
HAL Id: tel-03704110
https://theses.hal.science/tel-03704110

Submitted on 24 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Category theory for (big) data modeling and model’s
transformation

Heng Zhao

To cite this version:
Heng Zhao. Category theory for (big) data modeling and model’s transformation. Databases [cs.DB].
Université de Haute Alsace - Mulhouse, 2019. English. �NNT : 2019MULH2946�. �tel-03704110�

https://theses.hal.science/tel-03704110
https://hal.archives-ouvertes.fr

UNIVERSITE DE HAUTE ALSACE

ECOLE DOCTORALE: MATHÉMATIQUES, SCIENCES DE L’INFORMATION ET DE L’INGÉNIEUR

INSTITUT DE RECHERCHE EN INFORMATIQUE, MATH´EMATIQUE, AUTOMATIQUE ET SIGNAL

THESE PRESENTEE POUR OBTENIR LE GRADE DE

Docteur de l’Universite de Haute Alsace
Discipline: Informatique

Category theory for (big) data modeling
and models’ transformation

Heng ZHAO
SOUTENUE PUBLIQUEMENT LE 05/07/2019

Membres du jury:

Mr. Horatiu Cirstea, Professeur, rapporteur, Université de Nancy
Mr. Amir HAJJAM EL HASSANI, Maitre de conférences, rapporteur, UTBM
Mr. Pierre-Alain Muller, Professeur, examinateur, UHA
Mr. Michel Hassenforder Professeur, Directeur de thèse, UHA

Acknowledgment
As a thesis which represents in Category theory for big data modeling and

models’ transformation, this thesis was finished after 3 years of work at Institut
IRIMAS, Université de Haute Alsace.

I am particularly honored by the presence of this jury of professors:
Pierre-Alain Muller, Professor of université de Haute-Alsace,
Horatiu Cirstea, Professeur of Université de Nancy,
Amir HAJJAM EL HASSANI, Associate professeur of UTBM,
I would like to thank Mr. Michel Hassenforder for his concern and help

without which I would not have been able to to complete the research work on
this subject.

I am also very grateful to the China scholarship council for my three years
of financial support.

In the end, I want to thank my parents. They have given me the spiritual
support to complete this subject. In addition, I would also like to thank all the
friends who have cared and helped me during my PhD.

ContentsContents

Chapter 1 Introduction 8

Chapter 2 State of art 12
2.1 Related works 12

2.2 Databases for Big Data 13

2.2.1Introduction 13

2.2.2Relational databases 20

2.2.3Column-oriented databases 26

2.2.4Key-value Store database 32

2.2.5Document database 37

2.2.6Graph database 46

2.2.7Summary 53

2.3 Category theory 57

2.3.1Category 58

2.3.2Functor 61

2.3.3Natural transformations 63

2.3.4Monad 64

2.4 Data and Querying Modeling 67

2.4.1Time complexity 67

2.4.2Data models 70

2.4.3Queries 82

2

Chapter 3 Propositions 89
3.1 Strategy 89

3.2 Process followed in our study 91

3.2.1Procedure for importing initial data 91

3.2.2Functional descriptions by table 93

3.2.3Functional descriptions by Map 94

3.2.4Functional descriptions by Graph 97

3.2.5Transformations to SQL 100

3.2.6Transformations to document database 100

3.2.7Transformations to graph 101

3.2.8Transformation to key-Value and Column Oriented database 101

Chapter 4 Application 104
4.1 CSV file 104

4.2 CSV file loading 105

4.3 CSV file loading comparison 105

4.4 Time to ”get” one item of simple information 107

4.5 Time to ”get” specific ordered information 108

4.6 Time to ”find” information 109

4.7 Time to ”find” information by its different volume 110

4.8 The best choice to query information 111

4.9 Real world application 111

Chapter 5 Conclusion 114
5.1 Propositions’ summary 114

5.2 Perspectives 115

List of Figures

2.1 Sample performance . 13
2.2 The database management system 16
2.3 Main database management system 1 17
2.4 Main database management system 2 17
2.5 Database segmentation . 18
2.6 The approach to query the information in different servers 18
2.7 The structure of a table . 20
2.8 Basic operations . 22
2.9 JOIN operations . 23
2.10 Division operation . 24
2.11 Foreign key . 24
2.12 An example of an earthquake information 27
2.13 An example of two different Column store 29
2.14 An example of key-value store database 33
2.15 Model of column . 34
2.16 Column Family of earthquake information 34
2.17 A simple database in MongoDB 38
2.18 Terminology of relational database and MongoDB 39
2.19 Examples of document . 41
2.20 Aggregation operation in MongoDB 42
2.21 Different data types in MongoDB 44
2.22 One of the earthquake information and size of database 45
2.23 Execution time and all of the results with ”us” 45

4

LIST OF FIGURES 5 of 123

2.24 The basic attribute of a graph . 46
2.25 Sample of graph DB . 51
2.26 Databases information . 53
2.27 Comparison between RDBMS and Column store database 54
2.28 Sample information . 56
2.29 An example with the composition and identity relation 59
2.30 A directed graph . 59
2.31 Commutative diagram . 60
2.32 Products and Pullbacks . 60
2.33 Example of graph morphism . 61
2.34 An example of graph . 62
2.35 Example of list . 63
2.36 Example of natural transformation 64
2.37 Schema for time complexity . 68
2.38 Example with two equations for time complexity 68
2.39 Example of a simple list . 70
2.40 Example of a complex list . 71
2.41 Measurements. 76
2.42 Measurements(cont.) . 76
2.43 Summary. 77
2.44 Example of table in a relational database 77
2.45 Example of Database schema . 78
2.46 Size of a list . 78
2.47 Example of table schema . 79
2.48 Key value and Document database schema by UML 81
2.49 Key value, Document database and Column database 81
2.50 Schema for Map model . 82
2.51 Example of a graph . 83
2.52 Example of searching table . 83
2.53 queries for table model . 85
2.54 queries for list model . 85

LIST OF FIGURES 6 of 123

2.55 Example of queries . 86
2.56 Sample graphs and query/morphism. 87

3.1 Sample table . 93
3.2 Schema model by table. 94
3.3 Sample functor 1. 96
3.4 Sample functor 2. 97
3.5 Sample graph. 98
3.6 Sample query. 98
3.7 Sample graphs and query/morphism. 99
3.8 Sample of MonetDB model. 102

4.1 Time to load . 105
4.2 Time to load by different size of data 106
4.3 The comparison between the different volume of data by load-

ing time . 106
4.4 The comparison between three models by loading time 107
4.5 The comparison chart by loading time 107
4.6 Time to query one information by Table model 108
4.7 Time to query one information by Map model 109
4.8 Time to query one information by Graph model 109
4.9 Time to ”find” information by three models 110
4.10 Comparison between the two informations by three models 110
4.11 Comparison between the two information by three models 111
4.12 Comparison between different models 112

1. Introduction1. Introduction

• Thesis introduction
• Motivation
• Summary

Chapter 1

Introduction

Big data is a collection of data that cannot be captured, managed, and pro-
cessed with regular software tools over a period of time. Big data requires a
new processing model to have a more efficient capability to process large-scale
data. Hence, the data model is the main line of big data technology develop-
ment, the core and foundation of large-scale databases. More specifically data
structure and data manipulation are the two basic elements of the data model.
The data structure describes the object type of the static characteristics of the
data and constitutes the basic component of the database. The data manipula-
tion, which is also named ”query” in the report, is the dynamic characteristic
of the database. It defines the set of operations that the database can perform,
clarifies the exact meaning of the data operations, the operational symbols, and
the rules of the operations. Our work is concentrated on the large amounts of
data that directly impact the performances of the programs (e.g. to query a spe-
cific information) and which require specific architecture to improve them, e.g.
use of graph databases or maybe use of distributed concurrent computations.
Though a lot of technologies are available today to put BigData into practice,
usable theories to better understand the benefits and the limitations of each ar-
chitecture, to identify possible improvements or means to combine them are
more rare. Our research presents the capabilities offered by category theory
together with a functional programming language (to implement the concepts
and facilitate experimentation) to solve these limitations. In particular, it ex-

8

9 of 123

plains how functors can change data structures (e.g. various representations of
set) and how natural transformations can be used to change data structures or
shift programs applicable to a particular data structure to another program for
an other data structure. The concept of natural isomorphism is then established
to prove that two data structures represent the same information, or that two
programs are equivalent. The equations representing programs can serve to
calculate computation time and to compare the performances of two programs,
then show that a natural transformation can be an optimization. An advan-
tage of Category Theory is to be easily and safely translated in most of the
functional programming languages, what is interesting to make experiments
and proposes new architectures or tools to Big Data community. As an illus-
tration the thesis proposes an optimized (by way of natural transformations)
implementation of an information server and its query language in the Haskell
functional programming language. The other interests of our research are then
to detail the implementation and to give a comparison of our approach and of
standard tools available in the market. As a complement, it shows that these
programs can implement complex algorithms (such as unification) by using the
capabilities brought by the concepts (e.g. functors and higher-order functions).
The comparison step finally shows that: 1) The program presented is able to
deal with a large set of data. 2) Some transformation are better. 3) Surpris-
ingly, the comparison of the time execution obtained by five well-known data
processing tools (Sqlite Studio, MonetDB, MongoDB, Neo4J, Cassandra) is
favors functional programming.

The document is divided into three parts. Chapter 2 starts by introducing the
contribution of the thesis in context with ”Related works” and introduces mod-
els commonly used by information systems and takes a query by the standard
tools to extract the time complexity. Then, it presents the fundamental concepts
of category theory and how they can be implemented in a functional program-
ming language. In particular, this chapter details how ”functors” can transform
data structures, and how ”natural transformations” change a program using a
data structure to a new more efficient one using another structure. Chapter 3

10 of 123

explains how Category Theory can be used to define an efficient information
server and its query language (based on unification). Chapter 4 presents the
dataset considered in the experiments and gives a comparison of the perfor-
mances (time to answer a query) obtained with the system proposed and stan-
dard tools (Sqlite, Mongodb, Neo4j, MonetDB,Cassandra). In this chapter, it
is also entitled ”Discussion” and examines in detail the benefit/limitation of the
elements proposed, and shows how to apply them in other contexts. Finally, a
conclusion summarizes the main elements presented: a theoretical approach of
Big Data ; i.e. an efficient information system with a comparative study, and
describes some of the perspectives considered.

2. State of art2. State of art

• Related works
• Database for Big Data
• Category theory and Haskell
• Data and Querying Modeling

Chapter 2

State of art

2.1 Related works
Big Data is centered on very large datasets and a sample illustration is pre-
sented in the Figure 2.1. The query extracts the first entry from a subset
of more than 900 million entries. These entries can be entity-centric knowl-
edge resources, including entities of a particular thing, relationships of phys-
ical logical connections, or classifications used to semantically mark entities.
Therefore, in the field of digital engineering, the collection of data is usually
described as the form of entities, relationships, classifications and other ele-
ments. However, as Hal Varian (Google’s chief economist) said [68]: although
Big Data is widely used, what’s lacking is the ability to obtain information
from it. The data search engine ”Google”, which is shown in Figure 2.1 is
the reorganization of data in the form of a network. Each piece of data in the
network represents an entity, and the relationship between the data represents
the relationship between the entities. As it is shown in Figure 2.1, building a
data set quickly with a specific keyword (eg., Category theory) involves many
more resources. In general, as explained in [58], dealing with a huge amount
of data requires specific architecture both for hardware (e.g. cloud computers
by using Map Reduce [59]) and for software (e.g. graph database servers).
Though many theoretical models are then proposed to get a better value from
all the data available, theories able to formalize the concepts under the tools

12

2.2. DATABASES FOR BIG DATA 13 of 123

commonly used to manage or query the data are more rare. The aim of this
thesis is to explain how Category Theory can solve such a limitation and, asso-
ciated to a functional programming language, be used for instance to propose
efficient information servers for large datasets (e.g. reducing the 0.42s in the
Figure 2.1) or to shift data between various formats this, by combining natural
transformations.

Figure 2.1: Sample performance

Of course, the use of Category Theory for software development is not new.
In particular, this theory has already shown its advantages in the domain of
”program calculation” with for instance [60] or [61], in the domain of Model-
Driven Engineering [62], etc. The concepts of the theory has also been imple-
mented in some programming languages, such as ML or Haskell, and can be
used directly in these languages, e.g. [63]. At an extreme, the concepts have
themselves been used to define a specific programming language in [64]. Cate-
gory Theory has also lead to specific platforms for the management of (graph)
data models [65] and query [66]. The contribution of this thesis is to go further
considering big datasets - which have not been considered in the above works,
and by making possible the interchange of data with more classical tools found
in the Big Data community.

2.2 Databases for Big Data

2.2.1 Introduction

Since the 1970s, several database structures have been proposed. The first one
is Hierarchical Database, which arranges data in a tree structure. This tree
structure is similar to folders and files on a computer. Hierarchically arranged

2.2. DATABASES FOR BIG DATA 14 of 123

data is often described as having only parent/child relationships. Later, net-
work database was an evolution of database model where multiple data can be
linked by themselves. The model can be viewed as an upside-down tree where
each member information is the branch linked to the owner, which is the bot-
tom of the tree. In the year of 1970s, the relational database was proposed
which was based on an algebra and a universal query language was designed.
Relational database (SQL): E.g. MySQL, Oracle, SQLServer, SQlite (and a
lot of other) uses SQL language to achieve the querying language. However,
with the development of Web 2.0 and some new structures of database and
”NoSQL” have appeared. On the other hand, NoSQL database have now four
types: Key-value databases, Document oriented databases, Graph databases,
Column stores databases. Both of them are depend upon the JSON format.
Each type of database has their own properties: ACID or BASE.

With the web 2.0, the speed of execution time and the partition tolerance has
become more and more important. Hence, a new property CAP is coming for
the recent database.

SQL and NOSQL

SQL is the abbreviation for Structured Query Language [1]. It could be used
for organizing, managing, storing and retrieving data stored by a computer
database. As the name implies, SQL is a computer language which can be
used to interact with a database. It is a special purpose programming language.
It does not require the user to specify the data storage method nor necessar-
ily to understand the specific data storage methods [4]. Therefore, different
database systems with completely different underlying structures can use the
same structured query language. Structured query language statements can be
nested, which gives it great flexibility.

NoSQL means ”not only SQL”[4]. It provides a mechanism for storage and
retrieval of data that is different than the tabular relations. With the rise of
the internet web2.0, the traditional databases meet a problem: The capability
to deal with very large datasets. The non-relational database due to its own

2.2. DATABASES FOR BIG DATA 15 of 123

characteristics have been developed very fast. The aim of NoSQL databases
is to solve the challenges of multi-data types in large scale data collections,
especially the problems for big data application.

ACID property

ACID property is mainly implemented by a relational database management
system (RDBMS). ACID [31] is Atomicity, Consistency, Isolation, Durability.
The meaning of the four rules are:

Atomicity
All operations in the entire transaction are either completed in their entirety

or are not completed at all. It cannot be stuck in the middle of a transaction.
Consistency
Transactions must always keep the system in a consistent state, regardless

of the number of concurrent transactions at any given time.
Isolation
If there are two transactions running at the same time and performing the

same function, the isolation of the transaction will ensure that only one trans-
action considers is using the system.

Durability
When the transaction is completed, all of the changes made by the transac-

tion to the database are remained in the database.
The database management system uses logs to ensure the atomicity, consis-

tency, and durability of transactions. The log records the updates made by the
transaction to the database. If an error occurs during the execution of a trans-
action, it can be based on the log to undo the updates that the transaction of
database and return the database to the initial state.

A Database Management System in Figure 2.2 has a database that stores
information [1].

More precisely, the main components are:

• Server: A program (software) for receiving and processing requests made
by other programs, or a device (computer).

2.2. DATABASES FOR BIG DATA 16 of 123

Figure 2.2: The database management system

• Clients: The program (software) that makes the request to the server, or the
device (computer).

Distributed databases

If the user has only used one database to take the operation of read and write,
the database could be overwhelmed. Most web sites have used master-slave
replication technology to achieve the operation.

A better management system based on two main databases to conserve database
in Figure 2.3 which could be used to improve performance. And then, it has
used some attached databases to receive the data from Main database. There-
fore, big data manipulation will use the database master-slave mode. It is rela-
tively simple to expand the searching scope of the database. However, there is
no easy way to solve the problem of big data writing.

In order to scale the data, the user could increase the main database from
one to two. This could reduce the load on each main database by half. How-
ever, the update process will conflict, the data may cause inconsistencies. In
order to avoid such problems, the requirement for each table is assigned to the
appropriate request to the main database.

Splitting the database, respectively, on a different database server. This is
shown in Figure 2.4 and Figure 2.5.

2.2. DATABASES FOR BIG DATA 17 of 123

Figure 2.3: Main database management system 1

Figure 2.4: Main database management system 2

For example, tables are hosted only once and on a different database server.
Database partitioning can reduce the amount of data on each server. This could
be used to reduce input and output processing and achieve high-speed memory
processing. However, if joining the results from the servers is needed the cost
(time and space) could increase a lot. Relational databases [3] are widely used
and could perform complex queries such as transaction processing and table
joins. There is an architecture network in Figure 2.6 to explain the approach to
query the databases in a different server.

When the user needs to query some information, they will use the different
IP address to search the target databases.

2.2. DATABASES FOR BIG DATA 18 of 123

Figure 2.5: Database segmentation

Figure 2.6: The approach to query the information in different servers

BASE property

The BASE model is logically the opposite of the concept of ACID model.
BASE 1 stands for Basically Available, Soft-state, and Eventually Consistent.
It sacrifices high consistency and obtains availability and partition tolerance.
There may be momentary inconsistencies in the system’s processing of re-
quests. Each step in the system can record each temporary state. In the event
of a system failure, unfinished requests can be processed from these intermedi-
ate states or returned to the original state, and finally obtain a consistent state.

CAP property

CAP property is the cornerstone of the NOSQL database. NoSQL is mainly
a distributed system and the biggest difficulty is the synchronisation of each
node. CAP [32] is an answer based on three elements: Consistency, availability

1https://www.abis.be/resources/presentations/gsebedb220140612nosql.pdf

2.2. DATABASES FOR BIG DATA 19 of 123

and partition tolerance.
Consistency
For distributed storage systems, one piece of data tends to exist in multiple

copies. In simple terms, consistency will allow the customer to modify the data
(add/delete/change), or succeed in all data replicas either all failed. That is, the
modification operation is an atomic operation for all copies of a piece of data
(the entire system). If a storage system can guarantee consistency, then the
data read and written by the customer can be guaranteed to be up-to-date. Two
different clients can not read different copies from different storage nodes.

Availability
It means that when the client wants to access data, they can get a response.

However, the availability of the system does not mean that the data provided
by all nodes of the storage system are consistent. In this case, the system is
available.

Partition Tolerance
If the storage system only runs on one node, either the entire system crashes

or all goes well. The storage system for the same service is distributed to mul-
tiple nodes, there is a possibility of partitioning the entire storage system. For
example, a disconnected network between two storage nodes forms a partition.
In general, it is normal for the same data to be placed in different nodes in order
to improve service quality. Therefore, it is normal to form partitions between
nodes.The CAP principle means that these three elements can only achieve two
points at the same time.

There are some examples below:
CA meets data consistency and high availability but no scalability
APs perform well in terms of performance and scalability, but they sacrifice

their data consistency. Data synchronization between nodes is not as fast, but
it can preserve the ultimate consistency of the data.

The CP satisfies data consistency and zoning. However, when the number
of nodes reaches a certain number, the performance (that is, availability) will
drop rapidly, and the network overhead between the nodes. The data between

2.2. DATABASES FOR BIG DATA 20 of 123

the nodes needs to be synchronized in real time.

2.2.2 Relational databases

In 1970s, the concept of RDBMS was proposed to deal with large databases.
Nowadays, there are lots of RDBMS such as MYSQL, SQL SERVER ORA-
CLE,etc. and we will use SQLITE to perform query and data extraction. As
its structure is convenient (No overheads due to network processing).

Relational Data structure

Relational database is a database that complies with ACID’s relational database
management system; Figure 2.7 shows the structure of a table in this database.
It could be queried by SQL language.

Figure 2.7: The structure of a table

There are some key words in the figure above.

• Table: A two-dimensional array composed of rows and columns.

• Field: Column of tables (vertical direction).

• Record: Row of tables (horizontal direction).

• Cell: The intersection of a column and a row.

2.2. DATABASES FOR BIG DATA 21 of 123

• Primary key: This is a key in relational database to search one record. It is
either an existing table column or a column that is specifically generated
by the database according to a defined sequence.

• Foreign key: It is a column in a table, which points to the primary key in
another table.

• Schema: A schema describes the set of tables, types for each column and
the relationships between the different tables. An efficient schema requires
the use of a structured approach and is validated by checking the normality
level of the database.

Relational Algebra

Algebra is a basic mathematical branch with many research objects, such as
number, quantity, algebra, relationship, equation theory, algebraic structure
and so on. The study of algebra is not only on numbers, but also a variety
of abstract structures. For example, an integer set is a collection of integer
with addition, multiplication, and ordering is an algebraic structure. Algebra
also exists in relational databases and it is called ”Relational Algebra”2. It is a
”Relation” R ⊆ X × Y , which is a subset of the Cartesian product of X and
Y. Set operations allow the results of multiple queries to be combined into a
single result set. And set comprehension can be used by {f(x)|x ∈ r, p(x)}.
Because there are operators (intersection, union, etc.) and operand (tables).
This is a family of algebras with a well-founded semantics used for modeling
the data stored in relational databases, and defining queries on it. There are
some basic operations below:
Selection δ

Extract records satisfying a predicate. The set comprehension is: δp(r) =
{x|x ∈ r, p(x)}
Projection π

2https://cs.nyu.edu/courses/Fall12/CSCI-GA.2433-001/lecture4.pdf

2.2. DATABASES FOR BIG DATA 22 of 123

Extract selected fields. The set comprehension is: π1(r) = {π1(x)|x ∈
r, p(x)}
Cartesian Product
R × S forms a (n + m) column tuple set. If R has K1 tuples and S has

K2 tuples, R × S has K1 * K2 tuples. The set comprehension is: r × r′ =
{(x, x)|x ∈ r}
Union

R, S have the same relational pattern (same elements, same structure), de-
noted R ∪ S. Returns a collection of R or S tuples.
Intersection

R, S have the same relational pattern (same elements, same structure), de-
noted R ∩ S. Keeps the common part of R and S
Set difference

R, S have the same relational schema (same elements, same structure), op-
eration denoted by R− S, eliminates the part of R that belongs to S.

Figure 2.8 below show the six operations:

Figure 2.8: Basic operations

JOIN operations

A SQL join clause combines columns from one or more tables in a relational
database. It creates a set that can be saved as a table. A JOIN is a means

2.2. DATABASES FOR BIG DATA 23 of 123

for combining columns from one (self-join) or more tables by using common
values, such as foreign keys and primary keys.
Inner Join

Inner join requires that the components to be compared in the two relation-
ships must be the same attribute group. And remove duplicate attributes listed
in the results. This is the same as the first table in Figure 2.9.
Semijoin

Semijoin returns the first table records. Table H returns only one record,
even if several matching records are found in I. This is the same as the second
table in Figure 2.9.
Outer joins

The joined table retains each row even if no other matching row exists. Outer
joins subdivide further into left outer joins, right outer joins, and full outer
joins, depending on which table’s rows are retained (left, right, or both). The
third table in Figure 2.9 shows the left Outer join. It could return all the values
from an inner join plus all values in the left table that do not match the right ta-
ble, including rows with NULL (empty) values in the link column. In contrary,
the fourth table in Figure 2.9 shows the right Outer join which could return all
the values from an inner join plus all values in the right table that do not match
the left table.

The figure 2.9 show 4 different JOIN operations:

Figure 2.9: JOIN operations

2.2. DATABASES FOR BIG DATA 24 of 123

Division
There is a table below to show Division operations:

Figure 2.10: Division operation

As shown in Figure 2.10. Division operation means that we keep the same
terms in X as in Y. Then store this in a table.

Foreign key

Foreign key in one table points to the Primary key in another table as illustrated
in Figure 2.11.

Figure 2.11: Foreign key

The ”Id” field in the ”Orders” collection points to the ”Earthquake Id” field

2.2. DATABASES FOR BIG DATA 25 of 123

in the ”Earthquake information” collection.
The ”Id” field in the ”Earthquake information” collection is the Primary key

in the ”Earthquake information” collection.
The ”Id” column in the ”Orders” collection is the Foreign key in the ”Or-

ders” collection.
FOREIGN KEY constraints can be used to prevent the destruction of con-

nections between collections.
The FOREIGN KEY constraint also prevents illegal data insertion into the

foreign key field, because it must be one of the values in the collection which
it points to.

2.1.2.5 Example

Relational database uses SQL to interact and instructions are available to create
the bases, tables and operations such as insert, remove, update data or query
the database.

1) Create table:

CREATE TABLE earthquake (id INT PRIMARY KEY AUTO_INCREMENT,
time TIMESTAMP,
latitude REAL,
longitude REAL,
depth REAL,
mag REAL,
Source CHAR(2))

In this example, the table is named ”earthquake” and each row has to de-
scribe uniquely an earthquake somewhere around the world. So additional
typed information is required. First is id, an INT which will be our primary key
and auto incremented when inserting values. Time is a date and a time when
the earthquake occurs, and latitude, longitude and depth are REAL numbers
for the geolocation. Mag represents magnitude and is a REAL. Last column,

2.2. DATABASES FOR BIG DATA 26 of 123

the Source is just a country abbreviated by its two letters following the ISO
3166.

2) Insert values

INSERT INTO earthquake VALUES
(2018-04-28, 33.4893333, -116.7948333, 10, 4.8, us)

3) Search value and this performance

Select * from earthquake where Source=’us’

Corresponding to the set comprehension is:
{Allcolumn(x)|x ∈ y, columnSource(x) =′ us′}.
Among them, Allcolumn(x) means projection π and columnSource(x)

means selection δ.
We can use the code of SQL above to search for the useful information.

For example, querying all of the earthquakes in USA on this database. The
performance is 0.004s.

2.2.3 Column-oriented databases

In these years, the development of data storage technology towards massive
data, analytical data and intelligent data. As one of the type of NoSQL database,
column store database stores a table in a sequence of columns. The main rea-
son for its rapid development is its high efficiency of complex queries, fewer
reading disks and less storage space. This part presents this type of technology
and we used MonetDB to create and query again an earthquake information
database.

Column concept

Column-oriented databases [16] [17] are databases that store data in column-
related storage architectures. It is suitable for batch data query and processing.

2.2. DATABASES FOR BIG DATA 27 of 123

Column store database store data as two-dimensional tables of columns. How-
ever, it is accessed as a one-dimensional string. Figure 2.12 shows an example
of earthquake information.

A Column-store database stores the values in a column together and then
stores the data in the next column. For example, the data in Figure 2.12.
”Time” column is 2018-04-28, 2018-04-27, 2018-04-26, 2018-04-25; ”Lati-
tude” column is 33.4893333, 18.0433, -6.1569, -21.0123; ”Longitude” col-
umn is -116.7948333, -67.4248, 143.047, -178.7933; ”depth” column is: 10,
114, 5.311, 13.98; ”mag” column is: 4.8, 2.74, 2.9, 0.95; ”Source” column is
us, pr, tul, ci; This is an intuitive version of Column-store database. On the
other hand, Column database storage organizes and stores data according to
the columns of database records. Each table in the database consists of a set
of page chains. Each page chain corresponds to a storage column in the table,
and each page in the page chain stores one or more values for this column (see
in Figure 2.12).

Figure 2.12: An example of an earthquake information

In case of a query, only the columns involved in the query need to be ac-
cessed, this method of operation reduces the system’s I/O and optimizes the
time to respond. This allows time for column databases to query data more
quickly. Therefore, there are three advantages in using column store database:

1) Data storage and data compression: Each column is stored separately.
Hence, the data in the same column has consistent data types, similar data
characteristics and efficient compression. If the user squeezes a lot of data

2.2. DATABASES FOR BIG DATA 28 of 123

together, more data could be stored / collected / used. Therefore, this approach
of reading data can increase the speed of processing data. At the same time, the
storage characteristics of the column database also facilitate the rapid query of
the required columns. In addition, this type of storage only needs to read the
relevant data and could write data from multiple entries.

2) Data management: Column store database is stored in the order of key
value compression. It could give an index to all the columns. Hence, the data
maintenance for this database is relatively simple.

3) Data querying: In this mode, In this mode, the query language just scans
the page chain of database corresponding to the column. It does not need to
access the full table. Thus, this method increases the speed of querying data.

MonetDB

MonetDB is an open source, column-oriented database management system.
MonetDB was designed to provide high-performance query for big data, such
as millions of rows and hundreds of columns of database. MonetDB is also a
database management system that supports the SQL:2003 standard, despite its
NOSQL vision and also XML, RDF and SPARQL[22].

Storage model3 of MonetDB [16]is very different from traditional databases.
It means that MonetDB table uses vertical storage, each column is stored in
a table (surrogate, value) named BAT (Binary Association Table). The left
column presents the proxy number or Object id. It is called the header; the
right column is the tail. Figure 2.13 describes two different Column stores.

The first one is a Column store with Proxy Ids. The second table is a Col-
umn store with Object Ids. MonetDB performs low-level relational algebra
called BAT algebra. During execution, data is often stored in (intermediate)
BAT[18], even if the result of the query is also a collection of BAT. BAT stor-
age uses two simple memory arrays. One array is the header and the other is
the tail (column). MonetDB divide the array into two sections for different
types of length. A segment with concatenated data values and another segment

3https://www.monetdb.org

2.2. DATABASES FOR BIG DATA 29 of 123

Figure 2.13: An example of two different Column store

with offsets into the former. For a small ”string value” table, the combination
implements a value as in a dictionary.

MonetDB uses a memory-mapped file to implement storage columns. The
storage columns are optimized to the unique situation where the columns of the
proxy are ascending numbers (0, 1, 2...); in some cases the proxy columns can
be kept ambiguous. The proxy column query becomes a way to read the tail
with a fast array subscript. In fact, this mechanism of using arrays in virtual
memory to use the MMU (memory management unit) to quickly map hardware
addresses to disk addresses provides the database with an efficient database
search mechanism. On the other hand, MonetDB is based entirely on memory-
mapped files. Once you need to swap to disk, the performance is surprised.
This means that the amount of data to be processed does not exceed the total
amount of memory before using MonetDB. And then, a Column store database
is suitable for the database which has many tuples or records on few attributes.

For example, if the query needs to search the third value in column of ”lat-
itude”[17]. The assumption here is the column is fixed-width. Hence, the
result could be obtained by: start(latitude) + 3 × width(latitude) where
start(latitude) and width(latitude) means the start address of the column
”latitude” and the width of the column ”latitude” respectively.

2.2. DATABASES FOR BIG DATA 30 of 123

Join operation

There are two basic elements in MonetDB[21]. The table storage which is
used in MonetDB is an associative array. The first element is Storage key (In
MonetDB, it could be Proxy Id or Object id). Every data value with the same
column has the same storage key. Data in different columns and in the same
segment with matching storage keys belong to the same row. It is the same as
the primary key in RDBMS.

The second one is Join Index. Join Index is used to reconstruct all of the
records in a table from its various projections. For example, if there are two
columns C1 and C2 which belong to a table C. A join index from M series in
C1 to the N series in C2 is A collection of M tables. One value of each series
of C1, H consist the form of row:

(H : Object id in C2, s : Storage key in serie s)
A new given tuple in a series of C1 contains the Object id or Proxy id of

the corresponding (joining) tuple in C2. This is always a one-to-one mapping
because all join indexes are located between the projections anchored on the
same table.

Example

1) Create table
In this article, the encoding rule is respected to SQL language. Table is one

of the basic elements of a Column store database. The code below is used to
create a table named earthquake.

CREATE TABLE "earthquake" (
time TIMESTAMP,
latitude REAL, longitude REAL, depth REAL,
mag REAL, Source CHAR(2)

);

2) Values insertion
The code below is used to insert the value in the table ”earthquake”. The

order has to be the same as in the table insertion.

2.2. DATABASES FOR BIG DATA 31 of 123

INSERT INTO "earthquake" VALUES
(2018-04-28, 33.4893333, -116.7948333, 41.32, 4.9, "us"),
(2018-04-28, 38.8003349, -122.7588348, 87.02, 4.5, "us"),
(2018-04-29, 38.8003349, -122.7588348, 0.46,2.35, "hv");

3) Select operation
The operation by selecting value is also the ”Join” operation to a new table.

For example, the code below is to select the earthquake which happened in
’2018-04-28’. The operational time is 22.151ms.

select * from earthquake where Source = "us";

4) Import CSV file
From this part, the sample has used the database with earthquake informa-

tion by the United States Geological Survey. By using this database, we will
verify the execution time to search the value in a big database.

The first step is to import this file into MonetDB. As before, creating the
table is done by using all of the different series names as necessary. The name
of this table is usgs. The code is below:

CREATE TABLE usgs (
time varchar(50),
latitude char(15),
longitude numeric(10,7),
depth char(15),
mag char(15),
magType string,
id varchar(50),
type string,
Source string

);

In this code: - VARCHAR ’(’ length ’)’ is UTF-8 character string with length
upperbound limit.

2.2. DATABASES FOR BIG DATA 32 of 123

- NUMERIC ’(’ Prec ’,’ Scale ’)’ is an Exact decimal number with precision
Prec and scale Scale. Prec must be between 1 and 18 (or 38 when HUGEINT
is also supported). Scale must be between 0 and Prec.

- CHAR ’(’ length ’)’ is UTF-8 character string with length upperbound
limit. CHAR or CHARACTER without the ”(length)” specification is treated
as CHAR(1).

”COPY INTO” can be used to import the file ”earthquake.CSV” which has
both the earthquake information into MonetDB.

COPY INTO usgs FROM "C://earthquake.CSV"
DELIMITERS ’,’,’\n’,’"’ NULL AS ’’;

In the code before ′,′ , ′\n′ , ′”′ are the functions to distinguish Comma, dou-
ble quotes and skipping. ”NULL AS” can be used to display the empty value.
The execution time is 5273.97ms. There are 11237 tuples in this database.

5) Value query
By using the database with earthquake, searching all of the information with

’Source’ in ’us’ obtains 992 tupples in 22.344 ms.

select * from usgs where Source = "us";

2.2.4 Key-value Store database

As one of the type of NoSQL storage, the data of Key-value store databases
[24] is organized, indexed and stored as key-value pairs. Key value storage
is very suitable for the data which does not involve too many data relation-
ships and effectively reduces the times for reading and writing from/into a
disk. Hence, it has a better capacity of reading and writing performance than
SQL database storage.

A key-value database[25] is a data storage paradigm designed for storing,
retrieving, and managing associative arrays. Key value store is similar to this
name, it contains a key and a series of values for this Key. The name of this
key can be of any type. Because of this feature, the key-value store database

2.2. DATABASES FOR BIG DATA 33 of 123

could quickly search the desired value. For example, Figure 2.14 presents an
simple key-value database with the earthquake information. In this Figure, the
values contain: ’time’, ’latitude’ and ’longitude’.

Figure 2.14: An example of key-value store database

Cassandra [25] [26] is not only a Key-Value database but also a distributed
network service composed of numerous databases. For example, some reading
or writing operation for Cassandra will be copied to a node in the network.
Therefore, Cassandra has superior extensibility, as long as you add nodes to it.

Column concept

If there are three data are stored in a value pair, the storage address of each
value must be recorded. Otherwise, the data could not be accessed. Therefore,
Cassandra adds a name to each data, which is a way to find the data. Such a
set of data containing name value pairs is called a row, and each set of name
value pairs is called a column. It is the most basic data structure in Cassandra.
It contains three data types, name and timestamp. Figure 2.15 describes an
example of Column. The maximum storage of a Column name is 64KB. The
value of the Column name cannot exceed 2GB. The name of the Column can
be any data type. It is also possible to store the Column name as a data. The
user can directly add data to Cassandra without being constrained by the data
type. On the other hand, ’clock’ in the figure records the time when the value
was last modified.

Super Column concept

If the value in the Column is not a simple value and is split into multiple
Columns, this large Column is called a Super Column. Both Column and Su-

2.2. DATABASES FOR BIG DATA 34 of 123

Figure 2.15: Model of column

perColumn are a combination of name and value. The biggest difference is
that the Column’s value is a ”String”, and the Super Column’s value is a ’Map’
consisting of multiple Columns. The SuperColumn itself does not contain a
timestamp.

Column Family concept

The multiple column key-value pairs make up the Column family. The Column
family is a container of columns. It is mainly used for logical segmentation and
associates similar data. A Column family is similar to a table in a relational
database. For example, Figure 2.16 presents a Column Family example with
earthquake information in ’us’. Hence, the name of the Row key is ’us’. The
Column key is the time that the earthquake happened. The Column value is the
’place’ of earthquake.

Figure 2.16: Column Family of earthquake information

Keyspaces concept

Keyspaces is a container used to encapsulate Column families. At the same
time, the keyspaces is Cassandra’s data container. It can be understood as
a table in a relational database. Therefore, Cassandra’s space model can be
divided into four or five dimensions.

The four dimension is:
The five dimension is:

2.2. DATABASES FOR BIG DATA 35 of 123

Cluster concept

A cluster could contain multiple keyspaces. Therefore, it is the upper level of
the key space.

Sorting rules

Cassandra sorts by column name and it supports the following data types:
Characters, bytes, numbers and dates. Two data types in it are very important:
bytes and characters. BytesType is the default sorting method for Cassandra
that compares bytes directly without checking whether the content of the bytes
conforms to a certain encoding. Its ranking rules are arranged from small to
large. The second one is ’UTF8Type’, mainly used for characters string. Its
order is still ranked by the first character of the column name from small to
large.

Distribution

Cassandra is a multi-node network service, and data is backed up at differ-
ent nodes following the replication property. This parameter determines how
newly-written parameters are copied and saved in each node. The replication
property has a class and a replication factor which defines the kind of replica-
tion: SimplyStrategy (single data center), NetworkTopologyStrategy, etc, the
amount of replication on offer. The durable write property governs the loss of
data if a node suddenly stops working.

For example, the code below creates a Keyspace with the name ”earthquake”
and only one node to deal with the data.

create keyspace earthquake with replication =
{’class’:’SimpleStrategy’, ’replication_factor’:1};

2.2. DATABASES FOR BIG DATA 36 of 123

Data design pattern

1) Row-Oriented
The data in Cassandra is stored in the database. Each row of data can have

a different column structure. In a relational database, each row must have
the same column. In Cassandra, it can use a unique ID to access the row.
Therefore, Cassandra is an indexed, row-oriented storage.

2) Schema Free
Cassandra just defines a ’KeySpace’ to load column families. This method

is free to add data to the column family. Each column family is designed to be
a set of data associations or data sorts. In this way, only the required data can
be saved as necessary.

2.1.4.9 Sample

Cassandra uses the Cassandra Query language (CQL) [27] for data queries. Its
full name is Cassandra Query Language. The CQL language is similar to SQL
statements. It includes: modify, query, save, change the storage of data and so
on. Each statement is terminated by a semicolon ’;’. In general, there are three
steps to creating a Cassandra database.

1) Creation Keyspaces
The rule 4 is: CREATE KEY SPACE < identifier > WITH <

properties >;. The properties have two basic elements: Replication and
Durable writes.

2) Creation Columnfamily
The rule for this approach is: CREATE (TABLE) < tablename > ′(′<

column − definition >′,′< column − definition >′ ...);. In this code,
defining the Primary key (Row key in Key-value store database) is very impor-
tant. For example, the code given below describes the three values in Keyspace
”earthquake”. It defines the order in which the data is arranged.

CREATE TABLE earthquake.information
(time TIMESTAMP,

4https://www.datastax.com/wp-content/uploads/2013/03/cql 3 ref card.pdf

2.2. DATABASES FOR BIG DATA 37 of 123

latitude REAL, longitude REAL, depth REAL,
mag REAL, Source CHAR(2),
PRIMARY KEY(time)

)

3) Insertion data
The rule for inserting data is: INSERT INTO ′ < tablename >′ ′ <

columnname >′ V ALUES (′< values >′); For example, an earthquake is
inserted in the table using the following instruction:

INSERT INTO earthquake
(time, latitude, longitude, depth, mag, Source)
VALUES

(2018-05-14T11:48:15.020Z,
-11.4242, 166.192, 71.4,
4.6, us

);

4) Value research
In this step, Cassandra has searched the earthquake information which has

been happened in ’us’. By using the function ’Tracing on’, it could also obtain
the table for the execution time. There are 992 rows with ’us’. The execution
time is 4.697ms.

Tracing on;
SELECT * FROM usgs WHERE Source="us"
ALLOW FILTERING;

2.2.5 Document database

MongoDB is a free and open-source cross-platform document-oriented data-
base [8]. It can achieve high performance, high availability and also be easily
extended. MongoDB does not need to define the table structure, however it
could query data through complex query languages. The operational model for

2.2. DATABASES FOR BIG DATA 38 of 123

MongoDB is mainly defined by two concepts: collection and document. For
example, Figure 2.17 shows a database with one collection and two documents.

Figure 2.17: A simple database in MongoDB

Database concept

A single instance of MongoDB could hold lots of independent databases. Each
independent database has its own collections.

Collection concept

A collection is a set of MongoDB documents. It is equivalent to the concept
of a table in a relational database. A collection doesn’t belong to a specific
schema. Multiple documents within a collection could have many different
fields and may be in the same field with different types. In general, documents
in a collection have the same or related purpose. On the other hand, a Collec-
tion requires an id field which is considered as the primary key. Figure 2.18
presents the terminology of relational database and MongoDB.

There is a special collection: capped collections, which are a kind of limited
buffer size very suitable for logging functions.

2.2. DATABASES FOR BIG DATA 39 of 123

Figure 2.18: Terminology of relational database and MongoDB

db.createCollection("log", {capped:true,size:100000})

Primary key

MongoDB uses a ”collection” which is similar to a table and ”documents”
which are similar to rows, to store the data and schema information. All doc-
uments in a MongoDB collection have a PRIMARY KEY [9] called id. This
field is automatically assigned to a document upon insertion, so it rarely needs
to be provided.

For example, the addition of a user into the ‘user’ collection from the Mon-
goDB database can be obtained with the following commands.

db.earthquake.insert({
"time":"2018-04-28",
"latitude": 33.4893333,
"longitude": 166.192,
"depth": 71.4,
"mag": 4.6, "Source": "us"}

);

Index

Index can usually improve the efficiency of the query. If there is no index,
MongoDB must search each document in the collection and select the records
that meet the query conditions. Index are special data structures. They are
stored in a set of data that is easily traversed and read. An index is a structure

2.2. DATABASES FOR BIG DATA 40 of 123

that stores the values of one or more columns in a database.

Document concept

A Document is a set of key-value pairs. Documents have a dynamic pattern
which means that documents in the same collection do not need to have the
same fields or structures. An example of inserting a document is given as
follows :

db.earthquake.insert(
{ "time": "2018-04-28",

"latitude" : 33.4893333,
"longitude" : -116.7948333,
"depth": 71.4,
"mag": 4.6, "Source": "us"

})

Embedded Document

An embedded document is when a document is embedded within another up to
a limit of 16MB. A document, including all its embedded documents, cannot
exceed 16MB. The code below is an example of an embedded document.

{ type: ’earthquake’,
informations: [

{"Source": "us",
"time":"2018-04-28",
"latitude": "33.4893333",
"longitude": "-116.7948333",
"depth":"71.4",
"mag":"4.6",
},
{"Source": "tul",
"time":"2018-04-28",
"latitude": "-6.1579",
"longitude": "142.4845",
"depth":"5.311",
"mag":"2.9",
}

2.2. DATABASES FOR BIG DATA 41 of 123

]
};

Join operation

MongoDB database can deal with unstructured data as illustrated in Figure
2.19.

Figure 2.19: Examples of document

The key can be used to identify a particular data item and the value could be
words, numbers or semantics structures. Therefore, to query the collection of
objects in MongoDB is based on its PRIMARY KEY which makes MongoDB
similar in its behavior and purpose to a SQL JOIN.

However, MongoDB stores denormalized data and there is no relationship
between collections: if there are the same data required in two or more doc-
uments, it must be repeated. MongoDB introduces an operator lookup which
can perform a LEFT-OUTER EQUI-JOIN to get all the documents from the left
collection together with data from the right collection where there is a match
with the left collection. Nevertheless, lookup is only permitted in aggregation
operations as illustrated below:

db.leftCollection.aggregate
[{($lookup:
{from: "rightCollection",
localField:"leftVal",
foreignField:"rightVal",
as: "embeddedData"}
}])

2.2. DATABASES FOR BIG DATA 42 of 123

The aggregation pipeline is a framework based on the concept of data pro-
cessing pipelines. By using a multi-stage pipeline, a set of documents is con-
verted to the final aggregated result. There is an example below to choose
the earthquake that happened in ”us” and which was written in the domain of
”Earthquake”. Figure 2.20 presents this example.
db.orders.aggregate ([

{ $match:
{ Domain: "Earthquake"}

},
{ $group:
{ Source, total:
{ $sum: "$Earthquake"}
}
}

])

Figure 2.20: Aggregation operation in MongoDB

BSON

MongoDB uses BSON documents to store records. BSON is based on the
Javascript object Notation [23] (JSON) which is similar to XML but smaller,

2.2. DATABASES FOR BIG DATA 43 of 123

faster, and easier to parse. The JSON text format is syntactically the same as
the code that creates a JavaScript object. Because of this similarity, no parser
is required, and JavaScript programs can use the built-in ”eval” function to
use JSON data generates native JavaScript objects. There are two types of
structures:

Object: An object contains a comma separated collection of non-sorted
key/value pairs. The symbol of an object is { }

Array: This is a collection of values. The symbol of an array is [].
The specific format is as follows:
Name/value (pair): The name and value are separated by a colon. The

general form is:{name : value}
BSON stores documents like JSON but in a binary and compact way. At

the head of a document, it adds the size of the document, which allows a faster
traversal speed.

BSON will mainly achieve the following three goals:
1) Faster traversal speed: Too large JSON structure causes very slow data

traversal. In JSON, to skip a document for data reading, the document needs
still to be scanned. BSON’s improvement over JSON is that it will store the
length of each element of the JSON at the head of the element. In this way, it
only needs to read the length of the element to directly find the specified point
for reading.

2) Easy to operate: Data storage is type aware. For example, if there is
a database which wants to modify a basic value from 9 to 10. The size of
the field has changed from one character to two, and all the contents behind
need to be one shifted. With BSON, it could specify this column as a numeric
column. Therefore, whether the number is from 9 to 10 or 100, it will only
make changes in the one where the numbers are stored, and will not cause the
total length of the data to become larger.

3) Added extra data types: JSON is a very convenient data exchange
format, but its type is limited. BSON adds the ”byte array” data type. This
means that binary storage no longer needs to be Base64 [30] converted and

2.2. DATABASES FOR BIG DATA 44 of 123

stored as JSON. This significantly reduces computational overhead and data
size. BSON has no spatial advantage over JSON. For example,{”field” : 7},
which has only one byte is used in the storage of JSON. By using BSON, it has
at least 4 bytes (32 bits). BSON provides some additional data types: Binary
data, Floating point, Date and Timestamp. MongoDB has 18 different data
types presented in Figure 2.21.

Figure 2.21: Different data types in MongoDB

Example

1) Insert document
Importing with CSV file with earthquake information recorded by the United

States Geological Survey. It has imported this file into MongoDB. Then, it
could see the size of this database and one item of the information in this
database. The size of this database is 0.001GB. An example is:
mongoimport

--db earthquakes
--collection earthquake
--type csv
--file earthquake.csv
--headerline

Figure 2.22 presents one of the result of earthquake information and the size
of database ”usgs”.

2) Query
An example to find all of the information of earthquake in ”us” and the

execution time. And obtain the execution at the same time. The execution time

2.2. DATABASES FOR BIG DATA 45 of 123

is 0.01s. Figure 2.23 describes the information obtained and the execution
time to realize this work by using find() to search the information directly.
”executionTimeMillesEstimate” is the result of execution time by using the
unit ”ms”.

db.earthquake.find({"Source" : "us"}).
explain("executionStats")

Figure 2.22: One of the earthquake information and size of database

Figure 2.23: Execution time and all of the results with ”us”

On the other hand, Index could be used to optimise the execution time. The
code below is to change the order of earthquake information in ascending order.
Then, the execution time should be smaller than before.

db.earthquake.createIndex({"Source":1})

2.2. DATABASES FOR BIG DATA 46 of 123

2.2.6 Graph database

A graph database is another kind of NOSQL database and as the name implies
it uses graphs to store data or it stores data using triples organized in a graph
way. There are two basic elements in a graph: Nodes and Edges between
nodes. Both of them contain attributes in the form of key/values. A graph can
also be expressed as a parametrized data type : G(N,R), G is a graph, N is the
type of nodes and R is the type of Relations. Figure 2.24 describes an example
of relations in a graph. In this Figure, there are some labels between each node.
This is a graph labeling. It is the assignment of labels, traditionally represented
by integers, to the nodes or relations, or both of a graph. The node could also
occupy some properties.

Figure 2.24: The basic attribute of a graph

Node and Edge concept

If there is a direction from the relation of Node1 to Node2, the Edge is said to
be directional.

By using the Edges, NEO4J could obtain lots of associated data, such as the
collection of nodes, collections of relations and their collection of attributes.
On the other hand, a node can have an Edge that points to itself. And there are
also many Edges between the same nodes.

2.2. DATABASES FOR BIG DATA 47 of 123

InDegree and OutDegree

In a directed graph G = (N, {R})[29], if there is an Edge (N,N ′), N and N’
are Adjacent. The node (N,N ′) is attached to nodes N and N’,or (N,N ′) is
associated with N and N’. The degree of Node is the number of edges associ-
ated with Node. The number of arcs headed by node N is called the InDegree
of N. The number of arcs headed by node N is called the InDegree of N (ID
(N)).The number of arcs tail by node N is called the OutDegree of N (OD (N)).
The degree for this Node is TD(N) = ID (N) + OD (N)

Adjacency Matrix

In general, an adjacency matrix is represented by two arrays. a one-dimensional
array stores ”Node” information in the graph and a two-dimensional array
(Adjacency Matrix itself) stores information about nodes or edges in a graph.
There is an example below to explain the storage by using the graph.

The node array is node[4]= {A,B,C,D}. The Relationship array is ”Re-
lation”[4]. The degree for Node C is 2. The degree for the other nodes is 1.
For example, if there is an arc from B to A then relation[1][0] = 1. However,
there is not a relation from A to B, the result is changed to: relation[0][1] = 0.
Hence, the discrimination approach to search the relationship between two
nodes is relation[i][j] = 1. NEO4J asked all of N’s adjacencies to scan the
elements of the i-th row of the matrix and find the nodes whose relation[i][j]
is 1.

2.2. DATABASES FOR BIG DATA 48 of 123

Adjacency List

Adjacency List is another approach to store graph. There is an example below
to explain the storage by also using the graph. In this example, the Node table
contains two fields, data and ”first edge”, ”Data” is the data field and ”first-
edge” is the pointer field. ”Firstedge” points to the first node of the side table.
”Adjvex” is the adjoining field. ”Next” points to the next node in the side table.
Therefore, it can also calculate the degree and search the relationship between
different nodes. In NEO4J, the query will be realized by searching the Adja-
cent node. The query of NEO4J is based on the node. It has searched all of the
other nodes which have a direct relation between this node.

Join operation

Join operation for graph database is a selection over a Cartesian product. A
Cartesian Product is a collection from multiple subgraph. The data model of
Cartesian Product is : A × B = {(a, b) | a ∈ A and b ∈ B}. A and B are
the nodes. ”a” and ”b” are properties.

Create Nodes

NEO4J [28] is a kind of graph database mainly used in ontology representation
so it respects a set of standards such as the Resource Document Framework
(RDF) [15] itself based on XML format. NEO4J defines the Cypher language

2.2. DATABASES FOR BIG DATA 49 of 123

to query the database. In NEO4J graph database, it has used Cypher language5

to query the database.

CREATE (a:Earthquake{"time":"2018-04-28",
"latitude": "33.4893333",

"longitude": "-116.7948333",
"depth":"71.4",
"mag":"4.6",
"Source": "us"}

)
CREATE (b:Earthquake{"time":"2018-04-27",

"latitude": "18.0433",
"longitude": "-67.4248",
"depth":"114",
"mag":"2.74",
"Source":’pr’}

)

In the example above, the node ”earthquake” is enclosed in round parenthe-
sis and defined by several properties, comma separated, represented by edges
to value all enclosed in curly braces.

(a:Earthquake{"time":"2018-04-28",
"latitude": "33.4893333",
"longitude": "-116.7948333",
"depth":"71.4",

"mag":"4.6",
"Source": "us"})

(b:Earthquake{"time":"2018-04-27",
"latitude": "18.0433",
"longitude": "-67.4248",
"depth":"114",
"mag":"2.74",
"Source":’pr’})

All of the codes before are ”adding” Nodes. There are two different nodes
here. In the code before, the label is ”Earthquake”.

5http://people.inf.elte.hu/kiss/13kor/Neo4jCheatSheetv3.pdf

2.2. DATABASES FOR BIG DATA 50 of 123

a:Earthquake{"time":"2018-04-28",
"latitude": "33.4893333",
"longitude": "-116.7948333",
"depth":"71.4",
"mag":"4.6",
"Source": "us"}

b:Earthquake{"time":"2018-04-27",
"latitude": "18.0433",
"longitude": "-67.4248",
"depth":"114",
"mag":"2.74",
"Source":’pr’}

All of the codes before are the properties of each node. It has used ” ” square
brackets to define the properties of a node.

Create a Relation

MATCH (a:Earthquake),(b:Earthquake)
WHERE a.Source = "us" AND b.Source = "pr"
CREATE (b) - [:R] -> (a)
RETURN type(r)

- ”MATCH” is the way to get data from the graph. This is the graph pattern to
match. - ”CREATE” creates nodes and relationships. This part describes the
realtion between a (”us”) and b (”pr”) by ”:R”.

Querying style

MATCH (x) - [:R] -> (y)
WHERE y.Source = "us"
RETURN x.Source

The query ask to search the other earthquake’s source which has a relation ”:R”
with ”us”. Figure 2.25 describes the construction of this sample of graph DB.

CREATE (a:Earthquake{"time":"2018-04-28",

2.2. DATABASES FOR BIG DATA 51 of 123

"latitude": "33.4893333",
"longitude": "-116.7948333",
"depth":"71.4",
"mag":"4.6",
"Source": "us"}),

CREATE (b:Earthquake{"time":"2018-04-27",
"latitude": "18.0433",
"longitude": "-67.4248",
"depth":"114",
"mag":"2.74",
"Source":’pr’}),

((b) - [:Source] -> (a));
MATCH ((x) - [:Source] -> (y))
WHERE y.Source = "us"
RETURN x.Source;

Figure 2.25: Sample of graph DB

Example

1) Nodes creation.

CREATE (p:test{
time:line.time,
latitude:line.latitude, longitude:line.longitude,
depth:line.depth, mag:line.mag, Source:line.Source

2.2. DATABASES FOR BIG DATA 52 of 123

}
)

2) Values query
- NEO4J could search all of the information by using the Source name. In

this database, it’s name is ’Source’. There are 15 countries and 11252 earth-
quakes in the world. It has used 3491ms to search all of these information. For
each Source there are the relations to connect with any earthquake information.

MERGE (c:Source {code:coalesce(line.Source, ’NA’)})
CREATE (t:Test{

time:line.time,
latitude:line.latitude,
longitude:line.longitude,
depth:line.depth,
mag:line.mag,
magType:line.magType,
id:line.id,
type:line.type,
Source:line.Source
}

)
MERGE (t)-[:LOCATED_AT]->(c)

- NEO4J could query the same question: how many times did it should use
to search the earthquake information in ’us’? It has used 307ms. There are 992
nodes. It means that there are 992 earthquakes in US.

WHERE line.Source=’us’ WITH line
MERGE (c:Source {code:’us’})
CREATE (t:Test{

time:line.time,
latitude:line.latitude,
longitude:line.longitude,
depth:line.depth,
mag:line.mag,
magType:line.magType,

2.2. DATABASES FOR BIG DATA 53 of 123

id:line.id,
type:line.type,
Source:line.Source

}
)

MERGE (t)-[:LOCATED_AT]->(c)
MATCH (c) RETURN c

2.2.7 Summary

Relational databases and NoSQL databases are not opposed to each other, but
are complementary.

Data models

Each database or data service network has its own fixed data type. The follow-
ing table compares the data types of the five databases. Figure 2.26 describes
the database information.

Figure 2.26: Databases information

Relational databases

In relational database, the index which is unique and if the request does not
relate to this index (which is often the case) the search will be slow. Making
an optimal database in space supposes many tables and unfortunately for the
processing time it will be necessary to make a join which can be slow if one

2.2. DATABASES FOR BIG DATA 54 of 123

does not operate on primary keys and which can become catastrophic if one
distributes on several servers.

Column-oriented databases

Due to the explosive growth of data volume in recent years, this type of NoSQL
database has attracted special attention. Normal relational databases store data
by units of row, and are good at reading by row, such as the acquisition of
specific conditional data. Therefore, relational databases have been named as
” row-oriented databases”. In contrast, a column-oriented database stores data
in units of columns and is good at reading data in columns.

Column-oriented databases have stability: if the data is increased, it will not
reduce the corresponding processing speed (especially the writing speed). So
they are mainly applied where a large amount of data needs to be processed. In
addition, they are also very useful to update large amounts of data for a batch
program. The indexes on the data are cascaded so that an optimal construction
of the base could give very high performance if the queries are known dur-
ing the construction. However, due to the fact that column-oriented databases
are very different from current database storage, they are very difficult to ap-
ply. Figure 2.27 presents the difference between RDBMS and Column store
database.

Figure 2.27: Comparison between RDBMS and Column store database

Key-value store and Document databases

Key-value store databases are suitable for applications that operate frequently
and have a simple data model. The values stored in the key-value database can
be simple scalar values, such as integers, booleans, or they can be structured

2.2. DATABASES FOR BIG DATA 55 of 123

data types, such as lists and JSON structures. A key-value database usually
has a simple query function that allows us to find a value by key. General key
database support search functions, provides greater flexibility. Developers can
choose to use techniques such as enumerated keys to implement range queries,
but these databases often lack the ability to query documents, column families,
and graph databases.

Document databases provides embedded document, which is useful for de-
normalization. The document databases stores frequently queried data in the
same document, not in different tables. The document database is designed ac-
cording to the standard of flexibility. If an application needs to store different
attributes and a large amount of data, the document database will be a good
choice.

Graph databases

1) The traversal of a graph is a unique algorithm of the graph data structure, that
is, starting from a node. It can quickly and easily find its neighboring nodes
according to its connection relationship. Therefore, Neo4J has very efficient
query performance, which can increase the query speed by several times or
even dozens of times compared to RDBMS. And the query speed will not drop
due to the increase of data volume, that is, the database can be durable and
always maintain its original vitality. Unlike RDBMS, some of the paradigm
designs are inevitably used, if the developer needs to represent complex rela-
tionships during a query, a lot of connections will be inevitably constructed.

2) The characteristics of the graph data structure and its unstructured data
format make the Neo4j database design highly scalable and flexible. Because
the nodes, relationships, and attributes that increase as the demand changes do
not affect the normal use of the original data. In fact, the properties of Neo4j
nodes are some Key-Value data collections. Neo4j can display richer contents
through the attributes of nodes and relationships, which is incomparable to
other Key-Value databases.

2.2. DATABASES FOR BIG DATA 56 of 123

Schema and Schema free

Some database are schema based (Sqlite, MonetDB) and others are schema-
less (Cassandra, MongoDB, NEO4J). If the user should understand and define
the structure of a database then it is a schema-based database. The relational
schema defines what columns appear in the table, their names, and their data
types. However, it is an error to insert data that doesn’t fit the schema. There-
fore, the scalability of the database is not high.

In contrary, a schemaless database allows any data, structured with individ-
ual fields and structures, to be stored in the database. One of the most com-
monly used guidelines here is that schemaless can benefit the user with this
flexibility. For example, compared to schema database, schemaless database
could bring more development flexibility to software developers, but their main-
tainability and rigor are often not as strong as typed languages. Similarly,
flexibility and maintainability should also be taken into account when using
a schemaless database. In this way, schemaless database could add a vari-
ety of relationships to the nodes, instead of worrying about whether to record
some foreign keys by changing the schema of the database, as in a relational
database. This in turn allows software developers to add a variety of relation-
ships between nodes.

Execution time with different database

To give a first idea on performance, we load each database with earthquake
information provided by the United States Geological Survey for one month.
Figure 2.28 shows the different execution time by searching same query ”The
earthquake information located in ”us”. All the execution times are obtained
by a query not using an index.

Figure 2.28: Sample information

2.3. CATEGORY THEORY 57 of 123

In Figure 2.28, the execution time is good for three databases. ”Sqlite”,
”MonetDB” and ”MongoDB”. The reasons why it causes this result are:

1) Cassandra and MongoDB are schemaless databases and schemaless net-
works. There are also Column key and Primary key in these two databases.
The time to search the relevant values in a database is fast. However, Cassan-
dra is three times much more faster than MongoDB, because of the data model
for Cassandra is based on a collection of Column family. For some Column
family has the same row key. For example, Cassandra could use ”us” for the
Row key.

2) This earthquake database is a file with lots of data types. Structurally it
is near to a relational database and as a relational database, Sqlite could obtain
the result a little faster than Cassandra and 3 times faster than MongoDB.

Therefore, based on the data in the Figure 2.28, there are some follow-
ing conclusions: Whether it is a schema database or a schemaless database.
NoSQL database or SQL database. They all need to analyze and select the
appropriate database according to the specific situation.

2.3 Category theory
Category theory [35] [36] uses functions to express the relationship between
categories. With the development of category theory, a set of calculation meth-
ods for functions has been developed. This theory was originally used only for
mathematical operations, and later it was implemented on functional program-
ming. Haskell is a functional programming so it is based on category theory.

Category was introduced by an American mathematician Mr. Mac Lane
[40]. It is the ultimate abstraction of most mathematical objects. Abstraction
refers to the process of describing different concepts in the same way. For ex-
ample, all sets, linear spaces, groups, and graphs form a category. Category
Theory includes three basic elements: Category, Functor and Natural Trans-
formation. In the other hand, there is also the Monad endofunctor.. Category
theory generalizes many fields of computer science such as Algebraic specifi-

2.3. CATEGORY THEORY 58 of 123

cation[41], program calculation [42] and Model Driven Engineering [43].

Definition

In life, people often say: ”They are not talking about something in a category!”
The implication is that the things that two people talk about are not related
and have no relevance. In fact, Category refers to a group of things and all
the relationships between these things. In other words, these things and these
associations together constitute a category. In general, Category theory is a
mathematical theory that abstractly deals with the relationship between mathe-
matical structure. In order to define this work, it has three basic elements. The
objects with some functions, functors which describe how to switch objects
between two categories and natural transformation to describe ways to apply
functors.

Benefits and Uses

The usefulness of Category theory is to provide a more unified and a more
general representation of mathematical structures. The French mathematician
group: ”Nicolas Bourbaki” summarized three basic mathematical structures:
algebra, topology and order into one Category theory. Any currently mathe-
matical structure can be expressed in the language of category theory. At the
same time, the graph of categories is also very intuitive and easy to understand.

2.3.1 Category
Definition

A category is a mathematical structure [33][34] C = (O,A, 1, o) defined by:
a set of Objects, e.g A,B,C, ..., a set of Arrows (morphisms) ”A” between
theses objects. An application that associates a source and target object to each
arrow f : A→ O×O. For this relation, an arrow ”a” such as f(a) = (O1, O2)
is simply written a : O1 → O2. It is pronounced by a is the type ofO2 fromO1.
Figure 2.29 describes the example with the composition and identity relation.

2.3. CATEGORY THEORY 59 of 123

Figure 2.29: An example with the composition and identity relation

Figure 2.29 describes an example based on three objects (A,B,C) with two
morphisms f : A → B and g : B → C, identity morphism ido : O → O and
a composition operator f ◦ g.

Properties

A category is generally represented by a directed graph such as the one of the
Figure 2.30.

Figure 2.30: A directed graph

A diagram is commutative if two paths from a common object lead to the
same element. In particular, Figure 2.31 shows a commutative diagram in
the sense a ◦ id(O1) = a. Therefore, this kind of diagram corresponds to
an equation (and also corresponds to a program in a functional programming
language).

Categories are associated with concepts such as
- Duality and opposite category (obtained by reversing the arrows)
- Initial object (or by the way of duality, final object), limits/colimits, pushout/-

2.3. CATEGORY THEORY 60 of 123

pushback. In particular, a pushout for a diagram (X
g←Z g→Y) is an object P

associated with two morphisms (X i1←P i2→Y) such as the following diagram
commutes:

Figure 2.31: Commutative diagram

The pushout is associated with the universal concept which means that for
the other pushout (Q, j1, j2) there exists an unique morphisms u : P → Q. In
other words, the pushout is unique up to the iso-morphism.

Examples

1. Set
A simple Category is Set whose objects are all sets and arrows are partial

functions. Pullbacks correspond here to disjoints union, and pullbacks to carte-
sian products. Products are written X × Y and are associated with projections
functions π1 : X × Y → Y and π2 : X × Y → Y . Figure 2.32 presents a
diagram with Products and Pullbacks.

Figure 2.32: Products and Pullbacks

2.3. CATEGORY THEORY 61 of 123

2. Graph
The objects of Graph are graphs and morphisms are a graph morphism. An

illustration of a graph morphism is given in Figure 2.33.

Figure 2.33: Example of graph morphism

It reminds us that a graph morphism is given by a pair of applications (one to
transform the node and the other to transform edges) preserving the structure
of the graph. As a remark, the graph G′ in Figure 2.33 is an example of a
terminal object.

Sample

A graph can be used to represent a relation and (x1, x2) ∈ G can be interpreted
as ”x1 is related to x2”. The logical expression: ∃X, (X, 1) ∈ G ∧ (X, 4) ∈ G
expresses the search of the common friends between 1 and 4 that is graphically
represented by the graph G. Figure 2.34 describes an example of graph.

2.3.2 Functor
Defintion

A functor F is a structure preserving map between two categories F : C → D .
These means that it transforms objects and arrows. If a : O1 → O2 is an arrow
from C then F (a) : F (O1) → F (O2) is an arrow from D . The functor also
presents identity and composition. For example, F (a1 ◦ a2) = F (a1 ◦ F (a2)
and F (id(a1)) = id(F (a1))

2.3. CATEGORY THEORY 62 of 123

Figure 2.34: An example of graph

Endofunctor

In the category Set, a well-known (endo)functor is the Powerset such as P(0)
correspond to the set of all the subset of ”0” and P(f){x1...xn}

= {f(x1)...f(xn)}.

Example

Category is the product (bi)functor such as O1 ×O2 represents the set of pairs
(x, y) and (f x y)(x, y) = (f(x), f(y)). The preceding functors could build
new ones and be used to abstract data structures found in computer science. For
example, P(x× y),P(x×P(y)). More generally, (abstract) datatypes such
as List or Tree, could be defined indirectly by a set of morphisms (operaters)
and as the fixpoint of a functor.

Sample

As an illustration in Figure 2.35,List L(x) could be defined by a function ”e”
which returns the empty list and a function ”a” to add an element of type x.
The ”1” represents the initial object from the category and corresponds both to
any singleton set or the ”void” datatype in a programming language.

2.3. CATEGORY THEORY 63 of 123

Figure 2.35: Example of list

Then, L(f) is defined by the commutative diagram:

Thus, a sample list [1,2,3] will be represented by a(1, a(2, a(3, ls)) and one
can check that, with the preceding diagram or equation, L(f)(a(1, a(2, a(3, ls))))

= a(f(1), a(f(2), a(f(3), ls) = [f(1), f(2), f(3)]. As a remark, L(f) is also
called ”map(f)” and is also the most well known of the functional programming
users.

2.3.3 Natural transformations
Definition

In Category theory, Natural Transformation η : F → G is an important concept
in dealing with the relationship between two functors F and G such as for any
object x and y the following diagram commutes :

2.3. CATEGORY THEORY 64 of 123

Example

Natural transformations are interesting to relate or transform data structures,
and a concrete example is η : P(x × y) → P(x ×P(y)) that returns the
adjacents elements. For example, η{(x1, y1), (x1, y2)...(xn, yn)}

= {(x, {(x, {y1, y2...}), ...(xn, {...})}. The fact that there exists an inverse
transformation η′ : G → F such as η′ ◦ η = G and η ◦ η′ = F leads to the
concept of ”isomorphism” or equivalence as illustrated in the following Figure
2.36.

Intuitively, by considering the example above in Set, the two data structures
(P(x×y) and P(x×P(y)) represent a ”same” information and are naturally
isomorphics. As a remark, in the context of computer program, the algorithms
(eg. get the adjacents elements) mostly depends on the data structure consid-
ered and then natural transformation could be considered to ”shift” program to
another data structure and get better performance (eg. algorithm optimization).

Figure 2.36: Example of natural transformation

2.3.4 Monad
Definition

In functional programming languages, Monad [44] is a very important concept.
It originated from the Category theory in mathematics. It is a common property
of a type of type. We can abstract some of the data-specific continuous compu-
tational behaviors and automate them. That is to say, the programmer does not
have to care about what happens inside Monad when writing the program, but
just use some basic operations of Monad, such as return and�=. Therefore,

2.3. CATEGORY THEORY 65 of 123

Monad can be understood to some extent as the integration and consolidation
of code. It can reduce the programming of duplicate and redundant codes.

Monads introduction

In computer science, the side effect of a function occurs when calling a func-
tion. In addition to returning function values, it also has an additional effect
on the called function. For example, modify global variables (variables out-
side the function) or modify parameters. The ”side effects” of the function can
cause unnecessary trouble to the program design, bring very difficult errors
to the program, and reduce the readability of the program. However, Monad
provides a good mechanism for handling ”side effects”.

Operating mode

In general, there are two basic elements in Monad: Value and Type.

1. Value
1) Value is the most basic data in the software A series of operations that

handle Value can be encapsulated into functions. Entering a value will result
in another value. For example (+1)2 = 3

2) Functions can also be used in conjunction, one function followed by an-
other. At the same time, it can also process each member of the data collection
in turn.

2. Type
A data type is a package of values that includes not only the value itself,

but also related properties and methods. For example, After 2 becomes the
data type, the original function cannot be used. Because the ”(+1)” function
handles values (referred to as ”value functions”) rather than dealing with data
types.Therefore, it needs to redefine an operation. It accepts a ”value function”
and an instance of the data type as input parameters, and then uses the ”value
function” to process another instance of the data type. Therefore, in fact, the

2.3. CATEGORY THEORY 66 of 123

data type of the package is opened, the value is fetched, processed by the value
function, and then the data type is encapsulated. For example, there are two
types to calculate. Firstly, taking out the respective values, one is a function
and the other is a Value. Secondly, using the function to process the value.
Finally, the result of the function is then encapsulated into the data type.

Therefore, Monad is using this design pattern to split an operation process
into multiple connected steps through a function. As long as the user provides
the functions needed for the next operation, the entire operation can be auto-
matically carried out.

Advantages

Monads [45] are interesting in a functional programming context to model
”side effects” (eg. IO, Concerning, Non Determinist). As a simple example,
the State monad that models the concept of ”memory” found in imperative
programming can be represented by F (x) = S ′ → X × S ′. In particular,
saving a value into the ”memory” will correspond to save(v) = ((), v) and
loading the in memory value to load′(s) = (s, s). The return function then
simply corresponds to return(x) = λs.(x, s) where the notation λx.y denotes
an anonymous function f(x) = y. The element µ is replaced by an equivalent
form called bind: F (X) → (X → F (Y)) → F (Y). This one simply corre-
sponds to a ”composition” of effects. Its definition is bind m f = λs. The
operator is associated with a specific notation in functional programming and
bind m f is written:
do x -> m
return (f(x))

Thus, with all these elements, it is possible to express kinds of imperative
programs such as:
do save (1)
v <- load
save (v+1)

2.4. DATA AND QUERYING MODELING 67 of 123

2.4 Data and Querying Modeling
Big Data is described by five basic elements [46][53]: Volume, Velocity, Vari-
ety, Veracity and Value. However, only the two first elements are relevant for
this research. Volume is about the amount of data. Velocity proposes a highly
growth rate of data in Big Data. The research is concentrated on how to reduce
the querying time by using a better storage structure. In our example, we query
the earthquake database to find all records with a source from the united stats
(US). Modifying the data model is an effective way to abstract the data values.
As described before, Category Theory could be used to define and modify the
data model to optimize the efficiency without influencing the working quality.
For example, Functor defines the storage structure of data, Natural transforma-
tions could safely change Data modeling approach. Hence, the time processing
could get a certain degree of improvement.

2.4.1 Time complexity

In computer science, an algorithm [47] is a description of the solution to a
particular problem. It appears as a finite sequence of instructions in a computer,
and each instruction represents one or more operations. The algorithm is not
unique, that is, the same problem can have multiple algorithms that solve the
problem. However, how can we improve execution time of the algorithm?

When performing algorithm analysis, the total number of executions of the
statement T(n) is a function of the size of the problem n. Then, analyzing the
change of T(n) with n and determine the order of T(n). The time complexity
of the algorithm, which is the time metric of the algorithm, is denoted as: T(n)
= O(f(n)). In our research, the time used to analyze the data relies on the
number of values in a database. There is an example in Figure 2.37. The time
to realize the operation with ”get()” and ”has()” is O(n). Because of the
number of values in the list is ”n”. In this figure, ”add x” is the function to
add the element in a list. We set the time complexity of adding an x is O(1),
the time complexity of our work will be O(n) by inserting n times of x. In

2.4. DATA AND QUERYING MODELING 68 of 123

Figure 2.38, there are two equations. They have been used to verify the value
(”time” = = y) in this database. If there is an element y in list L(x), it will be
directly obtained the result of ”Bool”. On the contrary, DB contains a large
amount of data information, the computer needs to spend more time (Compare
data information for each item in the database) to complete the work when
performing the same data retrieval task.

Figure 2.37: Schema for time complexity

Figure 2.38: Example with two equations for time complexity

For example, the two equations in the figure before are:

E1 is False = newDB o has (y)

E2 is has(y) \circ add(x) = (x==y) v o has (y)

Illustration, there are three date values (”time”) which are added in ”NewDB”,
The steps to verify that the value are:

has (y) Add "2018-04-28" (
Add ("2018-04-27", Add ("2018-04-26", NewDB)

2.4. DATA AND QUERYING MODELING 69 of 123

))

E2 = ("2018-04-28" = = y) v has y (
Add ("2018-04-27", Add ("2018-04-26", NewDB)

))

E2 = ("2018-04-27" = = y) v has y (
Add ("2018-04-26", NewDB)

))

E2 = ("2018-04-27" = = y) v has y (NewDB)

-> True

A natural transformation corresponds to a relation between two functors.
As an illustration, the graphs mentioned above can be represented in a dif-
ferent way by considering the functor G′ (N) = P (N × P (N × N))
that associates adjacent links to each node. The relation between G and G′

can then be represented by a natural transformation η : G′(N) → G(N).
This one can be defined, by using set comprehension notation, as: η(g′) =
(x, y, z) | (x, ys) ∈ g, (y, z) ∈ ys. This transformation is invertible and the func-
tors/datatypes are then said to be naturally isomorphic G′(N) ∼=η G(N). If the
two structures represent a ”same” information, the performance of a program
depends on the structure selected. As an example, a function/program to get the
adjacent links, i.e. get(n) : G(N)→ P (N ×N), will have a complexity O(n)
where n is the number of edges when using G, and O(m) where m is the num-
ber of nodes when using G′, and m ≤ n. So, get′(n) : G′(N) → P (N × N)
is ”faster” than get(n). The change from G to G′ can be viewed as an opti-
mization technique called ”memorization” in the sense that G0 memorizes the
result (i.e. adjacent links) for each input node and then eliminates extra com-
putations [37]. The optimized version of the program will be obtained with
get′(n) = get(n)◦η−1 that can be simplified by using the definitions of g and
η − 1 (and is known as short-cut fusion optimization [34]). Another common

2.4. DATA AND QUERYING MODELING 70 of 123

optimization technique consists in splitting data and using parallel computa-
tions. In the example of graphs and by considering a pair of computers, this
can be modeled with G′′(N) = G(N) × G(N). The function to get the adja-
cent links will be now get′′(n)(g1, g2) = ∪ ◦ get(n)(g1)× get(n)(g2))with a
complexity O(max(n1, n2)) where ni is the size of gi. And finally, we get an
optimization chain that can be represented by: O(get′′) ≤ O(get′) ≤ O(get).

2.4.2 Data models

Data should not be stored in a machine in a chaotic manner. Otherwise, not
only the logical relationship between the information will be lost, but also the
searching efficiency will also be relatively low. Therefore, it is necessary to
discover some inter-relationships between these data and use them to organize
the data into a logical structure [48].

List model

List [49] [50] is a finite sequence which is composed of some elements or
empty elements. List could also be defined with a mathematical model. List
can be expressed as (a1, a2, ai−1, ai, ai+1, ..., an), where ai−1 is ahead of ai, ai
is ahead of ai+1, ai−1 is said to be the direct precursor of ai, and ai+1 is the
direct successor of ai. Figure 2.39 describes this list. However, a data element
can consist of several data items in some complex lists.

Figure 2.39: Example of a simple list

Figure 2.40 is a complex list, the three elements (time, latitude, longitude,
depth, mag, Source) are data items

When i = 1, 2, 3...x − 1, ai has one and only one direct successor. When
i = 2, 3..., n, ai has one and only one direct precursor. Therefore, the number
n of the list elements is defined as the length of the list. Empty list is composed

2.4. DATA AND QUERYING MODELING 71 of 123

Figure 2.40: Example of a complex list

by (n = 0) list. However, each element in a non-empty table has a certain
position. For example, a1 is the first data element, an is the last data element,
ai is the i-th data element, and i is the bit order of the data element ai in the list.
Therefore, a list is a sequence firstly. In other words, there is an order between
elements. Then, list emphasis is limited. However, when the user needs to
insert and delete elements in a List, the user needs to move a lot of elements.
The time execution depends on the number of elements in this list.

Data types used in computer science are generally composed with basic data
types (booleans, integers, characters, etc.), structured data types (structures and
union types) and collections (e.g. arrays or recursive datatypes such as linked
lists or binary trees). If most of the imperative programming languages (e.g.
C) mainly use arrays and loops (for or while statements), functional program-
ming languages use recursive datatypes (with in particular recursive lists) and
recursive functions. As mentioned previously, lists can be modeled both by
a parameterized data structure L(x) where x is a type parameter restricting
the type of the elements contained in the list, and two ”constructor” functions
[34] to create a new empty list e : 1 → L(x) and to add an element in a list
a : x × L(x) → L(x). In the preceding definitions, 1 can be interpreted as
the ”void” element found in imperative languages, and x × L(x) as a pair of
values. The function e then returns a constant value and is then simply written
e : L(x). As an illustration, the list xs = [x1, x2, x3] will be constructed with
a(x1, a(x2, a(x3, e))). As a complement, it is well known by functional pro-
grammers that a binary function is equivalent to a higher-order function, i.e.
x × y → z ≡ x → (y → z), and the preceding definition of the list xs is also

2.4. DATA AND QUERYING MODELING 72 of 123

equivalent to a x1 (a x2 (a x3 e)).
Most of the functions on lists f : L(x) → y can be defined by case analy-

sis and two equations: fe = v and f(axxs) = gxy where y = fxs. Such
a function is called a ”catamorphism” [62] and can be written f = [v, g].
As sample uses, the function returning the length of a list can be simply de-
fined by length xs = [0, λx.λy.1 + y](xs) where λx.λy.1 + y denotes an
”anonymous” function hxy = 1 + y, the concatenation of two lists defined
by xs ⊕ ys = [ys, λx.λy.axy](xs), the application of a function h to all
the elements of a list by maphxs = [e, λx.λy.a(hx)y](xs), the test of the
presence of an element z in a list xs by contain xsz = [False, λx.λy.(x =
z) ∨ y](xs), the selection of the elements satisfying a predicate p : x → Bool

by filter p xs = [e, λx.λy.if (p x) then y else (a x y)] (xs), etc. This latter
function is the key point to search for specific information in a list. For in-
stance, the search of the common elements on two lists can be obtained with
xs ∩ ys = filter (λx.contain ys x) (xs). As a remark, queries (with filter)
are often associated with transformations (with map) with the list ”compre-
hension” [67] notation: fx | x ∈ xs, px ≡ map f (filter p xs). The code
below presents a sample implementation of the preceding functions in Haskell
with their respective complexity. Lists are already present in the language, and
L(x) ≡ [x], e ≡ [] and (a x xs) ≡ (x : xs). In the code, the last function
simply removes duplicate elements in a list which is also a transformation of a
list into a set (if adding the extra assumption that the order of the elements is
not important).

cata v f [] = v
cata v f (x:xs) = let y=cata v f xs in f x y
length xs = cata 0 (\x -> \y ->1+y) xs
-- O(n) , n=length xs
xs ++ ys = cata ys (\x -> \y ->x:y) xs
-- O(n)
map h xs = cata [] (\x -> \y ->(h x):y) xs
-- O(n)
contain xs z = cata False (\x -> \y ->(x==z)||y) xs
-- O(n)

2.4. DATA AND QUERYING MODELING 73 of 123

filter p xs = cata [] (\x -> \y ->if (p x) then
x:y else y) xs
-- O(n) xs /\ ys = filter (\x -> contain ys x) xs
-- O(n*m), n=length xs
--m=length ys
set xs = cata [] (\x -> \y ->if contain y x then y
else x:y) xs -- O(nˆ2)

We must notice that the preceding functions satisfy certain properties, such
as filter p (xs⊕ ys) ≡ (filter p xs) ⊕ (filter p ys) or filter p (filter q
xs) ≡ filter (λx.(px) ∧ (qx)) xs, that can be used to improve the perfor-

mances of the functional programs. In particular, the first property is interest-
ing with concurrency (i.e. one program searching in xs and the other one in
ys), and the second to avoid a loop (i.e. testing p and q in the same loop). If the
oblivion of the ordering relation is used to pass from lists to sets, the addition
of an ordering relation between the elements contained in a list can be used to
improve the search of a particular element in a faster way, e.g. by stopping the
test of the presence of an element x when finding some i such as x < xi. The
code below then gives the example of the insertion sort to transform a list in an
ordered one (with an ordering relation o : x → x → Bool). It also gives the
new version of the function ”contain xs z” with the ordering operator o as an
extra parameter.
insert o y [] = [y] -- O(n)
insert o y (x:xs) =

if (o y x) then (y:x:xs)
else
x:(insert o y xs) sort o xs
= cata [] (\x -> \y ->insert o x y) xs

-- O(nˆ2)

contain’ o [] z = False
-- O(n) statically
contain’ o (x:xs) z =

if (x==z) then True
else if (o z x) then False

2.4. DATA AND QUERYING MODELING 74 of 123

else (contain’ o xs z)

The (natural) transformation to switch from a list L(x) to an ordered list
OL(x) is not invertible in the sense the position of the original elements are
forgotten. This can be changed by embedding explicitly the location of each
element to an intermediate data structure, i.e. [x1, ...xn] 7→ [(x1, 1), ...(xn, n)].
This transformation can be achieved by using a function zip such as sip[x1, ...xn]

[y1, ...ym] = [(x1, y1), ...(xk, yk)] where k = min(n,m). Thus, by shift-
ing the ordering relation o to O′(x, y)(x′, y′) = o x x′, sort′ xs = sort o′(zip
xs[1..(length xs)]) with return an ordered list with the original position of the
elements. For instance, sort′(<)[5, 1, 8, 12, 5, 8] be equal to xs′ = [(1, 2), (5, 5),

(5, 1), (8, 6), (8, 3), (12, 4)]. Now, it is possible to find again the unordered
list by sorting the position. The code below gives the implementation of all
these functions, and establishes the natural isomorphism L(x) ≡sort′ OL(x).
zip [] _ = [] zip _ [] = []
zip (x:xs) (y:ys) = (x,y):(zip xs ys)

sort’ o xs =
sort (\x -> \x’ -> o (fst x) (fst x’))

(zip xs [1..]) sort1’ oxs =
sort (\x -> \x’ -> (snd x) < (snd x’)) oxs

contain2 o z [] =
False contain2 o z (x:xs) =
if ((fst x) == z)
then True else
if (o z (fst x))
then False else (contain2 o z xs)

As a complement, it is also possible to establish an isomorphism with sets
S(x), i.e. OL(x) ≡set′ S(x), by considering the following code. In particular,
set′ xs′ will be equal to [(1, [2]), (5, [5, 1]), (8, [6, 3]), (12, [4])].

set’ [] = []

2.4. DATA AND QUERYING MODELING 75 of 123

set’ [x] = [x]
set’ ((x,n):((x’,n’):xs)) =

if (x==x’)
then set’ ((x,n++n’):xs)
else (x,n):(set’ ((x’,n’):xs))

set1’ [] = []
set1’ ((x,[n]):xs) =

(x,n):(set1’ xs) set1’ ((x,(n:ns)):xs)
=

(x,n):(set1’ ((x,ns):xs))

So, there are three equivalent representations of a single item of information
and three equivalent queries with various performances: contain : L(x) →
Bool, contain2 : OL(x)→ Bool and contain2 : S(x)→ Bool. As a sample
concrete use of these elements, it is possible to consider a word search in-
side document with for instance the ”Alice’s adventures in wonderland (Lewis
Carroll)” book 6. This document has an original file size of 154 ko and is com-
posed of a list l of 27341 words - which corresponds both to the length of l : L
and l′ = sort′ l : OL, but only 2955 distinct words - what correspond to the
length of l′′ = set′ l′ : S. The search for the word ”childhood”, that appears
near the end of the document, with these various values leads to the measures
presented in Figure 2.41. This one also presents the file sizes used to store
l, l′ and l′′. Indeed, the original document corresponds to a list of characters
that has to be split into a list of words and the transformation requires a cer-
tain amount of time (Figure 2.42), and storing this list of words avoids these
extra computations. This is similar for the sorting of a list or its transformation
to a set of words, and the Figure 2.42 well show the algorithmic complexity:
0,322s for set′ that id O(n) and 36,933s for sort that is O(n2). Finally, Figure
2.43 summarizes the main elements presented in this part.

It presents a sample list of integers (but other types of elements are possible
such as words, for instance). It gives the invertible natural transformations used
to establish ”equivalence” and the various functions to query a specific infor-

6https://www.gutenberg.org/ebooks/11

2.4. DATA AND QUERYING MODELING 76 of 123

model time (s) db size (ko)
L 0.009 190

OL 0.006 397
S 0.005 191
T 0.004 209

Figure 2.41: Measurements.

transformation time (s)
words : 1→ L 0.021
sort′ : L→ OL 36.933
sort′ : OL→ S 0.322
tree : S → T 0.123

Figure 2.42: Measurements(cont.)

mation in each representation. Finally, it gives the performance of these func-
tions and shows how data transformations can lead to an optimization chain (T
being the limit of (≥) in the figure).

Table model

Table model [51] is a basic data model (see in Figure 2.44). Table model is a
sequence of the same type of data arranged in a certain order. Therefore, the
data model could be defined by a ”Field” (see in Figure 2.45). On the other
hand, there is also a table in this model. The ”record” can be written as: (a1,
..., an). The sequential storage structure of List is also the same and finds space
in memory, and takes up a certain amount of memory space by placeholders.
Then, the data elements are stored sequentially in this open space. That is,
the first data element is stored in the array marked 0. Figure 2.46 presents a
Maximum size of a list.

In Figure 2.45, Database < x > is a parameterized data type. This type defines
the operation to construct a new database by ”newDB()”. ”add(Records)”

2.4. DATA AND QUERYING MODELING 77 of 123

Figure 2.43: Summary.

could be used to add a new value from ”Records”. Verifying the value in
this database by using”has()” and getting some adapted values ” get() ” to
construct this new database. Data type ”Record” describes all of the data type
which it will be used in this table. To model Record, a product can be used
as the fields are all known at action time. The table is like a collection and
should be modeled by a list functor. More generally, these elements can be
represented by using the graphical notation as follows (Figure 2.47).

Figure 2.44: Example of table in a relational database

2.4. DATA AND QUERYING MODELING 78 of 123

Figure 2.45: Example of Database schema

Figure 2.46: Size of a list

The parameterized data type DB(X) will correspond to a functor by defining
(latter) an extra morphism DB(f) : DB(X) → DB(Y), where f : X → Y .
This morphism will represent, for instance, the application of ”f” to all the ele-
ments of the database (by preserving the structure). Eg. DB(latitude)(db) will
return the db contain only the latitudes of all the records in db : DB(Records).

For this model, we could use Product data types. Product data types x × y
that are similar to records (i.e. a finite set of fields having eventually different
types) can be used with lists to define tables or relations R(x, y) ≡ L(x × y)
as found in relational databases. We recall that binary products are specified
with two functions: fst : x× y → x and snd : x× y → y. Thus, all the func-
tions on lists can be used on tables, with a particular ”filter” to query specific
information. The code below gives an example of a table and a sample query

2.4. DATA AND QUERYING MODELING 79 of 123

Figure 2.47: Example of table schema

to get the ”Time” (first field) of the earthquake has happened in ”us” (second
field) with its equivalent ”comprehension” representation. It also shows how
easy it is to generalize the example to get other values with the is x function
(e.g. query1 == is ”us”), and how to combine it with the function presented in
the preceding part to get more complex queries (see query2).

type Relation x y = [String]
type Time = String
type Source = String
type latitude = String
type longitude = String
type depth = String
type mag = String
table1 :: Relation Name Job table1 = [

("2018-04-28", "us",
"33.4893333", "116.7948333", "10", "4.8"

),
("2018-04-27", "pr",

"18.0433", "-67.4248", "114", "2.74"
),
]

query1 = [fst r | r<-table1, snd r == "us"]
query1 =
map fst (filter (\r -> (snd r) == "us")table1)
-- O(n)

is x = map fst (filter (\r -> (snd r) == x)table1)
-- O(n)

query2 = (is "us") /\ (is "pr")
-- O(nˆ2)

2.4. DATA AND QUERYING MODELING 80 of 123

Relations are associated to specific operators such as inversion of a relation,
to get the image of an element, and the join of two relations that can can defined
as follow:

inverse :: Relation x y -> Relation y x
inverse xs = map (\r -> (snd r,fst r)) xs

img :: Relation x y -> x -> [y]
img xs z = map snd (filter (\r -> (fst r) == z) xs)

join :: Relation x y -> Relation y z -> Relation x z
join xs ys ...

Thus, is x ≡ img (inverse table1) x

Map model

Each element of a map [51] [52] is called a key-value pair. Map also has its
own rules when looking for elements in Map. Map retrieves the correspond-
ing value (value) by looking for the key (key), and the value of key cannot
be duplicated. Map models are defined by a set of values which is specified
by a schema in Figure 2.48. As a list is stored, each object in this database,
includes the association of objects with a key K, their corresponding value
type T and reference type R. In Figure 2.49, the data of time is key, and the
other data are values. Therefore, the structure of objects is represented by
o = (i, (K,T, v), (K,R, ref)). There is an example in Figure 2.49. More
generally, Map model corresponds to DB(Z) : DB(E) → DB(F) where
Z : K → V . K is a set of possible keys and V is a set of possible values. Rep-
resentation of a list as a Cartesian products such as: V = v1 × v2 × v3 × ...vk.
Figure 2.50 describes a schema to represent ”get() with K.

For instance,

size :: Map k a -> Int

2.4. DATA AND QUERYING MODELING 81 of 123

size empty == 0
size (singleton 1 ’a’) == 1
size (fromList([(1,’a’), (2,’c’), (3,’b’)])) == 3

--- O(1). The number of elements in the map.

size empty == 0 size (singleton 1 ’a’) == 1 size (fromList([(1,’a’), (2,’c’),
(3,’b’)])) == 3

— O(1). The number of elements in the map.

Figure 2.48: Key value and Document database schema by UML

Figure 2.49: Key value, Document database and Column database

2.4. DATA AND QUERYING MODELING 82 of 123

Figure 2.50: Schema for Map model

Graph model

In the previous three mathematical models, there is a simple one-to-one, one-
to-many relationship between data elements. However, if there is a more com-
plex relationship between data elements, Graph is a more effective method.
For example, the earthquake information. In the period after the earthquake
occurred at Santiago(USA), there were several aftershocks in the periphery. In
the analysis of data, we can use Graph to establish the connection between the
different earthquakes which occurred in the same region.

In general, a graph [51] [52] can be represented by a set of edges and a
functor G(N) = P(N × N × N) where N represents a set of nodes and
N × N × N edges of the form (source, label, destination). With a function
f : N → N ′, we can define a graph morphism m(f) = P(f × f × f) that
changes the nodes by preserving the structure of the graph - i.e. if (x, y, z) is
an edge of g then (f(x), f(y), f(z)) is an edge of m(g). m(idN) is an identity
morphism, morphisms are composable (i.e. m(f ◦ g) = m(f) ◦ m(g)) what
makes the set of graphs and morphisms another example of a category called
Graph. Figure 2.51 describes an example of a graph.

2.4.3 Queries
Introduction

A collection generated by all the data elements of the same type that needs to
be collected is called a Searching Table. A key is a value of a data item in a data
element, which can also be called a key-value. Key could be used to identify a

2.4. DATA AND QUERYING MODELING 83 of 123

Figure 2.51: Example of a graph

data element or to identify a data item (field) of a record. If this keyword (key)
can uniquely identify a record, then this keyword is called the primary key.
Hence, Queries determine a data element (or record) whose keyword is equal
to the given value in a Searching Table according to a given value. Figure 2.52
describes an example of searching table.

Figure 2.52: Example of searching table

In general, there are two types of Searching Tables: Static Search Table and
Dynamic Search Table. The Static Search Table is a searching table that is only
used for lookup operations. Its main operations are:

1) Querying whether a particular data element is in the searching table
2) Checking a specific data element and various attributes
Therefore, the Static Search Table is used to query the data existing in the

database.
Dynamic Search Table: Inserting a new data element that does not exist

2.4. DATA AND QUERYING MODELING 84 of 123

in the searching table with the lookup process, or deletes a data element that
already exists from the searching table. Therefore, the two modes of the Dy-
namic Search Table are:

1) Inserting data elements
2) Deleting data elements
In order to improve the searching efficiency, we need to organize the data

structure specifically for the lookup operation. This data structure for the
lookup operation is called the querying model. In terms of logical structure,
querying model is based on the collection. There is no essential relationship
between the records in the collection. In order to achieve higher searching per-
formance, we have to change the relationship between data elements. In this
chapter, we introduced models for several queries.

Table model

With the definition of table model, the query model has been established below
(see in Figure 2.53):

In this figure, the query is presented by X
get(Y)−−−→ Y . When the record is

empty, the answer will also be returned by an empty value. The query has been
used to get the result. The mathematical expressions are:
get(Y) : Y × [Y ×X]→ [Y]
get(Y,DB) = concat ◦map (\(x, z).(x = Y)(DB) = [Y |(x, z) ∈ DB,
x = Y]
If the result happens to be in the first position of the first column or in the

first position of the first field, the value of time complexity is O(1). Usually,
time complexity of this model is O(n).

Lists model

As the structure of the lists’ model, the query schema is similar with the query
in the table model. However, the storage unit is a List. The time complexity
depends on the number of lists and the number of items in the list (O(n)).
However, if the user only searches the first column value in this database, the

2.4. DATA AND QUERYING MODELING 85 of 123

Figure 2.53: queries for table model

time will be short. Because the elements are stored in the array marked 0 (the
first element). On the contrary, if the query needed to obtain all the information
with a special data, the time to work is also long. Figure 2.54 presents an
example for querying a list model. The mathematical expressions are:

1) get(Y) : Y × [Y ∈ DB]→ [Y]
2) get(Y,DB) = concat ◦ map (\(x, z).(x = Y)(DB) = [Y |(x, z) ∈

DB, x = Y ∧ (DB)]

Figure 2.54: queries for list model

Map model

Queries could be described by using the tuple of list (see in Figure 2.55). This
example relies on the query: if the value is in this database? When the DB
is empty, the result is always ”False”. On the contrary, if there are values in
this list, the value will be compared to the first value (key) in this list, then,

2.4. DATA AND QUERYING MODELING 86 of 123

comparing the value with the rest of this list (xs). The time complexity of the
query is in O(n).

put(Object key, Object) There are two parameters in this method, one is
”key” and the other is ”value”. In the newly added element, it needs to specify
the key and value of the new element, and can only add elements to the end of
the array.

get(Object key): Map is to find the value through key, the ”get” method
needed to pass in the key value.

The mathematical expressions (get) are:
1) get(Y) : Y × [[] ∈ DB]→ []
2) get(Y,DB) = concat ◦ map(\(x, z).(x = Y)(DB) = [Y |(x, z) ∈

DB, x = Y ∧ (DB)]

Figure 2.55: Example of queries

Graph model

Querying a particular information in a graph model is also a way to find a
morphism from the graph representing (a query) to a graph database. Indeed,
a query such as ”(X is-Source US and (X has-latitude Y)” can be viewed as
a labeled graph with two edges {Source : X → US, latitude : X → Y },
where X and Y denote variables as illustrated in Figure 2.56. The query
is a graph and an element of G(N ∪ X). The result is then a set of pairs
{{(X,US), (Y, 33.489333)}} and the program finding the possible morphisms
can be formalized by a function unify : G(N ′)×G(N)→ P(P(X ×N)) if

2.4. DATA AND QUERYING MODELING 87 of 123

N ′ = N ∪X the union of constant nodes N plus variables X . In general, the
time complexity of this model with n node and e edges is 0 (n+e).

Figure 2.56: Sample graphs and query/morphism.

PropositionsPropositions

• Strategy
• Process followed in our study

Chapter 3

Propositions

3.1 Strategy
In the chapter ”State of art”, we have seen that there are many databases with
different structures. Nevertheless, through our research, we will assume that at
a high level they rely on only three main data structures :

• Table modeling by list of tuples / records: [(x, y)];

• Map modeling by an indexed tuple [x, (x, y)];

• Graph modeling by a collection of triple [(x, p, v)] could be indexed or not;

The structure of list of tuples models a sequential searching policy in an
unorganized dataset. This is the model which could be used when the query
haven’t the skill to be preprocessed. Hence, the query processor needs to scan
all the entries to select the relevant ones.

The map structure models a searching standard that benefits from precom-
puted ordered indexing. This indexing makes it easier to select, from a simple
arithmetic calculation the first element satisfying the condition and then a sim-
ple path to select subsequent ones.

The graph structure models a searching policy that selects subgraphs from a
basic pattern. This approach assumes that the data is organized according to a
suitable schema that ensures rapid selection.

89

3.1. STRATEGY 90 of 123

All of these structures can be viewed as morphism which could be set up
as dedicated partitions from an anonymous set. We consider here that we use
”set” as our main category.

Indeed, if we observe the behavior of a relational database when it has to
perform a query, either the query is on the main key and the table behaves like
a map or the query is about not indexed data, that is, the query is used for a
datum in the tuple and then the database is forced to scan the contents of the
table as a query in a table.

In the case of a document-oriented database, there is a behavior which is
similar to the relational database: either the query concerns the id of the table
in which case the search is similar to a search in a map, otherwise, this is
a sequential search. The document-oriented query processor is similar as in
relational database, except that it is possible to create many indexes on several
different data in the tuple and in this case, the processor of the request will
have to use a policy based on the pre-calculated tuple map.

Key value database seen with a similar approach.
For a column-oriented database, it is a view of several maps of cascaded

tuple done skillfully by the table’s designer. Thus, a query that is correctly
aligned with the index structure of the table will actually make successive se-
lections based on the map policy, and if the query leaves the indexing strategy
then the table policy will be used.

For a column-oriented database, if we set the column as an index which we
want to query, the rate of the query will be greatly improved. On the other hand,
there will be no major changes to the modification of this type of database.

Finally, the graph base, the graph solution will obviously be the most suit-
able and the selection will be sure to make the pattern matching to the refor-
mulated query in the form of a subgraph.

3.2. PROCESS FOLLOWED IN OUR STUDY 91 of 123

3.2 Process followed in our study
Our study has concentrated on reading a reference document and putting it in
a pivot form that should be a list of tuples (n-areas in the case of tables and
triples in the case of graphs). In Haskell, it is easier to have a table. When the
table is loaded in memory, we apply a request and measure the processing time.
We will obtain a processing time comparable to that of the same operation on
a database when the query does not concern the index or the indexes available.
Then a functor will allow us to transform this table to a map of tuples. The
request will be accordingly transformed (using the same Functor) to perform
the same operation but on the new structure. The measurement of the execution
time will make it possible to obtain the processing time for a query where
the index or the indexes can be pre-computed. Another Functor will make
it possible to transform the table of tuples towards the structure of graph of
triples. The transformation of the request into a selection pattern adapted to
this new structure will make it possible later to measure the processing time.

To ensure a comparison with the products of the trade, we will also pro-
pose some morphisms which will allow us to transform the different represen-
tations into a concrete representation belonging to standard databases (Mon-
goDB, Neo4J etc) and the queries are transformed too.

3.2.1 Procedure for importing initial data

We have to select a dataset to perform our tests. It turns out that it’s in the form
of a CSV file which contains a table with X rows and Y columns.

An interpreter for CSV can be defined in Haskell and by considering the
simplified grammar:
<val> := ’a’ | ... | ’Z’ | ’0’ | ... | ’9’
<csv> := (<val>*(,<val>*)*’\n’)*

From the grammar, the code for the parser can be derived as below. The
notation [x..y] represents the enumeration form x to y, ++ is the list concate-
nation operator and the do notation is used for sequential composition. The

3.2. PROCESS FOLLOWED IN OUR STUDY 92 of 123

”oneOf” function then returns a parser that checks if the first element of an
input text belongs to the parameter of the function. The ”many” function rep-
resents the repetition of an element and corresponds to the * operator in the
EBNF expression.
val :: Parser Char
val = oneOf ([’a’..’z’]++[’0’..’9’]++...)

csv = many $
do many val
many $ do oneOf [’,’]
many val
oneOf [’\n’]

The program above is then extended to extract some information as follows.
The x<- notation simply introduces a new variable v that stores an informa-
tion, and return specifies the result of the function. The (:) is, as mentioned
before, the Haskell operator to add an element to a list.
csv = many $
do v <- many val
vs <- many $ do oneOf [’,’]
many val
oneOf [’\n’]
return (v:vs)

Next, the ”fromCSV” function uses this parser to read a csv file with and get
a two-dimensional array of strings ([[String]] in Haskell).
fromCSV file = do
str <- readFile file
let Right dta = parse csv "" str
return dta

The ”toCSV” function allows us to write back in a CSV format on array of
String.
toCSV file dta = do
let lines = map (intercalate ",") dta
let str = intercalate "\n" lines
writeFile file (str++"\n")

3.2. PROCESS FOLLOWED IN OUR STUDY 93 of 123

3.2.2 Functional descriptions by table
Definition

Table model is a simple manner to organize a dataset is in using table as illus-
trated in the Figure 3.1. Such a table could be modeled by a list of lists, and
the functor X = [[String]].

Figure 3.1: Sample table

Morphism

As the definition of table model, we could define two morphisms. The first one
which we have used is get(). This morphism is used to search that relevant data
in a data set. The mathematical model is : [[String]] get−→ [String]. However, if
there is a set of results in this data set, the morphism has changed to: [[String]]
find−−→ [[String]]. The schema model to query the values in a table is in Figure
3.2.

There is an example below:

• getString[[String]] = {String ∈ [[]] | ∃ [[x, String]], x = String}

For this equation, it has been shown that if there is a suitable list of String
in the last column of the list of String, the result could be obtained a list
composed by list of String. Such a table could be modeled by a list of tuples
or a list of list which uses a structure like F1[[String]].

Thus, the dataset of the Figure can be encoded in Haskell as follows:

3.2. PROCESS FOLLOWED IN OUR STUDY 94 of 123

type X = [[String]]

D :: X
D = [["2018-04-28", " 33.4893333", "-116.79483",

"10", "4.8", "us"]
,["2018-04-27","18.0433", "-67.4248", "110", "3.23", "pr"]
,["2018-04-26","-6.1569", "143.047", "47", "3.46", "pr"]
,["2018-04-25","-21.0123","-178.7933", "111.1", "1.3", "ak"]
]

Figure 3.2: Schema model by table.

By using this representation, queries can be easily expressed by using list
comprehensions. As an illustration, the code below could be used to get the
full tuple such as ”Source” = ”US”, which is similar to the SQL statement:
SELECT ∗ FROM Y WHERE ”Source” == ”US”.

query :: X -> [String]
query D = [o| [time, latitude, longitude, Source]
<- (tail D), "Source" == "US"]

3.2.3 Functional descriptions by Map
Definition

Operators on the set in the previous part are then defined by using functions and
rewriting rules such as: e1 : p(z,m) = z and e2 : p(s(n),m) = s(p(n,m)).
These rules correspond to the addition, and one can check that p(s2(z), s1(z)) =

3.2. PROCESS FOLLOWED IN OUR STUDY 95 of 123

s3(z) by applying e2 twice then e1. Now, the expressions defining N can for-
malized by the way of a grammar:

<N> := z | s(<N>)

Or by using a datatype definition in any (functional) programming language.
The code below then gives an implementation of (N, p) in the Haskell pro-
gramming language.

data N = Z | S(N)

p(Z,m) = m
p(S(n),m) = S(p(n,m))

As another example, lists of N can be specified by a constant for the empty
list e : LN , and a function to add a value to a list a : N × LN → LN . Thus,
an expression such as a(n1, a(n2, e)) will be interpreted as a list [n1, n2]. The
catenation operator is then defined in a similar manner of the plus operator on
numbers with: p1 : pl(e, l′) = l′ and p2 : pl(a(x, l), l′) = a(x, pl(l, l′)). One
can then check for instance that pl([1, 2], [3]) = [1, 2, 3] by applying p2 twice
then p1.

Lists can be generalized by using a parameterized datatype L(x) where x is
a type variable replacing N in the previous definition (and thus LN = L(N)).
Some generic functions, used in the rest of the document, can then be defined
to: concatenate a list of lists (cat), apply a function to all the elements of a
list (map(f)), select the elements satisfying a predicate (filter(p)), etc. The
implementation of these functions in Haskell are given below.

data L x = E | A (x,L x)

pl(E ,l’) = l’
pl(A(x,l),l’) = A(x,r)
where r = pl(l,l’)

cat(E) = E
cat(A(x,l)) = pl(x,r)
where r = cat(l)

3.2. PROCESS FOLLOWED IN OUR STUDY 96 of 123

map(f,E) = E
map(f,A(x,l)) = A(f(x),r)
where r = map(f,l)

filter(p,l) = r’
where f(x) = if (p(x)) then A(x,E) else E
r = map(f,l)
r’ = cat(r)

Morphisms

The morphism for Map model is: Y = [String, [String]] get−→ [String]. This is
used to search only one relevant data in this list. This model [String, [String]]
find−−→ [[String]] can be used to search a set of results in this data set.

Functor

Two functors (Figure 3.3 and Figure 3.4) can be applied to change the Table
model to a Map model.

Figure 3.3: Sample functor 1.

We could firstly add the data into a table model. Then, the indexed table
could be obtained by a functor. The ”only one” or ”a set of data list” could be
acquired by the morphism get and find.

The second functor is similar to the first functor. The difference is that we
first directly changes the original dataset to the index dataset and then add it to
the table.

3.2. PROCESS FOLLOWED IN OUR STUDY 97 of 123

Figure 3.4: Sample functor 2.

3.2.4 Functional descriptions by Graph
Definition

Graph model corresponds to a new functor Z = [(String, String, String)]. Where
the first String is the entry, the second one is the property name and the last
one is value. For example, in Figure 3.1, we can model the first row as an
entry N1 with a relation r1 (about time) to value E1 (eg., 2018-04-28), relation
r2(latitude) to value E2 (33.4893333), relation r3 (longitude) to value E3 (-
116.79483) and the last relation r4 (Source) to value E4 (US). This model is
described in Figure 3.5. Therefore, Graph databases use labeled graphs that can
be represented by Z(X) = L(X × (X ×X)) where the first X corresponds to
the source of an edge, the second to the label and the third to the destination.

Morphisms

The two morphism for Map model is: [[String, String, String]] get−→ [String]
and [[String, String, String]] find−−→ [[String]]. The two model have been used
to search one or a set of results in this graph. Therefore, queries are then
expressed by the way of graph patterns as illustrated in the Figure 3.6 what
also corresponds to the SPARQL statement:
SELECT ?o WHERE ?o ri vi. ?o rj vj.
The query of a specific edge such as ?o ri vi can be obtained with:

query D ri vi = [o| (o,r,v) <-d, r == ri, v == vi]

3.2. PROCESS FOLLOWED IN OUR STUDY 98 of 123

Figure 3.5: Sample graph.

Figure 3.6: Sample query.

Functor and natural transformation

Having modeled n-ary relations by the way of a functor [[x]], and having de-
fined natural transformations establishing the iso-morphism with the CSV stan-
dard −CSV ∼=fromCSV [[x]], we can now use the same model to represent
graphs ; this, by adding an extra condition: ∀db ∈ [[x]],∀e∀db, size(e) = 3..
Thus, each element corresponds to a labeled edge (source,label,destination)
or (subject,property,value) with a logical point of view of the graph/database.
And if, list comprehension can be used for queries, it is more interesting to de-
fine a (human readable) query language able to find more complex information
(e.g. join between other informations), and that can be used without knowing

3.2. PROCESS FOLLOWED IN OUR STUDY 99 of 123

anything about Haskell (i.e. queries are passed as a parameter of the compiled
program). A directed graph can be represented by a set of edges and a functor
G(N) = P(N ×N ×N) where N represents a set of nodes and N ×N ×N
edges of the form (source,label,destination). With a morphism f : N → N ′,
we can define a graph morphism m(f) = P(f ×f ×f) that changes the nodes
by preserving the structure of the graph - i.e. if (x, y, z) is an edge of g then
(f(x), f(y), f(z)) is an edge of m(g). m(idN) is a identity morphism, mor-
phisms are composable (i.e. m(f ◦ g) = m(f) ◦m(g)) what makes the set of
graphs and morphisms another example of a category called Graph.

Graphs play an important role in the BigData community and have many
applications (see, for instance, Neo4J. Querying specific information then con-
sists in finding a morphism from the graph representing a query to a graph
database. Indeed, a query such as ”(X has-Longitude -116.7948333) and (X
has-latitude Y)” can be viewed as a labeled graph with two edges {Source :
X → US, latitude : X → Y }, where X/Y denote variables as illustrated in
Figure 3.7.

Figure 3.7: Sample graphs and query/morphism.

The query is a graph and an element of G(N ∪ X). The result is then a
set of sets of pairs {{(X,US), (Y, 33.4893333)}} and the program finding the

3.2. PROCESS FOLLOWED IN OUR STUDY 100 of 123

possible morphisms can be formalized by a function unify : G(N ′)×G(N)→
P(P(X×N))N ′ = N ∪X is the union of constant nodesN plus variablesX .
As a remark, P(X×N) is here a shortcut for a mapping function f : X → N ,
and is generally called ”environment”.

3.2.5 Transformations to SQL

To allow comparison this dataset has to be translated into SQL statements, by
using the following program. Then, the result has been used to feed a RDBMS.
Finally, the performance for an equivalent expression of q has been obtained
with: time (echo ”SELECT ∗ FROM db WHERE Source =

”us” ; ” | sqlite3 database.db).
toSql db = concat ["CREATE TABLE db
(src text,lbl text, dst text);\n", db’]
where db’ = concat (map (\e->concat
["INSERT INTO Db VALUES (",format e,");\n"]) db)

format [] = ""
format [x] = concat ["’",x,"’"]
format (x:xs) = concat ["’",x,"’,",format xs]

mkSql = do
dta <- fromCSV "usgs.csv"
writeFile "usgs.sql" (toSql dta)

3.2.6 Transformations to document database

The same approach has been considered for document database with the fol-
lowing translation program. More precisely, the dataset has been translated
using the toMongo function below in Javascript statements stored in ”usgs.js”.
This file is loaded by using the ”load(’usgs.js’)” using the MongoDB console.
Then the equivalent query for q is obtained with:

mongo --eval "db.store.find(lbl:’Resource’, dst:’US’).shellPrint()",

3.2. PROCESS FOLLOWED IN OUR STUDY 101 of 123

toMongo db = db’
where db’ =

concat (map (\e->concat ["db.store.insert
(",format e,")\n"]) db)

format [x,y,z] =
concat ["{ src:’",x,"’, lbl:’",y, "’,dst:’",z,"’ }"]

3.2.7 Transformations to graph

This dataset has been tested with the Neo4j graph database and its query lan-
guage Cypher. First, the dataset has been loaded from the CSV file with the
following command from the Neo4j interface.

LOAD CSV WITH HEADERS FROM "file:///usgs.csv"
AS line
MERGE (n:Node {name: line.src})
CREATE (m:Node {name: line.dst})
CREATE (n)-[:Link {name: line.lbl}]->(m)}

Next, the query is obtained with:

"MATCH ((x)-[r:Link \{Source:’US’\}]->(y)) WHERE y.Source=’US’
RETURN *;" | cypher-shell -u user -p password}.

3.2.8 Transformation to key-Value and Column Oriented database

The result of the transformation can be viewed as a column model as illustrated
in the Figure 3.8.

It corresponds to another functors F3 = [(String, [(String, [String,])])].
The semantic function has to be adapted to this new data organization with

a specific simple query as follows:

q’ DB ri vi = [os | (r,vos) <- d,
r == ri,
(v,os) <- vos,
v == vi
]

3.2. PROCESS FOLLOWED IN OUR STUDY 102 of 123

Figure 3.8: Sample of MonetDB model.

The semantic function for Cassandra is similar with MonetDB. Due to the
nature of these two data structures, we use the same query and questioning
methods as SQL.

ApplicationApplication

• CSV file
• CSV file loading
• CSV file loading comparison
• Time to ”get” one item of information
• Time to ”get” specific information
• Time to ”find” information
• Time to ”find” information by its volume
(size)

• The best choice to query information

Chapter 4

Application

4.1 CSV file
As explained in the previous part, morphisms representing lists (collections)
and products (records) can be composed to model data structures in various
ways. In particular, a table used in a relational database can be abstracted by
a two dimensional array, i.e. [[x]] in Haskell where x represents the type of
the cells. For our research, we have used the earthquake information which is
downloaded from the United States Geological Survey. This CSV file contains
11236 rows and 9 different columns. These data records are seismic informa-
tion from 14/04/2018 to 14/05/2018 in the world. In this file, the first line of
earthquake information is from ”hv” (Burkina Faso). The first piece of in-
formation about ”us” is in the middle position of the file, and the first piece
of information of ”nc” (New Caledonia) is in the latter position. In addition,
the seismic information listed in this document also has the characteristics of
large differences in the number of earthquakes occurring at the same location.
For example, ”se”(Sweden) has 6 rows of data, ”uu”(Oceania) has 161 rows of
data.

Based on the above series of features of the CSV file, we are divided into 7
main steps to analyse and discuss the data, and we will discuss these items step
by step in the next section. In the following sections, all of the times’ units are
in ”ms”(Milliseconds). In our experiment, the time to obtain one ”get” result is

104

4.2. CSV FILE LOADING 105 of 123

very fast, so we decide to get 500 times results. Then, we calculate the time for
getting only one item of information. However, ”find” result is long enough to
be directly gained by our program.

4.2 CSV file loading

Process Minimum Median Maximum Average
CSV → Table 1140 1156 1203 1175

CSV → Table→Map 2171 2109 2359 2158
CSV →Map 937 953 1156 1010

CSV → Table→ Graph 2187 2203 2313 2237
CSV → Graph 1031 1046 1109 1062

Figure 4.1: Time to load

As shown in Figure 4.1, the time to convert the CSV file format directly
into map mode is the shortest. On the contrary, it takes the longest time to
convert a CSV file into a table structure. Of course, if we follow the process
described in the section of proposition, converting the CSV format to a table
structure firstly, and then convert it to a map or graph format, the loading time
will be greatly increased. This time is at least 2 times longer than the time to
be directly converted to the corresponding model, due to the need to scan two
times the amount of data. The other question is the number of objects that are
different in the different model. For the Table model and Map model, there
are more than 11000 objects. However, there are 98000 objects in the Graph
model and it is still the fastest.

4.3 CSV file loading comparison
In this part, we have added the size of CSV file by 2 times, 5 times, 10 times 20
times, 50 times bigger than the original file. The time to load the corresponding
file are in Figure 4.2. In addition, whole of the data is the average value which
is obtained after 5 tests.

Figure 4.3 describes the line chart of Figure 4.2. This figure clearly shows

4.3. CSV FILE LOADING COMPARISON 106 of 123

Process 1x 2x 5x 10x 20x 50x
CSV → Table 1175 2468 6101 13652 23598 109964

CSV → Table→Map 2171 4410 11075 24670 47270 229770
CSV →Map 937 1941 4974 11018 23671 119805

CSV → Table→ Graph 2187 4864 12534 27708 54974 183511
CSV → Graph 1031 2676 6432 14055 31375 73546

Figure 4.2: Time to load by different size of data

that as the amount of data increases, the time required to load each item is
gradually increasing. When you reach 50 times bigger than the original file,
the direct conversion time to the Graph model is the shortest. It takes the
longest time to convert to Table model and then convert to Map model. In the
other hand, Map model becomes slower than the table with a greater amount
of data.

Figure 4.3: The comparison between the different volume of data by loading time

4.4. TIME TO ”GET” ONE ITEM OF SIMPLE INFORMATION 107 of 123

4.4 Time to ”get” one item of simple information
After finishing the work of inserting the CSV file, we use this data in memory
to query some information. Here, we query one item of seismic information
that occurs in ”us”, ”hv” and ”nc”. In the CSV file, ”hv” is located at the
beginning of the file. ”us” is at the middle and ”nc” is in the end. The original
CSV file is used here to retrieve information. Table 4.4 depicts the minimum,
middle, maximum and average time to query the above information by table
model, Map model and Graph model. The blue one is used by Table model,
the red one is Map model and the green one is using Graph model. Figure 4.5
presents the Intuitive comparison chart for Figure 4.4.

Figure 4.4: The comparison between three models by loading time

Figure 4.5: The comparison chart by loading time

Using the Table model to query the first seismic entry has used the longest

4.5. TIME TO ”GET” SPECIFIC ORDERED INFORMATION 108 of 123

time. Conversely, the Map model is the shortest time to query a seismic in-
formation. It is about maximum 34% shorter than the Table model in terms
of time usage. In addition, using the Graph model to query a seismic infor-
mation saves about maximum 23% of the time compared to using the Table
model. Therefore, Map model and Graph model can be used to optimize the
time complexity of querying large databases. From Figure 4.5, we can see that
the querying time for different information is different. One answer about the
time difference to obtain the result could be in the position in the file of the
first queried row.

4.5 Time to ”get” specific ordered information
We use the experiments in this section to determine whether the querying time
is related to the location of the information to be queried in the file. To com-
plete this experiment, we first reorder the information in the original file ac-
cording to name of the ”Source” column. In this way, the information con-
taining ”ak” is the first item of the new file, the information containing ”hv”
is in the middle and the information containing ”uw” is at the end. Then, we
flip the database again. The first item in the file is ”uw”, and the ”ak” in-
formation is at the end of the file. Figure 4.6 to 4.8 describes the minimum,
middle, maximum and average time to query one ”ak”, ”hv” and ”uw” infor-
mation(Ascending and Descending ordered information) by Table model, Map
model and Graph model.

Figure 4.6: Time to query one information by Table model

As all of the tables and figures shown, the time to search ”ak” is the most
fastest one. Because it is the first information in CSV file. Then, as the location

4.6. TIME TO ”FIND” INFORMATION 109 of 123

Figure 4.7: Time to query one information by Map model

Figure 4.8: Time to query one information by Graph model

of the information to be searched becomes more and more backward, the time
takes longer and longer. The time to search ”uw” is the most slowest one.
However, if we inverse the data set, ”uw” is the fastest one and the ”ak” is the
slowest one. In summary, the query time is related to the location where the
information to be queried is found. The searching speed for the information,
whatever the model used, which is placed in the front position of the file is
much faster than the others.

4.6 Time to ”find” information
In the previous section, we tested the time to insert a CSV file and query a seis-
mic message. In this section, we test the time taken to query all earthquakes
at the same location. We still test all seismic information that occurs in ”us”,
”hv” and ”nc”. We have used the original CSV file to complete these exper-
iments. Figure 4.9 shows the minimum, middle, maximum and average time
to query one ”ak”, ”hv” and ”nc” information by representative Table model,
Map model and Graph model.

As shown in Figure 4.9, using the Map model is maximum 23% more ef-

4.7. TIME TO ”FIND” INFORMATION BY ITS DIFFERENT VOLUME 110 of 123

Figure 4.9: Time to ”find” information by three models

ficient than using the Table model, and using the Graph model is maximum
17% more efficient than using the Table model. However, there is a factor
which slows down the speed of query. ”hv” is before ”us” but still slower. In
the CSV file, there are 2334 items of information about ”hv”, 1798 items about
”nc” and 1062 items about ”us”.

4.7 Time to ”find” information by its different volume
As you can see from Figure 4.10, using the same mathematical modeling
method, the spending time to query different seismic information is different.
Therefore, in this part, we re-adjust the original database. We reorder the file
to put together seismic information at the same location at the beginning of the
file. We found that the lowest count was for ”se” where only six earthquakes
occurs and the largest was in ”uu” with 161 earthquakes. So, we adjust the seis-
mic information of these two kinds of information to the first place of the CSV
file. Then, test it to obtain the time to realize the ”find” information, which is
similar in section 4.6. Figure 4.10 displays the time to query information by
Table model, Map model and Graph model.

Figure 4.10: Comparison between the two informations by three models

4.8. THE BEST CHOICE TO QUERY INFORMATION 111 of 123

We discover that the time to search the information of ”uu” is at least 10%
slower than ”se” by Map model and 16% slower than ”se” by Graph model.
In summary, the time of querying seismic information at the same location is
related to the amount of seismic information.

4.8 The best choice to query information
Our experiment is mainly divided into three parts, the first one is to load the csv
file, and then to query seismic information. Finally, querying all of the seismic
information that occurred at the same location. Because of this, the query time
we calculated is: file loading time + time for querying. Figure 4.11 below is
an example to explain the time to load the CSV file is different. If we directly
load the CSV file by Map model and Graph model (which is shown in red line
in Figure 4.11), the time is much shorter than the others.

Figure 4.11: Comparison between the two information by three models

4.9 Real world application
In this section, we will compare the time to find all seismic information about
”us” using the five selected conventional databases and our approach. Figure
4.12 gives all the times. Surprisingly, our approaches are the fastest in all cases.

4.9. REAL WORLD APPLICATION 112 of 123

Mainly we measure that we are: 4+ times faster than RDBMS (Sqlite), 4+
faster than Key Store database (Cassandra), 10+ times than Column oriented
database (MonetDB), 20+ times faster than a Document database (MongoDB
) a huge time faster than a Graph database (NEO4J). Last, in our approaches,
the Haskell functions based on Map and Graph models are the fastest of all.

Figure 4.12: Comparison between different models

ConclusionConclusion

• Propositions’ summary
• Perspectives

Chapter 5

Conclusion

5.1 Propositions’ summary
This manuscript summarizes three years of study in the fields of Category The-
ory and functional programming applied to databases. The context of my work
was introduced in chapter 1, mainly the fact that queries over databases can
be carefully optimized in time if dedicated structures and requests can be pre-
computed. This led to the need of an analysis of the actual state in the database
world. If many RDBMS exist since the 1970s, new kinds of databases arrive
on the market. They all have specific behaviors and are specialized in certain
kinds of processes. The second chapter takes time to present them and com-
pares them together. Our goal is to propose a structured view of the databases
and the queries based on mathematics. Therefore, we chose to root our re-
searches on Category Theory, which is presented in the third chapter. In the
Category Theory chapter, the two main concepts (Functors and Natural Trans-
formations) are explained and the Monad is also presented for the best way to
handle side effects. Haskell is chosen to implement all kind of collections of
data, morphisms and functors. Its mathematical method of writing equations is
fully adapted to our studies; we don’t have to twist the equations as we have to
do in case of Object Oriented Programming. We apply Category Theory to sev-
eral ways of representing, at a high level, collections of data: such as table, list,
map and graph. Several Functors are proposed to switch to one representation

114

5.2. PERSPECTIVES 115 of 123

to the other as well as the associated queries. Chapter three is our proposition
of study : first we reduce the table behavior in a database to only three main
representations: table, map and graph. Table structure can be used in case of
non-indexed data, map structure can be used in case of indexed data and graph
structure a special case recommended in case of a network of relations. The
data set studied is presented and how we import it too. Next, we show some
three representation chosen and the different Functors. Some special isomor-
phism are presented to target the native representation for dedicated databases.
The next chapter, the fourth, is about the performances, mainly the time mea-
surements. The time to load the initial data set using the defined procedure is
commented upon and the degradation is measured in case of a growing of the
initial dataset. The function get, which gets the first occurrence of informa-
tion in the dataset is studied and compared according the three main defined
structured. Some additional studies are carried out as position of the first entry
seems important. The function find extracts a whole set of information and
again we measure the time. As the amount seems important, again we take
some measurements. Last, the dataset feeds the selected databases and again
we measure the different times for a query. A comparison of the different ob-
tained times shows that: functional programming in many cases is faster than
convention database.

5.2 Perspectives
Our conclusion ends with a strange fact. A find expressed in a functional pro-
gramming language seems better than a request on a conventional database. As
for many years, databases are optimized in structures (btrees, etc.) and coded
in imperative language such as C, etc. What could explain results and can this
initial result be extended to other cases?

Here are some study propositions to go further one-step at a time.
The functional programming database proposed here loads all the data in

memory and does all request in memory. Some database, such H2 or derby,

5.2. PERSPECTIVES 116 of 123

mimics this behavior, what are the performance results of these special kinds
of databases (near to us, or the same as currently conventional)? What happens
in case of distributed databases, how is the data distributed, etc. This could be
the first step based on our first study.

The next way to explain this result can be in chosen query. The find just
makes a lookup of the data, no updates and no inserts. Conventional databases
have to deal with these insert and update queries so maybe they execute addi-
tional behaviors to protect data against update and insert which impact the time
of a simple query. In case of a sudden stop, a database should store informa-
tion to recover the state, what is the consequence on the time query of such a
behavior. Enlarging the actual study, to insert and update queries, could show
up some new interesting results.

After studying simple queries, why not consider complex queries such as
a transaction. In transaction, several queries are bound together and either all
can be done at one time or all have to be canceled. Transactions are harder to
study than Monad for the state preservation needs to be extensively used.

Bibliography

[1] James Gro and Paul Weinberg. SQL The Complete Reference, 3rd Edi-
tion. McGraw-Hill, Inc., New York, NY, USA, 3 edition, 2010

[2] Peter Gulutzan and Trudy Pelzer. SQL Performance Turning. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002

[3] Cansu Birgen, Heinz Preisig, John Morud, Advanced process simulation
SQL vs NoSQL, Departement of chemical engineering norwegian univer-
sity of science and technology, 2014

[4] Vatika Sharma, Meenu Dave, SQL and NoSQL Databases, International
Journal of Advanced Research in Computer Science and Software Engi-
neering, Department of CSE, Jagan Nath University, Jaipur, India, 2012

[5] B. DeCandia et al, “Dynamo: Amazon’s Highly Available Key-Value
Store”, Proceedings 21st ACM SIGOPS Symposium on Operating Sys-
tems Principles, 2007

[6] Pankaj Sareen et al, NoSQL database and its comparison
with SQL database, Computer Science Department, SPN Col-
lege,Mukerian,International Journal of Computer Science and Com-
munication Networks,Vol 5(5),293-298

[7] Jing Han, Haihong, E., Guan Le, Jian Du, ”Survey on NoSQL database,”
Pervasive Computing and Applications (ICPCA), 2011

[8] Kristina Chodorow, MongoDB The Definitive Guide 2nd Edition,
O’REILLY

117

BIBLIOGRAPHY 118 of 123

[9] Zachary.Parker, S.V Vrbsky, Comparing NoSQL MongoDB to an SQL
DB, The university of Alabama, USA, 2013

[10] Madalina. Croitoru, E. Compatangelo, On Conceptual Graph Projection,
Technical Report AUCS/TR0403, 2004

[11] Amine.Ghrab, O.Romero, An Analytics-Aware Graph Database Model-
ing, Eura Nova RD, Mont-Saint-Guibert, Belgium, 2013

[12] C.Okasaki, Purely Functional Data Structures, Cambridge University
Press, New York, USA, 1998

[13] Peter T.Wood, Query languages for graph databases, SIGMOD Rec,2012
Mont-Saint-Guibert, Belgium

[14] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas
Partner.Neo4J in Action. Manning Publications Co., Greenwich, CT,
USA, 1st edition, 2014.

[15] Olivier Cur and Guillaume Blin. RDF Database Systems: Triples Storage
and SPARQL Query Processing. Morgan Kaufmann Publishers Inc., San
Francisco, CA,USA, 1st edition, 2014.

[16] Maarten Vermeij, Wilko Quak, Martin Kersten, Niels Nes, MonetDB,
a novel spatial column-store DBMS, TUDelft, OTB, section GIS-
technology, The Netherlands

[17] Chunbin Lin, Data Compression in Database Query Processing, Univer-
sity of California, San Diego, La Jolla,CA,USA

[18] Weixiong Rao, MonetDB And The Application For IR Searches, UNI-
VERSITY OF HELSINKI. SEMINAR PAPER. COLUMN-ORIENTED
SYSTEMS, 2012

[19] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten. Monetdb: Two decades of research in column-oriented database
architectures.IEEE Data Eng. Bull., 35(1):40–45, 2012

BIBLIOGRAPHY 119 of 123

[20] P.A.Larson,E.N.Hanson, and S.L.Price.Columnar storage in sql server
2012.IEEE Data Eng. Bull., 35(1):15–20, 2012

[21] Mike Stonebraker et al., C-Store: A Column-oriented DBMS, MIT
CSAIL,Cambridge, MA,USA

[22] Bob DUCHARm, Learning SPARQL, O’REILLY, 2011

[23] JavaScript tutorial, Tutorials points

[24] Markus Pilman, Kevin Bocksrocker, Fast Scans on Key-value, Snowflake
Computing, Proceedings of the VLDB Endowment,Pages 1526-
1537,2017

[25] Marc Seeger, Key-Value stores: a partical overview, Computer Science
and Media Ultra-Large-Sites SS09, Stuttgart,Germany,2009

[26] Eben Hewitt, Cassandra The Definitive Guide, O’REILLY, 2011

[27] Arvid Arasu, Shivnath Babu, The CQL language Continuous Query Lan-
guage: Semantic Fundations and Query Execution, Stanford University,
2003

[28] Lan Robinson, Graph Databases, O’REILLY, 2013

[29] J.A Bondy, Graph theory with applications, University of Waterloo,
Canada, 1978

[30] Isnar Sumartono, Base64 Character Encoding and Decoding modeling,
Faculty of Computer Science, Universitas Pembangunan Panca Budi, Jl.
Jend. Gatot Subroto Km. 4,5 Sei Sikambing, 20122, Medan, Sumatera
Utara, Indonesia,2016

[31] Brahim Medjahed, Generalization of ACID Properties, Departement
of Computer and Information Science, The University of Michigan-
Dearborn,2009

BIBLIOGRAPHY 120 of 123

[32] Eric Brewer, CAP twelve years later: How the ”rules” have changed, Uni-
versity of California, Berkeley, 2012

[33] Laurent Thiry, Frédéric Fondement, Categorical reasoning about meta-
models, Université de Haute Alsace, France, 2012

[34] Richard Bird, Oege de Moor, The Algebra of Programming, Prentice Hall,
1997

[35] Sreve Awodey, Category Theory, Oxford University Press,2006

[36] M.Barr and C.Wells,Category Theory for Computing Science, 2nd Ed.
Prentice Hall International Ltd.,Hertfordshire, UK,UK,1995

[37] C.Okasaki, Purely Functional Data Structures, Cambridge University
Press,New York,NY,USA,1998

[38] Joseph A.Goguen, A categorical manifesto, In Mathematical Structures
in Computer Science, 1991

[39] Philip Wadler, Monads for functional programming, University of Glas-
gow, 2005

[40] Mac Lane, S. (1971). Categories for the Working Mathematician, volume
5 of Graduate Texts in Mathematics. Springer-Verlag. (xv, 126, 347, 357,
358, 415, 417)

[41] Goguen, Joseph A., Malcolm, Software Engineering with OBJ Algebraic
Specification in Action, January 2000

[42] Jeremy Gibbons, Calculating Functional Programs, Springer−Verlag,
2002

[43] Laurent Thiry, Mariem Mahfoudh, and Michel Hassenforder. A functional
inference system for the web. International Journal of Web Applications ,
6(1):1–13, 2014

BIBLIOGRAPHY 121 of 123

[44] Marlow S. A monad for deterministic parallelism. In Proceedings of the
4th ACM symposium on Haskell, Haskell ’11, pages 71–82, New York,
NY, USA, 2011. ACM

[45] Mac Lane S. Categories for the working mathematician. Graduate Texts
in Mathematics. Springer, New York, second edition, 1978.

[46] Sugam Sharma, Udoyara S Tim,Johnny Wong, A brief review on leading
big data models, Data Science Journal, Volume 13, 4 December 2014

[47] Peter Gacs, Boston University, Complexity of Algorithms, Lecture Notes,
Spring 1999

[48] Granville Barnett, Luca Del Tongo, Data Structures and Algorithms: An-
notated Reference with Examples, DotNetSlackers

[49] Martin Richards, Data Structures and Algorithms CST IB, CSTv
II(General) and Diploma, Computer Laboratory University of Cam-
bridge,2001

[50] Clifford A. Shaffer, A Practical Introduction to Data Structures and Al-
gorithm Analysis Third Edition (Java) Department of Computer Science
Virginia Tech Blacksburg, VA 24061, April 16, 2009

[51] Reema Thareja, Data Structures Using c, Department of Computer Sci-
ence Shyama Prasad Mukherjee College for Women University of Delhi,
Oxford university press, 2014

[52] Michael T. Goodrich, Roberto Tamassia, Data Structures and Algorithms
in Java, WILEY, 2013

[53] Yuri Demchenko, Cees de Laat, System and Network Engineering Group
University of Amsterdam, Defining Architecture Components of the Big
Data Ecosystem, International Conference on Collaboration Technologies
and Systems, 2014

BIBLIOGRAPHY 122 of 123

[54] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, NewYork, NY, USA, 1998.

[55] ORI SHALEV, Split-Ordered Lists: Lock-Free Extensible Hash Ta-
bles, Tel-Aviv University, Tel-Aviv, Israel[U+FF0C]Journal of the ACM
(JACM) Volume 53 Issue 3, May 2006

[56] Hadley Wickham, The Split-Apply-Combine Strategy for Data Analysis,
Rice University, Journal of Statistical Software, Volume 40, Issue 1. April
2011

[57] Nishant Shukla. Haskell data analysis cookbook. Packt Publ., Birming-
ham, 2014.

[58] Raghavendra Kune, Pramod Kumar Konugurthi, Arun Agarwal,
Raghavendra Rao Chillarige, and Rajkumar Buyya. The anatomy of big
data computing. Software, Practice and Experience, 46(1):79–105, Jan-
uary 2016.

[59] Donald Miner, Adam Shook, MapReduce Design Patterns, O’REILLY,
2013

[60] Maarten M. Fokkinga. Calculate categorically! Formal Aspects of Com-
puting, 4(1):673– 692, Nov 1992.

[61] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and
unfold to exponential types. In Proceedings of the Seventh International
Conference on Functional Programming Languages and Computer Archi-
tecture, FPCA ’95, pages 324–333, New York, NY, USA, 1995. ACM.

[62] Laurent Thiry and Michel Hassenforder. A calculus for (meta)models
and transformations. International Journal of Software Engineering and
Knowledge Engineering, 24(5):715–730, 2014.

[63] David E. Rydeheard and Rod M. Burstall. Computational Category The-
ory. Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK, 1988.

BIBLIOGRAPHY 123 of 123

[64] Tatsuya Hagino. A Categorical Programming Language. PhD thesis,
1987.

[65] David I. Spivak. Ologs: a categorical framework for knowledge represen-
tation. CoRR, abs/1102.1889, 2011.

[66] Ryan Wisnesky. Functional Query Languages with Categorical Types.
PhD thesis, Cambridge, MA, USA, 2014.

[67] Simon Peyton Jones and Philip Wadler. Comprehensive comprehensions.
In Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop,
Haskell ’07, pages 61–72, New York, NY, USA, 2007. ACM.

[68] Hal R. Varian. Big Data: New Tricks for Econometrics, Journal of Eco-
nomic Perspectives—Volume 28, Number 2 Spring 2014 Pages 3 28.

	Introduction
	State of art
	Related works
	Databases for Big Data
	 Introduction
	Relational databases
	Column-oriented databases
	Key-value Store database
	 Document database
	 Graph database
	Summary

	Category theory
	Category
	Functor
	 Natural transformations
	 Monad

	 Data and Querying Modeling
	Time complexity
	 Data models
	 Queries

	Propositions
	Strategy
	Process followed in our study
	Procedure for importing initial data
	Functional descriptions by table
	Functional descriptions by Map
	Functional descriptions by Graph
	Transformations to SQL
	Transformations to document database
	Transformations to graph
	Transformation to key-Value and Column Oriented database

	Application
	CSV file
	CSV file loading
	CSV file loading comparison
	Time to "get" one item of simple information
	Time to "get" specific ordered information
	Time to "find" information
	Time to "find" information by its different volume
	The best choice to query information
	Real world application

	Conclusion
	Propositions' summary
	Perspectives

