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"We are the first generation to feel the effect of climate change 

 and certainly the last to be able to do anything about it." 

Cyril Dion 
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General Introduction 
In August 2021, the Intergovernmental Panel on Climate Change (IPCC) released its latest report on 

climate change, affirming that humans are undeniably responsible for climate change, with many of 

the impacts irreversible. The global surface temperature has already risen by 1.1°C between 1850 - 

1900 and 2011 – 2020, calculated as the difference between the mean value of both periods. 

Depending on the future greenhouse gas (GHG) emission, the IPCC concluded that this increase in 

temperature would keep rising during the current century to a value in 2100 between 1.6°C (CO2 

emission declined to net-zero by 2050) and 4.4°C (CO2 emission double by 2050 before decreasing). 

This increase is not homogenous in the earth, with a higher increase over land (up to +0.7°C) than over 

the oceans. One way to grasp the impact of these global surface temperature modifications is to look 

at the frequency of rare meteorological events. IPCC estimates the modification in frequency and 

intensity of extreme heat waves appearing once during ten years in a climate without human influence. 

With the present increase of temperature of +1°C, this heatwave appears 2.8 times and are 1.2°C 

hotter than a heatwave occurring between 1850-1900 (reference used by IPCC). Switching from a 

scenario of +1.6°C to +4.4°C, the frequency increases from 4.1 times to 9.4 times. Additionally, the 

heatwave will be +1.9°C to +5.1°C hotter. This highlights the necessity for humanity to do its best to 

be in a scenario with a moderate temperature rise.  

This temperature rise is mainly due to GHG. Therefore, it is vital to reduce emissions drastically. 

Transportation is responsible for a quart of the European GHG emission and 31% of the French GHG 

emission. Composite materials appear to be a solution for lightning transport means, thereby 

decreasing their in-use GHG emissions. However, these materials present critical environmental 

impacts due to the raw materials used - synthetic fibres and petro-sourced matrix - and their limited 

end-of-life disposal scenario - principally landfill. Recycling is practical for thermoplastic composites, 

though not mandatory in all transport sectors. 

Flax fibres are a credible alternative to synthetic fibres, especially glass, due to their low density and 

remarkable mechanical properties. They are already used in the automotive area for interior parts of 

cars and have started to be used in motorsports (car body/seat) and sailing (hull). However, there is a 

notable lack of low areal-density flax preforms in the market. Such preforms could lead to more 

versatile composites for transport materials. The INTERREG “Flax composites, LOW weight, End of life 

and Recycling” (FLOWER) project aims to fill in this gap. Four academic institutions (Université de 

Bretagne Sud, University of Cambridge, INRAE, University of Portsmouth) and four industrial 
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companies (Ecotechnilin, Kaïros, Howa-Tramico, Depestele) have been working together to develop 

new light-weight flax preforms for composite industry, including a bi-axial flax preform and an oriented 

non-woven flax preform. This thesis is a part of the FLOWER project, focussing principally on the 

oriented non-woven flax preform and its potential to be reinforced by bio-degradable polymers. 

Indeed, one prototype developed in the project is a panel made of flax and biodegradable polymer 

(PLA) for Point Of Purchase (POP) application.   

The recent enlargement of biodegradable thermoplastics is able to tackle the second drawback of 

composite materials: end-of-life management. Thanks to the use of a thermoplastic matrix, the 

composite is also recyclable. This allows reusing the material of a product as new raw material for 

similar or another application, spreading the environmental impacts between the different life of the 

materials. Furthermore, the biodegradability behaviour of the composite suggests compostability as 

another end-of-life solution.  

This thesis aims first to investigate the mechanical potential of three biodegradable thermoplastics 

(poly-(lactide) (PLA), poly-(butylene-succinate) (PBS), poly-(hydroxy alkanoates) (PHAs)) as a matrix for 

flax composite materials. The second part focuses on the ageing behaviour of these materials.  

In chapter 1, a state-of-the-art review discusses the current knowledge on developing biodegradable 

flax composites. Following a clarification on terminology, the origins, properties and biodegradation 

of biodegradable polymers are then discussed. Additionally, a structural and mechanical description 

of flax fibres is presented. Before dealing with the composite, the notion of the interface is addressed. 

Then, the manufacturing of thermoplastic flax composites is developed and its influence on the flax 

and the composite. Other parameters influencing the mechanical properties of flax composites are 

then presented, from microstructure to heterogeneity at the microscale. The ageing behaviour of flax 

composite and biodegradable flax composite in several environments is discussed. Finally, a discussion 

on the environmental impact of biodegradable composite systems is proposed.  

The reinforcement of a matrix by flax fibres depends on their affinity; strong adherence between the 

composite’s constituents allows to exploit the potential of reinforcement of the fibres fully. Knowing 

the interfacial strength of several formulations is a first approach to understanding the composite's 

mechanical efficiency. That is why chapter 2 focuses on the interfacial characterisation of a range of 

biodegradable polymers and flax fibres systems. Thanks to a microscale level investigation, the 

adhesion between biopolymers and elementary flax fibres is measured and compared to industrial 

references. Unidirectional and bi-axial composites are then tensile tested to obtain their mechanical 
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properties. The importance of the flax/matrix interfacial properties and the matrix mechanical values 

help to discuss and understand the mechanical properties of the biobased composite materials 

developed in this chapter.  

Chapter 3 studies the influence of the orientation of the non-woven preform developed in the project. 

It is made through a simple carding process, mixing PLA fibres and flax fibres at a weight ratio of 50%. 

The porosity, as well as the shives, are quantified. Thanks to a tomography analysis, the microstructure 

of the composite is observed. Furthermore, the distribution of the orientation inside the composite is 

explored. The anisotropy of mechanical properties is investigated thanks to off-axis tensile tests.  The 

modulus of the composite at several angles is correlated to the orientation of the fibres. The possibility 

of using mechanical characterisation for fast and cheap composite fibre orientation analysis is finally 

discussed.  

During the service life of a composite, its surrounding environment may evolve. As flax/PLA composites 

are sensitive to moisture, the influence of relative humidity on their mechanical and structural 

properties should be tackled. Chapter 4 brings answers to the impact of water (in liquid or vapour 

form) on the microstructure and the mechanical properties of a flax/PLA non-woven composite. First, 

the sorption of the composite submitted to hygroscopic (50RH/75RH/98RH/immersion) conditions is 

measured. Composites are then dried to focus on the irreversible impact of these environments. Next, 

the evolution of the composite constituent (flax and PLA) is studied at the micro-scale level. Then, the 

structural evolution (porosity/interface deterioration/microcracks) inside the composite is 

investigated and correlated to the decrease of mechanical properties observed.  

Finally, chapter 5 suggests a harsh ageing condition, garden compost, to compare the evolution of the 

mechanical properties of biodegradable flax composites (flax/PLA, flax/PBS, flax/PHA) with flax/PP 

reference. The compost is not controlled, but the temperature and meteorological data are recorded. 

The degradation is investigated through weight loss and mechanical properties, highlighting two 

degradation behaviour depending on the biodegradable matrix used. The microstructure evolution is 

observed thanks to SEM and Micro-CT investigations and used to discuss the evolution of the 

mechanical properties.  

The organisation of the thesis work is summarised in Figure 0-1. 
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Figure 0-1: Schematic sum-up of work presented in the thesis 
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Chapter 1: Literature review 
This chapter presents a literature review on biodegradable thermoplastic polymers reinforced by flax 

fibres to obtain biodegradable composites. First, the notion of biodegradation is explained with some 

clarification of key terminology. Biodegradable thermoplastics and their characteristics are then 

explored thereafter. Then, the specificities of flax fibres as reinforcements are explored through the 

flax’s chemical composition, structural architecture, and no-linearity behaviour. These parts aim to 

present in detail the composite’s raw materials used in this thesis. Next, the notion of the interface is 

developed, as it is investigated in chapter 2 to discuss the feasibility of flax/biodegradable 

thermoplastics composite. Indeed, the interface is the critical stress transfer zone between 

reinforcement and matrix, especially for flax fibres that present several interfaces. Before dealing with 

the manufacturing process for thermoplastic composite, the flax fibres extraction and the typical flax 

preforms are presented. This help to understand the manufacturing choices made in the thesis and 

the varieties of preform used.  Finally, the importance of the ply structure in its mechanical properties 

is developed, as it is the baseline of the results’ discussion in chapters 3, 4 and 5. To conclude, the 

environmental impacts of flax composite are discussed as well as several end-of-life scenarios. It allows 

the environmental impact discussion of the biodegradable flax composite, highlighting the advantages 

and inconveniences of biodegradable flax composites.  

I.   General understanding of biodegradation 

I.a.   Biodegradation: a fuzzy term for a complex phenomenon 

As an indicator of human pollution, plastic waste invasion is considered the second-biggest 

environmental concern after climate change [1]. According to Ellen MacArthur, “[…], there could be 

more plastic than fish by weight in the oceans by 2050.”[2]. A recent study [3] claims that in 2020, 

there is more plastic on earth than the total mass of animals combined. As a response, commonly 

called “bioplastics” appear in the media as ecological alternatives, initially developed for packaging 

and mulching. However, it is more nuanced than that. First, the term “bioplastics” has to be more 

precise as it incorporates two different notions: bio-sourced and bio-degradable [4].  

Bio-sourced polymers use biomass as source materials. Standards exist to quantify the proportion of 

biomass in a plastic without defining a limit to consider a plastic as bio-sourced [5]. However, one 

Japanese certification (JBPA BiomassPla Certification) defines this limit as 25% of the “biomass-based 

plastic ratio”.  
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A simple definition of biodegradable polymers suggested by Dommergues et al. [6] is that polymers 

can undergo chemical reactions via natural ageing (environment, temperature, microorganism) to 

convert to water, carbon dioxide and biomass.  

As presented in Figure 1-1, one notion (e.g. bio-sourced) does not imply the other (biodegradation). In 

this thesis, we will use the bioplastics poly-(lactide) (PLA), poly-(hydroxy alkanoates) (PHAs) and poly-

(butylene-succinate) (PBS) as composite matrices, all of which are both bio-sourced and 

biodegradable. 

 

Figure 1-1: Classification of common thermoplastic polymers regarding their bio-sourced and/or bio-degradation behaviour, 

inspired by [4]  

Nevertheless, bio-degradation is more complex than the definition proposed by Dommergues et al. 

[6]. Many reviews focus on explaining all the phenomena englobed under this notion [7–10]. As 

summarised in Figure 1-2, polymer degradation must first occur to reduce their size to an assimilable 

scale for microorganisms. The degradation of polymers (un-bio-degradable ones included) can be due 

to abiotic phenomena such as mechanical degradation, light degradation, thermal degradation and 

chemical degradation (mainly oxidation) [7]. In the specific case of biodegradable polymers, the 

colonisation by microorganisms at the macro-scale adds on to the list of degradation mechanisms. This 

bio-film secretes enzymes that catalyse chemical degradation. Furthermore, these polymers tend to 

be hydrophilic. The uptake of water impacts polymer micro-structure through plastification [11] and 

swelling [12]. In addition to oxidation, they undergo mainly hydrolysis [13]. Depending on water 

diffusion and kinetics of hydrolysis, the degradation occurs in the bulk or at the surface of the polymer 

[8,14]. The oligomers and monomers generated by the degradation can then be bio-assimilated by 

microorganisms, leading to mineralisation (HO2, CO2, CH4, N2 release) and new biomass. This bio-
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assimilation was recently clearly observed on 13C-labeled PBAT, where after six months in soil, 13C was 

found in fungal hyphae and unicellular organisms attached to the PBAT surface [15]. 

 

Figure 1-2: Following step for the biodegradation of polymers, inspired by Galgani et al. [13]. 

I.b.   Standards and labels  

Biodegradation englobes many phenomena, each one being environmentally dependent. 

Microorganisms will not be identical in compost, soil, nor sea. Light and oxygen also impact their 

population. The temperature differs in all these environments, influencing the microorganism activity 

and the polymeric chain mobility. Another critical parameter that should be specified speaking about 

biodegradation is the timescale considered. That is why several norms exist to oversee the 

biodegradation designation in the polymer industry. The ones focussing on compost biodegradation 

are NF T 51-800 and NF EN 13432, respectively, for domestic and industrial compost. Both are based 

on the same criteria: characterization of samples before testing, biodegradability, disintegration, 

compost quality and identification.  

The biodegradability criterion is based on the quantity of carbon dioxide released (NF EN ISO  14855-

1). The main differences are test environment and time considered. Material has to biodegrade in 6 

months in compost at 58 ± 2°C to be considered as industrially compostable, where for a domestic 

compostable criterion, it should biodegrade under 25 ± 5°C in 1 year. For these two norms, labels 

delivered by TUV Austria exists: “OK compost industrial” and “OK compost home”. This same 

institution delivers equivalent labels for soil, water and seawater biodegradation based on the same 

tests as previously quoted norms. They use a temperature of 20 ± 5°C and a time consideration 

respectively of 2 years, 56 days and 6 months for soil, water and seawater. One standard (ISO 

19679:2020), effective since 2020, is to quantify the aerobic biodegradability of a plastic film at 

seawater/sand interface. However, no critical value is given to consider the film as biodegradable in 

this environment. 
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II.   Biodegradable polymers  

II.a.   Bio-sourced manufacturing 

As previously said, the polymers investigated in this thesis are all bio-sourced (and biodegradable). 

However, different processes are used to obtain PHAs, PLA and PBS. For PBS, the grade used in this 

thesis is bio-sourced, but this polymer can also be petro-chemically synthesized.  

PHAs are naturally produced by bacteria as energy reserves. Its production is now well understood and 

mastered [16–18]. Firstly, the bacteria population grow thanks to fermentation with carbon sources 

(sugar, fatty acid, renewable resources: cellulose, starch) and nutrient (nitrogen, phosphor, oxygen, 

amino acids, B-vitamins). Then, nutrients are reduced, leading to a C/N ratio too high for the bacteria. 

As a response to this stress, they convert the excess carbon in PHAs, stocked inside bacteria cells as 

energy reserves, as shown in Figure 1-3. The final step is to extract the PHAs from the cells, usually 

using solvents, following by purification to eliminate the organic residue. Depending on the bacteria, 

the carbon sources and nutrients, various types of PHAs are obtained. 

 

Figure 1-3: MET observation of PHB granulates inside a bacteria cell [18]  

As presented in Figure 1-4, PHAs refer to a family of polymers with a specific monomeric sequence. It 

is commonly separated into three classes depending on the number of carbon in the alkyl group (R). 

The short-chain length PHAs are characterised by R = 1 or 2, medium-chain length PHAs by 3 to 13 and 

long-chain length PHAs for R > 13. This classification is described in Figure 1-4.  
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Figure 1-4: Classification of polyhydroxyalkanoates according to their structure, extracted from [19].  

On the other hand, PLA and PBS are chemically synthesized. Regarding PLA, a bacteria fermentation of 

carbohydrates forms lactic acid [20]. These carbohydrates can be extracted from corn/potato starch 

(glucose, maltose, dextrose) or beet sugar/cane (sucrose). Once the monomers are synthesized, 

several processes are available to obtain PLA [20,21]. The most efficient and widely used is the ring-

open-polymerisation of the lactide, created by the natural condensation of the lactic acid, represented 

in Figure 1-5. As lactic acid is asymmetric, it is present under two enantiomeric forms: L(+) and D(-). 

L(+) lactic acid is the natural enantiomer, so it is the major one synthesized by the fermentation process 

(99,5%). Thanks to the ring-opening-polymerisation[21], the enantiomeric concentration could be 

controlled, leading PLA with various properties [22,23]. A pure L(+) PLA or D(-) PLA is called PLLA and 

PDLA, respectively, whereas PDLLA refers to a mixture of L(+) and D(-) PLA.  

 

Figure 1-5: Ring-opening-polymerisation of the Lactide to synthesize high molecular weight PLA [20]. 

PBS are commonly petro-sourced, but all its precursors can now be synthesized from biomass [24]. 

That is why recently commercialised PBS are partially bio-based [25], with up to 50% of bio-sourced 
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carbon (Serpbio intern report). The succinic acid could be produced from the fermentation of 

renewable feedstock [24]. Cooper et al. [26] succeeded to catalytically reduce this succinic acid into 

1,4-butanediol. Then, the esterification of these two precursors leads to PBS oligomers. A 

polycondensation of these oligomers is required to increase the molecular weight of PBS, as shown in 

Figure 1-6. However, this reaction is long, and the high temperature could cause side reactions, 

decreasing the molecular weight. This is why catalysts are often used in industry to accelerate the main 

reaction and avoid side ones [25]. 

 

Figure 1-6:  Polymerization process of PBS from succinic acid and 1,4-Butanediol. [25] 

II.b.   Mechanical properties 

As they could be synthesized by many bacterial species [27], the short-chain length PHAs are the more 

commonly studied, especially the poly-(3-hydroxybutyrate) (PHB). However, its high crystallinity, 

between 60% and 90% [28], makes it a brittle polymer. One strategy to overcome this high crystallinity 

is to create a copolymer with PHB and a mcl-PHA, poly-(3-hydroxybutyrate)-co-(3-hydroxy valerate) 

(PHBV) being the most studied. Increasing the amount of PHV in the copolymer decreases its 

crystallinity and stiffness [29–31]. Depending on the amount of PHV, PHBV modulus evolves from 3.8 

GPa (0 mol% of PHV) to 1.2 GPa (34 mol% of PHV) [32]. In this thesis, the PHBV used (PHI 002) contains 

2 mol % of PHV [33]. In the next chapters, it will be called PHA as it is the only PHBV used in this work.  

As previously discussed, PLA could undergo several enantiomeric conformations, which will modify its 

crystallinity, structure, and mechanical properties. For example, Perego et al. [34] observed a 20 % 

modulus decrease between a PLLA and a PDLLA. Indeed, PLLA (or PDLA) is a semi-crystalline polymer. 

Therefore, incorporating PDLA (or PLLA) greater than 7% in the PDLLA formulation leads to a 

completely amorphous polymer [22]. Interestingly, a 1:1 ratio of L(+) and D(-) leads to racemic 

crystallite and a polymer with higher glass transition and mechanical properties [20]. Thus, PLA could 

be found commercially in many grads depending on the PLLA/PDLA ratio and the polymer chain length. 

For example, the 2002D PLA (a PDLLA from NatureworkTM) exhibits a tensile modulus of 3.5 GPa and a 
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strength of 53 MPa [35] for a 4.2 mol% of D(-) Lactic isomer content [36]. In this thesis, the PLA 3001D 

(from NatureworkTM) is used, which is a PDLLA containing 1.4 mol% of D(-) Lactic isomer [37]. 

In contrast to both previous polymers, PBS is a less stiff polymer with mechanical properties 

comparable to low-density polyethene (LDPE) [38] with a tensile modulus of ≈ 0.6 GPa [38,39] and a 

strength of ≈ 35 MPa [24,25,40]. Once again, molecular weight and so crystallinity influence these 

properties [24]. Xu and Guo [40] focus on the crystallisation behaviour of PBS, finding that it acts like 

polyethene. For information only, Figure 1-1 compares mechanical properties of PLA, PHBV, PBS and 

three commonly used petrol-sourced thermoplastics, polypropylene (PP), LDPE and polyamide (PA11).  

Table 1-1: Comparison of thermal and mechanical properties of biodegradable as well as conventional polymers. Data is 

extracted from literature [19,25,32,38,41–46] 

 PLA PBS 
PHBV 
(%HV < 20%) 

PP LDPE PA11 

Glass transition 
temperature [°C] 

60 – 65 -40 – -30 -10 – 10 -10 – 0 -120 -40 

Melting 
temperature [°C] 

160 – 200 110 –115 115 – 175 160 – 170 110 190 

Tensile modulus 
[GPa] 

2 – 4 0.5 – 0.700 1.5 – 4 1 – 1.7 0.3 – 0.4 1 – 1.2 

Ultimate strength 
[MPa] 

50 – 65 20 – 40 20 – 45 25 – 40 20 – 45 45 

Ultimate failure 
strain [%] 

2.4 - 5.4 150 – 500 4 – 30 4 – 500 300 – 400 250 – 300 

 
In this thesis, the three biopolymers are compared to PP as it is the industrial standard for flax 

composite in the automotive sector [47]. Indeed, the automotive sector is currently the more 

developed market concerning flax/thermoplastic composites. They commonly thermos-compress 

flax/PP non-wovens to make interior parts of cars, such as dashboard and internal part of doors [48].  

II.c.   Differences in biodegradation behaviour of biodegradable polymers 

As previously discussed, biodegradation of polymers depends on complex phenomena acting 

altogether. Despite its complexity, several reviews present a deep understanding of polymer 

biodegradation [7–10]. A focus is made here on differences between the three polymers investigated 

in this thesis, the first major one being the environment suitable for their biodegradation. First of all, 

due to its high glass transition temperature, PLA needs a temperature around 60°C to start its 

degradation process [49], occurring by abiotic hydrolysis [8]. With glass transition temperatures lower 

than ambient temperature, the temperature limit criterion is less restrictive for PHBV and PBS. 

Microorganisms present in the degrading environment are of importance too. The enzyme 

biodegrading PHAs (called depolymerases) are carboxylesterases [8], which can be created by many 
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bacterias and filamentous fungi present in nature, from seawater to compost. PLA needs more precise 

micro-organisms [50]. On the other hand, microorganisms degrading PBS are mainly present in soil or 

compost [51,52]. The presence and the activity of these microorganisms are primordial to the bio-

assimilation step. Therefore, the biodegradation of biodegradable polymers in areas with low 

microbial activity (low humidity or low temperature) or low population (deep ocean) is more difficult. 

To summarise this, a biodegradation scale is presented in Figure 1-7.  

 

Figure 1-7: Schematic representation of the environment biodegrading the investigated polymers. 

A second significant difference is the mechanism of erosion before bio-assimilation, specifically, the 

mechanisms of bulk erosion and surface erosion, described clearly by Laycock et al. [8] in Figure 1-8. 

The polymer properties evolve according to erosion type. PLA is known to undergo mainly bulk erosion 

[8,14], where PHAs are more subject to surface erosion [8,53,54]. For PBS, some studies have noted 

surface erosion [51], while others have highlighted bulk erosion [55]. These mechanisms compete, and 

many factors can influence which one is dominant [14,56], including the thickness of the sample (L) 

[57]. Indeed, as reported in Figure 1-8, there exists a critical thickness (Lcrit), depending on the diffusion 

coefficient of water (D) and the pseudo-first-order hydrolysis rate constant (λ’). 

II.d.   Biodegradation of plant fibres 

Plant fibres are mainly constituted of polysaccharidic parietal polymers such as cellulose, 

hemicelluloses, lignin and pectins. Enzymes breaking down these complex polysaccharides can be 

secreted by many fungi and bacteria [58,59]. Both act in synergy to degrade efficiently plant fibres 

[59]. This microorganism is present and active in water and soil [60]. Van den Brink et al. [61] develops 

which fungal enzymes are responsible for the biodegradation of each polysaccharide. Plants fibres can 

also be digested by animals thanks to their rumen microorganism [62]. As all plant fibres constituents 

are biodegradable, using them to reinforce biodegradable polymers offers a new end-of-life scenario 

for the composite field: biodegradation. However, many plant fibres exist with their own structures 

and characteristics. 
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Figure 1-8: Schematic description of polymer degradation through hydrolysis, focusing on the erosion phenomenon and its 

impact on polymer properties. L is the thickness of the specimen, Lcrit is the critical thickness where polymers erosion swishing 

from bulk to surface erosion. D is the diffusion coefficient of water of the polymers, and λ’ is the pseudo-first-order hydrolysis 

rate constant, both parameters influencing Lcrit. Inspired by [8] 

III.   Flax fibres as a potential reinforcement for biodegradable polymers 

III.a.   Why flax? 

A standard classification of plant fibres is based on their origin in the plant. Figure 1-9 represents this 

classification, giving some examples for each class and splitting each class into primary fibres (the aim 

of plant cultivation) and secondary fibres (a by-product of plant cultivation). 

The agro-polymer composition found in fibres plants depends on many factors such as species [63], 

growth condition [60] and the fibre function inside the plant [63]. Table 1-2 presents this repartition 

for some common plant fibres. 

Table 1-2: Biochemical composition of several plant fibres, according to [63]. 

 Cellulose [%] Hemicellulose [%] Lignin [%] Pectin [%] Other [%] 
Flax 60 - 85 14 - 21  1 - 3 2 - 15 1 - 6 
Sisal 53 - 65 19 11 - 14 10 - 14 <1 
Cotton 83 - 98 4 - 6 1 4 2 - 3 
Bamboo 36 - 55 11 - 17 21 - 29 <1 1 - 4 
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Figure 1-9: Plant fibre classification based on their origin in the plant. Extracted from [64] 

The fibre’s function in the plant, governed by its location in the plant, directly impacts their mechanical 

properties, represented in Table 1-3. For example, cotton fibres are seed hair used by the plant to 

enrobe the seed and support its dissemination. This function does not require specific mechanical 

properties, explaining the low stiffness of cotton fibres. On the other hand, flax fibres support the stem 

structurally, explaining its remarkable mechanical properties [65]. These properties come from a high 

proportion of cellulose, highly oriented in the direction of the fibres due to a slight microfibril angle 

(MFA) [66,67]. The hierarchical architecture of flax fibre is discussed in the following section. 

Table 1-3: Mechanical properties of several plants fibres [63]. 1 referee to elementary fibres and 2 to bundles. 

 
Stiffness [GPa] Ultimate strength [MPa] Ultimate strain [%] MFA (°) 

Length 
[mm] 

Flax1 37.2 – 75.1 595 – 1510 1.6 – 3.6 8.3 – 11.0 6 - 80 
Sisal 9.0 – 25.0 2 347 – 577 2 2.3 – 5.45 2 20 1 0.5 – 8 1 
Cotton1 5.5 – 13.0 287 – 800 3 – 10 20 – 30 10 - 60 
Bamboo1 32.0 – 43.7 1200 – 1610 3.8 – 5.8 8 – 10.7 0.5 - 50 

 
Additionally, flax is a major local product of France, accounting for 68% of the world flax production 

with a surface coverage of 122 000 ha [68]. Due to the textile background of flax, there is knowledge 

on flax fibres extraction and flax fabric manufacturing for textile but also composite with unidirectional 

and non-woven preforms now available. This is not the case for other plant fibres. That is why, in 

Europe, flax fibre is commonly chosen among plant fibres to be used in composite materials, from car 

dashboards [44] to hulls of boats [69]. However, flax appears to be more expensive (1 700 to 2600 

$/ton) than other plant fibres such as sisal (700 to 1800 $/ton) or bamboo (250 to 500 $/ton) [63] as 

they are long fibres and used in textile. The following sections will only focus on flax fibres which are 

the only plant reinforcement used in the experimental work of this thesis. 
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III.b.   Multi-scale structure of flax fibres 

The localisation of flax fibres inside the flax stem and the multi-scale structure of flax fibres are 

represented in Figure 1-10. Thanks to retting and extraction processes [70], and due to the architecture 

of the fibre region in planta, extracted fibres are mainly present in the bundle form, which are an 

assembly of elementary fibres. Elementary fibres are glued together with a middle lamella, mainly 

composed of pectins [71] and calcium pectate, the latter being located explicitly on tricellular junctions 

[72]. A bundle is made in its section of between 30 and 60 elementary fibres [73]. Thanks to the 

intrusive growth, the number of fibres in length reach hundred elementary flax fibres [74]. The 

extraction process aims to individualised as much as possible the bundles present in stems to obtain 

smaller bundles counting only a few elementary flax fibres or ideally to split them into single flax fibres. 

 

Figure 1-10: Flax fibres architecture, from the stem to the micro-fibril of cellulose, a) representation of a flax plant, b) cross 

observation of an Aramis flax stem (extracted from [75]), c) zoom on bundles inside the flax stem circled in red, d) schematic 

representation of the bundle constituent, e) micro-structure of an elementary flax-fibres, f) ultrastructure and microfibril of 

cellulose layout inside the secondary cell-wall. 

Elementary flax fibre has a length of 35 ± 15 mm [71] and an apparent diameter of 17 ± 3 µm [72] 

typically. The fibre cross-section appears to be polygonal due to the intrusive growth of flax fibres 

inside bundles. Furthermore, the apparent diameter evolves along the fibres’ length [74,76,77]. This 

diameter is lower for fibres extracted from the top of the stem [74]. The fibre length also depends on 

the location within the stem. Indeed, fibre length of 16 mm is measured at stem extremities against 

35 mm in the middle [74]. 
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Looking closer to elementary flax fibres, a complex architecture is observed with a primary cell wall 

(PCW) and three secondary cell walls called S1, S2 (or G-layer) and S3 (or Gn-layer)[78]. In the centre 

of the fibre, a hole called the lumen represents from 0.5% to 7% of a mature flax fibres cross-section 

[77,79]. Furthermore, the size of the lumen varies along fibres length and can be closed during few 

micrometres [79]. Its biochemical composition and its thickness characterise each cell wall. It appears 

that S2 is the predominant one with 90% of the global cell walls of a mature flax fibre [80]. It is 

composed mainly of cellulose micro-fibril, linked with hemicelluloses (galactan chains) [78,80]. In S2, 

these micro-fibrils are aligned together, making an angle estimated between 5° and 10° with the axial 

fibre direction [66,67]. This angle is called the microfibrillar angle (MFA). The MFA value impacts plant 

fibre mechanical properties as the micro-fibrils are more solicited with a low MFA [81]. Due to its large 

thickness, its high content of cellulose, mainly under micro-fibril shape and the low MFA, the S2 cell 

wall is mainly responsible for the apparent mechanical properties of flax fibres. 

III.c.   Mechanical behaviour of flax fibres 

Micro-fibrils of cellulose are responsible for the mechanical properties of S2 cell-wall and so of flax 

fibres. They present high mechanical properties, with a stiffness estimated between 120 GPa and 140 

GPa [82]. However, due to the complex internal structure of elementary flax fibres, including the MFA 

and other polysaccharidic parietal polymers, the stiffness of flax fibres is reduced. Baley and Bourmaud 

[83] estimate its average value to be 52.5 ± 8.6 GPa, based on 50 different flax batches tested in a 

period of 18 years. They reported tensile strength of 945 ± 200 MPa and a failure strain of 2.1 ± 0.5%. 

They explain the high scattering by the natural origin of flax, which is influenced by soil composition, 

meteorological conditions, and extraction processes (responsible for different densities of defects).  

Furthermore, flax fibres have a density estimated between 1.45 and 1.50 g.cm-3 [84], much lower than 

the 2.55 g.cm-3 value of glass fibres [85]. This density difference induces a specific stiffness 31% higher 

for flax fibres than for glass fibres [86]. This clearly shows the potential of flax fibres to replace glass 

fibres when stiffness is of high interest for the applications. 

As reported in Figure 1-11, flax fibres can present three different tensile behaviours. Type I (TI) is linear, 

type II (TII) appears to be bi-linear, where type III (TIII) is non-linear with a loss of stiffness at the 

beginning followed by an increase, TIII being the predominant behaviour [87]. The origin of this non-

linear behaviour is still discussed in the literature. 

One scenario proposed by Placet et al. [88] is represented in Figure 1-12 to explain the behaviour of 

elementary hemp fibres, which is similar to flax fibres.  

Multiscale characterisation of biodegradable flax composites through structural, mechanical and ageing investigations Delphin Pantaloni 2022



Chapter 1: Literature review 

37 

 

 

Figure 1-11: a) Several mechanical behaviours of elementary flax fibres, b) focus on the third behaviour (T III) and the stiffness 

evolution during the tensile test. [87] 

 

Figure 1-12: explanation of a TIII elementary hemp fibre behaviour (similar to flax) thanks to a scenario suggested in [88], 

taking into account the “slip and stick” phenomenon, the alignment of microfibrils and the crystallisation of amorphous 

cellulose. 

Multiscale characterisation of biodegradable flax composites through structural, mechanical and ageing investigations Delphin Pantaloni 2022



Chapter 1: Literature review 

38 

 

The first non-linearity observed could be due to the rupture of hydrogen bonds at the micro-fibrils 

interface due to the local shear stress [89]. This rupture allows micro-fibrils to slide against each other 

thanks to a viscous flow of the polysaccharide matrix. If the stress is released, hydrogen bonds are 

created instantly, fixing the micro-fibrils in their new position. This mechanism called “stick and slip” 

is known for fibres wood [89]. During this slippage, micro-fibrils re-align, locally reducing shear stress 

and inducing an increase of stiffness observed in the second part of the strain-stress curve. In addition, 

kink-bands areas, with local MFA values reaching 30-40° [90], realign on the global micro-fibrils 

orientation, and amorphous cellulose rearranges itself to crystalize [88]. Both phenomena are 

additional explanations of the stiffness increase.  

IV.   Interface in flax composites 

IV.a.   Interface: What are we talking about? 

By definition, a composite is an assembly of (at least) two heterogeneous materials. This assembly 

creates a small zone between materials, where stress transfer occurs between the reinforcement and 

the matrix [91]. This zone could have a thickness, called interphase, or can be thin enough to be 

considered an interface. In the specific case of thermoplastic composite, a layer of highly crystallised 

polymers are present close to the fibre, with properties different from the bulk polymers [92,93]. This 

polymer layer is considered to be an interphase between the reinforcement and the bulk polymer. On 

the other hand, the interface englobes phenomena that do not induce a discernable third phase. The 

adhesion is then created by physicochemical interactions, as presented in Figure 1-13.  

 

Figure 1-13: Schema of the interfacial mechanism between fibre and matrix, inspired from [94]. Expect from MAPP where d) 

covalent bonds are present, the interfacial mechanism of a) interlocking and/or b) Van der Waals and/or c) Hydrogen bonds 

are the predominant interfacial mechanism, especially for PLA, PHAs and PBS.   

The physical link mainly refers to interlocking induced by surface roughness, see Figure 1-13.a). During 

composite processing, a low viscosity matrix can fill holes, crevices, micro-cavities or any surface 
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irregularity [94]. After matrix solidification, a mechanical anchoring process locks the fibres inside the 

matrix, lessening the pull-out phenomenon. Additionally, the residual stresses, induced by thermal or 

hygroscopic expansion or transcrystallinity interphase, increases this interlocking phenomenon due to 

a local radial compressive pressure between matrix and fibre [91,95], also increasing the static friction 

between the fibres and the matrix. Thus, the roughness gives rise to an increase of other bonding 

mechanisms as the contact surface area improves [94]. In the specific case of flax fibres, Baley et al. 

[96] suggested that the roughness of flax fibres is due to residues adhering poorly to the surface. They 

can play a role in energy dissipation during interface failure but cannot serve as anchors for interlocking 

mechanisms. 

In addition to physical interaction, chemical interactions have a role in the adhesion between 

reinforcement and matrix. It can be due to chemical bonds or adsorption through van der Waals 

reaction or hydrogen bonds. Van der Waals interactions are present as long as two atoms or molecules 

are close to each other, arising from “the correlation of fluctuations in the electron distribution of 

neighbouring molecules” [97]. This interaction is predominant when at least one of the constituents is 

chemically inert, which is the case for flax/PP interface due to PP. The surface of elementary flax fibres 

comprises several agro-polymers, predominantly cellulose, hemicelluloses and pectins [96]. These 

constituents present hydroxyl groups, allowing flax fibres to be a proton donor, leading to potential 

hydrogen bonds with the surrounding matrix. As define by Gilli and Gilli [98]: “Hydrogen bonding 

occurs between a proton-donor A-H and a proton-acceptor group B, where A is an electronegative 

atom, O, N, S, X (F, Cl, Br, I) or C and the acceptor group is a lone pair of an electronegative atom or a 

 bond of a multiple bond (unsaturated) system. Generally, a H-bond can be characterized as a proton 

shared by two lone electron pairs”. As the hydrogen bonds are stiffer than van der Waals interactions 

[99], the adhesion between flax and a matrix presenting a proton-acceptor group will be higher than 

with an inert matrix. 

Chemical bonding is the strongest chemical interaction potentially present in an interface, where two 

atoms share electrons. As a result, the surrounding hydroxyl group of flax fibres reacts with the matrix 

to create a covalent link. As presented in Figure 1-14, this is suggested in the literature that it is the 

case for flax fibres/MAPP [100].  
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Figure 1-14: The suggested chemical reaction between hydroxyl group present on flax fibres surface and grafted PP with 

maleic anhydride [100] 

Adhesion is a complex phenomenon where all the previously developed phenomena act together. The 

flax fibres surface corresponds to the primary cell wall (PW) made of celluloses, hemicelluloses and 

pectins. Each molecule can interact differently with the matrix, inducing adsorption due to a mix of 

van der Waal interactions and hydrogen bonds, interlocking phenomenon and potential chemical 

bonds.  

IV.b.   Several interfaces in a flax composite 

Furthermore, as developed in section III.b, flax fibres have a complex structure leading to the presence 

of multiple types of interfaces and interphases at the composite level [96], as presented in Figure 1-15. 

An elementary flax fibre/polymer matrix interface is considered the primary stress transfer region 

between the matrix and the fibre [101], schematised in Figure 1-15.b) and observed for a flax/PBS 

composite in Figure 1-15.e). Ideally, elementary flax fibres are the only reinforcement arrangement in 

the composite. However, due to the natural origin of flax fibres and the extraction process, bundles 

and sometimes shives or cortical parenchyma are also present. The middle lamella appears to be a 

fibre/fibre interphase linking elementary flax fibres together in bundles, as observed in Figure 1-15.c) 

and f). The importance of the middle lamella should not be disregarded as it may be a zone of weakness 

in a composite [102,103]. The cell walls present inside elementary flax fibres can be a critical zone too. 

Indeed, it was observed by Le Duigou et al. [104] that epoxy resin can impregnate the flax cell walls to 

a depth of 2 µm. This phenomenon induces that the interface solicited is the cell walls interface rather 

than the matrix/fibres one. This can lead to a pealing phenomenon [105], observed in Figure 1-15.d).  
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Figure 1-15: Schema and SEM representation of multiple interface and interphase at the composite scale level for flax 

reinforced composite, a) & d) focus on cell walls interface through pealing phenomena [105], b) & e) focus on the 

matrix/elementary flax fibres interface, c) & f) deal with the middle lamella as an interphase between elementary flax fibres 

inside a bundle. 

The reliability of making flax composite depends on the affinity between elementary flax fibres. This 

affinity is physically obtained through the polymer/fibre interface, studied at two scale levels [101]. As 

many interfaces could be present in a flax composite, the adhesion investigation between elementary 

flax fibres and polymer is more precise at the micro-scale level, avoiding the influence of the middle-

lamella. Using the composite to investigate the interface remains possible. It is more convenient to 

use, but the mechanical solicitation occurs not only at the flax/matrix interface. 

IV.c.   Shear characterisation at flax/matrix interface  

The micro-scale focus on the interfacial shear strength (IFSS) at the interface fibre/polymer. Many 

protocols exist with their advantages and disadvantages [101,106]. Among them, the fragmentation 

test [107–109], pull-out test [110] and micro-droplets test [108,111–113] are the more common and 

are represented in Figure 1-16.  

 

Figure 1-16: Description of the micro-scale investigation protocol for interface strength quantification. 
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The fragmentation is based on a critical fibre length, leading to fibre debonding rather than fibre 

breaking [109,114]. The embedded fibre breaks in several pieces during the fragmentation test until 

these pieces reach the critical length, leading to fibres debonding. The critical length is observed 

through piece length, and back-calculation leads to IFSS. One limitation is the need for fibre strength 

value for the back-calculation, which has a non-trivial variance. The variation of the section along the 

embedded fibres is another limitation for the back-calculation.  

The second test is based on the debonding of a fibre inserted in a thin sheet of polymer. The fibre is 

submitted to a tensile test, with the polymer sheet clamped, leading to a debonding phenomenon. 

Knowing the debonding force and the embedded fibre area, the IFSS is calculated [101]. The difficulty 

is to embed only elementary fibre and not bundles. The precise measurements of the length of the 

embedded fibre is a second issue.  

Finally, the micro-droplet test used the same debonding phenomenon; it gives the force obtained by 

debonding a microdroplet of resin fixed on a single fibre. This last technique has been theoretically 

described by Miller [111]. A typical micro-droplet load/displacement curve is presented in Figure 1-17. 

In addition to the interfacial shear stress, this test allows obtaining the friction post debonding, giving 

clues on the residual strength between fibres and matrix.  

 

Figure 1-17: Typical debonding curve for a flax/epoxy specimen. Extracted from [115]. 

As the flax fibre goes through the matrix droplet, this test allows better management of the embedded 

fibre length than the pull-out test, even if the geometry of a droplet stays complex [116]. All these 

micro-scale methods assume a uniform shear stress distribution. As these tests induce stress 

concentrations, the interfacial shear strength obtained is an ‘apparent’ shear strength. In addition, 

they require a high number of specimens as a data distribution is present due to some out of control 
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parameters during sample preparation and testing. Furthermore, differences in IFSS values of up to 

80% on the same fibre/matrix couple have been recorded, even when measured by the same operator 

[108,117]. Indeed, Table 1-4 recaps values obtained by Graupner et al. [114], clearly showing the 

characterisation methods' influence. 

Table 1-4: Difference between the IFSS values (in MPa), obtained from two different methods, between elementary flax fibres 

and PP, MAPP or PLA matrix. Values are extracted from [117]. 

 Pull-out test Fragmentation test ratio 
Flax/PP 17.9 ± 10.5 9.8 ± 6.8 1.8 
Flax/MAPP 24.3 ± 11.1 15.8 ± 14.5 1.5 

Flax/PLA 28.3 ± 10.9 - -  

 
Figure 1-18 presents literature data focussing on micro-droplet tests and comparing elementary flax 

fibres to glass fibres. No difference is observed between the adhesion of flax or glass with poly-

(propylene), MAPP and unsaturated polyester. A higher value is reported for PLA/flax than PLA/glass, 

probably due to a better affinity between the flax fibres than the glass fibres. On the other hand, 

epoxy/glass presents the highest interfacial shear strength due to coating on the glass fibre specially 

developed to increase the glass interface with the thermoset matrix [110]. Indeed, as glass is 

chemically inert, glass fibres for composite application undergo a silane coating to adhere better to 

the matrix [118]. Thus the Figure 1-18 presents a generic value as the coating between the studies can 

be different.  

 

Figure 1-18: Interfacial shear stress (IFSS) measured by micro-droplet test on untreated elementary flax fibres and on glass 

fibres. Data are extracted from the literature : flax/PP [119–124], flax/MAPP [122–124], flax/PLA [92,105], flax/epoxy 

[92,104,115,125–128], flax/polyester [92,125,126], glass/PP [129–132], glass/MAPP [129,130], glass/PLA [105], glass/epoxy 

[111,127,133–136], glass/polyester [92,120,125,133]. 

Multiscale characterisation of biodegradable flax composites through structural, mechanical and ageing investigations Delphin Pantaloni 2022



Chapter 1: Literature review 

44 

 

IV.d.   Macroscopic mechanical properties dependent on the interface 

It is possible to obtain information on the interface at the composite scale using the mechanical 

properties of a laminate composite, such as shear behaviour or transverse tensile behaviour.  

The shear behaviour is linked, among other phenomena, to fibres/matrix interfacial solicitation. Even 

if other phenomena are present, there is a close correlation between the interfacial shear strength 

obtained at the microscale level and the intralaminar shear strength obtained through composite 

shear testing [126]. That validates the use of composite-scale tests to obtain interface information 

conveniently. Several methods exist to measure shear properties in the composite for interface 

characterisation, presented in Figure 1-19. 

 

Figure 1-19: Composite shear solicitation methods for interface investigation at macro-scale level, a) thin-walled tube torsion 

b) 10° off-axis tensile test, c)  ± 45° tensile test, based on [137]. 

Ideally, an in-plane shear solicitation is wanted to obtain intralaminar shear stress. It is experimentally 

obtained by applying torque to a thin-walled tube [137,138], Figure 1-19.a). This torque induces in-

plane shear stress uniformly in the specimen. Other methods exist to obtain intralaminar shear stress 

where the in-plane shear stress is not the only solicitation. They are much more practical than thin-

walled tube torsion, especially in terms of sample manufacturing. Among them, the off-axis test is 

suggested by Chamis and Sinclair [139] to create a shear strain during a simple axial and transversal 

tensile test, Figure 1-19.b). Knowing the angle between the fibres and the tensile loading direction, it 

is possible to back-calculate the shear strain and stress to obtain the shear behaviour using the 

laminated plate theory. It is considered a relevant test [138,139]; however, it gives shear strength 

significantly lower (38 %) than in-plane shear stress methods [137]. This difference can be explained 

by the presence of coupling effects between tensile, torsion and bending due to the asymmetric and 
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unbalanced assembly of the laminate. One test widely used is the ± 45° tensile test developed by Petit 

[140] and simplified by Rosen [141], Figure 1-19.c). A [±45]s laminate is submitted to axial tensile 

traction. The axial and transversal strain/stress response is measured, which permits the shear 

stress/strain behaviour calculation. It is simple, cost-efficient and approximates the in-plane shear 

stress/strain response obtain by a thin-walled tube torsion accurately [137,138]. Other more complex 

tests exist, such as panel shear or rail shear tests. However, they give similar results to the ± 45° tensile 

test, which is simpler and more economical to handle [142]. 

Other composite properties can be used to obtain interface solicitation, such as the transverse tensile 

strength of a unidirectional composite [143]. On a transverse tensile test, the matrix and the interfaces 

are suggested to high stress and strain concentration [144]. As a result, the ultimate transverse 

strength is related to interfacial shear strength but also to matrix properties. 

All these macroscopic methods are often easier to handle than microscopic methods. However, the 

interpretation is more complicated to analyse due to the numerous phenomena occurring 

simultaneously. Among them, the deformation of the matrix and the shear distribution inside the 

lamina. In addition, the fibre/fibre interphase is also solicited in these macroscopic tests in the specific 

case of flax fibres. 

V.   Manufacturing process 

V.a.   From plant to preform 

It is necessary to describe the flax fibres extraction process briefly before discussing each preform 

particularity. Flax stems are pulled out at fibres maturity and left on the fields to undergo retting [70]. 

This natural process consists of partial biodegradation of polysaccharides linking the fibres together, 

thanks to combined and alternative effects of humidity, temperature, sun and microorganism or 

enzymes [145,146]. The retting is an essential step as it will help the bundle decohesion later on in the 

extraction. Furthermore, it influences the elementary flax fibres properties with higher mechanical 

properties for retted fibres. Indeed, the modulus evolves from 38.6 ± 17.3 GPa for unretted fibres to 

55.6 ± 11.8 GPa for retted fibres [147]. Then, the extraction of the fibres is mechanically done thanks 

to a scutching line, presented in Figure 1-20. Seeds and woody core are removed from the stem to 

finally collect the scutched technical fibres, made of bundles of single fibres. 

During scutching, some elementary flax fibres, and bundles made of a few of them, fall on a second 

circuit. Shives (fragment of woody core) fall on this second circuit too. The mix between the shives and 

the short flax becomes a by-product, the tows. At this stage, two qualities of flax fibres are available: 
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flax scutching tows and flax scutching fibres, the latter being more individualised [148] and assembled 

in long bundles, allowing their future use in tapes and preform manufacturing. 

It has been demonstrated by Martin et al. [148] that both elementary fibres extracted from scutching 

tows or scutching fibres have similar mechanical properties with respectively a stiffness of 47.0 ± 15.7 

GPa against 50.8 ± 15.7 GPa. Flax scutching fibres can be directly hackled to obtain high-quality long 

flax fibres homogenized into continuous flax ribbons. This process engenders another type of tows. As 

many shives were already extracted from the flax line production at the scutching step, the hackling 

tows contain mainly short flax fibres. The main difference between the two tows is the number of 

shives or parenchyma cortical present. Finally, at the end of the extraction, two tows qualities are 

obtained (scutching and hackling ones), as well as high-quality long flax fibres under the shape of a 

continuous ribbon. These different flax fibre qualities are used to make various flax preforms. 

 

Figure 1-20: Detailed schema of a scutching line extracting flax fibres from flax stem [149]  

As ribbons are continuous, they are easily transformed into yarns with the final aim to produce flax 

fabrics. Yarn strength has to be high enough to not break during the weaving process of manufacturing 

these fabrics. Without any consolidation, fibre slippage occurs, leading to the early break of the yarn. 

Several strategies exist to increase the yarn strength [70]. The twist strategies and the use of adhesive 

agents are discussed here.  

Twisting fibres is the common textile approach to obtain yarns. Individual ribbons are pinned together 

to create friction cohesion, increasing yarn strength [150], presented in Figure 1-21.a). However, there 
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is an ideal twisting level as a very high twist will induce the breakage of yarns due to the off-axis 

misorientation of the flax fibres [151], see Figure 1-21.b). Note that the yarn behaviour does not reflect 

the composite behaviour as the fibres in the yarns are free to reorient, which is not the case once the 

yarns are embedded in a matrix. 

 

Figure 1-21:  a) schema representation of the twist consolidation to obtain yarn, b) relation between the yarn strength and 

the twist level highlighting an optimum twist. Inspired by [70]. 

However, twisted yarns are not optimised for composite manufacturing as fibre misorientation 

decreases the composite's mechanical properties [151–153]. Indeed, Shah et al. [151] developed a 

modified rule of mixture for longitudinal impregnated yarns, finding a good correlation using a 

corrective factor of cos²(2α), where α corresponds to the twist angle of the yarns. Additionally, the 

difficulty in impregnation of a twisted yarn induces microporosity in the composite [153–155]. 

A more convenient process for yarn consolidation for composite application is utilising an adhesive 

agent to obtain flat yarns, called tape. This tape is made of parallel flax fibres, ideal for impregnation 

as no twist limits it. Furthermore, flax fibres remain principally oriented in the tape direction. Once 

impregnated, this flax fibre orientation maximises the composite properties. 

Ribbons are directly stretched to manufacture this tape. The required width and area weight is 

adjusted before being linked by a cohesive agent. Several options are available regarding the cohesive 

agent. It is suggested by Khalfallah et al. [156] that spraying water will release biochemical components 

(pectins) from flax. After a drying and calendaring step, the pectins will act as a cohesive agent leading 

to a flat flax roving. This method is also used to obtain directly a flax preform made of a sizeable 

unidirectional flax roving [156]. Using water/polyvinyl alcohol (PVA) adhesives mixed is an alternative 

to obtain higher cohesion [157]. However, the environmental pertinence can be debatable, as well as 
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the issue of adhesion between such flax coatings and impregnating polymers. Another solution is to 

pre-impregnate the flax fibres with thermoplastic [158,159].  

Once yarns or roving are obtained, the weaving process is used to obtain fabrics. They can be 

unidirectional or multi-axial, as is the case for glass or carbon fabric. Two techniques exist for holding 

the yarns together in a fabric shape. The first one is to use stitching yarns to maintain the yarns 

together. It is used for unidirectional preform as well as uncrimped multidirectional fabrics, as seen in 

Figure 1-22. A second option suitable for bi-directional fabrics is to crimp the yarns together. 

Depending on the crimp shape (twill/satin/basket), yarn mobility changes, thereby modifying fabric 

drapability [160]. 

 

Figure 1-22: Presentation of two types of flax fabrics, unidirectional and uncrimped bi-axial fabrics. Both of them are presented 

using twisted yarns or flat rovings. Index 1 refers to products from Bcomp, and index 2 is a Depestele product.  

Another flax preform is the non-woven, obtained directly from the tows. It is a random 2D  preform, 

which can be made by several processes [161]. The most used are the needle punched and the 

spinlaced. A focus is done here on the needle punched process as it is used in the thesis scope. This 

process is presented in Figure 1-23. It is divided into four main steps. First, raw materials are aerated 

and mixed via a blower to obtain homogenous source material. This step is the opening. Then, the 

source material is carded, leaving a thin web of fibres. At this step, there is only a slight cohesion 

between fibres. After the carding, the thin webs are laid one on each other to obtain the area weight 

targeted for the non-woven. 
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Finally, these thin webs are assembled thanks to needles hammering them. This leads to a 

consolidation of the preform, induced by fibres entanglement forced by the needles, see Figure 

1-23.c). The density of the needles, the depth of penetration, and the hammering speed influence the 

deformability and mechanical properties of the non-woven preform [162]. Another method used in 

this thesis to obtain light non-woven preforms is based on an opening step and a carding step, followed 

by a hot calendaring step. This last step is used to obtain cohesion in the non-woven by melting the 

polymer fibres. 

 

Figure 1-23: a) Needle punching line for non-woven manufacturing with a zoom on b) the carding [163] and c) needle punching 

[164] operations 

This needle-punching process produces non-woven from 300 g/m² to 2500 g/m². Furthermore, it 

induces a preferential orientation of fibres in the machine direction [165]. Two final products are 

available using this process. First, a pure flax non-woven preform is obtained using only flax tows as 

raw materials. Second, it is more relevant for the composite field to make a non-woven using flax tows 

and polymer fibres as raw materials. That leads to a preform ready for thermo-compression.  

V.b.   Manufacturing methods for thermoplastic composite 

Thermoplastics composite manufacturing needs a preform made of polymers and fibres. It is managed 

at several scales and thanks to various techniques presented in Figure 1-24. The commingled fibres are 

the specific case of the non-woven where polymers and reinforced fibre are assembled to obtain the 
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preform. It is also possible to have this assemblage at the yarn level, by solid polymers under powder 

form or fibre shape (using twisted yarns) [166] or by impregnating the yarns with melted polymers 

[158]. The melt impregnation can also be done at the fabric scale [167]. 

The last solution is the film stacking method. It consists of interlaying dry preforms and thermoplastic 

films to obtain an adequate amount of raw material. This process is not suitable at the industrial scale 

as it is time-consuming and difficult to manufacture complex geometries. However, this film stacking 

compression method is one of the processes chosen for making thermoplastic composite in this thesis. 

Indeed, it does not require a pre-mixed preform, is currently easier to test with a broader range of 

polymers (PBS, PHA, PLA) and allows a versatile choice of flax preform selection. 

 

Figure 1-24: Schema of several strategies to bring the thermoplastic polymer close to the reinforcement fibres for a future 

better impregnation of the reinforcement during the manufacturing step, extracted from [168] 

There are several processes to manufacture thermoplastic composites. Extrusion and injection 

moulding lead to very short fibre composites. Indeed, this process leads to a reduction in fibre length 

with an average of 1mm flax fibres in the composites [169,170]. However, wood flour is often preferred 

due to its lower price, several tens cents per kilogramme [171] against several euros per kilo for flax 

fibres adequate for injection. This manufacturing method enables rapid manufacturing, several pieces 

by minute, but the tools are costly. That is why it is preferred for big-scale industrial production.  

Other manufacturing methods are automatic fibres placement [158] or continuous fibre 3D printing 

[172]. Using these methods with impregnated continuous flax yarns/rovings is of interest. Indeed these 

techniques allow precise fibre placement with potential local curvature, the production of complex 

geometries and the close control of process parameters [173]. However, they are not competitive 

enough yet to appear in the market. Indeed, these manufacturing processes are usually used for high-

performance composite using carbon fibres, having higher specific properties than flax fibres.  
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A focus is made here on the thermo-compression of flax fibres/thermoplastic preform, see Figure 1-25, 

as it is the primary manufacturing process used in this thesis. It has the advantage of manufacturing 

flax fibres composites pieces of several m² in several minutes and to be a one machine process. First, 

a preform made of reinforcement fibres and thermoplastics is heated in an open mould to melt the 

polymer. Second, the mould is then closed, the preform takes the mould's shape before the mould is 

cooling down. Finally, a ready to use composite part is obtained after the cooling step. Using a non-

woven preform and playing with the pressure, it is possible to obtain semi-structural composite (low 

porosity) or composite with acoustic damping properties (high porosity) [174]. As this thermo-

compression needs relatively expensive tools  (lower than injection tools), a vacuum thermos-

compression process can be considered an alternative [175].  

 

Figure 1-25: Schema of the thermo-compression process of a) a non-woven PP/flax, including b) the heating and compression 

of the preform in the mould, c) the cooling of the piece under pressure and the demoulding, d) an example of a final part 

obtain through thermos-compression of a PP/flax non-woven. 

V.c.   Influence of compaction and permeability 

The thermo-compression process is based on the impregnation of dry reinforcement fibres by the 

melted polymer. However, as observed by Michaud et al. on glass/PP mat [176], melting the 

thermoplastic is not sufficient to allow the impregnation. Indeed, as the viscosity of the polymer is too 

high, an applied pressure is required to induce a polymer flow, needed for the reinforcement 

impregnation [176]. Thus, Ramakrishnan et al. [177] observed a better impregnation by increasing the 

pressure applied from 2 to 4 MPa, leading to better mechanical properties for their woven 2/2 twill 

PP/flax fibres composite made by thermo-compression.  
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Depending on the affinity of the polymers and the fibres, capillary effects can modify the pressure 

needed [178]. Indeed, a liquid thermoplastic wetting spontaneously the fibres impregnates the 

reinforcement partially through capillary forces. This wetting potential depends on the surface energy 

of the thermoplastic and of the fibres. The wettability of a surface can be calculated through static 

contact angle by the Laplace equation presented in equation (1-1) [179].  

𝛾𝐹1,𝐹2 . cos(𝜃) = 𝛾𝑆,𝐹1 − 𝛾𝑆,𝐹2 (1-1) 

The static contact angle is designated by 𝜃 , the 𝛾𝐹1,𝐹2 is the surface tension between two fluids where 𝛾𝑆,𝐹1 and 𝛾𝑆,𝐹2 referees to the surface tension between a solid and a fluid. In the case of liquid polymers 

impregnating a porous solid, the second fluid is the air. A contact angle lower than 90° indicates a 

better affinity between solid and liquid than between liquid and air. Consequently, the liquid wets the 

surface through capillary pressure, helping the impregnation of the reinforcement. On the contrary, 

the capillary effect can hinder the impregnation in the case of a non-wetting fluid. As impregnation is 

a dynamic phenomenon, the dynamic contact angle should be considered, which deviates from the 

static contact angle depending on the fluid viscosity and velocity [180]. Thus, switching from a wetting 

behaviour to a non-wetting behaviour is possible as the velocity decreases during the impregnation 

[180]. However, even if capillary effects reduce the applied pressure needed for impregnation, an 

external pressure remains necessary to induce the impregnation phenomenon.  

Furthermore, the applied pressure compresses the preform, inducing an increase in fibre volume 

fraction, see in Figure 1-26. This compaction is present at several scales, from yarn deformation and 

flattening to nesting and packing of fabrics [181]. 

 

Figure 1-26: a) Pressure evolution during compression of flax mat preform submitted to a constant flow rate, b) continuous 

and “classical” transverse permeability of flax mat, extracted from [182]. 
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In the specific case of plant fibres, lumens may collapse, inducing additional compaction [183], 

damaging the fibres irreversibly [178]. These damages are pressure-dependent as Ramakrishnan et al. 

[177] report an increase in microcracks in flax fibres by increasing the manufacturing pressure from 2 

to 4 MPa. Another drawback for high pressure is the decrease of preform permeability due to 

compaction, as seen in Figure 1-26, which is a crucial parameter for reinforcement impregnation. For 

flax mats, increasing pressure from 0.05MPa to 0.22MPa leads to a volume fraction increasing from 

15% to 40%, thus decreasing transverse permeability from 4.10-11 to 4.10-12 m² [182], see in Figure 

1-26. Therefore, a balance must be found between the volume fraction wanted and the pressure 

applied to obtain an adequate reinforcement impregnation. This pressure will depend on the 

architecture of the preform and the proximity between polymers and reinforcement.  

Indeed, the impregnation distance (the proximity between polymers and reinforcement), the viscosity 

of the polymers and the permeability of the preform impact the time needed to complete 

impregnation. This time could be approximated theoretically from Darcy’s law in 1D [184]. Taking into 

first approximation an isothermal impregnation under a constantly applied pressure and a 

homogenous incompressible preform, the transverse impregnation time (𝑡𝑖𝑚𝑝) can be estimated from 

equation (1-2),  

𝑡𝑖𝑚𝑝 = 𝜇. 𝑙2. (1 − 𝑉𝑓)2. 𝐾𝑡 . ∆𝑃  (1-2) 

where 𝜇 is the viscosity of the melted thermoplastic, 𝑙 is the length of impregnation, 𝑉𝑓 the fibre 

volume fraction,  𝐾𝑡 the permeability of the preform and ΔP the pressure difference. The pressure 

difference is the pressure applied less the atmospheric pressure and the potential capillary pressure 

due to wetting [185]. This equation shows the influencing parameters involving the impregnation 

phenomenon. As the permeability can vary from 10-9 to 10-12 m² for natural plant composite preforms 

[181], it is clear that decreasing it through compaction will have a crucial impact on the impregnation 

process. Furthermore, as the permeability is not equal in all the preform directions (in-plane or 

transverse), the resin flow direction chosen can be a strategy to decrease the impregnation time.  

The incomprehensible preform hypothesis used for this equation is debatable. Indeed, it was observed 

that the matrix transfers the applied pressure to the reinforcement during the transverse 

impregnation. The reinforcement rearranges itself locally due to compaction, creating easier flow ways 

for the matrix leading to a fingering phenomenon [186]. Even once the impregnation is completed, 

heterogeneity of the volume fraction inside the composite is observed [176], with a volume fraction 

lower near the previous solid polymer. This heterogeneity is the result of the compressibility of the 
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preform during thermo-compression. This phenomenon can vanish thanks to the reinforcement 

relaxation in the matrix. However, this relaxation depends on matrix viscosity and takes 40min for a 

glass fibre mat to relax in a melt PP matrix with a viscosity of 18 Pa.s [176]. 

The homogeneity of the preform is also important. A preform is often made of yarns, and preform 

impregnation usually involves a dual-scale flow. Resin flow between yarns (inter-yarn) is referred to as 

macro-flow, while resin flow through the yarns (intra-yarn) is called micro-flow. As resin flows at low 

Reynolds numbers, inertial forces can be neglected. Macro-flow is dominated by the viscous flow of 

the resin, while micro-flow is driven by capillary pressure developed within the tows [178,187].  

The dual-scale flow is explained as follows because impregnation in composites often leads to non-

wetting dynamic angles [184]. The resin impregnated the preform preferentially through inter-yarn 

flow. When the inter-yarn flow front advances, the resin impregnates transversally in the yarns. As the 

resin fills the yarn, the inter-yarn flow rate is reduced. This dual-scale impregnation is of interest as it 

leads to porosity, discussed in section VI.a. In the specific case of flax fibres and low viscous polymers 

(thermoset), fibres can absorb the resin [188]. This increases the complexity of the dual flow as the 

absorbed resin is removed from the inter-yarn flow. Additionally, the fibres swell [189] and modify the 

capillary behaviour of the yarns. These complex phenomena are still investigated in the literature 

[181], their actual comprehension being represented in Figure 1-27.  

 

Figure 1-27: Schema explaining the dual scale transverse impregnation for flax fibres.  

V.d.   Temperature selection for thermoplastic composite manufacturing 

As seen previously in equation (1-2) previous, the impregnation of a preform depends on the viscosity 

of the polymer. The more the polymer is close to the reinforcement, the less way it has to be 
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impregnated, and the less the viscosity will be critical [190]. In the case of film-stacking, a viscosity 

between 100 and 500 Pa.s is required [46,190]. The viscosity of a thermoplastic depends on its 

temperature and the applied shear rate [191]. The typical shear rate of the film-stacking process ranges 

from 0.1 to 10 s-1 [46,190,192]. 

Regarding the temperature, a thermoplastic heated above its glass transition temperature becomes 

viscous due to the relaxation of the interactions between amorphous chains. Semi-crystalline polymers 

must be heated above their melting temperature to dissolve the crystallite and act like a viscous liquid. 

Once the melting temperature is exceeded, all polymeric chains are mobile. This mobility increases by 

increasing temperature, leading to a decrease in viscosity [191]. Popineau et al. [175] investigates PP 

viscosity and found an evolution from 1600 Pa.s at 170°C to 750 Pa.s at 200°C, measured for a shear 

range of 0.1s-1 to 100 s-1. Focussing on PA11, Bourmaud et al. [46] observed a decrease in viscosity 

from 575 Pa.s at 190°C to 100 Pa.s at 230°C. Therefore, a temperature exists for a given thermoplastic 

allowing an impregnation with film stacking.  

However, this impregnation temperature should not exceed the degradation temperature of the 

thermoplastic and the flax fibres. It has been reported in the literature that elementary flax fibres 

submitted to high temperatures become brittle [193–195], and their strength decreases [46,194]. 

Bourmaud et al. [46] observed a decrease in strength of 32.8% and 64.8% at respectively 210° and 

250°C for only 8 min of heat, see in Figure 1-28.a).  

 

Figure 1-28: a) Temperature influences on the tensile mechanical properties of elementary flax fibres [193], b) Evolution of 

the biochemical components of elementary flax fibres investigated through FTIR [195]. 

This brittleness and strength decrease is explained by the biochemical modification of the elementary 

flax fibres. Velde and Baetens [194] observed that strength decrease starts at 180°C (for 2h of heat), 

Multiscale characterisation of biodegradable flax composites through structural, mechanical and ageing investigations Delphin Pantaloni 2022



Chapter 1: Literature review 

56 

 

explaining it by biochemical evolution of the fibres. They did a thermogravimetric analysis (TGA) on 

flax fibres with various retting degrees (green/underretted/normal retted). As the retting modify the 

chemical identity of flax fibres, they are able to identify which agro-polymers is degraded during the 

TGA. It is concluded that at a temperature of 180°C, degradation of pectins occurs, and at 230°C, 

hemicelluloses and cellulose start to degrades. This is confirmed by Li et al. [195], which observed a 

decrease in the FTIR peak intensities of pectins and lignin after heating at 200°C for 2h, see in Figure 

1-28.b). As pectins are partially responsible for the cohesion of the cellulose microfibrils, their 

degradation directly impacts the strength of the elementary flax fibres. Furthermore, it appears that 

temperature impact is time-dependent as a decrease of strength of 45% is observed at 105°C for 14h 

[196]. The cohesion between micro-fibrils is impacted when water is removed, explaining the strength 

decrease at low temperature after a long drying time. 

 Regarding modulus, some authors highlight a decrease of 25% at 250°C (8min) [46] explained by the 

degradation of microfibril cohesion. However, some others assumed that this biochemical 

modification is due to the degradation of amorphous biochemical components, leading to the 

recrystallization of cellulose. This phenomenon explains the 16% increase of flax fibres stiffness 

observed after heating them 2h at 200°C [195]. 

This brittleness is reflected at the composite scale level [46,195,196] and confirmed through acoustic 

emission tensile tests with a drastic change in break signal for samples heated for 2h at 120°C and 

200°C [195]. Li et al. [195] report that the rupture appears through multi-failure stages at 120°C (matrix 

cracking, delamination, interfaces debonding, fibre breaking), against only fibres breaking at 200°C. 

VI.   Influence of a ply structure on its mechanical properties 

After discussing the preform manufacturing and the process to obtain thermoplastic composites, the 

links between the structure and the mechanical properties of the composite are of interest.  

VI.a.   Microstructure 

Looking at the microstructure and composite constituents, the volume fraction of reinforcement is the 

parameter mainly impacting the mechanical properties of composites. As presented in Figure 1-29.a), 

increasing fibre volume fraction increases the flax composite's mechanical performance. Focussing on 

the longitudinal tensile modulus of flax composite, this increase appears to be linear, see in Figure 

1-29.b), which is relevant to the commonly used rule of mixture. On the other hand, the transverse 

mechanical properties of unidirectional composites are matrix-dominated, less influenced by fibre 

volume fraction [144].  Furthermore, the influence of volume fraction on the transverse behaviour of 
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unidirectional composite is complex to predict as the stress field is heterogeneous inside the 

composite [144]. Hopkins and Chamis [197] developed a theoretical model to characterise this 

evolution, whereas Halpin-Tsai [198] suggests a semi-empirical law. Both appear to be relevant for flax 

composite [199]. For other fibres architecture, such as non-woven or multi-axial composites, the 

mechanical behaviour depends on the reinforcement organisation inside the composite, which is 

developed in section VI.b.  

 

Figure 1-29: Influence of the volume fraction of fibres on a) the mechanical behaviour of a jute/polyester unidirectional 

composite b) the tensile modulus of a jute/polyester and flax/polyester unidirectional composite, extracted from [200].  

The mechanical improvement due to increasing fibre volume fraction has limits. For example, Baley et 

al. [74] observed fibres packing higher than 95% in the bundles of a green flax stem due to intrusive 

growth and polygonal fibres section. However, at the composite scale, manufacturing composite with 

a high fibre volume fraction is challenging. Even if the polygonal section of flax fibres allows better 

packing than cylindrical glass fibres, the permeability of the preform, the viscosity of the matrix and 

the process used limit the fibres fraction reachable during composite manufacturing. It is possible to 

reduce the void content by carefully adapting the process parameters. However, this induces often a 

higher cost of production [201]. Thus, at a given preform, formulation, and process, a critical volume 

fraction exists, after which adding more fibres induces porosity rather than a higher volume fraction. 

Madsen et al. [202] measured this critical volume fraction to be 40.8% for a flax/PP non-woven 

composite made by film stacking and autoclave consolidation (2.1 MPa), as presented in Figure 1-30.  

This void appears due to low compacted fabrics [202], entrapped air during processing [203] or 

released gases [177], mainly water vapour in the case of flax fibres. Indeed, flax fibres contain 8% of 

water at 50 RH [204]. This water fully evaporates at 120°C, with a typical decrease observed on a TGA 

[205]. As the process temperature is often higher than 120°C, water evaporation cannot be avoided. 

However, a degassing step during the process allows releasing the vapour, reducing the formation of 

porosity. In addition, it is assumed by Ramakrishnan et al. [177] that pores can appear at high 
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processing temperatures (240°C) due to fibres degradation releasing volatile substances. Depending 

on processing parameters, the amount, the localisation and the shape of voids varies.  

 

Figure 1-30: Influence of the fibres weight fraction on the volume fraction of matrix (Vm), fibres (Vf) and porosity (Vp) of a 

flax/PP non-woven composite made by film stacking and auto-clave consolidation (2.1 MPa). A critical fibre weight fraction is 

highlighted at 58% as the maximum fibre weight before a drastic increase of porosity inside the composite. Extracted from 

[206] 

The typical voids present in flax composites are presented in Figure 1-31. In the case of dual scale 

impregnation, intern-yarn voids appear for low flow velocities (and high fibre volume fractions), while 

at high flow velocities (and low fibre volume fractions), viscous flow dominates, leading to intra-yarn 

voids [207]. The pressure applied during manufacturing reduces the quantity and the size of the void 

[203]. According to Almeida et al. [208], mechanical properties starts to decrease at 3% of porosity for 

[0,90] carbon/epoxy composite, with a decrease of flexural strength of 8% at 4% of porosity and 15% 

at 5% of porosity. Shah et al. [151] obtain a similar value (4%) for a unidirectional flax/polyester 

composite.  The lumen is experimentally characterized as a porosity for flax fibres, but it cannot be 

assimilated to a composite defect as it is an intrinsic characteristic of flax fibres. 

 

Figure 1-31: Typical porosity which can be observed in a flax composite, extracted from [202]. 
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At higher porosity content, the composites mechanical properties are impacted. The change in 

properties due to void is well discussed in the literature for hand-made fibre composites and recently 

reviewed by Mehdikhani et al. [209]. It appears that porosity acts as defects in the composite structure, 

generating locally high stress/strain concentration and allowing easier crack initiation. This decreases 

matrix-dominated properties and matrix/fibre interface properties, such as composite strength under 

inter-laminar shear, compression or transverse tensile solicitation, with a decrease of 10 % by a 

porosity increment of 1% [209]. This strength reduction appears to be lower for longitudinal tensile 

solicitation, with a decrease of 1% for a 1% void increase [210]. It is explained by considering the 

porosity at the fibre/matrix interface, decreasing the local adhesion between fibre and matrix. 

Studying the tensile stiffness reduction of carbon/epoxy unidirectional composites numerically, Huang 

and Talreja [201] found a decrease of 5 to 10% in the longitudinal direction, with an increase of 5% of 

porosity, against a reduction of 12-40% in the transversal direction. This conclusion was validated 

through experimental comparisons with literature. This low voids sensitivity for longitudinal tensile 

stiffness is reported experimentally for quasi-UD flax/epoxy composite [203]. In the case of flax 

composite, Madsen et al. [206] observe a reduction of tensile stiffness for PP/flax fibres mat 

composites due to the increase of porosity. This can be explained as the stiffness of non-woven 

composite is sensitive to matrix stiffness, the latter being impacted by porosity. Based on this 

observation, Madsen et al. [206] used a modified rule of mixture developed by Mackenzie [211] for 

taking into account the porosity, see in equation (1-3). Ec refers to the composite modulus taking into 

account the porosity and Ec,ROM to the modulus obtained via the role of mixture. Vp is the volume 

fraction of porosity inside the composite, and the index n is called the porosity efficiency exponent. In 

the specific case of plant fibres, good fits are obtained with n = 2.  

𝐸𝑐 = 𝐸𝑐,𝑅𝑂𝑀. (1 − 𝑉𝑝)𝑛
 (1-3) 

However, the void content determined their impact on the mechanical properties, but their shape, 

size, localisation, and spatial distribution must be considered [209]. The connectivity of the pore with 

the environment and between them is also important, being the difference between open pore 

(connected) and closed pore (a close defined volume in the composite). To lead comprehensive 

models, the deep analysis of voids characteristics and their impact on composite mechanical 

properties have to be investigated more thoroughly [209].  

VI.b.   Orientation of the fibres 

The angle between the tensile axis and the fibres modifies the mechanical behaviour and properties 

of the composite. The off-axis mechanical properties of unidirectional composite lay between the 
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transversal and the longitudinal one, as seen in Figure 1-32.a). A slight in-plane misorientation 

(deviation from the expected angle) regarding the tensile direction impacts the mechanical properties. 

Shah et al. [212] measured a decrease of 37% of the tensile modulus of a unidirectional flax/polyester 

by increasing the angle from 0° to 15°.  

 

Figure 1-32: Influence of the angle of the off-axis tensile test applied on a flax/polyester unidirectional composite on a) the 

mechanical behaviour of the composite, b) the tensile modulus of the composite, extracted from [212]. 

The angle influence on composite tensile stiffness is commonly approached thanks to equation (1-4), 

being also suitable for flax composite [212]. 𝐸𝑐,𝜃, 𝐸𝑐,0 and 𝐸𝑐,90 refers to the tensile modulus of the 

composite at an angle theta, 0° and 90° respectively, the shear modulus 𝐺𝑐,12 and ν𝑐,12 refer to shear 

modulus and Poisson’s ratio. Additionally, an out-of-plane misorientation impacts the flexural and the 

shear strength of the composite [213].  

𝐸𝑐,𝜃 = 1cos (𝜃)4𝐸𝑐,0 + sin (𝜃)4𝐸𝑐,90 + 2cos (𝜃)2. sin (𝜃)2 ( 12.𝐺𝑐,12 − ν𝑐,12𝐸𝑐,0 ) 
(1-4) 

 
Equation (1-4) considers a sharp orientation with only one angle considered.  Due to the preform 

manipulation or the composite manufacturing, the fibres can be misaligned (a repartition of the angle 

observed). It is especially the case for flax fibres due to their finite length, see in section VI.c. Focussing 

on the orientation of fibres in an uncrimped and untwisted unidirectional preform, Gager et al. [214] 

highlight a higher fibres misorientation for flax fibres preform than for glass fibres preform, as 

presented in Figure 1-33. Furthermore, considering twisted yarns and fibre discontinuity, not all fibre 

ends are integrated into the yarns. These fibres ends are free to move and lead to additional 

misorientation of the fibres [215]. This phenomenon is known as yarn “hairiness” [215]. The fibre 

misalignment influences the mechanical properties. Berthelot et al. [216] used a theoretical approach 

and found that a misalignment of 10° (considering uniform distribution between -10° and +10°) 

decreases the longitudinal modulus by 3%.  
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Figure 1-33: Comparison of fibres orientation (G) of glass mat (A & D) and glass unidirectional (B & E) preforms as well as 

unidirectional flax preform (C & E). The orientation analysis is done through oriented granulometry. Extracted from [214]. 

Gager et al. [214] also highlight an orientation distribution in random flax mat, as presented in Figure 

1-34. Indeed, depending on the manufacturing process, random mats can present a preferential 

orientation [217]. This preferential orientation induces anisotropy in mechanical properties [165]. In 

the case of needle-punched non-woven flax composite, this anisotropy induces a difference in 

composite tensile modulus of 20% (5.4 GPa against 4.4 GPa) depending on the direction of 

measurement. Of course, this is a problem when an isotropic composite is desired. However, this 

anisotropy can be seen as an opportunity to obtain highly oriented non-woven preform.  

 

Figure 1-34: Analysis of the orientation of fibres for a flax non-woven preform, a) SEM image used for the analysis, including 

the separation into for smaller zone, b) The orientation distribution of the fibres inside the non-woven flax preform, CD referees 

to cross-direction and MD to the machine direction. The orientation analysis is done through oriented granulometry. Extracted 

from [214]. 
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As the fibre orientation influences the mechanical properties, it is of interest to control it and so to be 

able to obtain this information experimentally. As the information should be obtained for the whole 

volume, 3D imaging such as X-ray tomography is an efficient experiment to obtain this information 

[218]. Furthermore, the 3D characterization of the composite structure can also be obtained thanks to 

3D ultrasonic full-waveform scans [219]. 

VI.c.   Specificity of the flax fibres arrangement in the ply 

One particularity of flax fibres is their discontinuity. As reported in section III.a, elementary flax fibres 

have a length of 35 ± 15 mm. The finite length of flax fibres raises the question of the elastic stress 

transfer between the fibres and the matrix. The axial stress inside an embedded fibre during an axial 

tensile measurement is derived by Cox [114]. This stress transfer depends on the fibre aspect ratio 

(length/diameter), fibres volume fraction, stiffness, and matrix shear modulus. Fixing all the 

parameters except the aspect ratio, a critical value exists before which the fibres' full potential 

reinforcement is not reached. This could be taken into account by modifying the rule of mixture using 

a length corrective factor [144]. Madsen et al. [206] implements the Cox model using typical flax input 

data and calculated this length corrective factor as a function of the aspect ratio. It is represented in 

Figure 1-35. A fibre aspect ratio of 50 leads to a corrective factor of 0.93. Looking at the morphology 

of elementary flax fibres, the aspect ratio is approximatively 2,000 [63]. Charlet et al. [73] investigated 

the geometry of bundles in a stem and observed a maximum surface area of 20,000 µm² along bundles 

of at least 18 mm. This leads to a minimum aspect ratio of 115, still higher than the critical value. It can 

be concluded that the discontinuity of the flax fibres is not a drawback regarding the composite 

stiffness. 

 

Figure 1-35: Evolution of the fibre length efficiency factor as a function of the aspect ratio of the fibres. It is extracted from 

[206], which used typical plant fibre composite values to predict this shear lag model.  
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A potential drawback of the discontinuity of fibres inside the composite is the high shear stress at the 

fibres extremity. This is observed in injected flax fibres composites by a damaged matrix at the fibres 

extremity  [220], see in Figure 1-36. In addition, the shear stress can lead to premature rupture, 

lowering the composite strength [144]. 

 

Figure 1-36: Micrographs of a PP/Flax injected sample under loading, the red circle highlighting a high shear stress zone due 

to the presence of a flax fibres extremity, extracted from [220]. 

However, thanks to the intrusive growth of flax fibres during the plant's development, the flax fibres 

section decreases at its extremities [70], see in Figure 1-37. This reduction of section moderates the 

presence of the shear stress and limits the decrease of strength. That is why it is essential to damage 

as little as possible the flax fibres during extraction and processing to keep the morphological 

advantages of flax fibres. 

 

Figure 1-37: Representation of the decrease of the section near the extremities through a) geometry of elementary flax fibres 

b)  SEM observation. Extracted from [74]. 

Another composite flax fibres characteristic is the heterogeneity of reinforcement distribution inside 

the composite. Indeed, there are two typical reinforcements (bundles and elementary fibres), and 

bundles are rich fibre regions by definition. The individualisation of the fibres does not affect the 

composite stiffness but does affect strength [46,127]. Using an effective coefficient to weight the rule 

of mixture by taking into account fibre individualisation, Coroller et al. [127] obtain an effective 
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coefficient of 0.68 for well individualised unidirectional flax/epoxy composite against 0.56 in the case 

of poor individualisation. It highlights the importance of flax extraction to maximize individualisation 

and increase composite strength. This individualisation can be increased using harsher extraction. 

However, mechanical extraction may induce kink bands in flax fibres  [221], which act as a fibres defect. 

That is why a compromise has to be found between well-individualised flax fibre preform and flax 

fibres with an acceptable amount of defect.  

Furthermore, depending on the flax quality used for preform manufacturing, it is possible to find some 

shives or even some seed holders. These unwanted reinforcements are mainly obtained on flax tows. 

They increase the heterogeneity of the non-woven composite made from tows. Some shives are still 

present in unidirectional preform but in much less quantity.  

VI.d.   Flax composite non-linearity behaviour  

As reported in Figure 1-38.a), flax composites present non-linear tensile behaviour. This non-linearity 

can be partially explained by the non-linearity of flax fibres [222]. Indeed, at early strain, elementary 

fibres have a decrease of stiffness, reflecting at the composite scale. However, flax fibres stiffness 

increase at a critical strain stage (0.4 mm/mm), seen in Figure 1-38. b). This increase is not observed in 

unidirectional flax composite, explained by the appearance of composite damage at critical strain. 

Thanks to an in-situ X-ray tomography tensile test on a flax/PP unidirectional composite, these 

damages were observed [223]. Three stages are reported as follows: (i) interface splitting cracks, (ii) 

matrix shear cracks, (iii) fibres failures. They appear at increasing strain values. However, no specific 

strains are reported for a transition from a stage to another. 

 

Figure 1-38: Comparison of elementary flax fibre and a flax/polyester unidirectional composite (Vf=20%) regarding a) their 

tensile behaviour, b) their evolution of stiffness during a tensile test. 
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During a tensile test, Monti et al. [99] used acoustic emission methods on flax/acrylic resin composite. 

They couple it with SEM to be able to identify and classify the damage mechanics. They propose a 

similar sequence of events with the first stage involving matrix cracks (class A) and fibres/matrix 

debonding (class B), then the presence of friction phenomenon (typically fibre pull-out) (class C) and 

finally flax fibre failures (class D). The acoustics emission correlated with the tensile behaviour is 

represented in Figure 1-39. It shows that the matrix cracks and debonding are present during all the 

tensile tests, with an increase of debonding at a strain of 0.5%. It correlates well with the critical strains 

previously discussed. Pull-out appears at the final stage, just before the fibres breaking, responsible 

for the failure of the specimens. 

 

Figure 1-39: Acoustic emission analysis of a UD flax/acrylic composite a)amplitude of the events correlated with the tensile 

behaviour, b) phenomenon appearance regarding the strain applied. Class A refers to matrix cracks, class B to flax/matrix 

debounding, class C to pull-out phenomenon and class D to fibres failures. Extracted from [103]. 

VII.   Ageing behaviour of flax composite 

The mechanical behaviour and properties of flax fibre composites appear to be environmentally 

dependent. It is even more true for biodegradable flax composite as biodegradable polymers also 

appear to be impacted by the environment. 

VII.a.   Water ageing 

Flax fibres are hydrophilic due to their hydrophilic polysaccharides, which are mainly hemicelluloses 

and pectins. Elementary flax fibres can absorb up to 20% of water in mass [47,204]. The amount of 

water uptake depends on the relative humidity [204], as observed in Figure 1-40.a). This absorption 

can be divided into three parts [47]. First, below a relative humidity (RH) of 15%, water molecules are 

adsorbed, through hydrogen bonds, onto cell walls. Second, between 15% and 70% of RH, water 

molecules absorb randomly on flax polymers through Van der Waals interaction. Thus, below 70% of 
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relative humidity, water molecules interacted with the flax fibres, being called bond water. Finally, 

above 70% of RH, water molecules do not interact with the flax anymore and start to cluster in cavities 

through capillary condensation. This is free water. This phenomenon induces relaxation of pores and 

rich water area, inducing the swelling of the fibres. Note that the 70% value is used as an example 

here. It is not an exact value but it highlights the existence of a critical relative humidity. The swelling 

of elementary flax fibres was investigated by Le Duigou et al. [224]. They report that fibres mainly swell 

transversally, with a radial hygroscopic expansion of 1.14 ε/Δm for elementary flax fibres where ε is 

the elongation induce by the water uptake (Δm), see in Figure 1-40.b). This preferential direction of 

swelling is due to the low micro-fibrillar angle of elementary flax fibres.  

 

Figure 1-40: a) Evolution of the moisture content of flax fibres as a function of the relative humidity [204]; b) evolution of the 

radial swelling of an elementary flax fibre as a function of the moisture content [224]. 

This swelling is present also at the bundle scale [225]. Furthermore, bundles’ flax composition can be 

modified by water sorption, especially in the case of immersion. Indeed, the hemicelluloses and the 

pectins of the middle lamellae are hydrophilic. Therefore, they can be solubilised and removed from 

flax bundles thanks to water washing [226]. At the flax preform stage, this can be used as a pre-

treatment to obtain more individualised fibres without losing the mechanical properties of elementary 

flax fibres [226].  

At the composite scale, water sorption is synonymous with damage in the composite. The composites 

water uptake is mainly due to flax fibres, even when associated with hydrophilic polymers such as PLA 

[227]. Focussing on the diffusion behaviour of water in the composite, it follows in most cases Fick’s 

law [47,228]. The saturation of water and the diffusion coefficient depend on the volume fraction of 

flax fibres [12] and the architecture of the composite [229]. The interface quality can reduce the water 

uptake, as reported by Arbelaiz et al. [230] comparing PP and MAPP flax composite.  
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Furthermore, the initial water content of flax fibres impacts the moisture uptake of the composites. 

Indeed, Lu et al. [231] observed that damp flax fibres make composites less sensitive to moisture 

cycles. The water uptake in the composite induces fibres swelling, which is limited by the constraining 

effect of the matrix [232]. Additionally, this swelling can be responsible for crack initiation in the matrix 

[233]. The steps of impacting the structure of composite are represented in Figure 1-41. In the case of 

immersion, the impact on the interface is more critical. Indeed, the solubilized polysaccharides can 

leach-out of interfaces, decreasing the interfacial strength [115]. This leaching phenomenon also 

impacts fibre properties. Indeed, among the leached polysaccharides, Le Duigou et al. [234] reports 

that uronic acid leaching is responsible for the nanoindentation modulus decrease of the flax fibres in 

a flax/epoxy composite.  

 

Figure 1-41: Schema of the evolution of microstructure in the case of a) humidity ageing, b) immersion ageing. Rearranged 

from [235] 

All these structural modifications have an impact on the mechanical properties of the composite. 

Testing under humid conditions, water content inside the composite modifies the behaviour of flax 

composites [236] and decreases its mechanical properties [237]. Water ageing has a reversible impact 

(plastification) and an irreversible impact (modification of the structure). These irreversible parts are 

observed when the composites undergo ageing and are dried before testing. It is reported by Regazzi 

et al. [227] that immersion at 20°C of an injected flax/PLA composite induces a decrease of elastic 

modulus of 26% at the wet stage, including 10% of irreversible changes measured after drying. 

However, it is reported for non-woven flax/PP composite that RH lower than 75% does not impact the 

mechanical properties of composites [47]. Additionally, Davies et al. [238] suggested that the one-edge 

immersion process is more realistic regarding naval applications. It is reported that the water uptakes 
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and then the impact of ageing is less critical, with only a water uptake of 1% after five months for 

flax/polyester, against 7% in conventional immersion. For hydrophilic matrix, the water can also 

modify the structure and the mechanical properties of the matrix, resulting in additional modification 

of the mechanical properties [227]. 

VII.b.   Living environment 

As reported in sections II.c and II.d, the flax fibres and biodegradable polymers can be degraded by 

microorganisms. Consequently, a composite made of both components will age in the presence of 

these microorganisms, their presence depending on the environment (compost/soil/water). 

Degradation is commonly highlighted through a decrease in mass [239–241]. Interestingly, flax fibres 

act as an accelerator for polymer degradation. Indeed, they create channels for water and enzymes in 

the polymers, increasing the polymer surface subjected to degradation [242]. Depending on the matrix 

and its capacity to be degraded in the environment, the degradation of composite varies. Teramoto et 

al. [243] investigate the degradation of several biodegradable polymers reinforced by 10 % in weight 

of abaca and buried in the soil at 25°C. It appears that abaca/PBS loses 50% of its weight after 60 days, 

whereas abaca/PLA undergoes only 10% of loss and being stable after that point. In the case where 

flax fibres are more subjected to degradation than the polymers (flax/PLA at low temperature), 

increasing the fibre volume fraction increases the maximum weight lost and the degradation rate 

[242]. The fibre architecture is of interest as it impacts the degradation phenomenon. Under the same 

condition and with the same formulation, woven or unidirectional lose more weight than non-woven 

composite [242,244,245]. Indeed, more inner polymers areas are accessible by water and enzymes for 

the same amount of fibres.  

This degradation impacts the mechanical properties of the composite. It is reported that mechanical 

properties decreased sharply at the early stage [239,241]. However, it is suggested that the humidity, 

not the microorganism, is responsible for this decrease, assumed to be due to fibre/matrix debonding 

[241].  

The flax/PHBV strength decreases by 30% and the modulus by 45% while the weight of the samples 

remains stable, see in Figure 1-42. This observation raises the question of the degradation mechanisms 

of biodegradable composite, especially the role of microorganisms and water. 
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Figure 1-42: Impact of an open soil burial ageing of an injection moulded flax/PHBHV samples (Vf = 20%) on its: a) mechanical 

properties, b) its weight.  Extracted from [241]. 

VII.c.   Temperature influence during ageing 

The impact of temperature is already discussed in section V.d., regarding the impact of the 

manufacturing process. The direct impact of temperature on flax fibres during composite lifetime can 

be neglected (against moisture). However, the temperature can induce a matrix relaxation for 

thermoplastics, releasing some internal stresses. Indeed, increasing the temperature increases the 

mobility of the polymeric chains, allowing structural modification or chemical reactions. For PLA, the 

impact is drastic as a temperature close to its glass transition temperature (60°C) induces hydrolysis 

and chain reduction [227], allowing recrystallization when cool it down again. Furthermore, water 

diffusion in the composite is accelerated by increasing the temperature. This phenomenon can be used 

in the accelerated ageing protocol [246].  

Depending on the temperature and, more generally, the environment (light/oxygen), the 

microorganism found are not the same. Additionally, the activity of living organisms is temperature 

dependent [247]. Furthermore, the temperature can fluctuate in a natural environment, increasing 

the complexity of the degradation phenomena.  

Taking compost as an example, the microorganism activity increases at an early stage. Due to the active 

respiration of these microorganisms, the compost temperature increases [248]. As the temperature 

increases, the activity of the microorganism also increases, creating a spiralling cycle. The temperature 

rises until a point that microorganisms cannot survive anymore [249], and a decline of microorganisms 

is observed before reaching equilibrium, see in Figure 1-43. During this process, the microbial and fungi 

population evolves, depending on their temperature affinity [247,249]. The temperature difference 
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during this cycle can rise 40°C [247–250], which is a critical variation speaking about polymeric chains 

mobility. The impact of temperature in the degradation of biocomposite can be direct via the 

modification of matrix structure (PLA) but are mainly indirect by increasing the impacts or rate of other 

phenomena such as water uptake rate, hydrolysis of the matrix or activation of micro-organism.  

 

Figure 1-43: a) Typical temperature evolution and *rottegrad evolution during composting, b) evolution of microbial 

population during composting. The evolutions presented are extracted from [247] and can vary depending on the compost 

substrate, the outside temperature and humidity or potential aeration and turning effect. *Rottegrad is a scale used in 

agriculture to discuss the maturity of a compost, going from 1 for an immature to 5 for a mature compost). 

VIII.   Environmental impacts of biodegradable composites 

It is of importance to separate the potential biodegradation of a material and its added value regarding 

environments. Indeed, the environmental impacts of material should include its extraction, 

manufacturing, impacts during utilisation, and end-of-life scenario. The life cycle assessment (LCA) is 

an efficient method to characterise the environmental (and human health) impacts of a product (and 

thus materials).  

VIII.a.    What is a Life Cycle Assessment? 

The LCA is based on the ISO 14040 and 14044 [251,252]. It gives detailed results on the environmental 

impacts of a product. They categorised impacts under several midpoints category such as Abiotic 

depletion, Acidification, Global warning, Human toxicity, Fossil depletion, Eutrophication, Land use, 

Photochemical oxidation or Non-renewable energy. Each impact is quantified based on a specific unity. 

The most known is the global warning unity being the equivalent mass of CO2 released. The value of a 

given impact is obtained through value aggregation of input data needed (energy, raw materials) and 

output data generated (product, emission, waste) at each step of the product's life.  
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This method should be used carefully as it could easily lead to a skewed conclusion. Indeed, this 

method aims to compare the impact of several scenarios to fulfil one identical functional unit, which 

should be quantitative. The investigated scenarios should be delimited with boundaries covering the 

same functional reality. All the input and output data should be reported to this functional unit. As 

input values of these boundaries greatly influence the results, metadata explaining their provenance 

are primordial. As LCA is a comparative method between several scenarios inside a study, the impact 

values between several studies should be compared carefully as the functional unit, assumption, and 

methodology could differ. Despite all this precision, it is possible to obtain fruitful information on the 

literature regarding the environmental impact of biodegradable composite.  

VIII.b.   Production  

As flax fibres are mechanically comparable to glass fibres, it is interesting to compare their 

environmental impact. First of all, the flax impacts depend on the allocation chosen (mass or price) 

and the co-products management [253]. As shown in Figure 1-44, it appears that hackled flax fibres 

present lower environmental impacts than glass fibres regarding many environmental impacts [253]. 

For example, the depletion of abiotic resources decreases by 90% and human toxicity by 98%. 

However, an increase is noticed in land use and eutrophication. The latter is explained by fertilizers, 

which is an important part of the environmental impacts of flax fibres cultivation [253,254]. Gomez-

Campos et al. [255] investigate the impact of making some flax weaved textile fabrics and highlight 

that spinning and weaving are the most impacting step. Furthermore, they compare an all-French 

production and a partial production in China, concluding that the delocalisation of flax production is 

an aberration for flax production as it increases drastically many environmental impacts.  

 

Figure 1-44: Environmental impacts of the production of hackled flax fibres against glass fibres, extracted from [253]. 
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Some investigations focus on the possibility to modify the flax fibres via physical or chemical 

treatments [256,257]. By modifying the surface of the flax fibres, the compatibility with the matrix and 

their hydrophobicity can be improved. The alkaline treatment (based on NaOH) is the most studied, 

leading to the best mechanical improvement for flax composites [258,259]. It removes the no-

cellulosic components of flax (hemicelluloses/pectins/lignins), reducing its hydrophilic behaviour and 

increasing its adhesion with hydrophobic polymers [257]. More specific treatments can have other 

utilities, such as modifying the fire response of flax composite [257]. Even if treating the flax fibres is 

of interest to improve flax composite properties, they appear to go against the environmental interest 

of using flax fibres. To the author’s knowledge, there does not exist an LCA dealing with the 

environmental impact of treating flax fibres. However, the use of chemicals, such as NaOH, should 

increase flax fibres' environmental impact. In this thesis, no fibre treatment is considered on the 

preforms used and provided by producers.  

Much research exists on the environmental benefits of using biodegradable polymers [260,261]. As 

there is a wide variation on hypothesis and boundaries considered, life cycle assessment can lead to 

contradictory results. However, some trends emerged. Two indicators appear to be lower for PLA than 

for PP: the non-renewable energy use and the global warming potentials [261]. Due to the wide variety 

of processes and raw materials, it is hard to conclude the environmental benefit for PHA regarding the 

indicators previously quoted [261,262]. However, both biodegradable polymers appear to have higher 

acidification potential and eutrophication potential than petrochemical polymers [261]. That can be 

explained by the bio-mass source, often considering corn for which the cultivation needs fertilizers 

[263]. Changwichan et al. [264] compared the environmental impact of PLA, PHA and PBS, concluding 

that PBS presents a lower global warming potential and fossil depletion potential than PLA and PHA. It 

is explained by less electricity need for PBS production, 0.13kWh/kg against 1.07 and 1.09 for the PLA 

and the PHAs, respectively. As PBS has a lower melting point than PLA and PHA, the energy needed for 

composite manufacturing induces fewer environmental impacts. Additionally, it is essential to 

understand that some improvement is still possible as biodegradable polymer production is a novel 

value chain with higher environmental impacts than optimized and mature chains of petrochemical 

polymers [265].  

The impacts of flax composite combine the flax preform production (including flax growing and fibres 

extraction), the polymer production, and the manufacturing step of composite. Increased fibres 

content decreases the environmental impact of the composite when the matrix is more impacting. It 

is the case for PP [266,267] or PLA [263]. Comparing flax/PLA and glass/polyester composite by 

imposing equal tensile mechanical properties, Le Duigou et al. [263] concluded that flax biocomposite 
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has a lower environmental impact than glass composite (except for land use, eutrophication and 

aquatic ecotoxicity), as seen in Figure 1-45. The three drawbacks are due to the agricultural production 

of flax and corns (for the PLA). LCAs have to be based on equal mechanical properties criteria to be 

accurate, as at equal mass, flax and glass composite present different stiffness. Therefore, elastic 

responses to an applied charged are commonly chosen. The first method, chosen by Le Duigou et al. 

[263], balances the mechanical properties by increasing the flax composite needed. The other one is 

to increase the fibre volume fraction of the flax composite. As discussed previously, increasing the 

volume fraction of flax in flax composite decreases its environmental impact and increases the 

environmental impact gap between glass and flax composites [268]. 

 

Figure 1-45: Environmental impacts of flax mat/PLA composites against glass mat/polyester. The comparison is based on 

equal tensile properties, extracted from [263]. 

VIII.c.   Flax composite end-of-life 

Despite the production, the end-of-life could be essential on the environmental impact of composite. 

Waste management is nowadays crucial to limit the human impact on the earth, such as plastic 

pollution, as presented initially, or global warming. Several end-of-life scenarios exist for 

biodegradable composite: landfill, incineration and composting. The landfill is the less suitable option 

as there is no recovery of materials [269], and it induces human toxicity and water pollution [270].  

The incineration option releases the CO2 content in the composite, being a critical drawback for global 

warming. However, it is preferred to landfill as it recovered energy and heat, which can be subtracted 

to the one need for manufacturing the composite, decreasing production impacts of the composite. It 
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is illustrated by Deng et al. [271], comparing landfill and incineration scenarios for flax mat-PP. The 

incineration of flax composite is much more advantageous than glass fibres composite as, contrary to 

glass fibres, flax fibres are combustible and have a calorific power [269]. 

Another potential end-of-life, specific to biodegradable composite, is composting. It appears to be 

more environmentally attractive than landfill [272] and incineration [270]. Composting is often 

considered through LCA analysis as another end of life scenario releasing CO2 without environmental 

benefit [272]. However, compost has added values for the agriculture area, often not considered on 

LCA studies due to scarcity of data and difficulty quantifying [273]. Compost is known to supply 

nutriment, sequester carbon in the soil, suppress disease and pest, increase moisture content, 

workability and biological properties of soil [273–275]. Thus, replacing fertilizer, disease management 

and irrigation of fields by using compost should decrease its environmental impacts. 

Before thinking about end-of-life scenarios, the best solution is to recycle the composite and reuse it 

for materials manufacturing. One environmental method is to crush the long fibres composite to 

obtain flakes [269]. These flakes can be used for making pellets thanks to extrusion or directly used to 

thermos-compress composite plates. Bensadoun et al. [269] compared the mechanical properties of a 

raw flax/MAPP non-woven composite with a composite made of flax/MAPP flakes and virgin MAPP to 

reached several volume fractions. Flakes composites present slightly lower flexural properties but 

remind comparable to non-woven composites, as presented in Figure 1-46. 

Even if the first recycling option (pellets making) induces slightly more environmental impacts due to 

adding a process [269], the pellets can be stocked and be used by industry easily thanks to injection 

moulding. The mechanical properties of injected flax composite are lower than long fibres composites, 

but the materials still present enough mechanical properties for non-structural applications. 

Additionally, up to (at least) 6 cycles of recycling through the injection can be performed before 

decreasing the tensile modulus of PP-flax [276]. It is explained by a limited evolution of the aspect ratio 

of flax fibres through several cycles as injection induces shortening of flax fibres but also bundles 

individualisation [277]. This modulus stability through injection cycles is also observed for flax/PLA 

[278]. However, the molecular weight of PLA decreases after three cycles, decreasing the strength and 

strain at failure of the composite. 
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Figure 1-46: Mechanical comparison between a non-woven flax/PP composite and a recycled flax/PP composite made from 

flakes, obtained through crushing the nonwoven flax/PP. extracted from [269]. 

Chemical recycling appears to be feasible at the lab scale, being a second recycling way. The matrix is 

dissolved, and long flax fibres are obtained back [269]. This recycling is more interesting, mechanically 

speaking, as fibres' mechanical properties and geometry are not impacted. Thus, long fibres 

composites can be manufacturing using recycled fibres, leading to long fibres composites with 

equivalent mechanical properties than before recycling. However, this has a much higher 

environmental burden than mechanical recycling because of the para-xylene solvent used [269].  

Due to the potential biodegradation and its recycling opportunities, biodegradable flax composites are 

perfect for the circular economy. Indeed, the circular economy is a new paradigm based on the 

regeneration of natural systems, the design out of waste and pollution and keeping products and 

materials in use. The composting is conformed to the regeneration of natural systems and waste and 

pollution management. The recycling steps allows maintaining the materials as long as possible in use. 

The composite can be subject to cascading phenomena during its circular economy process [279]. It 

can be reused by modifying its structure, lowering its properties but keeping it in service. It is the case 

when long flax composite is recycled into injected flax composites. Figure 1-47 proposes a circular 

economy scenario for biodegradable flax composites. The full potential of flax fibres is firstly used to 

make a structural or semi-structural composite (unidirectional or non-woven). It is then down-cycled 

through crushing and compounding to be used as raw materials for injection moulding composites. 

These composites can then be recycled several times as the mechanical properties remain stable 

during the first cycles. Finally, when the composite is not usable anymore, it can be composted to be 

used as nutriment for plant growth. The compost could grow flax fibres, closing the circular cycle of 

the biodegradable flax composite.  
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Figure 1-47: Suggestion of the biological cycle of biodegradable flax composite in the scope of a circular economy.  

IX.   Thesis overview 

In this literature review, the feasibility of manufacturing the biodegradable thermoplastic flax 

composite is presented. PLA, PHA and PBS present a melting temperature lower than the flax 

degradation, theoretically allowing manufacturing long fibre composite thanks to thermo-

compression. However, the viscosity of the melted polymer and the permeability of the flax preform 

should be adapted to ensure a good impregnation, and thus a low porosity composite. The choice of 

temperature for an ideal polymer’s viscosity is tackled in chapter 2. 

Thanks to the LCA review, the environmental interest in biodegradable flax composite is confirmed. 

However, switching to a more sustainable material does not have to be at the expense of mechanical 

properties. Understanding the mechanical potential and its evolution during its lifetime is needed to 

confirm that PLA, PHA or PBS matrix allows sustainable and mechanically performant flax composite. 

Additionally, it will confirm the opportunity for composite fields to enter the paradigm of the circular 

economy.   

That is why this thesis aims to give clues on the mechanical potential of these biodegradable flax 

composites. It focuses on structural application as it considered only long flax fibres preforms. As 

exampled previously, the understanding of the composite’s structure is essential to understand 

mechanical properties. Chapter 3 investigates the structure of a no-isotropic non-woven PLA/flax 

composite and highlights flax composite particularities.  
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The structure of a flax composite can evolve during its lifetime through environmental variations, such 

as moisture. This evolution is of interest in chapter 4, as a biodegradable composite is expected to be 

more sensitive to moisture than petro-source matrix/flax composite. Indeed, the flax fibres and the 

matrix appear to be hydrophilic in a biodegradable flax composite. Furthermore, biodegradable 

polymers mean degradation induced by micro-organisms. Therefore, it should modify the degradation 

behaviour of biodegradable flax composites. Thanks to garden compost ageing, chapter 5 investigates 

the degradation mechanisms of the biodegradable flax composites subjected to a harsh environment 

with a reach micro-organism population. 

However, before dealing with the mechanical properties at the composite level, the affinity between 

the biodegradable polymers and flax fibres has to be investigated. It is tackled in chapter 2, as a good 

interface is crucial for an efficient stress transfer between flax fibres and matrix. Thus, it allows 

benefiting for the entire mechanical potential of flax fibres.  
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Chapter 2: Interfacial and mechanical 

characterisation of biodegradable 

polymer-flax fibre composites 
I.   Introduction: 

Due to their lightweight and high mechanical properties, composites are used in many industrial 

sectors such as transport and construction. However, they often have a high environmental impact 

due to the choice of the polymer and the reinforcement, glass and carbon fibres, being the most 

commonly used. Replacing these synthetic fibres with plant fibres decreases the environmental impact 

of the composite [268]. Among them, flax fibres are widely chosen as their specific mechanical 

properties make them competitive against glass fibres [63] and opening the way to structural or semi-

structural plant fibre composites. 

Using flax fibres as a reinforcement creates a complex material with several mechanical systems and 

interfacial regions. The main constituents are elementary flax fibres, having a hierarchic structure 

leading to a complex mechanical behaviour [87] and bundles, aggregating several tens of elementary 

fibres, and coming from the original arrangement of fibres within a stem. These two main fibrous 

elements are also present in the composite structure, and the associated interfaces regions need to 

be taken into account [96]. An elementary flax fibre/polymer matrix interface is considered the 

primary stress transfer region between the matrix and the fibre [101]. In addition, a fibre/fibre 

interphase is present in bundles; this is a 50 – 100 nm thick layer of peptic polymers [280] linking fibres 

together, called the middle lamella. The importance of the middle lamella should not be disregarded 

as it may be a zone of weakness in a composite material [102].  

Polyolefin polymers such as poly-(propylene) (PP) are commonly used with flax fibre reinforcements 

[63], though these traditional thermoplastics, due to their petrochemical origin and limited end-of-life 

route (as recycling), have a limited ecological profile. With the emergence of some bio-sourced and 

biodegradable polymers, examining their potential as alternatives to traditional thermoplastics is 

relevant. Poly-(lactide) (PLA), poly-(butylene-succinate) (PBS) and poly-(hydroxy alkanoate) (PHA) may 

replace PP due to their excellent mechanical performance and their relative stability. Interestingly, all 

three biodegradable polymers (PLA, PHA, PBS) have melting points under 200°C, allowing 

biocomposites manufacturing without damaging flax fibres [196]. Moreover, biodegradation can be 

an alternate end-of-life scenario for these polymers, and their flax reinforced biocomposites. However, 
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it is essential to look at the affinity between flax fibres and these polymers to understand the feasibility 

of making effective biodegradable biocomposites, as well as appreciate their mechanical properties.  

This affinity is physically observed through the polymer/fibre interface, assessed from at least two 

scales [101]. At the micro-scale, one can measure the interfacial shear strength (IFSS) of the interface 

between the fibre and polymer. Many protocols exist and have their advantages and disadvantages 

[101]; the micro-droplet test [111] is employed in this paper. One can also measure the performance 

of the interface at the composite or macro-scale. In composites science, a widely used test is the ±45° 

off-axis tensile test developed and simplified by Rosen [281]. As it uses a unidirectional (UD) fibre lay-

up, it is more practical to conduct and is employed in this study.  

For flax composites, it has been demonstrated at both scales that epoxy resins have good adherence 

to flax fibres [115]. Regarding thermoplastic polymers, few research studies are available. 

Nevertheless, it is well-documented that PP presents a poor interface quality with flax, and maleic-

anhydride grafted PP (MAPP) is a standard solution to obtain a better interface [282]. Due to its 

mechanical and ecological potential, the flax/PLA interface was explored and shown to be close to 

flax/epoxy resin [92]. However, to the authors' knowledge, no articles have studied the interface 

between PHA or PBS and flax.  

This study aims to characterise mechanical properties of the interface at the micro-scale and 

determine its influence on biocomposite properties, to assess whether heterogeneity of the 

mesostructure has any role. The micro-droplet method characterises fives thermoplastics (PP, MAPP, 

PLA, PHA, PBS) and elementary flax fibre adhesion. In addition, [±45]s in-plane shear tests and tensile 

tests on unidirectional composites are realised and compared with interfacial shear strength to 

evaluate the role of the quality of the interface on biocomposite performance.  

II.    Materials/methods: 

II.a.   Materials 

a.i.   Raw materials 

Lightweight unidirectional flax preforms (100 gsm), known as Flaxtape® and provided by Ecotechnilin 

(Yvetot, France), were used to make composites. It is made of untwisted flax fibres linked together by 

pectin [156]. For consistency, elementary flax fibres used to carry out micro-droplet tests were 

extracted from this preform. Three biodegradables polymers were used for this study: poly-(lactide) 

(PLA), poly-(butylene-succinate) (PBS) and poly-(hydroxy alkanoates) (PHA). In addition, Poly-

(propylene) (PP) and maleic anhydride grafted poly-(propylene) (MAPP) were used as industry 
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references. Supplier details and references are provided in Table 2-1. Note that MAPP is considered to 

behave as PP in the following polymer analysis. Indeed, the MAPP matrix is a mixt with 96% in weight 

of PP and 4% in weight of the commercial MAPP. 

Table 2-1: List of matrix suppliers and reference IDs of the polymers.  

Polymer Provider reference Density MFI 
PLA NatureWorks PLA3001D 1.24 22 (210°C/2.16kg) 
PHA NaturePlast PHI002 1.25 15 – 30 (190°C/2.16kg) 
PBS pttMCC BioPBSTM FZ71PM 1.26 22 (190°C/2.16kg) 
MAPP  Arkema Orevac CA100 0.905 44 (230°C/2.16kg) 
PP Total PPC10942 1.24 22 (210°C/2.16kg) 

 
a.ii.   Polymer thermal analysis 

A differential scanning calorimetry (DSC) study was conducted on the different polymers with a DSC3 

Mettler Toledo (Mettler Toledo, Greifensee, Switzerland) to determine their thermal behaviour 

between 25°C and 200°C at a rate of 10°C/min. The melting temperatures were measured to inform 

processing conditions. Two repetitions were done for each virgin polymer, and mean values were 

recorded. Figure 2-1 presents the results of a differential scanning calorimetry investigation on virgin 

polymers. PLA, PHA and PP have a similar melting temperature, 172°C, 177 °C and 168 °C, respectively. 

PBS presents a lower melting temperature of 119°C. In addition, the glass transition temperature of 

PLA is not clearly defined here, but relaxation is noticed between 60°C and 70°C. Glass transition 

temperatures of PHA, PBS and PP are not observed/measured here; they are expected to be below 

ambient temperature. 

 

Figure 2-1: Differential scanning calorimetry of the four polymers (PLA, PHA, PBS, PP) used to make flax biocomposites. Tests 

were done from 25 °C to 200 °C at 10 °C/min in open aluminium pans.  
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These melting temperatures allow us to consider biocomposite processing cycles below 200°C, which 

is essential to not thermally degrade the flax fibres and maintain their performance and mechanical 

behaviour [193]. 

a.iii.   Polymer films manufacturing and characterisation 

First, polymer granulates were transformed into films. For this, they were dried at 60°C for 12h under 

vacuum before undergoing a process of extruding and calendaring using a mono-screw extruder 

(Labstation Plasticorder Brabender) and a calendaring machine Univex Brabender (Brabender, 

Duisburg, Germany). The main process parameters are presented in Table 2-2, and Figure 2-2 presents 

the setup used to manufacture polymer films. After this process step, polymer films were obtained 

with thicknesses varying from 50 to 100 m. 

Table 2-2: Extrusion and calendaring machine parameters of films. 

 Extruding parameters Calendaring parameters 

Polymer T die T zone 3 T zone 2 T zone 1 
Screw speed 
(turns/min) 

Roller 
temperature  

Roller speed  
(turns/min) 

PHA 170 °C 190 °C 190 °C 190 °C 40 60 °C 1 

PBS 130 °C 140 °C 140 °C 160 °C 40 45 °C 1 

PLA 190 °C 190 °C 190 °C 190 °C 50 50 °C 5 

PP 200 °C 200 °C 200 °C 200 °C 80 70 ° 2 

 

 

Figure 2-2: Extrusion and calendaring process used to transform polymer granulates into a polymer film. 

As the composites are made by film stacking, it is essential to define the appropriate processing 

temperature to ensure good impregnation of flax preforms with the polymer. During the film stacking 

process, the shear rate applied is generally between 1 s-1 and 10 s-1 [46,190,192]. Therefore, a polymer 

viscosity of 500 ± 50 Pa.s is targeted to ensure good impregnation, considering the light architecture 

of the flax preform used. Furthermore, processing all composites at the same polymer viscosity is a 

way to ensure similar impregnation of the flax preforms.  
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Thus, after calendaring, the viscosity at several temperatures for the virgin polymers has been 

investigated to find the ideal processing temperature. A rheological study was done using an Anton 

Paar Physica MCR 301 rheometer (Anton Paar, Graz, Austria). A plate/plate stationary study was 

performed at a fixed temperature with a shear rate scan from 0.01 s-1 to 100 s-1 and a gap of 300 µm. 

Several temperatures were analysed for each polymer depending on their melting temperature, three 

repetitions at each temperature were realised, and the mean curve was calculated. All the 

investigation results are presented in Figure 2-3; the black rectangle identifies the film stacking process 

parameters given above. For all polymers, increasing the temperature induces a decrease in their 

viscosity. This study leads us to choose the following processing temperature for making composite:  

200°C for PLA, 175°C for PHA, 170°C for PBS and 190°C for PP and MAPP. 

a) 

 

 

b)

 

c) 

 

d)

 

Figure 2-3: Viscosity of virgin polymers at several temperatures close to their melting temperature, a) polypropylene (PP), b) 

polylactic acid (PLA), c) polyhydroxyalkanoate (PHA), d) polybutylene succinate(PBS). The black rectangle is the valid range for 

a good film stacking impregnation.  
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In our case, the process temperatures are a maximum of 200°C, without the risk of self-heating as can 

be the case in extrusion, and the maximum exposure time was limited to 8 minutes (Figure 2-4). In this 

time and temperature range, flax fibres retain satisfactory mechanical properties [193,196]. 

a.iv.   Composite manufacturing 

As all the polymers investigated are thermoplastics, the film stacking process and thermos-

compression were used to manufacture the composite laminates thanks to a hydraulic press LabTech 

Scientific 50T (Labtech, Samutprakarn, Thailand). Lay-ups were put in an oven at 40°C for 24h under 

vacuum to dry flax and biopolymer before manufacturing the composite. The thermo-compression 

cycle, presented in Figure 2-4 for PLA flax composite, had been optimised using thermal and 

rheological data. The hot plates temperature was fixed during the entire cycle and depend on the 

polymer: 200°C for PLA, 175°C for PHA, 170°C for PBS and 190°C for PP and MAPP. This temperatures 

choice aimed to obtain composites with a similar level of impregnation due to a similar polymer 

viscosity. 

 

Figure 2-4: Hot-compression cycle used to manufacture the composites. A temperature of 200°C is maintained on the plate, 

which corresponds to flax/PLA temperature. The temperature of the plate for the PBS, PHA, PP and MAPP are respectively 

170°C, 175°C, 190°C and 190°C. The temperature inside the composite is recoded at the middle and the edge using a 

thermocouple sensor. A degassing step is present to release any water vapour. The quick cooling is managed using a cold 

plate pressing the composite. 

The lay-up was put in the contact of the hot plates for three minutes to melt the polymer. Then, the 

first compression at 2 MPa was applied for two minutes following by a quick degassing. The last 

compression at 5 MPa was performed for three minutes. The lay-up was then cooled, placing it 
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between two cold plates for four minutes under a pressure of 10 MPa. Flax preforms and polymer films 

were laid sequentially to make unidirectional and bi-axial composites, the orientation of flax fibres 

depending on the composite: [0]16 for UD and [±45]8s for bi-axial. A volume fraction of 32 ± 1% was 

achieved, estimated by a density method, i.e. through the exact weight and dimensions for each 

sample; then, fibre content was calculated by inverse method, knowing the fibre and matrix density. 

This manufacturing method yields composites with porosity lower than 2%.  Results have been backed 

up by image analysis.  Once these laminates were manufactured, they were cut with a milling machine. 

Samples with a shape based on ISO 527-4 for the [±45]8s and ISO 527-5 for the [0]16 were fabricated. 

Longitudinal 0° and transverse 90° samples were produced from the unidirectional laminates.  

As the matrix mechanical properties are of interest to discussed experimental values, pure polymer 

plates of 110x110x2mm were manufactured by injection moulding with Battenfeld BA800 injection 

machine (Wittmann Battenfeld, Kottingbrunn, Austria). They are cut by a milling machine based on ISO 

527-4. 

a.v.   Micro-droplet sample manufacturing 

Elementary flax fibres were extracted manually from the Flaxtape®. Some polymers wires were 

obtained by melting and rapidly stretching polymer films. A polymer wire was then manually fixed to 

an elementary fibre by making a double knot around the fibre (Figure 2-5.a)). Finally, the system was 

put in an oven for 8 min at 200°C to melt the polymer double knots and transform them into micro-

droplets (Figure 2-5.b)). The geometry of every droplet was measured with an optical microscope. The 

length, diameter, and fibre diameter were obtained for each droplet through an average of two 

measures. The aspect ratio was extracted from these measures by dividing the length of the droplet 

by its radius. The pictures used for the aspect ratio characterisation were analysed using software 

provided by GBX to identify the contact angle by a Song’s method [116]. For each formulation, contact 

angle and aspect ratio are mean values from at least 20 valid measurements. 

 

Figure 2-5: Process to manufacture micro-droplet using thermoplastic wires; a) double knot is made manually with the polymer 

fibre around an elementary flax fibre previously extracted; b) the fibre is heated to melt the polymer and create a micro-

droplet; c) micro-droplet is placed in the setup and is ready to be tested (extracted from [113]) 
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II.b.   Methods 

b.i.    Micro-droplet tests 

The elementary fibre/micro-droplet system was placed in a tensile machine equipped with a 2 N load 

cell. The fibre is placed between two razor blades with the droplet just below them. The fibre is pulled 

at a displacement rate of 0.1 mm/min, starting with the blades locking the droplet and continuing until 

debonding occurs (Figure 2-5.c)). Load-displacement curves were obtained (Figure 2-6.a)). At least 20 

samples were tested for each polymer to calculate the mean interfacial shear strength (IFSS). IFSS is 

commonly obtained using equation (2-1), where F is the debonding force, Ld is the length of the 

droplet, and Df is the diameter of the fibre.   

Interfacial shear strength = IFSS = 𝐹𝑑𝑒𝑏𝑜𝑛𝑑𝑖𝑛𝑔𝐴𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝐹𝜋.𝐿𝑑𝐷𝑓 (2-1) 

As recommended by Miller [111], the mean IFSS value in our study is obtained from a linear regression 

analysis between the debonding load and the interface area (Figure 2-6.b)). In addition, the friction 

stress (τfriction) is obtained using the same method but using the friction load, which is the load after 

debounding (Figure 2-6.a)).   

b.ii.    In-plane shear tests  

The [±45]8s samples were tensile tested at a 2 mm/min displacement rate on an Instron machine 

equipped with a 10 kN load cell. An MTS biaxial extensometer was used to record longitudinal and 

transverse strain. According to ASTM D 3518, the shear stress (𝜏12) is given by (2-2) and the shear 

strain (𝛾12) by (2-3), where F is the force applied, S is the sample section, 𝜀𝑥 and 𝜀𝑦 are the axial and 

transversal strain, respectively.  

𝜏12 = 𝐹2. 𝑆 = 𝜎2 (2-2) 

𝛾12 = 𝜀𝑥 − 𝜀𝑦 (2-3) 

The shear behaviour was obtained by plotting shear stress versus shear strain. As suggested by the 

standard, the in-plane shear strength (IPSS) was taken to be equal to the shear stress at a shear strain 

of 5%. The shear modulus was recorded as supplementary data and calculated between 0.1% and 0.5% 

shear strain. For each formulation investigated, at least five samples were tested. 
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b.iii.   Tensile tests 

Longitudinal 0° samples and transversal 90° samples were placed in an Instron machine and tested at 

a 1mm/min cross-head speed, using a 10 kN load cell. Tensile tests were carried out following ISO 527, 

and an Instron extensometer recorded strain in the loading direction. Strength and strain at failure 

were calculated. A tangent modulus for both orientations was calculated between a strain of 0.02 % 

and 0.1%. Furthermore, a second tangent modulus was recorded at a 0.6% to 0.8% strain for the 

longitudinal samples. This threshold is taken when the modulus is stable, whatever the formulation 

considered on this strain range. Indeed, it is known that UD flax composites have a bi-linear behaviour 

[222], in part due to the non-linear response of flax fibres induced by its inner structure [283]. For each 

formulation investigated, at least five samples were tested. The tensile properties of pure polymers 

are obtained through the same protocol, using a 0.02% to 0.1% range for PHA and 0.1% to 0.5% for 

PLA, PBS, MAPP and PP, which have a higher elastic zone. 

b.iv.    Scanning electronic microscopy 

A JEOL SEM (JSM-IT500HRSEM) was used to observe the micro-droplet samples after debonding at an 

acceleration voltage of 3 kV. Transverse sections of UD composites were also observed. Gold sputter 

coating was carried out using a sputter coater (Scancoat6) from Edward.  

III.   Results  

III.a.   Interfacial shear strength at micro-scale 

Like other micro-scale interface tests, the micro-droplet test depends on several factors. The first step 

is to ensure that the studied systems are similar and therefore can be compared. For example, 

comparing results from studies with different operators, setups, and sample manufacturing processes 

may be invalid, as these may significantly influence the droplet morphology and test result. However, 

these parameters stay constant in our systematic study of five different flax/polymer systems. 

Furthermore, the shape of the droplets has been scrutinised using microscopy to ensure mechanical 

results can be compared across the different flax/polymer systems. The contact angle of the droplet 

on the flax fibre and the droplet aspect ratio are presented in Table 2-3 and an example (on the flax-

PHA system) of typical debonding load-displacement curve, interfacial shear strength determination 

by linear regression and SEM images of droplet after debonding, is given in Figure 2-6. As both these 

parameters are comparable for all polymers, it is concluded that the shape of droplets may be regarded 

as similar.  
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Table 2-3: Mechanical characterisation of flax composites at various scales: micro-droplet test, in-plane shear test, and tensile 

test on unidirectional composite in both directions. * El,1 is calculated from a strain of 0.02% to 0.1% and El,2 from 0.6% to 

0.8%.  

  PLA PHA PBS MAPP PP 

Micro-droplet 
test 

Contact angle [°] 69.3 ± 3.5 66.1 ± 7.5 72.3 ± 4.1 64.3 ± 4.6 67.7 ± 5.2 

Ldroplet/Ddroplet [-] 1.28 ± 0.08 1.32 ± 0.09 1.24 ± 0.07 1.33 ± 0.14 1.33 ± 0.09 

Interfacial  
shear strength 
(IFSS) [MPa] 

15.6 ± 2.7 8.3 ± 1.1 8.5 ± 1.5 9.8 ± 1.8 4.6 ± 0.6 

τfriction [MPa] 4.7 ± 1.6 3.4 ± 0.8 3.2 ± 1.0 2.1 ± 0.4  1.9 ± 0.5 

In-plane shear 
test on [±45]s 

Vf [%] 32.2 ± 0.4 30.2 ± 0.9 30.4 ± 0.8 30.6 ± 0.4 32.3 ± 0.4 

Glt [MPa] 1756 ± 64 1286 ± 16 572 ± 25 806 ± 18 654 ± 24 

In-plane  
shear strength 
(IPSS) MPa] 

33.2 ± 1.1 19.4 ± 0.3 13.9 ± 0.3 17.1 ± 0.3 12.0 ± 0.0(4) 

τmax[MPa] 34.2 ± 1.0 - - - - 

γmax [%] 3.1 ± 0.2 - - - - 

Tensile test on 
matrices 

Em [GPa] 3.8 ± 0.1 4.4 ± 0.3 0.75 ± 0.1 1.58 ± 0.05 1.4 ± 0.2 

σrupt,m [MPa] 61.4 ± 0.8 38.6 ± 1.4 39.1 ± 0.5 25.1 ± 0.1 24.4 ± 0.8 

εrupt,m [%] 2.0 ± 0.1 1.3 ± 0.1 14.7 ± 5.4 5.3 ± 0.2 4.3 ± 0.7 

UD parameter Vf [%] 33.5 ± 0.2 33.2 ± 0.5 32.9 ± 0.25 33.0 ± 0.8 31.7 ± 0.7 

Transversal 
tensile test on 
UD 

Et         [GPa] 4.2 ± 0.4 3.9 ± 0.9 1.5 ± 0.1 2.5 ± 0.3 2.0 ± 0.2 

σrupt,t [MPa] 25.8 ± 1.0 13.6 ± 0.4 13.4 ± 0.3 15.3 ± 0.5 9.1 ± 0.5 

εrupt,t  [%] 0.72 ± 0.06 0.60 ± 0.14 2.02 ± 0.30 1.02 ± 0.13 1.39 ± 0.28 

Longitudinal 
tensile test on 
UD 

El,1 [GPa] * 20.1 ± 2.8 20.3 ± 3.1 16.9 ± 2.5 17.8 ± 2.8 17.9 ± 4.3 

El,2 [GPa] * 16.3 ± 0.9 14.8 ± 1.1 13.7 ± 1.3 13.4 ± 2.1 11.9 ± 1.6 

σrupt,l [MPa] 216 ± 17 182 ± 13 184 ± 9 151 ± 9 133 ± 17 

εrupt,l [%] 1.30 ± 0.16 1.13 ± 0.10 1.36 ± 0.15 0.99 ± 0.07 1.14 ± 0.19 

Back calculation 
using a ROM 

Efibre [GPa] using 
El,1 

59.8 ± 8.3 60.9 ± 9.3 51.6 ± 7.7 53.8 ± 7.4 55.9 ± 13.7 

Efibre [GPa] using 
El,2 

48.5 ± 2.4 44.4 ± 3.0 41.6 ± 4.0 40.4 ± 5.8 29.5 ± 16.1 
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Figure 2-6: a) Typical response of a flax/PHA droplet system undergoing a micro-droplet test; b) Mean interfacial shear 

strength determination by linear regression of PHA bonded to elementary flax fibre; c)-d) PHA droplet on an elementary flax 

fibre with a zoomed image showing the interface failing through mode II. 

Furthermore, the rupture mechanism of the interfaces was observed by SEM. It was ascribed as 

interfacial shear failure (Mode II) for all polymers investigated here- see in Figure 2-6.c) and Figure 

2-6.d) in the case of PHA. This further ensures that the mechanical polymer/fibre systems investigated 

can be compared. It is observed that PLA has an interface comparable to a poorly-adhered epoxy, as 

epoxy has a mean IFSS with flax of 18.6 ± 4.8 (mean value based on [92,115,126,127]) against 15.6 ± 

2.7 for PLA/flax (based on our study). PHA, PBS and MAPP present similar IFSS with flax, though lower 

than PLA (Table 2-3). The effectiveness of maleic anhydride is exemplified by the fact that the IFSS of 

MAPP/flax is double that for PP/flax. Therefore, all bio-polymers have better or comparable adhesion 

with flax than MAPP and PP. Higher surface tension explains it for PLA/PHA/PBS than for PP/MAPP, 

see in Table 2-4, which leads to a better power of adhesion. Furthermore, the surface of flax fibres 

presents many hydroxyl terminations. The presence of ester groups in these biopolymers allows some 

hydrogen bonds with flax surfaces, not found with PP. These hydrogen bonds are present with MAPP 

due to the maleic-anhydride, as well as chemical bonds, explaining more comparable results.  
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Table 2-4: Surface tension of the polymer extracted for literature.  

Polymer γ [mN/m] γpolar [mN/m] γdispersive [mN/m] references 
PLA 38.8 ± 0.2 8.5 30.3 ± 0.2 [284] 
PHA 42.6 ± 0.5 6.0 ± 0.8 36.6 ± 0.1 [285] 
PBS 43.6 ± 0.4 10.5 ± 0.1 33.1 ± 0.3 [284] 
MAPP (4%wt MA) 29.6 8.13 21.47 [286] 
PP 21.9 4.58 17.32 [286] 

 
III.b.   In-plane shear strength at macro-scale 

As fibre volume fraction influences the results from the in-plane ± 45° shear test, we have ensured that 

samples have the same fibre content (Table 2-3). In-plane shear strength (IPSS) results follow the same 

trend as the interface at the microscale level; values are given in Table 2-3. PLA presents the best 

results, followed by PHA and then MAPP. PBS is slightly below MAPP but still higher than the industry 

reference, PP. Once again, the effectiveness of grafting PP with maleic anhydride to improve the 

interface with flax is observed. Note that the shear stress of PLA reaches a maximum value of 34.2 ± 

1.0 MPa before the shear strain is at 5%, leading to an IPSS of 33.2 ± 1.1 MPa.  

The in-plane ± 45° shear test is an efficient and straightforward method to obtain IPSS. However, it is 

essential to be aware that this test does not apply pure shear stress [137]; some inter-laminar stresses 

and inhomogeneous stress and strain distributions are present. Nevertheless, this test leads to a good 

approximation [137], which can be used to affirm that flax and biopolymer interfaces are better or 

comparable to MAPP and PP at the macro-scale, just like it was observed at the micro-scale.  

III.c.   Unidirectional composite characterisation 

c.i.    Transverse tensile behaviour 

Unidirectional (UD) composites were characterised through transverse 90° tensile tests to obtain the 

transverse modulus, strength and ultimate elongation. Focussing on the strength, it appears that 

flax/PLA presents the best transverse strength of 25.8 ± 1.0 MPa, followed by PHA, PBS and MAPP 

(Table 2-3). As PP presents a lower strength than MAPP, the interface should have a role in the 

transverse tensile strength of the composite. It will be discussed in section IV.b.i., where the 

correlation between micro-scale and macro-scale interfacial and transverse strength is examined. 

Notice that samples submitted to a transverse tensile test present a significant strain concentration in 

the matrix and at the interfaces [144]. It creates zones of high internal strains, damaging the material 

by generating micro-cracks. The eventual failure of the composites is due to the coalescing of these 

micro-cracks into (a) macro-crack(s). The matrices respond to these high local strains differently. 

Indeed, the behaviour of the transverse-loaded composites (Figure 2-7.b)) is similar to the response of 
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the corresponding raw polymer (Figure 2-7.a)). Furthermore, there is a clear relation between the 

ultimate strain of the matrices and the ultimate strain of the transverse-loaded UD composites (Figure 

2-7.c)).   

 

Figure 2-7: a) Virgin polymer behaviour under tensile test, b) Transverse tensile behaviour of UD flax composites at a volume 

fraction of 32%, c) relation between the ultimate transverse strain of flax composites and the ultimate strain of the 

corresponding matrices.  

The structure of a UD flax composite is more complex than that of a synthetic fibre composite (see 

Figure 2-8). In the former, the matrix is reinforced by elementary fibres, which are not cylindrical or 

regular, and larger irregular bundles. It is also possible to find some residual bast tissue due to the 

natural origin of flax fibres. All these elements generate a different strain concentration and 

distribution. Furthermore, due to the random dispersion of these fibre elements in the matrix, the high 

strain distribution in the matrix becomes complex and can be locally high.  
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Figure 2-8: Sliced observation of a MAPP/flax composite at several scales. 

c.ii.   Longitudinal tensile behaviour 

It is observed that the tensile behaviour of flax UD composites investigated is generally bilinear (see 

Figure 2-9). This bilinear behaviour was also observed for flax/unsaturated polyester and flax/epoxy 

composites [196,212]. 

 

Figure 2-9:  Longitudinal tensile behaviour of unidirectional flax composites. The dotted line indicates the strain range for 

modulus calculation. 

Thus, two stiffnesses (El,1 and El,2) were recorded, and for both, bio-polymers present at least 

comparable values to MAPP. All the results of the longitudinal tensile test are presented in Table 2-3. 

Regarding strength, PLA is followed by PHA and PBS, and all biopolymers possess composite strength 
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higher than MAPP. Looking at the change of slope, it seems that the choice of the polymer does not 

influence the strain where the change in linearity takes place. As this phenomenon is not matrix 

dependent, it may be due to the behaviour of the fibre [196]. 

It is possible to back-calculate the fibre modulus using the rule-of-mixtures; results are presented in 

Table 2-3. Looking at the results from the first composite stiffness (El,1), it appears that the back-

calculated flax moduli obtained, see Table 2-3, are close to the literature value of 52.5 ± 8.6 GPa [83] 

for all considered polymer matrices. 

IV.   Discussion  

IV.a.   Influence of interface on composite shear strength 

Two scales are of interest to obtain information on the interface(s). The micro-scale examines the 

adhesion between the polymer and elementary fibres through the IFSS. In contrast, the in-plane shear 

strength (IPSS) includes effects of the complex mesostructure of a flax composite, such as bundles, 

heterogeneity in fibre properties, possible remaining cortical components and fibre/fibre interphases. 

Both experiments show significant differences in the scales investigated, fibre volume fractions used, 

and stress distribution generated. 

Nevertheless, as shown in Figure 2-10, there is a linear correlation between IFSS and IPSS. It indicates 

that adhesion between elementary flax fibres and the polymer is likely to be a crucial factor affecting 

in-plane shear strength. The in-plane shear strength IPSS presents a higher value than interfacial shear 

strength IFSS as the former does not only load interfaces and presumably obtains higher contribution 

from fibres. Furthermore, this relation depends on the preform's level of individualisation (i.e. ratio of 

elementary fibres to fibre bundles). It is expected that a preform containing more bundles will deviate 

from this trend as the micro-droplet test was carried out on elementary fibres, and a bundle's 

behaviour would be more complex, according to the retting degree and the composition of fibre 

junctions. 

The micro-droplet test focuses directly on the fibre/matrix interface and avoids influence by other 

factors (present at macro-scale tests). However, the theory is based on a critical assumption of linear 

stress along the interface [111]. It was demonstrated numerically [101,287] that there is a stress 

concentration where the razor blades lock the droplet. This stress concentration depends on the shape 

of the blade [287] and the distance between the blades and the fibre [101,287]. As said previously, the 

blade shape does not scatter the results in our study as it stays unchanged. Thus, the obtained values 

can be compared despite the difficulty of validating the assumption of linear stress.  
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Figure 2-10: Linear correlation between the interfacial shear strength IFSS measured at the micro-scale and the in-plane shear 

strength IPSS measured at macro-scale for flax/thermoplastic composite systems.   

On the other hand, the in-plane shear [±45]s test gives the in-plane shear strength, considering 

composites’ mesostructure. However, the test does not create pure shear as the matrix is also loaded. 

Thus, the composite quality has an essential role in the reliability of the results. The heterogeneity of 

the materials, such as matrix concentration zones and interlaminar zones, may induce unwanted stress 

concentration. Nevertheless, as all these artefacts are present in a composite, this test reveals the "in-

use" interface shear strength, which is more relevant for composite application [137]. 

IV.b.   Influence of interface on UD composite strength 

b.i.   Transverse strength 

Generally speaking, whatever the reinforcement considered, the interface plays an essential role in 

the behaviour of a UD composite loaded transversally [288]. As shown in Figure 2-11, there is a clear 

correlation between the transverse strength of a UD composite and the in-plane shear strength 

characterising the interface. Indeed, the transverse loading of a UD composite induces a high strain 

concentration at the interfaces [144]. It leads to damage in the composite through the generation of 

micro-cracks at the interfaces, which coalesce to form (a) macro-crack(s) and eventually fracture the 

material. The appearance of micro-cracks depends on the ability of the interface to resist applied 

strain. If a matrix presents a better interface with fibre, the micro-cracks appear at a higher strain level, 

and higher applied stresses are needed to create some micro-cracks locally, thereby postponing the 

failure of the composite and leading to a higher ultimate strength.  
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Figure 2-11: Correlation between the in-plane shear strength IPSS and the ultimate transverse strength of unidirectional flax 

composites.  

As mentioned previously, this analysis was done considering a matrix reinforced by elementary fibres, 

being naturals or synthetics. In a flax composite, bundles also experience this strain concentration. In 

bundles, fibres are linked together by middle lamellae. It appears that the stiffness of middle lamellae 

is close to the transverse stiffness of flax fibres [74]. This natural feature found in a stem creates a 

remarkable cohesion inside bundles when loaded transversely, avoiding its decohesion. During retting, 

fibre extraction and composite manufacturing, this middle lamella is impacted, damaging this 

cohesion. In a composite submitted to transverse tensile loading, bundles act as fibres with a more 

prominent geometry but also as zones of weakness due to the damaged middle lamellae [289]. 

There is diversity in fibre forms (elementary, bundles) and level of heterogeneity in the UD composite 

due to the (random) dispersion of these fibre forms (Figure 2-8). The orientation of the bundles 

emerging from the manufacturing process can reconfigure the distribution of these high strain zones, 

thereby modifying the composite behaviour (Figure 2-12). Despite considering the complexity of a flax 

composite, it appears clearly that the transverse strength is interface dependant.  

b.ii.   Longitudinal strength 

Estimating the longitudinal strength of a composite can be challenging, and many models are available. 

A modified rule of mixture is chosen here, which considers the matrix to be softer than the flax fibres 

and therefore assumes failure is fibre-dominated. An effective parameter (𝑘𝑒𝑓𝑓) is added to match the 

model and the experiment empirically (2-4). This factor includes all fibre-related phenomena 

influencing the UD strength, such as the quality of fibre-matrix interface, fibre length distribution, and 

fibre (mis)orientation [290]. 
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𝜎𝑈𝐷,𝑙 = 𝑘𝑒𝑓𝑓. 𝑉𝑓 . 𝜎𝑓𝑖𝑏𝑟𝑒,𝑙 + (1 − 𝑉𝑓)𝜎𝑓𝑖𝑏𝑒𝑟,𝑙 . 𝐸𝑚𝐸𝑓𝑖𝑏𝑟𝑒,𝑙 (2-4) 

𝑉𝑓 is the volume fraction of fibre, 𝜎𝑈𝐷,𝑙 and  𝜎𝑓𝑖𝑏𝑟𝑒,𝑙  are respectively the longitudinal strength of the 

UD and the fibres, 𝐸𝑚 and 𝐸𝑓𝑖𝑏𝑟𝑒,𝑙  are the longitudinal stiffness of respectively the matrix and the fibre. 

Longitudinal strength and stiffness of flax fibre are taken respectively equal to 1,043 MPa and 53.2 GPa 

as obtained by Bourmaud et al. with fibres extracted from the same preform [46]. 

 

Figure 2-12: Schema of a unidirectional composite loaded in transverse. The behaviour of the two composites will differ due 

to the orientation of the bundles leading to different zones of high strain concentration.  

It appears that the factor 𝑘𝑒𝑓𝑓 is interface dependant (Figure 2-13.a)), but is also influenced by the 

ultimate strain of the matrix (Figure 2-13.b)). Indeed, even though the interface between PBS and flax 

is of moderate quality (in comparison to the other polymers), the effective parameter of PBS is high; 

the moderate interface properties being balanced with the high ultimate strain of the PBS matrix. The 

reverse is true for PLA, where the effective parameter is principally due to the high quality of the 

interface (at low ultimate strain of PLA). Several hypotheses are proposed. If a matrix possesses a high 

ultimate strain, it may spread the applied stress in the composite and avoid high-stress regions 

responsible for failure. Another explanation is that matrix is more resilient in high strain regions, such 

as at the ends of fibres. Thus, it avoids the creation of micro-damage inside the material, yielding an 

increase in apparent strength. Indeed, even if the failure in flax UD composites is due to fibre failure, 

Monti et al. [103] observed matrix cracking before specimen rupture. In both assumptions, the 

explanation is related to the local stress and strain concentration inside the composite.  
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Figure 2-13: Effective parameter (keff) of the fibre contribution at longitudinal strength in function of a) the interfacial shear 

strength, b) strain at failure of matrices. 

Some studies focus on developing the factor 𝑘𝑒𝑓𝑓 to express it clearly [291]. However, these models 

are not useable on UD flax composites as they are more complex than conventional composite (Figure 

2-14). 

 

Figure 2-14: a) Schema of a top inner view of a flax UD composite portraying the misorientation, the presence of bundles as 

well as discontinuous elementary fibres. L and T represent the longitudinal and transversal directions. For clarity, the aspect 

ratio of the fibre is not to scale. b) SEM images extracted from [292] showing the diameter evolution of elementary flax fibre, 

c) Schema of a bundle focussing on the fibre discontinuities inside the bundles. 

In addition to the heterogeneous fibre distribution and the discontinuity of flax fibres (Figure 2-14.a)), 

the level of flax fibre individualisation also influences the strength of the composite [127]. More 
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individualised fibres lead to higher strength, where bundles act as weaknesses inside the composite. 

It could be due to their lower aspect ratio or the higher stresses generated inside bundles. However, 

the second hypothesis is debatable due to the arrangement of fibres. 

As shown in Figure 2-14.c), flax fibres are discontinuous, but thanks to their intrusive growth in the 

stem, their diameter tapers and decreases at the ends [74]. These individual fibre ends increase the 

effectiveness of stress transfer between fibres through the middle lamellae. Besides, Coroller et al. 

[127] observed that individualisation leads to a more significant increase in strength of a flax UD 

composite than obtained by selecting and using higher-strength fibres. As hackling is commonly used 

to extract flax fibres from stems, and it creates defects (vis. kink-bands) on fibres, a compromise has 

to be found between highly individualised fibres and undamaged fibres with higher strength.  

Focussing on elementary flax fibres, they present a non-cylindrical section with an apparent diameter 

evolving along the fibre length [292] (Figure 2-14.b)). In addition to the geometric variability of flax 

fibres, it appears that fibre strength is dependent on the location in the stem they have been extracted 

from: fibres of highest strength are extracted from the middle of the stem [74]. A flax preform is 

typically made with a mix of these flax fibres, leading to dispersion in geometric, structural, and 

mechanical properties. Examining the same Flaxtape® used in our study, Gager et al. [214] observed a 

slight fibre misorientation. Fibres are oriented at approximatively 0° ± 15° with only 5% of fibre at 0°. 

In comparison, a commercial glass UD typically presented an orientation of 0° ± 10° with 13% fibres at 

0°. This higher misorientation for flax preforms penalises it against glass preforms and impacts the 

strength of the final composite.  

Despite the complexity of a UD flax composite, interfaces have an essential role in stress transfer and 

damage development. In addition, the biodegradable polymers present higher interfacial properties 

with flax and lead to composites with higher mechanical properties than currently industrially used PP 

and even MAPP.  

V.   Conclusion 

The interface between flax and three biodegradable polymers (PLA, PHA, PBS) was investigated at the 

micro-scale and compared to PP and MAPP, two industry references. It is demonstrated that the 

adhesion and interfacial shear strength of biodegradable polymers to flax is at least as good as MAPP 

and more than twice that of PP. A mechanical investigation at the composite scale is realised through 

in-plane shear and tensile tests on unidirectional composites. The macro-scale in-plane shear strength, 

the longitudinal tensile strength and the transversal tensile strength follow the same trend for 
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fibre/matrix adhesion observed at the micro-scale through micro-droplet tests: flax composites made 

from biopolymers are at least as good as MAPP/flax composites, with the best values for PLA/flax 

composites. A comparison is carried out between interfacial properties and composite mechanical 

properties. It appears that the in-plane shear strength of the composite and the UD transversal 

strength correlate linearly. In the longitudinal direction, the strength depends on fibre-matrix adhesion 

but also on the ultimate strain at failure of the matrix. Based on this analysis and due to the good 

adherence between flax fibres and biodegradable polymers, it is evident that biopolymers should be 

exploited as alternatives to thermoplastic polyolefins as they present interesting mechanical 

properties and lead to recyclable and compostable mid-performance materials. In the future, it is 

imperative to explore the correlation between fibre-matrix adhesion, mechanical behaviour (such as 

fatigue), composite architecture (such as fibre volume fraction), and durability (including 

biodegradation). 
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Chapter 3: Can we predict the 

microstructure of a non-woven flax/PLA 

composite through assessment of 

anisotropy in tensile properties? 
I.   Introduction: 

Due to their lower environmental impact [268] and competitive specific mechanical properties [86], 

flax fibres have replaced glass fibres in some automotive parts, such as interior panels [48]. These 

parts, made of non-woven preforms, are thermo-compressed to a near-net shape. Several processes 

are available to manufacture non-woven preforms, among which spunlacing and needle-punching are 

common [165]. Thermoplastic polyolefins, such as poly-(propylene) (PP), are currently used as a 

matrix, leading to potential recyclability of any scraps. However, with the emergence of biodegradable 

thermoplastics, the automotive industry has started to look at alternatives, such as poly-(lactide), 

which offer industrial composting as an alternative end-of-life scenario [293].  

Furthermore, PLA appears to have the advantage to be stiffer than PP with a tangent modulus of 3.8 

GPa against 1.4 GPa and to have a quasi-linear tensile behaviour. As matrix properties influence the 

mechanical properties of the composite, non-woven flax/PLA composites are observed to have higher 

stiffness at all volume fractions than non-woven flax/PP composites (Figure 3-1).  

 

Figure 3-1: Graphical presentation of literature review of the mechanical properties of non-woven flax composites reinforcing 

PLA [43,240,294–296]; PP [174,206,297–299]; MAPP [43,165]. 
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While matrix properties are relevant, it is mainly the fibres that are responsible for composite 

mechanical behaviour, with their content directly affecting composite stiffness. The non-woven 

preform manufacturing process will induce fibre orientation anisotropy resulting in different 

properties in the machine- and cross- directions of a needle-punching line [165]. Neckar and Das [300] 

studied the orientation of the fibres in non-woven preforms and derived analytical laws relating to the 

manufacturing process used. The fibre orientation in the non-woven preforms could be obtained 

simply by transparency observation or optical microscopy [301]. Such methods are relevant for mono-

constituent non-woven preforms. For composites manufacturing, the non-woven preforms may 

comprise two types of fibres, the reinforcement and the matrix. Other methods have to be used as 

only the reinforcement fibre orientation needs measurement (as the matrix fibres will melt) to 

investigate the effect of fibre architecture on composite mechanical properties. Graupner et al. [218] 

used a synchrotron radiation-based micro-computer tomography approach to obtain cellulose fibre 

orientation in PLA composites. Another non-destructive method is ultrasound scanning, which leads 

to the measurement of fibre orientation and plies spacing, fibre volume fraction, and porosity 

distribution [219]. In both cases, computation is required to extract fibre orientation from the raw 

data.  

Once orientation frequency is known, several theories exist to predict non-woven mechanical 

properties. The first approach is to modify the rule of mixture (3-1) by including a corrective factor ηo 

(3-2) [302], where E and V denote stiffness and volume fraction respectively, and subscripts NW, f and 

m denote non-woven composite, fibre constituent and matrix constituent, respectively. The 

parameter pn is the appearance frequency of the angle represented by 𝜃𝑛. 

𝐸𝑁𝑊 =  𝜂𝑜. 𝐸𝑓 . 𝑉𝑓+𝐸𝑚. 𝑉𝑚 (3-1) 

𝜂𝑜 =  ∑ 𝑝𝑛. 𝑐𝑜𝑠4(𝜃𝑛)𝑛  (3-2) 

In the above approach, even though the fibre orientation is considered, the shear contribution is not 

taken into account, nor are the anisotropic properties of the reinforcement. Halpin and Pagano [22] 

developed a more precise method to assimilate randomly oriented fibrous composites to a laminate. 

They showed an excellent mechanical prediction of the experiment by considering symmetric laminate 

with a thickness weighted with the fibre orientation frequency.  

A third constituent important to tackle is the porosity value. The compaction of the non-woven could 

be controlled to tailor mechanical or acoustic properties [174], leading to low or higher porosity 
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content. For fully-compressed composites, porosity is still present due to manufacturing and should 

not be neglected as it influences mechanical properties. Their distribution and shape are also reported 

to be important [209]. Looking specifically at natural fibres, Madsen et al. discussed the porosity 

distribution inside flax thermoplastic composites [202] and its influence on composite stiffness [206]. 

Thus, fibre orientation, fibre anisotropy and porosity appear to be key structural parameters required 

in precisely describing a non-woven composite, all of them impacting non-woven composite 

mechanical properties.  

In this chapter, the microstructure (porosity/reinforcement content) and the architecture (fibre 

orientation) of a flax/PLA non-woven are characterised thanks to X-ray microtomographic (XMT) 

analysis. Off-axis tensile tests are used to characterise the observed anisotropy. Micro-mechanics and 

laminate theory are used to approximate experimental data. Matching calculated and measured 

values allow proposing the off-axis mechanical properties as an efficient and straightforward validation 

tool to address the fibre orientation in a non-woven composite.  

II.   Materials/methods: 

II.a.   Reinforcements 

Flax/PLA non-woven preform was provided by Ecotechnilin (Yvetot, France). It was made from 

50%/50% weight of scutched flax tows and INGEOTM PLA fibres. Due to the utilisation of flax tow, shives 

were still present in the non-woven preform. Our non-woven presents a more significant proportion 

of preferential fibres orientations than needle-punched non-wovens due to their manufacturing 

process: carding and calendaring. The preferential fibres direction is observed on the machine 

direction (direction of the non-woven preform production). Cross direction refers to the direction 

perpendicular to the machine direction. Non-wovens with 10% and 30% fibre weight content were 

also manufactured for comparison. Following, if nothing is indicated, non-woven composite refers to 

the 50%/50% flax/PLA non-woven.  

Additionally, unidirectional (UD) and bi-axial (BX) composites were made of 50 g/m² Flax-tape® 

(Ecotechnilin) and PLA films using the PLA 3001D (NatureWorks). This difference in PLA grad is justified 

as the PLA 3001D is not available in fibres shape, where the INGEOTM PLA fibres cannot be transformed 

easily into films for the film stacking process.  
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II.b.   Composite manufacturing 

Non-woven composites were made of several preform plies, UD and BX lay-ups were prepared using 

film stacking. Pure PLA plates were also prepared to obtain matrix properties. These lay-ups were dried 

in an oven at 40°C for 24h under vacuum as flax and PLA are moisture-containing. They were then hot 

compressed at 200°C with a hydraulic press LabTech Scientific 50T (Labtech, Samutprakarn, Thailand), 

yielding laminate plates of 20 cm x 20 cm x 2mm. The optimised pressure cycle used is presented 

previously in Chapter 2, section II.a. Milling machine was used to cut samples for tensile property 

characterisation.  

II.c.   Tensile tests 

An Instron universal testing machine was used to achieve static tensile tests based on ISO 527-4. A 

displacement rate of 1mm/min was applied, and the elongation was recorded with a unidirectional 

extensometer, gauge length taken equal to 25mm. For the pure PLA samples (from both grads) as well 

as for the UD, a bi-axial extensometer was preferred. For each formulation, at least five samples were 

tested to obtain mean values and standard deviation. The ultimate strength and strain are recorded 

as well as tangent modulus. The latter was calculated over a strain of 0.02% to 0.1% as recommend for 

flax composites [212]. The Poisson’s ratio is obtained using the NF EN 2561 standard when the bi-axial 

extensometer is used. The same set-up is employed to perform in-plane shear testing on BX according 

to ISO 14129, using a bi-axial extensometer and 2mm/min speed. As reported previously in chapter 2, 

section II.b, the shear modulus is measured between 0.1% and 0.5% shear strain. Pure PLA 3001D, UD 

and BX characterisation is only performed for back-calculation to obtain flax fibres properties.  

II.d.   Density 

The density of our non-woven composite was obtained through a hydrostatic balance using ethanol as 

the immersion liquid. This method was chosen as suggested by Kergariou et al. [303] for flax/PLA 

composite. It was used to obtain the density of the composites. Knowing the apparent density of the 

composite (𝜌𝑐), the volume fraction of porosity (𝑉𝑝) of each formulation is obtained using equation 

(3-3), where  𝑊𝑓 is the weight fraction of fibres and 𝜌𝑃𝐿𝐴, 𝜌𝑓𝑙𝑎𝑥, are the density of PLA and flax taken 

respectively as 1.24 and 1.5 [84]. Porosity results are given as mean values of five samples.  

𝑉𝑝 = 1 − (1 − 𝑊𝑓𝜌𝑃𝐿𝐴 + 𝑊𝑓𝜌𝑓𝑙𝑎𝑥) . 𝜌𝑐  (3-3) 
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II.e.   X-ray microtomography (XMT) 

The microstructure of the non-woven composites was investigated with a Brucker© SkyScan 1272 high-

resolution scanner. The samples were scanned at a nominal resolution of 4,5 µm. The current (50 eV), 

the intensity (200 µA) of the X-ray beam, and the nature and thickness of filters were selected to obtain 

a constant signal transmission of 30%. The X-Ray power source (P=U.I) is kept constant at 10W. A 

camera pixel binning of 4032×2688 was applied. The scanned orbit was 180 degrees with a rotation 

step of 0.2° adapted to the magnification. Bruker’s NRecon® software was used to reconstruct the scan 

projections into 2D images using the Feldkamp algorithm. Gaussian smoothing, ring artefact reduction 

and beam hardening correction were applied. Volume rendered 3D images were generated using an 

RGBA transfer function in SkyScan CTVox® software.  

Image analysis was performed using SkyScan CTAn® software. A specific task list analysis was 

developed to characterise the porosity and the pore size distribution within composites. In that way, 

two image segmentations were successively carried out on the original image: the first one to define 

the sample volume of interest (VOI) and the second one, using an automated Otsu algorithm, to define 

the object volume within this VOI. After image binarisation, structure separation (=pore size) is 

preceded by skeletonisation in which the two medial pore axes are identified. Then the “sphere-fitting” 

local thickness measurement is made for all the voxels lying along this axis. 

In order to determine fibre orientation, a sequence of 12 in-plane cuts on face direction on the 3D 

render is used to generate 2D images. This method is based on granulometry analysis and was the 

subject of a previous study [214]. Due to the low contrast – a result of the comparable material 

densities– between flax and PLA, the 2D images had to be pre-treated with Fiji to obtain binary images 

before orientation analysis. The pre-treatment process is illustrated in Figure 3-2. It is validated by 

comparing the fibre orientation analysis, with and without pre-treatment, of an optical micrograph, 

Figure 3-3. 

II.a.   SEM 

Complementary microstructure observations were performed using a JEOL SEM (JSM-IT500HRSEM) at 

an acceleration voltage of 3 kV. Before the observation step, gold sputter coating was applied to the 

samples using an Edward sputter coater (Scancoat6).  
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Figure 3-2: Pre-treatment process done on 2D images before orientation analysis.  

 

Figure 3-3: Validation of the pre-treatment process by comparing the orientation analysis with (a) and without (b) pre-

treatment. These analyses were done on the same optical microscopy picture. 

III.   Results and discussion 

III.a.    Fine-scale composite volumetric analysis 

The behaviour of a composite is predominantly influenced by the matrix, the reinforcement properties 

and their content. For flax reinforcements, things are more complex as the matrix is not reinforced by 

one single type of constituent but by at least two: elementary fibres and fibre bundles. Figure 3-4 

presents SEM observations of our non-woven composite. The presence of elementary flax fibres and 

bundles is confirmed, as well as any preferential orientation. Indeed, non-woven composites are 
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anisotropic as they present higher properties in one direction than another, depending on the 

preferential orientation of the fibres [165]. However, the microstructure of this non-woven composite 

is more complex as it also includes porosity and shives. In addition, quantification of fibre orientation 

is required to describe the non-woven composite architecture, the aim being to understand better and 

estimate the composite properties.  

 

Figure 3-4: SEM observation of the flax/PLA non-woven investigated, a) schema of the analysed sample, b) upper observation, 

showing preferential fibre orientation (red arrows), c) transverse observation, fissures might be due to water polishing, d) 

zoom on elementary flax fibres, e) zoom on flax bundles.  

a.i.   Porosity analysis 

Porosity content of 5.6 ± 3.2 % was measured for the non-woven composite thanks to a hydrostatic 

balance using ethanol as the immersion liquid. A fine-scale analysis was done by XMT to investigate 

pore localisation and size. A porosity of 4.5 % was obtained, which is comparable to the immersion 

method value. It could be observed in Figure 3-5.c) thanks to the microtomographic 3D view of 

porosity. A quantitative analysis presented in Figure 5.b) highlights a few mesoporosities inside the 

matrix.
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Figure 3-5: Porosity analysis by XMT a) schema of the analysed sample, b) analysis of porosity size, c) the XMT 3D view of 

porosity. 

On the other hand, there is a significant amount of micro-porosity. The latter appears to be mainly 

located inside bundles and in shives. Indeed, shives come mainly from the xylem tissue, where its 

primary function is to conduct sap [78]. Thus, inside the stem, these cells exhibit a large lumen of 

several micrometres, potentially visible through XMT investigations.  

a.ii.   Shives quantification 

Regarding the porosity analysis, it appears that shives are a predominant host of micro-porosity. It is 

observed in Figure 3-4 and confirmed in Figure 3-6 that shives inside the non-woven composite have 

collapsed cells, probably due to the compaction pressure applied during the manufacturing process. 

Indeed, shives contain less cellulose than elementary flax fibres, 45% of dry matter against 80% 

respectively [304]. As cellulose is responsible for plant fibres’ mechanical properties, it is necessary to 

quantify this third reinforcement type as it should have mechanical behaviour lower than that of the 

bundles and elementary fibres. Following manual extraction, 5wt% of shives were extracted for the 

total non-woven reinforcement weight. The volume fraction of shives inside the composite is assessed 

to be 2.2% by considering a density of 1,430 kg.m-3[305], against 43.1% for flax fibres (elementary 

fibres and fibre bundles). In the following analysis, shives are taking into account by assimilating them 

into the total flax fibre content at 45.3% by volume.  
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Figure 3-6: SEM observation of a shive a) before the composite manufacturing step with open cells, b) after composite 

manufacturing, showing collapsed cells. 

a.iii.   In-plane orientation of fibres 

Finally, a fine-scale description of the non-woven composite architecture should include fibre 

orientation. Thanks to XMT, the orientation was obtained from 12 images, and the mean orientation 

was calculated. One image's analysis methods are detailed in Figure 3-7 b), c), and d). All results are 

summarised in Figure 3-7.e). A preferential orientation appears with a maximum relative frequency 

(calculated degree by degree) of 0.82% and a minimum of 0.38%. It illustrates the expected anisotropy 

of non-woven materials at the composite scale. This orientation anisotropy appears to be lower than 

the pure flax fibres non-woven preform analysed with the same technique by Gager et al. [214]. It can 

be explained by the presence of fine PLA fibres in our non-woven preform, modifying the flax fibre 

alignment during the calendaring process. Another hypothesis is the modification of the orientation of 

the fibres during the composite processing with the PLA fibres flowing under heat and pressure. The 

mean experimental curve is fit using equation (3-4) developed by Neckar and Das [300] (Figure 3-7.e)). 

𝑓(𝜃) = 1𝜋 𝐶𝐶2 − (𝐶2 − 1)𝑐𝑜𝑠2(𝜃) + 𝑞 (3-4) 

Where f(θ) is the fibre frequency at an angle θ taken between -90° and +90°, C is the fitting parameter 

corresponding to the anisotropy of the non-woven, and the offset is corrected via the parameter q. 

The fit was done by lowering the sum of the difference between experimental and model at each 

orientation. It gives C = 1.84 and q = 0.235%. As the trend curve is symmetric, it is preferred over the 

experimental curve for the micro-mechanical development in section IV. 
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Figure 3-7: Orientation analysis. a) sample schema with slices (marked by dotted line) investigated, b) XMT image analysed 

for local fibre orientation, c) orientation analysis representation of XMT image (each colour represents an orientation), d) 

Orientation frequency histogram of one XMT slice, e) global orientation analysis of the composite, based on the mean 

orientation (black) of twelve XMT slices (dotted coloured lines). An interpolation [300], based on the mean value, is shown in 

red dotted lines.  

IV.   Mechanical characterisation and prediction of non-woven composite stiffness 

Fibre orientation is a crucial parameter affecting mechanical properties; its direct analysis is possible 

through expensive and time-consuming 3D investigations such as XMT. In contrast, using mechanical 

property measurements as an indirect method to ascertain fibre orientation may be faster, easier, and 

lower-cost. With the aim to check the relevancy of this alternative method, off-axis tensile experiments 

are compared to a theoretical prediction using laminate theory as described by Halpin and Pagano 

[306]. The orientation data for the non-woven composites analysed in the preceding sections is 

matched with a theoretical model used to implement a laminate with 181 distinct laminas (from -90 

to +90) with a thickness weighted by the relative orientation frequency. As symmetric lay-up is 

required, each ply is made of an angle and its symmetric counterpart. The laminate creation is 

summarised in Figure 3-8. 
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Figure 3-8: Explanation of the laminate building, a) schema of the symmetric laminate with thickness repartition, b) ply 

thickness used regarding the Gaussian fit of the orientation relative frequency. 

IV.a.   Angle influence on the tensile response of non-woven composite 

Experimental measurements are presented in Table 3-1 and Figure 3-9 to study anisotropy in tensile 

properties arising from fibre orientation. As expected, the loading angle influences the material's 

response. A decrease in stiffness and strength of 40.5% and 47.3%, respectively, are observed between 

the orientations 0° and 90°, see Table 3-1. Thus, it confirms the anisotropy of this material. 

Furthermore, the mechanical properties of the non-woven composite stay unchanged after a critical 

angle of 67.5°, being equal to the transverse properties. 

 

Figure 3-9: Tensile behaviour of non-woven flax/PLA with 50 wt% of fibres at several loading angles. The 0° refer to the 

machine direction (of the preform manufacturing) and the 90° to the cross direction. 
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Table 3-1: Experimental values of longitudinal, transversal and off-axis tensile tests on non-woven flax/PLA with 50 wt% of 

fibres. 

Angle [°] Tangent modulus [GPa] Strength [MPa] Strain at rupture [%] 

0 12.95 ± 2.09 90.0 ± 6.1 1.44  ± 0.27 
22.5 11.21 ± 0.87 84.9 ± 4.3 1.48 ± 0.27 
45 9.64 ± 0.67 69.6 ± 6.5 1.30 ± 0.31 

67.5 7.82 ± 0.44 53.2 ± 4.1 1.38 ± 0.25 
90 7.70 ± 0.85 47.4 ± 4.4 1.25 ± 0.26 

 
IV.b.   Flax fibres properties for laminate theory 

Input values significantly impact micro-mechanical models, especially for plant fibre whose values have 

a larger scatter. Indeed, regarding the longitudinal Young’s modulus of elementary flax fibres, it is 

possible to find literature values ranging from 36 GPa to 75 GPa [83,307]. Two sets of values are 

considered here to take care of this scatter in data. The first one is directly extracted from literature, 

presented in Table 3-2. The second one is obtained experimentally through back-calculation of UD 

flax/PLA composite. 

Table 3-2 presents the mechanical properties of UD composites used to back-calculate flax fibre 

properties for each UD composite. The flax fibres properties are obtained through mean values of 

back-calculate properties calculated at several fibres volume fractions. Comparing this data with the 

literature, flax fibres longitudinal modulus is similar, whereas its transverse and shear modulus 

obtained are lower. The thermal history of the fibres and the compaction during the process may have 

impacted the flax fibres' structure and their mechanical properties. Furthermore, both bundles and 

shives have been considered as ‘fibres’ during the back-calculation. They generally have lower 

transverse and shear properties than elementary flax fibres. The reinforcement distribution inside the 

composite is also irregular, leading to some regions of higher stress distribution than the theoretical 

approach.  Additionally, as a high volume fraction is achieved, some contact between fibres are 

present. These contact points will be damaged during processing, damaging the fibres. 

The PLA properties used for the model are measured from the pure INGEOTM PLA plates, as it is the 

PLA used in the non-woven. Its mechanical properties are as following: a stiffness of 3.4 ± 0.1 GPa, a 

shear modulus of 1.19 ± 0.07 GPa, a Poisson's ratio of 0.38 ± 0.02. 
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Table 3-2: Flax/PLA UD composite mechanical properties used to obtain mechanical properties of flax via a back-calculation 

method: rule of mixture for longitudinal modulus (El) and Poisson's ratio (νlt), Halpin Tsaï for shear modulus (Glt) and transverse 

modulus (Et).  

 Vf [%] El [GPa] Et [GPa] Glt [GPa] νlt [-] 

Experimental 
values for 
Unidirectional 
Composites 

0 (PLA 3001D) 3.73 3.73 1.31 0.41 

30 20.09 4.17 1.76 - 

40 25.98 4.29 1.88 0.39 

50 27.47 4.13 2.04 0.37 

Flax fibres 
properties by 
back-
calculation 

30 58.26 5.35 3.76 - 

40 59.34 5.24 3.42 0.35 

50 51.21 4.56 3.33 0.33 

Mean back calculated flax fibres 
value 

56.2 ± 3.6 5.05 ± 0.35 3.50 ± 0.18 0.34 ± 0.01 

Literature value for flax fibres 52.5 ± 8.6 [83] 8 ± 3 [199] 2.5 ± 0.2 [308] 0.48 [257] 

 
IV.c.   Influence of non-woven structure on its mechanical properties 

Comparing the laminate theory models with the experimental data will inform us whether off-axis 

tensile tests can be used to predict the fibre orientation of non-woven flax composite. For each set of 

values, the mechanical properties of a ply are obtained using the rule of mixture for the longitudinal 

direction and the Poisson's ratio, and using Halpin-Tsaï [198] for the transverse and shear moduli. 

Furthermore, as discussed in section III.a.i, porosity is present and has to be taken into account. We 

use the hydrostatic balance-obtained single porosity value and assume that it is concentrated in the 

matrix. It induces that the porosity inside shives is assimilated to be matrix porosity. Equation (3-5), 

developed by Madsen et al. [206], is used to account for the effect of matrix porosity on mechanical 

properties,   

𝑃𝑚,𝑟𝑒𝑎𝑙 = 𝑃𝑚,𝑏𝑢𝑙𝑘 . (1 − 𝑉𝑝)2
 (3-5) 

With P representing any mechanical property, Vp is the volume fraction of porosity and subscripts m, 

bulk and m, real denoting the bulk matrix and the matrix with porosity. Once the ply properties are 

obtained, the laminate is built as explained previously, and the mechanical properties of the equivalent 

composite are found. The model generated a curve of the non-woven composite’s tangent modulus 

versus orientation for each value set. The range between both is represented in Figure 3-10 (grey area). 

The modulus in the machine direction (0°) is well-predicted, falling between both models. A slight 

deviation appears for 22.5° and 45°, but the models stay close to the experimental value. 
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Figure 3-10: Evolution of the tangent modulus with loading orientation for non-woven flax/PLA with 50wt% of fibres tested in 

tension. 

However, increasing the orientation further to 45° leads to an overestimation. This deviation at high 

orientations is principally due to the assumptions and simplifications used for the model compared to 

reality. First of all, the model considers an in-plane orientation. It is relevant for machine direction due 

to a stretching induces by the manufacturing process. However, this stretching is less or not present 

in other directions. That is why a slight out-of-plane orientation exists, needed for handling the non-

woven preform. 

Additionally, the model does not consider the reinforcement effect of bundles. A bundle presents a 

higher diameter than elementary flax fibres and an irregular geometry (fluctuating circularity, section 

and length), increasing the heterogeneity of the composite structure. Furthermore, bundles behaviour 

depends on its cohesion, meaning the middle lamella properties. The latter impacts predominantly the 

composite properties reliant on matrix and interface (such as transverse tensile properties). 

Furthermore, a small number of shives were detected, adding heterogeneity in the structure too. 

What is more, the manufacturing process smashes the shives. This transversal smashing creates 

damages in this porous structure, decreasing the transverse properties of shives. 

Furthermore, the model used here is based on an assumption of linear behaviour. However, it is known 

that elementary flax fibres do not have a linear longitudinal behaviour [87]. The transverse tensile 

behaviour of elementary flax fibres is still obscure as it is harsh to make some relevant tests at this 

micro-scale. 
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In the non-woven composite, fibres are oriented but are also curved. This curvature is not considered 

in our orientation analysis, but it is known to have a non-negligible impact on the composite behaviour.  

Finally, it appears that the anisotropy increases with fibre volume fraction, as observed in Figure 3-11. 

Thus, this new manufacturing process of non-woven preform allows overtaking in machine direction 

literature value without decreasing the stiffness significantly in cross-direction. 

 

Figure 3-11: Evolution of tangent modulus with fibre volume fraction, with measurements in the orthogonal machine and 

cross directions presenting anisotropy. A comparison with literature data is also presented. 

V.   Conclusion  

The complex microarchitecture of a non-woven flax/PLA composite with 50%wt of flax fibres was 

described thanks to X-ray microtomography (XMT) analysis. The microstructural observations show 

porosity and reveal the preferential orientation of the fibres inside the composite in the machine 

direction. This anisotropy was also measured through off-axis tensile tests. The mechanical properties 

highlight an apparent anisotropy where transversal properties are 60% of the longitudinal properties. 

Both anisotropy characterisations are compared using micro-mechanics and laminate theory to predict 

the mechanical properties from the XMT orientation analysis.  

It is found that off-axis tensile tests could be used to predict the fibre orientation distribution in a non-

woven composite indirectly. It is of interest as mechanical tests are much cheaper, faster and 

convenient to perform than XMT analysis. However, some deviation is apparent between experimental 

data and micro-mechanical prediction because of the complexity of describing a flax composite due to 

flax bundles, shives, curved fibres, composite thermal history and potential out-of-plane orientation 

of fibres.
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Part 2: Influences of ageing in the 

structure and the mechanical properties 

of biodegradable flax composite 
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Chapter 4: Influence of the degradation 

induced by water ageing on mechanical 

properties of flax/PLA non-woven 

composite 
 

I.   Introduction:   

Thanks to their lightweight [84] and their good mechanical properties [86], flax fibres can be drop-in 

alternatives to glass fibres as composite materials reinforcement in the automotive area [309]. In 

addition, using thermoplastic as a matrix reduces the composite's environmental impacts, especially 

thanks to recycling [269], as a potential solution before end-of-life consideration. However, one of the 

bottlenecks for wider applications is the sorption behaviour of flax composites, especially when 

considering drastic validation standards of the automotive industry, which imposes the test of 

materials in a large range of humidity and temperature conditions [47].   

An elementary flax fibre, not embedded in a matrix, has a moisture content of 6% at 50% relative 

humidity (RH) and reaches 18% at 98RH [204]. The flax sorption follows Park’s model [310,311], divided 

into three sorption mechanisms, depending on the relative humidity. The first part follows Langmuir’s 

sorption, where water molecules go on specific sites of interactions. The second is described by Henry’s 

sorption, where water uptake evolves linearly with the relative humidity, and the final stage occurring 

at high relative humidity is the clustering of water molecules in the remaining free space. Combining 

these three phenomena leads to a sigmoid relation between the relative humidity and the moisture 

content in the flax fibres [204]. Interestingly, this phenomenon presents a hysteresis loop meaning 

that the water content of flax is not the same at a given relative humidity depending on if it is in a 

sorption or desorption state [204]. Furthermore, this water uptake induces a radial swelling of the flax 

fibre, correlated linearly with the hygro-expansion coefficient, measured to be 1.14 ε/Δm by Le Duigou 

et al. [224].  

The moisture uptake in a composite is mainly due to flax fibres' water sorption behaviour and the 

presence of a fibre/matrix interface [227], even for a hydrophilic matrix (PHBV) [312]. The sigmoid 

sorption/desorption behaviour is also observed at the composite level [47]. For non-woven flax/PP 

composite (50wt%), Gager et al. [47] report a moisture content of 2.6% at 50RH and 8% at 98RH. The 
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volume fraction of fibres impacts the moisture sorption of the composites [313]. However, the classical 

rule of mixture cannot predict the moisture uptake of the composites at high relative humidity. It 

appears coherent with experimental values for 75RH but over-estimates them at 98RH [313]. This 

deviation at high relative humidity is explained by El Hachem et al. [313] by the containment effect of 

the matrix on the flax fibres, limiting their moisture uptake potential. Indeed, flax swelling is observed 

at the composite scale level with a lower amplitude as the matrix constrains its displacement [232]. 

For pulpwood, the fibre hygro expansion is reduced by a factor of two considering free to swell fibres 

or fibres embedded in a PLA matrix [232]. Note that pulpwood is expected to expand less than flax 

fibres due to higher lignin content [225]. 

This moisture uptake induces a decrease in stiffness and ultimate strength of the composites 

[47,227,237]. The origin of this decrease is still discussed in the literature [233,246,314], and several 

phenomena appear to be involved. It is reported for thermoset flax composite that cracks appear in 

the matrix [237,314], inducing a debonding at flax/matrix interface [237,246,314] and flax fibres’ 

damages [246,314,315]. All these phenomena are reported to be linked with the swelling of flax fibres 

inside the composite. However, there is no consensus because the phenomena observed vary 

depending on the ageing conditions, the experimental methods, or the flax composite mesostructured 

such as porosity, fibres volume fraction, fibres individualisation or fibre orientation. As an example, 

Chilali et al. [228] observed that the presence of sealed edges, inducing preferential water diffusion 

direction, impacts the sorption kinetics and the ageing behaviour. Indeed, they suggest several 

damaged mechanisms depending on the type of diffusion.  

This chapter focuses on the hygroscopic ageing of flax/PLA composite through its mesostructure and 

mechanical properties evolution. Several hygroscopic conditions are investigated (50 RH / 75 RH / 98 

RH) as well as an immersion ageing. The sorption kinetics is followed through weight monitoring, and 

the mechanical properties are obtained after ageing. The mechanical properties of flax cell walls and 

matrix after ageing are investigated at microscale thanks to AFM Peakforce measurements in 

mechanical mode (AFM-PF-QNM). The structure of the composite is managed through density 

measurement and SEM observation.  
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II.   Materials and methods: 

II.a.   Materials 

a.i.   Raw materials 

An industrial non-woven flax/PLA preform of 350 g/m², and a flax weight fraction of 40%, was provided 

by Ecotechnilin (Yvetot, France) from their needle-punched industrial line. The non-woven has a 

preferred fibre direction. Indeed, the machine direction has slightly more oriented fibres in these 

industrial non-wovens [165]. The raw materials used are scutched flax tows and INGEOTM PLA fibres. 

Thanks to the Ecotechnilin needle-punched line process, flax and PLA fibres are commingled together, 

leading to the non-woven preform. 

a.ii.   Composite manufacturing 

The composites are manufactured using the same process used in chapter 2, section II.a. It consists of 

an optimised thermo-compression cycle using a hydraulic press LabTech Scientific 50T (Labtech, 

Samutprakarn, Thailand) press, set at 200°C (for PLA matrix). Eight plies of 200x200 mm are stack 

together and then dried at 40°C under vacuum for 24h. During the lay-up step, the specific orientation 

of the preforms is maintained. Therefore, thermo-compression leads to a composite with a 

preferential orientation of fibres, identical to the preform.  

Next, dog-bone samples, according to the ISO 527 standard, are cut from the 2 mm thick composite 

plates using a milling machine. The centre part of the dog bone has a width of 8 mm, a length of 45 

mm and a thickness of 2 mm. The edges of the samples were not sealed to be consistent with industrial 

applications targeted in the FLOWER project, such as Point of Purchase (POP) panels. Thus, after 

cutting, flax fibres appear accessible in the edges. Furthermore, the milling process damages the edges 

by initiating defects, which are likely to influence the ageing response of the composite. Once again, it 

is chosen to be close to the industrial process, in which edges are not cleaned after cutting.  

II.b.   Methods 

b.i.    Ageing protocol 

Once manufactured, samples are stored in a controlled humidity chamber at 50RH until weight 

saturation. Once the weight is stabilised, five samples are dried for 48h in an oven at 105°C and 

weighted. The initial moisture content of samples is obtained through the mean of the five values. It 

equals 2.6 ± 0.1 %. The remaining samples are separated into fives batches. One stays in the 50RH 

chamber until the end of the experiments and is called the 50RH_ref sample. Others undergo humidity 
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ageing (called also vapour ageing) thanks to controlled humidity chambers (50RH/75RH/98RH) or 

immersion ageing in distilled water (Immersion). These ageing are conducted during six weeks. The 

humidity in the chambers is controlled thanks to saturated salt solutions. The salt used and the exact 

relative humidity condition, controlled thanks to testo 174H captors (Testo Inc., West Chester, USA), 

are presented in Table 4-1. 

 

Table 4-1: Salt used for conditioning the chambers and the exact relative humidity condition induced by them. 

 Temp. [°C] 50 RH [%] 75 RH [%] 98 RH [%] 
Mean value 23.3 ± 2.2 55.7 ± 2.9 77.2 ± 1.9 99.7 ± 0.8 

Salt used / Mg(NO
3
)

2
 NaCl K

2
SO

4
 

 
Five samples of each batch are regularly weighted to obtain the weight evolution. After six weeks, once 

their weight stabilises, the 50RH / 75RH / 98RH / Immersion samples are dried at 40°C until 

stabilisation. This drying step allows avoiding the hysteresis consideration of flax fibre sorption [204]. 

Finally, all samples are stabilised again at 50RH. The difference between the 50RH_ref and the 50RH 

batches remains in the drying and restabilisation step, which is not applied to the 50RH_ref samples. 

All the ageing protocol is done at room temperature. In the following discussions, wet samples (or wet 

state) will refer to the samples in saturated state during ageing. The restabilised samples (or 

restabilised state) will refer to the samples that have undergone ageing, drying and restabilisation at 

50RH. 

b.ii.   Water content 

As described before, samples are regularly weighted using a Fisherbrand™ scientific high precision 

scale having a precision of 10-4 g. The sampling depends on the stage of composite sorption, being 

narrow at the beginning of the sorption phenomenon. The moisture content at a given time (Mc(t)) is 

calculated from the weight evolution using equation (4-1). 

𝑀𝑐(𝑡) = 𝑊(𝑡) − 𝑊𝑑𝑟𝑦𝑊𝑑𝑟𝑦  
(4-1) 

Where W(t) is the sample weight at time t and Wdry is its dry weight. The dry weight of each sample is 

calculated equal to 97.4% of the initial mass of the samples. It avoids the drying step for samples before 

ageing, as it impacts the materials [196].  

The sorption kinetics of the samples during ageing is discussed using Fick’s law, equation (4-2), where 𝐷𝑑𝑖𝑓𝑓 is the diffusion coefficient, and th is the sample thickness. The initial moisture content and the 
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moisture content at saturation is 𝑀𝑐,𝑖𝑛𝑖𝑡 and 𝑀∞, respectively. They are extracted from the 

experimental data for each ageing condition.  

𝑀𝑐(𝑡) = (𝑀∞ − 𝑀𝑐,𝑖𝑛𝑖𝑡). (1 − 8𝜋2 ∑ 1(2𝑛 + 1)2∞
𝑛=0 . 𝑒𝑥𝑝−𝜋2.(2𝑛+1)2.𝐷𝑑𝑖𝑓𝑓.𝑡𝑡ℎ2 ) + 𝑀𝑐,𝑖𝑛𝑖𝑡 

(4-2) 

The diffusion coefficient (𝐷𝑑𝑖𝑓𝑓) is calculated for all experimental points in the linear part of the 

experimental curves (𝑀𝑐(𝑡) < 0.5𝑀∞) using equation (4-3). The mean diffusion coefficient is used to 

implement Fick’s law, equation (4-2).  

𝐷𝑑𝑖𝑓𝑓 = 𝜋. 𝑡ℎ216. 𝑡 . (𝑀𝑐(𝑡) − 𝑀𝑐,𝑖𝑛𝑖𝑡𝑀∞ ) 
(4-3) 

b.iii.   Mechanical characterisation through tensile test 

A universal Instron tensile machine is used with a 10kN load cell. The tensile test is based on the ISO 

527-4 standard, using a cross-head speed of 1mm/min. The elongation of the samples is measured 

with an Instron extensometer having a gauge length of 25 mm. The stiffness is calculated between 

0.02% and 0.1%. At least nine samples are tested, and the mean value is extracted. Standard deviations 

are used as errors. The tensile tests are only done on restabilised samples. 

b.iv.   Density measurement 

The density was obtained through a hydrostatic balance using ethanol as immersion liquid, leading to 

the density of the composites. Density samples are extracted from the centre part of the dog bone 

samples (2 x 8 x 45 mm) as it is the part loaded in the measurement of mechanical properties. This 

extraction is done on restabilised samples. Density results are given as mean values of at least five 

samples. 

Thanks to the apparent density of the composite (𝜌𝑐), the volume fraction of porosity (𝑉𝑝) of each 

batch is obtained using equation (4-4). The weight fraction of fibres 𝑊𝑓  are 40% here. The density of 

PLA (𝜌𝑃𝐿𝐴) and flax (𝜌𝑓𝑙𝑎𝑥) are taken respectively as 1.24 and 1.5 [84]. This flax density value was 

measured at room temperature and 50RH. The flax fibres were extracted from unidirectional preforms 

made for composite applications. 

𝑉𝑝 = 1 − (1 − 𝑊𝑓𝜌𝑃𝐿𝐴 + 𝑊𝑓𝜌𝑓𝑙𝑎𝑥) . 𝜌𝑐  (4-4) 
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The assumption of an unchanged fibres density during ageing is taken. The porosity induced by 

manufacturing will be designed as matrix pores, and the porosity due to ageing will be called defects, 

or specifically matrix micro-cracks or interface decohesion. 

b.v.   SEM 

Samples are observed thanks to a JEOL SEM (JSM-IT500HRSEM) at an acceleration voltage of 3 kV. For 

transverse section observation, sample preparation consists of embedding them into an epoxy matrix, 

polishing and gold-coating thanks to a sputter coating (Scancoat6) from Edward. For flax/PLA interface 

observation, samples underwent a brittle fracture under nitrogen before being sputter coated. The 

surface erosion was observed, skipping the embedding step as no polishing is wanted.  

b.vi.   Biochemical analysis 

Biochemical analysis is done on the immersion leachate to quantify the polysaccharides realised by the 

composite. Before undergoing the biochemical analysis, the leachate was centrifuged (3min at 800 

rpm). Three samples of supernatants (500µL) were collected. First, the 2-déoxy-D-ribose is added 

before samples are hydrolysed (2h at 120°C). Then, the uronic acid (UA) concentration was determined 

by an automated m-hydroxybiphenyl method [316]. Additionally, the neutral sugar concentration was 

analysed as their alditol acetate derivatives [317] by GC gas chromatography (PerkinElmer, Clarus 580, 

Shelton, CT, USA) equipped with a DB 225 capillary column (J&W Scientific, Folsorn, CA, USA) at 205°C, 

with H2 as the carrier gas.  

b.vii.   AFM 

A Multimode 8 AFM instrument (Bruker, Billerica, Massachusetts, USA) was used in PF-QNM imaging 

mode. This mode is based on the recording of force-distance curves at a high rate (2 kHz) for a limited 

maximum load (200 nN here), and thus limited indentation depth (of the order of a nanometre here), 

while the tip scans the surface of the sample thus allowing to make maps. The indentation modulus is 

obtained from the unloading part of the force-distance curve using an appropriate contact model. We 

used a DMT model here, which corresponds to the Hertz contact model (small indentation depth 

compared to the tip apex radius) modified to take into account the adhesion force (mainly due to water 

capillarity in our case) between the tip and the sample surface [318]. The indentation modulus 

obtained is similar to that obtained by nanoindentation measurements but with the required 

resolution to study mechanical gradient within cell wall layers [71]. RTESPA-525 (Bruker) silicon probe 

with a spherical tip apex was used here. Its spring constant (between 136 and 177 N/m) was calibrated 

using the Sader method (https://sadermethod.org/), and the tip radius adjusted between 20 and 80 
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nm on an aramid sample having a similar indentation modulus than flax fibre cell wall. The image 

resolution of 384×384 pixels was achieved, and a peak force amplitude between 50 and 100 nm was 

set for indentation modulus measurements. This variety of amplitude depends on the rigidity of the 

region investigated.  

Only the reference, the 98 RH and the immersion batches were investigated in regards to the 

mechanical properties, the density results and the SEM observation. AFM samples of 2 mm3 are 

extracted from the middle of the centre part of the dog bones. It avoids edge influence. They are 

embedded into agar resin (Agar Scientific, Stansted, UK) and cut thanks to an ultramicrotome (Leica 

Ultracut R). Four images, including flax fibres and PLA, were used for each reference to obtain the 

mean indentation modulus of the reinforcement and the matrix. The samples were analysed in a 

perpendicular plane of the direction with the predominant orientation of fibres (machine direction of 

the preform). For flax fibres, which are highly anisotropic, elliptical fibres were not selected to avoid 

the risk of fibre misorientation. 

III.   Results  

III.a.   Moisture content evolution 

First, the moisture content at saturation of the composite stored at 50 RH is 2.6 ± 0.1 %. As expected 

for flax composite, the moisture sorption at room temperature follows Fick’s law [315,319], as 

presented in Figure 4-1. The parameters used for Fick’s law are extracted from the experimental curves 

and are given in Table 4-2.  

 

Figure 4-1: Moisture content evolution of a non-woven flax/PLA composite (Wf=40%) under several ageing conditions. The 

dark lines correspond to Fick’s laws extrapolation. The experimental curves are used to obtain the diffusion coefficients and 

the moisture content at saturation. 
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Table 4-2: Parameters used to calculate Fick’s law, depending on the ageing condition.  

 50 RH 75 RH 98 RH Immersion 𝐷𝑑𝑖𝑓𝑓 . 10−6 [mm²/s] 0.56 0.72 1.53 2.15 𝑀∞ [%] 2.77 3.52 8.72 14.275 

 
The moisture contents at saturation after each ageing step can be observed in Figure 4-1. Before 

discussing the results, note that the stabilised moisture sorption of virgin PLA was measured by 

Deroiné et al. [320] to be 0.59 ± 0.03% under immersion at 25°C. This low moisture sorption is 

explained by the high glass transition temperature of the PLA (60°C) [13]. As our flax/PLA composite 

uptakes 15.12 ± 0.46% of moisture under immersion at room temperature, it can be concluded that 

flax fibres and/or composites architecture (matrix pores/defects induced by ageing) are principally 

responsible for moisture uptake. As a consequence, PLA moisture sorption is not considered in any 

further detail in this chapter.  

Besides a slightly higher moisture content at saturation, the moisture uptake behaviour at 50RH and 

75RH are similar, as observed in Table 4-3. The moisture uptake appears to be more critical for the 

98RH ageing and immersion. The sorption behaviour of flax fibres can explain this. It has been reported 

by Gouanvé et al. [311] that the mechanism of sorption of flax fibres evolves after a relative humidity 

close to 80%. Water molecules are absorbed on specific interaction sites or randomly adsorbed by flax, 

and thereafter, the water molecules cluster in the interstice and porosity of flax fibres, such as lumen 

or cell wall micropores [311]. Such micropores have been observed by Melelli et al. [90] on flax kink 

bands, where the flax structure is more heterogeneous and presents significant cavities compared to 

intact cell walls. This phenomenon is also observed for composite [47], where the matrix pores and 

the interfaces (matrix/fibres or fibres/fibres) are other places for potential water clustering. 

Table 4-3: Moisture content in non-woven flax/PLA composite (Wf=40%) at each ageing step for all the ageing conditions,  

  50 RH 75 RH 98 RH Immersion 

Water content 
at saturation [-] 

ageing 2.77 ± 0.01 % 3.55 ± 0.04 % 8.76 ± 0.21 % 15.12 ± 0.46 % 

drying 1.46 ± 0.04 % 1.59 ± 0.05 % 1.17 ± 0.11 % 0.24 ± 0.07 % 
restabilisation 2.72 ± 0.02 % 2.88 ± 0.03 % 2.86 ± 0.09 % 1.94 ± 0.05 % 

 
Regarding the drying and restabilisation step, all batches return close to their initial moisture content 

of 2.6%, except the immersion one. Interestingly, the 98RH samples lose more water during the drying 

step, meaning it has potentially a higher free/bonded water ratio than the 75RH and 50RH batches. 

The difference between their close mean water content at restabilisation is checked thanks to t-tests. 

It appears that 50RH have a different mean value than 75RH and immersed samples, where 75 RH and 

98RH have an identical mean value statistically. In the case of immersion, the moisture content after 
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ageing and restabilisation is lower than the initial moisture content. It is mainly due to a decrease in 

the sample weight, distorting the moisture content value. Considering that the moisture content of 

the immerged samples after stabilisation should be similar to other ageing conditions (2.8%), this 

weight loss equals 0.9%.  

This decrease can be induced by a leaching phenomenon already reported in the literature [234]. It is 

confirmed by a change in the colour of the leachate during immersion ageing. Polysaccharides of the 

flax are dissolved and released in the surrounding water, inducing a modification of the flax fibre 

composition. The total mass of samples immersed is 40 g in one litre of distilled water. Thus, the weight 

loss should induce a sugar concentration of 360 µg/mL, considering leaching as the only origin of the 

mass evolution. However, thanks to biochemical analysis of the leachate, the total sugar concentration 

only equals 25.7 µg/mL. This concentration includes 18.9 µg/mL of neutral sugars and 6.8 µg/mL of 

uronic acids. The detailed biochemical analysis of the leachate is given in Table 4-4. 

Table 4-4: Biochemical analysis of the leachate obtained after flax/PLA non-woven composite immersion ageing. N/A refers 

to undetected sugar. 

 
Rhamnose Fucose Arabinose Xylose Mannose Galactose Glucose 

Uronic 
acids 

Concentration 
[µg/mL] 

4.6 ± 1.6 N/A N/A N/A N/A 5.2 ± 1.7 9.1 ± 4.4 6.8 ± 0.3 

 
As dissolved polysaccharides alone cannot explain all the weight lost, PLA surface erosion due to fibre 

swelling at the surface is assumed to have a role [242]. The surface erosion is observed through SEM 

in Figure 4-2. Interestingly, the composite manufacturing process exposes flax fibres on the surface 

(face and edge) of unaged composites, see Figure 4-2. These fibres are a preferential path for water 

molecules, influencing the sorption kinetics observed in Figure 4-1. 

Additionally, an increase in erosion is observed qualitatively from the reference to immersion samples 

(see Figure 4-2.a), .b)). Indeed, the surface roughness and the quantity of exposed flax fibres increases. 

At a lower scale, the impact of ageing on surface erosion is more evident. The reference sample 

presents few exposed fibres at the composite face/edge, which are still surrounded by PLA (see Figure 

4-2.c)). The number of exposed flax fibres in the immersion samples appear higher, and they are locally 

detached from the PLA as gaps are present (see Figure 4-2.d)). They can even be uncoupled from PLA 

in some cases. It highlights the surface erosion and liberation of PLA micro-particles, explaining the 

weight loss.  
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Figure 4-2: Tilt SEM observation of surface erosion after 50RH (a&c) and immersion (b&d) ageing. a) & b) are global views of 

the surface aspect, c) & d) focus on the aspect of exposed flax fibres.  

The role of swelling in this erosion is observed in Figure 4-3. Where a flat surface is observed for 

reference, the topography surface of the immersed sample highlights the swelling of the fibres. 

Additionally, cracks are reported close to the fibres, confirming the PLA erosion induced by the flax 

swelling.  

 

Figure 4-3: Perpendicular SEM observation of the surface erosion after 50RH (a) ant immersion (b) ageing, focussing on the 

role of flax fibres swelling.  
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III.b.   Tensile properties 

By testing the mechanical properties of restabilised samples, their irreversible alteration induced by 

the water sorption is characterised. The tensile behaviours are represented in Figure 4-4.a) and the 

mechanical properties are summarised in Table 4-5. The 50RH and 75RH samples do not present 

significant differences with the 50RH_ref batch, as they present similar tensile behaviour (Figure 

4-4.a)). That means the drying step (40°C until stabilisation) does not impact the reference composite, 

and ageing at 75RH does not induce irreversible change in the flax/PLA composite. However, a 

decrease in stiffness and strength are observed for the 98RH and immersion batches (Figure 4-4. b)), 

with a stiffness decrease of 20.3% for 98RH and 33.4% for immersion. It agrees with the moisture 

uptakes of wet samples, which is much higher for 98RH and immersion than for the three undamaged 

batches.  

 

Figure 4-4: a) Tensile behaviour of flax/PLA composite (Wf=40%) after ageing under several conditions, drying and 

restabilisation at 50 RH (restabilised state), b) Influence of moisture content at saturation (wet state) on the tensile properties 

of the flax/PLA composite after ageing, drying and restabilisation at 50 RH (restabilised state). 

Interestingly, the decrease in mechanical properties of restabilised samples appears to directly depend 

on the moisture content at the wet state, as reported in Figure 4-4.b). These correlations approach a 

linear behaviour, with a decrease factor of 1.77 MPa/% for the strength and 0.22GPa/% for the 

modulus. This linearity might be due to the progressive increase of defect inside the composite induced 

by the moisture content. These linear decreases were observed for an injected PLA/flax immersed in 

seawater  [11], and an increase in defects in the composite is assumed.  

Interestingly, the strain of the composite remains around 1.6 – 1.8% even for 98RH and immersed 

samples, which is the failure of the fibre. Thus, composite behaviour is still fibre dominated even after 

ageing.  
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It highlights the existence of a critical relative humidity between 75RH and 98RH, where flax 

composites present irreversible damage. As the moisture content of flax composites is described by a 

sigmoid [47,311], a relative humidity close to 80RH induces a drastic increase of the water content 

inside the composite. This relative humidity is probably the limit to not reach to avoid irreversible 

damage in the composite. This critical relative humidity can be observed using more relative humidity 

ageing between 75 RH and 98 RH. Additionally, it will help to identify more precisely the nature of the 

trend. The dry states (lower than 2.6%) can result in different damage mechanisms, leading to another 

modification of mechanical properties not highlighted by the presented trend Figure 4-4.b). 

Interestingly, the water molecules change from the gas phase to the liquid phase when the saturation 

pressure of water is reached. It occurs at the physical limits of relative humidity of 99,9%. For the 

flax/PLA non-woven composite, the moisture content jumps from 9% to 15% by switching from a 98RH 

to an immersion ageing. Therefore, the moisture content range of 9% to 15% is not reachable. 

However, the immersion impact on tensile properties appears to align with the vapour ageing impact, 

as observed in Figure 4-4.b). The shortcut of immersion as accelerated vapour ageing should be used 

carefully as the water molecules are not in the same state. Thus, ageing mechanisms could be different 

between vapour and immersion conditions. The latter is expected harsher.  

Table 4-5: Tensile properties of flax/PLA composite (Wf=40%) after ageing under several conditions, drying and reconditioning 

at 50 RH (restabilised state). The pure PLA values are extracted from chapter 3, measured on unaged INGEOTM PLA samples.  

 50 RH_ref 50 RH 75 RH 98 RH Immersion 
Pure PLA 
(unaged) 

Tangent 
modulus [GPa] 

 7.4 ± 0.3 7.4 ± 0.6 7.9 ± 0.7 5.9 ± 0.2 4.9 ± 0.4 3.4 ± 0.1 

Ultimate 
strength [MPa] 

51.6 ± 3.3 54.3 ± 1.6 51.9 ± 3.0 37.8 ± 1.8 32.3 ± 1.3 37.6 ± 0.8 

Strain  
at failure [%] 

1.5 ± 0.2 1.5 ± 0.1 1.4 ± 0.1 1.6 ± 0.1 1.8 ± 0.3 2.6 ± 0.4 

 
The amount of water uptake is the origin of the composite degradation. Two hypotheses have to be 

verified. First, contact with water can decrease the mechanical properties of the flax fibres [321] and 

the matrix [320]. Indeed, the mechanical properties of elementary flax fibres depend on the 

surrounding relative humidity [321], with a decrease in strength of ca. 15% and an increase of ca. 25% 

of strain at high relative humidity.  

Second, the composite structure can deteriorate through decohesion of the flax and matrix or by 

creating matrix micro-cracks induced by flax swelling [235]. The combination of both phenomena will 

induce connected defects. For example, the decohesion at the interface creates a gap between the 
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flax and the matrix. These gaps could be linked together by the micro-cracks present in the matrix. The 

reduction in composite density can be used to quantify the volume of these structural defects.    

IV.   Discussion  

IV.a.   Evolution of flax and matrix stiffness in the composite 

As expressed previously, one hypothesis is that ageing impacts the properties of flax or the matrix. 

Therefore, their mechanical properties are assessed through AFM measurement on the reference and 

the two impacted batches. Table 4-6 presents the averaged indentation modulus for flax and PLA 

matrix, whereas Figure 4-5 presents the indentation modulus mapping used for one measurement. 

Table 4-6: Impact of the ageing condition on the mechanical properties of the flax fibres cell walls and PLA in the composite. 

It is investigated at the micro-scale level through AFM-QNM measurements.  

 50 RH ref 98 RH Immersion 

Flax fibre indentation modulus [GPa]  15.3 ± 1.0 13.4 ± 1.8 13.9 ± 0.9 

PLA indentation modulus [GPa] 5.5 ± 0.1 5.4 ± 0.3 5.4 ± 0.2 

 
First, the mechanical properties of PLA do not evolve during ageing, with a constant indentation 

modulus value of ca. 5.5 GPa. Thus, there is no local recrystallisation of the PLA. This is expected as the 

PLA is relatively insensitive to immersion ageing at 25°C [320]. Indeed, Deroiné et al. [320] reported, 

for virgin PLA aged six months in distilled water at 25°C, no decrease in mechanical properties at the 

macro-scale and only a tiny chemical evolution with a moderate decrease of number-average 

molecular weight from 75 000 g/mol (unaged) to 66 300 g/mol.  

 

Figure 4-5: AFM indentation stiffness map for one fibre of flax/PLA composite after a) no ageing (50RH ref), b) moisture ageing 

at 98 RH, c) immersion ageing with distilled water. 

For the flax fibres, a slight decrease appears between the reference and the impacted samples. The 

impacted samples (98RH and immersion) are considered statistically identic, as a t-test give a 
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probability of similarity equals to 63%. However, due to the close value between the reference and 

the impacted samples, their standard deviation and the operator influence on the selection of the 

fibres, it can be concluded that flax cell walls present similar mechanical properties whatever the 

ageing condition used. Note that these values are slightly lower than the indentation modulus usually 

obtained in the literature using AFM, being between 17-22 GPa [322].  

Interestingly, this stable indentation modulus does not agree with Le Duigou et al.’s [234] results from 

nanoindentation measurements on immerged unidirectional flax/PLA composite. Indeed, they 

observed a 40% decrease in nanoindentation modulus after four weeks, compared to a 10% decrease 

(without considering the standard deviation) after six weeks in this study. They explain the decrease 

of the mechanical properties by the solubilisation of uronic acids, playing a role in transferring loads in 

the second wall (S2) of the flax fibres [234]. They observed a ratio of 2.5 between the uronic acids 

released and the neutral sugars. Thanks to the biochemical analysis, this ratio is calculated to be 0.36 

in our leachate, supporting the unchanged mechanical properties of the flax fibres in the immersed 

samples.   

The difference between both experiments can be explained by the difference in flax preform and 

manufacturing process. Le Duigou et al. [234] used a vacuum film stacking method to manufacture 

flax/PLA unidirectional composite at a fibres weight fraction of 50%. This manufacturing method leads 

to lower compaction than the thermo-compression due to low pressure (≈ 0.95 bar) [175] and 

potentially modify flax fibres composition as it requires the severe manufacturing condition of 180°C 

for 1 hour. In addition, the unidirectional orientation of fibres leads to easier leaching than random 

orientation as the fibres percolation in the composite is higher for unidirectional. Finally, they used a 

magnetic stirrer, which may increase the leaching phenomenon.  

Thus, the evolution of flax cell walls and PLA’s mechanical properties cannot explain the decrease in 

stiffness observed at the composite scale. Therefore, the second hypothesis relating to the evolution 

in composite structure (and density) should be investigated as it may be responsible for the mechanical 

properties evolution.  

IV.b.   Composite density evolution 

The structural modification of the composite through ageing is potentially due to the decohesion 

phenomenon or micro-cracks generation in the matrix, both being related to flax fibre swelling [235].  

These mechanisms are directly linked to the composite density, as they modify its structure by creating 

a gap at the interfaces for the first one and matrix micro-cracks for the second. The density 
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measurement is presented in Figure 4-6.a). The porosity calculated is presented in Figure 4-6.b), 

considering constant flax and matrix density. However, the assumption of a constant flax density is 

debatable as the moisture uptake and swelling phenomena can modify flax fibre structure, where the 

leaching phenomenon (immersed samples only) modifies its biochemical composition.  

 

Figure 4-6: Evolution of the a) composite density and b) porosity of restabilised samples after different ageing conditions. The 

porosity is calculated assuming ageing does not modify the PLA nor flax density.  

Nevertheless, the results fall in line with the mechanical properties evolution. Indeed, the porosity 

appears similar for the 50RH_ref / 50RH / 75RH samples, increasing from 98RH to Immersion samples 

(see Figure 4-6.b). Thus, ageing induces a modification of the inner structure of the composite. The 

origin of the structural modification needs further investigations to understand its influence on 

mechanical properties. 

IV.c.   Interface decohesion 

First, interface cohesion is checked through SEM observation on cryo-fractured samples. The obtained 

pictures are presented in Figure 4-7. If a gap is observed, a physical decohesion can be identified. The 

embedded length should not be considered here as these samples are observed before any tensile 

test. 
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Figure 4-7: Interface observation by SEM of flax/PLA composite after a failure of the sample under cryogenic condition, a) 

observation of the reference and b) observation of the most damaged batches, being the immersion one. No decohesion is 

observed after an immersion ageing as no gap is present.  

No significant decohesion at the flax/matrix or the flax/flax interfaces could be observed for reference 

or aged flax/PLA composite. There are two explanations, the first being that the interface is not 

damaged during ageing. One possibility is that fibres embedded within the PLA in the core of the 

sample are not subjected to water uptake nor swelling. However, this is unrealistic as the randomness 

of the preform induces interconnectivity of the flax fibres, percolating the open edges in contact with 

the environment.  

The second more realistic explanation is a damaged interface, but it could not be observed. This 

damage can be due to chemical modification (leaching [234]) or hidden physical decohesion. During 

the thermo-compression process, the flax fibres have a low water content due to the high 

temperature. Thus, the flax fibres in the 50RH_ref composite are already constrained. In addition to 

the hygroscopic stress, some residual stresses due to the thermal history of the polymer and flax fibres 

are present. Nevertheless, residual thermal stresses are negligible against the hygroscopic stress [224].  

In addition, flax fibres act as nucleating agents for the PLA, creating a transcrystalline layer around the 

fibres [93].  

During the ageing, the flax fibres swell enough to overcome the matrix's yield point locally and 

irreversibly deform the matrix. The drying step allows the flax fibres to retract as their water content 

decrease, creating a gap at the interface and releasing the internal residual stresses. Through the 

restabilisation at 50RH, the flax fibres are now free to swell, as the matrix did not constrain it, and fill 

the gap previously created, hiding the decohesion. This phenomenon, schematised in Figure 4-8, 

should not significantly modify the composite's density (nor the porosity). 
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Figure 4-8: Schematic explanation of the formation of hidden decohesion due to the alternation of shrinkage and expansion 

of flax fibres inside the composite. Inspired from [224]. 

This potential damages at the interface can explain the decrease of the mechanical properties of 

flax/PLA composite as the stress transfer between reinforcement and matrix. Consequently, the 

reinforcement of flax fibres is less efficient, inducing a decrease in the modulus and the ultimate 

strength of the composite without any increase in its ultimate strain. 

IV.d.   Micro-cracks generation in the matrix  

The swelling of the fibres during ageing has another consequence in the composite structure. As 

observed in Figure 4-9, the aged composite presents micro-cracks inside the matrix, initiated at the 

matrix/fibre interfaces. It suggests that the stresses applied by the swelled flax fibres to the matrix are 

higher than its ultimate strength. Therefore, the presence of these micro-cracks decreases the 

mechanical properties of the composites. Indeed, they act as defects, lowering the ultimate strength 

of the composite but also reducing the apparent stiffness of the matrix.  

 

Figure 4-9: SEM observation of flax/PLA composite after a) no ageing, b) ageing at 98 RH, c) an immersion ageing. The 

observations are perpendicular to the direction of the sample. The red arrows focus on the presence of matrix micro-cracks.  
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As a first approach, the stiffness of a random non-woven composite (𝐸𝑁𝑊) is estimated thanks to 𝐸𝑁𝑊 = 38 . 𝐸𝑈𝐷,𝑙𝑜𝑛𝑔𝑖 + 58 . 𝐸𝑈𝐷,𝑡𝑟𝑎𝑛𝑠𝑣, where 𝐸𝑈𝐷,𝑙𝑜𝑛𝑔𝑖 and 𝐸𝑈𝐷,𝑡𝑟𝑎𝑛𝑠𝑣 are the longitudinal and 

transversal stiffness of an equivalent unidirectional composite, respectively. The matrix stiffness is the 

predominant parameter of the unidirectional transversal stiffness. Thus, the apparent matrix stiffness 

reduction due to micro-cracks directly decreases the transversal stiffness of an equivalent 

unidirectional composite, and so does the non-woven composite stiffness. In addition, a higher 

number of matrix micro-cracks might induce a lower apparent matrix stiffness. It has been observed 

in Figure 4-4.b) that the tensile stiffness of a dry sample depends on its moisture uptake in the wet 

state. As the number of micro-cracks should increase with higher moisture uptake (due to higher flax 

swelling), the generation of matrix micro-cracks is responsible for the decrease in the tensile stiffness 

of aged non-woven flax/PLA composites. Thus, these matrix micro-cracks decrease the composite 

strength but also its stiffness.  

The fact that immersion ageing influences mechanical properties in line with vapour ageing indicates 

that the main damage mechanisms are mutual to immersion and vapour ageing. It can be the matrix 

micro-cracks or the hidden decohesion. The leaching phenomenon is discarded as it is specific to 

immersed samples.  

An analytic calculation is made at the micro-scale level to confirm the assumption of local stress 

induced by flax swelling. It is based on a model developed by Nairn [323], see Appendix 1. This model 

calculated the residual thermal stresses in a unidirectional composite due to the difference in thermal 

expansion of the composite's constituents. The model focussed on one cylindrical fibre embedded in 

a cylindrical matrix pipe. It assumes a linearly elastic and isotropic matrix, a linearly elastic and 

transversely isotropic fibre, and a perfect bond between constituents. These assumptions are 

debatable for flax/PLA composites. Nevertheless, as a first approach, this model can lead to a fruitful 

discussion.  

Here, an analogy between thermal expansion and hygro-expansion is considered. A moisture content 

variation of 6.2% is used as it is the experimental variation obtained between the composite's initial 

moisture content and the moisture content during the 98 RH ageing. A transversely isotropic cylindrical 

flax fibre is embedded in an isotropic cylindrical PLA pipe, both subjected to expansion. Radii are 

selected to be consistent with a weight fraction of 40 %. All the input values used are summarised in 

Table 4-7. The highest stresses in the matrix are at the fibres' contact. Radial compressive stress of 88 

MPa and tangent tensile stress of 187 MPa are calculated. Even considering volume effects (local 

transcrystalline layer close to the fibres) which can justify a local higher ultimate strength for PLA 
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(being 60 MPa for a macro-sample), the local stresses induced by flax swelling appears critical. That 

confirms that the local stress generated can damage the matrix locally. Therefore, it is highlighted here 

that fibre’s swelling can be responsible for the appearance of matrix micro-cracks. Additionally, the 

matrix yield stress is overcome, validating the possibility of hidden decohesion between flax and 

matrix.  

These results are coherent with a numerical study of Chilali et al. [324], founding von Mises mean 

stress higher than 200 MPa in a flax/epoxy system. Djellouli et al. [325] reported that the local stresses 

increase up to 110%, switching from a regular to a random distribution of flax fibres inside a 

unidirectional composite. This increase is expected even higher for non-woven composite as the 

random distribution occurs in three directions. Furthermore, the analogy assumption between thermal 

and hygro expansion underestimates these local stresses, as the moisture content is not homogenous, 

higher in the flax fibres than in the matrix. 

This model can also be used backwards to identify the critical moisture content inducing tensile stress 

higher than the PLA strength (60MPa). This moisture content is the limit to generate matrix micro-

cracks. It appears that composite moisture content of 4.6 % induces tensile stress in the matrix of 60.2 

MPa and compressive stress of 28 MPa. This moisture content value corresponds to a critical relative 

humidity, expected to impact the composite irreversibly. Once again, this value should be used by 

keeping in mind the previous assumption discussed. 

Table 4-7: data used for the calculation of the local radial stress, *the transverse Poisson’s ratio is calculated using 𝐸𝐿𝜗𝐿𝑇 = 𝐸𝑇𝜗𝑇𝐿. 

 Stiffness [GPa] Poisson’s coefficient [-] hygro-expansion coefficient [ε/Δm] 

PLA 3.4 [chap. 3] 0.38 [chap. 3] 0.001 [232] 

Flax fibres (longitudinal) 52.5 [83] 0.34 [chap. 3] 0 [224] 
Flax fibres (transverse) 8 [199] 0.05*  1.14 [224] 

 
 
Because of a lack of raw non-woven materials, only flax/PLA composite has been investigated 

experimentally. However, it can be interesting to have some clues about the potential ageing of 

flax/PHA or flax/PBS composite. As the PHA and the PLA have similar modulus, they are attended to 

act similarly. The focus is on the PBS as it appears to be softer than the two other biodegradable 

matrices. Using the same model (same hygro-expansion coefficient) but considering the PBS stiffness 

of 0.7 GPa, it appears that the radial and tangent stress reduce to 20 MPa and 43 MPa, with is much 

closer to the ultimate strength of the PBS, being equals to 39 MPa. Using a less stiff matrix appears to 

be a potential solution to reduce the ageing impacts of flax composites, considering a matrix with a 
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similar water sorption behaviour to PLA. A matrix with a higher hygro-expansion coefficient will modify 

the residual stress concentration.  

Note that these micro-cracks were observed on epoxy embedded and polished samples (with water). 

The friction induced by polishing and water sorption at the surface could have been responsible for 

these cracks. However, the reference samples did not present micro-cracks. This gives confidence 

these micro-cracks are created during ageing and not during the samples preparation. A CT-scan 

analysis could avoid this damaging effect and confirm the presence of the micro-cracks due to ageing. 

Such analysis could give additional information such as the number of matrix micro-cracks, their 

connectivity and their geometry. Furthermore, it can confirm the link between the number of matrix 

micro-cracks, the water uptakes at the wet state and the tensile mechanical properties of the dry 

sample. However, that needs a high resolution as such micro-cracks have a thickness of no more than 

a few micrometres. 

V.   Conclusion 

The evolution of the microstructure and the mechanical properties of a flax non-woven composite 

subjected to water ageing (at 50% RH / 75% RH / 98% RH / immersion) is investigated. The ageing 

conditions selected aim to understand the first degradation step of a flax/PLA non-woven composite. 

The ageing process is monitored by following the composite's moisture content over six weeks and 

waiting for stabilisation in their weight before being dried and restabilised at 50% RH. Interestingly, 

ageing at 75% RH does not impact the mechanical properties nor the composite structure. On the 

other hand, ageing at 98% RH or immersion for six weeks presents a significant uptake of water, 

decreasing the strength and stiffness of the composites significantly. A deeper analysis was conducted 

to better understand the ageing mechanisms. Thanks to an AFM investigation using the peak-force 

mode, the flax fibres cell walls and the PLA appear to keep their initial mechanical properties. Thus, 

the composite softening is due to an evolution of the composite’s structure, confirmed by increased 

porosity for the two impacted batches. The interface is observed thanks to the cryogenic failure of 

aged samples. No gap was observed, indicating that decohesion of matrix and PLA could not be 

observed, probably due to the restabilisation step and the free swelling of fibres, closing (‘hiding’) the 

gap created by ageing. It appears that the porosity increase is due to the creation of transverse micro-

cracks induced by flax-fibres swelling. The generation of micro-cracks is discussed using an analytical 

model. It appears that the local stress induced in the matrix due to the fibre swelling is higher than its 

yield and ultimate strength. That confirmed that the swelling of the fibres is responsible for the 

structural evolution of the composite, hidden decohesion or matrix micro-crack generation. These 
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structural evolutions impact the tensile properties of the flax/PLA non-woven composite by decreasing 

its ultimate strength and stiffness. 

On the one hand, investigating more relative humidity conditions in the range of 75RH and 98RH can 

help identify the presence of a critical relative humidity at which mechanical properties and structure 

start to get significantly affected. Additionally, extending these experimental investigations of flax/PLA 

non-woven composites with various fibres volume fractions could lead to additional clues on the 

degradation mechanisms. Furthermore, using cycling tensile loading cycles could give information on 

the role of interfacial defects on the composite mechanical behaviour. Finally, the effect of protecting 

the edges and the surface by a thin PLA layer could be investigated as it is expected to reduce the 

sorption kinetics. On the other hand, using the same model but considering a softer matrix, the local 

stress generated decreases, showing the potential of a softer polymer to be used as a matrix for more 

ageing-resilient flax composites. This needs to be examined experimentally. 
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Chapter 5: Monitoring of mechanical 

performances of flax non-woven 

biocomposites during a home compost 

degradation 
I.   Introduction  

I.a.   Benefits of non-woven flax fabrics 

Thanks to their low density [84], competitive specific mechanical properties [85,86], and 

environmental profile [268], plant fibres such as flax are replacing glass fibres in industrial components 

like interior car parts [48,326]. Both injected and thermo-compressed non-woven parts can be found, 

though the latter represents a more significant share of the global biocomposite market. Various 

processes exist to manufacture non-woven reinforcement preforms, the most common of which are 

the needle-punching and the spun-lacing methods, yielding similar composite mechanical properties 

[165]. These non-woven composites possess mechanical properties that fall between a unidirectional 

composite and an injection-moulded composite [64]. Nevertheless, non-woven fabrics are 

substantially more economical in price than aligned unidirectional composites [64]. Furthermore, non-

woven preforms are more compliant than unidirectional preforms, thereby enabling the processing of 

complex-shaped products.  

Non-woven biocomposites are usually embedded in a polyolefin thermoplastic matrix, typically poly-

(propylene) (PP) for the automotive sector due to its technical advantages, which include temperature 

stability (during service), low melting (processing) temperature, good mechanical properties, as well 

as its low price. However, mixing biomass plant fibres with a petroleum-derivative polyolefin polymer 

tarnishes the eco-profile of the biocomposite - even if the use of recycled PP as a matrix can be an 

attractive compromise [327]. Of course, the environmental impact of the plant fibre/PP non-woven 

biocomposite can be reduced by recycling the material at its end-of-life [328–331]. Hence, it is a 

relevant solution in a circular recycling context for the non-woven sector where such wastes represent 

25%wt of the production. However, most commonly, incineration (with or without energy recovery) is 

the selected option. 

Arguably, replacing the petrochemical polymer with a biodegradable polymer unlocks alternate end-

of-life scenarios, namely (bio-)degradation through composting. This scenario may be desirable when 
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sustainability policies and regulations are based on solid waste generation (vis. plastic challenge) 

rather than energy use or carbon emission over the product life cycle.  

I.b.   Compost-based degradation of bioplastics 

Indeed, the scale of our ocean plastic pollution challenge [332] has drawn rapidly surging interest in 

biodegradable polymers. To better understand the degradation behaviour of flax-reinforced 

bioplastics, here, we focus on the degradation of poly-(lactide) (PLA), poly-(butylene-succinate) (PBS) 

and poly-(hydroxy alkanoates) (PHA). The degradation of these biopolymers is well studied 

[7,8,10,333] and is described to be a complex phenomenon. Degradation depends on the chemical 

nature of the polymer, the environment the degradation is occurring in, and the degradation period. 

For instance, the temperature has an essential effect on the degradation of PLA [49,334] mainly 

because of its transition to a rubbery state above its glass transition temperature Tg. Indeed, in a 

simulated compost held at 58°C, PLA (Tg = 61.2 °C) [335] exhibits rapid erosion in its molecular weight, 

which decreases from 225∙103 to 500 Daltons over 30 days [336], while it needs more than 150 days 

to fragment in the soil at a temperature between 15°C and 25°C [337]. However, in this same soil 

condition, PHA can be fragmented enough not to find any macroscopic residue within 60 days [337]. 

In contrast, Luo et al. [24] show that PHA loses 80% of its weight after 50 days in manure-based 

compost. On the other hand, PBS degrades in a soil compost of 30°C at a slower rate, losing only 13.5% 

of its weight after 80 days [338].  

Degradation relates to the erosion of the material over time [7,8], and for a polymer-based material, 

degradation includes polymer chain scission and potential macro- and micro-fragmentation. This 

erosion phenomenon is induced by water and/or microorganisms and is dependent on several 

parameters such as sample geometry (e.g. thickness) and temperature. At the end of the degradation 

process, the polymer is reduced to oligomers and/or monomers. This degradation, however, should 

not be confused with biodegradation, which is the bio-assimilation of the oligomers and monomers by 

microorganisms. This bio-assimilation leads to their conversion to mainly CO2, H2O and living matter. 

Biodegradation (therefore) follows after degradation. 

I.c.   Compost-based degradation of plant fibre/biopolymer composites 

As plant fibres are biodegradable, their incorporation in composites can modify the degradation 

behaviour of the polymer matrix. Indeed, plant fibres are highly hydrophilic and often degrade faster 

than biodegradable polymers. Furthermore, embedding plant fibres in polymers induce two interfaces: 

one between the polymer and the fibres and a second between the fibres inside a fibre bundle. Both 

interfaces are likely to influence both mechanical properties and the degradation behaviour of 
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composites. Several authors have already shown interest in mechanical property evolution and 

biodegradability of biocomposites [339–341].  

PLA is the leading biopolymer used in studies on flax fibre biodegradable composites, and it is reported 

to have mechanical properties better than that of glass fibre/PP [44] and glass fibre/polyester [43]. 

The melting temperature of PLA is around 170°C, which avoids thermal degradation of plant fibres 

during composite processing typically seen above 200°C [46]. It has been shown that in compost at 

25°C, non-woven flax/PLA degrades more (and faster) with increasing fibre content [342]. 

Furthermore, the architecture of the flax preform - unidirectional or non-woven - influences the 

composite degradation behaviour as flax fibres act as a porous media drawing in water [240,242] and 

potentially microorganisms. As PLA’s rapid degradation occurs close to 60°C [334], it is relevant to look 

at other less-used biodegradable polymers, such as PHA and PBS, as matrices for non-woven flax 

composites. However, limited investigations have examined their mechanical properties [43] or the 

degradation of their flax reinforced composites. Furthermore, it is hard to compare all these literature 

studies as the degradation behaviour directly depends on many factors, including the polymer used as 

a matrix (including molecular weight), the fibre volume fraction [242,342], the preform architecture 

[240,242], the sample geometry [57], the composite and interface quality, as well as the compost 

environment. See Table 5-1 for a detailed literature recap. 

A systematic study exploring the potential of these various biodegradable polymers to be used in non-

woven flax composites and monitoring their degradation under the same environment, with sample 

geometry representative of current industrial parts, will give fascinating insights. Furthermore, it will 

inform industrial materials choices that resolve the ‘biodegradation paradox’, achieving adequate 

mechanical properties and the desired degradation kinetics.  

This study focuses on the degradation of three biocomposite materials made of flax non-woven 

preforms embedded in a PLA, PBS or PHA matrix. As PP is industrially used nowadays, its reinforced 

composite will set the benchmark. First, the tensile mechanical properties of the four as-produced 

formulations are assessed and compared to inform their potential in industrial components. Then, 

their ageing (degradation) behaviour in a garden compost over six months is investigated, periodically 

monitoring the evolution in weight, mechanical properties, as well as microstructure. Mechanisms and 

kinetics of degradation are then discussed, and the ‘design service life’ of the biocomposite materials 

is determined. 
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Table 5-1: Summary of literature study results on the degradation of non-woven biocomposites in compost. 

Materials Environment Wf [%] 
Thickness 
[mm] 

weight loss [%] 
(time) 

Residual 
strength [%] 

reference 

Non-woven thermos-compressed 

Flax/PLA 

Compost 
(25°C) 

40 2.00 6 (120 days) 30 (flexural) [342] 

Compost 
(-°C) 

50 2.30 27 (120 days) 20 (flexural) [240] 

Compost 
(40 ± 7°C) 

30 3.00 4 (56 days) / [242] 

Farmland soil 
(25 ± 5 °C) 

20 0.65 25 (90 days) / [244] 

Jute/PBS 
Compost 
30 ± 2°C 

30 / 
30 
(120 days) 

/ [245] 

Injection-Moulded 

Abaca/PLA 
Soil 
(25-30 °C) 

10 0.50 
10 
(60 days) 

/ [243] 

Flax/PHA 
Soil 
(-°C) 

20 2.00 
15 
(112 days) 

55 (tensile) [241] 

Abaca /PHBV 
Soil 
(25-30 °C) 

10 0.50 
50 
(90 days) 

/ [243] 

Abaca/PBS 
Soil 
(25-30 °C) 

10 0.50 
45 
(60 days) 

/ [243] 

 

II.   Materials and Methods 

II.a.   Materials 

Flax non-woven preform (100 ± 15 g/m²) was provided by Ecotechnilin (Yvetot, France). The non-

woven is extracted from a needle-punching line making flax non-woven preforms, but the material 

extraction takes place just before the napping step, before the consolidation step. This induces an 

anisotropic non-woven preform. The main characteristics of polymers selected for this study are 

indicated in Table 5-2. 

Table 5-2: Main characteristics of the thermoplastic polymers used in this study (from datasheets).  

Polymer Provider reference Density MFI 
PLA NatureWorks PLA3001D 1.24 22 (210°C/2.16kg) 
PHA NaturePlast PHI002 1.25 15 – 30 (190°C/2.16kg) 
PBS pttMCC BioPBSTM FZ71PM 1.26 22 (190°C/2.16kg) 
PP Total PPC10942 1.24 22 (210°C/2.16kg) 

 
II.b.   Composite manufacturing 

A lay-up made of ten plies of flax preform and several plies of polymer films were assembled. The 

number of polymer plies varied according to polymer density and the thickness of the film. The 

orientation of the preform is conserved during the lay-up process, leading to an anisotropic flax 
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composite. A constant fibre volume fraction of 30 ± 1% was maintained for all the composites. The lay-

up was then hot compression moulded with a hydraulic press LabTech Scientific 50T (Labtech, 

Samutprakarn, Thailand), yielding laminate plates of 20 cm x 20 cm x 2mm. The thermo-compression 

cycle is the same as the one presented in chapter 2, section II.a. 

As references, pure polymer plates of 11x11 cm with a thickness of 2mm were made from injection 

moulding with a Battenfeld BA800 injection machine (Wittmann Battenfeld, Kottingbrunn, Austria). 

Once the composite and pure polymer plates were made, these were cut with a milling machine into 

dog-bone shaped samples based on the ISO 527-4. 

II.c.   Compost degradation  

A 900-litre wooden compost bin was filled with the compost mix, comprising green and brown plant 

waste, see Figure 5-1. Two EL-USB-2-LCD Lascar electronics recorders monitored the compost's 

temperature at a depth of 30 cm. Samples were buried into the compost at a depth between 20 and 

40 cm. This compost mix was used as a harsh environment for ageing the composites. No intervention 

was done to the compost during experiments, and the compost was not covered. Weather data (mean 

temperature and daily rainfall) was obtained from the University of Cambridge Botanic Garden 

weather station located 2m from the compost bin. 

 

Figure 5-1: Garden compost set-up used as harsh ageing, a) green and brown plant waste b) inoculum obtained after four 

months c) samples dig in the compost, each one identified through its yellow labels, d) the wooden compost bin including 

garden compost and composite samples.  
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For each biocomposite and their virgin polymer, ten sampling phases were planned. For the industry 

reference PP and flax/PP, four sampling phases were planned, as they were not expected to degrade 

as much or degrade much more slowly. Samples were dried (for 32h at 40°C) before being buried in 

the compost (to determine initial dry mass) and then again before mechanical testing (to determine 

aged dry mass and mechanical properties) to avoid moisture effects overshadowing the degradation 

effects. Sample batches were extracted after 0, 6, 14, 20, 38, 55,70, 104, 125 and 190 days. 

II.d.   Weight evolution 

The weight loss evolution was calculated according to (1) and expressed as a percentage. 𝑤𝑖 is the 

initial weight before any degradation and 𝑤𝑡 corresponds to the weight of the composite at t time. 

∆𝑤 = 𝑤𝑖 − 𝑤𝑡𝑤𝑖 × 100 (1) 

 
II.e.   Composite tensile test  

Static tensile tests were performed on an Instron 5500R machine (Instron, Norwood, MA, USA), where 

an EIR LE-05 laser extensometer recorded displacement and strain. The gauge length was 25mm, and 

the displacement speed was 1mm/min. Eight samples were tested for each formulation at each 

sampling phase, and at least five data points were kept (e.g. ignoring grip failures). The tensile test 

occurs in the preferential direction of fibre direction inside the composite. The tangent modulus was 

calculated over a strain of 0.02% to 0.1% for all the flax reinforced biocomposites [212] and neat PHA 

bioplastic. The tangent modulus was calculated from 0.1% to 0.5% applied strain for neat PLA, PBS, 

and PP, which have a higher elastic zone. Normalized strength is used to compare the strength 

evolution of biocomposites. It is defined as following (2), where 𝜎𝑖 is the initial tensile strength and 𝜎𝑡 

the strength of the composite after a time t of degradation. 

∆𝜎 = 𝜎𝑖 − 𝜎𝑡𝜎𝑖  (2) 

 
II.f.   Microtomography 

A microtomography study was performed on a lab-based Nikon XT H225 ST X-ray micro-tomography 

system to observe the microstructure of the samples and their evolution upon compost degradation. 

The middle section of the dog-bone samples was imaged. An X-ray tube voltage of 65kV and a tube 

current of 100 μA were used, with an exposure time of 1000 ms, a total of 3141 projections, and an 

optimal voxel (3D pixel) size of 7.00 µm. One sample by formulation was observed via micro-

tomography before composting, after 70 days and 190 days. Images were extracted and analyzed using 
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the software VGStudio Max 2.2 to obtain a porosity analysis by a greyscale threshold in a volume of 

9x7x1.5mm on each analyzed sample. This volume was selected in the middle of the analyzed 3D 

picture, at an equal distance of edges in all directions. 

II.g.   SEM 

Sample observation was also done using a JEOL SEM (JSM-IT500HRSEM) at an acceleration voltage of 

3 kV, and a gold sputter coating was performed for preparing samples using a sputter coating 

(Scancoat6) from Edward. For interface analyses, samples underwent a brittle fracture under nitrogen 

before being sputter coated.   

II.h.   AFM investigation 

A Multimode 8 AFM instrument (Bruker, Billerica, Massachusetts, USA) was used in PF-QNM imaging 

mode. The method is described precisely in chap 4, section II.b. It allows local topography and rigidity 

measurement and can highlight evolution in the multi-layer structure of flax fibres. RTESPA-525 

(Bruker, https://www.brukerafmprobes.com/p-3915-rtespa-525.aspx) silicon probe with a spherical 

tip apex was used here. 

Its spring constant was calibrated using the Sader method, and the tip radius was adjusted between 

20 and 80 nm on an aramid sample. The image resolution was 512×512, 384×384 or 256×256 pixels 

depending on the aim of the image captured. The peak force amplitude was set between 50 and 100 

nm for fibres measurement, depending on the region investigated and its rigidity.   

III.   Results and Discussion  

III.a.   Mechanical characterization of composite 

Figure 5-2 illustrates the tensile stress-strain behaviours of the four neat polymers (Figure 5-2.a)), 

alongside their non-woven flax reinforced composite (Figure 5-2.b)); measured tensile properties are 

presented in Table 5-3. The three biopolymers present a higher ultimate tensile strength than PP, the 

industry reference. With a tangent modulus close to 4.0 GPa, PLA and PHA have similar stiffness and 

significantly higher than PP (1.4 ± 0.2 GPa). On the other hand, PBS is less stiff than the others with 

Young’s modulus of only 0.8 ± 0.1 GPa, but it exhibits a strain at failure three times higher than PP. 

Interestingly, at the biocomposite scale (Figure 5-2.b)), differences in mechanical properties are much 

less pronounced than for the virgin polymers, highlighting that the fibre substantially modulates the 

mechanical properties. Indeed, all composites exhibit tensile strengths and Young’s moduli at the same 

order of magnitude. Flax/PLA is the stiffest formulation (13.2 ± 1.3 GPa), followed by flax/PHA (10.3 ± 

Multiscale characterisation of biodegradable flax composites through structural, mechanical and ageing investigations Delphin Pantaloni 2022



Chapter 5: Monitoring of mechanical performances of flax non-woven biocomposites during a home compost degradation 

150 

 

1.5 GPa). Flax/PP and flax/PBS present a similar modulus of 8.2 ± 0.7 MPa and 7.3 ± 1.2 GPa, 

respectively. Thus, even though virgin PBS has a different mechanical behaviour (e.g. lower stiffness, 

higher failure strain) than the other polymers, the stiffness of flax/PBS is comparable in magnitude to 

the other formulations. 

 

Figure 5-2: Mechanical behaviour of a) virgin polymers used in the biocomposites manufacturing, and b) flax non-woven 

composites at a fibre volume fraction of 30%. The axes scales are different in a) and b). c) A comparison with literature data 

(unfilled circles) is presented. References for literature values are available in Table 5-4. 

It indicates that the increase in stiffness of the polymer upon flax fibre incorporation, at the same fibre 

volume fraction, is more pronounced for flax/PBS than for flax/PLA with a modulus change of +867% 

and +250%, respectively. This substantial stiffness ‘leap’ between virgin and fibre reinforced PBS has 

been shown in injected parts [42]. In the present work, all biocomposites have the same fibre volume 

fraction (30 ± 1%), void volume fraction (< 2%) and are made from the same flax non-woven preform 

architecture. However, in addition to fibre morphology, the quality of the interface between fibre and 

matrix is preponderant to ensure efficient stress transfer. Non-polar PP is known to have poor 

interfacial compatibility with polar plant fibres [124], which penalizes the mechanical properties of the 

non-woven flax/PP composite. The ultimate tensile strength ranking is similar to the stiffness, with the 

strength of flax/PBS (67.5 ± 5.3 MPa) being slightly better than flax/PP (58.4 ± 2.1 MPa). 
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Table 5-3: Mechanical properties of polymers and non-woven composites before any degradation. ‘Change’ refers to the 

improvement between raw polymer and non-woven flax composite with a fibre volume fraction of 30%. 

Materials Tangent Modulus [GPa]  Maximum Strength [MPa] Strain at Maximum strength [%] 
PLA 3.79 ± 0.14 61.4 ± 0.8 2.0 ± 0.1 
PLA/Flax 13.16 ± 1.32 90.4 ± 7.8 1.0 ± 0.1 
Change + 250 % + 47 % - 49 % 
PHA 4.39 ± 0.34 38.6 ± 1.4 1.3 ± 0.1 
PHA/Flax 10.27 ± 1.52 82.4 ± 4.1 1.5 ± 0.2 
Change + 134 % + 113 % + 12 % 
PBS 0.75 ± 0.09 39.1 ± 0.5 14.7 ± 5.4 
PBS/Flax 7.27 ± 1.23 67.5 ± 5.3 1.4 ± 0.3 
Change + 867 % + 73% - 91 % 
PP 1.42 ± 0.24 24.4 ± 0.8 4.3 ± 0.7 
PP/Flax 8.22 ± 0.67 58.4 ± 2.1 1.2 ± 0.1 
Change + 480 % + 58% - 73 % 

 
Mechanical data obtained are similar to the ones found in the literature for PP, Figure 5-2.c), which 

confirms the conformity of our manufacturing process and the resulting composites [47,174,343]. 

Regarding the mechanical properties of our biocomposites, they are higher than the composites 

produced in literature studies [43,294] (Table 5-4). It is due to the quality of the preform, and the 

optimized manufacturing process used, yielding porosity lower than 2% - determined via 

microtomography. Here, we emphasize that the three flax/bioplastics investigated are, mechanically 

speaking, credible and promising alternatives to flax/PP composites.  

Table 5-4: Comparison with literature study results on mechanical properties of biocomposite made with non-woven flax fibres 

Materials Fibre volume 
fraction [%] 

Tangent Modulus 
[GPa]  

Maximum Strength [MPa] Reference 

PLA/Flax 
30 13.2 ± 1.3 90.4 ± 7.8 This study 
30 8.0 ± 0.1 99.0 ± 5.0 [43] 
36 8.2 ± 0.2 50.0 ± 5.0 [294] 

PHA/Flax 
30 10.3 ± 1.5 82.4 ± 4.1 This study 
30 4.5 ± 0.4 40.0 ± 2.0 [43] 

PBS/Flax 
30 7.3 ± 1.2 67.5 ± 5.3 This study 
30 3.5 ± 0.1 49.0 ± 1.0 [43] 

PP/Flax 

30 8.2 ± 0.7 58.4 ± 2.1 This study 
34 7.6 ± 0.8 62.0 ± 4.3 [47] 
36 5.4 ± 0.3 44.9 ± 1.1 [174] 
38 6.5 ± 0.4 40.2 ± 1.7 [297] 
38 6.3 ± 0.9 56.4 ± 2.2 [297] 
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III.b.   Ageing analysis 

b.i.   Surface erosion 

In this study, garden compost is chosen as a harsh environment for the ageing and degradation study. 

Figure 5-3 shows the evolution in weight loss for each composite, compared to their virgin polymer. 

SEM micrographs further depict the degree of surface erosion of the composite during ageing. It is 

evident that at any given time and for any considered polymer, flax composites degrade more (i.e. 

more weight loss) than the virgin polymer. It is mainly due to flax degradation inside the composite 

and the surface erosion induced by flax. Indeed, flax/PP shows a weight loss of 5.75 ± 0.50% after 190 

days, even though virgin PP does not measurably degrade in this time scale. 

 

Figure 5-3: Comparison of weight loss for each composite and associated virgin polymer. SEM pictures are presented for key 

periods to depict surface degradation of the biocomposites.  

As observed in Figure 5-3, flax/PLA and flax/PP have similar weight loss evolution. For both 

formulations, SEM observations at 70 and 190 days (Figure 5-3) reveal no matrix erosion and only slight 

surface erosion due to the degradation of flax. As the compost temperature remains below 37.5°C 

after ten days, PLA is handicapped at the lower compost temperature. 

Indeed, PLA has to be close to its glass transition temperature for speeded degradation [49]. In an in-

vessel compost maintained at 80 ± 5°C, the loss of weight of unidirectional kenaf/PLA reached 40% in 
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only 28 days [344], whereas our flax/PLA biocomposite buried in garden compost, with fluctuating 

temperatures between 8°C and 37.5°C after ten days, loses 6% of its weight after 190 days. This 

temperature influence is lower for the PHA and the PBS as they have low glass transition temperatures 

of 0°C and -30°C, respectively. With the emergence of porosity, degradation of fibres and increased 

roughness, flax/PHA and flax/PBS both undergo surface erosion and polymer degradation (Figure 5-3). 

Furthermore, their weight decreased more than flax/PP; 12.3 ± 1.4% for flax/PHA and 7.4 ± 0.5% for 

flax/PBS, compared to 5.75 ± 0.5% for flax/PP after 190 days. While virgin PBS’s degradation is very 

low, flax/PBS degradation is higher than flax/PP. 

Two potential explanations are easier degradation of flax in PBS than in PP and the presence of flax 

promoting PBS to degrade, for example, by increasing the surface contact area between water and 

PBS. The second explanation has been used to explain flax/PLA degradation in an elevated 

temperature compost [242]. On the other hand, the high value for flax/PHA is mainly explained by the 

degradation of virgin PHA, which is significant: 7.7 ± 0.8% after 190 days. Consequently, flax/PHA 

shows a substantially eroded surface than the other biocomposites [345].  

What are the main mechanisms in biopolymer degradation? Hydrolysis needs to take place to reduce 

polymer chain size and degrade a polymer [7]. On the other hand, PLA undergoes bulk erosion as 

hydrolysis occurs in the volume after the water diffuses throughout the specimen [14]. Regarding PBS, 

some studies have noted surface erosion [346], while others have observed the same behaviour as for 

PLA [55]. For example, Wu et al. [51] observed a decrease in molecular weight during PBS degradation 

in compost at 30°C, indicating that it undergoes bulk degradation. However, these mechanisms 

compete, and many factors can influence which one is dominant [14,56], including the thickness of the 

sample [57].  

b.ii.   Flax fibres and matrix decohesion 

This difference in polymer degradation behaviour could influence the way degradation occurs in the 

biocomposites. Thus, it is interesting to compare the biocomposites' surface erosion, which is the main 

contributor to weight evolution, with the evolution in porosity measured by microtomography (Figure 

5-4). We observe that flax/PBS and flax/PHA do not show an apparent increase in porosity even though 

they present eroded surfaces. Interestingly, flax/PLA does not show notable surface erosion but does 

undergo a substantial increase in porosity, starting at 2.1% and reaching 5.2% after 190 days. This 

phenomenon is also observed on the industry reference, flax/PP, increasing from 1.5% to 2.8% in 190 

days. It implies internal degradation, which was not expected based on the weight loss measurements.  
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Figure 5-4: Evolution in microporosity. Observation and measurement with microtomography analysis in a sample’s volume 

of 9x7x1.5 mm, taken in the middle of the sample. To the right, for each biocomposite, evolution in internal porosity (bars) is 

compared to evolution in weight loss (dots).  

Looking at the shape of the pores (Figure 5-4), porosity appears to be mainly present at the interface 

between the matrix and flax fibres. The phenomenon responsible for this interface degradation could 

be the swelling of flax fibres in the composite, which is an anisotropic hygroscopic expansion [347,348], 

coupled with the plasticizing (deformation) of the matrix. As the polymer undergoes a lower 

hygroscopic expansion, internal stress is generated at the interface. This stress could be large enough 

to damage the interface permanently with micro-cracks or debonding [227,235,349]. Interestingly, this 

phenomenon is mainly present for flax/PLA. It is probably due to its glass transition temperature, which 

is higher than the compost temperature. This is not the case for the other polymers investigated. PLA 

is damaged because of the stress applied by the swelling, whereas other biopolymers only undergo a 

reversible deformation with no impact on the interface. It is known that the interface between flax 

fibre and PP is poor [124]. Thus, the swelling effect impacts this interface even though PP has a lower 

glass transition temperature than the compost. Another explanation is the enzymatic degradation of 
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residual pectic components at fibre’s surface induced by microorganisms in the compost, which 

deteriorates the fibre/polymer interface [234].   

b.iii.   Impact on composite mechanical properties 

In composite science, it is well known that the interface is a critical zone for stress transfer between 

the polymer and the fibres. Thus, the presence of porosity at the interface will significantly impact the 

mechanical properties of a composite. Figure 5-5 presents the evolution of the normalized ultimate 

strength during the ageing of the composites, and SEM micrographs illustrate changes in the 

flax/polymer interface; see Table 5-5 for all mechanical data during ageing.  The compost temperature 

and external weather (mean temperature and rainfall) are plotted to inform our discussion of the 

results. Note that the temperature evolution of our compost is typical for this kind of compost [247–

249]. 

Table 5-5: Evolution in ultimate strength and normalized ultimate strength for composite during ageing. 

Days in compost PLA/Flax PHA/Flax PBS/Flax PP/Flax 
Initial tensile strength [MPa] 

0 days 90.4 ± 7.8 82.4 ± 4.1 67.5 ± 5.3 58.4 ± 2.1 

Normalized strength [-] 

0 days 1 1 1 1 
6 days 0.63 ± 0.03 0.76 ± 0.04 0.93 ± 0.03 / 
14 days 0.61 ± 0.05 0.74 ± 0.02 0.84 ± 0.04 / 
20 days 0.64 ± 0.05 0.78 ± 0.04 0.89 ± 0.05 / 
38 days 0.68 ± 0.03 0.78 ± 0.04 0.81 ± 0.05 / 
55 days 0.69 ± 0.04 0.67 ± 0.04 0.71 ± 0.05 / 
70 days 0.38 ± 0.03 0.60 ± 0.03 0.71 ± 0.03 0.61 ± 0.03 
104 days 0.39 ± 0.04 0.55 ± 0.03 0.68 ± 0.04 / 
125 days 0.49 ± 0.04 0.55 ± 0.05 0.58 ± 0.09 0.57 ± 0.03 
190 days 0.52 ± 0.03 0.53 ± 0.05 0.56 ± 0.05 0.59 ± 0.03 

 
First of all, a significant drop in ultimate strength from 90.4 ± 7.8 MPa to 56.6 ± 2.5 MPa is observed 

for flax/PLA. This drop of 37% could be directly related to interface deterioration, where porosity 

between flax fibres and PLA matrix appears after only six days. A drop of 24% is also observed for the 

flax/PHA during that time period, whereas a slight reduction in strength is evident for flax/PBS. 

As discussed before, this observation may have several explanations and especially the high compost 

temperature of 58.5°C (Figure 5-5) at the beginning of the experiments, approaching the PLA’s glass 

transition temperature of 61.2°C [335]. It increases chain mobility inducing higher deformation due to 

flaw swelling. That could also lead to recrystallization, inducing a shrinking of PLA and generate 

porosity. 
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Figure 5-5: Normalized ultimate strength evolution for the three biocomposites and the industry reference. The horizontal line 

depicts the design service strength limit of 50%. At the top right: Compost temperature, average outdoor temperature and 

rainfall are plotted on a graph to discuss the results. After 20 days, the compost’s temperature follows the external 

temperature. Top left: Cryo-SEM observation of the interface after six days of composting for flax/PBS (top) for which slight 

debonding is observed and for flax/PLA (bottom), which undergoes significant debonding. Bottom: Cryo-SEM observations of 

the evolution (from 0 days to 190 days) of the flax/polymer interface for each composite, focusing on the debonding zone. 

As this strength drop occurs after only six days, the hypothesis of polymer degradation at the interface 

seems quite doubtful. In contrast, the creation of porosity has been observed in flax/PLA aged in 

seawater, meaning the swelling and/or shrinking scenario is more probable [234]. After this initial 

drop, flax/PLA’s and flax/PHA’s ultimate strength stays constant until 55 days, corresponding to our 

increased weight loss rate observations. Then, flax/PLA undergoes a further drop, retaining only 38% 

of its initial strength and falling below the 50% initial strength, which can be considered the acceptable 

service limit stress. On the other hand, flax/PHA undergoes a constant decrease after this point. 
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Remarkably, the ultimate strength of flax/PBS decreases constantly. Composite mechanical properties 

are mainly influenced by fibre properties and interface quality in this case. As the flax/PBS interface is 

only slightly impacted by ageing, and considering that the virgin PBS’s mechanical properties stay 

unchanged during ageing (Table 5-6), the decrease in ultimate strength is principally due to 

degradation of the fibre. In the compost, fibres are exposed to moisture, which decreases fibres’ 

mechanical properties [234,315]. This moisture could also impact bundles as it has been shown that 

immersion in clear water for only 72h at 23°C degrades the middle lamella of bundles (flax/flax 

interface) [226]. Thus, this phenomenon leads to a poor interface between the fibres leading to 

decreased stress transfer capacity inside a bundle.  

Table 5-6: Evolution in ultimate strength and normalized ultimate strength for virgin polymer during ageing 

Days in compost PLA PHA PBS PP 
Initial tensile strength [MPa] 

0 days 61.4 ± 0.8 38.6 ± 1.4 39.1 ± 0.5 24.4 ± 0.8 
Normalized strength [-] 

0 days 1 1 1 1 
6 days 1.00 ± 0.03 0.89 ± 0.05 0.97 ± 0.01 / 
14 days 1.06 ± 0.03 0.94 ± 0.01 1.02 ± 0.02 / 
20 days 1.00 ± 0.03 0.89 ± 0.02 1.01 ± 0.01 / 
38 days 0.99 ± 0.02 0.89 ± 0.01 1.01 ± 0.02 / 
55 days 0.94 ± 0.02 0.86 ± 0.02 0.95 ± 0.02 / 
70 days 0.89 ± 0.03 0.74 ± 0.02 0.95 ± 0.03 0.94 ± 0.01 
104 days 0.92 ± 0.07 0.71 ± 0.03 0.97 ± 0.03 / 
125 days 0.70 ± 0.14 0.65 ± 0.03 0.99 ± 0.02 0.97 ± 0.05 
190 days 0.87 ± 0.08 0.64 ± 0.05 1.00 ± 0.02 1.02 ± 0.01 

 
After 190 days, all composites - flax/biodegradable polymer composites and the industry reference, 

flax/PP - have similar normalized ultimate strength close to 55%. Thus, the formulations investigated 

here are not only comparable in the context of unaged mechanical properties, but also the impact of 

ageing is comparable. What is more, even if the initial strength of flax/PLA (90.4 ± 7.7MPa) is higher 

than flax/PBS (68.6 ± 5.0MPa), flax/PLA falls (temporarily) below the design limit of 50% after 70 days, 

where flax/PBS undergoes more predictable and gradual ageing which could be preferable for long 

term applications. Note that all strength data presented here are slightly underestimated as the cross-

section area is overestimated due to the surface modification and the roughness of degraded samples 

such as flax/PHA and flax/PBS. 
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b.iv.   Impact on flax fibres in the composite 

It is also possible that microorganisms present in the compost play a role in degrading the fibre. It is 

assessed through an AFM investigation of a flax/PLA sample after 125 days spent in compost. Three 

stages of fibre degradation are identified, for which results are shown in Figure 5-6. 

 

 Figure 5-6: AFM investigation of flax/PLA composite after 125 days in compost, a) 3D AFM topographic image of a fully 

degraded fibre, located at the extreme edge of the sample; b) Face C investigated through AFM-PF-QNM; black and red circles 

indicate the fibres selected for AFM measurements; (c), (d) and (e) are AFM topographic images of edge, middle and core 

areas, respectively and (f), (g) and (h) the corresponding indentation modulus maps. (i) shows the indentation modulus 

distribution for each investigated region, indicated in white dot lines in (f), (g) and (h); In (f), no data was recorded in the 

hatched area.  

After 125 days in compost, some fibres were found to be still intact (Figure 5-6.b), .e) and .h)) and with 

an indentation modulus around 18-23 GPa, in line with indentation moduli generally found for flax 

fibres recorded in other papers by AFM or nanoindentation [322]. Nevertheless, one can notice a 
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beginning of degradation in these fibres located in the core of the sample, with low indentation 

modulus area around the lumen (Figure 5-6. H)), inducing a bimodal distribution of indentation 

modulus (Figure 5-6.i)) with two prominent peaks around 23 and 10 GPa. A progressive degradation, 

with first an attack of more labile polymers, such as hemicelluloses and pectins, can be hypothesized. 

It should be considered that the section investigated in this work represents only a slice of the whole 

sample. Fibres and fibre bundles at different planes can be more or less degraded than the one 

investigated, as was demonstrated by Björdal et al. [350] thanks to tomographic analysis.  

Fibres investigated in the middle region of the sample show more pronounced decay than those in the 

core, with an increase of the degraded area from the lumen region. More precisely, the mechanical 

properties of the second wall decreased considerably (around 5-7 GPa) in the degraded regions (Figure 

5-6.g) and Figure 5-6.i)). However, a part of the secondary wall still appeared intact with stiffness 

around 18 GPa (Figure 5-6.i)). The third step of fibre decay, mainly observed for fibres located at the 

edge of the biocomposite sample, consists of the complete degradation of the cell wall fragments until 

only one cavity remains. Despite the advanced state of degradation of the whole cell, S1 and the last 

parts of the second cell wall seemed to be partially preserved (Figure 5-6.f)) at the periphery of the 

fibre. However, cell walls are fully degraded when fibre located at the extreme edge of the sample is 

considered (Figure 5-6.a)). 

The progressive decrease in indentation modulus observed here, from the lumen to fibre periphery, is 

linked to the severity of the biological attack. In Figure 5-6.g), one can note that fibres investigated in 

the middle of the biocomposite lose their mechanical properties following the fibre shape, confirming 

that the second cell wall of flax is easily degraded; in the present case, cell wall degradation is probably 

initiated by structural hemicelluloses, less recalcitrant than crystalline cellulose. Reducing efficient 

fibres proportion due to microorganism degradation adds another degrading phenomenon that plays 

an essential role in decreasing composite properties. 

IV.   Conclusion  

The mechanical performance and compost ageing behaviour of three biocomposites made of non-

woven flax fabrics and biodegradable polymers (flax/PLA, flax/PHA, flax/PBS) were investigated and 

compared to flax/PP, an industry reference. We showed that all flax/biodegradable polymer 

composites had better strength and stiffness than flax/PP. Our ageing investigations reveal that flax 

composites degrade predominantly through one of two possible routes, depending on the composite 

formulation (i.e. polymer selected): surface erosion or porosity generation at fibre/matrix interfaces. 

While surface erosion diminishes composite mass, interfacial porosity substantially reduces composite 
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ultimate tensile strength, making the ageing behaviour less predictable. We observe that flax/PLA 

primarily degrades at the interface, with localized porosity forming and reducing its strength by 37% 

after just six days of burial in garden compost. In contrast, due to surface degradation of fibres and 

polymer, flax/PHA losses 12.3 ± 1.4% mass after 190 days. We find that all the flax/biodegradable 

polymer biocomposites have lost 50% of their initial strength after 190 days in the garden compost, 

comparable to the industry reference flax/PP. These flax/biodegradable polymer biocomposites have 

the potential to resolve the ‘biodegradation paradox’: they can be designed to have adequate 

mechanical performance for industrial products, even after ageing in harsh conditions, and yet offer 

biodegradation as an alternative end-of-life disposal route to incineration. 
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General conclusions and perspectives 
 

I. Conclusions and perspectives 

This thesis aimed to explore the potential of three biodegradable thermoplastics to be reinforced by 

flax fibres: poly-(lactide) (PLA), poly-(butylene-succinate) (PBS) and poly-(hydroxy alkanoates) (PHA). 

The potential use of the resulting composites for various applications can be investigated through 

various material properties. This study first focused on relating composite architecture and static 

mechanical properties. Second, understanding the ageing behaviour of biodegradable composites was 

explored, and specifically how composite architectures (and dominating ageing mechanisms) influence 

mechanical property over time. The work was split into two parts; the first one (chapters 2 and 3) 

characterised the mechanical properties and the structure of biodegradable flax composites. The 

second one (chapters 4 and 5) is dedicated to the composite's structural and mechanical property 

evolution due to ageing.  

Before presenting experimental results, chapter 1 dealt with literature to highlight some crucial 

notions for the understanding of this thesis work, going from the biodegradation notion to the 

environmental impact of flax thermoplastic composite; a bibliographic assessment of methods of 

interface characterisation, manufacturing processes of flax thermoplastic composites and the link 

between interface and mechanical properties of a laminate composite was addressed.   

In chapter 2, the interface between elementary flax fibres and biodegradable polymers was 

investigated through micro-droplet tests. It appears that PLA presents the highest affinity with flax, 

followed by PHA and PBS having a similar adherence with flax as MAPP. All the biodegradable 

thermoplastics present higher mechanical properties than PP, chosen with MAPP as an industrial 

reference. This demonstrates the ability of these biodegradable polymers to be reinforced by flax 

fibres to produce performing transport materials.  

Complementary to this, the mechanical properties of unidirectional composites are investigated and 

correlated to interface properties. Composite properties (in-plane shear strength/longitudinal tensile 

strength/transversal tensile strength) follow the same trends with comparable properties between 

PHA, PBS or MAPP composite, and higher performance for PLA and lower for PP. The composite 

properties correlate linearly with the flax/matrix adherence (measured through in-plane shear 

strength and transversal tensile strength). The introduction of an effective coefficient in the rule of 
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mixtures took account of the influence of interface shear strength on longitudinal tensile strength. This 

coefficient increases monotonously with interfacial-shear strength of the flax/matrix interface, except 

for PBS. This exception is explained by the high strain at failure of the PBS, spreading the applied stress 

in the composite and avoiding high-stress concentration. Thanks to their good adherence to flax, which 

is reflected at the composite level, the biodegradable polymers appear suitable for flax composite 

application.  

To complete the interface study, observing the decohesion of a polymer micro-droplet in-situ (through 

a camera) could be interesting. It will give more information on the decohesion process, possibly 

shining more light on the stress concentration (e.g. through DIC) induced by this test. Additionally, 

some loading and unloading micro-droplet tests can be interesting to investigate the damage 

progression of the interface during the test. That will lead to a better understanding of the adherence 

between the flax and polymers.  

Another finding requiring more investigation is the general potential of PBS in spreading the stress 

applied in the composite, leading to efficient flax unidirectional composites. Some fatigue behaviour 

should give clues on this phenomenon, as well-distributed stress should create less internal damage. 

Micro X-ray tomography, using synchrotron, should allow observing the influence of tensile behaviour 

on the structural evolution of the composite, such as the initiation and growing of micro cracks. 

Comparing PLA and PHA flax composites will add values to the investigations, confirming that PBS flax 

composite presents better resilience than PLA and PHA flax composite.  

In chapter 3, the flax/PLA non-woven composite structure is better understood by analysing porosity, 

shive content, and fibre orientation. The porosity content was measured at 5.5 %. Thanks to a deeper 

porosity analysis done by X-ray micro-tomography, the size distribution and the localisation of the 

pores were observed. Mesoporosity is present in the matrix, induced by the manufacturing process. 

The second class of pore is microporosity, which is principally present in bundles area or inside shives. 

The presence of such microporosity in shives raises the question of this third component in the fibre-

matrix composite. However, shives represent a volume fraction of 2.2% in the composite against 43.1% 

for flax fibres. Therefore, it was chosen to neglect their effects on mechanical properties. The last 

structural parameter investigated was fibre orientation. Thanks to X-ray micro-tomographic analysis, 

a preferential fibre orientation was observed in the machine direction of the non-woven composite. 

This method is efficient but does not fit industrial criteria in terms of speed and cost. Parallel to this, 

off-axis tensile tests were conducted and highlight mechanical anisotropy. This anisotropy appears to 

match the fibre orientation observed by tomography. The structure of a non-woven composite is 

Multiscale characterisation of biodegradable flax composites through structural, mechanical and ageing investigations Delphin Pantaloni 2022



General conclusions and perspectives 

165 

 

complex with the presence of porosity, shives and fibres orientations. However, porosity can be 

managed through the immersion test, shives can be ignored if present in small proportion, and fibre 

orientations could be approximate thanks to off-axis tensile tests, allowing a first structural description 

of a non-woven composite in relation to its mechanical behaviour.   

In this study, the presence of shives was considered negligible as they were found in a relatively small 

fraction. However, it could be attractive to understand better their influence on the mechanical 

properties of the composite. Introducing shives deliberately to obtain a range of non-woven 

composites can be a way to obtain the critical shives fraction not to overcome to keep the mechanical 

properties of the composite well-predicted and reliable. That can be of industry interest as shives are 

cheaper than flax but present some reinforcing potential. During this test, it would be essential to keep 

the proportion of reinforcement constant (flax fibres + shives) to obtain comparable results.  

Another industrial perspective is to control the fibre orientation to develop non-wovens with more 

aligned fibres orientations. Thanks to the suggested off-axis tensile test as a rapid fibre orientation 

analysis tool, the quality assessment of developed products can be faster and cheaper. A machine 

parameter investigation is now required to optimise the fibre orientation. Various highly oriented non-

woven preforms will close the market gap between non-woven and unidirectional flax preform in 

terms of mechanical properties and price.  

Thanks to these first chapters, the mechanical and structural properties of flax/biodegradable 

polymers were investigated and carefully addressed. The other chapters deal with the ageing of such 

composites and the evolution in structure and mechanical properties. In chapter 4, flax/PLA non-

woven composites were submitted to hygroscopic (50RH/75RH/98RH/immersion) ageing for six 

weeks. By following their mass evolution, the moisture content of the composites was measured. For 

the 50RH and 75RH samples, the maximum water content measured is closed, being 2.7% and 2.9%. 

As a reference, the initial water content of the samples is 2.6%. The 98RH and immersion conditions 

induce a critical moisture content of 8.8% and 15.1%, respectively. These later samples undergo 

irreversible structural and mechanical modification, not observed for the 50RH and 75RH ageing. It 

highlights a critical relative humidity condition below which the composite is not impacted by ageing. 

The ageing mechanism of the composite was further studied through microscale investigation. The flax 

fibres and the matrix appears to present unchanged mechanical properties, highlighting the role of 

composite’s structure modification on the decrease of its mechanical properties. For both impacted 

samples, the interface could be impacted due to flax swelling and chemical modification. However, no 

physical decohesion was observed. Nevertheless, transverse microcracks appear in the matrix, 
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initiated at flax fibres location. An analytical model was used to confirm the ability of flax fibres to 

induced these microcracks. Their swelling can generate local stresses three times higher than the 

strength of PLA. Additionally, this fibre swelling appears to be responsible for surface erosion.    

Using shorter sampling intervals for the humidity ageing study (e.g. tests at 90%,80%, 70%RH) will help 

determine the critical relative humidity below which irreversible changes in composite properties 

occur. Furthermore, more fibre volume fractions should be investigated, giving additional clues on the 

degradation mechanism. A quantification and localisation analysis of the porosity through X-ray micro-

tomography can quantify the impact of ageing and confirm the hypothesis of a swelling originated 

phenomenon. Additionally, observing in-situ water immersion under micro-tomography can help 

understand the path water took inside the composite.  

Furthermore, investigating the hygroscopic ageing of PHA and PBS flax composites is of interest. 

Especially in the case of PBS to confirm the hypothesis that its low stiffness allows a better ageing 

resistance as the flax fibres’ swelling will induce smaller critical stress. Furthermore, the geometry 

evolution analysis of the matrix and the flax composite through various moisture ageing can lead to a 

hygro-expansion investigation, another clue of the damage mechanism for flax fibres composites. 

Finally, the thesis studied the irreversible impact of one sorption/desorption cycle. It could be 

interesting to do several cycles, as it is a more realistic solicitation, to highlight irreversible changes 

induced and comparing them to one cycle damages.  

The last investigation of this thesis (chapter 5) aims to understand the ageing of biodegradable flax 

composite on garden compost. This harsh ageing environment was chosen arbitrarily. Thus, non-

woven flax composites made of PLA, PHA, PBS or PP were buried in garden compost for six months. 

Before the ageing step, their mechanical properties were compared, ensuring the biodegradable non-

woven composites are an alternative to the industry reference. Thanks to this harsh ageing, two 

degradation behaviours were highlighted, depending on the matrix. For the PLA and PP, bulk 

degradation was observed through an increase in inner porosity, mainly at the flax/matrix interface. It 

induces a sudden drop in composite strength at an early stage due to interface degradation. For PBS, 

the degradation appeared on the surface, inducing a higher loss of weight than the bulk degradation 

but no increase in inner porosity. Interestingly, it leads to a more predictable mechanical evolution as 

the interface is less impacted. In addition, AFM Peafkforce investigation evidenced a decrease in flax 

cell wall mechanical properties, contributing to the drop in composite strength. These two behaviours 

are models and compete in natural degradation. For PHA, surface erosion is predominant, but a slight 

decohesion at the interface is present, inducing a slight strength drop at the early ageing stage. 
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Remarkably, ageing damages the biodegradable composite as much as the industrial reference, 

showing the former’s potential even in harsh ageing.  

In complement to this study, the flax fibre degradation mechanism in a composite buried in compost 

should be deeply investigated to understand how microorganisms are responsible for this degradation. 

That can help to develop scientific strategies to control or anticipate the degradation of the composite. 

Additionally, this thesis focuses on the degradation mechanism, which is of interest regarding the in-

service lifetime. However, biodegradable tests in several environments will bring complementary 

information on these biodegradable composites. Ecotoxicity tests must be carried out to ensure the 

viability of the biodegradable composite solution suggested in this thesis. Furthermore, reliable LCA 

will be useful to compare the environmental benefit of biodegradable flax composite. Thus, it will give 

clues to develop the adapted disposal scenario for biodegradable flax composites in the future.   

II. General discussion  

Thanks to all these investigations, PLA, PHA and PBS appear suitable to be reinforced by flax fibres to 

obtain biodegradable composites. They present mechanical properties adequate for structural 

application, and these properties remain acceptable even under harsh environments. Thus, these 

materials fulfil the challenging paradox of maintaining good mechanical properties over their service 

lifetime until biodegradation upon disposal. 

Focussing on the work presented, the flax/PLA appears to have the highest mechanical properties, 

close to flax/thermoset composites. However, an important notion to come back to is biodegradation. 

PLA, and so its flax composite, is only biodegradable in industrial compost, where PBS can be 

bioassimiled in home compost and PHA in seawater (according to standard). It highlights the presence 

of a compromise between the virgin composite mechanical properties and its biodegradation 

potential. Therefore, flax/PLA is not necessarily the best solution to obtain a biodegradable flax 

composite. Attention must be paid to its end of life and communication towards customers and 

consumers. 

Furthermore, the kinetics of biodegradation of polymers is faster (in an adequate environment) than 

flax fibres. Indeed, flax fibres (and generally plants) did not match the biodegradation standards 

developed for biodegradable polymers. Thus, the development of new polymer formulations, with the 

kinetics of biodegradation equals to the flax fibres, could be a way to optimise the time in service of 

biodegradable flax composites. 
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However, focussing only on the mechanical properties, the ageing of samples and its biodegradation 

potential is not enough to validate such materials for industry.  

First, there is the question of the size effects. How could the ageing mechanism predict the lifetime of 

industrial pieces, taking into account the sealed or open edges, the kinetics of diffusion, or the 

geometry of the piece? A deep understanding of all the mechanisms involved and their coupling effects 

should allow the development of complex but acquired models, helpful for industries.   

Another critical point is the cost disadvantage of biodegradable flax composites. In industry, and 

especially in the transportation sector, PP composites are ubiquitous. This polymer has a price of 

1€/kg, against 3-4 €/kg for PLA or PBS and 10 €/kg for PHA. It appears to be the principal limit for the 

use of biodegradable flax composite nowadays, especially for automotive applications where the price 

of each part tends to be reduced. This price difference could decrease in the future due to the 

conjugated increasing demand for biodegradable polymer associated with the increasing maturity of 

industrial production and the decrease in fossil resources. 
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Appendices  

Appendix 1: Nairn’s model 
This is a rewriting of the model developed by Nairn in 1985 [323], considering only the part used in the 
thesis. 

Thermoelastic Analysis of Residual Stresses in 

Unidirectional, High-Performance Composites 

JOHN A. NAIRN 
Central Research and Development Department 

E. I. DuPont de Nemours 6. Company 

Experimental Station 

Wilmington, Delaware 19898 

COMPOSITE CYLINDER MODEL:  

In this section, the method of solving for 
thermal stresses in the composite cylinder 
model is outlined. The composite cylinder 
model, illustrated in Figure A.1, includes a 
matrix and a fibre. We assume that the matrix 
is linearly elastic and isotropic and that the 
fibre is linearly elastic and transversely 
isotropic. The bonds between the components 
are assumed to be perfect. 

 

 
 
Figure A.1: Cross-section of composite cylinder model for 

a unidirectional composite. 

We begin by writing down the form of the 
stresses in each component. The stresses in the 
matrix are taken from the general solution for 
an isotropic, hollow cylinder under internal 

pressure, external pressure, and uniform axial 
stress. The results are:  
 𝜎𝑟𝑚 = 𝐴1 + 𝐴2𝑟2  

(1) 𝜎𝜃𝑚 = 𝐴1 − 𝐴2𝑟2  𝜎𝑧𝑚 = 𝐴3 

 

Here r, 𝜃, and z indicate radial, hoop, and 
longitudinal stresses, subscript m is for matrix, 
and 𝐴1 to 𝐴3 are constants. The stresses in the 
transversely isotropic fibre have the form  
 𝜎𝑟𝑓 = 𝐴7 

(2) 𝜎𝜃𝑓 = 𝐴7 𝜎𝑧𝑓 = 𝐴8 

 

where 𝐴7 and 𝐴8 are constants. The shear 
stresses in all three components are zero. […] 
The solution of the composite cylinder problem 
is now reduced to determining the constants 𝐴𝑖  (i= 1,2,3,7 or 8) by using the boundary 
conditions. The boundary conditions for the 
stresses are  𝜎𝑟𝑚 = 0  𝑎𝑡 𝑟 = 𝑏 

(3) 

𝜎𝑟𝑚 = 𝜎𝑟𝑓  𝑎𝑡 𝑟 = 𝑎 𝜎𝑧𝑓 = 𝐴8 𝜎𝑧𝑚. (𝑏2 − 𝑎2) + 𝜎𝑧𝑓 . 𝑎2 = 𝐴8 
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The last condition is force balance in the z-
direction. From these conditions, the problem 
reduces to 𝐴2 = −𝑏2. 𝐴1 

(4) 
𝐴7 = 𝐴1. (1 − 𝑏2𝑎2) 𝐴8 = 𝐴3. (𝑎2 − 𝑏2𝑎2 ) 

 

There are now two unknowns, 𝐴1 and 𝐴3. They 
are found by using the following two 
displacement restrictions: 
 𝜀𝑧𝑚 = 𝜀𝑧𝑓   𝑎𝑡 𝑟 = 𝑎 

(5) 𝑢𝑟𝑚 = 𝑢𝑟𝑓   𝑎𝑡 𝑟 = 𝑎 

 

where 𝜀𝑧 is longitudinal strain and 𝑢𝑟 is radial 
displacement. With the radial symmetry in the 
cylinder model 𝑢𝑟 = 𝑟. 𝜀𝜃. Using the conditions 
in Eq (5) and the stress-strain relations for 
transversely isotropic and isotropic materials, 
the problem reduces to two equations in two 
unknowns: 𝐴𝑁𝐼. (𝐴1𝐴3) = ((𝛼𝑚 − 𝛼𝑓,𝐿). ∆𝑇(𝛼𝑚 − 𝛼𝑓,𝑇). ∆𝑇) (6) 

 

where the elements of 𝐴𝑁𝐼 are in Table A.1, 
Here, 𝛼 is the thermal expension and ∆𝑇 is the 
temperature change. The latter is negative for 
cooling. In Table A.1, 𝜗 refers to the Poisson’s 
ratio, 𝑉 the volume fraction and E the modulus. 

Table A.1: Elements of matrix 𝐴𝑁𝐼 in Eq (6) 

Matrix 
Element 

Expression 

𝐴11𝑁𝐼 2. (𝜗𝑚𝐸𝑚 + 𝜗𝑓,𝐿𝑇 . 𝑉𝑚𝐸𝑓,𝐿. 𝑉𝑓 ) 

𝐴12𝑁𝐼 − ( 𝑉𝑚𝐸𝑓,𝐿 . 𝑉𝑓 + 1𝐸𝑚) 

𝐴21𝑁𝐼 − ((1 − 𝜗𝑓,𝑇𝐿)𝑉𝑚𝐸𝑇𝑉𝑓 + (1 − 𝜗𝑚)𝐸𝑚 + (1 + 𝜗𝑚)𝐸𝑚. 𝑉𝑓 ) 

𝐴22𝑁𝐼 (𝜗𝑚𝐸𝑚 + 𝜗𝑓,𝐿𝑇 . 𝑉𝑚𝐸𝑓,𝐿. 𝑉𝑓 ) 

 
The rewriting of the model stops here. Some 
comments are following:  

1) Solving the two equations in Eq (6) using 𝑟 =𝑎 gives the stresses generated at the 
fibre/matrix interface.  

2) In the thesis, an analogy between thermal 
and hygroscopic solicitation is made by 
replacing the thermal-expansion coefficient 
and the temperature variation with the hygro-
expansion coefficients and the moisture 
content variation, respectively. 
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Titre : Caractérisation multi-échelle de composites de lin biodégradables par le biais d’études 
structurelles, mécaniques et de vieillissement  

Mots clés : Biocomposites, Fibres de lin, Propriétés mécaniques, Microstructure, Vieillissement  

Résumé :   La production des matériaux et la 

gestion des déchets sont une cause importante de 

nos défis environnementaux. Les fibres de lin sont 

des ressources biodégradables et renouvelables tout 

en présentant des propriétés mécaniques 

spécifiques, idéales pour le renforcement des 

composites. En outre, la transition vers des 

thermoplastiques biodégradables comme matrice 

pour les composites renforcés lin conduit à des 

matériaux entièrement biodégradables. Ce travail 

vise à étudier la faisabilité des composites 

thermoplastiques biodégradables à fibres de lin. Les 

polymères poly-(lactide) (PLA), poly-(butylène-

succinate) (PBS) et un poly-(hydroxy alkanoate) 

(PHA), renforcés par des préformes en lin, sont 

étudiés dans cette thèse. Le potentiel mécanique de 

ces composites biodégradables est étudié à travers 

une approche multi-échelle, de l'adhérence aux 

propriétés mécaniques du composite. 

L'influence de la mésostructure des plis sur leurs 

propriétés mécaniques est ensuite analysée, en 

particulier la teneur en porosité, l'orientation des 

fibres et la présence d'anas. Enfin, en se 

concentrant sur l'évolution dans le temps de leur 

mésostructure et de leurs propriétés mécaniques, 

le vieillissement des composites biodégradables 

dans des environnements sévères est abordé : six 

semaines dans différentes conditions 

hygroscopiques et enfouis six mois dans du 

compost de jardin. L’ambitieux paradoxe de tels 
composites est en effet de conserver de bonnes 

propriétés mécaniques, pendant leur phase d’usage 
et jusqu'à leur biodégradation. Ce travail contribue 

à l'étude des composites biodégradables en 

mettant en évidence à différentes échelles leur 

potentiel mécanique et leurs mécanismes de 

dégradation. 
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Abstract:  The production and disposal of materials 

is an important source of our environmental 

challenges. Flax fibres are interesting reinforcements 

for polymer composites, as they are biodegradable, 

renewably-sourced, and retain low density with 

good mechanical properties. Furthermore, 

transitioning to biodegradable thermoplastics as 

matrices for flax composites will lead to fully-

biodegradable composites. This work aims to 

investigate the feasibility of biodegradable flax 

thermoplastic composites. Poly-(lactide) (PLA), poly-

(butylene-succinate) (PBS) and poly-(hydroxy 

alkanoate) (PHA) polymers are considered in this 

thesis, binding a range of flax fibre preforms.  The 

mechanical potential of these biodegradable 

composites is investigated through a multi-scale 

approach, from fibre-matrix adherence to composite 

mechanical properties. 

The influence of the ply mesostructure on 

composite mechanical properties is investigated, 

particularly porosity content, fibre orientation, and 

the presence of shives. Finally, the ageing of 

biodegradable composite is tackled, focussing on 

the evolution their mesostructure and mechanical 

properties over time in harsh environments: six 

weeks under hygroscopic conditions and six 

months buried in a garden compost. The 

challenging paradox that needs to be addressed is 

to maintain good mechanical properties over time 

during service, until their biodegradation upon 

disposal. This work contributes to the study of 

biodegradable composites by highlighting their 

mechanical potential and degradation mechanisms 

at several scales. 
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