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INTRODUCTION

The performances of uni-core processors have been constantly improving for decades
owing to Instruction-Level Parallelism (ILP) and rising hardware clock frequencies. How-
ever, the performance of large single-core processors no longer scales since only a limited
amount of parallelism can be achieved by employing conventional superscalar instruction
techniques in a typical instruction stream [32, 85]. Moreover, elevating the clock speed
on today’s processors is limited by the power dissipation, which indicates the failure of
Dennard scaling [25]. This power dissipation becomes prohibitive in all, but water-cooled
systems [104]. Considering these problems and the large number of transistors available
on today’s microprocessor chip [99], a large and complex uni-core processor was too costly
to design and debug, so this design trend was unsustainable. However, higher performance
is still demanded, as manifested by predictions from the ITRS Roadmap 2011 [66], fore-
casting a need for 300x more performance by 2022. To avoid complex, unmanageable, and
power-hungry designs while pushing for more performance, the chip designers have shifted
to a new processor design paradigm: multi-core processors. Multi-core processors are high-
performance computer systems built up by embedding several processing units as cores
in the same processor, which communicate through an interconnection NoC (Network on
Chip) or bus [44, 104].

The main advantage of multi-core systems is that they provide high-performance,
adding more parallel resources (cores) rather than increasing clock frequency while main-
taining the power characteristics [24]. Multi-core processors provide task-level rather than
instruction-level parallelism. It means the application workload can be divided into paral-
lel tasks that can run concurrently on the different cores while providing a faster execution
of the application. As the complexity and variety of the applications have increased, the re-
quirement for more performance and general-purpose programmability has grown. Hence,
general-purpose multi-core processors have broadly been adopted in all industry segments,
including digital signal processing and embedded systems, and are no longer restricted
to the High Performance Computing (HPC) industry. Unfortunately, the performances of
the applications do not scale automatically as newer processors providing more parallel

cores are released. Thus, to make the most of multi-core processors’ architectures, pro-
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Introduction

[ Memory Controller ]

Figure 1 — Example of the architecture of a typical SMP. In this example, each core has
a private L1 cache for instruction and a private L1 cache for data, a private L2 cache for
both instructions and data. All the cores share the same L3 cache. The memory controller
interfaces with the off-chip main memory.

gramming methods should evolve from a sequential to a parallel design approach. In a
parallel program, the programmer, by dividing the application’s code into tasks, expresses
task-level parallelism (TLP), which can explicitly exploit the parallel hardware processing

units of multi-core processors executing concurrently [105].

Symmetric Shared-memory Multiprocessor (SMP)

Symmetric Shared-memory Multiprocessor (SMP) is an extensively used high-performance
multi-core processor architecture as it helps the programmer to simplify the transforma-
tion from sequential to parallel programs, by preserving a single image of memory shared
across the entire parallel cores. Using a global virtual address space minimizes the changes
from a single processor machine to an SMP [131]. In this context, an application is com-
posed of multiple threads that can run in parallel, TLP standing conveniently also for
Thread-Level Parallelism.

A typical SMP includes several cores/processors all interconnected with a common
shared main memory via an interconnection network (e.g., NoC or a bus). Figure 1 shows
the architecture of a typical SMP. Due to technological limitations, the main memory and
the cores are not in the same chip. Ideally, the two chips follow the same pace. Unfor-

tunately, the disparity between the speed of processor cores and off-chip memory can be

14
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Figure 2 — Pyramid of memory hierarchy.

in the order of hundreds of cycles. The performances are limited by the memory latency.
This is called the memory wall [94, 121, 145]. To circumvent this limitation, microproces-
sors, in general, and SMPs, in particular, use hardware-managed on-chip storage, called
caches, to keep data within the chip to avoid such long accesses to the off-chip memory.
The larger the cache, the lower the speed. Thus, typically, caches have been implemented
in a hierarchical manner. Smaller and faster caches are close to the microprocessor while
they are backed by two or three levels of larger caches. Frequently requested data is stored
and accessed from a high-bandwidth and low latency cache which is usually a private local
Level-1 (L1) cache of each processor core in the SMP. The lower levels of the caches (L2
and L3) are shared between the cores. Figure 1 shows an organisation where the L2 cache
is private to each core, and the L3 cache is shared. The shared caches are slower both due
to the size and the extra interconnection that is necessary to connect them to multiple
cores, which also limits the bandwidth for sharing the data. This hierarchy of hardware-
managed caches that are completely transparent to the developer is the key enabler of

the illusion to access to a large and fast off-chip main memory.

The full memory hierarchy, from the registers of the processor to the hard-disk drive
or the cloud, is usually represented in the form of a pyramid, with high speed but low
capacity (and expensive) memory at the top, and low speed with high capacity (and

cheap) memory at the bottom. Figure 2 presents the pyramid of memory hierarchy.

Caches exploit two forms of locality in the data accesses: temporal and spatial. Tem-

poral locality means that when a memory location is accessed, it will be accessed in the

15



Introduction

near future again. Spatial locality refers to the property that when a location is accessed,
the addresses in its vicinity will also be accessed in the near future. Exploiting these
properties, the caches bring a block (e.g., 32 consecutive words) from memory and store
it when a single location is accessed. Because of the temporal locality of the accesses,
when the same location is accessed again, it is already present in the caches (called a
hit), and the long latency access to the off-chip memory is not necessary. Since a block
is fetched and stored, accesses to the neighboring locations will also be hit in the cache
avoiding access to the main memory. By exploiting spatial and temporal locality, caches
reduce the effective latency of loads and stores. But the threads running on the cores of
the SMP also can change concurrently the values in the caches instead of waiting for the
modification to get published to the main memory. This poses a challenge when the data
is shared between the threads running on different cores. A thread that is reading a value
from its local cache may not see the writes done to the same location by another thread
that modified the value of the same address in its own local cache. To keep the values

coherent across these threads, a cache coherence protocol is needed.

A cache-coherent parallel processor (e.g., an SMP) must provide the following guaran-
tees. Changes to the shared data, even when cached, shall become visible to all the threads
on all the cores within a bounded (and typically short period of) time. This guarantee
is achieved through a cache coherence protocol that, in almost all modern machines, is
implemented using an invalidation-based mechanism. Such protocols, which are typically
implemented in the cache controllers, maintains the invariant that there is at most one
writable copy of any given cache block in the system. When the writable copy exists in
one of the caches, there are no other valid copies in the other caches. Cache coherency and
its algorithms has and are still being studied extensively in the literature [129]. Most pro-
tocols inherit from the original four-state protocol devised by Goodman [53]: each cache
block is either (1) invalid, (2) shared (read-only), (3) exclusive (written exactly once, and
up-to-date in memory), or (4) modified (written more than once, and needs to update the
memory). To maintain the aforementioned at-most-one-writable-copy invariant, the co-
herence protocol needs to invalidate (evict) any shared block in other cores’ caches before
updating it with a new value. When the caches are connected through a bus, invalidation
is straightforward and is performed through a broadcast message. When the caches are
connected through a network-on-chip or point-to-point connection, the coherence proto-
col typically maintains a form of directory that locates all other copies of a shared block.

The invalidation principle causes the accesses to the data to miss in the cache due to the

16



coherence protocol. Coherence protocol can cause loads and stores to miss in the cache
since another core invalidates a previously cached block. Without code restructuring and
a proper mapping of the threads on the cores, coherence misses are inevitable when some
threads on a core writes and others on other cores read the same cache block in a small
time window. To achieve high-performance execution for parallel programs, the threads
need to exhibit thread locality in addition to temporal and spatial locality. Thread locality
is referred to the property that modification to data in one thread is isolated from another
thread at a given time. Thread locality reduces the aforementioned coherence cache misses
that are due to shared data modifications and dependencies. Coherence can be managed
by software or hardware mechanisms. In this thesis, we consider hardware-based coherence

mechanisms.

Besides coherence and its considerations, caches need also to guarantee that accesses
to some location will be visible in some form of consistent order to all the threads. Un-
like coherence, the memory consistency model is exposed to the software and needs to
be considered during execution. The memory consistency model is the degree to which
accesses to the memory can or cannot be assumed to be published in a particular order.
On a single-core machine, it is relatively straightforward to ensure that instructions, in
general, and loads/stores, in particular, appear to complete in the program order. Ideally,
it is desirable to ensure a similar consistent order on a parallel machine (e.g., an SMP)
such that memory accesses, system-wide, would appear to constitute an interleaving of
the completion order of the accesses on different cores. However, this sort of sequential
consistency imposes significant performance overheads [77]. Therefore, the majority of the
real-world systems implement a relatively more relaxed memory consistency model that
can potentially exhibit inconsistency. That is to say, memory accesses by different threads,
or to different locations by the same thread, may seem “out of order” from the perspective
of threads that are running on the other cores. To this end, it is to the programmer or
the compiler to ensure a specific order by means of synchronization. This is accomplished
by using a set of special instructions that are more strongly ordered compared to other
“ordinary” instructions as they force the core to temporally stop the execution and wait
until the previous instructions are completed. These instructions are an essential part of

synchronization algorithms on any non-sequentially consistent machine.

Execution on an SMP requires breaking up the code into multiple parallel threads that
compute on shared data in the memory. Sharing data is how the threads communicate

and satisfy their data dependencies. A producer thread writes to a shared location in
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the memory where the dependent consumer thread can read the necessary data from.
Hence, the order of writes and reads is a crucial constraint for the correct computation of
data of a multi-threaded programs on SMPs. A reader may access to the (old and wrong)
value before the writer effectively commits the new value, this is called a race condition. As
such, threads need to synchronize before accessing the shared data to avoid race conditions
that lead to incorrect results. Such a data that needs to be protected is called a critical
resource. Synchronization techniques usually require serializing the execution of parallel
threads to impose the necessary order. From an abstract and fundamental point of view,
only one thread is allowed to write or read to a critical resource. From the software’s
perspective, the region of the thread code that accesses the critical resource is called
critical section. The memory accesses to these critical sections need to be synchronized
to ensure the correct data exchange between dependent threads. At a high level, a thread
is said to lock the critical section and exclusively enters it to finish its writes or reads
before any other thread. At the hardware level [108], Atomic Memory Operation (AMO)
is the ultimate operation for the software-based lock algorithms that enables the threads
to mutually exclusively enter the critical section and consistently share data. Software
semaphore is an example of software-based synchronization primitive to control access
of multiple threads to the shared critical data. In semaphore synchronization technique,
threads utilize two functions to modify the semaphore value wait () and signal(), but
the functions allow only one thread to change the value at a specific time, i.e., two threads
cannot simultaneously change the semaphore value. There are two types of semaphores;

counting semaphores and binary semaphores.

The mutually exclusive execution inherently leads to the serialization of threads which
in turn looses all the benefits of parallel execution. In addition, the necessity and preva-
lence of caches in the SMPs exacerbates the overheads since locking and synchronization
highly involve the coherence protocol in the cache subsystem. Indeed, preserving consis-
tency and coherency of the lock values is mandatory and requires cache coherency protocol
messages [128, 141]. For instance, when a thread running on one of the cores in the SMP,
is accessing the shared data, the cache coherency protocol needs to invalidate the data
in the caches of the other cores. This is just an instance of the significant number of
coherency messages that need to be exchanged between the caches to allow the threads to
enter the critical section one by one. This coherency procedure (a.k.a., True sharing [136])
imposes performance overhead that could cost more than one hundred cycles [141]. As the

number of cores/communication pairs increases on a chip, cache line ping-pong resulting
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Figure 3 — Example of a simple application parallelized for N cores.

from true sharing can prevent proportional performance scaling, although the hardware

provides more resources and processing cores.

Dataflow Model of Computation (MoC)

The general availability of SMPs, ranging from HPC to embedded systems, gives the
motivation to explore and enable their benefits for the Dataflow Model of Computa-
tion (MoC) [26, 71]. A Model of Computation (MoC) [122] is a high-level representation
that enables expressing the specification of a complex application independently from the
details of software and hardware implementation. Dataflow is a model of computation used
across various domains, including Digital Signal Processing (DSP), video coding, multi-
media, telecommunication, computer vision, machine learning, etc. In dataflow, applica-
tions are modeled by a graph composed of nodes representing the actors communicating
through FIFOs modeled as edges. Each actor implements well-defined actions (functions),
consuming input data, processing this data, and producing output data. Each edge is im-
plemented by a FIFO connecting a producer actor output to a consumer actor input.
Figure 3 represents an example of a dataflow graph of a producer-consumer application.
In this application, Producer actor generates and writes data into output FIFOs, which
are shared with the actors of Process; to Processy. Actors Process; to Processy, read-
ing this data and after processing, write into the output, FIFO shared with the consumer
actor.

The following features make the dataflow a good candidate to model parallel work-
loads [26]:

1. Well-defined communicating interface: each FIFO can have only one producer and

one consummer.

2. Firing rules: a set of rules that define when the actor can execute (fire) an action.
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In its simplest form, e.g. Synchronous Data Flow (SDF), the actor can start its
execution only when all its inputs are available in its respective input FIFOs. The
theoretical model considers unbounded FIFOs, which is not possible from a physical
implementation point of view. Thus, another rule is that there is enough space in
the output FIFOs. These firing rules are explicitly specified in the application. In
the context of an SMP, having explicitly these firing rules offers the opportunity to

improve the synchronisation of the threads and this is what we show in this thesis.

3. Non-preemptive processing: Once the processing part starts, the actor cannot be
preempted. From a synchronous point of view, the outputs are instantly produced,

whatever the execution time of the action.

From a dataflow specification, code is generated in a given programming language ac-
cording to the hardware platform. In this thesis, we are interested in multi-threaded C
language applications executed on an SMP.

Dataflow applications can potentially lend themselves to expose a fine granularity of
parallelism. However, the same feature can directly contribute to increasing data com-
munication and a higher degree of synchronization over shared data (FIFOs) and hence,
stress the memory hierarchy when mapped on an SMP by imposing extra data traffic due
to coherency. This behavior is specifically studied in this thesis and synchronization in
multi-threaded execution of dataflow applications over SMPs is further discussed in the
following chapters. Dataflow applications can leverage SMPs, which are prevalent plat-
forms, for their faster execution. On the one hand, dataflow applications mainly rely on
producer-consumer data exchange that is simpler than the general form of data sharing
in other types of applications. On the other hand, the degree of sharing can be much finer
in the dataflow model, leading to data access contention by requiring synchronization at a
fine granularity. The Dataflow MoC can break the application to expose a high degree of
Task Level Parallelism (TLP) and allow the application developer to exploit the parallel
hardware resources more effectively in multi-core SMPs through well-defined producer-
consumer communications. This finer granularity of TLP is a double-edged sword. While
it enables using a significantly higher number of cores in the SMP, it also requires more
synchronizations across many more parallel threads. That is, the synchronization curtails
the scalability.

Although frameworks for dataflow applications have been proposed in recent years,
they have not fully studied this challenge as the presence of the cache hierarchy in the

target architecture is not considered. Thus the optimization methods they provide for
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memory management and communication are not well-tailored (well-adapted) to cache
hierarchy. The effects of running dataflow application on SMP is not completely explored
in the literature. Additionally the current state-of-the-art synchronization methods avail-
able on SMP machines, by design, are not suited to the dataflow MoC since they are not
aware of the dataflow behavior. Studying these effects and proposing efficient synchroni-
sation mechanisms dedicated to dataflow applications is the main motivation of the work

described in this thesis.

Motivation

This motivation is described in more details through the example of a simple dataflow
application running on a baseline SMP. As discussed earlier, in a dataflow application,
the actors communicate by exchanging the data tokens through FIFOs. Actors wait for
the availability of data tokens on their inputs to start execution (checking firing rules). A
dataflow framework, responsible for the generation of the code of the application, uses a
communication interface to handle the communication between actors.

In a scenario where a dataflow application is running on an SMP, the FIFOs are placed
in shared-memory as shared data among the actors, and a synchronization method like
semaphore is used as the communication interface to synchronize the actors. When the
actors are mapped on different cores, multiple threads access these FIFOs as critical
resources. After processing the data and writing them into the FIFO, the producer actor
“ups” the semaphore to inform the consumer that the data is ready. On the other side, the
consumer actor is waiting for data to be ready then starts execution, so in order to check
data availability (checking firing rules), it reads the semaphore state. This synchronization
mechanism stresses the memory hierarchy and triggers the cache coherency protocol,
resulting in performance overhead. An example helps to discuss this overhead better. Let’s
consider the example presented in Figure 3, with processing actors executing in parallel
on SMP illustrated in Figure 4. Figure 4 illustrates the cache coherency overhead of
synchronization of this synthetic application. We assume that the Producer, Processing,
and Consumer actors are mapped on coreg, core; and cores respectively. In order to
synchronize between the actors, a semaphore is dedicated. For this scenario, we have a
two-dimension array of semaphores in which each element of this array is dedicated to one
synchronization between a source core and destination core of the data exchange (e.g.,

semaphore|sourcel D][destinationl D)). After corey finishes execution of Producer, it sets
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[ Memory Controller ] [ Memory Controller ]

(a) Writer side (b) Reader side

Figure 4 — Illustration of cache coherency overhead related to synchronization of commu-
nication

the value of the semaphore[0][1] (releasing the lock). As shown in the Figure 4 (a), coreq
by writing into the related cache block of the semaphore|0][1] switches the state of this
block to Modified which is done by sending the ReadEx request coherency message [128].
Following this message, the coherency directory residing in L3 sends the invalid request
message to the caches containing this cache block as shared data; here the L1 and L2
caches of core;. The caches respond to the invalid request message with an acknowledge
message. When core; wants to check the availability of the data produced by coreq in its
input FIFO, it reads the lock, semaphore[0][1] value. Figure 4 (b) shows this procedure
when core; reads the cache block containing semaphore[0][1] value which is invalidated
due to write procedure performed by corey and, hence encounters a read miss. This read
access results in sending read messages down to the coherency directory of L3, which
triggers the procedure of updating the cache block with new data of corey L1 (ReplyD
message [128]). Recall that this coherency procedure could cost more than one hundred
cycles [141].

In our simple application, by breaking the Processing actor into multiple smaller
actors with lighter workload executing concurrently, we achieve a finer-grained parallelism
in the application as depicted in Figure 3. This representation of the application can
exploit the parallel hardware resources in SMP in a more efficient way and can reach
higher performance. The total execution time of the synthetic application with n number

of Processing actors can be defined as follows:
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Figure 5 — Communication synchronization impact in a dataflow application.

Ttotal execution time — -4 serial + Tpar‘allel(n) + Tsynchronization (n) (1)

Where:

Tseriat = TProducer + TConsumer
Toaratiel(n) = Tsequential /T
Tsynchronization(V) = T Producer—> Processing (1) + TProcessing—>Consumer (1)

The execution time of parallel part of application (Zparauer()) has an inverse relation
with the number of threads (n).

Meanwhile, synchronization time of the application has a direct relation with the
number of threads. To study the speedup of our application, we run it on an SMP with a
varying number of cores, from 1 to 64 cores. Figure 5 shows the result of execution time
quantifying the synchronization overhead for our simple dataflow application of Figure 3.
Each actor runs in a different core in a dedicated thread. The parallel actors (1 to N
in case of Figure 3) are replicated, dividing the same amount of work according to the
available number of cores. The figure has two plots, one considers the synchronization
overhead, and the another has such overhead deducted from the application execution
time. It is possible to observe that the synchronization penalties increase according to the
number of cores, representing up to 89% of the application execution time in a scenario
with 64 cores.

As explained above, semaphore synchronization causes cache coherency overhead which
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Figure 6 — Cache coherency overhead in the synthetic dataflow application.

decreases the performance. In other words, by increasing the number of cores, cache co-
herency protocol is more frequently triggered because more synchronization is required.
Figure 6 shows the fraction of cache misses caused by semaphore mechanism using the
same setup of Figure 5. As the number of cores increases, the overhead of cache misses

caused by semaphore also increases.

In summary, the high level of parallelism in dataflow applications helps to efficiently
exploit the parallel processors available in an SMP but, as highlighted by the example, the
actors’ communication imposes significant traffic to the cache hierarchy of SMP because
of synchronization. This problem of dataflow applications in SMP systems, which is not
properly studied in the literature, is the primary motivation behind our study in this

thesis.

The main idea of our proposed technique for synchronization is illustrated in Figure 7.
The scenario in Figure 7(a), is depicting a given dataflow application mapped on SMP
where the actors are communicating via shared FIFOs based on a typical software syn-
chronization mechanism such as the semaphore provided by the POSIX library. On the
right-hand side, Figure 7(b) shows a dataflow-aware hardware logic implemented near the
Level-1 (L1) cache which reduces the synchronization time and hence, leads to speed up
the communication among the actors in the dataflow application. The proposed logic plays
two dedicated roles, one on the producer side and another on consumer side, to handle
the synchronization related to data communication in the FIFOs. On the producer side,
after the data is written to the FIFO, the logic issues a message as notification to the
core that holds the consumer actor. On the consumer side, the module collects all the
messages from the producers as a firing rule to inform the waiting consumer actor as soon

as its related firing rule is satisfied. The proposed module provides to the cores more than
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Figure 7 — Dataflow application mapped on SMP. (a) With software semaphore synchro-
nization. (b) With NM4SMP synchronization

a pure synchronization by also taking in charge the check of the firing rule. Employing
this mechanism avoids the cache coherency traffic resulted from semaphore synchroniza-
tion. This thesis focuses on developing the logic presented in Figure 7(b). The full stack
of the implementation is presented in chapter 4, from software down to hardware level,
implemented in a standard baseline SMP architecture. In this stack, a communication
interface that uses the proposed synchronization solution is implemented at the software
level that employs a driver of the OS level to connect to the hardware logic. In brief, this

contribution helps in making the SMP dataflow-friendly.

Thesis Organization

The two main contributions of this thesis are presented in two different chapters and

are summarized as follows.

1. Cache evaluation and memory management techniques: This first contribu-
tion contains two parts. At first we perform a comprehensive study of the behavior of
dataflow applications on SMP from a cache hierarchy point of view. This kind of in-depth
study was missing in the literature. A generally accepted idea is that bigger and multi-level
caches improve the performance of applications. This work evaluates such a hypothesis in
a broad experiment campaign adopting different multi-core configurations related to the
number of cores and cache parameters (size, sharing, controllers). The results show that

bigger is not always better, and the foreseen future of more cores and bigger caches do
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not guarantee software-free better performance for dataflow applications. Secondly, the
memory management optimization methods employed by the current frameworks do not
generally exploit the cache hierarchy of the shared-memory multiprocessors efficiently for
dataflow applications. For instance, PREESM framework uses exclusively memcpy () for
Broadcast actors which results in the eviction of useful data in the cache. This is known as
cache thrashing. In this thesis, we investigate the adoption of two existing memory man-
agement strategies for dataflow applications: Copy-on-Write (CoW) and Non-Temporal
Memory (NTM). These techniques allow to bypass the cache hierarchy and reduce the
cache thrashing. We show through experiments that in some cases, these techniques can

optimize the data movement in the cache hierarchy and improve the performance.

2. Notifying Memory for SMIP (NM4SMP) for dataflow communication: The
communication interface relying on software semaphores used by existing dataflow frame-
works has cache coherency overhead that penalizes the performance of the application
running on an SMP. In this thesis we provide a novel communication interface using a
near-memory processing implementation. Our contributions in this section are summa-
rized as:

« A HW/SW co-design, including library, driver, and a near-memory hardware on-
chip device to synchronize dataflow actors, called NM4SMP (Notifying Memory
for SMP).

e A methodology to integrate the NM4SMP co-design in the process of dataflow
modeling, code generation and compilation of reconfigurable and static applica-
tions.

o A detailed power and performance evaluation of static and reconfigurable dataflow

applications using NM4SMP for generic and low-power processors.

The rest of this document is organized as follows:

o Chapter 1 provides detailed background on multiprocessor architectures, memory
hierarchy, synchronisation and the simulator used for our experiments.

o Chapter 2 presents Dataflow MoCs and rapid prototyping tools, with an emphasis
on the existing tools used for our experiments: PREESM and the SPiDER runtime
management layer.

o Chapter 3 presents the first contribution of this thesis: the behavior of dataflow

applications on SMP and the use of existing dynamic memory management tech-
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niques.

Chapter 4 presents the second contribution of this thesis: Notifying Memory for
Shared-memory Multiprocessor (NM4SMP) for dataflow applications. We propose
NM4SMP for static dataflow applications as well as reconfigurable dataflow ap-
plications that are managed by a runtime management layer. We also present the

evaluation and results of our approach.
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CHAPTER 1

SYMMETRIC SHARED-MEMORY
MULTIPROCESSOR (SMP)

This chapter provides the background required to understand the main architectural
and related synchronization concepts addressed in this thesis. It is divided in four sections.
The first one discusses shared-memory processors (SMP) and delves into the various
aspects of the architecture that impacts the correctness and performance of execution
of applications. The second one focuses on the synchronisation mechanisms available to
allow the safe sharing of data between concurrent threads. Then we come back on the main
concepts related to the caches used to speed up access to potentially shared data. Finally,
we explore the multicore simulators that are used to evaluate the proposed solutions in

SMPs, and evaluate the simulator we utilized for our research in this thesis.

1.1 Symmetric Shared-memory Multiprocessor (SMP)

Symmetric Shared-memory Multiprocessor (SMP) is the highly dominant solution for
current processor chips. SMP contains two or more processing elements (cores) sharing
the same unique logical memory address space and is generally managed by one Oper-
ating System (OS) [116, 42]. An SMP architecture includes a single chip that comprises
multiple cores which are connected to a physically shared main memory. Although a
SMP might be designed without any cache, a commercial SMP is now built upon shared
caching subsystem [116, 42]. This kind of architecture is the starting point of this thesis,
and illustrated in Figure 1.1. It is composed of several tiles. The tiles are homogeneous,
with the same hardware architecture. Figure 1.1 shows an example of a cache with three
levels. Levels 1 and 2 are embedded inside the tile, working as private cache memories.
The last-level cache (LLC), level 3, is shared by all the tiles and also interfaces with
a memory controller. The memory controller interfaces with an off-chip main memory.

The SMP assumes a shared memory that implements a cache-coherence protocol. Such a
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[ Memory Controller ]

Figure 1.1 — Reference multi-core with symmetric processing (SMP) assumed in this work.

cache organization is common in commercial products, it is for instance adopted in the
SMP architectures used for our experiments in this thesis (Intel Xeon and Atom) [65].
Subsection 1.3 enters in details about cache mechanisms.

The tiles are interconnected by a bus or by a Network-on-Chip (NoC). A NoC is an
on-chip communication infrastructure to interconnect tiles, decoupling the computation
from communication. The NoC structure contains routers and wires. Routers have the
function to implement the network control logic, defining the path for each exchanged
packet between a source and target tile. Wires have the function to interconnect routers
and to connect each router with its local tiles. While buses are typically used in multi-core
with low core counts, NoCs are preferred in many-core architectures due to their benefits

against the bus, as parallel communication among tiles and scalability [100, 19].

1.2 Synchronization for SMP

Our work focuses on providing specialized hardware mechanisms for synchronisation
in dataflow applications. As such, it is related to previously proposed synchronization
mechanisms that are surveyed in this section, which were (and still are) studied indepen-
dently of the number of cores or the use of caches. The synchronisation issue is further

exacerbated by the use of caches, and is specifically discussed in the next section.
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The advantage of shared-memory is that the application developer sees the memory
as one, and all the cores can access all the memory locations. An important problem is
to synchronize the shared memory accesses among different threads running in parallel.
The synchronization means that threads must find an agreement with other threads to
exclusively access to the shared data. The region of the thread program that accesses
the shared data is called critical section. Critical sections are synchronized by ensuring a
mutual exclusion access between the threads. The system used to protect the critical region
is called a lock. Note that ultimately all software-based mutual exclusion lock algorithms
are based on Atomic Memory Operations (AMO) at hardware level [108]. AMO means
that the memory operation performed by the core is indivisible; therefore, no other entry
can slip or suspend the operation involved in the AMO while the AMO was not finished.

According to the number of independent processes that compete for the same critical
resource, and their frequency of access, it is possible to measure the contention. The con-
tention occurs whenever one process or thread attempts to acquire a lock held by another
process or thread. The finer-grained the available locks, the less likely one process/thread
will request a lock held by the other. For example, locking a row rather than the entire
table or locking a cell rather than the entire row will be less prone to contention.

In the next sections, we provide a comprehensive survey of studies on synchronization
approaches at different abstraction levels. A lot of optimized synchronization solutions
have been proposed by the researchers at software [95, 125, 36, 10, 54, 135], ISA [146,
139] and hardware level [80, 141, 46, 98, 132, 34, 47, 1, 3, 2, 81, 103, 84, 138, 149, 52, 69,
92].

1.2.1 Synchronization Support in Software

This section introduces the main concepts related to software synchronisation, using
the example of the most adopted techniques available in the main stream OS, including

Linux.

Spin-lock

Spin-lock is the most basic form to implement a lock. In summary, the threads perform
a loop that constantly checks the value of a lock variable, shared among all cores. This
checking is performed by AMO. A spin-lock is a lock which causes a thread trying to

acquire it to simply wait in a loop (“spin”) while repeatedly checking whether the lock
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Algorithm 1: Example of spin-lock used in RISC-V

/* RISC_V spin_lock and unlock implementations */
void spinlock(lock *lock value){
bool locked;
//Spin lock
do {
locked = CAS(lock value, 1, 0);
}while(!locked);

® N O 0k W N

}

is available through Read-Modify-Write (RMW) operation [9]. Since the thread remains
active but is not performing a useful task, the use of such a lock results in a busy waiting.

Once acquired, spin-locks will usually be held until they are explicitly released.

Conventional designs employ either busy waiting or blocking for waiting. With busy
waiting, waiting threads remain active, polling the lock until they manage to acquire it.
With blocking, waiting threads release their hardware context to the OS. The OS is in

charge of unblocking these “sleeping” threads when the owner releases that lock [10].

Algorithm 1 presents a function using CAS (Compare And Swap) instruction which is
the basic implementation of atomic RMW lock operation, to acquire the lock in a RISC-V
processor. When a thread calls this function it enters a while loop and in CAS, it compares
the lock value with 1 if it is equal it means that the lock is successfully caught then swap
it to 0 and returns True. If the lock value is equal to 0 it means that the lock is caught

by another thread and CAS returns False so the thread should try again.
Test-and-Set (TAS), Test-and-Test-and-Set (TTAS), and ticket lock [95] (TICKET)

are spinlock types in which threads spin the locks on a single memory location in busy
waiting mode. Because of the simplicity of spinlocks, they are fast; however, it is a mech-
anism that will lead to higher degrees of contention when multiple threads are competing
to acquire the lock. The main downside with spin lock is that it leads to three problems:
(1) the atomic spin-lock operations such like compare_and_swap is by definition non-
preemptible, and waiting for the operation to perform degrades the performance as the
number of competing processors increases; (2) In multi-threaded systems, a thread that is
preempted during its critical section (meaning that it keeps the lock and no other thread
can access to the shared resource) can delay every other threads that needs to acquire the
lock [144]. This is typically known as the inversion of priorities. (3) It is noticeable that

waiting processes stress the cache by spinning the lock which is energy consuming as they
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need cache consistency and messages in coherency protocol [129]. In proposed efficient
lock techniques, an Operating System as Linux, put the waiting threads on sleep instead

of staying in a busy waiting state and constantly spinning the lock.

Mutexes and Semaphores

Mutexes: Mutex or Mutual Exclusion Object provides access to a shared resource so
that all the processes use the resource, but only one process is allowed to use the resource
at a time. Mutex uses the lock-based technique to handle the critical section problem.
The system will generate a mutex object with a unique name or ID whenever a process
requests access. So, as the process wants to use that resource, it holds a lock on the
object. After locking, the process uses the resource and lastly releases the mutex object.
By locking the object, that shared resource is allocated to that particular process, and no
other process can take the resource. Hence, in the critical section, no other processes are

allowed to use the shared resource.

Semaphores: In semaphore synchronization technique, threads utilize two functions
to modify the semaphore value wait() and signal(), but the functions allow only one
thread to change the value at a specific time, i.e., two threads cannot simultaneously
change the semaphore value. There are two types of semaphores; Counting semaphores
and Binary semaphores.

In Counting semaphores, at first, the semaphore value is initialized with the number
of resources available. Afterward, whenever a process demands some resource, the wait()
function is called, and the semaphore value is decremented. The process then uses the
resource, and after using the resource, it increments the semaphore value by calling signal()
function. So, as semaphore value becomes 0, it means that all the shared resources are
being used by the processes and there is no resource left to be used. Any other processes
demand the resources, then they need to wait.

In Binary semaphores, the semaphore value can be 0 or 1 and it is initialized with 1.
When one process wants to use some resources, it calls the wait() function and sets the
semaphore value to 0. It uses the resource, and then by calling the signal() function and
setting the semaphore value to 1, it releases the resource. When the semaphore value is
0, and a process wants to use the same resource, the process needs to wait for it to be
released by the previous process.

Semaphores and Mutexes are both sleep-wait spin-lock, i.e., while a process or thread
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can not take the lock (Mutex) or is waiting for the semaphore value to become positive,

the operating system puts the thread on sleep.

The differences between mutex and semaphore are as follows: as Mutexes employ
a locking mechanism for synchronization, the semaphore techniques employ a wait and
signal mechanism. In synchronization using mutexes, multiple process can access one
shared resource but only one process at a time. The semaphore technique also allows
multiple processes to access the finite number of the resource until some resources become
free. In mutex mechanism, the lock can be acquired and released by the same process.
Conversely, the semaphore value can be changed by any process that needs some resource,

but only one process can modify the value at a time.

Parallel Application Programming Libraries

Parallel application programming libraries are used to ensure a transparent and clear
programming method to parallel application developers. They contains a set of Appli-
cation Programming Interface (API) focused on allowing the developer to model the
application following a parallel paradigm. The developer can call such API functions of
programs in the code, allowing the OS to dynamically create new threads and to manage

its execution among different cores.

POSIX Threads (Pthreads) libraries are standard-based thread APIs for C/C++, sup-
ported in Linux. It allows one to create a new parallel process flow. Pthread is the most
efficient on multiprocessor systems where the process flow can be scheduled to be exe-
cuted on another processor to gain parallelism to achieve performance. Threads require
less overhead than “forking” or creating a new process because the system does not ini-
tialize a new virtual memory space and environment for the process. While most effective
on a multiprocessor system, Pthreads benefits are also noticed on uniprocessor systems.
Uniprocessors exploit latency in I/O and other system functions that may stop process
execution, i.e., one thread may execute while another is waiting for I/O or some other
system latency. All threads from the process share the same address space. A thread is
created by defining a function and its arguments which will be processed in the thread.
The main goal behind using the POSIX thread library in the program is to speed up its

execution. Some parallel programming approaches like OpenMP rely on Pthread library.
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Queue-based synchronization

Another group of synchronization techniques is based on queues. The queue-based
techniques can mitigate the contention problem of the spinlock approach. These ap-
proaches substitute a single lock variable (or the boolean flag of a test and set lock)
with a queue of waiting threads. Each thread knows its own place in line: it waits for
its predecessor to finish before entering the critical section and signals its successor when
it is done [125]. To reduce the contention problem, Mellor-Crummey and Scott [125]
showed how to adapt queued spinlocks to the reader-writer case. Specifically, they pre-
sented reader-preference, writer-preference, and fair reader-writer locks based on the MCS
lock.

MCS [125] and CLH [36] are queue-based spinlocks that create a queue of waiting
threads where each thread is spinning on a unique location when busy waiting. Thus
queue-based locks solve the problem of the single-memory-location bottleneck of simple
spinlocks.

Some solutions combine multiple lock types to benefit from their advantages in specific
situations. For instance, Antic et al. [10], introduce GLS, a middleware that dynamically
switches among three locking algorithms (Ticket, MCS [125], Pthread mutex). It uses
Ticket at low contention levels, MCS at high contention levels, and Pthread when it
detects over-threading (i.e., more threads than cores).

A recent comprehensive analysis on software synchronization methods is presented by
Guerraoui et al. [54]. Their research performs a thorough study considering throughput
(traditionally the primary performance metric), energy efficiency, and tail latency of 28
state-of-the-art mutex lock algorithms, on 40 applications, on four different multicore
machines. They have achieved significant findings including: i) rather than lock/unlock
interface, applications stress the full locking APT (e.g., trylocks, condition variables), (ii)
application performance can be directly affected by the memory footprint of a lock, (iii)
the interaction between locks and scheduling is a significant factor for performance (iv) no
lock algorithm is systematically the best, (v) it is difficult to choose the best lock, and (vi)
in the context of lock algorithms, energy efficiency has a direct relation with throughput.

To the best of our knowledge, the approach introduced by Szustack [135] is the only
proposed software synchronization solution regarding dataflow applications for shared
memory multicore architectures. This work introduces a strategy to speedup the thread
synchronization for dataflow applications at the software level. The approach consists

of synchronizing interdependent threads only by grouping them at the software level,

35



Chapter 1 — Symmetric Shared-memory Multiprocessor (SMP)

instead of using global barriers. Interdependent threads have producer-consumer data
dependencies. This approach is evaluated over two Stencil-based dataflow applications.

Stencil is a class of numerical data processing solution which updates array elements
according to some fixed patterns. In this algorithm, a single synchronization point called
is used to synchronize a group of interdependent threads. This synchronization point uses
a counter that contains the number of threads in the group and a global release flag.
Once one of the threads in the group arrives to the synchronization point, the counter is
decremented and the thread is suspended until the global flag is released. The flag is only
released when all the threads have arrived and the counter has reached zero. A separate
flag is used to release all the waiting threads. The synchronisation model proposed is
limited to stencil style of programming and additionally it is still a centralized software-
based mechanism that is prone to contention between the threads. It is not a viable
solution for our problem, which needs a scalable solution. Our proposition, in contrast,

considers pairs of producer-consumers and is not centralized.

1.2.2 Synchronization Support in the ISA

Contrary to the software synchronization approaches in which typically a thread or a
process is spinning on a lock value, some processors propose event-based mechanisms for

synchronization in their Instruction-Set Architecture (ISA).

Among commercial ISAs, ARM instruction-set [146] includes several instructions for
synchronization, Set Event (SEV), Wait For Event (WFE), Wait for Interrupt (WFI), and
Yield. The SEV causes an event to signal to all cores within a multiprocessor system. The
event is monitored by the WFE instruction through an Event Register. Intel ISAs offer the
XCHG instruction to compare and set locks and the TEST for checking the status of the

locks without changing its value.

In a different vein, the VAX instruction-set [139] supports hardware-accelerated queues.
It has different instructions for communication on the hardware queue. The VAX instruc-
tions INSQHI, INSQTI, REMQHI, and REMQTI allow insertion or removal at the head or tail
of a self-relative double-linked list. These instructions are interlocked and cannot be in-
terrupted; this feature stops other processors from updating the queue at the same time.
These complexities make it complicated to reach high performance, and programmers

often prefer to implement their own software queues [80].
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1.2.3 Synchronization Support in Hardware

In this section, we overview the existing synchronization solutions in hardware. The
studied hardware synchronization approaches can be categorized into different groups
according to the techniques employed to accelerate the synchronization. The techniques
include: (1) employing queue-based approach (2) accommodating the synchronization
primitives in local memories or network interface to avoid shared memory accesses (3) by-

passing the shared memory using a dedicated network for synchronization messages.

Queue-based Synchronization

In the first group, synchronization solutions primarily employ a queuing mechanism
for synchronization approach [80, 141, 69]. Using queues are common in data communica-
tion and synchronization approaches of parallel programs. The Q-based approaches are
efficient for the parallelism that are coarse-grained enough to amortize the enqueue and
dequeue cost [80]. The hardware Q-based approaches are introduced to reduce the over-
head of the software Q-based communications related to enqueue and dequeue operations.

As managing software queues in synchronization of fine-grain parallelism is expen-
sive [80], several works introduced hardware synchronization approaches focus on hard-
ware queues to decrease the overhead [80, 141, 69, 138]. However, they require ISA mod-
ification and custom interconnect. Additionally, they impose burdens on the operating
system in terms of preserving the states of the queues across context switches.

The Hardware-Accelerated Queue (HAQu) [80] takes advantage of the benefits of hard-
ware queuing while maintaining the benefits of software queues. Their proposed design
provides three fundamental features: (1) it supplies a single instruction for enqueuing/de-
queuing which decreases the overhead of fine-grained communications; (2) HAQu leverages
on-chip interconnect and cache coherence protocol for transferring data from producer to
consumer; (3) it solves the problem of context switch overhead of the OS. In HAQu, the
queues states are entirely stored in the virtual address space of the application. With
the help of these features, HAQu solution provides higher throughput and lower latency
compared to optimized software implementations. Communication Acceleration Frame-
work (CAF) [141], similar to HAQu, introduces a co-optimized software and hardware
solution to accelerate the hardware queue operations. In CAF, they offload the communi-
cation responsibilities from processor and memory to a dedicated hardware device, Queue

Management Device (QMD), attached to the Network on Chip to improve core communi-
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cation. Contrary to HAQu, CAF does not impose memory access and coherency overhead.
Moreover, it has less core modification than HAQu (only three new instructions added to
ISA).

Swarm [69] is a scalable tiled multicore architecture designed for the applications pre-
senting the ordered irreqular parallelism in their execution pattern. Swarm architecture
employs implicit communication, which is a commit protocol using hardware task queues.
They use hardware queues for their proposed scheduler to synchronize the tasks. Applica-
tions with ordered irregular parallelism can be characterized by three main features [111,
59]. (i) Each task is an event (ii) which starts execution at specific time and modifies a spe-
cific component. (iii) Tasks dynamically create other tasks. This parallelism is abundant
in many domains like simulation, graph analytics, and databases.

The Swarm execution model consists of distributed task queues, speculative out-of-
order task execution, and ordered task commits, which helps Swarm’s micro-architecture
scale efficiently.

Vallejo et al. [138] introduce a Lock Control Unit (LCU) with a Local Reservation
Table (LRT) that manages the hardware locks queues. LCU is attached to the core to
accelerate reader-writer locking for core-to-core transfers. The authors assign the hardware
locks to the lock requester by associating the thread ID of the lock requester to the lock.
By doing so, the locks are decoupled from the cores and hence, provide efficient threads

migration.

Accommodating Synchronization Primitives

Since memory access in synchronization operations is always a bottleneck, in order
to accelerate synchronization, the researchers try to avoid shared memory access. The
second group of hardware synchronization approaches are the solutions in which the syn-
chronization resources are accommodated in local memory of Network Interface [46, 98,
47, 84, 2, 3, 81, 103].

Storing the lock values in a dedicated local memory makes synchronization accesses
faster rather than when they are placed in shared memory. This approach is the inspiration
of the works presented in [46, 98, 47, 34]. Ferri et al. [46] introduce a distributed hardware
semaphore synchronization where cores spin on the lock value in their local Scratched
Pad Memory (SPM) instead of shared memory. By offloading semaphore accesses from
the system bus to a dedicated local and shared-memory for semaphores, this approach

provides performance improvement and energy efficiency.
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Monchiero et al. [98] present a solution based on the idea of managing the synchro-
nization operation requests (spinlocks and events) locally using a hardware block called
Synchronization-operation Buffer (SB) in the memory controller. Based on the fact that
the synchronization primitives can create considerable memory and interconnect con-
tention, the SB technique uses first—in first-out (FIFO) to order the pending lock requests
in a queue. By employing this ordering approach they prevent the lock starvation. Be-
sides, this approach by monitoring the contended shared variable avoids the contention.
The approach proposed by France-Pillois et al. [47] employs a decentralized hardware syn-
chronization solution for MPSoCs. They provided a dedicated memory for dynamically
automatic re-homing of the locks to benefit from spatial locality. This approach promotes
the lock access time and decreases overall access latency and network traffic resulted by
synchronization accesses.

Giannoula et al. [52] propose synchronization solution for Near-Data-Processing sys-
tems and propose an end-to-end (message-passing) synchronization solution called Syn-
Cron. In their approach each NDP has a local synchronization management unit which
passing the synchronization messages to the master synchronization management unit in
another NDP to handle it. The master management unit manages all the locks using a
table which contains all the lock information of the system.

Zhu et al. present a Synchronization State Buffer (SSB) for fine-grain inter-thread
synchronization. SSB is a scalable hardware design attached to the memory controller of

each memory bank [149].

Dedicated Interconnection for Synchronization Primitives

The second approach to reduces memory overhead of synchronization is bypassing the
memory by dedicating specific interconnect for handling the synchronization.

Abellan et al. in [3] propose a fast and efficient dedicated network for barrier syn-
chronization and highly-contended locks. They have designed a simple and scalable G-
line-based network that operates independently of the main data network, and that is
aimed at carrying out barrier synchronizations efficiently. In another work of the same
team [2], they propose and evaluate GLocks, a hardware-supported implementation for
highly-contended locks in the context of many-core CMPs. GLocks use a token-based
message-passing protocol over a dedicated network built on state-of-the-art technology.
This approach skips the memory hierarchy to provide a non-intrusive, extremely efficient

and fair lock implementation with negligible impact on energy consumption or die area.
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CMS5 [81] provides a barrier primitive via a dedicated physical network. TLSync [103] em-
ploys the high-frequency part of the spectrum in a transmission-line broadcast network
for implementing the hardware barrier. In [1] a global fine-grain synchronization using low
latency on-chip wireless communication called WiSync is introduced for shared-memory
architectures.

Besides all above reviewed approaches, the solution introduced by Cataldo et al., [34]
benefits from both two techniques; using local memory for the locks and handling the syn-
chronization operations in interconnection networks to reduce the shared memory access
overhead. They propose a HW/SW co-design architecture called Subutai that handles all
the Pthread synchronization primitives (mutex, condition, barrier) in the network inter-
face. Moreover, Subutai uses a local Scratched Pad Memory to store the synchronization
primitives and queues to record threads waiting for new events on the primitives. More-
over, they have employ a dynamic technique for memory usage in which a double-linked
list of events is employed to dynamically allocate the queue entries which allows Subutai
to consume memory on demand.

Contrary to the approaches based on avoiding shared memory accesses for synchro-
nization, Liang et al. [84] introduce a solution in which the synchronization primitives
are placed in the shared memory. Their proposed approach called MISAR is a distributed
hardware synchronization accelerator for tiled multiprocessors chips. It includes hardware
locks called MSAs (Minimalistic Synchronization Accelerator) which supports all thread
synchronization types (locks, barrier and condition variables) for tiles along with an Over-
flow Management Unit (OMU). MSA of each tile which contains all the locks of the tile is
placed in the LLC of the tile. The OMU dynamically switches to the software exception
handler when the number of synchronization variables are much larger than the number of
hardware synchronization resources. They have also proposed ISA extensions to facilitate

adopting their proposed synchronization library.

1.2.4 Qualitative Comparison

This dissertation exclusively focuses on providing a specialized hardware synchro-
nization mechanism for dataflow application. The proposed synchronization mechanism,
named NM4SMP, is specifically focused on the dataflow MoC and compliant with SMP
architecture and programming models. It is thus different to all generic solutions previ-
ously mentioned and to Notifying Memory concept, already developed in the team, which

is Dataflow-specific but for a distributed memory architecture without cache memory.
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Table 1.1 — Related works addressing data synchronization for parallel applications.

Solution Designed for ISA Ext. Q-based Spin-Wait Direct Notif. Overflow Management Scalability
TICKET [95] Parallel applications X X v X - X
o || MCS [125] Parallel applications X v v X - good
£ || CLH [36] Parallel applications X v v X good
= || GLS [10] Parallel applications X vF vF X - X
? | Soustak 135)  Dataflow applications x x v x - -
with stencil computation
< || ARM [146] Parallel applications X X v v
Z || VAX [139) Parallel applications - v X v - v
Applications with
HAQu [80] Qﬁ?ased communication v v B B X Cond.
Applications with
CAF [141] Q-based communication v v x good
o || LCU [138] Parallel applications v v v v v’ Partially integrated good
2 || SB (98] Parallel applications X X v v X good
”E MISAR [84]  Parallel applications v v X v v Handled by programmer good
ﬁ SSB [149] Parallel applications X X v X v’ Partially integrated single-chip
Swarm [69] A.pplllcatll().ns with . v v X - V' Fully integrated good
ordered irregular parallelism
NM [92] Dataflow applications X X X v - good
NM4SMP Dataflow applications X X X v v good

In this context, this section provides a qualitative comparison of the related works
and position our proposed solution, NM4SMP, among them. Table 1.1 summarizes the
existing approaches based on the prevalent metrics of communication methods ranging
from implementation metrics (legacy code, implementation cost, etc.) to the parameters
related to the performance (Spin-Wait, Overflow management, etc.). At the end of the
section we perform a comparison and differentiation of our method with these approaches.

The column Designed for details the application type that the work is targeting.
As can be seen, most of the approaches are provided to support Pthread-based parallel
applications [80, 142, 95, 125, 36, 10, 146, 139, 138, 98, 84, 149].

The specific microarchitecture Swarm [69] supports the applications with ordered irreg-
ular parallelism in their computation pattern. Ordered irregular parallelism is abundant
in many domains, such as simulation, graph analytics, and databases. In this applica-
tions each task is an event (e.g., executing an instruction in a simulated core). Each task
needs to run at a specific simulated time (introducing order constraints among tasks),
and modifies a specific component (possibly introducing data dependencies among tasks).
Tasks dynamically create other tasks (e.g., a simulated memory access), possibly for other
components (e.g., a simulated cache), and schedule them for a future simulated time.

To the best of our knowledge, there exists only two works proposed for dataflow appli-
cations: (1) a software synchronization solution presented by Szustak et al. [135] designed
for the dataflow applications with stencil computation, (2) a hardware synchronization

solution introduced by Martin et al., called Notifying Memory [92] for dynamic dataflow
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applications. The Notifying Memory approach laid the foundations of this thesis, but the
first prototype was implemented in the network interface of a network-on-chip of a dis-
tributed shared memory architecture, with no cache. The experiments in their work are
performed for a single application (MPEG4-SP) whereas we study several applications,
with different behaviors and characteristics. Moreover, the results focus only on the traffic
at network level, whereas we consider the whole platform, including the impact on the
execution time. Finally, we implement the solution in the L1 cache of a commercial cen-
tralized shared memory architecture with a cache hierarchy, which raises new challenges,
like a close coupling to the processor and a controller that deals with the notifier and

listener simultaneously.

The column ISA Ext. classifies the works that require extending the ISA to implement
the proposed technique. In some hardware approaches, HAQu [80], CAF [141], LCU [138],
MISAR [84], Swarm [69], an extension to the existing ISA is required to exploit the under-
lying hardware. Hence, this feature is solely related to the hardware solutions. Moreover,
adding new instructions requires modifications to the decoder of processors which adds to
the implementation cost [108]. Among the solutions, HAQu [80], CAF [141],LCU [138],
MISAR [84] and Swarm [69] have ISA extension while SB [98], SSB [149], Notifying Mem-
ory [92] and our proposed solution, NM4SMP, do not impose any ISA extension overhead.

The column Q-based classifies the works that provide optimisations targeting to use
queue-based communication. The HAQu [80], CAF [141], LCU [138] and Swarm [69] em-
ploy the queue-based synchronization approaches. As mentioned, queue-based techniques
are not attractive for fine-grain parallelism due to expensive enqueuing and dequeuing
operations. Being highly vulnerable to preemption is a hidden draw-back of queue-based
techniques [60]. The feature Spin-Wait classifies the works targeting spin-wait synchro-
nization. A spin-wait method performs constant synchronization retries. Typically, ma-
jority of the synchronizations with remote atomic primitives, read-modify-write (RMW)
operations, require spin-wait mechanism which provokes high energy consumption due
to incurring traffic across NoC and memory hierarchy to ensure the consistency of the
lock. Additionally, these spin-wait locks do not scale beyond a modest number of proces-
sors [60]. As presented in the table, all of the software approaches employ spin-wait for
acquiring the synchronization value [95, 125, 36, 10, 54, 135]. In ISA solutions, ARM [146]
and VAX [139] architectures, specific instructions are provided to interrupt the waiting

core and hence it does not need busy-waiting as they handle it via event and interrupt.

Among hardware solutions, the proposed approaches, LCU [138], SB [98] and SSB [149],
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employ spin-wait in local memory technique to avoid cache coherency overhead. Our pro-
posed approach does not need spin-wait and even in local memory we check whenever the

local memory is updated.

The column Direct Notification classifies works that employ the technique of Direct
Notification. In such a technique, a direct notification message is sent to only the waiting
core when the synchronization variable becomes available. This mechanism minimizes the
traffic involved upon a release operation [52]. The ISA and hardware approaches employ
a notifying mechanism rather than spin-wait to avoid the resulting traffic of spin-wait on
memory hierarchy and NoC. Hardware implementation of the direct notification usually
requires a high cost of implementation, for instance, a dedicated interconnect network
for the notification message. Hence, some approaches, SB [98] and SSB [149], benefit
both techniques which is notification-based aligned with spin-wait based. MISAR [84],
LCU [138] and Notifying Memory (NM) [92] employ a notification-based mechanism to
directly notify the waiting core. MISAR as well as other approaches provides thread level
synchronization. Our approach is also a direct-notification-based technique that supports

dataflow applications.

The column Overflow Management classifies works that support overflow manage-
ment. The overflow management is a feature needed specifically for the solutions imple-
mented in hardware. Due to limited hardware resources in a hardware communication
mechanism, a resource overflow manager is required to guarantee the correctness of the
application execution when synchronizations tracking are exceeding the hardware struc-

tures (memory, buffers) dedicated to synchronization.

SSB [149] and LCU manage the overflow of hardware lock resources using a pre-
allocated table in main memory and at overflow time they switch to software exception
handlers which impose a large overhead due to the OS intervention [52]. MiSAR [84]
requires the programmer to manage the overflow scenarios by switching to the software
synchronization alternatives (e.g., pthread library provided by the OS). In SWARM [69]
also when the task queues are fulled by removing the non-speculative tasks from the queue
and storing them in memory to be re-enqueued later it gives the illusion of of unbounded
hardware task queues [68, 75, 120]. Our approach to handle the overflow is similar to
MISAR approach and we switch to the default software synchronization library for the
synchronizations that exceed the limited resources. For static dataflow applications as the
behavior of the application is anticipated at compile time, overflow is handled at compile

time, hence it does not impose any overhead. For reconfigurable applications, dynamically
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at runtime, with help of runtime manager, software synchronization will be employed as
the hardware lock resources overflow.

The last column of Table 1.1 classifies the works according to Scalability, referring
as the capability to keep performance level when the number of communication requests
increase [149]. With a large number of cores, due to low scalability of conventional hard-
ware coherence protocols [61, 72, 73, 129] the coherence-based synchronization approaches
perform unsuccessfully. Single-line locks result in coherent contention and scale poorly,
while queue-based approaches solve problem and scale very well [138]. As can be seen
in the table, among the software solutions, which are typically lock based, only two so-
lutions, MSC [96] and CLH [36], have good scalability and most of the queue based
hardware approaches are scalable. However, scalability is also critically restricted by the
long transfer latency and low bandwidth of the interconnect used between the cores [52]
as HAQu [80] is able to scale-up and achieve high throughput on next generation intercon-
nects. Our communication solution is not coherency based approach, that is, it does not
use coherency protocol for lock transfer. Instead, it employs direct notification as synchro-
nization variable, thus, by increasing the number of synchronizations due to scaling the
system NM4SMP does not suffer from the cache hierarchy overhead and hence, provides

good scalability.

1.3 Caching: terminology, mechanisms, and synchro-

nisation

The focus of this document is on physically shared memory architectures that use
caching. Caching has been intensively studied during the last decades (and still is). This
section does not go into the details of the most advanced techniques but introduces the
terminology and the main concepts to understand the contributions of this thesis.

A good way to understand the cache concept is to use the library’s example from
Patterson’s book [108]. Imagine a student seated at her/his desk inside a library. While
she/he is studying, some books need to be brought and placed on the desk to make a
quick consult. While the effort to read a book from the desk is very low, the space of the
desk is limited, and the student can not have all the books on the desk at the same time.
Therefore, it is necessary to return to the shelves, pick the required book, and bring it
to the desk to read. As the research of the student progresses, more books are needed to

bring to the desk, and the space of the desk becomes limited. So the student needs to
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return some books back to the shelves to open space for the new ones. It is important to
keep the books more accessible on the desk and maybe, if the desk has free space, bring
some additional books, closely related to the subject, imagining that they will be referred
soon.

This famous example quickly introduces some fundamental concepts of cache and, at
the same time, its challenges. The student can be considered as the core processor. The
books are considered as data blocks, and the library can be considered as the main memory
which is located off-chip. The blocks are the smallest unit of data transferring between
the cache and main memory. The desk of the student can be considered as L1-cache of
Figure 1.1. The L2 cache is as mid-level cache (MLC) if the student decided to put an
additional desk next to the main desk. The access to L2 will not be as fast as L1 but
can still have reasonable access time from the core perspective. The L3 cache as last-level
cache (LLC) is also another auxiliary desk. However, the last level cache is frequently
shared with other cores. The decision to keep the books accessed more frequently in the
closest desk can be considered temporal locality, and the decision to put the books with

a close subject on the closest desk to access soon is considered spatial locality.

1.3.1 Basic terminology

The following items present a more detailed definition of the concepts related to caches.

Cache miss/hit: When a read or write access to data that is not available in cache
occurs, this is called a cache miss. Conversely, when the data is already in the cache,
this is called a cache hit. The miss rate (the ratio between the number of misses and the
number of accesses) is an interesting metric to evaluate the efficiency of a cache. Reducing
cache misses is important to reduce the number of accesses to other levels of memory and
contributes significantly to improve the execution time of an application and save energy.

Finding the lowest miss rate for a set of benchmarks is the main quest of a cache designer.

Temporal locality: Temporal locality is the locality tendency in time, which stands

that if a data is referenced now, it will tend to be referenced again soon.

Spatial Locality: Spatial Locality is the locality tendency in space, which stands that
if a data is referenced now, the data close to it in memory tends to be referenced soon.

Thus, this data is not brought in the cache alone, it comes within a block.
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Cache block (or line): The cache block is the minimum addressable unit of data in a
cache. Data transfer in or out of the cache is done in cache block unit, also referred some-
times as cache line. A common block size in current architectures is 64 or 128 bytes. The
size of the cache is then defined by the block size and the number of blocks. Determining
the good size of blocks and number of lines in the cache has been the subject of several
studies. A bigger block increases the chance of spatial locality but also the risk of false
sharing. Increasing the number of lines introduces hardware complexity that affects the
performance. This kind of study (though interesting) is out of the scope of this thesis. In

our work, we did not explore this dimension.

Private or shared cache: A private cache can only be accessed by its corresponding
core. Since there is no interconnect, it is accessed with high bandwidth and low latency,
e.g. L1 cache in Figure 1.1. A shared cache is accessed by all the cores. It has a constrained
bandwidth to share data and due to interconnect there is longer access latency, e.g. L3

cache in Figure 1.1.

Inclusive or exclusive cache: In the inclusive cache, the lower-level cache includes
all the data blocks of the higher-level cache. In exclusive cache, each data block can exist

only in one level of cache hierarchy [67].

Replacement policy: Since the cache size is limited, the issue comes to evict one of the
cache blocks to make room for the newly fetched block. There are many possible policies,
which have also been intensively studied, to decide which cache block should be evicted
from the cache. For example, the Least Recently Used (LRU) or the Least Frequently
Used (LFU) cache block can be evicted. This policy is implemented in hardware, with its

area and performance features.

Cache Associativity: Complementary to the replacement policy, the placement of the
block in the locations of the cache can follow different schemes. In a direct-mapped scheme,
each block has only one possible location in cache. Conversely, in a fully-associative
scheme, a block can be located in any place. The middle range of schemes between direct-
mapped and fully-associative is called n-way set-associative. In an n-way set-associative
cache, a given block can be cached in any of n distinct locations. For instance, in a two-way
set-associative cache, each block maps to a unique set but can be placed in two different

locations. A direct-mapped cache is simple to implement but leads to a high miss rate. A
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fully associative cache leads to the lowest miss rate, but at a high hardware cost. The set-
associate cache stands as the good trade-off between direct-mapped and fully-associative,
the challenge becoming to find the good trade-off.
A concrete example of an existing SMP is the Intel Xeon X5660 microprocessor, where

the associativity configuration of the caches is as follows:

e L1 I-cache 4-way set associative

o L1 D-cache 8-way set associative

o L2 8-way set associative

o L3 16-way set associative

Write policy: When the data is written into a cache block present in the cache (write
hit), it must be updated into the main memory. There are two main policies [70]:
o Write-through, a write to the cache is passed down to the main memory on the
lower levels.
o Write-back, writes to the main memory are postponed: cache blocks which have
been written into the cache are marked as dirty, and dirty cache blocks are written
to the main memory when they are evicted from the cache (following the replace-

ment policy).

1.3.2 Coherency

When a cache retrieves a data, it gets a copy of the value. The original value is still
in the main memory. When the processor changes the value of the data in the cache,
the two values for the same data are different. In the context of a single core, the core
always sees the latest value as it is in the cache. When the cache block is evicted, the
value is updated in the main memory. If it is retrieves back later by the processor, the
core gets the up-to-date value. In the context of multiple cores sharing the same memory,
this mechanism does not hold anymore. The data in a high level cache on one core might
be different if this data has been modified by another thread on another core. There is
thus a problem of coherency, different values of the same data at different locations.

Cache coherence protocols are designed to ensure the memory system to be coherent.
Data coherency means that any read of data in cache returns the most recently written
value of that data. Data coherency assures that values written by one processor are read by
other processors. However, coherence says nothing about when writes will become visible.

Moreover, coherence guarantees that “write”s to a particular location will be seen in order.
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Complementary to coherency, consistency ensures that writes to different locations will
be seen in an order that makes sense, given the source code.

The cache-coherence protocol needs to develop significant work to ensure that the data
observed by different cores are not different, making two cores behave differently as they
should behave identically by reading the same data.

Cache coherence protocol allows the processors to quickly access the replicated shared
data located in their private cache while maintaining the coherency of shared data when
the other processors modify its value. The standard method is to invalidate the local copy
of data when it is updated by others [137].

For example, let’s assume that core; and core; have a shared data in cache. When core;
writes this data, it can be read by core; and vice versa. The cache coherence protocol
handles the coherency of the data. There exists different coherence protocols. We present
MESI [107, 8] which is one of the most well-known protocols used in current systems.
The name MESI stands for four different states of the cache blocks (lines): Modified,
Exclusive, Shared, and Invalid. These states are now described:

e Modified: The cache block is available only in the L1 cache of the current core
that has modified it, but no other cache has the correct value of this block and it is
dirty, i.e., the corresponding block in the main memory does not hold the correct
value.

o Exclusive: The cache block is available only in the L1 cache of the current core,
and it is clean, i.e., the corresponding block in the main memory does hold the
same value.

e Shared: The cache block is available in the L1 cache of the current core, and it is
clean in all of the caches in which it may be available.

e Invalid: The cache block is not available in the L1 cache of the current core.

In the mentioned example, in which core; and core; have shared cache block in cache
and memory whose state is shared and clean, when core; wants to write (modify) this
block, the cache coherence protocol changes the state of the block in the L1 cache of the
writer core to Modified and the state of the block for other L1 caches which hold this
block, including core; L1 changes to Invalid. Meanwhile, if the core; reads this block, a
miss will occur and trigger the cache coherency to update this block with the new value.
This updating operation usually takes up to 100 cycles [141].

Caches and their coherence protocols alone cannot do all the work to keep the data

coherent. Support from the CPU at hardware as well as OS and libraries at the software
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level is required to transmit the coherent cache features to the user level.

1.3.3 Synchronisation and caches

As already mentioned in the introduction, the use of caches exacerbates the synchro-
nization overhead, as the coherency protocol is involved, imposing performance overhead
that could cost more than one hundred cycles [141]. The tricky interactions between the
atomic operations and the coherence state of the cache line are studied in [124], in 2020,
which is surprisingly recent given the decades of history of both cache and synchronisation.
The authors performed some experiments on various types of architectures for Compare-
and-Swap and Fetch-and-Add operations, and show the impact of complex multi-level
caches and memory hierarchy on the execution time of these operations. The paper also
considers multi-socket architectures that are out of the scope of this thesis. Additionally,
the results show that using atomics prevent any other operations, even if there is no de-
pendencies, removing thus the instruction level parallelism that could be used, leading to
30x of bandwidth limitations.

The relationship between the core and the cache regarding AMO is specific to each ar-
chitecture, but in order to keep compatibility with existing parallel applications relying on
standard APIs, the software and hardware implementations should respect the contract.
The responsibilities are shared between the hardware that must guarantee the atomic

memory operations, and the low-level software libraries that rely on these operations.

As a summary, hardware solutions, including ISA-based synchronization, suggest to
bypass the cache to avoid coherence overhead and propose dedicated techniques. These so-
lutions suffer from classical pitfalls of hardware-implemented synchronization techniques,
such as limited capacity (number of possible synchronization handled) and complexity.
Regarding capacity, a hardware solution can propose an overflow management technique
to switch to a software solution. However, software solutions relying on atomic operations
in the context of SMP with caches suffer from several limitations (latency, bandwidth, se-
rialization of operation) that prevent scalability of performance even though the hardware

provides more cores and more memory.
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1.4 Multi-core Simulators

A simulation-based methodology is followed in this thesis to functionally validate the
hardware proposal at system level, on a SMP of several cores. This section introduces the
basic concepts linked to simulation tools, sets our requirements, and reviews the different
available tools. The section ends with a focus on Sniper, the simulation tool chosen for
our experiments.

Both academy and industry require multi-core simulators to validate new techniques
at software and hardware levels. The hardware complexity of multi-core has a significant
impact on the simulation speed, which motivates the development of a dedicated field of
research to propose different simulators, basically trading off between simulation speed
and accuracy. Based on prior studies, multi-core simulators can be classified according to
different metrics [43, 5]:

Simulation Level

Functional simulator: Functional simulators only simulate functionality of instruction
set architecture (ISA) of target architecture and do not provide any timings estimate of
the modeled architecture. Consequently functional simulators are the fastest simulators.
Simple scalar [14], Pin tools [115], and Simics [89] are some example of this class of

simulators.

Timing simulator: Timing simulators simulate the microarchitecture of processors
and provide detailed statistics about the performance of the target system. Based on the
details of the statistics, timing simulators are further divided into two categories:

— Cycle-accurate simulators: They model the microarchitecture of the target sys-
tem at the cycle level. Consequently, due to the high level of statistics needed for
this level of simulation, cycle-accurate simulators are relatively slow compared to
other types of simulators. M-Sim [126] is an example of this category of simulators.

— Event-driven and interval simulators: Such simulators break the simulation
into different events like cache-misses, number of instructions, etc. SESC [117] and

RSIM [63] are two examples of these types of simulators.

Integrated Functional and Timing simulator: Functional and Timing simulators

can be coupled together to achieve better simulation’s speed /accuracy. Sniper [31], Gem5 [22],
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and ZSim [119] are few examples of this class of simulators.

Scope of Simulation

Full-system simulators: Full-system simulators simulate the entire system so that
complete software stacks (application, OS, etc.) can run on the simulator. Due to the
detailed statistics of these simulators, they are usually slower in comparison to other
categories. Gemb [22], MARSSx86 [13]|, and PTLsim [147] are three examples of full

system simulators.

User-level simulators: User-level simulators do not simulate the full software stacks
and only focus on the target workload execution. ZSim [119], Sniper [31], and Graphite [97]

are widely used available user-level simulators.

Simulation Inputs

Trace-driven: Trace-driven simulators use instruction and address traces of applica-
tion as an input and provide detailed microarchitectural timing simulation for the target

platform. Sniper [31], Graphite [97] are two examples of trace-driven simulators.

Execution-driven: In this approach, simulators directly provide timing simulation
from output of functional simulations and hence eliminate the need for trace storage.
ZSim [119], RSIM [63] and PTLSim [147] are some examples of execution-driven simula-

tors.

Thesis’s simulation requirements

The research developed in this thesis has some non-functional requirements regard-
ing the simulation properties previously presented. The following paragraphs detail such

requirements:

Simulation speed: We expect our simulators to simulate at least multiple seconds of a
parallel benchmark on modern multiprocessors below 24 hours time frame. This limitation

is due to the large number of experiments we need to run in our study.
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Table 1.2 — Overview of recent CPU simulators and their main characteristics
Last update Full-system/ Trace-/Execution- Multi-threaded/ CPU

Name Release year User-level driven Sequential complexity
MARSSx86 2011 Full-system  Execution Sequential 000
gemb Recently Both Both Sequential 000
ZSim 2018 User-level Execution Multi-threaded ~ Q0O
Sniper Recently User-level Both Multi-threaded ~ 00O

Simulation scope: We are interested in multiprocessor simulations. Our simulators
should either be full-system or user-level simulators that can emulate synchronization

between different threads with high accuracy.

Simulation target hardware: Our study requires to focus on general purpose mul-
tiprocessor architecture. The capability of the simulator to simulate a low-power multi-
processor would be interesting, since the applications studied in this thesis are image and

video oriented, typical of the embedded domain.

Simulation error: Our simulator should be validated against actual hardware for par-
allel applications for a high number of cores. This is an important requirement in our
study. Moreover, we should be aware of sources of error of the simulator and hence, make

sure these sources do not impact the results and conclusions of simulations.

Simulators publicity: Our simulators must be widely used and accepted by the com-

puter architecture community. Moreover, strong user support is a plus.

Available simulators

Table 1.2 lists recent publicly available timing simulators that are widely used by
computer architecture community [5].

MARSSx86 [13] is first publicly available x86 full-system simulator released in 2011.
MARSSx86 is based on two open-source simulators, QEMU [18] and PTLsim [147]. It is
built on top of QEMU [18] to simulate OS and for simulating processor, MARSSx86 ex-
pands PTLsim [147] which is a cycle-accurate simulator for generic processors. MARSSx86
has been initially validated against actual hardware using PARSEC [21] parallel bench-
marks with average error rate of 11%. Akram et al. update and evaluate MARSSx86 w.r.t.
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x86 Haswell hardware using SPEC benchmarks and report 27% error on average [5]. Cur-
rently, MARSSx86 does not benefit from strong community support. Moreover, its ISA
implementation is outdated and cannot provide accurate timing support for many x86

instructions.

Gemb [22] is built by integration of processor pipeline M5 [23] simulator and
GEMS [93] memory hierarchy simulator. Gem5 is a cycle accurate simulator capable
of simulating heterogeneous multiprocessor at both full-system level and user-level with
strong community support. Due to its detailed sequential implementation, despite a very
strong ability to simulate various systems, gem5 is a slow simulator relative to other

alternatives.

Butko et al. updated gemb and validated it w.r.t. actual ARM A9 hardware using
SPLASH-2 parallel benchmarks with average error rate of 6% [30]. Later, Gutierrez et
al. updated gem) and evaluate it against ARM A15 hardware using PARSEC parallel
benchmarks with average error rate of 16% [56]. There are not many successful attempts
in evaluation of gemb simulator against recent x86 hardware. Akram et al. update and
evaluate gemb w.r.t. x86 Haswell hardware using SPEC benchmarks and report 40% error

rate on average [5].

ZSim [119] is a fast, execution-driven, user-level simulator, developed at MIT, to
simulate large scale systems. ZSim is originally developed to simulate ZCache [118] as a
new cache architecture for multicore systems. Functional simulation of ZSim is handled by
Pin tools. ZSim originally evaluated against PARSEC parallel benchmarks with average
error rate of 11%. Later Sanchez et al. update and evaluate ZSim against SandyBridge
architecture and report 28% simulation error on average [140]. Akram et al. update and
evaluate ZSim w.r.t. x86 Haswell hardware using SPEC benchmarks and report 27% error
on average. Currently, ZSim benefits from community support. The main challenge with
ZSim is in its implementation. ZSim has two phases of simulation known as Bound and
Weave. In Bound phase ZSim simulates each core isolated and in Weave phase, ZSim
resolves the conflicts over shared resources. This complex timing model provides very fast
simulation speed at the cost of inaccuracy in simulating memory system and false sharing
effects [83, 140].

Sniper [31] is an execution-driven/trace-driven, user-level, parallel simulator for sim-
ulating large scale multicore systems based on interval simulation [49]. Sniper is built on
top of Graphite [97] simulator, which supports various one-IPC core models. To perform

functional simulation, Sniper incorporates Pin [115] dynamic instrumentation framework.
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Although Sniper is a user-level simulator, it can simulate synchronization and locking
mechanism with great accuracy. Sniper has been initially validated against actual hard-
ware (Intel Xeon) using SPLASH-2 benchmark with an average error of 25% for multicore
simulation [31]. Later, Sniper is updated and validated with an error rate of 11.1% using
SPLASH-2 benchmark [33]. Recent studies updated and evaluated gem5, Sniper, ZSim,
and MARSSx86 simulators against actual Haswell processors. Sniper exhibits short sim-
ulation time relative to other simulators (7x times faster simulation speed relative to
cycle-accurate gemb for SPEC benchmark) while maintaining high accuracy [6, 5]. Re-
cently, a new version of Sniper was released with the support of RISC-V and ARM ISA [90,
4].

Sniper

We use the Sniper simulator since it has been compared to other simulators and is
also validated against real hardware [31, 33, 6, 5]. We use Sniper for both runtime and
energy /power evaluations as it has also been cited by more than 950 works according
to Google Scholar. Sniper integrates McPAT [82] that is a widely used microprocessor
power and energy model with more that 2,800 citations to date according Google Scholar.

Sniper meets the demands of this work which are accurate core, cache, and memory
system for parallel benchmarks as Sniper’s core, cache, and memory system are validated
against actual hardware for parallel benchmarks in multiple studies [31, 33, 6, 5]. Other
simulators are not used because:

o gembd is a very slow simulator relative to other x86 alternatives and does not pro-
vide significant additional accuracy when compared to other simulators for our
benchmarks [5, 11].

o MARSSx86 is outdated and does not have any community support anymore.

e 7ZSim has a very complex timing model (Bound, Weave) that prevents accurate
modeling of false sharing [136] and other memory system modifications [140, 83,
119].

Sniper Accuracy Three simulation models are integrated in Sniper [31]: one-IPC; in-
terval, and instruction-window-centric (IW-centric). The one-IPC model [31] assumes an
in-order single-issue at a rate of one instruction per cycle; hence it is named as one-IPC
or ‘one instruction per cycle. The one-IPC model assumes that the branch prediction is

perfect, so it does not simulate the branch predictor. However, it simulates the multiple
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levels of the cache hierarchy. The cache model assumes that the processor model does not
incur any penalty (latency) for load and store of L1 data cache hit and has an execution
latency of one cycle. For all other caches, it considers the miss penalties. In particular, an
L1 instruction cache miss incurs a penalty of L2 cache data access latency; an L2 cache
miss incurs a penalty of L3 cache data access latency or main memory access time in the
absence of an L3 cache. Interval simulation [49] is a recent simulation approach for sim-
ulating multi-core and multiprocessor system at a higher level of abstraction compared
to the detailed cycle-accurate simulation. This model is based on miss events (branch
mispredictions, cache and TLB misses), i.e, it divides execution time of the instruction
stream through the pipeline into intervals separated by disruptive miss events. The total
execution time is then determined by aggregating the execution time over all intervals.
Branch predictor, memory hierarchy, cache coherence and interconnection network simu-
lators determine the miss events; the analytical model derives the timing for each interval.
Instruction-window centric (IW-centric) simulation [33] is a new high-level core model
that combines the idea of interval modeling with a detailed simulation model of the in-
struction window, or reorder buffer (ROB). However, the interval simulation methodology
calculates the instruction-level parallelism (ILP) of an application analytically, based on
the intervals, IW-centric simulation models micro operation dependencies and issue tim-
ing in detail. This model provides more accuracy considering fine-grained events in cost
of a small reduction in simulation speed. In terms of modeling accuracy, the IW-centric

model can be used as a step closer to cycle-level simulation.

One-IPC model is the fastest simulation model with the most abstract core model, and
hence highest inaccuracy. Carlson et al. first present interval-based simulation of Sniper
with an average error rate of 25% compared to actual hardware for SPLASH-2 parallel
benchmarks [31]. Later Carlson et al. proposed a new core model (a.k.a. IW-centric) to
bridge the gap between interval-based simulation and cycle-accurate simulation. They
show the IW-centric core model is more accurate with only 11.1% error rate w.r.t. actual

hardware but at the cost of slower simulation speed [33].

To perform our experiments, we must choose one of the simulation models provided by
Sniper. Additionally, the chosen model must cover our research goal in terms of accuracy
and reasonable simulation time. Since the aim of our research is performance evaluation,
we run one of our application benchmarks with these three simulations models and also on
real Intel coreib machine to compare the accuracy of these simulation models. Figure 1.2

shows the results of our evaluation experiments. The X-axis shows the number of cores we
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Figure 1.2 — simulator evaluation

used during the experiments, and the Y-axis represents Sniper’s execution time results in
billion cycles. As it shown in the figure, one-IPC model compared to the real architecture
shows the most inaccuracy. We witness that despite the inaccurate one-IPC model, the
interval model presents the same result of execution time as the accurate model of TW-
centric. Regards to simulation speed, as also presented by Carlson et al. [33], IW-centric
model is 1.5x slowdown compared to interval model simulation. We decided to continue
our research experiments with the interval model, which is a much faster model than

[W-centric and yet delivers a similar simulation result.

1.5 Summary and Concluding Comments

By providing high performance and general-purpose programmability, SMPs, among
other multi-core processors, have been popular. Additionally, SMPs, by maintaining the
image of global shared address space as a single memory, facilitate the programming of
ever increasing variety, complexity, and performance requirements of parallel applications.
SMPs use a cache-coherent managed memory hierarchy which requires data coherency
consistency. Increasing the number of parallel core processors in these architectures can
provide more performance while maintaining the power characteristics. Parallel processes
running on SMP require synchronization, and also the synchronization primitives need

extra coherency and consistency maintenance.
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Synchronization is a well-explored field and as discussed a variety of techniques from
hardware and ISA support to purely software solutions have been proposed. Almost all
of these techniques are developed for generic settings that do not consider the memory
behavior in the dataflow applications. These generalized approaches create a bottleneck
for dataflow applications since they require a large number of producer-consumer threads
to be synchronized. As such, the centralized nature of these synchronization mechanisms
serialized the execution of dataflow applications. A review of the state-of-the art tech-
niques for synchronization shows that only one approach, already developed in the team,
makes use of the specific synchronization needs of dataflow applications, that are explicitly
available through the firing rules. The goal of this thesis is to go further. In this thesis, we
propose such a solution through a specialized hardware unit that augments the processor

core to accelerate synchronization and offloads its burden from the core itself.
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CHAPTER 2

DATAFLOW MODEL OF COMPUTATION

The dataflow Model of Computation (MoC) has a long history of several decades of
research. The history of dataflow can be traced back to the time that Petri invented “Petri
nets” in 1962 [28] and Estrin and Turn proposed an early dataflow model in 1963 [45].
In 1966, Karp and Miller studied computation graphs without branches or merges and
Rodriguez extended and formalized Estrin’s model in 1969 [91]. Chamberlain proposed a
single assignment language for dataflow in 1971 [35] and Kahn studied a simple parallel
process language with queues as edges in 1974 [71]. On the hardware side, we can give
credit to the dataflow architecture designed by Dennis [37], where edges were one token
buffers. In 1977, Arvind and Gostelow [12], and separately Gurd and Watson [55] proposed
a “tagged token” dataflow model, where the edges behave like bags.

This chapter presents some generalities about dataflow MoC, and the two main cat-
egories of dataflow MoC: static and dynamic. This chapter presents in more details one
MoC for each category, chosen for our experiments: SDF for static MoC, and PiSDF
for parametric MoC, a subclass of dynamic MoCs [26]. The interested reader can refer
to existing surveys for a comprehensive overview of either static MoCs [57] or dynamic
MoCs [20]. The chapter then presents the framework used for our experiments. The chap-
ter ends with a review of studies related to the impact of cache configurations in the

execution of parallel applications.

2.1 Generalities

An application specified in a dataflow MoC is usually represented as a graph of pro-
cessing elements connected through data dependencies, which is called a dataflow graph.
This kind of graph can be specified through a textual form, like many other programming
languages, but a graphical view is a convenient way to represent dataflow applications.
Such a graphical view is used by the tools chosen for this thesis and is used also throughout

this document.
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Figure 2.1 — Dataflow graph

A dataflow graph is depicted in Figure 2.1. In this graph, vertices (Al, B1, B2 and
(1) are processing elements called actors which exchange data tokens through the uni-
directional edges, which are data FIFOs (Fy, Fy, F3 and Fy). The actors consume/read
the data tokens from their input FIFOs, process them and produce/write new tokens into
the output FIFOs. An actor is a non-preemptive process that can initiate the execution
(fire) only if the data is available in its input FIFOs. These conditions are called firing
rules. The formal model defines rules on the input only, and considers unbounded FIFOs.
However, when it comes to the implementation on a hardware platform, the FIFOs are
bounded and the space available in the output FIFOs also becomes one condition for
firing.

The ability of dataflow graphs to describe various applications with different features
can be evaluated by different properties, including: Expressiveness, Predictability, Effi-

ciency, and Analyzability [38]. Figure 2.2 illustrates these properties.

Expressiveness: The Expressiveness property is the ability of the MoC to specify the
complexity of the application behavior. A highly expressive language gives the ability to
describe any kind of application. Conversely, a low expressiveness restricts to use a limit
set of computational behaviors. A MoC that gives the theoretical expressive power to

model any computation is Turing-complete.

Practicality: Practicality is the ability given to the developers to describe “in practice”
the functional behavior of an application. It is related to the ease of use through a given

language that can be concise, intuitive, and easy to read.

Efficiency: Efficiency represents the performance of the application when it’s running

on a hardware platform [134].
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Expressiveness Practicality Efficiency Analyzability

Figure 2.2 — Comparison of different dataflow MoCs [148]

Analyzability: Analyzability is the ability to analyze and characterize the application
at compile time.

The different MoCs presented in Figure 2.2 are not described individually, but it shows
that it is difficult to concentrate into a single MoC all these properties. A MoC with a
high expressiveness offers a low efficiency and analyzability. Conversely, restricting the
possibilities to model any kind of computation gives the benefit of a better analyzability
and efficiency. This chapter follows the classical classification of datalow MoCs in two

main categories: static dataflow MoCs and dynamic dataflow MoCs [26].

2.2 Static Dataflow MoCs

The family of static dataflow MoCs can be characterized by the common feature of
a constant rate in the consumption and production of tokens, which offers interesting
properties like determinism, decidability, and compile-time optimizations.

Among the different static MoCs, Synchronous DataFlow (SDF) is the most basic
dataflow model to describe an application. As shown in Figure 2.2, this model presents
the best efficiency and ability to characterize the application at compile time (Analyz-
ability); however, this simple model has the lowest Expressiveness and Practicality. The
Synchronous term relates to the fixed value of the rate of generation and consumption of
tokens, i.e., all the actors produce/consume a fixed number of tokens in the whole graph.
This model has significant advantages. First, high analyzability, which means it can be an-

alyzed mathematically. Second, the determinism of firing rules provides the opportunity of
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having optimized mapping and scheduling at compile time for the applications. However,
SDF semantics are not able to describe a data-dependent application. In data-dependent

applications, the firing of the actors may depend on the input data at run-time [123].

In homogeneous SDF (a.k.a Single-rate SDF), an actor starts firing when there is
one data token in its input ports; also, it produces one data token in its output ports.
Therefore, in this scenario, the scheduler must ensure that the producer actor fires (ex-
ecutes) before the consumer actor, and also each iteration of the model consists of only
one firing of each actor. In general, the actors produce/consume more than one single
data token, i.e., they require multiple data tokens as input and produce multiple tokens
as output. Therefore, the SDF scheduler can support more complicated SDF models than
homogeneous such as multirate SDF model. In multirate SDF, the actors’ production/-
consumption data rate is not identical [113]. Indeed for multirate SDF, the scheduler

transformed the graph to a middle single rate graph (Directed Acyclic Graph (DAG)).

Various dataflow MoCs extensions are introduced to support more practical appli-
cations while preserving the predictability and analyzability of the model to a feasible
extent. These models are to some extend more general than SDFs, and are not considered
in this thesis. Though the contribution presented in this thesis is not dedicated to SDF

only, some more work is needed to study how to adapt our proposal to other static MoCs.

The graph of a synthetic application modeled by SDF is depicted in Figure 2.3. A
synthetic application is a program that is constructed to try to match the characteristics of
a large set of programs [143]. We use this application as a representative example to discuss
various aspects of the work. We refer to this application as the synthetic application.
This application includes three main actors; Producer, Processing and Consumer. The
Producer actor generates and writes data tokens. Then the Processing actor processes
the data tokens. At last all the processed data tokens are consumed by the Consumer
actor. In the figure, the blue blocks are constant parameters which are known at compile
time. The msg size determines the size of the output and input FIFO of the Producer
and Consumer respectively. In this graph the Processing actor consumption/production
rate of the tokens is determined indirectly by slice_ size parameter through the following
equation:

msg_ sizes

Token rate = (2.1)

slice_size
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Figure 2.3 — SDF Dataflow graph of simple producer-consumer application

. —

2.3 Dynamic Dataflow MoCs

2.3.1 Generalities

The second category of dataflow MoCs is dynamic dataflow MoC, which achieves a
more powerful and comprehensive model. Dynamic dataflow models encompass modeling
techniques in which the consumption and production rates of actors may vary. It is thus
not possible to define at compile-time a complete order of the actors. Runtime techniques
are therefore needed to check the firing rules. As shown in Figure 2.2, the DPN (Data
Process Network) MoC [79] is the most comprehensive and generalized MoC with the
best ability to express the behavior of complex applications. Indeed, DPN has the high-
est Expressiveness, equivalent to Turing machine [29] which means it can describe any

application.

2.3.2 PiSDF': a Reconfigurable Dataflow Model

This section relates only a subset of dynamic models, which are reconfigurable dataflow
models [26], through the presentation of PiSDF that is used for our experiments. Param-
eterized Interfaced Synchronous Dataflow graphs (PiSDF) can be viewed as an extended
SDF model, and solves non-reconfigurability characteristic of the SDF. In PiSDF, in
addition to the normal actors, there are configurable actors which are in charge of gen-
erating parameters which determine the rate of consumption and production of data
tokens (firing rules). These configurable actors can be executed in specific points of ex-
ecution time of the application and reconfigure the firing rules at run time [102]. Appli-
cations modeled by PiSDF graphs are classified as reconfigurable dataflow applications
although reconfigurable dataflow models are not limited to PiSDFs. PiSDF graph of the
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Figure 2.4 — PiSDF Dataflow graph of Synthetic producer-consumer application

synthetic application is represented in Figure 2.4. In this graph, the reconfigurable actor,
nbSliceSetter, is responsible for configuring the slice size which sets the Processing
actor consumption/production rate of the token by the Equation 2.1. In other words this

actor reconfigures the token rate of the graph.

2.4 Dataflow Prototyping Frameworks

2.4.1 PREESM

Several frameworks for dataflow modeling exist. The goal of this section is not to
exhaustively present all of them but to focus on the one chosen for our experiments. In
this thesis, we use PREESM [110], a state-of-the-art open-source rapid prototyping tool,
to generate code of the dataflow applications as benchmark of our study. PREESM is a
software framework developed at the Institute of Electronics and Telecommunications of
Rennes (IETR) in 2007. It provides a Graphical User Interface (GUI) based on Eclipse for
the designer to generate a deadlock-free C code for dataflow applications modeled with
dataflow graphs for heterogeneous multi/many-core embedded systems.

The framework allows the developer to model applications following a static or re-
configurable approach. In static approach, the application is generated already with the
optimal mapping and scheduling since data token production rate is deterministic. For
reconfigurable applications, a Run-time Management Layer (RML) is responsible for dy-
namically mapping and scheduling the actors according to workload characteristics. This
procedure will be discussed in detailed in Section 2.4.2.

Figure 2.5 depicts the infrastructure of PREESM for generating code for dataflow
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Figure 2.5 — Detailed overview of PREESM framework.

applications from a SDF or PiSDF model. As illustrated in the figure, the flow of PREESM
includes three principle steps: Developer Inputs, PREESM Rapid Prototyping workflow,
and Legacy Development Toolchain. At the first step, Developer Inputs, the developer

provides the input information for PREESM framework. The information includes:

o Application Model: In this input, the developer provides the algorithm of dataflow
application specified in SDF or PiSDF.

o Architecture Model: This input is the System-Level Architecture Model (S-
LAM) that provides a high-level architecture description of the target multi-core
system for which the application is going to be generated.

» Constraints: The developer, specifies the design constraints [40] (e.g., latency,
throughput, load balancing, etc.) related to scheduling, mapping of the actors on

the cores and their timing on each type of processing cores.

At a second step, PREESM generates a pthread C code of dataflow application for
a target architecture, considering the application model, architecture model, and related

constraints.

o« Mapping and Scheduling: As discussed earlier, SDF graph has more compli-
cated extensions such as multirate SDF and IBSDF. To prepare the scheduling
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and mapping of the input SDF graph, PREESM transforms it to the basic SDF
graph by applying hierarchy flattening and transforming the graph to the Single-
rate Directed Acyclic Graph (stDAG). Thereafter, it decides optimized mapping
and scheduling out of throughput, latency and load balancing for the transformed
graph. Moreover, PREESM also applies memory management methods to map the
actors [40].

e Visual output: PREESM provides the Gantt diagram of the application with
memory and load balancing metrics of mapping for developer.

e C Code Generation: The framework generates a parallel C code for the tar-
get multi-core architecture that relies on pthread library. PREESM bundles all
the actors mapped on each core in one thread, such that there is one thread per
core. Additionally, the code relies on a semaphore based library to synchronize the
threads.

At the last step, PREESM supplies runtime libraries to support the execution of gen-
erated application code on various supported architectures. These libraries abstract the
communication and synchronization mechanisms of the target architecture and support
calls to high-level primitives in the generated code. As mapping and scheduling decisions
are statically made during the PREESM workflow execution, the execution of the appli-
cation is self-timed [130]. In a self-timed execution, the execution time of an actor is not
pre-determined and the order of actor firings is guaranteed by inter-core synchronizations

and communications.

2.4.2 SPiDER: Runtime Management Layer for Dataflow Ap-

plications

As previously discussed, SDF graphs can only model the dataflow application with non-
reconfigurable behavior and provide the opportunity of optimized mapping and scheduling
at compile time though they have limitations in expressiveness. Therefore, for the appli-
cations whose behavior change based on the input data at run time (reconfigurable), the
Parametric Interfaced Based SDF (PiSDF) model can be used.

To execute the code generated from a reconfigurable dataflow application, PREESM
utilizes a Runtime Management Layer (RML) called Synchronous Parameterized and In-
terfaced Dataflow Embedded Runtime (SPiDER) [62]. For the reconfigurable dataflow

applications code, PREESM generates an interface that becomes part of the generated
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Figure 2.6 — SPiDER infrastructure as a Runtime Management Layer.

code of the application and makes the bridge between the application and the RML.
This interface has two purposes: (i) to provide to RML the constraints of application and
properties of the target platform, (i7) to provide to RML the functions of the actors to
start them according to the runtime scheduling and mapping decisions. SPiDER RML
manages reconfigurable applications through hierarchical runtime management composed
of one global manager (GRT) and n local managers (LRTs) (where n is the number of
threads running the application). GRT is responsible for managing the application graph,
performing mapping, and scheduling. LRTs are responsible for executing actors by run-
ning the jobs provided by GRT. Figure 2.6 shows the SPIDER Runtime Management
Layer structure. The first layer is the application layer, having the RML interface and the
actors. The RML interface calls SPiDER RML and initializing it with architectural and
application properties. At the bottom of the application layer is the RML layer, divided
between Hardware Independent Layer (HIL) and Hardware Specific Layer (HSL). HIL
implements the hierarchical management with one GRT and several LRTs. HSL imple-
ments architectural dependent tasks (as communication and synchronization) according

to the target platform.

2.5 Cache Studies for Parallel Applications

We are interested in the specific case of dataflow application behavior in the presence
of cache, which is insufficiently studied. Thus, the literature review was extended to all
kinds of parallel applications running on an SMP. This section presents the related studies

evaluating the performance of parallel applications in a multi-core system with cache
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Table 2.1 — Related works studying the cache impact in parallel applications.
Author (et al.) Proposal Contribution Benchmark

Garcia [48] N.A. (Evaluation work) Evaluation of impact of LLC sharing Heterogeneous applications

Slingerland [127] N.A. (Evaluation work) Cache profile of multimedia

Multimedia applications

applications
Alves [7] N.A. (Evaluation work) Evaluation of L2 properties NAS parallel applications
Domagala [41] Splitting nested loops Increased Data locality Streamlt

Splitting GPU kernels to
Maghazeh [88] sub-kernel and data input
into L2 size

Increased Data locality +

Decreased cache miss rate GPU-based applications

Strategy to improve cache Minimize communication among -
Fraguela [17] &Y P . & Cholesky decomposition

usage in dataflow processes involved

Use of two dynamic memory Cache configuration evaluation +

This work Static Dataflow applications

manag. methods (CoW, NTM) Reduction in memory copy penalties

memory hierarchy. While generating the parallel code from dataflow specification for an
SMP, PREESM framework implicitly assumes a coherent shared memory. Besides, the
features of the cache hierarchy are not taken into account. It is, therefore, possible that
the same generated code behaves differently according to the cache features. The first part
of this work is thus to study the impact of the cache features on dataflow applications.
Table 2.1 summarizes the main characteristics of the related works addressing the cache
impact in parallel applications. Several studies [48, 127, 86, 7] have provided an evaluation
of the impact of the levels of caches on the performance of parallel applications, but they

did not delve into dataflow applications.

Garcia et al. study the cache effect on the performance of heterogeneous applications.
These applications comprise CPU and GPU code which is the reason they are considered
as heterogeneous applications [48]. They have evaluated the impact of Last Level Cache
(LLC) shared in GPU-CPU co-design platform for these applications. According to their
study, applications with low data interaction between GPU and CPU are sped up slightly
by sharing the LLC. Data sharing of LLC minimizes memory access time and dynamic

power and accelerates synchronization for fine-grained synchronization applications.

The memory behavior for multimedia workloads in the presence of cache is evaluated
by Slingerland and Smith [127]. They appraised the data miss rate of applications consid-
ering data cache size, associativity, and line size parameters. The authors observed that
multimedia applications benefit from longer data cache lines and have more data than
instruction miss rate in comparison to other workloads. The experiment results reveal
that most of the multimedia applications need 32 KB data cache size to have less than
1% cache miss rate, while other types of applications (3D graphics, document processing)

do not reach the same behavior.
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Lotfi-Kamran et al. [86], during the study of the impact of LLC size on performance
for Cloud workloads, reached this conclusion that sharing LLC with bigger size among
more cores does not help the performance of the application. They show that increasing
the cache size is not beneficial for most workloads as the decrease in miss rate is usually
offset by increased access latency. The work of Alves et al. [7] investigates the impact
of L2 sharing in order to find the best cache organization at this level. They use NAS
Parallel Benchmark [15] with a heterogeneous workload set, and a 32-core SMP with two
levels of cache. The work changes the sharing, size, associativity, and line size in the L2.
Among the main results, it was observed a performance (speedup) decrease when more
cores share the L2 cache, even when two cores share the same L2. Increasing line size
(64 bytes to 128 bytes) contributed to -32% in cache misses and +1.95% in speedup. The

work does not address 3 level caches nor dataflow applications.

Some other works propose solutions at the application or hardware level to aid parallel
applications exploit the cache hierarchy features efficiently [41, 88]. In Domagala et al. [41],
researchers extended the concept of tiling to the dataflow model to increase the data
locality of applications for better performance by splitting iterations of nested loops.
However, this type of optimization does not address the fine-grain inter-actor (i.e., inter-

tasks) relation.

In Maghazeh et al. [88], a method is proposed for GPU-based applications by split-
ting both the GPU kernel into sub-kernels and input data into tiles in size of GPU L2
cache. Their work is intended to accelerate applications whose performance is bounded
by memory latency. The method increases data locality, as the sub-kernels are scheduled
to have the minor cache miss rate for GPU applications over various settings. However,

the method requires source code modification and does not target the dataflow model.

The existing related work regarding the studies of the memory behavior specifically for
dataflow applications is very limited. The work done by Fraguela et al. can be cited [17].
Fraguela et al. [17] propose the concept of a software cache with an auto-tuning method to
configure its size according to each application. The approach is based on Unified Parallel
C++ (UPC++) library. It consists of an algorithm called periodically, which dynamically
re-allocates the software cache size. Results show that the software cache can reduce the
communication among actors due to the efficient cache sizing and allocation, presenting

a hit rate just 0.27% higher than an optimal scenario.

The main novelties of our work regarding the related works, including non-dataflow

and dataflow studies, are twofold: (i) we evaluate a wide range of cache configurations in a
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multi-core architecture, including existing configurations and configurations not available
yet but corresponding to what might be available in the near future when technology
scaling enables integrating ever bigger caches; and (ii) we use two existing memory man-
agement methods for dataflow applications, which can reduce the memory copies penalties
in numbers and latency, leading to an improved application execution time and energy
consumption. Regarding contribution (i), works [127, 48, 7] are also evaluation works.
However, in [127] the benchmark is limited to multimedia applications, in [48] the focus
is the interaction between the CPU and GPU, by addressing a heterogeneous CPU-GPU
set of applications but not considering dataflow, and in [48] the authors did not consider
a 3-level cache either the dataflow application profile. From this literature review, there
is a lack of a comprehensive evaluation of the impact with 3-levels caches and targeting
dataflow applications. The present work fills that void.

Regarding contribution (#7), the present work differs from related works [41, 88, 133,
17] by several aspects. Specifically, we are interested in: (i) keeping the original dataflow
model granularity (differently from [41, 88]); (¢7) not making modification in the Linux-
based kernel, or any part of the OS (as required by [17]). We endorse that the memory
management techniques we use are not new. The goal of using these memory management
techniques is to replace the memory copy (memcpys) operations and to observe their
impact on cache and on the overall performance of dataflow applications, a study that is

lacking in the literature.

2.6 Summary and Concluding Comments

This chapter presented generalities about dataflow MoC, and detailed two MoCs,
SDF that can be classified in static models category, and PiSDF that an be classified in
dynamic model category. The dataflow MoCs allow the developer for designing a complex
program with fine-grain parallelism. Dataflow MoCs define the applications by a graph
of the processing functions that execute and exchange the data chunks as input/output
data.

In addition, we have also presented a summary of the state-of-the-art studies related
to our contributions. First, we reviewed the studies on cache characterization in various
platforms for different benchmarks. Many works have evaluated cache impact on different
parallel applications. However, no work evaluates the cache-based systems for dataflow

applications.
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CHAPTER 3

CACHE EVALUATION AND DYNAMIC
MEMORY MANAGEMENT TECHNIQUES

This chapter presents the first contribution of this thesis: the study of dataflow ap-
plications running on a SMP according to different cache configurations, providing ex-
perimental results that demonstrate their impact on the application’s execution time,
system energy, and cache miss. It also includes the automatic use of dynamic memory
management techniques to improve memory reuse. This chapter is also described in a
conference paper accepted at DASIP [50] and extended in Journal of Signal Processing
Systems (JSPS) [51].

Dataflow models can naturally use parallel resources employing actors that run in
parallel while consuming and producing data tokens. Several tokens can be produced and
consumed simultaneously, but a token is produced and consumed only once. This feature
favors spatial data locality. While the cache hierarchy also exploits temporal locality, a
dataflow program may benefit from the latter for instructions and spatial locality for data
as consecutive tokens are usually involved. Therefore, dataflow applications’ performance
should be improved with the increasing size of caches. However, this study shows that

such an assumption does not hold regarding multiple cache-based architecture designs.

Although the state-of-the-art techniques can lead to theoretical optimal schedules,
this study demonstrates that even optimally scheduled applications (generated with the
assistance of rapid prototyping tools) do not scale as desired with the increasing number
of cores, cache levels, size and cache sharing factor. As expected, the memory contention
is of utmost importance, and the CPU load-based actor mapping used in the experiments

does not lead to the best execution time.

For the experiments, we consider several configurations, including non-available yet
platforms or non-realistic cache configurations, and use the Sniper simulator [31] to foresee

the scalability of the considered dataflow applications.
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Figure 3.1 — Architecture overview of the baseline multi-core model.

3.1 Multi-Core Model Used in Experiments

This section presents the multi-core architecture model adopted in this study. Fig-
ure 3.1 presents the architecture overview. We focus on detailing the memory hierarchy
since it is the target of this work. The architecture is based on the Intel Xeon X5500 chip.
Each core implements the Nehalem Intel microarchitecture [76], having a private L1 cache
with 32KB, a private L2 cache with 256KB, and a shared by four cores L3 cache with
8MB. The chip also includes a triple channel DRAM memory controller to interface with
off-chip DRAM memories.

The interconnection is bus-based with a 20-bits width and provides 12.8 GB/s per link
in each direction (25.6 GB/s total).

The architecture depicted in Figure 3.1 is the reference multi-core model. The actual
goal is to exploit different core counts and cache configurations by changing the following
parameters:

— C: the number of cores (e.g., 4, 8, 16, 32), considering one core per tile

— L2(xC): sharing of L2 cache, where C represents the number of cores sharing one

L2 cache. For instance, the L2 is (x1) in the baseline architecture since each core
has one L2 cache. An L2(x2) indicates that two cores are sharing the L2. The size
of L2 for each core is set to 256KB; therefore, in L2(x2), two cores share an L2
with 512KB.

— L3(xC): sharing of L3 cache, where C represents the number of cores sharing one

L3 cache. It adopts the same rule used in L2. For instance, the baseline architecture
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(assuming that there are four cores in total) adopts an L3(x4) configuration.

— L2 size: the size of the L2 cache dedicated for each core. When a core shares the
L2 cache with another core, i.e., L2(x2 or more), the final size of the L2 cache will
be multiplied by the number of shared cores.

— L3 size: same rule than L2 size.

The multi-core was simulated with the Sniper multi-core simulator [31]. The Nehalem
cores are by default provided within Sniper distribution. The Sniper core model and cache
hierarchy are validated against the actual Xeon processor using Splash2 benchmarks.
Sniper takes as input configuration files that allow the user to set parameters such as
cache sizes, cache sharing, number of cores, core frequency, among many others.

Next, in the experimental setup section, we present further details about the multi-core

setup simulated on Sniper.

3.2 The Cache Impact on Dataflow Applications

This section presents the experiments evaluating the cache limits for dataflow appli-
cations. The first subsection describes the experimental setup. The remaining subsections
address the analysis of application’s performance varying the following parameters: C,

L2(xC), L3(xC), L2 size, and L3 size.

3.2.1 Experimental Setup

Hardware Setup

The experimental setup adopts the multi-core model described in subsection 3.1, con-
figured on Sniper. Table 3.1 presents the hardware setup. These parameters are based on
the real Xeon X5500 multi-core.

To evaluate the number of cores and cache sharing we created 22 multi-core cache
configurations, varying the parameters C', L2(xC), and L3(xC). Figure 3.2 shows graphi-
cally the reasoning behind these configurations. Each configuration is a black spot in the
figure. The configurations can be divided into 4 groups (different background colors in the

figure) according to the number of cores (C' = 4, 8,16, 32) in which a given configuration
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Figure 3.2 — Overview of the reasoning behind the 22 cache configurations adopted in the
experiments. C = number of cores simulated for each configuration.

Table 3.1 — Experimental setup: Hardware model settings.

Core Model Intel Xeon X5550 4/8/16/32 @ 2.66 GHz (base clock)

L1-T Cache 32KB  8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L1-D Cache 32KB  8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L2 Cache 256KB  8way 3 cyc. tag lat. 8 cyc. data lat. LRU

L3 Cache (LLC) 8MB 16way 10 cyc. tag lat. 30 cyc. data lat. LRU
cyc = cycles; lat = latency; LRU = Least Recently Used.

was simulated. Note that the 22 configurations were not simulated for each C' configura-
tion. The minimal C' evaluated for each configuration is dictated according to the sharing
factor of the LLC. For instance, we do not evaluate a system with 4 cores for config. 9
(which have L3(x8) as LLC), since it is unfeasible because the L3 sharing (LLC sharing)
requires at least 8 cores to meet the sharing factors of L3(x8).

The L2 sharing comprises configurations from L2(x1) up to L2(x32), with most of
them (36%) addressing a private L2 cache (since this L2 design choice is found in real
architectures like Xeon Nehalem and AMD K10). Some configurations are unrealistic,
specially those that have a big L2, as the case of configurations 8, 16, 21, where L2 =
2MB; configurations 12, 22, where L2 = 4MB; and configuration 17, where L2 = S8MB.
However, our goal is to address the trend in multi-core processor design, which features
always bigger L2 caches.

The L3 sharing also adopts a very heterogeneous configuration set, including no L3
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Table 3.2 — Experimental setup: Dataflow applications benchmark profile.
PREESM PREESM Memory copying?

Application  Actors ?gsl sFéEOS PREESM  Actors
Stabilization 30 607 092MB 21 MB 0.2 MB
Sterco 36 811 29.09 MB 5MB 13 MB
SIFT 77 2183 188.6 MB 12 MB 308.6 MB

(a) sum of all copied memory using the memcpy procedure.

(e.g. configuration 1), one private L3 cache (e.g. configuration 4), up to 32 cores sharing
the same L3 (configuration 18-22).

The number of memory controllers is equal to the number of LLC. For instance,
configuration 6, running with 8 cores, has two L3 shared by 4 cores (L3(x4)). Therefore,
this configuration has two memory controllers (one for each L3).

Although the results achieved are based on Xeon architecture, the presence of 22
different hardware configurations, varying the core count and cache sharing and size,
helps to project the behavior of the benchmarks in architectures different from Xeon,

especially those that adopt similar cache organizations.

Application set

Table 3.2 (1% column) lists the applications benchmark addressed in this work. We
adopt three real applications named Stabilization, Stereo, and scale-invariant feature
transform (SIFT), taken from PREESM repository [112]. Stabilization is used for video
stabilization. Its principle is to compensate for the movements of a video recorded with
a shaky camera. The main two steps of this process consist of tracking the movement of
the image using image processing techniques and creating a new video where the tracked
motion is compensated. The input video adopted in experiments comes from PREESM’s
github repository [112] and has 40.9 MB of size with a resolution of 360x202 pixels.

Stereo is a computer stereo vision application that extracts 3D information from im-
ages. Stereo matching algorithms are used in many computer vision applications to process
a pair of images, taken by two separated cameras at a small distance, and produce a dispar-
ity map that corresponds to the 3rd dimension (the depth) of the captured scene. Stereo
matching algorithms and their implementations are still heavily studied as they raise im-

portant research problems [58]. The two input images [112] adopted in our experiments
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have the size of 506.3 KB with a resolution of 405x375 pixels.

SIFT is used to object recognition in cluttered real-world 3D scenes [87]. The extracted
features are invariant to image scaling, translation, and rotation, and partially invariant
to illumination changes and affine or 3D projection. The application behavior shares a
number of properties in common with the responses of neurons in the inferior temporal
cortex in primate vision. The input image [112] used in SIFT has a size of 512 KB with
a resolution of 800x640 pixels, with 4 levels of parallelism and 1400 keypoints.

These three applications are specified through the PREESM framework, which is re-
sponsible for the code generation, actors’ scheduling and mapping, as discussed in Sec-
tion 2.4 p. 64.

Table 3.2 highlights that the applications have heterogeneous memory requirements.
Specifically, the 4™ column details the sum of PREESM FIFOs size, which can be under-
stood as the memory footprint of inter-actor communication. SIF'T is memory bounded
and has high synchronization demands (high number of actors and FIFOs), Stereo is com-
putational and memory bounded, and Stabilization is computational bounded but with
low memory and synchronization demands. The heterogeneous memory requirements lead
to different cache locality and memory footprints, making such applications appropriated
candidates for the evaluation of cache impact intended in this work.

We use the optimal scheduling and mapping decisions provided by PREESM [110],
which is focused on workload balancing. The memory allocation adopts advanced mem-
ory optimization proposed in [39], which considerably reduces the applications’ memory
overhead. The selected memory allocation uses the FirstFit algorithm with MizedMerged
distributions and none data alignment. These features were selected because they have
presented the lowest memory footprint at the same time that they are suitable to the tar-
get multi-core architecture used in this work. After the generation of C code by PREESM,
the applications were compiled using GCC v7.5.0 optimization -O2 (default optimization
adopted by PREESM), and simulated on Sniper.

3.2.2 Number of Cores — C

Figure 3.3 shows the application execution time (time for the application to complete
the execution of one loop), for Stabilization (a), Stereo (b), and SIFT (c). The x-axis
contains groups of bars, where each group represents one configuration (only the ones
that support C' varying from 4 to 32 were shown), and each bar represents a different C'

to that configuration.
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Figure 3.3 — Application iteration time over different number of cores for three applica-
tions: (a) Stabilization, (b) Stereo, (¢) SIFT.

The main evaluation to be extracted from these results is related to scalability with
the number of cores C'. It is possible to observe that Stabilization presents some execution
time improvement according to a higher C. It improves the execution time on average by
46% from 4 to 8 cores, 43% from 8 to 16 cores, and 39% from 16 to 32 cores. However, the
same effect does not occurs to Stereo and SIFT. Indeed, we observe a moderate or even
worst improvement in C' > 16, with Stereo presenting an execution time of -22%, -1.3%,
+2.6%, for an increase in C' of 4 to 8, 8 to 16, and 16 to 32, respectively.

As represented in Table 3.2, Stabilization (which is scalable) has smaller FIFO sizes
than Stereo and SIFT. The FIFOs of Stabilization fit in the cache whereas FIFOs of
Stereo and SIFT do not and also suffer from lower data access locality.

It is also possible to observe that there are different performances among the configu-
rations of the x-axis. Such performances are impacted by the different L2 and L3 sharing
configurations. The next two subsections enter into details about the impact of L2 and

L3 sharing.

3.2.3 L2 Sharing

Figure 3.4 presents a comprehensive evaluation of the L2 sharing impact over the
execution time, L2 miss rate, and L2 miss rate for the three applications. The left y-axis
of each plot represents the application iteration time, the right y-axis represents the miss
rate, and the x-axis represents the configurations.

Each application has four plots, one for each simulated C. As the purpose is to evaluate
the results only while varying L2 sharing, the plots have fixed L3 sharing parameters
according to the maximum number of cores (as well as in the Xeon architecture).

The L2 miss rate decreases for all applications, more sharply for Stabilization (-59%),
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Figure 3.4 — 1.2 sharing evaluation for three applications. (a) Stabilization, (b) Stereo, (c)
SIFT.

and less significantly for SIFT (-23%), and Stereo (-22%), considering the average between
the leftmost configuration and the rightmost configuration. This decrease in L2 miss rate
happens because a high L2 sharing increases the probability of an actor to share a FIFO
inside the same L2 that is being shared with another actor (without the need to retrieve
the data at the L3 cache level). The decrease is less significant in high memory demand
applications — as SIFT and Stereo — since they naturally require more memory than

Stabilization.

The L3 miss rate increases for all applications according to the higher L2 sharing.
Such an increase makes the L3 reach high miss rates of 84.3% for SIFT, 84% for Stereo,
and 66.32% for Stabilization in configuration 22. Again, the memory demands of each
application play an important role to stress the cache. The number of L3 accesses helps
to justify this L3 miss rate increase. With a more shared L2, the L3 accesses consequently

decreases, reaching, on average of -39.7% for Stabilization, -32.3% for Stereo, and -17.6%
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for SIFT.

This makes the L3 lose spatial locality and increasing its miss rate, which transfers
the data access to DRAM level and delays the execution time.

The execution time remains constant for Stabilization regardless of higher L2 sharing.
For Stereo and SIFT, it remains constant for C' = 4,8, but for C' > 16, the execution
time starts to increase from L2(x2), reaching up to +56% of increase for Stereo and to
+17% for SIFT L2(x32). This increase in execution time is attributable to the significant
increase of the LL3 miss rate compared to a not-so-high decrease of the L2 miss rate, which
generates miss penalties from both sides (L2 and L3 caches).

In summary, increasing L2 cache sharing is not beneficial to dataflow applications,
specifically for those applications which demand more memory as in the case of Stereo and
SIFT. This is in compliance with the cache design choices of some processor architectures
as Intel Nehalem and AMD K10, which use private L2 caches. As can be observed from
the results, assigning to each core a private L2 reduces the execution time since this allows
a more balanced rate of L2 and L3 misses, which reduces cache contention earlier avoiding

data to be fetched in a lower level of caches or even DRAM.

3.2.4 L3 Sharing

Figure 3.5 presents a similar set of plots of L2 sharing analysis, but now about L3
sharing. The L2 sharing is fixed in L2(x1) since the previous subsection has shown that
this is the best L2 sharing configuration.

The results show three trends: (i) L2 miss rate remains constant; (74) L3 miss rate
decreases significantly according to the increasing of L3 sharing; and (7iz) the execution
time can benefit from a higher 1.3 sharing.

Regarding the L2 miss rate, it is expected that it remains constant since the L2 was
not changed. Regarding the L3 miss rate, it decreases significantly for all applications
according to higher L3 sharing, reaching a miss rate in the L3(xC) of, on average, 9.3%
for Stabilization (reduced by 87.34%), 8.4% for Stereo (reduced by 87%), and 37.8%
for STIFT (reduced by 38%). This result is expected since a higher L3 sharing allows all
application data to fit in the L3 cache (note that SIFT presented the lowest improvement
due to its higher memory demands). Consequently, the execution time also benefits from
this L3 miss rate decrease, specifically for the applications with higher memory demands
such as Stereo and SIFT.

In summary, increasing L3 cache sharing is beneficial to those dataflow applications
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SIFT.

which fit in L3. A single L3 cache is slower but larger, allowing it to store all application

data in it.

3.2.5 Cache Size

vate and an L3 shared by all cores presents the best results related to application speedup
and L2/1.3 miss rate. To the cache size evaluation, we keep this sharing configuration, and
changed only the size of 1.2 or L3 per core, creating 15 new cache configurations (3 varying
L2 size x 5 varying L3 sizes). Besides, the evaluation only addresses configurations with
32 cores, since lower core count have presented the same trend.

Figure 3.6 shows the results varying the L2 size (256KB, 512KB, and 1MB) at x-axis.
The left y-axis represents the application iteration time, and the right y-axis represents

the cache miss rate. Each plot represents one application, with each one having 3 sets of

In the previous L2 and L3 sharing analysis, it was possible to conclude that an L2 pri-
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Figure 3.6 — L2 cache size comparison varying L2 size over multiples L3 sizes. (a) Stabi-
lization, (b) Stereo, (c¢) SIFT.
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Figure 3.7 — L3 cache size comparison varying L3 size with an L2 private of 512KB. (a)
Stabilization, (b) Stereo, (c¢) SIFT.

results representing different L3 sizes.

It is possible to observe that the increase in L2 and L3 size has a low influence on
the L2 and L3 miss rate for all applications. The execution time has a small reduction
according to higher L2 sizes, however, this value is insignificant, representing an average
reduction from the lower L2 size (256KB) to the higher L2 size (1MB), of -0,49% for
Stereo, -1.76% for SIFT, and -4.62% for Stabilization.

The results varying the L3 sizes follow the same trend observed for L2. Figure 3.7
shows an example with the L2 size fixed in 512KB (other L2 sizes present very similar
behavior). It is possible to see that both L2 and L3 cache misses remains stable, and
with an insignificant reduction in the execution time (not better than -0.26% for all
applications).

In summary, increasing the L2 and L3 sizes does not guarantee an automatic improve-
ment of the execution time for dataflow applications. In such a case, when a higher amount
of memory resources cannot provide speedup to the application, other aspects must be
taken into consideration. In particular, at the software level, mapping and scheduling algo-

rithms can efficiently use memory resource availability and improve the parallel workloads
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of the application.

3.2.6 Summary of Findings

Bigger caches are not always better with dataflow; increasing the number of cores,
cache levels, size, does not guarantee a faster application execution. This finding is espe-
cially significant for working sets that demand more than the total cache size.

The next items summarize the finding for each analysis:

— Number of cores: increasing the number of cores does not guarantee automatic
improvement of the execution time, since the overhead of cache protocols and re-
quired synchronization does not allow applications to increasingly speed-up, specif-
ically the ones with more memory demands.

— Cache sharing: Despite our expectation based on advantage of sharing middle
cache for FIFO sharing, reducing L2 sharing and increasing L3 sharing was the
most beneficial configuration for the addressed dataflow applications.

— Cache size: increasing the L2 and L3 sizes have an insignificant effect on the
adopted dataflow benchmarks.

One intriguing finding is that L2 private and L3 shared by all cores was the config-
uration that presented the best results related to application speedup and L2/1.3 miss
rate. While this conclusion can sound similar to what Intel came up with some years ago,
justifying its current cache organization with L3 shared by all cores, it was not so straight-
forward from our point of view. First, our focus was to evaluate the impact specifically
for dataflow applications, research that, to the best of our knowledge, was not addressed
yet. Secondly, our initial hypothesis was that when two actors — sharing the same FIFO —
are mapped on different processors that share an L2 cache (increased sharing factor), this
will improve performance due to the reduction in the coherence traffic and the L2 miss
rate reduction. This behavior is supported by the results (Figure 3.4). However, this leads
to a higher miss rate for L3, which has higher penalties than L2, and consequently, has
a higher influence on the execution time, as shown in the case of the three applications
studied (Figure 3.5).

3.2.7 Final Remarks

This section presented a broad analysis of the impact of cache hierarchy configuration

over static dataflow applications. In total, 37 different cache configurations (resulting in
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213 simulations with 3 real applications) were considered to evaluate variations in core
count, L2/L.3 sharing, and L2/L3 sizes. From this analysis, it is possible to conclude that
bigger is not always better in terms of core count, L2 sharing, and 1.2/13 size, since other
aspects like efficient parallel workload division and computation/communication profile
can prevent the application to benefit from more cache memory resources. This analysis
shows that private L2 and L3 shared among all cores provide the best results in terms of
application speed-up and L2/13 cache miss for the adopted dataflow applications.

Table 3.2 shows that PREESM uses extensively memory copying mechanisms for FIFO
handling. Some memory copying is expected in a dataflow design; however, memory copy-
ing is done to the degree that negates the cache hierarchy benefits. Therefore, alternative
approaches must be investigated to allow reducing memory copies penalties at runtime.

The next section details the research made in this direction.

3.3 Dynamic Memory Management Techniques

This section presents the evaluation of two dynamic memory management techniques
and their impact when used in the context of static dataflow applications. We use static
dataflow applications since they represent the more conservatively adapted class of dataflow
programs to our techniques. However, the memory management techniques studied are
also applicable for other classes of dataflow application.

These techniques are Copy-on-Write (CoW) and Non-Temporal Memory (NTM) copy-
ing. They are not novel in their principle, CoW is a well-known approach supported by
Linux OS by the mmap() syscall [27], and NTM is essentially a direct RAM-to-RAM copy,
supported in some Intel processors [65]. The novelty here is to exploit opportunities of
using such techniques in dataflow frameworks, and quantify how much they can improve

the applications execution time and system energy by saving memory transfers.

3.3.1 Motivation to Use CoW and NTM

Figure 3.8a shows the graph of a dataflow application that includes a fork and a join
actor. Actor A produces data dI for actors B! and B2, which access and process them
to generate a data for actor C, which receives them through a join actor and then merges
both data and computes the application output.

Usually, a memory copy is used to copy the data received in the input port to the
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Figure 3.8 — Communication overview among actors of a dataflow-based fork-join appli-
cation.

output port in Fork/Join, broadcast, and Roundbuffer actors.

Each of these special kinds of actors naturally requires to allocate and use their own
dedicated input FIFOs and output FIFOs to store the data. These input and output
FIFOs can be allocated in separate memory spaces whose address spaces do not overlap
with each other. These are called non-overlapping memory spaces. Desnos et al. [39]
identified that there are opportunities to overlap these input and output buffers and
therefore reduce and optimize the memory usage of these actors. Figure 3.8 illustrates
the effects of this optimization and where in Figure 3.8(b) the memory copy for fork
and join actors are removed and their input and output buffers are overlapped, which
reduces the memory usage. However, the optimization proposed by Desnos et al. [39] is
only possible if the actors B1 and B2 do not use the output of the fork operation as a
temporary memory space to store the intermediate results of their computation. Since,
the application is specified with dataflow MoC, the input to an actor is expected to be
used and then discarded. As such, the allocated memory space for its inputs can be reused
for the intermediate calculations to save memory as even described in page 30:5, Fig. 4 of
Desnos et al. [39]. The reuse of input buffer for intermediate results can save significant

amount of memory and reduce the memory footprint of the dataflow application.

In summary, the application developer can inform the framework which buffers can be
merged in the same memory space, resulting in the graph presented by Figure 3.8b. Thus,
some memcpy are avoided, helping to significantly save memory footprint and execution
time.

However, such design-time approach only works assuming two conditions: (i) At design
time, the framework must be fed with the designer’s information related to actors’ memory
access patterns. However, it is not possible when application behavior is dynamic (changes

at runtime). (47) it only works for buffers that are known to be read-only over all the actor
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lifetime, as the case of buffer F'1 of actor BI of Figure 3.8a. If the actor — due to a branch
in its algorithm flow — chooses to write in F'I buffer space, these memory reuses cannot
be adopted. Even if the actor has a probability of less than 1% to write in this buffer,
the memory reuse cannot be applied since it is fundamentally a design-time exploration
technique.

Thinking about how to fulfill this lack, our idea is to investigate two dynamic memory
management techniques which are CoW and NTM. Memory management for static data
flow applications that are focused on in this chapter can be done statically at compile time
or dynamically at runtime. Our approach is designed to be used at runtime, and have the
potential to avoid unnecessary memory copies (CoW), and cache thrashing (NTM).

Cache thrashing happens when a current task/actor is running and then swapped for
a different task/actor by the scheduler. The new task starts using the cache and replaces
the cached data of the previous task/actor. When the previous task is swapped back in,
the cache does not contain its data and loses the benefit of caching. As such, memory
intensive tasks that quickly fill the data cache might thrash each others’ cached data.

In the next subsections, we present the details of each one and how they were im-
plemented in our multi-core model, as well as, the evaluation of their drawbacks and
benefits.

3.3.2 Copy-on-Write (CoW)

Our proposed CoW technique complements and enhances the work by Desnos et
al. [39]. We apply their compile optimization first that reduces the memory copies. How-
ever, they need to perform compile-time range analysis and ensure that consumer task
will not write to the shared input buffer as a temporary space for intermediate results.
This compile-time analysis hinges on pointer alias analysis that is inherently conserva-
tive to ensure correct execution of the program. CoW is a dynamic memory management
technique that does not initially copy the input buffer data. If the consumer task does not
write on the input buffer, no data is copied. However, if the consumer initiates a write on
the buffer, a memory copy is initiated and a new memory is allocated. It is true to that
dynamic memory allocation can incur some latency. However, the benefits comes from the
fact that our technique does not depend on conservative alias analysis at the compile time

and can cover more cases while minimizing the memory copies using runtime information.

Figure 3.9 details the CoW concept. The principle of CoW is simple. It consists in
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Figure 3.9 — Principle of the Copy-on-Write (CoW) mechanism.

Table 3.3 — Core change for supporting the CoW mechanism, assuming: (1) src_buffer

is the source buffer, (2) dst_buffer is the destination buffer, (3) copy_length is the copy

length, (4) shm_open_£d is a file descriptor created with the shm_open system call.
Original Code CoW mechanism

void *dst_buffer = mmap(NULL, copy_length,
PROT_READ | PROT_WRITE, MAP_PRIVATE, shm_open_fd, 0);

memcpy (dst_buffer, src_buffer, copy_length);

allowing two or more threads (actors in our case) to share to the same memory space.
When one thread attempts to write in that space a new memory space with same size
is dynamically created, bringing the data with it (a copy on write). It thus prevents the
writing thread from overwriting the data in the first memory space [27]. Figure 3.9 depicts
at time ¢1 thread A and thread B pointing to the same memory space 1. At the time ¢2,
thread B writes in the memory space 1. At the time ¢3, the OS detects this write and
makes a copy of the memory space, creating the memory space 2 and making thread B
point to it. Now, any data written/read by thread B will be placed/accessed in memory
space 2.

This functionality can be implemented in a dataflow application by making the buffers
involved in a given operation (like a fork, join, and broadcast) point to the same memory
space after the producer actor writes data in this space. If the destination buffer receives
a write attempt by any actor, a CoW happens, preserving the original values of the buffer
to the consumer actor.

The core code change to support CoW is shown on the right side of Table 3.3 as a
single line. Initialization and termination has been omitted for this example. The CoW
mechanism is achieved by mapping all destination buffers (named dst_buffer) into the

same physical address, which is referenced by file descriptor shm_open_fd. This latter
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Table 3.4 — Core change for supporting the NTM mechanism, assuming: (1) src_buffer

is the source buffer, dst_buffer is the destination buffer, copy_length is the copy length.
Original Code NTM mechanism

for (i = 0; i < copy_length/4; i++){

memcpy (dst_buffer, src_buffer, copy_length); | _mm_stream_si32(dst_buffer[i], *(src_buffer[i]));

}

address was initialized by the shm_open procedure. Besides, we map the region as private
(MAP_PRIVATE) with read and write permissions (PROT_READ | PROT_WRITE). The com-
bination of these two flags will create a new copy of the physical address when a write
occurred in the memory area (in other words, a copy-on-write). Finally, we allow the OS
to decide the virtual address of this new buffer by passing nil (NULL) as the first parameter
to mmap.

The CoW procedure is typically handled by the OS kernel. Unfortunately, the Sniper
simulator has limited operating system modeling capabilities to evaluate kernel-based
strategies [31]. Thus, for our experiments, we used a combination of user- and kernel-
space interaction so that Sniper can account OS overhead accurately. Specifically, in our
implementation a buffer is mapped to CoW without the PROT_WRITE flag. Not setting
this flag makes sure that the buffer is not writable (does not have write permission).
Any future attempts to write in the buffer will trigger an exception®, which interrupts
the causing thread. Then, a corresponding exception handler implemented in the user
space changes the concerned memory page to use CoW. In regard to the code presented
in Table 3.3, as described we change the capability of the memory regions to read-only
(removing the flag PROT_WRITE), and install an exception handler to re-enable the write
capability for this mapping.

3.3.3 Non-Temporal Memory (NTM) Copying

Non-Temporal Memory (NTM) copying is ideal for memory spaces known to be write-
mostly and rarely used (i.e., poor temporal locality). This approach uses either (i) in-
structions that bypass the cache hierarchy or (i) user space RAM-to-RAM DMA. In our
proposal, the memcpy procedure is replaced by another procedure that uses either the
aforementioned two techniques specialized for memory transfer in dataflow applications.

Therefore, our proposal also relieves the CPU from executing the data transfers instruc-

1. For the exception, we use the SIGSEGV event, which is a synchronously-generated OS interrupt that
is guaranteed to be delivered to the causing thread [64].
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tions. Another benefit of employing this NTM mechanism is that cached data from other
applications are not thrashed due to the copying required by any given application. NTM
already exists in current processors, our work utilizes it for dataflow applications. For
instance the x86 architecture offers NTM through (7) SSE extensions [65], and (i7) the
[/OAT DMA engine that is also available in some Intel processors [78].

Since these approaches bypass the cache hierarchy, their operation is slower com-
pared to memcpy. Intel shows that RAM-to-RAM achieves approximately half the speed
of memcpy for large transfers (> 8 MiB) but is many times slower for smaller transfers on
x86 [78].

Table 3.4 shows the code change to use NTM instructions for Intel processors on Linux
operating system.. The core code change to support NTM is shown on the right side of
Table 3.4 as a for-loop structure. Initialization and termination has been omitted from
this table. The procedure mm_stream si32 is provided by Intel to call the appropriate
assembly instruction for NTM operations. It copies 32 bits from a value (src_buffer[il])
to a given pointer (dst_buffer[i]). After the end of the for-loop, the data is copied
to the area pointed by dst_buffer. Thus, the result is the same as calling memcpy but
the related data will not be present in the caches if they were not already there before

_mm_stream_si32 is first called.

3.3.4 Results

This section presents the results about CoW and NTM using the three dataflow bench-
marks, SIFT, Stereo and Stabilization, and the 22 configurations on Intel Xeon architec-

ture.

Experimental Setup

All applications used in these experiments were generated using the PREESM frame-
work (version 3.4), compiled using GCC v7.5.0 optimization -O2, and executed on Sniper
simulator. The energy estimation is performed with McPAT [82], which is integrated into
Sniper and provides reliable power and energy figures broadly used in state-of-the-art
works [74, 114].

We have developed an algorithm implemented in Python script language, which has as
input the generated code of PREESM and has as output the new application code using
the CoW or NTM technique. This algorithm detects in the code the memcpy patterns,
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Algorithm 2: Patterning detection of CoW and NTM memcpy

Input : src_o (application source code generated by PREESM),

t (technique: CoW or NTM),
¥ (minimum data size of a memcpy)

Output: src_t (application source code adopting CoW or NTM)

1 join_broad set < 0;

2 broad set < 0;

3 memcpy_ list «— extract__memcpy(src_o);
4 if memcpy_list # () then

10
11
12
13
14

15
16

17
18
19
20
21
22
23
24
25
26
27

/* Identify join-broadcast patterns */
foreach mj € memcpy_list do
if mj.type = JOIN & mj.destination & join_broad_set & mj.size > 1
then
foreach mb € memcpy_list do
if mb.type = BROADCAST & mb.source = mj.destination &
mb.size > 1) then
join_ broad_ set.insert(mj.destination);
break foreach,;
end

end

end
end
/* Identify broadcast-only patterns */
foreach mb € memcpy_list do
if mb.type = BROADCAST & mb.destination & join_broad_set &
mb.size > 1) then
foreach mb € memcpy_list do
| broad_set.insert(mb.destination);
end

end
end

end

if t = ColWW then

‘ src_t < applies. CoW(src_o, join_broad_set, broad_ set, memcpy_ list);
else

‘ src_t < applies. NTM(src_o, join_broad_ set, broad_set, memcpy_ list);
end
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which are candidates to be replaced by CoW or NTM. However, these two techniques can
be combined and can be performed simultaneously. The algorithm is fully automatized, in
the sense that it detects the memcpy patterns by looking for join-broadcast, and broadcast
dataflow patterns [39]. The algorithm can also be tuned with a parameter ¢, which allows
defining a minimum threshold in the data size of a memcpy operation. By using 1, it is
possible to eliminate small-size memcpy and only target the ones which transfer a large

amount of data.

Algorithm 2 presents the method to detect the memcpy patterns which are candidates
to be used in CoW and NTM. As input, the algorithm has three parameters: src_o: the
application source code generated by PREESM; ¢: a flag that selects between CoW or
NTM; and v: the parameter that indicates the minimum memcpy data size. Line 1 and 2
initialize two sets, called join_ broad_ set and broad__set, which will store the destination
buffers’ names of memcpys related to join-broadcast and broadcast-only, respectively. In
line 3, the function extract memcpy extracts from src_o all memcpy instances gener-
ated by PREESM, achieving the following information from each memcpy: data transfer
size, source buffer, destination buffer, and the type (JOIN, BROADCAST, FORK, and
ROUNDBUFFER [109]). The type is easily extracted due to a PREESM’s characteristic
in which it classifies the memcpy during its code generation, inserting its type as a com-
ment in the line above each memcpy. All the memcpy instances are inserted in the list

called memcpy _list.

Lines 5-14 identify join-broadcast patterns evaluating each element mj of memcpy_ list.
The condition of line 6 checks if the mj is a JOIN, if its destination buffer is not already

in join_broad__set, and if the memcpy data size meets ).

Once this check is true, the algorithm advances to the phase (lines 7 and 8) to confirm
that the destination buffer of JOIN operation is also involved in BROADCAST. Once the

buffer matches a join-broadcast pattern, it is inserted in the join_ broad_ set in line 9.

Lines 15-22 identify broadcast-only patterns evaluating each element mb of memcpy_ list.
Line 16 tests if mb’s type is BROADCAST. Another important verification is to check if
the buffer is not in the join_broad__set, eliminating it if true. The same test of line 16
also seeks to eliminate the memcpys with a size lower than . If all conditions are meet,
the destination buffer is added to the broad_set at line 18.

The last part of the algorithm (lines 23-27) focuses in verifying the value of ¢, calling
the respective function which will applies CoW (line 24) or NTM (line 26). These functions

evaluate all memcpys from memcpy _list, selecting those one containing the buffers name
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Table 3.5 — Memcpy profile addressed in CoW and NTM.
Application Y # memcpy Total memcpy size

Stabilization 200KB 1 0.21 MB
Stereo 400KB 5 2.4 MB
SIFT 400KB 8 24.4 MB

in join_broad_set and broad set. The output of the algorithm is src t, comprising
the src_o with the matched memcpys replaced by the code presented in Table 3.3 and
Table 3.4.

Table 3.5 details the values of ¢ (224 column) used for each application. The table
also details the number of memcpy addressed in CoW and NTM (3" column), and its
respective total size (4" column). The memcpys are replaced by the procedures given in
Table 3.3 and Table 3.4 for CoW and NTM, respectively.

Table 3.5 shows that SIF'T has more available memcpy to be optimized. The threshold
v was defined as 400KB for SIFT and Stereo. Stabilization does not have such a large
memcpy, therefore we reduce the value of ¥ to allow the algorithm to consider the higher
memcpy of the application. To find the values of v, the applications are profiled with
different v values at the design time and the one that corresponds to the best execution
time is selected.

The next subsections present the results achieved by replacing the memcpy with NTM
or CoW separately. We study these techniques separately in order to understand their

individual contributions to the performance and energy gains.

Copy-on-Write (CoW)

Figure 3.10(a) presents the iteration execution time for all benchmarks using CoW.
An average execution time reduction can be observed for Stabilization (-2%) and, most
importantly, to SIFT (-10%), which reaches up to -15.8% for configuration 10. It is ex-
pected that SIFT benefits more from CoW since it has a large number of buffers used in
memcpy compared to the other applications. On the other side, Stereo presents an aver-
age execution time increase of 1.3%. Stereo is known to be computation-intensive, and,
therefore, the access to buffer mapped as CoW is less frequent than in Stabilization and
SIFT, which makes the overheads of CoW (create shared memory and call of mmap())
overcome its benefits.

An energy reduction was achieved for all applications (-7.6% on average), with an
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Figure 3.10 — Results using CoW. (a) Execution time evaluation. (b) Energy evaluation.

average reduction of -2% for Stabilization, and -1.3% for Stereo. Again, SIFT is the

application that benefits the most from CoW regarding energy. Figure 3.10b shows an

overview of energy consumption for SIFT (bar graph) to the 22 configurations. On average,

the energy reduction was -16.8%, reaching the best result of -21.8% to configuration 8.
Again, SIFT benefits from the CoW which allows data to be used without having to
wait for the memcpy to complete. This behavior significantly affects the use of the CPU,

which saves instructions in memcpy. This result can be observed following the dotted line

of Figure 3.10b, which shows a significant reduction of L1-I (introduction cache) accesses

of, on average, -62.3% (0=3.4).

Figure 3.11 presents results for all applications in configuration 18. As expected, all ap-

plications have a reduction in the number of instruction access from the L1-I cache, which

is justified by the saved memcpy instructions by using CoW. The instruction access

gains

progresses accordingly with the size of application’s memcpy (as depicted in Table 3.5
(4" column)), with Stabilization presenting -0.41% less L1-1 access, Stereo -29.8%, and

SIFT -46.5%. This effect impacts the energy consumption and execution time, especially

for SIF'T, which benefits more from CoW due to its larger memory transfer profile.
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Figure 3.11 — Results for configuration 18 using CoW. (a) Stabilization. (b) Stereo. (c)
SIFT

Non-Temporal Memory Copying (NTM)

Figure 3.12a presents the execution time for all benchmarks using NTM. It is noticeable
that execution time is slightly reduced in most of the cases, reaching up to -1.9 % for
Stabilization in configuration 21. The average execution time reduction was -1.9% for
Stabilization, -1% for SIFT, and -0.3% for Stereo.

NTM also provided a small energy reduction, in average -0.84% (0=0.7) for Stabiliza~
tion, -0.2% (0=0.5) for Stereo, and -1.03 (0=1.1) for SIFT, reaching up to -2.7% for SIFT
at configuration 16.

Figure 3.12b focuses on SIFT (high memory footprint application) and presents a
perspective between the bars: L3 miss rate, execution time, and energy, with the lines
that show the absolute number of DRAM accesses without NTM and with NTM. It is
possible to observe that energy is reduced in most configurations, reaching up to -2,7% to
configuration 16. The L3 cache miss was barely affected, presenting an average decrease
of -0.13% with a slight DRAM increase compared to its respective version without NTM
(+0.14%).

Figure 3.13 presents results for all applications on configuration number 18 (private
L2 and L3 shared by all cores), which was the cache configuration that, in general, pre-
sented the best results considering speed-up and L2/L3 miss rate from previous cache
analysis (see section 3.2). NTM has presented improvements for all applications on this
configuration, specifically for SIF'T and Stabilization. Note that, despite Stabilization has
a low memory footprint, the execution time reduction is higher than SIFT and Stereo,
at cost of more L3 miss rate. On another side, SIFT presents a modest execution time
reduction, but also achieving reduction in all cache hierarchy, and specifically, in L1-D

and L1-I access.
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Figure 3.12 — Results using NTM. (a) Evaluation of execution time. (b) Detailed evaluation
for SIF'T application.

In summary of all results, it was possible to observe that NTM can improve the
execution time and reduce energy, however, the gains were modest, not better than -1.9%

in execution time and -2.7% in energy consumption considering all results.

3.3.5 Final Remarks

This section investigates the benefits of using copy-on-write (CoW) and non-temporal
memory transfer copies (NTM) in dataflow applications. Results have shown that both
techniques can contribute to improve execution time and save energy. NTM presents a
modest reduction in execution time (up to -5.3%) and energy (up to -2.7%). CoW —
specifically when used in applications with bigger memcpy transfers (> 400KB) — shows
noticeable reductions, achieving up to -15.8% in execution time and -21.8% in energy
consumption. These techniques are complementary to static state-of-the-art memory op-
timization approaches like [39], acting at runtime to reduce cache thrashing (NTM) and

unnecessary data movements (CoW) among dataflow actors.
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3.4 Conclusion

This chapter presented the first contribution of this thesis: the study of dataflow appli-
cations running on a SMP according to different cache configurations, and the automatic
use of dynamic memory management techniques to improve the execution time by a bet-
ter usage the cache hierarchy. The study of the impact of cache in SMP running dataflow
application was missing in the literature and has been for the first time deeply explored.
The main outcome of this study is that no real benefit for dataflow application can be
expected with the current trend which is the increase of the number of cores and their
cache sizes. The use of existing dynamic memory management techniques can help in
some specific cases but there is no general case or systematic method to apply. It is not
sufficient to really get rid of the intrinsic mismatch between cache and dataflow appli-
cations. A new approach is thus required to obtain significant improvements and this is

what we present in the next chapter.
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CHAPTER 4

NM4SMP: NOTIFYING MEMORIES FOR
SYMMETRIC SHARED-MEMORY
MULTIPROCESSORS

This chapter presents the second contribution of this thesis: a HW/SW co-design of
an optimized near-memory computing device for synchronization of dataflow applications
on SMPs called Notifying Memory for SMP (NM4SMP). It consists of near-memory
hardware logic and its respective support at the software level through a library API and
middleware. The study detailed in this chapter has been submitted to IEEE Trans. on
Parallel and Distributed Systems and is currently under review. We propose a framework
that comprises a complete tool set including the following items:

— Code generation framework integrated with PREESM [110],

— NM4SMP software library for dataflow applications,

— NM4SMP middleware for system executions,

— Simulation primitives in Sniper [31].

The contributions of this chapter can be subdivided as follows:

1. A HW/SW co-design, including library, middleware, and a hardware on-chip device
to synchronize dataflow actors, called NM4SMP (Notifying Memory for SMP);

2. A Framework to integrate the NM4SMP co-design in a rapid prototyping method-
ology [110, 62], addressing dataflow modeling, code generation, and compilation of

both static and reconfigurable dataflow applications.

4.1 Overview of the Proposal

Figure 4.1(a) presents an SMP platform with NM4SMP and Figure 4.1(b) shows a

functional view of the NM4SMP mechanism. It is implemented close to the L1 cache
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Figure 4.1 — (a) SPM with NM4SMP hardware module. (b) Overview of the proposed
NM4SMP mechanism.

of each core. The NM4SMP hardware implements four processes: observe, notify, listen
and report. The NM4SMP hardware is configured with the API and middleware and
implements the firing rules of the actors. The NM4SMP observes the data and address
buses between the CPU and L1 data cache(L1-D). When a producer actor generates the
data, on the basis of the address of L1-D cache access, the module can detect and notifies
the respective NM4SMP module of the consumer core by sending a Notification message.
To prioritize the notification messages, they are communicated over the same existing
interconnection network via a dedicated virtual channel. NM4SMP does not modify the
core and does not modify the caching logic. It merely sits on the interface between the
core and cache and also does not alter the critical path of load and store instructions.
On the consumer core (where the consumer actor is mapped) the NM4SMP module lis-
tens to the notification from the NM4SMP of the core who hosts the producer and updates
the firing rule in its logic based on the notification message as it is received. Only when
all conditions of the firing rule of the consumer actor are satisfied, the NM4SMP reports
the core to start the execution of the consumer actor. Our assumption is that NM4SMP
can boost the performance of dataflow application since it acts to remove synchronization
overheads at both hardware and software levels. At the hardware level, NM4SMP elimi-
nates the role of the cache to manage the synchronization primitives (lock values) and at
the software level it avoids constant interruptions and context saving/restoring required
to produce and to check each firing rule. Another expected positive side effect is to reduce

cache thrashing by freeing the cache of dealing with the data used for synchronization.
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4.2 Notifying Memory for SMP (NM4SMP)

This section presents the NM4SMP design. We adopt a top-down explanation, ad-
dressing the NM4SMP impact at the user level and in sequence detailing its middleware
and hardware implementation. Figure 4.2 shows an overview of the software/hardware
stack assumed in NM4SMP. The actors communicate using API functions provided by

the NM4SMP library. The NM4SMP library interfaces an NM4SMP middleware imple-
mented as a user-level library or as a traditional driver (OS). The middleware implements

the interface with the hardware NM4SMP module, configuring it at runtime.

4.2.1 NM4SMP Library
The role of the NM4SMP library is to abstract the notifying memory features to the

actors through API functions. The library provides the following APIs:
— send(prodID, consID): called when an actor prodID produces data in the FIFO

to actor consID. prodID and consID are unique /D numbers (/D € N), assigned
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to each actor of SMP.
— receive(prodID, consID): called by consID to consume a data from prodID.
— initialize(ays, frise): called by a static application once during its initializa-
tion or by a reconfigurable application at the beginning of each new iteration. It
initializes the NM4SMP by the list of actors (ajs) and their firing rule (frys).

Indeed, NM4SMP library implements a 2D-matrix used for the FIFOs Notification
status, called F'N. At the application level (library), each F'N,; flag represents whether
data on input FIFO i is ready to be consumed by actor a.

An important remark is that the F'N matrix is mapped to the Scratch Pad Mem-
ory (SPM) of the NM4SMP hardware module with the help of NM4SMP library (see the
SPM of Figure 4.2).

A SPM is a high-speed memory used for temporary storage to hold a limited amount of
data. It is employed to simplify the local access to data when the cache logic is unnecessary.

At application level, the send and receive functions are meant to write and read,
respectively the elements of this matrix (F'N,;s). Since the F'N matrix has its addresses
mapped to the SPM, the NM4SMP hardware module can observe the accesses to the F'IN
and takes different actions according to them. It can send notification to the destination
core to update the SPM or to check if a firing rule is satisfied then report the core. Indeed,
all these actions are handled in different phases of NM4SMP state machine in source and
destination cores.

At the hardware level, F'N,; is mapped on a 1-bit flag that represents whether the
data is available in the input FIFO ¢ of the consumer actor a or not. When all the flags
for a given actor consumer a are equal to 1 (i.e. 1 = {F' Ny,;.F'Ny;.FN,;}), the consumer
actor has its firing rule satisfied and it can start its execution in that iteration (see the
Figure 4.2).

The initialize function initializes the F'N matrix with the FIFO flags of the actors
associated to them. For static dataflow applications, since the firing rule does not change
at runtime, this function is called only once during the initialization part of the application.
For reconfigurable dataflow applications, with dynamic firing rules, this function is called

at the beginning of each iteration of the graph during the execution of the application.

4.2.2 NM4SMP Middleware

The NM4SMP middleware is a software abstraction layer from the hardware used to

decouple the library from different architectures. Its goal is twofold:
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(7) to configure the SPM of the NM4SMP hardware when the initialize function ini-
tializes the SPM at booting time with all the bits equal to 1 and then at compile/runtime
of the application with F'N matrix values that is 0 for each valid F'N;;

(1) to configure the Base Address Register (BAR) of the NM4SMP hardware at boot-
ing time with the base address of F'N matrix, so the hardware can observe exactly when
the core is accessing it due to a call of send and receive functions (see subsection 4.2.3

for more details).
We adopt memory-mapped registers (MMR) to perform both configurations (7 and
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4.2.3 NM4SMP Hardware

Figure 4.3 shows a more detailed view of the implemented NM4SMP hardware ar-
chitecture that augments each core of the SMP. The additional logic is located near the
interface between the core and L1-D cache to capture memory accesses. The NM4SMP
hardware requires three components (Local Scratchpad Memory (SPM), Control logic
(Listener CntrlandNotifier Cntrl), Cache Address Blocker (CAB)) that are described

in the next subsections.

Local Scratchpad Memory (SPM)

The SPM stores the F'N matrix, each line (row) represents a consumer actor a, and
each bit of the line (column) represents the data availability of its input FIFO ¢ for the
consumer actor (firing rule). As SPM is a scratchpad, it has an access latency of one
cycle [16]. The SPM size is fixed at design-time. The studied benchmarks that represent
various dataflow applications do not require more than SM P,;,. = 2K B and |FN| = 128,
which is a significant amount of maximum communicating pairs (producer and consumer
actors). This represents 128 possible simultaneous actors for each core in a SPM size
of 2KB and each actor is communicating with 128 actors. In the case of static dataflow
graphs, we calculate the number of actors after graph flattening at compile time. If this
number exceeds the size of SPM, the exceeded communication will be handled purely
in the software. For reconfigurable dataflow application, the token rate can increase at
runtime and hence, the number of actors might exceed the SPM size. In this situation,

the rest of the actors are handled through software synchronization.

Control

The Control unit includes the following components: Listener, Notifier, Base Address
Register (BAR), buffer, and a 128-bit AND gate. The BAR is configured at booting
time by the middleware which is the base address of the F'N matrix (48-bit size virtual
address). All accesses to the F'N performed by the core are in range of BAR. Therefore
the Control unit can monitor such F'N accesses and implement its logic. The key idea
is that based on the address range stored in BAR Figure 4.2(a), Notifier monitors the
address bus between the core and L1-D cache and can detect when a write operation
happens to F'N matrix. The read and write operation is determined by a signal coming

from the core that indicates whether the memory access is a load or store.
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Figure 4.4 — (a) Array of mapping information. (b) Flow of updating SPM by capturing
the Write and sending Notification.

Cache Address Blocker (CAB)

The CAB is an AND gate enabled by the Control logic. The CAB goal is to prevent
that the read/write accesses to the F'N reach to the lower levels of cache hierarchy (e.g.,
L2 cache). Memory operations with addresses in the range of BAR inevitably enter in
L1-D that can generate a cache miss, triggering the coherence protocol. The NM4SMP
logic detects such addresses and disables the interface between the L1-D and the next
cache level by enabling the 2-input AND gate depicted in Figure 4.2(e). One of the AND
inputs is the valid signal from the L1-D, and the other is the signal coming from Control
logic of NM4SMP. By setting the signal of CAB to 0, the output becomes 0, making the
next cache level not be acknowledged by the cache miss message.

Figure 4.4 provides an example of the flow of sending Notification message in imple-

mentation stack of NM4SMP. In the mapping scenario depicted in Figure 4.1 when the
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producer actor 0 finishes the execution, it writes data into the ¢ th input FIFO of the
consumer actor 1. Then the send(0, 1) is called. At the library level inside the send
function, based on the mapping information provided in mapping array M, (shown in
Figure 4.4), the destination core ID 1 which hosts the consumer actor 1 is retrieved. Af-
terwards, this value will be written into the related flag F'N; ;. At hardware level, this flag
address (0x1FF) which is in range of the BAR address (Figure 4.2(c)) and its related
data which is destination core ID 1 are captured by the NM4SMP logic. As discussed
previously, this address is mapped to the SPM and hence, Notifier sends this address as a
Notification, implemented as a specific NoC packet, to the Listener Figure 4.2 (b) of the
destination core 1 that hosts the consumer actor 1.

The Notification packet travels through the NoC and is stored in the buffer on the
consumer side (c). The Listener handles this packet and sets on SPM set to 1 the value
related to this address (value of the flag F'Ny ;) (d). In parallel, Listener detects (in the
same way as Notifier) when the consumer core performs a read operation on F'N. By
performing a 128-bit AND operation (e), the Listener can know when the firing rule of
the consumer actor a is satisfied and reports to the core (f). The subsection 4.2.4 presents

further details, explaining the FSMs of Listener and Notifier.

4.2.4 NMASMP Workflow

The workflow includes four phases: initialization, notifying, listening, and reporting.

Initialization Phase

This phase is performed each time the initialize is called. Its goal is to initialize the
SPM with zero in firing rule of a (F'N,;). The interface between the middleware and
hardware module is implemented through a memory-mapped register (MMR), which fires
init state in all FSMs depicted in Figure 4.5. After initialization, the NM4SMP control

starts notifying, listening, and reporting phases.

Notifying Phase

The notifying phase, depicted in Figure 4.5(a), is triggered by the send function and
implemented by the Notifier module. As previously explained and shown in Figure 4.4(b),
Notifier detects the write access to the F'N,;, then it sends a packet to the consumer core.

This process is implemented by two FSM states depicted in Figure 4.5(a):
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Figure 4.5 — NM4SMP Finite State Machines (FSM)

— check addr: Using the base address initialized in BAR, the Notifier detects address
and captures its related data from the address and data buses respectively. When
the core performs write operations, Notifier captures address and data buses. As
the address bus is synchronized with the value of the data bus (both appear in
the same cycle), the extraction of address (F'N,;) and data (destination core ID)
is performed within one clock cycle. If the address is in the range of F'N, Notifier
sends this address to the destination core whose ID is captured from the data bus
as a Notification packet. Moreover, in case the address is in the range of BAR, this
state also sets the CAB signal to 0 to block the cache miss access from L1-D to
the next level, and FSM switches to send Notif state.

— send Notif: The Notifier sends a Notification packet to the Listener at the con-
sumer core via its Network Interface (NI). The content of this packet is the address
of the F'N,; flag. This process takes one clock cycle since NI only assembles and
sends the NoC packet. Therefore, the goal of NM4SMP in this state is to pass
minimal information to NI. The minimal information is the tuple {a,i} and the
destination core address. After this state, the Notifier FSM returns to the check
addr state.

Listening Phase

In the listening phase, the Listener module receives the notification packet and updates
the SPM. This process is implemented by three FSM states depicted in Figure 4.5(b):
— wait Notif: In this state, the Listener of consumer core waits for a notification
packet from NI. When it receives the packet, FSM switches to read Notif.
— read Notif: the packet is read from NI, and the address of F'N,; is extracted. In
sequence, the FSM switches to set SPM.
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— set SPM: The firing rule located at F'N,; is set to 1 and the update SPM signal is
set. Then FSM returns to the wait Notif state.

Reporting Phase

When a receive is called, and the related firing rule is not met, the actor’s execution can
be suspended. Differently than in spinning-lock, this action reduces the core’s switching
activity and helps to save energy. When the firing rule becomes enabled, it is necessary
to report this event to the core to allow the actor to resume its execution. The report
phase inside Listener has this role. When the Listener detects a read access to F'N by
monitoring the address bus, it checks the firing rule of the actor a, making a simple AND
among all flags ¢ of F'N. If the output of the AND is 0, the rule is not satisfied, and
the actor execution is blocked. Otherwise, the firing rule is met, and the actor execution
continues. This rule checking is only performed once (whenever a Notification packet is
received and SPM is updated) instead of constant spinning on it. While this behavior
models a blocking receive, the support of non-blocking also was implemented. The only
difference in the non-blocking case is that the core does not enter in the idle state when
the firing conditions are not satisfied (the Listener put 0 on data bus and receive function
returns zero). The actor is blocked by the thread since the receive returned zero, but the
thread can still executing the other actors.

The reporting phase is composed of the following FSM states depicted in Figure 4.5(c):

— check addr: Listener checks whether a read happens to F'N. When the read is
detected, the CAB is set to 0 (preventing cache misses), and the FSM goes to
read SPM meanwhile core should wait for the response (setting data bus as 0 by
NM4SMP).

— read SPM: based on the read address, the Listener reads the line of F'N that hosts
the firing rule for actor a. The Listener calculates the firing rule for a using the
128-bit AND gate (128 bits is due to the maximum number of ). The result is 1
only if each flag i for actor a is 1, so the firing rule is met.

— set bus: Listener sets the firing rule status value (0 or 1) on the core data bus.
If the receive is non-blocking, the FSM sets the bus as 0 (if the firing rule is not
satisfied) or 1 (if the firing rule is satisfied) and returns to check addr to detect
the next possible reads. If the receive is blocking, the core stays waiting and the
FSM can take two directions: (1) if the firing rule is satisfied, the FSM sets the

bus as 1 and the core needs to be awakened, thus, the FSM goes to send event;
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Figure 4.6 — Flowchart of the proposed framework to integrate NM4SMP co-design in the
process of dataflow modeling, compilation, and execution.

(2) if the firing rule is not satisfied, the FSM sets the bus as 0 and it stays in the
current state until the update SPM signal becomes set (by the listening phase) to
switch to the read SPM.

— send event: Listener sends an event to the core so that the waiting core is awak-
ened. Then, FSM state changes to check addr.

4.3 Notifying Memory Framework for PiSDF Dataflow
Applications

This section presents the second contribution of this chapter: a framework to inte-
grate the NM4SMP co-design in the process of dataflow modeling, code generation, and
compilation of static and reconfigurable dataflow applications. Figure 4.6 presents the

framework’s flow. We divide it into steps which are explained in the following:

Step 1 - Input: the goal of this step is to gather all necessary inputs to model the
dataflow application. The user must provide the following set of information: (i) the
application’s graph, containing the actors as vertices and its respective communication as
the edges; (77) the architecture model, detailing hardware properties of the target platform,
as the number of cores, memory size, memory bandwidth; and (4) the constraints of the
application, as period, deadline, execution time, and minimal communicating bandwidth
required by each edge.

The type and format of such information rely upon the dataflow modeling methodology

used in the next step.

Step 2 - Code generation: the goal of this step is to generate the application code
according to the input provided in the previous step. The output of this step is the dataflow
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code generated in a given language. Rapid prototyping frameworks, as PREESM [110], are
specialized in modeling dataflow application. As discussed earlier in Section 2.4, PREESM
is a state-of-the-art framework for modeling and generating both static and reconfigurable
dataflow applications for multi/many-core systems. PREESM allows graphically modeling
the application by creating actors and their respective communicating edges, specifying
the architecture model, and defining the application’s constraints following a GUI based
on Eclipse. We use PREESM to model the dataflow applications.

After the user models a dataflow application, the dataflow modeling tool can generate
the code based on a target language (usually C). The code generation process requires
an important step, which is to identify if the application is modeled following a static or
reconfigurable approach. In the static approach, the application is already generated with

the optimal mapping and scheduling since the data token production rate is deterministic.

For reconfigurable dataflow applications, a Runtime Management Layer (RML) can
dynamically map and schedule the actors at runtime, according to the input workload
characteristics (e.g., image frame size). In such a case, the dataflow modeling tool must
generate an interface that becomes part of the generated application and makes the bridge
between the application and the RML (see the yellow filled part of Figure 4.6). This
interface has two purposes: (i) provide to the RML the constraints of application and
properties of the target platform, (i) allow the RML to know the address of the function
of each actor, allowing the RML to start execution of them according to its runtime
scheduling and mapping decisions. In PREESM, such interface is automatically generated

when it is set to generate a reconfigurable application [110, 62].

We use SPiDER as RML [62]. The SPiDER RML library is modified to exploit the
NM4SMP hardware module. Subsection 4.3.1 explains the contributions made inside the
RML to support NM4SMP.

Step 3 - Application compilation: the goal of this step is to compile the dataflow
application having as input the generated code and producing as output the binary code
ready to be executed on the target platform. During the compilation step, the generated
code (including the application’s code and RML interface) is linked to the libraries that
implement RML.

Step 4 - Execution: the binary generated in previous step can be executed on the
simulated target multi-core architecture using full system simulator in which NM4SMP

module is implemented, here we use Sniper multi-core simulator.
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Figure 4.7 — SPiDER Runtime Management Layer (RML) structure. The blue rectangles
are new modules added in this work.

4.3.1 SPiDER’s Runtime Management Layer

The NM4SMP library depicted in Figure 4.6 is added a state-of-the-art RML called
SPiDER [62]. We provide a detailed explanation of SPIiDER in Section 2.4.2. It manages
reconfigurable applications through hierarchical runtime management composed of one
global manager (GRT) and n local managers (LRTs) where n is the number of threads
running the application. GRT is responsible for managing the application graph, perform-
ing mapping and scheduling the actors at runtime and sending the job schedules to the
LRTs at the beginning of each iteration. LRTs are responsible for executing the actors
provided by GRT.

Figure 2.6 shows the SPiDER runtime management layer structure. The first layer is
the application layer, having the RML interface and a set of actors to execute. The RML
interface provides GRT the information related to architecture and application properties
such as graph, functions of the actors and number of the threads.

At the bottom of the application’s layer is the RML layer (filled yellow part), divided
between Hardware Independent Layer (HIL) and Hardware Specific Layer (HSL). HIL
implements hierarchical management with one GRT and several LRTs. HSL implements
architectural dependent libraries including communication library (NM4SMP library) ac-

cording to the target platform.
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Finally, the last layer of Figure 2.6 comprises the Hardware, where are the implemented
NM4SMP hardware module.

The NM4SMP library is implemented within HSL by replacing the traditional semaphore-
based synchronization adopted in SPiDER with the proposed approach. A fundamental
difference between static and reconfigurable applications, is that in reconfigurable case the
actors do not call the send and receive functions directly, instead, the LRT abstract those
functions to the actors by handling data communication and synchronization among the
actors. At the beginning of each application iteration, GRT, based on the decided schedul-
ing and mapping, provides to each LRT a list of actors (scheduled jobs) to execute. Each
LRT, after it finishes the execution of an actor (running its function), sends a notification
(called job notification) to the other LRTs hosting other actors who are waiting for the
data produced by this actor. Thus, the LRTs communicate among them to know when the
firing rule of a given actor were satisfied, allowing the LRT to start the execution of that
actor. Such communication among LRTs plays an important role in the communication
overhead of the application (up to 40% in our studies), and it can be exploited to reduce

the communication penalties by implementing it with NM4SMP.

4.4 Results

This section is organized as follows: subsection 4.4.1 details the experimental setup.
The next two subsections evaluate performance (execution time, cache impact, energy
consumption, and scalability). Two different scenarios are addressed: subsection 4.4.2
evaluates SDF applications without using SPiDER. Such an evaluation is relevant because
SDF applications call the send/receive functions directly (without the RML), which makes
the evaluation of NM4SMP clearer since there is no RML overhead. Subsection 4.4.3
includes RML in the dataflow applications generation, following the framework steps
presented in section 4.3. Such results are sub-divided in SDF applications generated with
RML and the evaluation of a fully reconfigurable application (PiSDF). To conclude, the
subsection 4.4.4 details the hardware complexity imposed by NM4SMP.

4.4.1 Experimental Setup
Dataflow Benchmarks

We evaluate four dataflow applications implemented as SDF graph
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Table 4.1 — Benchmark setup. RLT / RLP: Reinforcement Learning Training / Prediction
phases. SDF: Synchronous Dataflow. PiISDF: Parametererizable Dataflow
Application Actors FIFOs FIFOs size Graph

RLT 61 2111 42.7 KB SDF
RLP 10 282 7.7 KB SDF
Stabilization 30 607 921 KB SDF
Stereo 36 811 29.09 MB SDF
Sobel 5 43 681 KB PiSDF

» Reinforcement Learning application Training algorithm (RLT)

» Reinforcement Learning application Prediction algorithm (RLP)

o Stabilization (a filter to compensate the movements of a video recorded with a
shaky camera)

 Stereo (a computer vision application that processes a pair of images to produce a
disparity map corresponding to the depth of the captured scene)

o Sobel filter as a reconfigurable application and modeled as a Parameterized and
Interfaced Synchronous DataFlow (PiSDF)

Table 4.4.1 presents the features of our benchmarks. The dataflow applications come
from PREESM’s application repository! and are specified using the PREESM frame-
work [110]. While it is expected that applications with a high communication rate will
benefit more from NM4SMP, the applications set herein adopted is interesting because
it comes with a mixed profile of computation, memory usage, and communication, which

allows evaluating different aspects of the NM4SMP approach.

Hardware Setup

Table 4.2 summarizes the two SMP configurations adopted in our experiments. They
are by default available in Sniper distribution. The first one, similar to the experimental
setup in Chapter 3, is Xeon X550 Gainstown, which represents a mainstream and powerful
SMP. The other one is Atom Silvermont, which represents a low power SMP. Each one
of these systems was evaluated with NM4SMP and without (baseline) using Linux-based

semaphore [27] (kernel 5.4.0-84) as a synchronization technique.

1. https://github.com/PREESM/PREESM-apps
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Table 4.2 — Hardware simulation settings.

Feature System 1: Xeon-based SMP System 2: Atom-based SMP
Processor type Intel Xeon X5550 Gainestown Intel ATOM Silvermont
# Cores 16 core @ 2.66 GHz 16 core @ 2.4 GHz
32KB - 8way - 1ns tag lat. 32KB - 8way - 1ns tag lat.
LI-T Cache 4ns Data lat. - LRU 4ns Data lat. - LRU
32KB - 8way - 1ns tag lat. 24KB - 6way - 1ns tag lat.
LID Cache ) Data lat. - LRU 4ns Data lat. - LRU
L2 Cache 256KB (private) - 8way 1MB (shared by 2 cores) - 16way

3ns tag lat. - 8ns Data lat. - LRU 3ns tag lat. - 12ns Data lat. - LRU
8MB (shared by 4 cores) - 16way
10ns tag lat. - 30ns Data lat. - LRU No L3 cache

lat = latency; LRU = Least Recently Used.

L3 Cache

4.4.2 SDF Applications Without RML

This subsection addresses the results for the static application modeled by SDF graph.
The results focus on evaluating the potential of NM4SMP to reduce the synchronization
overhead, addressing metrics of execution time, cache access/miss, and energy consump-

tion.

Synchronization Time

Figure 4.8 presents the normalized execution time (performance) evaluation, divided
in communication, computation, and memory time. Each application has three bars: base-
line, baseline-64, and NM4SMP.

The baseline-64 bars represent a study that evaluates the impact of a 64 KB L1 cache.
Such a study was performed because the baseline and NM4SMP platforms use an L1-D
cache size of 32KB for Xeon and 24KB for Atom. Details of the hardware settings of
baseline architectures are represented in Table 4.2. By adding NM4SMP, the cache size
increases due to the presence of SPM. A reasonable argument is that simply using a bigger
L1 cache would speedup applications. We thus wanted to measure the impact of such an
increase by evaluating configurations with a bigger L1 cache. Due to the limitation of
Sniper, the cache size must be a power of 2, therefore baseline-64 configuration adopts
the size of 64KB L1 cache for Xeon and 32KB L1 cache for Atom.

The results of Figure 4.8 show that baseline-64 presents an insignificant impact on
application execution time compared with the baseline system, with an average speedup
of less than 1% for all applications. Hence, we decided to keep the configuration with an

L1-D cache of 32 KB for Xeon and 24 KB for Atom as baseline configuration and compare
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Figure 4.8 — Normalized CPI stack of static dataflow benchmarks for Xeon and Atom.

both with the same system plus the presence of NM4SMP. We argue that this leads to
a fairer energy evaluation, enabling detecting the additional overhead of the NM4SMP
module.

Comparing in Figure 4.8 the NM4SMP with baseline is possible to observe that, in
overall, NM4SMP presented a average speedup of 1.23x considering both the results of
Atom and Xeon. The performance results addressing Xeon depicted in Figure 4.8(a) shows
that NM4SMP presents a speedup up to 1.96x (for RLT) compared with baseline, with
an average of 1.31x among all applications. The performance speedup was insignificant
for Stereo (1x), since we observed that Stereo is bounded by memory operations (e.g.,
memcpy()) and not communication. On the other side, RLT is communication bounded,
allowing it to benefit from NM4SMP.

The results for Atom (Figure 4.8(b)) are similar to Xeon. The best speedup was
achieved for RLT (1.78 %), and Stereo also did not show any improvement. The average
speedup among all applications is 1.22x. NM4MP presents a slightly lower speedup in
Atom than Xeon, which is due to the smaller processor. In a slower processor, increasing
the portion of computation time, the impact of memory access in execution time becomes
less significant than the bigger cores. Therefore, NM4SMP has less opportunity to improve

performance by saving memory access in the cache subsystem of Atom, which creates more
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Table 4.3 — Performance and synchronization metrics.
Applications RLT RLP Stabilization  Stereo

Baseline
Execution Time (ns) 3.15E+08 4.07TE4+08 3.49E+08 1.72E+409
Practical synchroniz. oo ¢ 9F107 435E4+07  2.15B+08
time (ns)
STR 1.05 0.24 0.53 0.14
NM4SMP
Execution Time (ns) 1.60E4+08 3.26E4+08 3.45E+08 1.72E+09

Practical synchroniz. , cop . 06 5 g6 3.35E407 2.15E+08

time (ns)

STR 0.03 0.009 0.41 0.14
NSync 1.47E+06 9.68E+05 2.22E+04 4.17E403
Avg Synch Speedup 64.48 x 32.93x 1.3 1x
SETC 9.37 0.89 0.02 << 0.01
Application Speedup 1.97x 1.25x% 1.03x 1x
Instruction saved 17.85%  4.51% 0.02% 0.00%

RLT / RLP = Reinforcement Learning Training / Prediction phase;
Avg = Average; Synch = Synchronization;

DRAM accesses.

Note that the applications present a disparate speedup (as in the case of RLT and
Stereo). To better understand this disparity and the impact caused by NM4SMP, we ana-
lyze the applications’ behavior in Table 4.3 using Xeon results as a case study. The values
of line Avg Synch Speedup show the speedups for synchronization. The value demonstrates
the NM4SMP improvement compared to semaphores. In semaphores, the actors commu-
nication is managed by sem_ post() and sem_ wait() operations. Analyzing in Figure 4.8,
it is possible to conclude that applications spend up to 52% of their execution time com-
municating (RLT). This time includes two types: (1) waiting time for data to become
available, which is computation dependent, (2) the cache memory subsystem overhead to
ensure atomic operations on semaphore spinning-lock. From the application point-of-view,
the time spent in sem_wait() function for catching the lock is wasted time. By replac-
ing the semaphore implementation with NM4SMP, such overhead is minimized. This is
more efficient than multiple atomic operations required by semaphores involving the cache
hierarchy.

To analyze the synchronization precisely, we introduce two parameters. First, we in-
troduce Synchronization Time Ratio (STR) as the synchronization time of the whole

application execution. STR is defined by Equ. 4.1, where N is the number of cores, Tsy,.
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is the number of cycles spent on send and receive functions, and Tgge. is the number of

cycles spent on the actor’s function (its processing part).

120 Tsyne(i)

STR = ‘
N sz\il TE:):ec(Z>

(4.1)

STR represents quantitatively the synchronization overhead in dataflow applications.
Table 4.3 shows the STR and the synchronization speedup for all the applications. The
bigger STR, the higher chance to improve the synchronization by NM4SMP. Therefore,
NM4SMP is not able to accelerate the Stereo application as it presents a high memory
operation time. Performance improvement of NM4SMP depends on how much the appli-
cation is synchronization bound. As the second parameter, we introduce a metric called
Synchronization Events per Thousand Cycle (SETC'), which is defined by Equ. 4.2, where
N is the number of cores, Ngypn. is the number of send and receive function calls, and Ty

is the same as Equ 4.1.
1000 YN 1 Ngyne ()

SETC =
N Zi\;l TExec@)

(4.2)

This equation shows the frequency of synchronization calls in an application. Suppose
an application that relies heavily on send/receive calls (i.e., high SETC). In that case,
it means that communication between actors is not primarily determined by the actor
cost function. The RLT and RLP applications depict this behavior, where the portion of
computation is not considerable (see Figure 4.8), and the waiting time of receive function
is from type (2) (cache hierarchy overhead). For applications presenting a high synchro-
nization frequency and low computation, the SET'C factor is bigger. On the contrary, in
dataflow applications modeled by PiSDF where the generation of data tokens is limited by
actor at execution time, such as the Stereo, the SETC' is lower. This makes Stereo belong
to type (1) (data dependency due to heavy memory transactions). Hence, contrary to the
learning applications, Stereo has a very low SETC and can not benefit from NM4SMP. As
shown in Table 4.3, the trend in execution time speedup and SET'C' is correlated. In other
words, the lower SETC, the lower frequency of synchronization and the less computation
bounded synchronization. Consequently, NM4SMP can improve a synchronization better

when an application presents a high SETC.
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Figure 4.9 — Cache access reduction using NM4SMP for Xeon (a) and Atom (b) processors.

Cache Access and Miss

Figure 4.9 shows the percentage of cache accesses and misses saved by using NM4SMP
compared to the baseline for Xeon and Atom processors. As expected, the most communi-
cation-intensive applications receive more benefits from the NM4SMP. Specifically, RLT
and RLP have shown the best results, as can be observed in Table 4.3.

In general, the improvements of all applications between Xeon and Atom architec-
ture is similar while using NM4SMP. Stabilization and Stereo do not present a significant
improvement in cache access/miss. As already observed, these applications are not syn-
chronization intensive (low SETC).

Such results corroborates our hypothesis that using an optimized module to speed-
up constant locks checks contributes significantly to reduce the pollution and pressure
of cache memories of dataflow applications. Such gains, besides impacting positively the
execution time (as previously addressed by Figure 4.8), also play an important role to

reduce energy consumption, as will be presented in the next subsection.

Energy Consumption Evaluation

This section studies the impact of NM4SMP on the energy consumption of the whole
system. To perform such an evaluation, we use McPAT [82] integrated in Sniper to measure

the energy consumption of SMP architecture. The energy model of NM4SMP was profiled
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and added to the McPAT model. The energy model of NM4SMP is comprised of static
and dynamic models based on CACTI [101], which is considered in the following as a

reference for the power consumption of different memory and caches implementations.

Among the sub-components of NM4SMP, the SPM, configured with the worst-case
size of 2KB SRAM, determines the energy consumption of NM4SMP. The static energy
of SPM is measured by feeding its configuration to CACTI. To model the dynamic energy
of NM4SMP, we use counters inside our Notifiers and Listeners to measure the number of
accesses to the SPM. We then set an energy model based on CACTI, which calculates the
dynamic energy based on SPM accesses. Due to the Sniper limitations to model the NoC,
NoC energy was not taken into account. This makes the evaluation herein presented more
pessimistic since one expected feature of NM4SPM is to reduce the cache traffic over the

NoC.

Figure 4.10 depicts the impact of NM4SMP on energy consumption. Both architectures
present close energy reduction, 16.7% for Xeon and 13.2% for Atom. The overall energy
reduction is 14.98% on average for both systems compared to the baseline. Such energy

savings come thanks to two main factors: (i) NM4SMP decreases energy consumption of
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caches and main memory by preventing polling accesses and related misses in cache hier-
archy; and (i7) the OS overheads of interruption, context saving/restoring, and semaphore

execution is reduced since the actors are only triggered when all firing rules are met.

Scalability Evaluation

Figure 4.11 shows a scalability evaluation addressing the impact of NM4SMP in the
execution time according to the number of cores. The increased number of cores makes
PREESM split the application actors in order to make use of all the cores available.
The results in Figure 4.11 can be explained in two parts: applications that benefit from
NM4SMP (RLT and RLP) and applications that do not (Stabilization and Stereo).

While observing only the baseline results of RLT and RLP, it is possible to see that
increasing the number of cores is not beneficial for the applications since its execution
time increases. This happens because such applications were not designed to be frag-

mented in more than 2 or 4 cores. The PREESM git repository offers a limited number
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of functional benchmarks that includes: RLT, RLP, Stabilization. The other benchmarks
were not implemented in a parallel way to benefit from NM4SMP.

The interesting behavior is that when NM4SMP is employed, this increased core count
penalty is significantly amortized, presenting a reduction up to -44% for RLT (16 cores)
and 18% for RLP (8 cores) compared to the baseline. This improvement is achieved
since the synchronization overhead imposed by increasing the number of cores (cache
movements especially) is amortized by the presence of NM4SMP. On the other hand,
applications Stabilization and Stereo (as already expected based on the previous results)
do not benefit from NM4SMP due to their memory and computation bound profiles. The
only difference between those applications is that Stabilization scales better than Stereo,
as already corroborated in Chapter 3. Our study considers different application behaviors
with various benchmarks to avoid biasing the evaluation. Some benchmarks are actually
computation bound, some other are memory bound and the others are synchronization
bound. Additionally, we did not reject any application which has no gain from our tech-

nique, like Stabilization.

4.4.3 Applications With RML

This subsection provides the performance results (execution time, memory access,
and energy) to applications generated with RML. The results include SDF and PiSDF

applications.

SDF Applications

The SDF applications considered in this experiment are the same as the evaluation
without RML except for the Stereo, which was excluded because its graph is not compat-
ible with the SPiDER’s methodology to prepare and transform the graph during runtime
actor’s scheduling [62]. Figure 4.12 presents the results of normalized execution times
in CPI stack for the SDF applications running with RML. We observe that NM4SMP
contributes to reducing the communication time of the applications on Xeon and Atom
processors, on average by 27.13% and 28.91% respectively. It results in an application
execution time reduction of 17.1% and 14.3% for Xeon and Atom (average of 15.7% con-
sidering both).

Figure 4.13 represents the cache accesses of the applications, showing that NM4SMP

contributes to reduce the LLC cache miss accesses for Xeon and Atom on average by 5%
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Figure 4.12 — CPI stack of the static application managed by RML.

and 3% respectively. As can be seen, NM4SMP contributes less in improving the perfor-
mance by saving less cache accesses of the applications managed by RML compared with
the same SDF applications but without RML (Figure 4.9). This is because of the intrin-
sic management overhead that the RML imposes in the application (e.g., communication

among LRTs, GRTs, and LRTs, and other internal management functions).

Figure 4.14 illustrates the energy consumption reported by McPAT of Sniper on Xeon
and Atom processors. Total energy consumption on Xeon and Atom is reduced on average
by 13.21% and 12.04%, respectively. This is due to the reduction of the cache and main
memory accesses and the increased idle time of the core, which is caused by NM4SMP

that can signal the core only when all firing conditions were met.

We also study the scalability of the applications managed by RML with and without
NM4SMP. Figure 4.15 illustrates the result of the execution time of the applications with
RML running on different numbers of cores. As previously observed in the evaluation
without RML, the applications RLT and RLP do not scale well. The same pattern remains
in the case with RML. The adoption of NM4SMP has reduced the execution time, reaching
-26.3% for RLT in 32 cores and -17.1% for RLP in 8 cores. However, due to the not scalable
application design, the curve follows the same trend as the plot without NM4SMP. Also,
note that this reduction is lower than in Figure 4.11. This happens because the RML needs
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to implement more management communications between managers (LRTs and GRTS),
which increases performance penalties.

On the other side, Stabilization is optimized to exploit an increased number of cores. In
such a case, we observe no practical difference in using the NM4SMP since the difference

of the mean of squared error between baseline and NM4SMP is negligible.

PiSDF Application with RML

This subsection evaluates the performance results of one PiSDF application, Sobel
filter, running on Xeon and Atom processors. Figure 4.16 shows the normalized CPI stack
of Sobel execution time. As can be seen, the behavior of the application on both processors
is similar. The majority of communication overhead is removed by using the NM4SMP
solution. Relative to the baseline system, Sobel achieved 17% speed up for both Xeon and
Atom processors and a reduction, on average, of 14% cache access/miss.

Figure 4.17 presents the impact of NM4SMP on energy consumption. Both architec-
tures present similar energy reduction, 13.3% for Xeon and 13.16% for Atom. The overall

energy reduction is 13.25% on average for both systems compared to the baseline.

4.4.4 NM4SMP Hardware Complexity

The area complexity of NM4SMP can be evaluated analytically. It is mainly due to the

introduction of an SPM attached to each core since the additional logic is limited to the

121



Chapter 4 — NM4SMP: Notifying Memories for Symmetric Shared-Memory Multiprocessors

PImain memory [Jcore Mcache

>

X
c §.§0.75
8 -8
X gg 0.5
T 52

€ S 0.5

(s}

2

0.75

consumption
o
(9]

o

N

wv
sy

(b) Atom
Normalized energy

Baseline
NM4SMP
Baseline
Baseline
NM4SMP

RLT RLP Stabilization

Figure 4.14 — Normalized Energy stack of the static application managed by RML.

controller part with FSM showed in Figure 4.5. The controller includes one comparator for
the opcode, two comparators for address validation of FIFO flags, a 48-bit Base Address
Register and few additional logic gates. According to [106], the area complexity of a 32-bit
comparator is 218 A+93ANx where Ag and Ay are the area of basic gate and Not gate,
respectively. This area is less than 0.5% of the memory part of the L1-D cache (32KB)

area, which is negligible.

For SPM area consumption, we consider a maximum size of 2KB, which supports 255
actors with up to 128 firing rules for each actor. This is an oversized setting as none of our
benchmarks requires more than 64 actors. This SPM size (2KB) has an area consumption
representing less than 1.01% of the L1-D cache size (32KB), which also requires a tag

array and additional resources for implementing the cache coherency protocol.

For the power consumption evaluation, we focused on SPM since it dominates the
complexity of NM4SMP. We use TSV40nm technology library modeled in CACTT to
extract power figures. Figure 4.18 presents the total power (static + dynamic power) for
NM4SMP considering different SPM sizes. As can be observed, the power follows a linear
increase. To put in perspective such values, if we compare the SPM power assuming the
higher SPM size in the plot (2KB) with the power required by an L1-D cache of 32KB
(5700 mW), the SPM of NM4SMP represents just 82 x 107% of the L1-D cache power. By
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observing such results, it is possible to conclude that NM4SMP presents a light hardware
complexity, especially when compared to the benefits that it can bring in execution time

and energy consumption.

4.5 Final Remarks

This chapter presented a near cache memory implementation of a module called
NM4SMP optimized for dataflow applications. A HW/SW co-design implementation is
presented which addressing library, middleware, hardware levels and presenting a frame-
work that addresses how to include the NM4SMP in the process of dataflow modeling,
code generation, and compilation, assuming static and reconfigurable applications.

Results corroborate our hypothesis that a specialized module, aware of dataflow be-
havior, can act not only to improve the synchronization of shared data but also to boost

the application performance by considering the management of dataflow firing rules within
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its logic. The combination of synchronization at hardware with the dataflow firing rule
awareness leads to important gains in application execution time and energy consump-
tion. Results show an average speedup of 1.23x and an average energy saving of 14.98%,
assuming two Intel SMP architectures and four applications. As expected, the application
with a higher communication rate benefits more from NM4SMP. The technique also shows
similar improvements when integrated to RML, reducing the applications execution time
on average 15.7%.

Our solution opens interesting perspectives: (1) for dataflow parallelization in the
sense that limiting the synchronization impact allows decreasing the actor granularity so

increase the parallelism, (2) for multiple applications sharing the same cache.
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CONCLUSION AND PERSPECTIVES

The complexity of parallel applications in all industry fields, including digital signal
processing and computer vision applications, has increasingly grown, and so their high-
performance requirements. Among these applications, dataflow applications, thanks to
explicit parallelism, can efficiently exploit SMPs, which are nowadays the most widely
used high-performance multi-core processors. However, dataflow applications are not well
adapted to this type of architecture as they specifically stress the memory hierarchy, limit-
ing the performance. Thus, considering the gap between SMP architectures and Dataflow
specific requirements, this thesis has addressed to revisit the hardware and software co-
design of SMP multi-core architectures. The underlying topic of this thesis is a better
understanding of the matching between SMP and dataflow applications. The main con-
tributions are:

o In Chapter 3, we evaluate the cache behavior and workload characterization of
dataflow applications. Afterward, we evaluate adopting existing dynamic memory
management techniques, Copy-on-Write (CoW) and Non-Temporal-Memory (NTM)
to improve dataflow application performance.

o« A HW/SW co-design of a near-memory on-chip device to synchronize dataflow ac-
tors, called NM4SMP (Notifying Memory for SMP) to improve the synchronization
on SMP, presented in Chapter 4.

« A Framework to integrate the NM4SMP co-design in the process of dataflow model-
ing and compilation of static and reconfigurable applications, detailed in Chapter 4.

o A detailed power and performance evaluation of dataflow applications (static and
re-configurable) using NM4SMP for generic and low-power processors, reported
in Chapter 4.

To perform dataflow workload characterization, in total, 37 different cache configura-
tions (resulting in 213 simulations with three real applications) were adopted to evaluate
variations in core count, L2/L3 sharing, and L2/L3 sizes.

The analysis based on different cache configurations achieves two main conclusions: (1)
Bigger is not always better in core count, L2 sharing, and L2 /13 size since other aspects as

efficient parallel workload division and computation/communication profile can prevent
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the application from benefiting from more cache memory resources. (2) Private L2 and
L3 shared among all cores provide the best speedup and L2/L3 cache miss figures for

dataflow applications.

In the current context of larger number of cores and bigger caches, the first results
of this thesis clearly show that: (i) achieving better performance is not just a matter of
the higher number of resources; (ii) it is now a matter of efficiently using the available

hardware and finding new hardware organization.

The advantages of employing the copy-on-write (CoW) and non-temporal memory
transfer copies (NTM) are investigated in dataflow applications, and the results reveal
that the techniques can improve execution time and save energy. NTM presents a mod-
est reduction in execution time (up to 5.3%) and energy (up to 2.7%). CoW technique
demonstrates important improvements for the applications with more significant mem-
cpy transfers (> 400KB) to overcome the overhead of this technique. The results show
reductions of 15.8% in execution time and 21.8% in energy consumption. These dynamic
memory transfer techniques are complementary to static state-of-the-art memory opti-
mization approaches like [39] that reduce cache thrashing (NTM) and unnecessary data
movements (CoW) among dataflow actors at runtime.

The proposed NM4SMP synchronization solution, with a HW/SW co-design imple-
mentation, by offloading the synchronization-related messages from cache-coherent mem-
ory hierarchy improves the synchronization of shared data. As an outcome, it boosts the
application performance by managing dataflow firing rules within its logic. This firing-
rule-aware synchronization results in an average speedup of 1.23x and an average energy
saving of 14.98% for dataflow applications running on Intel SMP baseline architectures.

The application with a higher communication rate benefits more from NM4SMP.

For the dataflow application managed by a Runtime Management Layer (RML),
NM4SMP shows similar improvements that reduce execution time and energy consump-
tion on average by 15.7% and 13.21%, respectively where using NM4SMP brings scalability

joint with performance.

NM4SMP imposes negligible area and power consumption overhead which is mainly
due to local SPM. In the worst case, local SPM with a size of 2KB has 1.01% of the L1-D
cache size (32KB) area, and the controller area is 0.5% of the memory part of the L1-D
cache (32KB) area. The majority of the power consumption of NM4SMP is consumed by
the memory part, local SPM, which represents negligible power consumption in compared

to L1-D cache (only 82 x 107%% of the L1-D cache power consumption). Finally, this thesis
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has demonstrated that although SMPs provides high-performance parallelism, they do not
present scalability, power and memory usage efficiency for dataflow application.

By introducing solutions in memory and more in synchronization, we have shown
that their performance can significantly improve by exploiting the co-design hardware

synchronization mechanism, NM4SMP.

Future Works

Based on the contributions of this thesis, several trails can be evaluated as future

works. These perspectives can be categorized as long, mid and short-term perspectives.

Short-Term Perspectives

NM4SMP can help to reduce more the cache coherency burdens. At the same time
that Notifier detects writing data by the producer and sending the Notification, it can
push the cache to do write through down to the LLC to flush the written data of output
FIFO into the shared level of cache with the consumer.

This idea avoids the cache miss in L2 of consumer core and the LLC when data is
available but it is not yet fetched into the cache of consumer core.

Graph characterization is another suggested future work. Different dataflow graphs
can be studied and characterized based on the features that impact the communication,
including connection topology, edge count, actor granularity. Graphs with various commu-
nication degrees and broadcasting and multi-casting features require a different amount of
synchronization and hence, benefit differently from the NM4SMP solution. Characteriza-
tion of the graph can help finding the critical factor that has a prominent role in efficiently
exploiting our proposed solution. With the help of this factor we can check whether the
application has the capacity of exploiting NM4SMP or not. Therefore, this factor can be
considered in other graph-based programming models rather than dataflow.

Adapting the NoC design to prioritize the notification packets throughout the in-
terconnection network is another case study that can be done for the system using the
NM4SMP synchronization solution. For instance, a bit flag in the header flit of the packets
can be indicated to show whether the packet is a notification or not. Regarding this bit,
the packet can pass through a specific virtual channel, a dedicated path for notification

packets.
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Mid or Long-Term Perspectives

NM4SMP solution can be evaluated for other memory architectures such as distributed
and hybrid memory systems.

Our synchronization solution is not limited to general purpose architectures and any
platform running dataflow application can advantage it. For instance, NM4SMP can be
implemented in specific dataflow architecture or heterogeneous architectures with hetero-
geneous computing units (CPU, GPU, TPU and FPGA) and various memory bandwidths.

Other dataflow MoCs can make use of the proposed solution. For instance, DPN (Data
Process Network), from its dynamic features that need runtime handlers, can be an in-

teresting MoC for NM4SMP performance evaluation.
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Mémoires notifiantes pour applications flux-de-données sur machines paralléles a mé-

moire partagée

Mot clés : Mémoire partagée, modéle flux-de-données, synchronisation

Résumé : Les machines paralléles a mémoire par-
tagée (SMP) constituent une solution pratique pour
mettre en ceuvre des architectures multiprocesseurs
puisqu’elles proposent une vue unifiée de la mé-
moire aux programmeurs ce qui facilite le développe-
ment des applications, au prix d’'un mécanisme cod-
teux de cohérence de cache. Par ailleurs, les mo-
deles de calcul flux-de-données offrent aux dévelop-
peurs I'expressivité pour spécifier des applications
complexes, en explicitant le parallélisme, permettant
ainsi d’exploiter les ressources disponibles. Cepen-
dant, une implémentation d’une application flux-de-
données sur SMP nécessite de nombreuses synchro-
nisations qui impliquent la cohérence de cache et
pénalisent les performances. Cette theése s’intéresse
a la compréhension des sources d'inefficacité dans
I'exécution de ces applications et propose des tech-

niques qui s’appuient sur la synchronisation exprimée
dans le modéle pour en améliorer les performances.
Tout d’abord, nous avons extrait les caractéristiques
des applications selon plusieurs métriques, puis nous
avons évalué deux techniques de gestion mémoire,
Copy-on-Write et Non-Temporal Memory, pour sou-
lager la pression sur la mémoire. Enfin, en contribu-
tion principale, nous proposons une unité matérielle
spécialisée, proche de la mémoire, appelée NM4SMP
(Notifying Memory for SMP) permettant d’accélérer
les applications flux-de-données en y intégrant les
regles de déclenchement des calculs. Lapproche est
validée sur des applications dites statiques et reconfi-
gurables. Les résultats montrent une accélération de
1,23 et une économie d’énergie de 15% pour une pla-
teforme basée sur des processeurs Intel et plusieurs
applications réelles.

Notifying Memories for Dataflow Applications on Shared-Memory Parallel Computer

Keywords: Memory, dataflow, synchronisation

Abstract: Symmetric Shared-memory multiproces-
sor (SMP) is the most widely used implementation
of high-performance multi-core processors. It offers
a uniform shared memory view that eases the devel-
opment of parallel applications, but it requires cache-
coherency management among the cores. Besides,
dataflow Model of Computation helps the develop-
ers to specify complex applications with explicit par-
allelism to efficiently exploit the parallel resources
of SMP. However, a dataflow application running on
SMP requires high synchronization for data commu-
nication that stresses the cache memory and penal-
izes performance. Existing techniques for synchro-
nization are not suited to dataflow as they are not
aware of the model of computation. This thesis aims
to deeply study dataflow applications’ behavior on
SMP and proposes novel techniques to speed them

up. First, we evaluate dataflow application behavior
based on several statistics. Second, we evaluate two
memory techniques called Copy-on-Write and Non-
Temporal Memory Transfer, to alleviate the memory
footprint of dataflow applications on caches. Third,
as our main contribution, we introduce an optimized
hardware logic implemented near memory, Notifying
Memory for SMP (NM4SMP) designed to speed up
dataflow applications. Our solution improves synchro-
nization of shared data by considering dataflow firing
rules within the logic. A HW-SW co-design platform
integrating NM4SMP is presented to support static
and reconfigurable dataflow applications. Overall re-
sults show an average speedup of 1.23x and an av-
erage energy saving about 15%, assuming Intel SMP
baseline system and real dataflow applications.
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