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Titre: Développement d’une approche par simulation des grandes Echelles pour la défla-
gration
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Résumé: Ce travail s’inscrit dans le cadre
de la simulation des déflagrations turbulentes
telles que celles rencontrées dans les études de
sûreté pour les installations nucléaires ou civiles.
Nous y développons une approche par simula-
tion des grandes échelles permettant une de-
scription fine de l’écoulement. L’outil de sim-
ulation ainsi construit est utilisé dans l’étude de
transitoires expérimentaux à petite et moyenne
échelle. La première étape de la thèse a porté
sur le développement et l’analyse d’un schéma
numérique pour les équations de Navier-Stokes
pour les écoulements compressibles non réact-
ifs. Le schéma est explicite et basé sur une dis-
crétisation en temps du second ordre (schéma
d’Heun). La discrétisation enespace est de type
mailles décalées. Elle se base sur une formula-
tion en énergie interne. Une discrétisation des
opérateurs de convection via une technique de
montée en ordre de type MUSCL permet alors
de garantir la positivité des variables scalaires
(densité, énergie interne et pression) sous con-
dition de CFL. De plus, le schéma est peu dissi-
patif numériquement, ce qui est primordial dans
le contexte de la simulation des grandes échelles.

Ce schéma est étendu au cas réactif par
une technique de pas fractionnaires. L’équation
de conservation des espèces chimiques est ré-
solue dans un premier temps par un algorithme
de Strang découplant convection et réaction.

L’énergie de réaction associée est introduite
dans le bilan d’énergie des équations de Navier
Stokes, traitées dans un second temps.

Nous développons ensuite un modèle
de combustion et l’appliquons à l’étude
d’écoulements d’intérêt. La combustion est
traitée par un modèle de flamme artificielle-
ment épaissie. Un modèle de sous-maille per-
met d’ajuster de façon dynamique le plissement
de sous-maille, qui disparaît dans l’opération
d’épaississement, à partir de la connaissance des
champs résolus. Trois configurations expérimen-
tales de déflagrations accélérées par des obsta-
cles en chambre semi-confinée ont été étudiées.
Ces configurations diffèrent par la disposition
des obstacles qui génèrent la turbulence au
passage de l’écoulement induit par l’expansion
thermique et promeuvent l’accélération de la
flamme. Ces cas ont permis d’analyser le com-
portement du modèle de combustion et valider
ses résultats à partir des données expérimen-
tales. L’étude a également mis en évidence
la supériorité de la formulation dynamique
du modèle par rapport à l’utilisation d’un
paramètre de plissement constant. Des simu-
lations de type RANS (résolution des équations
de Navier-Stokes moyennées) où la combustion
est décrite par une formulation de type « G-
equation » ont également été réalisées et confor-
tent l’utilisation de la simulation aux grandes
échelles.
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Abstract: This work is part of the simula-
tion of turbulent deflagrations encountered in
safety studies for nuclear power plants or indus-
trial plants. Large Eddy Simulation approach is
developed allowing a thin description of the flow.
The simulation tool developed is used for the
study of experimental transients at small and
medium scales.

In the first part of this thesis, a numeri-
cal scheme for the Navier-Stokes equations for
compressible non-reactive flows is developed and
analysed. The scheme is explicit and based on a
second order time discretization (Heun scheme).
Staggered discretization is used in space. The
scheme is based on the internal energy formu-
lation. High order methods of MUSCL type
used in the discrete convective operators allow
then to guarantee the positivity of scalar un-
knowns (density, internal energy and pressure)
under CFL condition. Moreover, the scheme is
numerically low dissipative, which is essential in
the context of large eddy simulation.

This scheme is extended to the reactive case
with a fractional step technique. The chemi-
cal species mass balances are solved with the
Strang algorithm decoupling convection and re-

action. The associated reaction energy is intro-
duced into the energy balance of Navier-Stokes
equations, solved in a second time.

Then, a combustion model is developed and
used for the study of flows of interest. The
combustion is modelled using a virtually thick-
ened flame formalism. A subgrid scale model
allow a dynamical determination of the subgrid
scale flame wrinkling factors to handle unre-
solved contributions. Three experimental con-
figurations of accelerated deflagrations in an
obstructed semi-confined chamber are investi-
gated. Each configuration differs from the other
by the obstacles location. The flame is pro-
gressively wrinkled by turbulent motions gen-
erated by thermal expansion around obstacles
and accelerates. These test cases allow to anal-
yse the combustion model behavior and com-
pare the numerical results to experimental data.
The superiority of the wrinkling factor dynam-
ical formulation with respect to the constant
one is highlighted. RANS simulations (aver-
aged Navier-Stokes resolution) combined with
a combustion description with the so called “G-
equation” have also been performed and support
the use of large eddy simulation.
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Introduction

General context
The explosion of gases and more especially of hydrogen is a major hazard in industrial plants,
and more specifically in nuclear power plants.

In a nuclear power plant, hydrogen can be produced during a severe accident, from ox-
idation of fuel cladding or fuel assembly canisters and other hot metallic components. In
case of failure of in-vessel corium retention, a large amount of carbon monoxide in addition
to hydrogen and other gases may be produced during molten core concrete interaction in
the reactor pit. As a consequence, local concentrations of inflammable gases can exceed
the flammability limit of the mixture. In case of high pressure or external energy supply
such as hot spots or sparks, the mixture ignites. Subsequent deflagration would develop and
propagates until transiting to detonation inducing high dynamic pressure loads which could
threaten the containment structures and technical equipment. A recent reminder of the po-
tential consequences of the release and ignition of hydrogen during severe accident conditions
in a nuclear power plant is the Fukushima Daiichi accident in 2011 (Bentaib et al., 2017).
During this accident, chemical reactions between the fuel cladding, in this case the zirconium
alloy and water generated large quantities of hydrogen, which from the containment escaped
into reactor’s primary containment vessel and then further into the reactor building where
it mixed with air. This subsequently raised a combustion hazard and ultimately led to a
series of explosions (shown in Fig. 1a), damaging the reactor containment and leading to the
release of radioactive materials into the reactor building and eventually to the environment,
forcing to evacuate in a 20 km radius the 154 000 persons living there (Braun, 2017).

Explosion may also occur in a nuclear power plant, inside or outside the reactor building
due to loss of sealing of pipes containing hydrogen. This situation may lead to delayed
explosions of hydrogen high pressure releases (as shown in Fig. 1b, where an experiment of
Daubech et al. (2015) is illustrated).

In some areas of the fuel cycle, the potential for the creation of an explosive atmosphere
exists through the production of hydrogen by radiolysis or the use of this gas in the process,
and by chemical or corrosion reactions through the presence of finely divided oxidisable
dusts or pyrophoric materials, and through certain nitric acid/heavy metal/organic-matter
reactions (OECD, 2005). An explosion may cause either physical damage such as breach
of containment or system pressurisation resulting in an unplanned discharge of radioactive
material.
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(a) Explosion of Fukushima reactor 3 (b) Hydrogen jet deflagration

Figure 1: Explosions inside and outside a reactor building.

A major example of an explosion incident in an industrial plant is the 1983 Stockholm
hydrogen accident (Venetsanos et al., 2003) in central Stockholm, Sweden. The accidental
release of approximately 13.5 kg of hydrogen from a rack of 18 interconnected industrial
pressure vessels being transported by a delivery truck led to an explosion. More recently, an
explosion occurred at a hydrogen filling station in Norway in 2019 near Oslo. A leak at the
high-pressure hydrogen storage unit leaded to the mixing of the leaked hydrogen with air
forming an inflammable mixture and causing the explosion.

The energetic worldwide demand is growing as seen in Fig.2. As a consequence, the
number of industrial facilities is increasing. Oil, coal and natural gas are the main energy
sources worldwide, they are based on the consumption of highly inflammable fuel. Therefore,
explosion hazards remain important. For all theses reasons, explosion phenomena have to be
investigated in order to prevent them.

Figure 2: Energy consumption by source until 2018. BP Statistical Review of world energy,
BP, 11 juin 2019.
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One role of IRSN (Institut de Radioprotection et de Sûreté Nucléaire) is to carefully an-
alyze and understand the risk of explosion in nuclear facilities as it poses a potential threat
to the reactor (breakdown of safety equipments, failure of containment) and the environment
(diffusion of radioactive materials in the environment) which can be catastrophic. Fukushima
Daiichi nuclear disaster also led to complementary research and development projects (Ben-
taib et al., 2015, 2017) to better understand the phenomena associated with the combustion
hazard and to address issues such as explosion hazard in the venting system, dispersion of
radioactive particles beyond the primary containment and motivated further work to develop
and validate Computational Fluid Dynamics (CFD) tools (Bentaib et al., 2011), which are
growing into useful analysis tools for supporting safety management. The safety issues related
to the explosion hazards are usually segregated into three linked yet separate phases:

(i) The first phase corresponds to the release and dispersion of the explosive gases leading
to a partially premixed (i.e. in-homogeneous is space) explosive atmosphere from the
turbulent mixing of the gases,

(ii) A possible chemical reaction between the gases or an external energy source (spark,
hot spot...) could lead to the mixture ignition and thus to an explosion, regarded as
the second phase. The challenges posed here constitute the understanding of the rate
of combustion and of the flame-front structure along with turbulence coupling,

(iii) The final phase involve the propagation of the blast wave and its effects on the structural
integrity of the reactor facility.

The P2REMICS (Partially PREMixed Combustion Solver) is an in-house CFD software
developed at IRSN dedicated to the computation of the three phases listed above, the for-
mation of explosive atmospheres (i), their deflagration or detonation (ii) and the subsequent
propagation of blast waves (iii). Phase two addressing the deflagration of the explosive gases
is focused in this work where turbulence modeling plays a central role in the flame front
propagation.

Motivation of the thesis
Because of the large number of degrees of freedom involved in a deflagration, a full Direct
Numerical Simulation (DNS) of a practical system cannot be performed. Instead, two tech-
niques less expensive than DNS were developed and are used in industries nowadays. The
first one is the less expensive and the most spread technique in industrial codes. It con-
sists in solving the averaged flow governing equations; it is the so-called Reynolds Averaged
Navier-Stokes (RANS) approach. The averaging operations introduce unresolved terms that
require specific closures. Basically, a turbulence model to deal with the flow dynamics and a
combustion model to describe chemical species conversion and heat release are needed.

This approach is available in CALIF3S -P2REMICS and is the one used for safety studies
on large scale domains. The turbulence is modeled with two-equations models, mainly,
the models k-ε or k-ω models with or without usual wall laws (low-Reynolds extension or
elliptical relaxation) (Menter et al., 2003). The combustion model is based on the turbulent
flame-speed closure approach. The location of the flame brush is explicitly tracked by a phase-
field-like technique, the flame front passage being followed by an instantaneous combustion,
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thanks to an ad-hoc modification of the reactive term in the species mass balance equations.
These latter deal with transport and turbulent diffusion of the chemical species, which allows
addressing non-perfectly (i.e. non homogeneous) premixed situations. The model is closed
with a turbulent flame speed correlation which depends on the properties of the unburnt
mixture of fresh gases (laminar flame speed) as well as on the turbulent characteristics of the
flow (integral length scale, turbulent kinetic energy).

The experimental characterization of the velocity field during a deflagration is difficult,
especially in medium and large-scale configurations. The turbulence flame speed is controlled
by the turbulence generated by the thermal expansion ahead the flame front. Moreover,
turbulent flame speed correlations in literature assume an equilibrium between turbulence
motions and flame surface wrinkling, generally not verified in unsteady flames, and display
a large scatter (Gastaldo et al., 2017).

The second approach called Large Eddy Simulation (LES) has gained a great success in
simulating turbulent flows. In such a method, the large scale fluid motions are computed
explicitly from the filtered instantaneous equations while small-scale effects are modeled.
LES determines the instantaneous position of a large scale resolved flame front but a subgrid
model, as in RANS, is still required to take into account the effect of small turbulent scales
on combustion.

This latest approach is reliable and efficient, but is also extremely costly in term of
computer resources for domain with large dimension and remains prohibitive for industrial
purpose, even with the rapid increase of supercomputer power (Pope, 2004; Choi and Moin,
2012). However, LES approach can be used in order to perform in indepth the interpretation
of experiments and to support RANS model validation. To develop, implement and validate
a LES approach for turbulent deflagrations motivates the work performed during this thesis.

Manuscript organisation
This manuscript is organized in three parts. In Part I, general features on turbulent com-
bustion are discussed. In Part II, a second order numerical MAC scheme is developed for
large-eddy simulation of compressible reactive flows. In Part III, the developed approach is
validated and tested on different cases.

Part I - General concepts

Chapter 1 presents the governing equations for turbulent reactive compressible flows. The
three main numerical approaches for turbulence description are introduced and a particular
focus is granted to LES approach. The filtered governing equations are then stated. Premixed
laminar and turbulent flames are discussed in Chapter 2 and different combustion regimes
are identified. Different combustion models used in the LES framework are described. A
particular focus on the Thickened Flame model for Large Eddy Simulation (TFLES) used in
this work is made. Afterwards, several subgrid wrinkling factor closures available in literature
are proposed.
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Part II - A second order numerical scheme for large-eddy simulation of compress-
ible reactive flows

• In Chapter 3, a formally second order scheme is proposed, with as low kinetic energy
dissipation as possible, dedicated to the numerical simulation of the filtered Navier-
Stokes equations for compressible non reactive flows.
The space discretization is staggered, and works on structured grids using the so-called
Marker-And-Cell (MAC) scheme (Harlow and Amsden, 1971; Harlow and Welch, 1965).
Time-stepping is segregated, in the sense that balance equations are solved successively,
and each step is explicit. Time discretization is performed with a Strong Stability
Preserving (SSP) scheme, namely the Heun scheme.

The scheme is shown to preserve the stability properties of the continuous problem
under CFL condition (i.e. the positivity of the density and of the internal energy, at least
when no numerical corrective terms are added). A kinetic energy conservation identity,
essential requirement for a numerical scheme in the context of large eddy simulation
of turbulent flows, is proved at discrete level. Finally, a total energy balance for the
scheme is established, which may be made conservative by adding corrective terms to
the sensible energy balance, for instance if one wants to compute shock solutions.

• In Chapter 4 a numerical scheme for the computation of turbulent deflagrations occur-
ring in a premixed atmosphere is developed. The flow under consideration is governed
by the compositional Navier-Stokes equations and the flame propagation is represented
by a virtually thickened flame formalism (Butler and O’Rourke, 1977) combined with
a dynamical determination of the subgrid scale flame wrinkling factor to handle unre-
solved contributions (Veynante and Moureau, 2015).
The numerical scheme developed in this chapter extends the one presented in Chapter
3 to reactive flows. The chemical species mass balances are solved with the Strang
algorithm decoupling convection and reaction. The associated reaction energy is in-
troduced into the Navier-Stokes energy balance equation, solved in a second time. A
positivity-preserving discretization of the convective operators allow to guarantee the
positivity of scalar unknowns (density, internal energy, pressure and chemical species),
under CFL condition. Moreover, with a suitable choice of the coefficients involved in
the discretization of the chemical species convection terms, the chemical species are
also shown to be bounded by 1 at discrete level. Finally, the approximate solutions
satisfy a conservative weakly-consistent discrete total energy balance equation in the
inviscid case.

Part III - Thickened flame model for large eddy simulation: calibration and
application on an accelerated deflagration

Accelerated turbulent deflagrations, potentially transiting to detonation, are a major hazard
in industrial plants, and more specifically in nuclear power plants. The pressure increase
is governed by a complex unsteady interaction between flame propagation, turbulence and
geometry. This overpressure is often considered as the key parameter, since it controls the
severity of the explosion and corresponding damages. This complex phenomenon is very
challenging for computational fluid dynamics problems since it involves a large spectrum of
spatial and time scales and involves a large range of flow and combustion regimes.
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• In Chapter 5 the second order scheme developed previously is validated on laminar one-
dimensional steady flames. The aim is to assess the laminar behavior of the combustion
model and its capacity to reproduce the early stages of a deflagration. This test case
may be considered as a prerequisite before applications to turbulent reactive problems in
two or three dimensions. Physical features such as flame front velocity are investigated
alongside numerical one such as the minimum number of grid points needed for the
description of the flame front.

• In Chapter 6, a case of interest for IRSN is simulated. Accelerated turbulent deflagra-
tions in a semi-confined chamber with different obstacle configurations are investigated
(Wen et al., 2013). Two-dimensional simulations are first performed. The purpose of
these simulations is twofold: first, the model parameters are adjusted for the three-
dimensional computations more expensive in terms of CPU time, second they allow at
a moderate cost to investigate several parameters such as the impact of the obstacle
location, the thickening factor, the dynamic computation of the wrinkling factor, ...
Afterward, three-dimensional simulations have been carried out on the most penalizing
configuration security wise (most important pressure peak).

The LES approach is then compared to a RANS turbulence description complemented
with a turbulent flame speed closure combustion model already available in the CALIF3S
-P2REMICSsoftware. The results computed with different turbulent flame speed clo-
sures are compared.

At last, a global conclusion on the work made during this thesis is drawn, evidencing
some perspectives.
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Part I

General concepts
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Chapter 1

A compressible model for turbulent
reactive flows

This chapter is devoted to a brief description of turbulent compressible and reactive flows.
First, the governing equations are presented. This is followed by an introduction to the various
approaches present in the literature for turbulence description. The underlying principle
of DNS, RANS, and LES methods along with their advantages and weaknesses are briefly
discussed. Focus is then made on LES methods which are used in this work. We conclude
with the filtered equations for compressible turbulent and reactive flows.

1.1 Governing equations
Hydrodynamics

The hydrodynamics of the flow is governed by the mass balance and momentum balance
equations, which read in the conservative form (Garnier et al., 2009; Poinsot and Veynante,
2012):

∂tρ+ div(ρv) = 0, (1.1a)

∂t(ρv) + div(ρv ⊗ v) +∇p− div(τ (v)) = f , (1.1b)

where t stands for the time, ρ, v, p, τ and f are respectively the density, the velocity,
the pressure, the shear-stress tensor and an external force. The computational domain of
dimension d is denoted by Ω ⊂ Rd, d = 1, 2, 3 and the computational time interval is
denoted by [0, T ]. We only consider Newtonian fluids in this work, therefore the viscous
stress tensor is given by:

τ (v) = µ(∇v +∇tv)− 1

3
µTr(∇v +∇tv) (1.2)

where Tr(X) denotes the sum of the diagonal terms of the matrix X and µ ≥ 0 stands for
the dynamic viscosity.
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Transport of chemical species

Let suppose that Ns species are present in the flow reacting through M reactions:
Ns∑
k=1

ν ′kjMk �
Ns∑
k=1

ν ′′kjMk (1.3)

whereMk is the chemical species symbol, ν ′kj and ν ′′kj are respectively the molar stoichiometric
coefficient of the reacting and product species in reaction j.
Let now define the mass fraction given by:

Yk = mk/m for 1 ≤ k ≤ Ns, (1.4)

with m the total mass in a given volume V and mk the k-species mass in this same volume
V . The density of a species k is defined as:

ρk = mk/V = ρYk for 1 ≤ k ≤ Ns, (1.5)

where the global mixture density ρ is also defined in function of the species density as:

ρ =
Ns∑
k=1

ρk. (1.6)

Analogously, the molar concentration of the species k is written as:

[Xk] = ρ
Yk
Wk

= ρ
Xk

W
for 1 ≤ k ≤ Ns, (1.7)

where Xk is the molar fraction, Wk the molar mass of the species k and W the mean molar
mass of the mixture given by:

1

W
=

Ns∑
k=1

Yk
Wk

, W =
Ns∑
k=1

WkXk. (1.8)

The system of the mass balance equations for the chemical species reads (Poinsot and Vey-
nante, 2012):

∂t(ρ Yk) + div(ρ Yk v) + div(jk) = ω̇k, for 1 ≤ k ≤ Ns, (1.9)

where jk and ω̇k stand respectively for the mass diffusion flux and the reaction rate of the
species k.

The reaction rate of each chemical species may be written as:

ω̇k =
M∑
j=1

ω̇kj = Wk

M∑
j=1

νkj Qj for 1 ≤ k ≤ Ns,

where ω̇j is the reaction rate of reaction j and νkj = ν ′′kj − ν ′kj. Due to mass conservation the
following property holds:

Ns∑
k=1

νkjWk = 0 for 1 ≤ j ≤M. (1.10)

23



Then, we also have:
Ns∑
k=1

ω̇k = 0. (1.11)

The reaction rate of the reaction j is given by (Poinsot and Veynante, 2012):

Qj = Kfj

Ns∏
k=1

[Xk]
ν′kj −Krj

Ns∏
k=1

[Xk]
ν′′kj for 1 ≤ j ≤M,

where Kfj and Krj are the forward and reverse rates of reaction j. The previous relation
could be rewritten using mass fractions as:

Qj = Kfj

Ns∏
k=1

(ρ Yk
Wk

)ν′kj −Krj

Ns∏
k=1

(ρ Yk
Wk

)ν′′kj
for 1 ≤ j ≤M.

The forward rates Kfj are usually modeled throughout the empirical Arrhenius law (Poinsot
and Veynante, 2012):

Kfj = AfjT
βj exp

[
−Eaj
RT

]
for 1 ≤ j ≤M, (1.12)

where Eaj Afj and βj are respectively the activation energy, the pre-exponential constant
and the temperature exponent of the reaction j. The reverse rates Krj are computed from
the forward rates:

Krj =
Kfj

Kj
eq

for 1 ≤ j ≤M,

and the equilibrium constants Kj
eq are given by (Kuo, 1986):

Kj
eq =

[patm
RT

]∑Ns
k=1 νkj

exp

(
∆S0

j

R
−

∆H0
j

RT

)
for 1 ≤ j ≤M

with patm, ∆S0
j and ∆H0

j denote respectively the atmospheric pressure, enthalpy and entropy
changes for reaction j.

Let us now define the species mass diffusion fluxes jk, 1 ≤ k ≤ Ns. Diffusion processes
involve binary diffusion coefficients, which are complex functions of collision integrals and
thermodynamic variables, obtained from kinetic theory (Hirschfelder and Curtiss, 1954; Bird
et al., 1960) and require the resolution of a system giving diffusion velocities (Ern and Gio-
vangigli, 1994). Simplified diffusion laws are thus used in a majority of combustion codes.
Here, we assume that the mass diffusion fluxes of chemical species obey to the Fick’s law,
thus they are given by:

for 1 ≤ k ≤ Ns, jk = −ρDk∇Yk. (1.13)
where Dk stands for the diffusion coefficient of the species k. The Soret effect, that is the
molecular species diffusion due to temperature gradients (Giovangigli, 1999) is neglected in

this thesis. Let the variable Σ stand for Σ =
Ns∑
k=1

Yk. In order to guarantee the global mass

conservation (i.e. Σ = 1) everywhere in Ω, we must have:
Ns∑
k=1

jk = 0. (1.14)
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Two methods can be applied in order to guarantee the global mass conservation.

• The first and simplest method is to solve the species mass balance equation only for
Ns − 1 species instead of the Ns species and to write the mass fraction for the last
species as:

YNs = 1−
Ns−1∑
k=1

Yk. (1.15)

This method may not be the most accurate technique but it has the advantage to be
easy to implement.

• The second method consists on adding a correctional term in the species mass balance
equation in order to ensure the global mass conservation (Hilbert et al., 2004; Poinsot
and Veynante, 2012). The species diffusion fluxes are then rewritten as:

for 1 ≤ k ≤ Ns, jk = −ρDk∇Yk + Yk J , (1.16)

where J is a correction term added to ensure that
Ns∑
k=1

jk = 0 when Σ = 1:

J = ρ
Ns∑
k=1

Dk∇Yk.

This solution is often chosen in laminar flame codes where diffusion coefficients can be
very different.

In this work, the diffusion coefficients Dk are assumed to be identical for all chemical species
k, denoted by D:

Dk = D, 1 ≤ k ≤ N. (1.17)

With this last assumption, the global mass conservation is ensured:

Ns∑
k=1

jk = −ρ
Ns∑
k=1

D∇Yk = 0. (1.18)

Therefore, the mass balance equation for the chemical species is written:

∂t(ρ Yk) + div(ρ Yk v)− div(ρD∇Yk) = ω̇k, for 1 ≤ k ≤ Ns. (1.19)

Energy balance

Multiple forms of the conservation equation energy exist in literature. In this section we
will present the two forms involved in the present work, that is the total energy balance
equation and the sensible energy balance equation. Before getting into the details let define
the different forms of energy thanks to table 1.1. Here, all enthalpies and energies are mass
quantities.

25



Form Energy Enthalpy

Sensible e = h− p

ρ
=

∫ T

T0

cv dT −
RT0

W
h =

∫ T

T0

cp dT

Sensible + Chemical ec = hc −
p

ρ
= e+

Ns∑
k=1

∆h0
f,kYk hc = h+

Ns∑
k=1

∆h0
f,kYk

Total E = H − p

ρ
= ec +

1

2
|v|2 H = hc +

1

2
|v|2

Table 1.1: Enthalpy and energy forms (Poinsot and Veynante, 2012).

The total energy balance reads:

∂t(ρE) + div(ρE v) + div(pv) + div(q) = div(τ (v) · v), (1.20)

where E = ek + ec with ek = 1
2
|v|2 the kinetic energy. The so-called sensible+chemical

energy ec (see Table 1.1) is defined as:

ec =
Ns∑
k=1

ec,k Yk = e+
Ns∑
k=1

∆h0
f,kYk, (1.21)

where ∆h0
f,k stands for the formation enthalpy of the species k at the reference temperature

T0, that is the enthalpy released while the formation of products occurs. As the enthalpy of
formation is obtained thanks to experimental data, the reference temperature T0 is usually
taken at atmospheric condition (approximately T0 = 300 K). The sensible+chemical energy of
the species k, denoted ec,k, is the sum of the energy associated to the variation of temperature
of the species k, called sensible energy of this latest and denoted ek, and of the chemical
energy, that is the energy needed to form the species k. The sensible energy of the mixture
e, introduced in (1.21), is given by:

e =
Ns∑
k=1

ek Yk =

∫ T

T0

cv dT −
RT0

W
, (1.22)

with cv the heat capacity at constant volume of the mixture and R = 8.31451 JK−1mol−1 the
perfect gases constant. The energy flux q is expressed thanks to the Fourier’s law of thermal
conduction as:

q = −λ∇T +
Ns∑
k=1

hc,k jk, (1.23)

where λ is the thermal conductivity and hc,k the sensible+chemical enthalpy for the species
k, defined by:

hc,k =

∫ T

T0

cpk dT + ∆h0
f,k, for 1 ≤ k ≤ Ns,

with cp,k the heat capacity at constant pressure for the species k. Let notice that the Dufour
effect which takes into account the energy flux due to mass fraction gradients (Giovangigli,
1999) is omitted in this work.
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Replacing the total energy E by its expression in (1.20) and developing some terms, we
obtain:

∂t(ρ ec) + div(ρ ec v) + p divv + divq

+
1

2
∂t(ρ |v|2) +

1

2
div(ρ |v|2 v) + v ·∇p− div(τ (v)) · v = τ (v) :∇v. (1.24)

Thanks to the mass balance equation (1.1a), we get formally, for any function ψ:

∂t(ρψ) + div(ρψ v) = ρ ∂tψ + ρv ·∇ψ.

Using twice the previous identity and then the momentum balance equation (1.1b), we have
for 1 ≤ i ≤ d:

1

2
∂t(ρ v

2
i ) +

1

2
div(ρ v2

i v) = ρ vi ∂tvi + ρ vi u ·∇vi

= vi
[
ρ ∂tvi + ρv ·∇vi

]
= vi

[
∂t(ρ vi) + div(ρ vi v)

]
= −vi ∂ip+ vi div(τ (v))i,

so, summing for i = 1 to d:

1

2
∂t(ρ |v|2) +

1

2
div(ρ |v|2 v) = v ·

[
∂t(ρv) + div(ρv ⊗ v)

]
= −v ·∇p+ div(τ (v)) · v.

Using this last relation in the total energy equation (1.24) yields the chemical+sensible energy
balance:

∂t(ρ ec) + div(ρ ec v) + p divv = τ (v) :∇v − divq. (1.25)

Replacing ec by its definition (1.21) (or Table 1.1) and using the species mass balances (1.9)
yields the sensible energy balance:

∂t(ρ e) + div(ρ ev) + divq −
Ns∑
k=1

div(∆h0
f,k jk) + p divv = τ (v) :∇v −

Ns∑
k=1

∆h0
f,k ω̇k.

Using expression (1.23) and denoting ω̇T the heat production rate due to the chemical reac-
tions:

ω̇T = −
Ns∑
k=1

∆h0
f,k ω̇k, (1.26)

we have:

∂t(ρ e) + div(ρ ev) +
Ns∑
k=1

div(hk jk) + p divv − div(λ∇T ) = ω̇T + τ (v) :∇v, (1.27)

where hk is the sensible enthalpy of species k obtained using the following expression:

hk = hc,k −∆h0
f,k, for 1 ≤ k ≤ Ns.

Redefining the heat flux as:

q = −λ∇T +
Ns∑
k=1

hk jk, (1.28)
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we finally have the sensible energy balance equation:

∂t(ρ e) + div(ρ ev) + div(q) + p divv = ω̇T + τ (v) :∇v. (1.29)

The heat diffusivity coefficient defined by

Dth =
λ

ρ cp

, (1.30)

is usually linked to the diffusion coefficient Dk, 1 ≤ k ≤ Ns through the Lewis number of the
species k, which compares the diffusion speeds of heat and species k, given by:

Lek =
λ

ρ cpDk

=
Dth

Dk

. (1.31)

This latest non-dimensional number can also be rewritten in the following way:

Lek =
Sck
Pr

, (1.32)

where the Prandtl number Pr, which characterize the ratio between momentum diffusivity
and thermal diffusivity is given by:

Pr =
µ cp

λ
, (1.33)

and the Schmidt number Sck, which is a dimensionless number given by the ratio of momen-
tum diffusivity (viscosity) and mass diffusivity of the species k reads:

Sck =
µ

Dk ρ
.

In the framework of turbulent flows modelling, it is often assumed that the Prandtl number
Pr is constant and takes a value of the order of unity, and that the Lewis number Le is
also constant and equal to unity (see Hilbert et al. (2004) for a detailed review). These
assumptions are often made in industrial softwares, since they considerably simplify the heat
balance formulation. This choice is made here (let notice, moreover, that assumption (1.17)
corresponds to a constant Lewis number). The Prandtl number being constant, according to
(1.33), the thermal conductivity reads:

λ(x, t) =
µ cp

Pr
=

µ

Pr

Ns∑
k=1

cp,k Yk(x, t). (1.34)

Assuming a unity Lewis number, then according to (1.31) λ = ρcpD, thus the mass diffusion
fluxes of chemical species are written as:

for 1 ≤ k ≤ Ns, jk = − µ

Pr
∇Yk. (1.35)

Moreover, the assumption that Le = 1 allows to write:

− µ

Pr
∇h = − µ

Pr
cp∇T −

µ

Pr
T ∇cp = − µ

Pr
cp︸ ︷︷ ︸
λ

∇T +
Ns∑
k=1

cp,k T (µ/Pr)∇Yk︸ ︷︷ ︸
jk

. (1.36)

Hence, the sensible energy balance (1.29) may be recast as:

∂t(ρ e) + div(ρ ev)− div[(µ/Pr)∇h] + p divv = ω̇T + τ (v) :∇v. (1.37)
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Remark. (Constant specific molar heat capacity) For specific multi-component mix-
tures, the molar specific heat of the chemical species may be supposed to be independent
of the species, which may be written:

for 1 ≤ k ≤ Ns, cp,k Wk = cst = R
γ

γ − 1
, (1.38)

where γ is the ratio cp,k/cv,k, thus supposed to be constant. In this case, the sensible
energy balance (1.37) may be rewritten as:

∂t(ρ e) + div(ρ ev)− div
[µ γ

Pr
∇e
]

+ p divv = ω̇T + τ (v) :∇v. (1.39)

State law

Finally, an equation of state is required to close the system, assuming a mixture of perfect
gases:

p = ρ
R

W
T. (1.40)

Note that, this relation has to be complemented by the following equation linking e and T :

e =
Ns∑
k=1

Yk ek =
Ns∑
k=1

Yk cv,k T =
Ns∑
k=1

(
cp,k −

R

Wk

)
Yk T, (1.41)

with cv,k the heat capacity at constant volume of the species k.

The set of conservation equations used in this work are summarized-up in Table 1.2.

Name Conservation equation

Mass ∂tρ+ div(ρv) = 0

Chemical species ∂t(ρ Yk) + div(ρ Yk v)− div
( µ

Pr
∇Yk

)
= ω̇k, for 1 ≤ k ≤ Ns

Momentum ∂t(ρv) + div(ρv ⊗ v) +∇p− div(τ (v)) = f

Sensible energy ∂t(ρ e) + div(ρ ev)− div
[ µ

Pr
∇h
]

+ p divv = ω̇T + τ (v) :∇v

State law p = ρ
R

W
T

Table 1.2: Conservation equations with unitary Lewis assumption and an identical diffusion
coefficient for all species. The viscous stress tensor is given by (1.2) and the heat production
rate by (1.26). Relation (1.41) closes the system.
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1.2 Turbulence approaches

Figure 1.1: Energy spectra repartition of resolved and modeled scales for DNS, LES and
RANS approaches.

Most of the time, an analytical solution does not exist to properly deal with such complex
phenomena as turbulent reactive flows. Hence, for most of the cases, to predict the evolution
of turbulent reactive flows and the phenomenon attributed to it, one uses CFD tools consisting
of turbulence and combustion models. These models are simplified constitutive equations
that predict the evolution (depending on the modeling technique) of certain quantities of
turbulent flows. The three main approaches to simulate turbulent flows are:

• Direct Numerical Simulation (DNS)

The DNS approach is the most accurate technique. It resolves the set of equations of motions
with initial and boundary conditions appropriate to the flow considered without any use of
a turbulence model. The whole range of turbulent scales is solved explicitly. The turbulent
energy spectrum is completely resolved as shown on the left in Fig. 1.1. However, a DNS
approach is too expensive to be applied outside academic purposes. Therefore the amount
of information needs to be reduced.

• Reynolds Averaged Navier Stokes (RANS)

Statistical approaches are used in an attempt to reduce the complexity and cost of the
numerical simulation. Any instantaneous unknown ϕ is decomposed into a mean/averaged
part ϕ̄ and a fluctuating part ϕ′: ϕ = ϕ̄+ϕ′. This procedure is called the Reynolds averaging,
initially introduced by Reynolds (1895). The averaging operation corresponds to a statistical
average over a certain number of realizations of the same physical event. With this approach,
only averaged quantities ϕ̄ are resolved. The averaging operations introduce unresolved terms,
containing the information on fluctuations. Such terms require specific closures. The whole
energy spectrum is modeled as shown at the right side of Fig. 1.1. Solving mean quantities
allows a relatively coarse grid which reduces the numerical cost. In addition, assumptions
such as symmetry, two dimensional domains may be applied. RANS approach is the most
spread technique in industrial codes because it allows to simulate reactive flows in large scale
domains at a low computational cost.
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• Large Eddy Simulation (LES)

Large Eddy Simulation approach is an intermediate approach between DNS and RANS in
terms of precision and numerical cost. The large scales of the flow are resolved explicitly, as in
DNS, while the small scales dissipation are modeled. The spectrum with the large resolved
scales and the small modeled scales distribution is shown in the middle part of Fig. 1.1.
Large eddies are the most effective transporters of conserved quantities (mass, momentum
and energy). Small eddies are weaker and a well established hypothesis is that they show a
universal behavior. They are assumed to be isotropic irrespective of the Reynolds number
and geometry of the flow. In LES, the instantaneous equations are filtered. The separation
between the large scales and the small scales is achieved with the help of spatial filters
(detailed in Section 1.3.1). The size of the smallest resolved eddies is related to the filter
width. When the filter size tends to 0, the resolution of the LES approaches tends to the
DNS resolution. The filtering procedure brings unresolved terms containing information
at the unresolved scales and information relative to energy transfer between resolved and
unresolved scales. These unresolved terms are closed using subgrid models (see Section
1.3.3).

Figure 1.2: Representation of the expected temporal evolution of a temperature for DNS,
LES and RANS approaches (Poinsot and Veynante, 2012).

Figure 1.2 shows an example of the local temperature variation computed with each ap-
proach. DNS approach predicts turbulence and recovers well the instantaneous fields like a
high-resolution sensor would measure them in an experiment. LES delivers less information
than the DNS approach for simulating turbulent motions, but it would capture the tem-
perature low-frequency fluctuations and recover quite well the instantaneous fields. As the
whole spectra is modeled for the RANS approach, the temperature predicted is a constant
corresponding to the mean temperature.

The LES approach is chosen for the investigations made in this work and is detailed in
the following Section.

1.3 The Large Eddy Simulation approach
In this section the LES approach is detailed and the filtered equations are established.
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1.3.1 Filtering operator

Large and small scales are separated using a low-pass filter in frequency. The energy spectrum
is thus partitioned into two parts: [0, kc] and [kc,+∞] with kc the cutoff wave number. The
first part is the turbulent large scales energy spectrum contribution and the second part is
the small scales energy spectrum contribution (see Fig. 1.3).

Figure 1.3: Turbulence energy spectrum plotted as a function of the wave number. kc being
the cutoff wave number used in LES.

Filtering is represented mathematically in the physical space as a convolution product.
The resolved part φ(x, t) of a space-time variable φ(x, t) is defined by (Garnier et al., 2009):

φ(x) =
1

∆d

∫
Rd
G

(
x− ξ

∆

)
φ(ξ)dξ. (1.42)

where the convolution kernel G is characteristic of the filter used and is associated with the
cutoff scale in space ∆. We assume that the space convolution kernel is obtained by tensorial
extension of the one-dimensional kernel, i.e.:

G(ξ) =
d∏
i=1

Gi(ξi).

The filtering operator respects the three properties given below. The first one is satisfied by
the convolution form of the filtering, while the latter ones depend on the filtering function
G.

• Linearity,
φ+ ψ = φ+ ψ. (1.43)

• Consistency,

φ = φ ⇐⇒
∫
Rd
G (ξ) d3ξ = 1, if φ = constant. (1.44)
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• Commutation with derivation,

∂sφ = ∂sφ s = x, t. (1.45)

This latter property is needed in order to establish the balance equations for the filtered
variables. But, for an inhomogeneous or anisotropic filter, the commutation of derivative and
filtering operators is generally not verified. Thus, spatial commutation errors may occur when
the filter varies with time and/or space, especially when the domain is bounded by walls or
when the mesh size is not uniform. Previous studies (Ghosal and Moin, 1995; Ghosal, 2004;
Moureau et al., 2005) have characterized commutativity errors. In general, uncertainties due
to this operator exchange are neglected and their effects are assumed to be incorporated in
the subgrid scale model.

The most common filters are given in the following.

• Sharp cut-off filter – The spectral expression of the sharp cut-off filter is given by:

Ĝ(κ) =


1 if κ ≤ κc

0 otherwise.
(1.46)

The sharp cut-off filter is represented by its kernel in physical space:

G(x− ξ) =
sin
(
π
∆

(x− ξ)
)(

π
∆

(x− ξ)
) . (1.47)

• Box filter – The physical expression of the box filter is given by:

G(x− ξ) =


1

∆d
if |xi − ξi| ≤ ∆/2, 1 ≤ i ≤ d

0 otherwise

(1.48)

This filter corresponds to an averaging over a cubic box of size ∆. The spectral expres-
sion of the box filter is:

Ĝ(κ) =
sin(κ∆/2)

κ∆/2
, (1.49)

where κ is the spatial wave number.

• Gaussian filter – Another well known filter is the Gaussian filter defined as:

G(x− ξ) =

(
6

π∆2

)3/2

exp

[
− 6

∆2

d∑
i=1

(xi − ξi)2

]
, (1.50)

for the physical expression with d the computable domain dimension. Its kernel in
spectral space is given by:

Ĝ(κ) = exp

(
−∆2κ2

24

)
. (1.51)

33



As stated before, applying one of the operators introduced above to a space-time variable
φ(x, t) leads to the filtered quantity φ(x, t) which represent the resolved turbulent structures.
The small (non-resolved) structures (i.e. the structures smaller than the filter width) are
defined by (Garnier et al., 2009):

φ′(x, t) = φ(x, t)− φ(x, t).

This decomposition is formally analogous to the Reynolds decomposition but it should be
pointed out here that in general:

φ 6= φ φ′ 6= 0. (1.52)

The classical LES filtering in compressible flows has been employed by some authors
(Yoshizawa, 1986; Bodony and Lele, 2005), but most authors dealing with LES of compressible
flows have used a change of variable in which filtered variables are weighted by the density
(Garnier et al., 2009). This operation is the Favre filtering and is written:

ρφ = ρ
ρφ

ρ
= ρφ̃ (1.53)

where φ̃ is the so called Favre filtered quantity. The quantity φ may be decomposed into
mean and fluctuating components such as:

φ = φ̃+ φ′′. (1.54)

The motivation of using such filtering operator is double. First, filtering the balance equations
with the classical LES filter defined previously would lead to additional subgrid terms which
are avoided by using the Favre filtering. Second, the Favre-filtered equations are structurally
similar to their corresponding non filtered equations (with the exception of the subgrid terms).
One should keep in mind that the Favre filtering is a mathematical formalism and should be
taken into account when the results are compared to DNS or experimental data (Sagaut and
Grohens, 1999).

1.3.2 Filtered governing equations

The filtering operator is applied to the instantaneous system of equations introduced in
Section 1.1. For each balance equation, the large scales terms (resolved terms) and the
modeled small scales terms (unresolved terms) are presented. The small structures have an
impact on the resolved structures. This effect is included through the subgrid scale (SGS)
models (presented in Section1.3.3).

Hydrodynamics

Filtering the instantaneous mass balance (1.1a) and the momentum balance (1.1b) leads to:

∂tρ+ div(ρ ṽ) = 0, (1.55)

∂t(ρ ṽ) + div(ρ ṽ ⊗ ṽ) + div
[
ρ (ṽ ⊗ v − ṽ ⊗ ṽ)

]
+∇p− divτ = ρf . (1.56)

The filtered laminar fluxes and unresolved terms introduced in the filtered momentum balance
must be closed:
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• The laminar filtered stress tensor for a Newtonian fluid τ is given by:

τ = 2µ

(
S− 1

3
Tr(S)I

)
≈ 2µ

(
S̃− 1

3
Tr(S̃)I

)
, (1.57)

where µ is the filtered laminar viscosity (with the assumption: µ ≈ µ), I stands for the
Rd×d identity matrix and S̃ is the rate-of-strain tensor of the resolved structures given
by:

S̃ =
1

2

(
∇ṽ +∇tṽ

)
. (1.58)

• The Boussinesq (1877) hypothesis is essentially valid within the cascade theory of turbu-
lence of Kolmogorov (1941) leading to the following model for the unresolved Reynolds
stress tensor:

τ SGS = ρ (ṽ ⊗ v − ṽ ⊗ ṽ) ≈ −2µSGS

(
S̃− 1

3
Tr(S̃)I

)
(1.59)

where the subgrid scale viscosity µSGS is computed by a subgrid scale turbulence model
(see Section 1.3.3).

Transport of chemical species

Filtering the system of mass balance equations for the chemical species (1.9) yields:

∂t(ρ Ỹk) + div(ρ Ỹk ṽ) + div
[
ρ (ṽ Yk − ṽ Ỹk)

]
+ div(jk) = ω̇k, for 1 ≤ k ≤ Ns (1.60)

The filtered laminar fluxes and unresolved terms introduced are closed by:

• Using the assumptions stated earlier (Fick’s law, unitary Lewis number, same diffusion
coefficient for all chemical species), the laminar diffusive species fluxes read:

jk = −ρD∇Yk ≈ −ρD∇Ỹk = − µ

Sc
∇Ỹk, for 1 ≤ k ≤ Ns (1.61)

where Sc stands for the laminar Schmidt number (replaced now on by the laminar
Prandtl number Pr thanks to the unitary Lewis number assumption).

• The unresolved transport species fluxes is expressed using a diffusion-like model:

jSGSk = ρ (ṽ Yk − ṽ Ỹk) ≈ −ρDSGS∇Ỹk = −µSGS
Sct
∇Ỹk, for 1 ≤ k ≤ Ns (1.62)

where DSGS is the SGS diffusion coefficient and Sct is the turbulent Schmidt number
(replaced now on by the turbulent Prandtl number Prt by assuming the same subgrid
scale thermal and species diffusion).

• Different models exist for the filtered reaction rate ω̇k. They are discussed in Chapter
2 together with combustion regimes.
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Energy balance

Filtering the sensible energy balance (1.29) equation leads to:

∂t(ρ ẽ) + div(ρ ṽ ẽ) + div(q) + p div(ṽ)− Φ̌− ω̇T
= −div [ρ (ṽ e− ṽ ẽ)]−

[
p div(v)− p div(ṽ)

]
+
[
Φ− Φ̌

]
(1.63)

The filtered computable and unresolved terms are the following:

• The filtered computable viscous dissipation is given by:

Φ̌ = τ (ṽ) :∇ṽ (1.64)

where the filtered computable stress tensor τ is given by (1.57).

• The computable heat flux q is expressed as:

q ≈ −λ∇T̃ +
Ns∑
k=1

h̃k jk. (1.65)

Using the assumptions stated earlier (Fick’s law, unitary Lewis number, same diffusion
coefficient for all chemical species), analogously to (1.36), the heat flux can be expressed
as:

q ≈ − µ

Pr
∇h̃. (1.66)

• The computable heat production rate is written as:

ω̇T = −
Ns∑
k=1

∆h0
f,k ω̇k. (1.67)

• The SGS heat flux is modelled by:

qSGS = ρ (ṽe− ṽẽ) ≈ −λSGS∇T̃ +
Ns∑
k=1

h̃k j
SGS
k , (1.68)

with λSGS = µSGS cp/Prt the subgrid scale conductivity. Analogously to the resolved
heat flux, the subgrid heat flux could be written as:

qSGS ≈ −µSGS
Prt
∇h̃. (1.69)

• The SGS pressure-dilatation term can be written as:

Πdil = p div(v)− p div(ṽ). (1.70)

It will be neglected in this work (Martin et al., 2000; Garnier et al., 2009).
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• The SGS viscous dissipation is expressed as:

εv = Φ− Φ̌ = τ (v) :∇v − τ (ṽ) :∇ṽ. (1.71)

Various models exist for the SGS viscous dissipation term (Yoshizawa, 1986; Vreman
et al., 1995; Martin et al., 2000). In this work, we choose to model εv in order to
recover a conservative form of the total energy balance. First, let us obtain the filtered
kinetic energy balance equation by the inner product of the filtered momentum balance
equation with the filtered velocity:

1

2
∂t(ρ |ṽ|2) +

1

2
div
(
ρ |ṽ|2 ṽ

)
+∇p · ṽ − divτ (ṽ) · ṽ = −divτ SGS(ṽ) · ṽ (1.72)

Summing equations (1.63) and (1.72) gives rise to the filtered total energy balance
equation:

∂t(ρ Ẽ) + div(ρ ṽ Ẽ) + div(p ṽ)− div (τ (ṽ) · ṽ)− ω̇T
= −div(q − qSGS)− div

(
τ SGS(ṽ) · ṽ

)
+ τ SGS(ṽ) :∇ṽ + εv. (1.73)

In order to obtain a conservative form of the previous equation, the SGS viscous dissi-
pation is modelled by:

εv = −τ SGS(ṽ) :∇ṽ (1.74)

Therefore the filtered internal energy balance equation reads:

∂t(ρ ẽ) + div(ρ ṽ ẽ) + p div(ṽ) = ω̇T − div(q − qSGS) + τ̆ (ṽ) :∇ṽ (1.75)

where τ̆ (ṽ) = τ (ṽ)− τ SGS(ṽ).

1.3.3 Subgrid scale viscosity models

In this section, some models for the subgrid scale viscosity are introduced.

Smagorinsky model

The Smagorinsky model is the most popular and simplest model to obtain the subgrid scale
viscosity (Smagorinsky, 1963). The eddy viscosity is expressed as follows:

µSGS = ρ c2
s∆

2|S̃|, (1.76)

with |S̃| the resolved rate-of-stain magnitude given by:

|S̃| =

(
2

d∑
i=1

d∑
j=1

S̃ijS̃ij

)1/2

, (1.77)

cs a constant and ∆ the characteristic filter length. The constant parameter cs is usually
taken in the range 0.1− 0.2.
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WALE (Wall-Adapting Local Eddy-viscosity) model

The Smagorinsky model being too dissipitave especially near walls, Nicoud and Ducros (1999)
introduce the WALE model in order to take recover the scaling laws at the walls. The eddy
viscosity is modeled by:

µSGS = ρ c2
W∆2

(∑
i,j s̃

d
ij s̃

d
ij

)3/2

(∑
i,j S̃ijS̃ij

)5/2

+
(∑

i,j s̃
d
ij s̃

d
ij

)5/4
, (1.78)

where cW is the model constant, set at 0.5, and sdij is the traceless symmetric part of the
square of the resolved velocity gradiant defined as:

s̃dij =
1

2

(
∇ṽ2 + (∇ṽ2)t

)
− 1

3
Tr(∇ṽ2)I. (1.79)

Dynamic Smagorinsky model

An alternative method for calculating the Reynolds stresses is to use a second filter of a
size larger than that of the LES filter and to estimate the small scale dissipation from the
knowledge of the resolved eddies. This procedure was originally proposed by Germano et al.
(1991). The dynamic procedure is usually combined with a subgrid scale viscosity model,
but it is very general and can be applied to any model that makes explicit use of an arbitrary
model constant.

Here, the dynamic procedure is described for the Smagorinsky model. A test filter of
width ∆̂ larger than the LES filter size, ∆̂ > ∆, is introduced. Thanks to this second
filtering, the model constant cs, which is strongly affected by the configuration of flows, is no
more a constant but dynamically adjusted at each point in space and at each time step. The
constant becomes then time and space-dependent: cs(x, t).

The subgrid stress tensor at the test filtering level reads:

Tij = ρ̂ vi vj −
1

ρ̂
ρ̂ vi ρ̂ vj (1.80)

where .̂ stands for the filtering at the test level and 1 ≤ i, j ≤ d. Subtracting the SGS
Reynolds stress tensor after filtering with the test filter yields the Germano identity:

Lij = Tij − τ̂SGSij (1.81)

with
Lij = ρ̂ ṽi ṽj −

1

ρ̂
ρ̂ ṽi ρ̂ ṽj (1.82)

Let notice that all quantities in the Germano identity (1.81) are known (left hand side from
the resolved flow field, right hand side through the model). Applying the Smagorinsky model,
the two subgrid stress tensors T and τSGS are written as:

τSGSij − δij
3
τSGSkk = −2 ρ cs ∆2 |S̃|

(
S̃ij −

δij
3
S̃kk

)
= cs βij (1.83)

Tij −
δij
3
Tkk = −2 ρ̂ cs ∆̂2 |̂̃S|(̂̃Sij − δij

3
̂̃
Skk

)
= cs αij (1.84)

38



where we assume that the same constant cs for both filtering levels can be used. The constant
cs is thus the dynamical parameter to determine, αij and βij, 1 ≤ i, j ≤ d are lightening
notations. Introducing relations (1.83) and (1.84) in (1.81) leads to:

Ldij = Lij −
δij
3
Lkk = cs αij − ĉs βij. (1.85)

This relation gives a set of equations, where the only unknown term is the model constant
cs. The model parameter cs may be determined by minimizing the following error:

Eij = Ldij − cs αij + csβ̂ij, (1.86)

where cs is supposed to be constant over an interval at least equal to the test filter cutoff
length, i.e. ĉs βij = csβ̂ij. The definition (1.86) consists of six independent relations (if d = 3,
or four if d = 2), which in theory makes it possible to compute six values (if d = 3, or four
if d = 2) of the constant (Garnier et al., 2009). In order to maintain a single relation and
thereby determine a single value of the constant, Germano et al. (1991) propose to contract
the relation (1.86) with the resolved strain rate tensor. cs is thus found by solving:

∂(Eij S̃ij)

∂cs
= 0. (1.87)

This problem is however indeterminate when the tensor Sij cancels out (Garnier et al., 2009).
To remedy this problem, Lilly (1992) proposes to calculate the constant cs by a least-squares
method. The model constant becomes then a solution of:

∂(Eij Eij)

∂cs
= 0, (1.88)

or more explicitly:

cs =
Mij Ldij
MklMkl

, (1.89)

with Mij = αij − β̂ij. In practical applications, to avoid negative values leading to numerical
difficulties, cs is not determined locally but averaged in homogeneous directions or along
streamlines following a Lagrangian procedure (Meneveau et al., 1996).
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Chapter 2

Premixed combustion: general notions
and LES combustion models

Flames are usually classified in terms of chemical mixture ( i.e. fuel is perfectly premixed
with oxidizer or not) and fluid state ( i.e. the flow is laminar or turbulent). Then, four ideal
regimes are identified, laminar premixed, laminar non-premixed (also called laminar diffusion
flames), turbulent premixed and turbulent non-premixed flames (also called turbulent diffusion
flames). In our framework, we consider explosions in the premixed flames regime. Balance
equations described in Chapter 1 can be applied to each regime.

In this chapter, we focus on laminar and turbulent premixed flames. After a description of
the mean features of both kind of flames, the main combustion models used in the framework
of large eddy simulations are introduced, thus allowing to close the combustion terms of the
governing system of equations presented in Chapter 1.

2.1 Laminar premixed flames

2.1.1 Combustion regime

The equivalence ratio characterizes the combustion regime of a laminar premixed flame. It is
defined by the ratio between the fuel mass fraction (YF ) and the oxidizer mass fraction (YO)
in the mixture divided by the same ratio at stoichiometric conditions:

φ =

(
YF
YO

)
/

(
YF
YO

)
st

= s

(
YF
YO

)
(2.1)

with s the mass stoichiometric ratio. Let assume that the species react through the following
chemical reaction:

ν ′FF + ν ′OO → ν ′′PP

the mass stoichiometric ratio reads:
s =

ν ′OWO

ν ′FWF

. (2.2)

Combustion is considered lean when φ < 1 (oxidizer in excess) or rich when φ > 1 (fuel in
excess). In a complete lean combustion, the fuel is entirely burnt and an amount of oxidant
remains in the burnt mixture. In a complete rich combustion, theoretically, the oxidant is
entirely consumed and an amount of fuel remains in the burnt mixture.
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2.1.2 Flame structure

The structure of a stationary laminar premixed flame is shown in Fig. 2.1. This flame
propagates like a wave from the burnt gases (on the right part of Fig. 2.1) to fresh gases
(on the left part of Fig. 2.1) at a flame speed sL with respect to the unburnt gases and
perpendicular to the flame brush surface.

Figure 2.1: One-dimensional laminar premixed flame structure from Zeldovich et al. (1985).

The fresh gases are composed by fuel and oxidizer premixed at a given equivalence ratio
with stable thermodynamic conditions. No reaction occurs in the unburnt zone. Ignition
occurs when a threshold amount of energy called the activation energy is reached.

The flame front is usually decomposed into two zones: the preheated zone and the re-
action zone. The preheated zone is characterized by strong temperature and concentration
gradients. In this zone, the reactive terms are negligible compared to the diffusion terms and
the temperature gradually rises until the ignition temperature of the mixture is reached. The
chemical reaction occurs in the reaction zone. Usually, in the reaction zone, the temperature
gradient is neglected and the temperature is assumed to have almost reached its maximum
value. These assumptions are made by Zeldovich and Frank-Kamenetskii (1938) in most of
their theories on flame propagation. The reactive zone is thinner than the preheat zone which
makes it more difficult to numerically reproduce.

The burnt gases zone is on the right side of Fig. 2.1, it is the final state, where all
reactants are transformed into products in case of complete chemical reaction. By making
a low Mach number assumption combined with adiabatic boundaries conditions, the burnt
gases temperature is equal to the adiabatic flame temperature.
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2.1.3 Laminar flame features

Flame speeds

Figure 2.2: Notations for flame speed definitions (Poinsot and Veynante, 2012).

In a laminar flame, the combustion process results in a thin reaction surface travelling in
the flow. We will consider that the flame front is infinitely thin and located at the isovalue
surface c = cf (see Fig. 2.2) of a scalar function c going from zero (in the fresh gases) to one
(in the burnt gases) and defined by:

c =
YF − Y u

F

Y b
F − Y u

F

or c =
T − Tu
Tb − Tu

(2.3)

where u and b are used as exponents or subscripts to denote quantities in the fresh (u) and
in the burnt gas (b). The normal to the flame front pointing towards fresh gases is defined
with the local gradient of c:

n = − ∇c
|∇c|

. (2.4)

The flame speed definition is a central point in combustion theory. Many definitions of
local and global flame speeds exist in the literature (Poinsot and Veynante, 2012). The most
commonly used are the following:

• The absolute flame speed is the flame front speed relative to a fixed reference frame
located at the isovalue surface c = cf . Its magnitude is given by:

sa = w · n, (2.5)

where w is the velocity of the isosurface and n the normal to the flame front represented
on Fig. 2.2.

• The displacement speed is the flame front speed in the fluid reference that is the dif-
ference between the flow velocity v and the absolute flame speed (see Fig. 2.2). Its
magnitude is given by:

sd = (w− v) · n = sa − v · n. (2.6)
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• The consumption speed is the speed of reactant consumption. It is based on the flame
chemical properties while the previous definitions are based on the kinematic properties
of the flame. Its magnitude is defined with the fuel reaction rate:

sc = − 1

ρu
(
Y u
F − Y b

F

) ∫ +∞

−∞
ω̇F dn, (2.7)

with ρu the density of the unburnt mixture. For planar laminar premixed flames,
consumption speed and displacement speed are the same (sd = sc). This definition of
sL is used as the reference speed in order to compute the laminar flame speed in all
studies in combustion.

Flame thickness

An other important feature of the laminar flame is the flame thickness. This thickness is
also used as a reference length for numerical modeling. The flame thickness can be defined
in different ways (Poinsot and Veynante, 2012). The most used are stated in the following.

• The diffusive thickness δ is given by:

δ =
λu

ρu cp,u sL
, (2.8)

with λu and cp,u the thermal conductivity and the heat capacity of the fresh mixture
respectively. Knowing the laminar flame speed, the flame thickness can be evaluated
easily with the previous relation. Laminar flames propagates due to diffusion and
chemical reactions, this thickness is therefore used in many approaches.

• An other definition is obtained using the temperature profile:

δ0
L =

Tb − Tu
max (|∇T |)

, (2.9)

where Tb and Tu are respectively the burnt and unburnt gases temperature.

• The total thickness δt corresponds to the temperature jump of 98% of the temperature
difference between fresh and burnt gas. It is always larger than δ0

L and it is not used
for computations.

• The thickness of the reaction zone δr is the thinnest thickness where chemical reaction
occurs.

The time for the flame to cover a distance equal its own thickness is a characteristic time
scale called the chemical time scale τc and is defined as:

τc =
δ0
L

sL
. (2.10)
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Flame stretch

In non-uniform flows, the flame may be stretched due to flow shear stress and the domain
geometry. The flame stretch κ impacts its own velocity (Williams, 1985). It is defined by
the fractional rate of change of a flame surface element A (Matalon and Matkowsky, 1982;
Candel and Poinsot, 1990):

κ =
1

A

dA

dt
(2.11)

which can be expressed in a more global way using the shear stress and the curvature defini-
tions:

κ = ∇t · v + sd∇t · n, (2.12)

where∇t is the gradient velocity tangential component (Chung and Law, 1984). In expression
(2.12), the term ∇t · v is the flow shear stress due to the flow non-uniformity called strain
rate and sd∇t · n is due to the flame front curvature.

The flame front speed depends on its stretch. Asymptotic theories have shown under
some conditions that the displacement speed sd and consumption speed sc are linear function
of the stretch κ (Poinsot and Veynante, 2012; Quillatre, 2014):

sd
sL

= 1− Lda
κ

sL
and

sc
sL

= 1− Lca
κ

sL
(2.13)

with Lda and Lca the Markstein lengths for the displacement speed and consumption speed.
Many expressions can be found in the literature for both lengths, for example see Clavin
and Joulin (1983) expressions. However, expression (2.13) is correct only if the stretch is
relatively low, the dynamic viscosity is constant, the Lewis number is close to unity, the
Prandtl number is constant and the activation temperature is high.

2.2 Turbulent premixed flames
The turbulent combustion regimes have to be defined upstream as the developed models
are based on physical analysis of the various length scales and characteristic times involved
in combustion. The diagram of combustion regimes is presented in this section allowing to
characterize the turbulent combustion. To do so, some definitions on characteristic quantities
for turbulence and chemistry are first given. Then, a presentation of relevant models for
turbulent combustion is given before ending this chapter with a brief description of the
chemical models used in literature.

2.2.1 Turbulent combustion regimes

Chemistry is described mainly by one characteristic length scale δ0
L and the time needed to

travel its own thickness (τc defined by (2.10)). Actually it is a very reducing assumption to
considerate complex chemistry with only one space and time scale. Turbulence is described
by different characteristic lengths and times ranging from the largest, the integral scale Lt
and its time scale τt to the smallest one, the Kolmogorov length scale lk and its time scale
τk . To apprehend the wide range of scales at stake, some dimensionless numbers are defined
here after:
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• The flame Reynolds number Ref is defined thanks to the Zeldovitch / Franck-Kamenetski
(ZFK) theory (Zeldovich and Frank-Kamenetskii, 1938):

Ref =
δ0
L sL
ν
≈ 1, (2.14)

with ν = µ/ρ the flow kinematic viscosity.

• The Damköhler number Da quantifies the large scale turbulence effect on flames and
is defined as the ratio of the turbulence integral time to the chemical time:

Da =
τt
τc

=
Lt/v

′(Lt)

δ0
L/sL

, (2.15)

where v′(Lt) is the velocity associated to an eddy of size Lt.

• The Karlovitz number Ka quantifies the Kolmogorov’s scale turbulence effect on flames
and is defined as the ratio of the chemical time scale to the Kolmogorov time:

Ka =
τc
τk

=
δ0
L/sL

lk/v′(lk)
, (2.16)

where v′(lk) is the velocity of a the motion of size lk.

For homogeneous isotropic turbulence (Hinze, 1975), the turbulent energy goes from
the large scales to the smaller scales. The energy transfer from one scale to another is
constant through the different scales and given by the dissipation of the kinetic energy.
This latest is estimated as:

ε =
v′(r)3

r
, (2.17)

where v′(r) is the characteristic velocity of the motion of size r. The smallest scale,
where the inertial and viscous forces compensate leading to a unitary Reynolds number
is the Kolmogorov scale. Its length scale lk arise from expression (2.17) and is given by
(Kolmogorov, 1941):

lk =

(
ν3

ε

)1/4

. (2.18)

Introducing expression (2.17) and relation (2.18) into (2.16) and thanks to the flame
Reynolds number (expression (2.14)), the Karlovitz number may also be recast as
(Poinsot and Veynante, 2012):

Ka =

(
lk
δ0
L

)−1/2 (
v′(lk)

sL

)3/2

=

(
δ0
L

lk

)2

. (2.19)

Therefore, the Karlovitz number compares the flame characteristic length scale to the
size of the smallest turbulent structure.

• The Reynolds number Re is introduced for each turbulent scale. The Reynolds number
represents the ratio of inertia to viscous forces. This number is essential to characterize
the turbulent regime and reads:

Re(r) =
v′(r)r

ν
, (2.20)
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with v′(r) the characteristic velocity of the motion of size r. When r corresponds to
the integral length scale, v′(Lt) is the velocity associated to an eddy of size Lt. The
corresponding Reynolds number is the integral (or turbulent) Reynolds number:

ReT = Re(Lt) =
v′(Lt)Lt

ν
. (2.21)

The largest scales in a turbulent flow are mainly controlled by inertia and are not
affected by viscous dissipation when Re(Lt) >> 1. In such case, the turbulent Reynolds
number can be related to the Damköhler and Karlovitz numbers in the following way:

ReT = Da2 Ka2. (2.22)

These dimensionless numbers allow to distinguish various possible turbulent combustion
regimes (Borghi, 1985; Borghi and Destriau, 1998; Peters, 1986, 1999): laminar combustion,
wrinkled flamelets, corrugated flamelets... The purpose is to better understand the physical
phenomenon at stake behind each regime and thus be able to correctly choose or develop
numerical combustion models for turbulent premixed combustion.

Figure 2.3: Turbulent premixed combustion diagram (Poinsot and Veynante, 2012).

The turbulent premixed combustion diagram made by Peters (1986) summarized up the
different combustion regimes. This diagram is reported in Fig. 2.3 showing in ordinate the
ratio between the fluctuating velocity and the laminar flame velocity, v′(Lt)/sL, and in ab-
scissa the ratio between the integral length scale and the laminar front thickness, Lt/δ0

L. The
different combustion regimes are separated using the Damköhler number Da, the Karlovitz
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number Ka, and the turbulent Reynolds number ReT , but one has to keep in mind that these
limits are only qualitative. The line Ka = 1 corresponds to the Klimov-Williams limit.

Peters (1999) suggests the following repartition for the combustion regimes:

• ReT < 1 - Laminar flame regime: the flow is laminar and the flame front is not
wrinkled. During a deflagration, this regime corresponds to the first moments after
ignition when the flame surface expands without any turbulence.

• ReT > 1 - Turbulent flame regime: the flow is turbulent and the flame is described
such as:

– Ka < 1 - Flamelet regime or thin flame regime: all flames in this zone are thinner
than the smallest turbulent scales. Their inner structure are close to the laminar
flame structure. Two regimes can be distinguished depending on of the ratio
(v′(Lt)/sL) value:

∗ (v′(Lt)/sL) < 1 - Wrinkled flamelet regime: turbulence wrinkles weakly the
flame as turbulence characteristic velocity (v′(Lt)) is smaller than the com-
bustion characteristic velocity (sL). This regime is the closest regime to the
laminar regime.

∗ (v′(Lt)/sL) > 1 - Corrugated flamelet regime: turbulent motion velocities
become larger than laminar flame speed. Then, the largest eddies become
able to wrinkle the flame front up to flame front interactions and may head
to the stretching of the front until rupture leading to flame pockets.

– Ka > 1 and Da > 1 - Thickened wrinkled flame regime or distributed reaction
zones : the smallest turbulent eddies are smaller than the laminar flame thick-
ness and can interact with the preheated zone enhancing heat and mass trans-
fers. Therefore, the preheated zone is thickened but the reaction zone remains
unchanged and keeps its laminar structure.

– Da < 1 - Well stirred reactor regime: here, turbulent motions have shorter char-
acteristic times than the chemical time scale τc. The preheated zone and the
reaction zone are strongly impacted by turbulence which leads to the loss of all
laminar structures.

In our frame work, the turbulent flames of interest (like the accelerated deflagrations
studied in Chapter 6) are most of the time in the flamelet regime or in the distributed
reaction zone regime (Quillatre, 2014; Goulier, 2015). However, the flames are laminar at
the early stages of a deflagration when the flow is at rest during the ignition. Thus, the
combustion model chosen must be able to reproduce the transition from laminar to turbulent
regimes.

For laminar flames, the front speed was described using only diffusive and chemical prop-
erties of the flame. For turbulent flames, quantifying the front speed is more complex as not
only the diffusive and chemical aspects have to be taken into account but also turbulence and
its interaction with the inner structure of the flame. The turbulent speed is then expressed
in function of the combustion regime. In the flamelet regime, for instance, Damköhler ex-
pressed that the front can be modeled locally as a laminar flame which has been stretched
and wrinkled by large turbulent structures leading to an increase of the total flame surface
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AT (Damköhler, 1940). As the flame surface increases, the reactant consumption rate also in-
creases, raising the propagation speed of the mean flame front. Thus, in the flamelet regime,
the turbulent flame speed sT reads:

sT = sL
AT
A
, (2.23)

where A is the mean flame surface and AT the total wrinkled flame surface (both surfaces
are represented in Fig. 2.4). Many expressions have been proposed in the literature for the
turbulent flame speed sT (Bradley et al., 1992a; Zimont, 2000; Driscoll, 2008). The debate
around models for turbulent flame speed is still on going.

Figure 2.4: Sketch of the total wrinkled area AT and the mean flame surface A with the
flamelet turbulent speed ST and the flamelet consumption speed sL (Driscoll, 2008).

2.3 Chemistry modeling in LES
In this section the different methods used for chemistry modeling are stated.

Detailed chemical kinetic mechanisms

Detailed chemical kinetic mechanisms are employed to describe the transformation of re-
actants into products at the molecular level, involving numerous intermediate species. For
example, the GRI mechanism developed by Smith et al. (2012) for methane/air mixture in-
duces 325 reactions and 53 transported species. The number of reactions and the number of
species are higher for larger hydrocarbons chains (Dagaut et al., 1994). This kind of method
is prohibitive for simulation of industrial configurations for several reasons. First, a high num-
ber of grid points in the flame front (about 100 in most of cases) is required to capture all
intermediate and radicals species presenting very stiff profiles. Second, a transport equation
for each species must be solved. Moreover, it is still unclear how to couple detailed kinetic
mechanisms with turbulent combustion models to run large eddy simulations: the models
for closing transport and reactive terms can be different from a species to another and may
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depend of the characteristic time and size scale. To simplify this problem, various strategies
are used to describe chemistry: (i) to consider a global single-step reaction as done in this
work, (ii) to use tabulated chemistry from a reduced number of species, (iii) to use reduced
kinetic schemes. The different types of strategies are shortly described in the following.

Simplified schemes

The number of species and reactions are radically reduced (Peters, 1985; Jones and Lindstedt,
1988; Franzelli et al., 2010). Global reactions are taken into account with Arrhenius-like
law calibrated in order to reproduce some basic features of the flame (usually the laminar
flame speed and the burnt gas state) in a given range of operating conditions (fresh gas
temperature, pressure, equivalence ratio). To extend the validity range of these schemes,
on-the fly adjustment methods of the kinetic parameters (like the activation energy and the
pre-exponential constant) can be used (Franzelli et al., 2010, 2013). The CPU cost being
lower than the detailed chemical mechanism, simplified schemes are widely used in LES for
industrial codes (Granet et al., 2012).

Skeletal schemes

Skeletal schemes are based on detailed mechanisms with the assumption that some reactions
and species are more relevant than others allowing to remove the less impacting reactions.
This method allows to keep details on the phenomena of interest. In order to choose the
less impacting species, a set of targets is chosen. These targets are associated to chemical
features that the chemical mechanism needs to accurately reproduce over a predefined range
of physical conditions. Several methods exist to determine which species have a negligible
contribution to these targets (Turanyi, 1990; Tomlin et al., 1997; Massias et al., 1999; Lu
and Law, 2005; Pepiot-Desjardins and Pitsch, 2008). The CPU costs are lower than detailed
mechanisms but stays too high for industrial purposes as the number of species may remain
high. Moreover, some of the species kept by the skeletal scheme may have extremely short
life span, resulting in very stiff profiles which cannot be resolved on the LES grid. This last
issue leads to the development of analytical schemes.

Analytical schemes

Analytical schemes are based on the skeletal mechanisms with the purpose to avoid species
with very short time span. The Quasi Stationnary State Assumption (QSSA) is applied.
The quasi stationary state (QSS) species reaction rates are removed from the set of species
transported. In order to spot the QSS species, Lovas et al. (2002) developed an algorithm
using the same target method as the skeletal mechanisms. The number of reactions are
reduced with the partial equilibrium assumption (Li et al., 1999; Sànchez et al., 2000; Boivin
et al., 2011). The automation of the reduction processes is performed using mathematical
methods more or less sophisticated. Examples of analytical schemes are PETERS (Peters,
1985; Chen et al., 1996; Seshadri et al., 2001) and LU (Lu and Law, 2008). Analytical
schemes are still quite new but have already showed some promising results in industrial
configurations (Bauerheim et al., 2015).
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Tabulated chemistries

Tabulated chemistries are an alternative to reduced kinetic mechanisms (Pitsch and Steiner,
2000; Fiorina et al., 2005; Galpin et al., 2008; Michel et al., 2008). The combustion process
is described as a set of flame prototypes, each corresponding to a particular characteristic:
a mixture composition, an initial temperature, an initial pressure, ... A lookup table is then
built from a flamelets library obtained from one-dimensional flame simulations performed
using detailed or skeletal schemes. This database then directly allows to estimate all thermo-
chemical variables in function of the various parameters considered (pressure, temperature,
fresh gas composition, ...). Among these tabulation techniques, we can mention the Intrinsic
Low Dimensional Manifold (IDLM) (Maas and Pope, 1992), the Flame prolongation of ILDM
(FPI) (Gicquel et al., 2000; Fiorina et al., 2005), the Flamelet generated manifold (FGM)
(Van Oijen and De Goey, 2000; Van Oijen et al., 2016), the REDIM (Bykov and Maas,
2007) or the ICE-PIC (Ren et al., 2006) methods. A major issue associated to tabulation
techniques is their extension to cases where the number of controlling variables is drastically
increased. Generating and handling a lookup table can be difficult and can lead to memory
problems on massively parallel machines, where the table must be stored on each core. Ad-
ditionally, determining the most adequate flame prototype can be a complicated task when
the combustion regime is unknown.

In this work, a global single-step reaction is chosen to model chemistry but simplified
schemes or even the recently developed analytical mechanisms could also be retained.

2.4 LES models for turbulent premixed combustion
In the following, numerical models for combustion available in the literature and the ones
implemented in CALIF3S - P2REMICS are presented. For the chemistry modeling, Appendix
2.3 presents the available models in the literature and the approach chosen for the chemical
reaction.

Usually a laminar flame thickness is about 0.1 mm to 1 mm and need several grid points
in order to be correctly resolved. Moreover, the reaction rate has important values variations
in a thin zone which makes it even harder to compute, thus, most of the reaction rate
contribution takes place at the subgrid scale and require modelling.

In Section 1.3.2, the filtered Navier-Stokes equations for compressible reactive flows are
presented, but the SGS terms modelling related to combustion is not discussed. The aim of
this section is to present the different combustion subgrid models available in the literature.

2.4.1 EBU model

The Eddy-Break-Up (EBU) model (Spalding, 1971, 1976) has been developed for RANS
approaches before being extended to LES (Düsing et al., 2006; Fureby, 2006). This model
is based on the simple idea that chemistry does not play any explicit role while turbulent
mixing controls the reaction rate.

This model is devoted to perfectly premixed combustion. By considering a simple one
step, irreversible reaction with adiabatic, constant pressure conditions and unitary Lewis
number, the mass balance equations for chemical species are replaced by a progress variable
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transport equation :

∂t(ρ c̃) + div(ρ c̃ ṽ) + div [ρ (ṽ c− ṽ c̃)] + div(jc) = ω̇c, (2.24)

where the progress variable c is defined by equation (2.3), jc and ω̇c stand respectively for
the diffusive flux and the reaction rate. The species diffusion rates are supposed to be the
same for each species.

The EBU model is based on a phenomenological analysis of turbulent combustion assum-
ing high Reynolds and Damköhler numbers. The reaction rate is expressed with the following
relation (Spalding, 1976, 1971):

ω̇c = cEBU
ρ

τSGS
c̃(1− c̃). (2.25)

with cEBU a constant defined by the user.

The EBU has the same known deficiencies observed in the RANS context: reaction rate
independent of chemical reaction, overestimation of the reaction rate in zones with strong
shears... Moreover, the model constants seem to be strongly dependent on various parameters
(flow conditions, mesh size). Finally, this model is not able to reproduce the laminar to
turbulent transition, as encountered in the early stages of accelerated deflagrations (studied
in this work).

2.4.2 Probability density function models

The probability density function (PDF) methods are based on the statistical properties of
the intermediate states of the flame front. A probability density function P (Ψ∗,x, t) is the
probability that an unknown Ψ (for example, the progress variable or the fuel mass fraction)
takes values in the range of [Ψ∗ −∆Ψ∗/2; Ψ∗ + ∆Ψ∗/2] at a given position and time.

The information contained in a PDF allows to describe the combustion phenomenon. The
reaction rates can be found with the same approach. For instance, in LES, for the case of a
global one step reaction and a unitary Lewis number, the filtered reaction rate is given by:

ω̇Ψ =

∫ 1

0

ω̇Ψ(Ψ∗)P (Ψ∗,x, t) dΨ∗. (2.26)

This stochastic description can thus contain all the required information to describe unsteady
reacting flow fields. The difficulty lays in the PDF computation. Two main methods exist
(Pope, 1990): solve a balance (transport) equation for the PDF of presume the PDF shape.
Elements about the physics, mathematics, numerical details and applications of the trans-
ported PDF method may be found in the review of Haworth (2010). This is a complex
approach using statistical tools, thus, the method can require long CPU run times. In ad-
dition, these models for transported PDF seem to be more efficient for turbulent diffusion
flames than for premixed flames such as our cases of interest. The second method, the pre-
sumed PDF approach is the most common approach. Many presumed PDF shapes have been
developed in the literature (Borghi and Destriau, 1998; Bray et al., 1989; Janicka and Sadiki,
2004). The most spread PDF used is the β-PDF function (O’Brien, 1980; Pope, 1985; Cook
and Riley, 1994). However, as shown by Fiorina et al. (2010), the β-PDF formulation method
does not ensure the conservation of the laminar flame speed in the absence of turbulence,
and therefore is unsuitable when the flame wrinkling is totally resolved, as in the early stages
of accelerated deflagrations.
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2.4.3 Turbulent Flame-speed Closure (TFC) models

In the subgrid scale turbulent flame speed closure models, the combustion process is described
as a thin reaction surface travelling in the flow, picking a closure law for the flame front
velocity, and computing its position by solving an ad-hoc equation, which may be obtained
by a level-set approach (G-equation) or by solving a progress variable transport equation
(2.24) (Flohr and Pitsch, 2000; Pitsch, 2006; Knudsen and Pitsch, 2008). In the level-set
approach, the flame front is supposed to be located at the isovalue surface G = G∗ of a scalar
function G obeying the following equation (Kerstein et al., 1988; Kim et al., 1999):

∂t(ρ G̃) + div(ρ ṽ G̃) = ω̇G. (2.27)

In both cases (progress variable formulation (2.24) or G-equation (2.27)), the term ω̇Ψ, with
Ψ = G or Ψ = c according to the formulation used, is modelled as a convection term and
reads:

ω̇Ψ = ρu sT |∇Ψ̃| (2.28)

with ρu is the density of fresh gas and sT the turbulent flame speed. The main difficulty
in this approach is to model the turbulent flame speed sT . Many correlations exists in the
literature based on experimental measurements (Bradley et al., 1992a; Bray, 1990; Lipat-
nikov and Chomiak, 2002) or obtained from theoretical analysis based on the assumption
that combustion is in the “thickened flamelet” regime (Flohr and Pitsch, 2000; Pitsch, 2006;
Knudsen and Pitsch, 2008). These correlations depend on the laminar flame speed and on
the subgrid scale turbulent intensity v′(Lt).

TFC approach is a popular method with LES for premixed combustion, because of its
simplicity. The drawback is that this approach is sensitive to the turbulent flame speed cor-
relation used. Most of these latest, used usually in RANS, turbulent flame speed correlation
are directly used in LES by replacing the root mean square velocity by the subgrid scale tur-
bulent intensity without further justifications. In addition, the results display a large scatter
according to the correlation.

2.4.4 Flame surface density (FSD) models

The FSD approach is based on the filtered progress variable balance equation (2.24). How-
ever, the reaction rate term summed with the diffusion term are rewritten using a cinematic
approach:

∂t(ρ c̃) + div(ρ c̃ ṽ) + div [ρ (ṽ c− ṽ c̃)] = −div(jc) + ω̇c = ρ sd|∇c|, (2.29)

with sd the local displacement speed and the term ρ sd|∇c| the flame front displacement. By
taking the assumption of flamelet regime, this latter may be written as:

ρsd|∇c| ≈ ρusLΣ, (2.30)

with Σ the subgrid scale flame surface density (the flame surface density per unit volume
at the subgrid scale level). Various closing models are available in literature for Σ. Some
models are based on algebraic expressions (Boger et al., 1998; Boger and Veynante, 2000),
similarity models (Knikker et al., 2004) or by the resolution of a balance equation (Boger
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et al., 1998; Hawkes and Cant, 2000; Richard et al., 2007). Several closures for the wrinkling
factor Ξ∆ have been developed for the past two decades. In Section 2.4.6 some of the main
models developed are stated.

Even though the balance equation involved in the FSD method seems close to the G-
equation balance equation, the FSD method has the advantage to transport physical scalars
(c and Σ) which can be recovered with DNS or experimental measurements.

2.4.5 Artificially thickened flames: TFLES

Figure 2.5: DNS of flame turbulence interactions. Reaction rate and vorticity fields are su-
perimposed. (left-side) reference flame; (right-side) flame artificially thickened by a factor
F = 5. Because of the change in the length scale ratio Lt/δ0

L, combustion/turbulence inter-
action is changed and the thickened flame is less wrinkled by turbulence motions. This effect
can be parametrized using a subgrid scale model (Poinsot and Veynante, 2012).

The thickened flame model for large eddy simulation (TFLES) was originally proposed by
Butler and O’Rourke (1977). The flame front is artificially thickened in order to be resolved
on the numerical mesh while keeping the same laminar speed sL. Simple theories of laminar
premixed flame (Williams, 1985) allow to express the laminar flame speed sL and the laminar
flame thickness δ0

L as:

sL ∝
√
Dω̇, δ0

L ∝
D

sL
∝
√
D

ω̇
, (2.31)

with D the diffusivity and ω̇ the reaction rate. Then, in order to increase the flame thickness
by a factor F while keeping the same laminar flame speed, the diffusion coefficient must
become FD and the reaction rate ω̇/F . This is a property of the equations governing the
steady propagation of a planar premixed laminar flame. A simple change of variable shows
that multiplying the diffusion and dividing the reaction rate by a factor F increases the flame
thickness of F while sL stays the same.

The thickening factor F is a model parameter adjusted to ensure that the grid is sufficient
to resolve the thickened flame front. Typically F is calculated as a function of the laminar
flame thickness δ0

L and of the characteristic cell size ∆x such as F = n∆x/δ
0
L, with n the

number of cells needed to resolve the flame front.
Unfortunately, when a flame is thickened the interactions between chemistry and turbu-

lence are changed (Colin et al., 2000). Indeed, the Damköhler number Da, given by equation
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(2.15), is decreased by a factor F and becomes Da/F changing the turbulent and chemical
time scales ratio. In addition, eddies of size smaller than F δ0

L cannot wrinkle the thickened
flame front. The other eddies affect the thickened flame front, but in a different way compared
to the non-thickened flame. As a result, the thickened flame is less wrinkled than the real
flame; the flame surface and the reaction rate are thus underestimated. A wrinkling factor
Ξ∆, is introduced to compensate the corresponding reduction of flame surface (Angelberger
et al., 1998; Colin et al., 2000). The filtered species balance equations become:

∂tρỸk + div(ρỸkṽ) + div
(
Ξ∆F jk

)
= Ξ∆

ω̇k
F
, (2.32)

Analogously, the filtered sensible energy balance reads:

∂t(ρ ẽ) + div(ρ ṽ ẽ) + p div(ṽ) + div(Ξ∆F q) = Ξ∆
ω̇T
F

+ τ (ṽ) :∇ṽ + εv. (2.33)

where the SGS viscous dissipation εv is expressed as (Garnier et al., 2009):

εv = τ (v) :∇v − τ (ṽ) :∇ṽ. (2.34)

This model compensates the subgrid flame surface lost by increasing the flame speed: equa-
tion (2.32) transports a flame front of thickness Fδ0

L at a subgrid scale turbulent velocity of
Ξ∆ sL. Let notice that the species diffusive fluxes in (2.32) (and analogously the heat diffusive
flux in (2.33)) can be rewritten as:

div
(
Ξ∆F jk

)
= div(F jk) + div

[
(Ξ∆ − 1)F jk

]
where the first term at the right hand side is the laminar diffusive term and the second one
models the unresolved transport diffusive term. Several closures for Ξ∆ have been developed
for the past two decades (see Section 2.4.6).

The TFLES method is easy to implement. The model correctly degenerates towards
laminar combustion in the absence of turbulence where Ξ∆ = 1, which is an essential char-
acteristic for the simulations of the flows of interest in this work. Moreover, the transport of
each species is solved, which allows a certain flexibility of the model. For example, as future
prospects, it would be possible to extend it to mixtures with non-unit Lewis number as well
as to more complex chemistry under some assumptions (Avdić et al., 2017; Filho et al., 2018).
For these reasons, the TFLES model has been retained for this work.

2.4.6 Subgrid wrinkling closures

The subgrid wrinkling factor being present in various models, this section presents some of
the main closures.

Colin et al. (2000) wrinkling factor

Inspired by the work of Meneveau and Poinsot (1991) on the stretching of flames in the
flamelets regime, Colin et al. (2000) have developed a wrinkling factor model thanks to
direct numerical results of flame-vortex interactions combined with a spectral analysis. The
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wrinkling factor is derived by assuming an equilibrium between turbulence and subgrid flame
surface and is written:

Ξ∆ = 1 + α
∆

sL
Γ

(
∆

δ0
L

,
v′∆
sL

)
v′∆
sL

(2.35)

with ∆ the combustion filter size, v′∆ the subgrid scale turbulent velocity and α a model
parameter. The efficiency function Γ describes the ability of vortices to wrinkle the flame
front at scale ∆. The following expression for Γ is given by Colin et al. (2000):

Γ

(
∆

δ0
L

,
v′∆
sL

)
= 0.75 exp

[
− 1.2

(v′∆/sL)0.3

] (
∆

δ0
L

) 2
3

. (2.36)

The model constant α is estimated in order to recover the Damköhler theory (i.e. Ξ ≈
1 + v′/sL) when the flame front is wrinkled by all the turbulent motions, from lk to Lt. It
reads:

α = β
2 ln(2)

3 cms [Re
1/2
T − 1]

(2.37)

where β is a model constant of the order of unity, cms = 0.28 and the turbulent Reynolds
number ReT is given by (2.22).

The wrinkling factor is highly dependent on the subgrid scale turbulent intensity, which
is difficult to quantify. Different approaches exist in order to evaluate v′∆. Here, two methods
are presented:

• A first approach would be to estimate v′∆ from the subgrid scale turbulent viscosity
provided by the LES model. From the Smagorinsky’s model it can be written:

v′∆ =
µSGS
ρ cs∆

= cs ∆|S̃|. (2.38)

This approach has two major drawbacks. First, the Smagorinsky’s model is derived to
recover the right amount of kinetic energy dissipation and is not designed to estimate
velocity fluctuation. Second, in absence of turbulence, the laminar flame speed is not
recovered because the strain |S̃| is dominated by the thermal expansion. This approach
is thus not suitable, leading to the second method for quantifying v′∆.

• The second method, introduced by Colin et al. (2000), is an alternative approach based
on the rotational part of the local average resolved velocity field v:

v′∆ = c2 ∆3
x |∇2(∇× v)| (2.39)

where ∆x stands for the mesh step and the model constant estimated to cs = 2.

Charlette et al. (2002a) wrinkling factor

Charlette’s wrinkling factor computation is based on the same assumptions as Colin et al.
(2000). Actually Charlette et al. (2002a) have used the flame-vortex DNS of Colin et al.
(2000) but with a different integration method for the efficiency function Γ in order to avoid
the prescription of the turbulent Reynolds number and correct some nonphysical behaviors
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at the limits. Charlette’s model retains a fractal power law (Klimenko, 1998) for the he
wrinkling factor:

Ξ∆ =

(
1 + min

[
∆

δ0
L

,Γ

(
∆

δ0
L

,
v′∆
sL
,Re∆

)
v′∆
sL

])β
(2.40)

where ∆ is the combustion filter size, Γ an efficiency function and Re∆ = v′∆ ∆/ν the SGS
Reynolds number. The exponent β is an a priori unknown parameter. It is related to the
fractal dimension of the flame D when β ≤ 1 such as β = D − 2. Thus, if β = 0, D = 2,
therefore the flame is not wrinkled by turbulent motions, i.e. the flame is laminar and Ξ∆ = 1.
The subgrid scale velocity v′∆ is calculated the same way as for the Colin et al. (2000) model.

Charlette et al. (2002a) propose the fitted expression for Γ:

Γ

(
∆

δ0
L

,
v′∆
sL
,Re∆

)
=
[
((f−au + f−a∆ )−1/a)−b + f−bRe∆

]−1/b
, (2.41)

with

fu = 4

(
27Ck
110

)1/2(
18Ck

55

)(
v′∆
sL

)2

, (2.42)

f∆ =

[
27Ck π

4/3

110
×

((
∆

δ0
L

)4/3

− 1

)]1/2

, (2.43)

fRe∆
=

[
9

55
exp

(
−3

2
Ck π

4/3 Re−1
∆

)]1/2

Re
1/2
∆ , (2.44)

and Ck = 1.5 the universal Kolmogorov constant. The exponents a and b control the stiffness
of the transitions between the two asymptotic behaviors and are expressed as:

a = 0.60 + 0.20 exp

[
−0.1

(
v′∆
sL

)]
− 0.20 exp

[
−0.01

(
∆

δ0
L

)]
and b = 1.4. (2.45)

Other efficiency functions have been developed more recently (Bougrine et al., 2014; Thies-
set et al., 2017) based on the same approach as Charlette et al. (2002a).

When the turbulent intensity is weak (i.e. ∆ < δ0
L) expression (2.40) is recast:

Ξ∆ =

(
1 +

∆

δ0
L

)β
. (2.46)

Wang et al. (2011) have proposed a correction to expression (2.40) in order to the recover
the fractal expression:

Ξ∆ =

(
∆

δ0
L

)β
, (2.47)

in case of weak turbulent intensity. Details of Wang et al. (2011) wrinkling factor expression
are given later in this section.
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Charlette et al. (2002b) dynamic wrinkling factor

As shown in the previous section the constant model β is related to the fractal dimension of
the flame. Then, it can depend on various parameters such as turbulent intensity, Reynolds
number, thermodiffusive property of the flame, filter size... Considering a constant value for
all the configurations seems too restrictive for a parameter which depends on the physics
of the flame. Moreover, the wrinkling factor developed by Charlette et al. (2002a) is based
on the assumption of an equilibrium between turbulence and flame surface which might be
no longer true for transiting phenomena as explosions. Therefore, Charlette et al. (2002b)
developed an extension of the Germano-like procedure (Germano et al., 1991) to turbulent
combustion in order to compute the model parameter β in function of time and space. This
approach allows an adaptive model to take into account the turbulence increase or transient
phenomena.

Following Charlette et al. (2002b), the generic form of the filtered reaction rate for all the
combustion models involving a subgrid wrinkling factor presented in Section 2.4 reads:

ω̇ =
Ξ∆

∆
W∆(Q̃) (2.48)

whereW∆(Q̃)/∆ is the resolved reaction rate, estimated from filtered quantities Q̃ (for exam-
ple the filtered species mass fractions, the filtered temperature, the filtered progress variable)

and ∆ the combustion filter size. A test filter of width
︷︸︸︷
∆ larger than the combustion filter

size ∆ is introduced. The principle of the dynamic method is to compare the test filtered
resolved reaction rate to the reaction rate estimated at the test-filter level:︷ ︸︸ ︷

Ξ∆

∆
W∆(Q̃) =

Ξ∆̂

∆̂
W∆̂(

︷︸︸︷
Q̃) (2.49)

where ∆̂ is the size of the effective filter obtained by convoluting two filters of size ∆ and
︷︸︸︷
∆.

Assuming that these two filters are Gaussian filter operators, the effective filter size is given
by ∆̂ = γ∆ with

γ =

[
1 + (

︷︸︸︷
∆ /∆)2

]1/2

. (2.50)

Charlette et al. (2002b) proposed a weak formulation of (2.49) by averaging over a domain
large enough to eliminate nonphysical fluctuations (〈.〉 operator):〈︷ ︸︸ ︷

Ξ∆

∆
W∆(Q̃)

〉
=

〈
Ξ∆̂

∆̂
W∆̂(

︷︸︸︷
Q̃)

〉
. (2.51)

The meaning of relation (2.51) is that the total reaction rate averaged on a given domain
should be the same when estimated from resolved and test-filtered scales. This last equality
is schematized in Fig. 2.6 where the subgrid scales represented by the red part corresponds
to the terms in the left side of equation (2.51) and the scales represented by the test-filters
size represented by the green + red part correspond to the scales in the right side of equation
(2.51). The green part is directly resolved on the mesh grid and is used to model the red
part (subgrid scales).
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Introducing the wrinkling factor expression (2.40) in (2.51), yields:

〈︷ ︸︸ ︷(
1 + min

[
∆

δ0
L

,Γ

(
∆

δ0
L

,
v′∆
sL
,Re∆

)
v′∆
sL

])β
W∆(Q̃)

∆

〉

=

〈(
1 + min

[
γ∆

δ0
L

,Γ

(
γ∆

δ0
L

,
v′γ∆

sL
,Reγ∆

)
v′γ∆

sL

])β
Wγ∆(

︷︸︸︷
Q̃)

γ∆

〉
.

Assuming that the wrinkling factors Ξ∆ and Ξγ∆ are uniform within the averaging volume
and that v′∆ and W∆(Q̃) are uncorrelated, β is given by:

β =

log

(
γ 〈
︷ ︸︸ ︷
W∆(Q̃)〉/〈Wγ∆(

︷︸︸︷
Q̃)〉

)

log


1 + min

[
γ∆

δ0
L

,Γ

(
γ∆

δ0
L

,
v′γ∆

sL
,Reγ∆

) 〈v′γ∆〉
sL

]
1 + min

[
∆

δ0
L

,Γ

(
∆

δ0
L

,
v′∆
sL
,Re∆

)
〈v′∆〉
sL

]


(2.52)

The exponent β obtained with the previous relation is then injected in expression (2.40).

Figure 2.6: Germano-like procedure: resolved scales are used to model subgrid scales.

Wang et al. (2011) dynamic wrinkling factor

Wang et al. (2011) slightly modified Charlette et al. (2002a) expression (2.40) according to:

Ξ∆ =

(
1 + min

[
max

(
∆

δ0
L

− 1, 0

)
,Γ

(
∆

δ0
L

,
v′∆
sL
,Re∆

)
v′∆
sL

])β
(2.53)
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with ∆ ≥ δ0
L. This modification enables to maximize the wrinkling factor Ξ∆ for large

turbulence intensities by the following fractal formulation:

Ξ∆ =

(
∆

δ0
L

)β
,

and to recover:
Ξ∆ = 1 when ∆ < δ0

L.

This formulation is found to be valid most of the time as shown by Veynante and Moureau
(2015) using direct numerical simulations. In this case, Charlette et al. (2002a) expression is
said saturated.

Finally, Wang et al. (2011) propose to compute the parameter β dynamically by solv-
ing the following expression, avoiding thus the estimation of turbulence intensities at both,
combustion filter scale v′∆ and test filter scale v′γ∆:〈︷ ︸︸ ︷(

∆

δ0
L

)β
W∆(Q̃)

∆

〉
=

〈(
γ∆

δ0
L

)β
Wγ∆(

︷︸︸︷
Q̃)

γ∆

〉
, (2.54)

leading to the following expression for β:

β = 1 +

log

(
〈
︷ ︸︸ ︷
W∆(Q̃)〉/〈Wγ∆(

︷︸︸︷
Q̃)〉

)
log γ

. (2.55)

Wang et al. (2012) dynamic wrinkling factor

Wang et al. (2012) applied the previous dynamic model in the context of the Flame Surface
Density model writing: 〈︷ ︸︸ ︷(

∆

δc

)β
|∇c|

〉
=

〈(
γ∆

δc

)β
|∇

︷︸︸︷
c |

〉
, (2.56)

where |∇c|, Ξ∆ |∇c|, |
︷ ︸︸ ︷
∇c | and Ξγ∆ |∇

︷︸︸︷
c | measure the resolved and total flame surfaces at

combustion and test filter scales respectively and δc is the inner cut-off scale (Charlette et al.
(2002a) related the inner cut-off scale to the laminar flame thickness).

Hence, solving (2.56) leads to the following expression for β:

β =

log

(
〈
︷︸︸︷
|∇c| 〉 /〈 |∇

︷︸︸︷
c | 〉

)
log(γ)

. (2.57)

The relation (2.57) involves unweighted quantities instead of Favre (or mass-weighted)
ones. Veynante and Moureau (2015), using a priori analysis and DNS results of Moureau
et al. (2011) on the lean-premixed PRECCINSTA burner, show that expression (2.57) can
be approximated by:

β ≈
log

(
〈
︷︸︸︷
|∇c̃| 〉 / 〈 |∇

︷︸︸︷
c̃ | 〉

)
log(γ)

, (2.58)
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and propose to use Gaussian filters for the average operator 〈.〉 because it is easier to im-
plement in case of unstructured grids and parallel solver utilisation. This Gaussian operator
has a filter size denoted by ∆avg with ∆avg >

︷︸︸︷
∆.

Mouriaux et al. (2016) dynamic wrinkling factor correction

In order to lighten the notation, expression (2.58) is rewritten:

β ≈
log
(

Σ1/Σ2

)
log(γ)

, (2.59)

with Σ1 = 〈
︷ ︸︸ ︷
|∇c̃| 〉 and Σ2 = 〈 |∇

︷︸︸︷̃
c | 〉.

Mouriaux et al. (2016) validated and improved the dynamic model studied by Veynante
and Moureau (2015). They show that interactions of flame fronts and interaction with solid
boundaries can be problematic, inducing large nonphysical values of the β parameter.

Indeed, when the resolved flame front is close to the computational domain boundary
(i.e. at a distance d < ∆̂), the stencil of the test-filtering operator is truncated. Then, the
gradient operator does not commute anymore with the filtering operator leading to β 6= 0 for
laminar flame near the domain boundary. Therefore, the subgrid model is slightly modified

by replacing Σ2 in (2.59) by Σ2,new = 〈 |
︷︸︸︷
∇c̃ | 〉 in the entire domain. With this formulation,

Σ1 = Σ2,new near the boundary, because operators norm and test-filter commute in the 1D
planar case (Mouriaux et al., 2016). Therefore β = 0 leading to a unitary wrinkling factor
close to the computational domain boundaries. Far to the boundary (i.e. at a distance
d > ∆̂), when the mesh is regular, Σ2 = Σ2,new and the wrinkling factor Ξ∆ is unchanged.
For non-regular mesh, however, practical tests made by Mouriaux (2016) evidenced that
Σ2 ≈ Σ2,new. That far, the wrinkling factor exponent is rewritten:

β ≈
log
(

Σ1/Σ2,new

)
log(γ)

=

log

(
〈
︷︸︸︷
|∇c̃| 〉 / 〈 |

︷︸︸︷
∇c̃ | 〉

)
log(γ)

, (2.60)

The second improvement of the Mouriaux et al. (2016) dynamic model is developed to fix

nonphysical values in case of front interactions (Mouriaux et al., 2016; Mouriaux, 2016). This
usually happens when the flame is fully turbulent and wrinkled leading to front interactions.
More specifically, when several flame fronts interact at a scale lower than ∆̂,

︷︸︸︷
c̃ may reach a

local minimum, leading to |∇
︷︸︸︷
c̃ | = 0 (even if c̃ is not null nor equal to unity). This leads to

an ill-posed formulation of the SGS wrinkling factor at the effective scale ∆̂:

Ξ∆̂ =
|
︷ ︸︸ ︷
∇c̃ |

|∇
︷︸︸︷
c̃ |
.

Moreover, as pointed by Mouriaux et al. (2016), Σ1 >> Σ2, leading to abnormal high values
of Ξ∆. To overcome this difficulty, a sensor denoted by ζ is introduced in order to detect
flame front interactions and defined as:

ζ =

∣∣∣∣ 1 if n.N < 1− ε
0 elsewhere
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where n = −∇c̃/|∇c̃| and N = −
︷︸︸︷
∇c̃ /|

︷︸︸︷
∇c̃ | are the normal vectors to the resolved flame

front at scale ∆ and ∆̂ respectively and ε is a model parameter (usually set to 0.1). As shown
in Fig. 2.7-(a), fronts do not interact at scale ∆̂ when both normal are collinear. However,
when the fronts interact at scale ∆̂ the blue zone (test-filtering zone) in Fig. 2.7-(b) contains
more than one front separated by a distance inferior than ∆̂. Therefore, n and N are not
collinear anymore leading to a unitary value for the sensor ζ.

Figure 2.7: Sketch of flame fronts. Red surface: surface estimated at the combustion filter
∆ scale; Blue surface: surface estimated at the effective filter ∆̂ scale; Black circle: effective
filter ∆̂. (a) Situation without front interactions at scale ∆̂; (b): Situation with flame front
interactions (Mouriaux et al., 2016).

The flag ζ is then test-filtered as flame front interactions induce high values of Ξ∆ over
a zone of characteristic length ∆̂. The subgrid model is then corrected by replacing Σ2 =

〈 |
︷︸︸︷
∇c̃ | 〉 in (2.59) by:

Σ2,corr =

〈
(1− ζ̂) |

︷︸︸︷
∇c̃ |+ ζ̂ Σ3

〉
. (2.61)

with Σ3 =
︷ ︸︸ ︷
|∇c̃|n.N . This expression shows that in case of front interactions, i.e. when

ζ̂ ≥ 0, Σ2,corr tends toward Σ3, but Σ3 does not approach 0 unlike Σ2. When there is no front

interactions, Σ2,corr tends toward |
︷︸︸︷
∇c̃ | allowing to recover expression (2.59). Therefore the

wrinkling factor exponent is finally written:

β ≈
log
(

Σ1/Σ2,corr

)
log(γ)

=

log

(〈︷︸︸︷
|∇c̃|

〉
/

〈
(1− ζ̂) |

︷︸︸︷
∇c̃ |+ ζ̂

︷ ︸︸ ︷
|∇c̃|n.N

〉)
log(γ)

, (2.62)

Mouriaux et al. (2016) have shown for a 1D laminar flame, that with this improvement,
Σ2,corr profile does not tend toward zero and stays close to the profile of Σ3 = Σ1 even in case
of front interactions. Therefore, the wrinkling factor values have been significantly lowered
in case of fronts interactions allowing to avoid nonphysical values of the β parameter. The
same conclusions are obtained in more complex cases.

61



Because of its simplicity and its good behavior in case of transiting regimes, the Vey-
nante and Moureau (2015) wrinkling factor expression combined to Mouriaux et al. (2016)
correction was chosen for this work and implemented in the CALIF3S - P2REMICS software.

Inner cut-off length scale

An inner cut-off scale was already introduced in the Charlette et al. (2002b) and in the Wang
et al. (2011) formulations and modelled as the laminar flame thickness δ0

L. In practice, this
parameter is difficult to estimate and modeling the inner cut-off length scale remains an
open question. The inner cut-off scale has been first estimated to δc = 3δ0

L by Knikker et al.
(2002). In practical simulations of the growth of a flame kernel, Wang et al. (2012) found
that reducing the inner cut-off scale to δc = 2δ0

L modifies β and Ξ∆ values but not the total
flame surface, which is the quantity of physical interest. Refined models for δc may be found
in literature (Gülder and Smallwood, 1995). More recently, Proch et al. (2017) has developed
a model for estimating the inner cut-off scale. In practical simulations, an overestimation
(respectively underestimation) of δc would induce an underestimation (overestimation) of the
wrinkling factor for a given β, leading to a lower (higher) subgrid scale turbulent flame speed,
a larger (lower) resolved flame front wrinkling and a higher (lower) β and wrinkling factor
values (Veynante and Moureau, 2015). This self-adjusting mechanism has been investigated
by Volpiani (2017) and more recently by Veynante (2021). Furthermore,

In practice, it is commonly assumed to be proportional to the laminar flame thickness δ0
L.

This choice is made in this work with δ0
L the thermal thickness of the flame front.

2.5 Conclusion
An overview of premixed laminar flames has been first presented in order to define essen-
tial parameters such as characteristic flame thickness, speed and stretch. In a second time,
turbulence characteristic features have been introduced alongside fundamental dimensionless
numbers for turbulent combustion. All these definitions served at setting the Peters (1999)
repartition of the combustion regimes. This study allowed to frame the deflagration phenom-
ena in the repartition combustion regimes. Here, the numerical combustion model has to be
able to reproduce transiting phenomena from laminar to turbulent flame in the flamelet or
distributed reaction zone regimes.

In this work, turbulent premixed flames are modelled with the LES approach. Among the
different models described in this chapter, the numerical choices made here are summarized
in Table 2.1.

Chemistry Global one-step reaction

Combustion Artificially thickened flame model (Butler and O’Rourke, 1977)

Subgrid wrinkling Veynante and Moureau (2015) dynamic formalism

closure with Mouriaux et al. (2016) correction

Table 2.1: Modeling choices for turbulent premixed combustion used in this work.
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Part II

A second order numerical scheme for
large-eddy simulation of compressible

reactive flows
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Chapter 3

A quasi non-dissipative second-order
explicit MAC scheme for the
compressible Navier-Stokes equations

In the context of large eddy simulation of turbulent flows, the control of kinetic energy seems
to be an essential requirement for a numerical scheme. We propose in this chapter a for-
mally second order non-dissipative scheme dedicated to the numerical simulation of the fil-
tered Navier-Stokes equations for compressible flows. The spatial discretization is staggered
and based on the so-called Marker-And-Cell (MAC) scheme. Time discretization is performed
with the Heun scheme. For the energy balance equation, the scheme uses a discrete form of
the conservation of the sensible energy; this relation includes a numerical corrective term, to
allow the scheme to compute correct shock solutions in the Euler limit. A MUSCL-like tech-
nique is used for convection operators of the mass and the sensible energy balance equations.
The scheme is shown to preserve the stability properties of the continuous problem under
CFL condition ( i.e. the positivity of the density and of the internal energy, at least when no
numerical corrective terms are added). A kinetic energy conservation identity at discrete level
is proved (up to remainder terms, which are shown to be of second order in time). Finally, a
total energy balance for the scheme is established, which may be made conservative by adding
corrective terms to the sensible energy balance, for instance if one wants to compute shock
solutions. The good behaviour of the scheme is assessed on some numerical tests.

3.1 Introduction
Large-eddy simulation (LES) has gained a great success in simulating practical flows where
the Reynolds numbers are usually very high. In such a method, the large scale fluid motions
are computed explicitly from the filtered Navier-Stokes equations while small-scale effects are
modeled. The aim of this chapter is to propose a formally second order scheme, with as low
kinetic energy dissipation as possible, dedicated to the numerical simulation of the filtered
Navier-Stokes equations for compressible non reactive flows.

The space discretization is staggered, and works on structured grids using the so-called
Marker-And-Cell (MAC) scheme (Harlow and Amsden, 1971; Harlow and Welch, 1965): the
scalar variables are approximated at the cell centers and the normal velocity at the face cen-
ters. Time-stepping is segregated, in the sense that balance equations are solved successively,
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and each step is explicit: apart from the time derivative, all terms involve only known quan-
tities and no linear system solution is required. The staggered arrangement of the unknowns
makes difficult the definition of the fluxes through the solution of a Riemann problem: in-
deed, if the unknowns may be considered as piecewise functions, they are not associated to
the same partition of the computational domain (i.e.scalars and normal velocity are com-
puted separately). To preserve the positivity of the density and the sensible energy, we thus
rely on another technique, which consists in: (i) solving the sensible energy balance instead
of the total energy balance and (ii) deriving discretizations of the mass and sensible energy
balance which preserve by construction the positiveness of the unknowns. In fact, it turns out
that this may be reached by a simple upwinding (here, second order, i.e. with a MUSCL-like
technique) of the convection terms with respect to the material velocity. As a by-product,
we also obtain a very simple expression of the fluxes, well suited to high-performance com-
puting. In addition, this choice avoids building an approximation of the total energy which,
for staggered discretizations, is a "composite" variable combining quantities discretized on
the cells and at the faces. Of course, a raw discretization of the (non-conservative) sensible
energy balance can lead to non-consistent solutions in the inviscid case (precisely speaking,
predictions of shocks which do not satisfy the correct Rankine-Hugoniot jump conditions);
this difficulty may be overstepped by adding, a corrective term in the discrete sensible energy
balance equation (Herbin et al., 2014, 2018, 2021), which may be seen as the counterpart of
the dissipation generated by the momentum balance numerical diffusion. A class of schemes
combining these ingredients is implemented in the open-source software platform CALIF3S
(2021) developed at the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN).
In this context, such staggered schemes present another major advantage, namely the possi-
bility to build unconditionally stable variants through a pressure correction technique and a
partial implicitation of the fluxes (Herbin et al., 2014; Grapsas et al., 2016) (by opposition
with Riemann solvers, where the high nonlinearity of the fluxes makes difficult the devel-
opment of an implicitation preserving the positiveness properties). In addition, since the
staggered discretization satisfies a discrete inf-sup stability conditions, these schemes natu-
rally boil down to usual algorithms for incompressible flows when the Mach number tends
to zero; a rigorous proof of this asymptotic preserving property for barotropic flows is given
in Herbin et al. (2017) (see Appendix 3.C for more details). For turbulent flows modelling,
such semi-implicit variants may be useful to implement a solver building a bridge from Large
Eddy Simulation models to statistical models, by hybrid (DES for example) approaches.

First-order explicit schemes based on the above described arguments have been built
(Herbin et al., 2014, 2018), then extended to higher orders in space by a MUSCL-like tech-
nique in Gastaldo et al. (2018). The task undertaken here is to build a second-order time
scheme, by embedding the latter scheme (extended to Navier-Stokes equations by adding an
explicit-in-time discretization of the diffusion terms) in a Strong Stability Preserving (SSP)
scheme, namely the Heun scheme. By construction, we hope the resulting algorithm to enjoy
the same positivity preservation properties for the density and the sensible energy. Indeed,
the density is shown to be non-negative at the discrete level under a CFL condition by an
easy adaptation of the technique developed in Gastaldo et al. (2018). To obtain the positivity
of the internal energy, we must combine two arguments:

- first, to extend the proof of Gastaldo et al. (2018) to cope with a heat diffusion term
(with an adaptation of the CFL condition),

- second, to implement a discretization of the momentum diffusion which yields a positive
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dissipation term. To this purpose, we use an idea proposed in Grapsas et al. (2016),
which consists in recasting the MAC scheme under a weak form, so that we may closely
mimick the continuous expression of the dissipation: in fine, the cell dissipation is
computed as the integral over the considered cell of the inner product of the stress and
strain tensors, linked a.e. by the usual (continuous) relation (hence the non-negativity).

Then we turn to the kinetic energy preservation property. Considering the Heun scheme as a
three-steps scheme, with two prediction steps and a final average, we show that the solution of
the first two steps obeys a kinetic energy balance with numerical production terms (i.e. non-
negative residual terms when put at the right-hand side), while the last step is dissipative;
finally, we are able to derive a local kinetic energy balance for the algorithm with remainder
terms, which we show to be of second order in time. Numerical experiments show that
these remainder terms take in fact very low values: the compensation operated by the final
averaging is almost exact, in the sense that the final residual is more than one thousand
times smaller than the residuals associated to the first two steps of the algorithm (which
are nothing more than the first-order Euler forward scheme). Finally, we establish a total
energy balance for the scheme, which may be made conservative by adding corrective terms
to the sensible energy balance, for instance if one wants to compute shock solutions. Since
we address here essentially viscous flows, we do not follow this line; however, we numerically
check that the scheme correctly captures the viscous perturbation of mild shocks (similar for
instance to the strongest ones which may be generated by deflagrations) even with coarse
meshes. On the opposite, for strong shocks (typical of detonations), correcting the discrete
sensible energy balance seems to be preferable.

This chapter is organized as follows. We first present the continuous model as well as
its stability properties (Section 3.2). After a description of the space discretization (Section
3.3), the scheme is introduced in Section 3.4.1. Positivity results, at the discrete level, and
then kinetic and total energy conservation are discussed in Section 3.4.2. Finally, Section 3.5
presents some numerical tests, addressing either the scheme properties on model problems or
test cases inspired by real world large eddy simulations. In Appendix 3.A, we first recall, for
the sake of completeness, the discretization of the diffusion term in the momentum balance
equation; then, in a second step, we derive a discretization of the dissipation term which,
if used in the internal energy balance, would made the scheme fully conservative. This
expression shows that the (simpler) implemented discretization of the dissipation term yields
a consistent scheme, in the sense that, if both the "conservative" and the implemented
dissipation terms are controlled in L1, their difference tends to zero in a distributional sense.
The MUSCL algorithm used in the mass and energy balance equations, presented in Gastaldo
et al. (2018), is recalled in Appendix 3.B.
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3.2 Physical model
The mathematical model, based on the Navier-Stokes equations for compressible flows reads:

∂tρ+ div(ρv) = 0 (3.1a)
∂t(ρv) + div(ρv ⊗ v) = −∇p+ div(τ (v)) (3.1b)
∂t(ρE) + div(ρvE) + div(pv) = div(τ (v) · v) + divq (3.1c)

E =
1

2
|v|2 + e (3.1d)

p = (γ − 1) ρ e (3.1e)

where t stands for the time, ρ, v, p, E and e are the density, velocity, pressure, total energy
and sensible energy, τ stands for the shear stress tensor, q stands for the heat diffusion flux
and γ > 1 is a coefficient specific to the considered fluid.

The problem is supposed to be posed over Ω × (0, T ), where Ω is an open bounded
connected subset of Rd with 1 ≤ d ≤ 3 and (0, T ) is a finite time interval.

In order to describe turbulence, the system of equations (3.1) is filtered in the sense
of large eddy simulations: the large, non-universal, energy containing scales of the flow
are computed explicitly, while the small scales are modeled. Each flow variable φ is thus
decomposed into computable (large-scale structures) and residual (small structures) terms,
φ = φ̄ + φ′, by means of a filtering operation represented mathematically in the physical
space as a convolution product. The resolved part φ̄ reads

φ̄(x, t) ≡
∫

Ω

G(r,x)φ(x− r, t) dr (3.2)

where G is the filter function that determines the scale of the resolved structures (we refer to
Chapter 1 for more details). In order to account for density fluctuations, the density-weighted
(Favre) filtering is also used for compressible flows:

φ̃ = (ρφ)/ρ

for a flow variable φ, with ρ the filtered density.
Filtering the mass balance (3.1a) and the momentum balance (3.1b) leads to:

∂tρ+ div(ρṽ) = 0 (3.3a)
∂t(ρṽ) + div(ρṽ ⊗ ṽ) = −∇p+ div(τ̆ (ṽ)). (3.3b)

The effective momentum diffusion tensor can be seen as composed by a computable and an
unresolved or subgrid-scale (SGS) part τ̆ = τ − τ SGS. The computable part τ is modelled
as :

τ (ṽ) = 2µ

(
S̃− 1

3
Tr(S̃)I

)
(3.4)

where µ is the “computable” turbulent viscosity, S̃ is the mean rate-of-strain tensor defined as
S̃ = 1/2

(
∇ṽ +∇tṽ

)
and I stands for the Rd×d identity matrix. We assume that µ ∈ L∞(Ω)
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and that it exists µ′ > 0 such as µ ≥ µ′ a.e.. Thus, the computable shear stress tensor
satisfies:

τ (ṽ) :∇ṽ ≥ 0, ∀ṽ ∈ Rd. (3.5)

The SGS turbulent shear stress τ SGS can not be calculated directly and therefore is
modelled in terms of resolved quantities by the Boussinesq’s eddy viscosity model:

τ SGS(ṽ) = ρ (ṽ ⊗ v − ṽ ⊗ ṽ) ≈ −2µSGS

(
S̃− 1

3
Tr(S̃)I

)
. (3.6)

where µSGS is the SGS turbulent viscosity.
The spatially filtered sensible energy balance reads:

∂t(ρẽ) + div(ρṽẽ) + p divṽ = τ (ṽ) : ∇ṽ + div(q̆) + εv. (3.7)

The heat flux, q̆ = q + qSGS, is decomposed into a computable part q:

q = −λ∇ẽ (3.8)

and a SGS part qSGS:
qSGS = ρ (ṽe− ṽẽ) ≈ −λSGS∇ẽ (3.9)

where λ and λSGS are respectively the "computable" and the subgrid scale heat diffusion
coefficients. The thermal conductivity may be expressed by λ = µcp/Pr, where the specific
heat constant at constant pressure cp and the laminar Prandtl number Pr are assumed to
be constant and positive. Thus, λ ∈ L∞(Ω) and there exists λ′ > 0 such as λ ≥ λ′ a.e..
Analogously, the SGS heat diffusion coefficient λSGS is modelled by λSGS = µSGS cp/Prt,
where the turbulent Prandtl number Prt is assumed to be constant and positive.

The SGS viscous dissipation term is modelled by:

εv = −τ SGS(ṽ) :∇ṽ. (3.10)

The filtered kinetic energy balance equation is obtained by the inner product of the filtered
momentum balance equation with the filtered velocity:

1

2
∂t(ρ |ṽ|2) +

1

2
div
(
ρ |ṽ|2 ṽ

)
+∇p · ṽ − divτ (ṽ) · ṽ = −divτ SGS(ṽ) · ṽ. (3.11)

Summing equations (3.7) and (3.11), and thanks to (3.10), gives rise to the following conser-
vative form of the filtered total energy balance equation:

∂t(ρ Ẽ) + div(ρ ṽ Ẽ) + div(p ṽ) = div(q̆) + div (τ̆ (ṽ) · ṽ) , (3.12)

where the filtered total energy is defined by: Ẽ = ẽ+
1

2
|ṽ|2.

The system is closed with a model for the SGS turbulent viscosity computation. Here,
the Smagorinsky model (Smagorinsky, 1963) is used:

µSGS = ρ(Cs∆)2|S̄|, (3.13)
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where Cs > 0 is a model parameter and ∆ is the cut-off scale which corresponds here to the
the computational cell volume. Then, thanks to (3.5), the shear stress tensor satisfies:

τ̆ (ṽ) :∇ṽ ≥ 0, ∀ṽ ∈ Rd. (3.14)

Finally, the filtered equation of state reads:

p = (γ − 1) ρẽ. (3.15)

This system composed by equations (3.3), (3.7) and (3.15), must be supplemented by
suitable boundary conditions and initial conditions. For the sake of simplicity, only imper-
meability conditions are imposed and that the system is supposed to be adiabatic:

ṽ · n = 0, q̆ · n = 0 on ∂Ω

where n stands for the normal vector to the boundary. An initial condition must be given
for ρ, ẽ and ṽ which is written:

ρ(x, 0) = ρ0(x), ẽ(x, 0) = ẽ0(x), ṽ(x, 0) = ṽ0(x), ∀x ∈ Ω,

with ρ0 > 0 and ẽ0 ≥ 0.

Since we assume that the initial condition for ρ is positive, the mass balance (3.3a) implies
that the density ρ remains non-negative. Equation (3.7) then implies, thanks to (3.14), that
the filtered sensible energy ẽ remains non-negative. We also have, by the equation of state,
p ≥ 0.

To alleviate the notations, we drop in the remainder of this chapter the overbar and the
tilde symbols to denote the filtered fields.

3.3 Meshes and unknowns
A discretization (M, E) of Ω with a staggered rectangular grid or MAC grid (Harlow and
Amsden, 1971; Harlow and Welch, 1965), involves a primal grid M which consists in a
conforming structured partition of Ω in rectangles (d = 2) or rectangular parallelepipeds (d
= 3), possibly non uniform.

By E and E(K) we denote the set of all (d - 1)-faces σ of the mesh and of the element
K ∈ M respectively. The set of faces included in the boundary of Ω is denoted by Eext and
the set of internal faces (i.e. E\Eext) is denoted by Eint; a face σ ∈ Eint separating the cells K
and L is denoted by σ = K|L. The set of the edges (resp. the internal and boundary edges)
that are orthogonal to the ith vector of the orthonormal basis of Rd, e(i), is denoted by E (i)

(resp. E (i)
int and E (i)

ext), for 1 ≤ i ≤ d. The outward normal vector to a face σ of K is denoted
by nK,σ. For K ∈M and σ ∈ E , |K| denotes the measure of K and |σ| the (d - 1)-measure of
the face σ. For K ∈ M (resp. σ ∈ Eint), xK (resp. xσ) denotes the mass center of K (resp.
σ). We denote by dK,σ, ∀K ∈M and ∀σ ∈ E , the Euclidean distance between the center xK
of the cell and the edge σ. We define dσ = dK,σ + dL,σ if σ ∈ Eint and dσ = dK,σ if σ ∈ Eext.
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The degrees of freedom for the pressure, the density and the sensible energy (i.e. the
discrete pressure, density and sensible energy unknowns) are associated to the cells of the
meshM, and are denoted by:

{pK , ρK , eK , K ∈M} .

Let us then turn to the degrees of freedom for the velocity. The degrees of freedom for the
i-th component of the velocity are located at the centre of the faces σ ∈ E (i), so the whole
set of discrete velocity unknowns reads:{

vσ,i, σ ∈ E (i)
int, 1 ≤ i ≤ d

}
.

We now introduce a dual mesh, for the finite volume approximation of the time derivative
and convection terms in the momentum balance equation. A dual cell Dσ associated to an
edge σ ∈ E is defined as follows:

- if σ = K|L ∈ Eint then Dσ = DK,σ ∪ DL,σ, where DK,σ (resp. DL,σ) is the rectangle
or rectangular parallelepiped of basis σ and of measure |DK,σ| = |K|/2 (respectively
|DL,σ| = |L|/2) adjacent to σ (see Fig. 3.1);

- if σ ∈ Eext is adjacent to the cell K, then Dσ = DK,σ.
We denote by |Dσ| the measure (area of volume) of the dual cell Dσ, and by ε = Dσ|D′σ the
face separating two diamond cells Dσ and Dσ′ . The set of the (dual) faces of Dσ is denoted
by Ẽ(Dσ) (see Fig. 3.1). For each velocity component i, the domain Ω is thus partitioned in
dual cells: Ω = ∪σ∈E(i)Dσ. The ith partition is referred to as the ith dual mesh, associated to
the ith velocity component. The set of the edges of the ith dual mesh is denoted by Ẽ (i).

K L
σ σ′

nK,σ
Dσ Dσ′

ε

nσ,ε

Figure 3.1: Notations for control volumes and edges - left: primal mesh, right: dual mesh for
the first component of the velocity.

We need, now, to deal with the impermeability boundary condition, i.e. v·n = 0. Since
the velocity unknowns lie on the boundary (and not inside the cells), this condition is taken
into account in the definition of the discrete spaces. Given the assumption that the boundary
is normal to a coordinate axis, we simply set:

vσ,i = 0, ∀σ ∈ E (i)
ext, 1 ≤ i ≤ d

Therefore, there are no degrees of freedom for the velocity on the boundary.

3.4 The numerical scheme

3.4.1 The algorithm

Let us consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), which we
suppose uniform, and let δt = tn+1 − tn for n = 0, 1, · · · , N − 1 be the (constant) time step.
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The time integration is performed by the second order Heun scheme (which falls in the class
of Runge-Kutta schemes), the step n of which may be described throughout three fractional
steps described hereafter. The first step reads:

Wn = (ρn, en, pn, vn) being known,
First step – Compute W(1) = (ρ(1), e(1), p(1), v(1)), by :

W(1) = S(Wn) (3.16a)

where the relation W(1) = S(Wn) means that the left-hand side is obtained by applying the
standard first-order in time explicit scheme to an initial data given by Wn, which reads:

ρ
(1)
K − ρnK
δt

+ divK(ρn vn) = 0, ∀K ∈M (3.17a)

ρ
(1)
K e

(1)
K − ρnKenK
δt

+ divK(ρn en vn) + pnK divK(vn)

= (τ̆ (vn) :∇vn)K + div(q̆n)K , ∀K ∈M
(3.17b)

ρ
(1)
Dσ
v

(1)
σ,i − ρnDσv

n
σ,i

δt
+ divσ(ρnvnvni ) + (∇pn)σ,i = div(τ̆ (vn))σ,i, ∀σ ∈ E (i)

int, 1 ≤ i ≤ d (3.17c)

p
(1)
K = (γ − 1) ρ

(1)
K e

(1)
K , ∀K ∈M (3.17d)

The terms introduced for each discrete equation will be defined in the following. Note that,
to cope with impermeability conditions, the momentum balance equation is not written on
the boundary dual cells, and the velocity (in fact, the normal velocity, due to the arrangement
of the unknowns) on the boundary edges is just set to zero. The second step of the numerical
scheme is analogous to the first one:

Second step – Compute W(2) = (ρ(2), e(2), p(2), v(2)), by : (3.18a)

W(2) = S(W(1))

Finally, the last step of the algorithm allows to write the n+ 1 unknowns as a linear combi-
nation of the n and (2) unknowns:

Last step – Compute ρn+1, en+1, pn+1 and vn+1
i , 1 ≤ i ≤ d by:

ρn+1
K =

1

2
(ρnK + ρ

(2)
K ), ∀K ∈M (3.19a)

ρn+1
K en+1

K =
1

2

(
ρnK e

n
K + ρ

(2)
K e

(2)
K

)
, ∀K ∈M (3.19b)

ρn+1
Dσ

vn+1
σ,i =

1

2

(
ρnDσv

n
σ,i + ρ

(2)
Dσ

v
(2)
σ,i

)
, ∀σ ∈ E (i)

int (3.19c)

pn+1
K = (γ − 1) ρn+1

K en+1
K ∀K ∈M (3.19d)

Remark (A more compact formulation of the time-marching scheme). The Runge
Kutta scheme under consideration may be written under the following equivalent form:

W̃
n+1/2

= W̃
n − δt F(W̃

n
), (3.20)

W̃
n+1

= W̃
n − δt

2

[
F(W̃

n
) + F(W̃

n+1/2
)
]
, (3.21)
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where W̃ stands for the vector of conservative variables and F is a function which
gathers the divergence of the fluxes complemented, in the internal energy balance, with
the non-conservative terms. In the time semi-discrete stetting, W̃ = (ρ, ρv, ρe)t and

F(W̃ ) =

 div(ρv)
div(ρv ⊗ v) +∇p− div(τ̆ (v))

div(ρev) + p divv − div(q̆)− τ̆ (v) :∇v

 .

The first step (3.20) is strictly the same as Step (3.17), so W̃
n+1/2

and W(1) coincide
(in the sense that they corresponds to the same primitive functions ρ, u, p and e). For
conservative equations, the form (3.21) stresses the fact that the scheme is conservative.
For instance, considering the mass balance equation, we obtain, in the fully discrete
setting,

|K| ρn+1
K = |K| ρnK +

δt

2

(
|K| divK(ρn vn) + |K| divK(ρn+1/2 vn+1/2)

)
, ∀K ∈M,

and the last two terms will be defined in the following (see Equation (3.22)) as a sum
of mass fluxes over the primal faces of the cell K (so their sum takes itself the same
form). Conversely, writing the scheme as a three steps procedure (3.17)-(3.18)-(3.19)
facilitates the derivation of some stabilities properties: for instance, if an Euler step (i.e.
Step (3.17) or (3.18)) preserves the positivity of the density and the internal energy, so
does the whole algorithm.

Let us now detail the discrete balance equations involved in (3.17) (or in (3.18)). For the
sake of clarity, we omit in the following all the superscripts relative to the time step number.

Discrete mass balance

The convection term of equation (3.17a) reads:

divK(ρv) =
1

|K|
∑

σ∈E(K)

FK,σ (3.22)

where FK,σ stands for the mass flux across σ outward K. By the impermeability boundary
conditions, it vanishes on external faces and is given on internal faces by:

FK,σ = |σ| ρσ vK,σ, ∀E ∈ Eint (3.23)

where vK,σ is an approximation of the normal velocity to the face σ outward K defined by:

vK,σ = vσ,i e
(i) · nK,σ, ∀E ∈ E (i). (3.24)

The density at the face σ = K|L, ρσ, is approximated by a second order MUSCL-like inter-
polation detailed in Appendix 3.B. The algebraic condition required for this reconstruction
is that ∀K ∈M and ∀σ ∈ E(K) ∩ Eint, there exists βρK,σ ∈ [0, 1] and Mρ

K,σ ∈M such that:

ρσ − ρK =

∣∣∣∣∣β
ρ
K,σ(ρK − ρMρ

K,σ
) if vK,σ ≥ 0,

βρK,σ(ρMρ
K,σ
− ρK) otherwise.

(3.25)

This condition allows, under CFL condition, to guarantee the positivity of the density (see
Section 3.4.2). It is, of course, satisfied by the upwind scheme which corresponds to βρK,σ = 0
if vK,σ ≥ 0 and βρK,σ = 1, Mρ

K,σ = L if vK,σ ≤ 0 .
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Discrete sensible energy balance

Equation (3.17b) is an approximation of the sensible energy balance over the primal cell K.
The convection operator is defined as follows:

|K| divK(ρv e) =
∑

σ∈E(K)

FK,σ eσ (3.26)

where the discretization of the sensible energy at the primal faces uses the same MUSCL
technique as for the density (detailed in Appendix 3.B) to ensure the positivity of the con-
vection operator (see Section 3.4.2). Then, ∀K ∈ M and ∀σ ∈ E(K) ∩ Eint, there exists
βeK,σ ∈ [0, 1] and M e

K,σ ∈M such that:

eσ − eK =

∣∣∣∣∣β
e
K,σ(eK − eMe

K,σ
) if FK,σ ≥ 0,

βeK,σ(eMe
K,σ
− eK) otherwise.

(3.27)

Let notice that in the Euler case, this allows also to keep the velocity and pressure constant
across (1D) contact discontinuities (Gastaldo et al., 2018).

The discrete divergence of the velocity divK(v) is simply defined by setting ρ = 1 in the
divK (ρv) operator defined by (3.22):

divK(v) =
1

|K|
∑

σ∈E(K)

|σ| vK,σ (3.28)

The viscous dissipation term (τ̆ (v) :∇v)K and the viscous diffusion term div(τ̆ (v))σ,i of
the momentum balance equation are defined so that they satisfy the following two constraints
(see Grapsas (2017) for more details):

• non-negativity of the dissipation : (τ̆ (v) :∇v)K ≥ 0, ∀K ∈M;

• consistency of the diffusion and the dissipation, in the following sense:

−
d∑
i=1

∑
σ∈E(i)

int

|Dσ| div(τ̆ (v))σ,i vσ,i =
∑
K∈M

|K|(τ̆ (v) :∇v)K (3.29)

i.e. the discrete analogue of the identity
∫

Ω

div(τ̆ (v) · v) = −
∫

Ω

τ̆ (v) :∇v.

For the heat diffusion term, the usual finite volume scheme based on a two-point approx-
imation of the fluxes is used (Eymard et al., 2000), ∀K ∈M:

div(q̆)K = div
(
(λ+ (λSGS) ∇e)K = −

∑
σ∈E(K), σ=K|L

(λ+ (λSGS)σ)
|σ|
dσ

(eK − eL), (3.30)

with, for σ = K|L, (λSGS)σ, the harmonic value of the subgrid heat diffusion coefficient
approximation on K and L, weighted by the distances |xK −xσ| and |xK −xσ| respectively
(xK , xL and xσ being the mass centers of K, L and σ, respectively). Note that, in this
relation, no flux is computed on the external faces, which is consistent with homogeneous
Neumann boundary conditions. The SGS heat diffusion coefficient is approximated on the
cell K by (λSGS)K = (µSGS)K (cp/Prt), the discrete SGS turbulent viscosity (µSGS)K being
defined hereafter.
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Remark. (Dirichlet boundary conditions). In case of Dirichlet boundary conditions,
the definition (3.30) of the heat diffusion term must be changed to:

div
(
(λ+ (λSGS) ∇e)K = −

∑
σ=K|L,σ∈E(K)

|σ|
dσ

(λ+ (λSGS)σ) (eK − eL)

−
∑

σ∈E(K)E(K)∩Eext

|σ|
dσ

(λ+ (λSGS)σ) (eK − eσ,D)

with eσ,D the prescribed value for e on the face σ.

Discrete momentum balance

We now turn to the discrete momentum balance (3.17c). Following Herbin et al. (2018), the
density on the dual cells is given by the following weighted average:∣∣∣∣∣|Dσ| ρDσ

= |DK,σ| ρK + |DL,σ| ρL, for σ ∈ Eint, σ = K|L,
ρDσ

= ρK , for σ ∈ Eext

(3.31)

The discrete divergence operator on the dual mesh is given by:

divDσ(ρv vi) =
1

|Dσ|
∑

ε∈Ẽ(i)(Dσ)

Fσ,εvε,i (3.32)

where Fσ,ε is the mass flux through the dual face ε outward Dσ and the centered choice is
made for the approximation of the i-th component of the velocity on ε, vε,i. The discrete
mass flux Fσ,ε is evaluated as linear combination, with constant coefficients, of the primal
mass fluxes at the neighboring faces, in such a way that a discrete mass balance over the
dual cells holds (Herbin et al., 2018; Gastaldo et al., 2018):

|Dσ|
δt

(ρDσ
− ρ∗Dσ

) +
∑

ε∈Ẽ(i)(Dσ)

F ∗σ,ε = 0,

where the superscript ∗ stands for n for the first step (respectively (1) for the second step) of
the Heun scheme. This latest relation allows to derive discrete balance equations for convex
functions of the velocity, as a discrete kinetic energy balance (see Section 3.4.2).

The term (∇p)σ,i stands for the ith component of the discrete pressure gradient at the face
σ. The gradient operator is built as the transpose of the discrete operator for the divergence
of the velocity on the primal mesh (3.28):

(∇p)σ,i =
|σ|
|Dσ|

(pL − pK) nK,σ · e(i), for σ = K|L, 1 ≤ i ≤ d (3.33)

This pressure gradient is only defined at internal faces since, thanks to the impermeability
boundary conditions, no momentum balance equation is written at the external faces. Let
notice that definitions (3.33) and (3.28) imply that the discrete gradient and divergence
operators are dual with respect to the L2 inner product:∑

K∈M

|K| pK divK(v) +
d∑
i=1

∑
σ∈E(i)

int

|Dσ| (∇p)σ,i vσ,i = 0.
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Remark. (Outflow or Neumann boundary conditions) When the normal velocity is not
prescribed to zero at the boundary face σ ∈ E(K), we suppose that the flow leaves the
domain (i.e. vK,σ ≥ 0). The definition (3.23) of FK,σ remains unchanged with ρσ = ρK .
The face σ is also an external dual face of the diamond cellDσ, and the above mentioned
construction procedure of the dual mass fluxes yields Fσ,ε = FK,σ; that is vε,i = vσ,i,
1 ≤ i ≤ d. The expression (3.28) of the discrete divergence of the velocity still holds,
but now takes into account a (possibly) non-zero normal velocity vK,σ at the external
face σ. Therefore, the gradient-divergence duality property becomes:

∑
K∈M

|K| pK divK(v) +
d∑
i=1

∑
σ∈E(i)

int

|Dσ| (∇p)σ,i vσ,i =
∑
σ∈Eext

−|σ| pext,

where pext stands for the external pressure involved in the outlet boundary condition
(applied here on the whole boundary). We thus obtain the following definition of the
gradient on the external face σ adjacent to the cell K:

(∇p)σ,i =
|σ|
|Dσ|

(pext − pK) nK,σ · e(i).

The definition of the internal energy flux (3.26) remains unchanged (and eσ = eK).

Expression of the discrete subgrid scale viscosity

The mean value of the velocity gradient over K is computed and used in the definition of S:

Sij
K

=
1

2

(
∇jvi

K
+∇ivj

K
)

=
1

2

[
1

|K|

∫
K

∂jvi dx+
1

|K|

∫
K

∂ivj dx

]
, 1 ≤ i, j ≤ d (3.34)

The SGS viscosity on the cell K is then written as (Boyer et al., 2011):

(µSGS)K = ρK(Cs∆)2

[
2

d∑
i=1

d∑
j=1

Sij
K

Sij
K

]1/2

. (3.35)

Finally, the initial approximations for ρ, e and v are given by the average of the initial
conditions ρ0 and e0 on the primal cells and of v0 on the dual cells:

∀K ∈M, ρ0
K =

1

|K|

∫
K

ρ0(x) dx, and e0
K =

1

|K|

∫
K

e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E (i)
int, v0

σ,i =
1

|Dσ|

∫
Dσ

(v0(x))i dx.

These average values may be obtained by a quadrature formula if need be.
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3.4.2 Properties of the scheme

We first show that the scheme preserves the positivity of the density and of the sensible
energy (which, thanks to the equation of state, also implies the positivity of the pressure).
Then we discuss the energy preservation properties of the scheme: first, a discrete kinetic
energy balance is derived, featuring numerical residual terms which are been shown to be
formally of second order in time; then, we obtain that, up to these remainder terms, the
scheme conserves the total energy.

Positivity of the density and the sensible energy

The following positivity result is an easy extension of (Gastaldo et al., 2018, Lemma 3.2) to
the second order Heun scheme.

Lemma 3.4.1 (Positivity of the density). Let 0 ≤ n ≤ N − 1, and let assume that ρn > 0
( i.e. for all K ∈ M, ρnK > 0) and that the time step satisfies the following condition,
∀K ∈M:

δt ≤ min

[
|K|∑

σ∈E(K)

|σ| (1 + βρK,σ)(vnK,σ)+
,

|K|∑
σ∈E(K)

|σ| (1 + βρK,σ)(v
(1)
K,σ)+

]
(3.37)

where, for a ∈ R, a+ ≥ 0 is defined by a+ = max(a, 0) and βρK,σ is introduced in (3.25).
Then a solution to the scheme (3.16)-(3.19) satisfies ρn+1 > 0.

The MUSCL interpolation of sensible energy at the face in the discretization of the con-
vection term together with the positivity of the diffusion scheme allows to prove the positivity
of the internal energy under a CFL-condition.

Lemma 3.4.2 (Positivity of the sensible energy). Let assume that en > 0 ( i.e. enK > 0,
∀K ∈ M), 0 ≤ n ≤ N − 1, that ρn > 0 and that the CFL condition (3.37) holds. In
addition, let the time step satisfy the following condition ∀K ∈M:

δt ≤ min

 |K| ρnK

(γ − 1) ρnK
∑

σ∈E(K)

|σ| (vnK,σ)+ +
∑

σ∈E(K)

(1 + βeK,σ) (F n
K,σ)+ + |K|

∑
σ∈E(K)

|σ|
dσ

λ̆nσ

,

|K| ρ(1)
K

(γ − 1) ρ
(1)
K

∑
σ∈E(K)

|σ| (v(1)
K,σ)+ +

∑
σ∈E(K)

(1 + βeK,σ) (F
(1)
K,σ)+ + |K|

∑
σ∈E(K)

|σ|
dσ

λ̆(1)
σ


(3.38)

with λ̆σ = λ+ (λSGS)σ, σ = K|L. Then the solution to the scheme (3.17)-(3.19) satisfies
en+1 > 0.
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Proof. Let first consider the discrete sensible energy at the first step of the numerical scheme
(3.17b). Because ρn > 0 and (3.37) holds, we have ρ(1) > 0 (thanks to (Gastaldo et al., 2018,
Lemma 3.2)).

Using the internal energy discretization at the face σ ∈ E(K), (3.27), there exists βeK,σ ∈
[0, 1] and M e

K,σ ∈M such that the convection term of (3.17b) reads:

|K| divK(ρn vn en) =
∑

σ∈E(K)

F n
K,σ e

n
σ

=
∑

σ∈E(K)

(
F n
K,σ

)+
[
(βeK,σ + 1)enk − βeK,σenMe

K,σ

]
−

∑
σ∈E(K)

(
F n
K,σ

)− [
(1− βeK,σ)enk + βeK,σe

n
Me
K,σ

]
(3.39)

where, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). Moreover, expressing the pressure
thanks to the equation of state (3.17d) leads to:

|K| pnK divK(vn) = pnK
∑

σ∈E(K)

|σ|vnK,σ

= (γ − 1) ρnK e
n
K

∑
σ∈E(K)

|σ|(vnK,σ)+

− (γ − 1) ρnK e
n
K

∑
σ∈E(K)

|σ|(vnK,σ)− (3.40)

Thus, using (3.39), (3.40) and (3.30), the energy balance (3.17b) can be rewritten as:

|K|
δt
ρ

(1)
K e

(1)
K =

 |K|
δt
ρnK −

∑
σ∈E(K)

(βeK,σ + 1)
(
F n
K,σ

)+

− (γ − 1) ρnK
∑

σ∈E(K)

|σ|
(
vnK,σ

)+ − |K|
∑

σ∈E(K)

|σ|
dσ

λ̆nσ

 enK

+
∑

σ∈E(K)

βeK,σ |F n
K,σ| enMe

K,σ
+
∑

σ∈E(K)

(1− βeK,σ)enK
(
F n
K,σ

)−
+ (γ − 1) ρnK e

n
K

∑
σ∈E(K)

|σ|
(
vnK,σ

)−
+ |K|

∑
σ∈E(K)

|σ|
dσ

λ̆nσ e
n
L + |K| (τ (vn) :∇vn)K (3.41)

Thus, using to the non-negativity of the viscous dissipation term and the fact that by con-
struction λ̆nσ > 0, we get e(1) > 0 under the following CFL condition:

δt ≤

 |K| ρnK

(γ − 1) ρnK
∑

σ∈E(K)

|σ| (vnK,σ)+ +
∑

σ∈E(K)

(1 + βeK,σ) (F n
K,σ)+ + |K|

∑
σ∈E(K)

|σ|
dσ

λ̆nσ
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Using the same methodology, we prove that e(2) > 0 under the CFL condition (3.38). Finally,
because ρn > 0 and (3.37) is satisfied, ρn+1 > 0. The definition of en+1 (3.19b) ends the
proof.

Energy balances

At the continuous level, the kinetic energy balance is obtained by taking the inner product
of the momentum balance equation by the velocity and using the mass balance equation. At
the discrete level, the computation is essentially the same for the convection term, provided
that a momentum balance and a mass balance hold on the same cell, which is ensured
by construction of the dual densities and mass fluxes (Relations (3.31) and (3.32)). The
conservative term is left at the left-hand side of the equation, while the dissipation term is
considered as a residual.

Theorem 3.4.1 (Discrete kinetic energy balance for the second order time discretization)
A solution to the system (3.17) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E (i)

int

and 0 ≤ n ≤ N − 1:

1

2

|Dσ|
δt

[
ρn+1
Dσ

(vn+1
σ,i )2 − ρnDσ

(vnσ,i)
2
]

+
1

4

∑
ε∈Ẽ(i)(Dσ),
ε=Dσ |Dσ′

F n
σ,εv

n
σ,iv

n
σ′,i +

1

2
|Dσ| (∇p)nσ,i vnσ,i −

1

2
|Dσ| divτ (vn)σ,i v

n
σ,i

+
1

4

∑
ε∈Ẽ(i)(Dσ),
ε=Dσ |Dσ′

F (1)
σ,ε v

(1)
σ,i v

(1)
σ′,i +

1

2
|Dσ| (∇p)(1)

σ,i v
(1)
σ,i −

1

2
|Dσ| divτ (v(1))σ,i v

(1)
σ,i = −Rn+1

σ,i

(3.43)
with

Rn+1
σ,i =

1

4

|Dσ|
δt

ρnDσ
(
vn+1
σ,i − vnσ,i

)2
+

1

4

|Dσ|
δt

ρ
(2)
Dσ

(
vn+1
σ,i − v

(2)
σ,i

)2
+

1

2
R

(1)
σ,i +

1

2
R

(2)
σ,i (3.44)

and

R
(1)
σ,i = −1

2

|Dσ|
δt

ρ
(1)
Dσ

(
vnσ,i − v

(1)
σ,i

)2
, R

(2)
σ,i = −1

2

|Dσ|
δt

ρ
(2)
Dσ

(
v

(1)
σ,i − v

(2)
σ,i

)2 (3.45)

Proof. Multiplying (3.19c) by vn+1
σ,i , ∀σ ∈ E (i)

int, 1 ≤ i ≤ d yields:

2 ρn+1
Dσ

(vn+1
σ,i )2 =

(
ρnDσv

n
σ,i + ρ

(2)
Dσ

v
(2)
σ,i

)
vn+1
σ,i

= ρnDσ
(
vnσ,i − vn+1

σ,i

)
vn+1
σ,i + ρnDσ (vn+1

σ,i )2

+ ρ
(2)
Dσ

(
v

(2)
σ,i − vn+1

σ,i

)
vn+1
σ,i + ρ

(2)
Dσ

(vn+1
σ,i )2

Using the identity 2a(a− b) = a2 − b2 + (a− b)2, we get:

2 ρn+1
Dσ

(vn+1
σ,i )2 =

1

2
ρnDσ(vn+1

σ,i )2 +
1

2
ρnDσ (vnσ,i)

2 − 1

2
ρnDσ

(
vn+1
σ,i − vnσ,i

)2

+
1

2
ρ

(2)
Dσ

(vn+1
σ,i )2 +

1

2
ρ

(2)
Dσ

(v
(2)
σ,i )

2 − 1

2
ρ

(2)
Dσ

(
vn+1
σ,i − v

(2)
σ,i

)2 (3.46)
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Thanks to (3.19a) and to (3.31), ρn+1
Dσ

= 1/2
(
ρnDσ + ρ

(2)
Dσ

)
, thus:

ρn+1
Dσ

(vn+1
σ,i )2 =

1

2
ρnDσ (vnσ,i)

2 − 1

2
ρnDσ

(
vn+1
σ,i − vnσ,i

)2

+
1

2
ρ

(2)
Dσ

(v
(2)
σ,i )

2 − 1

2
ρ

(2)
Dσ

(
vn+1
σ,i − v

(2)
σ,i

)2 (3.47)

Subtracting ρnDσ (vnσ,i)
2 and multiplying by

1

2

|Dσ|
δt

leads to:

1

2

|Dσ|
δt

[
ρn+1
Dσ

(vn+1
σ,i )2 − ρnDσ (vnσ,i)

2
]

=
1

4

|Dσ|
δt

[
ρ

(1)
Dσ

(v
(1)
σ,i )

2 − ρnDσ (vnσ,i)
2
]

︸ ︷︷ ︸
T1

+
1

4

|Dσ|
δt

[
ρ

(2)
Dσ

(v
(2)
σ,i )

2 − ρ(1)
Dσ

(v
(1)
σ,i )

2
]

︸ ︷︷ ︸
T2

− 1

4

|Dσ|
δt

ρnDσ
(
vn+1
σ,i − vnσ,i

)2

− 1

4

|Dσ|
δt

ρ
(2)
Dσ

(
vn+1
σ,i − v

(2)
σ,i

)2 (3.48)

In order to recover T1, let multiply the momentum balance of the first step of the Heun
scheme by vnσ,i, ∀σ ∈ E

(i)
int, 1 ≤ i ≤ d:[

|Dσ|
δt

(
ρ

(1)
Dσ
v

(1)
σ,i − ρnDσv

n
σ,i

)
+
∑
ε

F n
σ,εv

n
ε,i

]
vnσ,i︸ ︷︷ ︸

T3

+ [|Dσ| (∇pn)σ,i − |Dσ| div(τ (vn))σ,i] v
n
σ,i = 0

(3.49)

where
∑
ε

denotes the sum over the internal faces of Dσ, the neighboring diamond cell being

Dσ′ (i.e. ε = Dσ|Dσ′). Let remark that thanks to the mass balance equation (3.17a), for any
families (znσ) and (znε ), σ ∈ E (i)

int, ε ∈ Ẽ (i)(Dσ), 0 ≤ n ≤ N − 1, we have:

|Dσ|
δt

(ρ
(1)
Dσ
z(1)
σ − ρnDσ

znσ) +
∑
ε

F n
σ,εz

n
ε =

|Dσ|
δt

ρ
(1)
Dσ

(z(1)
σ − znσ) +

∑
ε

F n
σ,ε (znε − znσ). (3.50)

If (znσ) and (znε ) are approximations of a continuous variable z, the left and right hand sides
may be seen as a discretization of ∂t(ρ z) + div(ρ z v) and ρ ∂tz + ρv ·∇z, respectively. This
computation is thus the discrete analogue of the passage from the conservative form to the
non-conservative form of a balance equation. Then, T3 can be rewritten as:

T3 =

[
|Dσ|
δt

ρ
(1)
Dσ

(v
(1)
σ,i − vnσ,i) +

∑
ε

F n
σ,ε

vnσ′,i − vnσ,i
2

]
vnσ,i (3.51)

Using twice the identity 2a(a− b) = a2 − b2 + (a− b)2, we get:

T3 =
1

2

|Dσ|
δt

ρ
(1)
Dσ

[
(v

(1)
σ,i )

2 − (vnσ,i)
2
]

+
1

4

∑
ε

F n
σ,ε

[
(vnσ′,i)

2 − (vnσ,i)
2
]

− 1

2

|Dσ|
δt

ρ
(1)
Dσ

(
vnσ,i − v

(1)
σ,i

)2 − 1

4

∑
ε

F n
σ,ε

(
vnσ,i − vnσ′,i

)2 (3.52)
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Turning to the conservative form with (3.50) yields:

T3 =
1

2

|Dσ|
δt

[
ρ

(1)
Dσ

(v
(1)
σ,i )

2 − ρnDσ
(vnσ,i)

2
]

+
1

4

∑
ε

F n
σ,ε

[
(vnσ′,i)

2 + (vnσ,i)
2
]

− 1

2

|Dσ|
δt

ρ
(1)
Dσ

(
vnσ,i − v

(1)
σ,i

)2 − 1

4

∑
ε

F n
σ,ε

(
vnσ,i − vnσ′,i

)2

=
1

2

|Dσ|
δt

[
ρ

(1)
Dσ

(v
(1)
σ,i )

2 − ρnDσ
(vnσ,i)

2
]

+
1

2

∑
ε

F n
σ,ε v

n
σ,i v

n
σ′,i

− 1

2

|Dσ|
δt

ρ
(1)
Dσ

(
vnσ,i − v

(1)
σ,i

)2 (3.53)

where the second term is conservative. Introducing the previous relation in (3.49), we obtain
the following discrete kinetic energy balance equation for the first step of the Heun scheme:

1

2

|Dσ|
δt

[
ρ

(1)
Dσ

(v
(1)
σ,i )

2 − ρnDσ
(vnσ,i)

2
]

+
1

2

∑
ε

F n
σ,ε v

n
σ,i v

n
σ′,i

+ [|Dσ| (∇pn)σ,i − |Dσ| div(τ (vn))σ,i] v
n
σ,i = −R(1)

σ,i

(3.54)

with
R

(1)
σ,i = −1

2

|Dσ|
δt

ρ
(1)
Dσ

(
vnσ,i − v

(1)
σ,i

)2 (3.55)

The term T1 of (3.48) can thus be rewritten as:

T1 = −1

4

∑
ε

F n
σ,ε v

n
σ,i v

n
σ′,i −

1

2
[|Dσ| (∇pn)σ,i − |Dσ| div(τ (vn))σ,i] v

n
σ,i −

1

2
R

(1)
σ,i

Using the same procedure, the following discrete kinetic energy balance equation for the
second step of the Heun scheme:

1

2

|Dσ|
δt

[
ρ

(2)
Dσ

(v
(2)
σ,i )

2 − ρ(1)
Dσ

(v
(1)
σ,i )

2
]

+
1

2

∑
ε

F (1)
σ,ε v

(1)
σ,i v

(1)
σ′,i

+
[
|Dσ| (∇p(1))σ,i − |Dσ| div(τ (v(1)))σ,i

]
v

(1)
σ,i = −R(2)

σ,i

(3.56)

with
R

(2)
σ,i = −1

2

|Dσ|
δt

ρ
(2)
Dσ

(
v

(1)
σ,i − v

(2)
σ,i

)2

The term T2 of (3.48) can thus be rewritten as:

T2 = −1

4

∑
ε

F (1)
σ,ε v

(1)
σ,i v

(1)
σ′,i −

1

2

[
|Dσ| (∇p(1))σ,i − |Dσ| div(τ (v(1)))σ,i

]
v

(1)
σ,i −

1

2
R

(2)
σ,i

Replacing in (3.56) and (3.57) in (3.48) leads to:

1

2

|Dσ|
δt

[
ρn+1
Dσ

(vn+1
σ,i )2 − ρnDσ

(vnσ,i)
2
]

+
1

4

∑
ε

F n
σ,ε v

n
σ,i v

n
σ′,i +

1

2
|Dσ| (∇pn)σ,i v

n
σ,i −

1

2
|Dσ| div(τ (vn))σ,i v

n
σ,i

+
1

4

∑
ε

F (1)
σ,ε v

(1)
σ,i v

(1)
σ′,i +

1

2
|Dσ| (∇p(1))σ,i v

(1)
σ,i −

1

2
|Dσ| div(τ (v(1)))σ,i v

(1)
σ,i = −Rn+1

σ,i

(3.57)
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with

Rn+1
σ,i =

1

4

|Dσ|
δt

ρnDσ
(
vn+1
σ,i − vnσ,i

)2
+

1

4

|Dσ|
δt

ρ
(2)
Dσ

(
vn+1
σ,i − v

(2)
σ,i

)2
+

1

2
R

(1)
σ,i +

1

2
R

(2)
σ,i

One of the essential features of the Heun scheme is that the remainder term of the kinetic
energy balance is formally of second order with respect to the time step. This result is stated
in the following lemma.

Lemma 3.4.3. The remainder term of the kinetic energy balance is of second order with
respect to the time discretization in the following sense. For 1 ≤ i ≤ d, 0 ≤ n ≤ N ,
σ ∈ E (i)

int, let (v′)nσ,i and Cn
σ,i be two real numbers such that

|vn+1
σ,i − vnσ,i − δt (v′)nσ,i| ≤ Cn

σ,i δt
2, |v(1)

σ,i − vnσ,i − δt (v′)nσ,i| ≤ Cn
σ,i δt

2,

|v(2)
σ,i − vnσ,i − 2 δt (v′)nσ,i| ≤ Cn

σ,i δt
2. (3.58)

Let us suppose in addition that the real numbers ρ̄nDσ , (ρ′)nDσ and CDσ are such that

ρnDσ ≤ ρ̄nDσ , ρ
(2)
Dσ
≤ ρ̄nDσ and |ρ(2)

Dσ
− ρnDσ − δt (ρ′)nDσ | ≤ CDσδt

2. (3.59)

Then:
|Rn+1

σ,i | ≤ Cnσ,i |Dσ| δt2 + h.o.t., (3.60)

where Cnσ,i only depends on ρ̄nDσ , (ρ′)nDσ , (v′)nσ,i, CDσ and Cn
σ,i and h.o.t. stands for higher

order terms, i.e. terms which take the form of a product of a function of these same
coefficients and δt by δt3. Consequently, if C is such that Cnσ,i ≤ C for 1 ≤ i ≤ d,
0 ≤ n ≤ N − 1 and σ ∈ E (i)

int, the total residual of the kinetic energy balance and its
integral over the time satisfies, up to higher order terms:

d∑
i=1

∑
σ∈E(i)

int

|Rn+1
σ,i | ≤ 2 C |Ω| δt2,

n∑
k=0

δt
d∑
i=1

∑
σ∈E(i)

int

|Rk+1
σ,i | ≤ 2 C |Ω| T δt2, (3.61)

for 0 ≤ n ≤ N − 1.

Proof. Let us drop, for short, the face and component indexes, and the time indexes when
they are not necessary. With such notations, we have

R =
|D|
4 δt

(T1 + T2), T1 = ρ(2)
[
(vn+1 − v(2))2 − (v(2) − v(1))2

]
,

T2 = ρn(vn+1 − vn)2 − ρ(1)(v(1) − vn)2.

We write T1 as
T1 = ρ(2)

(
vn+1 − 2 v(2) + v(1)

) (
vn+1 − v(1)

)
,
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and each velocity component is compared to its "Taylor-like development" featured in In-
equalities (3.58):

T1 = ρ(2)
[
(vn+1 − vn − v′δt)− 2 (v(2) − vn − 2 v′δt) + (v(1) − vn − v′δt)− 2 v′δt

][
(vn+1 − vn − v′δt)− (v(1) − vn − v′δt)

]
,

Using the triangle inequalities and (3.58), we obtain that the leading order terms with respect
to δt are of order δt in the second factor and of order δt2 in the third one. Invoking the
inequality (3.59), we obtain the desired bound for T1. The term T2 is decomposed as T2 =
T2,1 + T2,2 with

T2,1 = (ρn − ρ(1))(v(1) − vn)2, T2,2 = ρn
[
(vn+1 − vn)2 − (v(1) − vn)2

]
.

Thanks to (3.58) and (3.59), we obtain that the leading order terms in T2,1 are of order δt
for the first factor and of order δt2 in the second one (taking into account the fact that the
velocity difference is squared). The term T2,2 is bounded by the same technique as T1:

T2,2 = ρn
[
vn+1 − 2 vn + v(1)

] [
vn+1 − v(1)

]
= ρn

[
vn+1 − 2 vn + v(1)]

[
(vn+1 − vn − v′δt)− (v(1) − vn − v′δt)

]
,

and the second factor is of order δt while the second factor is of order δt2. This concludes the
proof of Relation (3.60). The bounds (3.61) are obtained by summation first over the faces
and then over the time steps.

To obtain a conservation equation for the total energy, we first need to derive a discrete
kinetic energy balance posed on the primal mesh. Then, this relation will be added to the
internal energy balance, to obtain the desired discrete balance equation. This process fully
applies when the viscosity is set to zero, and we restrict here the exposition to this case; the
momentum diffusion terms are dealt with in the appendix 3.A. Let us recast the discrete
kinetic energy balance in the inviscid case as follows:

|Dσ|
δt

[
(ek)

n+1
σ,i − (ek)

n
σ,i

]
+

∑
ε∈Ẽ(Dσ)

Gn+1
σ,ε + |Dσ|

(
(∇p) v

)n+1

σ,i
= −Rn+1

σ,i , (3.62)

where:
(ek)

`
σ,i =

1

2
ρ`Dσ

(v`σ,i)
2, for ` = n and ` = n+ 1,

Gn+1
σ,ε =

1

4

(
F n
σ,εv

n
σ,iv

n
σ′,i + F (1)

σ,ε v
(1)
σ,i v

(1)
σ′,i

)
, for ε = σ|σ′,

|Dσ|
(
(∇p) v

)n+1

σ,i
=

1

2
|Dσ|

(
(∇p)nσ,i vnσ,i + (∇p)(1)

σ,i v
(1)
σ,i

)
.

Let 1 ≤ i ≤ d, let K ∈ M, let us denote by σ and σ′ the two faces of E (i)(K), and let us
define:

(ek)
`
K,i =

1

2 |K|

[
|Dσ| (ek)

`
σ,i + |Dσ′ | (ek)

`
σ′,i

]
, for ` = n or ` = n+ 1.

Case of primal faces parallel to the dual faces. Let τ = σ or τ = σ′, let ε1 and ε2 be the
two faces of Dτ perpendicular to e(i), and let ε2 be the one included in K (see Fig. 3.2). Then
we define

Gn+1
K,τ,i =

1

2

[
Gn+1
τ,ε1
−Gn+1

τ,ε2

]
.
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K

σ σ
′

ε 1

Gσ,ε1

ε 2

−Gσ,ε2

GK,σ,1 = 1
2

[
Gσ,ε1 −Gσ,ε2

]
Figure 3.2: From fluxes at dual faces to fluxes at primal faces, for the MAC discretization,
primal faces parallel to the dual edges, first component of the velocity.

K

τ

σ σ
′

ε G
σ
,ε

ε′ G
σ
′ ,
ε′

GK,τ,1 = 1
2

[
Gσ,ε +Gσ′,ε′

]
Figure 3.3: From fluxes at dual faces to fluxes at primal faces, for the MAC discretization,
primal faces orthogonal to the dual edges, first component of the velocity.

Case of primal faces orthogonal to the dual faces. For τ ∈ E(K) \ {σ, σ′}, let ε and ε′ be
such that τ ⊂ (ε̄ ∪ ε̄′) with ε a face of Dσ and ε′ a face of Dσ′ (see Fig. 3.3).

Then we define
Gn+1
K,τ,i =

1

2

[
Gn+1
σ,ε +Gn+1

σ′,ε′

]
.

Summing Equation (3.62) written for σ and for σ′ and dividing the result by 2 yields:

|K|
δt

[
(ek)

n+1
K,i − (ek)

n
K,i

]
+
∑

σ∈E(K)

Gn+1
K,σ,i

+
1

2

∑
σ∈E(i)(K)
σ=K|L

|Dσ|
(
(∇p) v

)n+1

σ,i
= −1

2

(
Rn+1
σ,i +Rn+1

σ,i

)
. (3.63)

Now let

(ek)
`
K =

d∑
i=1

(ek)
`
K,i, for ` = n or ` = n+ 1, and Gn+1

K,σ =
d∑
i=1

Gn+1
K,σ,i, for σ ∈ E(K). (3.64)
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Summing Equation (3.63) over the space components, we finally get

|K|
δt

[
(ek)

n+1
K − (ek)

n
K

]
+
∑

σ∈E(K)

Gn+1
K,σ +

1

2

d∑
i=1

∑
σ∈E(K),

σ∈E(i)(K)

|Dσ|
(
(∇p) v

)n+1

σ,i

= −Rn+1
K , with Rn+1

K =
1

2

d∑
i=1

∑
σ∈E(K),

σ∈E(i)(K)

Rn+1
σ,i . (3.65)

This equation is a discrete analogue of the kinetic energy balance, posed on the primal cells.

Remark (On the definition of the cell kinetic energy). Note that the cell kinetic energy
is not a convex combination of the face kinetic energies, since, on a non-uniform mesh,
the equality |K| = 1

2

∑
σ∈E(i)(K) |Dσ| generally does not hold. Consequently, the cell

kinetic energy may oscillate from cell to cell while the face kinetic energy does not.
Nevertheless, the discrete time derivative of the cell kinetic energy is consistent in
the Lax-Wendroff sense, because, despite these oscillations, the cell kinetic energy still
converges weakly if the velocity and the density converge, which would be sufficient to
pass to the limit in the scheme.

Let us now apply the formulation (3.21) of the scheme to the internal energy balance, to
obtain:

|K|
δt

[
ρn+1
K en+1

K − ρnKenK
]

+
∑

σ∈E(K)

Hn+1
K,σ + (p divv)n+1

K = 0, ∀K ∈M, (3.66)

with, thanks to Equation (3.26) for the internal energy convection flux and Equation (3.30)
for the diffusion flux:

Hn+1
K,σ =

1

2

[
F n
K,σ e

n
σ + F

(1)
K,σ e

(1)
σ

+(λ+ (λSGS)nσ)
|σ|
dσ

(enK − enL) + (λ+ (λSGS)(1)
σ )
|σ|
dσ

(e
(1)
K − e

(1)
L )
]
,

(p divv)n+1
K =

1

2

[
pnK divK(vn) + p

(1)
K divK(v(1))

]
.

(3.67)

The next step is now to recast the sum(
div(pv)

)n+1

K
=

1

2

∑
σ=K|L

|Dσ|
(
(∇p) v

)n+1

σ,i
+ (p divv)n+1

K

as a conservative discretization of its continuous counterpart div(pv). We have div(pv)n+1
K =

1
2
[div(pv)nK + div(pv)

(1)
K ] with, for ` = n and ` = (1),

div(pv)`K =
∑

σ∈E(K),
σ=K|L

1

2
|σ| (p`L − p`K) v`K,σ + p`K

∑
σ∈E(K)

|σ| v`K,σ,
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which readily yields the following conservative expression:(
div(pv)

)n+1

K
=
∑

σ∈E(K)

In+1
K,σ , In+1

K,σ =
1

2

[
|σ| p

n
K + pnL

2
vnK,σ + |σ| p

(1)
K + p

(1)
L

2
v

(1)
K,σ

]
. (3.68)

We are now in position to state that, in the inviscid case, the numerical solutions satisfy
the following total energy balance.

Theorem 3.4.2 (Discrete total energy balance) In the inviscid case, the solutions to the
scheme satisfy the following discrete total energy balance equation:

|K|
δt

[
ρn+1
K En+1

K − ρnKEn
K

]
+
∑

σ∈E(K)

(
Gn+1
K,σ +Hn+1

K,σ + In+1
K,σ

)
= −Rn+1

K , (3.69)

where Gn+1
K,σ is the discrete kinetic energy convection flux given by (3.64), Hn+1

K,σ gathers
the discrete internal energy convection flux and the heat diffusion flux (see Equation
(3.67)), In+1

K,σ is the flux associated to the continuous counterpart pv and given by (3.68),
ρ`KE

`
K = ρ`Ke

`
K + (ek)

`
K , ` = n and ` = n+ 1, with the kinetic energy ek given by (3.64),

and Rn+1
K is given by (3.65).

Remark (Residual terms in the total energy balance). The term −Rn+1
K at the right-

hand side of Equation (3.69) may be interpreted as the numerical dissipation due to
the numerical diffusion associated to the time discretization in the momentum balance
equation. It is the sum of an anti-diffusion due to the time-explicit discretization of
the first and second substeps and a diffusion brought by the final averaging step. For
shock solutions of Euler equations, it may be anticipated that this term does not tend
to zero; the scheme consistency thus requires to compensate it in the internal energy
balance (Herbin et al., 2021). This issue is discussed in Section 3.5.3.
Note that this compensation may be done in such a way that the scheme becomes fully
conservative (Grapsas et al., 2021).

3.5 Numerical simulations
The scheme under consideration has been developed in the CALIF3S open-source software
(CALIF3S, 2021), and several tests have been performed and are presented in this section. We
begin with the computation of a regular solution, to check the scheme accuracy together with
the conservation properties for the kinetic energy. Then we assess the ability of the scheme
to transport a regular vortex in an homogeneous flow over long distances. We then turn to
the computation of a shock wave. Finally, we address a benchmark which may be considered
as a prerequisite before applications to turbulence problems, namely the simulation of the
isotropic turbulence decay.

3.5.1 A regular solution

We first build a regular solution by the following tree-steps process: (a) first, derive a standing
vortex solution to the Euler equations, (b) add a constant translation to the solution and (c)
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add diffusion terms and compensate them by source terms. For the first step, the expression
of the velocity is chosen as:

ũ = α1/2(1− x̂2 − ŷ2)2

[
−ŷ
x̂

]
if x̂2 + ŷ2 ≤ 1, ũ = 0 otherwise,

with x̂ = x/r, ŷ = y/r, r and α being two scaling factors (see Section 3.5.2 for the utility
of these coefficients and of the β coefficient introduced below). This velocity field meets
two requirements: its is compactly supported (to avoid any time dependent, after step (b),
boundary condition), and it belongs to H2(Ω)2. For the same two reasons, the density is set
to

ρ̃ = 1 + β(1− x̂2 − ŷ2)2 if x̂2 + ŷ2 ≤ 1, ρ̃ = 1 otherwise,

with β another scaling factor. Finally, the pressure satisfies ρ̃ ũ ·∇ũ+∇p̃ = 0, which, since
the velocity field is divergence free, ensures that the triplet (ρ,u, p) satisfies the steady Euler
equations. This yields

p̃ = α2p0 −
α

10
(1− x̂2 − ŷ2)5 − αβ

14
(1− x̂2 − ŷ2)7, if x̂2 + ŷ2 ≤ 1, p̃ = p0 otherwise,

where p0 is a constant integration constant, to be chosen large enough for the pressure to
remain positive. A solution to unsteady Euler equations is given by u = a + ũ(x̂ − ta),
with a a constant velocity vector, ρ = ρ̃(x̂ − ta) and p = p̃(x̂ − ta). We choose r = 1,
a = (0.2, 0.2)t, and we set α = β = 1. With this choice of α, the maximum norm of the
velocity is close to 0.57. The equation of state is p = (γ − 1) ρe, with γ = 1.4. The speed
of sound is minimal at the center of the vortex, where it takes a value close to c = 0.54 and
maximal outside the vortex, with c slightly greater than 0.9; the Mach number lies in the
interval (0, 0.9) (the maximum value of the velocity is obtained close to the exterior of the
vortex, where the Mach number also is close to its maximum value). The center of the vortex
is initialy located at the origin; the computation ends at t = T = 4, with a center of the
vortex located at (0.8, 0.8)t. The computational domain is Ω = (−1.2, 2)2.

Computations are performed with n × n square grids, with n ∈ {25, 50, 100, 200}. The
time step is set at δt = 1/n, which corresponds to a CFL number with respect to the maximal
waves speed in the range of 0.4. We measure the discrete L1-norm of the error at t = T ,
defined by

|qn×n − q‖L1 =
∑
K∈M

|K| |(qn×n)N
n

K − q(xK , T )|,

|un×n − u‖L1 =
d∑
i=1

∑
σ∈E(i)

int

|K| |(un×n)N
n

i,σ − ui(xσ, T )|,

with q = ρ or q = p, (ρn×n,un×n, pn×n) the numerical solution obtained with the n× n grid,
Nn the associated last time level. We recall that, for K ∈M (resp. σ ∈ Eint), xK (resp. xσ)
stands for the mass center of K (resp. σ).

We first set the viscosity to µ = 0.004, while the heat diffusion coefficient is kept to
zero. The obtained numerical errors are reported in Table 3.1. We observe a second order
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102 ‖ρn×n − ρ‖L1 103 ‖pn×n − p‖L1 102 ‖un×n − u‖L1

n = 25 18.2 19.5 13.0
n = 50 6.83 5.21 3.34
n = 100 2.29 1.27 0.792
n = 200 0.666 0.315 0.186

Table 3.1: Navier-Stokes equations without heat diffusion – Numerical errors obtained with
various n× n grids.

convergence for the velocity and the pressure, and a convergence rate which seems to tend
to the same value, 2, for the density.

We then turn to the full Navier-Stokes equations, setting λ = µ. The obtained results
are gathered in Table 3.2. The accuracy falls down to approximately first order, which is
probably due to the fact that, to keep the pressure constant accross contact discontinuities,
we have chosen a MUSCL approximation of the scalar variables which is second order for the
product ρe but not for e (only the groupment ρe - or p - appears in the equation except in
the diffusion term).

102 ‖ρn×n − ρ‖L1 103 ‖pn×n − p‖L1 102 ‖un×n − u‖L1

n = 25 14.4 20.5 13.3
n = 50 4.39 8.18 3.55
n = 100 1.17 4.35 1.04
n = 200 0.393 2.45 0.387

Table 3.2: Navier-Stokes equations – Numerical errors obtained with various n× n grids.

Finally, we check on the 50× 50 grid the behaviour as a function of the time step of the
residual term in the kinetic energy balance, defined by:

R(x) = RK(x), ∀x ∈ K, ∀K ∈M,

with RK defined in Equation (3.65). An average of the values obtained in the last time steps
for the L1-norm and the integral of R are reported in Table 3.3. As expected, the L1-norm
of this remainder varies as δt with the Euler scheme and with δt2 for the Heun scheme; in
addition, values in this case are divided by 1000 when switching from Euler to Heun. Since
the function R may take any sign, we also give its integral: the latter is about ten times
smaller than the L1-norm, and is divided by 10 each time the time step is divided by 2.

3.5.2 A travelling vortex test case

We now turn to a case closer to some practical applications of the scheme, namely the
transport of "small spatial scale" perturbations in a compressible flow of moderate Mach
number, with a variation of the velocity in the perturbations small with respect to the bulk
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Euler scheme Heun scheme
L1 norm ×104 L1-norm ×107 integral over Ω ×108

δt 11. 18. 50.
δt/2 5.0 3.7 5.
δt/4 2.5 0.88 0.5

Table 3.3: Navier-Stokes equations – Kinetic energy residual obtained with a 50 × 50 grid
and various time steps (δt = 0.02).

velocity. To this purpose, we take once again the travelling vortex case of the previous section,
and we set:
- α = 410, so the uniform pressure p0 = 100860 is now in the range of the atmospheric

pressure; note that the velocity perturbation is scaled as α1/2, and a pre-factor α applies
to the pressure variations in the vortex. With this choice, the maximum value of the
velocity perturbation is close to 5.8.

- the factor β is set at β = 0.2 to avoid unrealistic variations of the density. With this
value, the maximum value for ρ is close to 1.2 (while ρ = 1 outside the vortex). The
conbined effects of α and β yield a depression of amplitude close to 50 in the vortex
center.

- the translation velocity is set to a = (100, 0)t (to be compared with the maximal speed
of sound, equal to c = 375 outside the vortex).

- the radius r of the vortex is set to r = 0.01.
At the initial time, the vortex center is located at the origin. The computational domain
is Ω = (−1.5 r, 1.5 r)2, perfect slip boundary conditions are applied to the bottom and top
sides, and the left and right sides satisfy periodic boundary conditions. The final time is set
to T = 24 r/‖a‖ so the vortex (more exactly speaking, an infinite row of vortices of centers
distant from 3 r) is transported over the distance 24R. For these computations, the viscosity
and heat diffusion cefficients are set to µ = 0.0005 and λ = µ/2.

Computations are performed on n×n grids, for n ∈ {50, 100, 200, 400}, and δt = 10−5/n,
which corresponds to a CFL number (with respect to the fastest waves) close to 0.2. For
larger time steps, spurious oscillations are observed on the pressure field, which we are unable
to explain; note however that the convection field for the velocity is centered, to minimize the
dissipation of kinetic energy, and that no oscillations appear for larger values of the viscosity.
We show on Fig. 3.4 the density, second component of the velocity and pressure obtained
at the final time along the line y = 0. The computation with n = 400 may be seen as a
reference result, and an approximate convergence is obtained with n = 200. When decreasing
n, we observe a (slight) decrease of the transport velocity, and an increase of the diffusion;
at n = 50, the separation of the successive vortices begins to be lost (the plateau separating
the vortices in the velocity curve begins to disappear).
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Figure 3.4: Travelling vortex – Density, second component of the velocity and pressure.
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3.5.3 Shock solutions

The scheme proposed in this chapter is built to apply to Navier-Stokes equations, which
excludes the occurence of shocks, so no specific adaptation of the scheme should be necessary.
However, situations where the viscosity is low are in the domain of interest, and thus deserve
some tests, presented in this section.

First, let us recall the expression of the numerical remainder terms in the native (i.e.
posed on the dual cells) kinetic energy balance (3.43). For 1 ≤ i ≤ d and σ ∈ E (i)

int, we have:

Rn+1
σ,i =

1

4

|Dσ|
δt

[
ρnDσ

(
vn+1
σ,i − vnσ,i

)2
+ ρ

(2)
Dσ

(
vn+1
σ,i − v

(2)
σ,i

)2

− ρ(1)
Dσ

(
vnσ,i − v

(1)
σ,i

)2
,−ρ(2)

Dσ

(
v

(1)
σ,i − v

(2)
σ,i

)2
]
. (3.70)

These terms in turn make a remainder term to appear in the total energy balance (on the
primal cells), which reads:

Rn+1
K =

1

2

d∑
i=1

∑
σ∈E(K)∩E(i)

int

Rn+1
σ,i . (3.71)

In (Grapsas et al., 2016, Remark 4.2), the following elementary analysis is performed. Let
us suppose:
- that we address a one-dimensional problem and that the discrete solution features a

smeared discontinuity, i.e. that a constant state is linked to another one by a narrow
profile,

- that, on a sequence of more and more refined meshes, this profile spreads on a constant
number of cells (so it converges to a discontinuity).

Then the piecewise constant function R defined by (Rn+1
K )K∈M, 0≤n≤N converges to a measure

borne by this discontinuity. This is observed for shock solutions of Euler equations (Herbin
et al., 2014; Grapsas et al., 2016), where the compressive nature of the convection flow allows
to indeed capture the shock within a constant number of cells (by contrast with contact
discontinuities, where the "numerical discontinuity" spreads over a zone of thickness varying
as h1/2, with h the space step, provided that the numerical scheme boils down to a first-order
diffusive one at discontinuites, which is the case here). This spurious measure borne by the
shock modifies the Rankine-Hugoniot jump conditions, and the consistency of the scheme
is lost. By usual arguments, this analysis extends to multi-dimensional problems (roughly
speaking, the one-dimensional situation is recovered in a coordinates system normal to the
shock). On the contrary, for regular solutions, the remainder term R is supposed to tend to
zero (precisely speaking, the remainders are formally of second order in time, as shown in
Lemma 3.4.3).

We address, in this section, situations where the solution may be seen as a perturbation of
a shock. The problem is one-dimensional, and initialized with the solution of a single shock
wave. The right state is given by ρLpL

vL

 =

 1
105

0

 ,
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and the left state is deduced from the Rankine-Hugoniot conditions for Ma = 1.2 and Ma = 3,
with Ma the Mach number associated to the shock, defined as the ratio between the wave
speed and the sound speed in the left state. The first case is typical of a strong deflagration
(the pressure pR in the left state is equal to 1.5 105 ) and the second one is representative
of a weak detonation (pR is slightly greater than 106). The viscosity and the heat diffusion
coefficient are set µ = λ = 0.1, which are reasonable values for a subgrid viscosity associated
to usual meshes in such case. The shock is initially located at the origin, the computational
domain is Ω = (−0.2, 1) and the final time is T = 0.002 for Ma = 1.2 and T = 0.0008 for
Ma = 3.

The space step is 1.2/n for n ∈ {250, 500, 100, 5000} and the time step is δt = 0.001/n
for Ma = 1.2 and δt = 0.0005/n for Ma = 3 (which corresponds to a CFL number with respect
of the fastest waves close to 0.5 for Ma = 1.2 and 0.7 for Ma = 3). We report on Fig. 3.5 the
density obtained for Ma = 1.2. The left and right states are correctly computed for any of
the tested space steps; we observe oscillations at the shock for n = 250, and, to a much lesser
extent for n = 500, which may be cured by adding a small numerical diffusion (with respect
to the numerical diffusion associated to a first order scheme), see Herbin et al. (2018). The
picture changes for Ma = 3 (see Fig. 3.6): here, for coarse meshes, the leading phenomenon
governing the solution is the (wrong) jump conditions, and we observe the formation of an
intermediate constant state between the left and right states. Of course, since the viscosity is
constant and different from zero, when the mesh is refined, the numerical solution converges
to what is expected, namely a two-states structure with a smeared chock; in this convergence
process, the intermediate state is still present, but becomes closer and closer to the left state.
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Figure 3.5: Mach 1.2 shock – Density at the final time for various space steps (general view
and zoom).
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Figure 3.6: Mach 3 shock – Density at the final time for various space steps (general view
and zoom).

Remark (A consistent scheme for Euler equations). To obtain a consistent scheme
for Euler equations, it is sufficient to compensate the kinetic energy remainder term
in the internal energy balance (Grapsas et al., 2021), written under the form (3.66)
(i.e. after the combination of the three steps of the algorithm). This compensation
may be done by splitting the remainder between the steps (the first term of (3.70) is
associated to Step 1, the second to Step 2 and the last two ones to Step 3) or adding
the whole remainder at Step 3. Since the risk is to loose the positivity of the internal
energy and the parts of the remainder associated to Steps 1 and 2 are non-positive, it
seems preferable to wait for the last step; in addition, as shown numerically, an almost
complete cancelling is obtained, at least for smooth solutions, when taking all the terms
into account, so this choice is likely to be unsignificant for the scheme behaviour.
The compensation may be done by adding the quantity Rn+1

K given by Equation (3.71)
to ρn+1

K en+1
K in Step 3, in which case the scheme satisfies a local discrete conservative

total energy balance. Note anyway that a different repartition of the face residuals is
possible (in fact, for consistency, the difference between the kinetic energy remainder
and the internal energy compensation must only tends to zero in the distributional sense
(Grapsas et al., 2016)) and the expression of the face densities suggests the following
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alternative expression:

Rn+1
K =

d∑
i=1

∑
σ∈E(K)∩E(i)

int

1

4

|DK,σ|
δt

[
ρnK
(
vn+1
σ,i − vnσ,i

)2
+ ρ

(2)
K

(
vn+1
σ,i − v

(2)
σ,i

)2

− ρ(1)
K

(
vnσ,i − v

(1)
σ,i

)2 − ρ(2)
K

(
v

(1)
σ,i − v

(2)
σ,i

)2
]
.

3.5.4 Decay of isotropic turbulence

The test case presented here is the decay of isotropic turbulence (DIT). An isotropic turbulent
velocity field is a field with no mean velocity and no mean gradients. The isotropic field is
by default homogeneous: invariant in space. Under the action of viscous forces the turbulent
field simply decays.

The numerical simulations are performed in a periodic box [0, L] with L = 2π and N = 32
nodes per axes. Periodic conditions are enforced at all domain boundaries. The simulations
are performed with a time step respecting a CFL number equal to 1/4. The Smagorinsky’s
subgrid model (3.13) is used in order to compute the SGS turbulent viscosity. The constant
Cs is set to Cs = 0.17.

The initial velocity field is prescribed using the Random Fourier Method (RFM) that
provides a synthetic turbulent velocity field enforcing a given model energy spectrum. This
approach has been developed by Kraichnan (1970) and enhanced later by Fung et al. (1992).
The Passot-Pouquet model for energy spectrum (Passot and Pouquet, 1987) has been chosen
and is written:

E(κ) = 16

√
2

π

v2
rms

κ0

(
κ

κ0

)4

exp

[
−2

(
κ

κ0

)2
]

(3.72)

with κ0 the wave number of the most energetic scales at initialization set to κ0 = 4 m−1,
and vrms the root mean square (RMS) of the velocity fluctuations. The number of Fourier
modes set to 2000. The initial fields for temperature, pressure and density are set uniform
at T = 300 K, p = 101325 Pa and ρ = 1.18 kg.m−3.

Reference case

Let first introduce some characteristic parameters which will be useful in the following. The
turbulent Mach number Mt defined by:

Mt =
q

c
, (3.73)

with q =
√

3 vrms the RMS magnitude of the fluctuation velocity, and c =
√
γ(p/ρ) the mean

speed of sound, with γ = 1.4. The microscale Reynolds number is given by:

Reλ =
vrms λ

ν
, (3.74)

where ν = µ/ρ and λ stand respectively for the kinematic viscosity and the Taylor microscale
(i.e. the largest of the dissipative scales). The Taylor-eddy-turnover time τ is defined by the
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ratio of the Taylor length scale λ and the root mean square of the velocity fluctuations vrms :

τ =
λ

vrms
. (3.75)

Different DNS or LES numerical results for the decay of isotropic turbulence exist in the
literature (Spyropoulos and Blaisdell, 1996; Nagarajan and Lele, 2003; Chai and Mahesh,
2012). Most of them use high initial values for Mt and Reλ in order to check the numerical
scheme robustness. For the reference case studied here, the initial turbulent Mach number is
set to Mt = 0.4 and the initial Taylor Reynolds number to Reλ = 100.

Fig. 3.7 shows a comparison between the energy spectrum obtained by CALIF3S and the
DNS data of Spyropoulos and Blaisdell (1996) (case 2). Energy spectra are plotted at two
specific moments, at t/τ = 2.217 and t/τ = 4.37 , with τ = 0.18 s. The abscissa denotes the
wavenumber and the ordinate represents the energy contained. LES results agree with DNS
data.

Figure 3.7: Energy spectra at Mt = 0.4 and Reλ = 100. ( ): CALIF3S numerical results;
(×): DNS by Spyropoulos and Blaisdell (1996).

The production zone is spotted from the first wavenumber to approximately 3 to 4 m−1

where the energy spectrum amplitude is at the maximum value. The pic corresponds to
the largest turbulent scale Lt. The inertial zone is from the end of the production zone
(κ ∼ L−1

t ) to the cut-off wavenumber. The eddies size decreases until they become smaller
than the mesh size and are not directly resolved anymore.

On the left part of Fig. 3.8, the decay of the turbulent kinetic energy is represented. As
the turbulence is considered isotropic, kt is defined by:

kt =
3

2
v2
rms. (3.76)
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In Fig. 3.8, as well as in all the figures representing the decay of the turbulent kinetic energy
in this Section, kt is normalized by its maximum value, in our case, it is reached at the
initialization, thus kmaxt = kt(0).

The numerical results obtained with CALIF3S are compared to the LES ones computed
by Nagarajan and Lele (2003). After initialization, turbulence is decreasing over time due to
the viscous dissipation and the lack of source term. The results are close to those obtained
by Nagarajan’s et al..

The right part of Fig. 3.8 shows a comparison between the root mean square of the resolved
density field through time obtained with CALIF3S and the DNS data of Spyropoulos and
Blaisdell (1996). As turbulence increases compressiblity, it also increases density fluctuations.
As turbulence decreases, density fluctuations follows the same scheme and decreases too as
shown in Fig. 3.8. The RMS density is underestimated by CALIF3S . This is probably
due to the fact that the contribution of unresolved scales is not taken into account in the
computation of ρrms.

Figure 3.8: Decay of the turbulent kinetic energy (left side) and evolution of RMS density
(right side) at Mt = 0.4 and Reλ = 100. ( ): CALIF3S numerical results; (×): LES
numerical results by Nagarajan and Lele (2003) (left side), DNS data by Spyropoulos and
Blaisdell (1996) (right side).

Impact of different numerical parameters

The same test case (i.e. with Mt = 0.4 and Reλ = 100) presented above has been performed by
varying different numerical parameters such as the momentum convection term discretization
and the constant of the Smagorinsky’s model. The aim is to comfort some numerical choices
made here.

The numerical results computed with the centered scheme for the momentum convection
term discretization (equations (3.17c) and (3.18)) are compared to those obtained with the
upwind scheme in Fig. 3.9 and Fig. 3.10. The results are compared to the DNS data of
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Spyropoulos and Blaisdell (1996) and to the LES data of Nagarajan and Lele (2003) (right
part of Fig. 3.10) already shown below.

Fig. 3.9 shows the energy spectra with both convection discretizations. The upwind
scheme is more dissipative than the centered one as shown by the drop of the spectral energy.

Smagorinsky’s constant effect is observed on the energy spectra by comparing two values
for the Smagorinsky’s constant Cs, Cs = 0.17 and Cs = 0.25 (Fig. 3.11). Being directly
correlated to the SGS viscosity, rising this constant increases the turbulent viscosity and
thus increases the dissipation of turbulent energy. Therefore, it lowers the energy of resolved
scales near the cut-off wavenumber.

Figure 3.9: Energy spectra with centered and upwind momentum convection schemes (test
case: Mt = 0.4 and Reλ = 100). ( ): CALIF3S numerical results with centered scheme;
( ): CALIF3S numerical with upwind scheme; (×): DNS by Spyropoulos and Blaisdell
(1996).

The decays of the kinetic energy (left side) and of RMS density fluctuations (right side)
are plotted on Fig. 3.10. With the upwind scheme, as shown in Fig. 3.9, turbulence is
underestimated. A lower turbulence rate induces a less compressible flow and so, the RMS
density fluctuations and the kinetic energy are also underestimated.
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Figure 3.10: Decay of the turbulent kinetic energy (left side) and evolution of RMS density
(right side) with centered and upwind momentum convection schemes (test case: Mt = 0.4
and Reλ = 100). ( ): CALIF3S numerical results with centered scheme; ( ): CALIF3S
numerical results with upwind scheme; (×): LES numerical results by Nagarajan and Lele
(2003) (left side), DNS data by Spyropoulos and Blaisdell (1996) (right side).

Figure 3.11: Energy spectra for two values of the Smagorinsky’s constant Cs (test case:
Mt = 0.4 and Reλ = 100). ( ): CALIF3S numerical results with Cs = 0.17; ( ): CALIF3S
numerical results with Cs = 0.25; (×): DNS by Spyropoulos and Blaisdell (1996).
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The RMS density and the turbulent kinetic energy decay are plotted for Cs = 0.17 and
Cs = 0.25 in Fig. 3.12. RMS density and turbulent kinetic energy are both underestimated
for a higher value of the Smagorinsky model (Cs = 0.25).

Figure 3.12: Decay of the turbulent kinetic energy (left side) and evolution of RMS density
(right side) for two values of the Smagorinsky’s constant Cs (test case: Mt = 0.4 and Reλ =
100). ( ): CALIF3S numerical results with Cs = 0.17; ( ): CALIF3S numerical results
with Cs = 0.25; (×): LES numerical results by Nagarajan and Lele (2003) (left side), DNS
data by Spyropoulos and Blaisdell (1996) (right side).

Impact of the turbulent Mach number

The level of compressibility of the initial fields is controlled by varying the initial turbulent
Mach number Mt. Tests have been made with three different turbulent Mach numbers:
Mt = 0.3, Mt = 0.4 and Mt = 0.5. The initial microscale Reynolds number is set to
Reλ = 100.

In Fig. 3.13 are plotted the energy spectra normalized by the square of RMS velocity for
the three different initial turbulent Mach numbers. The spectra evolution over time is highly
dependent of the initial RMS velocity (and thus of the initial Mt). Indeed, by initializing with
a higher turbulent Mach number, turbulence is increased and thus its energy is also raised.
In Fig. 3.13 the spectra overlap due to the normalization by the square of RMS velocity. As
previously, the results are plotted at different moments: t/τ = 2.217 and t/τ = 4.37, the
Taylor-eddy-turnover time τ being obviously different for each initial Mt (see relation (3.75)):
τ = 0.108 s, τ = 0.135 s, and τ = 0.18 s for Mt = 0.3, Mt = 0.4 and Mt = 0.5 respectively.
Numerical results are compared to DNS data of Spyropoulos and Blaisdell (1996) (cases 1, 2
and 3). The data are also normalized, thus DNS values overlap for all three Mt cases. Then,
in order to lighten Fig. 3.13 only DNS results for Mt = 0.4 are represented. The numerical
results obtained with CALIF3S are close to DNS data and overlap, as expected, for the
different initial Mt cases.
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Figure 3.13: Energy spectra for various Mt and Reλ = 100. ( ): CALIF3S numerical results
with Mt = 0.3; ( ): CALIF3S numerical results with Mt = 0.4; ( ): CALIF3S numerical
results with Mt = 0.5; (×): DNS by Spyropoulos and Blaisdell (1996) (Mt = 0.4).

The decays of turbulent kinetic energy computed with CALIF3S are plotted on the left
part of Fig. 3.14, for Mt = 0.3, Mt = 0.4 and Mt = 0.5. The three curves overlap because the
kinetic energy is normalized by its initial value, thus the results become independent from
the initial turbulent Mach number. The results are compared to the DNS data computed
by Chai and Mahesh (2012) also normalized by the initial value of the kinetic energy. For
the same reasons as above, in order to lighten the figure, only DNS results for Mt = 0.4 are
plotted. The LES results obtained with CALIF3S are in good agreement with DNS data.

The time evolutions of RMS density obtained with CALIF3S are plotted on the right
part of Fig. 3.14, for Mt = 0.3, Mt = 0.4 and Mt = 0.5. The results show the close relation
between compressibility and turbulence: by increasing the turbulent Mach number, density
fluctuations grow. The comparison with the DNS data of Spyropoulos and Blaisdell (1996)
shows that the numerical results are in good agreement with DNS data.

Impact of the microscale Reynolds number

The effect of the initial microscale Reynolds number Reλ is also examined. Tests have been
made with Reλ = 100 and Reλ = 1000 while the initial turbulent Mach number is set to
Mt = 0.4.

The energy spectra are plotted in Fig. 3.15 at two different moments t/τ = 2.217 and
t/τ = 4.37. According to (3.75), τ depends on the initial microscale Reynolds number.
Here, for the two initial Reλ = 100 and Reλ = 1000, the associated Taylor-eddy-turnover
are τ = 0.135 s and τ = 1.35 s respectively. Even if the energy is slightly different in the
inertial zone, the energy spectra are close for higher wavenumber, independently of the initial
microscale Reynolds number. The results are only compared with the DNS data of the
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reference case (Spyropoulos and Blaisdell, 1996) (Mt = 0.4, Reλ = 100), because no data are
available, to our knowledge, for Mt = 0.4, Reλ = 1000.

Figure 3.14: Decay of the turbulent kinetic energy (left side) and evolution of RMS density
(right side) for various Mt and Reλ = 100. ( ): CALIF3S numerical results with Mt = 0.3;
( ): CALIF3S numerical results with Mt = 0.4; ( ): CALIF3S numerical results with
Mt = 0.5; (×): DNS data by Chai and Mahesh (2012) (left side), DNS data by Spyropoulos
and Blaisdell (1996) (right side).

Figure 3.15: Energy spectrum for various Taylor Reynolds numbers at Mt = 0.3. ( ):
CALIF3S numerical results with Reλ = 1000; ( ): CALIF3S numerical results with Reλ =
100; (×): DNS by Spyropoulos and Blaisdell (1996).
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The decay of turbulent kinetic energy and the time evolution of RMS density obtained
with CALIF3S are plotted in Fig. 3.16 for both initial microscale Reynolds numbers. The
results are compared to those computed by Nagarajan and Lele (2003). They are in good
agreement with these latest. Fig. 3.16 shows (as already seen on Fig. 3.15) that the initial
Taylor Reynolds number has a small impact on the numerical results. Indeed, at large
Reynolds numbers, viscous terms become negligible and subgrid terms become responsible
for energy dissipation. Thus, increasing Reλ must have less and less impact on numerical
results because the subgrid model does not depend on Reλ (Nagarajan and Lele, 2003). This
trend is captured by the numerical scheme as shown in Fig. 3.16.

Moreover, it should be noted that at high microscale Reynolds numbers, if the numerical
scheme is not robust enough, some numerical instabilities can occur at high wavenumbers
(Nagarajan and Lele, 2003). Here, the numerical scheme remains stable.

Figure 3.16: Decay of the turbulent kinetic energy (left side) and evolution of the RMS
density (right side) for different Taylor Reynolds numbers at Mt = 0.3. ( ): CALIF3S
numerical results with Reλ = 1000; ( ): CALIF3S numerical results with Reλ = 100; (×):
LES numerical results with Reλ = 1000 by Nagarajan and Lele (2003); (S): LES numerical
results with Reλ = 100 by Nagarajan and Lele (2003).

3.6 Conclusion
In this chapter, a formally second order explicit scheme dedicated to the numerical simulation
of the filtered Navier-Stokes equations for compressible non-reactive flows is proposed. The
space discretization is staggered, using the Marker-And-Cell (MAC) scheme for structured
grids (Harlow and Amsden, 1971; Harlow and Welch, 1965). Time-stepping is performed
with a second order Runge-Kutta scheme, called the Heun scheme.

The equation solved is the so-called sensible energy balance instead of the total energy
conservation equation. This choice avoids building an approximation of the total energy
which, for staggered discretizations, is a “composite” variable combining quantities discretized
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on the cells and at the faces. This difficulty may be overstepped by adding, as in Herbin
et al. (2014), a corrective term in the discrete sensible energy balance equation.

The scheme enjoys some stability properties: the density is shown to be non-negative at
the discrete level under CFL condition. This is obtained thanks to a high-order (MUSCL-
type) positivity-preserving convection operator for the mass balance equation. The same
MUSCL technique is also used for the discretization of the convection operator of the sensible
energy balance equation. In order to obtain the positivity of the internal energy at the discrete
level (under CFL condition), a careful design of the viscous dissipation term is needed. To
this purpose, we use an idea proposed in Grapsas et al. (2016), which consists in recasting the
MAC scheme under a weak form, so that we may closely mimick the continuous expression
of the dissipation: in fine, the cell dissipation is computed as the integral over the considered
cell of the inner product of the stress and strain tensors, linked a.e. by the usual (continuous)
relation (hence the non-negativity).

In the context of LES of turbulent flows, the control of kinetic energy is an essential
requirement for a numerical scheme in order to guarantee not only the stability but also the
physical reliability of the results. A local kinetic energy balance for the algorithm with re-
mainder terms is derived, which we show to be of second order in time. Finally, we establish
a total energy balance for the scheme, which may be made conservative by adding corrective
terms to the sensible energy balance, for instance if one wants to compute shock solutions.
Since we address here essentially viscous flows, we do not follow this line; however, we nu-
merically check that the scheme correctly captures the viscous perturbation of mild shocks
(similar for instance to the strongest ones which may be generated by deflagrations) even
with coarse meshes. On the opposite, for strong shocks (typical of detonations), correcting
the discrete sensible energy balance seems to be preferable.
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Appendix

3.A Diffusion and dissipation terms
The construction of momentum diffusion and viscous dissipation terms relies on the following
formalism (see Grapsas (2017)):

(i) piecewise-constant tensor valued fields, let us say ∇Mv and τ̆M(v), representing the
discrete velocity gradient and stress tensor respectively, are defined,

(ii) then a discrete test function associated to each face is introduced; this allows to derive
an expression of div(τ̆ (v))σ,i through a weak formulation of this term, which is shown
to coincide with the usual finite volume formulation, provided that a specific (and
reasonable) space interpolation of the viscosity is chosen in the latter;

(iii) finally, we give to (τ̆ (v) :∇v)K the following definition:

|K|(τ̆ (v) :∇v)K =

∫
K

τ̆M(v) :∇Mv dx. (3.77)

We first recall here this derivation, for the sake of completeness. Then, we focus on the
objective of this section, namely to derive the viscous fluxes (i.e. the discrete equivalent of
div(τ̆ (v)v) and the dissipation (i.e. the discrete equivalent of τ̆ (v) : v) which appears in the
discrete kinetic energy balances, first posed on the dual mesh and then averaged to obtain an
analogue relation on the primal mesh. Since this section only adresses space discretization
issues, we omit for short the time index; in the scheme proposed in this chapter, all the
quantities are explicit, in the sense that they have to evaluated at the beginning of the step
in the Heun algorithm.

As explained above, the first step in the construction of the viscous term is to define
piecewise constant partial derivatives of the velocity components, based on specific partitions
of the computational domain. For 1 ≤ i, j ≤ d, the partial derivative of the i-th component
of the velocity vi with respect to the j-th coordinate, which we denote by ðjvi, is defined as a
piecewise-constant over each volume Dε of the set {Dε, ε ∈ Ẽ (i,j)}, with Ẽ (i,j) = {ε ∈ Ẽ (i), ε ⊥
e(j)}, and

Dε =

∣∣∣∣∣ ε× [xσ,xσ′ ], for ε = σ|σ′ ∈ Ẽ (i)
int,

ε× [xσ,xσ,ε], for ε ∈ Ẽ(Dσ) ∩ Ẽ (i)
ext,

(3.78)

where xσ,ε refers to the orthogonal projection of xσ on ε. Each set {Dε, ε ∈ Ẽ (i,j)} is a
partition of Ω; a volume Dε of this set is called in the following a (i, j)-gradient cell. For the
two-dimensional case, these volumes are sketched on Fig. 3.A.1. When i = j, a (i, j)-gradient
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cell coincides with a primal cell. In addition, we observe that, for i 6= j, the set of the (i, j)-
gradient cells and the set of the (j, i)-gradient cells are the same; in two space dimensions,
such a (i, j)-gradient cell may be associated to a grid vertex, while, in three space dimensions,
for ε = σ|σ′, it is associated to the edge equal to σ ∩ ε = σ′ ∩ ε (see Grapsas et al. (2016)).

Dε

εv1,σ v1,σ′ Dε

ε

v1,σ

v1,σ′

Dε

Dε′

ε xσ,ε

ε′

xσ′,ε′

×

×

v1,σ

v2,σ′

Figure 3.A.1: (i, j)- gradient cells in the two-dimensional case. Left: ε = σ|σ′ ∈ Ẽ (1)
int and

ε ⊥ e(1). Middle: ε = σ|σ′ ∈ Ẽ (1)
int and ε ⊥ e(2). Right: ε = Ẽ (1)

ext∩ Ẽ(Dσ) and ε′ = Ẽ (2)
ext∩ Ẽ(D′σ).

Supposing for short that the velocity obeys homogeneous Dirichlet boundary conditions,
for 1 ≤ i, j ≤ d, we define ðjvi a.e. in Ω by

ðjvi(x) =

∣∣∣∣∣∣∣∣
vσ′,i − vσ,i
xσ′,j − xσ,j

for x ∈ Dε, ε ∈ Ẽ (i,j) ∩ Ẽ (i)
int, ε = σ|σ′,

−vσ,i
xσ,ε − xσ,j

for x ∈ Dε, ε ∈ Ẽ (i,j) ∩ Ẽ (i)
ext, ε ∈ Ẽ(Dσ).

(3.79)

For σ ∈ E (i)
int, let the discrete velocity field ϕ(i),σ be the discrete velocity function defined

(ϕ(i),σ)σ = 1 and (ϕ(i),σ)σ′ = 0 for σ′ ∈ E , σ′ 6= σ (so the j-th component(s) of ϕ(i),σ are
zero for j 6= i and the i-th component has only one degree of freedom set to 1, namely the
degree of freedom corresponding to σ). To each gradient cell (which, for i 6= j, is both a
(i, j)-gradient cell and a (j, i)-gradient cell), we associate a viscosity µDσ , and we introduce
d× d viscosity fields defined a.e. in Ω by

µ(i,j)(x) = µDσ , for x ∈ Dε, with ε ∈ Ẽ (i,j).

For a discrete velocity field v, we are now in position to define a discrete gradient ∇Ev
and a tensor associated to the multiplication of the strain rate by the viscosity, denoted by
(µS)E(v), for a.e. x ∈ Ω:

(∇Ev)i,j(x) = ðjvi(x), ((µS)E(v))i,j = µ(i,j)(x)
ðjvi(x) + ðivj(x)

2
. (3.80)

Finally, we define the stress tensor by

τ̆ E(x) = 2 (µS)E(v)(x) +
2

3
Tr
(
(µS)E(v)(x)

)
I for a.e. x ∈ Ω

104



and the diffusion term by:

− |Dσ| div(τ̆ (v))σ =

∫
Ω

τ̆ E(x) :∇E(ϕ(i),σ)(x) dx, (3.81)

for σ ∈ E (i)
int. The quantity µnDε may be approximated by any reasonable average over the

neighbouring cells, for instance:

µnDε = µnK if Dε = K, and |Dε| µnDε =
∑
K∈M,

K∩Dε 6=∅

|K|
4

µnK otherwise.

Kinetic energy balance – In the kinetic energy balance (posed on the dual mesh), the
term associated to this diffusion reads, for σ ∈ E (i)

int, 1 ≤ i ≤ d:

Tσ,i = −|Dσ| div(τ̆ (v))σ vσ,i =

∫
Ω

τ̆ E(x) :∇E(ϕ(i),σ)(x) dx vσ,i.

Decomposing the integral and using the fact the support of ∇E(ϕ(i),σ) is restricted to the
(i, j)-gradient cells Dε where ε is a dual face of Dσ, we get:

Tσ,i =
d∑
j=1

∑
ε∈E(Dσ),

ε∈Ẽ(i,j)

∫
Dε

(τ̆ E(x))i,j : ðjϕ(i),σ(x) dx vσ,i.

Let us write Tσ,i = T diss
σ,i + T cons

σ,i with

T diss
σ,i =

1

2

d∑
j=1

∑
ε∈E(Dσ),

ε∈Ẽ(i,j), ε=Dσ |Dσ′

∫
Dε

(τ̆ E(x))i,j : ðjϕ(i),σ(x) dx (vσ,i − vσ′,i),

T cons
σ,i =

1

2

d∑
j=1

∑
ε∈E(Dσ),

ε∈Ẽ(i,j), ε=Dσ |Dσ′

∫
Dε

(τ̆ E(x))i,j : ðjϕ(i),σ(x) dx (vσ,i + vσ′,i).

For ε ∈ Ẽ (i,j), with ε = Dσ|Dσ′ , we have ðjϕ(i),σ′(x) = −ðjϕ(i),σ(x). Considering the support
of these two partial derivatives, we get

T diss
σ,i =

1

2

d∑
j=1

∑
ε∈E(Dσ),

ε∈Ẽ(i,j)

∫
Dε

(τ̆ E(x))i,j : ðj(vi)(x) dx,

which is a natural expression for the dissipation term, considering that the integral at the
right-hand side of this relation may be shared, in the part of the kinetic energy balance
assocated to the i-th component of the velocity, between the discrete equations associated
to σ and to σ′. Still because ðjϕ(i),σ′(x) = −ðjϕ(i),σ(x), the term T cons

σ,i is conservative. We
may thus write

T cons
σ,i =

∑
ε∈Ẽ(Dσ)

Gσ,ε.
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Using the definition of the discrete test functions,

Gσ,ε = |ε| (τ̆ E)i,j,Dε
vσ,i + vσ′,i

2
nσ,ε · e(j), for ε ∈ Ẽ (i,j), (3.82)

where (τ̆ E)i,j,Dε stands for the constant value of (τ̆ E)i,j over Dε. This expression is a natural
finite volumes discretization of div(τ̆ · v)i.

Kinetic energy balance on the primal cells – The flux given by Equation (3.82)
must just be added to the convection flux in Equation (3.62), and the process to obtain the
kinetic energy balance over the primal cells is left unchanged. For the dissipation term, we
get, by the same process:

T diss
K =

1

4

d∑
i,j=1

∑
σ∈E(K),

σ∈E(i)
int

∑
ε∈E(Dσ),

ε∈Ẽ(i,j)

∫
Dε

τ̆ E(x)i,j : ðj(vi)(x) dx, (3.83)

This is to be compared with the expression used in the internal energy balance, which reads:

T̃ diss
K =

1

4

d∑
i,j=1

∫
K

τ̆ E(x)i,j : ðj(vi)(x) dx.

We see that the expression (3.83) amounts to perform the integration over a domain roughly
speaking 4 times greater than K and dividing by 4 (see Fig. 3.A.2 for the exact comparison of
the integration domains). If we suppose that the dissipation is controlled in L1, the difference
between T diss

K and T̃ diss
K thus tends to zero in a distributional sense; for regular solutions on

non-uniform meshes, it may be expected to be vary as the space step in the L∞-norm. Note
that switching from T̃ diss

K to T diss
K is also possible, up to a slight additional complexity from

an algorithmic point of view.

σ σ
′

K

σ σ
′

K

Figure 3.A.2: Integration domains for the dissipation term in the dissipation term. Two-
dimensional case, i = 1, j = 1 (left) and j=2 (right). Light blue: (1, j)-gradient cell associated
to σ; light green: (1, j)-gradient cell associated to σ′; blue: (1, 1)-gradient cell associated to
both σ and σ′.
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3.B The MUSCL scheme
The MUSCL discretization of the convection operators of the mass balance and of the internal
energy balance is recalled here for the sake of completeness. It closely follows the technique
proposed in Piar et al. (2013) for the transport equation. Formally second-order in space
fluxes are computed and then a limiting procedure is applied in order to obtain positivity
under a CFL-like condition, since we use an explicit time discretization. This limiting step
is purely algebraic: it does not require any geometric argument and thus works on quite
general meshes. It is carefully designed to keep the pressure constant in the zones where it
actually should be, and in particular across contact discontinuities when the scheme boils to
the hyperbolic case.

For any σ ∈ E , the procedure consists in four steps:
- calculate a tentative value for ρσ as linear interpolate of nearby values,

- calculate an interval for ρσ which guarantee some stability properties for the scheme,

- project the tentative value ρσ on this stability interval,

- calculate eσ as function of projected tentative value ρσ.

For the tentative value of ρ̃σ, let us choose some real coefficients (ςρK,σ)K∈M such that

xσ =
∑
K∈M

ςρK,σxK ,
∑
K∈M

ςρK,σ = 1.

where xσ and xK stand for the mass centers of σ and K respectively, ∀σ ∈ Eint and K ∈M.
The coefficients used in this interpolation are chosen in such a way that as few as possible
cells, to be picked up in the closest cells to σ, take part. For example, for σ = K|L and if
xK , xσ, xL are aligned, only two non-zero coefficients exist in the family (ςρK,σ)K∈M, namely
ςρK,σ and ςρL,σ. Then, these coefficients are used to calculate the tentative value of ρ̃σ by

ρ̃σ =
∑
K∈M

ςρK,σρK .

The construction of the stability interval for the density must be such that the following
property holds:

∀K ∈M, ∀σ ∈ E(K) ∩ Eint, ∃βρK,σ ∈ [0, 1] and Mρ
K,σ ∈M such that

ρσ − ρK =

∣∣∣∣∣ β
ρ
K,σ (ρK − ρMρ

K,σ
), if vK,σ ≥ 0,

βρK,σ (ρMρ
K,σ
− ρK), otherwise.

(3.84)

Similarly, the following property holds for the internal energy:

∀K ∈M, ∀σ ∈ E(K) ∩ Eint, ∃βeK,σ ∈ [0, 1] and M e
K,σ ∈M such that

eσ − eK =

∣∣∣∣∣ βeK,σ (eK − eMe
K,σ

), if FK,σ ≥ 0,

βeK,σ (eMe
K,σ
− eK), otherwise.

(3.85)

Under these latter hypothesis and a CFL condition, the scheme preserves the positivity of e
and ρ.
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Remark. Note that, in Assumptions (3.84) and (3.85), only internal faces are consid-
ered, since the fluxes through external faces are supposed to vanish due to imperme-
ability boundary conditions. However, the present discussion may easily be generalized
to cope with convection fluxes entering the domain.

We have shown in Piar et al. (2013) that Assumption (3.84) (respectively (3.85) ) defines
an admissible interval for ρσ (respectively eσ), and that a limiting procedure may be obtained
by just projecting the tentative value for the density ρ̃σ (resp. internal energy ẽσ) at the face
on this interval. Here, the situation is more complicated, since we also need to keep the
pressure constant at contact discontinuities when the scheme boils to the hyperbolic case.
Thus, the product ρσ eσ must be equal to ρK eK and ρL eL when these quantities are the
same (recall that we use here the fact that the equation of state is such that the pressure
only depends on the product ρ e ). In fact, we require here the more restrictive assumption
that ρσ eσ is a convex combination of ρK eK and ρL eL, i.e. that there exists κσ ∈ [0, 1] such
that:

ρσ eσ = κσ ρK eK + (1− κσ) ρL eL (3.86)

Our aim is thus to find an admissible interval for ρσ and for eσ such that (3.84), (3.85) and
(3.86) hold. First, let us suppose that σ ∈ Eint, σ = K|L and that the flow goes from K
to L, that is FK,σ ≥ 0. For the sake of simplicity, we suppose also that the cells Mρ

K,σ and
M e

K,σ are the same and we denote this cell MK,σ. Assumption (3.84) could be rewritten in
the following way:

∃βρσ ∈ [0, 1], αρσ ∈ [0, 1] and Mσ ∈M such that∣∣∣∣ ρσ − ρK = βρσ (ρK − ρMσ),
ρσ − ρL = αρσ (ρK − ρL)

(3.87)

Analagously, assumption (3.85) could be rewritten in the following way:

∃βeσ ∈ [0, 1], αeσ ∈ [0, 1] and Mσ ∈M such that∣∣∣∣ eσ − ρK = βeσ (eK − eMσ),
eσ − ρL = αeσ (eK − eL)

(3.88)

Combining both relations (3.87), we get:

αρσ = 1− βρσ
rρσ
, with rρσ =

ρL − ρK
ρK − ρMσ

(3.89)

From this relation, it appears that (3.87) is satisfied (and equivalently (3.84)) provided that
βρσ satisfies:

0 ≤ βρσ ≤ (min(1, rρσ))+

where, for a ∈ R , a+ is defined by a+ = max(a, 0). This observation suggests the following
strategy: thanks to the link between the value of and ρσ and eσ induced by (3.86) , try to
express the coefficients αeσ and βeσ as a function of βρσ, and then express the limiting procedures
produced by (3.88) as limiting procedures for βρσ. Arbitrarly assuming that κσ = αρσ in (3.86)
and after some agebraic manipulations (see Gastaldo et al. (2018) for more details), we get:

αeσ =
ρK
ρσ

αρσ, =
ρL
ρσ

reσ
rρσ
βρσ with reσ =

eL − eK
eK − eMσ

(3.90)
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Thus, there exists ασ ∈ [0, 1] and βeσ ∈ [0, 1] such that (3.84), (3.85) and (3.86) hold if βρσ is
such that:

0 ≤ βρσ ≤
(

min(1, rρσ,
ρσ
ρL

rρσ
reσ

)

)+

.

This relation still does not provide an interval for βρσ, since it involves ρσ which expression
itself involves βρσ. But now, we just need to replace ρσ by an explicit lower bound. As βρσ = 0
is always an admissible value, ρK is also an admissible value for ρσ. Thus ρσ will be obtained
by a projection of the tentative value ρ̃σ on an interval containing ρK , which ensures that
ρσ ≥ min(ρK , ρ̃σ). Consequently, we finally choose for admissible interval for βρσ the interval
Iβ given by:

Iβ =

[
0,

(
min(1, rρσ,

min(ρK , ρ̃σ)

ρL

rρσ
reσ

)

)+
]

The admissible range for the density is thus Iρ with:

Iρ = {ρK + β (ρK − ρMσ), β ∈ Iβ}

Given ρ̃σ, the limiting algorithm consists in computing ρσ by projection on Iρ, which yields
βρσ. The coefficient βeσ is then given by (3.90) and eσ is computed from the first relation of
(3.88) .

3.C The pressure correction scheme
The algorithm described here was first introduced in Grapsas et al. (2016); Herbin et al.
(2014) and is recalled here for the sake of completeness.
It solves the same system of equations introduced in Section 3.2, (3.3). Here again, only
impermeability conditions are considered, and initial conditions for ρ, ẽ and ṽ are such that:

ρ(x, 0) = ρ0(x), ẽ(x, 0) = ẽ0(x), ṽ(x, 0) = ṽ0(x), with ρ0 > 0, ẽ0 > 0.

From now on, the filter notations are omitted for the sake of clarity and the symbols .̃ or .
will denote predicted unknowns instead of filtered ones.
The spatial discretization is staggered and based on the so-called Marker-And Cell (MAC)
scheme Harlow and Amsden (1971); Harlow and Welch (1965). But the discretization can
be easily extended to non-conforming low-order finite element approximations Grapsas et al.
(2016); Grapsas (2017), namely the Rannacher and Turek (RT) element Rannacher and Turek
(1992) for quadrilateral or hexahedral meshes, or the lowest degree Crouzeix-Raviart (CR)
elementCrouzeix and Raviart (1973) for simplicial meshes.
A fractional step strategy is used; it involves a prediction step for a tentative velocity followed
by an elliptic pressure correction step. These steps are both implicit-in-time, to avoid any
restriction of the time step other than the one imposed for accuracy reasons.

Let us consider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ),
and let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. The numerical
scheme reads in its fully discrete form, for 0 ≤ n ≤ N − 1:
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Pressure gradient scaling step:

∀σ ∈ Eint, (∇p)n+1
σ =

( ρnDσ

ρn−1
Dσ

)1/2

(∇pn)σ. (3.91a)

Prediction step – Solve for ṽn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E (i)
int,

1

δt

(
ρnDσ

ṽn+1
σ,i − ρn−1

Dσ
vnσ,i
)

+ divσ(ρnṽn+1
i vn − div(τ (ṽn+1))σ,i + (∇p)n+1

σ,i = 0 (3.91b)

Correction step – Solve for pn+1, en+1, ρn+1 and vn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E (i)
int,

1

δt
ρnDσ

(vn+1
σ,i − ṽn+1

σ,i ) + (∇pn+1)σ,i − (∇p)n+1
σ,i = 0, (3.91c)

∀K ∈M,
1

δt
(ρn+1
K − ρnK) + divK(ρn+1vn+1) = 0 (3.91d)

∀K ∈M,

1

δt
(ρn+1
K en+1

K − ρnKenK) + divK(ρn+1en+1vn+1) + pn+1
K (div(vn+1))K

=
(
τ (ṽn+1) :∇ṽn+1

)
K

+ div(qn+1)K + Sn+1
K ,

(3.91e)

∀K ∈M, ρn+1
K = %(en+1

K , pn+1
K ) =

1

γ − 1

pn+1
K

en+1
K

. (3.91f)

The first step is a pressure gradient scaling step which is introduced in order to recover
a discrete kinetic energy inequality. The second step is a classical semi-implicit solution of
the momentum balance equation to obtain a tentative velocity field. The third step is a non-
linear pressure correction step, which couples the mass balance equation with the internal
energy balance equation. This coupling is necessary to guarantee the unconditionally stability
property of the scheme, i.e., stability respectively of the time and space steps. In addition,
in the Euler case, it also allows the scheme to keep the velocity and pressure constant across
(1D) contact discontinuities Grapsas (2017). The last equation of this step is the equation of
state. Contrary to the explicit numerical scheme (Section 3.4.1) it is recast here as ρ = %(e, p)
because, at the algebraic level, the density is first eliminated from the system, this latter is
solved for en+1 and pn+1, and ρn+1 is finally given by (3.91f) Grapsas (2017).

The notations appearing on the scheme (3.91) have already been introduced in Section
3.4.1. However, let notice that for the convection terms of the discrete mass balance equation
(3.91d) and of the discrete internal energy balance equation (3.91e), the upwind choice is
made instead of the MUSCL one. Thus, in (3.91d):

divK(ρv) =
1

|K|
∑

σ∈E(K)

FK,σ =
1

|K|
∑

σ∈E(K)

|σ| ρσ vK,σ (3.92)
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with for σ = K|L ∈ Eint, ρσ = ρK if vK,σ ≥ 0 and ρσ = ρL otherwise. Analogously, for the
discrete internal energy balance equation (3.91e):

div(ρev)K =
1

|K|
∑

σ∈E(K)

FK,σeσ, (3.93)

with, for σ = K|L ∈ Eint, eσ = eK if FK,σ ≥ 0 and eσ = eL otherwise.

In the rescaling step, the pressure gradient (3.91a) the term (∇p)σ,i stands for the ith
component of the discrete pressure gradient at the face σ, which is built as the transpose
operator to the natural divergence (see Section 3.4.1, relation (3.33)). The same discretization
is used in the correction equation (3.91c) for the discrete pressure gradient.

Finally, the term SK at the right-hand side of (3.91e) is necessary to obtain a consistent
scheme in the Euler case Herbin et al. (2014); its purpose is to compensate some numerical
dissipation terms appearing in the discrete kinetic energy balance equation, which may not
tend to 0 as the mesh and time step tend to 0 Grapsas (2017).

Les us list the essential features of the scheme described here (for more details we refer
to Grapsas et al. (2016); Grapsas (2017)):

• The algorithm presented here is an extension of a solver natively designed for incom-
pressible flows, or for the asymptotic model of low Mach number flows Nerinckx et al.
(2005). It boils down to the original incompressible scheme when the Mach number
tends to zero (see Herbin et al. (2017) for a rigorous proof in the barotropic case).

• The risk when using a non-iterative pressure correction algorithm is to lose stability.
Here, the numerical scheme is proved to be unconditional stable (i.e. independent of
the time and space step).

• Moreover the same stability properties proven for the explicit scheme hold for the pres-
sure correction scheme: the approximate density and internal energy are non-negative
and a discrete kinetic energy balance equation can be established from the discrete mo-
mentum balance. We are also able to prove the existence of a solution of the scheme.

• Finally the weak (Lax-Wendroff type) consistency has been proved in Herbin et al.
(2018) in one space dimension for the Euler equation.
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Chapter 4

A second order explicit scheme for the
large-eddy simulation of premixed
turbulent flames

We address in this chapter a turbulent deflagration model with a flow governed by the composi-
tional Navier-Stokes equations and the flame propagation represented by a virtually thickened
flame formalism combined with a dynamical determination of the subgrid scale flame wrin-
kling factor to handle unresolved contributions. The numerical scheme works on staggered
structured meshes with a time-marching algorithm solving first the chemical species mass bal-
ances and then the mass, momentum and energy balances. The approximate solutions respect
the physical bounds and satisfy a conservative weakly-consistent discrete total energy balance
equation in the inviscid case.

4.1 Introduction
We study in this chapter a numerical scheme for the computation of turbulent deflagrations
occurring in a premixed atmosphere. In usual situations, such a physical phenomena is driven
by the progress in the atmosphere of a shell-shaped thin zone, where the chemical reaction
occurs and which thus separates the burnt area from fresh gases; this zone is called the
flame brush. The onset of the chemical reaction is due to the temperature elevation, so the
displacement of the flame brush is driven by the heat transfer inside and in the vicinity of this
zone. Modelling of deflagrations still remains a challenge, since the flame brush has a very
complex structure, due to thermo-convective instabilities or turbulence (Peters, 2000; Poinsot
and Veynante, 2012). Whatever the modelling strategy, the problem thus needs a multiscale
approach, since the local flame brush structure is out of reach of the computations aimed
at simulating the flow dynamics at the observation scale, i.e. the whole reactive atmosphere
scale. Here, the choice made is to artificially thicken the flame front in order to be resolved
on the numerical mesh (Butler and O’Rourke, 1977). A subgrid scale flame wrinkling model
is then introduced to handle unresolved contributions (Veynante and Moureau, 2015). This
latest is computed dynamically allowing a better description of the flame front propagation,
even at the beginning of the transient when the laminar flame gradually becomes turbulent.
The model is also adjusted to deal with flame front interactions and flame-wall interactions
which can lead to an overestimation of the subgrid model parameters and therefore a wrong
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description of the flame front propagation, or even give rise to stability problems (Mouriaux
et al., 2016).

The numerical scheme, build in this chapter for the large eddy simulation of compressible
reactive flows, is an extension to the reactive case of the numerical scheme described and
tested in Chapter 3. The space discretization is staggered, and works on structured grids
using the so-called Marker-And-Cell (MAC) scheme (Harlow and Amsden, 1971; Harlow
and Welch, 1965): the scalar variables are approximated at the cell centers and the normal
velocity at the face centers. Time-stepping is segregated, in the sense that balance equations
are solved successively, and each step is explicit. The chemical species mass balances are
first solved with the Strang algorithm decoupling convection and reaction. The associated
reaction energy is introduced into the Navier-Stokes energy balance equation, solved in a
second time with a time integration performed by the second order Heun scheme.

The positivity of the density is ensured by construction of the discrete mass balance
equation, i.e. by the use of a second order MUSCL scheme. In addition, the physical bounds
of the mass fractions are preserved thanks to the following (rather standard) arguments:
first, building a discrete convection operator which vanishes when the convected unknown
is constant thanks to the discrete mass balance equation ensures a positivity-preservation
property (Larrouturou, 1991), under a CFL condition (as shown for a simpler problem in
Appendix 4.A); second, the discretization of the chemical reaction rate ensures either that it
vanishes when the unknown of the equation vanishes (for fuel and oxidizer mass fractions), or
that it is non-negative (for products mass fractions). Moreover, with a suitable choice of the
coefficients involved in the MUSCL discretization of the chemical species convection terms,
the scheme preserves the fact that their sum is equal to 1. Thus, they are also bounded by
1. An algorithm for the computation of the "suitable" choice for these coefficients is given in
Appendix 4.B in the 1D case.

The positivity of the sensible energy stems from the same essential argument used in the
non-reactive case: the consistency of the discrete convection operator and the mass balance.
This holds provided that the equation is exothermic (ω̇T ≥ 0). Moreover, we show in Section
4.5 that the solutions of the scheme satisfy a discrete total energy balance up to reminder
terms. This balance may be made conservative by adding corrective terms to the sensible
energy balance, for instance if one wants to compute shock solutions.

The chapter is structured as follows. We first recall the physical model in Section 4.2. The
fully discrete setting is given in two steps, first describing the space discretization (Section
4.3) and then the scheme itself (Section 4.4). The conservativity of the scheme is shown in
Section 4.5.

4.2 Physical model
First, the filtered equations for turbulent compressible reactive flows are described (Section
4.2.1), then the closure laws for the efficiency function (Section 4.2.2).

4.2.1 Governing equations

The computational domain is denoted by Ω ⊂ Rd, 1 ≤ d ≤ 3. The problem is supposed to
be posed over the time interval [0, T ].
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Hydrodynamics - The hydrodynamics of the flow is governed by the filtered compress-
ible Navier-Stokes equations, which read:

∂t(ρ) + div(ρ ṽ) = 0, (4.1a)

∂t(ρṽ) + div(ρ ṽ ⊗ ṽ) +∇p = div(τ̆ (ṽ)) + ρf , (4.1b)

where v, p, ρ and f stand for the velocity, the pressure, the density and a forcing term,
respectively. The spatial filtering operation is indicated with the operator ·, while ·̃ denotes
the mass-weighted (Favre) spatial filtering (see Chapters 1 or 3 for more details). The viscous
stress tensor is composed by a computable and a subgrid scale (SGS) part τ̆ = τ − τ SGS.
The computable part τ is defined, for a Newtonian fluid, as:

τ (ṽ) = 2µ

(
S̃− 1

3
Tr(S̃) I

)
, (4.2)

where µ is the “computable” turbulent viscosity, I stands for the Rd×d identity matrix and
S̃ is the rate-of-strain tensor of the resolved structures defined as S̃ = 1/2

(
∇ṽ +∇tṽ

)
. We

assume that µ ∈ L∞(Ω) and that it exists µ′ > 0 such as µ ≥ µ′ a.e.. Thus, the computable
shear stress tensor satisfies:

τ (ṽ) :∇ṽ ≥ 0, ∀ṽ ∈ Rd. (4.3)

The SGS turbulent shear stress τ SGS is modelled with the Boussinesq’s approximation
(Boussinesq, 1877):

τ SGS(ṽ) = ρ (ṽ ⊗ v − ṽ ⊗ ṽ) ≈ −2µSGS

(
S̃− 1

3
Tr(S̃)I

)
. (4.4)

where µSGS is the SGS turbulent viscosity. This latest is computed with the Smagorinsky
subgrid scale viscosity model (Smagorinsky, 1963).

Species balance equations - The combustion modelling is based on the thickened flame
model for large eddy simulation (TFLES) (see Section 2.4.5 for more details). The flame is
artificially thickened by multiplying the diffusion coefficient and dividing the reaction rates by
a thickening factor F (Butler and O’Rourke, 1977). The modified flame front of thickness F δ0

L

propagates at the same laminar flame speed sL as the original flame of thickness δ0
L . However,

the Damköhler number is modified and the flame becomes less sensitive to turbulence (Colin
et al., 2000). A wrinkling factor Ξ∆, ∆ being the combustion filter size, is then introduced
to counterbalance the reduction of flame surface induced by the thickening operation (Colin
et al., 2000; Charlette et al., 2002a,b; Wang et al., 2011, 2012; Schmitt et al., 2015; Veynante
and Moureau, 2015) (see Section 2.4.6 for some examples of wrinkling factor models).

For the sake of simplicity, only four chemical species are supposed to be present in the
flow, namely the fuel (denoted by F ), the oxydant (O), the product (P ) of the reaction,
and a neutral gas (N). A one-step irreversible total chemical reaction is considered, which is
written:

νFF + νOO + νNN → νPP + νNN,

where νF , νO, νN and νP are the molar stoichiometric coefficients of the reaction. We denote
by I the set of the subscripts used to refer to the chemical species in the flow, so I =
{F,O,N, P} and the set of mass fractions of the chemical species in the flow reads {Yk, k ∈ I}
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(i.e. {YF , YO, YN , YP}). The system of the mass balance equations for the chemical species
reads:

∂t(ρỸk) + div(ρỸkṽ) + div(j̆k) = ω̇k, for k ∈ I. (4.5)

The effective mass flux of the chemical species k, denoted by j̆k, may be written as the sum of
a "computable" part (first term at right hand side of (4.6)) and a subgrid scale part (second
term at right hand side of (4.6)):

j̆k = F jk + jSGSk , k ∈ I. (4.6)

with jSGSk modelled by:

jSGSk = ρ (ṽ Yk − ṽ Ỹk) ≈ (Ξ∆ − 1)F jk, for k ∈ I. (4.7)

Thanks to the Fick’s law and assuming that the diffusion coefficients Dk of all chemical
species k are equal to a same coefficient, denoted by D, the diffusive flux jk reads:

for k ∈ I, jk = −ρD∇Yk ≈ −ρD∇Ỹk. (4.8)

Moreover, assuming that the Lewis number is constant and equal to one, then we have:

for k ∈ I, jk = − µ

Pr
∇Ỹk, (4.9)

with Pr the laminar Prandtl number (see Section 1.1). The subgrid wrinkling factor Ξ∆ is
modelled using the Veynante and Moureau (2015) expression, described in Section 4.2.2.

The reaction rate of each chemical species may be written as:

ω̇k = ζkνkWk Ξ∆
ω̇

F
, for k ∈ I,

with ζF = ζO = −1, ζP = 1, ζN = 0, νk and Wk the stoichiometric coefficient and the
molar mass of the species k respectively. The reaction progress rate ω̇ is calculated with the
Arrhenius law:

ω̇ = A exp

[
− Ea
RT̃

](ρ ỸF
WF

)(ρ ỸO
WO

)1/2

(4.10)

where Ea stands for the activation energy, A for the pre-exponential factor, T stands for the
temperature and R = 8.31451 JK−1mol−1 for the perfect gases constant. Note that, since∑

k∈I νkWk = 0, we have
∑

k∈I ω̇k = 0. In addition, the sum of the unresolved transport
fluxes of the chemical species is supposed to vanish everywhere in Ω× (0, T ):

∑
k∈I j̆k = 0.

Thus, summing on k ∈ I the species mass balance allows to recover the equivalence between
the mass balance and the fact that

∑
k∈I Yk = 1.

Energy balance - The considered energy balance equation is the so-called sensible energy
balance equation, which reads:

∂t(ρ ẽ) + div(ρ ẽ ṽ) + p div(ṽ) = ω̇T + τ (ṽ) :∇ṽ + εv + div(q̆) + Q̇, (4.11)

with e the sensible energy defined as the sum of the sensible energies of the chemical species:

e =
∑
k∈I

ek Yk, with ek = cv,k T, for k ∈ I, (4.12)
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where cv,k stands for the heat capacity at constant volume for the species k (the reference
temperature T0 is supposed to be set at 0 K for the sake of simplicity, in the following). In
the balance equation (4.11), Q̇ denotes the heat source term (including a possible external
production and the effects of radiative heat transfers), neglected for this chapter. The heat
production rate due to the chemical reaction, ω̇T , is given by:

ω̇T = −
∑
k∈I

∆h0
f,k ω̇k, (4.13)

where ∆h0
f,k stands for the formation enthalpy of the kth chemical species.

The effective heat flux q̆ is decomposed into a computable (convective) part q and a SGS
(diffusive) part qSGS:

q̆ = F q + qSGS. (4.14)

The SGS heat flux is modelled by:

qSGS = ρ (ṽe− ṽẽ) ≈ (Ξ∆ − 1)F q, (4.15)

and the computable heat flux is given by:

q = −λ∇T̃ +
∑
k∈I

h̃k jk.

The sensible enthalpy of the species k, hk, is given by hk = cp,k T , cp,k being the heat
capacity at constant pressure for the species k. The thermal conductivity may be expressed
by λ = µcp/Pr, with cp =

∑
k∈I cp,k Yk the heat capacity at constant pressure of the mixture.

The unitary Lewis number assumption allow to rewrite the heat diffusion flux in the following
way (see Section 1.1):

q = − µ

Pr
∇h̃,

with h =
∑

k∈I hk Yk the sensible enthalpy of the mixture.

The SGS viscous dissipation term εv is modelled in order to recover a conservative form
of the total energy balance. First, let us obtain the filtered kinetic energy balance equation
by the inner product of the filtered momentum balance equation with the filtered velocity:

1

2
∂t(ρ |ṽ|2) +

1

2
div
(
ρ |ṽ|2 ṽ

)
+∇p · ṽ − div(τ (ṽ)) · ṽ = −div(τ SGS(ṽ)) · ṽ (4.16)

Summing equations (4.11) and (4.16) gives rise to the filtered total energy balance equation:

∂t(ρ Ẽ) + div(ρ ṽ Ẽ) + div(p ṽ)− div (τ (ṽ) · ṽ)− ω̇T
= −div(q̆)− div

(
τ SGS(ṽ) · ṽ

)
+ τ SGS(ṽ) :∇ṽ + εv. (4.17)

In order to obtain a conservative form of the previous equation, the SGS viscous dissipation
is modelled by:

εv = −τ SGS(ṽ) :∇ṽ. (4.18)

Therefore the filtered internal energy balance equation reads:

∂t(ρ ẽ) + div(ρ ṽ ẽ) + p div(ṽ) = ω̇T − div(q̆) + τ̆ (ṽ) :∇ṽ. (4.19)
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Equation of state - Finally, the atmosphere is supposed to be a mixture of perfect
gases, which yields the following equation of state:

p = %(ẽ, ρ, Ỹk) = ρR
T̃

W
, T̃ =

ẽ

cv

. (4.20)

with W =
∑

k∈I Yk/Wk the mixture molar mass and cv =
∑

k∈I cv,k Yk the heat capacity at
constant volume of the mixture.

Initial and boundary conditions - The system composed by equations (4.1a), (4.1b),
(4.5), (4.19) and (4.20) must be supplemented by suitable initial conditions. for ρ, ẽ, ṽ, Ỹk,
k ∈ I such that:

ρ(x, 0) = ρ0(x), ẽ(x, 0) = ẽ0(x), ṽ(x, 0) = ṽ0(x), with ρ0 > 0, ẽ0 > 0,

for k ∈ I, Ỹk(x, 0) = Ỹk,0(x), with Ỹk,0 ∈ [0, 1] and
∑
k∈I

Ỹk,0 = 1 a.e. in Ω. (4.21)

The boundary of the computational domain is split in an inflow part ∂ΩI (where the flow
enters the domain, i.e. v · n < 0 with n the outward normal vector to the boundary) and
an outflow part ∂ΩO (where the flow leaves the domain, i.e. v · n ≥ 0) of positive (d − 1)
measure, with ∂Ω = ∂ΩI ∪ ∂ΩO.

The velocity is prescribed over ∂ΩI and the inflow density, denoted ρI is deduced from
the inflow temperature and composition of the flow. A Neumann boundary condition holds
over ∂ΩO:

(τ̆ − p I) · n = g,

where g is a known surface force field. At the inflow boundary, the total flux (i.e. the sum
of the convection and of the diffusion fluxes) is prescribed and, at the outflow boundary, the
diffusion flux is supposed to vanish, for k ∈ I:

on ∂ΩI , (ρỸkṽ + j̆k) · n = (Ỹk)I ṽ · n, (4.22)
on ∂ΩO, j̆k · n = 0. (4.23)

Analogous boundary conditions are applied to the sensible energy:

on ∂ΩI , (ρẽṽ + q̆) · n = (ẽ)I ṽ · n, (4.24)
on ∂ΩO, q̆ · n = 0. (4.25)

4.2.2 Closure law for the subgrid wrinkling factor

Various models have been developed for the wrinkling factor (see Section 2.4.6 for a brief
literature). In the present work, the wrinkling factor is modeled using the Veynante and
Moureau (2015) expression:

Ξ∆ =

(
∆

δc

)β
(4.26)

where δc is the inner cutoff scale (i.e. the lowest wrinkling scale) usually proportional to the
laminar flame thickness (Volpiani, 2017). The model parameter β is dynamically determined
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(Schmitt et al., 2015; Veynante and Moureau, 2015) equating flame surfaces computed at
filtered and test-filtered scales (Germano-like identity, Germano et al. (1991)):

〈
︷ ︸︸ ︷
Ξ∆|∇c̃| 〉 = 〈 Ξγ∆|∇

︷︸︸︷̃
c | 〉, (4.27)

with c the progress variable, increasing from 0 in fresh to 1 in burnt gases and computed here
from the fuel mass fraction:

c =
YF − Y u

F

Y b
F − Y u

F

(4.28)

where u and b denote quantities in the fresh (u) and in the burnt gas (b). The ︷︸︸︷. symbol
denotes the test-filtering operator and 〈.〉 denotes the averaging operator over the entire
domain. The effective filter scale is given by ∆̂ = γ∆ with:

γ =

√
1 +

(︷︸︸︷
∆ /∆

)2

, (4.29)

when combining two Gaussian filters of width
︷︸︸︷
∆ and ∆ (Moureau et al., 2011). The averaging

operation is replaced by another Gaussian filter of width ∆avg because it is easier to implement
in case of unstructured grids and parallel solver utilisation. The model parameter β is given
by combining equations (4.26) and (4.27) and assuming that β is equal at scales ∆ and ∆̂
and constant over the averaging domain. Nonphysical wrinkling factors values may appear
when the flame front interacts with walls (i.e. at a distance d < ∆̂) or when more than one
flame front interact at scale lower than ∆̂ due to a pathological behavior of |∇c̃|, thus the
subgrid model is slightly modified from its original version (we refer to Chapter 1 Section
2.4.6 and to Mouriaux et al. (2016) for more details). The wrinkling factor exponent β is
then given by:

β =
log
(

Σ1/Σ2

)
log (γ)

. (4.30)

where:

Σ1 = 〈
︷ ︸︸ ︷
|∇c̃| 〉 (4.31)

Σ2 = (1− ζ̂)|
︷ ︸︸ ︷
∇c̃ |+ ζ̂

︷ ︸︸ ︷
|∇c̃|n ·N . (4.32)

The sensor denoted by ζ allows to detect flame front interactions and is defined as:

ζ =

∣∣∣∣ 1 if n ·N < 1− ε
0 elsewhere (4.33)

where n = −∇c̃/|∇c̃| andN = −∇
︷︸︸︷̃
c /|∇

︷︸︸︷̃
c | and the parameter ε is set in this work to 0.1.

4.3 Meshes and unknowns
For the resolution of the model equations, the reduced variable z, called mixture mass fraction,
is introduced:

z =
s YF + (1− YO)

s+ 1
, (4.34)
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s = (νOWO)/(νFWF ) being the mass stoichiometric ratio. Note that, combining the fuel
and the oxidizer mass balance equations, the variable z satisfies an homogeneous equation;
for this reason, we replace the oxidizer mass balance equation by the balance equation for z
(since, given the values of z and YF , we may deduce YO). For perfectly premixed mixtures
(such the ones studied during this thesis), the mixture fraction is constant, thus, only the
mass balance equation for the fuel is solved as YO computation is straight forward.

The space discretization is performed by a finite volume technique, using a staggered
arrangement of the unknowns (the scalar variables are approximated at the cell centers and
the velocity components at the face centers), using the MAC scheme (Harlow and Amsden,
1971; Harlow and Welch, 1965).

The notations already introduced in Chapter 3, Section 3.3, are used here. Let us simply
clarify here that the degrees of freedom for the new (comparing to the previous chapter)
unknowns, i.e. the mixture, the fuel and the neutral gas mass fractions, are associated to the
cells of the meshM so the set of the scalar variables unknowns reads:

{pK , ρK , eK , YF,K , YN,K , zK , K ∈M} .

The set of faces included in the boundary of Ω, Eext is split in two disjoint subsets, Eext =
Eext,I∪Eext,O, where Eext,I (respectively Eext,O) stands for the set of boundary faces included in
∂ΩI (respectively ∂ΩO). The rest of the space discretization is the same as the one presented
in Chapter 3, Section 3.3.

4.4 The numerical scheme

4.4.1 The overall algorithm

Let us consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), which
we suppose uniform, and let δt = tn+1 − tn for n = 0, 1, · · · , N − 1 be the (constant) time
step. The time-marching algorithm is of segregated type, and consists in solving the three
following steps:

• Chemistry step - Solution of the mass balance equations for the chemical species.

• Hydrodynamics step - Solution of the mass, momentum and energy balance for the
mixture. At the end of of this step, the species mass fractions, the temperature and
the pressure are known, and the density is updated using the equation of state.

• Turbulence step - Computation of the turbulent viscosity and of the subgrid wrinkling
factor and evaluation of the effective diffusion coefficients.

The discretization of the chemistry step is given in Section 4.4.2. The algorithm for
the solution of the Navier-Stokes equations has been already introduced in Chapter 3. The
differences between the non reactive and reactive set of equations stand in the heat production
rate and in the heat diffusion term, appearing in the sensible energy balance equation. The
algorithm is recalled in Section 4.4.3 together with the discretization of these latest terms.
Finally, the discretization of the subgrid models is described in Section 4.4.4.
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4.4.2 The chemistry step

Let first introduce the density at "time step n− 1/2", ρn−1/2
K , given by a linear combination

of the density at time n and n− 1:

ρ
n−1/2
K =

1

2
(ρnK + ρn−1

K ), ∀K ∈M. (4.35)

Thanks to the mass balance at time n, ρn−1/2
K satisfies the two following relations:

ρ
n−1/2
K − ρn−1

K

δt/2
+ divK(ρnvn) = 0, ∀K ∈M, (4.36)

ρnK − ρ
n−1/2
K

δt/2
+ divK(ρnvn) = 0, ∀K ∈M. (4.37)

The numerical scheme for the solution of the system of chemical species mass balances is
based on the Strang operator splitting method consisting in performing one half-step of
homogeneous transport of Yk, then dealing with the reaction terms and finishing by the
second half-step of transport of Yk. Relations (4.36) and (4.37) can be seen respectively as
the mass balances for the first and the last step of this algorithm. The positivity of the
chemical species is then ensured, under a CFL condition, thanks to the chemical species
convection operator discretization and to relations (4.36) and (4.37) (Larrouturou, 1991) (see
Appendix 4.A and Lemma 4.5.1 below).

The chemistry step numerical scheme reads, for 0 ≤ n ≤ N − 1:

1 - Transport step I

Mixture mass fraction computation – Solve for z̃n+1/2, ∀K ∈M :

ρ
n−1/2
K z̃

n+1/2
K − ρn−1

K znK
δt/2

+ divK(ρn zn vn)− divK

(
F Ξn

∆

µ

Pr
∇zn

)
= 0. (4.38a)

Neutral gas mass fraction computation – Solve for Ỹ n+1/2
N , ∀K ∈M :

ρ
n−1/2
K Ỹ

n+1/2
N,K − ρn−1

K Y n
N,K

δt/2
+ divK(ρn Y n

N v
n)− divK

(
F Ξn

∆

µ

Pr
∇Y n

N

)
= 0. (4.38b)

Fuel mass fraction computation – Solve for Ỹ n+1/2
F , ∀K ∈M :

ρ
n−1/2
K Ỹ

n+1/2
F,K − ρn−1

K Y n
F,K

δt/2
+ divK(ρn Y n

F v
n)− divK

(
F Ξn

∆

µ

Pr
∇Y n

F

)
= 0. (4.38c)

Product mass fraction computation – Solve for Ỹ n+1/2
P , ∀K ∈M :

Ỹ
n+1/2
F,K + Ỹ

n+1/2
O,K + Ỹ

n+1/2
N,K + Ỹ

n+1/2
P,K = 1. (4.38d)
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2 - Reactive step

Mixture mass fraction computation – Solve for zn+1/2, ∀K ∈M :

ρ
n−1/2
K

[
z
n+1/2
K − z̃n+1/2

K

]
δt

= 0. (4.39a)

Neutral gas mass fraction computation – Solve for Y n+1/2
N , ∀K ∈M :

ρ
n−1/2
K

[
Y
n+1/2
N,K − Ỹ n+1/2

N,K

]
δt

= 0. (4.39b)

Fuel mass fraction computation – Solve for Y n+1/2
F , ∀K ∈M :

ρ
n−1/2
K

[
Y
n+1/2
F,K − Ỹ n+1/2

F,K

]
δt

= (ω̇F )
n+1/2
K . (4.39c)

Product mass fraction computation – Solve for Y n+1/2
P , ∀K ∈M :

Y
n+1/2
F,K + Y

n+1/2
O,K + Y

n+1/2
N,K + Y

n+1/2
P,K = 1. (4.39d)

3 - Transport step II

Mixture mass fraction computation – Solve for zn+1, ∀K ∈M :

ρnK z
n+1
K − ρn−1/2

K z
n+1/2
K

δt/2
+ divK(ρn zn+1/2 vn)− divK

(
F Ξn

∆

µ

Pr
∇zn+1/2

)
= 0. (4.40a)

Neutral gas mass fraction computation – Solve for Y n+1
N , ∀K ∈M :

ρnKY
n+1
N,K − ρ

n−1/2
K Y

n+1/2
N,K

δt/2
+ divK(ρnY

n+1/2
N vn)− divK

(
FΞn

∆

µ

Pr
∇Y n+1/2

N

)
= 0. (4.40b)

Fuel mass fraction computation – Solve for Y n+1
F , ∀K ∈M :

ρnKY
n+1
F,K − ρ

n−1/2
K Y

n+1/2
F,K

δt/2
+ divK(ρnY

n+1/2
F vn)− divK

(
FΞn

∆

µ

Pr
∇Y n+1/2

F

)
= 0. (4.40c)

Product mass fraction computation – Solve for Y n+1
P , ∀K ∈M :

Y n+1
F,K + Y n+1

O,K + Y n+1
N,K + Y n+1

P,K = 1. (4.40d)

The initial value of the chemical variables is the mean value of the initial conditions over the
primal cells:

∀K ∈M, z0
K =

1

|K|

∫
K

z0(x) dx, Y 0
k,K =

1

|K|

∫
K

Yk,0(x) dx, with k = N,F,

where the reduced variable z is the linear combination of YF and YO given by Equation (4.34).

Equations (4.38a)-(4.40d) are solved successively. Let consider the first step of the Strang
algorithm. It is important to remark that Equations (4.38a)-(4.38d) are equivalent to the
following system:

ρ
n−1/2
K Ỹ

n+1/2
k,K − ρn−1

K Y n
k,K

δt/2
+ divK(ρn Y n

k v
n)− divK

(
F Ξn

∆

µ

Pr
∇Y n

k

)
= 0, k ∈ I. (4.41)
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Indeed, a suitable combination of (4.38c) and (4.38a) yields the desired mass balance equation
for the oxydant chemical species for the first step of the Strang algorithm. Finally, we suppose
that the product mass balance holds:

ρ
n−1/2
K Ỹ

n+1/2
P,K − ρn−1

K Y n
P,K

δt/2
+ divK(ρn Y n

P v
n)− divK

(
F Ξn

∆

µ

Pr
∇Y n

P

)
= 0. (4.42)

Summing all the chemical species mass balances, we have for Σ = YF + YO + YN + YP :

ρ
n−1/2
K Σ̃

n+1/2
K − ρn−1

K Σn
K

δt/2
+ divK(ρn Σn vn)− divK

(
F Ξn

∆

µ

Pr
∇Σn

)
= 0. (4.43)

and this equation may equivalently replace the product equation (4.42). Indeed, thanks to
the half the mass balance, we see that, provided that Σn satisfies Σn = 1 everywhere in Ω,
the solution to Equation (4.43) is Σ̃n+1/2 = 1 everywhere in Ω. Analogously, (4.39a)-(4.39d)
are equivalent to:

ρ
n−1/2
K

[
Y
n+1/2
k,K − Ỹ n+1/2

k,K

]
δt

= ζkνkWk ω̇
n+1/2
K , k ∈ I, (4.44)

where we recall that ζF = ζO = −1, ζP = 1 and ζN = 0. Using the same procedure than
for the first step, the second step of the products mass balance (i.e. Equation (4.44) with
k = P ) may equivalently be replaced by an homogeneous balance equation for Σn+1/2, since
the sum of the chemical reaction terms vanishes. Finally, considering the third step of the
Strang algorithm, (4.40a)-(4.40d) are equivalent to the following system, k ∈ I:

ρnKY
n+1
k,K − ρ

n−1/2
K Y

n+1/2
k,K

δt/2
+ divK(ρnY

n+1/2
k vn)− divK

(
FΞn

∆

µ

Pr
∇Y n+1/2

k

)
= 0. (4.45)

The same procedure shows that the product mass fraction Y n+1
P,K can be directly calculated

from the expression (4.40d) since, as it will be shown later at discrete level (cf. Lemma 4.5.2),
the sum of the mass fractions is equal to 1 everywhere in Ω.

Finally, note that, when the chemical step is performed, the mass balance at step n + 1
is not yet solved; hence the (unusual) backward time shift for the densities and for the mass
fluxes in the equations of the chemistry scheme.

Remark (A more compact formulation of the time-marching scheme). The chemistry
step may be written under the following equivalent form:

ρ
n−1/2
K Y

n+1/2
k,K = ρn−1

K Y n
k,K −

δt

2
divK(ρn Y n

k v
n) +

δt

2
divK

(
F Ξn

∆

µ

Pr
∇Y n

k

)
+ δt ζkνkWk ω̇

n+1/2
K , k ∈ I, (4.46)

ρnKY
n+1
k,K = ρn−1

K Y n
k,K −

δt

2

[
divK(ρn Y n

k v
n) + divK(ρnY

n+1/2
k vn)

]
+
δt

2

[
divK

(
F Ξn

∆

µ

Pr
∇Y n

k

)
+ divK

(
FΞn

∆

µ

Pr
∇Y n+1/2

k

)]
+ δt ζkνkWk ω̇

n+1/2
K , k ∈ I. (4.47)
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The first step (4.46) is simply obtained by introducing (4.44) in (4.41). Let notice that
the scheme obtained in not of second order in time. In order to reach this accuracy,
a second order in time discretization (for example the Heun scheme for explicit steps)
must be introduced at each step of the algorithm.

We now define each of the discrete operators featured in System (4.38)-(4.40).

The discretization of the convection terms is performed by a discrete operator of the form:

|K| divK(ρ xv) =
∑

σ∈E(K)

JK,σ xσ (4.48)

where x stands respectively for z or Yk, k = N,F , according to the discretized equation. With
JK,σ, we denote the mass flux across σ outward K updated at the end of the hydrodynamics
step at time n, given by (4.56). The evaluation of the value at the face σ = K|L, xσ, is
performed by a second order MUSCL-like interpolation (Piar et al., 2013). The algebraic
condition required for this reconstruction is that ∀K ∈M and ∀σ ∈ E(K)∩Eint, there exists
βxK,σ ∈ [0, 1] and Mx

K,σ ∈M such that:

xσ − xK =

∣∣∣∣∣β
x
K,σ(xK − xMx

K,σ
) if JK,σ ≥ 0,

βxK,σ(xMx
K,σ
− xK) otherwise.

(4.49)

For faces of Eext,I , we suppose that xσ is given by the boundary conditions, which we denote
by xσ = xI,σ. For faces of Eext,O, the upwind choice is made for xσ, i.e. xσ = xK .

The definition of the convection fluxes respects ”by construction” the physical bounds
satisfied by the chemical species in the continuous case (under suitable conditions for βxK,σ,
see Section 4.5).

For the discretization of the diffusive terms, the usual two-points approximation for the
flux at the face is used (Eymard et al., 2000), so we get, for a generic scalar variable x:

divK

(
F Ξ∆

µ

Pr
∇x
)

= −F µ

Pr

∑
σ=K|L,σ∈E(K)

|σ|
dσ

(Ξ∆)σ (xK − xL), (4.50)

with, for σ = K|L, (Ξ∆)σ, the harmonic value of the subgrid wrinkling factor approximation
on K and L, weighted by the distances |xK − xσ| and |xK − xσ| respectively (xK , xL and
xσ being the mass centers of K, L and σ, respectively). Note that the definition is restricted
to the internal faces of K since, by assumption, the diffusion fluxes vanish at the boundaries
(more precisely speaking, they are supposed to vanish at the outlet boundary and the total
flux is written as a convection flux at the inlet boundary, so already taken into account in
the definition above).

In the reactive step, Equation (4.39c), the reaction term (ω̇F )K is approximated as follows:

(ω̇F )
n+1/2
K = νF WF ω̇

n+1/2
K

= νF WF
(Ξn+1

∆ )K
F

A exp

(
−Ea
RT nK

)[
ρ
n−1/2
K Y

n+1/2
F,K

WF

] [
ρ
n−1/2
K Y

n+1/2
O,K

WO

]1/2

.(4.51)
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The oxidant mass fraction, Y n+1/2
O,K may be expressed thanks to (4.34) as a function of Y n+1/2

F,K

and zn+1/2
K ; since the mixture fraction zn+1/2 is known at this step, Equation (4.39c) indeed

may be solved for Y n+1/2
F . The reaction term being nonlinear, a Newton algorithm is used in

order to perform this reactive step.

4.4.3 The hydrodynamics step

The time integration is performed by the second order Heun scheme (which falls in the class
of Runge-Kutta schemes) which is written under the following compact formulation:

W (1) = W n − δt F(W n), (4.52)

W n+1 = W n − δt

2

[
F(W n) + F(W (1))

]
, (4.53)

where W stands for the vector of conservative variables and F is a function which gathers
the divergence of the fluxes complemented, in the sensible energy balance, with the reactive
and non-conservative terms. In the time semi-discrete stetting, W = (ρ, ρv, ρe)t and

F(W ) =

 div(ρv)
div(ρv ⊗ v) +∇p− div(τ̆ (v))

div(ρev) + p divv − div(FΞq̆)− τ̆ (v) :∇v − ω̇T

 .

This system differs from the system treated in Chapter 3 by three points:
- the energy balance equation includes a reaction term ω̇T (which vanishes in the non-

reactive case),

- the heat diffusive term is written as a function of the sensible enthalpy, instead of the
internal energy, and is weighted by the product of the subgrid wrinkling factor and the
thickening factor,

- the equation of state depends on the mass fractions in the mixture (which are known
at this step).

The discretization used is the same than the one introduced in Chapter 3 Section 3.4.1.
Then, we introduce in the following the discrete quantities involved in (4.52) and in (4.53)
that differ from the non-reactive discrete system, and refer to Chapter 3 Section 3.4.1 for
more details on the other terms.

Discrete mass balance

The mass flux over the primal faces of the cell K, divK(ρv), is defined by (3.22) where we
recall that:

FK,σ = |σ| ρσ vK,σ, ∀σ ∈ E(K) (4.54)

with vK,σ an approximation of the normal velocity to the face σ outward K given by (3.24)
and ρσ the density at the face σ. If σ ∈ E(K) is an internal face, ρσ is approximated by the
second order MUSCL-like interpolation (3.25). If σ is an external face adjacent to K, lying
on the inlet part of the boundary (i.e. σ ∈ Eext,I), ρσ is computed from the equation of state
as a function of the data for the species mass fractions and the temperature. For an external
face adjacent to K, lying on the outlet part of the boundary (i.e. σ ∈ Eext,O), ρσ = ρK .
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This approximation allows, under CFL condition, to guarantee the positivity of the density
(see Chapter 3 Section 3.4.2).

Let introduce the following notation for the convection term of the mass balance in (4.53):
1

2

[
divK(ρn vn) + divK(ρ(1) v(1))

]
=

1

|K|
∑

σ∈E(K)

Jn+1
K,σ , ∀K ∈M, (4.55)

where Jn+1
K,σ is the average value of the mass fluxes across σ outward K at time n and (1):

Jn+1
K,σ =

1

2
(F n

K,σ + F
(1)
K,σ), ∀σ ∈ E(K). (4.56)

Discrete sensible energy balance

Let consider the approximation of the sensible energy balance over the primal cell K. The
convection operator is defined by (3.26). The discretization of the sensible energy at the
primal faces uses the same MUSCL technique as for the density (detailed in Chapter 3
Section 3.B) to ensure the positivity of the convection operator (extension of Lemma 3.4.2
provided the reaction is exothermic). If σ ∈ E(K) is an internal face, eσ is approximated
by the second order MUSCL-like interpolation (3.27). If σ is an inlet external face (i.e.
σ ∈ Eext,I), eσ is computed as a function of the temperature and of the species mass fractions
prescribed on the boundary. If σ is an external face lying on the outlet part of the boundary
(i.e. σ ∈ Eext,O), eσ = eK .

The heat diffusion term div(F Ξn
∆ q̆)K is discretized with the same method than for the

species diffusion term, i.e. relation (4.50) with x = h. The sensible enthalpy is computed in
the following way:

hK = eK +
pK
ρK

, ∀K ∈M. (4.57)

Thus the heat diffusion term reads:

divK
(
F Ξ∆ q̆

)
= −F µ

Pr

∑
σ=K|L,σ∈E(K)

|σ|
dσ

(Ξ∆)σ (hK − hL). (4.58)

The heat production term (ω̇T )K is written in the following way:

(ω̇T )K = −
∑
k∈I

∆h0
f,k (ω̇k)K =

(
νF WF ∆h0

f,F + νOWO ∆h0
f,O − νP WP ∆h0

f,P

)
ω̇K .

Discrete momentum balance

We now turn to the discrete momentum balance. The term (∇p)σ,i stands for the ith com-
ponent of the discrete pressure gradient at the face σ. The gradient operator is built as
the transpose of the discrete operator for the divergence of the velocity on the primal mesh
(Grapsas et al., 2016). If σ ∈ Eint, (∇p)σ,i is written in the same way than for the unreactive
system (i.e. relation (3.33)). If σ is an outlet external face (i.e. σ ∈ Eext,O), the pressure
gradient reads:

(∇p)σ,i =
|σ|
|Dσ|

(pext − pK) nK,σ · e(i),

where pext stands for the external pressure involved in the outlet boundary condition. If
σ ∈ Eext,I , (∇p)σ,i is set to zero.
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Equation of state

Finally, the equation of state is obtained from (4.20) and reads, ∀K ∈M:

pK = %(eK , ρK , Yk,K) = ρK R
TK∑

k∈I

Yk,K
Wk

, with TK =
eK∑

k∈I

Yk,K cv,k

.

4.4.4 The turbulence step

The subgrid wrinkling factor Ξ∆ reads, at the discrete level, ∀K ∈M:

(Ξ∆)nK =

(
∆K

δc

)βnK
. (4.59)

The exponent βn+1
K is computed at each time step and reads:

βnK =
1

log(γ)
log

[
(Σ1)nK
(Σ2)nK

]
, ∀K ∈M, (4.60)

with (Σ1)nK and (Σ2)nK the approximations on the cell K of Σ1 and Σ2 given by (4.31) and
(4.32) respectively. In order to be able to compute (Σ1)nK and (Σ2)nK the following discrete
formulations must be given. The progress variable cnK is computed from the fuel mass fraction
YK thanks to expression (4.28):

cnK =
Y n
F,K − Y u

F

Y b
F − Y u

F

, ∀K ∈M. (4.61)

The gradient of the progress variable (∇c)i,K reads:

(∇c)ni,K =
1

|K|
∑

σ∈E(K)

|σ|cnσ e(i) · nK,σ, for 1 ≤ i ≤ d, ∀K ∈M.

where the centered choice is made for the approximation of the progress variable on σ. Finally,
the Euclidian norm | · | is applied to (∇c)nK :

|(∇c)nK | =
[ d∑
i=1

[(∇c)ni,K ]2
]1/2

, ∀K ∈M.

In order to compute the subgrid wrinkling factor, the fields obtained may be filtered with
Gaussian filters of width

︷︸︸︷
∆ (test filter) or ∆avg (replacing the averaging over the domain

〈·〉). This is perform by solving a diffusion equation as explained in Appendix 4.C (Moureau
et al., 2011; Sun and Xiao, 2015).

The subgrid scale viscosity µSGS is approximated by the same technique used for the non
reactive system and is given by (3.35).
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4.5 Properties of the scheme
In this section we first prove that at the discrete level, the mass fractions preserve the same
physical bounds as at the continuous level. Then we discuss the energy preservation properties
of the scheme: following the same procedure used in Chapter 3, we obtain that the scheme
conserves the total energy up to remainder terms.

Boundedness of the chemical mass fractions

Let us first introduce some notations. For any given family (xnK)K∈M ∈ Rd, we denote:

x̄n = max{(xnK)K∈M, (xI,σ)σ∈Eext,I}, xn = min{(xnK)K∈M, (xI,σ)σ∈Eext,I}.

In the following, when no ambiguity arises, the notation xn will be used to refer to the family
(xnK)K∈M. For example xn > 1, means ∀K ∈M, xnK > 1.

Definition 1. — The so-called CFL number reads for any 0 ≤ n ≤ N − 1:

CFLn = max
K∈M

[
δt/2

|K|
max

(
1

ρnK
,

1

ρ
n−1/2
K

)[ ∑
σ∈E(K)

∣∣JnK,σ∣∣+ |K| F µ

Pr

∑
σ∈E(K)

|σ|
dσ

(Ξ∆)nσ

]]
.

Lemma 4.5.1 (Boundedness of the chemical mass fractions). For 0 ≤ n ≤ N−1, suppose
that for k ∈ I Y n

k ≥ 0, ρn ≥ 0, CFLn ≤ 1 and that the mass balance in (4.53) holds.

(i) For k ∈ I and K ∈M, Y n+1
k,K ≥ 0.

(ii) Y n+1
F,K ≤ Ȳ n

F , Y
n+1
O,K ≤ Ȳ n

O , Y
n+1
N,K ∈ [Yn

N , Ȳ
n
N ] and Y n+1

P,K ≥ Yn
P , ∀K ∈M.

Proof. Let first consider the neutral mass fraction. If k = N , a straightforward extension of
Lemma 4.A.1 to cope with diffusive terms and with convection fluxes entering the domain,

allow to write Y n+1
N as a combination of

{
Y n
N,K ,

(
Y n

N,M
YN
K,σ

)
M
YN
K,σ∈NYN (K)

, ((YN)nI,σ)σ∈Eext,I

}
,

with NYN (K) the set of cells MYN
K,σ, σ ∈ E(K) which are such that (4.49) is satisfied. Thanks

to the mass balance in (4.53) (or more precisely thanks to mass balances (4.36) and (4.37)),
this combination is convex under the hypothesis that CFL ≤ 1. This concludes the proof for
k = N .

If k ∈ {F,O, P}, the proof follows the same technique used for Lemma 4.A.1. Thanks to
the mass balance (4.36), we have:

ρn−1
K = ρ

n−1/2
K +

δt/2

|K|
∑

σ∈E(K)

JnK,σ.

Replacing this expression in the discrete balance equation (4.41), Ỹ n+1/2
k,K can be written as

a convex combination of
{
Y n
k,K ,

(
Y n

k,M
Yk
K,σ

)
M
Yk
K,σ∈NYk (K)

, ((Yk)
n
I,σ)σ∈Eext,I

}
, under the following
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CFL condition:

δt/2

|K| ρn−1/2
K

 ∑
σ∈E(K)

|JnK,σ|+ |K| F
µ

Pr

∑
σ∈E(K)

|σ|
dσ

(Ξ∆)nσ

 ≤ 1

which is satisfied if CFLn ≤ 1. Thus, the solution of (4.41) satisfies Y n
k ≤ Ỹ

n+1/2
k ≤ Ȳ n

k , i.e.
given the non negativity of Y n

k , 0 ≤ Ỹ
n+1/2
k ≤ Ȳ n

k .
Let us turn to the second step of the Strang method. If k = P , The second step of the

Strang splitting method (4.44) may be written as follows:(
ρ
n−1/2
K

δt
IK

)
Y
n+1/2
P =

ρ
n−1/2
K

δt
Ỹ
n+1/2
P + (ω̇P )

n+1/2
K , (4.62)

where IK denotes the K-th line of the identity matrix. Given the non-negative sign of
ρ
n−1/2
K , of Ỹ n+1/2

P and of ω̇P , the right hand side of relation (4.62) is non-negative. Moreover,
the operator at the left-hand side of relation (4.62) is associated to a positive inverse matrix,
thus Y n+1/2

P ≥ 0. The second inequality (i.e. Y n+1/2
P,K ≥ Yn

P ) follows by the same computation,
applying the operator at the left-hand side of relation (4.62) to (Y

n+1/2
P − Yn

P ).
When the reaction term may take negative values, i.e. if k ∈ {F,O}, let us rewrite the

reaction term as:

for k ∈ {F,O} (ω̃k)
n+1/2
K =

∣∣∣∣∣∣∣∣∣∣
0 if min

[
Y
n+1/2
F

WF νF
,
Y
n+1/2
O

WO νO

]
≤ 0,

Y
n+1/2
k

(ω̇k)
n+1/2
K

Y
n+1/2
k

otherwise.

(4.63)

The second step of the Strang splitting method may be written as follows:(
ρ
n−1/2
K

δt
IK − (ω̃k)

n+1/2
K IK

)
Y
n+1/2
k =

ρ
n−1/2
K

δt
Ỹ
n+1/2
k . (4.64)

Given the non-negative sign of ρn−1/2
K and of Ỹ n+1/2

k , the right hand side of relation (4.64)
is non-negative. By definition of ω̃k, the operator at the left-hand side of relation (4.64)
is associated to a positive inverse matrix, thus Y n+1/2

k ≥ 0. The second inequality follows
by the same computation, applying the operator at the left-hand side of relation (4.64) to
(Ȳ n

k − Y
n+1/2
k ).

Finally, let consider the last step of the Strang splitting method. The same technique
used for the first step is applied. By assumption thanks to the mass balance (4.37), we get:

ρ
n−1/2
K = ρnK +

δt/2

|K|
∑

σ∈E(K)

JnK,σ.

Replacing this expression of ρn−1/2
K in the discrete balance equation of Y n+1

k,K , k ∈ {F,O, P}
(4.45), this latest can be written, under the following condition, as a convex combination of
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{
Y
n+1/2
k,K ,

(
Y
n+1/2

k,M
Yk
K,σ

)
M
Yk
K,σ∈NYk (K)

, ((Yk)
n+1/2
I,σ )σ∈Eext,I

}
:

δt/2

|K| ρnK

 ∑
σ∈E(K)

|JnK,σ|+ |K| F
µ

Pr

∑
σ∈E(K)

|σ|
dσ

(Ξ∆)nσ

 ≤ 1.

This condition is satisfied if CFLn ≤ 1. The fact that 0 ≤ Y
n+1/2
k,K ≤ Ȳ n

k (respectively that
Y
n+1/2
P,K ≥ Yn

P ) concludes the proof for k ∈ {F,O} (respectively for k = P ).

In order to prove that the numerical scheme preserves the fact that the sum of the chemical
species is equal to 1 (and thus that Y n

k,K ≤ 1, for all K ∈ M, 0 ≤ n ≤ N and k ∈
I) some additional assumptions must be made on the coefficients βxK,σ and the cells Mx

K,σ

involved in the MUSCL discretization of the chemical species convection terms. Without
these hypothesis, as shown in Appendix 4.B, the scheme does not preserve the upper physical
bound of the chemical species. An algorithm for the computation of the coefficients βxK,σ (in
such a way that Lemma 4.5.2 holds) is stated in Appendix 4.B in the 1D case. It can be
easily extended to higher dimension cases.

Lemma 4.5.2. For 0 ≤ n ≤ N − 1, let us suppose that for all K ∈ M,
∑

k∈I Y
n
k,K = 1

and that for all σ ∈ E(K) relation (4.49) holds with the same coefficient βxK,σ and the
same cell Mx

K,σ for x = Y n
k , k ∈ I. Let suppose also that the mass balance in (4.53)

holds and that CFLn ≤ 1 for 0 ≤ n ≤ N − 1. Then, any solution to the discrete chemical
fraction balance equations satisfies for all K ∈M,

∑
k∈I Y

n+1
k,K = 1.

Proof. Let denote βK,σ and MK,σ respectively the coefficient and the cell involved in relation
(4.49). Summing over k ∈ I the discrete chemical fraction balance equations involved in the
first step of the Strang algorithm (4.41) yields, ∀K ∈M:

ρ
n−1/2
K

δt/2

∑
k∈I

Ỹ
n+1/2
k,K =

ρn−1
K

δt/2
− 1

|K|
∑

σ∈E(K)

(JnK,σ)+
∑
k∈I

[
(βK,σ + 1)Y n

k,K − βK,σY n
k,MK,σ

]
+

1

|K|
∑

σ∈E(K)

(JnK,σ)−
∑
k∈I

[
(1− βK,σ)Y n

k,K + βK,σY
n
k,MK,σ

]
,

where we use the fact that by construction the sum of the species diffusive fluxes vanishes.
Using the assumption that for all K ∈M,

∑
k∈I Y

n
k,K = 1, yields:

∀K ∈M,
ρ
n−1/2
K

δt/2

∑
k∈I

Ỹ
n+1/2
k,K =

ρn−1
K

δt/2
− 1

|K|
∑

σ∈E(K)

JnK,σ.

Then, recalling that, thanks to the mass balance (4.36):

ρ
n−1/2
K = ρn−1

K − δt/2

|K|
∑

σ∈E(K)

JnK,σ,

we have that
∑

k∈I Ỹ
n+1/2
k,K = 1, ∀K ∈M.
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Let now consider the second step of the Strang algorithm. Summing over k ∈ I and
recalling that by construction ∀K ∈ M,

∑
k∈I(ω̇k)

n+1/2
K = 0, yields that

∑
k∈I Y

n+1/2
k,K = 1,

∀K ∈M.
Finally, using the same procedure for the third step of the Strang algorithm yields:

∀K ∈M,
ρnK
δt/2

∑
k∈I

Y n+1
k,K =

ρ
n−1/2
K

δt/2
− 1

|K|
∑

σ∈E(K)

JnK,σ.

Using the mass balance (4.37), the following relation holds:

ρnK = ρ
n−1/2
K − δt/2

|K|
∑

σ∈E(K)

JnK,σ.

This concludes the proof.

Energy balances

To obtain a conservation equation for the total energy, we need to derive a discrete sensi-
ble+chemical energy balance. Then, this relation will be added to the kinetic energy balance
posed on the primal mesh, already obtained in Chapter 3, Section 3.4.2, to obtain the desired
discrete balance equation. This process fully applies when the viscosity is set to zero, and we
restrict here the exposition to this case; the momentum diffusion terms being already treated
in the appendix 3.A. Moreover, for the sake of simplicity, we restrict here to impermeability
conditions.

First let apply the formulation (4.53) of the scheme to the sensible energy balance, to
obtain:

|K|
δt

[
ρn+1
K en+1

K − ρnKenK
]

+
∑

σ∈E(K)

Hn+1
K,σ + (p divv)n+1

K = (ω̇T )n+1
K , ∀K ∈M, (4.65)

with, thanks to Equation (3.26) for the sensible energy convection flux and Equation (4.58)
for the heat diffusion flux:

Hn+1
K,σ =

1

2

[
F n
K,σ e

n
σ + F

(1)
K,σ e

(1)
σ

+F µ

Pr
(Ξ∆)n+1

σ

|σ|
dσ

(hnK − hnL) + F µ

Pr
(Ξ∆)n+1

σ

|σ|
dσ

(h
(1)
K − h

(1)
L )
]
,

(p divv)n+1
K =

1

2

[
pnK divK(vn) + p

(1)
K divK(v(1))

]
,

(ω̇T )n+1
K =

1

2

[
(ω̇T )nK + (ω̇T )

(1)
K

]
.

(4.66)

We now derive from this relation a discrete (sensible and chemical) internal energy balance.
Multiplying the mass fraction balance equations (4.47) by the corresponding formation en-
thalpy (∆h0

f,k)k∈I and summing over k ∈ I yields:

1

δt

∑
k∈I

∆h0
f,k

[
ρnKY

n+1
k,K − ρ

n−1
K Y n

k,K

]
+
∑

σ∈E(K)

Ln+1
K,σ =

∑
k∈I

∆h0
f,k (ω̇k)

n+1/2
K = −(ω̇T )n+1

K , (4.67)
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with, using relation (4.48) for the species convection flux and relation (4.50) for the species
diffusion flux:

Ln+1
K,σ =

1

2
JnK,σ

∑
k∈I

∆h0
f,k

[
Y n
k,σ + Y

n+1/2
k,σ

]
+F µ

Pr
(Ξ∆)n+1

σ

1

2

|σ|
dσ

∑
k∈I

∆h0
f,k

[
(Y n

k,K − Y n
k,L) + (Y

n+1/2
k,K − Y n+1/2

k,L )
]
.

(4.68)
Adding Equation (4.67) to (4.65), we can state that, in the inviscid case, the numerical

solutions of the scheme satisfy the following sensible+chemical energy balance.

Lemma 4.5.3 (Discrete sensible+chemical energy balance). In the inviscid case, the so-
lutions to the scheme satisfy the following discrete sensible + chemical energy balance
equation, for any K ∈M and 0 ≤ n < N − 1:

1

δt

[
(ρec)

n+1
K − (ρec)

n
K

]
+
∑

σ∈E(K)

Nn+1
K,σ + (p divv)n+1

K = 0, (4.69)

where
(ρec)

`
K = ρlKe

`
K + ρ`−1

K

∑
i∈I

∆h0
f,kY

`
k,K , for ` = n or ` = n+ 1.

Nn+1
K,σ = Hn+1

K,σ + Ln+1
K,σ

where Hn+1
K,σ gathers the discrete sensible energy convection flux and the heat diffusion

flux (see Equation (4.66)) and Ln+1
K,σ gathers the discrete species convection flux and the

species diffusion flux multiplied by the formation enthalpy (see Equation (4.68)).

Using the kinetic energy balance on the primal mesh recovered in Chapter 3, Section
3.4.2, the following total energy balance can be stated in the inviscid case.

Theorem 4.5.1 (Discrete total energy balance) In the inviscid case, the solutions to the
scheme satisfy the following discrete total energy balance equation:

|K|
δt

[
(ρE)n+1

K − (ρE)nK
]

+
∑

σ∈E(K)

(
Gn+1
K,σ +Nn+1

K,σ + In+1
K,σ

)
= −Rn+1

K , (4.70)

where Gn+1
K,σ is the discrete kinetic energy convection flux given by (3.64), Nn+1

K,σ gathers
the discrete sensible+chemical energy convection flux and the sensible+chemical diffusion
flux, In+1

K,σ is the flux associated to the continuous counterpart pv and given by (3.68)
and (ρE)`K = (ρec)

`
K + (e`k)K , ` = n and ` = n + 1, with the kinetic energy ek given by

(3.64).

4.6 Conclusion
In order to deal with reactive compressible flows such those encountered during an explosion,
the filtered Navier-Stokes equations are complemented with chemical species balance equa-
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tions and the reactive terms needed are added in the sensible energy balance. The virtually
thickened flame model has been chosen for combustion modelling. The wrinkling model of
Veynante and Moureau (2015) is used for the subgrid model incorporating the Mouriaux
et al. (2016) correction for front/front interactions and front/wall interactions.

The numerical scheme developed in the previous chapter for the non-reactive case is
extended to the reactive case. A Strang splitting method is used for the resolution of the
chemical species. One explicit half-step of homogeneous transport for the chemical species is
first performed, then an implicit step deals with the reaction terms. Finally, a second explicit
half-step of transport for the chemical species is performed. The associated reaction energy
is introduced into the energy balance of Navier-Stokes equations, solved in a second time.

The positivity of the density is ensured by construction of the discrete mass balance equa-
tion, i.e. by the use of a second order MUSCL scheme. In addition, the positivity of the mass
fractions are preserved thanks to the following argument: first, building a discrete convec-
tion operator which vanishes when the convected unknown is constant thanks to the discrete
mass balance equation ensures a positivity-preservation property (Larrouturou, 1991), under
a CFL condition; second, the discretization of the chemical reaction rate ensures either that
it vanishes when the unknown of the equation vanishes (for fuel and oxidizer mass fractions),
or that it is non-negative (for product mass fractions). Consequently, mass fractions are
non-negative. Moreover, with a suitable choice of the coefficients involved in the MUSCL
discretization of the chemical species convection terms, the sum of the chemical species is
equal to 1. Thus, they are also bounded by 1. An algorithm for the computation of these
latter coefficients is given.

Finally, we establish a discrete total energy balance for the scheme, which may be made
conservative by adding corrective terms to the sensible energy balance, for instance if one
wants to compute shock solutions. Since we address here essentially viscous flows, we do not
follow this line.
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Appendix

4.A A stability result for the Strang splitting method
Let consider the following system of equations:

∂tρ+ div(ρv) = 0,
∂t(ρv) + div(ρvY ) = 0.

(4.71)

We suppose for short that this system is complemented by impermeability boundary condi-
tions, i.e. that the normal velocity, both at the continuous and the discrete level, vanishes
on the boundary of the computational domain.

In this appendix, we build a numerical scheme for the solution of the above system. The
convection fluxes are build in such a way that the numerical scheme respects ”by construction”
the physical bounds satisfied by the variables in the continuous case. To this purpose, let
notice that an operator which satisfies a maximum principle must vanish when applied to
constant functions (Larrouturou, 1991). Indeed, denoting by L such an operator, an initially
constant solution ξ to the equation ∂tξ + L(ξ) = 0 must remain constant, since the upper
and lower bounds of the solution have to be preserved (provided, of course, that boundary
conditions are consistent with this constant solution). This yields ∂tξ = 0 and so L(ξ) = 0.
Here, the numerical scheme for the solution of the system (4.71) uses the Strang operator
splitting method for the chemical species mass fraction computation. This method consists
in performing one half-step of homogeneous transport of Y , then dealing with the reaction
terms (set to zero in this case) and finishing by the second half-step of transport of Y . Thus,
two convection operators must be approximated, for the first and the last step of the Strang
algorithm. The fact that these operators vanish when applied to constant functions is closely
related to the fact that these equations may be recast under non-conservative form thanks to
the mass balance. A density at "time step n − 1/2", ρn−1/2

K , is thus introduced and defined
by a linear combination of the density at time n and n− 1:

ρ
n−1/2
K =

1

2
(ρnK + ρn−1

K ), ∀K ∈M. (4.72)

This latest satisfies the following discrete mass balance equations (where the same notations
introduced in this chapter have been used):

ρ
n−1/2
K − ρn−1

K

δt/2
+

1

|K|
∑

σ∈E(K)

F n
K,σ = 0 (4.73)

ρnK − ρ
n−1/2
K

δt/2
+

1

|K|
∑

σ∈E(K)

F n
K,σ = 0 (4.74)
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which can be related respectively to the first and the last step of the Strang algorithm. The
MUSCL discretization is used for the convection operators of the chemical species balance
which closely follows the technique proposed in Piar et al. (2013). Then, the following
property holds:

∀K ∈M, ∀σ ∈ E(K) ∩ Eint, ∃βσK ∈ [0, 1] and Mσ
K ∈M such that

Yσ − YK =

∣∣∣∣ βσK (YK − YMσ
K

), if F n
K,σ ≥ 0,

βσK (YMσ
K
− YK), otherwise.

(4.75)

Under this latter hypothesis and a CFL condition, the scheme preserves the initial bounds
of Y (see Lemma 4.A.1 below).

Remark. Note that, in Assumption (4.75), only internal faces are considered, since the
fluxes through external faces are supposed to vanish. However, the present discussion
may easily be generalized to cope with convection fluxes entering the domain.

The numerical scheme for the solution of the system (4.71) reads, for 0 ≤ n ≤ N − 1:

1 - Chemical species mass fraction computation - Strang splitting method:

Transport step I – Solve for Ỹ n+1/2 :

ρ
n−1/2
K Ỹ

n+1/2
K − ρn−1

K Y n
K

δt/2
+

1

|K|
∑

σ∈E(K)

F n
K,σY

n
σ = 0, ∀K ∈M. (4.76a)

Reactive step – Solve for Y n+1/2 :

ρ
n−1/2
K

[
Y
n+1/2
K − Ỹ n+1/2

K

]
δt

= 0, ∀K ∈M. (4.76b)

Transport step II – Solve for Y n+1 :

ρnKY
n+1
K − ρn−1/2

K Y
n+1/2
K

δt/2
+

1

|K|
∑

σ∈E(K)

F n
K,σY

n+1/2
σ = 0, ∀K ∈M. (4.76c)

2 - Mass balance computation - Solve for ρn+1:

ρn+1
K − ρnK
δt

+
1

|K|
∑

σ∈E(K)

F n+1
K,σ = 0, ∀K ∈M. (4.77)

Definition 2. — The so-called CFL number reads for any 0 ≤ n ≤ N :

CFLn = max
K∈M

{
δt/2

|K|
max

(
1

ρnK
,

1

ρ
n−1/2
K

) ∑
σ∈E(K)

∣∣F n
K,σ

∣∣}.
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Lemma 4.A.1. Let us suppose that CFLn ≤ 1. For K ∈ M, let us note by V(K) the
union of the set of cells Mσ

K , σ ∈ E(K)∩Eint such that (4.75) holds. Then ∀K ∈M, the
value of Y n+1

K is a convex combination of {Y n
K , (Y

n
M)M∈V(K)}.

Proof. Let first consider the first step of the Strang splitting method. Thanks to the discrete
mass balance equation (4.73), we have:

ρn−1
K = ρ

n−1/2
K +

δt/2

|K|
∑

σ∈E(K)

F n
K,σ.

Replacing this expression of ρn−1
K in the discrete balance equation of Ỹ n+1/2

K (4.76a) and using
the relations provided by (4.75), we obtain:

ρ
n−1/2
K Ỹ

n+1/2
K = ρn−1

K Y n
K −

δt/2

|K|
∑

σ∈E(K)

F n
K,σY

n
σ

= ρ
n−1/2
K Y n

K −
δt/2

|K|
∑

σ∈E(K)

F n
K,σ(Y n

σ − Y n
K)

= ρ
n−1/2
K Y n

K −
δt/2

|K|
∑

σ∈E(K)

(
F n
K,σ

)+
(Y n

σ − Y n
K) +

δt/2

|K|
∑

σ∈E(K)

(
F n
K,σ

)−
(Y n

σ − Y n
K)

= ρ
n−1/2
K Y n

K −
δt/2

|K|
∑

σ∈E(K)

(
F n
K,σ

)+
βσK(Y n

K − Y n
Mσ
K

)

+
δt/2

|K|
∑

σ∈E(K)

(
F n
K,σ

)−
βσK(Y n

Mσ
K
− Y n

K).

This relation yields:

Ỹ
n+1/2
K = Y n

K

(
1− δt/2

ρ
n−1/2
K |K|

∑
σ∈E(K)

βσK
∣∣F n

K,σ

∣∣)+
δt/2

ρ
n−1/2
K |K|

∑
σ∈E(K)

Y n
Mσ
K
βσK
∣∣F n

K,σ

∣∣,
which is a convex combination of {Y n

K , (Y
n
Mσ
K

)Mσ
K∈V(K)} under the hypothesis that CFL ≤ 1.

The second step of the Strang splitting method (4.76b) simply yields:

Y
n+1/2
K = Ỹ

n+1/2
K .

Finally, let consider the third step (4.76c) of the Strang algorithm. The mass balance equation
(4.74) yields:

ρ
n−1/2
K = ρnK +

δt/2

|K|
∑

σ∈E(K)

F n
K,σ.

Replacing this expression of ρn−1/2
K in the discrete balance equation of Y n+1

K (4.76c) and using
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the same procedure than for the first step, we obtain:

ρnKY
n+1
K = ρ

n−1/2
K Y

n+1/2
K − δt/2

|K|
∑

σ∈E(K)

F n
K,σY

n+1/2
σ

= ρnK Y
n+1/2
K − δt/2

|K|
∑

σ∈E(K)

F n
K,σ(Y n+1/2

σ − Y n+1/2
K )

= ρnKY
n+1/2
K − δt/2

|K|
∑

σ∈E(K)

(
F n
K,σ

)+
βσK(Y

n+1/2
K − Y n+1/2

Mσ
K

)

+
δt/2

|K|
∑

σ∈E(K)

(
F n
K,σ

)−
βσK(Y

n+1/2
Mσ
K
− Y n+1/2

K ).

This relation yields:

Y n+1
K = Y

n+1/2
K

(
1− δt/2

ρnK |K|
∑

σ∈E(K)

βσK
∣∣F n

K,σ

∣∣)+
δt/2

ρnK |K|
∑

σ∈E(K)

Y
n+1/2
Mσ
K

βσK
∣∣F n

K,σ

∣∣,
which concludes the proof under the hypothesis that CFL ≤ 1.

4.B A MUSCL discretization which preserves the upper
bound of chemical species

In the continuous case, the bound Yk ≤ 1, k ∈ I is obtained indirectly: summing the
chemical mass balance equations, we obtain that their sum is always equal to one; since they
are non-negative, each of them is also bounded by 1. Unfortunately, applying (in a decoupled
way) a nonlinear scheme for each of the mass balance equation does not allow to recover this
property at the discrete level (Tran, 2008): this is shown hereafter by a counter-example. This
phenomenon may be circumvented by a an adaptation of the algorithm, which, schematically
speaking, consists in applying the same limitation at all the species; this limitation is built as
to imply individual limitations, and thus may be more stringent (i.e. yields a more diffusive
scheme). The aim of this section is to describe this algorithm and to show that on one side,
it preserves the positivity of the mass fractions and, on the other side, it yields a maximum
preserving discrete transport equation for their sum (in fact, for any affine combination of the
Yk). We restrict the exposition to the 1D case, but the method readily extends to structured
multidimensional situations.

Let first recall the procedure for the computation of Yk,σ, for k ∈ I and σ ∈ Eint (we
refer to Piar et al. (2013) for more details). The first step consists in calculating a tentative
value for Yk,σ as a linear interpolate of nearby values. Let us choose some real coefficients
(ςkK,σ)K∈M such that

xσ =
∑
K∈M

ςkK,σxK ,
∑
K∈M

ςkK,σ = 1.

where xσ and xK stand for the mass centers of σ and K respectively, ∀σ ∈ Eint and K ∈M.
These coefficients are then used to calculate the tentative value of Ỹk,σ by

Ỹk,σ =
∑
K∈M

ςkK,σYk,K . (4.78)
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The second step is to define an admissible interval such that the following property holds,
for k ∈ I :

∀K ∈M, ∀σ ∈ E(K) ∩ Eint, ∃βkK,σ ∈ [0, 1] and Mk
K,σ ∈M such that

Yk,σ − Yk,K =

∣∣∣∣∣ β
k
K,σ (Yk,K − Yk,Mk

K,σ
), if FK,σ ≥ 0,

βkK,σ (Yk,Mk
K,σ
− Yk,K), otherwise.

(4.79)

Let σ ∈ Eint, let us denote by V − and V + the upstream and downstream cell separated by
σ, and by Nσ(V −) and Nσ(V +) two sets of neighbouring cells of V − and V + respectively.
According to Piar et al. (2013), the following two assumptions are sufficient conditions for
(4.79) to hold:

(H1) – there exists M ∈ Nσ(V +) such that Yk,σ ∈ |[Yk,M , Yk,M +
ζ+

2
(Yk,V + − Yk,M)]|,

(H2) – there exists M ∈ Nσ(V −) such that Yk,σ ∈ |[Yk,V − , Yk,V − +
ζ−

2
(Yk,V − − Yk,M)]|,

where, for a, b ∈ R, we denote by |[a, b]| the interval {α a+ (1−α) b, α ∈ [0, 1]}, and ζ+ and
ζ− are two numerical parameters lying in the interval [0, 2].

Thus, for each face σ of the mesh, after determining V − and V + according to the sign of
the mass flux through σ, the assumptions (H1) and (H2) are exploited to obtain an admissible
interval Ik,σ for the value of the unknown at the face. This interval is not empty: indeed for
σ ∈ Eint, since V − ∈ Nσ(V +), the upstream choice Yk,σ = Yk,V − always satisfies the conditions
(H1) and (H2), and is the only one to satisfy them if we choose ζ− = ζ+ = 0 (Piar et al.,
2013).

Finally, the last step of the procedure consists in computing Yk,σ as the nearest point to
Ỹk,σ in Ik,σ.

σ

J K L

×

×
×Yk,J

Yk,K

Yk,L

Figure 4.B.1: 1D case: notations.

Let us take the example of an interface σ separating K and L in a 1D case (see Figure
4.B.1 for the notations). First, let compute a tentative value Ỹk,σ for the unknown at the
face σ, by Relation (4.78), which yields an affine interpolation at the mass centre of the face.
The coefficients used in this interpolation are chosen in such a way that as few as possible
cells, to be picked up in the closest cells to σ, take part. For example, in this case, only two
non-zero coefficients exist in the family (ςkK,σ)K∈M, namely ςkK,σ and ςkL,σ. Thus, the tentative
value of Ỹk,σ is given by:

Ỹk,σ = ςkK,σYk,K + (1− ςkK,σ)Yk,L. (4.80)
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Let us restrict ourselves to a positive advection velocity, so that V − = K and V + = L. In
1D, a natural choice is Nσ(K) = {J} and Nσ(L) = {K}.
If ζ− = ζ+ = 2, rewritten assumptions (H1) (H2) yields:
(H1) – Yk,σ ∈ |[Yk,K , Yk,L]|,
(H2) – Yk,σ ∈ |[Yk,K , 2Yk,K − Yk,J ]|.
Thus the admissible interval Ik,σ reads:

Ik,σ = |[Yk,K , Yk,L]| ∩ |[Yk,K , 2Yk,K − Yk,J ]|. (4.81)

Let notice that Ỹk,σ satisfies (H1) by construction.

4.B.1 The procedure for the computation of Yk,σ does not preserve∑
k∈I Yk = 1: an example

Let suppose that only three chemical species are involved in the mixture and that the sub-
scripts I reads I = {1, 2, 3} so that the set of mass fractions of the chemical species in the
flow reads {Y1, Y2, Y3}. Let ε ≤ 1/4 be a constant real number and let Y n

k,K , for k ∈ I, take
the following values in the cells in the vicinity of σ at time n:∣∣∣∣∣∣

Y n
1,J = 1− ε
Y n

1,K = 1− ε
Y n

1,L = 1/2

∣∣∣∣∣∣
Y n

2,J = 0

Y n
2,K = ε/2

Y n
2,L = 2ε

∣∣∣∣∣∣
Y n

3,J = ε

Y n
3,K = ε/2

Y n
3,L = 1/2− 2ε

(4.82)

Let notice that
∑

k∈I Y
n
k,K =

∑
k∈I Y

n
k,J =

∑
k∈I Y

n
k,L = 1 and that for ε small enough the

mass fractions are non-negative. The tentative values Ỹ n
k,σ lie in the following intervals:

Ỹ n
1,σ ∈ |[1/2, 1− ε]|, Ỹ n

2,σ ∈ |[ε/2, 2 ε]|, Ỹ n
3,σ ∈ |[ε/2, 1/2− 2 ε]|.

According to expression (4.81), the admissible intervals Ik,σ are the intersection of the previous
intervals with the following (corresponding to condition (H2)):

Ĩ1,σ = |[1− ε, 3/2− 2 ε]|, Ĩ2,σ = |[ε/2, ε]|, Ĩ3,σ = |[0, ε/2]|.

The projection of Ỹ n
k,σ in Ik,σ, for k ∈ I, leads to the following values for Y n

k,σ:

Y n
1,σ = 1− ε, Y n

2,σ = ε, Y n
3,σ = ε/2.

Thus
∑

k∈I Y
n
k,σ = 1 + ε/2 > 1.

Let consider the following discrete chemical fraction balance equation written, for each
k ∈ I, as:

ρn+1
K Y n+1

k,K − ρnK Y n
k,K

δt
+

1

|K|
∑

σ∈E(K)

F n
K,σ Y

n
k,σ = 0 (4.83)

where the diffusive and reactive terms have been omitted (by construction the sum over k ∈ I
of the species diffusive fluxes and of the reactive terms vanishes). Summing over k ∈ I the
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previous equations yields, ∀K ∈M:

ρn+1
K

δt

∑
k∈I

Y n+1
k,K =

ρnK
δt
− 1

|K|
∑

σ∈E(K)

F n
K,σ

∑
k∈I

Y n
k,σ

=
ρnK
δt
− 1

|K|
∑

σ∈E(K)

F n
K,σ

(
1 +

ε

2

)
Then, assuming that the following mass balance holds, we have:

ρn+1
K = ρnK −

δt

|K|
∑

σ∈E(K)

F n
K,σ, (4.84)

Using this latest relation, the sum of Y n+1
k,K reads:∑

k∈I

Y n+1
k,K = 1− δt

ρnK

1

|K|
∑

σ∈E(K)

F n
K,σ

ε

2
,

thus
∑
k∈I

Y n+1
k,K 6= 1.

4.B.2 A corrected algorithm for the computation of Yk,σ
Let now give the algorithm for the discretization of the convection term which allows to
preserve not only the lower but also the upper physical bound of chemical species:
1. For each k ∈ I, compute a tentative value Ŷk,σ as usual:

(a) compute a tentative value of Ỹk,σ for the unknown at the face σ, by relation (4.80),
which yields an affine interpolation at the mass centre of the face,

(b) determine V − and V + according to the sign of the mass flux through σ, and exploit
(H1) and (H2) to obtain an admissible interval Ik,σ for the value of the unknown at
the face,

(c) compute Ŷk,σ as the projection of Ỹk,σ in Ik,σ.

2. Define ςK,σ = min
k∈I

ςkK,σ, with ς
k
K,σ obtained in step 1.(a). By construction, ςK,σ ∈ [0, 1].

3. For each k ∈ I, compute Yk,σ given by:

Yk,σ = ςK,σYk,K + (1− ςK,σ)Yk,L.

By construction, for each k ∈ I, Yk,σ ∈ Ik,σ. Indeed, we recover (4.79) (which is equivalent
to conditions (H1) and (H2)), that is for σ ∈ E(K) ∩ Eint and for each k ∈ I, Yk,σ can be
rewritten as:

Yk,σ − Yk,K = βK,σ (Yk,K − Yk,MK,σ
), if FK,σ ≥ 0

with MK,σ = L and βK,σ = ςK,σ− 1 which not depend anymore on k. Analogously, Yk,σ can
be rewritten as:

Yk,σ − Yk,K = βK,σ (Yk,MK,σ
− Yk,K), if FK,σ < 0

with MK,σ = L and βK,σ = 1− ςK,σ.
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With this procedure, the coefficients βkK,σ and the cells Mk
K,σ involved in the MUSCL

discretization of the chemical species convection terms do not depend on the k. Summing
over k ∈ I the discrete chemical fraction balance equations (4.83) yields, ∀K ∈M:

ρn+1
K

δt

∑
k∈I

Y n+1
k,K =

ρnK
δt
− 1

|K|
∑

σ∈E(K)

(F n
K,σ)+

∑
k∈I

[
(βK,σ + 1)Y n

k,K − βK,σY n
k,MK,σ

]
+

1

|K|
∑

σ∈E(K)

(F n
K,σ)−

∑
k∈I

[
(1− βK,σ)Y n

k,K + βK,σY
n
k,MK,σ

]
,

Then, if for all K ∈M,
∑

k∈I Y
n
k,K = 1, we have:

∀K ∈M,
ρn+1
K

δt

∑
k∈I

Y n+1
k,K =

ρnK
δt
− 1

|K|
∑

σ∈E(K)

F n
K,σ.

Finally, the mass balance (4.84) leads to
∑

k∈I Y
n+1
k,K = 1, ∀K ∈M.

4.C Filtering method
In order to compute the subgrid scale wrinkling factor Ξ∆, fields may be filtered at a filter
width ∆̃ (which can be

︷︸︸︷
∆ or ∆avg). A filtering operator is thus needed.

Consider the diffusion equation for φ(x, τ) ∈ Ω × [0, T ], Ω being the computational
domain: ∣∣∣∣ ∂τφ = α∇2φ

φ(x, 0) = φ0
(4.85)

where τ is a pseudo-time, which should be distinguished from the physical time t used in the
numerical scheme proposed here, and α a constant diffusion coefficient. The solution of the
previous equation has the following form at a fixed pseudo-time τ = T . This latest is the
convolution of φ with a function of the same form of a Gaussian filter (Sun and Xiao, 2015):

G(x) =
1

(4πα T )3/2
exp

[
− 1

4α T

d∑
i=1

x2
i

]
.

Indeed, we recover (1.50) by setting α T = ∆̃/24.

The system (4.85) may be solved implicitly or explicitly. Let us consider a partition
0 = τ0 < τ1 < · · · < τN = T of the time interval (0, T ), which we suppose uniform, and
let δτ = τn+1 − τn for n = 0, 1, · · · , N − 1 be the (constant) time step (set here to 1). The
discrete formulation reads, for 0 ≤ n ≤ N − 1:

|K|
δτ

(
φn+1
K − φnK

)
=

∑
σ∈E(K),σ=K|L

σ

dσ
α (φ?L − φ?K), ∀K ∈M (4.86)

where ? stands to n+1 if the system is solved implicitly or n if the system is solved explicitly.
The same notations introduced in Section 4.3 are used here.
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If the resolution is explicit, we have:

φn+1
K = φnK

(
1− δτ

|K|
∑

σ∈E(K),σ=K|L

σ

dσ
α
)

+
δτ

|K|
∑

σ∈E(K),σ=K|L

σ

dσ
αφnL

thus, the following stability criterion must be satisfied:

α δτ
∑

σ∈E(K),σ=K|L

σ

dσ
≤ |K|. (4.87)

This filtering technique has been implemented in the CALIF3S - P2REMICS software and
validated on simple cases, where analytical solutions exist, as shown in Fig. 4.C.1. In this
figure, a one-dimensional step function is filtered at different filter widths ∆̃ = 8, 16 and 32 ∆x

(with ∆x the mesh size). The numerical results are compared to the analytical solutions given

by:
︷︸︸︷
φ (x) =

(
1 + erf

(
x
√

6/∆̃
))

/2 (Moureau et al., 2011). Fig. 4.C.1 shows that the step
function has been correctly filtered at the expected filters widths.

Figure 4.C.1: Filtering of a step function. The filter width ∆ takes the values 4, 8, 16 and
32 times the mesh size ∆x. ( ): filtered profiles; ( ): initial value of the step function;
(×): analytical solutions.
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Part III

Thickened flame model for large eddy
simulation: calibration and application

on an accelerated deflagration
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Chapter 5

Simulation of a one-dimensional laminar
steady premixed flame

In this chapter, a one-dimensional laminar steady premixed flame is simulated with the
CALIF3S-P2REMICS open-source software. The aim is to assess the laminar behavior of
the combustion model and its capacity to reproduce the early stages of a deflagration. This
test case may be considered as a prerequisite before applications to turbulent reactive problems
in two or three dimensions.

5.1 Introduction
At early stages of a deflagration taking place in a fluid at rest, the flame kernel growths
and may not be wrinkled by turbulence. In order to reproduce these first moments, the
combustion model used should be able to reproduce the laminar flame front propagation. In
this work, the combustion is modelled with a virtually thickened flame formalism (TFLES)
combined with a dynamical determination of the sub-grid scale flame wrinkling factor (Butler
and O’Rourke, 1977; Colin et al., 2000) (see Chapter 2 Section 2.4.5 for more details). In
order to be able to reproduce the beginning of the transient, the dynamic model must predict
wrinkling values close to unity when the flame kernel is quasi laminar.

In this chapter, the behavior of the dynamic model is verified for a one-dimensional
laminar steady premixed flame. The simulations have been performed with the CALIF3S-
P2REMICS open-source software (CALIF3S-P2REMICS, 2020). The quasi non-dissipative
second-order explicit scheme presented in Chapter 4 is used to solve the Navier-Stokes equa-
tions complemented with the species balance equations.

The chapter is structured as follows. First, the one-dimensional governing equations are
presented in Section 5.2. The mean features of the planar laminar flame (laminar flame speed,
characteristics of the burned mixture) are calculated and used as reference values in order
to validate the implemented model. After the presentation of the numerical setup (Section
5.3), the numerical results obtained are presented (Section 5.4). Several computations have
been performed by varying the thickening flame factor and the number of points used for the
flame front description.
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5.2 Governing equations
Let consider a one-dimensional laminar (no subgrid wrinkling factor model is thus needed)
premixed flame. The mixture is composed by Ns species reacting through a one-step irre-
versible chemical reaction:

Ns∑
k=1

ν ′kMk →
Ns∑
k=1

ν ′′kMk (5.1)

whereMk is the chemical species symbol, ν ′k and ν ′′k are respectively the molar stoichiometric
coefficient of the reacting and product species. We assume that all the species have the same
diffusion coefficient D, so that all Lewis numbers are equal (Lek = Le, for 1 ≤ k ≤ Ns).
We suppose also that species and heat diffuse in the same way so that Le = 1. With these
assumptions and considering that viscous heating can be neglected, the flow is governed by
the following system of equations:

∂tρ+ ∂x(ρ v) = 0,

∂t(ρ Yk) + ∂x(ρ Yk v) = ∂x(ρD∂xYk) + ω̇k, for 1 ≤ k ≤ Ns,

∂t(ρ v) + ∂x(ρ v
2) + ∂xp = ∂x(µ ∂xv),

∂t(ρ e) + ∂x(ρ e v) + p ∂xv = ω̇T + ∂x

(
λ

cp
∂xh

)
,

with the same notations used throughout this Chapter. This system of equations is comple-
mented by the following state law:

p = ρ
RT

W
. (5.3)

When the flame is steady, writing the previous governing equations in the reference frame of
the flame (moving at speed sL) leads to:

∂x(ρ v) = 0, (5.4a)

∂x(ρ Yk vx) = ∂x(ρD∂xYk) + ω̇k, for 1 ≤ k ≤ Ns, (5.4b)

∂x(ρ v
2
x) + ∂xp = ∂x(µ ∂xv), (5.4c)

∂x(ρ e v) + p ∂xv = ω̇T + ∂x

(
λ

cp
∂xh

)
. (5.4d)

The first relation (5.4a) can be rewritten as:

ρu vu = ρb vb = ρu sL, (5.5)

where the subscripts u and b denote respectively the fresh and the burnt mixtures.

The integration of the species mass balance (5.4b) between x = −∞ and x = +∞ (i.e.
between fresh mixture and burnt mixture) leads to the following relation for the consumption
speed sL:

sL = − 1

ρu (Y u
k − Y b

k )

∫ +∞

−∞
ω̇k dx, 1 ≤ k ≤ Ns, (5.6)

with Y u
k and Y b

k the fresh and the burnt mass fraction of species k, respectively. Let notice
that if the species k is the fuel (i.e. if k = F ) and if the mixture is lean or stoichiometric, by
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assuming that the combustion is complete and that the total mass of fuel has reacted, the
previous relation is simplified:

sL = − 1

ρu Y u
F

∫ +∞

−∞
ω̇F dx. (5.7)

The pressure drop between the burnt gases and the fresh gases is calculated following the
same approach on the momentum balance equation (5.4c):

pb − pu = ρus
2
L

(
1− ρu

ρb

)
. (5.8)

This pressure drop is usually of the order of 1 Pa, thus pressure is usually considered as
constant in a one-dimensional premixed flame. Let notice that with this assumption, thanks
to the state law (5.3), the density ratio reads:

ρu
ρb

=
Wu Tb
Wb Tu

.

Assuming that burnt and fresh mixtures have the same molecular weight, the relation (5.8)
can be rewritten as:

pb − pu = ρus
2
L

(
1− Tb

Tu

)
. (5.9)

Finally, integrating the energy balance equation (5.4d) and assuming that the pressure
drop can be neglected yields:

ρu sL (eb − eu) + (pb vb − pu vu) =

∫ +∞

−∞
ω̇T ,

with eu and eb respectively the fresh and the burnt sensible energies. Using the state law
(5.3) and recalling the definition of the sensible energy:

e = h− p

ρ
, (5.10)

where h stands for the sensible energy, leads to:

ρu sL (hb − hu) =

∫ +∞

−∞
ω̇T , (5.11)

with hu and hb respectively the fresh and the burnt sensible enthalpies. Let recall that the
heat production rate is given by:

ω̇T = −
Ns∑
k=1

∆h0
f,k ω̇k,

with ∆h0
f,k for the formation enthalpy of the species k. Assuming that chemistry proceeds

only through one irreversible reaction, ω̇T can be rewritten as a function of the fuel reaction
rate ω̇F as:

ω̇T = −Qω̇F , (5.12)
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where Q is the mass heat of the reaction given by:

Q =
Ns∑
k=1

∆h0
f,k

Wkνk
WFνF

, (5.13)

with νk and νF the stoichiometric coefficients of the species k and of the fuel. Then, we
obtain the following form for (5.11):

ρusL (hb − hu) = −Q
∫ +∞

−∞
ω̇F dx. (5.14)

Introducing the left side of equation (5.6) in the previous relation, yields:

hb = hu +Q (Y u
F − Y b

F ). (5.15)

The burnt temperature, which corresponds here to the adiabatic flame temperature can then
be recovered using the sensible enthalpy definition, recalled here:

h =
Ns∑
k=1

∫ T

T0

cp,k Yk dT (5.16)

where T0 stands for the reference temperature and cp,k for the heat capacity at constant
pressure for the species k. To have the adiabatic flame temperature order of magnitude, a
constant heat capacity between fresh and burnt gases assumption may be made.

5.3 Numerical setup
In order to verify the good behavior of the combustion model in the laminar case, the equa-
tions are filtered. The combustion is modelled with the artificially thickened flame approach
(detailed in Section 4.2.1) combined with a dynamical determination of the sub-grid scale
flame wrinkling factor (Butler and O’Rourke, 1977; Colin et al., 2000). The aim is to verify
that the dynamical wrinkling factor Ξ∆ tends to one in this case (for laminar one-dimensional
flames, the wrinkling factor exponent is expected to be zero).

The fresh mixture is composed of methane and air at stoichiometric conditions (φ = 1
with φ given by (2.1)). A one step global reaction is considered:

CH4 + 2 (O2 + 3.76N2) −→ CO2 + 2H2O + 7.52N2 (5.17)

The molar fractions in the fresh mixture are then computed in the following way:

Xu
k =

ν ′k∑
k

ν ′k
, (5.18)

where ν ′k is the molar stoichiometric coefficient of the reactant k. In the burnt gases, only
the products remain and the molar fractions are given by:

Xb
k =

ν ′′k∑
k

ν ′′k
, (5.19)
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where ν ′′k is the molar stoichiometric coefficient of the product k. The corresponding mass
fractions are thus computed such as:

Y u
k =

Xu
k W

u
k∑

k

Xu
k W

u
k

, Y b
k =

Xb
k W

b
k∑

k

Xb
k W

b
k

, (5.20)

with W u
k and W b

k the molar mass of the species k respectively in the fresh and in the burnt
mixtures. In order to have an initial state as close as possible from the solution, the fuel
mass fraction is initialized with the following function:

Y 0
F = 0.5

[
1− erf

(
4

δr
(x−Xign)

)]
Y u
F ,

with Y u
F computed with (5.20), Xign the flame front position and δr the numerical flame

thickness such as δr = δ0
LF . This choice allows to initialize the flame kernel directly with a

thickened flame front. In order to compute the other chemical species, the neutral gas mass
fraction and the mixture fraction must be defined. The first one is obtained with (5.20), the
second one with (4.34) taking into account that the mixture fraction is the same in the fresh
and in the burnt mixtures for a perfectly premixed flame.

The initial temperature is initialized with the following function:

T0 = 0.5

[
1 + erf

(
4

δr
(x−Xign)

)]
(Tb − Tu) + Tu

where the fresh temperature is set to Tu = 300 K, whereas the burnt gases temperature is
computed using expression (5.15). The adiabatic flame temperature obtained in such way
is close to 2300 K (with a constant heat capacity assumption). The initial velocity field is
computed using relation (5.5):

v0 =
vuρu
ρ0

where the fresh gases velocity is set at the laminar flame speed: vu = sL and the initial density
ρ0 is obtained thanks to the equation of state (5.3). The pressure is considered as uniform
at the initialization p0 = 101325 Pa.

The reaction rate is computed with the Arrhenius law as described in equation (4.10). The
pre-exponential coefficient is A = 6 105 uSI and the activation energy is Ea = 8.3 104 J.mol−1.

The combustion filter size is set to ∆ = 1.4F δ0
L. For a stochiometric methane/air flame

at atmospheric conditions, like those studied here, δ0
L ≈ 0.42 mm (Quillatre, 2014). The test

filter width is set to
︷︸︸︷
∆ = 1.5 ∆, whereas the size of the Gaussian filter which replace the

averaged operator 〈·〉 is set to ∆avg = 3 ∆. The inner cut-off length scale is set at δc = 2δ0
L.

The simulations are performed on a one-dimensional computational domain [0, L] with
L = 40 mm. The mesh size ∆x is set in function of the thickening factor F , the laminar flame
thickness δ0

L, and the number of grid points in the front n, such as: ∆x = δ0
LF/n. The flame

front position is located in the middle of the domain: Xign = L/2 = 20 mm.
On the burnt gas side, inlet boundary conditions are imposed, with an inlet velocity equal

to the laminar flame speed sL = 0.42 m.s−1 (Yu et al., 1986; Poinsot and Veynante, 2012),
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in order to maintain the flame at the same position. On the fresh gas side, the boundary
condition corresponds to a free outlet condition ensuring a constant thermodynamic pressure
over time.

The time step is computed to have an acoustic Courant-Friedrichs-Lewy condition CFL =
0.33 for all the simulations. In order to reach a steady state, 0.04 s are simulated.

5.4 Numerical results
Several simulations are performed by varying the thickening factor value and the number
of points used in order to describe the flame front. A numerical simulation with a forced
efficiency factor is also made in order to show the impact of Ξ∆ on the numerical results.
The test cases studied here are summarized in Table 5.1.

Name F n ∆x dt Ξ∆

case 1 (reference) 1 10 42µm 0.038µs dynamic

case 2 5 10 210µm 0.19µs dynamic

case 3 10 5 840µm 0.76µs dynamic

case 4 10 10 420µm 0.38µs dynamic

case 5 10 3 1400µm 1.27µs dynamic
case 6 10 10 420µm 0.38µs 2

Table 5.1: List of the one-dimensional simulations.

Reference case (case 1)

The first steady laminar flame simulated has a thickening factor F = 1 and n = 10 grid
points in the front. Therefore, the mesh grid is very fine allowing a precise description of the
reactive flow. This case will be used as a reference for all the simulations presented here.

The mesh grid size is set at ∆x = Fδ0
L/n = 42µm. Thus, the total number of cells in the

domain is 952. The time step is set at 0.038µs.
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Figure 5.1: Fuel mass fraction (left side) and flow velocity (right side) for a one dimensional
laminar flame. ( ): case 1; (× ): reference values.

Figure 5.2: Overpressure (left side) and temperature (right side) for a one dimensional laminar
flame. ( ): case 1; (× ): reference values.

In Fig. 5.1 are plotted respectively the fuel mass fraction and the velocity obtained at the
end of the computation. The left side of the domain corresponds to the fresh gases zone and
the right side to the burnt gases zone. For a stoichiometric mixture, as all the reactant are
transformed in products, the fuel mass fraction is completely consumed in the burnt gases
zone. On the right part of Fig. 5.1, the numerical velocity is compared to the reference values
obtained with the mass conservation equation. The reference burnt gases speed is computed
as vb = vu ρu/ρb, ρu and ρb being obtained thanks to the equation of state (5.3) by setting
pu = pb = 101325 Pa. The simulation results are in good agreement with the reference values
for both the fuel mass fraction and the velocity fields.
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Fig. 5.2 shows the pressure (left side) and the temperature (right side). The reference
temperature in the burnt gases is estimated to be equal to the adiabatic flame temperature
calculated using expression (5.15) and represented on this figure. The simulation results
matches the reference values. As expected the pressure drop is low: it is of the order of
magnitude of 1.25 Pa. It can be estimated using expression (5.8).

Figure 5.3: Laminar flame speed (left side) and mean dynamic wrinkling factor exponent
parameter (right side) for a one dimensional laminar flame. ( ): case 1; (× ): experimental
value.

The left side of Fig. 5.3 shows the laminar flame speed. This latest is calculated from
numerical results using equation (5.6) matching the experimental value 0.42 m.s−1 (Yu et al.,
1986; Poinsot and Veynante, 2012). The simulation converges and reaches the right value for
the laminar flame speed in a short time and stays stable showing that the initial profiles are
close to the solution.

The statistical quantity βavg defined by:

βavg =

∫
Vf
β dV∫

Vf
dV

, (5.21)

is the spatially averaged β parameter over the flame volume Vf defined such as: 0.05 < c̃ <
0.95. The time evolution of βavg is plotted on the right side of Fig. 5.3. When the flow is
laminar, the wrinkling factor has to be equal to one, and thus β must be equal to zero, as
there is no subgrid scale turbulence. As shown in Fig. 5.3, the mean winkling factor exponent
is almost null, as expected. Let notice that here, only the beginning of the computation is
plotted for the sake of clarity. The dynamic formulation for the combustion model behaves
correctly in case of laminar regime.

Impact of the thickening factor (cases 1, 2 and 4)

The simulations presented here have different thickening factors while keeping constant the
number of grid points in the front. The aim is to validate the implemented numerical scheme
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by verifying that the results overlap after doing a variable change such as x′ = x/F (see
Chapter 2 Section 2.4.5). The two simulations presented here (cases 2 and 4) have a thickening
factor of F = 5 and F = 10 respectively with the same number of grid points: n = 10. The
simulation of case 1, presented above, is kept here in order to be used as a reference.

The mesh grid size is ∆x = 0.21 mm (190 cells) for case 2 and ∆x = 0.42 mm (95 cells)
for case 4. The time step is set at 0.19µs and 0.38µs for cases 2 and 4 respectively.

Figure 5.4: Fuel mass fraction without (left side) and with (right side) a normalized by F
x-axis for a one dimensional laminar flame. (× ): case 1; ( ): case 2 and ( ): case 4.

Fig. 5.4 represents the fuel mass fraction with (right side) and without (left side) normal-
izing the space coordinate by the F factor. The left side of Fig. 5.4 shows that the flame
front thickness is F δ0

L for both simulations, as expected. The normalization of the x-axis
leads to a superposition of the fields as shown on the right side of Fig. 5.4. Cases 2 and 4
matches well the reference case showing that the fuel has been fully consumed in the front
flame leaving only products in the burnt gases (and inert gases).
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Figure 5.5: Velocity (top left side), temperature (top right side) and pressure (bottom) for a
one dimensional laminar flame. (× ): case 1; ( ): case 2 and ( ): case 4.

The velocity, the temperature and the pressure profiles for cases 2 and 4 are shown in
Fig. 5.5 and compared to the reference case results. The normalization of the x-axis by F
leads to a superposition of the profiles whatever the value of F is.
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Figure 5.6: Laminar flame speed (left side) and mean dynamic wrinkling factor exponent
(right side) for a one dimensional laminar flame. (× ): case 1; ( ): case 2 and ( ): case
4.

In the left part of Fig. 5.6, the laminar flame speed computed for cases 2 and 4 are
compared to the reference case. The numerical results progressively converges to the same
value of sL, independently of the F factor value.

In the right part of Fig. 5.6, the mean wrinkling factor parameter βavg is plotted for cases
2 and 4. The βavg parameter values are small enough to be considered as null. Therefore the
wrinkling factor is unitary whatever the F factor is.

Impact of the number of grid points in the flame front (cases 3, 4 and 5)

Now let us observe cases 3 and 5. The purpose here is to analyse the influence of the mesh
resolution on the numerical results. The thickening factor is set to F = 10. Case 3 and case
5 have respectively n = 5 and n = 3 points in the front. The mesh grid size is ∆x = 0.84 mm
for case 3 (48 cells) and ∆x = 1.4 mm for case 5 (29 cells). The time step is set to 0.19µs for
case 3 and to 1.27µs for case 5. The case 4 shown previously, is kept here for comparison.

The laminar flame speeds computed for cases 3 and 5 are plotted in Fig. 5.7 and compared
to the ones computed for case 1 and case 4. Fig. 5.7 shows close results between case 3 and
4. The other unknowns computed for case 3 are also quite similar to those obtained for case
4 and are not shown here. The convergence is not reached for case 5 because of too few grid
points in the flame front (n < nmin), leading to a incorrect resolution of the laminar flame.
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Figure 5.7: Laminar flame speed of a one dimensional laminar flame cases 1, 3, 4 and 5: (× ):
case 1; ( ): case 3; ( ): case 4; ( ): case 5.

Constant efficiency function (case 6)

The thickening factor is set to F = 10 and the number of cells in the flame front to n = 10.
The mesh grid size is thus ∆x = 0.42 mm. The total number of cells is 95. The time step
is set to 0.38µs. The value of the efficiency function Ξ∆ is constant and is forced at 2. The
aim here is to validate the proper functioning of the implemented subgrid wrinkling model
by verifying the proportionality between laminar flame speed and imposed wrinkling factor.

Figure 5.8: Laminar flame speed of cases 1, 4 and 6. (× ): case 1; ( ): case 6.

Fig. 5.8 shows the laminar flame speed computed for case 6 and compared to the reference
case. The laminar flame speed is expected to be twice of the laminar flame speed computed
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when the wrinkling factor is forced at Ξ∆ = 2. This conclusion is confirmed by the results
plotted on Fig. 5.8.

5.5 Conclusion
Large eddy simulations of a steady laminar planar methane/air flame were run in order to
validate the implemented artificially thickened flame model. The numerical results recover
the exact values of temperature, flow velocity and pressure ahead and behind the flame front.
The laminar flame speed is computed and match the experimental data for a stoichiometric
methane/air flame. The laminar behavior of the dynamic subgrid model is assessed: the
dynamic model predicts winkling values close to unity. The number of grid points needed
for a good description of the flame front is at least 5. These one-dimensional simulations
allow us to conclude that the implemented combustion model is able to reproduce laminar
premixed flame propagation.

This test case may be considered as a prerequisite before applications to turbulent reactive
problems in two or three dimensions. However, the conclusions reached here (for example
the minimum number of points in the front) may differ for more complicated cases such as
turbulent reactive flows in two or three dimensional simulations.
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Chapter 6

Simulations of an accelerated
deflagration in a semi confined chamber

An accelerated deflagration in an obstructed rectangular semi-confined chamber has been simu-
lated with three different obstacle position configurations. The simulations are first performed
with the LES approach presented in the previous Chapters. The combustion is modelled us-
ing a virtually thickened flame formalism combined with a dynamical determination of the
subgrid scale flame wrinkling factor. Two-dimensional and three-dimensional simulations are
performed. The influence of the location of obstacles and the impact of the thickened flame
approach parameters are investigated. The results are compared with experimental data. The
LES approach is then compared to the RANS approach already implemented in the CALIF3S
-P2REMICS software using a turbulent flame speed closure combustion model. The influence
of the location of obstacles on the flame propagation is well captured by LES. Moreover, LES
results highlight the importance of the wrinkling factor dynamical formulation to capture the
transition from laminar to turbulent regimes. Regarding the RANS approach, the results com-
puted with different turbulent flame speed closure are compared. Most of them are not able to
describe properly the flame front propagation and underestimate the overpressure peak.

6.1 Introduction
Accelerated turbulent deflagrations, potentially transiting to detonation, are a major hazard
in industrial plants, and more specifically in nuclear power plants. The pressure increase
is governed by a complex unsteady interaction between flame propagation, turbulence and
geometry. This overpressure is often considered as the key parameter, since it controls the
severity of the explosion and corresponding damages. This complex phenomenon is very
challenging for computational fluid dynamics problems since it involves a large spectrum of
spatial and time scales and a large range of flow and combustion regimes.

In this chapter accelerated turbulent deflagration in a semi-confined chamber are studied.
In semi-confined situations such as the ones discussed later, two main mechanisms explain
the pressure variations:

• the combustion rises the gas volume leading to a pressure increase in the chamber as
long as the combustion lasts,

• the flame reaching the chamber exit leads to the decrease of pressure.
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Most of the time, a combination of these two mechanisms is responsible for the overpressure
generated. When a flame propagates through a flammable mixture, two parameters may
affect the overpressure amplitude:

• the flame front speed: the faster is the flame, the higher is the burning rate, which
tends to increase the pressure,

• the obstruction of the flow: the more the flow meets obstacles, the more the fresh gases
propagation is blocked, leading to an increase of the pressure.

Obstacles influence the overpressure amplitude as they play a role in the two previous
features. Indeed, obstacles generate turbulent motions which accelerates the flame. The ob-
stacles shape, size and position are important features in the generated overpressure. How-
ever, other parameters influence the overpressure behavior such as: domain geometry, type of
fuel, proportion of fuel in the oxidant, ignition conditions, state of the flow before ignition...
(Bradley and Mitcheson, 1978; Ibrahim and Masri, 2001; Gubba et al., 2009; Bauwens et al.,
2010; Chao et al., 2010)

Some experiences have been carried out in semi-confined configurations obstructed by
obstacles to study the interactions between flame and turbulence as well as the impact of
geometry and fuel type on the overpressure and front propagation (Fairweather et al., 1999;
Masri et al., 2000; Patel et al., 2002a; Kent et al., 2005a; Hall et al., 2009; Masri et al., 2012;
Wen et al., 2013). The front may also transit to detonation after an significant acceleration
of the front (Oran and Gamezo, 2007; Dorofeev, 2011). In our framework, only deflagrations
(subsonic explosions) are simulated.

In order to simulate explosions, CFD is today the best method to approach the phe-
nomena. Few decades ago, CFD was not considered for real industrial purposes, now, it is
more and more spread in the community. LES approach has been popularized thanks to
the evolving computational resources and massively parallel machines (Janicka and Sadiki,
2004; Pitsch, 2006; Poinsot and Veynante, 2012; Gicquel et al., 2012). LES of explosions
in semi-confined chamber have already been carried out in literature (Patel et al., 2002b;
Kirkpatrick et al., 2003; Di Sarli et al., 2009a,b, 2010; Gubba et al., 2009; Ibrahim et al.,
2009; Wen et al., 2012; Quillatre, 2014; Xu et al., 2015; Mouriaux et al., 2016; Volpiani, 2017;
Li et al., 2018; Elshimy et al., 2021).

In this chapter the experimental set-up of Wen et al. (2013) is simulated. The experimen-
tal set-up is an obstructed rectangular semi-confined chamber. The influence of the obstacles
locations on the flame propagation is studied. Three different configurations for the obsta-
cles location are available. One of those configurations has some similarities with Patel et al.
(2002a) experience. The simulations are performed with the CALIF3S-P2REMICS open-
source software (CALIF3S-P2REMICS, 2020). The combustion is modelled using a virtually
thickened flame formalism (TFLES) (Butler and O’Rourke, 1977; Colin et al., 2000) (see
Chapter 2 Section 2.4.5 for more details). The subgrid scale flame wrinkling is computed dy-
namically and modelled with the Veynante and Moureau (2015) expression improved in order
to take into account flame front interactions and flame-wall interactions (Mouriaux et al.,
2016) (see Chapter 2 Section 2.4.6 for more details). The quasi non-dissipative second-order
explicit scheme presented in Chapter 4 is used to solve the filtered Navier-Stokes equations
complemented with the species balance equations.
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Another approach is available for the turbulent deflagration modelling in the CALIF3S
-P2REMICS software. It is based on a RANS description of turbulence and on a turbulent
flame-speed closure combustion model (Lipatnikov and Chomiak, 2002; Peters, 2000). The
flame brush location is determined, solving the so-called level set G-equation. To handle
partially premixed situations, the species mass balances are solved, but reaction rates are
expressed from the level-set function. The model is closed by a turbulent flame speed cor-
relation (Peters, 2000; Bradley et al., 1992b; Bray, 1990; Zimont, 2000; Goulier, 2015). A
comparison between this two different approaches is made in this chapter.

The chapter is structured as follows. First, the experimental set-up of Wen et al. (2013)
is described in Section 6.2. Then, two-dimensional simulations are presented using the LES
approach in Section 6.3. The purpose of these simulations is twofold: first, the model pa-
rameters are adjusted for the three-dimensional computations more expensive in terms of
CPU time, second they allow at a moderate cost to investigate several parameters such as
the impact of the obstacle location, the thickening factor, the dynamic computation of the
wrinkling factor, the Mouriaux et al. (2016) correction... Afterward, three-dimensional sim-
ulations have been carried out on the most turbulent configuration. The numerical results
are described in Section 6.4. Finally, after a description of the combustion model used for
the RANS approach, a comparison between RANS and LES numerical results on the most
turbulent obstacle configuration is presented in Section 6.6.

6.2 Experimental set-up
The experimental configurations investigated by Wen et al. (2013) are chosen for the numer-
ical simulations. The combustion chamber has a 150 mm square cross section and a height
of 500 mm. The bottom of the chamber is closed whereas the top is an open-end, which is
sealed at first with a thin polyvinyl chloride membrane to contain the premixed flammable
mixture before ignition. The facility is plotted in Fig. 6.1.

When deflagration occurs, the membrane is ruptured allowing unburnt and burnt mixtures
to escape. The chamber is equipped with three obstacles of 75 mm length, 150 mm width and
10 mm height, designated by S1, S2 and S3 in Fig. 6.1. The first one is located at 100 mm
from the bottom of the facility. The vertical distance between each obstacle is 100 mm. Three
configurations with different transverse obstacle locations are studied here (see Fig. 6.1). For
the first one, the obstacles are placed at the center of the chamber. In the second one, they
are all on one side of the chamber and in the third configuration, obstacles are staggered on
both sides of the chamber.

The explosive atmosphere is a stoichiometric methane-air mixture at initial ambient pres-
sure and temperature. Initially, the fluid is assumed to be at rest in the device. The ignition
point is located at the bottom of the facility (see Fig. 6.1).

Overpressure is detected with a pressure transmitter at the bottom of the chamber next
to the ignition location. This sensor has a saving frequency of 5 kHz with a range of 0−1 bar
and a total error of 0.25 %. The experimental overpressure curves are obtained by repeating
the same experience several times and then, the profiles are time shifted in order to coincide
the overpressure peak moments. Afterwards, the profiles are averaged to alleviate any impact
of external uncertainties.
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A high-speed digital camera allowing to have high resolution images (2000 images per
second) is used to visualize the flame front and its turbulent structures. In addition, the
experimental flame front position is obtained thanks to these images of the flame front. Ex-
perimental data on flame front velocity are available, but the experimental speed computation
method has not been detailed by the authors. Thus, the experimental flame front velocity
data are not used for the comparison with numerical results.

Figure 6.1: Experimental set-up.

6.3 LES numerical results: two-dimensional simulations
The numerical set-up and the simulation results obtained with the CALIF3S - P2REMICS
software with the LES approach in the two-dimensional domain are presented in this section.

6.3.1 Numerical set-up for a two-dimensional domain

The longitudinal plan (x, y) is simulated in order to perform at first, two-dimensional sim-
ulations. The computational domain is shown in Fig. 6.2 for the three configurations of
obstacles. The computational domain is extended outside the combustion chamber (the at-
mospheric zone is framed by a red rectangle at the top right of Fig. 6.2) in order to push
further away the outlet boundary condition at the chamber end, reducing pressure waves
reflection on the boundary generated by the deflagration, and to allow a more realistic re-
production of the gas expansion exiting from the combustion chamber into the atmosphere.
The mesh is composed by a non-uniform structured grid with rectangular cells. Inside the
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chamber, the mesh size ∆x is kept constant (as seen on the zoom in around the obstacle at
the bottom left of Fig. 6.2). In the atmospheric zone, two separate regions are distinguished,
right after the chamber exit (y = 500 mm), the green rectangular surface shown in Fig. 6.2
has the same mesh size like inside the chamber (y < 500 mm). The second zone, which is the
rest of the atmospheric zone, the mesh size increases linearly along the y and x axis in the
atmospheric zone (y > 500 mm) until having a mesh size 20 times larger than ∆x allowing
to reduce significantly the number of cells.

Figure 6.2: Two-dimensional mesh grid of the three configurations of Wen et al. (2013) (top)
and zoom on the grid around an obstacle (bottom). ( ): zoom in; ( ): fine meshes in the
atmospheric zone.

Adiabatic and no-slip wall boundary conditions were applied at the solid interfaces (cham-
ber and obstacle walls). A free outlet condition is enforced at the atmospheric zone boundaries
where the pressure is maintained at pext = 101325 Pa.

The chemistry is simply described with a one step global reaction which reads for a
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methane/air mixture at stochiometric conditions:

CH4 + 2 (O2 + 3.76N2) −→ CO2 + 2H2O + 7.52N2. (6.1)

The reaction rate is computed with the Arrhenius law described in expression (4.10). The
pre-exponential coefficient is A = 6 105 uSI and the activation energy is Ea = 8.3 104 J.mol−1.

The ignition is made with an initial flame kernel radius r = rc, r being the distance
between the flame front and the ignition point. The fuel mass fraction and the temperature
are initialized with the following expression:

φ0 =
1

2

[
1 + erf

(
4

Fδ0
L

(r − rc)
)]

(φb − φu) (6.2)

where φ stands for the fuel mass fraction or the temperature and the subscripts b and u
denotes respectively the burnt and the fresh mixture. Such initialization has the advantage
of avoiding any complex ignition scheme and directly set the flame front to a thickness F δ0

L,
with F the thickening factor and δ0

L the laminar flame thickness. The initial kernel radius rc
value has been investigated, a too small radius does not allow the explosion ignition, in the
other hand, a too large radius would influence the flow dynamics (Volpiani, 2017). The initial
kernel radius value is set at the minimum kernel radius allowing ignition of the explosion:
rc = 8 mm. The fluid is assumed to be at rest in the facility.

The thickening factor F is calculated as a function of the laminar flame thickness δ0
L and

the space step ∆x such as F = n∆x/δ
0
L, with n the number of cells needed to resolve the flame

front. For a stochiometric methane/air flame at atmospheric conditions, like those studied
here, δ0

L ≈ 0.42 mm (Quillatre, 2014). The wrinkling factor is modeled using Veynante and
Moureau (2015) expression with Mouriaux et al. (2016) correction, briefly reminded here:

Ξ∆ =

(
∆

δc

)β
, (6.3)

with ∆ the combustion filter size, δc the inner cut-off length size. The wrinkling factor
exponent β then is expressed by:

β =
log
(

Σ1/Σ2

)
log (γ)

. (6.4)

with γ =

√
1 +

(︷︸︸︷
∆ /∆

)2,
︷︸︸︷
∆ being the test-filter size corresponding to a Gaussian filter

(details on the implementation are given in Chapter 4 Appendix 4.C), and

Σ1 = 〈
︷ ︸︸ ︷
|∇c̃| 〉 (6.5)

Σ2 = 〈 (1− ζ̂)|
︷ ︸︸ ︷
∇c̃ |+ ζ̂

︷ ︸︸ ︷
|∇c̃|n ·N 〉. (6.6)

where c is the progress variable given by (4.28) and ζ the sensor which allows to detect flame
front interactions and given by (4.33). To compute the wrinkling factor exponent, needs
to set some parameters. The combustion filter size is set to ∆ = 1.4F δ0

L. The test filter

width is set to
︷︸︸︷
∆ = 1.5 ∆, whereas the size of the Gaussian filter which replace the averaged
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operator 〈·〉 is set to ∆avg = 3 ∆. The inner cut-off length scale is set at δc = 2 δ0
L for all

the simulations. The resolved flame surface fractal behavior is inspected in Appendix 6.A in
order to validate the test-filter size.

The wrinkling factor Ξ∆ is computed dynamically at a fixed frequency in order to save
computational costs linked to the filtering operations. Indeed, the numerical time step is
based on the acoustic Courant-Friedrichs-Lewy (CFL) condition while the model parameter
is expected to evolve with convective times. Therefore, the dynamic procedure is not applied
at every time step. A simple analysis that computes the flame convective times shows that
updating the model parameter every 150 time steps is enough for capturing the subgrid scale
motions. More frequent updates do not change the results significantly. The computation
duration is considerably reduced. For example, LES 3 (see Table 6.1 below) computing
duration was about 13 hours and 12 minutes over 180 cores with a total of 1 hour and 3
minutes only for the wrinkling factor computation and the filtering operations (approximately
7.95% of the computing time).

The time step is selected to have an acoustic Courant-Friedrichs-Lewy condition CFL =
0.1 for all the simulations.

Several simulations are performed by varying the thickening factor value and the number
of points used to describe the flame front. A numerical simulation with a constant wrinkling
factor exponent β (LES 4) and another (LES 5) without the Mouriaux et al. (2016) correction
of β for front/wall interactions and flame fronts interactions (expression (2.61)) are also made.
Table 6.1 summarizes up all two-dimensional simulations.

Name Configuration F n
∆x Number

β
β

in the chamber of cells correction

LES 1 1 6 6 0.4 mm 643 819 dynamic yes

LES 2 2 6 6 0.4 mm 643 819 dynamic yes

LES 3 3 6 6 0.4 mm 643 819 dynamic yes

LES 4 3 6 6 0.4 mm 643 819 0.33 yes

LES 5 3 6 6 0.4 mm 643 819 dynamic no

LES 6 3 6 5 0.48 mm 447 374 dynamic yes

LES 7 3 6 10 0.24 mm 1 791 554 dynamic yes

LES 8 3 9 10 0.36 mm 796 066 dynamic yes

LES 9 3 12 10 0.48 mm 447 374 dynamic yes

Table 6.1: List of two-dimensional simulations.

A backward time shift for each simulation is applied to numerical results to match the
experimental overpressure peak. This calibration is also common in experimental set-ups
as the ignition duration may vary between each run due to external parameters (ambient
temperature, pressure, variation in spark energy, ...).
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6.3.2 Impact of obstacles location

First, the impact of the obstacles location on the flame front propagation is studied. The
simulations performed are reminded in Table 6.2.

Name Configuration F n
∆x Number

β
β

in the chamber of cells correction

LES 1 1 6 6 0.4 mm 643 819 dynamic yes

LES 2 2 6 6 0.4 mm 643 819 dynamic yes

LES 3 3 6 6 0.4 mm 643 819 dynamic yes

Table 6.2: Numerical parameters of LES 1, 2 and 3.

Flame front structure

The numerical flame shapes for the three configurations are compared to the experimental
high-speed images (Wen et al., 2013) and plotted in Fig. 6.3, 6.4 and 6.5 for configurations 1,
2 and 3 respectively. The (a) sub-figures of each figure show the temperature field with the
velocity vectors, the (b) sub-figures represent the flow vorticity layered by the heat release, to
superpose the heat release with the flow vorticity, only the results above a threshold value are
colored in red. The velocity vectors in the (a) sub-figures allow to show the flow accelerating
frame after frame. The large eddies are also seen thanks to the velocity vectors. The vorticity
is shown in blue in the (b) sub-figures visualising resolved turbulent motions.

The time shift applied at each simulation is equal to 12.4 ms, 7 ms, and 12.2 ms for LES
1, 2 and 3 respectively. The snapshots have been taken at the same (shifted) moments as
the experimental images.

Initially, the flame structure is similar for the three configurations. The flame is un-
wrinkled at the beginning and propagates slowly with a spherical shape (two first frames of
Fig. 6.3, Fig. 6.4 and Fig. 6.5). Turbulence is generated downstream the obstacles by the
thermal expansion of burnt gases. Moreover, in all configurations, small turbulent motions
appear right above the obstacles even before the flame front reaches the first obstacle (for
instance, see the third frame of 6.3b). These downstream eddies contribute in the flame front
acceleration when the flame front reaches them. For configurations 2 and 3, the time needed
for the flame to reach the first obstacle is about 27 ms, which is less than for configuration
1 (≈ 30 ms). Before the flame arrives to the first obstacle, the flame front structure differs
from one configuration to the other. The front flattens off slightly for the first configuration
(Fig. 6.3). Then, two fronts are observed for configuration 1 (on both sides of the obstacles)
whereas only one front is observed for the other two set-ups. In configurations 2 (Fig. 6.4)
and 3 (Fig. 6.5), the flame fronts gradually distort and tend to move towards the chamber
open-end (second frame of the upper sub-figures).

The flame accelerates due to turbulence generated by the obstructions, the flame is faster
in configurations 1 and 3 compared to configuration 2. This is due to a higher level of
turbulence intensity as a result of the interactions of the flow with the obstacles as said by
Wen et al. (2013). The second configuration disposes of a large path on the right side without
obstacles where the flame front goes through. Due to this path, flame front interaction with
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turbulence is reduced, thus, the flame front accelerates less in this configuration. As shown
in Fig. 6.3, Fig. 6.4 and Fig. 6.5 the flame front structure becomes distorted and turbulent
and the flame surface increases.

Experimentally, the flame exits the chamber faster in configuration 1 (40.5 ms), even
though the flame propagates slowly in the initial stages (Wen et al., 2013). This result is
probably due to the fact that after passing the first obstacle a pair of symmetrical flames
develops (Fig. 6.3). In addition, a narrower section is available (between the side walls and
the obstacles) for the flame propagation, increasing the interaction between turbulence and
flame front. The flame surface is thus higher than those in the other two configurations and
may lead to a more significant increase in burning rate and thus flame speed. The slower
flame is obtained with the second configuration. The experimental flame exits the chamber
after 43.5 ms.

In all simulations, from the first frame to the third, the flame evolves without being
wrinkled by turbulence and stays smooth before transiting in a more turbulent regime. At
this stage, the numerical flame shapes are close to the experimental ones. Yet, the simulated
flames is delayed compared to the experimental flames at this stage. The simulated flame
fronts reach the first obstacle later than in the experiments for all configurations (as shown
in Fig. 6.3, Fig. 6.4 and Fig. 6.5). This inaccuracy in the flame velocity in the early stages
of the experiment is not surprising. Indeed, no ignition model is used for all simulated cases.
Igniting with an initial volume of burnt gases and a flow at rest is not physical leading to this
kind of delays. In addition, a mass of burnt gases is initially present in order to allow the
deflagration ignition whereas the flow is at rest. In the experiment, the ignition point is very
small. When the experimental flame kernel reaches the size of the simulated initial flame
kernel, the flow in the whole chamber is already in movement. This explains the mismatch
between the experiment and the simulation. However, the simulated flames seem to catch
up the experimental ones by accelerating more than the experiment between the first and
second obstacle. After the second obstacle until the end, the simulated flames matches well
the experimental images.
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(a) Snapshots of the temperature field and velocity vectors of LES 1

(b) Snapshots of the heat release and the flow vorticity of LES 1

(c) Sequential images

Figure 6.3: Snapshots of (a): temperature with velocity fields; (b): heat release and vorticity
fields and experimental images (c) showing deflagration flame propagation in configuration
1 from Wen et al. (2013).
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(a) Snapshots of the temperature field and velocity vectors of LES 2

(b) Snapshots of the heat release and the flow vorticity of LES 2

(c) Sequential images

Figure 6.4: Snapshots of (a): temperature with velocity fields; (b): heat release and vorticity
fields and experimental images (c) showing deflagration flame propagation in configuration
2 from Wen et al. (2013).
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(a) Snapshots of the temperature field and velocity vectors of LES 3

(b) Snapshots of the heat release and the flow vorticity of LES 3

(c) Sequential images

Figure 6.5: Snapshots of (a): temperature with velocity fields; (b): heat release and vorticity
fields and experimental images (c) showing deflagration flame propagation in configuration
3 from Wen et al. (2013). 167



Flame front position and speed

Figure 6.6: Flame front position for all configurations. ( ): LES 1; ( ): LES 2; ( ):
LES 3; (l): experimental data of configuration 1; (l): experimental data of configuration 2;
(l): experimental data of configuration 3; ( ): obstacles locations.

The flame front positions obtained with LES 1, 2 and 3 (thus for configurations 1, 2 and 3)
are compared to the experimental data for all configurations in Fig. 6.6 (Wen et al., 2013)
(the available experimental data of the flame front position starts only from 20 ms). The
location is measured as the maximum downstream distance of the flame front. Fig. 6.7
represents the flame front velocity (derivation of the simulated flame front position). The
experimental velocity is not represented along the simulation results as the experimental
speed computation method has not been detailed by the authors Wen et al. (2013).

Before the first obstacle, flame positions increase linearly through time. The numerical
slopes are close to the experimental ones, showing that the TFLES model is able to reproduce
the laminar to turbulent transition. After the first obstacle, the slopes of the curves become
steeper, thus the flames continue to accelerate throughout the chamber. For all configura-
tions, the numerical slopes are steeper in the region located between the first and the second
obstacles than experimental ones. The flame is thus slightly faster in this region than in the
experiment.

As shown in Fig. 6.7, the three simulations predict a similar flame front speed before the
first obstacle (even if the flame speed of LES 1 is slightly slower than those computed by
LES 2 and LES 3). After then the flame speeds increase. LES 2 and 3 have similar flame
speeds until y ≈ 180 mm (the same observation is made in Fig. 6.6 where LES 2 and 3 flame
front position profiles overlap). Between the first and the second obstacles, the flame speed
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predicted by LES 1 in Fig. 6.7 (as well as the numerical slope reported on Fig. 6.6) is higher
(respectively steeper) than those computed by LES 2 and LES 3. Afterwards, LES 3 flame
front speed accelerates more than LES 1 flame front, allowing the flame front position of LES
3 to catch up with LES 1 flame front position (as shown in Fig. 6.6).

The flame front propagation in the second configuration is slower than the others, which
can be explained by a weaker turbulence intensity as explained by Wen et al. (2013). More-
over, as explained earlier, the second configuration disposes of a large path on the right side
without obstacles where the flame front goes through. Due to this path, flame front interac-
tion with turbulence is reduced, thus, the flame front accelerates less in this configuration.

Figure 6.7: Flame front speed for all configurations. ( ): LES 1; ( ): LES 2; ( ): LES
3 and ( ): obstacles locations.

Overpressure dynamics

A particular interest is given to the overpressure prediction as the overpressure peak is repre-
sentative of the damages resulting from an explosion. In Fig. 6.8, the simulated overpressure
time evolutions are compared to the experimental data for configurations 1, 2 and 3 (Wen
et al., 2013).

The experimental overpressure profiles show a first peak in all configurations at 28 ms cor-
responding to the sealing film disintegration at the end of the chamber and it is not recovered
in the simulations. The major peak occurs at 39.7 ms, 41.5 ms and 41.1 ms for configurations
1, 2 and 3 respectively. The overpressure peak amplitudes are around 124 mbar, 69 mbar,
and 183 mbar for configurations 1, 2 and 3 respectively.

169



Figure 6.8: Overpressure evolution for all configurations. ( ): LES 1; ( ): LES 2; ( ):
LES 3. ( � ) experimental data of configuration 1. ( � ) experimental data of configuration
2. ( 	 ) experimental data of configuration 3.

For configuration 1, the major overpressure peak corresponds experimentally to the time
when the flame front reconnects after crossing the last obstacle (Wen et al., 2013). For
configuration 2, it occurs experimentally when the flame front is located between the last
obstacle and the chamber exit. The experimental overpressure of configuration 3 occurs when
the flame exits the chamber due to a more significant turbulent flow condition induced by
the staggered obstacles as explained by Wen et al. (2013). The overpressure peak reached is
indeed higher than those of configurations 1 and 2.

The inability of simulating the sealing film holding back the inflammable gases generates
difficulties to compare the simulated and experimental overpressure profiles when the sealing
breaks (before the major peak).

The major experimental and simulated peaks happen at the same time since the simulated
peaks are time shifted to match the experiments.

LES results show that the major peak, for configurations 1 and 2, occurs when the flame
front tips are located between the last obstacle and the chamber exit (in accordance with
experiments). The overpressure peaks amplitude are 123.6 mbar and 78.3 mbar for the first
and the second configurations respectively.

The simulated overpressure evolution for configuration 3 is similar to those reported for
configurations 1 and 2 but the peak happens right after the flame front tip exits the chamber
(the flame exits the chamber approximately at 40.8 ms, whereas the peak occurs at 41.1 ms).
Also, LES 3 has a higher peak amplitude of 204.8 mbar. This may be due to the more
significantly turbulent flow condition induced by the staggered obstacles.
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Numerically, the overpressure peaks match quite well for both first and second configura-
tions. The overpressure peak for LES 3 is less accurate (11% higher than the experimental
peak), but it stays quite close to the experimental data.

Small fluctuations are observed in LES. These fluctuations are due to the pressure waves
reflections on the walls and on the obstructions. As explained in the experimental set-up
section, the experimental overpressure curves are obtained by repeating the same experience
several times and then averaging the profiles. The fluctuations observed in the simulations
are not present in the experimental results probably due to this averaging process and also
because the fluctuations may be smaller than the sensor uncertainties. One should keep in
mind that these fluctuations may also be present in the simulation and not in the experiment
because the simulation has a two-dimensional domain.

In LES 1, a smaller first peak is observed at 39.5 ms, before the major peak at 39.7 ms.
When comparing the overpressure profile to the snapshots in Fig. 6.3a, the flame front splits
at the left and right of the obstacles, the flame is not perfectly symmetrical which may lead
to this type of small peak delays.

Figure 6.9: Instantaneous pressure fields layered by the heat release at three consecutive
moments for LES 2.

Another observed phenomena in the simulation of configuration 2 is the small peak of
pressure at t = 33.7 ms. This peak occurs when the flame front is located just before the
second obstacle. It may be due to the beginning of the flame acceleration (change of slope
between the first and the second obstacle in Fig. 6.6) or to numerical issues. The pressure
field layered with the heat release is observed in Fig. 6.9 for three consecutive moments.
These three snapshots are taken at the moment when the perturbation in the overpressure
field occurs. The snapshots shows that a pocket of fresh gases got trapped in the burnt
gases. The fresh gases have been consumed, thus pressure waves have been generated at this
location and propagate until the sensor leading to the small pressure peak.
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The pressure decrease after the first peak may be due to numerical reasons. Further
investigations on the outlet boundary conditions which reflects the pressure waves should be
done.

The numerical overpressure profile of LES 3 shows a first small peak at 39.6 ms while the
flame front tip is located between the last obstacle and the chamber exit. Right after this
small peak, the pressure in the chamber increases quickly until the major peak at 41.1 ms.
One reason of this latest peak may be the fact that while the flame expends, the flame seems
to obstruct the flow next to the obstacles creating the effect of a plug at y = 100 mm. After
then, the flame exits and a consequent amount of burnt gases is evacuated, the pressure drops
in the whole chamber leading to the decrease of the overpressure profile.

The flame front tip position through time gives an information on the global dynamics
downstream of the reactive flow. Indeed, small perturbations in the flame such as the one
observed in configuration 2 do not impact the overall flow dynamics. In order to have a global
overview, the heat release has been integrated over the chamber and discussed hereafter.

Heat release

Figure 6.10: Heat release for all configurations. ( ): LES 1; ( ): LES 2; ( ): LES 3;
( ): obstacles positions.

The heat release ω̇T (expression (4.13)) is integrated over the chamber volume and plotted
in function of the flame front tip position for the three configurations in Fig. 6.10. As the
flame propagates, the flame front surface increases (shown later in Fig. 6.13) leading to an
increasing reaction rate and thus an increasing heat release in the chamber. LES 1 has a
more important heat release after the second obstacle. This may be explained by the double
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front on each side of the obstacles allowing the flame to cover more surface and thus, leading
to higher values of the integrated over the chamber heat release. However, LES 3 heat release
catches up with LES 1 while approaching the chamber exit. This is also seen on the total
flame surface discussed later in this section.

Here, the numerical perturbation observed on the pressure for the second configuration
is also seen in the heat release right before the second obstacle. A small peak is noticeable
which corresponds to the reaction rate increase while the pocket of fresh gases is consumed
as represented in Fig. 6.9. A further study with a thinner mesh or a computation on a three
dimensional domain should be done.

Wrinkling factor exponent

The statistical quantity βavg defined as:

βavg =

∫
Vf
β dV∫

Vf
dV

, (6.7)

is the spatially averaged β parameter over the flame volume Vf defined such as: 0.05 < c̃ <
0.95. Such statistical tool provides an overall idea of the evolution of the wrinkling factor
exponent through time.

Figure 6.11: Plot of βavg as a function of the front position for the three configurations. ( ):
LES 1; ( ): LES 2; ( ): LES 3; ( ): obstacles positions.

Fig. 6.11 shows the statistical quantity βavg as a function of the flame front tip positions,
for the three configurations.
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Wang et al. (2012) have shown that the wrinkling factor exponent is not null for a spherical
laminar kernel even though the flame is not wrinkled at early stages. The wrinkling factor
exponent is in the range of 10−2 (negligible impact on the fluid dynamics) which explains the
small offset at the early stages in Fig. 6.11.

As shown in Fig. 6.7, the flame front in the first configuration has a more important
acceleration between the first and the third obstacles than the two other configurations. This
may be explained by a more important turbulent intensity which would explain higher values
of βavg in this zone as shown in Fig. 6.11.

After the third obstacle, the turbulent intensity increases significantly for LES 3 leading
to higher values of βavg. The flame front tip in LES 2 is the slowest among the three
configurations with the lowest turbulent intensity, thus, βavg amplitude is the least important.

Figure 6.12: Zoom in of a screenshot of LES 3 representing the local wrinkling factor exponent
and the flame contour at 35.8 ms. (Blue color map): wrinkling factor exponent and ( ):
flame contour such as c̃ = 0.5.

One should keep in mind that in our situation, at a given time, the wrinkling factor
exponent is a space variable and is not uniform in the whole domain. More precisely, in
Fig. 6.12 where the instantaneous local wrinkling factor exponent field and the flame contour
at 35.8 ms is represented, the flame is almost not wrinkled from the bottom of the chamber
to the first obstacle. Even after the first obstacle, the right side of the flame front is not
wrinkled and the β parameter is null. However, there are local values of the β parameter
reaching 0.45. Therefore averaging the β parameter over the whole flame would lower its
value as β is close to zero in the non wrinkled parts of the flame. This observation is also
pointed out on the three-dimensional simulation presented later in this chapter.
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Flame surfaces

For LES, a way to observe the subgrid scale model effects is to plot the resolved flame surface
Sr(t) and the total flame surface St(t) (Veynante and Vervisch, 2002) which are defined as
follows:

Sr(t) =

∫
V
|∇c̃| dV , St(t) =

∫
V

Ξ∆ |∇c̃| dV (6.8)

with V the computational volume.

The resolved and total flame surfaces for the three configurations as a function of the
flame front tip positions are reported in Fig. 6.13. Before the flame front reaches the first
obstacle, the flame is not wrinkled yet by turbulence, thus Ξ∆ ≈ 1, total and resolved flame
surface profiles match. Afterwards, turbulence wrinkles the flame front and the wrinkling
factor increases to take into account the non-resolved flame surface, leading to a higher value
of the total flame surface.

The resolved flame surface of LES 1 is higher than the two other simulated flame surfaces.
This is due to the fact that the obstacles in configuration 1 creates two different fronts.
Therefore, the flame surface in configuration 1 is more important than the two others as
represented in Fig. 6.13. The fact that the total flame surface of LES 1 is mostly superior
to the two other flame surfaces explains why LES 1 reaches the chamber exit faster than the
two other simulations as shown in Fig. 6.6.

Figure 6.13: Resolved flame surface and total flame surface of LES 1, 2 and 3. ( ): resolved
flame surface of LES 1; ( ): resolved flame surface of LES 2; ( ): resolved flame surface
of LES 3; ( ): total flame surface of LES 1; ( ): total flame surface of LES 2;( ): total
flame surface of LES 3; ( ): obstacles locations.
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The resolved and the total surfaces for configuration 2 are close until the flame reaches
400 mm (between the third obstacle and the chamber exit). At this stage of the transient, β
increases more quickly (see Fig. 6.11) and the total flame surface rises. LES 2 has globally an
inferior total flame surface compared to the two others (except between the second and third
obstacles) and it is the slowest case. This may be explained by a lower turbulent intensity
leading to a less important flame front acceleration and thus, a slower flame front of LES 2
as shown in Fig. 6.6.

Regarding configuration 3, the difference between total and resolved flame surfaces quickly
increases after the third obstacle. This is due to a more important turbulent intensity im-
pacting directly the wrinkling factor and thus, increasing the total flame surface. The same
behavior can be observed for the wrinkling factor exponent in Fig. 6.11. Despite the fact
that the total flame surface of configurations 1 and 3 are similar at the end, the resolved
flame surface of configuration 1 is almost twice superior than configuration 3 due to the
double front on each side of the chamber in configuration 1. Therefore the wrinkling is more
important in configuration 3 than configuration 1 (as shown in Fig. 6.11).

6.3.3 Impact of the number of grid points in the flame front

The purpose in this section is to analyse the influence of the mesh resolution on the numerical
results. The most turbulent configuration of obstacles is chosen. Three simulations of the
third configuration are compared (listed up in Table 6.3) with different number of grid points
in the flame fronts and thus different mesh sizes. We recall that the number of points in the
flame front is a function of the mesh size ∆x, the thickening factor F and the laminar flame
thickness δ0

L such as n = Fδ0
L/∆x. The value of F is fixed at F = 6 (i.e. the resolved flame

thickness is the same in the three simulations), the number of grid points in the front has
been changed in three different simulations leading to compare LES 3, 6 and 7 where n = 5,
6 and 10 respectively.

Name Configuration F n
∆x Number

β
β

in the chamber of cells correction

LES 3 3 6 6 0.4 mm 643 819 dynamic yes

LES 6 3 6 5 0.48 mm 447 374 dynamic yes

LES 7 3 6 10 0.24 mm 1 791 554 dynamic yes

Table 6.3: Numerical parameters of LES 3, 6 and 7.

Fig. 6.14 shows the resolved and total flame surface of LES 3, 6 and 7. The three simula-
tions have approximately the same resolved and total flame surface even if LES 7 is slightly
above the two others. The difference between resolved and total flame surface represents
the wrinkling factor contribution. Therefore, the wrinkling factors behave approximately the
same for the three cases. The test-filter size and the inner cut-off length scale are the same
for each simulation as the F factor is kept constant. Therefore, expressions (6.3) and (6.4)
are the same for each case, meaning that the model exponent β behaves almost similarly in
each simulation (as shown also in Fig. 6.15) and is only dependent of the fluid flow behavior.
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Figure 6.14: Resolved flame surface and total flame surface for LES 3, 6 and 7. ( ): resolved
flame surface of LES 3; ( ): total flame surface of LES 3; ( ): resolved flame surface of
LES 6; ( ): total flame surface of LES 6; ( ): resolved flame surface of LES 7; ( ):
total flame surface of LES 7 and ( ): obstacles locations.

Figure 6.15: Plot of βavg as a function of the front position for LES 3, 6 and 7. ( ): LES
3; ( ): LES 6; ( ): LES 7 and ( ): obstacles locations.

177



The overpressure evolution is shown in Fig. 6.16 where the same time shift is applied to the
three simulations. The overpressure peak occurs approximately at the same moment for all
these simulations. The peak amplitudes are fairly close even if the case with n = 10 is slightly
closer to the experimental data. In addition, it has the ability to capture smaller fluctuations
as the mesh grid is finer. Leading to the bump seen at t = 37 ms which corresponds to the
moment when the flame front tip reaches the last obstacle. Globally, the results are quite
close even if the number of mesh grid in the chamber is more important in LES 7 compared
to LES 6. However, LES 3 with n = 6 is kept as the reference case for the rest of the
two-dimensional simulations as the overpressure and wrinkling evolutions match well LES 7.
In addition, the computing time stays acceptable for LES 3. Indeed, the computing time on
one processor is estimated at approximately 99 days for LES 3, 191 days for LES 6 and 537
days for LES 7.

Figure 6.16: Overpressure evolution of LES 3, 6 and 7. ( ): LES 3; ( ): LES 6; ( ):
LES 7 and (�): experimental data of configuration 3.

6.3.4 Impact of the thickening factor F
The simulations presented here have different thickening factors keeping the same number of
grid points in the front. The aim is to analyse the impact of the F factor on the numerical
results. The simulations presented here (LES 8 and LES 9) have a thickening factor of F = 9
and F = 12 respectively with the same number of grid points: n = 10 (summarized up in
Table 6.4). The results are compared to the case LES 7 presented above.
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Name Configuration F n
∆x Number

β
β

in the chamber of cells correction

LES 7 3 6 10 0.24 mm 1 791 554 dynamic yes

LES 8 3 9 10 0.36 mm 796 066 dynamic yes

LES 9 3 12 10 0.48 mm 447 374 dynamic yes

Table 6.4: Numerical parameters of LES 7, 8 and 9.

The resolved flame surfaces change with the variation of the thickening factor as shown in
Fig. 6.17. Increasing the flame thickness ultimately reduces the resolved flame surface becom-
ing less sensitive to turbulent motions. Therefore the wrinkling factor exponent decreases (as
shown in Fig. 6.18 which represents the spatially averaged wrinkling factor exponent βavg).

However, the total flame surface is well conserved (i.e. the total flame surface of LES 7, 8
and 9 are quite similar as shown in Fig. 6.17). Because the combustion filter size ∆ entering
in Ξ∆ (expression (6.3)) increases linearly with F . Therefore the loss of resolved flame surface
when increasing F is compensated by the subgrid scale model evidencing its robustness.

Figure 6.17: Resolved flame surface and total flame surface for LES 7, 8 and 9. ( ): resolved
flame surface of LES 7; ( ): total flame surface of LES 7; ( ): resolved flame surface of
LES 8; ( ): total flame surface of LES 8; ( ): resolved flame surface of LES 9; ( ):
total flame surface of LES 9 and ( ): obstacles locations.
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Figure 6.18: Plot of βavg as a function of the front position for LES 7, 8 and 9. ( ): LES
7; ( ): LES 8; ( ): LES 9 and ( ): obstacles locations.

Figure 6.19: Overpressure evolution of LES 7 and LES 8 and 9. ( ): LES 7; ( ): LES 8;
( ): LES 9 and (�): Experimental data of configuration 3.
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The overpressure evolution is represented in Fig. 6.19. The profiles are quite similar for
the three simulations, reaching almost the same amplitude peak.

Even if LES 9 gives good results, to avoid too thick flame fronts and allow a more precise
description of turbulence, LES 3 is kept as reference for further studies.

6.3.5 Constant vs dynamic wrinkling factor exponent β

Here, the need of a dynamical model for the wrinkling factor exponent is highlighted by
confronting LES 3 and LES 4 (detailed in Table 6.5) in which the β exponent is set at
0.33 for the whole domain and through time corresponding to a turbulent flow value. The
thickening factor is set at F = 6 and the number of cells in the flame front at n = 6.

Name Configuration F n
∆x Number

β
β

in the chamber of cells correction

LES 3 3 6 6 0.4 mm 643 819 dynamic yes

LES 4 3 6 6 0.4 mm 643 819 0.33 yes

Table 6.5: Numerical parameters of LES 3 and 4.

The resolved and total flame surface for LES 3 and 4 are plotted in Fig. 6.20. For LES 4,
the total flame surface is globally superior than the resolved flame surface even before reaching
the first obstacle (during the laminar phase where unitary wrinkling factor is expected). This
results in a wrong estimation of the flame front tip position as shown in Fig. 6.21 where both
plots have the same time shift (12.2 ms) to highlight the flame front velocity of LES 4. The
flame front speed (shown in Fig. 6.22) is overestimated for LES 4 from the beginning leading
to a completely wrong result for the flame front position. Indeed, the flame surface being too
important from the start, the flame front propagation is too fast.

Setting a lower value for the β parameter in order to connect with the laminar phase
would only underestimate the flame surface, speed and position in the fully turbulent zones
(after the third obstacle).

The overpressure evolution for the two simulations is plotted in Fig. 6.23 where once
again, the same time shift is used for both simulations. The overpressure peak is largely
overestimated for LES 4 due to the flame speed overestimation.

A dynamical model for the wrinkling factor is necessary for reproducing transiting phe-
nomena such as explosions.
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Figure 6.20: Resolved flame surface and total flame surface for LES 3 and 4. ( ): total
flame surface of LES 3; ( ): resolved flame surface of LES 3; ( ): total flame surface of
LES 4; ( ): resolved flame surface of LES 4; ( ): obstacles locations.

Figure 6.21: Flame front position for LES 3 and 4. ( ): LES 3; ( ): LES 4; (l):
experimental data of configuration 3 and ( ): obstacles positions.
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Figure 6.22: Flame front spreed for LES 3 and 4. ( ): LES 3; ( ): LES 4 and ( ):
obstacles locations.

Figure 6.23: Overpressure evolution of LES 3 and LES 4. ( ): LES 3; ( ): LES 4 and
(S): experimental data of configuration 3.
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6.3.6 Wrinkling factor exponent correction (Mouriaux et al., 2016)

Flame fronts interactions generate nonphysical values of the wrinkling factor exponent.
Mouriaux et al. (2016) have developed a correction to the β exponent as presented in Chapter
2 Section 2.4.6. Here, the effects of this correction are investigated by confronting LES 3 and
LES 5 simulations (described in Table 6.6).

Name Configuration F n
∆x Number

β
β

in the chamber of cells correction

LES 3 3 6 6 0.4 mm 643 819 dynamic yes

LES 5 3 6 6 0.4 mm 643 819 dynamic no

Table 6.6: Numerical parameters of LES 3 and 5.

The instantaneous field of the β parameter superposed with the flame contour (c̃ = 0.5) of
LES 3 is represented in the right part of Fig. 6.24 at t = 37.8 ms. Starting from the numerical
results obtained with LES 3 simulation at t = 37.8 ms, the simulation was rerun for one
iteration but without the Mouriaux et al. (2016) wrinkling factor exponent correction. The
instantaneous field of the β parameter superposed with the flame contour (c̃ = 0.5) obtained
with this procedure is plotted on the left part of Fig. 6.24. The purpose is to show the impact
of the Mouriaux et al. (2016) winkling factor exponent correction on the β parameter in case
of flame fronts interaction.

First, we can notice that the more the flame is wrinkled (i.e. the more the turbulence is
high), the more the β parameter takes high values. Above the first obstacle, the wrinkled
flame curls until the flame front (marked by the green number "1") reconnects to itself
(marked by the green number "2"). Moreover, the distance between the two fronts is smaller
than the effective filter size, leading to front interactions. The maximum value reached by β
without Mouriaux et al. (2016) correction is approximately 1.6 (left side of Fig. 6.24) whereas
it is approximately 0.65 (right side of Fig. 6.24) with Mouriaux et al. (2016) correction. Even
with the front interactions correction, fronts still reconnect, however, the sudden increase of
the β parameter does not happen allowing to suppress the nonphysical results.

Fig. 6.25 compares LES 3 and 5 overpressure profiles. The overestimation of the wrinkling
factor exponent leads to an overestimation of the total flame surface and may conduct to
an over acceleration of the flame front. In our cases, these sudden nonphysical β parameter
increase are local and last a brief moment but explains the pressure rise compared to LES 3.
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Figure 6.24: Zoom in of a screenshot representing the wrinkling factor exponent with (right
side) and without (left side) Mouriaux et al. (2016) winkling factor exponent correction and
the flame contour at 37.8 ms. (Blue color map): wrinkling factor exponent and ( ): flame
contour such as c̃ = 0.5.

Figure 6.25: Overpressure evolution for configuration 3 without the Mouriaux correction.
( ): LES 3; (S): experimental data of configuration 3; ( ): LES 5.
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6.4 LES numerical results: three-dimensional simulations
Based on the two-dimensional simulations made previously, configuration 3 of Wen et al.
(2013) has been simulated with a three-dimensional simulation presented hereafter.

6.4.1 Numerical set-up of the three-dimensional domain

Figure 6.26: 3D representation of configuration 3 with the added atmospheric zone (left side)
and its mesh grid (right side).

Figure 6.27: Front view of configuration 3 mesh grid.
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Likewise the two-dimensional simulations, the computational domain is extended outside
the combustion chamber (or atmospheric zone) in order to push further away the outlet
boundary condition at the chamber exit allowing a more realistic reproduction of the gas
expansion exiting from the combustion chamber into the atmosphere and reducing pressure
waves reflection generated by the deflagration on the boundary.

The mesh size is kept constant in the chamber before getting gradually expanded outside
the chamber as shown in Fig. 6.27, where the top corners of the atmospheric zone have less
cells. The atmospheric zone mesh grid is twenty time coarser on its boundaries (equivalent
to the mesh partition explained in Fig. 6.2).

Adiabatic and no-slip wall boundary conditions were applied at the solid interfaces (bot-
tom face, vertical faces of the chamber and obstacle faces). An outlet condition is enforced at
the boundaries of the atmospheric zone where the pressure is maintained at pext = 101325 Pa
Pa.

The chemistry is simply described with a one step global reaction which reads for a
methane/air mixture at stochiometric conditions:

CH4 + 2 (O2 + 3.76N2) −→ CO2 + 2H2O + 7.52N2. (6.9)

Likewise the two-dimensional flame simulated earlier in this chapter, the reaction rate is com-
puted with the Arrhenius law described in expression (4.10). The pre-exponential coefficient
is A = 6 105 uSI and the activation energy is Ea = 8.3 104 J.mol−1.

The ignition approach is identical to the one used for the two-dimensional simulations.
The simulation starts with a volume of burnt gases using expression (6.2) with rc = 8 mm.

The dynamical TFLES approach with the Mouriaux et al. (2016) correction for front
interactions is used for simulations (see Section 6.3.1). The thickening factor F is calculated
as a function of the laminar flame thickness δ0

L (δ0
L ≈ 0.42 mm Quillatre 2014) and the space

step ∆x such as F = n∆x/δ
0
L, with n the number of cells needed to resolve the flame front.

The F factor is set at 6 and 5 grid points are used for the flame front description leading
to a mesh size in the chamber of 0.48 mm and a total number of cells of 161 million. The
combustion filter size is set to ∆ = 1.4F δ0

L. The test-filter size is set for all simulations at︷︸︸︷
∆ = 1.5 ∆. The averaging filter operator needed in the expression of β is set at ∆avg = 3 ∆.
The inner cut-off length scale is set at δc = 2δ0

L. The wrinkling factor Ξ∆ is computed
dynamically at a fixed frequency (each 150 time steps).

The time step is computed in order to have an acoustic Courant-Friedrichs-Lewy condition
CFL = 0.1.

The three-dimensional simulation of configuration 3 has been performed on the supercom-
puter Topaze CCRT (2021) at the Research and Technology Computing Center (CCRT). The
CCRT is a high performance computing infrastructure at the CEA (French Commission for
Atomic Energy and Alternative Energies), hosting supercomputers. The CPU time is ap-
proximately 21 days on 2500 cores (about 260000 iterations for 31 ms simulated time).

A backward time shift is applied to numerical results in order to circumvent the lack of
description at the beginning of the simulation. This time shift is applied by superposing the
experimental and numerical overpressure peaks. This calibration is also common in exper-
imental set-ups as the ignition duration may vary between each repetition due to external
parameters (ambient temperature, pressure, ...). The time shift is here 11.4 ms.
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6.4.2 Numerical results

Flame front structure

The numerical flame shape for the third configuration is compared to the experimental high-
speed images (Wen et al., 2013) and plotted in Fig. 6.28. The instantaneous progress variable
contours (c̃ = 0.5) are represented in Fig. 6.28a. The snapshots have been taken at the same
(shifted) moments as the experiment.

(a) Snapshots of the resolved progress variable contour (c̃ = 0.5)

(b) Sequential images

Figure 6.28: Snapshots of the resolved progress variable contour (c̃ = 0.5) (a) and experi-
mental images (b) showing deflagration flame propagation in configuration 3 from Wen et al.
(2013).

From the first frame to the fourth, the flame evolves without being wrinkled by turbulence
and stays smooth before transiting in a more turbulent regime. The simulated flame seems to
be delayed beside the experimental one at this stage. In the simulation, no ignition model is
used. In addition, a mass of burnt gases is initially present in order to allow the deflagration
ignition whereas the flow is at rest. In the experiment, the ignition point is very small. When
the experimental flame kernel reaches the size of the simulated initial flame kernel, the flow
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in the whole chamber is already in movement. This explains the discrepancies between the
experiment and the simulation.

In the fifth frame, we can see that the flame front is getting wrinkled by flow vortices
located at the corner above the first obstacle. The tip of the front moves toward the next
obstacle in a less turbulent streamline leading to a smoother flame before getting wrinkled
again in the corner above the second obstacle as shown in the sixth frame. In the last frame,
the major part of the flame surface is wrinkled by turbulence.

The last frame in Fig. 6.28a seems to have no delay compared to the experimental flame,
probably due to the time shift. More details on the simulated flame front delay over the
experimental flame are given in the next subsection.

Flame front position and speed

Fig. 6.29 shows the flame front tip position as a function of time (time shifted according to the
overpressure peak). The flame front position is found by taking the position of the furthest
front from the chamber bottom. The flame front velocity is computed as the derivative
through time of the flame position and is plotted in Fig. 6.30.

Before the first obstacle, the flame position increases linearly through time matching a
quasi constant flame speed (as shown also in Fig. 6.30). Then, flow vortices appear behind
each obstacle, the flame becomes turbulent and the flame surface area increases.

Figure 6.29: Flame front position for LES 3D. ( ): LES 3D; ( ): obstacles locations and
(l): experimental data of Wen et al. (2013).
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Figure 6.30: Flame front speed for LES 3D. ( ): LES 3D and ( ): obstacles locations.

The flame continues to accelerate throughout the chamber (as shown also in Fig. 6.30).
The numerical slope seems steeper in the region between the first obstacle and the chamber
exit with respect to experimental data. The flame seems thus faster in this region. Unfortu-
nately, the flame velocity can not be compared to experimental data given that experimental
speed computation method has not been detailed by the authors Wen et al. (2013). This
phenomenon is more denoted after the third obstacle, the numerical flame accelerates more
than the experimental flame at the end catching up with the experimental flame front posi-
tion as shown in Fig. 6.29. In this region the flame front velocity reaches its maximum value,
which is almost 93m.s−1.

Numerical results are in good accordance with the experimental position. Due to the
ignition issues discussed previously, the simulation results slightly differ at the beginning and
then get closer to the experimental position progressively through time.

Overpressure dynamics

Fig. 6.31 represents the overpressure profiles through time. The experimental and numerical
overpressure profiles are extracted at the same location in the chamber (bottom). A backward
time shift is applied to numerical results in order to match the experimental overpressure
peak. That is why the experimental and simulated peaks happen at the same moment in
Fig. 6.31. The first pressure peak measured during experiments is due to the thin membrane
rupture located at the chamber exit containing the gases in the chamber before ignition. As
this membrane is not present in the simulations, this peak is not observed in the simulation
results.
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The experimental major peak reaches 183 mbar. The peak happens after the flame fronts
exit the chamber. One reason of this overpressure peak is that the flame obstructs partially
the way next to the first obstacle making the effect of a plug while the flame continues to
expand. Therefore a particularly high overpressure located at the bottom of the chamber
is observed. The simulated overpressure peak is underestimated by about 23% with a peak
amplitude of 140 mbar. The gap between the numerical and experimental peak amplitudes
may be due to the lack of ignition model. Another explanation may be that the number of
points used for the flame front description is rather low. Another computations with a finer
description of the flame front will be useful.

Figure 6.31: Overpressure evolution for LES 3D. ( ): LES 3D and (l): experimental data
of Wen et al. (2013).

Wrinkling factor exponent

Fig. 6.32 shows two snapshots at t = 40.1 ms. The flame front is represented in red with
c̃ = 0.5 for both snapshots. The snapshot on the right side is layered with the model
parameter β. In order to visualize the instantaneous field, the blue colormap representing
the β parameter, has a threshold value of 0.05, under which the wrinkling factor exponent is
not represented. By comparing the left side and the right side of Fig. 6.32, we can see that
the wrinkling factor exponent parameter is almost null in the smooth parts of the flame and
locally reaches values close to 0.5 in the fully turbulent zones. The beta parameter varies
where the flame is wrinkled as expected by the subgrid model. The same observation as in
two-dimensional simulations (in Fig. 6.12) is made, the β parameter is almost null where the
flame is smooth.
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Figure 6.32: Snapshots of the instantaneous flame front such as c̃ = 0.5 on the left side and
the instantaneous flame front layered with the model parameter β.

Figure 6.33: Spatial averaged dynamic β-parameter as a function of the flame front position.
( ): LES 3D and ( ): obstacles locations.
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In order to observe the behavior of the model parameter β through time, the spatial
averaged parameter βavg defined by expression (6.7) is plotted in Fig. 6.33 as a function of
the flame front tip position. At the early stages of the transient (before the first obstacle), the
wrinkling factor exponent is almost null as the flame is smooth, in our case, it is in the range
of 10−2. The profile of βavg increases quickly after the flame front reaches the first obstacle.
Then, as explained earlier, the flame front alternating between wrinkled and smooth zones
(i.e. zones locally less turbulent and thus, with a β parameter less important) leading to a
slight decrease of the integrated wrinkling factor exponent before the third obstacle. After
the third obstacle, the flame front is more and more wrinkled leading to high values of βavg.

Flame surfaces

Fig. 6.34 shows the resolved flame surface Sr(t) and the total flame surface St(t) as a function
of the flame front position. These surfaces are defined by expression (6.8).

Before the first obstacle the flame is not wrinkled, leading to an identical total and
resolved flame surfaces. Then, from the first obstacle to the third, the transition from laminar
to turbulent starts to rise leading to small values of the wrinkling factor as the turbulent
intensity is still low. Thus, the total flame surface starts to increase slightly. Until the third
obstacle, the resolved and total flame surface are still close to each other. Afterwards, when
the flow becomes fully turbulent the resolved flame surface slope becomes steeper. The total
flame surface is significantly larger than the resolved flame surface (twice more important
when the flame reaches the chamber exit) meaning that the subgrid wrinkling contribution
becomes significant.

Figure 6.34: Resolved and total flame surface for LES 3D. ( ): Resolved flame surface;
( ): total flame surface and ( ): obstacles locations.
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Heat release

The heat release ω̇T (expression (4.13)) is integrated over the chamber volume and plotted in
Fig. 6.35. Here, the heat release increases with the reaction rate which increases in accordance
with the flame surface shown in Fig. 6.34.

In order to investigate the proportionality between the reaction rate (or the heat release)
and total flame surface, we introduce the integrated reaction rate of the fuel, ωt, given by:

ωt = −
∫
V
ω̇F dV (6.10)

with V the computational volume. The aim is to investigate the reaction rate behavior in
accordance with the total flame surface. The same computation can obviously be performed
using the heat release ω̇T . Here ω̇F has been chosen for the sake of simplicity.

Fig. 6.36 shows the time evolution of the ratio between the integrated reaction rate ωt
and the total flame surface St(t) (given by expression (6.8)). The ratio remains relatively
constant through the simulation showing that the reaction rate increases mostly thanks to
the flame surface rise. The lack of ignition model associated to a coarse mesh grid lead to a
short delay observed in Fig. 6.36 before reaching a plateau of approximately 0.025 kg/m3/s.
Despite the small fluctuations of the ratio due to the flame stretch, the ratio stays relatively
constant from the laminar zone (before the first obstacle) to the fully turbulent zone (after
the last obstacle). In addition, the same plateau value has been found for the one-dimensional
laminar flame and represented in Fig. 6.36.

Figure 6.35: Heat release of LES 3D. ( ): LES 3D and ( ): obstacles locations.

194



Figure 6.36: Ratio between the integrated reaction rate and the total flame surface. ( ):
LES 3D, ( ): one-dimensional LES plateau and ( ): obstacles locations.

6.5 LES numerical results: comparison between two and
three-dimensional simulations

The two-dimensional simulation with F = 6 and n = 6 (LES 3 detailed in table 6.1 and used
as a reference case) is compared to the previous three-dimensional simulation. This study
allow to check if the three-dimensional simulation can be predicted from the two-dimensional
simulation. To lighten the notation, the two-dimensional simulation is denoted by LES 2D
and the three-dimensional simulation is denoted by LES 3D.

Flame front structure

Fig. 6.37 aims to compare the flame front structure between the two-dimensional and three-
dimensional flames. In this figure, a time shift of 12.2 ms is applied to LES 2D and of 11.4 ms
to LES 3D.

When the flame is smooth, from the first frame until the fourth, both simulations looks
alike. However, when turbulence wrinkles the flame front, LES 3D seems to be more wrinkled.
This effect is due to the fact that turbulent structures are not only in one plan, the flame
front is wrinkled as well in the longitudinal plan but also in depth. However, the global shape
of the flame is conserved in both cases.

195



(a) Snapshots of the temperature field and velocity vectors of LES 2D

(b) Snapshots of the resolved progress variable contour (c̃ = 0.5) of LES 3D

(c) Sequential images

Figure 6.37: (a) Snapshots of the temperature field and velocity vectors of LES 2D; (b)
Snapshots of the resolved progress variable contour (c̃ = 0.5) of LES 3D and (c) experimental
images showing deflagration flame propagation in configuration 3 from Wen et al. (2013).
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Flame front position and speed

The flame front tip position is plotted for 2D and 3D simulations in Fig. 6.38. The same
time shift is applied at both simulations which is the LES 3D time shift: 11.4 ms.

Fig. 6.39 represents the flame front velocity (derivation of the simulated flame front po-
sition). The experimental velocity is not represented along the simulation results as the
experimental speed computation method has not been detailed by the authors Wen et al.
(2013).

LES 2D is faster than the three-dimensional simulation at the first moments of the simu-
lation. The difference is caused by the initialization method. Indeed, for the two-dimensional
flame, the surface covered by the initial cylindrical flame kernel is slightly superior than the
surface of LES 3D initial spherical flame kernel leading to a higher reaction rate at the igni-
tion. Then, between the first and last obstacles, the flame front tip positions behave similarly.
Both velocity profiles are quite close.

The flame speed computed with LES 3D is slightly higher than the one computed with
the two-dimensional simulation from the first and until the second obstacle. At the end, after
y = 400 mm, LES 3D flame seems to catch up by accelerating more than LES 2D, as shown
in Fig. 6.39.

Figure 6.38: Flame front position for LES 2D and LES 3D. ( ): LES 3D; ( ): LES 2D;
( ): obstacles locations and (l): experimental data of Wen et al. (2013).
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Figure 6.39: Flame front speed for LES 2D and LES 3D. ( ): LES 3D; ( ): LES 2D and
( ): obstacles locations.

Figure 6.40: Overpressure evolution for LES 2D and LES 3D. ( ): LES 3D; ( ): LES 2D
and (l): experimental data of Wen et al. (2013).
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Overpressure dynamics

The overpressure evolutions obtained with 2D and 3D simulations are represented in Fig. 6.40.
The time shift applied is the same as previously, identical for both cases.

The LES 2D peak has a higher amplitude and occurs before LES 3D. The two-dimensional
overpressure peak is almost 25% above the experimental value whereas the three-dimensional
is 23% below.

Flame surfaces

In order to compare the flame surfaces between the 2D and 3D simulations, the total and
resolved flame surfaces of LES 2D have been multiplied by the channel depth length (15 cm).
Therefore the flame is considered as a planar surface in the depth, this assumption leads to
two main consequences: first, the flame is not wrinkled in the depth. Second, the flame loses
its spherical shape and becomes more rectangular. The resolved and total flame surfaces for
both LES 2D and LES 3D simulations are plotted in Fig. 6.41.

Right after ignition, the flame kernel is circular in LES 2D and spherical in LES 3D.
However, converting the two-dimensional surface by multiplying its value by the depth leads
to a cylindrical kernel. Thus, the resolved and total flame surfaces are larger in the converted
LES 2D than the LES 3D surfaces.

Moreover, in both cases, the total and resolved flame surfaces are identical at the begin-
ning. Then, when the flame gets wrinkled, the total flame surface becomes superior than the
resolved flame surface. In LES 2D, the total flame surface is noticeably superior after the
second obstacle while this separation happens after the first obstacle for LES 3D. Therefore,
the subgrid wrinkling model reacts earlier in LES 3D than in LES 2D.

Fig. 6.41 shows that the difference between LES 2D and 3D is lower for the resolved than
the total flame surfaces. However, the subgrid wrinkling model acts differently in 2D and
3D computations. The earlier activation of the wrinkling factor in LES 3D may explain its
flame front speed superiority despite a higher flame front surface for LES 2D.

Heat release

The integrated heat release over the chamber volume obtained with LES 3D is compared
to the integrated heat release obtained with LES 2D (after multiplying the profile by the
chamber depth) and plotted in Fig. 6.42. Right after ignition, the flame kernel is cylindrical
in LES 2D (due to the two-dimensional surface conversion) and spherical in LES 3D. Thus,
the flame surface is larger in the converted LES 2D than the LES 3D surface (as shown in
Fig. 6.41) leading to a more important integrated reaction rate (i.e. integrated heat release)
as shown in Fig. 6.42. Globally, the converted LES 2D heat release is superior than the
LES 3D heat release. This result was expected as the converted total flame surface is more
important.

The two-dimensional simulation does not retrieve the exact deflagration physical features
but it is in the same order of magnitude as LES 3D. Two-dimensional simulation is useful for
adjusting the numerical parameters (such as F , n, test-filter size...) for the three-dimensional
simulation.
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Figure 6.41: Resolved and total flame surface for LES 2D and LES 3D. ( ): Resolved flame
surface of LES 3D; ( ): resolved flame surface of LES 2D; ( ): total flame surface of LES
3D; ( ): total flame surface of LES 3D and ( ): obstacles locations.

Figure 6.42: Heat release of LES 2D and LES 3D. ( ): LES 3D; ( ): LES 2D and ( ):
obstacles locations.
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6.6 RANS simulations: two-dimensional simulations
Now, let us confront the results of the LES approach and the RANS approach for the same
experimental configuration (third configuration of Wen et al. 2013).

One should keep in mind that the RANS model is designed for situations where the
turbulence is fully developed, which is not the case at the beginning of the simulation.
However, the turbulent flame speed correlation of Goulier (2015) takes into account the
transition effects for unsteady flows (Gostintsev et al., 1988).

6.6.1 RANS approach

An alternative approach is available in CALIF3S -P2REMICS for the simulation of turbulent
deflagrations. A statistical description of turbulence is used: a wide range of RANS models
are available (”high-Reynolds” variants, with the usual wall laws, and low-Reynolds models).
In the present studies, turbulence is described with the so-called k − ω SST model (Wilcox,
1988; Menter, 1994; Menter et al., 2003).

The combustion modelling is based on a turbulent flame-speed closure approach. The flame
brush location is determined by a phase-field-like technique, solving a transport equation for
a characteristic function (more precisely speaking, a Hamilton-Jacobi equation), leading to a
formulation which is reminiscent of the so-called G-equation based models (Kerstein et al.,
1988; Lipatnikov and Chomiak, 2002). The unknown of this transport equation is thus
denoted here by G and referred to hereafter as the "G-field". It obeys the following relation:

∂t(ρG̃) + div(ρG̃ṽ) + ρuvf |∇G̃| = 0, (6.11)

where the quantity ρu is a constant density, which stands for a characteristic value for the
unburnt gases density, and vf is the turbulent flame velocity relatively to fresh gases. Flame
ignition is obtained by setting G = 0 in a small neighbourhood of the ignition point and
G = 1 elsewhere.

Usually, G-equation based models apply to perfectly premixed flows (i.e. flows with con-
stant initial composition), and the chemical state of the flow is governed by the value of G
only, here we consider: for G ≥ 0.5, the mixture is supposed to be in its fresh (initial) state
and G < 0.5 is supposed to correspond to the burnt state; in both cases, the composition of
the fuel is known (to the initial value in the fresh zones, and to the state resulting from a
complete chemical reaction in the burnt one). The flame front is located at G = 0.5. How-
ever, for partially premixed turbulent flows (i.e. flows with non-constant initial composition),
the situation is more complex, since the composition of the mixture can no more be deduced
from the value of G. The line followed here to circumvent this difficulty consists in keeping
the classical reactive formulation of the chemical species mass balance equations (1.9), but
evaluating the reaction term as a function of G. The reaction rate of each chemical species
may be written as:

ω̇i = νiWi ω̇, for 1 ≤ i ≤ Ns,

where νi is the stoichiometric coefficient of the species i. The rate of progress of the reaction
ω̇ is supposed to vanish when either the fuel mass fraction YF or the oxidant mass fraction
YO vanishes and, as announced, is governed by the value of G (CALIF3S-P2REMICS, 2020;
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Gastaldo et al., 2017):

ω̇ =
vf
δ
η(ỸF , ỸO) (G̃− 0.5)−, η(ỸF , ỸO) = min

( ỸF
νFWF

,
ỸO

νOWO

)
where for a ∈ R, a− = −min(a, 0), νF and νO are the fuel and oxidant molar stoichiometric
coefficients, WF and WO stand for the molar masses of the fuel and oxidant respectively. δ is
a quantity homogeneous to a length scale, which governs the thickness of the reaction zone.

The model is closed by a correlation for the turbulent flame speed. The correlations
which are the most frequently encountered in the literature are implemented in the CALIF3S
- P2REMICS software (Bradley et al., 1992b; Bray, 1990; Zimont, 2000; Lipatnikov and Cho-
miak, 2002; Peters, 2000). Among them, the following closure relations have been retained
for the simulations presented in this chapter:

• The Goulier (2015) correlation:

vf = max

[
sL, sL 1.613

(
r

Lt

)0.333 (
v′

sL

)0.526

Le−0.14

]
, (6.12)

where v′ is the root mean square of the velocity fluctuations and Lt is the integral
length scale of turbulent structures computed such as:

v′ =

√
3

2
k and Lt = k3/2/ε (6.13)

with k the turbulent kinetic energy, sL the laminar flame speed, r the distance between
the flame front and the ignition point and Le the Lewis number of the unburnt mixture.
The dissipation rate ε is estimated as: ε = Cµ ω k with ω the specific dissipation and
Cµ = 0.09 a model constant.

• The Bray (1990) correlation :

vf = max
[
sL, 0.875 Ka−0.392 v′

]
, (6.14)

with Ka the dimensionless Karlovitz stretch factor given by (Abdel-Gayed et al., 1987):

Ka = 0.157
( v′
sL

)2

Re−0.5
T ,

with ReT the turbulent Reynolds number defined such as:

ReT =
v′Lt
ν
. (6.15)

• The closure relation developed by Zimont (2000) (Lipatnikov and Chomiak, 2002):

vf = max
[
sL, A v

′Da1/4
]
, (6.16)

where A is a constant (A = 0.53 for methane/air explosive atmospheres), Da is the
Damköhler number.

This system is solved by a fractional-step pressure correction algorithm (an extension to
reactive case of the numerical scheme presented in Chapter 3 Section 3.C), which ensures all
natural stability properties, as keeping the species mass fractions or thermodynamic variables
(pressure, internal energy) within their physical bounds (Gastaldo et al., 2017; Grapsas et al.,
2021).
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6.6.2 Numerical set-up

The RANS simulations are performed on a 2D computational domain. Outside the com-
bustion chamber, the computational domain is extended in order to allow a more realistic
reproduction of the exit of the expanding gas from the combustion chamber into the at-
mosphere and to push further away the reflection on the boundary of the pressure waves
generated by the deflagration (see Section 6.3.1). The computational domain for RANS
simulations is the same as that used for LES simulations (see Section 6.3.1). The mesh is
composed by a non-uniform structured grid with rectangular cells. The mesh size is kept con-
stant in the chamber (∆x = 0.5 mm) before getting gradually expanded outside the chamber
(like for LES computations). The atmospheric zone mesh grid is twenty time coarser on its
boundaries (equivalent to the mesh partition explained in Fig. 6.2).

Adiabatic and no-slip wall boundary conditions were applied at the solid interfaces (bot-
tom and vertical faces of the chamber, faces of the obstacles). A free outlet condition is
enforced at the atmospheric zone boundaries where the pressure is maintained at pext =
101325 Pa.

The chemistry is simply described with a one step global reaction (as for LES simulations).
The ignition is made with an initial flame kernel radius r = 8 mm, r being the distance
between the flame front and the ignition point, by setting G = 0 in this zone. Initially the
fluid is assumed to be at rest in the facility. The initial turbulent kinetic energy is set to
k0 = 10−5 m2.s−2. The initial specific dissipation ω0 is set to ω0 = ρ0 k0/(rν µl), rν = 10 being
the turbulent viscosity ratio (defined as the ratio of turbulent and laminar viscosities).

The time step is computed in order to have an acoustic Courant-Friedrichs-Lewy condition
CFL = 0.5. Even if the mesh size used in RANS computation is fairly close to the LES
computation, the time step is bigger as the time scheme is implicit (see Section 3.C and
Grapsas et al. (2021) for more details). The CPU time (computing time multiplied by the
number of processors used) associated to the two-dimensional LES (LES 3) is approximately
99 days on one processor (13 hours on 180 processors) whereas the CPU time for the RANS
approach is estimated at almost 30 days on one processor (15 hours on 48 processors). The
CPU time is approximately 21 days on 2500 cores for the three dimensional simulation
performed with the LES approach.

The third configuration of the Wen et al. (2013) experiments is simulated. The numerical
results obtained with the RANS approach are first compared to the LES 3 numerical results.
Then, the results are compared with the numerical results obtained in the three dimensional
domain with the LES approach. Finally, three simulations with different turbulent flame
speed correlations are compared. Simulations are listed in Table 6.7 with their numerical
parameter details.
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Name Configuration F n
∆x Number

δc
Unresolved

in the chamber of cells flame speed

LES 3 3 6 6 0.4 mm 643 819 TFLES Ξ∆sL

LES 3D 3 6 5 0.48 mm 161M TFLES Ξ∆sL

RANS 1 3 ∅ ∅ 0.5 mm 409 066 G-equation Goulier (2015)

RANS 2 3 ∅ ∅ 0.5 mm 409 066 G-equation Bray (1990)

RANS 3 3 ∅ ∅ 0.5 mm 409 066 G-equation Zimont (2000)

Table 6.7: Numerical parameters of RANS 1, 2, 3, LES 3 and LES 3D.

A backward time shift for each simulation is applied to numerical results in order to cir-
cumvent the lack of description at the beginning of the simulation. To match the overpressure
peaks, a time shift for RANS 1 is set at 10 ms, RANS 2 at 6.1 ms and RANS 3 at 5 ms. We
recall that the time shift is set at 12.2 ms for LES 3 and 11.4 ms for LES 3D.

6.6.3 Comparison between two-dimensional LES and RANS simu-
lations

The two-dimensional RANS approach denoted by RANS 1 in Table 6.7 is compared here
against the two-dimensional LES approach denoted by LES 3 in Table 6.1.

Flame front structure

Snapshots of the temperature field and velocity vectors for RANS 1 and LES 3 simulations
alongside the experimental images are shown in Fig. 6.43. The temperature field allows to
visualize the flame front and the velocity vectors show the flow acceleration frame after frame.

In order to complete the flow representation, snapshots of the vorticity field layered by the
heat release for RANS 1 and LES 3 simulations alongside the experimental images are shown
in Fig. 6.44. The heat release allows to visualize the flame front while the vorticity shows
the turbulent structures of the flow. The snapshots have been taken at the same (shifted)
moment as the experimental images.

Until the fourth frame, both simulations are quite similar as well in Fig. 6.43 as in Fig. 6.44.
Afterwards, LES 3 accelerates more than RANS 1 as shown from the fifth frame to seventh
of Fig. 6.43. Indeed, for the same period of time, the flame front of LES 3 has traveled a
greater distance than RANS 1 flame front. However, the flame front obtained with the RANS
approach is faster between the last obstacle and the chamber exit than the LES flame front.
Therefore, the RANS approach with Goulier (2015) seems to be particularly faster at the
end of the transient (as shown also below in Fig. 6.46).
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(a) Snapshots of the temperature field and velocity vectors of RANS 1

(b) Snapshots of the temperature field and velocity vectors of LES 3

(c) Sequential images

Figure 6.43: (a) Snapshots of the RANS 1, (b) LES 3 and (c) experimental images showing
a deflagration flame propagation in configuration 3 from Wen et al. (2013).
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(a) Snapshots of the heat release and the flow vorticity of RANS 1

(b) Snapshots of the heat release and the flow vorticity of LES 3

(c) Sequential images

Figure 6.44: (a) Snapshots of the RANS 1, (b) LES 3 and (c) experimental images showing
a deflagration flame propagation in configuration 3 from Wen et al. (2013).
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The flame fronts have the same global shapes. However, the flame is more wrinkled in
the LES approach leading to small flame curls following the turbulent eddies. The flame
front obtained with RANS simulation is globally smooth and is the convex envelop of the
flame front obtained with the LES approach (as seen on the temperature fields in Fig. 6.43).
This is expected from the averaged approach as the small fluctuations (small eddies) are not
captured by the RANS approach leading to a less wrinkled flame front. This is highlighted
by the vorticity fields. Indeed, only the large turbulent structures are observed in Fig. 6.44a
while the small eddies are recovered with the LES approach as shown in Fig. 6.44b.

Flame front position and speed

The flame front positions obtained with RANS and LES approaches are compared in Fig. 6.45
to experimental data for configuration 3 (Wen et al., 2013). A derivative as a function of
time of the numerical results has been performed in order to plot the flame front speed in
Fig. 6.46.

RANS and LES computations are very similar in the early stage of the transient. RANS
approach reaches the first obstacle at the same time as the LES approach (shown in Fig. 6.45
and on the third frame of Fig. 6.44).

Until the second obstacle, both simulations have relatively close flame front speed as seen
in Fig. 6.46. However, after the first obstacle and until y ≈ 170 mm the flame front speed
obtained with the LES approach is slightly superior. As a consequence, the LES flame front
position slightly exceeds the RANS flame front position.

RANS models, mainly developed under homogeneous isotropic turbulence assumptions,
generally are not able to reproduce laminar to turbulent transition. However, in our specific
case, the turbulent flame speed correlation used seems to reproduce this situation. This could
be due to the factor (r/Lt)

0.333 of Goulier (2015) turbulent flame speed correlation defined in
equation (6.12) which according to Gostintsev et al. (1988) allows to describe this transition.

Between the second and the third obstacle, the slopes of both RANS and LES simulations
are in agreement with the experimental one. Both approaches give a similar flame front speed
(as shown in Fig. 6.46).

However, after the third obstacle, the flame front accelerates strongly. The RANS ap-
proach seems to have some difficulties with sudden raise or decrease of turbulent intensity.
After the second obstacle and until the end, LES 3 flame position matches well the experimen-
tal data. However, RANS 1 overestimates the flame speed, and predicts a flame front speed
higher than the LES one, as shown in Fig. 6.46. This may be due to the factor (r/Lt)

0.333,
which is useful at the beginning of transient but can induce an overestimation of the flame
speed as r increases throughout the simulation.
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Figure 6.45: Flame front position for LES 3 and RANS 1. ( ): LES 3; (l): experimental
data of configuration 3; ( ): RANS 1 and ( ): obstacles locations.

Figure 6.46: Flame front speed for RANS 1 and LES 3. ( ): RANS 1; ( ): LES 3 and
( ): obstacles locations.
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Figure 6.47: Overpressure evolution for RANS 1 and LES 3. ( ): LES 3; (S): Experimental
data of configuration 3; ( ): RANS 1.

Overpressure dynamics

In Fig. 6.47, the computed overpressure evolution with both RANS and LES approaches are
compared to the experimental data (Wen et al., 2013).

Some fluctuations appear at the beginning of the simulation RANS 1 due to pressure
waves reflections on the walls and on the obstacles. In LES, these fluctuations are almost
not noticeable as their amplitude is approximately 3 mbar, yet the wave amplitude is more
important with the RANS approach as its amplitude reaches almost 17 mbar. The peak

obtained with the RANS approach appear at the same moment as in LES 3, after the flame
exits. The same phenomenon in both cases seems to generate this pressure growth. As
explained earlier, the flame seems to obstruct the way next the first obstacle leading to the
overpressure peak. The RANS overpressure peak is relatively close to the LES overpressure
peak.

Heat release

The heat release ω̇T (expression (4.13)) is integrated and compared to the heat release ob-
tained with the large eddy simulation in Fig. 6.48.

The heat release profiles matches the flame speed behavior. Indeed, the flame front tip
position represented in Fig. 6.45 shows that the flame front obtained with the RANS approach
is slower than the LES flame front from the beginning to approximately the second obstacle.
Then, both simulations have almost the same flame speed and then, at midway between the
last obstacle and the chamber exit, the RANS flame speed exceeds the LES flame speed.
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Fig. 6.48 shows the same behavior where the heat released by the RANS flame is inferior
than the heat released by the LES flame and at midway between the third obstacle and the
chamber exit, the heat released by the RANS approach is superior than the LES heat release.

Figure 6.48: Heat release of LES 3 and RANS 1. ( ): LES 3; ( ): RANS 1 and ( ):
obstacles locations.

6.6.4 Comparison between RANS simulation and three-dimensional
LES simulations

The two-dimensional RANS numerical results computed with the Goulier (2015) turbulent
flame speed correlation and denoted by RANS 1 in Table 6.7 are compared to the three-
dimensional ones obtained with the LES approach denoted by LES 3D.

Flame front structure

Fig. 6.49 aims to compare the flame front structure between the flames obtained with RANS
1 and LES 3D. In this figure, a time shift of 10 ms is applied to RANS 1 and of 11.4 ms to
LES 3D. The snapshots have been taken at the same (shifted) moment as the experimental
images.

The flame fronts have the same global shapes. However, the flame is more wrinkled in
LES 3D leading to small flame curls following the turbulent eddies. The flame front obtained
with RANS 1 is globally smooth and is the convex envelop of the flame front obtained with
the LES approach. This is expected from the averaged approach as the small fluctuations
(small eddies) are not captured by the RANS approach leading to a less wrinkled flame front.
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(a) Snapshots of the temperature field and velocity vectors of RANS 1

(b) Snapshots of the resolved progress variable contour (c̃ = 0.5) of LES 3D

(c) Sequential images

Figure 6.49: (a) Snapshots of the RANS 1, (b) LES 3D and (c) experimental images showing
a deflagration flame propagation in configuration 3 from Wen et al. (2013).
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Globally, the flame fronts seem to reach the same position in RANS 1 and LES 3D in all
frames of Fig. 6.49. However, both simulations seem to be late at first (from the beginning
until seventh) compared to the experimental flame. Yet, at the end, in the last two snapshots
the simulated flame fronts seem to catch up with the experimental flame.

Figure 6.50: Flame front position for LES 3D and RANS 1. ( ): LES 3D; ( ): RANS 1
; (l): experimental data of configuration 3; and ( ): obstacles locations.

Flame front position and speed

Fig. 6.50 plots the time shifted flame front tip positions. The flame front speed, computed
as the derivative over the time of the numerical flame front poition, is plotted in Fig. 6.51.

Fig. 6.50 and Fig. 6.51 show that both LES 3D and RANS 1 simulations predict similar
flame front positions and speeds. As said earlier for the flame front structure, both simu-
lations underestimates the flame front position with respect to experimental data. Yet, the
accelerating numerical flames catch up with the experimental position at the end. After
y = 400 mm, the flame front speed computed with RANS simulations keep increasing unlike
the one computed by LES 3D.

Even if both simulations have globally the same flame front positions, RANS 1 is slightly
ahead in the laminar phase. This may be explained by the ignition method. Indeed, for
RANS 1, the surface covered by the initial flame kernel is slightly superior than the surface
of LES 3D initial flame kernel leading to a higher reaction rate at the ignition.
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Figure 6.51: Flame front speed for RANS 1 and LES 3D. ( ): RANS 1; ( ): LES 3D and
( ): obstacles locations.

Overpressure

The time shifted overpressure evolutions obtained with RANS 1 and LES 3D simulations are
represented in Fig. 6.52 and compared to experimental data.

Some fluctuations appear at the beginning of the RANS1 simulation due to pressure waves
reflections on the walls and on the obstacles. The amplitude of these fluctuations amplitude
reaches almost 17 mbar while no fluctuations are observed during LES 3D simulations.

RANS 1 overpressure peak matches almost the experimental peak while LES 3D over-
pressure peak is 23% below the experimental peak. The same phenomenon in both cases
seems to generate this pressure growth. As explained earlier, the flame seems to obstruct the
way next the first obstacle leading to the overpressure peak.

The difference between the overpressure peaks may be explained by the different ignition
between the 2D and the 3D approaches. We have also keep in mind that RANS simulations
have been performed on a 2D computational domain, thus avoiding the flame front prop-
agation in the z-direction. Another computations with the RANS approach with a three
dimensional computational domain will be mandatory.
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Figure 6.52: Overpressure evolution for RANS 1 and LES 3D. ( ): LES 3D; (S): Experi-
mental data of configuration 3; ( ): RANS 1.

Figure 6.53: Heat release for RANS 1 and LES 3D. ( ): RANS 1; ( ): LES 3D and ( ):
obstacles locations.
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Heat release

The integrated heat release over the chamber volume ω̇T (expression (4.13)) obtained with
LES 3D is compared to the one computed with RANS 1 simulation (after multiplying the
profile by the chamber depth) and plotted in Fig. 6.53.

Right after ignition, the flame kernel is cylindrical in RANS 1 (due to the two-dimensional
surface conversion) and spherical in LES 3D. Thus, the flame surface is larger in the converted
RANS 1 simulation than the LES 3D surface leading to a more important integrated reaction
rate (i.e. integrated heat release) as shown in Fig. 6.42. Globally, the converted RANS 1 heat
release is superior than the LES 3D heat release, especially after y = 400 mm.

6.6.5 Turbulent flame speed correlation impact

Here, turbulent flame speed correlations introduced earlier are compared. Goulier (2015),
Bray (1990) and Zimont (2000) are used to close the set of equations. The simulation pa-
rameters are reminded in Table 6.8. The overpressure, the flame front position and speed
profiles are studied in the following.

Name Configuration F n
∆x Number

δc
Unresolved

in the chamber of cells flame speed

RANS 1 3 ∅ ∅ 0.5 mm 409 066 G-equation Goulier (2015)

RANS 2 3 ∅ ∅ 0.5 mm 409 066 G-equation Bray (1990)

RANS 3 3 ∅ ∅ 0.5 mm 409 066 G-equation Zimont (2000)

Table 6.8: Numerical parameters of RANS 1, 2 and 3.

Flame front position and speed

In Fig. 6.54, the flame front positions are plotted for the three RANS simulations. In this
figure the RANS 1 time shift (10 ms) has been applied to the three simulations. In Fig. 6.55,
a backward time shift for each simulation is applied to numerical results to match the ex-
perimental overpressure peak (10 ms for RANS 1, 6.1 ms for RANS 2 and 5 ms for RANS 3)
and the flame front positions are plotted once again. Figure 6.56 represents the flame front
velocity (derivation of the unshifted simulated flame front position). The experimental ve-
locity is not represented along the simulation results as the experimental speed computation
method has not been detailed by the authors Wen et al. (2013).

RANS 2 flame speed is more important than the two others during the laminar phase
leading to an incorrect front position for this phase as seen in Fig. 6.54. This is probably due
to the fact that this correlation is designed for situations where turbulence is fully developed.
However, before the second obstacle, RANS 2 recovers approximately the same flame speed
as RANS 1 (Fig. 6.56) leading to a similar flame front propagation and thus, to a similar
position of the flame front after y ≈ 150 mm (Fig. 6.55).
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Figure 6.54: Flame front position obtained with the RANS approach and three different
turbulent flame speed correlations with the same time shift. ( ): RANS 1; ( ): RANS 2;
( ): RANS 3 and (l): experimental data.

Figure 6.55: Flame front position obtained with the RANS approach and three different
turbulent flame speed correlations with different time shifts. ( ): RANS 1; ( ): RANS
2; ( ): RANS 3 and (l): experimental data.
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RANS 1 and 3 seem to have approximately the same flame front speed before the first
obstacle. Zimont (2000) correlation recovers the beginning of transient (i.e. the laminar to
turbulent flame transition) and thus matches well the experimental position (Fig. 6.55).

After the first obstacle, RANS 1 is faster than RANS 3 as shown in Fig. 6.56. However,
the flame front position predicted by RANS 3 seems to be closer to the experimental one
than RANS 1, as reported in Fig. 6.55.

Goulier (2015) and Zimont (2000) correlations predict the closest flame front position
to the experimental data compared to Bray (1990) correlation. A further investigation is
needed, by comparing the turbulent characteristics of the flow obtained with the three RANS
simulations as well as with LES simulations in order to understand this dispersion of numerical
results.

Figure 6.56: Flame front spreed for RANS 1, 2 and 3. ( ): RANS 1; ( ): RANS 2; ( ):
RANS 3 and ( ): obstacles locations.

Overpressure dynamics

In Fig. 6.57 are plotted the overpressure evolutions for the simulations performed with the
RANS approach. Likewise the flame front position figure (Fig. 6.54), RANS 1 time shift has
been applied for all simulations.

The same overpressure behavior is observed in Fig. 6.57 from the start to approximately
25 ms for the three simulations. The pressure waves bouncing back on the walls and on the
obstacles lead to pressure fluctuations of the same amplitude and frequency for the three
simulations.

The major overpressure peak is observed for the three RANS simulations when the flame
front is outside the chamber. The reason of this peak are the same than for LES simulations:
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the flame seems to obstruct the way next to the first obstacle leading to this overpressure peak.
The peak is reached by RANS 3 simulation at 46.2 ms and has an amplitude of 118 mbar.
RANS 3 predicts a lower flame speed (as shown in Fig. 6.56), thus the predicted overpressure
peak is lower than the experimental one and occurs later than RANS1 and RANS 2. RANS
2 slightly overestimates the overpressure peak which occurs at 35.3 ms (that is before RANS
1 and RANS 3) and reaches an amplitude of 204 mbar. RANS 1 simulation obtained with the
Goulier (2015) correlation matches best the experimental overpressure with an amplitude of
195 mbar.

Figure 6.57: Overpressure evolution obtained with the RANS approach and three different
turbulent flame speed correlations. ( ): RANS 1; ( ): RANS 2; ( ): RANS 3 and (S):
experimental data.

6.7 Conclusion
Accelerated deflagration by obstructions in the experimental open chamber of Wen et al.
(2013) has been simulated with two different approaches for the turbulent deflagration mod-
elling with the in-house software CALIF3S - P2REMICS. In the first one, a large eddy simu-
lation (LES) approach is used for turbulence. The combustion is modelled using a virtually
thickened flame formalism (TFLES) combined with a dynamical determination of the sub-
grid scale flame wrinkling factors to handle unresolved contributions. In the second one,
the turbulence is modelled by a Reynolds-averaged Navier-Stokes (RANS) approach and the
combustion model relies on a turbulent flame-speed closure.

First, LES simulations have been performed on a two-dimensional domain to validate,
investigate and calibrate the combustion model.
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The dynamic fractal-like model has been validated on a range of test-filter sizes in order to
check the good model behavior. The minimum number of grid points in the thickened front
has been investigated and set to n = 5. The impact of the thickening factor value with a fixed
number of points in the front has been discussed. Deflagration features are still well recovered
even with a high thickening flame factor (F = 12). The dynamic fractal-like model capacity
of capturing the laminar and the turbulent regimes, as well as their transition is highlighted
by comparing the dynamical approach to the constant value approach for the wrinkling
factor exponent. The results show that the dynamical model is essential to capture transient
phenomena such as deflagrations. Flame front interactions are then discussed by comparing
the results with and without a correction for the nonphysical values induced by flame front
interactions (Mouriaux et al., 2016). Without the wrinkling factor exponent correction for
front interactions, the overpressure was overestimated and numerical instabilities could be
generated by nonphysical high β values. Finally, the influence of the obstacle locations on
the flame propagation has been studied by simulating the three different configurations of
the Wen et al. (2013) experimental set-up.

The analysis made on the virtually thickened flame formalism parameters on a two-
dimensional domain allowed to simulate the configuration with the more important overpres-
sure peak of Wen et al. (2013) in a three-dimensional domain with the TFLES approach.
Three-dimensional results have been confronted to the experimental data and the model
behavior has been discussed. Comparison with the two-dimensional results have also been
performed. In order to limit the CPU time while avoiding too thick flame fronts, the thicken-
ing flame factor has been set to F = 6 and the number points for the flame front description
has been set to n = 5. The numerical results are in good agreement with experimental data,
but the overpressure peak is underestimated. Probably, better results will be obtained with
a finer description of the flame front.

Finally, the last step was to compare the LES approach with the RANS one on the
most turbulent obstacle configuration. The combustion model used in this latest approach is
closed by a turbulent flame speed correlation. Simulations with several turbulent flame speed
correlations have been made in order to check the reliability of this method. The numerical
results have been compared with experimental data and with the numerical results obtained
with the LES approach on two and three-dimensional computational domain. Goulier (2015)
and Zimont (2000) turbulent flame speed correlations have shown the most accurate flame
front position and overpressure profiles. However, the results are highly dependent on the
correlation used. In addition, the RANS approach is less accurate in sudden acceleration of
the flame front. We have also keep in mind that RANS simulations have been performed on
a 2D computational domain, thus avoiding the flame front propagation in the z-direction.
Another computations with the RANS approach with a three dimensional computational
domain will be useful.
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Appendix

6.A Validation of the wrinkling factor behavior
The wrinkling factor model main assumption is the fractal assumption based on the fractal
theory (Mandelbrot, 1975, 1977, 1983; Sreenivasan and Meneveau, 1986). This theory has
been then applied to premixed flames which have reacted with a fractal behavior in numerical
and experimental analyses (Peters, 1986; Gouldin, 1987; Gouldin et al., 1989; Gülder, 1991;
Gülder and Smallwood, 1995; Smallwood et al., 1995).

Resolved flame surfaces at filter Sr and test-filter (
︷︸︸︷
Sr) scales are

related through the conservation of the total flame surface:

Ξ∆Sr = Ξγ∆

︷︸︸︷
Sr, (6.17)

where Sr and
︷︸︸︷
Sr are given by:

Sr(t) =

∫
V
|∇c̃|dV ,

︷︸︸︷
Sr(t) =

∫
V
|∇

︷︸︸︷̃
c |dV , (6.18)

with V a volume set by the user (this volume is discussed later
in this section). By using the definition of Ξ∆ and Ξγ∆ (relation
(6.3)) in Equation (6.17), yields:

︷︸︸︷
Sr
Sr

=
Ξ∆

Ξγ∆

=

(
γ∆

∆

)−β
= γ−β. (6.19)

The ratio
︷︸︸︷
Sr /Sr is thus supposed to follow a line of slope −β

when displayed as a function of γ in a log-scale. Here, the aim is
to validate the linear behavior in a log scale of expression (6.19).

Figure 6.A.1: Last snap-
shot of LES 3.

The LES 3 simulation has been used for the validation test (see Table 6.1 for more details).
The simulation has been run until 40.8 ms leading to a flame front tip located right before
the chamber exit (shown in Fig 6.A.1). The test-filter size was varied on a range of 1.5 ∆
to 8.5 ∆, with ∆ the combustion filter width. The purpose is to compute the value of Sr(t)

and
︷︸︸︷
Sr(t) for each test-filter size at a given time. To do so, two control volumes are selected
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for the integration in Equations (6.18). These volumes are represented by the two rectangles
plotted in Fig. 6.A.1. The first one corresponds to the area between the first and second
obstacle (105 mm < y < 195 mm) . The second one corresponds to the area between the
third obstacle and the exit (305 mm < y < 500 mm). Afterwards, the ratio in Equation
(6.19) is computed and plotted with respect to γ. Also plotted in Fig. 6.A.2, the line of slope
−β being the tangent of the orange curve. The results generated using the first rectangle are
plotted on the left side of Fig. 6.A.2 and the results from the second rectangle are plotted on
the right side of the same figure.

In the area between the first and second obstacle, the flame front is partially turbulent
with weak values of β. The left plot in Fig. 6.A.2 shows that the curve has a linear behavior
until a maximum value of γ which is γmax = 6 corresponding to approximately

︷︸︸︷
∆
max

= 5.9∆
(according to the definition of γ). The slope of the curve in this zone corresponds to β = 0.14.

After the third obstacle, the flame front is fully turbulent with relatively high values of
β. The right plot in Fig. 6.A.2 shows that the curve has a linear behavior until a maximum
value of γ which is γmax = 4 corresponding to approximately

︷︸︸︷
∆
max

= 3.9∆. The slope of the
curve in this area corresponds to β = 0.51.

︷︸︸︷
∆
max

is a threshold value for the test-filter size,
above this one, the test-filter captures adjacent flame fronts, thus, equation (6.19) does not
hold anymore. The threshold value is lower for higher turbulent intensity (as shown in the
right hand side of Fig. 6.A.2). Considering that the most turbulent region (between the third
obstacle and the exit) in the most turbulent configuration (configuration 3) have a maximum
value for the test-filter size of 3.9∆, and that all simulations have been run with a test-filter
size equal to

︷︸︸︷
∆ = 1.5∆, the fractal assumption holds for all simulations presented in this

manuscript.

Figure 6.A.2: Normalized filtered surface flame as a function of the ratio of test and combus-
tion filter sizes in log-scale. ( ): normalized filtered surface flame and ( ): linear slope
−β.
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Conclusion and perspectives

Conclusion
This work is part of the simulation of turbulent deflagrations encountered in safety studies
for nuclear power plants or industrial plants. The aim of this thesis is to develop Large Eddy
Simulation approach for deflagration and a numerical scheme as non-dissipative as possible
for the resolution of the filtered equations in stake.

First, a formally second order scheme dedicated to the numerical simulation of the filtered
Navier-Stokes equations for compressible non-reactive flow is proposed. The space discretiza-
tion is staggered, using the Marker-And-Cell (MAC) scheme for structured grids (Harlow and
Amsden, 1971; Harlow and Welch, 1965): the scalar variables are approximated at the cell
centers and the velocity components at the face centers. Time-stepping is performed with
a second order Runge-Kutta scheme, called the Heun scheme. Balance equations are solved
successively, and each step is explicit, in the sense that, apart from the time-derivative, all
terms involve only known quantities at this stage and thus do not require any linear sys-
tem solver. The equation solved is the so-called sensible energy balance instead of the total
energy conservation equation. This choice avoids building an approximation of the total
energy which, for staggered discretizations, is a “composite” variable combining quantities
discretized on the cells and at the faces. This difficulty may be overstepped by adding, as
in Herbin et al. (2014), a corrective term in the discrete sensible energy balance equation.
A high-order (MUSCL-type) positivity-preserving convection operator is used for the mass
balance equation and for the sensible energy balance equation.

The scheme enjoys some stability properties: the density is shown to be non-negative at
the discrete level under a CFL condition by an easy adaptation of the technique developed
in Gastaldo et al. (2018). To obtain the positivity of the internal energy, the following two
arguments are combined:

- first, to extend the proof of Gastaldo et al. (2018) to cope with a heat diffusion term
(with an adaptation of the CFL condition),

- second, to implement a discretization of the momentum diffusion which yields a positive
dissipation term. To this purpose, we use an idea proposed in Grapsas et al. (2016),
which consists in recasting the MAC scheme under a weak form, so that we may closely
mimick the continuous expression of the dissipation: in fine, the cell dissipation is
computed as the integral over the considered cell of the inner product of the stress and
strain tensors, linked a.e. by the usual (continuous) relation (hence the non-negativity).

Then we turn to the kinetic energy preservation property. Considering the Heun scheme as a
three-steps scheme, with two prediction steps and a final average, we show that the solution of
the first two steps obeys a kinetic energy balance with numerical production terms (i.e. non-
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negative residual terms when put at the right-hand side), while the last step is dissipative;
finally, we are able to derive a local kinetic energy balance for the algorithm with remainder
terms, which we show to be of second order in time. Numerical experiments show that
these remainder terms take in fact very low values: the compensation operated by the final
averaging is almost exact, in the sense that the final residual is more than one thousand
times smaller than the residuals associated to the first two steps of the algorithm (which
are nothing more than the first-order Euler forward scheme). Finally, we establish a total
energy balance for the scheme, which may be made conservative by adding corrective terms
to the sensible energy balance, for instance if one wants to compute shock solutions. Since
we address here essentially viscous flows, we do not follow this line; however, we numerically
check that the scheme correctly captures the viscous perturbation of mild shocks (similar for
instance to the strongest ones which may be generated by deflagrations) even with coarse
meshes. On the opposite, for strong shocks (typical of detonations), correcting the discrete
sensible energy balance seems to be preferable.

In order to deal with reactive compressible flows such those encountered during an explo-
sion, the filtered Navier-Stokes equations are complemented with chemical species balance
equations and the reactive terms needed are added in the sensible energy balance. The virtu-
ally thickened flame model has been chosen for combustion modelling. The wrinkling model
of Veynante and Moureau (2015) is used for the subgrid model incorporating the Mouriaux
et al. (2016) correction for front/front interactions and front/wall interactions.

The numerical scheme developed in the first part of this work in the non-reactive case is
then extended to the reactive case. A Strang splitting method is used for the resolution of the
chemical species. One explicit half-step of homogeneous transport for the chemical species is
first performed, then an implicit step deals with the reaction terms. Finally, a second explicit
half-step of transport for the chemical species is performed. The associated reaction energy
is introduced into the energy balance of Navier-Stokes equations, solved in a second time.

The positivity of the density is ensured by construction of the discrete mass balance
equation, i.e. by the use of a second order MUSCL scheme. In addition, the positivity of
the mass fractions are preserved thanks to the following (rather standard) argument: first,
building a discrete convection operator which vanishes when the convected unknown is con-
stant thanks to the discrete mass balance equation ensures a positivity-preservation property
(Larrouturou, 1991), under a CFL condition; second, the discretization of the chemical reac-
tion rate ensures either that it vanishes when the unknown of the equation vanishes (for fuel
and oxidizer mass fractions), or that it is non-negative (for product mass fractions). Conse-
quently, mass fractions are non-negative. Moreover, with a suitable choice of the coefficients
involved in the MUSCL discretization of the chemical species convection terms, the sum of
the chemical species is equal to 1. Thus, they are also bounded by 1.

The positivity of the sensible energy stems from the same essential arguments used in the
non-reactive case: the consistency of the discrete convection operator and the mass balance
and the positivity of the dissipation term in the momentum balance. This holds provided
that the equation is exothermic. Moreover, as in the non-reactive case, the solutions of the
scheme satisfy a discrete total energy balance up to reminder terms. This balance may be
made conservative by adding corrective terms to the sensible energy balance, for instance if
one wants to compute shock solutions.

The numerical schemes and the models developed have been implemented in the in-
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house CFD software CALIF3S - P2REMICS. The LES approach for deflagration has been
first validated on a laminar one-dimensional flame. The numerical simulation recovered
well the methane/air laminar flame features. The one-dimensional flame has been artificially
thickened and a minimum number of points in the front for the well behavior of the simulation
of n = 5 is found out. This test case may be considered as a prerequisite before applications
to more realistic turbulent reactive problems.

Afterwards, a case of interest for IRSN has been simulated. The accelerated deflagration in
an obstructed semi-confined chamber with different configurations for the obstacle locations
has been investigated (Wen et al., 2013). Two-dimensional simulations have been first run
in order to realise a parametric study of the TFLES parameters and validate the fractal
assumption on a range of test-filter sizes in order to check the model good behavior (validity
of the flame surface expression in our range of use). The minimum mesh grid number in the
thickened front has been studied and found to be the same as the one-dimensional case with
n = 5. The dynamical formalism is confronted to the constant exponent formalism in order
to highlight the importance of a dynamic expression to capture the transition from laminar
to fully turbulent regimes. The numerical results show that the dynamical formalism is
unavoidable in order to have a good description of the flame front propagation. The influence
of the location of obstacles on the flame propagation is well captured by LES approach.

The analysis made on the virtually thickened flame formalism parameters on a two-
dimensional domain allowed to simulate the obstacle configuration of Wen et al. (2013) leading
to the highest overpressure peak in a three-dimensional domain. The simulation has been
performed on the supercomputer Topaze at the Research and Technology Computing Center
(CCRT) showing the efficiency of the CALIF3S - P2REMICS software. The numerical results
are in good agreement with experimental data, but the overpressure peak is underestimated.
The mesh grid size has been limited by the available computation capacity. For further
investigations, a finer three-dimensional simulation should be run. A comparison of the
three-dimensional results with the converted two-dimensional data has shown that the two-
dimensional simulations were relatively accurate and recovers results of the same order of
magnitude.

An approach based on a RANS description of turbulence and a turbulent flame-speed
closure combustion model (Lipatnikov and Chomiak, 2002; Peters, 2000) is also available
for the turbulent deflagration modelling in the CALIF3S -P2REMICS software. The flame
brush location is determined, solving the so-called level set G-equation. To handle partially
premixed situations, the species mass balances are solved, but reaction rates are expressed
from the level-set function. The model is closed by a turbulent flame speed correlation
(Peters, 2000; Bradley et al., 1992b; Bray, 1990; Zimont, 2000; Goulier, 2015). The obstacle
configuration with the highest overpressure peak of Wen et al. (2013) has been simulated
with this approach. The results computed with different turbulent flame speed closure are
compared. Zimont (2000) and Goulier (2015) turbulent flame speed correlation has shown
the most accurate flame front position and overpressure profiles respectively. However, these
results are highly dependent on the correlation used. In addition, the RANS approach is less
accurate in sudden acceleration of the flame front simulation.

To conclude on the comparison between LES and RANS, a three-dimensional simulation
with the RANS approach should be run. However, one should keep in mind the drawbacks
of the RANS approach (i.e. high dependence on the turbulent flame speed correlation used
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and lack of predictability). In the other hand, the LES approach combined with the virtually
thickened flame and dynamic subgrid scale model formalism developed during this thesis in
CALIF3S - P2REMICS is an accurate and reliable approach capable of reproducing transiting
phenomena such as deflagrations.

Perspectives
The investigations made during this thesis unlock many possibilities for future studies:

• Additional validation of the approach developed in this thesis is needed. Indeed, in
this work, feasibility of LES 3D simulations has been carried out on only one case. An
indepth parametric study should be carried out: number of grid points in the flame
front, wall boundary conditions (adiabatic or not, no slip or wall law), etc... Moreover,
the numerical results obtained have shown a lack of description of the beginning of
the transient. In order to improve initial moments description and correct the delay
between simulation and experiment, two techniques could be studied:

– use of an ignition zone sufficiently refined in order to afford a low thickening factor,
and thus, a smaller flame kernel. However, such solution may be costly CPU wise
and would generate the need of a change of mesh grid after ignition;

– instead of initialising with a burnt gases volume, igniting the mixture with a local
energy source (additional source term in the sensible energy balance equation) to
mimic the spark effect.

Finally, the validation of the LES approach must be complemented with other test cases:
accelerated deflagrations on large-scale combustion chambers (Kent et al., 2005b) or on
confined chamber (Johansen and Ciccarelli, 2013), self-accelerated flames (Kanzleiter
and Langer, 2010), etc..

• The aim of this work was to use the developed LES approach in order to better under-
stand the physical phenomena involved during a deflagration and improve the RANS
model more adapted to industrial purpose. Here, only a brief comparison between the
two approaches has been made, showing the unreliability of the RANS approach. An
indepth investigation of the turbulent characteristics of the flow computed during LES
simulations must be made (root mean square velocity, turbulent viscosity) and com-
pared to the results obtained with the RANS approach. A more reliable turbulent flame
speed correlation for the RANS approach might be developed using the LES results.

• A global single-step reaction is chosen in this work to model chemistry but a more com-
plex method (two or three-steps reactions, or simplified schemes or even the recently
developed analytical mechanisms) could also be retained. This may allow a more accu-
rate description of the flame front propagation. Another improvement in order to take
into account non unitary Lewis numbers and different values of the diffusion coefficients
could also be helpful (Volpiani, 2017). The numerical scheme developed in this work
should thus be extended in order to be able to keep the chemical species in their phys-
ical bounds at the discrete level, even with a non constant diffusion coefficient. These
improvements may be useful for the simulation of premixed flames of hydrogen/carbon
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monoxide/air as encountered during a severe accident in a nuclear power plant in case
of failure of in-vessel corium retention (Nicolàs-Pérez et al., 2020).

• Given the constraints (in scale and Reynolds number) of industrial applications, tur-
bulence modeling is most often done by one-point statistical models (RANS). Large
eddy simulation, which is more predictive but more costly in computing time, most
often comes in support, for purposes of understanding physical phenomena and inter-
preting state of experiences. A third category of so-called "hybrid" models, integrating
in the same system of balance equations RANS and LES approaches, emerged for non-
reactive flows (Spalart and Allmaras, 1992, 1994; Sagaut et al., 2006; Chaouat, 2017).
However, few works of this type exist in the literature for premixed combustion (Hasse
et al., 2009; Sainte-Rose et al., 2009; Hasse et al., 2010; Mansouri et al., 2016). The
work done during this thesis could serve as starting point for the development of an
hybrid approach for deflagration. The semi-implicit variants of the numerical scheme
presented here, already available in CALIF3S -P2REMICS, may be useful to implement
a solver buiding a bridge from Large Eddy Simulation models to statistical models, by
hybrid approaches. However, an extension of the semi-implicit scheme to higher orders
in space by a MUSCL-like technique is needed.
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Appendix

Synthèse du manuscrit
Ce travail s’inscrit dans le cadre de la simulation des déflagrations turbulentes telles que
celles rencontrées dans les études de sûreté pour les installations nucléaires ou civiles. Nous
y développons une approche par simulation des grandes échelles permettant une description
fine de l’écoulement. L’outil de simulation ainsi construit est utilisé dans l’étude de transi-
toires expérimentaux à petite et moyenne échelle. La première étape de la thèse a porté sur
le développement et l’analyse d’un schéma numérique pour les équations de Navier-Stokes
pour les écoulements compressibles non réactifs. Le schéma est explicite et basé sur une
discrétisation en temps du second ordre (schéma d’Heun). La discrétisation enespace est de
type mailles décalées. Elle se base sur une formulation en énergie interne. Une discrétisation
des opérateurs de convection via une technique de montée en ordre de type MUSCL permet
alors de garantir la positivité des variables scalaires (densité, énergie interne et pression) sous
condition de CFL. De plus, le schéma est peu dissipatif numériquement, ce qui est primordial
dans le contexte de la simulation des grandes échelles.

Ce schéma est étendu au cas réactif par une technique de pas fractionnaires. L’équation
de conservation des espèces chimiques est résolue dans un premier temps par un algorithme
de Strang découplant convection et réaction. L’énergie de réaction associée est introduite
dans le bilan d’énergie des équations de Navier Stokes, traitées dans un second temps.

Nous développons ensuite un modèle de combustion et l’appliquons à l’étude d’écoulements
d’intérêt. La combustion est traitée par un modèle de flamme artificiellement épaissie. Un
modèle de sous-maille permet d’ajuster de façon dynamique le plissement de sous-maille, qui
disparaît dans l’opération d’épaississement, à partir de la connaissance des champs résolus.
Trois configurations expérimentales de déflagrations accélérées par des obstacles en chambre
semi-confinée ont été étudiées. Ces configurations diffèrent par la disposition des obstacles
qui génèrent la turbulence au passage de l’écoulement induit par l’expansion thermique et
promeuvent l’accélération de la flamme. Ces cas ont permis d’analyser le comportement du
modèle de combustion et valider ses résultats à partir des données expérimentales. L’étude
a également mis en évidence la supériorité de la formulation dynamique du modèle par rap-
port à l’utilisation d’un paramètre de plissement constant. Des simulations de type RANS
(résolution des équations de Navier-Stokes moyennées) où la combustion est décrite par une
formulation de type « G-equation » ont également été réalisées et confortent l’utilisation de
la simulation aux grandes échelles.

Les études réalisées lors de cette thèse ont ouvert plusieurs axes de recherche pour l’avenir
:

• L’approche développé a besoin d’avantage de simulation afin de la valider. En effet,

227



là LES 3D a été réalisé uniquement sur un cas. Une étude paramétrique devrait être
mené sur : le nombre de maille dans le front, les conditions aux limites. . . De plus, les
simulations ont montré un manque de précision au début de la transition de laminaire
à turbulent. Afin d’améliorer les résultats, deux technique peuvent être explorées :

– Raffiner la zone initiale d’allumage afin d’avoir un coefficient d’épaississement plus
faible.

– Utiliser un terme source dans l’équation de l’énergie afin d’initialisé la combustion.

Enfin, d’autres cas expérimentaux doivent être simulé avec des volumes plus importants

• Faire un calcul 3D avec l’approche RANS.

• Réaliser une étude approfondie sur la turbulence afin de mieux comprendre le phénomène
et observer les caractéristiques de l’écoulement turbulent (vitesse RMS, viscosité turbu-
lente. . . ) dans l’objectif de développer une corrélation de vitesse de flamme turbulente
pour l’approche RANS.

• Utiliser un modèle plus détaillé pour la chimie afin de mieux décrire la propagation du
front de flamme.

• Une approche hybride RANS - LES est aussi un axe de recherche intéressant au vu des
contrainte industriel (temps de calcul et nombre de Reynolds élevé) permettant d’allier
les points forts des deux approches.
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