36: Finite element mesh discretization of the (a) steel sphere and (b) ballistic 
gelatin block [47]. 
 

 
Figure 1.37: Comparison of experimental and numerical temporary cavity profiles in 
ballistic gelatin at an impact velocity of 728m/s [47]. 
 
Recently, numerical simulations of SEBS gels under high velocity impacts were also 
conducted by researchers to help better understand human soft tissue dynamic 
behaviors apart from experimental studies [59,60]. Bracq et al. [59] modeled the SEBS 
gel with a visco-hyperelastic constitutive law based on the Mooney-Rivlin model and 
validated it by replicating blunt ballistic experiments using finite element modeling. 
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The comparison of experimental and numerical displacement of blunt ballistic impacts 
on SEBS gel was shown in Fig. 1.38. In addition, Meng et al. [60] simulated the 
dynamic responses of the SEBS gel under high velocity micro-particle impacts at a 
microscale using the SPH method, which can be applied in the medical field. 
 

 
Figure 1.38: Comparison of experimental and numerical displacement of a blunt 
ballistic impact on SEBS gel [59]. 

1.4.2 Simulations on Isolated Ribs 

As is introduced in section 1.3.2, numerous experimental studies of impacts on isolated 
ribs have been conducted in the past decades in order to better understand dynamic 
behaviors of ribs and predict the occurrence of rib fractures. Meanwhile, researchers 
also took advantage of numerical simulations as an alternative method, so this section 
review the numerical three-point bending (3PB) and anterior-posterior bending 
simulations on isolated ribs. 
 
Charpail [123] simulated 14 human ribs without trabecular bone under 3PB bending as 
shown in Fig. 1.39, numerical results were used to optimize cortical bone properties in 
the following simulations. Ayagara et al. [31] conducted numerical studies of porcine 
ribs subjected to dynamic 3PB loadings applying SHPB apparatus, a modified elastic-
plastic constitutive law was employed to model both cortical and trabecular bones, the 
numerical force-displacement curve and fracture pattern showed a good correlation 
with experimental results. 
 

35 
 



Chapter 1 

 
Figure 1.39: Representation of finite element modeling of rib cortical bone under 3PB 
bending by Charpail [123]. 
 
In addition, many researchers developed finite element models of isolated rib models 
under anterior-posterior bending loads [27–30,32,104,105,123,136]. Thereinto, 
Charpail et al. [27] established FE models of isolated human ribs with variable cortical 
thickness based on CT scan techniques and simulated them under anterior-posterior 
loadings. Numerical fracture locations and force values correlated well with 
experimental data even though the fracture time and displacement didn’t match well 
with experimental data. Li et al. [28] developed and validated human rib FE models 
with two types of cortical meshes, in which hex-shell models were proved to be 
applicable for predicting rib structural responses and fractures and more 
computationally efficient than all-hex models. The authors subsequently investigated 
the effect of cortical thickness, mesh density and material properties on force-
displacement relationship and rib fracture locations based on FE simulations [29]. Also, 
subject-specific FE rib models were created for predicting rib stiffness and fracture 
location under dynamic anterior-posterior bending by Iraeus et al. [30], seven out of the 
twelve rib models predicting good fracture locations compared to experimental tests. 
Recently, Yates et al. [32] established several subjected-specific 6th human rib FE 
models to predict rib biomechanical responses under anterior-posterior bending with 
material data derived from tensile coupon tests. Fig. 1.40 (a)-(d) displays several finite 
element rib models subjected to anterior-posterior bending loads in the literature. 
 

 

 
(a) Charpail [123]. (b) Li et al. [28]. 
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(continued) 

 

 
(c) Iraeus et al. [30]. (d) Yates et al. [32]. 

Figure 1.40: Several finite element rib models under anterior-posterior bending loads. 

1.5 Summary of Bibliographical Study 

This chapter presents the literature review of the research background of this thesis. 
The biomechanics of human thorax is introduced where human thorax anatomy is 
presented first. Then, soft tissues and hard tissues (especially ribs) of human thorax are 
introduced respectively, including soft organs, common soft tissue and human rib 
substitutes, rib anatomy, material properties, soft tissue injuries and rib fractures. 
Finally, experimental and numerical studies of impacts on soft tissues and ribs in the 
literature are introduced, respectively.  
 
The thorax part is found to be one of the most injured body areas under high velocity 
impacts, thereinto, rib fractures and soft tissue injuries like lung injuries are the most 
common thoracic injuries and can be life-threatening. Therefore, in order to better 
understand human thorax responses and injuries under high velocity impacts, it is of 
importance to investigate the dynamic responses of human tissues, which can provide 
valuable medical and forensic information and is also useful for designing and 
optimizing protecting devices. 
 
In recent years, many biomechanical FE models have been established and employed 
to repeat real-world impact loading conditions to investigate human tissue behaviors 
which can avoid practical issues in biomechanical experiments. However, there is no 
model can take all the factors such as age, sex, material properties and geometry etc. 
into consideration. Therefore, this thesis aims to contribute to the investigation of 
dynamic responses of human tissues under high velocity impacts using finite element 
modeling. 
 
Human tissues include soft tissues and hard tissues. In thoracic injuries, lung injuries 
are most common soft tissue injuries, and rib fractures are frequent hard tissue injuries. 
Among soft tissue substitutes, the synthetic polymer Styrene-Ethylene-Butylene-
Styrene (SEBS) gel highlights a number of benefits against the typical ballistic gelatin 
such as environmental stability and transparency. In consequence, researchers adopted 
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the SEBS gel as soft tissue substitute in biomechanics impacts in recent years. But few 
studies pay attention to the development of constitutive law of the synthetic polymer 
SEBS gel. Hence, in Chapter 2, this thesis first aims to propose a novel strain-rate-
dependent elasto-hydrodynamic constitutive law of the SEBS gel for the first time, 
which can interpret the dynamic behaviors of SEBS gel under various loading 
configurations. Dynamic three point bending (3PB) tests and anterior-posterior bending 
tests of isolated ribs are typically carried out to understand rib fractures, which mimic 
the environments like in car crash accidents. Only a few studies concentrate on dynamic 
3PB tests of ribs under high velocity impacts using Split Hopkinson Pressure Bar 
(SHPB) apparatus, thus this thesis then numerically investigates the effect of 
geometrical and mechanical parameters of ribs submitted to high velocity impacts 
applying 3PB SHPB apparatus in Chapter 3. In addition, previous numerical studies on 
ribs’ dynamic anterior-posterior bending defined human rib cortical bone material 
models using material data obtained from tensile coupon tests because of the absence 
of rib cortical bone compressive material properties in the literature. Actually, the rib 
suffers both tensile and compressive loading modes during MVCs, for instance, the 
cutaneous surface suffers tension while the pleural surface suffers compression in 
frontal crash conditions. Therefore, this thesis also develops rib FE models with various 
material properties including human rib cortical bone material properties from different 
loading modes (tension and compression), strain rates (0.5 strain/s and 0.005 strain/s) 
and ages as well as porcine rib material properties, in order to better understand rib 
structural responses and fracture locations under dynamic anterior-posterior bending in 
Chapter 4. Chapter 5 summarizes the overall conclusions of this thesis and points out 
the existing limitations, and finally discusses the openings of future work. 
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2 Numerical Modeling of the SEBS Gel 

under High Velocity Impacts: 

Investigation of the Effect of the Strain 

Rate in an Elasto-Hydrodynamic Law 

2.1 Introduction 

The synthetic polymer Styrene-Ethylene-Butylene-Styrene (SEBS) gel highlights a 
number of benefits against the typical ballistic gelatin such as environmental stability, 
reproducibility, mechanical consistency and transparency. Consequently, researchers 
adopted the SEBS gel as soft tissue substitute in biomechanics impacts in recent years. 
The development of appropriate constitutive material laws which can describe the main 
aspects of material responses and their implementation in FE codes is a key issue in FE 
simulations. Only Bracq et al. [59] payed attention to the development of constitutive 
modeling of the SEBS gel. In consequence, the main purpose of this chapter is to 
propose a novel strain-rate-dependent elasto-hydrodynamic constitutive law of the 
SEBS gel for the first time based on the mechanical characterization experiments of the 
literature, which can interpret the dynamic behaviors of SEBS gel under various loading 
configurations. The proposed law is then implemented as a user material subroutine 
programed in Fortran in an explicit nonlinear FE software Radioss (Altair Hyperworks) 
to reproduce various loading configurations in order to validate the accuracy of the 
model, and the effect of strain rate is investigated. Numerical analysis reveals that the 
strain-rate-dependence effect is significant in SEBS gel especially for high strain rates. 
 
The outline of this chapter is organized as follows. In Section 2.2, the SEBS gel material 
used in this thesis is first introduced. Then, the constitutive modeling of the SEBS gel 
and finite element validation tests under various loading configurations including 
compressive plate test, Split Hopkinson Pressure Bar (SHPB) test and blunt ballistic 
impact test are presented as well. Section 2.3 displays the comparative results of 
implementation of the new proposed law in an explicit non-linear FE software against 
experimental data of the literature. Section 2.4 discusses the obtained comparative 
results presented in Section 2.3. Finally, the major conclusions are summarized in 
Section 2.5. 
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2.2 Materials and Methods 

2.2.1 Material 

The soft tissue substitute material applied in this thesis is the same synthetic polymer 
SEBS gel (styrene-ethylene-butylene-styrene) used by Bracq et al. [58]. It is a triblock 
copolymer produced by Kraton Polymers LLC (G1652). The 30 wt% SEBS gel is 
obtained by mixing SEBS powder and mineral oil with the styrene/elastomer ratio of 
30/70%. The mineral oil is supplied by ESSO S.A.L (PRIMOL 352). The 
manufacturing process of this gel does not need complicated equipment and is 
comparatively straightforward. An oven is used to place a metallic drum where the 
mineral oil is preheated at 100。C for 2h. The SEBS powder is added in gradually and 
mixed continuously at the same time. Then increase the temperature to 150。C and keep 
the mixtures soaked for 4h with intermittent mixing. After the mixture liquid is fully 
melted and there exists no bubble, the liquid is cast into an appropriate mold with a 
dedicated geometry. The liquid is cooled to room temperature slowly before the 
removal from the mold in order to reduce the sink deformation. The material density of 
this SEBS gel is about 880kg/m3. 

2.2.2 Constitutive Modeling 

It is essential to develop appropriate constitutive material laws for modeling soft tissue 
simulants which can describe the main aspects of material responses and their 
implementation in FE codes. To our knowledge, only Bracq et al. [59] payed attention 
to the constitutive modeling of the synthetic polymer SEBS gel, where the authors 
developed a novel visco-hyperelastic constitutive law based on the Mooney-Rivlin 
model. Nevertheless, Mauzac et al. [55] found that the SEBS gel exists a linear elastic 
mechanical characterization on its surface. Hydrodynamic behavior of the gelatins is 
considered to be more suitable at least at the beginning of penetration events [66]. 
Meanwhile, strain rate effects are proved to be significant and were included in the 
modeling of the synthetic polymer SEBS gel [58,59]. Therefore, the author here aims 
to propose a novel strain-rate-dependent elasto-hydrodynamic constitutive law of the 
SEBS gel based on the mechanical characterization experiments of the literature for the 
first time, which can simulate the SEBS gel behavior under blunt ballistic impacts. 
 
The new proposed constitutive law here is implemented as a user material subroutine 
programmed in Fortran in the explicit non-linear FE software Radioss (Altair 
Hyperworks) in order to take the strain rate sensitivity into account. The stress tensor 
in this law can be decomposed into a deviatoric and a dilatational components and they 
represent the elastic and hydrodynamic behavior, respectively. The deviatoric stress is 
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calculated by Hooke’s law using Young’s modulus E. The hydrodynamic behavior is 
represented by a polynomial equation of state (EOS) [137]. Moreover, the strain rate 
dependence of the Young’s modulus E is investigated via Matlab curve fitting toolbox 
based on the mechanical characterization experiments conducted by Bracq et al. [58]. 
The detailed formulation of the material law is described as follows. 
 
The deviatoric stress representing the elastic behavior can be expressed as [66]: 
 
 2G=s e   (2.1) 
 
where G  is shear modulus and e  is the deviatoric strain defined as: 
 

 ( )1
3

tr= −e ε ε I   (2.2) 

 

where ε  and I  are elastic strain tensor and the unit tensor, respectively. 

 
The dilatational component of the constitutive law is represented by a polynomial 
equation of state (EOS) describing the hydrodynamic behavior denoted as [137]: 
 

 2 3
0 1 2 3p C C C Cµ µ µ= + + +   (2.3) 

 

where p  is the pressure, 0C , 1C , 2C  and 3C  are material constants and µ  is a 

dimensionless parameter written as: 
 

 
0

1ρµ
ρ

= −   (2.4) 

 

where ρ  and 0ρ  are current mass density and initial mass density, respectively. 

 
For small and moderate values of µ , the material constants in Eq. (2.3) are given as 
[66]: 
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where 0C  is the initial equilibrium pressure and assumed to be ignored, 1C  equals 

to the bulk modulus as 0c  is the bulk wave velocity and 1.87k =  is the Hugoniot 

constant parameter [138]. 
 
Thus, the elasto-hydrodynamic law here is expressed by combining the deviatoric and 
dilatational components as: 
 
 p= − +σ I s   (2.6) 
 
where σ  is the stress tensor. 
 
Moreover, taking the strain rate dependence into consideration, the Young’s modulus 

E  is denoted in terms of the strain rate ε , the relationship between Young’s modulus 

E  and the strain rate ε  is investigated via Matlab curve fitting toolbox based on the 

mechanical characterization experiments conducted by Bracq et al. [58]. Bracq et al. 
carried out experimental tensile tests by applying specific tensile samples and gripping 
devices to obtain the true stress-strain relationship of the SEBS gel at different strain 
rates from 0.072s-1 to 59.5s-1. Fig. 2.1 displays the true stress-strain curves of the SEBS 
gel at different strain rates extracted from [58]. It shows stress stiffening with the 
increase of strain rate. The Young’s modulus of the SEBS gel at diverse strain rates are 
measured according to the slopes of the stress-strain curves. The value of Young’s 
modulus E  as a function of the strain rate based on a power law function is shown in 
Fig. 2.2, which is obtained by applying Matlab curve fitting toolbox. The general form 
of the equation is described as: 
 

 
00 ( )nE E a ε
ε= + ⋅ 



  (2.7) 

 

where 0E  is the initial elastic modulus of the SEBS gel, 0 1/ sε = , and a and n  are 

coefficients of the equation. 
Thus, the new proposed strain-rate dependent constitutive law is depicted as follows: 
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where the R-square coefficient of determination shows a high goodness of fit. 
 
The strain-rate-dependent elasto-hydrodynamic law developed here is then 
implemented and validated as a user material subroutine programmed in Fortran in the 
explicit non-linear FE software Radioss (Altair Hyperworks) through various numerical 
simulations. 
 
For the material property, a same mathematical law was implemented except for the 
Young’s modulus equation (Eq. 2.8), which is secondary considered as a constant value, 
leading to an elasto-hydrodynamic law without the influence of the strain rate. 
 

 
Figure 2.1: True stress-strain curves of the SEBS gel at different strain rates extracted 
from [58]. 
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Figure 2.2: Strain rate dependence of Young’s modulus E  via curve fitting based on 
power law function. 

2.2.3 Finite Element Modeling 

2.2.3.1 Compressive Plate Test 

Validation tests are conducted via implementation of the new proposed law in finite 
element simulations under various loading configurations. Firstly, the finite element 
modeling of compression experiments is established at intermediate strain rates from 
14.7s-1 to 59.5s-1. Fig. 2.3 displays the experimental configuration of the SEBS gel 
compressed by a steel plate. To model the equivalent loading conditions in experiments 
[58], the geometry size of the SEBS gel cylinder is 5.5mm in height and 10mm in 
diameter. The aspect ratio (L/D) inferior to 0.63 can avoid unstable results in such 
compressive numerical simulations [139]. A flexible thin steel plate is used to compress 
the gel sample and another fixed one to support it. Specific displacement rates of 80, 
158, 271 and 327mm/s are applied to the flexible plate in order to represent diverse 
strain rates of 14.7, 28.8, 49.3 and 59.5s-1 in compression experiments, respectively. 
The use of silicon oil lubricant between plates and the gel leads to a comparatively low 

friction coefficient. The constant friction coefficient coulombF  between the contact 

interfaces of steel plates and the gel sample is equal to 0.06 and has been proved to be 
reasonable at intermediate strain rates [59]. Also, a minimal physical gap is selected 
between the interfaces for convenient numerical solutions. The finite element model of 
the SEBS gel under compressive plate tests is shown in Fig. 2.4. Comparisons between 
numerical data and those in experiments of the literature are investigated and discussed. 
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Figure 2.3: Experimental configuration of the SEBS gel compressed by a steel plate, 
extracted from [59]. 
 

 
Figure 2.4: Finite element modeling of the SEBS gel under compressive plate tests. 

2.2.3.2 Split-Hopkinson Pressure Bar Test 

Then, an accurate finite element model of the Split Hopkinson Pressure Bar (SHPB) 
apparatus is developed in order to replicate the dynamic SHPB experiments in a 
numerical level. As shown in Fig. 2.5, it consists of a striker bar, an input bar and an 
output bar. The mesh discretization near the strain gauges and the SEBS gel sample is 
illustrated in Fig. 2.6. Specifically, the red elements in Fig. 2.5 are utilized to reflect the 
input and output strain signals along the longitudinal bar direction. The geometry sizes 
and mechanical parameters of the polymeric bars are displayed in Table 2.1. 
Furthermore, the FE SHPB model established here can be reduced to a quarter during 
calculations because of the symmetry in order to save calculation time. The initial 
impact velocities of the striker bar used here are determined in dynamic experiments 
[58] with an object of achieving dynamic strain rates from 630s-1 to 1260s-1. Besides, a 
Coulomb friction law is applied between the contact interfaces of bars and the gel 
sample, which may explain the barreling effect during compression experiments. The 
friction coefficient values for each strain rate are extracted from the literature [59]. 
 

 
Figure 2.5: Schematic of configuration of the SHPB experiments, adapted from [59]. 
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Figure 2.6: Mesh discretization (a quarter) near the strain gauge (left) and the SEBS gel 
sample (right). 
 
Table 2.1: Geometrical sizes and mechanical parameters of the SHPB polymeric bars 
[59]. 
 Striker bar Input bar Output bar 
Length (mm) 950 3040 3020 
Diameter (mm) 16.1 20.3 20.4 
Density (kg/m3) 1149 1158 1146 
Wave speed (m/s) 1750 1740 1740 
Young’s modulus 
(MPa) 

3517 3506 3470 

Poisson’s ratio 0.4 0.4 0.4 

2.2.3.3 Blunt Ballistic Impact Test 

Finally, a typical blunt ballistic experiment is replicated through finite element 
modeling. Fig. 2.7 illustrates the gel wall displacement impacted by a rigid projectile. 
As is mentioned in previous SHPB modeling, the establishment of the FE model can be 
degraded to a quarter due to the symmetrical boundary conditions. The representative 
FE model of a rigid projectile impacting the SEBS gel is shown in Fig. 2.8. The rigid 
round projectile is of 37mm in diameter and with a mass of 140g as was used in 
experiments [11,59]. More precisely, the geometry size, mesh discretization as well as 
corresponding boundary conditions are presented in Fig. 2.9. The dimension of the 
SEBS gel cube is 250mm. Considering the high element distortions in ballistic impact 
simulations, the gel mesh is discretized more precisely. As illustrated in Fig. 2.9, a 
relatively fine mesh is chosen in the impact region and a coarser mesh is sufficient for 
the region away from the impact center. The symmetrical boundary conditions are 
applied to symmetry planes of the gel cube and the backing plate in experiments is 
modeled by fixing the backing surface of the gel. Nevertheless, different from the 
previous two FE configurations, the Coulomb friction law in impact modeling is 
ignored as it has been revealed to have no influence on gel wall displacements [59]. 
Three different initial impact velocities of 12, 20 and 30m/s are applied to the projectile 
respectively for repeating the experimental configurations. 
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Figure 2.7: A picture of the gel wall displacement during blunt ballistic impacts by a 
rigid projectile [59]. 
 

 
Figure 2.8: Schematic of the FE modeling of a rigid projectile impacting the SEBS gel 
(a quarter). 
 

  
Figure 2.9: Depictions the SEBS gel size, mesh and boundary conditions in blunt 
ballistic FE modeling (a quarter). 
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2.3 Results 

2.3.1 Validation of Compressive Plate Test 

In order to highlight the effect of the strain rate on the results, each configuration is 
numerically replicated with two laws (with and without the strain rate dependency), i.e. 
with a constant Young’s modulus from one side and with the developed Young’s 
modulus as a function of the strain rate as described in Section 2.2.2 from the other side. 
Firstly, Fig. 2.10 (a)-(b) provides a comparison of experimental and numerical load 
versus displacement curves with and without strain rate dependence at diverse 
intermediate strain rates. 
 

 

(a) with strain rate dependence 

 
(b) without strain rate dependence (constant Young’s modulus) 

Figure 2.10: Experimental and numerical load versus displacement curves with (a) and 
without (b) strain rate dependence during compression tests at intermediate strain rates. 
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2.3.2 Validation of Split-Hopkinson Pressure Bar Test 

The second configuration consists of the numerical replication of dynamic SHPB 
compressive experiments on SEBS gel at different strain rates. Fig. 2.11 (a)-(f) 
illustrates the engineering strain time histories at various strain rates (from 630 s-1 to 
1260 s-1) with and without strain rate dependence. 
 
 

  
(a) 630s-1 with strain rate dependence. 

 
(b) 630s-1 without strain rate dependence 

(constant Young’s modulus). 

  
(c) 820s-1 with strain rate dependence. 

 
(d) 820s-1 without strain rate dependence 

(constant Young’s modulus). 
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(continued) 

  
(e) 1260s-1 with strain rate dependence. 

 
(f) 1260s-1 without strain rate dependence 

(constant Young’s modulus). 
Figure 2.11: Engineering strain time history provided by the SHPB simulations at 
various strain rates, and for the two constitutive laws. 

2.3.3 Validation of Blunt Ballistic Impact Test 

Finally, the third numerical replication consists of the impact of the cylindrical 
projectile on the SEBS gel target at three different velocities. Fig. 2.12 presents the 
comparison of the numerical gel wall displacement time histories with the two laws 
between experimental data of the literature. Moreover, the gel wall stress distributions 
(with (a) and without (b) strain rate dependence) under three different impact velocities 
are shown in Fig. 2.13. 
 

 
Figure 2.12: Experimental and numerical gel wall displacement time history at various 
initial impact velocities (12, 20 and 30m/s). 
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 (a) (b) 
With (a) and without (b) strain rate dependence at V=12m/s 

   
 (a) (b) 

With (a) and without (b) strain rate dependence at V=20m/s 

   
 (a) (b) 
With (a) and without (b) strain rate dependence at V=30m/s 

Figure 2.13: Stress distribution (MPa) in the SEBS target under various impact 
velocities with two different laws. 
 
In addition, Fig. 2.14 (a)-(c) compares the average error of experimental and numerical 
results between this study (elasto-hydrodynamic with strain rate effect) and Ref. [59]. 
Compression test at 14.7s-1, blunt impact at 30m/s and SHPB analysis at 1260s-1 are 
depicted, respectively. 
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(a) Compression test at 14.7s-1 

 
(b) Blunt impact at 30m/s 

 
(c) SHPB analysis at 1260s-1 

Figure 2.14: Comparison of average error of experimental and numerical results 
between this chapter (elasto-hydrodynamic with strain rate effect) and Ref. [59]. 
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2.4 Discussion 

The numerical results presented in Section 2.3 consist of the implementation of the 
elasto-hydrodynamic law with and without the strain rate effect, under various loading 
configurations. Comparative studies were investigated between numerical and 
experimental results in order to validate the feasibility of the proposed constitutive law 
and to study the strain rate influence. 
 
Firstly, Fig. 2.10 (a)-(b) depicts the numerical and experimental loads as a function of 
displacement during compression tests at intermediate strain rates. It shows the same 
rising tendency of numerical loads applying the proposed constitutive law as 
experimental data although numerical values are slightly inferior to those in 
experiments. It is also deserved to notice that the influence of the strain rate is moderate 
since all the curves with Young’s modulus depending on strain rate (Fig. 2.10 (a)) or 
constant Young’s modulus (Fig. 2.10 (b)) are superimposed. 
 
Next, as is mentioned previously, the input and output strain gauges are used to record 
strain signals along the longitudinal bar direction in SHPB analysis. Fig. 2.11 (a)-(f) 
displays the comparison of numerical and experimental strain versus time from input 
and output strain gauges at various dynamic strain rates, where results without strain 
rate dependence are presented as well. It can be observed that the numerical input strain 
signals correlate well with the experimental ones at each strain rate. Also, numerical 
and experimental output strain signals have a good match although the numerical 
amplitudes are relatively smaller at 820s-1 which may be explained by the large element 
distortions and high stress in the gel sample when its deformation exceeds the bar 
diameter. On the other hand, it is worth noting that simulations without strain rate 
dependence are not able to run until end as illustrated in Fig. 2.11 (d) and (f). This point 
raises the question about the softness of the gel which should be higher at high strain 
rates, which indicates the necessity of taking the strain rate dependence into 
consideration when applying the SEBS gel as a human soft tissue simulant. The 
comparative studies here validate the ability of the new proposed strain-rate-dependent 
elasto-hydrodynamic law to interpret SEBS gel responses at dynamic strain rates, the 
numerical model is considered as validated against experimental data of the literature 
for different strain rates. 
 
Moreover, the gel wall displacement as a function of time is commonly used as a 
primary measurement in blunt ballistic impacts. Experimental and numerical gel wall 
displacements versus time at various initial impact velocities of 12, 20 and 30m/s are 
displayed in Fig. 2.12. Also, Fig. 2.13 illustrates the numerical gel wall stress contour 
of the blunt ballistic impacts for the three velocities. It can be observed that the gel wall 
displacements with the proposed strain-rate-dependent elasto-hydrodynamic law have 
a good correlation with the experimental data. Simulations with a general elasto-
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hydrodynamic law without strain rate dependence also show good correlations with 
experimental data. Slight discrepancies occur for the highest velocity at 30m/s. 
 
In addition, the comparison of average error of experimental and numerical results 
between this study (elasto-hydrodynamic with strain rate effect) and Ref. [59] is 
conducted and shown in Fig. 2.14 (a)-(c). Compression test at 14.7s-1, blunt impact at 
30m/s and SHPB analysis at 1260s-1 are depicted, respectively. It can be seen that the 
two models show similar average error compared to experimental results. Specifically, 
the relatively high error in Fig. 2.14 (c) for input strain can be explained by the fluctuant 
part of input signals in Fig. 2.11 (e). 
 
Soft materials such as gelatin, SEBS gel or clay have been used in the literature as 
promising human soft tissue substitutes, and the mechanical characterizations of these 
kind of materials have been widely conducted, allowing extracting main material 
properties [38,43,45,53,56,58]. Based on these studies, researchers used these data to 
propose constitutive laws to be implemented in numerical codes. Focusing on 
mechanical behaviors for high velocity impacts, a number of constitutive laws such as 
hyperelastic law, viscoelastic law, visco-hyperelastic law and hydrodynamic law have 
been proposed. The hydrodynamic law has been used for the modeling of 10% and 20% 
gelatin [40,50]. For SEBS gel, Bracq et al. [59] proposed a strain-rate dependent visco-
hyperelastic law based on the Mooney-Rivlin model. In the military contexts, blunt 
impacts or blast waves can strike the human body and induce soft tissue trauma at very 
high velocities, so it is of interest to investigate the same kind of material law that 
already validated in [40,50]. Therefore, combining the elasto-hydrodynamic aspect 
with strain rate dependency, the present study demonstrates the feasibility of the 
constitutive law. 
 
More investigations on the influence of the strain rate are planned, in increasing its 
weight in the mathematical law, for example, its influence in the non-linear part of the 
deviatoric stress tensor, or adding its influence in the plasticity domain. The present 
mathematical law elaborated from stress-strain curves in Fig. 2.1 can also be improved, 
in considering stress-strain curves at higher strain rates. Finally, in addition to the 
loading configurations (compressive plate test, SHPB test and blunt impacts) conducted 
in this study on the SEBS gel, further investigations are planned to increase the validity 
of the proposed strain-rate dependent elasto-hydrodynamic law through studying the 
interactions of blast waves on the SEBS gel, where there exists higher strain rates. 

2.5 Conclusion 

In this chapter, a novel strain-rate-dependent elasto-hydrodynamic constitutive law of 
the synthetic SEBS gel was proposed for the first time based on the mechanical 
characterization experiments of the literature. The strain rate sensitivity of Young’s 
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modulus E  was investigated via Matlab curve fitting toolbox. The implementation of 
the new proposed law as a user material subroutine programmed in Fortran in the 
explicit non-linear FE software Radioss (Altair Hyperworks) under various loading 
configurations was studied, and comparisons with the elasto-hydrodynamic constitutive 
law with constant Young’s modulus were investigated. Comparative studies were also 
conducted between numerical and experimental results in order to validate the 
feasibility of the proposed constitutive law. A good agreement exists between the 
numerical results of the proposed law and experimental data in the literature. Numerical 
analysis reveals that the strain-rate-dependence effect is significant in SEBS gel 
especially for high strain rates, which indicates the necessity of taking the strain rate 
dependence into consideration when modeling the SEBS gel as a human soft tissue 
substitute. 
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3 Numerical Investigation of Effect of 

Geometrical and Mechanical Parameters 

of Ribs Submitted to High Velocity 

Impacts 

3.1 Introduction 

Rib fractures are common in thoracic injuries that can lead to life threatening injuries. 
In consequence, it is of importance to investigate the dynamic responses of ribs under 
dynamic loadings, which can help understand the mechanisms of rib fractures and 
corresponding injury criterion. The well-known Split Hopkinson Pressure Bar (SHPB) 
apparatus can be employed to reproduce dynamic impact environments and has been 
applied in predicting the mechanical behavior of human surrogate materials. Dynamic 
three point bending (3PB) tests of isolated ribs can be carried out to understand rib 
fractures, which mimic the environments like in car crash accidents. In the review of 
existing scientific literature, there were few studies concentrating on dynamic 3PB of 
isolated ribs utilizing SHPB apparatus [31,124], thus this chapter aims to investigate 
the dynamic behaviors of isolated porcine ribs submitted to high velocity impacts using 
3PB SHPB apparatus based on finite element simulations. The porcine ribs are 
approximated to curved beams and are assumed to have constant elliptical cross 
sections according to the average geometrical properties, and both porcine and human 
rib material properties are applied for comparison. Sensitivity studies were conducted 
to investigate the effects of geometrical and mechanical parameters such as cortical 
thickness, curvature radius and strain rate on dynamic behaviors of ribs by comparison 
with experimental data. The numerical curved beam rib models are validated and show 
biofidelic behaviors. Numerical analysis reveals that geometrical parameters of ribs 
play an important role in influencing ribs dynamic behaviors. The consideration of the 
effect of mechanical parameters like loading mode and strain rate sensitivity in FE rib 
models is also needed. 
 
The outline of this chapter is organized as follows. In Section 3.2, experimental 
configurations and the finite element modeling of 3PB SHPB apparatus as well as the 
porcine rib model are firstly introduced. The model is used via an explicit non-linear 
FE software Radioss (Altair Hyperworks). Then, FE validation tests and sensitivity 
studies are presented. Next, Section 3.3 displays the comparative results of FE 
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simulations against experimental data of the literature with porcine rib and human rib 
material properties respectively. In Section 3.4, we discuss the obtained results and 
analyze the effects of geometrical and mechanical parameters on dynamic behaviors of 
ribs. Finally, Section 3.5 summarizes the major conclusions. 

3.2 Materials and Methods 

3.2.1 Configurations of Tests 

The experimental tests of porcine ribs subjected to dynamic 3PB loadings applying 
SHPB apparatus were conducted by Ayagara et al. [31,125]. As shown in Fig. 3.1, the 
3PB SHPB apparatus consists of a striker bar, an input bar and two output bars. The 
geometrical sizes of the bars are listed in Table 3.1. Specifically, the grey strain gauges 
in Fig. 3.1 are applied to measure the input and two output strain signals along the 
longitudinal bar direction. They are located at the middle of the input bar and at 400mm 
from the output bar-rib interface, respectively. A “time and space” shifting process is 
applied to address the strain signals, where the absolute time t’=0 is defined when the 
striker bar impacts the input bar and an origin time t0’ is equal to time of arrival for the 
incident wave at the input bar-rib interface. So all the strains are given in terms of a 
relative time t= t’- t0’. 
 

 
Figure 3.1: Schematic of configuration of the 3PB SHPB apparatus, adapted from [31]. 
 
Table 3.1: Geometrical sizes of the 3PB SHPB polymeric bars [125]. 

 Striker bar Input bar Output bar 
Length (mm) 500 3000 1750 

Diameter (mm) 15 20 20 
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3.2.2 Finite Element Modeling 

3.2.2.1 Rib Model Geometry 

The porcine ribs used in the experiments were purchased from the local supermarket. 
They were then numbered and the geometrical statistics of the porcine ribs were 
conducted in [125]. Also, as illustrated in Fig. 3.2 that the two extremities of the porcine 
rib are sanded to planar surfaces, in order to establish a stable contact between bar-
sample interfaces. In general, the ribs can be approximated to curved beams and be 
assumed to have constant elliptical cross sections as displayed in Fig. 3.3. The average 
geometrical properties of the porcine ribs are listed in Table 3.2. Hence, in the present 
study, simulations were conducted on rib structures according to the average 
geometrical dimensions displayed in Table 3.2. A curved beam model with a constant 
elliptical cross section is used and the cortical bone thickness is assumed to have a 
constant value as well. 
 

 
Figure 3.2: Representation of the initial position of the rib sample, extracted from [125]. 
 

 
Figure 3.3: Schematic of a curved beam approximation of a rib, extracted from [125]. 
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Table 3.2: Mean and standard deviation values of porcine ribs’ geometrical properties, 
extracted from [125]. 

Property Mean u Standard deviation s.d. 

Mass m 15.6316g 2.6918 
Length l 113.594mm 10.5015 
Radius r 63.3105mm 17.0245 
Angle α  55.7716deg 14.66 

Major axis 2a 10.0789mm 3.941 
Minor axis 2b 9.7842mm 3.6823 

Superior layer thickness hs 1.0789mm 0.44669 

Inferior layer thickness hi 1.9632mm 0.80499 

3.2.2.2 Mesh and Boundary Conditions 

The present study of dynamic behaviors of isolated porcine ribs submitted to high 
velocity impacts using 3PB SHPB apparatus is based on finite element simulations via 
a FE software Altair Hyperworks. Fig. 3.4 presents the developed finite element model 
of dynamic three points bending tests on ribs applying the 3PB SHPB apparatus. The 
SHPB bars as well as the strain gauges are meshed with solid hexahedral elements, and 
one integral point is chosen for the sake of calculation time. As shown in Fig. 3.4, the 
mesh discretization near the input strain gauge and the rib sample is amplified. It can 
be seen that the mesh size of the input strain gauge is refined (as well as the output 
strain gauges) so that the strain signals along the longitudinal bar direction can be 
measured precisely. Several studies carried out previously proposed both all-hex and 
hex-shell models for ribs [28,29,105], while it reveals that for the FE model of ribs, the 
hex-shell model is more computationally efficient and therefore preferred. 
Consequently, in this study, the trabecular bone is modeled with hexahedral solid 
elements and the cortical bone with quadrilateral shell elements. The element size of 
the rib model is around 0.7mm in order to ensure an adequate prediction of the rib 
behavior. 
 

 
Figure 3.4: Representation of the FE model of 3PB SHPB apparatus. 
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Consistent boundary conditions are set up in the FE model for modeling equivalent 
loading conditions as in the experiments. The nodes of the rib sample are left free as it 
is initially positioned between input and output bars with no constraint. The interface 
Type 7 is employed between the bar-sample interfaces as well as the striker-input bar 
interface, which is a general purpose impact interface and able to simulate all types of 
impact between a master surface and a group of slave nodes [140]. Also, tied contact 
interface Type 10 is defined between the trabecular-cortical bone interface. A constant 
friction coefficient between the bars and the rib sample interfaces is set to 0.1 according 
to the literature [31]. Besides, a minimal physical gap is chosen between the contact 
interfaces for convenient numerical solutions. 

3.2.2.3 Material Properties 

Considering the relatively lower mechanical impedance of the rib compared to classical 
metallic bars, the polymeric bars made of nylon are employed in order to avoid a 
perturbed signal processing. The elastic constitutive law is applied for the polymeric 
SHPB bars, and the mechanical parameters are listed as follows: mass density 

31200 /kg mρ = , Young’s modulus 3300E MPa=  and Poisson’s ratio 0.4ν = . 

 
It is feasible to apply an elasto-plastic material law for both cortical and trabecular 
bones as described in previous studies [28–31,105]. Also, it is assumed that the cortical 
bone shows isotropic hardening while the trabecular bone obeys kinematic hardening 
[31,141]. Thus, an elasto-plastic material model Law 2 (Johnson-Cook material) in 
RADIOSS with isotropic hardening is applied in the present study for cortical bone, 
and the trabecular bone is assigned with Law 3 (Johnson-Cook material, but only 
compatible with solid elements) with kinematic hardening. No strain rate hardening 
effect is implemented. A built-in failure criterion based on the maximum fracture plastic 
strain is used, rib fracture occurs if the plastic strain exceeds the maximum fracture 
plastic strain. The material parameters of porcine rib cortical and trabecular bones used 
here are presented in Table 3.3. 
 
Table 3.3: The material parameters of porcine rib cortical and trabecular bones, 
extracted from [31]. 

Parameter Cortical Trabecular 
Density (kg/m3) 1690.9 772.9 

Young’s modulus (MPa) 9374 1800 
Tangent modulus (MPa) 937 45 

Yield stress (MPa) 70.876 20.48 
Poisson’s ratio 0.3 0.45 

Fracture plastic strain 0.02 0.03 
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In addition, human rib material properties are also applied to study the effect of 
mechanical parameters on dynamic behaviors of isolated ribs. Thus, human rib cortical 
bone material properties from different loading modes (tension and compression) and 
strain rates (0.005 strain/s and 0.5 strain/s) are used as shown in Table 3.4. The material 
properties of human rib trabecular bone are taken from the literature [28] and remain 

the same: Young’s modulus 0.04E GPa= , yield stress 2.2y MPaσ = , tangent 

modulus 1tE MPa= , Poisson’s ratio 0.45ν = , density 31g cmρ =  and fracture 

plastic strain is equal to 0.03. 
 
Table 3.4: Human rib cortical bone compressive and tensile material properties at two 
different strain rates, extracted from [91,92]. 
Material 
Properties 

0.005 strain/s 0.5 strain/s 
Compression Tension Compression Tension 

Young’s 
modulus (GPa) 

11.5 14.63 12.5 15.45 

Yield Stress 
(MPa) 

135 68.9 159 85.7 

Ultimate Stress 
(MPa) 

154 104.1 189 135.1 

Ultimate Strain 0.0204 0.0247 0.0239 0.0292 
 

3.2.3 Validation Tests and Sensitivity Studies 

Validation tests of dynamic behaviors of porcine ribs under three point bending are 
conducted using an explicit non-linear FE software Radioss (Altair Hyperworks) by 
comparison with experimental data. The initial impact velocity of the striker bar is 
17.39m/s, which is consistent with the experimental configuration. The simulations of 
ribs with average geometrical properties (i.e. length l=113.59mm, radius r=63.31mm, 
major axis 2a=10.07mm, minor axis 2b=9.78mm and constant cortical thickness h= 
(hs+hi)/2=1.5mm) and porcine rib material properties are conducted first. 
 
Subsequently, sensitivity studies are carried out to investigate the effects of geometrical 
and mechanical parameters on dynamic behaviors of ribs. Different cortical thicknesses, 
curvature radiuses, lengths and cross sections are incorporated into the FE model for 
numerical analysis. Also, human rib cortical bone material properties from different 
loading modes (tension and compression) and strain rates (0.005 strain/s and 0.5 strain/s) 
are applied in the FE rib model. Comparisons between numerical results and 
experiments data of the literature are investigated and discussed in the following 
sections. 
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3.3 Results 

This section presents the FE numerical results of dynamic behaviors of isolated porcine 
ribs submitted to high velocity impact using 3PB SHPB apparatus. Numerical results 
of strain signals, interface velocities, interface displacements, force-displacement 
relationship and fracture pattern are compared with experiments data of the literature. 
 
Firstly, in order to validate the proposed FE model in this chapter, numerical results 
(with average geometrical properties) of various quantities using porcine rib material 
properties are first compared to the experimental data of the literature [31]. Fig. 3.5 (a)-
(d) presents the comparative curves of experimental and numerical strain signals, 
interface velocities and interface displacements time histories, respectively. 
Considering that the rib model is a symmetric curved beam model with a constant 
elliptical cross section, only one output bar signal is plotted such as transmitted strain 
(Fig. 3.5b) and output interface velocity (Fig. 3.5c). Furthermore, experimental and 
numerical input interface force-displacement relationship curves are displayed in Fig. 
3.6. Also, Fig. 3.7 shows the comparison of experimental and numerical fracture pattern 
at different absolute time values. It can be observed that numerical results correspond 
well with the experimental data in the literature even though there exists some 
discrepancies. 
 
 

 
(a) Incident (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖) and reflected (𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) strains. 
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(continued) 

 
(b) Transmitted (𝜀𝜀𝑡𝑡𝑟𝑟) strains. 

 
(c) Input (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖) and output (𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡) interface velocities. 

 
(d) Input (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖) and output (𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡) interface displacements. 

Figure 3.5: Comparison of experimental and numerical (with average geometrical 
properties and porcine rib material properties) results of strains (a, b), velocities (c) and 
displacements (d). 
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Figure 3.6: Comparison of experimental and numerical (with average geometrical 
properties and porcine rib material properties) input interface contact force (𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖) versus 
displacement. 

 
  

   

2.20ms 2.25ms 2.30ms 
Figure 3.7: Comparison of experimental and numerical (with average geometrical 
properties and porcine rib material properties) fracture pattern at different absolute time 
values. 
 
Next, sensitivity studies of different cortical thicknesses, curvature radiuses, lengths 
and cross sections are presented, in order to investigate the effect of geometrical 
parameters on dynamic behaviors of ribs. Fig. 3.8 displays experimental and numerical 
strain signals with different cortical thicknesses (num1, 2 and 3 correspond to cortical 
thickness h=1mm, 1.5mm and 2mm respectively). It is worth noting that in Fig. 3.8 (a) 
all the numerical incident strain signals superimpose because incident strain only 
depends on the characteristics of SHPB bars, therefore hereafter they are not plotted 
any more. Then, numerical reflected and transmitted strain curves versus time with 
diverse curvature radiuses, lengths and cross sections are illustrated in Fig. 3.9-Fig. 3.11, 
respectively. Similarly, Fig. 3.12-Fig. 3.14 separately provides the illustration of effect 
of the four different geometrical parameters on interface velocities, interface 
displacements and force-displacement relationships. 
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(a) Incident strain (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖) time history. 

 
(b) Reflected strain (𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) time history. 

 
(c) Transmitted strain (𝜀𝜀𝑡𝑡𝑟𝑟) time history. 

Figure 3.8: Experimental and numerical strain signals using porcine rib material 
properties with different cortical thicknesses, where num1, 2 and 3 correspond to 
cortical thickness h=1mm, 1.5mm and 2mm respectively. 
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(a) Reflected strain (𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) time history. 

 
(b) Transmitted strain (𝜀𝜀𝑡𝑡𝑟𝑟) time history. 

Figure 3.9: Effect of curvature radiuses on reflected and transmitted strain signals using 
porcine rib material properties, where num1, 2 and 3 correspond to curvature radius 
r=56.80mm, 63.31mm and 70mm respectively. 
 
 
 
 
 
 
 
 
 
 

67 
 



Chapter 3 

 
 
 

 
(a) Reflected strain (𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) time history. 

 
(b) Transmitted strain (𝜀𝜀𝑡𝑡𝑟𝑟) time history. 

Figure 3.10: Effect of lengths on reflected and transmitted strain signals using porcine 
rib material properties, where num1, 2 and 3 correspond to length l=103mm, 113.59mm 
and 124mm respectively. 
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(a) Reflected strain (𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) time history. 

 
(b) Transmitted strain (𝜀𝜀𝑡𝑡𝑟𝑟) time history. 

Figure 3.11: Effect of rib cross sections on reflected and transmitted strain signals using 
porcine rib material properties, where num1, 2 and 3 correspond to cross section 
2a=7mm, 2b=6.7mm; 2a=10.07mm, 2b=9.78mm and 2a=13mm, 2b=12.7mm 
respectively. 
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(a) Interface velocities (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖,𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡) with different cortical thicknesses (num1, num2 and 
num3 correspond to cortical thickness h=1mm, 1.5mm and 2mm respectively). 

 
(b) Interface velocities (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖,𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡) with different curvature radiuses (num1, 2 and 3 
correspond to curvature radius r=56.80mm, 63.31mm and 70mm respectively). 
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(continued) 

 
(c) Interface velocities (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖,𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡) with different lengths (num1, 2 and 3 correspond to 
length l=103mm, 113.59mm and 124mm respectively). 

 
(d) Interface velocities (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡 ) with different cross sections (num1, 2 and 3 
correspond to cross section 2a=7mm, 2b=6.7mm; 2a=10.07mm, 2b=9.78mm and 
2a=13mm, 2b=12.7mm respectively). 

Figure 3.12: Illustration of the effect of various geometrical parameters on input (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖) 
and output (𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡) interface velocities with porcine rib material properties. 
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(a) Interface displacements (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡 ) with different cortical thicknesses (num1, 
num2 and num3 correspond to cortical thickness h=1mm, 1.5mm and 2mm 
respectively). 

 
(b) Interface displacements (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡) with different curvature radiuses (num1, 2 and 
3 correspond to curvature radius r=56.80mm, 63.31mm and 70mm respectively). 
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(continued) 

 
(c) Interface displacements ( 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡 ) with different lengths (num1, 2 and 3 
correspond to length l=103mm, 113.59mm and 124mm respectively). 

 
(d) Interface displacements (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖,𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡) with different cross sections (num1, 2 and 3 
correspond to cross section 2a=7mm, 2b=6.7mm; 2a=10.07mm, 2b=9.78mm and 
2a=13mm, 2b=12.7mm respectively). 

Figure 3.13: Illustration of the effect of various geometrical parameters on input (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖) 
and output (𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡) interface displacements with porcine rib material properties. 
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(a) Force-displacement relationship with different cortical thicknesses (num1, num2 
and num3 correspond to cortical thickness h=1mm, 1.5mm and 2mm respectively). 

 
(b) Force-displacement relationship with different curvature radiuses (num1, 2 and 3 
correspond to curvature radius r=56.80mm, 63.31mm and 70mm respectively). 
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(continued) 

 
(c) Force-displacement relationship with different lengths (num1, 2 and 3 correspond 
to length l=103mm, 113.59mm and 124mm respectively). 

 
(d) Force-displacement relationship with different cross sections (num1, 2 and 3 
correspond to cross section 2a=7mm, 2b=6.7mm; 2a=10.07mm, 2b=9.78mm and 
2a=13mm, 2b=12.7mm respectively). 

Figure 3.14: Illustration of the effect of various geometrical parameters on input 
interface force (𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖)-displacement relationship with porcine rib material properties. 
 
In addition, human rib cortical bone material properties from different loading modes 
(tension and compression) and strain rates (0.005 strain/s and 0.5 strain/s) are also 
applied in order to study the effect of mechanical parameters on dynamic behaviors of 
isolated ribs. Numerical strains, interface velocities and displacements with human rib 
cortical bone material properties from different loading modes and strain rates are 
displayed in Fig. 3.15 (a)-(d), respectively. Fig. 3.16 presents the numerical input 
interface force-displacement curves compared to experimental corridors. Moreover, 
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comparisons of numerical fracture patterns with different human rib cortical bone 
material properties are illustrated in Fig. 3.17. 
 

 
(a) Reflected (𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟) strains. 

 
(b) Transmitted (𝜀𝜀𝑡𝑡𝑟𝑟) strains. 

 
(c) Input (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖) and output (𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡) interface velocities. 
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(continued) 

 
(d) Input (𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖) and output (𝑢𝑢𝑜𝑜𝑜𝑜𝑡𝑡) interface displacements. 

Figure 3.15: Illustration of numerical strains (a, b), velocities (c) and displacements (d) 
with human rib cortical bone material properties from different loading modes and 
strain rates compared with experimental data, where ‘T1’, ‘T2’, ‘C1’ and ‘C2’ represent 
human rib cortical bone tensile material properties at 0.005 strain/s and 0.5 strain/s and 
human rib cortical bone compressive material properties at 0.005 strain/s and 0.5 
strain/s, respectively. 
 

 
Figure 3.16: Numerical input interface force (𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖)-displacement curves with various 
human rib cortical bone material properties compared with experimental corridors, 
where ‘T1’, ‘T2’, ‘C1’ and ‘C2’ represent human rib cortical bone tensile material 
properties at 0.005 strain/s and 0.5 strain/s and human rib cortical bone compressive 
material properties at 0.005 strain/s and 0.5 strain/s, respectively. 
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(a) Tension, 0.005 
strain/s 

 
 
 

(b) Tension, 0.5 strain/s 

 
 
 
(c) Compression, 0.005 

strain/s 
 

 
 

(d) Compression, 0.5 
strain/s 

 
Figure 3.17: Illustration of numerical fracture patterns with different human rib cortical 
bone material properties. 
 

 
Figure 3.18: Schematic of butterfly fracture, extracted from [82]. 

3.4 Discussion 

Numerical results and investigations of dynamic behaviors of isolated porcine ribs 
submitted to high velocity impact using 3PB SHPB apparatus are presented in this study. 
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Comparative and sensitivity studies are conducted in order to validate the feasibility of 
the developed FE model and methodology, and to investigate the effects of geometrical 
and mechanical parameters on dynamic behaviors of ribs. 
 
Firstly, numerical results (with average geometrical properties) consisting of strain 
signals, interface velocities and interface displacements time histories with porcine rib 
material properties are displayed in Fig. 3.5 (a)-(d), respectively. It can be seen that the 
numerical curves have a good correlation with the experimental ones, although the 
transmitted strain is slightly inferior to the experimental value. The input interface 
force-displacement relationship in Fig. 3.6 indicates that the numerical structural 
response of rib is within the experimental corridors while it is relatively inferior to 
experimental data. Also, experimental and numerical fracture patterns in Fig. 3.7 share 
some common characteristics. That is, the fracture location is similar, the crack origins 
at the surface subjected to tension towards the impact point, and the fracture pattern is 
Mode-I crack. It is also worth noting that the strain signals are essential measurement 
quantities in SHPB tests, and numerical incident, reflected and transmitted strains have 
a good match with experimental data in Fig. 3.5(a)-(b). Therefore, the curved beam rib 
model with a constant elliptical cross section developed in this study is demonstrated 
to be efficient for modeling ribs under high velocity impact, as numerical results 
correspond well with the experimental data in the literature even if there exists some 
discrepancies. These discrepancies may be explained by the geometrical differences 
between FE rib model and real rib geometry characteristics. Actually, previous studies 
carried out by Niu et al. [142] also proved the ability of rib beam model to study blunt 
trauma caused by high speed impacts. 
 
Subsequently, as is mentioned previously, comparative sensitivity studies of different 
cortical thicknesses, curvature radiuses, lengths and cross sections are discussed, in 
order to investigate the effect of geometrical parameters on dynamic behaviors of ribs. 
First of all, numerical incident reflected and transmitted strains with different cortical 
thicknesses are compared in Fig. 3.8, it is evident in Fig. 3.8(a) that all the numerical 
incident strains superimpose because incident strain only depends on the characteristics 
of SHPB bars. Also, with the increase of cortical thickness, it can be seen from Fig. 
3.8(b) that reflected strain has a slight decrease in early time and then they are 
superimposed. While the transmitted strain in Fig. 3.8(c) is sensitive to cortical 
thickness, it has an increasing tendency when cortical thickness increases. In addition, 
Fig. 3.9-Fig. 3.11 depict numerical reflected and transmitted strain time histories with 
variable curvature radiuses, lengths and cross sections, respectively. Fig. 3.9(a) and Fig. 
3.10(a) indicate that the reflected strain is not sensitive to the increase of curvature 
radius and length. However, it reveals that transmitted strain shows a significantly 
decrease trend when curvature radius increases, as illustrated in Fig. 3.9(b), and an 
increase trend when rib length increases as illustrated in Fig. 3.10(b). With the increase 
of cross section, the reflected strain in Fig. 3.11(a) has a similar slight influence as 
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shown in Fig. 3.8(b), but the transmitted strain value reduces as the cross section 
reduces. In short, the transmitted strain signals are sensitive to the variations of the 
geometrical parameters of ribs. 
 
Similarly, Fig. 3.12 and Fig. 3.13 separately provide the illustration of the effect of the 
aforementioned four different geometrical parameters on interface velocities and 
displacements. It can be observed in Fig. 3.12(a) that interface velocities are insensitive 
to the change of cortical thickness, but Fig. 3.12(b) indicates that input interface 
velocities raise slightly with the increase of curvature radius. Fig. 3.12(c)-(d) show a 
moderate reduction of input interface velocity when rib length and cross section 
increase. In Fig. 3.13 (a)-(d), interface displacements have consistent variation 
tendencies as interface velocities in Fig. 3.12 (a)-(d) because of the positive correlation 
relationship between displacement and velocity. Also, the effect of various geometrical 
parameters on input interface force-displacement relationship is investigated in Fig. 
3.14 (a)-(d). It can be seen in Fig. 3.14(a)-(d) that input interface force increases with 
the increase of cortical thickness, length and cross section, in contrary, it decreases with 
the increase of curvature radius. In particular, it is deserved to note the influence of 
change of cross section on the force magnitude (in Fig. 3.14(d)). This can be explained 
by the change of contact area between rib extremity and the SHPB bar. In addition, 
configuration num1 (curvature radius r=56.80mm, length l=113.59mm) in Fig. 3.14(b) 
and configuration num3 (curvature radius r=63.31mm, length l=124mm) in Fig. 3.14(c) 
have a better relevancy compared to experimental curves, which points out that the 
curved beam rib model with a r/l ratio close to 0.5 presents a better force-displacement 
relationship. 
 
In summary, Table 3.5 illustrates the effect of various geometrical parameters on the 
dynamic behaviors of the ribs (symbol ‘-’, ‘+’ and ‘++’ signify no evident influence, 
slight influence and significant influence respectively), which can bring interesting 
information to study the morphological and anthropometrical aspects and the variability 
of the human body under dynamic loadings. 
 
Table 3.5: The effect of various geometrical parameters on dynamic behaviors of 
isolated ribs with porcine rib material properties. 

 Cortical thickness Curvature radius Length Cross section 
Reflected strain - - - + 
Transmitted strain + ++ ++ ++ 
Interface velocity - + + + 
Interface displacement - + + + 
Force-displacement 
relationship 

+ ++ ++ ++ 

 
Moreover, human rib cortical bone material properties from different loading modes 
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(tension and compression) and strain rates (0.005 strain/s and 0.5 strain/s) were also 
applied in order to study the effect of mechanical parameters on dynamic behaviors of 
isolated ribs. It can be seen that numerical strains, interface velocities and 
displacements with different human rib cortical bone material properties in Fig. 3.15 
(a)-(d) have a good match with the experimental data and are insensitive to the 
variations of cortical bone material properties. The input interface force-displacement 
curves in Fig. 3.16 are also within the experimental corridors and do not differ a lot. 
The agreement between numerical and experimental results in Fig. 3.15 and Fig. 3.16 
indicates the similarity between porcine rib and human rib material properties. However, 
the numerical fracture patterns differ a lot with human rib cortical bone material 
properties from different loading modes (tension and compression) and strain rates 
(0.005 strain/s and 0.5 strain/s) as shown in Fig. 3.17 (a)-(d). Fig. 3. 17 (a)-(b) and Fig. 
3.17 (c)-(d) reveal that with cortical bone material properties from the same loading 
mode (tension or compression), the rib fractures later (Fig. 3.17(b)) or even does not 
fracture (Fig. 3.17(d)) because the ultimate stress increases with the increase of the 
strain rate. In addition, it can be seen that with the same strain rate, the rib fractures 
later (Fig. 3.17(c)) or even does not fracture (Fig. 3.17(d)) because the rib cortical bone 
ultimate stress is higher in compression than in tension as displayed in Table 3.4. 
Therefore, it is needed to consider the effect of mechanical parameters like loading 
mode and strain rate sensitivity in FE models when investigating rib dynamic behaviors. 
It also deserves to note that the butterfly fractures are observed in Fig. 3.17 (b)-(c), 
which were observed when causing an extension of the rib curve in ventrally applied 
blast experiments conducted by Christensen et al. [81,82]. The butterfly fracture pattern 
consists of transverse in part and oblique in part and produces a triangular fragment as 
illustrated in Fig. 3. 18. Actually, the 3PB tests on ribs cause the extension of the rib 
curve which resemble a ventrally applied blast scenario. The butterfly fracture pattern 
may be used as an indicator to investigate the body position in blast events for forensic 
pathologists. Further FE numerical simulations could also be performed to study rib 
fractures under blast impacts. 
 
Overall, the objective of this study is to investigate the effect of geometrical and 
mechanical parameters of ribs submitted to high velocity impact. A curved beam rib 
model with a constant elliptical cross section was developed to simulate dynamic 
behaviors of ribs under 3PB using the SHPB apparatus. The aforementioned numerical 
sensitivity studies reveal that geometrical parameters of ribs play an important role in 
influencing dynamic behaviors of ribs. It is also needed to consider the effect of 
mechanical parameters like loading mode and strain rate sensitivity in FE models when 
investigating rib dynamic behaviors. The developed curved beam rib FE model and 
methodology have been validated and provide interesting ways to simulate ribs under 
high-velocity impacts. However, there still exists some limitations in this study. First, a 
constant cortical thickness is used here, actually the cortical thickness is variable 
throughout the rib. Such simplification may cause some inaccuracies of numerical 
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results, thus ribs with regional variable cortical thickness are more biofidelic and 
provide more accurate predictions. Also, apart from applying a built-in failure criterion 
in the material model based on the maximum fracture plastic strain to represent rib 
fracture, additional failure models could be added to the material model to simulate rib 
fracture, while the failure constants are acquired by fitting experimental data and 
sometimes must be deduced from simulations. 

3.5 Conclusion 

In this chapter, the dynamic behaviors of porcine ribs under 3PB are studied using finite 
element simulations. Based on experimental data of the literature, the numerical curved 
beam rib models are validated and show biofidelic behaviors. In addition, sensitivity 
studies are conducted on geometrical and mechanical parameters, in order to investigate 
their effects on the mechanical responses. Numerical analysis highlighted the 
significant effect of geometrical parameters on dynamic behaviors of ribs. The 
consideration of the effect of mechanical parameters like loading mode and strain rate 
sensitivity in FE rib models is also needed. Porcine ribs are usually used as human rib 
surrogates because they share similar geometrical and anatomical characteristics. This 
work is an interesting way to study the human rib dynamic behaviors at a numerical 
level, and these ribs models can be further implemented in a more global thoracic 
biomechanical model for human trauma investigations. 
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4 Validation of Rib Structural Responses 

under Dynamic Loadings with Different 

Material Properties Using Finite Element 

Analysis 

4.1 Introduction 

Rib fractures are a major injury pattern in thoracic injuries during MVCs, better 
understanding rib fractures has become a challenge for vehicle safety researchers. In 
order to mimic real-world frontal impact loading in motor vehicle crashes (MVCs), 
many researchers conducted experiments and numerical simulations of individual ribs 
under dynamic anterior-posterior bending. Previous numerical studies defined human 
rib cortical bone material models using material data obtained from tensile coupon tests 
because of the absence of rib cortical bone compressive material properties in the 
literature. Actually, the rib suffers both tensile and compressive loading modes during 
MVCs, for instance, the cutaneous surface suffers tension while the pleural surface 
suffers compression in frontal crash conditions. Recently, Albert et al. [92] first 
experimentally quantified human rib cortical bone compressive material properties at 
two different strain rates (0.5 strain/s and 0.005 strain/s). Consequently, the purpose of 
this chapter is to develop rib FE models with various material properties including 
human rib cortical bone material properties from different loading modes (tension and 
compression), strain rates (0.5 strain/s and 0.005 strain/s) and ages as well as porcine 
rib material properties, and validate them through replicating experimental 
configurations, in order to better understand rib structural properties and fracture 
locations under dynamic anterior-posterior bending. Meanwhile, comparison and 
analysis of the effect of human rib cortical bone material properties from different 
loading modes (tension and compression), strain rates, ages and porcine rib material 
properties on rib structural responses were investigated. Numerical force-displacement 
relationship, cortical strain, rotation, and fracture locations correspond well with 
published experimental data, which demonstrates the robustness of the finite element 
rib models. Numerical analysis reveals that numerical strain and rotation time histories 
with human rib cortical compressive material properties have a better correlation with 
experimental data compared to those with human rib cortical tensile material properties. 
Also, numerical rib structural responses were found to be sensitive to human cortical 
bone material properties from different loading modes, strain rates and ages. Therefore, 
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it is necessary to consider the effect of material properties from different loading modes, 
strain rates and ages when establishing rib FE models. Meanwhile, it is also revealed 
that porcine rib material properties can obtain similar and reasonable results compared 
to human rib material properties. This was the first numerical study to apply human rib 
compressive material properties in investigating rib dynamic structural responses and 
compare the results with those from tensile material properties. The present study helps 
better understand human rib fractures in a high velocity impact (HVI) context in a 
numerical way. 
 
The outline of this chapter is organized as follows. In Section 4.2, experimental setup 
of individual ribs under anterior-posterior bending is introduced first. Then, finite 
element modeling of FE rib models is presented, and validation tests are conducted as 
well. Section 4.3 displays comparative results between FE simulations and 
experimental data. Subsequently, Section 4.4 discusses the obtained FE results and 
finally Section 4.5 summarizes the major conclusions. 

4.2 Materials and Methods 

4.2.1 Configurations of the Experiments 

In this study, the 6th level rib was first simulated under dynamic anterior-posterior 
bending where the sternal (anterior) end of the rib was pushed towards the vertebral 
(posterior) end within rib’s major plane (x-y plane). Experimental configurations used 
in this study were conducted in Ohio State University by Agnew et al. [108]. The 
experimental setup is shown in Fig. 4.1, both ends of the rib were potted in Bondo Body 
Filler (Bondo Corporation, Atlanta, GA), and the two potted ends were fixed in rotating 
cups which can rotate freely perpendicular to the loading plane. A pendulum with a 
mass of 54.4kg impacted the sternal end of the rib with initial velocity near 2m/s, to 
push the sternal end towards the vertebral end along x direction. Moving displacement 
of the sternal end was recorded by a linear string potentiometer which was positioned 
on the moving plate of the fixture. The reaction force of the vertebral end of the rib was 
measured by a load cell attached behind the fixed plate. Also, the rotations of both end 
cups were measured by rotational potentiometers. Four strain gauges (marked by four 
stars in Fig. 4.1) were attached to the cutaneous (CSG1, CSG2) and pleural (PSG1, 
PSG2) surfaces, at 30% and 60% of the rib curve length counted from vertebral end 
respectively. 
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Figure 4.1: Schematic of experimental setup of rib under anterior-posterior bending by 
impacts using pendulum fixture, adapted from [108]. 
 
In addition, to prove the robustness of the finite element rib models, another 
experimental scenario with initial offset performed by Li et al. 2010 [28,29] and Kindig 
2009 [78] was reproduced and simulated as well. Ribs of level 2 to 10 were displaced 
under anterior-posterior bending. As shown in Fig. 4.2, an offset y0 between anterior 
and posterior end was set to represent the distance of costal cartilage. Both rib 
extremities were potted and connected with loading fixture through rotational pin joints, 
the posterior extremity was fully constrained except for the rotational degree of freedom 
around z axis. Displacement applied to the anterior extremity was at a velocity near 
1m/s by loading piston. Reaction force of the posterior extremity was measured by a 
load cell behind the fixed base. Six strain gauges were used to measure deformation on 
both sides of cutaneous and pleural surfaces. It can be seen in Fig. 4.2 that SG2 is 
located at the furthest point from the anterior-posterior axis, SG1 and SG3 were 
respectively at the midpoint between SG2 and the two extremities. 
 

 
Figure 4.2: Schematic of experimental setup with initial offset, adapted from [29]. 
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4.2.2 Finite Element Modeling 

4.2.2.1 Biomechanical Rib Model 

The finite element rib models utilized in this study were extracted from a biomechanical 
thorax model (HUByx model) developed by Roth et al. [26] which was a 3D 
reconstructed FE model based on medical CT scans. Fig. 4.3 illustrates the finite 
element modeling of 6th human rib based on the experimental configurations, using the 
FE software Hypermesh (Altair Hyperworks). The rib model was meshed with hex-
shell elements. Specifically, the trabecular bone was meshed with hexahedral solid 
elements and the cortical bone with quadrilateral shell elements, which has been proved 
to be applicable and more computationally efficient than all-hex elements [29,127]. A 
constant cortical thickness was assigned to the shell elements in this study. The element 
size of the rib model is around 0.7mm in order to obtain adequate rib structural 
responses. Therefore, the meshed rib model consisted of 13584 solid elements and 4368 
shell elements. 
 

 
Figure 4.3: Finite element modeling of 6th human rib based on experimental 
configurations. 

4.2.2.2 Boundary Conditions 

Subsequently, consistent boundary conditions were defined in the FE model to replicate 
the experimental setup. As displayed in Fig. 4.3, the two extremities of the rib were 
modeled as rigid bodies. The sternal (anterior) extremity was allowed to rotate around 
z axis and to be pushed towards the vertebral (posterior) extremity along x direction, 
the remaining degrees of freedom were fully constrained. The vertebral (posterior) 
extremity had only one degree of freedom i.e. rotation around z axis. The reaction force 
was output at the posterior extremity, and rotations were recorded at both extremities. 
The strain signals were measured by outputting corresponding strains of cortical shell 
elements, which were approximately at the same locations in the experiments as 
described in Section 4.2.1. In addition, for another experimental scenario with initial 
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offset presented in Fig. 4.2, an offset y0 between anterior and posterior end was defined 
in the FE model according to the experimental settings [29,78]. 

4.2.2.3 Material Properties 

Finally, material properties were defined. An elasto-plastic material law was applied for 
both cortical and trabecular bones. The material model Law 2 (Johnson-Cook material) 
in RADIOSS was assigned to cortical bone, and the trabecular bone was modeled with 
Law 3 (Johnson-Cook material compatible with solid elements). Moreover, isotropic 
hardening was considered for cortical bone and kinematic hardening for trabecular bone. 
Rib fractures were represented through element deletions based on a built-in failure 
criterion, by defining maximum plastic strains for cortical and trabecular bones. The 
human rib cortical bone compressive and tensile material properties at two different 
strain rates were taken from the literature as shown in Table 4.1, in addition, Poisson’s 

ratio 0.3ν =  and density 31990 kg mρ = . The material properties of human rib 

trabecular bone were taken from the literature [127] and remain the same for all the 

simulations: Young’s modulus 0.04E GPa= , yield stress 2.2y MPaσ = , tangent 

modulus 1tE MPa= , Poisson’s ratio 0.45ν = , density 31g cmρ =  and fracture 

plastic strain is equal to 0.03. Moreover, the material parameters of porcine rib cortical 
and trabecular bones were taken from the literature [31] and were displayed in Table 
4.2. The two extremities of the rib were modeled as rigid bodies, so a linear elastic 
material was chosen (Law 1 in RADIOSS) with Young’s modulus 210E GPa= , 

Poisson’s ratio 0.3ν =  and density 37800 /kg mρ = . 

 
Table 4.1: Human rib cortical bone compressive and tensile material properties at two 
strain rates, extracted from [91,92]. 
Material 
Properties 

0.005 strain/s 0.5 strain/s 
Compression Tension Compression Tension 

Young’s 
modulus (GPa) 

11.5 14.63 12.5 15.45 

Yield Stress 
(MPa) 

135 68.9 159 85.7 

Ultimate Stress 
(MPa) 

154 104.1 189 135.1 

Ultimate Strain 0.0204 0.0247 0.0239 0.0292 
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Table 4.2: The material parameters of porcine rib cortical and trabecular bones, 
extracted from [31]. 

Parameter Cortical Trabecular 
Density (kg/m3) 1690.9 772.9 

Young’s modulus (MPa) 9374 1800 
Tangent modulus (MPa) 937 45 

Yield stress (MPa) 70.876 20.48 
Poisson’s ratio 0.3 0.45 

Fracture plastic strain 0.02 0.03 
 
Table 4.3: Human rib cortical bone compressive material properties at 0.5 strain/s at 
average age and the decades of 40-49 and 90-99 respectively, extracted from [92]. 
Material Properties Average age 40-49 decade 90-99 decade 
Young’s modulus (GPa) 12.5 14.4 10.7 
Yield Stress (MPa) 159 178 129 
Ultimate Stress (MPa) 189 214 153 
Ultimate Strain 0.0239 0.0233 0.0228 

4.2.3 Validation Tests 

Validation tests of ribs under dynamic anterior-posterior bending were conducted based 
on finite element simulations in an explicit nonlinear FE software RADIOSS (Altair 
Hyperworks) through replicating experimental configurations. Firstly, the 6th level rib 
model was simulated with the prescribed input displacement recorded by the linear 
string potentiometer in experimental tests (Fig. 4.1). The average cortical thickness 
value of rib 6 used here was 0.71mm which was measured by Holcombe et al. [143]. 
Then, the anterior extremity of rib was pushed at a constant velocity of 1m/s consistent 
with experiments (Fig. 4.2). The average cortical thickness of rib level 2-10 was 
0.67mm according to Li et al. [144]. Numerical force-displacement relationship, 
cortical strain, rotation and fracture locations were compared with experimental data. 
Comparison of rib structural responses with human rib cortical bone material properties 
from different loading modes (tension and compression), different strain rates (0.5 
strain/s and 0.005 strain/s), ages and porcine rib material properties was investigated. 
In addition, the effect of age on rib structural responses was investigated by applying 
human rib cortical bone compressive material properties at 0.5 strain/s at average age 
and the decades of 40-49 and 90-99 respectively. Corresponding human cortical bone 
material properties of different ages are displayed in Table 4.3 and human trabecular 
bone material properties remain the same. Detailed results and discussions are 
presented in the following sections. 
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4.3 Results 

This section presents the numerical structural responses of ribs under dynamic anterior-
posterior bending for validation and comparison of the developed FE rib models, by 
comparison with the experimental data of the literature. Two scenarios without (Fig. 
4.1) and with (Fig. 4.2) offset were displayed respectively. 
 
Firstly, the 6th rib was simulated as loaded in Fig. 4.1, numerical results were compared 
to the experiment data of literature [32,133]. Fig. 4.4 (a)-(d) presents the comparison of 
experimental and numerical strain gauge signals time history with various material 
properties, which includes human rib cortical material properties from different loading 
modes (tension and compression), two strain rates (0.5 strain/s and 0.005 strain/s) and 
porcine rib material properties. Also, numerical and experimental rotations of the two 
ends of the rib are displayed in Fig. 4.5. Then, numerical force time history with various 
material properties were compared to five experimental curves as shown in Fig. 4.6. 
Moreover, Fig. 4.7 (a)-(c) compares the experimental fracture location with numerical 
fracture locations with human rib and porcine rib material properties respectively. 
Finally, Fig. 4.8 shows the effect of ages on numerical force time history with human 
rib cortical bone compressive material properties at 0.5 strain/s at average age and the 
decades of 40-49 and 90-99, respectively. 

  
(a) Cutaneous strain gauge 1 (CSG1) (b) Cutaneous strain gauge 2 (CSG2) 

  
(c) Pleural strain gauge 1 (PSG1) (d) Pleural strain gauge 2 (PSG2) 

Figure 4.4: Comparison of experimental and numerical strain gauge signals versus time 
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with various material properties, where labels ‘human_C1’, ‘human_C2’, ‘human_T1’ 
and ‘human_T2’ represent human rib cortical bone compressive material properties at 
0.5 strain/s and 0.005 strain/s and human rib cortical bone tensile material properties at 
0.5 strain/s and 0.005 strain/s, respectively. 
 

  
(a) Rotation of sternal (anterior) end (b) Rotation of vertebral (posterior) end 

Figure 4.5: Experimental and numerical rotation time history of sternal (anterior) and 
vertebral (posterior) ends with various rib material properties, where labels 
‘human_C1’, ‘human_C2’, ‘human_T1’ and ‘human_T2’ correspond to human rib 
cortical bone compressive material properties at 0.5 strain/s and 0.005 strain/s and 
human rib cortical bone tensile material properties at 0.5 strain/s and 0.005 strain/s, 
respectively. 
 

 
Figure 4.6: Representation of experimental and numerical force time history with 
various material properties, where labels ‘exp(a)-exp(e)’ represent 5 experimental 
curves in [32], ‘human_C1’, ‘human_C2’, ‘human_T1’ and ‘human_T2’ represent 
human rib cortical bone compressive material properties at 0.5 strain/s and 0.005 
strain/s and human rib cortical bone tensile material properties at 0.5 strain/s and 0.005 
strain/s, respectively. 
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(a) 

 
 
 
 
 
 

(b) 

 
 
 
 
 
 

(c) 

 
Figure 4.7: Illustration of experimental (a) and numerical fracture locations with human 
rib (b) and porcine rib (c) material properties. 
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Figure 4.8: Representation of the effect of ages on numerical force time history with 
human rib cortical bone compressive material properties at 0.5 strain/s. 
 
Then, rib level 2 to 10 with initial offsets were simulated as loaded in Fig. 4.2 as well. 
Numerical results were compared to the published experimental data by Li et al. [144]. 
Numerical reaction force versus end-to-end displacement curves of rib level 2-10 were 
compared to experimental corridors as shown in Fig. 4.9, where various material 
properties were applied and compared including human rib cortical material properties 
from different loading modes (tension and compression), different strain rates (0.5 
strain/s and 0.005 strain/s) and porcine rib material properties. 
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(continued) 

  

  

  

 

 

Figure 4.9: Illustration of numerical reaction force versus end-to-end displacement of 
rib level 2-10 compared to experimental corridors of the literature, where labels 
‘human_C1’, ‘human_C2’, ‘human_T1’ and ‘human_T2’ represent human rib cortical 
bone compressive material properties at 0.5 strain/s and 0.005 strain/s and human rib 
cortical bone tensile material properties at 0.5 strain/s and 0.005 strain/s, respectively. 
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4.4 Discussion 

Human rib finite element models were created and simulated by replicating 
experimental configurations of ribs under dynamic anterior-posterior bending in this 
study. Numerical rib structural responses and fracture locations were compared with 
the experimental data of the literature, in order to validate the feasibility and robustness 
of the developed rib models. Comparison and analysis of the effect of human rib cortical 
bone material properties from different loading modes (tension and compression), strain 
rates, ages and porcine rib material properties on rib structural responses were 
investigated. Two scenarios without (Fig. 4.1) and with (Fig. 4.2) offset were 
investigated respectively. 
 
Firstly, the 6th level rib model was simulated with the prescribed input displacement in 
experimental tests (Fig. 4.1). Fig. 4.4 (a)-(d) and Fig. 4.5 (a)-(b) present the comparison 
of experimental and numerical strain gauge signals and rib end rotations time history 
with various material properties, including human rib cortical material properties from 
different loading modes (tension and compression), different strain rates (0.5 strain/s 
and 0.005 strain/s) and porcine rib material properties. It can be seen that the numerical 
strain signals as well as rib end rotations have the same rising tendencies as those in 
experiments despite some slight discrepancies. Numerical fracture time is slightly 
inferior to experimental fracture time, which indicates that FE rib models are relatively 
less stiff. It is worth noting that numerical strain and rotation time histories with human 
rib cortical compressive material properties fracture later and have a better correlation 
with experimental data compared to those with human rib cortical tensile material 
properties. It demonstrates that the incorporation of rib cortical bone compressive 
material properties in FE models of this study is necessary. In fact, the rib suffers both 
tensile and compressive loading modes during MVCs. Meanwhile, it can also be seen 
that for both loading modes (tension and compression), numerical results with material 
properties at 0.5 strain/s have relatively longer fracture time and larger strain and 
rotation values than those at 0.005 strain/s. Also, numerical results with human cortical 
bone tensile material properties at 0.5 strain/s fit better with experimental curves 
compared to those at 0.005 strain/s. Therefore, it confirms the need to consider strain 
rate sensitivity in FE models when investigating rib dynamic structural responses. 
Furthermore, it is noted that numerical strain and rotation time histories with porcine 
rib material properties also have a reasonable correlation with experimental curves. 
This indicates that porcine ribs can be used as human rib substitutes and can compensate 
the limit of the use of human cadavers. Actually, porcine ribs were used by researchers 
as human rib substitutes because they have similar geometrical and anatomical 
characteristics with human ribs [31,79,81–83]. 
 
Next, numerical force versus time curves with various material properties were 
compared to five experimental curves as depicted in Fig. 4.6. It can be noticed that the 
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numerical force-time curves have all good correlations with experimental curves. At 
the same time, numerical reaction forces with human rib cortical compressive material 
properties are larger than those with human rib cortical tensile material properties while 
the slope of the curves are relatively smaller. This could be explained by the differences 
between human rib cortical bone compressive and tensile material properties as 
displayed in Table 4.1, where compressive material properties have higher ultimate 
stresses and smaller Young’s modulus. Also, numerical forces increase with the 
increase of strain rate from 0.005 strain/s to 0.5 strain/s for both compressive and tensile 
material properties. Comparison of numerical forces above in Fig. 4.6 highlights the 
effect of different material properties in compression and tension as well as different 
strain rates so that they should be considered in rib FE models. Besides, despite the 
numerical force with porcine material properties is smaller than forces with human rib 
material properties, it is still within the experimental values. Then, Fig. 4.7 (a)-(c) 
illustrates the comparison of experimental and numerical rib fracture locations. It is 
revealed that both numerical fracture locations with human rib (Fig. 4.7(b)) and porcine 
rib (Fig. 4.7(c)) material properties correspond well with the experimental location that 
occurs at the anterolateral region of the rib, which may signify the biofidelity of the 
finite element rib model. 
 
In addition, Fig. 4.8 compares the effect of age on numerical force-time history with 
human rib cortical bone compressive material properties at 0.5 strain/s at average age, 
40-49 decade and 90-99 decade. The 40-49 decade has the largest force magnitude and 
fastest rising tendency because this age group has higher ultimate stress and Young’s 
modulus as presented in Table 4.3 while the 90-99 decade has smallest values. Actually, 
collagen degradation may result in the alteration of the material properties in aged bones 
[92]. The differences between different ages suggest the consideration of age variations 
when establishing rib FE models. 
 
Finally, the anterior extremity was pushed at a constant velocity of 1m/s consistent with 
experimental setup (Fig. 4.2) for ribs from level 2 to 10. Numerical reaction force versus 
end-to-end displacement curves of rib level 2 to 10 with various aforementioned 
material properties were compared to experimental corridors presented by Li et al. [144], 
as illustrated in Fig. 4.9. It is noted that most of the numerical force-displacement curves 
with human cortical bone compressive and tensile as well as porcine rib material 
properties are always within the experimental corridors, only rib 2 and rib 3 at final 
displacement period and rib 6 and rib 8 at initial displacement period have very slight 
deviations. This also demonstrates the biofidelity of the FE rib models developed in 
this study. Moreover, the differences and tendencies between force-displacement curves 
with human rib cortical bone material properties from different loading modes (tension 
and compression), different strain rates (0.5 strain/s and 0.005 strain/s) and porcine rib 
material properties are similar to force-time curves in Fig. 4.6. 
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Overall, numerical rib structural responses and fracture locations have a good 
correlation with experimental data of the literature. Thus, the biofidelity and robustness 
of the finite element rib models have been validated via numerical analysis. However, 
it can be noticed some limitations in this study which may explain the discrepancies of 
the results. An average constant cortical thickness was used for the rib models in the 
present study and actually the cortical thickness varies throughout the rib, so it may 
overestimate or underestimate the cortical thickness somewhere and lead to 
inaccuracies of local strains. Therefore, precise and variable cortical thicknesses which 
can represent real cortical thickness distributions should be implemented in a more 
biofidelic numerical model. Also, although this is the first numerical study to apply 
human rib cortical bone compressive material properties in investigating rib dynamic 
structural responses, the material laws used for the ribs in this study are isotropic and 
homogenous, therefore anisotropic and heterogeneous material models need to be 
incorporated in the future. Besides, considering that the rib experiences both tensile and 
compressive loading modes during MVCs, one single material law combining both 
tensile and compressive behavior could improve the results. Moreover, human rib 
cortical bone material properties at two strain rates (0.5 strain/s and 0.005 strain/s) were 
used according to experimental data, material properties at higher strain rates should be 
taken into account and could better evaluate the strain rate effect on human rib cortical 
bone material properties. 

4.5 Conclusion 

Human rib finite element models were created and validated by replicating 
experimental configurations of ribs under dynamic anterior-posterior bending, using an 
explicit FE software RADIOSS (Altair Hyperworks). Different material properties 
including human rib cortical bone material properties from different loading modes 
(tension and compression), different strain rates and ages as well as porcine rib material 
properties were considered. A reasonable agreement exists between numerical rib 
structural responses and fracture locations and experimental data of the literature. 
Numerical analysis reveals that numerical strain and rotation time histories with human 
rib cortical compressive material properties have a better correlation with experimental 
data compared to those with human rib cortical tensile material properties. Numerical 
rib structural responses were found to be sensitive to material properties from different 
loading modes, strain rates and ages. Therefore, it is necessary to consider the effect of 
material properties from different loading modes, strain rates and ages when 
establishing rib FE models. Meanwhile, it is also indicated that porcine rib material 
properties can obtain similar and reasonable results compared to human rib material 
properties. Overall, this was the first numerical study to apply human rib cortical bone 
compressive material properties in investigating rib dynamic structural responses. The 
biofidelity and robustness of the finite element rib models have been validated, and 
these rib models can be further employed in a global thorax model for injury predictions. 
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The present study can help better understand human rib fractures in high velocity 
impact (HVI) contexts in a numerical way. 
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5 Conclusions and Perspectives 

5.1 Conclusions 

The thorax part is one of the most injured body areas under high velocity impacts, just 
second behind the head part. Thoracic injuries happen frequently in various frameworks 
of high velocity impact biomechanics such as road traffic accidents, sports and military 
contexts. Rib fractures and lung injuries are the most common hard and soft tissue 
injuries in human thorax and can be life-threatening. In recent years, many 
biomechanical FE models have been established and employed to repeat real-world 
impact loading conditions to investigate human tissue dynamic behaviors which can 
avoid practical issues in biomechanical experiments. Therefore, this thesis aims to 
contribute to the investigation of dynamic responses of human tissues especially ribs 
and soft tissues under high velocity impacts using finite element modeling, which can 
help better understand the mechanisms of corresponding injuries and is useful for 
design, evaluate and optimizing protecting equipment. 
 
Firstly, a novel strain-rate-dependent elasto-hydrodynamic constitutive law of the 
SEBS gel was proposed in Chapter 2 based on the mechanical characterization 
extracted from the literature. The proposed law was then implemented as a user material 
subroutine programed in Fortran in an explicit nonlinear FE software Radioss (Altair 
Hyperworks) to reproduce various loading configurations in order to validate the 
accuracy of the model, and the effect of strain rate was investigated. A good agreement 
exists between the numerical results of the proposed law and experimental data in the 
literature. Numerical analysis reveals that the strain-rate-dependence effect is 
significant in SEBS gel especially for high strain rates, which indicates the necessity of 
taking the strain rate dependence into consideration when modeling the SEBS gel as a 
human soft tissue substitute. 
 
Then, this thesis numerically investigated the dynamic behaviors of isolated porcine 
ribs submitted to high velocity impacts using 3PB SHPB apparatus based on finite 
element simulations in Chapter 3, both porcine and human rib material properties were 
applied for comparison. The numerical curved beam rib models are validated and show 
biofidelic behaviors by comparing numerical and experimental results. In addition, 
sensitivity studies were conducted to study the effects of geometrical and mechanical 
parameters such as cortical thickness, curvature radius and strain rate on dynamic 
responses of ribs under high velocity impacts. Numerical analysis highlights the 
significant effect of geometrical parameters on dynamic behaviors of ribs. The 
consideration of the effect of mechanical parameters like loading mode and strain rate 
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sensitivity in FE rib models is also needed. Porcine ribs are usually used as human rib 
surrogates because they share similar geometrical and anatomical characteristics. 
Hence, this work is an interesting way to study the human rib dynamic behaviors at a 
numerical level, and these ribs models can be further implemented in a more global 
thoracic biomechanical model for human trauma investigations. 
 
Finally, in Chapter 4 rib FE models with various material properties including human 
rib cortical bone material properties from different loading modes (tension and 
compression), strain rates (0.5 strain/s and 0.005 strain/s) and ages as well as porcine 
rib material properties were developed and validated through replicating experimental 
configurations, in order to better understand rib structural responses and fracture 
locations under dynamic anterior-posterior bending. Numerical force-displacement 
relationship, cortical strain, rotation and fracture locations correspond well with 
published experimental data, which demonstrates the robustness of the finite element 
rib models. Numerical analysis reveals that numerical strain and rotation time histories 
with human rib cortical compressive material properties have a better correlation with 
experimental data compared to those with human rib cortical tensile material properties. 
Also, numerical rib structural responses are found to be sensitive to human cortical bone 
material properties from different loading modes, strain rates and ages. Therefore, it is 
necessary to consider the effect of material properties from different loading modes, 
strain rates and ages when establishing rib FE models. Meanwhile, it is also revealed 
that porcine rib material properties can obtain similar and reasonable results compared 
to human rib material properties. This is the first numerical study to apply human rib 
compressive material properties in investigating rib dynamic structural responses under 
dynamic anterior-posterior bending and compare the results with those from tensile 
material properties. The present study can help better understand human rib fractures 
in high velocity impact (HVI) contexts in a numerical way. 
 
Overall, this thesis investigates the dynamic responses of human soft and hard tissues 
under high velocity impacts using finite element modeling. The proposed constitutive 
law of the SEBS gel and the rib FE models can be employed in a global thorax model 
for injury predictions. 

5.2 Limits and Perspectives 

There are some limitations in the present studies although the proposed constitutive law 
and rib models have been validated to be feasible and biofidelic. For example, the 
proposed strain rate dependent constitutive law of the SEBS gel elaborated from stress-
strain curves is based on mechanical characterization at intermediate strain rates, so it 
can be improved by considering stress-strain curves at higher strain rates. The strain 
rate dependence can also be considered in the plasticity domain in further investigations. 
Also, a constant cortical thickness is used in this thesis and actually the cortical 
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thickness varies variable throughout the rib, so it may overestimate or underestimate 
the cortical thickness somewhere and lead to inaccuracies of numerical results. 
Therefore, precise and variable cortical thicknesses which can represent real cortical 
thickness distributions should be implemented in a more biofidelic numerical model. 
Moreover, the material laws used for the ribs in this thesis are isotropic and homogenous, 
therefore anisotropic and heterogeneous material models need to be incorporated in the 
future studies. Besides, the material laws are based on single tensile or compressive 
tests, considering that the rib experiences both tensile and compressive loading modes 
during MVCs, one single material law combining both tensile and compressive 
behaviors needed to be developed and could improve the results. In addition, a built-in 
failure criterion in the material model based on the maximum fracture plastic strain is 
used to represent rib fracture, additional failure models could be added to the material 
model in order to better simulate rib fractures. 
 
The developed constitutive law of the SEBS gel and rib models can be further 
implemented in a more global thoracic biomechanical model for human trauma 
investigations. They are also planned to be applied at higher strain rates, such as in blast 
contexts.  
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Titre: Contribution à l’étude des réponses dynamiques des tissus humains sous des impacts à haute 
vitesse en utilisant la modélisation par éléments finis 
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modélisation constitutive 

Résumé: Cette thèse vise à étudier les réponses 
dynamiques des tissus humains sous des impacts 
à haute vitesse en utilisant la modélisation par 
éléments finis. Premièrement, une nouvelle loi 
de comportement élasto-hydrodynamique 
dépendante de la vitesse de déformation du gel 
polymère synthétique SEBS a été développée et 
implémentée en tant que «loi utilisateur» dans 
Radioss pour simuler les comportements 
dynamiques du gel SEBS. Les corrélation 
essais/calculs valident le modèle et révèlent 
l’importance et l’effet de vitesse de déformation, 
en particulier pour les vitesses de déformation 
élevées. La seconde partie traite de l’étude  
numérique des réponses dynamiques et des 
fracture de côtes sous flexion dynamique trois 
points et flexion antéro-postérieure. Les études 

de sensibilité mettent en évidence l’effect 
significatif des paramètres géométriques comme 
l’épaisseur corticale et la section transversale sur 
les comportements dynamiques des côtes. De 
plus, des paramètres mécaniques tels que le 
mode de chargement, la vitesse de déformation 
et l’âge doivent également être pris en compte 
lors de la modélisation par éléments finis des 
côtes. De manière générale, les lois de 
comportement du substitut de tissus mous, ainsi 
que celles des côtes donnent des résultats très 
satisfaisants, et mènent à des modélisation 
biofidèles, permettant à ces modèles d’être 
implémentés dans un modèle global du thorax 
pour une utilisation dans un contexte de 
traumatismes du corps humains sous impacts à 
hautes vitesses.  

 

 

Title: Contribution to the investigation of dynamic responses of human tissues under high velocity 
impacts using finite element modeling 
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modeling 

Abstract: This thesis aims to investigate the 
dynamic responses of human tissues under high 
velocity impacts using finite element modeling. 
Firstly, a novel strain-rate-dependent elasto-
hydrodynamic constitutive law of the synthetic 
polymer Styrene-Ethylene-Butylene-Styrene 
(SEBS) gel was proposed and used as a user 
subroutine in Radioss for interpreting dynamic 
behaviors of SEBS gel. Numerical analysis 
validates the model’s accuracy and reveals the 
significance of strain-rate-dependence effect 
especially for high strain rates. Then, this thesis 
numerically investigated dynamic responses and  

fractures of isolated ribs subjected to dynamic 
three point bending (3PB) and anterior-posterior 
bending respectively. Sensitivity studies 
highlight the significant effect of geometrical 
parameters like cortical thickness and cross 
section on ribs’ dynamic behaviors. Moreover, 
mechanical parameters like loading mode, strain 
rate and age are also needed to be considered 
when modeling FE rib models. Overall, the 
proposed law of SEBS gel and established rib 
models can be applied in a global thorax model 
for human trauma investigations under high 
velocity impacts. 
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