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Résumé
Modes collectifs de longue durée de vie de la lumière dans des atomes froids:
études expérimentales et numériques sur la sous-radiance et la localisation
d’Anderson

L’objectif de cette thèse est d’élargir notre compréhension des phénomènes collectifs de
diffusion de la lumière qui se manifestent par la forte suppression du rayonnement du milieu
diffusant. En particulier, nous nous intéressons à la sous-radiance, un effet collectif de
l’émission spontanée, qui, du fait du couplage dissipatif des atomes via des modes électro-
magnétiques communs, crée des modes d’excitation longue durée de vie dans un ensemble
d’atomes froids, avec des durées de vie beaucoup plus longues que celles d’atomes individuels.
Auparavant, la sous-radiance avait été bien caractérisée pour des ensembles d’atomes froids
dilués et dans la limite de faible intensité du laser d’excitation (régime de l’optique linéaire).
Dans cette thèse, nous étudions ce phénomène collectif au-delà de l’optique linéaire et du
régime dilué.
Pour étudier expérimentalement la sous-radiance au-delà du régime de l’optique linéaire,
nous avons fait varier le paramètre de saturation du laser d’excitation jusqu’à des valeurs
relativement importantes et nous avons observé l’augmentation de la population sous-radiante
avec l’augmentation du paramètre de saturation. Plus important encore, nous avons identifié
une loi d’échelle super-linéaire de la population sous-radiante au-delà du régime de l’optique
linéaire, en raison d’un processus similaire au pompage optique via des états super-radiants
multi-excités. Cette étude a montré que l’augmentation de l’intensité du laser de pilotage
au-delà du régime de l’optique linéaire permet de surmonter le faible couplage des modes
sous-radiants avec l’environnement.
De plus, nous avons étudié numériquement la sous-radiance en utilisant le modèle vectoriel
des dipôles couplés, en mettant l’accent sur la compréhension de l’effet de l’interaction
dipôle-dipôle en champ proche. Pour cela, nous avons comparé en détail les modèles vectoriel
et scalaire (qui ne contient pas de termes d’interaction en champ proche) et étudié la durée de
vie sous-radiante en fonction de la densité et de l’épaisseur optique du nuage d’atomes froids.
Nous avons observé que les termes de champ proche sont préjudiciables à la sous-radiance, ce
qui se manifeste par la réduction des durées de vie sous-radiantes avec l’augmentation de
la densité. Ce caractère néfaste des termes de champ proche peut être interprété comme
étant dû à un élargissement inhomogène effectif induit par l’interaction en champ proche, qui
réduit les durées de vie sous-radiantes lorsque la densité augmente.
Le caractère néfaste de l’interaction en champ proche a également été précédemment iden-
tifié numériquement pour la localisation d’Anderson des ondes lumineuses (la localisation

v



d’Anderson est un phénomène ondulatoire en diffusion multiple cohérente dans un milieu
fortement diffusant, qui entraîne l’arrêt du transport diffusif ; il donne également des modes
à longue durée de vie) : le modèle scalaire des dipôles couplés prédit la localisation des ondes
lumineuses, mais pas le modèle vectoriel. Cependant, l’ajout d’un champ magnétique suffisam-
ment fort permet de récupérer les modes localisés pour la lumière vectorielle. Dans ce contexte,
nous avons étudié numériquement une possible signature de la localisation d’Anderson de la
lumière dans les atomes froids, basée sur la mesure des fluctuations d’intensité de la lumière
diffusée. Nous avons montré qu’à la transition vers le régime localisé, les fluctuations sont
augmentées. En particulier, pour la lumière vectorielle, nous avons démontré l’absence, et
l’apparition, de fluctuations d’intensité accrues sans, et avec, le champ magnétique appliqué,
ce qui corrobore que les fluctuations d’intensité pourraient servir de moyen expérimental
pour sonder les états localisés.

Mots-clés: Diffusion collectif, atomes froids, sous-radiance, localisation d’Anderson
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Abstract
Long-lived Collective Modes of Light in Cold Atoms: Experimental and Numerical
Studies on Subradiance and Anderson Localization

The objective of this thesis is to expand our understanding of collective light-scattering
phenomena, which manifest themselves in the strong suppression of radiation from the
scattering medium. In particular, we are interested in subradiance, a collective effect in
spontaneous emission which, as a result of the dissipative coupling of atoms through common
electromagnetic modes, creates long-lived excitation modes in an ensemble of cold atoms,
with lifetimes much longer than those of individual, isolated atoms. Previously, subradiance
had been well-characterized for dilute cold-atom scattering media and the low-intensity limit
of the driving laser (linear-optics regime). In this thesis, we study this collective phenomenon
beyond the linear-optics and dilute regimes.
To study experimentally subradiance beyond the linear-optics regime, we varied the saturation
parameter of the excitation laser up to relatively large values and we have observed the
increase of the subradiant population with increasing saturation parameter. More importantly,
we have identified the super-linear scaling of the subradiant population beyond the linear-
optics regime, due to a process similar to optical pumping via multi-excitation superradiant
states. This study showed that the increase in the intensity of the driving laser beyond the
linear-optics regime can overcome the weak coupling of subradiant modes with the external
world.
Moreover, we have numerically studied subradiance using the vectorial coupled-dipole model,
with a focus on understanding the effect of the near-field dipole-dipole interaction. For
that, we extensively compared the vectorial and scalar (which does not contain near-field
interaction terms) models and studied the subradiant lifetime as a function of the density
and optical thickness of the cold-atom cloud. We observed that the near-field terms are
detrimental for subradiance, which was seen in the reduction of the subradiant lifetimes with
increasing density. This detrimental character of near-field terms can be interpreted as being
due to an effective inhomogeneous broadening induced by the near-field interaction, which
reduces the subradiant lifetimes as the density increases.
The detrimental character of near-field interaction has also been previously numerically
identified for Anderson localization of light waves (Anderson localization is a coherent multiple-
scattering wave phenomena in a strongly scattering medium that results in a cessation of a
diffusive wave transport; it also yields long-lived modes): the scalar coupled-dipole model
predicts Anderson localization of light waves, but not the vectorial one. However, adding a
strong magnetic field allows one to recover localized modes for vectorial light. In this context,
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we numerically studied a possible signature of Anderson localization of light in cold atoms,
based on the measurement of intensity fluctuations of the scattered light. We have shown
that at the transition to the localized regime, the fluctuations are enhanced. In particular,
for vectorial light, we have demonstrated the absence and recovery of enhanced intensity
fluctuations without and with the applied magnetic field, which further corroborates that the
intensity fluctuations could serve as an experimental way to probe the localized states.

Keywords: Collective scattering, cold atoms, subradiance, Anderson localization
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Introduction

Wave propagation and scattering are natural phenomena that are ubiquitous in everyday life;
the sounds that we hear, the ocean waves, ripples on a pond, earthquakes, the blue color
of the sky, and colorful sunsets are only a few examples of the phenomena resulting from
propagation and scattering of many types of waves in various media, which we experience
everywhere around us. The processes such as scattering, diffraction, or interference are
fundamental for all waves (electromagnetic, sound, seismic, matter waves, etc.), however, the
properties of these processes and the phenomena that they might give rise to as a result of
the wave-matter interaction, can greatly depend on the medium itself.

The research on propagation and scattering of waves in various media have been of funda-
mental, as well as practical interest for many years (to be able to understand and exploit the
wave-related phenomena). In particular, the wave propagation in a random, i.e. disordered,
medium has been extensively studied in the last decades, especially due to the discovery
of coherent multiple-scattering phenomena, such as weak and strong localization, and the
realization that these phenomena may be common to all types of waves [Akkermans 2007].

The main research activity of the cold-atom group at Institut de Physique de Nice has been
the study of phenomena related to the scattering of light waves using a very specific random
medium of scatterers: laser-cooled and trapped atoms. In general, the cooling, trapping, and
manipulation of atoms with laser light have revolutionized atomic physics and opened up
an impressive field of research, with the goals of fundamentally understanding atomic and
optical processes, as well as using cold-atom systems as platforms in many different research
areas. The advances in laser cooling and trapping techniques [Metcalf 1999,Adams 1997] and
the fascinating properties of cold atoms, such as low temperatures (typically in micro-Kelvin
range, but even lower using additional, for example, evaporative cooling techniques), i.e. low
velocities, low collision rates (hence, Doppler- and collision broadening are suppressed) and
possibility of cooling and trapping billions of atoms with densities up to ∼ 1014cm−3 (or even
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2 Introduction

higher as in the case of Bose-Einstein condensates), have provided scientific breakthroughs in
many areas such as precision measurements (atomic clocks, high-resolution spectroscopy, atom
interferometry), quantum degeneracy (Bose-Einstein condensates) and quantum simulations.
Furthermore, cold atoms are exceptional systems to study light scattering and they allowed for
the observation of many phenomena related to light scattering. There are many properties of
cold atoms that make them very often more advantageous for studying phenomena related to
light scattering, in comparison to classical scattering objects. The control and manipulation
of light scattering in a cold-atom medium can be easily achieved by modification of properties
of the cold-atom sample, such as its on-resonance optical depth, density, and temperature,
via changing the parameters for laser cooling and trapping. Due to the well-known quantum
internal structure of atoms and the well-understood light scattering properties of individual
atoms, light scattering in cold atoms can be further controlled in a very predictable way by,
for example, modifying the detuning of the incoming light from the resonant frequency of the
transition. Also, the atoms’ response to the light can be modified by applying magnetic or
electric external fields. Moreover, atoms can be considered as point scatterers (for visible
light, the wavelength λ is much larger than the atom size) and hence, they are very strong
resonant scatterers: the resonant cross-section of each individual atom is very large, on the
order of λ2. In fact, with cold atoms there is no significant effect on the cross-section due to
atomic motion, since the Doppler-broadening, which can reduce the resonant cross-section,
is nearly absent in cold-atom media. As opposed to classical scatterers, this large resonant
scattering cross-section of cold atoms enables obtaining a strongly scattering medium even at
low densities. Additionally, cold atoms have very narrow resonances (linewidth), which allows
us to neglect the other atomic levels not corresponding to the transition of interest, and hence
the cold atoms can often be considered as degenerate two-level systems. Another features
of cold-atom media are monodispersity, i.e., atoms are all identical scatterers having the
same resonant frequency and linewidth, and the absence of absorption (each absorbed photon
is re-emitted, which basically makes this process a scattering event), which is important
since with classical scattering media, the absorption of light turned out to be a big obstacle
in observing coherent multiple-scattering phenomena. All these properties make the study
of multiple scattering in cold atoms, and more generally of collective effects in light-atom
interaction, particularly rich [Kaiser 2000].

In the context of light scattering in cold atoms, a long-term goal of the team has been the
observation of Anderson localization (AL) of light in a 3D cold-atom sample. Chapter III
of this manuscript will present a detailed introduction on Anderson localization of light.
In a nutshell, Anderson localization is a wave interference phenomenon that arises as a
result of coherent multiple scattering of waves in a disordered medium and it manifests
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itself as a breakdown of a diffusive wave transport. In other words, for a strong enough
disorder, the collective interference in path amplitudes of multiply scattered waves brings
the extended (diffusive) wave propagation to a complete halt and leads to the exponential
spatial localization of waves. In fact, in low-dimensional disordered samples, waves are always
localized no matter what is the disorder strength (as long as the size of the medium is larger
than the localization length). However, there are two regimes, i.e. phases, of wave transport
in a 3D disordered medium: diffusive propagation of waves in a weakly scattering medium
and localized regime for waves in a sufficiently strongly scattering medium. Hence, for 3D
disordered media, a phase transition from extended-wave to localized-wave regimes exists, i.e.
a critical amount of disorder is required for AL to occur. The Anderson localization of waves
in 3D random media, i.e. strong localization, has been observed for several types of waves.
However, despite many experimental efforts (mainly with classical scattering media, such
as semiconductor powders or dielectric particles), strong localization has not been observed
for light waves [Skipetrov 2016b]. A cold-atom disordered medium seems to be a promising
platform for observing strong localization of light due to its specific features, such as the
monodispersity of scatterers, the large scattering cross-section of cold atoms, the relatively
easy manipulation as well as control of the cold-atom medium and its scattering properties.
A more detailed discussion on obstacles with classical scatterers, as well as advantages (and
disadvantages) of cold atoms for light localization will follow in Chapter III.

On the way towards Anderson localization of light in 3D, different aspects of multiple
scattering of light in cold atoms have been extensively studied by the group, like the slow
diffusion of light due to classical multiple-scattering (which can be described by the photon
random-walk model) [Labeyrie 2003] and coherent backscattering, a coherent multiple-
scattering phenomenon which is very often considered to be a precursor of strong localization
[Labeyrie 1999,Bidel 2002]. For a review on these early works, see [Labeyrie 2008].

All these experiments were done with very dilute cold-atom samples, where the average
distance between atoms is much larger than the wavelength. However, it is expected that
Anderson localization occurs in the regime of very strong scattering, such that the mean-free
path between two scattering events is smaller than the wavelength. Thus, to go towards
such small photon mean-free paths, a straightforward way is to simply decrease the distance
between scatterers by increasing the density of the atomic sample. However, it is known in
quantum optics that two very close atoms (whose interatomic distance is smaller than the
wavelength) will form superradiant and subradiant collective states [Dicke 1954,Stephen 1964].
For example, the influence of those superradiant pairs on the light transport properties has
been discussed in Ref. [Gero 2006].
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This led us to consider also the phenomenon of subradiance, which creates long-lived collective
states due to the anti-synchronizations of dipoles (the two-level atoms are considered as
dipoles, i.e. tiny antennas that emit electromagnetic waves): the electromagnetic fields
radiated by such dipoles will collectively undergo a destructive wave interference which leads
to the inhibition of radiation. Since Anderson localization can also create long-lived modes in
the strongly disordered medium, it appears that both effects might exhibit similar signatures,
such as a slow fluorescence decay. Therefore it seems necessary to understand subradiance in
order to be able to distinguish it from Anderson localization of light waves. Let us emphasize
that both subradiance and Anderson localization are wave interference phenomena. In fact,
the subradiance (superradiance) is a global interference phenomenon, i.e. it is a collective
effect involving anti-synchronization (synchronization) of dipoles in the whole medium (super-
and subradiant states are extended over the entire sample). On the other hand, Anderson
localization is a local interference phenomenon: in a strongly enough disordered medium, the
light is confined inside the medium by interferences in multiple scattering from only a few
scatterers (the AL modes are localized on those few scatterers).

While strong localization requires a very strongly scattering medium, this is not mandatory
for collective effects, such as super- and subradiance, to arise. As we will see in the next
paragraph, super- and subradiance are not limited only to dense atomic samples, but they
can also appear in the dilute limit. Our group has thus started a research program on super-
and subradiance, first in the limit of dilute cold-atomic samples.

Brief introduction on super- and subradiance

Collective effects in spontaneous emission: Dicke’s superradiance and early experiments

When it comes to the scattering from an ensemble of atoms, it is generally incorrect to assume
that the emission of each atom occurs independently [such that the fluorescence decay from
an ensemble of atoms is ∝ exp(−Γt), characterized by the emission rate of individual atoms
Γ = 1/τ (where τ is the natural lifetime of the excited state)]. Since the scattering is a wave
phenomenon, the collective interferences in spontaneous emission might drastically modify
the emission from a collection of scatterers. The collective response of atomic ensemble to the
light may give rise to superradiant (subradiant) phenomena, which, due to the constructive
(destructive) interferences in emission, exhibit enhanced and accelerated (suppressed and
slowed down) collective emission rate compared to that of a single atom.

The collective phenomena in light emission, mainly superradiance, have been predicted by
R. Dicke in 1954 in his pioneering work “Coherence in spontaneous radiation processes”
[Dicke 1954]. By considering an ensemble of N motionless, identical, two-level atoms located



Introduction 5

in a sub-wavelength volume (R� λ, where R is the atomic sample size and λ is the transition
wavelength; hereafter, such sample is referred to as small sample) and addresses the question
of the collective eigenstates of the system and their radiation rates (see Fig. 1). In particular,
Dicke showed that if all atoms are initially in their excited state (fully inverted symmetric
state), the de-excitation of the ensemble would follow the cascade of all symmetric, i.e.
superradiant states (superradiant cascade), with an acceleration of the emission rate (for
example, in the case of the symmetric single-excitation state the emission is predicted to
be N times faster compared to the single-atom emission rate Γ) and a coherent emission.
Anti-symmetric states are also introduced, which can be completely decoupled from all
electromagnetic modes and hence, exhibit extremely long lifetimes (subradiance).

SINGLE-EXCITATION

 STATES

MULTI-

EXCITATION

 STATES

symmetric 

(superradiant) states
anti-symmetric  states

n-excitation (fully inverted)

state

Figure 1: Collective Dicke states of sample of n two-level atoms. Here I0 represents the emission
rate of an single atom. Adapted from Ref. [Dicke 1954].

The phenomena of super- and subradiance can be explained as follows. The interaction
between electric dipoles of individual atoms due to their coupling to common vacuum
field modes (collective coupling of dipoles), triggers the synchronization of dipoles and
classical interference processes, which can be envisioned as a build-up of a collective dipole.
Superradiance stems from in-phase oscillations of dipoles (constructive interference) which
lead to the build-up of a huge collective dipole (larger than the dipole of individual atoms).
The emission of such a huge collective dipole thus exhibits an accelerated decay. In other
words, superradiance yields short-lived collective states of the atomic ensemble, with a
maximum emission rate Γsup larger than that of an individual atom Γ (Γsup > Γ). On the
other hand, subradiance occurs when dipoles are anti-synchronized, i.e. they oscillate out of
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phase (destructive interference), which yields a tiny collective dipole (much smaller than the
individual dipole). Radiation from such tiny dipole is suppressed, i.e. the fluorescence decay
from an ensemble of atoms is immensely slowed down. Hence, subradiance results in creation
of long-lived collective states, whose lifetimes τsub = 1/Γsub can be much longer than those of
individual atoms τ (τsub > τ).

The pioneering work by Dicke triggered an extensive theoretical research on collective spon-
taneous emission addressing various aspects of super- and subradiant phenomena (see, for
example, [Stephen 1964, Freedhoff 1967, Ernst 1968, Ernst 1969, Lehmberg 1970a, Lehm-
berg 1970b,Arecchi 1970,Stroud 1972,Friedberg 1971,Friedberg 1972,Friedberg 1973,Saun-
ders 1973a, Saunders 1973b, Milonni 1974, Bonifacio 1975, Ressayre 1976, Ressayre 1977,
Gross 1982,Crubellier 1985,Crubellier 1986,Crubellier 1987,Men'shikov 1999]).

The experimental research on these phenomena started in the 1970s. There have been
many observations of superradiance and some of the first are [Skribanowitz 1973,Gross 1976,
Gibbs 1977] (for a review see [Feld 1980]). In most of the research done in that period,
the situation of the Dicke limit, i.e. small sample, has not been reached: the samples have
finite size, they are often pencil-shaped, and propagation/geometric effects are important
(see, e.g., [MacGillivray 1976]). In that case, the parameter of the sample which governs the
superradiant decay rate is related to the optical thickness (see, for example, [Friedberg 1976]).

When it comes to subradiance during that period (before the introduction of the concept
of single-photon superradiance, which will be discussed below), there have been only two
reports on observation of subradiance: [Pavolini 1985] (indirect signature with a large number
of atoms) and [DeVoe 1996] (two-ion system).

Single-photon superradiance

A revival of the topic of super- and subradiance began in 2006 with a publication of the
study by M. Scully and collaborators [Scully 2006] that addresses the question of collective
spontaneous emission from an extended (R > λ) ensemble of N two-level atoms prepared by
a single-photon excitation, i.e. by absorbing one photon of wave vector k0: there is only one
among N atoms which is excited but we do not know which one. The atomic sample can
then be described by the collective state (which was coined as Timed-Dicke (TD) state):

|Ψ〉 = 1√
N

∑
j

eik0·rj |g1, g2, ..., ej, ..., gN〉 .

The rj are the atomic positions and |gj〉, |ej〉 are the ground and excited states, respectively.
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Figure 2: Time evolution of the normalized excited state population (black solid curve) after
switching off the laser (linear-optics regime). At first, the population decreases faster (superradiance)
than the single atom decay (black dashed line) and then slower (subradiance). The inset shows the
emission diagrams at short times (blue) and long times (red) after the laser switch-off. Taken from
Ref. [Bienaimé 2012].

By studying the spontaneous emission from this collective state, they have shown that the
emission of a photon occurs in the same k0 direction, which might seem counterintuitive for
spontaneous emission. Moreover, there is no condition on the density of the atomic sample,
the interatomic distance does not have to be small compared to the wavelength for this
collective effect to occur. This study triggered a lot of discussions [Eberly 2006,Mazets 2007,
Scully 2007,Das 2008]. Note that the whole subject has been given the term ‘single-photon
superradiance’ [Scully 2009a,Scully 2009b] (while for its counterpart, which was addressed
later on, ‘single-photon subradiance’ [Scully 2015]).

Following that study, the superradiant emission rate of the TD state was determined to
be [Mazets 2007,Svidzinsky 2008,Svidzinsky 2010,Courteille 2010,Friedberg 2010,Prasad 2010]

Γsup ' C
N

(kR)2 Γ ,

where C is a numerical factor depending on the geometry. This collective emission rate
is larger by a factor of ∝ N/(kR)2 from the single-atom decay rate Γ. The amplification
factor is therefore neither the number of atoms (as in the Dicke limit of a small sample),
nor the density of a sample. In fact, for a spherical sample, N/(kR)2 is proportional to the
on-resonance optical thickness of the sample b0.
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Following those predictions on the superradiant decay rate of the TD state, it has been
numerically demonstrated by our group that, for a large and dilute atomic sample, a small
fraction of the excitation would populate subradiant states, giving rise to a decelerated emission
rate, whose lifetime is also proportional to the on-resonance optical thickness [Bienaimé 2012]
(see Fig. 2).

Note that instead of using a single-photon source, the study of the collective spontaneous
emission from large atomic samples can be carried out with a continuous laser field in the
weak-excitation limit, i.e. for very low saturation parameter of the laser, which would allow
for the assumption that only one out of N atoms is excited [Courteille 2010,Prasad 2010].
For that case, the better terminology is ‘super- and subradiance in the linear-optics regime’
than ‘single-photon super- and subradiance’.

On the theoretical side, the calculations and numerical simulations addressing collective
spontaneous emission phenomena in the low-excitation limit (linear-optics regime) can be
obtained with the so-called coupled-dipole model (which will be introduced in Chapters II
and III), which treats atoms as classical dipoles and it considers the dipole-dipole interactions
mediated by the radiated field (each atom is coupled to other atoms through the electric
field radiated by all the other atoms). Besides super- and subradiance [Bienaimé 2011a,
Bienaimé 2012, Bienaimé 2013,Roof 2016,Guerin 2016,Araújo 2016,Araújo 2018b], such
calculations involving collective dipole-dipole coupling have been widely used to study various
phenomena related to light-scattering from cold-atom media (samples of motionless atoms),
such as the collective radiation pressure force [Courteille 2010, Bienaimé 2010, Bux 2010,
Bienaimé 2014,Bachelard 2016], the collective energy shifts [Scully 2009a,Bienaimé 2011a,
Svidzinsky 2010,Keaveney 2012,Meir 2014,Javanainen 2014,Jenkins 2016,Roof 2016], the
collective line broadening [Zhu 2016,Sutherland 2016,Bromley 2016,Jennewein 2016], collective
Mie scattering [Bender 2010,Bachelard 2012], and coherent backscattering [Rouabah 2014,
Chabé 2014], as well as photon localization [Bellando 2014,Skipetrov 2015,Máximo 2015].

Previous experimental results of the group: super- and subradiance in
the linear-optics regime in dilute clouds

Prompted by the theoretical research on single-excitation super- and subradiance, i.e. super-
and subradiance in the linear-optics regime, the experimental research of the cold-atom group
in Nice resulted in 2016 in the first experimental observation of subradiance in extended
(R � λ) and dilute cold atomic clouds containing N � 1 atoms, as well as in the weak-
excitation limit (with the saturation parameter of the driving laser s ∼ 10−2) [Guerin 2016].
From the temporal decay dynamics of cold-atom samples at late times (light scattered off-axis
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Figure 3: (a) Experimentally obtained fluorescence decay from cold-atom sample of different
on-resonance optical depths b0, with a detuning δ = −3.15 (in units of natural linewidth) of the
driving laser. All decay curves are normalized to the fluorescence level right at the switch off of the
laser. For comparison, the theoretical single atom decay exp(−t/τat) is also shown (dash-dotted
line). The longest subradiant lifetime τsub is obtained from an exponential fit (dashed lines) at late
time. (b) Measured subradiance lifetimes τsub/τat as a function of b0. All measured points collapse
on a single line, independently of the detuning. The linear scaling of τsub with b0 is stressed by the
linear fit (solid line). Taken from Ref. [Weiss 2018].

after the switch-off of the driving laser), subradiant lifetimes as long as τsub ∼ 100τ (τ = 1/Γ
the decay time of an individual atom) have been measured. More importantly, it has been
shown that the subradiant lifetime scales linearly with the on-resonance optical thickness of
the cloud b0 ∝ N/(kR)2 and that the subradiant lifetimes are independent of the laser drive
detuning (see Fig. 3). That demonstrated that the relevant cooperativity parameter is b0, i.e.
that the subradiance, in the limits of dilute and extended atomic sample, is governed by the
resonant optical thickness of the scattering medium.

Then followed the experimental study on off-axis superradiance in the dilute, extended and
weak-excitation regime [Araújo 2016]. The observation of superradiance has been reported for
large detuning and it has been demonstrated that the superradiant decay rate increases with
the on-resonance optical thickness, but it is suppressed in the case of near-resonant excitation
(it depends on the detuning of the laser drive) due to attenuation and multiple-scattering.

Later on, the difference between subradiance and radiation trapping, in the dilute and
extended regimes of cold-atom cloud, has been discussed and experimentally characterized
in [Weiss 2018]. Since the radiation trapping also gives rise to a slow fluorescence decay
(compared to the decay of an individual atom) due to (classical) multiple scattering (which
can be described by the random walk model), it was of interest to understand the interplay
between the two phenomena exhibiting a slow decay. By illuminating the cold-atom cloud by
a laser beam whose waist is smaller than the size of the cloud (to eliminate the dominating
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single-scattering contribution from the edges of the sample; this is in contrast to previously
mentioned experiments where the beam is larger than the cold atomic cloud), the two
phenomena were observed simultaneously but with different properties: the early decay is
dominated by the radiation trapping and the scaling of the corresponding lifetimes with
detuning-dependent optical thickness b(δ) has been observed, while at later times subradiance
dominates with subradiant lifetimes independent of detuning and showing the trend of scaling
with the on-resonance optical thickness b0.

The features of collective effects, such as super- and subradiance, as well as multiple scattering,
can be explained in the framework of the coupled-dipole model describing the atoms as
dipoles which share one excitation and which are coupled to each other through the dipole-
dipole interaction generated by the radiated field. In particular, the scalar approximation
of the coupled-dipole model, which neglects the polarization of the driving field as well the
near-field dipole-dipole interaction terms (it only contains long-range interaction terms ∝ 1/r)
has captured the experimentally observed characteristics of subradiance and superradiance
in the dilute, extended and weak-excitation limit (see Refs. [Guerin 2017a,Guerin 2017b,
Araújo 2016,Araújo 2018b] and Supplemental Material of Ref. [Guerin 2016]). This suggested
that the scalar coupled-dipole model may be suitable for simulating light scattering from
atomic samples in the dilute limit where the near-field interaction is negligible. This validity
for dilute limit will be demonstrated in Chapter II)

The fact that the super- and subradiance are governed by the on-resonance optical thickness
b0 of the dilute and extended scattering medium has been discussed, for example, in Ref.
[Guerin 2017a]. The argument is following. Although there is an infinite amount of vacuum
electromagnetic modes in free space, for a scattering sample of a finite size R, the number
of electromagnetic modes efficiently coupled to the sample is M ∝ (kR)2. Then, the ratio
N/M (where N is the number of atoms of the sample) represents the number of atoms
that emit in the same mode and if this number is N/M > 1, interference effects in the
emitted light will occur, giving rise to super- and subradiance phenomena. Moreover, this
ratio corresponds to the optical thickness (up to a prefactor) N/M ∝ N/(kR)2 ∝ b0, which
provides an explanation for the scaling with b0. On the other hand, for the small samples
with R� λ, there is only one outgoing mode M = 1 (spherical wave). Hence, the relevant
parameter for collective phenomena in the limit of small scattering medium is the number of
atoms N . A recent experiment demonstrates such behavior [Ferioli 2021].
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Content of this thesis

During my doctoral research, the main objective was to study subradiance beyond the limits
of zero temperature of the atomic sample, low intensity of the driving laser, and low sample
density, in order to extend our understanding of these collective long-lived modes. For that
I contributed to several experimental and numerical studies on subradiance. I have also
contributed to a study on identifying a signature of Anderson localization of light in 3D
disordered atomic media. Moreover, I have participated as well in the study of superradiance
and characteristics of collective phenomena at the laser swith-on. These studies led to the
several published articles (see the list in Appendix A). Note that in this manuscript I will
not present all of the studies, but only those of which I had a greater contribution.

On the experimental side, we first studied the effect of the temperature of the atomic samples
on subradiance. We have observed that, when increasing the temperature of the cold-atom
cloud in the range from several tens of µK to several mK, the subradiant lifetimes undergo only
a slight decrease, and we measured subradiant lifetimes longer than the characteristic time
corresponding to the Doppler broadening. This demonstrated the robustness of subradiance
against thermal motion. This work has been done with Patrizia Weiss (post-doc on the
experiment at the time) and it led to the publication of the article [Weiss 2019].

Then followed the experimental study of subradiance beyond the linear-optics regime. We
have demonstrated that the population of subradiant modes is enhanced when the intensity
of the driving laser is increased. The superlinear scaling of the subradiant population beyond
linear-optics regime is due to a process similar to optical pumping via multi-excitation
superradiant states. This work has been done in collaboration with the theoretical group led
by Romain Bachelard, which provided the numerical results supporting our experimental
findings. The results have been published in [Cipris 2021a]. This study will be described in
Chapter I.

During that study, we have also analysed the behavior of the collective Rabi oscillations at
the switch-on of the driving field, demonstrating that collective effects, previously studied
after the laser switch-off (temporal decay dynamics), exhibit characteristic behaviors at the
laser switch-on. The full study was published split in two papers, one for the linear-optics
regime, where the experimental observation of the collective multimode vacuum Rabi splitting
in free space that scales with resonant optical thickness has been reported [Guerin 2019]
(from the data acquired for [Araújo 2016]), and the other for the nonlinear optics regime [do
Espirito Santo 2020]. Since I had a minor contribution to this work (I experimentally acquired
the new data), I do not include that study in the manuscript.



12 Introduction

On the numerical side, I have developed a code based on the vectorial coupled-dipole (CD)
model to be able to investigate how the near field dipole-dipole interaction (which is absent
in the scalar coupled-dipole approximation) affects the observable features of the long-lived
modes beyond the dilute limit of the atomic sample, since the near-field interaction is non-
negligible in dense atomic samples and it becomes more significant as we increase the density
of the atomic sample and hence, decrease the interatomic spacing. One numerical study with
vectorial coupled-dipole model was focused on the subradiance, while the other on Anderson
localization of light.

I have also done numerical simulations with the scalar coupled-dipole code for the study
of superradiance, in particularly to benchmark the superradiant decay rate obtained from
CD simulations to that obtained from another approach introduced by I. M. Sokolov, which
provided us an optical picture for superradiance in the linear-optics regime, based on a
single scattering event embedded in a dispersive effective medium composed by whole atomic
sample. This work has been published as [Weiss 2021].

We have numerically investigated the effect of the near-field dipole-dipole interaction on
subradiance by using the vectorial CD model. We observed that the near-field effects have
negligible role on subradiant lifetimes in the low-density regime, however for higher densities,
we observed that subradiant lifetimes decrease with increasing density for a given on-resonance
optical thickness of the atomic sample. These results have been benchmarked with the results
obtained from the scalar coupled-dipole model to confirm that the identified decrease of
subradiant lifetimes is absent in the scalar-approximation, implying that this decrease is
indeed due to the near-field interaction. This work was published in [Cipris 2021b] and it is
presented in detail in Chapter II.

Finally, we have numerically studied the Anderson localization of light in 3D atomic samples
with the focus on finding an unambiguous signature of light wave localization. By using
scalar and vectorial coupled-dipole models we identified this signature to be the enhanced
fluctuations of the scattered light. The part of the study with the scalar CD model was
done by Florent Cottier [Cottier 2019a], while I did the study involving the vectorial CD
model. This work led to the article [Cottier 2019b] and will be presented in Chapter III after
a detailed introduction on the phenomena of Anderson localization, in particular of light
waves.



Chapter I

Subradiance beyond the linear optics
regime

The collective effects in spontaneous emission from an ensemble of scatterers may yield
subradiant states, i.e. collective atomic states whose lifetimes are orders of magnitude larger
than the lifetime of a single-atom excited state. For example, subradiance has gained a lot of
interest in quantum memory and quantum information, and there have been many proposals
for storage of light through preparation of subradiant states [Kalachev 2007, Scully 2015,
Plankensteiner 2015,Facchinetti 2016,Jen 2016,Asenjo-Garcia 2017,Jen 2017,Guimond 2019,
Needham 2019].

Subradiant modes are essentially weakly coupled to the external electromagnetic fields, which
makes them hard to excite. In this chapter we experimentally study subradiance beyond
the linear-optics regime by increasing the saturation parameter of the driving laser up to
relatively large values. We demonstrate that the weak coupling of subradiance in large and
dilute cold-atom samples can be overcome in the beyond linear-optics regime by driving the
cold-atom sample with a strong excitation laser.

This chapter is organized as follows. In Sec. I.1, we introduce our cold-atom sample prepared
in a magneto-optical trap, as well as experimental setup and protocols for measuring the
slow fluorescence decay and properties of cold-atom samples. Then, in Sec. I.2, we present
the experimental results on subradiance obtained by driving the sample with a probe beam
of varying saturation parameter, which demonstrated the super-linear scaling of subradiant
population with increasing saturation parameter, while the final subradiant lifetimes remain
unaffected by the strength of the laser. In Sec. I.3, we briefly introduce theoretical models
and we compare the numerical results to those obtained experimentally. This theoretical part
was obtained by the group of Romain Bachelard. Moreover, we discuss the interpretation of
the results. Finally, in Sec. I.4 we summarize and comment on our results.

13
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Figure I.1: Scheme of 87Rb D2 transition hyperfine structure. The transitions of interested for
generating and probing cold cloud of 87Rb atoms.

I.1. Experimental setup and data acquisition

I.1.1. Cold atomic samples and probe beam pulses

The experiment is performed on a cloud of cold rubidium-87 atoms which are laser cooled
and trapped in a six-beam magneto-optical trap (MOT) [Metcalf 1999]. As illustrated on Fig.
I.1, the closed-cycling transition used for cooling and trapping of 87Rb atoms is the hyperfine
transition F = 2 → F ′ = 3 of the D2 line (52S1/2 → 52P3/2), which has a wavelength of
λ = 780 nm, while its natural linewidth, i.e. decay rate, is Γ = 1/τ = 2π × 6.07 MHz, with
the lifetime τ = 26.24 ns [Steck 2021]. We also use the repumping laser (whose beams are
superimposed with the MOT trapping beams) on the transition F = 1→ F ′ = 2 to recycle
the atoms lost in the lower hyperfine ground state F = 1 via the off-resonant excitation to
the F ′ = 2 state by the MOT trapping laser.

First, atoms are loaded in the MOT during 60 ms from the background 87Rb vapor. Then
follows a compressed MOT stage in a duration of 30 ms, where we decrease the repumping
laser intensity and we ramp the detuning of the MOT trapping beams ∆MOT to a larger
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(absolute) value. In addition to the increased optical depth of the cloud, the compressed
MOT stage allows us to obtain an increased and smooth density of the cloud with a Gaussian
distribution ρ(r), as well as the reduced temperature T ≈ 100 µK. The peak density of a
Gaussian cloud, i.e. the density at the center of a cloud, that we obtain is ρ0 ∼ 1011cm−3

(dilute cloud; ρ0λ
3 ∼ 10−2), while its size, i.e. RMS radius is R ≈ 1 mm. Moreover, the

number of atoms of the generated cold cloud is N ≈ 6× 109, and the obtained on-resonant
thickness b0 = σ0

∫
ρ(0, 0, z)dz (for the laser beam whose propagation direction is taken to be

along ẑ axis), where σ0 is resonant rubidium atomic cross-section, is up to b0 ∼ 180.

To study the behaviour of the slow fluorescence decay, we excite the atoms by a probe laser
on the hyperfine transition F = 2 → F ′ = 3. As our focus is on what is happening after
the laser switch-off, there are a couple of important requirements for observing the slow
decay, i.e. the decay of the long-lived collective (subradiant) modes. First, we need a fast
switch-off: subradiant modes have lifetimes longer than the lifetime of an individual atom,
hence a switch-off duration shorter than τ = 26.24 ns is required so that the subradiant decay
would not be masked by the laser switch-off and we would undoubtedly be able to observe
the slow decay associated to the cold atomic ensemble. Moreover, subradiant modes are hard
to populate due to their weak coupling to the environment and consequently the fluorescence
level corresponding to subradiant decay is expected to be very low. Hence, we need a very
good extinction ratio of the probe beam to be able to observe the slow decay of subradiant
modes. These requirements are met by using two acousto-optical modulators (AOMs) in
series, which allow us to create probe pulses (in duration of 5 µs) with a switch-off duration
of ≈ 15 ns (90%− 10% fall time) and an extinction ratio better than 10−4. For a detailed
description of the setup see Ref. [Araújo 2018a].

For generating the MOT trapping beams, as well as the probe beam, we use an external
cavity diode laser (Toptica DL pro with FWHM linewidth of 500kHz). Additionally, in the
experimental setup we have implemented a tapered laser amplifier (Toptical BoosTA pro;
with an input and output fiber coupling) which increases the output power of the DL pro
master laser. This optical amplifier allows us to have enough power for the probe beam to
explore the behaviour of subradiance for a large range of probe saturation parameter.
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I.1.2. Experimental cycles and measurement protocol

Fluorescence measurement cycles

Each experimental cycle consists of the preparation of the atomic sample and applying
the probe pulses with the simultaneous measurement of the scattered light (see Figs. I.2
and I.3(a)). More precisely, after the production of the cold cloud of 87Rb atoms (MOT +
compressed MOT stage), we switch off the MOT trapping beams and the magnetic field
and we allow the cold cloud to ballistically expand for 3 ms, while optically pumping all
atoms to the F = 2 ground state. Then, we turn on the probe laser to excite the atoms
with a probe detuning ∆ from the resonant frequency of the transition F = 2 → F ′ = 3.
Moreover, the probe beam is linearly polarized and its size (waist w = 5.3 mm) is larger
than the size of the cloud (R ≈ 1 mm), which allows for the homogeneous excitation of the
cloud. In fact, we apply 12 consecutive probe pulses during the free expansion of the cloud.
As discussed previously, with two AOMs in series we produce probe pulses each having a
duration of 5 µs (during which the system reaches the steady-state) and separated by 1 ms.
This allows us to have fluorescence decay measurement for 12 different on-resonance optical
depths b0 ∝ N/(kR)2: the cloud expands, i.e. its radius increases during the pulse separation
time of 1 ms, and hence for each following pulse, the on-resonance optical depth of the cloud
is lower.

As illustrated on Fig. I.2, during the time that the series of 12 probe pulses is being
applied on the cold atomic cloud, the scattered light is collected by a lens with a solid angle
Ωdet ∼ 4 × 10−2 sr (at θ ≈ 35◦ from the propagation axis of the probe beam), and then
sent onto a hybrid photo-multiplier (HPM; Hamamatsu R10467U-50) which operates in
the photon-counting regime. The advantage of using this photo-detector is that there is no
measurable after-pulsing which could mask the subradiant signal. Furthermore, the detected
photons, i.e. the fluorescence signal, are recorded with a multichannel scaler (MCS6A by
FAST ComTec) with a time bin of 1.6 ns while averaging over the cycles. Note that averaging
over the experimental cycles corresponds to averaging over various spatial configurations of
atomic positions. After applying the series of 12 probe pulses and simultaneous fluorescence
measurement, the MOT is switched on again (beginning of a new cycle) so that most of the
atoms are recaptured. This allows us to have a fast experimental cycle (the total duration of
∼ 110 ms), so that the measured fluorescence signal can be averaged over a large number of
experimental cycles, typically ∼ 5× 105, which corresponds to more than 12 hours of data
acquisition in total for only one set of parameters, such as probe saturation parameter or
probe detuning. Note that for a couple of lowest probe saturation parameters, averaging over
more cycles was required (up to several days).
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Figure I.2: Scheme of the experiment. Cold 87Rb atoms, prepared in a magneto-optical trap, are
driven by series of 12 probe pulses. The scattered light is collected by a hybrid photomultiplier
(HPM) at an angle θ ∼ 35◦ from the probe beam propagation axis. The detected fluorescence is
recorded with a multichannel scaler (MCS) with a time resolution of 1.6 ns. The experiment is
repeated many times, so that the recorded fluorescence signal is averaged over typically ∼ 5× 105

experimental cycles. The duration of each pulse is 5 µs during which the scattered light reaches the
steady-state level. The switch-off duration of the pulse is ∼ 15 ns, shorter than the lifetime of the
individual atom τ = 26.24 ns, with a very good extinction ratio, which allows us to observe the slow
decay of long-lived collective modes.
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Figure I.3: The protocol for measuring the optical thickness of a cold cloud of 87Rb atoms. (a)
The fluorescence measurement cycle consists of the preparation of the atomic sample in the MOT
and compressed (dark) MOT after which 12 probe pulses are applied with pulse duration time 5 µs
and separation time 1 ms. Every 250 cycles, the fluorescence measurement cycle is replaced with
an absorption imaging cycle. (b) To measure the optical thickness of the cloud corresponding to
the first applied pulse, the absorption imaging follows after the production of the atomic sample at
the time corresponding to the first applied pulse. (c) Measurement of the optical thickness of the
atomic sample for the 5th pulse is done by applying 4 pulses after which the absorption imaging
follows at the time corresponding to the 5th pulse. Generally, to measure the optical thickness of
the cloud for the nth pulse, (n− 1) pulses are applied and the absorption imaging follows at the
time corresponding to the nth pulse.
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Figure I.4: The protocol for temperature measurement of a cold atomic cloud. (a) Measurement of
the initial temperature of a cloud before any of the pulses are applied. After the atomic sample is
prepared in the MOT and compressed (dark) MOT, the time of free cloud expansion, i.e. the time of
flight (TOF), after which the absorption imaging follows, is varied. (b) Temperature measurement
after n = 3 probe pulses are applied on the cloud. After applying n = 3 pulses, the temperature is
obtained by varying the sample expansion time (TOF) after which the absorbtion imaging follows.
The same method is valid for the temperature measurement of the cloud after any n number of
applied pulses.
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It should also be noted that we have implemented a series of repumping laser pulses in the
experimental cycle: we added a repumper pulse just before each probe pulse is applied (except
for the first probe pulse), which ensures that all the atoms are optically pumped to F = 2
hyperfine ground state after applying each probe pulse. These repumper pulses have been
added specifically for this experiment where the probe saturation parameter is varied up to
relatively high values.

Absorption imaging cycles

In previous experiments of the group on subradiance [Guerin 2016,Weiss 2018] (obtained
in the weak excitation limit), the measurements of the properties of the cold 87Rb cloud
corresponding to each applied pulse were done after the data acquisition of the decay of the
scattered light (see [Araújo 2018a] for more details on such calibration of cloud properties).
However, in this experiment we probe the atomic sample with a varying saturation parameter,
up to relatively large values. Therefore, each applied pulse could significantly affect the atomic
sample, for example due to heating. It is therefore important to characterize the atomic
sample taking into account the effect that the probe pulses have on the cloud. To do so, we
have implemented a method that allows us to measure the properties of the atomic sample
simultaneously to the data acquisition of fluorescence decay. Note that here simultaneously
does not mean that measurements of the sample properties are done exactly at the same
moment as the data acquisition of fluorescence decay, but that the measurements of atomic
sample are interlaced with the data acquisition by changing one out of 250 cycles, as it is
going to be explained below. Such measurement of the atomic sample also allows us to
identify any possible drifts of the sample properties during long data acquisition.

Before describing the method for the sample characterization simultaneously to the data
acquisition, let us mention that the cloud properties, such as the on-resonance optical thickness
and temperature of the cloud, are obtained from absorption imaging measurements. From
the absorption imaging we obtain the transmittance of the probe beam T which is related to
the optical thickness by T (x, y) = exp[−b(x, y)], where

b(∆) = b0

1 + 4(∆/Γ)2 , (I.1)
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is the detuning-dependent optical depth1. By fitting a Gaussian to b(x, y), we extract the size
of the cloud R (RMS radius), the on-resonance optical thickness b0 (from the amplitude of
the Gaussian fit) and the number of atoms N (from the integral of the Gaussian). Moreover,
the temperature of the cloud is determined by the well-known time-of-flight (TOF) technique.
Note that the same laser beam is used for the excitation of the cloud by the 12 pulses and
for the absorption imaging, however the absorption imaging is always performed at low
saturation parameter and large detuning ∆ = −4Γ.

Now, the protocol for measuring the parameters of the cloud (size, number of cold atoms,
optical thickness, density) simultaneously to the data acquisition is the following. The
absorption imaging is performed instead of the fluorescence measurement once every 250
cycles. The goal is to characterize the cloud at times corresponding to each of the applied 12
pulses, but with taking into account the effect pulses have on the cloud. Hence, as illustrated
on Fig. I.3, to measure the optical thickness and other parameters of the cloud corresponding
to the nth pulse, we apply (n− 1) probe pulses after which follows the absorption imaging at
the time corresponding to the nth pulse. This protocol enables us to have a good calibration
of b0 and other parameters while probing our sample with laser pulses of different intensities.

In the same way, the absorption imaging is also done for different times of flight, without
and with a few applied probe pulses prior to it, in order to measure the initial temperature
of the cloud, as well as to extract the heating induced by the pulses (see Fig. I.4).

Note that the dynamical control of experimental cycles, including the dynamical exchange
between fluorescence measurement and absorption imaging cycles, is accomplished with the
MATLAB Graphical User Interface (GUI) via a National Instrument (NI) card, which allows
for the communication between the software and the experimental devices such as AOMs,
camera, etc.

I.1.3. Calibration of the saturation parameter of the probe laser

Since the objective of this experiment is to characterize subradiance as we increase the
saturation parameter of the probe beam s(∆) beyond the linear optics regime, it is important

1Note that in previous experiments [Guerin 2016,Weiss 2018,Weiss 2019] the detuning-dependent optical

depth was defined as b(∆) = g
b′0

1 + 4(∆/Γ)2 , with g = 7/15 the average Clebsch-Gordan coefficient of the

transition for the statistical mixture of the Zeeman substates. Here we assume that this g factor is included in
the on-resonance optical depth b0 [Eq. (I.1)], so the difference between the optical depths of this experiment
and the previous ones is b′0/b0 ≈ 2. With taking into account this, if we compare the obtained subradiant
lifetimes in this experiment (for low saturation parameter and most-delayed fit window; see Sec. I.2) with
those in the previous experiments for a given b0, we can see that the measured subradiant lifetimes are in
a very good agreement. This confirms the reproducibility of results of the subradiant experiment over the
course of several years.
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to have a precise calibration of s(∆). The saturation parameter is defined as

s(∆) = g
s0

1 + 4(∆/Γ)2 , (I.2)

where g = 7/152 is the degeneracy factor of the |F = 2〉 → |F ′ = 3〉 transition of 87Rb (D2

line) for a statistical mixture of equally populated Zeeman sublevels and s0 = I/Isat is the
on-resonance saturation parameter, with Isat = 1.6mW/cm2 the saturation intensity. An
initial assessment of the saturation parameter at the center of the probe beam was obtained
from the measurement of the total power of the probe beam, Ptot before entering the vacuum
chamber and the measurement of the probe beam waist (1/e2 radius w = 5.3 mm). These
measurements allowed us to determine the peak intensity (i.e. on-axis intensity) of the probe
beam (with a Gaussian profile), which is related to the total power by Ipeak = 2Ptot/πw

2.
Note that the cloud size is substantially smaller than the beam radius (R ≈ 1 mm) and
the probe beam is aligned such that the cold atomic cloud is at the center of the beam.
Consequently, the probe power is approximately uniformly distributed over the cloud and the
intensity seen by the cloud corresponds to the peak intensity to a great degree. Hence, we can
determine the saturation parameter with s0 = Ipeak/I0. However, this is usually not a precise
measurement of s(∆) because of a number of effects: losses along the beam path, beam
not perfectly Gaussian, atomic cloud not perfectly at the center of the beam, etc. Hence, a
calibration method based on the interaction with the atoms is preferable. Hereafter we use
the label s′(∆) for the saturation parameter that is determined by measuring the total power
of the probe beam, while for the properly calibrated saturation parameter we use s(∆). Note
that the power of the probe beam is measured simultaneously to the data acquisition by a
dedicated photodetector.

We used several approaches to properly calibrate the saturation parameter. The first
calibration method is based on the measurement of the fluorescence level. The atomic cloud
(b0 = 37± 1) was illuminated by the probe beam with ∆ = −4Γ and the fluorescence signal
was recorded by a photodetector. The fluorescence measurement was done as a function of
s′(∆) of the probe beam [Fig. I.5(a)]. Since the total scattering rate is ∝ s/(s+ 1), we fitted
the measured fluorescence levels by f = Bs′/(Cs′ + 1) and we obtained the correction factor
for the saturation parameter C = 0.36± 0.04.

The other two calibration methods rely on hyperfine depumping into the F = 1 ground state.
Although the transition of interest in this experiment is F = 2→ F ′ = 3, when the probe

2g = 1
2F + 1

∑
mF
|CF,mF→F ′,mF

|2, where CF,mF→F ′,mF
are Clebsch-Gordan coefficients of the transition

of interest.
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beam is largely detuned to the red from that transition, there is a non-negligible probability
of exciting the F ′ = 2 state from which atoms can decay into the dark F = 1 state. The
hyperfine depumping rate into F = 1 state is given by

Γdepump = p21
Γ
2

s22

s22 + 1 , (I.3a)

s22 = g22
s0

1 + 4(∆22/Γ)2 , (I.3b)

where p21 = 1/2 is the decay probability of F ′ = 2→ F = 1 transition, s22 is the saturation
parameter for the F = 2 → F ′ = 2 transition with g22 = 1/6 the degeneracy factor of the
Zeeman sublevels of the transition F = 2 → F ′ = 2, ∆22 = 44Γ + ∆ the detuning of the
probe beam from that transition and s0 = I/Isat the on-resonance saturation parameter (the
same as in Eq.(I.2)). Therefore, by measuring the hyperfine depumping rate Γdepump, we
can obtain the on-resonance saturation parameter s0 from Eqs. I.3a and I.3b, and then the
detuning-dependent saturation parameter s(∆) for the transition F = 2→ F ′ = 3 from Eq.
I.2.

Because of the depumping losses, the number of atoms that can undergo a transition
F = 2 → F ′ = 3 is decreasing as N(t) = N(t = 0)exp(−Γdepumpt). As the fluorescence
level is proportional to the number of atoms (at sufficiently large detuning), depumping rate
can be obtained by measuring the steady-state fluorescence level as a function of the laser
duration. In fact, since we illuminate the atomic cloud by a series of 12 probe pulses each of
duration 10µs, we added up the durations of subsequent pulses. By fitting an exponential
to the measured fluorescence levels [Fig.I.5(b)], we obtained the depumping rate, from
which we determined the saturation parameter s(∆) = (1.95± 0.09) · 10−2. Therefore, with
s′(∆) = (6.07± 0.01) · 10−2 this method yielded the correction factor C = s/s′ = 0.32± 0.01.

Another way of obtaining depumping rate is by measuring the optical thickness, which is
proportional to the number of atoms (b0 ∝ N/kR2), as a function of the laser duration. We
measured the optical thickness without and with repumping laser, which re-excites atoms
back from the dark F = 1 state. Then, by fitting an exponential to the ratio of measured b0

without and with repumper laser [Fig.I.5(c)], we extracted the depumping rate, from which
we finally obtained s(∆) = (1.89± 0.07) · 10−2. Since s′(∆) = (5.56± 0.01) · 10−2, with this
calibration method we obtained the correction factor C = 0.34± 0.01.

The correction factors of the saturation parameter obtained using the three described methods
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are in good agreement and with similar relative uncertainties. Therefore, we use the average
correction factor C = 0.34± 0.02.

It should also be noted that the precise calibration of the probe detuning ∆ has been done
by measuring the optical thickness as a function of the detuning b(∆) = b0/[1 + 4(∆/Γ)2],
which allowed us to precisely determine the resonance frequency.

I.1.4. Spurious effects due to the high saturation parameter: Heating
and pushing of the atomic cloud

As mentioned, in this experiment we probe the cold 87Rb cloud with a beam with a saturation
parameter up to relatively large values. The interaction with the light can thus have significant
effects on the atomic cloud, in particular heating and pushing.

As described in Sec. I.1.2, the optical depth of the cloud and its temperature are measured
simultaneously to the data acquisition using interlaced cycles of subradiance measurements
and absorption imaging. From the TOF measurements of the atomic cloud without and with
a few applied pulses, we were able to determine the initial temperature of the cloud, as well
as extrapolate the temperature of the cloud after each of the 12 applied pulses. While the
minimal temperature of the cloud that we measured is T ≈ 100µK, the maximum temperature
for the highest s(∆), considering the heating, is T ≈ 700µK. As shown in [Weiss 2019], in
this range of temperature of laser-cooled atoms, subradiance is not significantly affected:
only a very slight decrease of the subradiant lifetime can be expected for the maximum
considered temperature. Hence, we do not expect to observe significant effect of the heating
on subradiance.

Another effect that could be relevant is the radiation-pressure force exerted by the probe
beam on the cloud, inducing a velocity along the beam direction and correspondingly a
Doppler shift, which changes the detuning seen by the atoms and thus the effective saturation
parameter. This pushing effect can easily be computed and we have checked that, even for
the highest saturation parameter, it only induces a very small reduction of the saturation
parameter, which does not affect our results. This is confirmed by the fact that different
values of b0, corresponding to different times of flight and thus different numbers of applied
pulses, yield similar results (see Fig.I.14).

Finally, the expansion of the cloud during the pulse series is also responsible for a slight
decrease of the effective intensity interacting with the cloud (due to the finite beam waist),
of at most ∼ 20%. It does not affect significantly any of the presented results.
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Figure I.5: Different calibration methods of the saturation parameter of the probe beam. Black
dots represent experimental data, while green solid lines are fit curves. a) Measured fluorescence
level as a function of the saturation parameter s′(∆) evaluated from the measurement of the peak
intensity of the probe beam, together with the fit function f = Bs′/(Cs′ + 1). Experimental data
was obtained with a cloud of resonance optical thickness b0 = 37 ± 1, a probe beam detuning
∆ = −4Γ and a pulse duration of 5µs. b) Measured fluorescence level as a function of the total
interaction time with the probe beam, fitted by an exponential decay, from which the depumping
rate Γdepump = (1.51± 0.07)× 10−4Γ was extracted. The measurement was done with ∆ = −10Γ
and a pulse duration of 10µs. c) Ratio between measured b0 without and with repumping as a
function of the total interaction time with the probe beam. The exponential fit to the experimental
data gave Γdepump = (8.37 ± 0.03) × 10−5Γ. The data were obtained with ∆ = −8Γ and a pulse
duration of 10µs.
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I.2. Experimental subradiant data

I.2.1. Temporal dynamics of the scattered intensity: long lived decay
and saturation parameter

As previously discussed, our goal is to characterize the long-lived, i.e. subradiant decay
dynamics as we increase the saturation parameter of the probe beam. We increased the
saturation parameter by increasing the power of the probe beam from s(∆) ≈ 3× 10−3 up to
s(∆) ≈ 0.2, 0.8, 1.8 for ∆ = −2Γ,−4Γ,−8Γ, respectively. Note that the larger the detuning,
the smaller the maximum obtainable s(∆), as a consequence of the limitation in the available
power of the probe. For each value of s(∆) and a given probe detuning, the data acquisition
and simultaneous characterization of the cold atomic cloud were done as discussed in the
previous section.

In Figs. I.6 and I.7 we show examples of measured fluorescence decay for various values
of the probe saturation parameter. It should be noted that we directly compare decay
curves of different s(∆) corresponding to a given probe detuning ∆ and on-resonance optical
thickness b0 since it has been shown that the lifetime of collective modes in large extended cold
atomic clouds scales with the cooperativity parameter b0 ∝ N/(kR)2 [Roof 2016,Guerin 2016,
Cipris 2021b]

The left panels of these figures show the decay curves normalized with the steady-state
intensity of emitted light, i.e. steady-state photon count rate (the steady-state fluorescence
level is reached during the 5µs of probe pulse duration). On the right panels are shown
the same but non-normalized decay curves corresponding to the number of photon counts
per second and per experimental cycle as a function of time after the probe laser switch-off.
Note that t = 0 corresponds to the instant when the probe laser is turned off, i.e. the end
of the pulse duration. Here, our focus is on the long-lived tail of the decay curves, i.e. the
subradiant part of the fluorescence decay which exhibits slower decay than the single-atom
(represented by the black dashed line). When it comes to the normalized decay curves, we
observe that the level of the slow (subradiant) decay first increases and then decreases as
the saturation parameter becomes larger. On the other hand, the subradiant level of the
non-normalized decay curves first increases as the saturation parameter increases and then for
s(∆) & 0.1, the subradiant level remains constant. These observations hold independently of
b0 and ∆, and they are, with additional quantitative data, further discussed in the following
subsection.
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Figure I.6: Temporal dynamics of light emitted after the laser switch off from the cloud of optical
thickness b0 ≈ 50 (a-b), b0 ≈ 80 (c-d) and b0 ≈ 160 (e-f) driven by the probe laser with the detuning
∆ = −4Γ for different values of the saturation parameter s(∆) (color code). Panels on the left (a,c,e)
show the fluorescence decay normalized with the steady-state fluorescence level, while the curves
on the right panels (b,d,f) correspond to the same, but non-normalized decay curves. Note that
the y-axis of the plots showing non-normalized decay curves (labeled I) corresponds to the photon
count rate, i.e. total photon count per second (and per experimental cycle). The black dashed line
on left panels stands for the single-atom decay I(t)/I0 = exp(−Γt).



28 Ch. I - Subradiance beyond the linear optics regime

0 100 200 300 400

10
-4

10
-2

1

(a)

single-atom decay

0 100 200 300 400

10
2

10
6

10
10

(b)

0 100 200 300 400 500

10
-4

10
-2

1

(c)

0 100 200 300 400 500
10

2

10
6

10
10

(d)

0 100 200 300 400

10
-4

10
-2

1

(e)

0 100 200 300 400
10

2

10
6

10
10

(f)

Figure I.7: The same as in Fig. I.6 but for ∆ = −2Γ (a-d) and ∆ = −8Γ (e-f). The optical thickness
is b0 ≈ 50 (a,b,e,f) and b0 ≈ 80 (c-d). Panels on the left show decay curves normalized with the
steady-state intensity, while panels on the right non-normalized decay curves for different values of
the saturation parameter s(∆).
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I.2.2. Subradiant lifetime and relative amplitude

To characterize the long-lived decay dynamics, we use the following analysis method. We fit the
decay curves in a given fit interval by a single exponential function I(t)/I0 = Ãsub exp(−t/τsub)
(normalized decay curves), where Ãsub is the relative subradiant amplitude and τsub is the
subradiant lifetime. Similarly, non-normalized curves are fitted by I(t) = Asub exp(−t/τsub).
To avoid confusion, we are going to refer to Asub of non-normalized decay curves as the
subradiant amplitude, while to Ãsub of normalized fluorescence decay as the relative subradiant
amplitude. This decay analysis, i.e. fit by an exponential, was done over several different
time intervals ΓtFit at late times where the decay is subradiant. Note that the choice of the
latest, i.e. most-delayed fit window ΓtFit is limited by the noise level. Furthermore, it should
be noted that it was taken into account that the upper limit of the fit interval is conditioned
by the noise level, i.e. it was made sure that the fluorescence corresponding to the upper
limit of the fit window is above noise level. Moreover, the fit results for which the goodness
of the fit is R2 < 0.80 are discarded.

In this subsection, our focus is on the normalized fluorescence decay. Subradiant lifetimes and
corresponding relative amplitudes as a function of the saturation parameter of the probe s(δ)
for several different b0 and detunings ∆ = −2Γ,−4Γ,−8Γ, as well as different fit intervals ΓtFit

are shown in Figures I.8, I.9 and I.10, respectively. As we have investigated the behaviour of
the subradiant modes with different lifetimes by monitoring the emission decay over different
time windows ΓtFit, several observations can be made. First of all, independently of b0 and
∆, it can be seen that for the longest-lived observable subradiant modes, with the lifetimes
obtained from the latest, i.e. most-delayed fit window, τsub is not significanlty affected by the
increase of s(∆): for all s(∆), subradiant lifetimes are approximately the same. However,
for earlier time fit windows, the behaviour of τsub is notably affected by increasing s(∆): for
the several lowest values of s(∆), τsub is approximately the same, then as s(∆) increases
furthermore, τsub decreases and finally subradiant lifetimes again become independent of
s(∆). Moreover, it can be seen that the relative subradiant amplitude Ãsub first increases
with increasing s(∆), and then decreases as s(∆) becomes larger (no matter of fit interval
ΓtFit). Note that these observations hold for all b0 and ∆ of the experiment. It should also
be noted that for a given b0 and a time fit window ΓtFit, the obtained subradiant lifetimes
are the same for all ∆ = −2Γ,−4Γ,−8Γ. For example, this can be clearly seen on the inset
of Fig. I.11(b), where we directly compare subradiant lifetimes for different ∆, and on Fig.
I.11(a), which demonstrates that the temporal decay dynamics is approximately the same for
different detunings.

Furthermore, we have checked that the measured steady-state fluorescence level indeed obeys



30 Ch. I - Subradiance beyond the linear optics regime

Γst ∝ s/(s+ 1) as expected, and hence in the limit of small s� 1, the steady-state level is
Γst ∝ s. An example of such scaling of the measured steady-state fluorescence level is shown
on the inset of Fig. I.11(a)). Now let us recall that the Ãsub obtained in this subsection is the
subradiant amplitude relative to the steady-state fluorescence level, i.e. it is essentially the
subradiant amplitude Asub normalized with Γst ∝ s/(s+ 1). Therefore, for the linear-optics
regime, one expects that the relative subradiant amplitude remains constant while s(∆) is
varied. However, for the range of s(∆) explored in this experiment, we do not observe such
linear-optics behaviour for the subradiant modes. As mentioned, even for the lowest s(∆) of
the experiment, we still observe an increase of Ãsub with s(∆), which indicates that for the
long-lived modes we are in the regime beyond linear-optics, even for a saturation parameter
as low as s(∆) ∼ 10−3. This observation will be furthermore discussed below.
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Figure I.8: Subradiant lifetimes τsub (a,c,e) and corresponding relative subradiant amplitudes
Ãsub (b,d,f) obtained from the fit I(t)/I0 = Ãsub exp(−t/τsub) of the normalized decay curves [Fig.
I.7(a,c)] over different time windows ΓtFit. The on-resonance optical thickness of the cold-atomic
cloud is b0 ≈ 50 (a,b), b0 ≈ 80 (c,d) and b0 ≈ 160 (e,f), while the detuning of the probe beam is
∆ = −4Γ.
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Figure I.9: The same as in Fig. I.8, but for probe detuning ∆ = −4Γ. The corresponding normalized
decay curves from which the subradiant lifetimes and relative amplitudes were obtained are shown
on Fig. I.6.
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Figure I.10: The same as in Fig. I.8, but for probe detuning ∆ = −8Γ. The corresponding
normalized decay curves from which the subradiant lifetimes and relative amplitudes were obtained
for b0 ≈ 50 are shown on Fig. I.7(e).
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I.2.3. Population of subradiant states

Let us now focus on the subradiant amplitude Asub (of non-normalized fluorescence decay
curves). Note that, essentially, Asub = ΓstÃsub and it is given in terms of number of photons
per second. The subradiant amplitude Asub as a function of s(∆) for different time fit windows
and laser detunings is shown on Fig. I.11(b) in the case of the cold cloud of on-resonant
optical thickness b0 ≈ 50. It can be seen that, independently of the fit interval, Asub firstly
increases with increasing s(∆), and then for s(∆) & 0.2 it becomes unaffected by s(∆), i.e.
Asub saturates. The fact that Asub saturates for large s, for which we observe a decrease of
Ãsub, indicates that the observed decrease of Ãsub with s in the previous subsection scales as
∝ [s/(s+ 1)]−1. Moreover, for a given fit interval, the subradiant amplitudes and subradiant
lifetimes corresponding to different detunings have approximately the same values. Once
again, this can also be seen on Fig. I.11(a) which demonstrates the overlap of the decay
curves of different ∆ for a given s(∆), indicating that in a given time window subradiant
lifetimes and amplitudes are expected to be the same independently of ∆. Note that the
same observations of Asub are made for other b0 as well.

Now let us turn to the population of subradiant modes Psub. We obtain the population of
subradiant modes (normalized with the number of atoms of our cold atomic samples N) from:

Psub = 1
N

∫ ∞
0

dtAsub,tot exp(−t/τsub) = Asub,totτsub

N
, (I.4)

where Asub,tot = ζAsub is the subradiant amplitude associated with the photon scattering rate
over all spatial directions i.e., over the full solid angle Ω = 4π. To obtain the correction factor
ζ, we determined our detection solid angle Ωdet ∼ 4× 10−2 sr and under the assumption of
isotropic emission we were able to obtain the ratio of detected photons to the number of
photons emitted over the full solid angle Ωdet/Ω. Moreover, to get even a better estimation
of the actual number of emitted photons, we also have to take into account the collection
efficiency of the detector η ∼ 3%, which had been independently calibrated in the past.
Hence, the correction factor for the subradiant amplitude that accounts for the scattering
over the full solid angle and the detector efficiency is ζ = 1

η

Ω
Ωdet

. Therefore, the population
of subradiant modes Psub given by Eq. (I.4) represents the number of excitations in these
subradiant modes normalized with the number of atoms.

On Fig. I.12(a) we show the subradiant population as a function of the saturation parameter
s(∆) obtained for b0 ≈ 50 and with the most-delayed fit interval tFit ∈ [150; 250]/Γ, which
corresponds to the subradiant modes whose lifetimes are not significantly affected by s(∆)
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Figure I.11: (a) Temporal dynamics of the scattered intensity after the switch-off of the driving field
(at t = 0), for different saturation parameters s(∆) as well as for ∆ = −2Γ (solid line) and ∆ = −4Γ
(dashed line). The decay curves for both detunings collapse, which indicates that the temporal
dynamics is independent of the detuning. The intensity curves are normalized by s. Even after this
normalization, the amplitude of the slow decay (corresponding to the long-lived collective modes)
increases with s, which illustrates well the super-linear growth of the long-lived mode populations.
Inset: Steady-state scattering rate Γst as a function of the saturation parameter s for b0 ≈ 50 and
∆ = −2Γ. The measured Γst is represented by full circles, while the solid line corresponds to the
fit function Γst ∝ s/(s + 1). (b) Subradiant amplitude Asub as a function of s(∆) for detunings
∆ = −2Γ (◦ symbol), ∆ = −4Γ (∗ symbol) and ∆ = −8Γ (� symbol) as well as for different
fit intervals tFit represented by different colors as indicated on the legend. The inset shows the
corresponding lifetimes τsub. Asub and τsub were obtained by fitting I(t) = Asub exp(−t/τsub) to the
non-normalized decay curves (which are for example shown on Fig. I.7(a)) over a given time window
tFit. The on-resonance optical thickness is b0 ≈ 50 for the results shown on both (a-b) panels.
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(see the inset of Fig. I.12(a)). Firstly, we observe that the measured population undergoes a
200-fold increase, from 3× 10−7 to 7× 10−5, as the saturation parameter is increased from
s ≈ 3 × 10−3 to 0.3. This corresponds to a maximum number of ≈ 4 × 105 excitations in
these long-lived modes (for N ≈ 6× 109 atoms). Note that these numbers are only orders
of magnitude since the detection efficiency (solid angle, quantum efficiency of the detector,
various losses on the optical path) is not precisely calibrated. More importantly, we observe
a super-linear increase of the subradiant population: we fit the increasing part of Psub (for
s . 0.04) by a power-law function Psub ∝ sβ which yields β = 1.49± 0.16.

We have also checked that the population of long-lived modes with shorter lifetimes (obtained
for b0 ≈ 50 in the earlier time window tFit ∈ [20; 40]) follows the similar super-linear scaling
Psub ∝ sβ with β = 1.53 ± 0.21 (Fig. I.12(b)). The fact that the population of long-lived
modes with different lifetimes obtained from the fit of the photon-emission decay over different
time windows exhibits the super-linear growth with the similar power-law exponential β ≈ 1.5
is illustrated on Fig. I.13 for b0 ≈ 80, where we directly compare the population obtained
from different fit intervals.

We furthermore demonstrate the robustness of the super-linear growth of subradiant pop-
ulation by showing data acquired for several different values of b0, in addition to b0 ≈ 50
discussed above. In Fig. I.14 we show the population of subradiant modes Psub as a function
of s for b0 ≈ 80, b0 ≈ 100 and b0 ≈ 160. The obtained exponents of the power-law fit
Psub ∝ sβ for s . 0.04 are β = 1.47± 0.08, β = 1.46± 0.13 and β = 1.49± 0.12, respectively,
demonstrating that the power-law scaling β ∼ 1.5 is independent of b0.
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Figure I.12: Normalized population Psub = Asub,totτsub/N of long-lived collective modes as a function
of the saturation parameter s(∆) for the cold atomic cloud with optical thickness b0 = 54± 2, as
well as for laser drive with different detunings ∆. Amplitudes and lifetimes of subradiant modes
are obtained from the fluorescence decay curves over the time windows tFit ∈ [150; 250]/Γ (a) and
tFit ∈ [20; 40]/Γ (b). The black solid lines correspond to a fit P ∝ sβ , with β = 1.49± 0.16 (a) and
β = 1.53± 0.14 (b). Insets: Corresponding subradiant lifetime τsub as a function of s(∆).
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Figure I.13: Subradiant population Psub as a function of the saturation parameter s(∆), obtained
from the fit over different time windows tFit corresponding to different colors as indicated on the
legend. The optical thickness is b0 ≈ 80. Filled and empty symbols are for ∆ = −2Γ and ∆ = −4Γ,
respectively. The black dotted line corresponds to Psub ∝ s1.5 illustrating the super-linear increase of
the subradiant population with the power-law exponential ≈ 1.5. The inset shows the corresponding
subradiant lifetimes τsub.
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Figure I.14: Population Psub of long-lived modes as a function of the saturation parameter s(∆)
for three different b0 corresponding to different colors, as well as for ∆ = −2Γ (filled circles)
and ∆ = −4Γ (empty circles). The results were obtained using the fit window ΓtFit ∈ [150; 250].
The black dotted line corresponds to Psub ∝ s1.5, which illustrates the super-linear growth of the
population with the power-law exponential ∼ 1.5. The inset shows the associated subradiant
lifetimes for ∆ = −2. Note that for ∆ = −4Γ similar lifetimes are obtained.
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I.3. Interpretation and comparison with theory

The numerical computations presented in this section have been performed by the group of
Romain Bachelard.

I.3.1. Theory

The atomic cloud is modelled as an ensemble of N two-level motionless emitters with positions
rj and a transition frequency ωa = kc = 2πc/λ between their ground |g〉 and excited |e〉
states (with σ−m = |gm〉〈em| and σ+

m = |em〉〈gm| the lowering and rising operators, respectively),
while the natural linewidth of the transition is Γ. The cloud is driven by a laser beam,
i.e. near-resonance monochromatic electric field, with Rabi frequency Ω(r), detuned from
the transition by ∆. Within the Markov and rotating-wave approximations, the coupled
dynamics of the evolution of the density matrix ρ̂ describing the atomic dipoles is obtained
from the master equation:

˙̂ρ = −i[H, ρ̂] + L(ρ̂), (I.5)

where the coherent Hamiltonian Ĥ and dissipative dynamics L are given, in the pump frame,
by [Stephen 1964,Lehmberg 1970a,Friedberg 1973]:

Ĥ = −∆
∑
m

σ̂+
mσ̂
−
m + 1

2
∑
m

[
Ω(rm)σ̂+

m + h.c.
]

+ 1
2

∑
m,n 6=m

∆mnσ̂
+
mσ̂
−
n , (I.6a)

L(ρ̂) = 1
2
∑
m,n

Γnm
(
2σ̂−mρ̂σ̂+

n − σ̂+
n σ̂
−
mρ̂− ρ̂σ̂+

n σ̂
−
m

)
. (I.6b)

The diagonal term corresponds to the dynamics of an individual atom, Γnn = Γ = 1
and ∆nn = 0, while the coupling terms are given by ∆mn = −Γ cos(krmn)/(krmn) and
Γmn = Γ sin(krmn)/(krmn), with rmn = |rm − rn|. This model corresponds to a ‘scalar light’
approximation: in the experiment the density of the obtained cloud is in dilute limit (atomic
density ρ0 ≈ 0.06λ−3), where a scalar description of the light is a good approximation (see
Chapter 2), hence a full vectorial model is not necessary to study the decay dynamics.

The temporal dynamics of the system can be numerically studied by solving the full master
equation [Eq. (I.5)], however, since the Hilbert space grows exponentially with the number
of atoms as 2N , only up to a dozen of atoms can be simulated. Note that we are going to
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refer to simulations from the full master equation [Eq. (I.5)] as exact simulations.

To simulate the dynamics of a larger system (for more than only a dozen saturated two-level
atoms), additional approximations in describing the system state are required. Here we use a
truncated scheme based on the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) approach,
where the density matrix is recast as a sum of reduced density matrices of order m = 1..N ,
thus establishing a hierarchy of quantum correlations [Bonitz 2016]. The truncation of the
hierarchy to two-particle (pair) quantum correlations has proven to be an efficient technique
to simulate the dynamics of strongly driven atomic clouds (see [Krämer 2015,Pucci 2017] for
more detailed description of the truncated model). The simulations based on this truncated
approach, to which we are going to refer as QPC (quantum pair correlations) simulations,
allow us to simulate the dynamics of a systems containing up to N ∼ 100 atoms.

Let us also mention the semi-classical, i.e. mean-field (MF) approach3 where all the corre-
lations are neglected (a truncation at the first order) [Krämer 2015]. Note that, while the
MF model assumes 〈σ±,zm σ±,zn 〉 ≈ 〈σ±,zm 〉〈σ±,zn 〉, in the QPC approach the pair correlations do
not vanish 〈σ±,zm σ±,zn 〉 − 〈σ±,zm 〉〈σ±,zn 〉 6= 0. Moreover, it should be noted that QPC and MF
simulations have been benchmarked with exact simulations: while the mean-field is in a good
agreement with the exact simulations only in the case of low saturation parameter (linear
optics), the QPC is in a good agreement with the exact simulations for both the low and
high saturation parameter regimes.

I.3.2. Experimental vs. numerical results

Numerically, first the steady-state of the system has been computed by driving the atomic
system by a probe laser beam (plane-wave) with a saturation parameter s(∆). Then, the laser
was switched-off and the decay of the radiated intensity in the far-field limit was obtained
from I(n̂, t) ∝ ∑N

j,m e
ikn̂·(rj−rm)〈σ̂+

j σ̂
−
m〉, where n̂ is a unit vector in the direction of observation.

Note that the atomic sample is considered to have a Gaussian density distribution, as in the
experiment.

As in the analysis of experimental results, the lifetimes and corresponding amplitudes of
long-lived modes have been obtained from the exponential fit of decay curves at late times.
On Fig. I.15(a), we show the direct comparison of experimentally and numerically (from
QPC simulations) obtained normalized population of subradiant modes [Eq. (I.4)]. Although
there is some discrepancy in the values of the normalized population (which might be due to

3Note that the numerical model represented in the following two chapters is based on this mean-field model
with the additional assumption of the low excitation limit (linear-optics regime) such that the ground-state
population is considered to be unchanged
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Figure I.15: (a)Normalized population Psub of long-lived states as a function of the saturation
parameter. Experimental data (symbols, left axis) acquired for b0 = 54±2, with error bars describing
the 95% confidence bounds (statistical uncertainty only). QPC simulations (lines, right axis) realized
for b0 ≈ 5 and N = 100, averaging over 40 realizations (error bars of order 1%, not shown here).
The red dash-dotted line stands for a fit Psub ∝ sβ , with β = 1.007± 0.010 (fit on numerical data),
indicating the linear-optics (LO) regime for subradiant states. The blue dotted line corresponds to a
power-law fit Psub ∝ sβ with β = 1.49± 0.23 (fit on experimental data), which indicates the regime
where the population of subradiant states is being enhanced by a process similar to optical pumping
(OP) via superradiant states. Insets: Corresponding lifetimes of long-lived states as a function of the
saturation parameter obtained from the experiment (top panel) and from the simulations (bottom
panel). (b) The decay dynamics of the population Pn of the n-excitation states for a cloud of N = 9
atoms obtained with exact simulations. The atomic cloud is initially driven to steady-state by a
strong resonant electric field with Ω0 = 5Γ. We observe that the lower the excitation number n, the
slower the decay. The numerical results presented here were obtained by N. A. Moreira and T.S. do
Espirito Santo.
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the vastly different parameters for the atom number and size of the sample: N = 100, kR ∼ 6
in the simulations and N ≈ 6× 109, kR ∼ 8000 in the experiment), it can be seen that the
numerical results are in very good agreement with the experimental results: the experimental
observation of the super-linear increase of subradiant population as Psub ∝ s1.49 is also
obtained with QPC simulations in the intermediate s regime 2× 10−3 . s(∆) . 4× 10−2.
Additionally, the lifetime of long-lived modes is only marginally affected by the strength of
the drive in both, experimental and numerical, cases. While the simulations of the truncated
dynamics present an increase of ∼ 15% in lifetime as the saturation parameter is increased,
the experimental error bars do not permit us to identify this increase. Moreover, as it
is the case for experimental results, the numerically obtained subradiant populations nor
corresponding lifetimes do not depend on the detuning of the probe laser. Such observation
of independence of subradiant lifetimes on detuning of the probe has also been made in
Ref. [Guerin 2016] and it is discussed in Ref. [Guerin 2017b] for the linear-optics regime.

Furthermore, in the simulations it was possible to study the decay dynamics for much lower
values of s(∆) than it was achievable experimentally. Hence, in the numerical results the
linear optics regime for subradiant modes has also been observed for s(∆) < 2× 10−3, where
the subradiant population scales linearly with s: Psub ∝ s. The simulations at b0 = 5 present
a non-linearity threshold at sLO ≈ 2× 10−3. It was recently suggested that such a threshold
may scale as Γ2.5

n , with Γn = 1/τn the n-th mode linewidth, i.e. decay rate [Williamson 2020]:
assuming that the subradiant states present linewidths scaling as Γn ∼ Γ/b0 [Guerin 2016],
saturation parameters orders of magnitude smaller may be necessary to experimentally reach
the linear-optics regime for long-lived states (in the experiment we probed the clouds with
larger on-resonance optical depths and consequently the long-lived (single-photon) modes
have longer lifetimes than what is the case for b0 = 5 as in the simulations). It should
be noted that numerically it was not possible to obtain a scaling of sLO from the low-b0

simulations.

The results obtained here show that in the previous experiments [Guerin 2016,Weiss 2018,
Weiss 2019], the data was actually not taken in the linear-optics regime for collective long-lived
modes with s(∆) ∼ 10−2. This is in contradiction with what was claimed in the Supplemental
Material of Ref. [Guerin 2016]: no significant dependence of the relative subradiant amplitude
on the saturation parameter in the range of s(∆) explored there had been observed, indicating
that the experimental data for s(∆) ∼ 10−2, had been taken in the linear-optics regime for
subradiant modes (the relative subradiant amplitude is expected to be unaffected by the
probe intensity in the linear-optics regime). However, as the range of s(∆) explored there was
relatively short, the increase of relative subradiant amplitude with s(∆) was not obvious and
the wrong conclusion of being in the linear optics regime for s(∆) ∼ 10−2 had been made.
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Note that the exact simulations with N = 7 atoms show a very good agreement with the
QPC simulations: for the very low s, the population scaling P ∝ s is observed indicating the
linear-optics regime for long-lived modes, while for intermediate s, the superlinear-scaling
Psub ∝ sβ, with β ∼ 1.5 is identified. Moreover, the semiclassical simulations, i.e. the
mean-field approach which neglects correlations, have been benchmarked with the exact
(and QPC) simulations and it has been observed that the mean-field model fails to properly
describe the decay of subradiant states in the high-s regime, i.e. the mean-field model does
not capture the long-lived decay dynamics beyond linear-optics regime. This strongly suggests
that the subradiant states here studied are due to quantum correlations [Tana 2004].

I.3.3. Interpretation

N=2-atom case

To interpret our results, in particularly the observed super-linear scaling of subradiant
population, we consider a "toy-model" of N = 2 two-level atoms with transition frequency
ωa = kc = 2πc/λ and whose separation distance is r12 = |r1 − r2| � λ. The atoms are
driven by the external electric field (we are going to refer to it as the pump) with the
wave vector kL ≈ (ωa/c)ẑ = kẑ ‖ r12 and the Rabi frequency Ω(r) = Ω0e

ikz. In the
scalar light approximation, the dipole-dipole interaction generates two collective single-
photon, i.e. single-excitation eigenstates |±〉 = (|eg〉 ± |ge〉)/

√
2 (only one excited atom),

in addition to the ground |gg〉 and double-excited |ee〉 states (both atoms are excited) [see
Fig. I.16(b)]. The symmetric collective state, i.e. superradiant state, |+〉 presents decay rate
Γ+ = Γ(1 + sin(kr12)/(kr12)) (Γ+ > Γ for r12 � λ) and energy shift ∆+ = Γ cos(kr12)/2kr12,
while the decay rate and energy shift associated to the antisymmetric (subradiant) state
are Γ− = Γ(1 − sin(kr12)/(kr12)) (Γ− < Γ for r12 � λ) and ∆− = −Γ cos(kr12)/2kr12,
respectively. The pump couples efficienty to the superradiant |+〉 state, while very weakly to
the long-lived, i.e. subradiant |−〉 one. Moreover, we introduce the effective Rabi frequency for
each single-excitation mode |+〉 and |−〉: Ω+ =

√
2 cos(kr12/2)Ω0 and Ω− =

√
2 sin(kr12/2)Ω0

(up to a phase), which can be identified by rewriting the driving Hamiltonian in terms of the
states |+〉 and |−〉.

The steady-state population of the long-lived mode then presents three typical regimes,
depending on the pump strength. First, for the lowest intensities (linear-optics regime), the
population of |ee〉 is negligible and the single-excitation modes |±〉 are driven only directly
from the pump, so one obtains the following scaling for their population: P+− ≈ s+−/2 ∝ s,
with s+− = 2Ω2

+−
/(Γ2

+−
+ 4(∆∓∆+−/2)2) the effective saturation parameter for each mode, and

s = 2Ω2
0/(Γ2 + 4∆2) the single-atom one [see Fig. I.16(c)]. This single-excitation regime holds
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Figure I.16: Dicke space for N � 1 two-level atoms, where the downward arrows depict the decay
processes. The processes in green refer to the Dicke superradiant cascade through symmetric
states [Dicke 1954], and the red ones to the linear-optics (LO) processes (i.e., the single-excitation
regime). (b) Energy levels for N = 2 coupled atoms. (c) Computed population of the long-lived
|−〉 state for N = 2 coupled atoms. The red dash-dotted curve corresponds to P− = s−/2 ∝ s,
while the dashed blue one scales as s2 (labelled OP). Simulation realized for N = 2 atoms distant of
kr = 0.05, aligned with the pump axis, with a detuning ∆ = −500Γ. Simulation has been done by
R. Bachelard.
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for s± � 1, i.e., Ω+ � ∆.

As the drive strength is increased, the doubly-excited state |ee〉 is substantially populated
thanks to the strong coupling of the drive to the superradiant state: P+ ≈ s+/2 ∝ s and
Pee ∝ s2. Then, the |−〉 state gets an additional population by decay from |ee〉, at rate Γ−,
leading to a long-lived population that grows quadratically with the saturation parameter:
P− ∝ s2 [see Fig. I.16(c)].

Finally, for the largest values of the saturation parameter, i.e., with a Rabi frequency such
that the dynamics of each atom is dominated by the drive (Ω0 � ∆� Γ, |∆±|), the system
is cast into a separable state described by the density matrix ρ̂ = ⊗j=1,2(|gj〉 〈gj|+ |ej〉 〈ej|)/2.
This mixed state projects equally on the states |gg〉, |+〉, |−〉 and |ee〉, resulting in P− ≈ 1/4.
Hence, the strong pump overcomes the weak coupling of subradiant modes which, in the
linear-optics regime, prevents one to populate them efficiently. The present mechanism is
analogous to optical pumping, where an excited state (here |ee〉) is directly driven by the
laser, and induces a population in the long-lived state (here |−〉) by incoherent decay.

Our N � 2 atomic sample

The discussed interpretation of enhanced subradiant population for N = 2 atoms in terms of
a process similar to optical pumping can be extended to our results obtained with a cold
atomic sample of N � 2 atoms [see Fig. I.16(a)]: although weakly coupled to the external
drive and consequently being weakly populated directly by the drive, the long-lived modes
can be efficiently populated via the decay processes from the multi-excitation superradiant
states, which are well coupled to the external drive. In other words, the experimentally and
numerically obtained super-linear growth of subradiant population Psub ∝ sβ, with β ∼ 1.5,
can be attributed to a mechanism analogous to optical pumping via superradiant states, such
that the long-lived modes, in addition to being directly populated by the probe laser, are
gaining population through the decay from multi-excitation superradiant states. Let us note
that it is not clear why we observe the power-law scaling Psub ∝ sβ, with β ∼ 1.5, in contrast
to Psub ∝ s2 for the simple case of N = 2 atoms. The difference in the power-law exponent
might be due to a vastly larger Hilbert space for N � 2 atoms, and thus much larger number
of collective states with different decay rates, i.e. lifetimes.

Using numerical simulations, the study of the dynamics of the many-excitation states reveals
that the longest lifetimes are found in the subradiant modes with fewer excitations, toward
which the system quickly decays, i.e. the single-excitation long-lived modes have the longest
lifetimes, while the multi-excitation long-lived modes have shorter lifetimes [see Fig. I.15(b)].
Thus, it is expected that the late time decay dynamics is going to be dominated by the
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single-excitation long-lived modes as they exhibit the slowest decay. This explains why we
experimentally observe that the most delayed fit window yields the longest observable lifetimes
that are unaffected by the increasing saturation parameter (see for example Fig. I.12):those
longest lifetimes correspond to the single-excitation subradiant modes (whose population, as
previously discussed, is enhanced by the optical-pumping-like process). Moreover, the fact
that the subradiant lifetimes obtained from the fit over the earlier time windows decrease with
s for higher saturation parameters possibly indicates that this shorter lifetimes correspond to
the decay from the multi-excitation long-lived modes.

I.4. Conclusion

By studying the slow decay dynamics of cold atomic clouds as the saturation parameter
s of the laser drive is increased, we have experimentally observed that the population of
long-lived, i.e. subradiant modes exhibits the superlinear growth with s as Psub ∝ sβ, with the
exponent β ∼ 1.5. We attribute this beyond linear-optics behaviour for long-lived modes to a
process similar to optical pumping through decay processes from multi-excitation superradiant
states. Moreover, the subradiant lifetimes observed at the latest times, which correspond to
a single-excitation subspace, remain unaffected by the strength of the laser drive.

The numerical simulations (QPC and exact) show a very good agreement with experimental
results. However, the semiclassical simulations (which neglect the quantum correlations) have
failed to reproduce the results, which is an argument to support the idea that the subradiant
states might be appropriate to store entanglement or quantum correlations.

The fact that we have experimentally demonstrated that the population of long-lived collective
modes can be enhanced by increasing the intensity of the laser drive beyond the linear-optics
regime, while the corresponding lifetimes remain unaffected, is an encouraging step towards
harnessing the subradiant modes for information storage in quantum memory devices.



Chapter II

Subradiance beyond the dilute regime

In previous experimental studies on subradiance, it had been shown that for dilute (such
that the typical distance between the atoms is larger than the wavelength) and large (where
the size of the sample is much larger than the wavelength) cold-atom samples, as well as in
the linear-optics (weak-excitation) regime, the collective spontaneous emission is governed
by the resonant optical thickness b0 of the sample, i.e., subradiant lifetimes scale linearly
with b0 [Guerin 2016,Weiss 2018]. From the numerical side, the scalar-coupled dipole model,
which involves only the long-range dipole-dipole interaction (∝ 1/r), captured very well those
experimental observations [Guerin 2016,Araújo 2018b].

The question is how the near-field dipole-dipole interaction affects the long-lived subradiant
modes, since it is supposed to become non-negligible beyond the dilute limit, as the distance
between atoms becomes comparable to the wavelength. The near-field effects have been
reported for several light-scattering phenomena. For example, in the case of the Dicke limit
of a small sample (whose size is much smaller than the wavelength) for initially fully inverted
systems (each atom is excited), it was reported that the near-field dipole-dipole interaction
breaks the symmetry of the collective states yielding a reduced superradiance [Friedberg 1972,
Friedberg 1973,Friedberg 1974,Gross 1982]. Moreover, it has been demonstrated that in
dense samples, the near-field interaction is at the origin of a suppression of light scattering
[Pellegrino 2014], and it prevents Anderson localization [Bellando 2014, Skipetrov 2014,
Máximo 2015,Máximo 2019], as well as large refractive indices [Andreoli 2021].

Hence, the object of the study presented in this chapter is to explore what effect the near-field
interaction has on subradiant modes as we increase the density of the sample. The study was
done numerically with the vectorial coupled-dipole model (and the scalar model to compare
the vectorial results to the scalar ones). Note that we considered large samples (whose size is
larger than the wavelength) and the linear-optics regime.

The chapter is organized as follows. In Sec. II.1, we introduce the vectorial and scalar
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coupled-dipole models, as well as the atomic sample. In Sec. II.2, we present the results
obtained with the vectorial and scalar models, in particular how subradiant lifetimes depend
on the density of atomic samples. We show that the near-field dipole-dipole interaction
is detrimental for subradiance, which we see in the reduction of subradiant lifetimes with
increasing density. In addition, we extensively studied the influence of subradiant pairs and
positional correlations on the slow decay dynamics to out rule those effects as being at the
origin of the reduction of subradiance. We also discuss the eigenvalue distribution, which
allows us to interpret the detrimental character of near-field effects on subradiance. Finally,
in Sec. II.3, we summarize and discuss the results.

II.1. Microscopic model

II.1.1. Coupled-dipole equations

We consider a system of N identical 4-level atoms with ground state |Jg = 0,mg = 0〉 cou-
pled to triple-degenerate excited states |Je = 1,me = 0,±1〉 by the electric field, with a
coupling provided by the dipole transition moment. Each atom is treated as a discrete
point-like radiating dipole located at fixed position rj, where j = 1, ..N , and with tran-
sition frequency ω0 = ck0, where k0 is the amplitude of the wavevector associated to the
atomic dipole transition. The incident electric field is a plane-wave laser beam described
by Ein = EL exp(ikL · rj − iωLt), characterized by its amplitude EL, polarization ε̂L (with
EL = ELε̂L), wavevector kL = kLẑ (kL ≈ ω0/c = k0 and ẑ used as a quantization axis), and
frequency ωL detuned by ∆0 = ωL−ω0 from the atomic transition. We here use the spherical
basis, with unit vectors ê±1 = ∓1/

√
2(êx ± iêy), and ê0 = êz . Throughout this work we use

right-hand circular polarization for the laser beam: ε̂L = ê−1.

Our focus is here on a weak driving field, such that the system presents a linear response
to the field, i.e., the linear optics regime. By using rotating-wave approximation (in the
atom-drive interaction Hamiltonian) and Markov approximation, the optical response of the
system is given by a set of following 3N coupled-dipole equations (CDEs) (for example, see
Refs. [Lehmberg 1970a,Lehmberg 1970b,Manassah 2012,Samoylova 2014,Bienaimé 2011b]
for the derivation of these equations):

dβζj (t)
dt =

(
i∆0 −

Γ0

2

)
βζj (t)− i

d

~
ê∗ζ · EL exp(ikL · rj)−

Γ0

2
∑
m6=j

∑
η

Gζ,η(rjm)βηm(t), (II.1)

with j,m ∈ J1, NK, ζ, η ∈ (±1, 0) the spherical-basis components, d the electric-dipole
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transition matrix element (considered to be the same for every atom and transition), Γ0 =
d2k3

0/3~πε0 the single-atom decay rate and rjm = rjmr̂jm = rj − rm the distance vector
between atoms j and m. Note that these equations for βζj are written in the rotating frame
of the driving field. Moreover, this set of 3N coupled first-order linear differential equations
describes the temporal evolution of the amplitudes of the atomic dipoles βζj (t). Note that∑
ζ |βζj (t)|2 gives the probability of atom j being excited at time t, while |βζj (t)|2 represents

the probability that atom j is excited to state |Je = 1,me = ζ〉 at time t. The first term of the
CDEs [Eq. (II.1)] describes the single-atom dynamics. The second one represents the driving
by the external electric field. The last term is the coupling term that corresponds to the
dipole-dipole interaction, and it gives rise to collective effects like superradiance, subradiance,
and multiple scattering. The dipole-dipole interaction mediated by the electric field produced
by radiating dipoles is characterized by the dyadic vectorial Green’s function given by

Gζ,η(r) = 3
2

exp(ik0r)
ik0r

{ [
δζ,η − r̂ζ r̂∗η

]
+
[
δζ,η − 3r̂ζ r̂∗η

] [ i

k0r
− 1

(k0r)2

]}
, (II.2)

with r̂ζ = êζ · r̂ the component of the unit vector r̂ = r/r along the direction ζ = 0,±1. It is
the imaginary part of the Green’s function that is responsible for collective energy shifts, while
its real part gives rise to collective decay rates, of which some are superradiant Γsup > Γ0 and
other subradiant Γsub < Γ0. Note that the vectorial Green’s function [Eq. (II.2)] contains
both far-field (1/r) and near-field contributions (1/r2 and 1/r3), as well as polarization
coupling (∝ r̂ζ r̂

∗
η for ζ 6= η) through both near- and far-field terms. Considering Gζ,η as a

spatial component of a symmetric tensor
↔
G, Eq. (II.2) can be written in more compact form:

↔
G(r) = 3

2
exp(ik0r)
ik0r

[(
1 + i

k0r
− 1

(k0r)2

)
↔
I +

(
− 1− 3i

k0r
+ 3

(k0r)2

)
r⊗ r
r2

]
. (II.3)

As already mentioned, the dipole components βζj represent the amplitude of the induced
oscillating atomic dipole, and therefore the components of the scattered electric field vector
at position R = Rn̂ can be obtained from the emission of the dipoles located at rj:

Eζ
sc(R, t) = −i dk

3
0

6πε0
∑
j

∑
η

Gζ,η(R − rj)βηj (t). (II.4)

In the far-field limit (R � rj, 1/k0), we can approximate |R − rj| ≈ R − n̂ · rj and
1/|R − rj| ≈ 1/R in Gζ,η(R − rj) [Eq. (II.2)], while we drop terms ∝ 1/|R − rj|2 and
∝ 1/|R − rj|3. Under these approximations, the expression of the vectorial Green’s function
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reduces to Gζ,η(R − rj) ≈
3
2

exp(ik0R)
ik0R

(δζ,η − n̂ζn̂∗η) exp(−ik0n̂ · rj), where n̂ = R̂/R is the
unit vector in the observation direction. Therefore the components of the scattered electric
field [Eq. (II.4)] in the far-field limit are approximated by

Eζ
sc(R, t) ≈ −i

dk3
0

4πε0
∑
j

∑
η

exp(ik0R)
ik0R

(δζ,η − n̂ζn̂∗η) exp(−ik0n̂ · rj)βηj (t). (II.5)

Since the electric field in the far-field limit is purely transversal, the intensity of the scattered
light in the far field can be computed as Isc ∝ |Esc|2 = ∑

ζ |Eζ
sc|2:

Isc(n̂, t) ∝
∑
m,j

e−ik0n̂·rjm
∑
ζ,η

(δζ,η − n̂ζn̂∗η)β
η
j (t)βζ∗m (t). (II.6)

In the above expression for the intensity of the scattered light, we did not write factor ∝ 1/R2

before the summations. As we will normalize the obtained scattered intensity, the prefactor
is not essential; in our computations of the scattered light in the far-field limit, only the
observation direction n̂ determined by the observation angles {θsc, φsc} is relevant.

The scalar approximation of the coupled-dipole model, which disregards the vectorial nature
of light (i.e., its polarization) and the internal Zeeman structure of the atoms, is obtained
by averaging Gζ,η(rjm) in Eq. (II.2) over random orientations of the pairs of atoms j and
m. In the case ζ = η, one obtains 〈r̂ζ r̂∗η〉 = 1/3, while 〈r̂ζ r̂∗η〉 = 0 for ζ 6= η. Consequently,
the near-field terms disappear, as well as polarization coupling, and we obtain the following
scalar dyadic Green’s function:

G(s)(r) = exp(ik0r)
ik0r

. (II.7)

The atomic dipoles are then described by a scalar amplitude βj, whose dynamics is given by
the set of N scalar CDEs:

dβj(t)
dt =

i∆0 −
Γ(s)

0
2

 βj(t)− dEL
~
eikL·rj − Γ(s)

0
2

∑
m 6=j

G(s)(rjm)βm(t) , (II.8)

where the natural decay rate differs by a factor 3/2 from the vectorial one: Γ(s)
0 = (3/2)Γ0.

The dipole matrix element and the scattering cross section also differ by a factor from the
scalar to the vectorial case. The difference between the vectorial and scalar definitions of the
natural decay rate stems from the absence of polarization degrees of freedom of light in the
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scalar model.1 Note that, in the scalar model, the coupling of atomic dipoles is provided only
by the long-range (far-field; ∝ 1/r) dipole-dipole interaction term.

The scattered electric field in the scalar approximation reduces to

E(s)
sc (R, t) = −i dk

3

4πε0
∑
j

G(s)(R − rj)βj(t), (II.9)

and the scattered intensity can be obtained as I(s)
sc ∝ |E(s)

sc |2 which in the far-field limit reads:

I(s)
sc (n̂, t) ∝

∑
m,j

e−ik0n̂·rjmβj(t)β∗m(t). (II.10)

Let us now summarize and add some more details about steps needed to obtain the intensity
of the scattered light from CDEs to study the decay dynamics. We have to solve the set of 3N
vectorial CDEs [Eq. (II.1)] or the set of N scalar CDEs [Eq. (II.8)] for β(t). For convenience,
we will explain the following steps in the case of the vectorial model, but note that those
steps are analogous in the scalar model. First we compute the steady-state solution, dβζj,st

dt = 0
of Eq. (II.1) by solving the following linear problem:

βζj,st = 1
i∆0 − Γ0/2

id
~

ê∗ζ · EL exp(ikL · rj) + Γ0

2
∑
m6=j

∑
η

Gζ,η(rjm)βηm,st

 ∀ (j, ζ). (II.11)

Note that by combining this equation and Eq. (II.4), we can rewrite the steady-state CDEs
as

βζj,st = d

~(∆0 + iΓ0/2)
[
ê∗ζ · EL exp(ikL · rj) + Eζ(rj)

]
, (II.12)

from which we can clearly understand that the amplitude of each atomic dipole j is not only
the result of driving by the incident electric field but it is also affected by the electric field
Eζ(rj) = −i dk

3
0

6πε0
∑
m6=j

∑
η Gζ,η(rj − rm)βηm(t), produced by all the other N − 1 dipoles.

After we obtain the stationary amplitudes of atomic dipoles βζj,st, we switch-off the driving
field (EL = 0) in Eq. (II.1), which gives following set of equations

1In our vectorial [Eq. II.1] and scalar [Eq. II.8] coupled-dipole simulations, we set Γ0 = 1 and Γ(s)
0 = 1,

respectively. Like that the temporal dynamics for dipoles in vectorial and scalar models is in the units of Γ0
and Γ(s)

0 , respectively.
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dβζj
dt =

(
i∆0 −

Γ0

2

)
βζj −

Γ0

2
∑
m 6=j

∑
η

Gζ,η(rjm)βηm. (II.13)

Then we solve those equations for βζj (t) after the switch-off of the incident driving field with
the previously obtained steady-state solution as an initial condition βζj,st −→ βζj (t = 0). In
the end, we use the obtained dipole amplitudes βζj (t) to compute the scattered intensity given
by Eq. (II.6).

In a described way, we compute the scattered intensity for various spatial configurations of
atomic positions, i.e., for many realizations of discrete atomic positions. Then we average
the intensity over those realizations. Here we choose the number of realizations Nr such that
the product of Nr and the number of atoms N is always the same: Nr ×N = 60000. As is
going to be discussed below, we use a spherical atomic sample, i.e. N atoms confined in a
spherical volume. Thus, considering the azimuthal symmetry of such spherical sample (up to
the disorder), the obtained intensity is averaged over 51 azimuthal angles φsc = [0◦, 360◦). It
is then the average intensity (averaged over many realizations and the azimuthal angles) that
we use further for our study of temporal decay dynamics.

II.1.2. Spectrum of the system

To interpret the results obtained from the temporal dynamics of the light scattered by atoms,
we will look into the distribution of eigenvalues of the collective modes. Let us first introduce
the generalized vectorial 3N × 3N matrix G, whose elements are

G
η,ζ
j,m =


i∆0 −

Γ0

2 for j = m, ζ = η

−Γ0

2 Gη,ζ(rjm) for j 6= m given by Eq. (II.2),
(II.14)

such that the vectorial CDEs [Eq. (II.1)] can be rewritten as

β̇ζj =
∑
m

∑
η

G
η,ζ
j,mβ

η
m − i

d

~
ê∗ζ · EL exp(ikL · rj). (II.15)

Diagonal terms of matrix G describe the single-atom dynamics, whose real part corresponds
to the single-atom decay rate Γ0 = −2R(Gζ,ζ

j,j ), while the imaginary part corresponds to
the atomic frequency in the rotating frame of the external driving field, i.e., it corresponds
to the detuning ∆0 = ωL − ω0 = I(Gζ,ζ

j,j ). On the other hand, the off-diagonal terms are
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Figure II.1: (a) Eigenvalue distribution of vectorial coupled-dipole modes for an atomic sample
with b0 = 30, ρλ3 = 15 (and N = 1102). The number of realizations is Nr = 25. Each point
represents one of the eigenmodes with corresponding frequency shift ∆n = ωL − ωn [Eq. (II.16)]
and decay rate Γn [Eq. (II.17)]. (b) Eigenvalue spectrum corresponding to the scalar coupled-dipole
model [Eq. (II.19)] for an atomic sample with b(s)0 = 30, ρλ3 = 15 (and N = 3721). The number of
realizations is Nr = 22. The color code in both panels represents the inverse-participation rate (IPR)
[Eqs. (II.18) and (II.20) for vectorial and scalar model, respectively]. Data points with low IPR
(yellow) correspond to the collective modes in which Nn � 1 atoms are significantly participating
(IPR� 1). Red data points are modes of very close pairs of atoms created in the sample, i.e,
modes to which 2 atoms are significantly contributing (IPR ≈ 1/2 for pair modes in scalar model;
IPR ≈ 1/6 − 1/2 for pair modes in vectorial model due to 3 Zeeman substates of excited state).
Black spirals, i.e., pair branches correspond to the analytical expressions of pair eigenvalues [given
by Eqs. (II.21) and (II.22) for vectorial model and Eq. (II.23) for scalar model]. The exclusion
volume for atoms has not been used here. The detuning of the external driving field is ∆0 = −15Γ0
(equivalently in the scalar model ∆0 = −15Γ(s)

0 ).

coupling terms that describe the dipole-dipole interaction via the electromagnetic field. As
a result of the coupling between dipoles, collective modes arise which are characterized by
eigenstates ψn =

[
ψ1,1
n , ψ1,0

n , ψ1,−1
n . . . ψj,ζn . . . ψN,1n , ψN,0n , ψN,−1

n

]
. By diagonalizing the matrix

G, Gψn = λnψn, we obtain 3N complex eigenvalues λn = i∆n − Γn/2 corresponding to
each eigenmode ψn. The dispersive imaginary part is associated to the frequency of the
eigenmode ωn relative to the frequency of the driving field ωL, i.e., the imaginary part yields
the frequency shift of the eigenmode:

∆n = ∆0 + (ω0 − ωn) = ωL − ωn = I(λn). (II.16)
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The dissipative real part of λn corresponds to the decay rate of the eigenmode:

Γn = −2R(λn) (II.17)

which characterizes the coupling of the corresponding eigenmode with the vacuum electromag-
netic field. Subradiant states, characterized by Γn < Γ0, are coupled weakly to the vacuum
EM field compared to the excited state of the single atom, while superradiant states, Γn > Γ0,
are coupled strongly.

Another quantity that will be of interest is the inverse participation ratio (IPR), which tells
us how many atoms participate in an eigenmode (inversely): it is a measure of 1/Nn where
Nn is the number of atoms that significantly contribute to the mode ψn. It is given by

IPRn =
∑
j,ζ |ψj,ζn |4

(∑j,ζ |ψj,ζn |2)2
. (II.18)

In our focus are modes to which many atoms are significantly participating, i.e., modes with
IPRn � 1 (Fig. II.1). For convenience, those are the modes that hereafter we are going
to refer to as collective modes, to distinguish them from pair modes, to which two atoms
significantly contribute.

Equivalently, in the scalar model N eigenvalues λ(s)
n and eigenstates ψn =

[
ψ1
n, . . . ψ

j
n . . . ψ

N
n

]
can be obtained from the N ×N matrix G(s) with elements given by

G
(s)
j,m =


i∆0 −

Γ(s)
0
2 for j = m

−Γ(s)
0
2 G(s)(rjm) for j 6= m given by Eq. (II.7) ,

(II.19)

and the corresponding IPR in the scalar model is provided by

IPRn =
∑
j |ψjn|4

(∑j |ψjn|2)2
. (II.20)

Close pairs of atoms

As it was already pointed out, we are interested in the decay of collective modes, which involve
many atoms (Nn � 1). However, we can see in Fig. II.1 that, in addition to those collective
modes (with IPR� 1; yellow data points), there are modes to which only two atoms are
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Figure II.2: Complex eigenvalues λpair = i∆pair − Γpair/2 corresponding to the modes of atom
pair (N = 2) in the vectorial coupled-dipole model [Eqs. (II.21)-(II.22)]. Decay rates Γpair (a) and
frequency shifts (with respect to the atomic resonant frequency ω0) ∆pair = ω0 − ωpair (b) of pair
modes as a function of the distance between two atoms k0r12. (c) Pair branches, i.e., Γpair(k0r12)
vs. ∆pair(k0r12) representation of (a) and (b) combined.

significantly contributing (IPR ≈ 1/2 for pair modes in the scalar model and IPR ≈ 1/6−1/2
for pair modes in the vectorial model due to three Zeeman substates of excited state; red
data points). These modes correspond to the pairs of very close atoms created in the sample.
As they might significantly influence the decay dynamics and even overshadow the collective
dynamics, they will need special treatment: we will impose a minimum separation distance
on atoms, i.e., an exclusion volume (see the following subsection), to reduce their influence.
The influence of pairs on collective dynamics is discussed in Sec. II.2.3.

To understand the properties of pairs, let us first take a look at the spectrum of a two-atom
system. For vectorial waves, the eigenvalues λpair = i∆pair−Γpair/2 corresponding to modes of
the atomic pair can be found by diagonalizing the 6× 6 vectorial Green’s matrix [Eq. (II.14)].
For N = 2, it comes down to two eigenvalues of single multiplicity

λ
‖
pair,± = −Γ0

2

[
1± 3

2ie
ik0r12

(
− 2i

(k0r12)2 + 2
(k0r12)3

)]
+ i∆0, (II.21)

and two eigenvalues of double multiplicity
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λ⊥pair,± = −Γ0

2

[
1± 3

2ie
ik0r12

(
1

k0r12
+ i

(k0r12)2 −
1

(k0r12)3

)]
+ i∆0, (II.22)

where r12 = |r1 − r2| is the distance between two atoms. λpair,+ and λpair,− stand for
eigenvalues corresponding to symmetric (superradiant) and anti-symmetric (subradiant)
eigenstates, respectively2. Let us assume that the atoms are placed along some axis n̂, such
that r12 = r12n̂. The problem of two-dipole coupling can be decomposed as follows: dipoles
oriented along the n̂ axis and dipoles whose orientation is orthogonal to the n̂ axis (for
that, there are two mutually perpendicular possibilities). Hence, the eigenvalues of single
multiplicity λ‖pair correspond to dipoles whose orientation is parallel with the alignment axis
n̂. In contrast, double-multiplicity eigenvalues λ⊥pair correspond to the case of dipoles oriented
orthogonally to the n̂ axis. Note that for superradiant/subradiant modes of the two-atom
system, we will refer to as superradiant/subradiant pairs.

In Fig. II.2 we show the real Γpair = −2R(λpair) and the imaginary ∆pair = I(λpair) parts of
pair eigenvalues [Eqs. (II.21) and (II.22)] as a function of the distance between two atoms.
Here, eigenvalues were computed for ∆0 = 0, such that ∆pair = ω0 − ωpair [see Eq. (II.16)].
Note that the decay rates and frequency shifts of pair modes strongly depend on the short
separation; the smaller the distance between two atoms, the larger the frequency shift |∆‖,⊥pair,±|
and the superradiant decay rate Γ‖,⊥pair,+/subradiant lifetime τ ‖,⊥pair,− = 1/Γ‖,⊥pair,−. In the limiting
case k0r12 � 1, the superradiant decay rate is Γ‖,⊥pair,+ ≈ 2Γ0, while the subradiant lifetime
is τ ‖,⊥pair,− → ∞. This corresponds to a well-known Dicke limit [Dicke 1954]. Moreover, the
frequency shift is |∆‖,⊥pair,±| � Γ0 for k0r12 � 1. In Fig. II.2(b-c), we show only a short range
of ∆pair since the frequency shift is extremely large for k0r12 � 1. On the other hand, when
the separation between two atoms is k0r12 � 1, super- and subradiant pairs cease to exist,
i.e., decay rates and frequency shifts become equal to those of a single atom: Γ‖,⊥pair,± ≈ Γ0 and
|∆‖,⊥pair,±| ≈ 0, respectively. Note that this is only the case for N = 2 atoms; for macroscopic
samples with N � 1, super- and subradiant collective effects still prevail for k0rij � 1, due

2In the scalar model, the pair eigenvalues λ(s)
pair = i∆(s)

pair − Γ(s)
pair/2 are obtained by diagonalizing the 2× 2

scalar Green’s matrix [Eq. (II.19)] yielding

λ
(s)
pair,± = −Γ(s)

0
2

[
1± eik0r12

ik0r12

]
+ i∆0, (II.23)

where λ(s)
pair,+ and λ(s)

pair,− correspond to superradiant and subradiant eigenstates, respectively. In the limit
kr12 � 1, the cooperativity of pairs disappears, i.e., pair decay rates and frequency shifts become equal
to those of a single atom: Γ(s)

pair,± ≈ Γ(s)
0 and ∆(s)

pair,± ≈ ∆0. On the other hand, if two atoms are very

close, kr12 � 1, pair decay rates and frequency shifts are Γ(s)
pair,+ ≈ 2Γ(s)

0 , Γ(s)
pair,− ≈

(k0r12)2

6 Γ(s)
0 and

∆(s)
pair,± ≈ ±

Γ(s)
0

2k0r12
+ ∆0.
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to the long-range dipole-dipole interaction [Guerin 2016].

Let us remark on the inequality between λ‖pair and λ⊥pair eigenvalues. In Fig. II.2(a,b) we can
see that for intermediate distances between the two limits k0r12 � 1 and k0r12 � 1, the
superradiant/subradiant decay rates and frequency shifts of λ‖pair and λ⊥pair are not the same;
Γ‖pair,±(r12) 6= Γ⊥pair,±(r12) and |∆‖pair,±(r12)| 6= |∆⊥pair,±(r12)|. For subradiant modes, that is
the case even in the k0r12 � 1 limit, where3

Γ⊥pair,− = 2Γ‖pair,− ≈
(k0r12)2

5 Γ0

∆‖pair,− = −2∆⊥pair,− ≈ −
3Γ0

2(k0r12)3 .
(II.24)

This difference between ‖ and ⊥ modes is an important property of pairs that we are going
to exploit to rule out the influence of subradiant pairs on the obtained collective-dynamics
results (Sec. II.2.3)

In Fig. II.2(c) we show Γpair(k0r12) vs. ∆pair(k0r12) curves. We will refer to those curves as
super- and subradiant pair branches.

II.1.3. Atomic sample

The atomic sample is modeled by assuming a discrete-particle representation of the sample.
We consider a spherical cloud of N identical, motionless atoms with a Gaussian density
distribution ρG(rj) = ρ exp(−r2

j/2R2), where rj is the position of the jth atom, R is the
RMS radius of the Gaussian cloud and

ρ = N/(
√

2πR)3 (II.25)

is the peak density of the cloud, i.e., density at the center of the cloud. Throughout this
chapter we will use dimensionless density ρλ3, with λ = 2π/k0 the wavelength of the dipole
transition. Furthermore, the peak resonant optical thickness of the Gaussian cloud is

b0 = σ0

∫
ρG(0, 0, z) dz = 3N/(k0R)2, (II.26)

with σ0 = 6π/k2
0 the on-resonance scattering cross section. Note that the given expression

3Note that in the rotating frame of the driving field with ∆0 6= 0, the frequency shifts are ∆‖pair,− =

ωL − ω‖pair,− ≈ −
3Γ0

2(k0r12)3 + ∆0 and ∆⊥pair,− = ωL − ω⊥pair,− ≈
3Γ0

4(k0r12)3 + ∆0.
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for the optical thickness b0, as well as for the scattering-cross section σ0 corresponds to the
vectorial light. The scattering cross-section for the scalar light differs by the factor of 2/3
from the vectorial-light scattering cross-section: σ(s)

0 = 2
3σ0. Consequently, the scalar-light

optical thickness is given by b(s)
0 = 2

3b0 = 2N
(k0R)2 . The same as with the scalar and vectorial

definitions of the single-atom decay rate, the difference between the scalar and vectorial
scattering-cross section is caused by the absence of polarization degrees of freedom of light in
the scalar model.

Therefore, for a given N and R, and corresponding b0 and ρλ3, we generate N random
positions of atoms to form the spherical cloud with the Gaussian density distribution which is
determined by the peak density ρλ3 and RMS size R. We refer to each such event of creating
the random set of atomic positions for the same parameters of the Gaussian spherical cloud,
as a realization of the atomic positions.

Our interest lies in characterizing subradiance in atomic clouds of different optical thickness
b0 and density ρλ3, quantities that both depend on the number of atoms N and size of the
sample k0R. However, the number of atoms that we can simulate is limited (up to several
thousands). We also impose the condition on the sample size R > λ in order to consider
macroscopic samples. As a consequence of these limitations on the number of atoms and
the sample size, the range of ρλ3 for a given b0 (and vice versa) that can be achieved is
limited. Therefore, the dependence of the subradiant lifetime on b0 and ρλ3 can only be
studied piecewise. The range of density and on-resonant optical thickness that we study here
is ρλ3 = [0.8; 40] and b0 = [2; 72], respectively.

Note that as one increases the density of the cloud, the probability that close pairs of atoms
are generated becomes higher. These pairs, introduced in the previous subsection, result in su-
perradiant and subradiant modes that are characterized by strong energy shifts [Stephen 1964]
(see Fig. II.2). When driving the system by a laser field with a significant detuning, some of
those pairs may be resonant with the field and consequently be strongly excited. They can
then play a significant role in the cloud radiation, despite involving few atoms [Fofanov 2021].
However, these pairs are expected to be highly sensitive to atomic motion since they involve
very short distances; therefore, the pairs might not be relevant for experiments with thermal
clouds. In this work, our main interest lies in the long-lived collective modes, involving many
atoms. As a consequence, we implement a hard-sphere radius for atoms, i.e. an exclusion
volume to impose a minimal distance rmin between the atoms, rij = |ri − rj| ≥ rmin ∀(i, j),
thus minimizing the influence of pairs.

The method of introducing the exclusion volume rmin for the atom positions is the following.
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We are adding atoms one by one to the sample, i.e., we generate random positions for one
atom at a time. After adding each atom i to the sample, we check if distances between just
added atom i and all other atoms j that are already in the sample satisfy the exclusion
volume condition rij ≥ rmin ∀ j. If the condition is fulfilled, we keep the atom i, i.e., the
atomic position ri. On contrary, if rij ≤ rmin for any atom j, the position ri is discarded
and we keep drawing new positions of atom i until the exclusion volume criterion is met.
Furthermore, since adding an exclusion volume can lead to an increased sample size R, after
generating the atomic sample, we determine the actual RMS size of the cloud and recalculate
b0 and ρλ3.

Imposing the exclusion volume, that is relatively large for a given peak density of the Gaussian
atomic sample, might cause the distortion of the Gaussian density distribution. However, we
have checked that with our choice of the exclusion volume for all atomic clouds with a given
(b0, ρλ3) studied in this chapter, the shape of the cloud remains Gaussian to a very good
approximation.

The results presented in Section II.2.2 have been obtained with a density-dependent exclusion
volume defined as rmin = ρ−1/3/π since it allows us to explore high densities without introduc-
ing significant positional correlations, while efficiently removing the pairs. In Section II.2.3,
we discuss in more details the possible influence of pairs or positional correlations on the
results presented in the following section.

II.2. Late-time decay dynamics

II.2.1. Temporal evolution of the scattered intensity and the method of
obtaining subradiant lifetimes

In Sec. II.1.2, we discussed that the coupling between dipoles yields collective modes, each
characterized by its own decay rate and eigenfrequency. However, not all modes contribute
significantly to the decay dynamics. The coupling of the external driving field to the mode
determines the population (excitation) of the mode [Guerin 2017b], which dictates how
relevant, i.e., dominant the mode will be in the decay process. Hence, the temporal behavior
of the scattered light intensity is encoded in the population of the modes. In Fig. II.3(a)
are shown several decay curves for different parameters of the sample, while in Fig. II.3(b)
we show the corresponding instantaneous decay rate [Eq. II.28]. For early times after the
switch-off of the driving field, the collective decay is superradiant (Γ > Γ0). This initial
dominance of the superradiance is due to the strong coupling of superradiant modes to the
external world, making them easy to excite. As they decay fast, superradiant modes lose
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Figure II.3: (a) Decay curves, i.e. normalized intensity of the scattered light I(t)/I0 (all polarization
channels), with I0 = I(t = 0), for several b0 and ρλ3 obtained from the vectorial CDEs [Eq. (II.6)]
after the switch-off of the driving field (t > 0). (b) Instantenous decay rate Γ(t) of the corresponding
decay curves obtained from Eq. II.28. Black solid lines are fit curves [Eq. (II.27)] in the fit range
I(t)/I0 = [10−6, 5 × 10−6] [panel (a)] and the corresponding decay rates [panel (b)]. The black
dotted line presents the decay curve of the single atom I(t)/I0 = exp(−Γ0t) in panel (a) while in
(b) it shows the corresponding single-atom decay rate Γ0. The incident electric field has ε̂L = ê−1
circular polarization, while its detuning is ∆0 = −15Γ0. The scattered light is collected at θsc = 45◦.
We used the exclusion volume rmin = ρ−1/3/π.

their population quickly, and subradiance characterized by slow decay arises (Γ < Γ0). As
already mentioned, subradiant modes are weakly coupled to the external world, which makes
them hard to populate, and they emerge in the decay dynamics only when superradiant
modes lose their population (the weak excitation of subradiant modes is reflected in the
very low fluorescence level at late times for which very slow, i.e. subradiant, decay arises).
Hence, the observed temporal evolution of the scattered light intensity [Fig. II.3(a)] and of
the collective decay rate [Fig. II.3(b)] results from the competition between many modes of
different populations and decay rates.

Let us briefly remark on the role of the detuning of the external driving field on the population
of modes [Guerin 2017b]. If the driving field is resonant (or near-resonant) with some of the
modes, those modes are more strongly coupled to the driving field and hence more strongly
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excited than the other modes. We here use relatively large detuning ∆0 = ±15Γ0 such that
none of the collective modes are near-resonant with the driving field; all collective modes are
driven weakly but equally. Note that this does not mean that all collective modes would be
equally populated in the case of the large drive detuning. As was discussed in [Guerin 2017b],
there is a geometrical factor independent of the detuning that corresponds to the projection
of the driving field on the modes, and it mainly governs the population of the collective
modes when the detuning of the drive is large.

Our primary interest is in the late-time decay dynamics of the atomic ensemble, where the
decay observed in the scattered light is slower than that of the single atom: the subradiant
decay. In order to study the temporal dynamics of the atomic system after the switch-off of
the driving field, we use the CDEs to obtain the intensity of the scattered light as a function
of time [Eq. (II.6)], as was discussed in the previous section. Note that the obtained intensity
is normalized by its value at the instant of the laser switch-off, I0 = I(t = 0).

To characterize subradiance in atomic samples of different parameters, we need a reliable
analysis method of obtained decay curves. Our focus is in determining the subradiant
lifetimes τsub = 1/Γsub (where Γsub is the subradiant decay rate). To obtain the subradiant
lifetimes from the computed decay curves, we use a fit procedure, as it was used, for example,
in [Guerin 2016,Araújo 2018b]. Normalized decay curves are fitted in a given range at late
times by the following single exponential function

I(t)/I(0) = Asub exp(−t/τsub), (II.27)

with subradiant amplitude Asub and subradiant lifetime τsub as free parameters.

To explain the choice of the fit range, let us have a look on Fig. II.3, where panel (a) shows
decay curves for several b0 and ρλ3, and panel (b) shows the instantaneous decay rate Γ(t)
which corresponds to the decay curves in panel (a). The instantaneous decay rate has been
obtained from the following equation

Γ(t) = −d[ln I(t)]
dt (II.28)

by assuming that at each moment the decay curve is an exponential function with the
instantaneous decay rate: I(t) ∝ exp(−Γ(t)t). As it can be seen in Fig. II.3(b), light emission
is superradiant (Γ(t) > Γ0) at early times after the switch-off of the driving field. As for
long-lived light emission (Γ(t) < Γ0), there are intermediate times for which the decay rate
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is quickly decreasing, and then at later times, there is a prolonged decrease of Γ(t). For
those later times, we can also clearly identify the well-known cooperativity enhancement of
subradiance with b0 for macroscopic samples: the larger the resonant optical thickness is,
the slower the subradiant decay is [Guerin 2016,Araújo 2018b]. We refer to those times as
late times relevant for determining subradiant lifetimes and characterizing subradiance in
different macroscopic samples.

Because of the slow evolution of the decay at late times, we can find a fit interval of an
appropriate length for which the single-exponential fit is a good approximation of the intensity
decay within that interval (see examples of the fit curves in Fig. II.3(a)-(b)). The choice
in the length of the particular fit range was verified with the R2 coefficient of the fit (the
goodness of the fit). Moreover, the coefficient of variation of the subradiant lifetimes obtained
from the exponential fit throughout this chapter is < 1%.

As it was discussed in [Araújo 2018b], the decay rate becomes constant at very late times
for which the relative intensity level is very low, I(t)/I(0)� 10−10, beyond the reach of any
current real experiment. Moreover, the final decay rate and the corresponding intensity level
at which it emerges depend on the longest-lived collective mode and its population, which
might vary from one realization to another. Therefore, to get reliable temporal dynamics for
the last collective decay rate, one would need a tremendous amount of realizations. Because
of all of that, we are focusing here on higher intensity levels that capture enhancement of
subradiant lifetimes with increasing b0, although Γ(t) is still slowly evolving in time.

Lastly, let us discuss why we use fit intervals based on the relative intensity level rather than
the time intervals. To have a proper comparison of τsub for different system parameters, we
should use the same fit interval at late times for all decay curves of different parameters. As
it can be seen on Fig. II.3(b), the instant of time when late-time dynamics starts is different
for different parameters of the sample: for larger b0 late-time dynamics appears later in time
(for example, t ∼ 20τ0 for b0 = 6 and t ∼ 80τ0 for b0 = 64). Therefore, to have the same
time-fit interval at late times for all decay curves of different b0 = [2; 72] that we are studying
here, would mean that for different optical depths, the intensity levels corresponding to that
time-fit interval would be very different. For the lowest optical depths, the corresponding
intensity fit levels would be very low. From the experimental point of view, that would be
impractical. As we want our analysis approach to be achievable in potential experiments,
we use fit intervals based on the intensity level as it is presented in Fig. II.3(a). We have
checked that the choice of the fit interval does not qualitatively alter our results presented in
the following subsections.
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II.2.2. Scaling of subradiance with vectorial light
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Figure II.4: Subradiant lifetime τsub as a function of the on-resonance optical depth b0 for several
densities of the sample ρλ3, computed from the vectorial coupled-dipole model. The scattered
light is collected at θsc = 45◦. The lifetimes τsub are obtained from an exponential fit of the total
scattered light intensity (all polarizations) in the fit range I/I0 = [10−6, 5 × 10−6]. For ρλ3 > 5,
the linear scaling of τsub with b0 (independently of ρ) fails, as data corresponding to the same b0
but different ρλ3 do not collapse onto a single curve. Other system parameters: ε̂L = ê−1 circular
polarization of the driving field, ∆0 = −15Γ0, rmin = ρ−1/3/π.

To understand how near-field terms affect subradiance, we monitor the scattered light intensity
after the switch-off of the driving field, using the vectorial CDEs [Eq. (II.6)]. In this subsection,
we consider the total light scattered in a given direction. Here, total means that we collect
all polarization components of the scattered light. Furthermore, here we treat the system
that is first driven to a steady-state with a plane-wave laser beam with a large detuning
∆0 = −15Γ0.

We present in Fig. II.4 the subradiant lifetimes as a function of b0 for several ρλ3. One
can see that for lower densities, the sets of data points (b0, τsub) corresponding to different
ρλ3 collapse on the same line. This is also the case for the scalar model in the dilute
regime [Guerin 2016,Araújo 2018b], and it shows that density effects are negligible for the
lowest densities. However, for ρλ3 & 5, the data sets do not collapse anymore: higher-density
samples present shorter subradiant lifetimes for a given optical thickness. This effect of
higher densities is even clearer in Fig. II.5(a), where we present the subradiant lifetimes as a
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function of the density for several values of b0. Again, there is no visible effect of the density
on the long-lived emission for the lowest densities, but for ρλ3 & 5, the late lifetimes become
shorter with increasing densities while the on-resonance optical thickness remains constant.
The effect of reduction of subradiant lifetimes with increasing densities is as well seen directly
from the decay curve comparison [Fig. II.5(c)].

To vary ρλ3 while keeping b0 fixed (or vice versa), N and k0R have to be modified. Particularly,
as the density increases, while the on-resonance optical thickness is kept constant, the sample
size decreases. It is well known that for small-sized samples (R � λ) the cooperativity
parameter is N [Dicke 1954], in contrast to b0 for macroscopic clouds (R > λ) that we are
considering here [Guerin 2016]. Therefore, the obvious question is whether the observed
effects in the reduction of subradiant lifetimes with increasing density for a given b0 (or
more generally, effects in the loss of scaling of τsub with b0 independently of other system
parameters) actually stem from the decrease of the sample size as we are getting closer to
the subwavelength limit R = λ. To investigate that, in Fig. II.5(b) we show the subradiant

lifetimes from Fig. II.5(a) as a function of the corresponding sample size k0R = (2π)3/2b0

3ρλ3 .
Note that in τsub vs. k0R plot, we see an opposite trend than in τsub vs. ρλ3 plot: τsub decreases
with increasing ρλ3 , [Fig. II.5(a)], while τsub decreases with decreasing k0R [Fig. II.5(b)] for
a given b0. This is due to the fact that, when we keep b0 constant and increase ρλ3, k0R

decreases. Let us compare the data sets corresponding to, for example, b0 ' 5 and b0 ' 20 in
Fig. II.5(b). For b0 ' 5, the subradiant lifetimes are approximately constant in the entire
range k0R = [8; 24]. On the other hand, for b0 ' 20, the subradiant lifetimes are decreasing
with decreasing k0R for all k0R = [7; 15]. There is no threshold k0R for which the reduction
of τsub starts to occur for all data sets. On the contrary, in Fig. II.5(a) we identified the
density threshold ρλ3 ≈ 5: the value above which τsub decreases with increasing ρλ3, while
below that value τsub is independent of ρλ3 for a given b0. Since there is the unique range
of densities (ρλ3 & 5) but not of size for which τsub decreases, we can conclude that the
reduction of τsub is indeed a density effect and it is not caused by the decrease of the sample
size.

We have checked that driving the sample with the opposite-sign detuning (∆ = +15Γ0),
as well as with a larger detuning (∆ = −30Γ0), yields the same subradiant lifetimes as
those in Figs. II.4 and II.5. This excludes density-induced collective shifts [Manassah 2012,
Javanainen 2014, Zhu 2016, Jenkins 2016, Jennewein 2018] of the atomic resonance as a
source of the observed effect. We have also checked that using other late-time fit intervals
(for I(t)/I(0) < 10−4) leads to the same conclusion. Although we obtain slightly different
subradiant lifetimes with different fit windows, the qualitative behavior is the same: we observe
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Figure II.5: Subradiant lifetime τsub for several b0 as a function of (a) density ρλ3 and (b)
corresponding size of the sample k0R = (2π)3/2b0

3ρλ3 . The insets in (a) are close-ups of the three lowest
b0 data sets. The lifetimes τsub were extracted from an exponential fit of the scattered light intensity
after the laser switch-off in the fit range I/I0 = [1 ·10−6, 5 ·10−6]. c) Subradiant part of the scattered
intensity I(t)/I0 as a function of time for b0 = 4.9 (blue set of curves), b0 = 13.9 (green curves),
b0 = 39.4 (purple curves) and for different ρλ3 which are represented by different color shades and
different types of lines. Those decay curves correspond to some of data shown in panels (a)-(b).
The yellow curve corresponds to the decay of a single atom. For ρλ3 & 5 the decay at late times
becomes slightly faster as the density is increased. The inset shows the complete decay curves from
the moment the laser is switched-off (t = 0). The intensity of the scattered light was computed
from the vectorial CDEs [Eq. (II.6)]. Other simulation parameters: ε̂L = ê−1 circular polarization
of the driving field, ∆ = −15Γ0, θsc = 45◦, rmin = ρ−1/3/π.
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the decrease of subradiant lifetimes with increasing density for a given optical thickness.
Furthermore, we have verified with several off-axis observation angles θsc = 45◦, 90◦, 135◦, 180◦

that the conclusion reached from Figs. II.4 and II.5 is independent of the observation angle
θ, provided it is outside the forward diffraction lobe, where peculiar effects associated to
superradiance may occur [Kuraptsev 2017]. Finally, since for higher densities the scaling of
subradiant lifetimes with b0 fails, we have checked (for data from Figs. II.4 and II.5) that the
unique scaling with system parameters N , k0R, or N/k0R does not emerge.

II.2.3. The exclusion volume

The results shown in the previous subsection were obtained with the atomic sample for which
we imposed the density-dependent exclusion volume rmin = ρ−1/3/π on each atom to suppress
the influence of pairs of very close atoms, while being able to reach high densities without
introducing a significant amount of positional correlations. Therefore, we have to check that
the choice of density-dependent exclusion volume does not cause the observed density effects
on subradiant lifetimes. This includes verifying that with our choice of the exclusion volume,
remaining pairs do not play a significant role in the decay dynamics and ensuring that the
observed density effect cannot be attributed to the small amount of positional correlations
introduced by the exclusion volume.

II.2.3.1. Influence of subradiant pairs on collective dynamics

A safe method to remove the close pairs of atoms from the macroscopic sample is to use an
exclusion radius rmin = π/k0 as a minimum inter-particle distance. When we impose such
exclusion volume on atoms, the decay rates of pair modes are very close to Γ0 (Fig. II.2), i.e.
strong super- and subradiant pairs are not being created in the sample. However, this is only
appropriate for investigating dilute samples [Guerin 2016,Araújo 2018b] since it is not possible
to reach densities higher than ρλ3 ∼ 8 with rmin = π/k0. Here we thus use a less stringent
condition with the density-dependent exclusion volume rmin = ρ−1/3/π [Moreira 2019].
However, for higher densities, with this exclusion volume we do not prevent all the super-
/subradiant pairs from being created in the sample, only the closest ones. It is then necessary
to check that the remaining pairs are not responsible for the observed effects.

Cut-off of the pair branches

First, let us illustrate how the exclusion volume is limiting the extent of pairs. In Fig. II.6
we show the eigenvalue distribution of collective modes [Eqs. (II.17) and (II.16)] for several
b0 and ρλ3. Since we did not impose any exclusion volume on atoms in this case, very strong
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Figure II.6: Eigenvalue distribution, Γn vs. ∆n = ωL − ωn [Eqs. (II.17) and (II.16)], of the
coupled-dipole modes computed without any exclusion volume and for b0 = 16, ρλ3 = 5 (a,b),
b0 = 30, ρλ3 = 20 (c,d) and b0 = 68, ρλ3 = 40 (e,f). For the left panels, the drive is red-detuned
∆0 = −15Γ0, while for the right panels, it is blue-detuned ∆0 = +15Γ0. In addition to collective
subradiant modes (IPR � 1), there are two subradiant branches (and two superradiant branches)
that consist of modes of close pairs of atoms (IPR ∼ 1/6 − 1/2). Branches labeled as ‖ and ⊥
represent pair eigenmodes corresponding to two atomic dipoles that are oriented along the direction
of their alignment and orthogonally to their alignment axis, respectively. Two subradiant pair
branches are asymmetric: they have different frequencies and lifetimes for a given inter-atomic
distance. Without any exclusion volume, the extent of branches is very long, and the driving field
is resonant (∆n = 0) with some of the pair modes (it depends on the sign of the detuning which
branch crosses the resonance ∆n = 0). This results in highly populated modes with ∆n = 0, and
the entire late-time decay dynamics is strongly governed by their decay [see Fig. II.8(a)]. Since we
are interested in collective subradiance, we use the exclusion volume to restrict the pair branches’
extent to prevent strong coupling of the drive with pair modes. The extent of the branches with
the exclusion volume rmin = ρ−1/3/π is illustrated with the black solid lines that correspond to
the analytical expressions given by Eqs. (II.21) (‖) and (II.22) (⊥) with the cut-off (the maximum
extent) corresponding to the exclusion volume rmin. As rmin is smaller for larger ρ, the extent of
the branches with the imposed density-dependent exclusion volume is getting larger with increasing
density. Red solid lines (left panels) and blue solid lines (right panels) highlight the resonance
∆n = 0. The color code corresponds to the inverse-participation ratio (IPR) given by Eq. (II.18).
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super-/subradiant pairs have been created, and therefore, the extent of the pair branches
(with IPR∼ 1/6− 1/2) is extremely long. Note that here we show pair branches only in a
finite range, since for very short distances of two atoms, the frequency shifts of pair modes are
very large. For the red-detuned driving field, the ⊥ subradiant branch crosses the resonance
∆n = 0, while for the blue-detuned driving field, that is the case for the ‖ subradiant
branch. The black lines illustrate the extent of pair branches with the density-dependent
exclusion volume rmin = ρ−1/3/π, obtained from the analytical expressions of pair eigenvalues
[Eqs. (II.21) and (II.22)] for distances ranging from r12 = rmin to r12 � 1/k0. The maximum
extent of the branches, i.e., the cut-off in the pair branches, is given by the pair eigenvalues
corresponding to the minimum separation distance imposed by the exclusion volume rmin.
Moreover, the cut-off is not the same for ‖ and ⊥ pair branches, which is due to the asymmetry
of ‖ and ⊥ pair eigenvalues in respect to the given inter-particle distance [see Fig. II.2 and
Eq. (II.24)]. The exclusion volume indeed limits the frequency and decay rate extent of the
pair branches. On the eigenfrequency axis ∆n, the branches with the density-dependent
exclusion volume rmin = ρ−1/3/π stop well before reaching the resonance ∆n = 0, showing
that the pairs are not particularly well coupled to the driving field in comparison with all the
other collective modes [Guerin 2017b]. On the decay rate axis Γn those pair branches also
stop at a value larger than the longest-lived collective modes (collective modes correspond
to the data points with IPR� 1; yellow data points). In other words, for examples in
Fig. II.6 with the density-dependent exclusion volume, the collective modes have the longest
subradiant lifetimes, not the pair modes. We have checked that this observation holds for all
system parameters corresponding to data shown in Figs. II.4-II.5. Moreover, those subradiant
lifetimes, in Figs. II.4-II.5, obtained from the exponential fit at late times, are longer than
the lifetimes of the remaining pairs with the rmin cut-off [see Fig. II.7(a) for the maximum
subradiant pair lifetimes for given exclusion volume and density]. This indeed suggests that
the obtained subradiant lifetimes correspond to the collective subradiant modes.

Red-blue asymmetry of the pair branches

Another test which we performed to check the role of pairs is the red-blue asymmetry. As
already mentioned, for a given inter-particle distance, the pairs result in two subradiant
modes (‖ and ⊥) with different lifetimes and frequency shifts [see, for example, Fig. II.7 and
Eq. (II.24)]. Therefore, if there were an influence of pairs on the collective decay dynamics,
this difference would manifest in a late-time decay dynamics that depends on the sign of
the detuning of the driving field. In Fig. II.8(a), we show the decay dynamics of an atomic
cloud with b0 = 16 and ρλ3 = 10 for opposite-sign detunings ∆ = ±15Γ0, as well as with
and without the exclusion volume. Indeed, without any exclusion volume decay dynamics is
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Figure II.7: Maximum subradiant pair lifetimes τpair,− = 1/Γpair,−(a) and maximum pair frequency
shifts ω0 − ωpair,− (b) of ‖ and ⊥ subradiant pair branches (green and purple lines, respectively)
as a function of the exclusion volume k0rmin which defines the minimum inter-particle distance.
The subradiant lifetimes and frequency shifts were obtained from real and imaginary part of pair
eigenvalues given by Eq. (II.21) (‖) and Eq. (II.22) (⊥) for the inter-particle distance defined by
the exclusion volume. The subradiant pair lifetimes and (absolute) pair frequency shifts for a
given k0rmin are larger for ‖ branch than for ⊥ branch. Eigenvalues marked with different symbols
correspond to the density-dependent exclusion volume rmin = ρ−1/3/π for several densities. Inset of
panel (a) shows the exclusion volume rmin = ρ−1/3/π as a function of the density. The frequency
shift of pairs in panel (b) is expressed relative to the atomic transition frequency ω0. To obtain the
frequency shift relative to the frequency of the driving field ωL, the detuning of the drive ∆0 has to
be taken into consideration: ∆pair = ωL − ωpair = ω0 − ωpair + ∆0.

dominated by the pair modes with ∆n = ωL−ωn = 0 (see Fig. II.6) that are strongly coupled
with the driving field: entire subradiant decay dynamics without any exclusion volume
significantly differs from decay dynamics obtained with the exclusion volume. Moreover, we
observe the red-blue asymmetry for the decay curves obtained without any exclusion volume;
the subradiant decay is slower for the positive detuning than for the negative detuning.
On the other hand, with density-dependent exclusion volume rmin = ρ−1/3/π, decay curves
corresponding to positive and negative detuning are identical; there is no red-blue asymmetry.
Additionally, we show the results obtained with an exclusion volume defined by a fixed
minimal distance rmin = 0.5/k0. For ∆ = −15Γ0, the corresponding decay curve is identical
to those obtained with rmin = ρ−1/3/π. However, for ∆ = +15Γ0, the subradiant decay at very
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Figure II.8: Influence of pairs on collective dynamics in the vectorial model for the atomic sample
with b0 = 16 and ρλ3 = 10. (a) Decay of the scattered light (all polarizations) collected at θsc = 45◦
for opposite sign detunings and different exclusion volumes. Without any exclusion volume, the
entire long-lived dynamics is influenced by pairs, with a noticeable difference between detunings of
opposite signs (green lines). For rmin = ρ−1/3/π, the decay dynamics is independent of the detuning
sign. With rmin = 0.5/k0, only the early and intermediate dynamics is independent on the sign
of the detuning, and for very late times, the decay for ∆ = +15Γ0 starts to be slower than for
∆ = −15Γ0, showing the influence of pairs. (b) Decay of the light scattered at θsc = 90◦ decomposed
into two polarization channels: parallel (Ipar) and perpendicular (Iperp) to the scattering plane.
Decay curves of both channels are normalized by the total scattered intensity (I = Ipar + Iperp)
at t = 0. Without any exclusion volume, both superradiant and subradiant parts are partially
polarized. With the exclusion volume rmin = ρ−1/3/π, the superradiant part is polarized while the
subradiant part is fully depolarized. c) Two polarization channels of light scattered at θsc = 90◦ for
the exclusion volume rmin = 0.5/k0. For negative detuning, the entire subradiant part is depolarized,
whereas, for positive detuning, light is depolarized at intermediate times and at late times; at very
late times, the light becomes polarized due to the influence of pairs.
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late times is slower, showing that at very late times the subradiant pairs dominate the decay
dynamics. Here the red-blue asymmetry appears since the extent of the pair branches was
not cut enough with rmin = 0.5/k0 to remove the influence of pairs on subradiant dynamics.
Note that the fixed exclusion volume rmin = 0.5/k0 is smaller than the density-dependent
exclusion volume for all densities ρλ3 = [0.8; 40] studied in this chapter, and therefore the
extent of the pair branches for rmin = 0.5/k0 is larger (see Fig. II.7 for the rmin = ρ−1/3/π

vs. ρλ3 curve and for the maximum lifetimes and frequency shifts of pairs corresponding
to a given exclusion volume). We have checked for all system parameters corresponding to
data shown in Figs. II.4-II.5 that the decay dynamics is identical for positive and negative
detunings. This absence of red-blue asymmetry for the obtained data with rmin = ρ−1/3/π

confirms that there is no influence of pairs on the collective long-lived dynamics.

Polarization of the scattered light

Furthermore, another qualitative difference between collective long-lived modes and subradiant
pairs is the polarization of the scattered light. To investigate the polarization properties of
the scattered light, the system has been driven to the steady-state with a circularly polarized
driving field, and we compute the scattered electric field at θsc = 90◦. Furthermore, we
decompose the scattered field in the far-field limit (where the radial component of the electric
field ceases to exist) into two orthogonal components, i.e., polarization channels: parallel and
orthogonal to the scattering plane. Then we compute the intensity of the scattered light in
these two polarization channels. Note that the scattering plane is defined by the wavevector
of the driving field k0 and the observation direction n̂.

In the case of a single atom, i.e., single scattering event at θsc = 90◦, the scattered light has a
linear polarization orthogonal to the scattering plane. However, one can see in Fig. II.8(b) that
with the density-dependent exclusion volume rmin = ρ−1/3/π, decay curves of two polarization
channels at late times are identical, i.e., parallel and perpendicular polarization channels have
equal weights at late times, meaning that the subradiant light is fully depolarized. On the
contrary, without using any exclusion volume, when the scattered light mainly comes from
subradiant pairs, we obtain a significant imbalance between the two orthogonal polarization
channels. As previously, we also show in Fig. II.8(c) the result with rmin = 0.5/k0 for the two
signs of the detuning. For negative detuning, we again observe fully depolarized light in the
subradiant part of the decay dynamics. In contrast, a slight polarization imbalance appears
for the positive detuning at late times. This is consistent with our previous observations in
Fig. II.8(a) where we concluded that, with rmin = 0.5/k0 and positive detuning, late-time
dynamics is affected by subradiant pairs.



72 Ch. II - Subradiance beyond the dilute regime

Therefore, the scattered light coming from subradiant pairs is (partially) polarized, while
collective subradiant modes yield fully depolarized scattered light. We have checked that the
long-lived decay dynamics is depolarized for all system parameters studied in this chapter
with rmin = ρ−1/3/π, further confirming that the corresponding subradiant decay dynamics is
indeed due to collective modes and that pairs do not impact the results shown in Figs. II.4
and II.5.

Interestingly, we note that collective long-lived modes yield depolarized light while the
superradiant early decay measured at θsc = 90◦ is linearly polarized (orthogonal to the
scattering plane). This is fully consistent with an interpretation of superradiance based on a
single-scattering event embedded in an effective medium, as discussed in [Weiss 2021]. On
the contrary, the observation of the full depolarization of the long-lived decay suggests the
multiple-scattering interpretation of subradiance, as discussed in [Fofanov 2021].

On-resonance collective decay dynamics

We also computed the decay dynamics with a drive on resonance, ∆0 = 0. In this case, even
without any exclusion volume, we do not expect to see the influence of pairs since the driving
field is strongly coupled to long-lived resonant collective modes with ∆n = 0, rather than to
the subradiant pair modes which are frequency shifted [Fig. II.9(a)]. In Fig. II.9(b) we show
decay curves obtained with ∆0 = 0 and without any exclusion volume for two different ρλ3

of the atomic cloud while b0 is the same. One can see that the decay is slower for ρλ3 = 8
than for ρλ3 = 16. Therefore, we again observe the same density effect (the reduction of
subradiant lifetimes with increasing density) as in Sec. II.2.2 with off-resonant driving field
and density-dependent exclusion volume.

In Fig. II.9(b) we also present decay curves obtained with the drive on resonance but with the
exclusion volume rmin = 0.5/k0. The observations of the density effects are the same as those
without any exclusion volume. Decay curves of the same ρλ3, but obtained with and without
the exclusion volume, are similar. The slight discrepancies between those curves are not due
to the pairs since there is no influence of pairs with the drive on resonance whether or not
the exclusion volume is used (this was confirmed by checking the polarization properties of
the scattered light; we observed fully depolarized subradiant decay dynamics with or without
exclusion volume). The discrepancies are due to positional correlations that will be discussed
in the following subsection.
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Figure II.9: (a) Eigenvalue distribution, Γn vs. ∆n = ωL − ωn [Eqs. (II.17) and (II.16)] of coupled-
dipole modes in vectorial model with the drive on atomic transition resonance ωL = ω0 and without
any exclusion volume. As the drive is strongly-coupled to the collective ∆n ≈ 0 modes, the long-lived
collective modes are significantly more populated comparing to subradiant pair modes which are
frequency shifted. As a consequence, even without any exclusion volume, the late-time decay
dynamics is not influenced by pairs. Only at extremely late-times, when the collective modes
lose the population, the pair decay dynamics would emerge. Black solid lines correspond to the
pair branches obtained from the analytical expression of pair eigenvalues [Eqs. (II.21) and (II.22)]
with the cut-off given by the exclusion volume rmin = 0.5/k0. The colorcode corresponds to the
inverse-participation ratio given by Eq. (II.18); collective modes are characterized by IPR� 1,
while pair modes by IPR∼ 1/6 − 1/2. Here b0 = 20, ρλ3 = 8 (b) Temporal decay dynamics of
the scattered light (all polarization channels) obtained from the vectorial CDEs [Eq. (II.6)] after
the switch-off of the driving field for b0 = 20 and two different ρλ3, with and without the fixed
exclusion volume rmin = 0.5/k0. The drive is on resonance, ∆0 = 0, and the light is collected at
θsc = 45◦. The long-lived dynamics is slower for ρλ3 = 8 than for ρλ3 = 16. This confirms that the
observed reduction of subradiant lifetimes at increasing densities in vectorial coupled-dipole model
with the off-resonant drive is not caused by subradiant pairs or by positional correlations. Here the
small discrepancy between the decay curves obtained with and without an exclusion volume can be
attributed to the positional correlations that arise when the exclusion volume is imposed on the
atoms.
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Interplay between collective and subradiant pair modes for ∆0 6= 0

Together, all the tests above clearly demonstrate that the reduction of the subradiant lifetime
with increasing density cannot be attributed to pair physics.

For the sake of providing guidelines on how to remove subradiant pairs from the collective
decay dynamics of dense atomic samples (for sample densities even beyond those studied in
this chapter), let us summarize our observations on the interplay between collective and pair
modes.

As discussed, the temporal decay dynamics results from the competition between the modes of
different populations and different lifetimes and frequency shifts. When using an off-resonant
driving field ∆0 6= 0 without imposing any exclusion volume on the atoms, some of the pair
modes are resonant with the drive since pairs created in the sample have large frequency
shifts (Fig. II.6). This strong coupling of the driving field with resonant pairs then results in
a significantly larger population of pair modes than collective modes, and the decay dynamics
is dominated by pairs (Fig. II.8) [Fofanov 2021]. Therefore, to remove the significant influence
of pairs for a given ∆0, one has to prevent the strong coupling of the driving field with any of
the pair modes. The way to do that is to use such an exclusion volume that cuts the extent
of the pair branches before they reach the resonance ∆n = ωL− ωn = 0. With ∆0 = ±15 and
with the exclusion volume rmin = ρ−1/3/π for the densities explored in this chapter, we indeed
cut the extent of the branches before reaching the resonance ∆n = 0 (Fig. II.6). With this
density-dependent exclusion volume, the minimum imposed inter-particle distance is smaller
for larger density; hence, the extent of the pair branches is getting larger with increasing
density. Therefore, if one would use the density-dependent exclusion volume rmin = ρ−1/3/π

for densities significantly larger than those in this chapter, the drive detuning ∆0 should be
increased so that the branches with the cut-off do not cross the resonance ∆n = 0.

By reducing the extent of the pair branches with the exclusion volume before they reach the
resonance ∆n = 0, we make sure that the pairs are not significantly strongly driven compared
to the collective modes. Still, there is a competition between collective modes and remaining
pair modes, which might result in observing decay dynamics that is partially governed by
collective modes and partially by pairs (at different times). Whether or not we observe the
decay of pair modes depends on the maximum subradiant pair lifetime, which corresponds to
the minimum separation distance imposed by the exclusion volume. In Fig. II.6, we observe
that with the exclusion volume rmin = ρ−1/3/π the maximum lifetimes of both pair branches
with the cut-off are shorter than the lifetime of the most long-lived collective mode. In fact,
all subradiant lifetimes obtained from the exponential fit at late times in Figs. II.4-II.5 are
longer than the maximum pair subradiant lifetime corresponding to the minimum distance
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Figure II.10: Comparison of subradiant lifetimes with different types of exclusion volume in vectorial
coupled-dipole model.(a) Subradiant lifetimes τsub as a function of the on-resonant optical thickness
b0 for several densities obtained with the density-dependent exclusion volume rmin = ρ−1/3/π (×
symbols) and with the fixed exclusion volume rmin = 0.5/k0 (♦ symbols). The driving field is red
detuned ∆0 = −15Γ0. (b) Comparison of subradiant lifetimes obtained with exclusion volumes
rmin = ρ−1/3/π (+ symbols) and rmin = 0.5/k0 (• symbols) for the blue detuned driving field
∆0 = +15Γ0. The color code in panels (a-b) corresponds to the density of the sample (legend) and
it is the same for both types of exclusion volume. (c) Subradiant lifetimes as a function of the
minimum separation distance between atoms, i.e., exclusion volume rmin, with b0 = 16, ρλ3 = 10
and a red-detuned driving-field ∆0 = −15Γ0. The observed increase of τsub with increasing exclusion
volume is due to the positional correlations. For all panels, subradiant lifetimes have been obtained
from the exponential fit of the scattered light intensity (all polarization channels) collected at
θsc = 45◦ in the fit range I/I(0) = [10−6, 5× 10−6].
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rmin = ρ−1/3/π (Fig. II.7). That, together with obtaining the identical decay dynamics for
opposite sign detunings, confirmed that with rmin = ρ−1/3/π we do not observe the influence
of pairs. However, the decay of pair modes became evident for smaller fixed exclusion volume
rmin = 0.5/k0 and positive detuning (Fig. II.8(a)). There we observe that the late-time
dynamics is firstly governed by collective modes, while for very late times, the decay dynamics
starts to be dominated by pairs.

In Fig. II.10(a-b) we show a comparison of subradiant lifetimes obtained from the exponential
fit at late times with the fixed exclusion volume rmin = 0.5/k0 and with the density-dependent
exclusion volume rmin = ρ−1/3/π. We observe that for negative detuning, the obtained
lifetimes with rmin = 0.5/k0 are very similar to those obtained with rmin = ρ−1/3/π (except
for the lifetimes corresponding to the lowest b0’s). On the other hand, for positive detuning,
the difference is significant. The reason for that is the following. First of all, the maximum
lifetime and frequency shift extent of pair branches is larger with rmin = 0.5/k0 than with
rmin = ρ−1/3/π (see Fig. II.7). In the case of positive/negative detuning, the ‖/⊥ subradiant
pair branch is closer to the resonance ∆n = 0, and therefore the branch closer to the resonance
might be more populated than the other one. The maximum subradiant pair lifetime of
the ‖ branch with rmin = 0.5/k0 is longer than the lifetime of the most long-lived collective
modes in atomic samples with the parameters (b0, ρλ

3) used in Fig. II.10(b). Hence, the
obtained subradiant lifetimes in Fig. II.10(b) with rmin = 0.5/k0 and positive detuning are
due to the influence of subradiant pair modes. Further argument that for rmin = 0.5/k0

and positive detuning, we obtained lifetimes at late times corresponding to subradiant pair
modes, is that the obtained subradiant lifetimes are independent of b0 for a given ρλ3. This is
expected for pairs since they do not depend on the optical thickness but on the inter-particle
distance [Fofanov 2021]. Moreover, the maximum lifetime and frequency shift extent (given
by a imposed minimum inter-atomic distance) of the ⊥ pair branch is shorter than the
extent of the ‖ branch (see, for example, Eq. (II.24) and Fig. II.7). Therefore, for negative
detuning [Fig. II.10(a)], we see the difference between subradiant lifetimes with rmin = ρ−1/3/π

and rmin = 0.5/k0 only for the lowest b0’s for which the maximum pair subradiant lifetime
corresponding to rmin = 0.5/k0 is larger than the lifetime of collective modes. Note that
the lifetime extent of the collective modes increases with b0 so for higher b0, the lifetimes of
collective modes become longer comparing to the subradiant pair lifetimes for the minimum
separation distance rmin = 0.5/k0.

II.2.3.2. Influence of positional correlations

Imposing an exclusion volume actually induces some correlations in the atomic positions.
This correlated disorder, in turn, affects the light scattering properties (see, e.g., [Lax 1951,
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Fraden 1990,Rojas-Ochoa 2004a,Wang 2020]). In particular, increasing the density at fixed
exclusion volume or increasing the exclusion volume at fixed density enhances the positional
correlations. In Fig. II.10(a) we observed that the lifetimes obtained with two different
types of exclusion volume, the density-dependent exclusion volume and the smaller fixed
exclusion volume, lead to very similar results. Apart from the lowest b0’s, where we observe
the influence of pairs for rmin = 0.5/k0, the slight difference between the results obtained
with the two types of exclusion volume can be attributed to a very small influence of the
correlations introduced by the exclusion volume. The influence of correlations can be better
characterized by plotting the subradiant lifetime as a function of rmin [Fig. II.10(c)], where we
observe that the subradiant lifetime slightly increases with increasing exclusion volume. Note
that this behaviour does not come from pairs: pairs would produce the opposite effect since
the increase of minimum inter-particle distance imposed by the exclusion volume reduces
the subradiant pair lifetimes. Therefore, this implies that an increase of the positional
correlations yields an increase of the subradiant lifetime. Since the positional correlations are
also enhanced with increasing density for the fixed exclusion volume, we would expect to
see the ehancement of subradiant lifetimes with increasing density if there were an influence
of positional corelations. However, we observe the same effect of reduction of subradiant
lifetimes with increasing density for the fixed exclusion volume as with the density-dependent
exclusion volume [Fig. II.10(a)]. As a consequence, the subradiant lifetime reduction observed
for increasing density cannot be attributed to positional correlations.

Moreover, the test done with the drive on resonance and without any exclusion volume (hence,
without any positional correlations induced by the exclusion volume), yields as well the
decrease of τsub with ρλ3 for a given b0 [Fig. II.9(b)], confirming that positional correlations
are not at the origin of the reduction of τsub with ρλ3.

Therefore, we can conclude that in our work correlated disorder only has a small marginal
role on lifetimes and is not causing the density effects reported in Sec II.2.2.

II.2.4. Comparison with scalar light

The density-induced reduction of the subradiant lifetime observed in Figs. II.4-II.5 occurs
in a density regime where the typical distance r = ρ−1/3 between atoms is still larger than
1/k0. For instance, ρλ3 = 30 corresponds to r ' 2/k0. Therefore both the near-field and
far-field terms contribute substantially to the dipole-dipole interaction. It is thus instructive
to compare the results of the vectorial coupled-dipole model with those obtained with the
scalar version of the CDEs [Eq. (II.8)], which does not contain the near-field contribution.

The comparison between the two models is presented in Fig. II.11. In panel (a) we show
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Figure II.11: Comparison between the vectorial and scalar coupled-dipole models. (a) Temporal
evolution of the intensity of the scattered light for several b0 and ρλ3 = 1.5 (set of red lines) and
ρλ3 = 15 (blue set of lines). Dotted lines represent the decay curves obtained from the vectorial
CDEs [Eq. (II.6)], while solid lines correspond to the scalar CDEs [Eq. (II.10)]. The color code is
the same for both vectorial and scalar curves and it corresponds to different b0. (b) Comparison of
subradiant lifetimes of scalar and vectorial model plotted as a function of the on-resonant optical
thickness for several densities of the sample. Lifetimes have been obtained from the exponential fit
of decay curves in the fit range I/I(0) = [2× 10−7, 10−6]. For both panels and for both, vectorial
and scalar, models: rmin = ρ−1/3/π, θsc = 45◦, ∆(v,s)

0 = −15Γ(v,s)
0 . In the vectorial model we use

the vectorial definitions of the single-atom decay rate Γ(v)
0 and optical thickness b(v)

0 , while in the
scalar model we use their scalar versions: Γ(s)

0 = (3/2)Γ(v)
0 and b(s)0 = (2/3)b(v)

0 .
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Figure II.12: Scalar coupled-dipole model. Subradiant lifetime τsub for several b(s)0 as a function of
(a) density ρλ3 and (b) corresponding size of the sample k0R = (2π)3/2b

(s)
0

2ρλ3 . Lifetimes were obtained
from an exponential fit of the scattered light intensity after the switch-off of the driving field in the
fit range I/I(0) = [2× 10−7, 10−6]. The insets are close-ups of the b(s)0 = 1.6 data set. c) Examples
of decay curves for b(s)0 = 4.5 and several densities showing that the long-lived decay is getting
slower as the density/sample size increases/decreases. Other simulation parameters: rmin = ρ−1/3/π,
θsc = 45◦, ∆(s)

0 = −15Γ(s)
0 .

examples of decay curves from the two models for several b0 and ρλ3. At smaller ρλ3, the
decay curves obtained from the vectorial and scalar CDEs are almost identical for a given on-
resonant optical thickness. On the other hand, for larger ρλ3, we observe a slower subradiant
decay in the scalar model than in the vectorial model. Moreover, in panel (b) we show the
direct comparison of subradiant lifetimes of the vectorial and scalar models obtained at late
times as a function of b0 for several densities of the sample. As can be observed, there is
a qualitative difference between the scalar and vectorial subradiant lifetimes at increasing
densities. While in the vectorial case we observe a decrease of τsub with ρλ3, the behavior is
opposite with the scalar model: τsub increases with ρλ3 for a given b0.

This qualitative different behaviour between the scalar and vectorial models clearly demon-
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strates that the reduction of subradiant lifetimes with the density is due to the near-field
part of the dipole-dipole interaction, which is absent from the scalar model.

Note that in the scalar model, both the resonant optical thickness and the natural decay
rate differ by a factor 2/3 from their vectorial version [b(s)

0 = 2N/(k0R)2 = (2/3)b(v)
0 and

Γ(s)
0 = d2k3

0/2~πε0], so simulations for a given optical thickness and density involve different
atom numbers in the scalar and vectorial models. We also restrict ourselves to densities
up to ρλ3 ∼ 20, to avoid the Anderson-localized regime for scalar light [Skipetrov 2016a].
Although until this subsection we used Γ0 and b0 notations for the natural decay rate and
optical thickness in the vectorial model, here we use Γ(v)

0 and b(v)
0 notations for the sake of

clarity with scalar and vectorial definitions.

To eliminate subradiant pairs and positional correlations as a source of increase of τsub

with increasing density for a given b0 in the scalar model, we have done similar tests as in
Sec. II.2.3 for the vectorial model. The results presented in Fig. II.11 are obtained with the
density-variable exclusion volume rmin = ρ−1/3/π and the negative detuning ∆0 = −15Γ0

and we have checked that the smaller constant exclusion volume rmin = 0.5/k gives the same
results, as well as the positive detuning ∆0 = +15Γ0. That, together with the fact that the
obtained subradiant lifetimes are longer than the subradiant lifetimes of the remaining pairs
with the exclusion volume, confirms that the increase of τsub with increasing density in the
scalar model cannot be attributed to the subradiant pairs. Moreover, a test with the driving
field on resonance and without any exclusion volume also yields increased subradiant lifetimes
with increasing density for a given b0 in the scalar model, which rules out the influence of
positional correlations.

As was discussed in Sec. II.2.2 for the vectorial model, to increase the density of the sample
for a given optical thickness, the size of the sample has to be decreased. Therefore, we should
also check for the scalar model, if the observed increase of subradiant lifetimes with increasing
density is a density effect or if it stems from the decrease of the sample size. In Fig. II.12 we
show, for several b(s)

0 , the subradiant lifetimes obtained using the scalar CDEs as a function

of ρλ3 [panel (a)] and as a function of the corresponding sample size k0R = (2π)3/2b
(s)
0

2ρλ3

[panel (b)]. We observe that for a given optical thickness, the scalar subradiant lifetimes are
independent of ρλ3 and k0R for smaller densities/larger sample sizes, and then there is an
increase of subradiant lifetimes with increasing ρλ3/decreasing k0R. Contrary to the vectorial
model (Fig. II.5) where it was clear that the reduction of subradiant lifetimes is a density
effect, here for the scalar model, it is not conclusive: there is no clear k0R or ρλ3 threshold
for which the subradiant lifetimes start to increase, as there was in the vectorial case.
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Figure II.13: Comparison of the subradiant lifetimes obtained using different fit windows in
(a)vectorial coupled-dipole model and (b)scalar coupled-dipole model. Different fit windows are
represented by different symbols, while the color code corresponds to different densities and it is the
same for both panels. While in the vectorial model we observe b0 enhancement of the subradiant
lifetimes and the density effects with the fit windows I(t)/I(0) < 10−4, in the scalar model that is
the case for lower intensity-levels I(t)/I(0) < 10−6, i.e., for even later times.

Let us emphasize here the importance of focusing at sufficiently late times of temporal decay
dynamics to be able to identify the b0 enhancement of subradiant lifetimes, and density
effects.

Note that in Figs. II.11-II.12, where we made comparison with the scalar model, subradiant
lifetimes have been obtained using the lower intensity-level fit range, i.e., later in time than
in the previous subsections concerning only the vectorial model. Moreover, we have already
mentioned that in the vectorial coupled-dipole model, we obtain qualitatively the same results
for any appropriate fit range below relative intensity level I(t)/I(0) = 10−4. However, that is
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not the case for the scalar model.

To explain this, let us first recall the importance of fitting the computed decay curves at
sufficiently late times. In Fig. II.3 we have shown the decay curves from the vectorial model
for several b0 and the corresponding temporal dependence of instantaneous decay rate. At
late times, there is a slow temporal evolution of the lifetimes and more importantly, the
well-known b0 enhancement of the subradiant lifetimes. However, prior to this late-time decay
dynamics, i.e. at intermediate times, there is a fast temporal evolution of subradiant lifetimes
and interestingly, an overlap region where the system corresponding to different b0 exhibits
the decay with the same lifetimes at the same time. In fact, the larger b0 is, the overlap with
the decay curve corresponding to the subsequent b0 lasts longer. This can be understood if
we recall that for larger b0, the subradiant modes with the longer lifetimes are created (see,
for example, Fig. II.6). Hence, for intermediate times, where we observe the overlap of the
decay curves of different b0, modes common to the atomic clouds of different b0 decay at the
same time. Subsequently, at late times, when those modes lose the population, we observe
the decay of the longest subradiant modes (which are longer for larger b0).

In Fig. II.13(a) we show subradiant lifetimes from the vectorial model obtained using different
fit windows. We can see that for fit windows I(t)/I(0) > 10−4, the plateau of subradiant
lifetimes emerges as b0 increases, since for those fit windows, there is the overlap of decay
curves of different b0 corresponding to decay of modes that are common to systems with
different b0.

However, in the scalar model the overlap lasts longer than in the vectorial model for the
same system parameters (at higher densities). In Fig. II.13(b) for the scalar model, we can
see that the plateau in b0 evolution of subradiant lifetimes appears for lower intensity-level fit
windows I(t)/I(0) > 10−6, i.e., for even later times, than in the vectorial model. The reason
for this is that in the scalar model at higher densities the lifetime extent of the collective
modes is longer than in the vectorial model (for the atomic samples of the same b0 and ρλ3

in both models; see, for example, Fig. II.1).

Note that for these intermediate fit windows, the density effects on subradiant lifetimes are
negligible, suggesting that the density effects impact the longest subradiant modes for a given
b0.

Therefore, one has to make sure that fitting of the decay curves is done at sufficiently late
times to obtain the subradiant lifetimes with the characteristic b0 cooperative enhancement
and also to observe (possible) density effects on subradiant lifetimes.
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II.2.5. Interpretation of the decay-dynamics results

Figure II.14: Eigenvalue distribution for two different densities ρλ3 = 6 (a,c) and ρλ3 = 16
(b,d) obtained using the vectorial (a,b) and scalar (c,d) models. The resonant optical thickness is
b
(v,s)
0 = 20 for all panels and the number of realizations is Nr = 40 (a), Nr = 285 (b), Nr = 36 (c)
and Nr = 255 (d) such that the number of eigenvalues is the same in all cases. Here there is no
exclusion volume and the detuning of the drive is ∆0 = −15Γ0. The color code corresponds to the
logarithm of the eigenstate density.

In the previous subsection, by comparing scalar and vectorial decay dynamics, we came to
the conclusion that the observed decrease of subradiant lifetimes with increasing density
for a given on-resonant optical thickness in the vectorial coupled-dipole model is due to the
near-field terms (∝ 1/r2 and ∝ 1/r3) of the dipole-dipole interaction.

To understand why the near-field terms are detrimental for subradiance, as well as to get
further insight into the opposite behaviors for scalar and vectorial light, we turn to analysing
the density evolution of the spectrum of eigenvalues (λn = −Γn/2 + i∆n). Let us recall that
for the vectorial coupled-dipole model, we obtain eigenvalues by diagonalizing a 3N × 3N
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Figure II.15: Eigenvalue distribution for two different densities ρλ3 = 20 (a) and ρλ3 = 42 (b),
obtained using the vectorial coupled-dipole model. The resonant optical thickness is b0 = 50 for
both panels and the number of realizations is Nr = 28 (a), Nr = 130 (b), such that the number of
eigenvalues is the same in all cases. Here there is no exclusion volume and the detuning of the drive
is ∆0 = −15Γ0. The color code corresponds to the logarithm of the eigenstate density.

matrix whose elements Gη,ζ
j,m are given by Eq. (II.14), while for the scalar coupled-dipole

model eigenvalues are obtained by diagonalizing a N ×N matrix with elements G(s)
j,m given

by Eq. (II.19).

The spectrum for vectorial light is presented in Fig. II.14 for clouds with respective density
ρλ3 = 6 [panel (a)] and 16 [panel (b)], both with the optical thickness b(v)

0 = 20. Firstly, we
can observe the reduction in the subradiant tail of the distribution with increasing density:
for ρλ3 = 16, the lifetime (1/Γn) extent of the collective subradiant modes is shorter than
for ρλ3 = 6. This is indeed consistent with the observed density effects on subradiant
lifetimes obtained from the decay dynamics (Fig. II.4-II.5). Moreover, this disappearance
of the longest-lived collective modes with increasing density is accompanied by a spectrum
broadening: for ρλ3 = 16, the eigenvalue distribution along the frequency axis is broader
than for ρλ3 = 6. The reduction in lifetime extent of subradiant modes, and the broadening
of the spectrum with increasing density can also be seen on Fig. II.15, where we compare
eigenvalue distribution of atomic samples with ρλ3 = 20 and ρλ3 = 42 (both with a same
resonant optical thickness).

On the other hand, the spectrum for scalar light presented in Figs. II.14(c-d) reveals different
characteristics: with the increasing density, longer-lived modes appear at the bottom of the
distribution, while the broadening of the eigenvalue distribution is very limited. The fact
that the lifetime extent of the long-lived modes is longer for ρλ3 = 16 than for ρλ3 = 6, is
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in agreement with the observed increase of the subradiant lifetimes with increasing density
reported in Fig. II.11.

Because of these differences in the spectrum of vectorial and scalar model, we can conclude
that in the presence of near-field terms, the increase in density [from panel (a) to (b)] is
characterized by a strong broadening of the spectrum, and as a consequence the subradiant tail
of the distribution is reduced; the broadening due to the near-field dipole-dipole interaction
is at the origin of the reduction of subradiance. While we here focus on the dynamical
features of the scattering, it is interesting to note that inhomogeneous broadening, due to
the near-field terms of the dipole-dipole interaction, has also been identified as a limiting
mechanism for the increase of the refractive index at large densities [Andreoli 2021].

Let us now comment on the analogy of our results with the superradiance of a fully inverted
system (beyond the single-excitation limit). Originally studied without accounting for
the near-field terms, the superradiant cascade was addressed in two different regimes: for
subwavelength and macroscopic clouds [Dicke 1954]. In the case of a subwavelength cloud, it
can be assumed that a unique light mode is coupled to the sample, and the cooperativity
parameter describing this coupling is the number of particles N . Differently, in the case
of a macroscopic cloud, such as studied here, the sample geometry plays a role and the
resonant optical thickness b0 is the relevant cooperativity parameter. The importance of
near-field terms in subwavelength dense samples was later recognized, showing that they are
detrimental to superradiance [Friedberg 1972,Friedberg 1973,Friedberg 1974,Gross 1982].
Coined "Van der Waals dephasing" due to the 1/r3 decay they exhibit, the near-field term
breaks the symmetry that was central to Dicke’s approach, since he would assume the system
to decay through a series of symmetric states.

Note that there are two distinct symmetry-breaking effects. The first one occurs when
the sample size is increased to become comparable or larger than the optical wavelength:
even in the scalar light approximation, the atomic dipoles couple to several optical modes,
and the cooperativity parameter is then given by the resonant optical thickness b0 rather
than the particle number N , for macroscopic clouds. This effect was already discussed
in the seminal paper by Dicke [Dicke 1954]. The second symmetry-breaking effect is Van
der Waals dephasing that corresponds to the strong energy shifts induced by the near-field
terms [Gross 1982]. The inhomogeneous broadening resulting from these terms leads to a
reduction of the cooperativity. For subwavelength samples, the reduction of the N -factor
enhancement characteristic of superradiance stems from the increase of the density rather
than a modification of the system size. Although we here address the single-excitation regime
and macroscopic clouds, the behaviour of the subradiant lifetimes that we have observed in
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this chapter is very consistent with the picture developed for the superradiant cascade. For
that reason in [Cipris 2021b] we give to our observed density effects on subradiant lifetimes
the term Van der Waals dephasing: the effect on cooperativity due to the density increase,
i.e., the rise of the near-field terms, beyond the size effects.

As was discussed in the previous subsection, for the scalar model it is not clear whether the
observed effect of increase of subradiant lifetimes with increasing density for a given b0, is a
density or a size effect (Fig. II.12). Therefore, we give two interpretations of this subradiant
lifetime increase for scalar light.

When the density is increased for a fixed on-resonant optical thickness, the system size
reduces (since R ∝ b0/ρ). Since for subwavelength clouds cooperativity scales with N ,
it could be that upon decreasing the sample size, the number of particles N starts to
compete with the on-resonant optical thickness b0 as the cooperativity parameter. This
competition then, could be responsible for the observed increase of the subradiant lifetimes
in the scalar model. On the other hand, as we are increasing the density of the sample, we
are approaching the localization regime, for which the phase transition is formally reached
only for ρcλ3 ≈ 20 [Skipetrov 2014,Bellando 2014]. Therefore, weak localization processes
could also be responsible for this increase in subradiant lifetimes.

II.3. Conclusion

In conclusion, in this chapter we have reported on the density effect on subradiance in
macroscopic atomic clouds in the single-excitation limit. For densities ρλ3 & 5, scaling of
subradiance with b0 fails, and subradiant lifetimes are reducing with increasing density for a
given on-resonant optical thickness. We have concluded that this reduction of subradiant
lifetimes is due to near-field dipole-dipole interaction terms that induce an inhomogeneous
broadening which acts against cooperative effects. This Van der Waals dephasing for
subradiance presents very similar features as the one discussed for superradiance [Gross 1982]
in subwavelength clouds and considering fully-inverted system.

Note that for the densities studied throughout this chapter, we have checked that superradiance
is not substantially affected. This difference can be attributed to the very different time
scales involved in each phenomenon. Indeed, superradiance is very fast, with time scales
shorter than Γ−1

0 , so a very strong broadening is required to affect the dynamics over these
short times. Differently, subradiance corresponds to modes with lifetimes of many units of
Γ−1

0 , making them much more sensitive to the broadening induced by the near-field terms.
This analysis is confirmed by the fact that superradiance is more robust than subradiance
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against inhomogeneous broadening induced by thermal motion [Weiss 2019,Weiss 2021].

Finally, we have observed that for densities ρλ3 < 5, the temporal decay dynamics is the
same for both models, scalar and vectorial. This implies that for such low densities, the
dipole coupling is indeed provided by the long-range (∝ 1/r) dipole-dipole interaction, with
negligible density or polarization effects. Therefore, the problem of collective decay dynamics
of dilute atomic samples can be addressed with the scalar coupled-dipole model. Moreover, in
our experiment the typical density of cold atomic rubidium cloud is ρλ3 ∼ 10−2. Hence, our
study here suggests that for such dilute cloud, the density, i.e. near-field, effects are indeed
negligible.

Note that the coupled-dipole model introduced in this chapter does not include all the
effects, such as light assisted collisions or the temperature, i.e. thermal motion, of cold
atoms. Although light assisted collisions might introduce limitations on obtaining high
densities of cold-atom sample, high densities ρ ∼ 1014 cm−3 (ρλ3 ∼ 10) have been obtained
for Strontium (Sr) [Ferrari 2006] and Ytterbium (Yb) [Takasu 2003] cold atoms which also
have the Jg = 0 → Je = 1 transition, as the one considered in our coupled-dipole model.
Moreover, concerning the thermal atomic motion, our recent experiment demonstrated that
subradiance is robust against thermal decoherence for a large temperature range of cold-atom
sample [Weiss 2019].





Chapter III

Signature of Anderson localization of
light in 3D

Wave propagation in a random medium is a phenomenon that occurs throughout our daily
lives; the most common examples are multiple scattering of light in clouds, milk, paper,
etc. In fact, the wave transport in a random medium depends on the relation between
several characteristic lengths: the wavelength λ, the size of the sample L, and the typical
distance between two consecutive scattering events - the scattering mean free path `. In the
single-scattering regime (ballistic regime), where the sample size is smaller than the mean free
path, L� `, the wave undergoes at most one scattering event before leaving the medium.
The analogous condition of this regime is the optically thin medium with the optical thickness
b(∆0) = b0/(1 + 4∆2

0/Γ2
0)� 1. On the contrary, when the mean free path is much smaller

than the sample size, `� L, the wave is scattered numerous times before exiting the random
medium. This is the so-called multiple-scattering regime. Within this regime, there are two
different types of wave transport: diffusive transport (`� λ) and localized regime (` . λ).
When `� λ, the interference of multiply scattered waves is negligible; each scattering event
can be described by a random walk with a step ` (incoherent wave propagation) and the
wave transport in a random medium is described by the diffusion equation. The random
medium in this regime is often called weakly disordered medium. However, upon increasing
disorder (randomness) of the medium such that the mean free path becomes comparable to
the wavelength, coherent effects in the wave propagation emerge and the diffusive model is not
suitable anymore for the description of wave transport. In a sufficiently strongly disordered
medium (` . λ), there is no diffusive wave transport, i.e. waves become localized within a
finite region.

This wave interference phenomenon in a strongly disordered medium that manifests in a
breakdown of diffusive wave transport is known as Anderson localization [Anderson 1958]. It
is assumed to be a universal wave phenomenon: it should occur for all types of classical and

89
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quantum waves. Throughout the years Anderson localization has been observed for many
types of waves, both in three-dimensional (3D) and low dimensional (1D and 2D) systems.
However, in spite of decades of immense search, Anderson localization of light in 3D strongly
scattering media is still experimentally unobserved. As it is going to be discussed in the
following sections, one of the challenges has been identifying an unambiguous signature of
light localization. In this chapter, we are going to present the research based on a numerical
coupled-dipole model that has led us to identify an unequivocal signature of light localization
in 3D in the framework of cold atoms as the disordered scattering medium. Note that for
this system that we have been considering: cold-atom sample, the disorder is in the random
position of atoms (off-diagonal disorder). In that case the disorder strength, or better to
say the scattering strength, is characterized by the spatial density of the sample which is
inversely proportional to the scattering mean-free path.

In Sec. III.1 we present the mechanism behind the localization of waves, as well as the
discussion on the critical amount of disorder needed for the localization to occur (localization
criteria). In Sec. III.2 we discuss the localization of light waves, mainly the challenge in
observing it experimentally in 3D scattering systems. Note that in this chapter we introduce
only the key topics and concepts of Anderson localization which are relevant for the study
that we have conducted on identifying the signature of localization of light. The research
done in the last 60 years on localization of various types of waves is immense and more
detailed overviews can be found for example in [Sheng 2006,Abrahams 2010]. Moreover, in
Sec. III.3 we present the numerical results based on coupled-dipole model, which verify the
use of statistics of the scattered light as an observable of the localization transition for light
in 3D (the part involving scalar light was done by Florent Cottier, while I did the part with
vectorial light). Finally, in Sec. III.4, we further discuss the obtained results.

III.1. Brief review on Anderson localization

P. W. Anderson has discovered that when treating electrons as quantum particles, i.e.,
considering their wave character, the diffusive electron transport in a random potential can
be significantly altered if the randomness, i.e., the disorder is sufficiently strong. In his
seminal work [Anderson 1958], Anderson considered a tight-binding model of an electron with
nearest-neighbor hopping in a 3D lattice that contains disorder, i.e., a lattice with random
on-site energies. Anderson pointed out that if the degree of randomness (disorder) in the
lattice is sufficiently large, localization occurs: the electron is trapped in a deep well of the
random lattice potential as its wave function becomes exponentially localized. In other words,
Anderson showed that, when the disorder potential exceeds a critical value, the classical
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diffusive electron transport in a 3D lattice comes to a complete halt: the medium essentially
ceases to conduct the charge and becomes an insulator. This disorder-driven phenomenon
was coined as Anderson localization. It is also often referred to as strong localization.

Therefore, Anderson predicts two regimes, i.e. phases of wave transport in a medium
containing disorder: the diffusive, conducting (metallic) regime and the localized, insulating
regime. In the diffusive regime, the states responsible for diffusion are extended and the
wave function extends throughout a disordered medium. On the contrary, in the localization
regime, where the diffusive wave transport is absent, there are only localized states. In
particular, those states are exponentially localized over a typical distance ξ known as the
localization length; in the localized regime, the wave function decays exponentially from the
origin point r0:

ψ(r) ∝ exp(−|r− r0|/ξ). (III.1)

As is going to be further discussed in the following subsection, in low dimensional (1D and
2D) disordered systems the waves are always localized no matter how small the disorder is,
assuming the waves are noninteracting and the system size is larger than the localization
length. However, in three dimensions, a phase transition from diffusive regime to the localized
regime can occur upon increasing the disorder of the scattering medium. This transition is
often called Anderson transition, while the critical energy that separates the localized regime
from the extended regime is called mobility edge.

III.1.1. Anderson localization: disorder-induced wave interference phe-
nomenon

There are a couple of key points to bear in mind when it comes to Anderson localization.
Firstly, Anderson localization is fundamentally a wave phenomenon: it is a result of the
coherent multiple scattering of waves. Secondly, although there are many mechanisms which
might lead to the spatial confinement of waves, the Anderson localization is essentially the
spatial localization by disorder : it originates from the interference of waves which are multiply
scattered by the disorder of the scattering medium (impurities, random positions of the
scattering centers, etc). In a sufficiently strongly disordered medium, the interferences of
multiply scattered waves start to dominate the transport, which leads to the cessation of the
diffusive wave transport along with the emergence of the exponential spatial localization of
waves.
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Figure III.1: Scheme illustrating multiple scattering of waves in disordered media. (a) When
considering wave propagation from point A to point B, there are many possible diffusive paths.
For most of these diffusive paths, the interference between probability path amplitudes vanishes on
average. b) However, each multiple-scattering path has its reversed counterpart such that wave is
scattered by the same set of scatterers but in the opposite order: time-reversal paths. c) In the case
of closed loops, when the wave returns to the inital scattering center (A=B), the accumulated phase
difference between time-reversed loops is zero and interference effects survive the ensemble average.
The probability of return to the inital scattering point A is enhanced due to constructive interference
on time-reversed loops. Contribution of such closed loops in wave transport in weak disorder
decreases the diffusion coefficient (weak localization). By increasing the disorder, probability for
closed loops increases, thus further decreasing the diffusive wave transport. At a critical amount
of disorder, when the diffusion coefficient becomes zero, the phase transition from extended-wave
regime to localized regime arises. d) Another way for interference of time-reversed loops to survive
the configuration average is if kf = −ki, where ki is the wavevector incident on the disordered
medium and kf is the outgoing wavevector. These interferences on time-reversed loops give rise to
the coherent backscattering, the enhancement of the multiply scattered intensity in the backward
direction by a factor of two.
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An intuitive way to understand how the localization of waves occurs is the following. We
are going to consider waves that are multiply scattered by identical point-like scatterers
with random positions (disordered system). The wave propagation from point A to point
B can occur along infinitely many different paths, as illustrated on Fig.III.1(a). For each
path p there is a probability amplitude ap for the wave transport from A to B. To obtain
the total probability P that the wave gets to point B from A one has to sum the probability
amplitudes of all possible paths ap and then square the sum:

P = |
∑
p

ap|2 =
∑
p

|ap|2 +
∑
p 6=p′

(apa∗p′ + ap′a∗p).

Here, the first term represents the incoherent contribution, i.e. it describes non-interfering
paths, while the second term corresponds to the contribution due to interference of path
amplitudes. As the paths have different lengths, the amplitudes ap accumulate different
phases: the phases of the probability amplitudes are random. Hence, the sum of the
interference terms vanishes on average and the probability for propagation is determined
by the incoherent-contribution term. Although this might lead to the conclusion that the
interference contribution is generally irrelevant, there is an exception to such assumption
which is crucial for localization of waves to occur: the time-reversed paths. For each diffusive
path P consisting of N scatterers such that the wave is scattered by those scatterers in the
order 1→ 2→ ...→ N , there exists one reversed counterpart P ′ consisting of the same N
scatterers but with propagation in the opposite order N → ...→ 2→ 1. Reversed path P ′

can be regarded as direct path P propagating backward in time, hence the name time-reversed
paths (Fig.III.1(b)). To avoid any confusion, note that throughout this chapter we are refering
to the pair of direct and its reversed path as time-reversed paths. The accumulated phase
difference between the time-reversed paths is given by

∆φ = (ki + kf) · (rN − r1), (III.2)

where ki and kf are incident and outgoing wavevectors, respectively, while r1 and rN are
positions of initial and final scattering centers along the diffusive path. When ∆φ = 0, time-
reversed paths are perfectly coherent and the interference term of path amplitudes survives
the configuration averaging. This occurs in two different ways: when the multiply scattered
wave returns to the inital scatering center, r1 = rN , forming a closed loop (Fig.III.1(c)), or
when kf = −ki. As it is going to be discussed below, the former pertains to the recurrent
scattering inside of a medium and it is relevant for Anderson localization. The latter, on
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the other hand, concerns the studies of incoming and outgoing waves, such that the wave
incident on the medium is then being multiply scattered in the backward direction, and it is
relevant for the phenomenon of coherent backscattering.

As depicted in Fig.III.1(c), in the case of closed paths (loops), the starting point A and end
point B coincide (rA = rB). The probability to go from A to B in the case when points A and
B are identical represents the probability that the wave is scattered back to the scattering
center from which it originated, i.e. the return probability to the starting point A. For
each closed path there exists an identical closed path which is traversed in the opposite
direction such that system posses time-reversal symmetry. When propagating along those
two time-reversed closed paths, waves acquire exactly the same phase and in the absence of
time-reversal symmetry breaking effects, the probability amplitudes of two time-reversed
loops are equal a1 = a2 = a. Hence, the time-reversed loops constructively interfere. Because
of this non-vanishing interference between the time-reversed closed loops, the probability of
return to A is P = |a1|2 + |a2|2 + 2a1a

∗
2 = 4|a|2, twice as big as if only incoherent contribution

would be considered. Therefore, the probability of return to the origin point A due to the
constructive interference is larger than the probability of propagating away from A (incoherent
wave propagation), i.e., the probability of the diffusive wave transport through the sample
is decreased. This existence of interference of multiply scattered waves has been initially
demonstrated in weakly disordered metallic films [Bergmann 1984].

These interference effects of time-reversed loops in the limit of weak disorder reduce the
diffusion coefficient and hence the conductivity. The enhanced return probability due to the
formation of time-reversed closed loops can lead to a decrease in diffusive wave transport,
since waves stay in the medium for a longer time than what is expected considering only the
incoherent diffusion process. This effect that manifests itself in a decrease of the diffusion
coefficient in the weak disorder limit is called weak localization and it is considered to be
a precursor of strong (Anderson) localization effect. As disorder increases, the probability
of formation of time-reversed loops increases; the density of these constructively interfering
time-reversed loops increases with decreasing mean free path `. Above the critical amount of
disorder, when the number of time-reversed loops diverges, i.e. when the return probability
reaches unity, the transition to Anderson (strong) localization occurs. In other words, when
the formation of time-reversed loops suppresses the occurrence of diffusive paths in strongly
disordered medium, the diffusion coefficient becomes zero and the wave becomes trapped,
i.e., localized inside the medium [Aegerter 2009].

As already mentioned, the phase transition from conductor (extended waves; diffusive wave
transport) to insulator (localized regime) is a characteristic of a 3D disordered medium. In
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1D and 2D disordered media, waves can be localized, even for a very weak disorder. This
can be understood if we recall that the diffusive wave transport in 1D and 2D is a recurrent
process: the diffusive particle returns infinitely many times to the point of origin, forming
the time-reversed closed loops with extremely high probability (recurrent random walk: the
probability of returning to the origin point is equal to 1 in 1D and 2D [Woess 2000]). In
principle, the diffusive wave propagation in 3D disordered medium is not recurrent and
the probability of forming constructively interfering closed loops in a weakly disordered
3D medium is much lower than in 1D or 2D. Hence, in 3D the localization does not occur
unless the critical amount of disorder is reached such that the probability of returning to the
starting point is significantly increased. The diffusion constant can consequently be reduced
to zero and the wave is "trapped" on closed loops, i.e. it can not escape from its origin point.
Therefore, in 3D, the coherent wave propagation essentially becomes recurrent in the localized
regime [Akkermans 2007].

Another way for waves on time-reversed paths to be perfectly coherent is if the incoming and
outgoing wave have the same direction, i.e. kf = −ki [Eq. (III.2)], as shown on Fig. III.1(d).
Then, the constructive interference between waves counterpropagating along a given multiple
scattering path leads to the twofold enhancement of the intensity reflected from the disordered
sample in the backscattering direction. This phenomena is known as coherent backscattering
(CBS). Since coherent backscattering effect can occur for a weak disorder and it lowers the
diffusion coefficient, sometimes it is considered as a weak localization phenomena.

Let us note that the explanation provided here on the occurrence of Anderson localization
based on the time-reversed closed loops is the simplest and the most intuitive: the problem
of Anderson localization in the context of loops is much more involved. Finally, remark
has to be made that this intuitive picture of non-vanishing constructive interference for
waves propagating on time-reversed paths only allows for an estimation of the lowest order
correction (weak localization) to the diffusion constant [Vollhardt 1987]. To study higher order
corrections or Anderson transition, other theoretical approaches, which will be mentioned in
the following subsection, have to be considered.

III.1.2. Localization criteria

III.1.2.1. Scaling theory of localization

Thouless criterion

In 1970s, D. Thouless and his co-workers introduced several physical ideas important for the
formulation of a scaling description of the Anderson localization [Edwards 1972,Thouless 1974,
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Licciardello 1975]. They pointed out that the sensitivity of states to boundary conditions of
disordered system is one way 1 of distinguishing between the delocalized, extended states,
whose wavefunction extends over the whole system, and localized states whose amplitude
falls off exponentially away from the localization centre. As boundary conditions reflect
the nature of the coupling to the environment, they can play an important role for a finite
size system. Any change in boundary conditions significantly alters the energy spectrum of
extended states. On the other hand, localized states will not be (notably) sensitive to the
change in boundary conditions: their sensitivity to the boundary will be exponentially small
since only the exponential tail of the (exponentially) localized state will "feel" the boundary,
asuming that the localization centre is not near the boundary.

Let us consider a model of a disordered system as a d-dimensional hypercube of size (2L)d,
made by putting small cubes of size Ld (with L� `). The eigenstates for the particle in the
disordered (2L)d sample are linear combinations of the eigenstates of each Ld block. The
amount of admixture of eigenstates of adjacent Ld cubes will depend on two microscopic
quantities of individual Ld blocks: ∆E, the width of the energy level and δW , the average
energy level spacing. The width of the energy level ∆E is in literature often called Thouless
energy and it quantifies the sensitivity of energy levels to change in boundary conditions.
The exponentially localized states, whose wave function is given by III.1, should not be
considerably affected by the change in the boundary conditions and therefore, the Thouless
energy of Ld blocks should be exponentially small: ∆E ∝ exp(−L/ξ) (for L� ξ, where ξ
is the localization length). On the other hand, the energy levels corresponding to extended
states are significantly altered by the change of boundary. Since the Thouless energy can be
associated by the uncertainty principle with the time needed for a particle to diffuse across
the Ld block and escape, τ(L) = L2/D (here D is the diffusion contstant), the Thouless
energy of extended states is ∆E = ~/τ(L) = ~D/L2. The average spacing between energy
levels within the Ld block is given by δW = (nEL

d)−1, where nE is the density of states,
i.e. number of states per unit volume and per unit energy. Note that δW , contrary to ∆E,
has the same variation with the size of the system L regardless of whether the states are
extended or localized.

If the width of the energy levels is much larger than the average level spacing ∆E � δW , as
shown on Fig. III.2(a), eigenstates are extended: an eigenstate in the Ld block can easily

1For example, the participation ratio (or the inverse participation ratio), which tell us how many scatterers
are involved in the eigenstate could also be used to discriminate between localized and extended state, since
in the localized state only few scatterers are involved (it is a local phenomenon), while for the extended
state many scatterers contribute. In the most limiting case, when the state is localized on one scatterer, the
participation ratio is equal to unity. On the other hand, for the extended state the participation ratio is equal
to N , when all N scatterers are involved in the state.
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Figure III.2: Schematic energy spectrum of a quantum particle in the disordered system. (a) If the
width of energy levels ∆E is much larger than the average level spacing δW , the eigenstates are
extended. (b) If δW � ∆E, the eigenstates are localized.

couple onto other eigenstates in the neighboring Ld samples that overlap with its energy
level. The overlap of eigenstates of all Ld cubes will thus result in a new eigenstate that
extends throughout the entire (2L)d hypercube. Thus, for the extended waves the role of the
boundary conditions is essential. On the contrary, if the level spacing is much larger than
the width of the energy level, δW � ∆E, the discreteness of eigenstates is well resolved, as
shown on Fig. III.2(b). Under this condition, the eigenstates of adjoining Ld blocks do not
overlap appreciably, i.e. their amount of admixture is exponentially small. In other words,
since eigenstates of neighbouring Ld blocks cannot couple effectively through their final level
width, the eigenstates of combined (2L)d system will be mainly confined within individual
Ld blocks. Therefore, when δW � ∆E, the effect of the boundary conditions are neglectful
and the states are localized.

Thouless argued that the ratio of the coupling between energy levels of different Ld cubes to
the spacing that characterizes their energy level mismatch ∆E/δW can be interpreted as
the dimensionless conductance g (conductance G in units e2/~, with e the electric charge),
which is a macroscopic measurable quantity. The conductance for a sample of linear size L
and volume Ld in the diffusive regime is given by Ohm’s law G = σLd−2, where σ = e2DnE

(Einstein formula) is the conductivity. Combining those relations with ∆E = ~D/L2 and
δW = (nEL

d)−1, one finds:

g(L) = G
~
e2 = ∆E

δW
. (III.3)

Thus, via Einstein relation the dimensionless conductance is given by the energy cou-
pling/splitting ratio, the quantity that is very often referred to as Thouless number
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gTh = ∆E
δW

. (III.4)

Therefore, the dimensionless conductance can be used to distinguish between extended and
localized states in 3D: g(L)� 1 in the diffusive (extended wave) regime, while g(L)� 1 for
the localized states. Moreover, it is expected that the transition from extended to localized
regime occurs when ∆E and δW are of the same order of magnitude, i.e. when gc(L) ∼ 1.
This condition for Anderson transition to take place is known as Thouless criterion.

Although Thouless considered electronic systems, his ideas can be extended to classical waves.
The Thouless number for classical waves can be defined as the ratio of the typical frequency
width ∆ω to the average spacing of eigenmodes δω:

gTh = ∆ω
δω

. (III.5)

One-parameter scaling theory

The work by Thouless and collaborators led to conclusion that the conductance, as a proxy
for the disorder in the system, is the single parameter that controls the behaviour of the
disordered system, i.e. the localized or extended nature of eigenstates, as the system varies in
size. Moreover, Wegner found that for a single-parameter scaling theory to hold, the phase
transition from diffusive to localized regime has to be continuous [Wegner 1976]. Based on
this ideas, in 1979 the "Gang of Four" (E. Abrahams, P. W. Anderson, D. C. Licciardello
and T. V. Ramakrishnan) formulated the scaling theory of localization [Abrahams 1979], a
phenomenological theory that interpolates between extended and localized states.

They have considered combining bd cubes of size Ld (with the same disorder properties)
into a large cube of size (bL)d. Under the assumption that the change in the conductance
g(L) with the system size is determined only by the conductance itself, they stated that the
conductance of the large system g(bL) has to be the function of the conductance g(L) of the
Ld cube, which can be written as g(bL) = f(b, g(L)). We can rewrite this as

g(L+ bL)− g(L)
bL

= f(b, g(L))− g(L)
bL

, (III.6)

such that b quantifies the system size increment. By taking the limit b→ 0 we obtain:
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β(g) = d lng(L)
d lnL , (III.7)

with β(g) = limb→0
f(b, g(L))− g(L)

gL
. The scaling function β(g) [Eq. (III.7)], which describes

how the conductance changes when the system varies in size, only depends on the conductance
itself, and not on the size L nor any other microscopic quantity. In other words, the change
of conductance when the system size increases is determined by the value of the conductance
at the previous length scale.

There are two different asymptotic behaviours of conductance g(L) depending on whether
the state is extended (g � 1) or localized (g � 1). In the case of an extended regime, the
conductance is given by Ohm’s law:

g(L) = ~
e2σL

d−2. (III.8)

On the other hand, in the regime g � 1 where the states are exponentially localized with the
localization length ξ � L, the conductance is described by

g(L) ∝ exp(−L/ξ). (III.9)

Hence, the asymptotic form of the scaling function β(g) in these two regimes is

β(g) ∝


d− 2− a/g for g � 1, 2

ln(g) for g � 1.
(III.10)

From Eqs. (III.8) and (III.9), one can see that in a 3D system the conductance increases
with the system size when the states are extended, but on the other hand for a localised state,
g(L) decreases with L. Therefore, if the scaling function is positive, states are extended,
while β(g) < 0 indicates that the states are localized. However, in lower dimensions g(L)
always decreases with L, meaning that in those systems there is no phase transition from
diffusive to localized regime, the states always localize.

From the asymptotes of β(g) [Eq. (III.10)] and based on the assumption that β(g) is a
monotonous and continuous function, one can sketch the universal curve β(g) for dimensions

2Here we included the weak localization correction going as a/g (a > 0 is a constant) to the scaling
function for g � gc, since β(g) = d− 2 = 0 for d = 2 (see Ref. [Lee 1985]).
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Figure III.3: Schematic picture of the scaling function β(g) = d lng(L)
d lnL for different dimensions as a

function of the dimensionless conductance g. The scheme was constructed from known asymptotes
of β(g) [Eq. (III.10)] in localized and extended regime and by assuming continuity and monotonicity
of β(g). Arrows indicate the direction of variation of g as the system size L increases. Such scaling
functions imply that for d = 3 there is a phase transition from extended to localize regime, which
occurs at critical point gc. In lower dimensions there is no phase transition: states always localize
in the thermodynamic limit L→∞.

d = 1, 2, 3, as shown on Fig. III.3.

It can be seen from Fig III.3. that the behaviour of the scaling function strongly depends on
the dimensionality of the system. In d = 3 there is a critical point gc ∼ 1 given by β(gc) = 0
at which β(g) goes through a sign change. Suppose a weak disorder such that g(L) > gc,
and hence β(g) > 0. Then, as L increases, g(L) increases which makes β(g) more negative.
Hence, one moves upward on the β(g) curve from the starting point g(L) > gc. The arrow
on the curve in Fig. III.3 thus indicates the direction of variation of g(L) as L increases. At
large enough length scales L, the asymptotic behaviour of β(g) ∝ d− 2 = 1 corresponding
to the extended regime is reached. Let us now consider a strongly disordered system such
that the starting point is g(L) < gc, and thus β(g) < 0. Then, while increasing L, g(L)
decreases and one moves downward on the β(g) curve. At large enough length scales, β(g)
corresponds to the scaling function for localized states. Therefore, for a fixed disorder, if
g(L) > gc, the system will flow into the limit of extended regime as L increases. On the
other hand, if g(L) < gc, the system will flow into the limit of localized regime as L increases.
In other words, depending on the amount of disorder the system is either in the localized
or in extended regime in thermodynamic limit L → ∞. The scale invariant critical point
gc (β(gc) = 0) separates those two stable phases: it corresponds to the point of Anderson
transition from extended to localized regime. As the direction of variation of β(g) points
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away (upward and downward) from gc, this critical point is an unstable fixed point.

While the scaling theory predicts the existence of phase transition for 3D systems, that is
not the case for lower dimensions. In 1D and 2D, β(g) is always negative and therefore the
conductance always goes to its limit of the localized regime [Eq. (III.9)] when the size of the
system increases. In other words, in d 6 2 the system always reaches the localized regime, no
matter what the degree of disorder is, as long as the length scale is large enough, i.e. L� ξ.
Moreover, d = 2 is the marginal dimension and depends sensitively on the conditions. In the
above description, the system is time-reversal invariant with no interactions and the scaling
theory predicts that there is no phase transition for d = 2.

Let us now discuss how the effect of the disorder strength is established in the scaling theory of
localization [Sheng 2006]. The scaling hypothesis states that the change in conductance with
system size represented by scaling function β(g) depends explicitly only on the conductance
itself. However, besides having the L dependence, g also depends on the amount of disorder
in the system. Then, for the scaling hypothesis to hold, the effect of increasing or decreasing
the disorder has to be completely compensated by varying L. A way for this to happen is if
g is a function of a single parameter ζ/L:

g = f(ζ(η)/L). (III.11)

The characteristic length scale ζ(η) is a function of the disorder strength η and it corresponds
to the localization length ξ in the localized regime, while in the extended regime it can be
associated to the inverse of the conductivity ∝ σ−1. For a fixed amount of disorder (and
consequently fixed ζ(η)), the domain of values for the parameter ζ(η)/L can be completely
covered by varying L, hence compensating for the effect of the disorder. However, note that
in 3D it would be impossible to reach the critical point gc and to crossover from extended to
localized regime (and vice versa) by simply varying the sample size for a given amount of
disorder, since gc is independent on L and there are two qualitatively different behaviours
of β(g) depending on in which regime the system is. As stated many times, the Anderson
transition takes place when the strength of disorder is sufficient for interference effects to
dominate the wave transport. Hence, the disorder strength (which depends on the microscopic
properties of the system) will dictate the transition and decide whether the system is on the
positive or negative branch of the scaling function β(g).

Moreover, the scaling theory predicts the behaviour of the localization length ξ and the
conductivity σ near the critical point. Since gc does not depend on L, Eq. (III.11) implies that
the correlation length ζ(η) has to diverge at the transition. The diverging behaviour of ζ(η)
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can be described by a power law with the critical exponent ν [Lee 1985] as ζ(η) ∝| η− ηc |−ν ,
where ηc is the so-called mobility edge, i.e. the critical disorder strength at the phase
transition. Since ζ(η) ≡ ξ(η) in the localized regime and ζ(η) ∝ σ−1 in the extended regime,
it follows:

ξ(η) = (η − ηc)−ν , η > ηc, (III.12)

σ(η) = (ηc − η)ν , η < ηc. (III.13)

Note that since D ∝ σ, the diffusion coefficient has the same power-law behaviour as the
conductivity. Therefore, while the localization length on the localized side diverges for η → ηc,
the diffusion coefficient in the delocalized phase approaches zero for η → ηc and vanishes on
the other side of the mobility edge in the localized phase, i.e. for η → ηc.

The scaling theory of localization does not depend on microscopic properties of the system
such as the type of the wave, type of the scatterers (disorder), etc. This is due to the
dimensionless conductance which does not depend explicitly on any microscopic quantity of
the system, but only implicitly through, for example, the correlation length ζ(η) [Eq. (III.11)].
Therefore, the scaling functions β(g) for d = 1, 2, 3 have a universal character and the scaling
theory should hold for both classical and quantum waves no matter of the microscopic
properties of disordered sample. However, although the scaling theory predicts the Anderson
transition in 3D, it does not guarantee the existence of the β < 0 branch of the scaling
function, i.e. the existence of localized states. As was discussed above, the phase transition
between diffusive and localized states will arise at the critical disorder strength, which marks
the dominance of interference effects in wave transport. It might happen that due to some
microscopic properties of the scatterers it is hard to achieve strong enough scattering, or
some underlying physical mechanisms could exist which are causing the dephasing of waves in
the disordered system and preventing the wave interference effects to dominate the transport,
thus prohibiting localization. This is the case for classical waves, particularly light waves
for which the observation of strong localization is still lacking. For example, in the case of
dielectric scatterers it is hard to produce a strong enough disordered sample to reach the
critical point. On the other hand, it has been shown that in the case of point scatterers
with degenerate internal structure and light waves with vectorial nature there is no phase
transition in 3D [Skipetrov 2014]. The light localization will be discussed in details in Sec.
III.2. The point here is that if the localization is possible, the system should have the same
universal scaling function β(g), as in Fig III.3.

The scaling theory has provided an important framework in understanding the localization phe-
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nomena. For a review on one parameter scaling theory, see Refs. [Lee 1985,Sheng 2006]. Apart
from the scaling theory, there are other approaches that allow a description of localization
phenomena: the self-consistent theory [Vollhardt 1980a,Vollhardt 1980b,Vollhardt 1982,Voll-
hardt 1992], the random matrix theory [Wigner 1951, Dyson 1962], the supersymmetry
nonlinear σ model [Efetov 1983,Efetov 1996], etc. For a review on different theories, see
Refs. [Lee 1985,Evers 2008,Abrahams 2010].

III.1.2.2. Ioffe-Regel criterion

A well-known qualitative criterion as to when the transition from diffusive to localization
regime occurs in 3D disordered systems is that of Ioffe and Regel [Ioffe 1960]. It suggests that,
when the typical distance between two consecutive scattering events, i.e. the mean-free path
`, is of the order of the wavelength λ = 2π/k, interference effects between multiple scattered
waves become substantial inside the disordered medium and the Anderson localization then
takes place when

k` . (k`)c ∼ 1. (III.14)

Here, (k`)c ∼ 1 represents the critical disorder strength for which the Anderson transition
occurs. The localization condition given by Eq. (III.14), that estimates how strongly the
disorder medium has to scatter to localize the wave, is known as Ioffe-Regel criterion. This
criterion discriminates between diffusive regime (k`� 1) and localized regime (k` < 1). An
intuitive way of understanding the Ioffe-Regel criterion is the following. The product of
the wave number and the mean free path k` quantifies the number of oscillations of a wave
between two scattering events. Hence, the condition k` < 1 implies that the wave scattered
from one scattering center undergoes the next scattering event before it makes one oscillation.
Therefore, due to such strong scattering, the diffusive wave propagation is unsustainable,
i.e. the wave cannot be considered to be freely propagating if the scattering mean free path
is only a fraction of the wavelength: the classical representation of wave transport has to
breaks down.

Ioffe-Regel criterion can be met either by reducing the mean-free path while increasing the
scattering strength, i.e. disorder or by reducing the wavenumber k (and with that the energy).
As we will see below, the latter is not achievable for classical waves, but for quantum waves,
such as electron waves, it is possible.

Note that the condition for Anderson transition (k`)c ∼ 1 is valid only for 3D disordered
systems. As discussed above, in 1D and 2D waves can be localized for any amount of disorder
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and therefore, for any value of k`.

III.2. Strong localization of light

As it was recognized that the interference effects in multiple scattering play an important role
in transport properties of electron (see Ref. [Lee 1985] for review on electron localization), i.e.
that the Anderson localization is essentially a wave interference phenomenon, suggestions were
made that this disorder-driven localization is a universal wave phenomena that should occur for
all types of waves: quantum (electron, phonon, ultracold atoms) and classical (electromagnetic
waves such as (visible) light and microwaves, elastic waves such as sound, etc.) [Azbel 1983,
Guazzelli 1983,John 1983,John 1984,Kirkpatrick 1985,Anderson 1985,He 1986,John 1987,
Flesia 1987] (see Ref. [Lagendijk 1996, Sheng 1990] for review on localization of classical
waves). In fact, up to now, Anderson localization has been observed for many types of wave
systems: electrons in 1D and 2D [Lagendijk 2009,Dynes 2010] as well as in 3D [Ying 2016],
cold atoms and Bose-Einstein condensates in 1D [Billy 2008,Roati 2008], 2D [White 2020] and
3D [Chabé 2008,Kondov 2011,Lopez 2012,Jendrzejewski 2012,Semeghini 2015], microwaves
in 1D [Chabanov 2000] and 2D [Dalichaouch 1991,Laurent 2007], terahertz electromagnetic
waves in 1D [Pandey 2017], sound in 2D [Weaver 1990,Bretagne 2013] and 3D [Hu 2008,
Aubry 2014,Hildebrand 2014], polaritons in 2D [Sturges 2019,Zhu 2020]. Moreover, there have
been many experimental observations of light localization in 1D [Topolancik 2007,Lahini 2008,
Sapienza 2010] and 2D [Schwartz 2007,Riboli 2011]. However, a conclusive experimental
evidence on Anderson localization of light in 3D is still lacking, which will be discussed in
details below.

III.2.1. Light localization vs electron localization

Although Anderson localization for electrons was suggested in 1958, it was not until the 1980’s
that the study of Anderson localization was extended to classical waves. Light seemed to be an
ideal candidate to study Anderson localization, as photons do not mutually interact, contrary
to electrons. Although P. W. Anderson considered non-interacting electrons in his seminal
work [Anderson 1958], in reality, they fundamentally interact. This made the unambiguous
observation of Anderson localization of electrons challenging, as there is also another type of
metal-insulator transition: Mott transition [Mott 1990]. This interaction-driven transition is
due to electron interactions, and it has nothing to do with the disorder. Moreover, photons
can have an extremely long coherence length, which implied that the localization of light
could be observed at room temperature and in macroscopic samples, contrary to electrons,
which have a small coherence length, even at low temperatures, due to interactions.



III.2. Strong localization of light 105

However, there is an important difference between light and electron waves that made the
light localization less ideal. Let us, therefore, more closely compare the characteristics of the
quantum and classical waves in disordered systems [John 1991,Sheng 2006,Akkermans 2007].
The Schrödinger wave equation for an electron of mass m in a disordered lattice is given by

[
− ~2

2m∇
2 + V (r)

]
ψ(r) = Eψ(r). (III.15)

The random potential V (r) that electron feels in the disordered medium is basically a local
scattering potential produced by the atomic impurities or defects in the lattice. Since the
energy of electron E can be negative, the electron localization can be achieved not only by
increasing the density of impurities, i.e. the disorder, but also by making E sufficiently small
comparing to the random potential, such that the electron is trapped in a deep negative
well of the random potential. In other words, since for quantum waves the disorder can
be dominant in the limits of low E, Ioffe-Regel criterion [Eq.(III.14)] might be satisfied by
minimizing the energy E.

Let us now consider an electromagnetic wave of frequency ω that propagates in a random
medium whose dielectric constant is ε(r) = ε+δε. The disorder is described by the fluctuating
part δε of the dielectric constant, while ε is the average value of ε(r). For simplicity, we will
disregard the vector nature, i.e. the polarization of the electromagnetic wave and consider the
scalar electric field described by the wave function ψ(r). Then, the analogue of Schrödinger
equation Eq.(III.15) for classical waves is the Helmholtz wave equation

−∇2ψ(r)− δεω
2

c2 ψ(r) = ε
ω2

c2 ψ(r). (III.16)

The quantity εω
2

c2 plays a role analogous to the electron energy E, while −δεω
2

c2 is the analogue
of random potential V of Eq.(III.15) and it is responsible for the wave scattering. Since the
dielectric constant ε(r) is real and positive everywhere (we assume a non-dissipative medium),

the energy quantity εω
2

c2 is always positive. Hence, in contrast to electronic systems, it is
impossible to have a bound state of photon in a negative potential well. Moreover, having
ε(r) > 0 everywhere means that the photon energy has to be greater than the highest of
the potential barriers. Note that for classical waves, both the energy and disorder potential
quantities depend on the wave frequency as ∝ ω2. Therefore, by decreasing the photon energy,
i.e. its frequency ω, the disorder potential δεω

2

c2 is decreasing in the same way. Contrary to
electron waves, for which localization is enhanced by lowering the electron energy, lowering
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the photon energy leads to a complete disappearance of scattering, i.e. it destroys the disorder.
Anderson localization of light, hence, cannot take place by minimizing the photon energy, i.e.
its frequency.

III.2.2. Scattering regimes for localization of light

Classical scatterers

Despite the problem of low frequencies for Anderson localization of light, in 1984, S.
John [John 1984] suggested frequency regime in which light could be localized in strongly
disordered 3D systems. The idea is based on the following. When an electromagnetic wave
propagates through the medium containing disorder made of randomly positioned dielectric
particles of typical size a, there are mainly three different single scattering regimes [Born 1999,
Kerker 1969,Bohren 1983,van de Hulst 1980]. In the regime where the wavelength is much
larger than the size of the scatterers, i.e. the low energy limit, λ� a (Rayleigh scattering),
the scattering cross-section is σs ∝ a6/λ4, while in the opposite limit λ � a (geometrical
optics) the scattering cross-section is σs ≈ 2πa2 � λ2. To determine the order of magnitude
of the minimal achievable mean-free path ` ∝ 1/(ρσs) in these two regimes, we have to
consider the highest density of the scatterers ρmax ∼ 1/a3 which then yields:

k`min ∼


λ3/a3 � 1 Rayleigh scattering with λ� a, σs ∝ a6/λ4

a/λ� 1 geometrical optics with λ� a, σs ≈ 2πa2.
(III.17)

Since in these two regimes the mean free path is substantially larger than the wavelength, the
Ioffe-Regel criterion [Eq. (III.14)] cannot be fulfilled: the diffusive to localization transition
is not achievable even for high densities (close packing of scatterers) as long as λ � a or
λ� a. In other words, in these weak-scattering regimes the photon eigenstates are extended
and the wave transport is diffusive.

However, there is an intermediate regime where the wavelength is comparable to the size of
the scatterers λ ∼ a (Mie scattering regime). In this regime, due to so-called Mie resonances
in the scattering from dielectric spheres, the scattering cross-section can become quite large,
σs ∼ a2. Then the mean free path (for ρmax ∼ 1/a3) is

k`min ∼
a

λ
∼ 1 Mie scattering with λ ∼ a, σs ∼ a2. (III.18)

This suggests that, in the regime λ ∼ a, a sufficiently strongly scattering to localize light is
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Figure III.4: Scheme illustrating different multiple scattering regimes. The Ioffe-Regel criterion
states that the mean free path ` has to be approximately equal to λ/2π (black curve) for Anderson
transition to take place. In the geometrical-optics and Rayleigh regime, scattering is always weak
and k`� 1, hence localization is not possible. However, in the intermediate frequency regime λ ∼ a,
Anderson localization can occur if the mean-free path is sufficiently reduced, which requires large
refractive index contrast between the scatterers and surrounding medium m. Here, m′ > m′′.

possible: the Ioffe-Regel criterion for localization k` . 1 could be fulfilled by minimizing the
mean-free path (Fig. III.4).

The scattering mean free path (the typical distance between two consecutive scattering events)
in the independent scattering approximation [Lagendijk 1996] is given by ` = (ρσs)−1 where
ρ is the density of the scatterers and σs is the total scattering cross section of each individual
scatterer. Note that, as the Mie scattering is anisotropic (the scattering is preferential in
forward direction), the relevant mean free path in regime λ ∼ a is the transport mean
free path `∗ which corresponds to the typical distance over which the wave has lost the
memory of its initial direction. The connection between the scattering and transport mean
free path is given by `∗ = `

1− 〈cos θ〉 , where 〈cos θ〉 represents the average cosine of the
scattering angle θ. In the case of isotropic scattering, such as Rayleigh scattering, `∗ = `.
The Ioffe-Regel criterion [Eq. (III.14)] then reads k`∗ . 1. Now, let us assume a disordered
medium as dielectric particles (spheres) of refractive index n1 randomly distributed in a
surrounding medium of refractive index n2. We can rewrite the density of those scattering
particles as ρ = f/V , where f is the volume filling fraction of the spheres and Vp = 4πa3/3
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is the volume of a sphere. Thus, `∗ can be reduced by using a sample of closely packed
scatterers and by maximizing the scattering cross section. Although one might think that
maximizing the density of the scatterers might lead to small enough `∗ for localization to
occur, that does not hold. If the density of scatterers is too high, the entire medium might
get inverted: the scatterers take the place of the surrounding medium and vice versa, making
the scattering rather weaker than stronger. Thus, not only the intermediate frequency range
is required to achieve very small `∗, but also the intermediate volume fraction of spheres,
up to f ∼ 50%. Moreover, if the filling fraction of the scatterers is too high, interparticle
correlations and near-field effects might arise [Lagendijk 1996] leading to the increase of the
mean free path [Fraden 1990,McNeil 2000]. On the other hand, the mean free path can
be reduced by maximizing the scattering cross section. The scattering cross section of Mie
resonances is larger for higher refractive index contrast between scatterers and surrounding
medium m = n1/n2. Therefore, to increase the disorder strength, i.e. to minimize `, a high
refractive index for the dielectric spheres is needed [Sheng 1986]. As is going to be further
discussed in the following subsection, apart from generating a disordered sample with an
optimum in volume filling fraction, the limitation in high refractive indices of materials
creates a difficulty in obtaining strong enough scattering such that the localization condition
k`∗ < 1 can be fulfilled.

Resonant scatterers

In the Mie scattering regime, producing such strongly scattering sample for light localization
to arise, is very challenging since one has to have control over many parameters (wave
frequency and size of the dialectric scatterer, filling fraction of scatterers, index refraction
contrast) to sufficiently minimize the mean free path and due to limitations in optimal values
of those parameters.

So far, we have been discussing scattering of light on classical dielectric objects. Another
way of reaching the localization regime for light waves may consist in using resonant point
scatterers, such as atoms, as proposed by D. Sornette [Sornette 1988]. Note that while
in the case of Mie scatterers, their Mie resonances are of geometrical origin, the resonant
scattering on atoms is due to their internal quantum structure, i.e. internal resonances. As
the wavelength of light is typically much larger than the size of an atom, λ� a, the spatial
variations of electromagnetic field over the size of the atom can be neglected, i.e. one can
assume that the electric field E is uniform over the atom. In this long wavelength limit,
the atom-photon interaction is simply given by d · E, where d is the atomic dipole moment.
Hence, atoms can indeed be considered as point dipoles, i.e. pointlike scatterers in the
long wavelength limit. Moreover, atoms have well-defined transition lines, i.e. very narrow
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resonances. For the single scattering of near-resonant and weak monochromatic light (such
that there is no inelastic scattering) on an atom in the long wavelength limit, the scattering
cross section is given by [de Vries 1998,van Rossum 1999]

σs = σ0

1 + 4∆2/Γ2 ; σ0 =



3λ2

2π vectorial light

λ2

π
scalar light,

(III.19)

where ∆ = ω−ω0 is the detuning of the light frequency ω from the atomic transition frequency
ω0 and Γ is the natural width of the atomic transition. Since σ0 ∝ λ2, the scattering cross
section of light can become very large near resonance. This means that in order to reach the
transition criterion ` ∼ λ/2π, the large density of the scatterers, as in Mie scattering regime
for classical scatterers, is not needed. For example, for λ = 780 nm and resonant scattering
with σ0 = 3λ2/2π, to achieve the critical amount of scattering k`c ∼ 1, a density ∼ 1014

atom/cm3 is needed. Another advantage in using atoms is that they are identical scatterers:
they have the same resonant frequency and linewidth of the transition (monodisperse sample).

Cold atoms as resonant point scatterers are promising candidates to study localization of light.
Cold atomic gases are well controlled and characterized systems, and their interaction with
external fields is well understood. They are favored over hot atomic vapors since in hot atomic
vapors substantial atomic motion would cause significant Doppler and collisional broadening,
dephasing and frequency redistribution which reduce the scattering cross section. With
advanced laser cooling and trapping techniques [Metcalf 1999], it could be possible to reach
sufficient densities of cold atomic gases ∼ 1014 atom/cm3 such that Ioffe-Regel criterion is
fulfilled. Moreover for weak enough electric field (linear-optics regime), the inelastic scattering
and absorption of photons is absent. Although cold atoms seem to be promising candidates
for studying coherence effects and achieving light localization, there still might be some
phase breaking mechanisms due to residual atomic motion which affect coherent transport
properties. Such mechanism is the frequency redistribution due to accumulated Doppler and
recoil frequency shifts, which will dictate how many times photon can be scattered before
being substantially shifted off resonance [Labeyrie 2006]. There is another major obstacle in
light localization with resonant point scatterers: near-field coupling that will be discussed in
the subsections below. For a further discussion of localization of light with cold atoms see
Refs. [Kaiser 2000,Kaiser 2005,Havey 2009,Kaiser 2009].
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III.2.3. Towards the observation of Anderson localization of light in 3D
disordered systems

Coherent backscattering of light

In parallel with the theoretical suggestions of strong localization of light [John 1984,An-
derson 1985], the direct experimental observation of coherent backscattering (CBS) of light
waves was achieved: a phenomenon often considered to be a precursor of Anderson (strong)
localization. It was observed by three different groups around the same time: A. Ishi-
maru et al. [Kuga 1984,Tsang 1984]; van Albada and Lagendijk [Albada 1985]; Wolf and
Maret [Wolf 1985]. As was discussed in Sec. III.1.1, the multiple coherent-wave scattering
in a disordered medium is an underlying mechanism of coherent backscattering, but this
phenomena does not require a strong disorder as the Anderson localization in 3D does.
Hence, CBS is considered to be an indicator of weak localization, in which the wave diffusion
is lowered due to interferences on time-reversed scattering paths [Akkermans 1986]. The
observation of this precursor phenomena implied that the Anderson (strong) localization of
light should be possible, and it prompted a fuelled quest of searching for Anderson localization
of light.

The mentioned observations of coherent backscattering in the 1980’s were achieved with
a disordered medium consisting of classical particles, i.e. dielectric spheres with a ∼ λ

embedded in a surrounding medium. Observations of CBS phenomena has also been achieved
in cold atoms. First experiments reporting observation of coherent backscattering of light
were done using a gas of cold Rubidium atoms (85Rb) on the F = 3 → F ′ = 4 transition
[Labeyrie 1999,Labeyrie 2000]. However, the reported enhancement factor of the intensity
in the backward direction is only ∼ 1.1, much smaller than that observed with classical
scatterers (for the systems where there is no decoherence mechanisms, the theoretically
predicted enhancement factor is 2, see Sec. III.1.1). That indicated that the interference
effects along multiple-scattering paths are more prominent for classical scatterers than for
atoms. It has soon been realized that the internal atomic degrees of freedom have a significant
influence on interference properties of light scattering: the Zeeman degeneracies of the internal
atomic structure in 85Rb (especially the degeneracy of the ground state) is responsible for
the reduction of CBS enhancement [Jonckheere 2000,Müller 2001,Müller 2002,Müller 2003].
Because of the Zeeman degeneracy of the ground state, the probability amplitudes of direct
and reversed path are generally not equal. Therefore, the imbalance of the amplitudes of
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the time-reversed paths leads to the partial loss of coherence and reduces the interference3

[Kupriyanov 2003, Labeyrie 2003]. The role of the atomic level degeneracy on coherent
backscattering has also been interpreted in terms of dephasing induced by the internal
Zeeman degrees of freedom [Akkermans 2002,Akkermans 2003]. It has been shown that
this phase breaking mechanism arises only when the ground state is degenerate (J 6= 0), i.e.
it is absent for non-degenerate ground state J = 0. This has been indeed experimentally
confirmed by the observations of coherent backscattering in a gas of cold strontium atoms on
J = 0→ J = 1 resonance transition where the factor of two enhancement of the intensity in
the backscattered direction was measured [Bidel 2002,Wilkowski 2003,Wilkowski 2004]. Since
the Zeeman degeneracy of the atomic transition affects the coherent transport and reduces
interference, it is highly advisable to use a non-degenerate transition, such as J = 0→ J = 1,
in the quest for reaching the strong localization regime where interferences play a crucial role.
Moreover, it has been observed that, when the transition is degenerate, applying a magnetic
field restores the twofold enhancement of the backscattered intensity [Sigwarth 2004]. This
came as a surprise, since it was demonstrated with classical scatterers that adding an external
magnetic field breaks time-reversal symmetry (due to Faraday rotation effect [Martinez 1994])
and causes amplitude imbalance of the direct and reversed paths leading to diminished
interference effects and reduced CBS enhancement [Lenke 2000a]. However, the role of the
magnetic field is different with atoms where the amplitude imbalance already exists due to
the Zeeman degeneracy of atomic transition. Applying a magnetic field in atomic system
lifts the Zeeman degeneracy of the states and for large enough magnetic field, when the
Zeeman sublevels are well split (� Γ), the atoms behave as an effective two-level system
with no internal degeneracy and hence, the balance of the time-reversed path amplitudes is
restored. The effect that applied strong magnetic field has on light scattering from atoms
with degenerate internal structure can be associated with the enhancement of the coherence
length. It has been also suggested that similar effect of restoring the interference might
arise by optical pumping [Kupriyanov 2004]. For further studies on CBS in cold atomic
gases, including effects of a thermal motion and non-linear medium, see Refs. [Labeyrie 2004,
Chanelière 2004b, Müller 2005,Wellens 2005,Wellens 2006, Labeyrie 2006], while for an
overview Refs. [Chanelière 2004a,Havey 2005,Kupriyanov 2006,Labeyrie 2008,Aegerter 2009].

Note that up to date, apart from experiments on coherent backscattering, there has been
no reported experiments on Anderson localization of light with cold atomic gases, only with
classical particles. Thus, the rest of the discussion in this subsection concerns experiments
realized with classical scatterers.

3Note that there is more to the story in terms of light polarization: the observed CBS enhancement
depends also on the polarization channel of the outgoing light. For more details on that, see one of the
mentioned references.
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Attempts in observation of strong localization of light

Over the years, there have been many reported experimental observations of Anderson
localization of light in low dimensional systems (1D and 2D) [Topolancik 2007,Lahini 2008,
Sapienza 2010,Schwartz 2007,Riboli 2011]. However, despite numerous studies and exper-
imental efforts to observe Anderson localization of light in a three-dimensional disordered
system, its unequivocal observation is still lacking up to this date [Skipetrov 2016b].

There have been a couple of reported observations of Anderson localization of light in
3D, but later they got revoked. In 1997, Wiersma et al [Wiersma 1997] claimed this
observation with near-infrared light (λ = 1064 nm). They used semiconductor gallium
arsenide (GaAs) powders as a strongly scattering medium. The pure GaAs is characterized
by a high refractive index (n ≈ 3.5) and extremely small absorption. By varying the grinding
time of GaAs crystals, they were able to produce samples of different average particle size
(with a finite degree of polydispersity). Their search of Anderson localization of light was
based on theoretical predictions on the static transmission of light, i.e. transmission as
a function of the sample thickness. In the diffusive regime, the transmission is described
by Ohm’s law, which predicts the decrease of transmission with the sample thickness as
T ∝ 1/L. Near the mobility edge, scaling theory of localization predicts that the diffusion
coefficient at the phase transition decreases as 1/L [Abrahams 1979] which leads to a quadratic
scaling of the transmission T ∝ 1/L2 [John 1984,Anderson 1985]. Moreover, deep in the
localized regime, where the diffusion coefficient vanishes, the transmission will decrease
exponentially as T ∝ exp(−L/ξ) [John 1984,Anderson 1985]. By decreasing the size of the
particles, and hence increasing the scattering strength, Wiersma et al observed the change
in transmission behaviour from T ∝ 1/L to ∝ 1/L2 and finally to ∝ exp(−L/ξ). As this
observed exponential decrease of the transmission was theoretically predicted for the localized
regime, they interpreted it as an evidence for Anderson localization of light waves. However,
the observations were questioned [Scheffold 1999,Wiersma 1999], since in the presence
of absorption (by possible impurities or defects in the scattering sample) the transmission
decreases exponentially T ∝ exp(−L/La), where La is absorption length. Therefore, it is hard
to discriminate between localization and absorption using static transmission measurements
since they both yield exponential decrease of the transmission with the length of the sample.
The observations of claimed light localization were finally disproved in [van der Beek 2012],
as time-of-flight experiments demonstrated that what they interpreted as the localization
signatures can indeed be attributed to a weak absorption of light due to strains and defects
in the sample resulting from grinding of GaAs.

Then during 2006-2014, in several publications [Störzer 2006,Aegerter 2006,Aegerter 2007b,
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Aegerter 2007a,Sperling 2013,Sperling 2014], Maret et al claimed the observation of Anderson
localization of visible light in 3D titania (TiO2) powder samples (with high refractive index
n ≈ 2.7), where they observed deviations from diffusive-wave transport. The time-dependent
measurements [Lenke 2000b] allowed them to distinguish between absorption and considered
localization signatures [Aegerter 2009]: while in the absence of localization, the time-resolved
transmission decay exponentially due to both scattering and absorption, deviations from this
single exponential behavior points to Anderson localization [Skipetrov 2006]. Although their
observations could not be attributed to the spurious absorption of light by the defects or
impurities, it was questioned whether the observed localization signature was confused with
nonlinear effects [Scheffold 2013,Maret 2013]. Later on, their claim on observing localization
of light was revoked [Sperling 2016], as it was demonstrated that a weak fluorescence due to
impurities in the disordered samples could explain the observed deviations from the diffusion
model.

III.2.4. Challenges in observing light localization in 3D

Let us now summarize and discuss some of the main difficulties in achieving and observing
strong localization of light with classical scatterers and atoms.

Localization signature

Firstly, one needs to know how to look for the photon localization, i.e., how to unquestionably
identify the photon localization such that other effects cannot be mistaken for the localization
signature. The experiments in 3D disordered systems mentioned above, claimed that the
localization signature was the deviation of the stationary or time-resolved light transmission
from the diffusion theory. However, it turned out that the transmission measurements
can only indicate localization if the spurious effects, such as fluorescence and absorption,
can be measured independently and if they do not overshadow the localization effects on
transmission. Therefore, we need to look for a more reliable localization signature. This is
precisely what we discuss in the following sections: we demonstrate an unambiguous signature
of light localization based on the statistical properties of the light, particularly the intensity
fluctuations [Cottier 2019b].

Disorder strength

Furthermore, the question is where to look for the light localization, i.e., what disorder (or
scattering) strength is sufficient for the states to become localized. The measure of the
disorder strength is given by the product of the mean-free path of the photon propagating in
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the scattering medium ` and the wavevector k. According to Ioffe-Regel criterion, localization
takes place when k` < k`c ∼ 1. However, k`c ∼ 1 represents the qualitative measure of
the critical value of the mean free path for the phase transition from extended to localized
states; the exact critical value k`c is not known and it is very conceivable that it is unique
for the specific type of wave and the disordered sample. Related to this is also the challenge
in achieving strong enough disorder, i.e. in minimizing sufficiently the mean free path for
localization to occur. The mean-free path, as discussed in the previous section, depends on
many parameters (density of the scatterers, wavelength, as well as size of the particle and
index of refraction contrast in the case of classical scattering particles). Finding an optimum
in these parameters to minimize the mean-free path sufficiently for the phase transition to
take place is not an easy task, especially since an underlying physical mechanisms might arise
that would have an opposite effect, i.e. that would lead to the increase of the mean-free path
instead of further minimizing it. An example for that is the one of the tightly packed Mie
scatterers where the further increase of their density is not a simple way of decreasing the mean
free path since at very high densities the correlations between the scatterers and near-field
interactions arise, which prevent the further reduction of the mean free path [Lagendijk 1996].
For resonant point scatterers like atoms, such very high densities as for Mie scatterers are not
required to have k` ∼ 1, due to their huge near-resonance scattering cross section. However,
near-field interactions have an important effect on atoms as well, as it will be discussed below.
A straightforward way of increasing the scattering strength, i.e. of reducing the mean-free
path for photons scattered from Mie scatterers, would be to increase the refractive index
contrast between the scattering particles and surrounding medium. However, the range of
refractive indices of typical optical materials is not very broad: from n ≈ 1 in the air up to
n ≈ 4 for germanium [Andreoli 2021]. Therefore, the narrow range of refractive indices does
not allow to lower the photon mean-free path immensely. For example, in the experiments
mentioned above with titania (n ≈ 2.7) and gallium arsenide (n ≈ 3.5) powders compressed
to high densities, the minimal mean-free path that was acquired was down to kl ≈ 3. Even
in the failed attempt to observe the light localization using the germanium powder (n ≈ 4),
the minimal obtained mean-free path was kl ≈ 3 [Gómez Rivas 2001]. However, this does not
mean that the experiments on light localization with classical scatterers of high refractive
index reached a dead end. Currently unreached low k` could be obtained by, for example,
progress in disordered sample production such that the degree of polydispersity is lowered.

Near-field interactions

In the case of a disordered medium consisting of classical scatterers, many studies have
shown that upon increasing the density, the positional correlations among the scatterers



III.2. Strong localization of light 115

start to have a significant influence on photon transport: spatial correlation among scatterers
yields phase correlation between scattered waves and weakens the effective scattering cross
section below that of an individual scatterer, and therefore increases the mean-free path4

[Fraden 1990,Saulnier 1990]. Apart from short range correlations, in the case of very tightly
packed dielectric particles, such that the particles are in the near field of each other, near-
field effects arise which reduce the scattering strength and increase the photon mean-free
path [McNeil 2000,Peng 2007,Sapienza 2007,Liew 2011,Rezvani Naraghi 2015]. As it has been
discussed in Ref. [Rezvani Naraghi 2015], these near-field effects originate from short-range
evanescent wave coupling of adjacent scatterers (non-radiative energy transfer between the
scatterers): the near-field coupling between particles can be seen as an opening of new
transmission, optically connected, channels. Arising of additional transport channels of
non-radiative energy transfer due to near-field interaction among the scatterers, effectively
increases the photon mean-free path. It has been showed that the near-field effects can be taken
into account in the photon transport description by considering that the scattering particle
is surrounded by an effective homogeneous dielectric medium [Aubry 2017,Busch 1996].

The detrimental character of near-field interactions on Anderson localization of light has
been reported in the case of resonant point scatterers [Skipetrov 2014]. S. E. Skipetrov and I.
M. Sokolov have numerically studied the regimes of light transport considering scalar and
vectorial near-resonant light waves propagating in a random discrete 3D system of point-like
particles with resonance transition J = 0→ J = 1. They based their analysis on applying the
scaling theory, discussed in Sec. III.1.2.1, on the eigenvalues of the Green’s matrix (analogous
to the one introduced in the previous chapter) from which they obtained the Thouless number
gTh. They have shown that with the scalar light waves, for which the near-field dipole-dipole
interaction term is absent, the phase transition from extended to localized states, i.e., mobility
edges occurs at gTh ≈ 1 [Skipetrov 2016a]. On the other hand, when they assumed the
vectorial nature of light, for which the near-field dipole-dipole interaction term is present,
they did not identify any mobility edge corresponding to the phase transition (and with that
they did not obtained gTh < 1 or the β(gTh) < 0 branch of the scaling function [Eq. III.7])
suggesting that Anderson localization of vectorial light cannot be achieved [Skipetrov 2014].
Similar results were also obtained by [Bellando 2014]. Later on, they demonstrated that
by applying a strong magnetic field, which significantly splits the Zeeman sublevels, the
Anderson localization of vectorial light is restored, as the strong magnetic field reduces the
contribution of the near-field dipole-dipole interaction terms [Skipetrov 2015]. The fact that
the photon localization is not present for resonant point scatterers in the vectorial wave model

4Positional correlations (short range order) can also lead to the enhancement of the effective scattering
cross section as it has been showed in experiments in colloidal liquids [Rojas-Ochoa 2004b]
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is attributed to the near field dipole-dipole interactions. The reason is the following. The
propagating electromagnetic waves are transversal by nature, however the excitations from
one atom to another are not only transferred by propagating waves, but also non-radiatively
through near field dipole-dipole interactions which arise due to the longitudinal component of
the radiated electromagnetic field. These near-field interactions open additional non-radiative
energy transport channels. The importance of near-field interactions in the excitation transfer
increases with increasing density ρ of the scatterers: while they are negligible in dilute samples
ρλ3 � 1, non-radiative channels become essential for very small inter-particle distances, i.e.
high densities ρλ3 & 1 [Nieuwenhuizen 1994]. Therefore, the opening of these non-radiative
transport channels due to the near-field interaction prevents the diffusion coefficient to vanish
and thus leads to the absence of light localization. That the near-field interactions are indeed
preventing the light localization has been furthermore corroborated by considering elastic
waves which have propagating longitudinal component and hence, near-field interaction and
non-radiative transport are not induced. The results based on the scaling analysis showed the
existence of the localized regime, similar to the scalar case for light waves [Skipetrov 2018b].

Moreover, Skipetrov and Sokolov presented the phase diagram for the scalar [Skipetrov 2018c]
and vectorial models [Skipetrov 2018a], showing the critical light frequencies for which the
phase transition occurs as a function of the density of the sample of the point-like particles.
They identified that the critical density at which scalar light waves exhibits the Anderson
transition is ρcλ

3 ≈ 20, while for the vectorial model with a strong magnetic field, the critical
density is ρcλ

3 ≈ 25.

As it was discussed above, the near-field effects can also impact the transport of light in
disordered medium consisting of classical scatterers by effectively increasing the photon mean
free path. Although it had been elusive whether the conclusion of absence of Anderson
localization of vectorial light for resonant point scatterers can be readily extended to classical
scatterers, the recent study indeed suggests so, i.e. that the near-field coupling may be
responsible for the still unobserved Anderson localization of light with classical scatterers
[Cobus 2021]. Moreover, recently it has been studied how to decrease the impact of longitudinal
electromagnetic fields in the case of light scattering from dielectric spheres [Escalante 2017],
which opens a way of observing strong localization of light with classical scatterers in the
case that non-radiative transport channels prohibit it.
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III.3. Statistical signature of strong localization of light in
3D

As mentioned, in the previous attempts to observe the light localization, the experimental
observable of Anderson localization of light was assumed to be found in the decay of
stationary [Wiersma 1997] or time-resolved transmission [Störzer 2006] as deviations from
classical diffusion. However, static measurements of transmission are not promptly suited for
observing effects of strong localization of light since they do not allow to distinguish between
absorption and localization of light [van der Beek 2012]. Time-resolved measurements allow
that. However, deviations from classical diffusion in time-resolved measurements can be
a signature of strong localization only if there are no other spurious effects emerging that
could explain the deviations and overshadow the localization, such as the fluorescence due to
impurities in the disordered sample [Sperling 2016].

Recent numerical work [Skipetrov 2016c], in the framework of cold atoms as resonant point
scatterers, demonstrated that the late-time decay dynamics of the atomic system, with
and without applying strong magnetic field, exhibits slower and faster decay, respectively.
This suggested that the localization signature could be in the prolonged decay of the
scattered intensity at very late times, since magnetic field restores the strong localization
of light in the system of resonant point scatterers [Skipetrov 2015]. However, in our recent
work [Cipris 2021b], that was described in chapter 2, we showed that near-field terms are
detrimental as well for the longest-lived subradiant states. Since the magnetic field reduces the
near-field interaction, it is questionable whether this prolonged decay stems from magnetic-
field resurrected subradiant states or localized states. Whether the localization signature
could be found in the late-time decay dynamics is still an open question. Nevertheless, to
distinguish Anderson localization from subradiance in the late-time decay dynamics, the
analysis based on scaling theory [Abrahams 1979] including different sample sizes, atom
number, detunings etc., would have to be done.

Another signature of light localization can be found in the speckle statistics, i.e. variance of
the transmitted intensity as demonstrated in [Chabanov 2000] for microwaves in quasi-1D
disordered sample. Prompted by that research, we numerically studied the speckle statistics
of light waves in the framework of cold atoms as disordered medium. Here we will present
our results that indicate that the unambiguous signature of localization of light in 3D can
be indeed identified in the large intensity fluctuations. Such statistical signature of light
localization could be relatively easily measured in the experiments and it does not require
the exhaustive scaling analysis.
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III.3.1. Thouless number and conductance

In Sec. III.1.2.1 we have introduced the Thouless number gTh = ∆ω/δω, the ratio between
the typical linewidth of an eigenmode ∆ω and the average eigenmode spacing δω, which
can be interpreted as the average number of eigenmodes in a frequency width ∆ω. The
linewidth of an eigenmode (or simply mode), which can be interpreted as the leakage rate
of energy from the sample, is closely linked to the sensitivity of modes to changes at the
boundary. When the wave is localized within the sample, the amplitude squared of the
wave is exponentially small at the boundary and the mode is only weakly coupled to the
environment. The mode lifetime is then long and its linewidth correspondingly narrow, so
that, ∆ω < δω, i.e. gTh < 1. On the other hand, when the wave is diffusive, modes extend
throughout the medium and they couple easily to their surroundings; the energy readily
leaks out of the sample and levels are consequently short lived with linewidths greater than
the typical spacing between neighbouring modes such that the modes overlap, ∆ω > δω, i.e.
gTh > 1. Thus, the Thouless number, which represents the spectral mode overlap, can be
used to distinguish between extended and localized waves, with the localization threshold
expected to take place at gTh = 1. However, gTh is not an easily measured quantity (it has
been measured only recently [Wang 2011]). Nevertheless, since it characterizes transport
properties, it can be related to easily measured transport quantities. In the case of electron
transport, gTh has been equated to the dimensionless conductance [Eq. (III.3)] via Einstein’s
formula [Thouless 1977]. The connection between the Thouless number and the conductance
can also be made for classical waves, since the dimensionless conductance can be defined via
the Landauer relation as g = 〈∑a,b Tab〉 = 〈T 〉 [Landauer 1970], where Tab is the transmission
coefficient between an incoming channel a and outgoing channel b and T is the sum of
transmission coefficients over all incoming and outgoing channels, which we will refer to as
transmittance. Thus, this relation, which expresses the equivalence between the dimensionless
conductance and transmittance, provides an analogy between quantum and classical waves.
Moreover, for diffusive waves, g = 〈T 〉 ∝ M

`

L
[Akkermans 2007,Lagendijk 1996], where `

is the scattering mean-free path, L is the size of the sample and M is the total number
of propagation modes (transport channels) that the sample supports. This relation allows
us to view the dimensionless conductance as being related to the sum of contributions of
M independent scattering channels each giving on average a contribution of order `/L.
Moreover, the interpretation of dimensionless conductance based on transmission eigenvalues
was given in terms of open and closed channels [Imry 1986]: most transmission eigenvalues in
a disordered system with `� L are exponentially small (closed channels), however a fraction
`/L of the total number M of transmission eigenvalues is of order unity (open channels).
Only the open channels Meff = M`/L contribute effectively to the conductance. Thus, the
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dimensionless conductance can be interpreted as the number of open channels or the effective
number of active propagating channels Meff . As the mean-free path decreases for a given
L, the effective number of propagating modes and hence, the conductance are decreasing.
As the conductance essentially represents a number of diffusive channels in the sample, the
localization is expected to take place when its value falls below unity, which is in agreement
with Thouless criterion for localization threshold gTh = 1. In the localized regime the photon
transport is exponentially suppressed, as only the tails of the localized wave intensity can
leave the sample. Hence, for localized waves g = 〈T 〉 ∝ exp(−L/ξ) < 1 with ξ < L, where ξ
is the localization length.

III.3.2. Speckle statistics: intensity distribution and intensity fluctuations

Let us now consider the intensity in the transmission when the disordered sample is illuminated
by a laser beam. As a result of multiple scattering from disordered medium a complex
interference pattern of intensity is produced consisting of many irregularly distributed bright
and dark spots known as speckle [Goodman 2009] (see Fig. III.5). This speckle pattern
is a result of interferences between light waves multiply scattered on different paths. Each
configuration of scatterer’s positions produces its own speckle pattern. We can write the
intensity detected at point r, as I(r) = 〈I〉+ δI, where 〈I〉 is the average intensity and δI is
the fluctuating part of the intensity. This fluctuating part, which is due to interferences, is in
fact responsible for appearance of speckle spots, i.e. it is the intensity speckle pattern.

Deeply in the diffusive regime (g � 1), under the assumption that the photon scattering
paths are uncorrelated, the speckle intensity has an exponential distribution, which is known
as Rayleigh distribution [Goodman 2009]

P (Î) = exp(−Î), (III.20)

where Î = I/〈I〉 is the intensity normalized by its average value. The Rayleigh distribution
obeys

σ2
Î

= 〈δI
2〉

〈I〉2
= 1, (III.21)

where

σ2
Î

= 〈δI
2〉

〈I〉2
= 〈I

2〉
〈I〉2

− 1, (III.22)
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is the variance of the normalized intensity Î with δI = I − 〈I〉. The Eq. (III.21) is the well-
known Rayleigh law which states that the relative fluctuations of the intensity (normalized
by its average value) are of order unity.

As mentioned, Rayleigh law assumes that the correlations between different scattering paths
in the medium are absent. However, the interferences between random scattering paths in
disordered medium lead to such correlations. As the conductance decreases, the interferences
become more substantial yielding enhanced degree of correlations. These correlations are
encoded in the intensity distribution, i.e. interferences modify the intensity distribution. By
including the corrections due to correlations between different random paths in the medium,
it has been shown that the intensity distribution is given by5 [Nieuwenhuizen 1995, van
Rossum 1999]

P (Î) =
∫ i∞

−i∞

dx

πi
K0(2

√
−xÎ) exp (−Φc(x)) , (III.23a)

Φc(x) = g
∫ 1

0

dy

y
log

(√
1 + xy

g
+
√
xy

g

)
, (III.23b)

with K0 the modified Bessel function. Note that this intensity distribution function depends
on the dimensionless conductance g. The Rayleigh distribution is recovered for g � 1 (and
as long as g � Î). Moreover, note that this intensity distribution is derived considering the
diffusive regime far from localized regime, as only the leading corrections due to correlations
were considered, in terms of interferences of loopless scattering paths. The interferences on
looped paths that are becoming more and more significant as the localization threshold is
being approached, and especially in the localized regime, are expected to further modify the
intensity distribution. However, this intensity distribution function characterized well the
localized microwaves in quasi-1D disordered system [Chabanov 2000], as well as the localized
regime for ultrasound in a 3D scattering medium [Hu 2008]. Hence, we are also going to
turn to this intensity distribution function to extract the dimensionless conductance from
our numerically obtained intensity distributions.

Furthermore, as the interferences between random scattering paths in a disordered medium
modify the intensity statistics, consequently the variance of the normalized intensity [Eq.
(III.22)] will exhibit deviations from Rayleigh law, i.e. from unity [Eq. (III.21)]. For a
disordered waveguide, the variance of the normalized intensity, when taking into account the
correlation corrections, is given by [Akkermans 2007]

5For an incoming beam with a Gaussian profile.
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σ2
Î

= 1 + 4
3g + 2

15g2 . (III.24)

The first term expresses the Rayleigh law and corresponds to uncorrelated channels, while
the following two terms describe correlations between channels. Note that Eq. (III.24)
is essentially derived for the diffusive regime when taking into account the corrections
due to interferences on loopless scattering paths. Nevertheless, it give us an insight into
how the variance is modified by the interferences: it implies that the relative intensity
fluctuations are of order unity deeply in the diffusive regime (g � 1), while they become
large in the localized regime (g < 1). In addition, the first term of Eq. (III.24) is known
as the short-range correlation, while the second and third term as long- and infinite-range
correlations, respectively. In fact, these short-, long- and infinite-range correlation terms
are often defined as the leading terms in the variance of the intensity, total transmitted
intensity and conductance, respectively, as each of the correlation terms have higher order
corrections in terms of 1/g and 1/g2 [van Rossum 1999]. For example, the weak-localization
correction would yield 1/g contribution to the short-range correlation. Such corrections
were studied in [Garcia 1993]. Moreover, the strong deviations of the normalized intensity
variance from unity were observed in microwave quasi-1D experiments in the localized regime,
indicating that the variance of the intensity is a mean to distinguish between extended-wave
and localized regimes [Chabanov 2000].

III.3.3. Numerical model

As in the previous chapter, we use the coupled-dipole model, scalar and vectorial, to obtain
the light intensity scattered by an ensemble of atoms. Here we will briefly reintroduce the
coupled-dipole model and describe the numerical procedure, as well as the atomic sample
(Fig. III.5).

We consider an ensemble of N identical, motionless, point-like atoms located at random
positions rj, j = 1, ..., N , within a given sample geometry and driven by an external
monochromatic electric field. Like in the previous chapter, we consider the low-intensity limit
of the driving field, i.e., linear optics regime. In the vectorial model, we consider 4-level atoms
with the ground state |g〉 = |Jg = 0,mg = 0〉 and the triple-degenerate6 excited state |e〉 with
substates |eme〉 = |Je = 1,me = 0,±1〉, coupled to the electric field by the transition dipole
moment. The substates of excited state |Je = 1,me = 0,±1〉 correspond to the projection
me = 0,±1 of total angular momentum Je on quantization axis z. On the other hand, in the

6The discussion of the vectorial coupled-dipole model when the degeneracy of the excited state is lifted by
applying a strong magnetic field is in Sec. III.3.5.
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scalar model the polarization of the electric field is discarded and atoms are considered to be
"pure" two-level point scatterers without Zeeman internal structure. The scalar coupled-dipole
equations (CDEs) for the amplitude of the atomic dipole βj are given by

dβj(t)
dt =

(
i∆0 −

Γ0

2

)
βj(t)−

dEL
~

exp(ikL · rj)−
Γ0

2
∑
m 6=j

G(rjm)βm(t) , (III.25a)

with G(r) = exp(ik0r)
ik0r

, (III.25b)

while the response of the system in the vectorial model is given by the following set of
coupled-dipole equations for amplitudes βζj of atomic dipole j on transition to me = ζ:

dβζj (t)
dt =

(
i∆0 −

Γ0

2

)
βζj (t)− i

d

~
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2
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with Gζ,η(r) = 3
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(k0r)2

]}
. (III.26b)

In the above scalar and vectorial CDEs, j,m ∈ J1, NK, d is the electric-dipole transition
matrix element considered to be equal for every atom and every transition, Γ0 is the decay
rate of an isolated, individual atom, ∆0 = ωL − ω0 is the detuning of the frequency of the
incident electric field ωL with respect to the atomic resonance ω0, kL is the wavevector of
the incident field with kL ≈ ω0/c = k0 and rjm = rjmr̂jm = rj − rm is the distance vector
between atoms j and m. In the vectorial CDEs, δζ,η is Kronecker delta, r̂ζ = êζ · r̂ is the
component of the unit vector r̂ = r/r along the direction ζ = 0,±1 and ζ, η ∈ (±1, 0) are
the spherical-basis vector components whose unit vectors are ê±1 = ∓1/

√
2(êx ± iêy), and

ê0 = êz.

Let us recall that the first term of (scalar and vectorial) coupled dipole equations describes the
dynamics of an individual atom, the second one describes the interaction of an atomic dipole
with the incident electric field, while the third term is the atom-atom (i.e. dipole-dipole)
coupling term which describes the interaction of the atomic dipole with the electric field
radiated from other dipoles. This third term takes into account that each atomic dipole is
affected by other dipoles via the radiation field that they produce: coupling between atom i

and atom j is mediated by the excitation transfer from atom i to atom j. Therefore, this third
term accounts for multiple scattering and collective effects. The dipole-dipole interaction
is encoded in the dyadic Green’s function: the scalar Green’s function G(rij ≡ ri − rj)
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Figure III.5: Scheme of the numerical model. Atoms are considered to be point-like dipoles,
randomly positioned within the given 3D sample geometry with uniform density. In the scalar
model, the atoms are treated as two-level resonant scatterers with resonance frequency ω0. Contrary
to the scalar model, the internal (Zeeman) level structure and polarization of light are considered in
the vectorial model, where we assume ground state |Jg = 0〉 and excited state |Je = 1〉 of atoms.
The excited state is triple degenerate with substates |Je = 1,me = 0,±1〉. Atoms are driven by an
external electric field which is considered to be a Gaussian beam with waist smaller than the size of
the sample. The frequency of the external electric field ωL is detuned by ∆0 = ωL − ω0 from the
atomic resonant frequency ω0. Our focus is on the statistics of the transmitted intensity, which has
a characteristic speckle pattern. We detect the intensity radiated in a given direction in the far-field
limit outside of the sample. To obtain the variance of the transmitted intensity we average the
intensity over many configurations of atomic positions.
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represents the electric field at position ri radiated from dipole j located at rj, while the
vectorial Gζ,η(rjm) corresponds to the ζ component of the electric field at position ri due
to the dipole at rj, oriented along the basis vector êη. The scalar Green’s function [Eq.
(III.25b)] contains only the far-field coupling term ∝ 1/r (radiative coupling; radiative energy
transfer), while in the vectorial case [Eq. (III.26b)] the coupling is provided by both far-field
1/r and near-field terms 1/r3 (non-radiative coupling; non-radiative energy transfer). Note
that the electric field radiated by atomic dipoles is purely transversal in the far-field limit,
while in the near-field regime, the electric field has as well a longitudinal component. The
expressions for the electric field scattered by atomic dipoles are given by Eqs. (II.4) in the
vectorial model and (II.9) in the scalar model.

Here we are not interested in the decay dynamics of the atomic system after the switch-off of
the incident field, as it was the case in the previous chapter, but in the steady-state light
transmission. Therefore, we obtain amplitudes of the atomic dipoles in the steady state
from the scalar and vectorial CDEs [Eqs. (III.25a) and (III.26a)] by imposing dβj,st

dt = 0 and
dβζj,st

dt = 0, respectively [see Eq. (II.11) for the expression of steady-state CDEs]. We use those
steady-state amplitudes computed for each atomic dipole j (and for each component ζ in
the vectorial model) to obtain the electric field at position R = Rn̂ radiated by all atomic
dipoles. Then, the intensity at observation point R = Rn̂ in the far-field limit reads:

I(R) ∝
∣∣∣∣∣∣EL(R) exp(ikLR)− i dk

3
0

4πε0
exp(ik0R)
ik0R

∑
j

βj,st exp(−ik0n̂rj)
∣∣∣∣∣∣
2

(III.27)

in the scalar couple-dipole model, and

I(R) ∝
∣∣∣∣∣∣EL(R) exp(ikLR)− i dk

3
0

4πε0
exp(ik0R)
ik0R

∑
j

∑
ζ,η

βηj,st(δζ,η − n̂ζn̂∗η) exp(−ik0n̂ · rj)
∣∣∣∣∣∣
2

(III.28)

in the vectorial model, where n̂ζ = êζ · n̂ the component of the unit vector n̂ = R/R along
the direction ζ = 0,±1. Note that the first term in the above expressions corresponds to the
incident electric field, while the second one to the electric field radiated by the atomic dipoles
in the sample.

As we want to avoid strong single-scattering contribution from the boundary of the sample
(strong single-scattering, which obeys Rayleigh statistics, can overshadow the effect of local-
ization on transmitted light statistics), instead of using a plane wave, we use a Gaussian beam
whose waist w0 is smaller than the size of the sample L: w0 = L/4. For a monochromatic
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Gaussian beam propagating along the z axis (kL = kLẑ), the electric field amplitude at
R = Rn̂ = Xx̂ + Y ŷ + Zẑ position is given by

EL(R) = EL(X, Y, Z) = E0
w0

w(Z) exp
(
−X

2 + Y 2

w(Z)2

)
exp

[
i

(
kL
X2 + Y 2

2R(Z) − arctan Z
zR

)]
,

(III.29)

where E0 = EL(0, 0, 0), w(Z) = w0

√
1 + (Z/zR)2 is the beam radius at position Z, w0 =

w(0) is the beam waist corresponding to the minimum beam radius, R(Z) = Z [1 + (zR/Z)2]
is the radius of curvature of wavefronts and zR = kLw

2
0/2 is the Rayleigh range which

determines the length over which the beam can propagate without diverging substantially.
Note that in the scalar model the incident electric field is given by Ein(R) = EL(R) exp(ikLR),
while in the vectorial model we take into account the polarization of the electric field ε̂L so
that the incident electric field is Ein(R) = EL(R) exp(ikLR) = EL(R)ε̂L exp(ikLR).

We consider that the atoms are randomly distributed inside of the cube of side length L

or inside of the cylinder of diameter L and height L. Furthermore, we consider a uniform
density distribution, so that the density of atoms is ρ = N/L3 and ρ = 4N/(πL3) for cubic
and cylindrical atomic sample, respectively. Note that in the case of cylindrical sample,
we assume that the axis of the cylinder is along the propagation axis of the electric field.
Moreover, contrary to the numerical study in the previous chapter, here we do not impose
any minimal distance, i.e. exclusion volume on atom positions.

Furthermore, we compute the transmitted intensity around the forward direction, at a given
angle ({θobs, φobs} = n̂) from the laser propagation axis, such that we avoid the Mie-scattering
lobe (∝ 1/k0L; which is due to the finite size L of the disordered medium, i.e. the atomic
sample). Moreover, to study the statistics of the transmitted light, we compute the intensity
at the given observation point for many spatial configurations (i.e. realizations) of atomic
positions. Note that computing the intensity for different positional configurations implies
that only the atomic positions, within the given sample geometry and uniform density, are
different from one realization to another, while all the other parameters of the system are the
same.

III.3.4. Signature in the scalar coupled-dipole model

Let us first discuss the scalar-wave case where the internal Zeeman structure, as well as
the light polarization, are discarded [Eq. (III.25a)]. The atoms are uniformly distributed
within a cube of a side length k0L = 32.4. The transmitted intensity is obtained from Eq.
(III.27) for the observation angles (θobs, φobs) = (75◦, 0◦) from the laser axis ẑ in the far-field
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at distance R = 250L from the sample. Moreover, the radiated intensity is obtained for many
realizations of random atomic positions.

In the very dilute limit of an atomic sample, i.e. the limit of a weakly disordered sample
corresponding to the diffusive regime, where the photon scattering paths are uncorrelated,
the transmitted intensity has a probability distribution function that obeys Rayleigh law and
its variance σ2

Î
is equal to one. Such behaviour is illustrated in Fig. III.6(a) for an atomic

sample with a low density, below the localization threshold (ρ < ρc ≈ 20/λ3). However, for
higher densities above the localization threshold, deviations from Rayleigh law appear, as
can be observed in Fig. III.6(b). Here, the numerically obtained intensity distribution is
well described by the intensity distribution given by Eq. (III.23) which takes into account
correlations. The dimensionless conductance g is obtained from fitting the numerically
obtained intensity probability distribution to Eqs. (III.23). In the diffusive limit, i.e. in
the absence of Anderson localization, the extracted conductance yields arbitrarily large
values g � 1, corresponding to the divergent number of active propagating optical modes,
i.e. diffusive channels (Sec. III.3.1). However, for higher densities and particular laser
detunings (the detuning dependence will be discussed below) small values of g, close to
unity (down to g = 0.27 ± 0.02 as for ρ = 44/λ3, ∆0 = 1Γ0), are obtained, implying the
emergence of light localization. Prompted by the research based on eigenvalue scaling analysis
which identified the phase transition in a given range of densities (ρλ3 ' 20) and laser
frequencies (∆0 ∼ 1Γ0) [Skipetrov 2018c], we monitor the dimensionless conductance g
and the normalized intensity variance σ2

Î
in the range of densities ρλ3 = [5 : 44] and laser

detunings ∆0 = [−2, 2]Γ0. As presented in Fig. III.7(b), the conductance collapses from
very large values in the diffusive regime to low ones, close to unity, in a V-shaped area
corresponding to ∆0 ∼ 1Γ0 and ρ & 20/λ3. This V-shaped area, i.e. its corresponding ρλ3

and ∆0 for which we observe the collapse to small values of g, thus implying the localization,
is in very good agreement with the localization phase diagram obtained from the eigenvalue
scaling analysis (see Fig. 3 in Ref. [Skipetrov 2018c] where the mobility edges are identified).
Moreover, in the diffusive regime for which the Rayleigh intensity distribution was observed
with large g � 1, we obtain σ2

Î
≈ 1. On the other hand, the collapse of the dimensionless

conductance to small values close to unity is accompanied by a significant increase of the
intensity variance [see Fig. III.7(a)]: the parameters (ρλ3,∆0) for which low values of g are
found, correspond to increased intensity fluctuations, i.e. strong deviations of σ2

Î
from unity,

as expected (for example, the obtained intensity distribution presented in Fig.III.6(b) with
g = 0.27 corresponds to σ2

Î
≈ 6.8).

The V-shaped area, for which we observe low values of g and correspondingly strong deviations
of σ2

Î
from unity, corresponds to the Ioffe-Regel criterion for localization k0` < k0`c ∼ 1
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Figure III.6: Probability distribution function of the normalized intensity Î = I/〈I〉 in (a) the
diffusive regime (ρ = 5/λ3, ∆0 = 0, g � 20) and (b) the localized regime (ρ = 44/λ3, ∆0 = 1Γ0,
g = 0.27 ± 0.02). The black dashed curves correspond to Rayleigh intensity distribution [Eq.
(III.20)], the blue crosses correspond to the numerical results obtained from Eq.(III.27) for 104

realizations and the red dash-dotted curve was computed from Eq. (III.23). Intensity is detected at
the angle (θ, ϕ) = (75◦, 0◦) from the laser propagation axis, from a system of size kL = 32.4 and (a)
N = 684 or (b) N = 6066. The results were obtained by Florent Cottier [Cottier 2019a].

(a)

(b)

Figure III.7: Phase diagram for the (a) variance of the intensity σ2
Î
and (b) conductance in the

(∆0/Γ0, ρλ
3) plane. Simulations are realized for a homogeneous cubic cloud of side length kL = 32.4,

using 800 realizations and an observation angle θ = 75◦. The value of the conductance is saturated
at the arbitrary value of 20, as it diverges for non-localized samples. The black curve corresponds
to Eq. (III.30) for α = 0.5. The results were obtained by Florent Cottier [Cottier 2019a].
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[Skipetrov 2018c]. Indeed, when the Lorentz-Lorenz shift (local-field effect) is accounted for
in the evaluation of the mean-free path, it leads to the following critical laser detuning ∆c to
meet the criterion k0` < α [Kaiser 2000,Kaiser 2009]:

∆c = ρλ3

8π2 ±
1
2

√
3αρλ

3

4π2 − 1. (III.30)

We find that the threshold k`c = 0.5 provides a good approximation of the critical region
where we observe large intensity variance (see Fig. III.7(a)), confirming the validity of the
Ioffe-Regel criterion (α = 0.5 is of order unity) as an indicator of the localization transition
in our system. This also gives an insight into the existence of two mobility edges (laser
frequencies) for a given density where the localization transition takes place: for a given ρλ3,
there are two laser frequencies for which the same critical photon mean free path is obtained
[Eq. (III.30)].

The very good agreement between the results of the scaling analysis [Skipetrov 2018c] and the
present ones suggests that the intensity variance is a suitable observable of the localization
transition, and that the changes in the conductance g are indeed associated with that
transition. Note that the variance of the intensity falls back to unity within the V-shaped
area characterized by large intensity variance. This implies that the strong deviation of
intensity variance is an indicator of the transition from diffusive to localized regime, rather
than the localized regime itself (this will be discussed more in Sec. III.4, together with the
fact that in the localized regime far from the transition we also observe an increase of the
dimensionless conductance).

Moreover, to circumvent the possible role of finite-size effects, it has been checked that our
results hold both at fixed system size kL while varying N , and at fixed atom number N
while varying kL. Similar results were as well obtained by using a cylindrical geometry of
the atomic sample, instead of cubic [Cottier 2019a].

Note that the results presented in this section (Figs. III.6 and III.7) with scalar light waves
were obtained by Florent Cottier. For more details about the intensity statistics with the
scalar coupled-dipole model, see Ref. [Cottier 2019a].

III.3.5. Localization signature in vectorial coupled-dipole model: absence
and recovery of AL with strong external magnetic field

We now turn our attention to Anderson localization of vectorial light in a disordered medium
consisting of randomly positioned atoms inside of a cylinder (of diameter L and length L)
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with a uniform density ρλ3 = (2π)34N/π(k0L)3. As it was discussed previously, we solve the
set of 3N vectorial coupled-dipole equations, given by Eq. (III.26) with dβζj,st

dt = 0, for βζj in
the steady state. Then we use those steady-state dipole amplitudes to obtain the transmitted
intensity in the far-field limit (R � L), which is given by Eq. (III.28). The intensity is
collected at observation angle θobs = 75◦ and distance of observation R = 250L. In addition
to averaging the radiated intensity over many configurations of atomic positions, we have
also computed the average over azimuthal angles φ (considering the azimuthal symmetry of
a cylindrical sample) for each realization to obtain better statistics for a given number of
position realizations. We have checked that this additional averaging over a given number
of azimuthal angles, which corresponds to averaging over many speckle spots of a single
configuration of atomic positions, does not alter the result. We studied the intensity statistics
in a density range ρλ3 = [10 : 1 : 65] with detunings ∆0 = [−2 : 0.05 : 2] for each ρλ3.
The resulting phase diagram of the variance of the normalized intensity σ2

Î
for different

detunings of the incident laser beam ∆0 and densities of the atomic sample ρλ3 is shown in
Fig. III.8. As can be seen, σ2

Î
≈ 1 for all considered detuning and densities: we do not obtain

significant deviations of intensity variance from unity, as is the case with the scalar model (Fig.
III.7), which indicates that there is no strong localization of light in 3D with the vectorial
coupled-dipole model. This is in agreement with theoretical works based on the scaling
analysis [Skipetrov 2014,Bellando 2014], where it has been shown that the light localization
is absent with the vectorial model due to the near-field dipole-dipole interaction, which opens
up additional non-radiative photon transport channels [Skipetrov 2014,Skipetrov 2015]. The
results shown in Fig. III.8 have been obtained with σ+ circularly polarized incident laser
beam (ε̂L = ê−1) and with fixed sample size k0L = 21.5 while the number of atoms is varied.
It has been checked that we obtain the same result with other polarizations of incident beam:
σ− circularly polarized (ε̂L = ê+1) and linearly polarized along ẑ axis (ε̂L = ê0), as well as
with a fixed number of atoms and varying sample size.

The absence of localized states in the vectorial model can also be seen in the eigenvalue
distribution with the inverse-participation ratio (IPR) of modes (see Sec. II.1.2 for discussion
of computing eigenvalues and IPR), as shown in Fig. III.9. By comparing low- and high-
density eigenvalue distributions of the scalar model, we see that at high density the narrow
tail of modes of very long lifetimes (Γn/Γ0 � 1) and large IPR appears in the bottom of
the distribution around ωn − ω0 ≈ 1Γ0, which is absent at low density. Let us recall that
the inverse participation ratio (IPR) is a measure of 1/Nn, where Nn signifies the number of
atoms that participate to the mode. Hence, for extended states for which Nn � 1 participate
in, IPR � 1, while in the case of localized states which are "shared" among few atoms, IPR
has a non-vanishing finite value. Except for localized modes, modes corresponding to super-
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Figure III.8: Variance of the normalized transmitted intensity σ2
Î
as a function of the density

of the cylindrical atomic sample (of length L and diameter L) ρλ3 and the laser detuning ∆0 =
ωL − ω0 in the vectorial model, where we consider |Jg = 0〉 ground state and three-fold degenerate
|Je = 1,me = 0,±1〉 excited state for atoms. The size of the sample is k0L = 21.5. The ground
state is coupled to the excited state by the circularly σ+ polarized laser beam (EL ⊥ ẑ; ε̂L = ê−1)
whose wavevector is in ẑ direction (kL ‖ ẑ). The axis of cylindrical atomic sample is parallel to the
propagation direction of the incident laser beam ẑ. The radiated intensity is collected at θobs = 75◦
and we average over 400 positional realizations and 51 values of azimuthal angle φobs = [0◦, 360◦〉.
We do not observe strong fluctuations of the transmitted intensity, i.e. significant deviations of
the intensity variance from unity, as it was the case in the scalar model (Fig. III.7), implying
the absence of localization of light with the vectorial model, in agreement with theoretical studies
involving scaling analysis [Bellando 2014,Skipetrov 2014].

and subradiant pairs of closely positioned atoms (see Sec. II.1.2) have as well a large value of
IPR (IPR ≈ 1/2 for pair modes in scalar model; IPR ≈ 1/6− 1/2 in vectorial model due to
3 Zeeman substates of excited state). The pair modes have large frequency shifts depending
on the separation distance of the atoms with the characteristic spiral form of eigenvalue
distribution (black solid lines). They are present in the eigenvalue distribution no matter
of the density and they can therefore be discriminated from localized modes which appear
only at sufficiently high densities in a narrow frequency window and have very long lifetimes.
Contrary to the scalar case, in the vectorial model this long-lived tail of localized states with
large IPR does not appear at high densities.
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Figure III.9: Complex eigenvalue distribution of coupled-dipole modes, λn = i∆n − Γn/2, obtained
from the scalar model [Eq. II.19] (a,b) and vectorial model [Eq. II.14] (c,d) with a cylindrical sample
of ρλ3 = 5, N = 1260 (k0L = 43) (a,c) and ρλ3 = 40, N = 1260 (k0L = 21.5) (b,d). The imaginary
part of the mode eigenvalue corresponds to the mode frequency shift ∆n = ω0 − ωn, where ωn is
the mode eigenfrequency, while the real part corresponds to the mode decay rate Γn = 1/τn, which
is the inverse of the mode lifetime τn. The number of realizations in the scalar case is Nr = 60,
while in the vectorial case Nr = 20. The color code corresponds to the inverse participation ratio
(IPR). The black solid lines correspond to the pair branches obtained from the analytical expression
of pair (two atoms positioned very closely) eigenvalues, given by Eq. (II.23) for scalar and Eqs.
(II.21) and (II.22) for vectorial model with ∆0 = 0. The large IPR (red/dark red) characterizes
the localized modes and modes of close pairs of atoms (super-and subradiant pairs), while the low
IPR (yellow) corresponds to the collective (extended) modes of Nn � 1 atoms. For high enough
densities in the scalar model, in the bottom of the distribution a tail of modes of very long lifetimes
with large IPR emerges which corresponds to the localized modes. Localized modes with large
IPR and very long lifetimes that appear only at sufficiently high densities are to be discriminated
from subradiant pairs which are present at any density. On the contrary, in the vectorial model
such localized states do not appear for higher densities in the bottom of distribution, signaling the
absence of light localization [Bellando 2014,Skipetrov 2014].
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As already mentioned, it has been shown that applying a strong magnetic field restores strong
localization of light within the vectorial model [Skipetrov 2015]. Hence, we now focus on
intensity fluctuations with the vectorial coupled-dipole model when the magnetic field is
applied. We consider a static and spatially uniform magnetic field aligned with the z axis,
B = Bẑ. Having atoms subjected to an external magnetic field lifts the degeneracy of Zeeman
substates, such that the resonant frequency of substates of excited state |Je = 1,me = 0,±1〉
is ωme = ω0 + me∆B, where ∆B = geBµB/~ is the Zeeman shift of substates, with ge the
Lande factor of excited state and µB the Bohr magneton. The set of vectorial couple-dipole
equations with the applied external magnetic field are the following

dβζj (t)
dt =

[
i(∆0 −me∆Bδζ,me)−

Γ0

2

]
βζj (t)−i

d

~
ê∗ζ ·EL exp(ikL·rj)−

Γ0

2
∑
m6=j

∑
η

Gζ,η(rjm)βηm(t),

(III.31)

where Gζ,η(rjm) is given by Eq. (III.26b). Note that the difference between these coupled-
dipole equations and those without applied magnetic field [Eq. (III.26a)] is the Zeeman shift
that appears in the first term of the equation above with ∆0 −me∆B = ωL − ωme = ∆me

which signifies the detuning of the laser from the resonant frequency of the corresponding
substate me.

Let us first have a look at the eigenvalue distribution of coupled-dipole modes in the vectorial
model with applied magnetic field to have a better insight into what to expect when studying
intensity fluctuations. Similarly to the studies in Sec. II.1.2, we consider the 3N × 3N matrix
G7, whose elements are

G
η,ζ
j,m =


−ime∆Bδζ,me −

Γ0

2 for j = m, ζ = η

−Γ0

2 Gη,ζ(rjm) for j 6= m; Gη,ζ(rjm) given by Eq. (III.26b).
(III.32)

By diagonalizing the matrix G we obtain 3N complex eigenvalues λn = i∆n − Γn/2 corre-
sponding to each eigenmode ψn, such that Gψn = λnψn is satisfied. The imaginary part of λn
corresponds to the frequency shift of the eigenmodes ∆n = ω0−ωn = ωme−ωn−me∆B, where
ωn is the mode frequency, while the real part yields the linewidth, i.e. the decay rate of modes
Γn = 1/τn, where τn is the mode lifetime. We show examples of the eigenvalue distribution in
the case of low (Fig. III.10) and high densities (Fig. III.11). We observe that by applying a
strong magnetic field, which produces the Zeeman shift of the sublevels ∆B = 1000Γ0 � Γ0,

7In comparison to Eq. (II.14), note that here we have the additional −ime∆Bδζ,me
term (corresponding to

the Zeeman shift of substates) for the diagonal elements of the G matrix and we dropped the laser detuning
term ∆0, i.e. we consider the frequency shifts of modes in respect to the atomic resonance: ∆n = ω0 − ωn.
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Figure III.10: Eigenvalue distribution obtained by diagonalizing the G matrix given by Eq. (III.32)
for a cylindrical atomic sample of size k0L = 21.5 and uniform density ρλ3 = 5 in the case of
degenerate excited state (no magnetic field is applied; ∆B = 0) (a) and in the case of atoms
subjected to a strong magnetic field that produces a Zeeman shift ∆B = 1000Γ0 (b-e). When the
strong magnetic field is applied, the eigenvalues are well split into three groups centered around
ω0−ωn = −me∆B, thus each group corresponding to a transition to a given me substate (b). Panels
(c-e) are the close-ups of panel (b) on an eigenvalue group corresponding to me = +1 (c), me = 0
(d) and me = −1 (e). The dashed black lines on panel (a) corresponds to the analytical solution of
subradiant and superradiant pair eigenvalues given by Eqs. (II.21) and (II.22). When the strong
magnetic field is applied, the eigenvalues associated to the close pairs of atoms are as well split into
three groups corresponding to a given transition me = 0,±1. Contrary to the case of degenerate
atoms, in the case of applied magnetic field, the pairs eigenvalues depend on the angle θ12 between
the axis along which the atomic pairs are positioned and the axis given by the direction of applied
magnetic field ẑ. The gray and black solid lines on panels (c-e) correspond to the pairs eigenvalues
for θ12 = 0◦ and θ12 = 90◦, respectively, obtained by diagonalizing the G matrix [Eq. III.32] for
N = 2 atoms and their varying separation distance with θ12 = 0◦ and θ12 = 90◦. For all other
angles θ12, the eigenvalues fall in between those two lines. The colorcode corresponds to the inverse
participation ratio (IPR). The eigenvalues are plotted for Nr = 300 realizations of atomic positions.
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Figure III.11: Same as Fig. III.10 but with density ρλ3 = 50 and Nr = 30 realizations of atomic
positions.. With the applied magnetic field, the long-lived tail containing modes with large IPR
appears in the bottom of the eigenvalue distribution for me = ±1 (c,e), but not for me = 0 (d).
These localized modes emerging for me = ±1 at high densities in the narrow frequency window
with very long lifetimes are to be distinguished from subradiant pair modes with large IPR that are
present in the distribution group of every me for any density (see Fig. III.10). The insets in panels
(c) and (e) are close-ups of the long-lived tail that appears for me = ±1 when the magnetic field is
applied.
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the eigenvalues are split into three well-separated groups [Fig. III.10(b) and Fig.III.11(b)].
Those eigenvalue groups are concentrated around ω0 − ωn ≈ −me∆B. In other words, each
of the eigenvalue groups is associated with the transition to the corresponding me = 0,±1
substate of excited state. Therefore, by applying the strong magnetic field the degeneracy of
excited state is lifted such that the Zeeman substates me = 0,±1 are well split (∆B � Γ0)
and atoms effectively behave as a non-degenerate two level system (by assuming that the
external electric field couples the transition to a particular me substate, the coupling of atomic
dipoles via the electric field produced by all other dipoles can be achieved only through the
given me transition while the coupling through other transitions is negligible, since the other
substates are "unreachable" for the photon scattered from a given me transition due to large
Zeeman shift). Furthermore, we observe that in the low-density case, the distributions of
eigenvalues corresponding to me = 0,±1 [Fig. III.10(c-e)] are alike. However, this is not the
case in the high density regime where the distribution of eigenvalues for me = +1,−1 [Fig.
III.11(c, e)] differs from me = 0 distribution: similar to the scalar model at high densities
(Fig. III.9), in the vectorial model with applied strong magnetic field the tail containing
long-lived modes with large IPR emerges for me = ±1, but not for me = 0. That implies that
the localization of light takes place for me = ±1, but not for me = 0 [Skipetrov 2015]. The
explanation for that will be given below. Moreover, note that the localized modes appear in
the frequency range left from ω0 − ωn = −me∆B ≡ ω0 − ωme , which means that the laser is
going to be resonant with the localized modes of a particular me = ±1 transition for positive
detunings ∆me = ωL − ωme > 0 around ∼ 1Γ0.

Let us now focus on intensity fluctuations with vectorial model when the strong magnetic field
is applied. We use a cylindrical atomic sample (diameter L and length L) whose axis is along
the direction of propagation of external electric field and size is given by k0L = 21.5. We solve
the coupled-dipole equations given by Eq. (III.31) for βζj in steady state, with ∆B = 1000Γ0.
Then from obtained steady-state dipole amplitudes we calculate the radiated intensity in
the far-field (R = 250L) given by Eq. (III.28). We study the variance of the intensity for
three different cases corresponding to driving the atomic transition to particular me = 0,±1
sublevel by the external electric field with the detuning in the range ∆me = [−2, 2]Γ0. Let
us recall that the dipole-dipole coupling via the radiated electric field is then also achieved
only through the particular me transition, due to the large Zeeman shift ∆B � Γ0 which
decouples the particular me transition from other transitions and the atom effectively acts as
a non-degenerate two-level system. In other words, by driving the particular me transition
when the strong magnetic field is applied, only the coupled-dipole modes associated with
that particular me transition are getting populated (Fig. III.10 and III.11). Details about
driving the particular me transition by the laser beam are depicted on corresponding panel
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Figure III.12: Variance of the normalized transmitted intensity σ2
Î
as a function of the density of the

cylindrical atomic sample (of length L and diameter L) ρλ3 and the laser detuning ∆me = ωL−ωme
in the vectorial model when the strong magnetic field B = Bẑ, which produces the Zeeman shift
∆B = 1000Γ0 of the sublevels, is applied. With such strong magnetic field, the Zeeman sublevels
with resonant frequency ωme = ω0 +me∆B are well split (∆B � Γ0). The size of the cylindrical
sample is k0L = 21.5. (a)-(b) The atomic transition |Jg = 0〉 → |Je = 1,me = ±1〉 is driven by the
circularly σ± polarized laser beam (polarization in the xy plane; ε̂L = ê∓1 ) with the wavector
kL ‖ B and with laser detuning ∆+1 = [−2, 2]Γ0 = ∆0 − me∆B, with ∆0 = [998, 1002]Γ0 for
me = +1 and ∆0 = [−1002,−998]Γ0 for me = −1, where ∆0 = ωL − ω0 the laser detuning from
the resonant frequency of degenerate sublevels ω0. The axis of the cylindrical sample is oriented
in ẑ direction, parallel to the laser propagation direction. The light is detected in the far-field at
θobs = 75◦ and we average over 400 realizations and 51 values of azimuthal angle φobs = [0◦, 360◦〉.
The black dashed line corresponds to ρλ3 = 25, the density threshold for localization of light as
identified in [Skipetrov 2015]. (c) The atomic transition |Jg = 0〉 → |Je = 1,me = 0〉 (π transition)
is driven by the linearly polarized (ε̂L = ê0 = ẑ; EL ‖ B) laser beam with the wavector along ŷ
direction, kL ⊥ B and detuning ∆0 = [−2, 2]Γ0. The cylinder axis is parallel to the laser propagation
direction ŷ. The radiated intensity is detected at (θobs, φobs) = (15◦, 90◦) and we average over 400
realizations. We observe significant deviations of the intensity variance from unity at high enough
densities (ρλ3 > 25) in the case of transition to me = +1 [panel (a)] and me = −1 [panel (b)]
sublevel. For transition to me = 0 sublevel [panel (c)], such strong deviations are absent. That
signals that with strong magnetic field, the localization of light is resurrected for me = ±1, but not
for me = 0.
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and caption of Fig. III.12. For me = ±1 transition, the observation angle is θobs = 75◦ and
we average over many realizations of atomic positions and over the azimuthal angle φobs.
For me = 0, the intensity is detected at (θobs, φobs) = (15◦, 90◦)8 and we average over many
realizations of atomic positions. The obtained variance of the transmitted intensity σ2

Î
as a

function of the atomic density ρλ3 and laser detuning ∆me = ωL−ωme forme = 0,±1 is shown
on Fig. III.12. For me = ±1, we observe significant deviations of intensity variance from unity
for large enough densities (ρλ3 & 25), similarly to observations in the scalar model. However,
for me = 0 we do not observe such strong deviations. In addition, the strong intensity
fluctuations observed for me = ±1 appear in the narrow frequency range for positive laser
detunings ∆me ∼ 1Γ0 (V-shaped area of increased intensity fluctuations, similar to the scalar
case). This corresponds to our observations made on the eigenvalue distribution discussed
above. Furthermore, our results are in agreement with the theoretical work based on scaling
analysis of the Thouless number obtained from eigenvalues, where it has been demonstrated
that light localizes for me = ±1, but not for me = 0 [Skipetrov 2015]. In addition, the set of
parameters (ρλ3,∆me) for which we observe large intensity fluctuations is in agreement with
the localized regime identified by the eigenvalue scaling analysis (see phase diagram on Fig. 3
of Ref. [Skipetrov 2018a]). The overall good agreement of our intensity variance observations
in the vectorial model without and with applied strong magnetic field (Fig. III.8 and III.12)
with the scaling analysis [Bellando 2014, Skipetrov 2014, Skipetrov 2015, Skipetrov 2018a]
furthermore corroborates that the strong deviations of intensity variance from unity, i.e.
strong intensity fluctuations, is a suitable observable for detecting the strong localization of
light.

Let us now discuss why light localizes for me = ±1, but not for me = 0. Firstly, let us make
some additional observations. We have discussed that the strong magnetic field splits the
atomic system into three decoupled scattering subsystems. This can indeed be seen on Fig.
III.13 where we show for each atomic dipole i = 1, ..., N the steady state amplitudes |βζi |2 for
ζ = me = 0,±1 which characterize the probability of the excitation of atom i to substate
|Je = 1,me = ζ〉. On Fig. III.13(a) we show those amplitudes in the case when no magnetic
field is applied and therefore the substates are degenerate. In that case, the amplitudes of
each me = 0,±1 have approximately equal non-vanishing values, as the photon scattered
from one of the transitions me = 0,±1 can be rescattered from any transition me = 0,±1
due to the degeneracy of sublevels. However, when the strong magnetic field is applied

8To drive the me = 0 transition, we need the laser beam with its linear polarization parallel with the
applied magnetic field, i.e. along the direction of quantization axis ẑ. Then, we set the laser propagation
direction and cylinder axis along ŷ direction. We want the observation angle relative to the laser propagation
direction to be the same as for me = ±1: (θobs, φobs) = (15◦, 90◦) for me = 0 with kL ‖ ŷ corresponds to
θobs = 75◦ and any φobs angle for me = ±1 with kL ‖ ẑ. Note that θobs is the polar angle defined from
positive z-axis, while φobs is the azimuthal angle in the xy-plane defined from positive x-axis.
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Figure III.13: The dipole amplitude squared |βmei |2 of an atomic dipole i = 1, ..., N and a given
transition to me = 0,±1 for k0L = 21.5 and ρλ3 = 50 obtained from Eq. (III.31) in steady-state.
For atomic dipoles with degenerate excited state (∆B = 0), |βmei |2 for each me = 0,±1 have
approximately equal non-vanishing values (the external driving field is circularly σ+ polarized with
detuning ∆0 = 0), since excitation transfer among dipoles can happen through any transition
corresponding to me = 0,±1 (a). When the strong magnetic field is applied (∆B = 1000Γ0 � Γ0),
and the external electric field drives the transition to a given me substate, the photons can be
rescattered only through that particular transition me due to the huge Zeeman shift; hence only the
dipole amplitude corresponding to that transition me has a finite non-vanishing value, while the
dipole amplitudes associated to other transitions are negligible, implying that the atoms subjected
to a strong magnetic field act as a non-degenerate two-level system (b-d). Panels (b,c,d) correspond
to the case of external electric field driving the transition to me = +1,−1, 0, respectively, with
detuning ∆me = 0. The atomic sample-external field configuration for a given me transition is the
same as those depicted on left side of Fig. III.12. The dipole amplitudes of each dipole are averaged
over 20 realizations.
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(∆B � Γ0), the dipole-dipole coupling via radiated electric field is achieved only through one
specific me transition. For example, on Fig. III.13(b) we show the case when the atomic
transition to me = +1 is driven by the external electric field with detuning ∆+1 = 0 and σ+

polarization. Then, due to the large Zeeman shift of substates, only the transition to me = +1
can be coupled by the electric field radiated by dipoles (or in terms of multiple scattering,
the photon can be multiply scattered only from the given me = +1 transition). Hence, only
the component me = +1 of dipole amplitudes |βmei |2 ∼ 1 while other two are negligibly small,
|βm

′
e

i |2 � |βmei |2 with m′e 6= me. The same holds when the transition to me = 0 or me = 1
is driven by an external electric field [ see Fig. III.13(b-d)]. This indeed shows that the
atoms subjected to strong magnetic field effectively behave as a non-degenerate two-level
system. Thus, we can rewrite the vectorial coupled-dipole equations given by (III.31), with
the corresponding dyadic Green matrix given by (III.26b), as a set of N coupled equations of
each decoupled (transition-wise) subsystem associated with corresponding me as:

dβj(t)
dt =

(
i∆me −

Γ0

2

)
βj(t)− i

dEL

~
exp(ikL · rj)−

Γ0

2
∑
m6=j

G′(rjm)βm(t), (III.33a)

G′(r) = 3
2

exp(ik0r)
ik0r

{ [
1− r̂ζ r̂∗ζ

]
+
[
1− 3r̂ζ r̂∗ζ

] [ i

k0r
− 1

(k0r)2

]}
with ζ = me. (III.33b)

Although the form of these CDEs looks very much alike to scalar CDEs given by Eq. (III.25a)
as we got rid of polarization (transition) coupling terms, it is important to note that there is
still a significant difference: the near-field interaction (∝ 1/r2, 1/r3) encoded in the Green’s
matrix G′, which is absent in the scalar model [Eq. (III.25b)]. Let us now rewrite the Green’s
matrix G′ by using r̂±1 = ∓sin θ√

2
exp(±iφ) and r̂0 = cos θ:

G′(r) = 3
2i exp(ik0r)×



{
1
2 [1 + cos2 θ] 1

k0r
− 1

2 [1− 3 cos2 θ]
[

i

(k0r)2 −
1

(k0r)3

]}
for me = ±1{

[1− cos2 θ] 1
k0r

+ [1− 3 cos2 θ]
[

i

(k0r)2 −
1

(k0r)3

]}
for me = 0,

(III.34)

where θ is the angle between r̂ and z-axis 9. We can see that the Green’s matrix G′ for
me = ±1 is different from me = 0 as there are different factors multiplying the far-field
(∝ 1/r) and near-field terms (∝ 1/r2, 1/r3) for me = ±1 and me = 0. For θ = [0, π/2],
the far-field prefactor has values (1 + cos2 θ)/2 = [1/2, 1] for me = ±1, while for me = 0,
(1 − cos2 θ) = [0, 1]. Thus, the far-field term has overall (considering the entire θ angle

9Since in Eq. (III.33a) G′(rij) with rij = ri − rj , θ then corresponds to the angle between r̂ij and z-axis.
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range) more significant contribution for me = ±1 than me = 0 case, since its prefactor is
overall closer to unity. Moreover, we can see that the factor multiplying the near-field terms
is by a factor of 2 smaller for me = ±1 than for me = 0. As the near-field interaction is
responsible for the absence of Anderson localization of light with the degenerate excited
state [Skipetrov 2014], the fact that the near-field interaction terms are more suppressed
for me = ±1 as compared to me = 0 transition, explains why the localization is restored
when the strong magnetic field is applied for me = ±1 but not for me = 0 [Skipetrov 2015].
Therefore, the CDEs for me = ±1, due to the overall larger far-field contribution and more
suppressed near-field contribution, are closer to the scalar model, for which the localization
of light emerges at high enough densities. It is important to emphasize that the near-field
interactions do not completely vanish when the atom is subjected to the strong external
magnetic field, but they are only suppressed. This might explain why in the scalar case the
localization threshold is obtained for ρλ3 ≈ 20 (Fig. III.7), while with the vectorial model
we observe a significant deviation of the intensity variance from unity for ρλ3 & 25: due to
the non-vanishing near-field interactions, which effectively increase the scattering mean free
path, higher densities in the vectorial model are needed than in the scalar model to obtain
the same degree of scattering strength [Skipetrov 2018a].

III.4. Discussion and conclusion

By numerically studying the statistics of the speckle intensity, i.e. the transmitted light
through disordered sample consisting of resonant point-like scatterers (atoms), we have
observed that strong intensity fluctuations, i.e. significant deviations of the variance of
normalized intensity from unity, appear for certain densities and laser frequencies. As
discussed, the significant deviations of σ2

Î
from unity imply the existence of strong correlations

between the photon scattering paths inside of a disordered sample and they are related to the
low dimensionless conductance which signals the localization transition. While considering
the scalar coupled-dipole, which neglects the internal Zeeman structure of atoms and light
polarization, strong intensity fluctuations have been observed above critical densities ρcλ

3 ≈ 20
in a narrow frequency window with two mobility edges (frequencies) around ∆0 ∼ 1Γ0 [Fig.
III.7(a)]. The deviations of the intensity variance from unity are accompanied by deviations
of the intensity distribution from Rayleigh distribution, which yielded very low values of
dimensionless conductance close to unity [Fig. III.7(b)], suggesting that the large intensity
fluctuations are indeed to be attributed to the light localization. Then, we turned our
attention to the full model, i.e. the vectorial coupled-dipole model, that includes light
polarization, as well internal Zeeman structure (we assumed non-degenerate ground state
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|Jg = 1,mg = 0〉 and triple-degenerate excited state |Je = 1,me = 0,±1〉 for atoms) and with
that also the near-field dipole-dipole coupling terms. We reported on the absence of strong
intensity fluctuations when the excited state is degenerate (Fig. III.8). Furthermore, we
subjected the atoms to a strong external magnetic field which produces a Zeeman shift
∆B � Γ0, such that the Zeeman substates are very well split and atoms essentially behave
as a non-degenerate two-level system. In that case, for the transitions to me = ±1 excited
substates, we again observed strong intensity fluctuations for densities ρλ3 & 25 in the
narrow range of laser frequencies (bounded by two mobility edges) around ∆me ∼ 1Γ0 [Fig.
III.12(a,b)]. However, no such observation of significant deviations of the intensity variance
from unity was made for the transition to me = 0 [Fig. III.12(c)]. The resurrection of strong
intensity fluctuations, which are to be attributed to the light localization, for me = ±1 but
not for me = 0, has a plausible explanation in the fact that the near-field dipole-dipole
coupling term is by factor of two smaller for me = ±1 than for me = 0 [Eq. (III.34)]. It is
important to repeat that the near-field coupling does not vanish for me = ±1, but it is rather
more suppressed, which yields less non-radiative transport channels, which would enable the
photon to escape from the system. Our observations, both for the scalar and vectorial models,
made on the fluctuations of the transmitted intensity are in agreement with the results based
on scaling theory with the Thouless number obtained from the modes eigenvalues, where it
has been demonstrated that the light indeed localizes when the scalar model is considered,
while the localization is absent in the vectorial model with degenerate Zeeman sublevels, and
moreover that the localization is resurrected for me = ±1 when the strong magnetic field
is applied [Bellando 2014, Skipetrov 2014, Skipetrov 2015, Skipetrov 2016a]. Furthermore,
the set of parameters (ρλ3,∆0,me) for which we observe strong intensity fluctuations, for
both scalar and vectorial models, are in an excellent agreement with the identified mobility
edges and localized regime from the scaling analysis (compare our Figs. III.7 and III.12 with
Figs. 3 of Ref. [Skipetrov 2018c] and [Skipetrov 2018a], respectively). This striking similarity
between our results and the scaling-analysis based results, regarding the set of parameters for
which we observe strong intensity fluctuations, furthermore corroborates that the significant
deviations of intensity variance from unity are to be attributed to the phenomenon of light
localization, and hence confirming that the variance of the intensity is a suitable observable
of light localization.

There are, however, some open questions. One thing that has not been discussed yet is
the difference between the strong intensity fluctuations obtained from the scalar model and
from the vectorial model: in the scalar model the strong intensity fluctuations are observed
only for the mobility edges, i.e. at the localization phase transition (Fig. III.7), while in
the vectorial model with applied magnetic field we also observe strong intensity fluctuations
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inside of the localized regime (Fig. III.12). On one hand, it is not surprising that the strong
intensity fluctuations appear at the localization phase transition as strong fluctuations are
characteristic for other types of phase transitions. On the other hand, if it were only a
characteristic of the phase transition, why are the strong intensity fluctuations identified as
an indicator of the strong localization in quasi-1D systems [Chabanov 2000] for which there is
essentially no phase transition (for ξ < L, the system is always localized in 1D)? In our case
of the scalar model, one important aspect is that the obtained dimensionless conductance
g inside of the localized regime has large values g > 1 [Fig. III.7(b)] (let us recall that g
essentially characterizes the number of diffusive channels and the localization transition is
expected to take place when g = 1, hence one would expect to observe g < 1 inside of the
localized regime). Note that the dimensionless conductance has been obtained from the fit
of the numerically obtained intensity distribution to Eq. (III.23). However, the intensity
distribution function given by Eq. (III.23) has been obtained for the diffusive regime by
taking into account corrections due to correlations among loopless scattering paths, without
considering paths forming a loop, which are important for the localization phase transition
and the localized regime itself (for more details on this intensity distribution function see, for
example, Ref. [van Rossum 1999]). Although this intensity probability function was able to
characterize the phase transition in our system (as well as the localized regime of microwaves
in quasi-1D sample [Chabanov 2000] and of ultrasound in 3D [Hu 2008]), it is plausible
that deeply in the localized regime, where closed loops are expected to modify the intensity
distribution, this function is not suitable to properly characterize the transport properties
of the system. Moreover, in addition to localized modes in our system there are also other
collective modes, like superradiant and subradiant modes. The question is whether there are
correlations between localized modes and these collective modes, especially the subradiant
ones, which as well essentially cause the light to be trapped inside of the sample, and how
that affects the localization and intensity statistics. In fact, recently the intensity statistics
at the mobility edges has been studied inside of the scattering medium [Skipetrov 2019],
contrary to our case where we studied the intensity statistics outside of the disordered
medium. Nevertheless, observations similar to ours have been made at the mobility edges:
in the scalar case the intensity variance at the mobility edge corresponding to the larger
laser detuning is much larger than the intensity variance at the other mobility edge [Fig.
III.7(a)], while in the vectorial case with the applied magnetic field the intensity variance at
the two mobility edges is similar [Fig. III.12]. The suggestion was made that this difference of
intensity fluctuations at the mobility edges could be attributed to the existence of subradiant
pair modes, depending on how strongly bounded they are to survive multiple scattering (for
more details see Ref. [Skipetrov 2019] and its Supplemental Material). The fact that we
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observe large intensity fluctuations inside of the localized regime with the vectorial model
with applied magnetic field, whereas with the scalar model only at the transition, could
possibly be explained by the different properties of subradiant pair modes in those two models
(as it was mentioned, the subradiant pairs in the vectorial model with applied magnetic field
depend on the angle between the magnetic field axis and the pair axis and they are covering
a large part of the complex plane of eigenvalue distribution: see for details, for example, Fig.
S5 of Supplemental Material of Ref. [Skipetrov 2019]).

Although there are some open questions yet to be answered, our results indicate that the
variance of the intensity is a suitable indicator of the phase transition to the localized regime.
Experimentally, this could be achieved, for example, through configuration averages with
cold atoms that are motionless over the timescale of the measurement. The most promising
candidates for observing light localization are Strontium and Ytterbium cold atoms, which
have the characteristic |Jg = 1,mg = 0〉 → |Je = 1,me = 0,±1〉 transition.

Finally, let us discuss the role of near-field dipole-dipole interactions on the light localization
and its connection to the near-field interaction effects on other physical phenomena. It has
been discussed that the near-field dipole-dipole interactions introduce additional transport
channels (non-radiative) that prevent the localization of photon in the strongly disordered
system [Skipetrov 2014], as the opening of these non-radiative transport channels essentially
increases the photon scattering mean-free path. Hence, the suppression of the near-field
interactions, and with that of the opening of non-radiative transport channels, by applying
a strong magnetic field, recovers the light localization when the full vectorial model is
considered. Furthermore, recently the detrimental role of near-field interactions for the
maximum obtainable index of refraction of optical materials has been identified: the near-
field interaction among randomly distributed atoms yields an inhomogeneous broadening
of the atomic resonance frequencies, which puts a limitation on the maximum obtainable
refractive index [Andreoli 2021]. Moreover, we have demonstrated in the previous chapter
the detrimental role of near-field interactions on subradiance: above a critical density of the
atomic sample, the scaling of subradiance with the on-resonance optical thickness b0 breaks
down and the subradiant lifetime for a given b0 decreases with increasing density (see Figs.
II.4 and II.5). We have attributed this to the inhomogeneous broadening due to near-field
interactions, as we have observed in the eigenvalue distribution that with increasing density
for a given b0 the longest-lived subradiant modes disappear while the spread of eigenvalues
along the frequency axis becomes broader (see Fig. II.14). In fact, the plausible explanation
is that the inhomogeneous broadening stemming from near-field interactions results in the
effective decrease of b0 (and increase of the photon mean-free path) and it modifies b0 in a
more stronger fashion as the density increases, yielding the observed decrease of subradiant
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lifetimes. This interpretation of the inhomogeneous broadening originating from near-field
interactions could be extended to the problem of Anderson localization of vectorial light in
terms of increased scattering mean-free path as the result of the broadening. In fact, we
can see in the eigenvalue distribution shown on Fig. III.11 that the spread of eigenvalues
along the frequency axis becomes less broad once the magnetic field is applied and it is also
slightly less broad for me = ±1 than for me = 0, which could reflect the inhomogeneous
broadening due to near-field interaction, which is then more suppressed for me = ±1 once
the magnetic-field is applied. Moreover, in addition to the localized modes that appear
in the bottom of the eigenvalue distribution on Fig. III.11(c,e) for me = ±1 when the
strong magnetic field is applied, there are also long-lived collective modes with low values
of IPR (yellow) emerging that are not present in the case when atoms are not subjected to
the external magnetic field [Fig. III.11(a)]. This implies that the longest-lived subradiant
modes could be resurrected by applying the strong magnetic field, which is expected to
happen since the near-field interaction is at the origin of their absence. Note that we have
not checked this by observing the late-time decay dynamics with applied magnetic field as
it was out of the scope of our study. However, it would be most definitely interesting to
study this, as switching the magnetic field on/off would introduce a way of switching on/off
the longest-lived subradiant states, which would be of interest for potential applications
of subradiant states. It would be as well interesting to study more closely the potential
signature of Anderson localization in late-time decay-dynamics [Skipetrov 2016c], where a
scaling analysis involving different sample sizes, atom number, laser detuning, etc. would
have to be done to discriminate between the decay of subradiant and localized modes.



Conclusion

In this thesis, we have studied different properties of the long-lived collective modes which
arise due to the interaction of light with ensemble of cold atoms, with the general aim
of expanding our understanding of those modes in different regimes, mainly beyond the
linear-optics and dilute atomic sample regimes.

In Chapter I we have shown experimentally that increasing the saturation parameter s(∆) of
the driving field significantly enhances the population of the subradiant states: we demon-
strated that the subradiant population increases by a factor of ∼ 200 in the experimentally
explored range of s(∆). More importantly, we demonstrated the superlinear increase of
the subradiant population as Psub ∝ sβ with the power-law exponent β = 1.5, while the
final subradiant lifetimes that were observed remained unaffected by the strength of the
driving field. Since in the linear-optics regime the subradiant population scales linearly
with s (Psub ∝ s), the observation of superlinear scaling demonstrates that, with the atomic
samples of the experiment, we are in the regime beyond linear-optics for the subradiant
modes, even with the saturation parameter as low as s(∆) ∼ 10−3. This superlinear scaling
of subradiant population has been interpreted as a process similar to optical pumping, such
that besides being directly populated by the driving laser, the subradiant states additionally
gain in population through the decay processes from multi-excitation superradiant states.
Moreover, the comparison of experimental data with numerically obtained results indicated
that this behavior is related to the generation of quantum correlations in the system. This
suggests that subradiance might be a resource of quantum correlation or entanglement, and
that increasing the driving field intensity is a way to overcome the weak coupling of those
states in order to exploit them more efficiently, as for example in quantum memory devices
for information storage.

The study presented in the Chapter II adresses (numerically) the question of how the near-field
dipole-dipole interaction affects subradiance. For that, we have used the vectorial coupled-
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dipole model and we observed that the near field terms are detrimental for subradiance,
which was seen in the reduction of the subradiant lifetimes with increasing density. In
particular, we observed that the near-field effects have a negligible role on subradiant lifetimes
in the low-density regime, however for higher densities we observed that subradiant lifetimes
decrease with density for a given on-resonance optical thickness. These results have been
benchmarked with the results of scalar coupled-dipole model (which does not consider the
near-field interaction) for which the decrease of subradiant lifetimes with density has not
been observed, indicating that in the vectorial model the decrease indeed comes from the
near-field interaction. The detrimental character of near-field terms can be interpreted as
being due to an effective inhomogeneous broadening induced by the near-field interaction,
which effectively reduces the optical thickness as the density increases, which yields the
reduction of subradiant lifetimes.

The detrimental character of near-field interaction had also been previously numerically
identified for Anderson localization of light waves: the scalar coupled-dipole model predicts
Anderson localization of light waves, but not the vectorial one [Skipetrov 2014], since the
near-field terms open up additional non-radiative transport channels. However, adding a
strong magnetic field allows one to recover localized modes for vectorial light [Skipetrov 2015].
In Chapter III we numerically studied a possible signature of Anderson localization of light
in cold atoms, based on the measurement of intensity fluctuations of the scattered light. We
have shown that at the transition to the localized regime, the fluctuations are enhanced. In
particular, for vectorial light, we have demonstrated the absence and recovery of enhanced
intensity fluctuations without and with the applied magnetic field, which further corroborates
that the intensity fluctuations could serve as an experimental way to probe the localized
states.

The studies on Anderson localization of light obtained with the vectorial coupled-dipole
model consider atoms with non-degenerate ground state, i.e. a Jg = 0→ Je = 1 transition.
Our experiment, on the other hand, uses rubidium atoms, which have a more complex
atomic structure (with hyperfine structure and Zeeman degeneracy in the ground states).
Although the coupled-dipole model could be extended to atoms with degenerate ground
state [Pellegrino 2014,Jenkins 2016,Jennewein 2016,Facchinetti 2016,Sutherland 2017], the
calculations are much more complex and they have not been performed to address the
problem of light localization, so we do not now whether the results obtained for atoms with
non-degenerate ground state can be simply extended to the case of atoms with degenerate
ground state. Therefore, our group is currently building a new cold-atom experiment based on
ytterbium atoms, which have a characteristic Jg = 0→ Je = 1 transition, with the ultimate
goal of observing Anderson localization of light in 3D cold-atom samples.
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Some experimental challenges are still ahead. One is the impact of the residual thermal
motion of cold atoms. Although we have shown that subradiant modes in dilute samples are
robust against the atomic motion, another work addressing denser samples suggests that it
may be detrimental for AL modes [Kuraptsev 2020]. Moreover, thermal motion will also be
a source of intensity fluctuation of the scattered light [Eloy 2018], which might complicate
the analysis. Nevertheless, preliminary computations by R. Bachelard with atomic motion
have shown that the enhanced fluctuations at the transition in the scattered intensity are
still present.

Another open question is the effect of the nonlinearity, which is hard to avoid if light is
localized in a very small volume within the sample, as a few photons might be enough
to produce a nonnegligible saturation parameter. In particular, our study on subradiance
suggests that collective modes with long lifetimes have a lower saturation threshold than
shorter-lived ones. We do not know if this conclusion still holds for localized modes. This
will be the subject of further investigations.





Appendices

149



Appendix A

List of publications

[7] van der Waals dephasing for Dicke subradiance in cold atomic clouds
A. Cipris, R. Bachelard, R. Kaiser and W. Guerin
Physical Review A 103, 033714 (2021); preprint arXiv:2012.06248

[6] Subradiance with Saturated Atoms: Population Enhancement of the Long-
Lived States
A. Cipris, N. A. Moreira, T. S. do Espirito Santo, P. Weiss, C. J. Villas-Boas, R. Kaiser,
W. Guerin, and R. Bachelard
Physical Review Letters 126, 103604 (2021); preprint arXiv:2009.05172

[5] Superradiance as single scattering embedded in an effective medium
P. Weiss, A. Cipris, R. Kaiser, I. M. Sokolov, and W. Guerin
Physical Review A 103, 023702 (2021); preprint arXiv:2011.05201

[4] Collective excitation dynamics of a cold-atom cloud
T. S. do Espirito Santo, P. Weiss, A. Cipris, R. Kaiser, W. Guerin, R. Bachelard, and
J. Schachenmayer
Physical Review A 101, 013617 (2020); preprint arXiv:1910.06679

[3] Collective multimode vacuum Rabi splitting
W. Guerin, T. S. do Espirito Santo, P. Weiss, A. Cipris, J. Schachenmayer, R. Kaiser,
and R. Bachelard
Physical Review Letters 123, 243401 (2019); preprint arXiv:1909.06454

150

https://doi.org/10.1103/PhysRevA.103.033714
https://arxiv.org/abs/2012.06248
https://doi.org/10.1103/PhysRevLett.126.103604
https://arxiv.org/abs/2009.05172
https://doi.org/10.1103/PhysRevA.103.023702
https://arxiv.org/abs/2011.05201
https://doi.org/10.1103/PhysRevA.101.013617
https://arxiv.org/abs/1910.06679
https://doi.org/10.1103/PhysRevLett.123.243401
https://arxiv.org/abs/1909.06454


List of publications 151

[2] Robustness of Dicke subradiance against thermal decoherence
P. Weiss, A. Cipris, M. O. Araújo, R. Kaiser and W. Guerin
Physical Review A 100, 033833 (2019); preprint arXiv:1906.02918

[1] Microscopic and Macroscopic Signatures of 3D Anderson Localization of
Light
F. Cottier, A. Cipris, R. Bachelard and R. Kaiser
Physical Review Letters 123, 083401 (2019); preprint arXiv:1812.10313

https://doi.org/10.1103/PhysRevA.100.033833
https://arxiv.org/abs/1906.02918
https://doi.org/10.1103/PhysRevLett.123.083401
https://arxiv.org/abs/1812.10313




Bibliography

[Abrahams 1979] E. Abrahams, P. W. Anderson, D. C. Licciardello, & T. V. Ra-
makrishnan. Scaling Theory of Localization: Absence of Quantum
Diffusion in Two Dimensions. Phys. Rev. Lett. 42, 673–676 (1979).
Cited on pages 98, 112, and 117.

[Abrahams 2010] E. Abrahams. 50 Years of Anderson Localization. WORLD SCI-
ENTIFIC (2010). Cited on pages 90 and 103.

[Adams 1997] C. Adams & E. Riis. Laser cooling and trapping of neutral atoms.
Progress in Quantum Electronics 21, No. 1 1–79 (1997). Cited on
page 1.

[Aegerter 2006] C. M. Aegerter, M. Störzer, & G. Maret. Experimental deter-
mination of critical exponents in Anderson localisation of light.
Europhysics Letters (EPL) 75, No. 4 562–568 (2006). Cited on
page 112.

[Aegerter 2007a] C. M. Aegerter, M. Störzer, W. Bührer, S. Fiebig, & G. Maret.
Experimental signatures of Anderson localization of light in three
dimensions. Journal of Modern Optics 54, No. 16-17 2667–2677
(2007). Cited on page 112.

[Aegerter 2007b] C. M. Aegerter, M. Störzer, S. Fiebig, W. Bührer, & G. Maret.
Observation of Anderson localization of light in three dimensions.
JOSA A 24, No. 10 A23–A27 (2007). Cited on page 112.

[Aegerter 2009] C. M. Aegerter & G. Maret. Coherent Backscattering and Anderson
Localization of Light. In Progress in Optics vol. 52 1–62. Elsevier
(2009). Cited on pages 94, 111, and 113.

153

https://link.aps.org/doi/10.1103/PhysRevLett.42.673
https://www.worldscientific.com/doi/abs/10.1142/7663
https://www.sciencedirect.com/science/article/pii/S0079672796000067
https://iopscience.iop.org/article/10.1209/epl/i2006-10144-3
http://www.tandfonline.com/doi/abs/10.1080/09500340701627206
http://www.tandfonline.com/doi/abs/10.1080/09500340701627206
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-24-10-A23
https://www.sciencedirect.com/science/article/pii/S0079663808000036


154 BIBLIOGRAPHY

[Akkermans 1986] E. Akkermans, P. E. Wolf, & R. Maynard. Coherent Backscattering
of Light by Disordered Media: Analysis of the Peak Line Shape.
Phys. Rev. Lett. 56, 1471–1474 (1986). Cited on page 110.

[Akkermans 2002] E. Akkermans, C. Miniatura, & C. A. Müller. Phase coherence times
in the multiple scattering of photons by cold atoms. arXiv:cond-
mat/0206298 (2002). Cited on page 111.

[Akkermans 2003] E. Akkermans & G. Montambaux. Coherent Effects in the Multiple
Scattering of Light in Random Media. In B. A. van Tiggelen &
S. E. Skipetrov, editeurs, Wave Scattering in Complex Media: From
Theory to Applications NATO Science Series 100–124. Springer
Netherlands Dordrecht (2003). doi:10.1007/978-94-010-0227-1_6.
Cited on page 111.

[Akkermans 2007] E. Akkermans & G. Montambaux. Mesoscopic Physics of Electrons
and Photons. Cambridge: Cambridge University Press (2007).
doi:10.1017/CBO9780511618833. Cited on pages 1, 95, 105, 118,
and 120.

[Albada 1985] M. P. V. Albada & A. Lagendijk. Observation of Weak Localization
of Light in a Random Medium. Phys. Rev. Lett. 55, 2692–2695
(1985). Cited on page 110.

[Anderson 1958] P. W. Anderson. Absence of Diffusion in Certain Random Lattices.
Phys. Rev. 109, 1492–1505 (1958). Cited on pages 89, 90, and 104.

[Anderson 1985] P. W. Anderson. The question of classical localization A theory of
white paint? Philosophical Magazine B 52, No. 3 (1985). Cited on
pages 104, 110, and 112.

[Andreoli 2021] F. Andreoli, M. J. Gullans, A. A. High, A. Browaeys, & D. E.
Chang. Maximum Refractive Index of an Atomic Medium. Phys.
Rev. X 11, 011026 (2021). Cited on pages 47, 85, 114, and 143.

[Araújo 2018a] M. O. Araújo. Super- and subradiance in a dilute cloud of cold atoms.
Theses Université Côte d’Azur (2018). URL: https://tel.archives-
ouvertes.fr/tel-02102832. Cited on pages 15 and 20.

[Araújo 2018b] M. O. Araújo, W. Guerin, & R. Kaiser. Decay dynamics in the
coupled-dipole model. Journal of Modern Optics 65, No. 11 1345–
1354 (2018). Cited on pages 8, 10, 47, 61, 62, 63, and 66.

https://link.aps.org/doi/10.1103/PhysRevLett.56.1471
http://arxiv.org/abs/cond-mat/0206298
http://arxiv.org/abs/cond-mat/0206298
https://link.springer.com/chapter/10.1007/978-94-010-0227-1_6
https://doi.org/10.1017/CBO9780511618833
https://link.aps.org/doi/10.1103/PhysRevLett.55.2692
https://link.aps.org/doi/10.1103/PhysRevLett.55.2692
https://link.aps.org/doi/10.1103/PhysRev.109.1492
https://doi.org/10.1080/13642818508240619
https://link.aps.org/doi/10.1103/PhysRevX.11.011026
https://link.aps.org/doi/10.1103/PhysRevX.11.011026
https://tel.archives-ouvertes.fr/tel-02102832
https://tel.archives-ouvertes.fr/tel-02102832
https://doi.org/10.1080/09500340.2017.1380856
https://doi.org/10.1080/09500340.2017.1380856


Bibliography 155

[Araújo 2016] M. O. Araújo, I. Krešić, R. Kaiser, & W. Guerin. Superradiance
in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics
Regime. Phys. Rev. Lett. 117, 073002 (2016). Cited on pages 8, 9,
10, and 11.

[Arecchi 1970] F. T. Arecchi & E. Courtens. Cooperative Phenomena in Resonant
Electromagnetic Propagation. Phys. Rev. A 2, 1730–1737 (1970).
Cited on page 6.

[Asenjo-Garcia 2017] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kim-
ble, & D. E. Chang. Exponential Improvement in Photon Storage
Fidelities Using Subradiance and “Selective Radiance” in Atomic
Arrays. Phys. Rev. X 7, 031024 (2017). Cited on page 13.

[Aubry 2014] A. Aubry, L. Cobus, S. Skipetrov, B. van Tiggelen, A. Derode, &
J. Page. Recurrent Scattering and Memory Effect at the Anderson
Localization Transition. Physical Review Letters 112, No. 4 043903
(2014). Cited on page 104.

[Aubry 2017] G. J. Aubry, L. Schertel, M. Chen, H. Weyer, C. M. Aegerter,
S. Polarz, H. Cölfen, & G. Maret. Resonant transport and near-field
effects in photonic glasses. Phys. Rev. A 96, 043871 (2017). Cited
on page 115.

[Azbel 1983] M. Y. Azbel. Eigenstates and properties of random systems in one
dimension at zero temperature. Phys. Rev. B 28, 4106–4125 (1983).
Cited on page 104.

[Bachelard 2012] R. Bachelard, P. W. Courteille, R. Kaiser, & N. Piovella. Reso-
nances in Mie scattering by an inhomogeneous atomic cloud. EPL
(Europhysics Letters) 97, No. 1 14004 (2012). Cited on page 8.

[Bachelard 2016] R. Bachelard, N. Piovella, W. Guerin, & R. Kaiser. Collective
effects in the radiation pressure force. Phys. Rev. A 94, 033836
(2016). Cited on page 8.

[Bellando 2014] L. Bellando, A. Gero, E. Akkermans, & R. Kaiser. Cooperative
effects and disorder: A scaling analysis of the spectrum of the
effective atomic Hamiltonian. Phys. Rev. A 90, 063822 (2014).
Cited on pages 8, 47, 86, 115, 129, 130, 131, 137, and 141.

https://link.aps.org/doi/10.1103/PhysRevLett.117.073002
https://link.aps.org/doi/10.1103/PhysRevA.2.1730
https://link.aps.org/doi/10.1103/PhysRevX.7.031024
https://link.aps.org/doi/10.1103/PhysRevLett.112.043903
https://link.aps.org/doi/10.1103/PhysRevLett.112.043903
https://link.aps.org/doi/10.1103/PhysRevA.96.043871
https://link.aps.org/doi/10.1103/PhysRevB.28.4106
https://doi.org/10.1209/0295-5075/97/14004
https://doi.org/10.1209/0295-5075/97/14004
https://link.aps.org/doi/10.1103/PhysRevA.94.033836
https://link.aps.org/doi/10.1103/PhysRevA.94.033836
https://link.aps.org/doi/10.1103/PhysRevA.90.063822


156 BIBLIOGRAPHY

[Bender 2010] H. Bender, C. Stehle, S. Slama, R. Kaiser, N. Piovella, C. Zimmer-
mann, & P. W. Courteille. Observation of cooperative Mie scattering
from an ultracold atomic cloud. Phys. Rev. A 82, 011404 (2010).
Cited on page 8.

[Bergmann 1984] G. Bergmann. Weak localization in thin films: a time-of-flight
experiment with conduction electrons. Physics Reports 107, No. 1
1–58 (1984). Cited on page 94.

[Bidel 2002] Y. Bidel, B. Klappauf, J. C. Bernard, D. Delande, G. Labeyrie,
C. Miniatura, D. Wilkowski, & R. Kaiser. Coherent Light Transport
in a Cold Strontium Cloud. Phys. Rev. Lett. 88, 203902 (2002).
Cited on pages 3 and 111.

[Bienaimé 2010] T. Bienaimé, S. Bux, E. Lucioni, P. W. Courteille, N. Piovella, &
R. Kaiser. Observation of a Cooperative Radiation Force in the
Presence of Disorder. Phys. Rev. Lett. 104, 183602 (2010). Cited
on page 8.

[Bienaimé 2011a] T. Bienaimé, M. Petruzzo, D. Bigerni, N. Piovella, & R. Kaiser.
Atom and photon measurement in cooperative scattering by cold
atoms. Journal of Modern Optics 58, No. 21 1942–1950 (2011).
Cited on page 8.

[Bienaimé 2011b] T. Bienaimé. Effets coopératifs dans les nuages d’atomes
froids. Theses Université Nice Sophia Antipolis (2011). URL:
https://tel.archives-ouvertes.fr/tel-00701991. Cited on page 48.

[Bienaimé 2012] T. Bienaimé, N. Piovella, & R. Kaiser. Controlled Dicke Subradiance
from a Large Cloud of Two-Level Systems. Phys. Rev. Lett. 108,
123602 (2012). Cited on pages 7 and 8.

[Bienaimé 2013] T. Bienaimé, R. Bachelard, N. Piovella, & R. Kaiser. Cooperativity
in light scattering by cold atoms. Fortschritte der Physik 61, No. 2-3
377–392 (2013). Cited on page 8.

[Bienaimé 2014] T. Bienaimé, R. Bachelard, J. Chabé, M. Rouabah, L. Bellando,
P. Courteille, N. Piovella, & R. Kaiser. Interplay between radiation
pressure force and scattered light intensity in the cooperative scat-
tering by cold atoms. Journal of Modern Optics 61, No. 1 18–24
(2014). Cited on page 8.

https://link.aps.org/doi/10.1103/PhysRevA.82.011404
https://www.sciencedirect.com/science/article/pii/0370157384901030
https://www.sciencedirect.com/science/article/pii/0370157384901030
https://link.aps.org/doi/10.1103/PhysRevLett.88.203902
https://link.aps.org/doi/10.1103/PhysRevLett.104.183602
https://doi.org/10.1080/09500340.2011.594911
https://tel.archives-ouvertes.fr/tel-00701991
https://link.aps.org/doi/10.1103/PhysRevLett.108.123602
https://link.aps.org/doi/10.1103/PhysRevLett.108.123602
https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.201200089
https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.201200089
https://doi.org/10.1080/09500340.2013.829264
https://doi.org/10.1080/09500340.2013.829264


Bibliography 157

[Billy 2008] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, & A. Aspect. Direct
observation of Anderson localization of matter waves in a controlled
disorder. Nature 453, No. 7197 891–894 (2008). Cited on page 104.

[Bohren 1983] C. F. Bohren & D. R. Huffman. Absorption and Scattering of Light
by Small Particles. Wiley New York (1983). Cited on page 106.

[Bonifacio 1975] R. Bonifacio & L. A. Lugiato. Cooperative radiation processes in
two-level systems: Superfluorescence. Phys. Rev. A 11, 1507–1521
(1975). Cited on page 6.

[Bonitz 2016] M. Bonitz. Quantum Kinetic Theory. Springer International Pub-
lishing (2016). Cited on page 40.

[Born 1999] M. Born & E. Wolf. Principle of Optics. Cambridge University
Press New York 7 edition (1999). Cited on page 106.

[Bretagne 2013] A. Bretagne, M. Fink, & A. Tourin. Transverse localization of
sound. Physical Review B 88, 100302 (2013). Cited on page 104.

[Bromley 2016] S. L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell,
J. Schachenmayer, T. L. Nicholson, R. Kaiser, S. F. Yelin, M. D.
Lukin, A. M. Rey, & J. Ye. Collective atomic scattering and mo-
tional effects in a dense coherent medium. Nature Communications
7, No. 1 11039 (2016). Cited on page 8.

[Busch 1996] K. Busch & C. M. Soukoulis. Transport properties of random media:
An energy-density CPA approach. Phys. Rev. B 54, 893–899 (1996).
Cited on page 115.

[Bux 2010] S. Bux, E. Lucioni, H. Bender, T. Bienaimé, K. Lauber, C. Stehle,
C. Zimmermann, S. Slama, P. Courteille, N. Piovella, & R. Kaiser.
Cooperative scattering by cold atoms. Journal of Modern Optics 57,
No. 19 1841–1848 (2010). Cited on page 8.

[Chabanov 2000] A. A. Chabanov, M. Stoytchev, & A. Z. Genack. Statistical signa-
tures of photon localization. Nature 404, 850–853 (2000). Cited on
pages 104, 117, 120, 121, and 142.

[Chabé 2008] J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, &
J. C. Garreau. Experimental Observation of the Anderson Metal-

https://doi.org/10.1038/nature07000
https://link.aps.org/doi/10.1103/PhysRevA.11.1507
https://link.aps.org/doi/10.1103/PhysRevA.11.1507
https://link.aps.org/doi/10.1103/PhysRevB.88.100302
https://doi.org/10.1038/ncomms11039
https://doi.org/10.1038/ncomms11039
https://link.aps.org/doi/10.1103/PhysRevB.54.893
https://doi.org/10.1080/09500340.2010.503011
https://doi.org/10.1080/09500340.2010.503011
https://www.nature.com/articles/35009055


158 BIBLIOGRAPHY

Insulator Transition with Atomic Matter Waves. Physical Review
Letters 101, No. 25 (2008). Cited on page 104.

[Chabé 2014] J. Chabé, M.-T. Rouabah, L. Bellando, T. Bienaimé, N. Piovella,
R. Bachelard, & R. Kaiser. Coherent and incoherent multiple
scattering. Phys. Rev. A 89, 043833 (2014). Cited on page 8.

[Chanelière 2004a] T. Chanelière, G. Labeyrie, C. Miniatura, D. Wilkowski, & R. Kaiser.
Quantum mesoscopic physics: Coherent backscattering of light by
cold atoms. vol. 119 19–26 (2004). Publisher: EDP Sciences. Cited
on page 111.

[Chanelière 2004b] T. Chanelière, D. Wilkowski, Y. Bidel, R. Kaiser, & C. Miniatura.
Saturation-induced coherence loss in coherent backscattering of light.
Phys. Rev. E 70, 036602 (2004). Cited on page 111.

[Cipris 2021a] A. Cipris, N. A. Moreira, T. S. do Espirito Santo, P. Weiss, C. J.
Villas-Boas, R. Kaiser, W. Guerin, & R. Bachelard. Subradiance
with Saturated Atoms: Population Enhancement of the Long-Lived
States. Phys. Rev. Lett. 126, 103604 (2021). Cited on page 11.

[Cipris 2021b] A. Cipris, R. Bachelard, R. Kaiser, & W. Guerin. van der Waals
dephasing for Dicke subradiance in cold atomic clouds. Phys. Rev.
A 103, 033714 (2021). Cited on pages 12, 26, 86, and 117.

[Cobus 2021] L. A. Cobus, G. Maret, & A. Aubry. Transient critical
regime for light near the three-dimensional Anderson transition.
arXiv:2109.11188 (2021). Cited on page 116.

[Cottier 2019a] F. Cottier. Light-atom interaction : mean-field approach and inten-
sity fluctuations. Theses Université Côte d’Azur ; Universidade de
São Paulo (Brésil) (2019). URL: https://tel.archives-ouvertes.fr/tel-
02429382. Cited on pages 12, 127, and 128.

[Cottier 2019b] F. Cottier, A. Cipris, R. Bachelard, & R. Kaiser. Microscopic and
Macroscopic Signatures of 3D Anderson Localization of Light. Phys.
Rev. Lett. 123, 083401 (2019). Cited on pages 12 and 113.

[Courteille 2010] P. W. Courteille, S. Bux, E. Lucioni, K. Lauber, T. Bienaimé,
R. Kaiser, & N. Piovella. Modification of radiation pressure due to
cooperative scattering of light. The European Physical Journal D
58, No. 1 69–73 (2010). Cited on pages 7 and 8.

https://link.aps.org/doi/10.1103/PhysRevLett.101.255702
https://link.aps.org/doi/10.1103/PhysRevLett.101.255702
https://link.aps.org/doi/10.1103/PhysRevA.89.043833
https://link.aps.org/doi/10.1103/PhysRevE.70.036602
https://link.aps.org/doi/10.1103/PhysRevLett.126.103604
https://link.aps.org/doi/10.1103/PhysRevA.103.033714
https://link.aps.org/doi/10.1103/PhysRevA.103.033714
https://arxiv.org/abs/2109.11188
https://tel.archives-ouvertes.fr/tel-02429382
https://tel.archives-ouvertes.fr/tel-02429382
https://link.aps.org/doi/10.1103/PhysRevLett.123.083401
https://link.aps.org/doi/10.1103/PhysRevLett.123.083401
https://doi.org/10.1140/epjd/e2010-00095-6
https://doi.org/10.1140/epjd/e2010-00095-6


Bibliography 159

[Crubellier 1985] A. Crubellier, S. Liberman, D. Pavolini, & P. Pillet. Superradi-
ance and subradiance. I. Interatomic interference and symmetry
properties in three-level systems. Journal of Physics B: Atomic and
Molecular Physics 18, No. 18 3811–3833 (1985). Cited on page 6.

[Crubellier 1986] A. Crubellier & D. Pavolini. Superradiance and subradiance. II.
Atomic systems with degenerate transitions. Journal of Physics B:
Atomic and Molecular Physics 19, No. 14 2109–2138 (1986). Cited
on page 6.

[Crubellier 1987] A. Crubellier. Superradiance and subradiance. III. Small samples.
Journal of Physics B: Atomic and Molecular Physics 20, No. 5
971–996 (1987). Cited on page 6.

[Dalichaouch 1991] R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, &
S. L. McCall. Microwave localization by two-dimensional random
scattering. Nature 354, No. 6348 53–55 (1991). Cited on page 104.

[Das 2008] S. Das, G. S. Agarwal, & M. O. Scully. Quantum Interferences
in Cooperative Dicke Emission from Spatial Variation of the Laser
Phase. Phys. Rev. Lett. 101, 153601 (2008). Cited on page 7.

[de Vries 1998] P. de Vries, D. V. van Coevorden, & A. Lagendijk. Point scatterers
for classical waves. Rev. Mod. Phys. 70, 447–466 (1998). Cited on
page 109.

[DeVoe 1996] R. G. DeVoe & R. G. Brewer. Observation of Superradiant and
Subradiant Spontaneous Emission of Two Trapped Ions. Phys. Rev.
Lett. 76, 2049–2052 (1996). Cited on page 6.

[Dicke 1954] R. H. Dicke. Coherence in Spontaneous Radiation Processes. Phys.
Rev. 93, 99–110 (1954). Cited on pages 3, 4, 5, 44, 56, 64, and 85.

[do Espirito Santo 2020] T. S. do Espirito Santo, P. Weiss, A. Cipris, R. Kaiser, W. Guerin,
R. Bachelard, & J. Schachenmayer. Collective excitation dynamics
of a cold atom cloud. Phys. Rev. A 101, 013617 (2020). Cited on
page 11.

[Dynes 2010] R. C. Dynes. Localization and the metal–insulator transition —
experimental observations. International Journal of Modern Physics
B 24, 2072–2089 (2010). Cited on page 104.

https://doi.org/10.1088/0022-3700/18/18/022
https://doi.org/10.1088/0022-3700/18/18/022
https://doi.org/10.1088/0022-3700/19/14/008
https://doi.org/10.1088/0022-3700/19/14/008
https://doi.org/10.1088/0022-3700/20/5/017
https://doi.org/10.1088/0022-3700/20/5/017
https://doi.org/10.1038/354053a0
https://link.aps.org/doi/10.1103/PhysRevLett.101.153601
https://link.aps.org/doi/10.1103/RevModPhys.70.447
https://link.aps.org/doi/10.1103/PhysRevLett.76.2049
https://link.aps.org/doi/10.1103/PhysRevLett.76.2049
https://link.aps.org/doi/10.1103/PhysRev.93.99
https://link.aps.org/doi/10.1103/PhysRev.93.99
https://link.aps.org/doi/10.1103/PhysRevA.101.013617
https://www.worldscientific.com/doi/abs/10.1142/S0217979210064708
https://www.worldscientific.com/doi/abs/10.1142/S0217979210064708


160 BIBLIOGRAPHY

[Dyson 1962] F. J. Dyson. The Threefold Way. Algebraic Structure of Symme-
try Groups and Ensembles in Quantum Mechanics. Journal of
Mathematical Physics 3, No. 6 (1962). Cited on page 103.

[Eberly 2006] J. H. Eberly. Emission of one photon in an electric dipole transition
of one among N atoms. Journal of Physics B: Atomic, Molecular
and Optical Physics 39, No. 15 S599–S604 (2006). Cited on page
7.

[Edwards 1972] J. T. Edwards & D. J. Thouless. Numerical studies of localization
in disordered systems. Journal of Physics C: Solid State Physics 5,
No. 8 807–820 (1972). Cited on page 95.

[Efetov 1983] K. B. Efetov. Supersymmetry and theory of disordered metals.
Advances in Physics 32, No. 1 (1983). Cited on page 103.

[Efetov 1996] K. Efetov. Supersymmetry in Disorder and Chaos. Cambridge
University Press (1996). Cited on page 103.

[Eloy 2018] A. Eloy, Z. Yao, R. Bachelard, W. Guerin, M. Fouché, & R. Kaiser.
Diffusing-wave spectroscopy of cold atoms in ballistic motion. Phys.
Rev. A 97, 013810 (2018). Cited on page 147.

[Ernst 1968] V. Ernst & P. Stehle. Emission of Radiation from a System of
Many Excited Atoms. Phys. Rev. 176, 1456–1479 (1968). Cited on
page 6.

[Ernst 1969] V. Ernst. Coherent emission of a photon by many atoms. Zeitschrift
für Physik 218, No. 2 111–128 (1969). Cited on page 6.

[Escalante 2017] J. M. Escalante & S. E. Skipetrov. Longitudinal Optical Fields in
Light Scattering from Dielectric Spheres and Anderson Localization
of Light. Annalen der Physik 529, No. 8 1700039 (2017). Cited on
page 116.

[Evers 2008] F. Evers & A. D. Mirlin. Anderson transitions. Rev. Mod. Phys.
80, 1355–1417 (2008). Cited on page 103.

[Facchinetti 2016] G. Facchinetti, S. D. Jenkins, & J. Ruostekoski. Storing Light with
Subradiant Correlations in Arrays of Atoms. Phys. Rev. Lett. 117,
243601 (2016). Cited on pages 13 and 146.

https://aip.scitation.org/doi/10.1063/1.1703863
https://aip.scitation.org/doi/10.1063/1.1703863
https://doi.org/10.1088/0953-4075/39/15/s07
https://doi.org/10.1088/0953-4075/39/15/s07
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1080/00018738300101531
https://link.aps.org/doi/10.1103/PhysRevA.97.013810
https://link.aps.org/doi/10.1103/PhysRevA.97.013810
https://link.aps.org/doi/10.1103/PhysRev.176.1456
https://doi.org/10.1007/BF01669333
https://doi.org/10.1007/BF01669333
https://www.onlinelibrary.wiley.com/doi/abs/10.1002/andp.201700039
https://link.aps.org/doi/10.1103/RevModPhys.80.1355
https://link.aps.org/doi/10.1103/RevModPhys.80.1355
https://link.aps.org/doi/10.1103/PhysRevLett.117.243601
https://link.aps.org/doi/10.1103/PhysRevLett.117.243601


Bibliography 161

[Feld 1980] M. S. Feld & J. C. MacGillivray. Coherent Nonlinear Optics.
Recent Advances vol. 21 of Topics in Current Physics Chapter:
Superradiance, 7–57. Springer Berlin (1980). Cited on page 6.

[Ferioli 2021] G. Ferioli, A. Glicenstein, L. Henriet, I. Ferrier-Barbut, &
A. Browaeys. Storage and Release of Subradiant Excitations in
a Dense Atomic Cloud. Phys. Rev. X 11, 021031 (2021). Cited on
page 10.

[Ferrari 2006] G. Ferrari, R. E. Drullinger, N. Poli, F. Sorrentino, & G. M. Tino.
Cooling of Sr to high phase-space density by laser and sympathetic
cooling in isotopic mixtures. Phys. Rev. A 73, 023408 (2006). Cited
on page 87.

[Flesia 1987] C. Flesia, R. Johnston, & H. Kunz. Strong Localization of Classical
Waves: A Numerical Study. Europhysics Letters (EPL) 3, No. 4
497–502 (1987). Cited on page 104.

[Fofanov 2021] Y. A. Fofanov, I. M. Sokolov, R. Kaiser, & W. Guerin. Subradiance
in dilute atomic ensembles: Role of pairs and multiple scattering.
Phys. Rev. A 104, 023705 (2021). Cited on pages 58, 72, 74,
and 76.

[Fraden 1990] S. Fraden & G. Maret. Multiple light scattering from concentrated,
interacting suspensions. Phys. Rev. Lett. 65, 512–515 (1990). Cited
on pages 76, 108, and 115.

[Freedhoff 1967] H. Freedhoff & J. V. Kranendonk. Theory of coherent resonant ab-
sorption and emission at infrared and optical frequencies. Canadian
Journal of Physics 45, No. 5 1833–1859 (1967). Cited on page 6.

[Friedberg 1971] R. Friedberg & S. Hartmann. Superradiant damping and absorption.
Physics Letters A 37, No. 4 285–286 (1971). Cited on page 6.

[Friedberg 1972] R. Friedberg, S. Hartmann, & J. Manassah. Limited superradiant
damping of small samples. Physics Letters A 40, No. 5 365–366
(1972). Cited on pages 6, 47, and 85.

[Friedberg 1973] R. Friedberg, S. Hartmann, & J. Manassah. Frequency shifts in
emission and absorption by resonant systems ot two-level atoms.
Physics Reports 7, No. 3 101–179 (1973). Cited on pages 6, 39, 47,
and 85.

https://link.aps.org/doi/10.1103/PhysRevX.11.021031
https://link.aps.org/doi/10.1103/PhysRevA.73.023408
https://doi.org/10.1209/0295-5075/3/4/017
https://doi.org/10.1209/0295-5075/3/4/017
https://link.aps.org/doi/10.1103/PhysRevA.104.023705
https://link.aps.org/doi/10.1103/PhysRevLett.65.512
https://doi.org/10.1139/p67-142
https://doi.org/10.1139/p67-142
https://www.sciencedirect.com/science/article/pii/0375960171906724
https://www.sciencedirect.com/science/article/pii/0375960172905336
https://www.sciencedirect.com/science/article/pii/0375960172905336
https://www.sciencedirect.com/science/article/pii/037015737390001X


162 BIBLIOGRAPHY

[Friedberg 1974] R. Friedberg & S. R. Hartmann. Temporal evolution of superradiance
in a small sphere. Phys. Rev. A 10, 1728–1739 (1974). Cited on
pages 47 and 85.

[Friedberg 1976] R. Friedberg & S. R. Hartmann. Superradiant lifetime: Its defini-
tions and relation to absorption length. Phys. Rev. A 13, 495–496
(1976). Cited on page 6.

[Friedberg 2010] R. Friedberg & J. T. Manassah. Analytic expressions for the initial
Cooperative Decay Rate and Cooperative Lamb Shift for a spherical
sample of two-level atoms. Physics Letters A 374, No. 15 1648–1659
(2010). Cited on page 7.

[Garcia 1993] N. Garcia, A. Genack, R. Pnini, & B. Shapiro. Intensity correlation
in waveguides. Physics Letters A 176, No. 6 458–461 (1993). Cited
on page 121.

[Gero 2006] A. Gero & E. Akkermans. Effect of Superradiance on Transport
of Diffusing Photons in Cold Atomic Gases. Phys. Rev. Lett. 96,
093601 (2006). Cited on page 3.

[Gibbs 1977] H. M. Gibbs, Q. H. F. Vrehen, & H. M. J. Hikspoors. Single-Pulse
Superfluorescence in Cesium. Phys. Rev. Lett. 39, 547–550 (1977).
Cited on page 6.

[Gómez Rivas 2001] J. Gómez Rivas, R. Sprik, A. Lagendijk, L. D. Noordam, & C. W.
Rella. Static and dynamic transport of light close to the Anderson
localization transition. Phys. Rev. E 63, 046613 (2001). Cited on
page 114.

[Goodman 2009] J. W. Goodman. Speckle Phenomena in Optics: Theory and ap-
plications. Roberts & Company Publishers Greenwood Village 3rd
edition (2009). Cited on page 119.

[Gross 1976] M. Gross, C. Fabre, P. Pillet, & S. Haroche. Observation of Near-
Infrared Dicke Superradiance on Cascading Transitions in Atomic
Sodium. Phys. Rev. Lett. 36, 1035–1038 (1976). Cited on page 6.

[Gross 1982] M. Gross & S. Haroche. Superradiance: An essay on the theory of
collective spontaneous emission. Physics Reports 93, No. 5 301–396
(1982). Cited on pages 6, 47, 85, and 86.

https://link.aps.org/doi/10.1103/PhysRevA.10.1728
https://link.aps.org/doi/10.1103/PhysRevA.13.495
https://link.aps.org/doi/10.1103/PhysRevA.13.495
https://www.sciencedirect.com/science/article/pii/S0375960110001726
https://www.sciencedirect.com/science/article/pii/S0375960110001726
https://www.sciencedirect.com/science/article/pii/037596019390479J
https://link.aps.org/doi/10.1103/PhysRevLett.96.093601
https://link.aps.org/doi/10.1103/PhysRevLett.96.093601
https://link.aps.org/doi/10.1103/PhysRevLett.39.547
https://link.aps.org/doi/10.1103/PhysRevE.63.046613
https://link.aps.org/doi/10.1103/PhysRevLett.36.1035
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1016/0370-1573(82)90102-8


Bibliography 163

[Guazzelli 1983] E. Guazzelli, E. Guyon, & B. Souillard. On the localization of
shallow water waves by a random bottom. Journal de Physique
Lettres 44, No. 20 (1983). Cited on page 104.

[Guerin 2016] W. Guerin, M. O. Araújo, & R. Kaiser. Subradiance in a Large
Cloud of Cold Atoms. Phys. Rev. Lett. 116, 083601 (2016). Cited
on pages 8, 10, 20, 21, 26, 42, 47, 57, 61, 62, 63, 64, and 66.

[Guerin 2017a] W. Guerin, M. Rouabah, & R. Kaiser. Light interacting with atomic
ensembles: collective, cooperative and mesoscopic effects. Journal
of Modern Optics 64, No. 9 895–907 (2017). Cited on page 10.

[Guerin 2017b] W. Guerin & R. Kaiser. Population of collective modes in light
scattering by many atoms. Phys. Rev. A 95, 053865 (2017). Cited
on pages 10, 42, 59, 60, 61, and 68.

[Guerin 2019] W. Guerin, T. S. d. E. Santo, P. Weiss, A. Cipris, J. Schachenmayer,
R. Kaiser, & R. Bachelard. Collective Multimode Vacuum Rabi
Splitting. Phys. Rev. Lett. 123, 243401 (2019). Cited on page 11.

[Guimond 2019] P.-O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, &
P. Zoller. Subradiant Bell States in Distant Atomic Arrays. Phys.
Rev. Lett. 122, 093601 (2019). Cited on page 13.

[Havey 2005] M. D. Havey & D. V. Kupriyanov. Weak Localization of Light in
Ultracold Atomic Gases. Physica Scripta 72, No. 6 C30–C32 (2005).
Cited on page 111.

[Havey 2009] M. D. Havey. Freezing light with cold atoms. Contemporary Physics
50, No. 5 587–599 (2009). Cited on page 109.

[He 1986] S. He & J. D. Maynard. Detailed measurements of inelastic scat-
tering in Anderson localization. Phys. Rev. Lett. 57, 3171–3174
(1986). Cited on page 104.

[Hildebrand 2014] W. Hildebrand, A. Strybulevych, S. Skipetrov, B. van Tiggelen, &
J. Page. Observation of Infinite-Range Intensity Correlations above,
at, and below the Mobility Edges of the 3D Anderson Localization
Transition. Physical Review Letters 112, No. 7 (2014). Cited on
page 104.

[Hu 2008] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, & B. A. van
Tiggelen. Localization of ultrasound in a three-dimensional elastic

http://dx.doi.org/10.1051/jphyslet:019830044020083700
http://dx.doi.org/10.1051/jphyslet:019830044020083700
https://link.aps.org/doi/10.1103/PhysRevLett.116.083601
https://doi.org/10.1080/09500340.2016.1215564
https://doi.org/10.1080/09500340.2016.1215564
https://link.aps.org/doi/10.1103/PhysRevA.95.053865
https://link.aps.org/doi/10.1103/PhysRevLett.123.243401
https://link.aps.org/doi/10.1103/PhysRevLett.122.093601
https://link.aps.org/doi/10.1103/PhysRevLett.122.093601
https://doi.org/10.1088/0031-8949/72/6/n02
https://doi.org/10.1080/00107510903024321
https://doi.org/10.1080/00107510903024321
https://link.aps.org/doi/10.1103/PhysRevLett.57.3171
https://link.aps.org/doi/10.1103/PhysRevLett.57.3171
https://link.aps.org/doi/10.1103/PhysRevLett.112.073902


164 BIBLIOGRAPHY

network. Nature Physics 4, No. 12 945–948 (2008). Cited on pages
104, 120, and 142.

[Imry 1986] Y. Imry. Active Transmission Channels and Universal Conductance
Fluctuations. Europhysics Letters (EPL) 1, No. 5 249–256 (1986).
Cited on page 118.

[Ioffe 1960] A. F. Ioffe & A. R. Regel. Progress in Semiconductors vol. 4 Chapter:
Non-crystalline, amorphous and liquid electronic semiconductors,
237 – 291. Heywood London (1960). Cited on page 103.

[Javanainen 2014] J. Javanainen, J. Ruostekoski, Y. Li, & S.-M. Yoo. Shifts of a
Resonance Line in a Dense Atomic Sample. Phys. Rev. Lett. 112,
113603 (2014). Cited on pages 8 and 64.

[Jen 2016] H. H. Jen, M.-S. Chang, & Y.-C. Chen. Cooperative single-photon
subradiant states. Phys. Rev. A 94, 013803 (2016). Cited on page
13.

[Jen 2017] H. H. Jen. Phase-imprinted multiphoton subradiant states. Phys.
Rev. A 96, 023814 (2017). Cited on page 13.

[Jendrzejewski 2012] F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse,
M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, & P. Bouyer.
Three-dimensional localization of ultracold atoms in an optical dis-
ordered potential. Nature Physics 8, No. 5 398–403 (2012). Cited
on page 104.

[Jenkins 2016] S. D. Jenkins, J. Ruostekoski, J. Javanainen, R. Bourgain, S. Jen-
newein, Y. R. P. Sortais, & A. Browaeys. Optical Resonance Shifts
in the Fluorescence of Thermal and Cold Atomic Gases. Phys. Rev.
Lett. 116, 183601 (2016). Cited on pages 8, 64, and 146.

[Jennewein 2016] S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C. Sauvan,
J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, & A. Browaeys.
Coherent Scattering of Near-Resonant Light by a Dense Microscopic
Cold Atomic Cloud. Phys. Rev. Lett. 116, 233601 (2016). Cited
on pages 8 and 146.

[Jennewein 2018] S. Jennewein, L. Brossard, Y. R. P. Sortais, A. Browaeys, P. Cheinet,
J. Robert, & P. Pillet. Coherent scattering of near-resonant light

https://doi.org/10.1038/nphys1101
https://doi.org/10.1209/0295-5075/1/5/008
https://link.aps.org/doi/10.1103/PhysRevLett.112.113603
https://link.aps.org/doi/10.1103/PhysRevLett.112.113603
https://link.aps.org/doi/10.1103/PhysRevA.94.013803
https://link.aps.org/doi/10.1103/PhysRevA.96.023814
https://link.aps.org/doi/10.1103/PhysRevA.96.023814
https://doi.org/10.1038/nphys2256
https://link.aps.org/doi/10.1103/PhysRevLett.116.183601
https://link.aps.org/doi/10.1103/PhysRevLett.116.183601
https://link.aps.org/doi/10.1103/PhysRevLett.116.233601


Bibliography 165

by a dense, microscopic cloud of cold two-level atoms: Experiment
versus theory. Phys. Rev. A 97, 053816 (2018). Cited on page 64.

[John 1983] S. John, H. Sompolinsky, & M. J. Stephen. Localization in a
disordered elastic medium near two dimensions. Phys. Rev. B 27,
5592–5603 (1983). Cited on page 104.

[John 1984] S. John. Electromagnetic Absorption in a Disordered Medium near
a Photon Mobility Edge. Phys. Rev. Lett. 53, 2169–2172 (1984).
Cited on pages 104, 106, 110, and 112.

[John 1987] S. John. Strong localization of photons in certain disordered dielectric
superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987). Cited on
page 104.

[John 1991] S. John. Localization of Light. Physics Today 44, No. 5 32–40
(1991). Cited on page 105.

[Jonckheere 2000] T. Jonckheere, C. A. Müller, R. Kaiser, C. Miniatura, & D. Delande.
Multiple Scattering of Light by Atoms in the Weak Localization
Regime. Phys. Rev. Lett. 85, 4269–4272 (2000). Cited on page
110.

[Kaiser 2000] R. Kaiser. Cold atoms and multiple scattering. In R. Kaiser &
J. Montaldi, editeurs, Peyresq Lectures on Nonlinear Phenomena.
World Scientific Singapour (2000). Cited on pages 2, 109, and 128.

[Kaiser 2005] R. Kaiser & M. D. Havey. Mesoscopic Electromagnetic Wave Dy-
namics in Ultracold Atomic Gases. Opt. Photon. News 16, No. 7
38–43 (2005). Cited on page 109.

[Kaiser 2009] R. Kaiser. Quantum multiple scattering. Journal of Modern Optics
56, No. 18-19 2082–2088 (2009). Cited on pages 109 and 128.

[Kalachev 2007] A. Kalachev. Quantum storage on subradiant states in an extended
atomic ensemble. Phys. Rev. A 76, 043812 (2007). Cited on page
13.

[Keaveney 2012] J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, &
C. S. Adams. Cooperative Lamb Shift in an Atomic Vapor Layer of
Nanometer Thickness. Phys. Rev. Lett. 108, 173601 (2012). Cited
on page 8.

https://link.aps.org/doi/10.1103/PhysRevA.97.053816
https://link.aps.org/doi/10.1103/PhysRevB.27.5592
https://link.aps.org/doi/10.1103/PhysRevB.27.5592
https://link.aps.org/doi/10.1103/PhysRevLett.53.2169
https://link.aps.org/doi/10.1103/PhysRevLett.58.2486
https://physicstoday.scitation.org/doi/10.1063/1.881300
https://physicstoday.scitation.org/doi/10.1063/1.881300
https://link.aps.org/doi/10.1103/PhysRevLett.85.4269
http://www.optica-opn.org/abstract.cfm?URI=opn-16-7-38
http://www.optica-opn.org/abstract.cfm?URI=opn-16-7-38
https://doi.org/10.1080/09500340903082663
https://doi.org/10.1080/09500340903082663
https://link.aps.org/doi/10.1103/PhysRevA.76.043812
https://link.aps.org/doi/10.1103/PhysRevLett.108.173601


166 BIBLIOGRAPHY

[Kerker 1969] M. Kerker. The Scattering of Light and Other Electromagnetic
Radiation. Academic Press New York (1969). Cited on page 106.

[Kirkpatrick 1985] T. R. Kirkpatrick. Localization of acoustic waves. Phys. Rev. B 31,
5746–5755 (1985). Cited on page 104.

[Kondov 2011] S. S. Kondov, W. R. McGehee, J. J. Zirbel, & B. DeMarco. Three-
Dimensional Anderson Localization of Ultracold Matter. Science
334, No. 6052 66–68 (2011). Cited on page 104.

[Krämer 2015] S. Krämer & H. Ritsch. Generalized mean-field approach to sim-
ulate the dynamics of large open spin ensembles with long range
interactions. The European Physical Journal D 69, No. 12 282
(2015). Cited on page 40.

[Kuga 1984] Y. Kuga & A. Ishimaru. Retroreflectance from a dense distribution
of spherical particles. J. Opt. Soc. Am. A 1, 831–835 (1984). Cited
on page 110.

[Kupriyanov 2003] D. V. Kupriyanov, I. M. Sokolov, P. Kulatunga, C. I. Sukenik, &
M. D. Havey. Coherent backscattering of light in atomic systems:
Application to weak localization in an ensemble of cold alkali-metal
atoms. Phys. Rev. A 67, 013814 (2003). Cited on page 111.

[Kupriyanov 2004] D. V. Kupriyanov, I. M. Sokolov, N. V. Larionov, P. Kulatunga, C. I.
Sukenik, S. Balik, & M. D. Havey. Spectral dependence of coherent
backscattering of light in a narrow-resonance atomic system. Phys.
Rev. A 69, 033801 (2004). Cited on page 111.

[Kupriyanov 2006] D. V. Kupriyanov, I. M. Sokolov, C. I. Sukenik, & M. D. Havey.
Coherent backscattering of light from ultracold and optically dense
atomic ensembles. Laser Physics Letters 3, No. 5 223–243 (2006).
Cited on page 111.

[Kuraptsev 2017] A. S. Kuraptsev, I. M. Sokolov, & M. D. Havey. Angular distribution
of single-photon superradiance in a dilute and cold atomic ensemble.
Phys. Rev. A 96, 023830 (2017). Cited on page 66.

[Kuraptsev 2020] A. S. Kuraptsev & I. M. Sokolov. Influence of atomic motion on
the collective effects in dense and cold atomic ensembles. Phys. Rev.
A 101, 033602 (2020). Cited on page 147.

https://link.aps.org/doi/10.1103/PhysRevB.31.5746
https://link.aps.org/doi/10.1103/PhysRevB.31.5746
https://www.science.org/doi/abs/10.1126/science.1209019
https://www.science.org/doi/abs/10.1126/science.1209019
https://doi.org/10.1140/epjd/e2015-60266-5
https://doi.org/10.1140/epjd/e2015-60266-5
http://josaa.osa.org/abstract.cfm?URI=josaa-1-8-831
https://link.aps.org/doi/10.1103/PhysRevA.67.013814
https://link.aps.org/doi/10.1103/PhysRevA.69.033801
https://link.aps.org/doi/10.1103/PhysRevA.69.033801
https://doi.org/10.1002/lapl.200510059
https://link.aps.org/doi/10.1103/PhysRevA.96.023830
https://link.aps.org/doi/10.1103/PhysRevA.101.033602
https://link.aps.org/doi/10.1103/PhysRevA.101.033602


Bibliography 167

[Labeyrie 1999] G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller,
C. Miniatura, & R. Kaiser. Coherent Backscattering of Light by
Cold Atoms. Phys. Rev. Lett. 83, 5266–5269 (1999). Cited on
pages 3 and 110.

[Labeyrie 2000] G. Labeyrie, C. A. Müller, D. S. Wiersma, C. Miniatura, & R. Kaiser.
Observation of coherent backscattering of light by cold atoms. Journal
of Optics B: Quantum and Semiclassical Optics 2, No. 5 672–685
(2000). Cited on page 110.

[Labeyrie 2003] G. Labeyrie, D. Delande, C. A. Müller, C. Miniatura, & R. Kaiser.
Coherent backscattering of light by cold atoms: Theory meets experi-
ment. Europhysics Letters (EPL) 61, No. 3 327–333 (2003). Cited
on pages 3 and 111.

[Labeyrie 2004] G. Labeyrie, D. Delande, C. Müller, C. Miniatura, & R. Kaiser.
Multiple scattering of light in a resonant medium. Optics Commu-
nications 243, No. 1 157–164 (2004). Cited on page 111.

[Labeyrie 2006] G. Labeyrie, D. Delande, R. Kaiser, & C. Miniatura. Light Transport
in Cold Atoms and Thermal Decoherence. Phys. Rev. Lett. 97,
013004 (2006). Cited on pages 109 and 111.

[Labeyrie 2008] G. Labeyrie. Coherent transport of light in cold atoms. Modern
Physics Letters B 22, No. 02 73–99 (2008). Cited on pages 3
and 111.

[Lagendijk 1996] A. Lagendijk & B. A. van Tiggelen. Resonant multiple scattering of
light. Physics Reports 270, No. 3 143–215 (1996). Cited on pages
104, 107, 108, 114, and 118.

[Lagendijk 2009] A. Lagendijk, B. van Tiggelen, & D. S. Wiersma. Fifty years of
Anderson localization. Phys. Today 62, No. 8 24–29 (2009). Cited
on page 104.

[Lahini 2008] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N.
Christodoulides, & Y. Silberberg. Anderson Localization and Non-
linearity in One-Dimensional Disordered Photonic Lattices. Physical
Review Letters 100, No. 1 (2008). Cited on pages 104 and 112.

[Landauer 1970] R. Landauer. Electrical resistance of disordered one-dimensional
lattices. The Philosophical Magazine: A Journal of Theoretical

https://link.aps.org/doi/10.1103/PhysRevLett.83.5266
https://doi.org/10.1088/1464-4266/2/5/316
https://doi.org/10.1088/1464-4266/2/5/316
https://doi.org/10.1088/1464-4266/2/5/316
https://doi.org/10.1209/epl/i2003-00173-x
https://www.sciencedirect.com/science/article/pii/S0030401804010612
https://www.sciencedirect.com/science/article/pii/S0030401804010612
https://link.aps.org/doi/10.1103/PhysRevLett.97.013004
https://link.aps.org/doi/10.1103/PhysRevLett.97.013004
https://doi.org/10.1142/S0217984908014699
https://doi.org/10.1142/S0217984908014699
https://www.sciencedirect.com/science/article/pii/0370157395000658
https://physicstoday.scitation.org/doi/10.1063/1.3206091
https://link.aps.org/doi/10.1103/PhysRevLett.100.013906
https://link.aps.org/doi/10.1103/PhysRevLett.100.013906
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472


168 BIBLIOGRAPHY

Experimental and Applied Physics 21, No. 172 863–867 (1970).
Cited on page 118.

[Laurent 2007] D. Laurent, O. Legrand, P. Sebbah, C. Vanneste, & F. Mortessagne.
Localized Modes in a Finite-Size Open Disordered Microwave Cavity.
Physical Review Letters 99, No. 25 253902 (2007). Cited on page
104.

[Lax 1951] M. Lax. Multiple Scattering of Waves. Rev. Mod. Phys. 23, 287–310
(1951). Cited on page 76.

[Lee 1985] P. A. Lee & T. V. Ramakrishnan. Disordered electronic systems.
Rev. Mod. Phys. 57, 287–337 (1985). Cited on pages 99, 102, 103,
and 104.

[Lehmberg 1970a] R. H. Lehmberg. Radiation from an N-Atom System. I. General
Formalism. Phys. Rev. A 2, 883–888 (1970). Cited on pages 6, 39,
and 48.

[Lehmberg 1970b] R. H. Lehmberg. Radiation from an N-Atom System. II. Sponta-
neous Emission from a Pair of Atoms. Phys. Rev. A 2, 889–896
(1970). Cited on pages 6 and 48.

[Lenke 2000a] R. Lenke, R. Lehner, & G. Maret. Magnetic-field effects on coherent
backscattering of light in case of Mie spheres. Europhysics Letters
(EPL) 52, No. 6 620–626 (2000). Cited on page 111.

[Lenke 2000b] R. Lenke & G. Maret. Multiple Scattering of Light : Coherent
Backscattering and Transmission. In W. Brown & K. Mortensen,
editeurs, Scattering in Polymeric and Colloidal Systems. CRC Press
(2000). Cited on page 113.

[Licciardello 1975] D. C. Licciardello & D. J. Thouless. Constancy of Minimum Metallic
Conductivity in Two Dimensions. Phys. Rev. Lett. 35, 1475–1478
(1975). Cited on page 95.

[Liew 2011] S. F. Liew, J. Forster, H. Noh, C. F. Schreck, V. Saranathan, X. Lu,
L. Yang, R. O. Prum, C. S. O’Hern, E. R. Dufresne, & H. Cao.
Short-range order and near-field effects on optical scattering and
structural coloration. Opt. Express 19, No. 9 8208–8217 (2011).
Cited on page 115.

https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://link.aps.org/doi/10.1103/PhysRevLett.99.253902
https://link.aps.org/doi/10.1103/RevModPhys.23.287
https://link.aps.org/doi/10.1103/RevModPhys.23.287
https://link.aps.org/doi/10.1103/RevModPhys.57.287
https://link.aps.org/doi/10.1103/PhysRevA.2.883
https://link.aps.org/doi/10.1103/PhysRevA.2.889
https://link.aps.org/doi/10.1103/PhysRevA.2.889
https://doi.org/10.1209/epl/i2000-00483-y
https://doi.org/10.1209/epl/i2000-00483-y
https://link.aps.org/doi/10.1103/PhysRevLett.35.1475
https://link.aps.org/doi/10.1103/PhysRevLett.35.1475
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-9-8208


Bibliography 169

[Lopez 2012] M. Lopez, J.-F. Clément, P. Szriftgiser, J. C. Garreau, & D. De-
lande. Experimental Test of Universality of the Anderson Transition.
Physical Review Letters 108, (2012). Cited on page 104.

[MacGillivray 1976] J. C. MacGillivray & M. S. Feld. Theory of superradiance in an
extended, optically thick medium. Physical Review A 14, No. 3
1169–1189 (1976). Cited on page 6.

[Manassah 2012] J. T. Manassah. Cooperative radiation from atoms in different
geometries: decay rate and frequency shift. Adv. Opt. Photon. 4,
No. 2 108–156 (2012). Cited on pages 48 and 64.

[Maret 2013] G. Maret, T. Sperling, W. Bührer, A. Lubatsch, R. Frank, & C. M.
Aegerter. Inelastic scattering puts in question recent claims of
Anderson localization of light. Nature Photonics 7, No. 12 934–935
(2013). Cited on page 113.

[Martinez 1994] A. S. Martinez & R. Maynard. Faraday effect and multiple scattering
of light. Phys. Rev. B 50, 3714–3732 (1994). Cited on page 111.

[Máximo 2015] C. E. Máximo, N. Piovella, P. W. Courteille, R. Kaiser, &
R. Bachelard. Spatial and temporal localization of light in two
dimensions. Phys. Rev. A 92, 062702 (2015). Cited on pages 8
and 47.

[Máximo 2019] C. E. Máximo, N. A. Moreira, R. Kaiser, & R. Bachelard. Anderson
localization of light in dimension d− 1. Phys. Rev. A 100, 063845
(2019). Cited on page 47.

[Mazets 2007] I. E. Mazets & G. Kurizki. Multiatom cooperative emission following
single-photon absorption: Dicke-state dynamics. Journal of Physics
B: Atomic, Molecular and Optical Physics 40, No. 6 F105–F112
(2007). Cited on page 7.

[McNeil 2000] L. McNeil & R. French. Multiple scattering from rutile TiO2 parti-
cles. Acta Materialia 48, No. 18 4571–4576 (2000). Cited on pages
108 and 115.

[Meir 2014] Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, & R. Ozeri. Cooper-
ative Lamb Shift in a Mesoscopic Atomic Array. Phys. Rev. Lett.
113, 193002 (2014). Cited on page 8.

https://link.aps.org/doi/10.1103/PhysRevLett.108.095701
https://doi.org/10.1103/physreva.14.1169
https://doi.org/10.1103/physreva.14.1169
http://www.osapublishing.org/aop/abstract.cfm?URI=aop-4-2-108
http://www.osapublishing.org/aop/abstract.cfm?URI=aop-4-2-108
https://doi.org/10.1038/nphoton.2013.281
https://doi.org/10.1038/nphoton.2013.281
https://link.aps.org/doi/10.1103/PhysRevB.50.3714
https://link.aps.org/doi/10.1103/PhysRevA.92.062702
https://link.aps.org/doi/10.1103/PhysRevA.100.063845
https://link.aps.org/doi/10.1103/PhysRevA.100.063845
https://doi.org/10.1088/0953-4075/40/6/f01
https://doi.org/10.1088/0953-4075/40/6/f01
https://doi.org/10.1088/0953-4075/40/6/f01
https://www.sciencedirect.com/science/article/pii/S1359645400002433
https://link.aps.org/doi/10.1103/PhysRevLett.113.193002
https://link.aps.org/doi/10.1103/PhysRevLett.113.193002


170 BIBLIOGRAPHY

[Men'shikov 1999] L. I. Men'shikov. Superradiance and related phenomena. Physics-
Uspekhi 42, No. 2 107–147 (1999). Cited on page 6.

[Metcalf 1999] H. Metcalf & P. van der Straten. Laser cooling and Trapping.
Springer New York (1999). Cited on pages 1, 14, and 109.

[Milonni 1974] P. W. Milonni & P. L. Knight. Retardation in the resonant inter-
action of two identical atoms. Phys. Rev. A 10, 1096–1108 (1974).
Cited on page 6.

[Müller 2003] C. A. Müller & C. Miniatura. Weak Localisation of Light by Atoms
with Quantum Internal Structure. In B. A. van Tiggelen & S. E.
Skipetrov, editeurs, Wave Scattering in Complex Media: From
Theory to Applications NATO Science Series 45–58 Dordrecht
(2003). Springer Netherlands. Cited on page 110.

[Moreira 2019] N. A. Moreira, R. Kaiser, & R. Bachelard. Localization vs. sub-
radiance in three-dimensional scattering of light. EPL 127, No. 5
(2019). Cited on page 66.

[Mott 1990] N. F. Mott. Metal-insulator transitions. Taylor & Francis London
(1990). Cited on page 104.

[Müller 2001] C. A. Müller, T. Jonckheere, C. Miniatura, & D. Delande. Weak
localization of light by cold atoms: The impact of quantum internal
structure. Phys. Rev. A 64, 053804 (2001). Cited on page 110.

[Müller 2002] C. A. Müller & C. Miniatura. Multiple scattering of light by atoms
with internal degeneracy. Journal of Physics A: Mathematical and
General 35, No. 47 10163–10188 (2002). Cited on page 110.

[Müller 2005] C. A. Müller, C. Miniatura, D. Wilkowski, R. Kaiser, & D. Delande.
Multiple scattering of photons by atomic hyperfine multiplets. Phys.
Rev. A 72, 053405 (2005). Cited on page 111.

[Needham 2019] J. A. Needham, I. Lesanovsky, & B. Olmos. Subradiance-protected
excitation transport. New Journal of Physics 21, No. 7 073061
(2019). Cited on page 13.

[Nieuwenhuizen 1994] T. Nieuwenhuizen, A. Burin, Y. Kagan, & G. Shlyapnikov. Light
propagation in a solid with resonant atoms at random positions.
Physics Letters A 184, No. 4 360–365 (1994). Cited on page 116.

https://doi.org/10.1070/pu1999v042n02abeh000521
https://doi.org/10.1070/pu1999v042n02abeh000521
https://link.aps.org/doi/10.1103/PhysRevA.10.1096
https://doi.org/10.1209/0295-5075/127/54003
https://doi.org/10.1209/0295-5075/127/54003
https://link.aps.org/doi/10.1103/PhysRevA.64.053804
https://doi.org/10.1088/0305-4470/35/47/314
https://doi.org/10.1088/0305-4470/35/47/314
https://link.aps.org/doi/10.1103/PhysRevA.72.053405
https://link.aps.org/doi/10.1103/PhysRevA.72.053405
https://doi.org/10.1088/1367-2630/ab31e8
https://doi.org/10.1088/1367-2630/ab31e8
https://www.sciencedirect.com/science/article/pii/0375960194904618


Bibliography 171

[Nieuwenhuizen 1995] T. M. Nieuwenhuizen & M. C. W. van Rossum. Intensity Distribu-
tions of Waves Transmitted through a Multiple Scattering Medium.
Phys. Rev. Lett. 74, 2674–2677 (1995). Cited on page 120.

[Pandey 2017] S. Pandey, B. Gupta, S. Mujumdar, & A. Nahata. Direct observation
of Anderson localization in plasmonic terahertz devices. Light:
Science & Applications 6, (2017). Cited on page 104.

[Pavolini 1985] D. Pavolini, A. Crubellier, P. Pillet, L. Cabaret, & S. Liberman.
Experimental Evidence for Subradiance. Phys. Rev. Lett. 54, 1917–
1920 (1985). Cited on page 6.

[Pellegrino 2014] J. Pellegrino, R. Bourgain, S. Jennewein, Y. R. P. Sortais,
A. Browaeys, S. D. Jenkins, & J. Ruostekoski. Observation of
Suppression of Light Scattering Induced by Dipole-Dipole Interac-
tions in a Cold-Atom Ensemble. Phys. Rev. Lett. 113, 133602
(2014). Cited on pages 47 and 146.

[Peng 2007] X. T. Peng & A. D. Dinsmore. Light Propagation in Strongly Scat-
tering, Random Colloidal Films: The Role of the Packing Geometry.
Phys. Rev. Lett. 99, 143902 (2007). Cited on page 115.

[Plankensteiner 2015] D. Plankensteiner, L. Ostermann, H. Ritsch, & C. Genes. Selective
protected state preparation of coupled dissipative quantum emitters.
Scientific Reports 5, No. 1 16231 (2015). Cited on page 13.

[Prasad 2010] S. Prasad & R. J. Glauber. Coherent radiation by a spherical
medium of resonant atoms. Phys. Rev. A 82, 063805 (2010). Cited
on pages 7 and 8.

[Pucci 2017] L. Pucci, A. Roy, T. S. do Espirito Santo, R. Kaiser, M. Kastner,
& R. Bachelard. Quantum effects in the cooperative scattering of
light by atomic clouds. Phys. Rev. A 95, 053625 (2017). Cited on
page 40.

[Ressayre 1976] E. Ressayre & A. Tallet. Basic Properties for Cooperative Emission
of Radiation. Phys. Rev. Lett. 37, 424–427 (1976). Cited on page
6.

[Ressayre 1977] E. Ressayre & A. Tallet. Quantum theory for superradiance. Phys.
Rev. A 15, 2410–2423 (1977). Cited on page 6.

https://link.aps.org/doi/10.1103/PhysRevLett.74.2674
https://www.nature.com/articles/lsa2016232
https://www.nature.com/articles/lsa2016232
https://link.aps.org/doi/10.1103/PhysRevLett.54.1917
https://link.aps.org/doi/10.1103/PhysRevLett.54.1917
https://link.aps.org/doi/10.1103/PhysRevLett.113.133602
https://link.aps.org/doi/10.1103/PhysRevLett.113.133602
https://link.aps.org/doi/10.1103/PhysRevLett.99.143902
https://doi.org/10.1038/srep16231
https://link.aps.org/doi/10.1103/PhysRevA.82.063805
https://link.aps.org/doi/10.1103/PhysRevA.95.053625
https://link.aps.org/doi/10.1103/PhysRevLett.37.424
https://link.aps.org/doi/10.1103/PhysRevA.15.2410
https://link.aps.org/doi/10.1103/PhysRevA.15.2410


172 BIBLIOGRAPHY

[Rezvani Naraghi 2015] R. Rezvani Naraghi, S. Sukhov, J. J. Sáenz, & A. Dogariu. Near-
Field Effects in Mesoscopic Light Transport. Phys. Rev. Lett. 115,
203903 (2015). Cited on page 115.

[Riboli 2011] F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. D. Rossi,
S. Combrie, & D. S. Wiersma. Anderson localization of near-visible
light in two dimensions. Optics Letters 36, (2011). Cited on pages
104 and 112.

[Roati 2008] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti,
G. Modugno, M. Modugno, & M. Inguscio. Anderson localization of
a non-interacting Bose–Einstein condensate. Nature 453, No. 7197
895–898 (2008). Cited on page 104.

[Rojas-Ochoa 2004a] L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurten-
berger, & F. Scheffold. Photonic Properties of Strongly Correlated
Colloidal Liquids. Phys. Rev. Lett. 93, 073903 (2004). Cited on
page 76.

[Rojas-Ochoa 2004b] L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurten-
berger, & F. Scheffold. Photonic Properties of Strongly Correlated
Colloidal Liquids. Phys. Rev. Lett. 93, 073903 (2004). Cited on
page 115.

[Roof 2016] S. J. Roof, K. J. Kemp, M. D. Havey, & I. M. Sokolov. Observation
of Single-Photon Superradiance and the Cooperative Lamb Shift in
an Extended Sample of Cold Atoms. Phys. Rev. Lett. 117, 073003
(2016). Cited on pages 8 and 26.

[Rouabah 2014] M.-T. Rouabah, M. Samoylova, R. Bachelard, P. W. Courteille,
R. Kaiser, & N. Piovella. Coherence effects in scattering order
expansion of light by atomic clouds. J. Opt. Soc. Am. A 31, No. 5
1031–1039 (2014). Cited on page 8.

[Samoylova 2014] M. Samoylova, N. Piovella, R. Bachelard, & P. Courteille. Mi-
croscopic theory of photonic band gaps in optical lattices. Optics
Communications 312, 94–98 (2014). Cited on page 48.

[Sapienza 2007] R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, A. Blanco,
L. Viña, C. López, & D. S. Wiersma. Observation of Resonant

https://link.aps.org/doi/10.1103/PhysRevLett.115.203903
https://link.aps.org/doi/10.1103/PhysRevLett.115.203903
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-36-2-127
https://www.nature.com/articles/nature07071
https://www.nature.com/articles/nature07071
https://link.aps.org/doi/10.1103/PhysRevLett.93.073903
https://link.aps.org/doi/10.1103/PhysRevLett.93.073903
https://link.aps.org/doi/10.1103/PhysRevLett.117.073003
https://link.aps.org/doi/10.1103/PhysRevLett.117.073003
http://opg.optica.org/josaa/abstract.cfm?URI=josaa-31-5-1031
http://opg.optica.org/josaa/abstract.cfm?URI=josaa-31-5-1031
https://www.sciencedirect.com/science/article/pii/S0030401813008377
https://www.sciencedirect.com/science/article/pii/S0030401813008377


Bibliography 173

Behavior in the Energy Velocity of Diffused Light. Phys. Rev. Lett.
99, 233902 (2007). Cited on page 115.

[Sapienza 2010] L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka,
& P. Lodahl. Cavity Quantum Electrodynamics with Anderson-
Localized Modes. Science 327, No. 5971 (2010). Cited on pages
104 and 112.

[Saulnier 1990] P. M. Saulnier, M. P. Zinkin, & G. H. Watson. Scatterer correlation
effects on photon transport in dense random media. Phys. Rev. B
42, 2621–2623 (1990). Cited on page 115.

[Saunders 1973a] R. Saunders & R. K. Bullough. Perturbation theory of super-
radiance. I. Super-radiant emission. Journal of Physics A: Mathe-
matical, Nuclear and General 6, No. 9 1348–1359 (1973). Cited on
page 6.

[Saunders 1973b] R. Saunders & R. K. Bullough. Perturbation theory of super-
radiance. II. Cooperative and non-cooperative level shifts. Journal of
Physics A: Mathematical, Nuclear and General 6, No. 9 1360–1374
(1973). Cited on page 6.

[Scheffold 1999] F. Scheffold, R. Lenke, R. Tweer, & G. Maret. Localization or
classical diffusion of light? Nature 398, No. 6724 206–207 (1999).
Cited on page 112.

[Scheffold 2013] F. Scheffold & D. Wiersma. Inelastic scattering puts in question
recent claims of Anderson localization of light. Nature Photonics 7,
No. 12 934–934 (2013). Cited on page 113.

[Schwartz 2007] T. Schwartz, G. Bartal, S. Fishman, & M. Segev. Transport and An-
derson localization in disordered two-dimensional photonic lattices.
Nature 446, No. 7131 (2007). Cited on pages 104 and 112.

[Scully 2006] M. O. Scully, E. S. Fry, C. H. R. Ooi, & K. Wódkiewicz. Directed
Spontaneous Emission from an Extended Ensemble of N Atoms:
Timing Is Everything. Phys. Rev. Lett. 96, 010501 (2006). Cited
on page 6.

[Scully 2007] M. O. Scully. Correlated spontaneous emission on the Volga. Laser
Physics 17, No. 5 635–646 (2007). Cited on page 7.

https://link.aps.org/doi/10.1103/PhysRevLett.99.233902
https://link.aps.org/doi/10.1103/PhysRevLett.99.233902
https://science.sciencemag.org/content/327/5971/1352
https://link.aps.org/doi/10.1103/PhysRevB.42.2621
https://link.aps.org/doi/10.1103/PhysRevB.42.2621
https://doi.org/10.1088/0305-4470/6/9/010
https://doi.org/10.1088/0305-4470/6/9/010
https://doi.org/10.1088/0305-4470/6/9/011
https://doi.org/10.1088/0305-4470/6/9/011
https://doi.org/10.1088/0305-4470/6/9/011
http://www.nature.com/articles/18347
https://www.nature.com/articles/nphoton.2013.210
https://www.nature.com/articles/nphoton.2013.210
https://www.nature.com/articles/nature05623
https://link.aps.org/doi/10.1103/PhysRevLett.96.010501
https://doi.org/10.1134/S1054660X07050064
https://doi.org/10.1134/S1054660X07050064


174 BIBLIOGRAPHY

[Scully 2009a] M. O. Scully. Collective Lamb Shift in Single Photon Dicke Super-
radiance. Phys. Rev. Lett. 102, 143601 (2009). Cited on pages 7
and 8.

[Scully 2009b] M. O. Scully & A. A. Svidzinsky. The Super of Superradiance.
Science 325, No. 5947 1510–1511 (2009). Cited on page 7.

[Scully 2015] M. O. Scully. Single Photon Subradiance: Quantum Control of
Spontaneous Emission and Ultrafast Readout. Phys. Rev. Lett. 115,
243602 (2015). Cited on pages 7 and 13.

[Semeghini 2015] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli,
A. Trenkwalder, M. Fattori, M. Inguscio, & G. Modugno. Mea-
surement of the mobility edge for 3D Anderson localization. Nature
Physics 11, No. 7 554–559 (2015). Cited on page 104.

[Sheng 1986] P. Sheng & Z.-Q. Zhang. Scalar-Wave Localization in a Two-
Component Composite. Phys. Rev. Lett. 57, 1879–1882 (1986).
Cited on page 108.

[Sheng 1990] P. Sheng. Scattering And Localization Of Classical Waves In Random
Media. World Scientific (1990). doi: 10.1142/0565. Cited on page
104.

[Sheng 2006] P. Sheng. Introduction to Wave Scattering, Localization and Meso-
scopic Phenomena. Springer Series in Materials Science. Springer-
Verlag Berlin Heidelberg 2 edition (2006). doi: 10.1007/3-540-29156-
3. Cited on pages 90, 101, 103, and 105.

[Sigwarth 2004] O. Sigwarth, G. Labeyrie, T. Jonckheere, D. Delande, R. Kaiser, &
C. Miniatura. Magnetic Field Enhanced Coherence Length in Cold
Atomic Gases. Phys. Rev. Lett. 93, 143906 (2004). Cited on page
111.

[Skipetrov 2006] S. E. Skipetrov & B. A. van Tiggelen. Dynamics of Anderson
Localization in Open 3D Media. Phys. Rev. Lett. 96, 043902 (2006).
Cited on page 113.

[Skipetrov 2014] S. E. Skipetrov & I. M. Sokolov. Absence of Anderson Localization
of Light in a Random Ensemble of Point Scatterers. Phys. Rev.
Lett. 112, 023905 (2014). Cited on pages 47, 86, 102, 115, 129,
130, 131, 137, 140, 141, 143, and 146.

https://link.aps.org/doi/10.1103/PhysRevLett.102.143601
https://www.science.org/doi/abs/10.1126/science.1176695
https://link.aps.org/doi/10.1103/PhysRevLett.115.243602
https://link.aps.org/doi/10.1103/PhysRevLett.115.243602
https://www.nature.com/articles/nphys3339
https://www.nature.com/articles/nphys3339
https://link.aps.org/doi/10.1103/PhysRevLett.57.1879
https://www.worldscientific.com/doi/abs/10.1142/0565
https://www.springer.com/gp/book/9783540291558
https://www.springer.com/gp/book/9783540291558
https://link.aps.org/doi/10.1103/PhysRevLett.93.143906
https://link.aps.org/doi/10.1103/PhysRevLett.96.043902
https://link.aps.org/doi/10.1103/PhysRevLett.112.023905
https://link.aps.org/doi/10.1103/PhysRevLett.112.023905


Bibliography 175

[Skipetrov 2015] S. E. Skipetrov & I. M. Sokolov. Magnetic-Field-Driven Localization
of Light in a Cold-Atom Gas. Phys. Rev. Lett. 114, 053902 (2015).
Cited on pages 8, 115, 117, 129, 132, 135, 136, 137, 140, 141,
and 146.

[Skipetrov 2016a] S. E. Skipetrov. Finite-size scaling analysis of localization transition
for scalar waves in a three-dimensional ensemble of resonant point
scatterers. Phys. Rev. B 94, 064202 (2016). Cited on pages 80,
115, and 141.

[Skipetrov 2016b] S. E. Skipetrov & J. H. Page. Red light for Anderson localization.
New Journal of Physics 18, No. 2 021001 (2016). Cited on pages 3
and 112.

[Skipetrov 2016c] S. E. Skipetrov, I. M. Sokolov, & M. D. Havey. Control of light
trapping in a large atomic system by a static magnetic field. Phys.
Rev. A 94, 013825 (2016). Cited on pages 117 and 144.

[Skipetrov 2018a] S. E. Skipetrov. Localization Transition for Light Scattering by Cold
Atoms in an External Magnetic Field. Phys. Rev. Lett. 121, 093601
(2018). Cited on pages 116, 137, 140, and 141.

[Skipetrov 2018b] S. E. Skipetrov & Y. M. Beltukov. Anderson transition for elastic
waves in three dimensions. Phys. Rev. B 98, 064206 (2018). Cited
on page 116.

[Skipetrov 2018c] S. E. Skipetrov & I. M. Sokolov. Ioffe-Regel criterion for Anderson
localization in the model of resonant point scatterers. Phys. Rev. B
98, 064207 (2018). Cited on pages 116, 126, 128, and 141.

[Skipetrov 2019] S. E. Skipetrov & I. M. Sokolov. Intensity of Waves Inside a Strongly
Disordered Medium. Phys. Rev. Lett. 123, 233903 (2019). Cited
on pages 142 and 143.

[Skribanowitz 1973] N. Skribanowitz, I. P. Herman, J. C. MacGillivray, & M. S. Feld.
Observation of Dicke Superradiance in Optically Pumped HF Gas.
Phys. Rev. Lett. 30, 309–312 (1973). Cited on page 6.

[Sornette 1988] D. Sornette & B. Souillard. Strong Localization of Waves by Internal
Resonances. Europhysics Letters (EPL) 7, No. 3 269–274 (1988).
Cited on page 108.

https://link.aps.org/doi/10.1103/PhysRevLett.114.053902
https://link.aps.org/doi/10.1103/PhysRevB.94.064202
https://doi.org/10.1088/1367-2630/18/2/021001
https://link.aps.org/doi/10.1103/PhysRevA.94.013825
https://link.aps.org/doi/10.1103/PhysRevA.94.013825
https://link.aps.org/doi/10.1103/PhysRevLett.121.093601
https://link.aps.org/doi/10.1103/PhysRevLett.121.093601
https://link.aps.org/doi/10.1103/PhysRevB.98.064206
https://link.aps.org/doi/10.1103/PhysRevB.98.064207
https://link.aps.org/doi/10.1103/PhysRevB.98.064207
https://link.aps.org/doi/10.1103/PhysRevLett.123.233903
http://link.aps.org/doi/10.1103/PhysRevLett.30.309
https://doi.org/10.1209/0295-5075/7/3/014


176 BIBLIOGRAPHY

[Sperling 2013] T. Sperling, W. Bührer, C. M. Aegerter, & G. Maret. Direct deter-
mination of the transition to localization of light in three dimensions.
Nature Photonics 7, No. 1 48–52 (2013). Cited on page 112.

[Sperling 2014] T. Sperling, W. Bührer, M. Ackermann, C. M. Aegerter, & G. Maret.
Probing Anderson localization of light by weak non-linear effects.
New Journal of Physics 16, No. 11 112001 (2014). Cited on page
112.

[Sperling 2016] T. Sperling, L. Schertel, M. Ackermann, G. J. Aubry, C. M. Aegerter,
& G. Maret. Can 3D light localization be reached in ‘white paint’?
New Journal of Physics 18, No. 1 013039 (2016). Cited on pages
113 and 117.

[Steck 2021] D. A. Steck. Rubidium 87 D Line data (2021). Available online at
http://steck.us/alkalidata (revision 2.2.2, 9 July 2021). Cited on
page 14.

[Stephen 1964] M. J. Stephen. First-Order Dispersion Forces. The Journal of
Chemical Physics 40, No. 3 669–673 (1964). Cited on pages 3, 6,
39, and 58.

[Störzer 2006] M. Störzer, P. Gross, C. M. Aegerter, & G. Maret. Observation of
the Critical Regime Near Anderson Localization of Light. Phys. Rev.
Lett. 96, 063904 (2006). Cited on pages 112 and 117.

[Stroud 1972] C. R. Stroud, J. H. Eberly, W. L. Lama, & L. Mandel. Superradiant
Effects in Systems of Two-Level Atoms. Phys. Rev. A 5, 1094–1104
(1972). Cited on page 6.

[Sturges 2019] T. J. Sturges, M. D. Anderson, A. Buraczewski, M. Navadeh-
Toupchi, A. F. Adiyatullin, F. Jabeen, D. Y. Oberli, M. T. Portella-
Oberli, & M. Stobińska. Anderson localisation in steady states of
microcavity polaritons. Scientific Reports 9, No. 1 (2019). Cited
on page 104.

[Sutherland 2016] R. T. Sutherland & F. Robicheaux. Coherent forward broadening
in cold atom clouds. Phys. Rev. A 93, 023407 (2016). Cited on
page 8.

https://www.nature.com/articles/nphoton.2012.313
https://doi.org/10.1088/1367-2630/16/11/112001
https://iopscience.iop.org/article/10.1088/1367-2630/18/1/013039
http://steck.us/alkalidata
https://doi.org/10.1063/1.1725188
https://doi.org/10.1063/1.1725188
https://link.aps.org/doi/10.1103/PhysRevLett.96.063904
https://link.aps.org/doi/10.1103/PhysRevLett.96.063904
https://link.aps.org/doi/10.1103/PhysRevA.5.1094
https://link.aps.org/doi/10.1103/PhysRevA.5.1094
https://www.nature.com/articles/s41598-019-55673-y
https://link.aps.org/doi/10.1103/PhysRevA.93.023407


Bibliography 177

[Sutherland 2017] R. T. Sutherland & F. Robicheaux. Degenerate Zeeman ground
states in the single-excitation regime. Phys. Rev. A 96, 053840
(2017). Cited on page 146.

[Svidzinsky 2008] A. A. Svidzinsky, J.-T. Chang, & M. O. Scully. Dynamical Evolution
of Correlated Spontaneous Emission of a Single Photon from a
Uniformly Excited Cloud of N Atoms. Phys. Rev. Lett. 100, 160504
(2008). Cited on page 7.

[Svidzinsky 2010] A. A. Svidzinsky, J.-T. Chang, & M. O. Scully. Cooperative spon-
taneous emission of N atoms: Many-body eigenstates, the effect
of virtual Lamb shift processes, and analogy with radiation of N
classical oscillators. Phys. Rev. A 81, 053821 (2010). Cited on
pages 7 and 8.

[Takasu 2003] Y. Takasu, K. Honda, K. Komori, T. Kuwamoto, M. Kumakura,
Y. Takahashi, & T. Yabuzaki. High-Density Trapping of Cold
Ytterbium Atoms by an Optical Dipole Force. Phys. Rev. Lett. 90,
023003 (2003). Cited on page 87.

[Tana 2004] R. Tana & Z. Ficek. Entangling two atoms via spontaneous emission.
Journal of Optics B: Quantum and Semiclassical Optics 6, No. 3
S90–S97 (2004). Cited on page 43.

[Thouless 1974] D. J. Thouless. Electrons in disordered systems and the theory of
localization. Physics Reports 13, No. 3 93–142 (1974). Cited on
page 95.

[Thouless 1977] D. J. Thouless. Maximum Metallic Resistance in Thin Wires. Phys.
Rev. Lett. 39, 1167–1169 (1977). Cited on page 118.

[Topolancik 2007] J. Topolancik, B. Ilic, & F. Vollmer. Experimental Observation of
Strong Photon Localization in Disordered Photonic Crystal Waveg-
uides. Physical Review Letters 99, No. 25 (2007). Cited on pages
104 and 112.

[Tsang 1984] L. Tsang & A. Ishimaru. Backscattering enhancement of random
discrete scatterers. J. Opt. Soc. Am. A 1, No. 8 836–839 (1984).
Cited on page 110.

[van de Hulst 1980] H. van de Hulst. Multiple Light Scattering vol. 1 and 2. Academic
Press New York (1980). Cited on page 106.

https://link.aps.org/doi/10.1103/PhysRevA.96.053840
https://link.aps.org/doi/10.1103/PhysRevA.96.053840
https://link.aps.org/doi/10.1103/PhysRevLett.100.160504
https://link.aps.org/doi/10.1103/PhysRevLett.100.160504
https://link.aps.org/doi/10.1103/PhysRevA.81.053821
https://link.aps.org/doi/10.1103/PhysRevLett.90.023003
https://link.aps.org/doi/10.1103/PhysRevLett.90.023003
https://doi.org/10.1088/1464-4266/6/3/015
https://doi.org/10.1088/1464-4266/6/3/015
https://www.sciencedirect.com/science/article/pii/0370157374900295
https://link.aps.org/doi/10.1103/PhysRevLett.39.1167
https://link.aps.org/doi/10.1103/PhysRevLett.39.1167
https://link.aps.org/doi/10.1103/PhysRevLett.99.253901
http://josaa.osa.org/abstract.cfm?URI=josaa-1-8-836


178 BIBLIOGRAPHY

[van der Beek 2012] T. van der Beek, P. Barthelemy, P. M. Johnson, D. S. Wiersma, &
A. Lagendijk. Light transport through disordered layers of dense
gallium arsenide submicron particles. Phys. Rev. B 85, 115401
(2012). Cited on pages 112 and 117.

[van Rossum 1999] M. C. W. van Rossum & T. M. Nieuwenhuizen. Multiple scattering
of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod.
Phys. 71, 313–371 (1999). Cited on pages 109, 120, 121, and 142.

[Vollhardt 1980a] D. Vollhardt & P. Wölfle. Anderson Localization in d ≤ 2 Dimen-
sions: A Self-Consistent Diagrammatic Theory. Phys. Rev. Lett.
45, 842–846 (1980). Cited on page 103.

[Vollhardt 1980b] D. Vollhardt & P. Wölfle. Diagrammatic, self-consistent treatment
of the Anderson localization problem in d ≤ 2 dimensions. Phys.
Rev. B 22, 4666–4679 (1980). Cited on page 103.

[Vollhardt 1982] D. Vollhardt & P. Wölfle. Scaling Equations from a Self-Consistent
Theory of Anderson Localization. Phys. Rev. Lett. 48, 699–702
(1982). Cited on page 103.

[Vollhardt 1987] D. Vollhardt. Localization effects in disordered systems 63–84.
Springer Berlin Heidelberg Berlin, Heidelberg (1987). Cited on
page 95.

[Vollhardt 1992] D. Vollhardt & P. Wölfle. Electronic Phase Transition Chapter:
Self-consistent theory of Anderson localization, 1–78. Elsevier
North-Holland (1992). Cited on page 103.

[Wang 2011] J. Wang & A. Z. Genack. Transport through modes in random
media. Nature 471, No. 7338 345–348 (2011). Cited on page 118.

[Wang 2020] B. X. Wang & C. Y. Zhao. Near-resonant light transmission in
two-dimensional dense cold atomic media with short-range positional
correlations. J. Opt. Soc. Am. B 37, No. 6 1757–1768 (2020). Cited
on page 76.

[Weaver 1990] R. L. Weaver. Anderson localization of ultrasound. Wave Motion
12, No. 2 129–142 (1990). Cited on page 104.

[Wegner 1976] F. J. Wegner. Electrons in disordered systems. Scaling near the
mobility edge. Zeitschrift für Physik B Condensed Matter 25, No. 4
327–337 (1976). Cited on page 98.

https://link.aps.org/doi/10.1103/PhysRevB.85.115401
https://link.aps.org/doi/10.1103/PhysRevB.85.115401
https://link.aps.org/doi/10.1103/RevModPhys.71.313
https://link.aps.org/doi/10.1103/RevModPhys.71.313
https://link.aps.org/doi/10.1103/PhysRevLett.45.842
https://link.aps.org/doi/10.1103/PhysRevLett.45.842
https://link.aps.org/doi/10.1103/PhysRevB.22.4666
https://link.aps.org/doi/10.1103/PhysRevB.22.4666
https://link.aps.org/doi/10.1103/PhysRevLett.48.699
https://link.aps.org/doi/10.1103/PhysRevLett.48.699
https://doi.org/10.1038/nature09824
http://www.osapublishing.org/josab/abstract.cfm?URI=josab-37-6-1757
https://www.sciencedirect.com/science/article/pii/0165212590900342
https://www.sciencedirect.com/science/article/pii/0165212590900342
https://doi.org/10.1007/BF01315248
https://doi.org/10.1007/BF01315248


Bibliography 179

[Weiss 2018] P. Weiss, M. O. Araújo, R. Kaiser, & W. Guerin. Subradiance and
radiation trapping in cold atoms. New. J. Phys. 20, 063024 (2018).
Cited on pages 9, 20, 21, 42, and 47.

[Weiss 2019] P. Weiss, A. Cipris, M. O. Araújo, R. Kaiser, & W. Guerin. Ro-
bustness of Dicke subradiance against thermal decoherence. Phys.
Rev. A 100, 033833 (2019). Cited on pages 11, 21, 24, 42, and 87.

[Weiss 2021] P. Weiss, A. Cipris, R. Kaiser, I. M. Sokolov, & W. Guerin. Su-
perradiance as single scattering embedded in an effective medium.
Phys. Rev. A 103, 023702 (2021). Cited on pages 12, 72, and 87.

[Wellens 2005] T. Wellens, B. Grémaud, D. Delande, & C. Miniatura. Coherent
backscattering of light by nonlinear scatterers. Phys. Rev. E 71,
055603 (2005). Cited on page 111.

[Wellens 2006] T. Wellens, B. Grémaud, D. Delande, & C. Miniatura. Coherent
backscattering of light with nonlinear atomic scatterers. Phys. Rev.
A 73, 013802 (2006). Cited on page 111.

[White 2020] D. H. White, T. A. Haase, D. J. Brown, M. D. Hoogerland, M. S. Na-
jafabadi, J. L. Helm, C. Gies, D. Schumayer, & D. A. W. Hutchinson.
Observation of two-dimensional Anderson localisation of ultracold
atoms. Nature Communications 11, No. 1 4942 (2020). Cited on
page 104.

[Wiersma 1997] D. S. Wiersma, P. Bartolini, A. Lagendijk, & R. Righini. Localization
of light in a disordered medium. Nature 390, No. 6661 671–673
(1997). Cited on pages 112 and 117.

[Wiersma 1999] D. S. Wiersma, J. G. Rivas, P. Bartolini, A. Lagendijk, & R. Righini.
Localization or classical diffusion of light? Nature 398, No. 6724
207–207 (1999). Cited on page 112.

[Wigner 1951] E. P. Wigner. On a class of analytic functions from the quantum
theory of collisions. Ann. Math. 53, (1951). Cited on page 103.

[Wilkowski 2003] D. Wilkowski, Y. Bidel, T. Chanelière, R. Kaiser, B. Klappauf,
G. Labeyrie, C. Müller, & C. Miniatura. Light transport in cold
atoms: the fate of coherent backscattering in the weak localization
regime. Physica B: Condensed Matter 328, No. 3 157–162 (2003).
Cited on page 111.

https://doi.org/10.1088/1367-2630/aac5d0
https://link.aps.org/doi/10.1103/PhysRevA.100.033833
https://link.aps.org/doi/10.1103/PhysRevA.100.033833
https://link.aps.org/doi/10.1103/PhysRevA.103.023702
https://link.aps.org/doi/10.1103/PhysRevE.71.055603
https://link.aps.org/doi/10.1103/PhysRevE.71.055603
https://link.aps.org/doi/10.1103/PhysRevA.73.013802
https://link.aps.org/doi/10.1103/PhysRevA.73.013802
https://www.nature.com/articles/s41467-020-18652-w
https://www.nature.com/articles/37757
https://www.nature.com/articles/37757
https://doi.org/10.1038/18350
https://doi.org/10.1038/18350
https://www.sciencedirect.com/science/article/pii/S0921452602017866


180 BIBLIOGRAPHY

[Wilkowski 2004] D. Wilkowski, Y. Bidel, T. Chanelière, D. Delande, T. Jonckheere,
B. Klappauf, G. Labeyrie, C. Miniatura, C. A. Müller, O. Sigwarth,
& R. Kaiser. Coherent backscattering of light by resonant atomic
dipole transitions. J. Opt. Soc. Am. B 21, No. 1 183–190 (2004).
Cited on page 111.

[Williamson 2020] L. A. Williamson & J. Ruostekoski. Optical response of atom chains
beyond the limit of low light intensity: The validity of the linear
classical oscillator model. Phys. Rev. Research 2, 023273 (2020).
Cited on page 42.

[Woess 2000] W. Woess. Random Walks on Infinite Graphs and Groups. Cam-
bridge Tracts in Mathematics. Cambridge University Press (2000).
Cited on page 95.

[Wolf 1985] P.-E. Wolf & G. Maret. Weak Localization and Coherent Backscatter-
ing of Photons in Disordered Media. Phys. Rev. Lett. 55, 2696–2699
(1985). Cited on page 110.

[Ying 2016] T. Ying, Y. Gu, X. Chen, X. Wang, S. Jin, L. Zhao, W. Zhang,
& X. Chen. Anderson localization of electrons in single crystals:
LixFe7Se8. Science Advances 2, No. 2 e1501283 (2016). Cited on
page 104.

[Zhu 2016] B. Zhu, J. Cooper, J. Ye, & A. M. Rey. Light scattering from dense
cold atomic media. Phys. Rev. A 94, 023612 (2016). Cited on
pages 8 and 64.

[Zhu 2020] Y. Zhu, H. Jing, R.-W. Peng, C.-Y. Li, J. He, B. Xiong, & M. Wang.
Realizing Anderson localization of surface plasmon polaritons and
enhancing their interactions with excitons in 2D disordered nanos-
tructures. Applied Physics Letters 116, No. 20 (2020). Cited on
page 104.

http://josab.osa.org/abstract.cfm?URI=josab-21-1-183
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023273
https://link.aps.org/doi/10.1103/PhysRevLett.55.2696
https://link.aps.org/doi/10.1103/PhysRevLett.55.2696
https://advances.sciencemag.org/content/2/2/e1501283
https://link.aps.org/doi/10.1103/PhysRevA.94.023612
https://aip.scitation.org/doi/10.1063/5.0001451

	Introduction
	Subradiance beyond the linear optics regime
	Experimental setup and data acquisition
	Cold atomic samples and probe beam pulses
	Experimental cycles and measurement protocol
	Calibration of the saturation parameter of the probe laser
	Spurious effects due to the high saturation parameter: Heating and pushing of the atomic cloud

	Experimental subradiant data
	Temporal dynamics of the scattered intensity: long lived decay and saturation parameter
	Subradiant lifetime and relative amplitude
	Population of subradiant states

	Interpretation and comparison with theory
	Theory
	Experimental vs. numerical results
	Interpretation

	Conclusion

	Subradiance beyond the dilute regime
	Microscopic model
	Coupled-dipole equations
	Spectrum of the system
	Atomic sample

	Late-time decay dynamics
	Temporal evolution of the scattered intensity and the method of obtaining subradiant lifetimes
	Scaling of subradiance with vectorial light
	The exclusion volume
	Influence of subradiant pairs on collective dynamics
	Influence of positional correlations

	Comparison with scalar light
	Interpretation of the decay-dynamics results

	Conclusion

	Signature of Anderson localization of light in 3D
	Brief review on Anderson localization
	Anderson localization: disorder-induced wave interference phenomenon
	Localization criteria
	Scaling theory of localization
	Ioffe-Regel criterion


	Strong localization of light
	Light localization vs electron localization
	Scattering regimes for localization of light
	Towards the observation of Anderson localization of light in 3D disordered systems
	Challenges in observing light localization in 3D

	Statistical signature of strong localization of light in 3D
	Thouless number and conductance
	Speckle statistics: intensity distribution and intensity fluctuations
	Numerical model
	Signature in the scalar coupled-dipole model
	Localization signature in vectorial coupled-dipole model: absence and recovery of AL with strong external magnetic field

	Discussion and conclusion

	Conclusion
	Appendices
	List of publications
	Bibliography


