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0.1 Résumé Substantiel

Les travaux de ce mémoire présentent différents résultats dans trois domaines: la dynamique des mem-

branes biologiques, la dynamique de certains fluides électro ou magnéto rhéologiques et le traitement

d’images. Du point de vue mathématique le mémoire concern l’analyse théorique et numérique des

équations différentielles ordinaires fortement non linéaires et des équations aux dérivées partielles non

linéaires.

Ses travaux constituent une approche multidisciplinaire qui regroupe les mathématiques appliquées,

la biologie, la physique et le traitement d’images. La thèse est donc divisée en trois parties indépendantes.

Le sujet de la partie principale de la thèse est concentré sur l’analyse de la dynamique et de la dé-

formation des globules rouges et des membranes biologiques, telles que les vésicules. Plus précisément,

l’analyse porte sur l’étude de la forme des globules rouges, sur l’effet des molécules sur la membrane

biologique et sur la dynamique des vésicules sous un écoulement oscillatoire, qui sont considérés comme

des modèles simples des globules rouges.

Le sang est le fluide vital qui circule dans notre corps. Les fonctions principales de ce fluide est

de transporter de l’oxygène, ainsi que d’éliminer du dioxyde de carbone. Ce fluide est une suspension

fortement concentrée en cellules. Il est composé de trois types de globules sanguins, les globules blancs

qui assurent la défense immunitaire, les plaquettes qui participent à la coagulation et les globules rouges,

ou les érythrocytes. 45 % de notre volume sanguin est composé de globules rouges. Cette composi-

tion confère à la circulation sanguine des propriétés d’écoulement, appelées propriétés rhéologiques, très

complexes.

Un globule rouge est une petite quantité de solution d’hémoglobine encapsulée par une membrane

viscoélastique spécifique. Les globules rouges ne contiennent pas de noyaux et leur membrane est com-

posée de trois éléments principaux : une bicouche lipidique, un cytosquelette de spectrine et des protéines

transmembranaires.

La structure de spectrine possède des propriétés élastiques qui ont un grand rôle dans la dynamique

des globules rouges. Ce sont des cellules très déformables pouvant passer rapidement dans les plus petits

capillaires afin d’approvisionner chaque partie du corps en oxygène. Ces cellules peuvent donc présenter

une variété de formes (formes de parachutes axisymétriques ou formes asymétriques de pantoufles, . . . ).

En effet, au niveau cellulaire, la rhéologie du sang dépend de la réponse des globules rouges aux

contraintes hydrodynamiques, et en particulier, de leur déformation, leur orientation, et de leur interaction
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avec les parois des vaisseaux sanguines. Ce sont autant de facteurs qui influencent la fluidité du sang et

sa capacité à irriguer correctement les tissus de l’organisme. Notamment, à faible vitesse de cisaillement,

les globules rouges ont tendance à s’empiler en rouleaux comme des piles d’assiettes. Cela conduit à

une augmentation de la viscosité du sang. Au fur et à mesure que la vitesse de cisaillement augmente,

ils se séparent, s’alignent et s’étirent dans le flux, la viscosité du sang ainsi diminue. Le comportement

microscopique des globules rouges a donc un impact direct sur les propriétés macroscopiques du sang.

Le principal objectif de cette partie est de se focaliser sur quelques aspects du comportement des

globules rouges. Afin de faciliter l’analyse de la dynamique des globules rouges, souvent les études sont

concentrées sur un modèle simplifié, les vésicules dont la membrane possède des propriétés mécaniques

voisines de celles des globules rouges.

En effet, pour une structure complexe telle qu’une membrane de globule rouge où il existe deux types

d’élasticité, l’élasticité due au cisaillement et l’élasticité de la flexion, la forme globale d’un élément de la

membrane résulte de l’équilibre entre les deux forces d’élasticités. La forme d’équilibre du globule rouge

(la forme au repos) est donc déterminée par la mécanique de la membrane sous contraintes de surface et

de volume fixés. Au repos, les éléments de la membrane peuvent être soumis à des contraintes, mais les

forces agissant sur tous les éléments sont en équilibre. Pour cela, le modèle de Canham et Helfrich, qui

correspond a une energie de courbure, est utilisé pour obtenir une description mathématique de la forme

du globule rouge.

Afin d’expliquer la curieuse forme biconcave des globules rouges, Canham (1970) a combiné des

résultats théoriques et expérimentaux. Canham a montrer que les sphéroïdes du même volume évoluent

vers un disque biconcave en minimisant l’énergie de courbure de la membrane. En 1973, Helfrich et al

ont suggéré la nécessité d’une courbure spontanée avec une valeur négative pour la stabilité de la forme

biconcave. Evans et ses collaborateurs (1972) ont proposé un modèle paramétrique pour caractériser la

géométrie du globule rouge basée sur la symétrie et la continuité de la surface en utilisant le traitement

d’image.

En présence de fluide, les propriétés mécaniques de la membrane jouent un rôle important sur la

dynamique et la déformation des vésicules et des globules rouges. Donc pour modéliser de manière

appropriée les globules rouges, certaines caractéristiques clés doivent être spécifiées: la forme biconcave

au repos, la viscoélasticité de la membrane du globule rouge, l’équation constitutive de l’élasticité de

flexion et du rapport de viscosité entre le fluide interne et le fluide externe.

Un certain nombre d’efforts ont été faits pour comprendre la dynamique complexe et la déforma-
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bilité des globules rouges. Keller et Skalak (1982) ont fait un premier pas vers la compréhension de

la dynamique des particules déformables telles que les capsules et les vésicules en étudiant un modèle

d’ellipsoïde sous l’écoulement de cisaillement. Ils ont pu prédire une transition entre un mouvement

de bascule et un mouvement de chenille de char. En ajoutant l’élasticité de la membrane au modèle de

Keller et Skalak, un nouveau mouvement a été observé à l’aide des modèles analytiques de Skotheim et

Secomb (2007) et Abkarian, Faivre et Viallat, appelé le mouvement "swinging", dans lequel l’orientation

de la cellule en régime de chenille de char oscille autour d’une valeur moyenne. Dupire et al. (2012) ont

étendu les travaux précédents, en tenant compte de la mémoire de la forme. Ils ont montré que le globule

rouge conserve sa forme biconcave lors du mouvement de chenille de char en supposant que cela peut

être due à des propriétés élastiques anisotropes de la membrane ou de la forme non homogène du globule

rouge.

La première partie de la thèse s’inscrit dans le domaine de la rhéologie du sang. Bien que l’étude en

générale est limitée à la présence d’un seul globule rouge ou vésicule (isolé), plusieurs contributions ont

été apportées, puisqu’il représente une première étape vers une description plus complexe du sang.

La première contribution de ce travail concerne l’optimisation de forme du globule rouge. Il s’agit

d’un problème d’optimisation sous contraintes. Nous avons dérivé l’équation d’équilibre. Cette équation

est également obtenu par Simeoni (2011). C’est une équation différentielle fortement nonlinéaire du

second ordre. L’analyse mathématique et numérique ont permis d’identifier les différentes formes de

globules rouges. En particulier, nous avons mis en évidence le rôle de certains paramètres physiques dans

la classification de ces formes qui correspondent à des minimums locaux de l’énergie de Canham (1970)

et Helfrich (1973).

La deuxième contribution de cette partie concerne le développement d’un modèle qui inclut la diffu-

sion des molécules sur la surface de la membrane (diffusion latérale). Ce modèle montre que le couplage

entre la membrane et les molécules entraine des instabilités morphologiques de la membrane.

La troisième contribution porte sur l’analyse du mouvement de vésicule sous l’effet d’un écoulement

de cisaillement linéaire et oscillatoire dans la limite de petite déformation. Nous avons obtenu des solu-

tions explicites ce qui a permis d’identifier différents régimes.

Partie 1: Modélisation des membranes biologiques et des globules rouges

Cette partie est constitué de quartes chapitres
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Chapitre 1: Modélisation de la forme d’équilibre des globules rouges

Dans ce chapitre, nous nous sommes intéressés à la description du modèle mathématique des globules

rouges et des vésicules en donnant quelques propriétés physiques de la membrane. Nous avons rappelé

essentiellement quelques outils mathématiques permettant de décrire la forme de la membrane.

En suite, nous nous sommes concentrés sur la modélisation de la forme biconcave des globules

rouges dans le domaine axisymétrique 2D et 3D. Dans un premier temps, nous avons étudié le problème

d’existence d’une solution particulière à la fonctionnelle de Helfrich qui correspond à une surface de la

forme du globule rouge. Cette fonctionnelle est aussi une perturbation de la fonctionnelle de Willmore

impliquant certains paramètres ayant des significations physiques. En utilisant la symétrie de la surface

des globules rouges (la forme biconcave), le problème se transforme en une ODE. Nous avons obtenu

une condition suffisante sur les paramètres physiques qui assurent l’existence de la solution (forme bi-

concave). Ensuite, nous nous sommes concentrés sur la modélisation numérique de la forme d’un globule

rouge en 2D et 3D. Le but de ce travail est de fournir une méthode quantitative pour interpréter les obser-

vations expérimentales de la forme des globules rouges obtenue par Evans (1972). Dans ce travail, nous

proposons un nouvel algorithme qui combine la méthode lagrangienne et les réseaux de neurones, appelé

réseau neuronal de programmation de Lagrange (LPNN) de Zhang et al (1992), qui est une technique de

calcul neuronal analogique pour résoudre des problèmes d’optimisation sous contraintes non linéaires.

Chapitre 2: Fluctuations et instabilité d’une membrane biologique induites par l’interaction

avec des macromolécules en utilisant l’optimisation de forme géométrique

Dans ce chapitre, nous développons un modèle qui inclut la diffusion des molécules sur la surface

de la membrane, afin de décrire les changements morphologiques également appelés fluctuations de la

membrane induites par la présence de la diffusion des protéines sur la surface de la membrane. Ces

protéines ont la capacité de s’adsorber et de se désorber de la membrane. Tout d’abord, nous commençons

par la description énergétique de la distribution des molécules sur la surface de la membrane, puis nous

définissons la courbure spontanée de la membrane en fonction de la concentration des molécules. Une

équation de diffusion de la concentration des molécules sur la surface est obtenue. Le modèle exploité

dans ce chapitre montre que le couplage entre la membrane et les molécules est fort ce qui implique une

instabilité morphologique de la membrane.

Chapitre 3: Comportement dynamique des vésicules sous un écoulement de cisaillement oscil-

latoire
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Dans ce chapitre, nous étudions la réponse des vésicules à un cisaillement oscillatoire, dans le régime

de petites déformations. L’interaction entre le taux de cisaillement et la fréquence donne lieu à une

dynamique plus riche que nous classifions. Premièrement, notre résultat a mis en évidence des com-

portements de mouvement dynamique oscillatoire mixte où les mouvements de "tumbeling" (TB) et de

"swinging" (SW) se produisent alternativement de manière périodique ou régulière. Ce type de mouve-

ment a été rapporté pour les globules rouges dans [Phys. Rev. Lett. 104, 168101 (2010)]. Plus important

encore, nous dérivons une expression explicite des valeurs critiques de l’amplitude du taux de cisaille-

ment, pour un mode oscillatoire mixte, caractérisé par une suite de n TB périodiquement interrompue

par un SW. Nous avons également pu déterminer des expressions exactes de la viscosité effective et de la

tension.

L’intérêt de comprendre la dynamique et la déformation du globule rouge permettra de mieux com-

prendre les maladies du sang comme la drépanocytose, caractérisées par une malformation des globules

rouges, qui adoptent une forme de sécheresse et perdent leurs propriétés d’élasticité, cela malheureuse-

ment conduit à une mauvaise orientation de l’oxygène dans l’organisme, qui à son tour conduit a des

maladies cardiovasculaires. Un autre intérêt est de pouvoir fabriquer des globules rouges artificiels ou

des micro nageurs qui pourraient également servir de transporteurs. Ainsi, ils pourraient transporter de

l’hémoglobine, sur laquelle se lie l’oxygène, mais aussi des molécules anticancéreuses ou des biocapteurs

qui détecte les toxines.

Partie 2: Existence de certains problèmes paraboliques non linéaires ayant des condi-

tions de croissance et un exposant variables

Un des défis actuels de la science est d’adapter les techniques d’ingénierie pour manipuler l’unité

de base d’un organisme vivant. De nos jours, grâce à l’introduction de dispositifs manipulables par des

champs extérieurs au cœur de la cellule, celle-ci peut subir des manipulations d’origine physique. Par

exemple, les cellules deviennent magnétiques en incorporant des nanoparticules d’oxyde de fer, elle peu-

vent être donc guidées de manière télécommandée grâce a des champs magnétiques externes. Il devient

ainsi possible de contrôler la migration des cellules ou encore de construire des tissus fonctionnels. En

clair, les cellules peuvent être dirigées dans l’organisme vers un site cible.

L’utilisation de champs magnétiques ou électriques n’ont pas seulement servi à manipuler les cel-

lules pour les orientés mais aussi pour modifier la viscosité apparente de certains fluides, appelés fluides
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magnéto ou électro rhéologiques qui sont des fluides intelligents dont la viscosité apparente peut être

rapidement modifiée par l’application d’un champ magnétique ou électrique externe. Grâce à cette carac-

téristique unique, les embrayages à fluides magnéto-rhéologiques peuvent moduler rapidement le couple

entre deux surfaces sans contact mécanique direct.

Le domaine d’application de ces fluides est très prometteur car il présente plusieurs avantages. La

réponse est rapide et le phénomène est totalement réversible. Plusieurs applications ont été proposées

(embrayage automobile, amortisseur, contrôle actif des vibrations, milieux poreux). Růžička (2000)

a modélisé le mouvement de fluides électrorhéologiques, par une équation aux dérivées partielle sta-

tionnaire et instable avec une condition de croissance non standard décrivant l’écoulement d’un fluide

visqueux spécial sensible au cisaillement, caractérisé par sa capacité à modifier violemment ses propriétés

mécaniques lors de l’application d’un champ électrique.

L’étude des équations différentielles et des équations et systèmes d’équations aux dérivées partielles

impliquant des conditions de croissance variables a toujours été motivée par leurs diverses applications.

Depuis la découverte de Bingham (1920) que certaines peintures ne coulent pas comme du miel. Il a

commencé a étudier ce comportement et a décrit un phénomène étrange où, il a remarqué qu’il y a des

fluides qui s’écoulent d’abord, puis s’arrêtent spontanément, plus tard appelés fluides de Bingham. A

l’intérieur de ces fluides, les forces qui créent l’ écoulement n’atteignent pas un seuil. Cela permet au

fluide de se déformer comme un solide. Grâce à l’invention du "médium flamand" au XVIIe siècle, la

peinture peut être transformée en huile thixotrope. Elle coule sous la pression du pinceau, mais se fige dès

qu’on la laisse reposer. Si la composition exacte du médium flamand reste inconnue, on sait que les liens

se forment progressivement entre ses composants. C’est pourquoi l’image se fige en quelques minutes.

Avec ce merveilleux médium, Rubens a pu peindre la Kermesse en seulement 24h.

L’étude récente des problèmes non linéaires à exposants variables est motivée par la description de

plusieurs phénomènes pertinents qui surviennent dans les sciences appliquées. Par exemple, ce mécan-

isme peut être utilisé pour donner des modèles pour des fluides non newtoniens qui changent de viscosité

en présence d’un champ électromagnétique, qui dans ce cas influence la taille de l’exposant variable,

Ruzicka (2000). Des modèles similaires apparaissent dans la segmentation d’image, Chen, Levine et Rao

(2006). Leur cadre est une combinaison du lissage gaussien et de la régularisation basée sur la variation

totale.

Dans cette partie de la thèse, nous nous intéressons à l’étude des problèmes non linéaires dont les

résultats sont les suivantes
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Chapitre 4: Équation parabolique non linéaire ayant une condition de croissance non standard

par rapport au gradient et à l’exposant variable

Dans ce chapitre, nous considérons les équations paraboliques quasi-linéaires suivantes ayant une

non-linéarité de croissance critique par rapport au gradient et à l’exposant variable


∂tu−div(A(t,x,∇u)) = f (t,x,u,∇u) in QT :=]0,T [×Ω

u(0,x) = u0(x) in Ω

u(t,x) = 0 on ΣT := (0,T )×∂Ω.

(0.1)

En utilisant le théorème du point fixe de Schaeffer et la méthode des sous et sur solutions, nous prouvons

l’existence de solutions faibles.

Chapitre 5: Existence globale pour une classe de systèmes paraboliques dégénérés avec des

exposants variables et des non-linéarités de croissance critiques par rapport au gradient

Dans ce travail, nous établissons deux résultats d’existence intéressants pour le système parabolique

dégénéré avec exposants variables suivant



∀i = 1, ...,m,

∂tui−div(Ai(t,x,∇ui)) = fi(t,x,u1, ..,um,∇u1, ..,∇um) in QT

ui(0,x) = ui0(x) in Ω

ui(t,x) = 0 on ΣT .

(0.2)

Le premier résultat concerne le cas où les non-linéarités sont bornées. Dans ce cas, nous prouvons

l’existence de solutions en utilisant le théorème du point fixe de Schauder dans les espaces appropriés. La

seconde résultat concerne le cas où les non-linéarités ont une croissance critique par rapport au gradient,

l’existence d’une solution faible est obtenue via l’existence d’une sur-solution faible.

Partie 3: Les harmoniques sphériques: application au traitement d’image

Des outils avancés de modélisation et de visualisation d’objets 2D et 3D augmentent le nombre de

modèles disponibles sur le WEB spécialement dans les bases de données. Le traitement efficace des objets

géométriques nécessite, comme dans différents domaines de l’informatique, la conception de structures
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de données appropriées. Pour chaque problème spécifique dans le traitement d’image, nous pouvons

identifier un ensemble d’opérations par lesquelles le calcul est requis et nous devons donc choisir une

représentation appropriée qui supporte efficacement l’exécution de ces opérations.

Dans la littérature, de nombreux travaux ont contribué au développement de méthodes efficaces pour

représenter et manipuler des objets 2D ou 3D. On peut distinguer différents types de représentations

d’objets 3D, mais ces représentations ne sont pas toujours satisfaisantes dans certaines applications,

comme la reconnaissance de formes. L’une des représentations proposées d’objets 2D et 3D se con-

centre sur la décomposition en harmoniques sphériques. Ils sont utilisés dans diverses applications telles

que la reconstitution, la reconnaissance de formes, l’identification, etc. Les travaux présentés dans cette

partie s’inscrivent dans ce cadre.

L’utilisation des harmoniques sphériques a fait l’objet de nombreuses études dans le domaine de

l’informatique graphique. Elle a été utilisée dans diverses applications telles que l’illumination globale,

le calcul de descripteurs de forme, la reconstruction de surface s’approchant d’un ensemble de points

étoilés par rapport à un point, la représentation fréquentielle et le filtrage de surfaces 3D, etc.

Dans la troisième partie de cette thèse, nous proposons de calculer une représentation directe et ef-

ficace en harmoniques sphériques en se limitant à des objets sphériques, nous nous intéressons d’abord

aux objets 2D représentés sur une sphère. De tels objets ont une paramétrisation sphérique naturelle. De

plus, nous montrons comment les coefficients de développement en harmoniques sphériques peuvent être

calculés directement sur la description d’un échantillonnage. Cela nous permet de vérifier, à priori, la

précision de la représentation de l’objet. On a pu pousser plus loin cette méthode de calcul en montrant

que les coefficients d’harmoniques sphériques peuvent générer un descripteur de forme. Cela nous permet

d’ajouter plus de contrôle sur l’exactitude de l’identification. Enfin, nous illustrons l’efficacité de notre

représentation en harmoniques sphériques qui donnent un descripteur de forme efficace et qui permet de

reconnaître des formes géométriques et même de les visualiser.

Chapitre 6: Harmoniques sphériques

Ce chapitre, sera consacré à l’étude détaillée des harmoniques sphériques. Nous rappelons tout

d’abord quelques définitions mathématiques utilisées dans cette partie. Nous présenterons la base du sys-

tème de coordonnées harmoniques sphériques. Nous montrerons ensuite comment les fonctions sphériques

sont décomposées à partir des harmoniques sphériques. Cette décomposition est appelée la transforma-

tion en harmoniques sphériques.
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Chapitre 7: Décomposition, reconstruction et identification d’images à en utilisant les har-

moniques sphériques

Dans ce chapitre, nous avons apporté une contribution au domaine de la représentation d’objets

2D et 3D à l’aide d’harmoniques sphériques. Ces représentations ont été utilisées dans deux types

d’applications dans le domaine du traitement d’image: a) la décomposition et à la reconstitution d’images,

b) l’identification des empreintes digitales.
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Introduction and Overview

This work was conducted with an interdisciplinary concern and the idea of establishing strong interactions

between applied mathematics and other scientific fields such as biology, physics and image processing.

The work synthesized in this thesis has been grouped into three parts which are successively articulated

around, modeling red blood cells and biological membranes, mathematical modeling applied to magne-

torheological fluids and digital image recognition.

The first part is devoted to the analysis of the dynamics and deformation of red blood cells and biolog-

ical membranes, such as vesicles, in particular, the study of red blood cell shape at static equilibrium, the

effect of molecules on the phospholipid membrane and vesicle dynamics under the action of an oscillatory

shear flow.

Blood is the vital fluid that circulates in our body. This fluid is responsible for transporting oxygen,

various components and nutrients, as well as removing carbon dioxide from the organs. This fluid is

not a simple liquid, but a suspension highly concentrated in cells, it is made up of three types of blood

cells, white blood cells which provide immune defense, platelets which participate in coagulation and

red blood cells, or erythrocytes, which carry respiratory gases between the lungs and deeper tissue of the

body, Fig.1. For instance, 45% of our blood volume is composed of red blood cells. This composition

gives the blood flow properties, called rheological properties, which are very complex.

Indeed, the individual orientation of the cells, their interaction with the vascular wall and their shape

at any given moment are all factors that influence the fluidity of the blood and, ultimately, its ability

to properly irrigate the body’s tissues. At the cellular level, the rheology of the blood depends on the

response of red blood cells to the action of hydrodynamic stresses and, in particular, on their deformation

and orientation in the blood stream. For example, at low shear velocity, red blood cells tend to pile up in

rolls like stacks of plates. This leads to an increase in the viscosity of the blood. As the shear velocity
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Figure 1: Human blood composition (source: https://ib.bioninja.com.au/standard-level/topic-6-human-
physiology/62-the-blood-system/blood-composition.html).

increases, they separate from each other, align and stretch in the flow, the viscosity of the blood is lower.

The microscopic behavior of red blood cells therefore has a direct impact on the macroscopic properties

of the blood.

To best fulfill their function of transporting oxygen to deeper tissue of the body, red blood cells

pass through very fine blood capillaries whose diameter is two times smaller than their own, to this

end they must be very deformable. Observed under the microscope, a red blood cell reveals a very

particular biconcave shape of 7.5µm in diameter and 2µm thickness (discocyte: disc where the central

zone is thinner than the periphery fig. 2). Despite its laborious process construction and its extremely

complex structure, the characteristic biconcave shape can only be explained by the properties of the RBC

membrane.

Figure 2: Red blood cells observed under the electron microscope. The biconcave shape is clearly visible.
Link:https://www.nisenet.org/catalog/scientific-image-human-red-blood-cells-sem

Through its transport functions, the membrane that separates the outside of the cell from the inside

plays a crucial role in cell metabolism. The membrane allows the absorption of nutrient substances, the

excretion of wastes and maintain an internal ionic medium deeply distinct from the environment. These

transport functions are of decisive importance for the survival of the cell.
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The membrane is mainly composed of lipids, particularly phospholipids, between which proteins

can be inserted. Phospholipids form a double layer (bilayer) which is relatively impermeable to the

Figure 3: Molecular view of the cell membrane Link:https://www.britannica.com/science/membrane-
biology

passage of most water soluble molecules. The double layer structure is directly due to the amphiphilic

properties of phospholipids which have a hydrophilic end, that is to say water-loving, and a hydrophobic

end, which on the contrary fears water. The quantities and types of proteins vary from cell to cell. These

proteins are associated with the membrane in various ways and have many functions, such as transport

of molecules across the membrane, reception of environmental signals, signaling in the cell, connection

with the cytoskeleton and the most important is giving the membrane its elasticity.

Unlike bacteria and plant cell membranes, animal cell membranes contain cholesterol molecules,

which rigidify them and increases their impermeability towards hydrophilic molecules.

Among mammals, the red blood cell is devoid of nucleus, which can reduce its deform-ability, since

it is only filled with a solution of hemoglobin, the protein that associates with oxygen and carbon dioxide

when transporting these gases. In this case red blood cells become a typical example of vesicles equipped

with an additional internal structure playing the role of a skeleton inside the membrane fig. 4.

Figure 4: A cross-section of a vesicle formed by phospholipids.

At the local small deformations limit, the skeleton does not play any role which makes the red blood

cell behaves like a vesicle. Otherwise, the skeleton acts as if a uniform bound on the curvature is imposed

everywhere on the vesicle. Since the skeleton redistributes the excess of local stress on the whole surface
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of the red blood cell.

For a complex structure such as an RBC membrane where there is two type of elasticity, the shear

elasticity and the bending elasticity, the overall natural shape of an element of the membrane results

from the balance between the bending and shear forces which means that the RBC equilibrium shape

or rest shape is determined by the interplay between membrane area, enclosed volume, and membrane

mechanics. At rest, membrane elements could be under stress, but the forces acting on all elements are

in equilibrium. In order to explain the RBC curious biconcave shape, Canham [31] combined theoretical

and experimental results, starting from the same volume spheroids will evolve into a biconcave disc by

minimizing the bending energy of the membrane, while Helfrich et al.[72] suggested the necessity for a

spontaneous curvature with negative value for the stability of the biconcave shape. Evans and co-workers

[56] proposed a parametric mathematical model to characterize the RBC geometry based on symmetry

and surface-continuity using image processing by minimizing of the difference between the model and

the data image.

To appropriately model the RBC, some key features need to be specified, the biconcave rest shape

of the cell, viscoelasticity of the RBC membrane, the natural state of each point on the RBC membrane,

constitutive equation for bending elasticity and the viscosity ratio between the inner and outer fluids,

which is the main purpose of this part.

A number of efforts have been made to understand the complex RBC dynamics and deformability.

Keller and Skalak [77] made a first step toward the understanding of the dynamics of deformable particles

such as capsules, vesicles, and cells by studding a model of an ellipsoid in shear, they were able to

predict a transition between a tumbling motion to a tank-treading motion, as the viscosity of the inner

fluid was decreased. By adding the contribution of the elasticity of the cell membrane to the Keller

and Skalak model, a new motion has been raveled using analytical models by Skotheim and Secomb

[1] and Abkarian, Faivre and Viallat, called the swinging motin, where the orientation of the cell in the

tank-treading motion is seen to oscillate around a mean value. Dupire et al.[52] extended the previous

works, taking into account the shape memory, they showed that the RBC maintains its biconcave shape

even during tank-treading supposing that this effect may come from an inhomogeneous natural shape or

anisotropic elastic properties.

The first part of the thesis fall within blood flow rheology problematic. Although we limit our study

to the presence of a single red blood cell or vesicle, several contributions have been brought to this area

of research, since it represents the first nucleus towards a more complex description of the blood.
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The first contribution of this work concerns the geometric shape optimization which consists in find-

ing the minimal surface that minimizes an energy functional dependent on the geometry under conditions

for preserving constraints. We demonstrate an optimal result and we present a generalized condition of

equilibrium of biological membranes for the mean curvature energy functional of Canham and Helfrich

[31, 72].

The second contribution of this part is the development of a model that includes molecular diffusion

in the surrounding environment, diffusion along the membrane(lateral diffusion) and the attachment and

detachment to and from the membrane. This model shows that the coupling between the membrane and

the molecules is strong and make the membrane suffer from morphological instabilities.

The third contribution is the analysis of a vesicle motion under the effect of a linear and oscillatory

shear flow in the small deformation limit. The standard regimes of tank-treading, tumbling and vacillating

breathing motion are found again.

Part 1: Modeling Biological Membranes and Red Blood Cells

This part is organized as follows

Chapter 1: On the equilibrium shape of red blood cells

In this chapter we are interested in the description of the mathematical model of red blood cells and

vesicles by giving some physical properties of membranes. We essentially recall, some mathematical

tools allowing to describe membranes, as a system that can have a large number of configurations.

Then we focus on the biconcave character of red blood cells modeling in 2D and 3D axisymetric

domain. At first, we study the existence problem of a special solution to the Helfrich functional which

corresponds to a surface of the red blood cell shape. The Helfrich functional is also a perturbation of the

Willmore functional involving some parameters with physical meanings. With the expected symmetry

of the red blood cell surface, the problem reduces to an ODE analysis with certain shape requirements.

We discover a sufficient condition on the parameters which ensures the existence of such special solu-

tion to the ODE. Then we focuses on the shape identification and numerical modelisation of a single red

blood cell in 3D axis-symmetric domain. The purpose of this work is to provide a quantitative method

for interpreting experimental observations of the red blood cell shape under microscopy. In this work

we give a new formulation based on classical theory of geometric shape determination which assumes

that the curvature energy controls the shape of the red blood cell. To minimize this energy under con-
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straints of volume and area, we propose a new algorithm which combines Lagrangian method and neural

networks, called Lagrange programming neural network (LPNN) Ref.[136], which is an analog neural

computational technique for solving nonlinear constrained optimization problems according to the La-

grange multiplier theory.

Chapter 2: Fluctuations and instability of a biological membrane induced by interaction with

macromolecules using geometric shape optimization

In this chapter, We develop a model that includes, besides hydrodynamics, molecular diffusion in

the surrounding fluid, diffusion along the membrane and the kinetics of attachment and detachment to

and from the membrane. In order to describe morphological changes also called fluctuations of bilayer

membrane induced by the presence of a diffusion field of proteins in the crowded lipid environment which

have the ability to adsorb on, and to desorb from, the membrane. First, we start with the energetic descrip-

tion of the distributions of molecules on the membrane surface, and define the spontaneous curvature of

bilayer membrane as a function of the molecule concentrations on membrane surfaces. A diffusion equa-

tion governs the gradient flow of the surface molecule concentrations is obtained. The model exploited

here for the case of a free membrane which is globally at equilibrium shows that the coupling between the

membrane and the molecules is strong which make the membrane suffer from morphological instability.

Chapter 3: Dynamical behavior of vesicles in oscillatory shear flow

In this chapter we investigate the responses of vesicle to a shear γ̇a and to oscillatory shear flow

γ̇ = γ̇a cos(2π frt) in the small deformation limit. The interplay between γ̇a and fr gives rise to richer

dynamics that we classify. At leading order, our result has evidenced mixed oscillating behaviors during

which tumbling (TB) and swinging (SW) motions occur alternately, as has been reported for RBCs [Phys.

Rev. Lett. 104, 168101 (2010)]. More importantly, we provide an explicit expression of critical values of

the shear rate amplitude, γ̇n
a = (1+2n)γ̇0

a ,n = 0,1,2, ..., such that a mixed oscillating mode, characterized

by a series of n TB periodically interrupted by a SW, is excited if γ̇n
a < γ̇a < γ̇n+1

a . We also report in detail

on vesicle motion at γ̇a = γ̇n
a .

The interest of understanding the dynamics and deformation of the red blood cell will allow to better

understand blood diseases such as sickle cell anemia or sickle cell disease, characterized by a malfor-

mation of the RBC, which adopt a shape of dryness and lose their elasticity properties and lead to a

misdirection of oxygen in the body, another interest is to build artificial red blood cells or microswim-

mers that could also serve as transporters. Thus, they could transport hemoglobin, on which oxygen
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binds, but also anticancer molecules or a biosensor that detects toxins.

Part 2: Existance of some nonlinear parabolic problems having a vari-
able growth conditions and variable exponent

One of the current challenges of science is to adapt engineering techniques to manipulate basic unit

of a living organism. Nowadays, the cell can undergo manipulations of physical origin thanks to the

introduction of manipulable devices by external fields at the heart of this latter. By incorporating oxide

nanoparticles of iron, the cells become magnetic can be guided in a remotely controlled manner thanks to

the of external magnetic fields. It becomes so possible to control cell migration or yet to build functional

tissues. In clear, cells can be led in the organization to a target site.

The use of magnetic or electric fields have not only serve to manipulate the cells for reorientation but

also to modify the apparent viscosity, called magneto-rheological fluids which are intelligent fluids whose

apparent viscosity can be rapidly changed by the application of an external magnetic field. Using this

unique feature, magneto-rheological fluids clutches can quickly modulate torque between two surfaces

without direct mechanical contact.

The application field of this fluid is very promising because there are several advantages. The response

is fast and the phenomenon is completely reversible. Several applications have been proposed(automotive

clutch, shock absorber, active vibration control, porous media). Růžička [115, 116] modeled the move-

ment of electrorheological fluids, special viscous fluids, characterized by their ability to violently change

their mechanical properties on the application of an electric field by a stationary and unsteady partial

differential equations with a condition of non-standard growth describing the flow of an electromological

fluid sensitive to shear.

The second part of this thesis was motivated by these smart fluids a general model which takes into

account various applications. In this part we study a family of equations and systems of partial differential

equations is the presence of the operators of type-p(x) Laplacian with non-standard growth conditions, this

kind of problems are used to describe the flow of shear dependent magnetorheological or electrrheological

fluids [115], to model porous medium [18] or even in the study of thin obstacle problems [29], and in

image restoration [38].

The study of differential equations and variational problems involving variable growth conditions has

always been motivated by their various applications. Since the discovery of Bingham, in 1920 when he
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was surprised to discover that some paints do not run like honey. He become to study that behavior and

described a strange phenomenon where, there are some fluids that first flow, then stop spontaneously, later

called Bingham fluids. Inside these fluids, the forces that create the flows do not reach a threshold. As

this threshold is not reached, the fluid flow deforms as a solid. Thanks to the "Flemish medium" invention

in the 17th century, paint can be transformed into thixotropic oil, it flows under the pressure of the brush,

but freezes as soon as it is left to rest. While the exact composition of the Flemish medium remains

unknown, it is known that the links are gradually formed between its components, which is why the

image freezes in a few minutes. With this wonderful medium, Rubens was able to paint La Kermesse in

only 24 h. Recent studies of nonlinear problems with variable exponents are motivated by the description

of several relevant phenomena arising in the applied sciences. This mechanism can be used to model

non-Newtonian fluids which can influence the size of the variable exponent by changing their viscosity

in the presence of an electromagnetic field as in Ref. [115]. Chen et al in Ref. [38] gives a similar model

in image segmentation. In their model, they combine the Gaussian smoothing and regularization based

on the total variation.

In this part of thesis, we are concerned with the study of a nonlinear problem whose features are the

following:

Chapter 4: Nonlinear parabolic equation having nonstandard growth condition with respect to

the gradient and variable exponent

In this chapter we consider the following quasilinear parabolic equations having critical growth non-

linearity with respect to the gradient and variable exponent


∂tu−div(A(t,x,∇u)) = f (t,x,u,∇u) in QT :=]0,T [×Ω

u(0,x) = u0(x) in Ω

u(t,x) = 0 on ΣT := (0,T )×∂Ω.

(0.3)

Using Schaeffer’s fixed point theorem and the sub- and super- solution method, we prove the existence

results of weak solutions to the considered problem.

Chapter 5: Global existence for a class of degenerate parabolic systems with variable exponents

and critical growth nonlinearities with respect to the gradient

In this work, we establish two interesting existence results for the following degenerate parabolic
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system with variable exponents



∀i = 1, ...,m,

∂tui−div(Ai(t,x,∇ui)) = fi(t,x,u1, ..,um,∇u1, ..,∇um) in QT

ui(0,x) = ui0(x) in Ω

ui(t,x) = 0 on ΣT .

(0.4)

The first result concerns the case where the non-linearities are bounded. In this case, we prove the ex-

istence of solutions using the Schauder fixed point theorem in appropriate spaces. The second relates to

the case where the nonlinearities have a critical growth with respect to the gradient of the solution, the

existence of a weak solution is obtained via the existence of a weak super-solution.

Part 3: Spherical Harmonics: Application to Image Processing

Advanced tools in modeling, and visualization 2D and 3D objects increases the number of 2D or 3D

models available on the WEB specially in databases. Efficient treatment of geometric objects requires,

as in different areas of computer science, the conception of appropriate data structures. For each specific

problem in the treatment, we can identify a set of operations by which the computation is required and

therefore we need to choose an appropriate representation that efficiently supports the execution of these

operations.

In the literature, many works has contributed to the development of efficient methods to represent and

manipulate 2D or 3D objects. We can distinguish different types of representations of 3D objects, but

these representations are not always satisfying in certain applications, such as shape recognition. One of

the proposed representations of 2D and 3D objects focus on the decomposition into spherical harmonics.

They are used in a variety of applications such as reconstruction, pattern recognition, identification, etc.

The work presented in this part falls within this framework. the transform into spherical harmonics has

been the subject of numerous studies in the field of computer science graphic.

It has been used in various applications such as global illumination, calculation of shape descriptors,

surface reconstruction approximating a set of starred points with respect to a point, frequency represen-

tation and filtering of 3D surfaces, etc. In this manuscript, we propose to calculate a direct and efficient

representation in spherical harmonics by limiting it to spherical objects, we are first interested in 2D
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objects represented on a unit sphere. Such objects have a natural spherical parametrization. Moreover,

we show how the coefficients of the expansion of this function in spherical harmonics can be calculated

directly on the description of a sampling. This allows us to check, in advance, the precision of the rep-

resentation of the object. We have then pushed this method of calculation further by showing that the

coefficients of spherical harmonics can generate a shape descriptor. This allows us to add more control

over the accuracy of the identification. Finally, we illustrate the efficiency of our representation in spher-

ical harmonics which give an efficient shape descriptor and which allows to recognize geometric shapes

and even visualized them.

In this part of the thesis we will study in details a very interesting geometric tool, the one introduced

in the fifth chapter of the first part of this thesis which is the spherical harmonics and their applications in

image processing.

Chapter 6: Spherical Harmonics

This chapter, will be preserved to the itemized study of spherical harmonics. We first recall some

mathematical definitions used in this project. We will present the basics of the coordinate system spherical

as well as spherical harmonics. We will then show how the spherical functions are decomposed on the

basis of the spherical harmonics, this decomposition is called the transform into spherical harmonics.

Chapter 7: Decomposition, reconstruction and identification of images using spherical harmon-

ics

In this chapter, we made a contribution to the field of 2D and 3D object representation using spherical

harmonics. These representations have been used in two types of applications both in the field of image

processing the first application is related to the decomposition and reconstruction of images and the other

constitutes in fingerprints identification by building a strong shape descriptor using spherical harmonics.
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Chapter 1
On the equilibrium shape of red blood cells

The study of blood flow has always been at the center of interest of many mathematicians, physicists,

biologists or industrialists. Indeed, the special interest of this large community science for blood behavior

is widely due to a great wealth of dynamic behaviors. Scientists are using theoretical models to develop a

higher understanding of biological systems. Computational simulations, and free energy functional uses

mathematics to define abstract physical concepts into concrete mathematical expressions, and help us

understand how components of the bio-molecular systems interact with one another. By solving these

expressions, we may model overall many physical phenomena such as membrane dynamics, including

cell movement and undulations in cell shape.

Most of these physical phenomena are governed by the geometry of their environment. The governing

principle is usually modeled by some kind of energy minimization.

In this chapter, we are interested in the solutions to the red blood cell shape optimization problem,

and in the determination of an accurate class of admissible shapes.

At rest, red blood cells take the shape of a disc with both sides slightly concave which is not the case

when they have to slip into a fine capillary. They must then deform, and can look like a kind of parachute.

Many questions then arise: how to explain such a shape? why not a simple sphere?. In this chapter we

will explain that the particular shape of red blood cells, at rest, is the best solution to the minimization of

the cell membrane curvature energy under constraints.

Whether at rest or deformed, the red blood cell is characterized by two physical quantities that are

fixed. First, the quantity of the membrane that surrounds the cell, or more precisely its area A. Then,

the volume V delimited by the cell membrane, since it is incompressible. To determine, among all the

possible closed surfaces of area A and volume V , which one is selected by the red blood cell ar rest, the
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curvature energy of it’s membrane must be minimized. This is the main objective of this chapter

1.1 Description of the mathematical model of red blood cells and vesicles

In this section, we will introduce the physical properties of the membrane. We will recall, essentially,

some physical and mathematical tools allowing to describe membranes, as systems that can have a large

number of configurations.

1.1.1 The biological structure of vesicles and Red blood cells

In cell biology, a phospholipid may be a certain type of lipid, and also a main ingredient constituting

the membrane of any living cell. Its molecule structure consists of a hydrophilic head, on which are

connected two hydrophobic tails.

Figure 1.1: Scheme of a vesicle formed by phospholipids (source: article vesicle on Wikipedia.

Hence, when a sufficiently great amount of phospholipids is inserted in a very aqueous media, they

immediately bring together in pairs to create bilayers also called vesicles, as illustrated in fig. 1.1.

Merely speaking, a vesicle may be a bag of viscous fluid itself contained in another viscous fluid. it

corresponds to the essential membrane of all living cells. In fact, understanding it’s behavior can be a

primary fundamental step within the comprehension of general cells behavior.

Mammalian red blood cells are devoid of nucleus (fig. 1.2) and convey the oxygen and the carbon

dioxide through the body via the blood. They are typical examples of vesicles, on which a network of

proteins is fixed to play the role of a skeleton inside the membrane.

Observed with the electron microscope, the RBC reveals a very particular biconcave shape or dis-

cocyte (fig. 2). This shape gives it many properties, in particular a high elasticity enabling it to fulfill

its function of transporting oxygen to the cells of the body, and gives it the possibility to sneak through
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Figure 1.2: A 3-D human red blood cell model (source: https://www.turbosquid.com/3d-models/3d-red-
globule-blood/372582).

capillaries of diameter up to two times smaller than its own diameter at rest.

Figure 1.3: Red blood cell capillary and cross-section view. Link: https://www.anatomynote.com/human-
anatomy/cell-and-tissue/red-blood-cell-capillary-and-cross-section-view/

The mathematical study of the particular shape of red blood cells is the subject of numerous research,

with diverse motivations [72, 140]. Various models has been proposed to characterize this shape in

order to better understand the properties of artificial vesicles or liposomes [120, 118], ideal objects are

built in laboratories for the study of the physics or even in pharmacology as carriers of drugs within the

blood circuit [88]. The analysis and the understanding of the red blood cell shape also lead to a better

understanding of blood diseases such as sickle cell anemia or sickle cell disease, which is characterized by

a malformation of the RBCs, which adopt a shape of dryness fig. 1.4, and lose their elasticity properties

which can lead to a misdirection of oxygen in the body.

The problem of how a healthy RBC maintains the biconcave shape has been the object of many spec-

ulations ever since it was discovered that this ability is a property of the membrane itself. There are

Figure 1.4: A normal red blood cell on the left and sickle cell disease on the right, very deformed
erythrocyte and more rigid. Which causes the polymerization of the hemoglobin it contains in the absence
of oxygen, then blocking blood flow
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general agreements that the RBC shape is determined by the elasticity of curvature or bending [72] of the

surrounding membrane but other studies have revealed that the shape of the RBC can be determined exper-

imentally, using optical microscopy, and numerically, through microscopic, continuum model. E.Evans

et al. [56] gives an improvement of resolution of optical microscopic dimensional determination of the

RBC shape, where fifty to fifty-five cells for each tonicity were photographed and analyzed, in order to

determine the geometry of the RBC, the principle was to use an interference microscope to capture the

image of the RBC then analyzing the image according to the principles of holography.

In this study, we are mainly interested in some mathematical problems arising from the study of

shapes associated with vesicles and red blood cells. For example, Figure 1.5 illustrates the effects of

osmotic pressure on the human red blood cells shapes. From an optimization point of view, the red blood

cell shape at rest minimizes a free bending energy under constraints, the surface of the bilayer and the

volume of fluid it contains.

Figure 1.5: Effect of the osmotic pressure on red blood cells. Three different solutions are shown: hy-
pertonic solution, where a red blood cell is causing water to move out of the cell which make it contract
and appear spiky, isotonic solution, where the concentration of solutes outside the cell is equal to the con-
centration of solutes inside the cell which make the red blood cell show it’s normal discocyte shape, and
hypotonic solution, where the red blood cell is causing water to move into the cell which make it expand
and become more round (source: http://encyclopedia.lubopitko-bg.com/OsmosisAffectsCells.html).

The study of artificial vesicles consists a starting point for modeling real biological membranes, espe-

cially their physical properties such as elasticity, shape transformations, transport and mutual interactions.

The study of vesicle have succeeded mainly in: (i) explaining a large class of possible shapes of biological

membranes, (ii) understanding the mechanism of exchange with the external environment, (iii) describing

some types of unusual dynamical behavior of the membranes.
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1.1.2 Construction of the physical model

In the 70s, Canham, Helfrich [31, 72] emphasized the important role of the curvature elasticity of mem-

branes. The various configurations of red blood cells and their interactions with soft or rigid interfaces

have become more and more obvious. The elastic properties of the membranes allowed to explain some

cell properties, or certain aptitudes to perform movements

Elastic properties

A typical soft biomaterial like red blood cells shows a unique elastic properties characterizes there

deform-ability when a force is applied. For RBCs the elastic properties are determined by the mem-

brane structure. Although the deformation of RBC membrane is highly complex, since they characterizes

its resistance to deformation. One type of elastic deformation, is the one perpendicular to the membrane

plan, namely elasticity of curvature or bending mode which is determined by the energy needed to deform

a membrane from its original curvature to some other curvature.

Figure 1.6: Schematic illustrations of bending mode of a 2-D membrane

In this framework, Helfrich and Canham proposed a simple model [72, 31], allowing to describe the

bending model of bilayer membranes. In this model the energy of curvature plays a important role.

A minimal model

In this subsection, the two-dimensional model described in [32] is reproduced. To this end, we need first

to understand the behavior of a vesicle once it is bent. Specifically, we try to model the effect of curvature

on the elastic energy associated with the bilayer.

This tow-dimensional simplified model represent a small piece of a rectilinear membrane on the left

in Fig. 1.7. The red and the yellow segments correspond to the space available respectively for the heads

and the tails of the phospholipids. The same piece of the membrane is represented on the right, once bent.

In this first simplified approach, we consider the two-dimensional curvature generated in a plane
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and neglect those generated in directions that are not in that plane. We only consider two dimensional

Figure 1.7: Representation of the membrane in 2D with the used notations.

space, all imposed deformations on the membrane are in the cutting plane. Initially, we consider that

the membrane is not curved, which allows us to assimilate the phospholipid bilayer composed by three

parallel segments of initial length L0, separated by a distance δ (fig. 1.7). Now we impose an elastic

deformation to the membrane, which induces a curvature of this latter. Locally, the three curved layers

can be seen as three arcs of concentric circles, of the same amplitude θ . If we call L+, L and L− the arcs

length, the upper, the intermediate and the lower arc (respectively), then we have, due to the very low

value of θ :

L+ = (R+δ )θ ,

L = Rθ ,

L− = (R−δ )θ .

R is the curvature radius of this portion of membrane. We can then model the mechanical energy of

each layer by elastic energy of stiffness constant c. The elastic potential energy of the upper layer,

slightly dilated, is E+ = 1
2 c(L+−L0)

2, where L0 is the length at rest of this portion membrane. Likewise,

the elastic potential energy of the lower layer, slightly compressed is E− = 1
2 k(L−−L0)

2. Finally, the

biological considerations of section II allow us to conclude that the elongation of the intermediate layer

is zero, and therefore its elastic potential energy too. Indeed, we know that the area of the membrane is

preserved, so the mean elongation of the membrane must be zero, or L = L0 = Rθ . If we consider the
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total energy E of this piece of membrane we have:

E = E++E−,

=
c

2L0

(
(L+−L0)

2 +(L−−L0)
2) ,

=
c

2L0

(
((R+δ )θ −Rθ)2 +((R−δ )θ −Rθ)2) ,

=
2c
L0

(δθ)2,

=
cδ 2L0

R2 .

By setting k = cδ 2L0 (quantity depending only on physical and geometric characteristics of the mem-

brane) we obtain E = H2, where H is the curvature of the membrane portion. To obtain the total energy

of the membrane, it is necessary to integrate this expression on all the surface Σ (here it is actually a curve

Γ since we are in a plane section).

Etot = k
∫

Γ

H2dl. (1.1)

The previous development can be generalized to a three-dimensional space R3. In this case, we replace

the curvature H = 1
R by the scalar mean curvature H = k1+k2. In a geometrically point of view, the scalar

mean curvature H(p) is obtained by summing the two principle curvatures associated with the green and

red curves Γ called principal directions. k1 and k2 characterizes the local geometry of the surface S, they

are formed by the intersection of the surface S with two orthogonal planes passing through the normal to

the surface S at the point p.

Figure 1.8: For a surface S ∈ R3, the scaler mean curvature H is given by the sum of k1 and k2 (principal
curvatures defined by the curvatures of the green and red curves at the considered point p).

The value of the scaler mean curvature in this case does not depend on the choice of the orthogonal

planes. On the other hand, if we consider two planes having the highest and lowest curvature respec-

tively, then they are orthogonal. Their associated curvatures denoted by k1 and k2 are called the principal
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curvatures. From the above, their sum gives the mean curvature H = k1 + k2 and their product K = k1k2

is referred to as the Gaussian curvature.

The energy expression is called Willmore energy

W (Σ) = k
∫

Σ

H2ds, (1.2)

where Σ is the surface membrane. In the following theorem Willmore proved that spheres are the only

global minimizers of the Willmore energy (1.2)

Theorem 1.1.1 (Willmore [134], Theorem 7.2 .2)

Let Σ be any compact C2-surface of R3. Then, we have:

1
4

∫
Σ

H2dA≥ 4π,

where the equality holds if and only if Σ is a sphere.

A more elaborate model

The energy derived previously corresponds to Willmore energy, taking into account only the local curva-

ture energy. It is possible to refine the expression of this energy, by introducing additional terms

Definition 1.1.1

The Willmore elaborate model seeks a closed surface Σ⊂ R3 that minimizes the functional

E (Σ) =
k
2

∫
Σ

(H−H0)
2ds−2kG

∫
Σ

Kds. (1.3)

H is the mean curvature, H0 is the spontaneous curvature, K is the Gaussian curvature, k > 0 and kG < 0

are constants depending only on physical and geometrical characteristics of the membrane. When this

energy is subject to constraints that the surface area of Σ or that the volume enclosed by Σ are prescribed,

the model is referred to as the Canham-Helfrich model.

The spontaneous curvature H0 is introduced to take account of a possible asymmetry in the membrane

(e.g. different chemical environments on both sides of the membrane). The integral over the Gaussian

curvature is a topological invariant who take account the possible topological changes in the membrane

and can be neglected if a minimizer is sought in a fixed topology class as shown in the following theorem.
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Theorem 1.1.2 (Gauss-Bonnet theorem)

Let Σ be a 2-dimension compact riemannian manifold (without edges), then the integral of the Gaussian

curvature K along Σ allows to find the Euler characteristic of the surface:

∫
Σ

Kds = 2πχ(Σ)

= 2−2g,

where χ(Σ) the Euler characteristic of Σ and g is the genus of the surface Σ.

The following proposition groups together several well known results for the existence of minimizer for

(1.3) according to the spontaneous curvature [134, 13, 93].
Proposition 1.1.1

Let Σ ∈ R3 be a compact surface of the class C2 such that kG < 0 < k.

• Case where H0 < 0 : we have E (Σ) > 4π (2k+ kG), and E (Sa) −→
a→0+

4π (2k+ kC), where Sa is a

sequence of spheres with radius a > 0.

• Case where H0 = 0 : we have E (Σ)> 4π (2kB + kG), and the equality holds iff Σ is a sphere.

• Case where H0 > 0 : we have E (Σ)> 4πkG, and the equality holds iff Σ is the sphere SH0 of radius

1
H0

.

Proof.

Let Σ ∈ R3 be a compact surface of the class C2 such that kG < 0 < k

• In the case where H0 < 0, we have

1
4

∫
Σ

(H−H0)
2 dA >

1
4

∫
H>0

(H−H0)
2 dA >

1
4

∫
H>0

H2dA >
∫

H>0
max(0,K)dA > 4π,

where the last inequality is given by Chern-Lashoff’s Theorem [94](Theorem 5.29) and by using

Theorem (1.1.2) we get

2k
(

1
4

∫
Σ

(H−H0)
2 dA

)
+ kG

∫
Σ

KdA > 8πk+4πkG[1−g(Σ)]> 4π (2k+ kG) .

By considering the sequence of spheres Sa with radius a > 0, we have

1
4

∫
Sa

(H−H0)
2 dA = 4π

(
1− aH0

2

)2

−→
a→0+

4π
+.
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As a conclusion, we have inf Σ
1
4
∫

Σ
(H−H0)

2 = 4π and the infimum is not a minimum. Finally, we

have E (Sa) = 8πk
(
1− aH0

2

)2
+4πkG, which converges to 4π (2k+ kG) as a→ 0+.

• In the case where H0 = 0, By using Theorem 1.1.2 the energy becomes

E (Σ) =
k
2

∫
Σ

H2dA+4πkG = 2kW (Σ)+4πkG.

W (Σ) is the Willmore energy. In this case we consider the original proof of Willmore Theo-

rem 1.1.1 to obtain E (Σ)> 4π (2k+ kG) . Furthermore, if the equality holds, then
∫

Σ
KdA = 4π =

1
4
∫

Σ
H2dA and 1

4 H2 = K on Σ i.e Σ is a sphere. Conversely, any sphere satisfies the equality case.

• In the case where H0 > 0, with a constant scalar mean curvature H =H0 > 0, such taht 1
4
∫

Σ
(H−H0)

2 dA=

0. By combining the divergence theorem for surfaces ([93], Theorem 6.11) and the divergence the-

orem ([93], Theorem 5.31), we get

∫
Σ

2
H

dA =
2A(Σ)

H0
=

1
H0

∫
Σ

div∂Ω(x)dA(x) =
1

H0

∫
Σ

H(x)〈x|n(x)〉dA(x)

=
∫

Σ

〈x|n(x)〉dA(x) =
∫

Ω

div(x)dV (x) = 3V (Ω).

Ω is the inner domain enclosed by Σ. In the case where Σ is connected, we can apply the equality

case in ([93], Theorem 6.16) (Heintze-Karcher’s inequality) in order to get that Σ is the sphere SH0

of radius 2
H0

. Otherwise, by using the compactness argument, Σ has a finite number of connected

components, each one being a copy of SH0 , then from Theorem 1.1.1 and Theorem 1.1.2, we get

E (Σ) > 4πkG. If the equality holds, we deduce that
∫

Σ
KdA = 4π and H = H0 on Σ, Hence, from

Theorem 1.1.2, Σ has the topology of spheres. In particular, Σ is connected and the equality case of

(Alexandrov [13]) ensures that Σ is the sphere SH0 of radius 1
H0

. To conclude, we conversely have

E (SH0) = 4πkG

The following table summarizes the existence results of Helfrich unconstrained problem

inf
Σ

H (Σ) = inf
Σ

1
4

∫
Σ

(H−H0)ds (1.4)
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kG < 0 < k H0 < 0 H0 = 0 H0 > 0

Existance to (1.4) no global minimizer any sphere [134] the sphere of radius 1
H0

[13]

infΣ H (Σ) 4π 4π 0

infΣ E (Σ) 4π(2k+ kG) 4π(2k+ kG) 4πkG

1.1.3 A constrained optimization problem

In the previous section, we established the expression of Willmore energy (1.3) in the case of a more elab-

orate model taking into account a possible asymmetry in the membrane, where a spontaneous curvature

is added (1.4). However, in the context of this study, we exclude any topological change of the red blood

cells and by using Theorem 1.1.2, the energy of Helfrich, of a shape Ω is as follows

H (Ω) =
k
2

∫
Σ

(H−H0)
2ds. (1.5)

The shape of the red blood cell Ω∗ is then a solution of the following optimization problem, or Canham-

Helfrich problem

Ω
∗ = argmin

Ω∈Λ

{
1
2

∫
Σ

(H−H0)
2ds
}

s.c

V = V0,

A = A0,
(1.6)

where Λ is the space of admissible shapes, V and A are the volume and the area of the red blood cell

(respectively), V0 and A0 of the data of the problem. The constraint on the area is motivated by the

biological study of the cell membrane conducted in Section I of this Chapter. The constraint on volume

comes from the supposed incompressibility of the fluid contained in the globule red. We notice that we

minimize the quantity 1
2
∫

Σ
(H−H0)

2ds instead of H , since k is a positive constant dependent only on

physical and geometrical characteristics of the membrane.

An existence result for a class of axis-symmetric surfaces is given by the following theorem

Theorem 1.1.3 ([41],Theorem 1.1)

Let A0,V0 > 0 be given such that

V0 ≤
A

3
2
0

6
√

π
. (1.7)

Assume that k > 0,kG,H0 ∈ R such that kG
k ∈ (−2,0). Let A (A0,V0) denote the set of finite families

S = (Σ1, . . . ,Σm) , for some m∈N (not fixed), of axis-symmetric surfaces generated by disjoint curves and
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satisfying the generalized area and volume constraints

m

∑
i=1
|Σi|= A0,

m

∑
i=1

Vol(Σi) =V0.

Let E be the energy functional defined in (1.3) and let

F : A (A0,V0)→ R∪{+∞}, F (S) :=
m

∑
i=1

E (Σi) .

Then the problem

min{F (S) : S ∈A (A0,V0)} , (1.8)

has a solution.

Condition (1.7) ensures that the constraints satisfy the isoperimetric inequality, so that the set A (A0,V0)

is not empty. When (1.7) becomes an equality instead of inequality, the only element in A (A0,V0) is the

sphere of area A, and if it becomes a strict inequality, A (A0,V0) contains an infinite number of elements.

1.2 The biconcave character of red blood cells in 2D and 3D axis-symmetric

domain

The study of human red blood cell shape properties is the most active field of research, theoretically, ex-

perimentally and numerically. Identifying the bio-physical parameters controlling such properties would

be extremely important in the context of hematological diagnosis, specifically blood disorders.

In this section, particular attention has been paid to describe the particular shape of red blood cells.

This latter can take many shapes in the blood but the most known are the biconcave shapes. Therefore,

we are interested in this chapter in the geometric biconcave shape representing a plane of reflection in the

two and three dimensional axis-symmetric domain.

1.2.1 Canham-Helfrich problem in two-dimensional axis-symmetric domain

We recall that in two-dimensional case, the surface "Σ" is in fact a curve Γ, the volume V is the area of

the domain Ω delimited by Γ, "the area A" is the perimeter P of Γ and the surface element "ds" is a length

element dl.
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Mathematical formulation

In this case the problem (1.6) becomes

Ω
∗ = argmin

Ω∈Λ

{
1
2

∫
Γ

(H−H0)
2dl
}

under constraints

A = A0,

P = P0,
(1.9)

where the energy functional is defined by

H (Ω) =
κ

2

∫
Γ

(H−H0)
2dl. (1.10)

Lagrange multiplier method

The constrained problem (1.9) can be transformed into a simple optimization problem using the La-

grange multiplier method. We introduce the Lagrangian of this problem as follows

L (Ω; µ, p) =
1
2

∫
Γ

(H−H0)
2 dl + p(A−A0)+µ (P−P0) , (1.11)

where µ and p are Lagrange multipliers. Solving the constrained optimization problem (1.9) is equivalent

to solve the following saddle point search problem

(Ω∗; µ
∗, p∗) = argmin

Ω∈A
sup

p,µ∈R
{L (Ω; µ, p)}. (1.12)

In fact, the constrained optimization problem (1.9) is equivalent to the saddle point search problem (1.12).

Since a shape Ω ∈ Λ will never be a solution of the saddle point research problem (1.12) if Ω do not

verifies the conditions A = A0 and P = P0 because sup
p,µ∈R

{L (Ω; µ, p)} = ∞. Therefore, this shape will

obviously not minimizes the value of the Lagrangian (1.11) for any shape Ω ∈ Λ.

In order to study the dependence factors of the shape Ω∗ solution of the problem (1.12), we introduce

the reduced volume.

Reduced Volume

An interesting remark is that the Lagrangian (1.11) has a similarity property. To show this we consider
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the case where H0 = 0 and we dimensionless the intervening quantities in (1.11)

Let R0 =
P0
2π

be the characteristic radius of a disc having the same Perimeter P0 as the shape Ω∗. We

denote by a "tilde" the dimensionless terms.

The expression of the Lagrangian (1.11) as a function of dimensionless variables is the following

L (Ω; µ̃, p̃) =
1
2

∫
Γ̃

1
R0

H̃2d̃l + p̃R2
0

(
Ã− Ã0

)
+ µ̃R0

(
P̃− P̃0

)
=

1
R0

(
1
2

∫
Γ̃

H̃2d̃l + p̃R3
0

(
Ã− Ã0

)
+ µ̃R2

0

(
P̃− P̃0

))
,

where,

P̃ =
P
R0

, Ã =
A
R2

0
, H̃ = R0H, d̃l =

dl
R0

, p̃ = R3
0 p, and µ̃ = R2

0µ.

In addition, we have

P̃0 =
P0

R0
= 2π, Ã0 =

A0

R2
0
=

4π2A0

P2
0

= πν ,

where ν = 4πA0
P2

0
is the reduced volume, this parameter measures the degree of filling of the red blood cell,

it is defined as the ratio between the area of Ω∗ and area of a disc which has the same perimeter as Ω∗.

We finally get

L (Ω; µ, p) =
1

R0

(
1
2

∫
Γ̃

H̃2d̃l + p̃(Ã−πν)+ µ̃(P̃−2π)

)
=

1
R0

L̃ (Ω̃; µ̃, p̃).

This show in particular that minimizing the Lagrangian L is equivalent to minimize the dimension-

less Lagrangian L̃ , given by

L̃ (Ω̃; µ̃, P̃) =
1
2

∫
Γ̃

H̃2d̃l + p̃(Ã−πν)+ µ̃(P̃−2π).

This similarity property shows that the red blood cell shape does not depend on the dimension of this

latter, which means that we can substitute the two parameters A0 and P0 by the (unique) reduced volume

ν .

In summary, the shape Ω∗ does not depend on the problem dimension, since it minimizes both L

and L̃ . In addition, the dimensionless Lagrange multipliers µ̃, p̃ depend only on the reduced volume

ν . Indeed, they are mathematical parameters, introduced and chosen to verify conditions P̃ = 2π and

Ã = 2πν . To this end, we replace the dimensioned parameters A0 and P0 by a single dimensionless

parameter ν . In the three-dimensional case, the reduced volume is defined by ν = 3π
1
2 V

4A
3
2
0

this parameter
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Figure 1.9: Different vesicle shape depending on the reduced volume at equilibrium in the absence of
flow in the three-dimensional case[121]

can vary from 0 (the red blood cell is totally deflated) to 1 (sphere). Figure 1.9 shows the different shapes

of vesicle at equilibrium as a function of ν . In this figure, we observe three different families of shapes,

for a reduced volume equal to 0.65, the vesicle has a biconcave shape, the similar shape observed for red

blood cells.

1.2.2 The problem formulation in the two-dimensional axis-symmetric case

We assume that the red blood cell has an invariance by rotation around an axis. In this case, the surface of

the red blood cell can be generated by a flat curve rotating around this axis. Then, we are in the presence

of a so called axis-symmetric problem. To introduce the study of the three-dimensional axis-symmetric

Figure 1.10: A surface view and a cut view of a red blood cell (from Matlab simulations).

case in the next section, we carried out a two-dimensional study by considering only one section of the red

blood cell. We call Γ the curve obtained by making the intersection between a cutting plane containing

the axis of rotation and the surface of the red blood cell (fig. 1.10). We assume that Γ has two axes of

symmetry (which can be justified by the isotropy of physical constraints exercising on the red blood cell).

We provide our cutting plan with a coordinate system (Oxy), where the x-axis and the y-axis coincide

with the two axes of symmetry (fig. 1.11). We limit our study to the top right half part of the curve Γ,

called Γ+, we can then, reconstruct the curve Γ from Γ+ by symmetry with respect to the x and y axes

(fig. 1.11). In the top right half part, Γ+ can be seen as the graph of a function h and therefore admits the
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Figure 1.11: The curve defined by the function h ∈ Φ. Where, h′(0) = 0, h′(xm) = −∞ are imposed
conditions to ensure the symmetry. The curve Γ+ is the continuous part of the curve, the rest of the curve
(dashed) is constructed by symmetry

following parametrization

Γ+ =
{
(x,y) ∈ R2 : y = h(x)

}
.

Due to the perimeter and area constraints, the curve Γ+ is bounded on the x-axis, and we call xm the

maximum value reached, or the maximum elongation of Γ+. To ensure the biconcave character of the red

blood cell, we must also impose the following assumptions on the thickness h

1. h(x)≥ 0 for x ∈ [0,xm],

2. h(xm) = 0,

3. h′(0) = 0, h′′(0)> 0,

4. h′(x)−→−∞ when x−→ xm,

5. there exist xM ≤ xm such that h′′(x)≥ 0 for x ∈]0,xM[, and h′′(x)≤ 0 for x ∈]xM,xm[.

In fact, a curve Γ that have the shape of a regular red blood cell is usually describe as a closed curve

which is

1. symmetric with respect to x and y axis,

2. the "upper" half part Γ+ of the curve Γ satisfies the following conditions

(a) it intersects the tow axis of symmetry,

(b) it is a graph over its projection on the x-axis,
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(c) it is concave up near the y-axis,

(d) it has a unique point of maximum and a unique point of inflection.

Finally, since the red blood cell is a physical system, we know that Γ cannot be too irregular, so we

choose to take h ∈ C 2(0,xm). Now we are able to describe all the admissible functions that parametrizes

Γ+

Φm = {h ∈ C 2(0,xm) : h satisfies conditions 1−5}. (1.13)

The framework of the problem thus defined, we can solve the Canham-Helfrich problem in the two-

dimensional axis-symmetric case degined by (1.9).

We have seen that this problem under constraints can be transformed into a simple optimization

problem using the Lagrange multiplier method, where the Lagrangian is defined by (1.11).

The problem is then to find the critical points (Ω∗; µ∗, p∗) of the Lagrangian L that verifies

(Ω∗; µ
∗, p∗) = argmin

Ω∈Λ

max
p,µ∈R

{L (Ω; µ, p)}. (1.14)

The set Λ on which we minimize the energy of Canham-Helfrich is the set of Ω shapes of curve Γ

that can be obtained by successive symmetries from the curve Γ+, parametrized by the function h ∈Φ.

Before tackling the problem (1.14), we must first express the Lagrangian involved quantities in two-

dimensional axis-symmetric case, namely the area, the perimeter and the curvature.

Lemma 1.2.1

The area, the perimeter and the curvature of the curve Γ are defined as follows

A = 4
∫ xm

0
h(x)dx,

P = 4
∫ xm

0

(
1+h′2(x)

) 1
2 dx,

H =
h′′(x)

(1+h′(x)2)
3
2
.

Proof.

In two-dimensional case, we have

dl =
√

1−h′2(x)dx.
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Then the area A and the perimeter P are given by

A = 4
∫ xm

0
h(x)dx,

P = 4
∫ xm

0
dl,

= 4
∫ xm

0

(
1+h′2(x)

) 1
2 dx.

The expression of the curvature H of the curve Γ+ =
{
(x,y) ∈ R2 : φ(x,y) = h(x)− y = 0

}
, with a normal

vector n, is the following

H = div(n)

= div
(

∇φ(x,y)
‖∇φ(x,y)‖

)

= div


h′(x)√

1+h′(x)2

−1√
1+h′(x)2


=

h′′(x)
√

1+h′(x)2−h′(x)2h′′(x)
(
1+h′(x)2

)−1/2

1+h′(x)2

=
h′′(x)

(1+h′(x)2)
3
2
.

The Lagrangian (1.11), becomes

L (xm,h; µ, p) = 2
∫ xm

0

( h′′(x)

(1+h′(x)2)
3
2
−H0

)2

+2µ

(1+h′2(x)
) 1

2 dx−µP0 +4p
∫ xm

0
h(x)dx− pA0. (1.15)

1.2.3 Variable change

Let κ(x) =
h′(x)

(1+h′2(x))
1
2
= nx(x), be the principle curvature in the meridional direction, where n is the

normalized gradient of the function h in the x direction. It is natural, and important, to look at the behavior

of κ(x) instead of h(x), where κ satisfy the following conditions

[C1] |κ|< 1,

[C2] κ is concave,

[C3] there exist a unique critical pointxc, such that κ ′(xc) = 0 and κ(xc)> 0.

Using Lemma 1.2.1, the area, the perimeter and the curvature are given as a unction of κ by the
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following expressions

A = 4
∫ xm

0
h(x)dx

= 4[xh(x)]xm
0 −4

∫ xm

0
xh′(x)dx

=−4
∫ xm

0

xκ(x)

(1−κ2(x))
1
2

dx.

Since h ∈Φm, we have h(xm) = 0 then [xh(x)]xm
0 = 0,

P = 4
∫ xm

0

(
1+h′(x)2) 1

2 dx

= 4
∫ xm

0

1
1−κ2(x)

dx.

Finally the main curvature H = κ ′(x).

By a straightforward computation in the case where H0 = 0, one easily sees that the Lagrangian (1.15)

becomes

L (xm,κ,µ, p) = 2
∫ xm

0

κ ′(x)2 +2µ−2pxκ(x)√
1−κ(x)2

dx− pA0−µP0. (1.16)

The set describing all the admissible functions (1.13) becomes

Ψm = {κ ∈ C 1(0,xm) : κ satisfies [C1]− [C3]}.

Looking for the saddle point of this Lagrangian, is equivalent to find the critical points (xm,κ,µ, p) ∈

R+×Ψm×R×R of the latter.

Proposition 1.2.1 (Optimality conditions)

At the critical points (xm,κ,µ, p) ∈ R×Φ′×R×R, we have



[
dL

dκ
(ψ)

]
(xm,κ; µ, p) = 0 ∀ψ ∈Ψm,

∂L

∂xm
(xm,κ; µ, p) = 0,

∂L

∂ µ
(xm,κ; µ, p) = 0,

∂L

∂ p
(xm,κ; µ, p) = 0,

(1.17)

where dL
dκ

(ψ) is the directional derivative of L with respect to κ in the direction ψ
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Theorem 1.2.1 (Euler-Lagrange equation)

The Euler-Lagrange equation for the problem (1.12) is given by

−2κ
′′ (1−κ

2)−κκ
′2−2px+(H2

0 +2µ)κ = 0. (1.18)

Proof.

In order to give the expression of the Euler-Lagrange equation for the problem (1.12), we have to compute

the first optimality condition
[dL

dκ
(ψ)
]
(xm,κ; µ, p) = 0 for ψ : Φ′→ R.

From the definition of κ , we have

κ
′(x) =

h′′(x)

(1+h′2(x))3/2 = H(x),

where H(x) is the curvature of the curve Γ at x and

κ
′′(x) =

h(3)(x)

(1+h′2(x))
3
2
− 3h′′2(x)

(1+h′2(x))
5
2
.

Then,

[
k′2 +2µ√

1−κ2

]′
ψ

(κ) =
2κ ′ψ ′

(
1−κ2

)
+
(
κ2 +H2

0 +2µ
)

kψ

(1−κ2)
1
2

,[
2xpκ√
1−κ2

]′
ψ

(κ) =
2pxψ

(
1−κ2

)
+2pxκ2ψ

(1−κ2)
3
2

=
2pxψ

(1−κ2)
3
2
.

Then, we obtain

[
dL

dκ

]
ψ

(xm,κ,µ, p) = 2
∫ xm

0

2κ ′ψ ′
(
1− k2

)
+
(
κ ′2 +H2

0 +2µ
)

kψ

(1− k2)
3
2

dx−2
∫ xm

0

2pxψ

(1− k2)
3
2

dx

= 2
∫ xm

0

2ψκ ′
(
1−κ2

)
+ψ

(
−2px+κκ ′2 +(H2

0 +2µ)κ
)

(1−κ2)
3
2

dx

= 4
∫ xm

0

ψκ ′√
1−κ2

dx+2
∫ xm

0

(
−2px+κk′2 +(H2

0 +2µ)κ
)

ψ

(1− k2)
3
2

dx.

Let T1 = 4
∫ xm

0

ψ ′κ ′√
1−κ2

dx and T2 = 2
∫ xm

0

(
−2px+κκ ′2 +(H2

0 +2µ)κ
)

ψ

(1−κ2)
3
2

dx, and by integrating T1 by

part we obtain

T1 = 4

([
κ ′√

1− k2
ψ

]xm

0
−
∫ xm

0

κ ′′
(
1−κ2

)
+κ ′2κ

(1−κ2)
3
2

ψdx

)
.
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Since κ and ψ are in Ψm, we set ψ(0) = κ(0) = 0 and ψ (xm) = κ(xm) =−1 ( ψ is compact support).

We have [
κ ′(x)√

1− k2(x)
ψ(x)

]xm

0

=
κ ′ (xm)√

1−κ2 (xm)
ψ (xm) = 0.

Since
κ ′(xm)√

1−κ2 (xm)
=

h′′(xm)

1+h′2 (xm)
' C

M
= 0,

where, C is a constant and M is a constant as large as we want, since h′(xm) =−∞.

Finally, we get

[L ]′ψ = T1 +T2

= 2
∫ xm

0
ψ
−2κ ′′

(
1−κ2

)
−κκ ′2−2px+(H2

0 +2µ)κ

(1−κ2)
3
2

dx.

The first optimality condition from (1.17) is

[
dL

dκ
(ψ)

]
(xm,κ; µ, p) =

∫ xm

0
ψ
−2κ ′′

(
1−κ2

)
−κκ ′2−2px+(H2

0 +2µ)κ

(1−κ2)
3
2

dx = 0, ∀ψ ∈Ψm.

This equality is verified for any ψ ∈Ψm. The function κ ∈Ψm that minimizes the Lagrangian L verifies

the following ordinary differential equation, called Euler-Lagrange equation

−2κ
′′ (1−κ

2)−κκ
′2−2px+(H2

0 +2µ)κ = 0. (1.19)

In addition, we have the following initial conditions

κ(0) =
h′(0)

(1+h′2(0))
1
2
= 0, and κ

′(0) = h′′(0) = κ
′
0 > 0.

The function κ is then a solution of the following problem



κ
′′(x) =

(H2
0 +2µ)κ(x)−2px−κ(x)κ ′2(x)

2(1−κ2(x))
, x ∈]0,xm[

|κ|< 1, x ∈]0,xm[

κ(0) = 0,

κ(xm) =−1.

(1.20)
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We introduce the following affine polynomial

P(ξ ) =
(
H2

0 +2µ
)

ξ −2px.

The problem (1.20) becomes 

κ ′′ = P(κ)−κκ ′2

2(1−κ2)
, x ∈]0,xm[

|κ|< 1, x ∈]0,xm[,

κ(0) = 0,

κ(xm) =−1.

We set Y = (y1,y2)
T , where y1 = κ and y2 = κ ′ we obtain the following Cauchy-Lipschitz problem

 Y ′(x) = F(x,Y (x))

Y (0) = (0,κ ′0)
T ,

(1.21)

where κ ′0 is a shooting parameter and

F

x,

 y1

y2


=

 y2

(H2
0+2µ)y1−2px−y1y2

2(x)
2(1−y2

1(x))

 .

This singular initial value problem have a local unique solution according to the Cauchy-Lipschitz

theorem for any fixed κ ′0 > 0 and it depends continuously on the initial value κ ′0.

Proposition 1.2.2 (Willmore solution)

Consider κ a solution for the problem (1.20), such that p = 0 and H2
0 +2µ = κ ′20 . Then the curve defined

by h : Φ→ R, such that h′(x) = κ(x)
(1−κ2(x))1/2 , must be a disc of radius x = 1√

κ ′0
.

Proof.

In the case where p = 0, and H0,µ 6= 0, the equation (1.18) verified by κ becomes autonomous

κ
′′(x) =

(H2
0 +2µ)κ−κ(x)κ ′2(x)

2(1−κ2(x))
, ∀x ∈]0,xm[. (1.22)
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Figure 1.12: κ ′ curve as a function of κ for p = H0 = 0, κ ′0 = 0.3, and µ = 0.125

Suppose that κ ′ = F(κ), w get κ ′′ = κ ′F ′(κ) = F(κ)F ′(κ). By using (1.22), we get

FF ′ =
(H2

0 +2µ)κ−F2κ

2(1−κ2)
,(

1
2

F2
)′

=−
F2

2 κ

1−κ2 +
(H2

0 +2µ)κ

2(1−κ2)
.

Let Y = F2

2 , we have

Y ′+
κ

1−κ2Y =
(H2

0 +2µ)κ

2(1−κ2)
.

Then Y =
H2

0+2µ

2 + c0(1−κ2)
1
2 , where c0 is a derivation constant. As a consequence, we get

F(κ) =±
√

H2
0 +2µ +2c0(1−κ2)

1
2 .

We have,κ ′(0) = F(0) since, κ(0) = 0, then, κ ′20 = H2
0 +2(µ + c0), which implies that

κ
′ =±

√
H2

0 +2µ +(κ ′20 −H2
0 −2µ)(1−κ2)

1
2 . (1.23)

With this equation, we have the expression of xm

xm =
∫ 1

0

ds√
H2

0 +2µ +(κ ′20 −H2
0 −2µ)(1− s2)

1
2

.

Figure 4 represents the curve of κ ′ as a function of κ from equation 1.23
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Particular case: κ ′20 = H2
0 +2µ In this case κ ′ =±

√
H2

0 +2µ =±κ ′0 = constant, which gives

κ =±κ
′
0x.

As a consequence, we get the circle parametrization (Willmore solution)

h(x) =∓ 1
κ ′0

√
1−κ ′0x2.

Since an exact solution for (1.20) is not easy to fined in a more general case (where H0 6= 0,µ 6= 0 and p 6=

0), we study the global behavior of κ solution of (1.20) by finding necessary condition on the initial value

κ ′0. For simplicity we assume in what follows that H0 = 0.

Theorem 1.2.2

Let p,µ > 0, p <
(

2µ

3

) 3
2
, we assume that 0 < κ ′0 <

p
µ

. Then there exists xm > 0 such that κ ∈ Ψm is a

solution to (1.20).

Global behavior of solutions

In the following, we assume that 0 < κ ′0 <
p
µ

, and we mainly focus on the solutions of (1.20) in ]0,xm[,

where xm > 0 and κ(0) = 0. Since the solution κ is completely parametrized by κ ′(0) = κ ′0, we will

simply refer to κ as the solution given by κ ′0.

Lemma 1.2.2

Under the assumptions of Theorem 1.2.2, we have

κ(x)<
p
µ

x ∀x > 0.

Proof.

Assume that there exist x0 > 0 such that κ(x0) =
p
µ

x0. Let

f (x) =
p
µ

x−κ(x).

We have f (0) = 0, f ′(0) = p
µ
−κ ′0 > 0. Then f is an increasing function in a neighborhood of 0+. We

suppose that f (x)> 0 in (0,x0)
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Since f (0) = f (x0) = 0, there exists x1 such that

f ′(x1) = 0, f (x1)> 0 and f ′′(x1)< 0,

which means that κ ′(x1) =
p
µ

and κ ′′(x1)> 0. From (1.18), we have

2(1−κ
2)κ ′′(x1)+κ(x1)(κ

′(x1))
2 = 2µκ(x1)−2px1.

Which implies that κ(x1)>
p
µ

x1 which impossible. Then κ(x)< p
µ

x ∀x > 0.

Lemma 1.2.3

We assume that there exist a critical point x∗c , such that κ ′(x∗c) = 0, and 0 < κ(x∗c)< 1. Then κ ′ < 0, and

κ ′′ < 0, for all x > x∗c .

Proof.

Assume that there exist a critical point x∗c such that κ ′(x∗c) = 0 and 0 < κ(x∗c)< 1.

We have from (1.18) 2(1−κ2)κ ′′(x∗c) = 2µκ(x∗c)−2px∗c , and from lemma 1.2.2, we get κ ′′(x∗c)< 0.

In a neighborhood x∗c (x
∗
c ,x
∗
c+ε), we have κ ′ < 0 and κ ′′ < 0. Now suppose that there exist x2 > x∗c ,

such that κ ′(x2) = 0, κ2(x2) < 1, and κ ′ < 0 in (x∗c ,x2). Then from (1.18), we get, 2(1−κ2)κ ′′(x2) =

2µκ(x2)− 2px2 < 0, which implies that κ ′ decreases in a neighborhood of x2, since κ ′(x2) = 0, we get

κ ′(x)> 0 in a neighborhood of x2, which is impossible.
Remark 1.2.1

We have, 2(1−κ2)κ ′′ = 2µκ−2px−κκ ′2 < 0, if κ > 0.

Lemma 1.2.4

There exist a unique critical point xc such that, κ ′(xc) = 0, and 0 < κ(xc)< 1.

Proof.

Assume that κ ′ > 0 and κ is bounded ∀x ∈ [0,+∞[. Since κ is a bounded increasing function, and κ ′′ < 0

(Remark1.2.1), we deduce that κ ′(x) −→ 0
x→+∞

, and there exists a sequence (xn)n such that κ ′′(xn) −→
xn→+∞

0.

According to (1.18), we get,

2(1−κ
2)κ ′′(xn) −→

xn→+∞
−∞,

which is absurd.

Then, there exist x0 such that κ(x0) = 1, again by using equation (1.18), we get

2(1−κ
2(x0))κ

′′(x0) = 2µ−2px0−κ
′2(x0)< 0,
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which implies that κ ′′ ∼ c
1−κ

, c < 0. So that

1
2

κ
′2 + c0 ∼

x→x0
|c| ln(1−κ),

which is impossible.

Proof of Theorem 1.2.2

Assume that p <
(

2µ

3

) 3
2

and κ satisfies (1.19) with κ(0) = 0 and 0 < κ ′0 <
p
µ
. Since the solution κ is

completely parametrized by κ ′(0) = κ ′0, we will simply refer to κ as the solution given by κ ′0 and most of

the study will be conducted in the neighborhood of 0.

Near x = 0, κ can be approximated by, κ(x) w κ ′0x+ ax3 + ◦(x)3, since it’s an odd function from

(1.18), where a = 1
3 κ(3)(0) =− 1

12(κ
′3
0 −2µκ ′0 +2p).

The polynomial κ ′30 −2µκ ′0 +2p admits two positive roots, since p <
(

2µ

3

) 3
2
, and by using the con-

dition 0 < κ ′0 <
p
µ

. We get limx→0
k′′(x)

x = 6a < 0, since κ ′30 −2µκ ′0 +2p > 0. It follow immediately that

κ is concave near 0. Using Lemma 1.2.4 There exist a unique critical point xc such that κ ′(xc) = 0 and

0 < κ(xc)< 1. Then from Lemma 1.2.3, we get κ ′ < 0 and κ ′′ < 0 for all x > xc. Which proves that κ is

concave and have a unique critical point. We are now reduced to proving that |κ|< 1.

From Lemma 1.2.3 and Lemma 1.2.4, there exists x∗m such that κ(x∗m) = 0, κ < 0 ∀x > x∗m, κ < 0,

κ ′′ < 0 ∀x > x∗m.

Next we define κ̂ =−κ . Therefore, κ̂ satisfies


2(1− κ̂

2)κ̂ ′′ = 2µκ̂ +2px− κ̂ κ̂
′2, x > x∗m,

κ̂(x∗m) = 0, κ̂ ′(x∗m)> 0, κ̂ ′′(x∗m)> 0.

Firstly, it should be noted that it is easy to show that κ̂ ′(x∗m)> 0 as soon as 0 < κ̂ < 1.

In the similar way as in the proof of lemma 1.2.4, we assume that κ̂ is bounded by M < 1. Since

κ̂ > 0 and bounded then there exists xn such that

κ̂ ′(xn) −→ 0
xn→+∞

. (1.24)

It follows that κ̂ ′(x)−→ 0
x→+∞

if κ̂ ′ is monotonic. By using the equation of κ̂ we deduce that κ̂ ′′ > 0 for large

x, which is absurd (κ̂ ′ > 0 increasing and tends to 0).
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Now if κ̂ ′ is not monotonic for large x, there exist a sequence yn such that κ̂ ′′(yn) = 0 and κ̂ ′(yn) is

a local minimum. Using again equation of κ̂ one deduces that κ̂ ′(yn) −→ 0
yn→+∞

and then κ̂ ′(x)−→ 0
x→+∞

, which

contradicts equation (1.24).

Then, there exist xm such that κ̂(xm) = 1, which gives κ(xm) = −1 and then |κ| < 1 for 0 < x < xm,

which ends the proof of the Theorem.

Let us note that, since h′ = κ√
1−κ2 we have, h′(xm) =−∞.

Remark 1.2.2

The condition p <
(

2µ

3

) 3
2

is necessary to ensure the biconcave character. Indeed, if p =
(

2µ

3

) 3
2
, we

get the spherical shape which is also a solution to the problem, but in our case we are rather interested

in the biconcave character. otherwise, if p >
(

2µ

3

) 3
2

we obtain complex shapes that are not physically

admissible.

An approximation solution

let κ be a solution of (1.20). Near 0, κ can be approximated as the following polynomial, since κ is an

odd function and it is completely parametrized by κ ′(0) = κ ′0

κ(x)w κ
′
0x+ax3 +◦(x)3.

Using the equation (1.18) we get a = 1
3 κ(3)(0) = − 1

12(κ
′3
0 − 2µκ ′0 + 2p) < 0, and by using the fact that

h′(x) = κ(x)
(1−κ2)

1/2 , we obtain

h′(x)w
κ ′0x+ax3(

1−κ ′20 x2
)1/2 +◦(x)

3.

Integrating this quantity over ]0,xm[ for fixed xm, we get

h(x) =
√

1− (κ ′0x)2
[
c0 + c2x2] , (1.25)

where c0 = h(0) = 1
κ ′0
+ 2|a|

3κ ′40
, c2 =

|a|
3κ ′20

and a =− 1
12(κ

′3
0 −2µκ ′0 +2p).

In the case where c2 = 0, we have

h(x) = xm

√
1−
(

x
xm

)2

. (1.26)

Which is a disk parametrization with radius xm = 1
κ ′0

(spherical shape of red blood cells in 2 dimensions)
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Figure 1.13: This curve represent the function h(x) in the case where c2 = 0

It is obviously seen that h is a solution of the minimization problem, where µ = p = H0 = 0, which

agree with results given by Willmore in Theorem 1.1.1.

Now, let xm = 1
κ ′0

, Therefore, from (1.25), we get

h(x) =

√
1−
(

x
xm

)2
[

C0 +C2

(
x

xm

)2
]
, (1.27)

where C0 = xm +2C2 and C2 =
|a|x4

m
3 , and if we increase the order of the Taylor expansion up to five order

we get

h(x) =

√
1−
(

x
xm

)2
[

C0 +C2

(
x

xm

)2

+C4

(
x

xm

)4
]
, (1.28)

where C0 = xm + 2|a|x4
m

3 − 8bx6
m

15 , C2 =+5|a|x4
m−4bx6

m
15 and C4 =

−3bx6
m

15 such that a =− 1
12x3

m
(1−2µx2

m +2px3
m)

and b = 5a
40x2

m
.

This approximation is similar to the parametric representation proposed by Evans and co-workers

[56] to characterize the red blood cell geometry based on symmetry and surface-continuity.

The experimental data by Evans namely the diameter, the maximum and the minimum thickness, the

surface area, and volume were easily computed using the interference microscopy method. This method

allows to measure the phase change which a light wave undergoes when passing through a blood cell

along the direction parallel to the rotational axis. The phase change is not simply proportional to the

thickness of the cell but is related to the contour z(x) in a much more complicated way due to diffraction

effects. To allow these effects, Evans et al. [56] computed the phase shift for the class of contours given

by the following parametric equation

z(x) =±R

√
1−
( x

R

)2
(

C0 +C2

( x
R

)2
+C4

( x
R

)4
)
, (1.29)
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Figure 1.14: The class of contours obtained by Evans Ref.[56] using equation (1.29), and the experimental
data obtained by the interference microscopy method

where R is the radius, x is the horizontal distance; and, C0, C2, and C4 are three parameters that

determine the RBC shape.

The free model parameters R,C0,C2,C4 were determined by fitting the phase shift for the class of

contours (fig.1.14) given by equation (1.29) to the measured phase shift.

1.2.4 Numerical simulations

This section describes simulations of the red blood cell biconcave shape, using a combination of the

Lagrangian multiplier method and artificial neural networks [83, 86].

A general model was first discussed by S. Zhang et al.[136]. In our study, we aim to determine the

biconcave solutions of the problem (1.9). In fact we are looking for minimizers of the curvature energy

(1.10), under area and perimeter constraints, among the functions that satisfy (1.28).

The problem resumes in seeking xm,C0,C2,C4 that minimize the following energy

H (xm,C0,C2,C4) = 2
∫ xm

0

h′′2(x)

(1+h′2(x))
5
2

dx,

under constraints

4
∫ xm

0
h(x)dx = A0,

4
∫ xm

0

(
1+h′2(x)

) 1
2 dx = P0.

(1.30)
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Where A0, P0 are initial data and h(x) is given by

h(x) =

√
1−
(

x
xm

)2
[

C0 +C2

(
x

xm

)2

+C4

(
x

xm

)4
]
. (1.31)

This optimization problem is not easy to tackle by the classical methods since the energy H depends

on the parameters xm,C0,C2 and C4 which are unknown and must themselves be determined in solving

the problem.

In order to give the expression of H as function of xm,C0,C2 and C4, we have to calculate the first

and the second derivatives of h(x) which is a difficult task. To overcome this difficulty we computed h′(x)

and h′′(x) formally in our algorithm using Matlab’s formal calculations.

This work originates in an attempt to circumvent this difficulty by making use of the dynamical system

obtained by combining the Lagrangian multiplier method and artificial neural networks as an alternative

approach to the numerical analysis of our problem.

We consider ρ(u) =
√

1− (u)2 where u = x
xm

. We get

h̃(u) = ρ(u)
[
C0 +C2u2 +C4u4] , (1.32)

where h̃(u) = h(xmu). By a straightforward calculation, the derivatives of h are given by


h̃′(u) =

1
xmρ(u)

(
(2C2−C0)u+(4C4−3C2)u3−5C4u5) ,

h̃′′(u) =
1

x2
mρ(u)3

(
(2C2−C0)−3(4C4−3C2)u2 +(6C2−33C4)u4 +20C4u6) ,

with the initial conditions 
h̃′(0) = 0,

h̃′′(0) =
1

x2
m
(2C2−C0)> 0.

Therefore, necessary conditions to insure the biconcave shape becomes

C0 > 0,C2 > 0 and 2C2−C0 > 0. (1.33)

Let xc in (0,xm) be a critical point such that h′(xc) = 0. Then, we have

1
xmρ(xcxm)

(
(2C2−C0)

xc

xm
+(4C4−3C2)

(
xc

xm

)3

−5C4

(
xc

xm

)5
)

= 0.

62



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

Therefore

(2C2−C0)+(4C4−3C2)

(
xc

xm

)2

−5C4

(
xc

xm

)4

= 0.

We solve this equation, by sitting X =
(

xc
xm

)2
. We have

∆ = (4C4−3C2)
2 +20C4 (2C2−C0) .

Using conditions C4 > 0 and 2C2−C0 > 0 gives ∆ > 0

v0 =

√
(4C4−3C2)+

√
∆

10C4
,

where 0 < v0 < 1 gives 0 < (4C4−3C2)+
√

∆

10C4
< 1, we get the following necessary condition

5C2−C0−C4 < 0. (1.34)

The Helfrich energy functional is defined by

H (xm,C0,C2,C4) =
∫ 1

0

1
ρ(u)

KH (xm,C0,C2,C4)du, (1.35)

where

KH (xm,C0,C2,C4) =
x2

m ·
(
(2C2−C0)+(12C4−9C2)u2 +(6C2−33C4)u4 +20C4u6

)2

(
x2

mρ(u)2 +((2C2−C0)u+(4C4−3C2)u3−5C4u5)
2
)5

2

. (1.36)

The area and the perimeter constraint becomes

A = 4
∫ 1

0
xm ·ρ(u)

[
C0 +C2u2 +C4u4]du, (1.37)

that can be written as follows

A = xm(L1 ·C0 +L2 ·C2 +L3 ·C4),

where

L1 = 4
∫ 1

0
u ·ρ(u)du, L2 = 4

∫ 1

0
u3 ·ρ(u)dv, L3 = 4

∫ 1

0
u5 ·ρ(u)du,
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and

P = 4
∫ 1

0

1
ρ(u)

[
xmρ

2(u)+
(
(2C2−C0)u+(4C4−3C2)u3−5C4u5)2

] 1
2

du, (1.38)

or equivalently

P =
∫ 1

0

1
ρ(u)

KP(xm,C0,C2,C4), (1.39)

where

KP(xm,C0,C2,C4) = 4
[
xmρ

2(u)+
(
(2C2−C0)u+(4C4−3C2)u3−5C4u5)2

] 1
2
.

The minimization problem becomes

MinH (xm,C0,C2,C4) under constraints



A−A0 = 0,

P−P0 = 0,

C4 ≥ 0,xm ≥ 0,

2C2−C0 ≥ 0,

5C2−C0−C4 < 0.

(1.40)

The Lagrangian function L (xm,C0,C2,C4, p,µ) is defined by

L (C0,C2,C4,xm,µ,σ ,η)=H + p(A−A0)+µ(P−P0)−η1C4−η2(C0−2C2)−η3(5C2−C0−C4)−η4xm,

(1.41)

where H = H (xm,C0,C2,C4), A = A(C0,C2,C4,xm), P = P(C0,C2,C4,xm) and η = (η1,η2,η3;η4).

Since (1.40) contains inequality constraints, we introduce the additional variables y to transform the

inequality constraints into equalities as in [136].

The following nonlinear programming problem involves equality constraints

MinH (C0,C2,C4,xm) under constraints



A−A0 = 0,

P−P0 = 0,

−C4 + y2
1 = 0,

C0−2C2 + y2
2 = 0,

5C2−C0−C4 + y2
3 = 0,

−xm + y2
4 = 0.
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The Lagrangian L rewrites

L (xm,C0,C2,C4, p,µ,y1,y2,y3,y4,η1,η2,η3,η4) = H + p(A−A0)+µ(P−P0)+

η1(−C4 + y2
1)+η2(C0−2C2 + y2

2)+η3(5C2−C0−C4 + y2
3)+η4(−xm + y2

4).

(1.42)

The dynamical system based on the Lagrangian function L (xm,C0,C2,C4, p,µ,y1,y2,y3,y4,η1,η2,η3,η4)

of the transformed problem is the main topic of the following section.

Dynamical system

Note that xm,C0,C2,C4 and y are primal variables and p, µ , η1, η2, η3 and η4 are Lagrange multipliers.

The dynamic system is written as follows



dCi

dt
=− ∂

∂Ci
L (xm,Ci, p,µ,y,η), f or i = 0,2,4

dxm

dt
=− ∂

∂xm
L (xm,Ci, p,µ,y,η)

dy j

dt
=− ∂

∂y j
L (xm,Ci, p,µ,y,η), f or j = 1,2,3,4

d p
dt

= ∂

∂ pL (xm,Ci, p,µ,y,η)

dµ

dt
= ∂

∂ µ
L (xm,Ci, p,µ,y,η)

dη j

dt
= ∂

∂η j
L (xm,Ci, p,µ,y,η), f or j = 1,2,3,4

(1.43)

where y = (y1,y2,y3,y4) and η = (η1,η2,η3,η4)

In the following, we give the expression of the derivatives of each quantity arising in the Lagrangian.

The derivative of the energy, the area and the perimeter with respect to C0 are given by

∂

∂C0
H (xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C0
KH (xm,C0,C2,C4)du,

∂

∂C0
A(xm,C0,C2,C4) = xm ·L1,

∂

∂C0
P(xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C0
KP(xm,C0,C2,C4)du.

(1.44)

This allows us to give the expression of
∂

∂C0
L (xm,C0,C2,C4), as follows

∂

∂C0
L (xm,C0,C2,C4, p,µ,y,η) =

∫ 1

0

1
ρ(u)

[
∂

∂C0
KH +µ

∂

∂C0
KP]+ pxm ·L1 +η2−η3.
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The derivatives of the energy the area and the perimeter with respect to C2 are given by

∂

∂C2
H (xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C2
KH (xm,C0,C2,C4)du,

∂

∂C2
A(xm,C0,C2,C4) = xm ·L2,

∂

∂C2
P(xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C2
KP(xm,C0,C2,C4)du.

(1.45)

This allows us to give the expression of ∂

∂C2
L (xm,C0,C2,C4)

∂

∂C2
L (xm,C0,C2,C4, p,µ,y,η) =

∫ 1

0

1
ρ(u)

[
∂

∂C2
KH +µ

∂

∂C2
KP]+ pxm ·L2−2η2 +5η3.

The derivatives of the energy the area and the perimeter with respect to C4 are given by

∂

∂C4
H (xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C4
KH (xm,C0,C2,C4)du

∂

∂C4
A(xm,C0,C2,C4) = xm ·L3

∂

∂C4
P(xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C4
KP(xm,C0,C2,C4)du.

(1.46)

This allows us to give the expression of ∂

∂C4
L (xm,C0,C2,C4)

∂

∂C4
L (xm,C0,C2,C4, p,µ,y,η) =

∫ 1

0

1
ρ(u)

[
∂

∂C2
KH +µ

∂

∂C2
KP]+ pxm ·L3 +η1−η3.

We derivative also the energy, the area and the perimeter with respect to xm as follows

∂

∂xm
H (xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂xm
KH (xm,C0,C2,C4)du,

∂

∂xm
P(xm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂xm
KP(xm,C0,C2,C4)du,

∂

∂xm
A(xm,C0,C2,C4) = 2xm(L1 ·C0 +L2 ·C2 +L3 ·C4).

(1.47)

This allows us to give the expression of
∂

∂xm
L (xm,C0,C2,C4)

∂

∂xm
L (xm,C0,C2,C4, p,µ,y,η) =

∫ 1

0

1
ρ(u)

[
∂

∂xm
KH +µ

∂

∂xm
KP]+2pxm(L1 ·C0+L2 ·C2+L3 ·C4)−η4.
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Then, the dynamics system is finally given by



dC0

dt
=−

∫ 1
0

1
ρ(u)

[
∂

∂C0
KH +µ

∂

∂C0
KP]− pxm ·L1−η2 +η3

dC2

dt
=−

∫ 1
0

1
ρ(u)

[
∂

∂C2
KH +µ

∂

∂C2
KP]− pxm ·L2 +2η2−5η4

dC4

dt
=−

∫ 1
0

1
ρ(u) [

∂

∂C4
KH +µ

∂

∂C4
KP]− pxm ·L3−η1 +η3

dxm

dt
=−

∫ 1
0

1
ρ(u)

[
∂

∂xm
KH +µ

∂

∂xm
KP]−2pxm(L1 ·C0 +L2 ·C2 +L3 ·C4)+η4

d p
dt

= xm(L1 ·C0 +L2 ·C2 +L3 ·C4)−A0

dµ

dt
=
∫ 1

0
1

ρ(u)
∂

∂xm
KP(xm,C0,C2,C4)du−P0

dy1

dt
=−2η1y1

dy2

dt
=−2η2y2

dy3

dt
=−2η3y3

dy4

dt
=−2η4y4

dη1

dt
=−C4 + y2

1

dη2

dt
=C0−2C2 + y2

2

dη3

dt
= 5C2−C0−C4 + y2

3

dη4

dt
=−xm + y2

4.

(1.48)

In order to solve this dynamical system we use the classical fourth-order Runge-Kutta method.

Figure 1.15: Diagram of the system resolution
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Figure 1.16: Plot Γ of the function h for different discretization steps

Simulation Results

The implementation procedure for our algorithm based on Lagrange multiplier method is simulated

by solving the dynamical system (1.48) using the classical fourth-order Runge-Kutta method (fig. 1.15)

which is embedded in MATLAB ode solver. Figure 1.2.4 represents: in the left the initial biconcave shape

with initial given coefficients xm, C0 and C2, in the right the final biconcave shape resulting from injecting

the new coefficients obtained by solving the dynamical system in the shape parametrization.

1.2.5 Canham-Helfrich problem in three-dimensional axi-symmetric Domain

Note that the approach used in the three-dimensional case is very similar to that implemented in the two-

dimensional case. We will therefore rely on the developments carried out in the previous section and will

not detail all the calculation steps so that we do not overload with unnecessary development.

In this section, we use the same parameterization of the red blood cell shape in three dimensions

which allows having a simple expression of the curvature, then we adopt the theoretical study of Canham-

Helfrich in the 1970s ([46],[31]) which represents the red blood cell shape as a minimum of the curvature
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energy for fixed area and volume. After a mathematical formulation of the problem, we come across

a complex minimization problem since the energy is written as function of the shape parameters which

themselves must be determined by solving the problem. The classical optimization methods are not

adapted to this type of problems, therefore we carried out numerical simulations to investigate the shape

properties of RBC using a combination of the Lagrange multiplier method and fourth order Runge Kutta

method.

As seen in the above section, the equilibrium configuration of red blood cells minimizes the energy

of curvature proposed by Canham [31] and Helfrich [72] and given by the following functional

H (Ω) =
κ

2

∫
Γ

H2ds. (1.49)

Γ represents the membrane (a closed surface) of the cell Ω (the inner domain), H is the mean curvature

and κ is the rigidity modulus of the membrane Γ.

Red blood cell equilibrium configurations will be determined by the minimization of the curvature

energy under constraints, conserved volume (incompressible fluid inside the cell) and conserved area

(inextensible membrane). Therefore, we solve the following optimization problem

Ω
∗ = argmin

Ω∈Λ

{
1
2

∫
Γ

H2ds
}

under constraints

V =V0,

A = A0.
(1.50)

With Λ is the space of Ω admissible shapes, Ω∗ is the optimal shape, V and A are the volume and the

area of the red blood cell respectively and V0 and A0 represent the reference volume and area respectively.

We notice that minimizing the quantity 1
2
∫

Γ
H2ds amounts to minimize H (Ω), since κ is a positive

constant depending only on the physical and geometrical characteristics of the membrane.

Formulation of the problem

In this subsection, we are interested in the mechanical equilibrium of a single red blood cell in three-

dimensional axis-symmetric case considering only a cut of the red blood cell.

To obtain the curve Γ (the membrane in 3D axis-symmetric case) we intersect a cutting plane contain-

ing the axis of rotation and the surface of the red blood cell see (Figure 1.10) that we obtain by numerical

simulation to show the cut view.
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Figure 1.17: Example of a function h ∈ Φm in 3D. We imposed to ensure the symmetry: h′(0) = 0,
h′(rm) =−∞. Here we can see the Γ+ curve

We assume that this curve has two axes of symmetry ( Figure 1.17). Therefore, it suffices to study Γ

in the upper dial, and we call Γ+ the Γ restriction on the upper dial. Then we can reconstruct the Γ-curve

from Γ+ by symmetry (Figure1.18). We use the cylindrical coordinates and we consider that, in the upper

Figure 1.18: Diagram of the problem and presentation of the Γ curve.

half-space, Γ+ can be seen as the graph of a function h(r) which describes the thickness of the RBC.

The goal now is to numerically determine parameters rm, C0, C2 and C4 that can be used to describe

the equilibrium state as above. Values of rm, C0, C2 and C4 will be obtained by solving numerically an

optimization problem. We recall that rm is the final radius of the RBC given by h(rm) = 0. The equation
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of the membrane Γ of the red blood cell is expressed in the following parametric form

Γ+ = {(r,θ ,z) ∈ [0,rm]× [0,2π]× [0,+∞] : z = h(r),z > 0} , (1.51)

where fixed θ is defined in figure 1.17.

In order to ensure the biconcave character for the solution of the problem (1.50), we must look for a

solution z = h(r) such that h satisfy the following conditions.

1. h(r)≥ 0 for r ∈ [0,rm],

2. h(rm) = 0,

3. h′(0) = 0,

4. h′(r)−→−∞ when r −→ rm,

5. there exist rM ≤ rm such that h′′(r)≥ 0 for r ∈ [0,rM[, and h′′(r)≤ 0 for r ∈]rM,rm[.

The third and the last conditions imply that h′(r) has a unique maximum and that h(r) has a unique

single inflection point rI . This means that the function h(r) also has a unique maximum in r ∈ [0,rm]

(noted by rM).

Now we are able to describe the set of admissible functions to parametrize the curve Γ+

Φm = {h ∈ C 2(0,rm) : h satisfies 1−5}. (1.52)

The framework of the problem thus defined allows us to solve the Canham-Helfrich problem in the three-

dimensional case, which is written

Ω
∗ = argmin

Ω∈A

{
1
2

∫
Γ

(H−H0)
2 ds
}

under constraints

 V =V0,

A = A0.

We have seen in the previous section that this constrained optimization problem can be transformed into

a simple optimization problem using the Lagrange multipliers method. We then introduce the Lagrangian

L (Ω; µ, p) =
1
2

∫
Ω

(H−H0)
2 ds+ p(V −V0)+µ (A−A0) ,

71



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

with µ and p are Lagrange multipliers. The problem is then to find the critical points (Ω∗; µ∗, p∗) of the

Lagrangian L verifying

(Ω∗; µ
∗, p∗) = argmin

Ω∈Λ

max
µ,p∈R

{L (Ω; µ, p)}.

Lagrangian Formulation

Before proceeding to the search for the saddle points, we compute the expressions in the three-dimensional

case of the intervening quantities in the Lagrangian, namely the volume, the area and the curvature. In

the three-dimensional case, we have the volume V and the area A which are given by:

V = 2
∫ 2π

0

∫ rm

0
rh(r)drdθ ,

A = 2
∫ 2π

0

∫ rm

0
r
(

1+
(
h′(r)

)2
) 1

2
drdθ .

By integrating the volume by parts we find

V = 2
∫ 2π

0

∫ rm

0
rh(r)drdθ

= 4π

[
r2

2
h(r)

]rm

0
−4π

∫ rm

0

r2

2
h′(r)dr.

Now, given that h ∈ Φm, we have h(rm) = 0 then we get
[

r2

2 h(r)
]rm

0
= 0 and by setting ω(r) = h′(r) we

finally obtain the following expressions for the volume and the area

V =−2π

∫ rm

0
r2

ω(r)dr,

A = 4π

∫ rm

0
r
(
1+ω(r)2) 1

2 dr.

Let’s compute the curvature in the three dimensional case. The curvature H of the surface Ω+ ⊂ R3

is defined as follows

H = trace(∇n) = div(n),

where n = ∇φ

|∇φ | , is the normalized gradient of the la function φ parameterizing Ω+. Here we have

Ω+ =
{
(r,θ ,z) ∈ R3 : φ(r,θ ,z) = h(r)− z = 0, z≥ 0

}
,
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then

n =
1√

1+h′(r)2


h′(r)

0

−1

 .

In cylindrical coordinates, the divergence operator is expressed as follows

div(n) =
1
r

∂ (rnr)

∂ r
+

1
r

∂nθ

∂θ
+

∂nz

∂ z
,

which gives

H = div(n)

=
1
r

∂

∂ r

(
rh′(r)√

1+h′(r)2

)
.

After computation we get

H =
h′′

(1+h′2)3/2 +
h′3 +h′

r (1+h′2)3/2 .

By replacing A and V by their expressions the Lagrangian becomes

L (rm,h; µ, p)
2π

=
∫ rm

0
r
[
(H−H0)

2 +2µ

](
1+h′2(r)

) 1
2 dr−µA0− p

∫ rm

0
r2h′(r)dr− pV0.

By setting once again

κ(r) =
h′(r)

r (1+h′2(r))1/2 . (1.53)

We notice that this variable change is not defined at r = 0. However we can deduce from (1.53) that κ(r)

tends to h′′0 as r goes to 0.

We calculate the first and second derivatives

κ
′(r) =

h′′(r)

r (1+h′2(r))3/2 −
κ

r
,

κ
′′(r) =

h′′′(r)

r (1+h′(r)2)
3
2
− κ ′

r
− 3h′(r)h′′2(r)

r (1+h′(r)2)
5
2
.

This will be also very useful for the numerical calculation of the curvature

H(r) =−2κ(r)− rκ
′(r).
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Therefor the Lagrangian becomes

L (rm,κ; µ, p)
2π

=
∫ rm

0
r
[
(H(κ)+H0)

2 +2µ

](
1− r2

κ
2(r)

)−1
2 dr−µA0− p

∫ rm

0

r3κ(r)

(1− r2κ2(r))
1
2

dr− pV0.

It remains now to minimize this Lagrangian, which is equivalent to find the critical points (rm,κ,µ, p) ∈

R+×Ψm×R×R of this latter. At such a point, we have



[
dL

dκ
(ψ)

]
(rm,κ,µ, p) = 0 ∀ψ ∈Ψm,

∂L

∂ rm
(rm,κ,µ, p) = 0,

∂L

∂ µ
(rm,κ,µ, p) = 0,

∂L

∂ p
(rm,κ,µ, p) = 0,

where dL
dω

(ψ) the directional derivative within the meaning of Gateau L in the ψ, direction, where

Ψm = {ψ ∈ C 0(R) : ψ(0) = 0,ψ (rm) =−∞
}

.

Again, the two conditions ∂L
∂x (rm,κ,µ, p) = 0 et ∂L

∂ p (rm,κ,µ, p) = 0 give respectively V = V0 and

A = A0. Now let’s focus on the first condition :
[dL

dκ
(ψ)
]
(rm,κ,µ, p) = 0∀ψ ∈ Ψm. For the rest of the

computations, we will write κ instead of κ(r) in order to simplify the notations. By following the same

procedure as in the two-dimensional case, first, we have

[
(H−H0)

2
]′

ψ

(κ) = 2H ′ψ(κ)(H(κ)−H0),[(
1− r2κ2

)−1
2
]′

ψ

(κ) = r2κψ

(1−r2κ2)
3
2
.

Then, we obtain

1
2π

[
dL

dκ

]
ψ

=
∫ rm

0
r
[
2H ′ψ(κ)(H(κ)−H0)

](
1− r2

κ
2)−1

2 dr+
∫ rm

0
rψ

r2κ

[
(H(κ)−H0)

2 +2µ

]
− pr2

(1− r2κ2)
3
2

dr.

Since

H ′ψ =
[
−2κ− rκ

′]′
ψ
(κ) =−2ψ− rψ

′,
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we get,

1
2π

[
dL

dκ

]
ψ

=
∫ rm

0
rψ

4(2κ + rκ ′+H0)(1− r2κ2)+ r2κ

[
(H(κ)−H0)

2 +2µ

]
− pr2

(1− r2κ2)
3
2

dr

+
∫ rm

0
ψ
′ 4r2κ +2r3κ ′+2r2H0

(1− r2κ2)
1
2

dr.

Using the integration by part, we have

∫ rm

0
ψ
′ 4r2κ +2r3κ ′+2r2H0

(1− r2κ2)
1
2

dr =

[
ψ

4r2κ +2r3κ ′+2r2H0

(1− r2κ2)
1
2

]rm

0

−
∫ rm

0
ψ

[
4r2κ +2r3κ ′+2r2H0

(1− r2κ2)
1
2

]′
dr.

Since ψ(0) = ψ (rm) =−∞ ( ψ is a compact support function). We get

∫ rm

0
ψ
′ 4r2κ +2r3κ ′+2r2H0

(1− r2κ2)
1
2

dr =−
∫ rm

0
ψ

[
(8rκ +4r2κ ′+6r2κ ′+2r3κ ′′+4rH0)(1− r2κ2)

(1− r2κ2)
3
2

]
dr

−
∫ rm

0
ψ

[
(rκ2 + r2κκ ′)(4r2κ +2r3κ ′+2r2H0)

(1− r2κ2)
3
2

]
dr.

Thus the Lagrangian becomes

1
2π

[
dL

dκ

]
ψ

=
∫ rm

0
rψ

4(2κ + rκ ′+H0)(1− r2κ2)+ r2κ

[
(2κ + rκ ′+H0)

2 +2µ

]
− pr2

(1− r2κ2)
3
2

dr

−
∫ rm

0
rψ

[
(8κ +4rκ ′+6rκ ′+2r2κ ′′+4H0)(1− r2κ2)

(1− r2κ2)
3
2

]
dr

−
∫ rm

0
rψ

[
(κ2 + rκκ ′)(4r2κ +2r3κ ′+2r2H0)

(1− r2κ2)
3
2

]
dr.

By simplifying this expression we obtain

[
dL

dκ

]
ψ

= 2π

∫ rm

0
r2

ψ
−2(3κ ′+ rκ ′′)(1− r2κ2)− rκ(rκ ′+κ)2 + rκ3 +2rH0κ2 + r(H2

0 +2µ)κ− pr

(1− r2κ2)
3
2

dr.

Therefore, the optimality condition
[dL

dκ
(ψ)
]
(rm,κ,µ, p) = 0 ∀ψ ∈Φ′, becomes

∫ rm

0
ψ

(
−2(3κ ′+ rκ ′′)(1− r2κ2)− rκ(rκ ′+κ)2 + rκ3 +2rH0κ2 + r(H2

0 +2µ)κ− pr

(1− r2κ2)
3
2

)
dr = 0, ∀ψ ∈Φ

′.
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This equality must be verified for every ψ ∈Φ′. The function κ which minimizes the Lagrangian L

then satisfies the following ordinary differential equation

2(rκ
′′+3κ

′)(1− r2
κ

2) = rκ
3 +2rH0κ

2 + r(H2
0 +2µ)κ− pr− rκ(rκ

′+κ)2.

The above equation has to be solved subject to the following initial conditions (for small ε)

κ(ε) = h′′0 and κ
′(ε) =−εh′′30 ,

with h′′0 is the shouting parameter. Then we introduce the following polynomial

Q(ξ ) = ξ
3 +2H0ξ

2 +
(
H2

0 +µ
)

ξ − p.

The function κ is then solution of the following Cauchy-Lipschitz problem


κ ′′ = Q(κ)−κ(rκ ′+κ)2

2(1−r2κ2)
− 3κ ′

r , r ∈ [ε,rm] ,

κ(ε) = h′′0,

κ ′(ε) =−εh′′30 .

(1.54)

This is the main problem of this chapter. Once κ is known h′ will be determined from (1.53), and then

h will be deduced by a simple integration. The expression of h′(r) can be deduced from κ using the

formula, h′ = rκ√
(1−r2κ2)

.

Remark 1.2.3

As in 2Ds case, we excluded the solution, h′ =− rκ√
(1−r2κ2)

.

Indeed, in a fixed plane θ = θ0 , we can interpret rκ as a component of the normalize gradient n to

the curve, therefore rκ and h′ have the same sign because they both reflect variations of h in this plane.

Unfortunately, the problem (1.54) is a second order nonlinear differential equation that we are not capable

of finding an exact solution. TK. Au et al in Ref.[19] gives a sufficient condition on the parameters which

ensures the existence of a special solution to the problem (1.54) that corresponds to a surface of the

shape of a red blood cell. Note that the purpose of this section is not to exploit all possible shapes but to

provide semi-explicit solutions in order to validate the proposed algorithm which characterize the physical

solutions and to conform these solutions to the known physical results. The essential point is to show that
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the solutions are physically acceptable, this implies that we have a closed surface that doesn’t necessary

have intersections of purely mathematical origins. This induces, the knowledge of the first zero of the

solution h(r), the number of zeros, the number of critical points, etc.

In the next section we propose to obtain numerical solution of h(r) by using an idea of Evans et al.

[56]. As mentioned before, the authors in [56] claimed that

h(r) =

√
1−
(

r
rm

)2
[

C0 +C2

(
r

rm

)2
+C4

(
r

rm

)4
]
. (1.55)

Our contribution here is to numerically calculate rm,C0,C2 and C4 such that function h, given by (1.55),

is a minimizer of the energy (1.49).

Numerical method

As in the numerical implementation of the two-dimensional case, we consider σ(v) =
√

1− v2 where

v = r
rm

and r ∈ [0,rm]. We have

h̃(v) = ρ(v)
[
C0 +C2v2 +C4v4] , (1.56)

with h̃(v) = h(r), rm > 0,C0,C2, and C4 ≥ 0. As in the previous section, we get

 h̃′(v) = 1
rmρ(v)

(
(2C2−C0)v+(4C4−3C2)v3−5C4v5

)
,

h̃′′(v) = 1
r2

mρ(v)3

(
(2C2−C0)−3(4C4−3C2)v2 +(6C2−33C4)v4 +20C4v6

)
.

At r = 0, we have the following initial conditions

 h′(0) = 0,

h′′(0) = 1
r2

m
(2C2−C0)> 0 then 2C2−C0 > 0.

Therefore the necessary conditions for the biconcave shape are

0≤C0,C2,C4 and 2C2−C0 > 0. (1.57)

Again, by considering a critical point rc ∈ (0,rm), such that h′(rc) = 0. We obtain the following condition

5C2−C0−C4 < 0. (1.58)
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The Helfrich energy becomes

H (rm,C0,C2,C4) = 2π

∫ rm

0

r (h′′(r))2

(1+h′(r)2)
s
2
+

(h′(r))2

r (1+h′(r)2)
1
2

dr

= 2π

∫ 1

0

1
ρ(v)

KH (rm,C0,C2,C4)dv,

(1.59)

where

KH (rm,C0,C2,C4) =
r3

m · v
(
(2C2−C0)−3(4C4−3C2)v2 +(6C2−33C4)v4 +20C4v6

)2

(
r2

mρ(v)2 +((2C2−C0)v+(4C4−3C2)v3−5C4v5)
2
)5

2

+
v ·
(
(2C2−C0)+(4C4−3C2)v2−5C4v4

)2

rm ·
(

r2
mρ(v)2 +((2C2−C0)v+(4C4−3C2)v3−5C4v5)

2
)1

2

.

The volume constraint becomes

V = 4π

∫ 1

0
r2

m · v ·ρ(v)
[
C0 +C2v2 +C4v4]dv, (1.60)

that can be written as follows

V = r2
m(L1 ·C0 +L2 ·C2 +L3 ·C4),

where

L1 = 4π

∫ 1

0
v ·ρ(v)dv; L2 = 4π

∫ 1

0
v3 ·ρ(v)dv; L3 = 4π

∫ 1

0
v5 ·ρ(v)dv.

The area constraint also becomes

A = 4π

∫ 1

0

v · rm

ρ(v)

[
rm(1− v2)+

(
(2C2−C0)v+(4C4−3C2)v3−5C4v5)2

] 1
2

dv, (1.61)

that can be written as

A =
∫ 1

0

1
ρ(v)

KA(rm,C0,C2,C4)dv, (1.62)

where

KA(rm,C0,C2,C4) = v · rm

[
rm(1− v2)+

(
(2C2−C0)v+(4C4−3C2)v3−5C4v5)2

] 1
2
.

The minimization problem thus becomes
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MinH (rm,C0,C2,C4) under constraints



V −V0 = 0,

A−A0 = 0,

C4 ≥ 0,xm ≥ 0,

2C2−C0 ≥ 0,

5C2−C0−C4 < 0.
The Lagrangian function L (rm,C0,C2,C4, p,µ) is defined by

L (rm,C0,C2,C4, p,µ)=H + p(V−V0)+µ(A−A0)−η1C4−η2(C0−2C2)−η3(5C2−C0−C4)−η4rm,

(1.63)

where H = H (rm,C0,C2,C4),V =V (rm,C0,C2,C4)and η = (η1,η2,η3;η4).

Since the problem contains inequality constraints, we introduce the additional variables y to transform

the inequality constraints into equalities as in [83].

The minimization problem becomes.

MinH (rm,C0,C2,C4) under constraints



V −V0 = 0,

A−A0 = 0,

−C4 + y2
1 = 0,

C0−2C2 + y2
2 = 0,

5C2−C0−C4 + y2
3 = 0,

−rm + y2
4 = 0.

The Lagrangian function L (rm,C0,C2,C4, p,µ,y,η) becomes

L (rm,C0,C2,C4,σ ,y1,y2,y3,y4,y5,µ1,µ2,µ3,µ4,µ5)

= J+σ(V −V0)+µ1(−C4 + y2
1)+µ2(C0−2C2 + y2

2)+µ3(5C2−C0−C4 + y2
3)+µ4(−rm + y2

4).

(1.64)

The following dynamical system based on the Lagrangian function L (rm,C0,C2,C4, p,µ,y1,y2,y3,y4,η1,η2,η3,η4)

of the transformed problem is the principle of the following section.
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1.2.6 Dynamical system

Note that rm,C0,C2,C4, y are primal variables and p, µ , η1, η2, η3 and η4 are Lagrange multipliers. The

dynamic system can be briefly written as



dCi

dt
=− ∂

∂Ci
L (rm,Ci, p,µ,y,η), f or i = 0,2,4

drm

dt
=− ∂

∂ rm
L (rm,Ci, p,µ,y,η)

dy j

dt
=− ∂

∂y j
L (rm,Ci, p,µ,y,η), f or j = 1,2,3,4

d p
dt

= ∂

∂ pL (rm,Ci, p,µ,y,η)

dµ

dt
= ∂

∂ µ
L (rm,Ci, p,µ,y,η)

dη j

dt
= ∂

∂η j
L (rm,Ci, p,µ,y,η), f or j = 1,2,3,4

(1.65)

where y = (y1,y2,y3,y4) and η = (η1,η2,η3,η4)

Now, let’s compute the expressions of the partial derivatives of each quantity occurring in the La-

grangian. The expressions of the derivatives of the energy, the volume and the area with respect to C0 are

as follows

∂

∂C0
H (rm,C0,C2) =

∫ 1

0

1
ρ(u)

∂

∂C0
KH (rm,C0,C2,C4)dv,

∂

∂C0
V (rmC0,C2,C4) = r2

m ·L1,

∂

∂C0
A(rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C0
KA(rm,C0,C2)dv.

This allows to give the expression of
∂

∂C0
L (rm,C0,C2,C4)

∂

∂C0
L (rm,C0,C2,C4,y,σ ,µ) =

∫ 1

0

1
ρ(u)

[
∂

∂C0
KH +µ

∂

∂C0
KA]+σr2

m ·L1 +µ2−µ3.

The expressions of the derivatives of the energy, the volume and the area with respect to C2 are

∂

∂C2
H (rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C2
KH (rm,C0,C2,C4)dv,

∂

∂C2
V (rm,C0,C2,C4) = r2

m ·L2,

∂

∂C2
A(rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C2
KA(rm,C0,C2,C4)dv.
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This allows to give the expression of ∂

∂C2
L (rm,C0,C2,C4)

∂

∂C2
L (rm,C0,C2,C4, p,µ,y,η) =

∫ 1

0

1
ρ(u)

[
∂

∂C2
KH +µ

∂

∂C2
KA]dv+ pr2

m ·L2−2η2 +5η3.

The expressions of the derivatives of the energy, the volume and the area with respect to C4 are

∂

∂C4
H (rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C4
KH (rm,C0,C2,C4)dv,

∂

∂C4
V (rm,C0,C2,C4) = r2

m ·L3,

∂

∂C4
A(rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂C4
KA(rm,C0,C2,C4)dv.

This allows to give the expression of ∂

∂C4
L (rm,C0,C2,C4)

∂

∂C4
L (rm,C0,C2,C4, p,µ,y,η) =

∫ 1

0

1
ρ(u)

[
∂

∂C2
KH +µ

∂

∂C2
KA]dv+ pr2

m ·L3 +η1−η3.

The expressions of the derivatives of the energy, the volume and the area with respect to rm are

∂

∂ rm
H (rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂ rm
KH (rm,C0,C2,C4)dv,

∂

∂ rm
A(rm,C0,C2,C4) =

∫ 1

0

1
ρ(u)

∂

∂ rm
KA(rm,C0,C2,C4)dv,

∂

∂ rm
V (rm,C0,C2,C4) = 2rm(L1 ·C0 +L2 ·C2 +L3 ·C4).

This allows to give the expression of
∂

∂ rm
L (rm,C0,C2,C4)

∂

∂ rm
L (C0,C2,C4,rm, p,µ,y,η)=

∫ 1

0

1
ρ(u)

[
∂

∂ rm
KH +µ

∂

∂ rm
KA]dv+2prm(L1 ·C0+L2 ·C2+L3 ·C4)−η4.
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Then the dynamics system is finally given by



dC0

dt
=−

∫ 1
0

1
ρ(v)

[
∂

∂C0
KH +µ

∂

∂C0
KA]dv− pr2

m ·L1−η2 +η3,

dC2

dt
=−

∫ 1
0

1
ρ(v)

[
∂

∂C2
KH +µ

∂

∂C2
KA]dv− pr2

m ·L2 +2η2−5η4,

dC4

dt
=−

∫ 1
0

1
ρ(v) [

∂

∂C4
KH +µ

∂

∂C4
KA]dv− pr2

m ·L3−η1 +η3,

drm

dt
=−

∫ 1
0

1
ρ(v)

[
∂

∂ rm
KH +µ

∂

∂ rm
KA]dv−2prm(L1 ·C0 +L2 ·C2 +L3 ·C4)+µ4,

d p
dt

= r2
m(L1 ·C0 +L2 ·C2 +L3 ·C4)−V0,

dµ

dt
=
∫ 1

0
1

ρ(u)
∂

∂ rm
KA(C0,C2,C4,rm)dv−A0,

dy1

dt
=−2η1y1,

dy2

dt
=−2η2y2,

dy3

dt
=−2η3y3,

dy4

dt
=−2η4y4,

dη1

dt
=−C4 + y2

1,

dη2

dt
=C0−2C2 + y2

2,

dη3

dt
= 5C2−C0−C4 + y2

3,

dη4

dt
=−rm + y2

4.

(1.66)

Again in order to solve this dynamical system we use the classical fourth-order Runge-Kutta method.

Simulation Results

Implementations procedure of our method is simulated using the classical fourth-order Runge-Kutta

method which is embedded in MATLAB ode solver to solve the dinamical system (1.66) differential

equations.

We reconstruct the 3D profile of some of the solution forms previously encountered. Note that the

shapes are obtained by rotating the Γ curves around the z axis since it is a surface revolution, then by

symmetry with respect to the plane z = 0. The details of the Matlab code are provided in figure 1.2.6
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Figure 1.19: Plot Γ of the function h for
different discretization steps

Figure 1.20: Plot of the function h for dif-
ferent discretization steps

Figure 1.21: Plot of the function h for dif-
ferent discretization steps

Figure 1.22: Plot of the function h for dif-
ferent discretization steps

Figure 1.23: Three-dimensional bicon-
cave shape

Figure 1.24: Three-dimensional bicon-
cave shape

1.3 Conclusion

A majority of studies considered the Euler-Lagrange equilibrium equation given in [80] to characterize the

RBC shape. In this work we have focused on the geometrical properties of the red blood cell shape. Our

contributions is to determine particular solutions of the form (1.55) that minimizes the curvature energy

numerically. Using our algorithm we are able to calculate coefficients xm,C0,C2,C4 in two-dimensional
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case and rm,C0,C2,C4 in the three-dimensional case in order to obtain the biconcave shape of the red

blood cell. The novelty of our proposed method is seen in the fact that

• We have a simple parametrization of the surface of the RBC.

• We don’t need to go through the equilibrium equation which is not easy to solve.

• We develop an efficient algorithm based on a dynamical system to find the coefficients xm,C0,C2,C4

in two-dimensional case and rm,C0,C2,C4 in the three-dimensional case that minimize the curvature

energy model.

In this work we found new results that do not require using the usual analytical description of the curvature

energy. We fined that our numerical results are closely similar to the results given by Evans and co-

workers.
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Chapter 2
Fluctuations and instability of a biological

membrane induced by interaction with

macromolecules using geometric shape

optimization

2.1 Introduction

Biological membranes consist of molecular bilayers with two layers that are usually exposed to different

aqueous environments and may differ in molecular density or composition. Due to these asymmetries,

the membranes prefer to bend in a certain way as quantitatively described by their spontaneous curvature.

Experiments shows that diffusive proteins within lipid membranes play an important role in producing

and regulating membrane curvature [22, 17]. Scientific revelations shows that, about 30–90% of all

membrane proteins can diffuse along the membrane [58]. Therefore, they induce various curvatures to

the membrane they attach. Some of these proteins have an intrinsic curvature and, upon attachment, the

membrane bends to match the protein curvature. In a similar fashion, several proteins can oligomerize to

create a rigid shape and bend the membrane, this mechanism could be responsible for the morphological

transformations and instabilities of membranes as frequently observed during protein adsorption onto

vesicles. The same mechanism could be a generation of spontaneous curvature provided by asymmetric

adsorption onto the bilayer membranes two surfaces.
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Figure 2.1: Transport Across the Cell Membrane

The induced membrane curvature is due to a difference between the thickness of the hydrophobic

core of the lipid bilayer in which proteins are embedded and the length of the hydrophobic region of a

membrane protein [108]. Moreover, the exposing of the two sides of the bilayer membranes to aqueous

solutions that differ in their ionic or molecular composition can make an asymmetry between the two

layers. This mechanism should induce a preferred or spontaneous curvature in the bilayer membranes

which could make these latter try to adapt their shape to this curvature.

In the context of lipid bilayers the classical bending energy was first considered by Canham [31], and

Helfrich et al. [72], depends only on the membrane mean and spontaneous curvature. The spontaneous

curvature describes the intuitive notion that thin layers with two chemically different sides tend to bend or

bulge towards one of these sides [114]. However, when topological changes in the membrane surface are

produced by certain forces, such as the one induced by proteins, a discontinuity in the energy functional

will be created. In this case, an explicit parameterization of the surface is impossible, since the changes

in topology requires a discontinuous surface for a moment.

To treat topological changes, we choose to implicitly track the surface as a level set of a three-

dimensional function. The level set method is such an implicit and diffuse-interface method, and it has

been very successful in modeling membrane dynamics [51, 5]. In the level set method, the membrane is

defined by the level sets of a function ϕ , and the motion of the membrane is governed by gradient flow of

the energy functional, ensuring a decrease in energy in time.

2.2 Localization of multiple species of diffusion molecules on membrane

surfaces

In this section, we give the formulation of the total energy for the diffusion of molecules on membrane

surface. Then we introduce the molecule concentration dependent spontaneous curvature in the bending

86



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

energy of the bilayer membrane. Finally, we derive the transport equation for diffusive molecules which

represent the gradient flow of the total energy as in [90].

2.2.1 Description of the mathematical problem

Let Γ be a structureless surface that corresponds to an enclosed bilayer membrane. The membrane Γ

separates the entire domain Ω ∈ R3 into two sub-domains (the inside and the outside of the membrane).

Figure 2.2: Transport Across the Cell Membrane: different adsorbate densities at or within the two head
group layers. The lipid head groups are shown in blue, the lipid tails in red, and the adsorbate “particles”
in dark gray.

n+1 distinct protein species with concentrations ci, 0 = 1, i,n, are distributed on the membrane figure

2.2. The total energy of the system is the sum of the bending energy Emem that includes the effects of the

multiple protein species on the membrane and the entropy energy Eent for the distribution of proteins

Etot = Emem +Eent . (2.1)

The membrane bending energy Emem is the Canham-Helfrich energy derived from the elasticity of

bending of the membrane [31, 72]

Emem =
k
2

∫
Γ

(H−H0)
2 ds, (2.2)

where H is the mean curvature of the membrane Γ,H0 is the spontaneous curvature, and k is the bending

modulus.

Following the Boltzmann relation, the entropy energy for the membrane with embedded proteins is
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defined by

Eent =
1
β

∫
Γ

(
n

∑
i=0

ci

[
ln
(

ci (Λi)
2
)
−1
])

ds, (2.3)

where β = 1/(kBT ) is the inverse thermal energy and Λi are the constants effective sizes of proteins for

i = 1, . . . ,n..

The total energy becomes,

Etot =
k
2

∫
Γ

(H−H0)
2 ds+

1
β

∫
Γ

(
n

∑
i=0

ci

[
ln
(

ci (Λi)
2
)
−1
])

ds. (2.4)

On the membrane, the particles concentration cannot exceed the available entire surface space, for this,

the following saturation condition must be satisfied

n

∑
i=0

(Λi)
2 ci = 1. (2.5)

Following the general mass conservation law, the variation of a general surface concentration of

proteins c on the membrane Γ, if Γ evolves only in its normal direction at a velocity v ·n, is defined by

Dc
Dt

+(∇s · v)c =−∇s · J, (2.6)

where D/Dt is the material derivative of the advective surface, v is a divergence free velocity field in

Ω,∇s is the surface divergence, and J is the flux vector on the surface.

Since the fluid in which the membrane is immersed is incompressible, the divergence free velocity

field is what the membrane experiences. The surface advection diffusion equation is the following

∂c
∂ t

+v ·∇sc =−∇s · J. (2.7)

This equation is not as relevant to the transport of proteins on the membrane surface, since it assumes

a steady surface in a velocity field v, thus, v ·n = 0 and ∇ ·v = ∇s ·v.

Using Nernst-Planck formula as an extension of Fick’s first law, the flux is given by

J =−DΓβc∇sµ, (2.8)

where µ is the diffusion potential, DΓ is the lateral diffusion coefficient which is a constant and ∇s, is the
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surface gradient. µ is defined as the variation of the total energy with respect to the surface concentration

as follows

µi =
δEtot

δci
, i = 1, . . . ,n. (2.9)

Thanks to the saturation condition (2.5), solving the surface concentrations variation equation for the

concentration of the 0th species of proteins will not be necessary. In order to compute the entropic portion

of the diffusion potentials, we solve (2.5) to obtain (Λ0)
2 c0 which we substitute in the entropic energy

(2.3) to set a form that facilitate differentiation. Then we obtain

Eent =
1
β

∫
Γ

(
1

(Λ0)
2

(
1−

n

∑
i=1

(Λi)
2 ci

)
×

[
ln(1−

n

∑
i=1

(Λi)
2 ci)−1

]
+

n

∑
i=1

ci

[
ln
(
(Λi)

2 ci

)
−1
])

ds,

(2.10)

for the i th species, 1≤ i≤ n. Its derivative is

δEent
δci

= 1
β

(
1

(Λ0)
2

(
−(Λ j)

2
)[

ln
(

1−∑
n
j=1 (Λ j)

2 c j

)
−1
]
+ 1

(Λ0)
2

(
1−∑

n
j=1 (Λ j)

2 c j

)[ −(Λ j)
2

1−∑
n
j=1(Λ j)

2
c j

]
+ ln

(
(Λ j)

2 c j

))
=

1
β

[
−(Λ j)

2

(Λ0)
2 ln

(
1−

n

∑
j=1

(Λ j)
2 c j

)
+ ln

(
(Λi)

2 ci

)]
.

(2.11)

When proteins are induced in the bilayer, the spontaneous curvature should depend on the structure

and the distribution of proteins [58]. This biological nature motivates to model the local membrane

spontaneous curvature as a parameter that depends on the concentration of proteins. To this end, each

protein species i has its intrinsic spontaneous curvature, denoted H0(ci) and defined as in [90] by

H0 =

(
∑

n
i=0 H i

0 (Λi)
2 ci

∑
n
i=0 (Λi)

2 ci

)
. (2.12)

H i
0 are the spontaneous curvature constants pertaining to protein structures. We modeled every specie

as a hard disk occupying some surface area on the membrane see Fig. 2.2, so we take (Λi)
2 for an effective

surface area.

Using this condition (2.5) the spontaneous curvature defined by (2.12) can be simplified as

H0 =

(
n

∑
i=0

H i
0 (Λi)

2 ci

)
. (2.13)
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The variation of the bending energy of the membrane with respect to the concentrations represents the

curvature driven portion by of the diffusion potential. Using the expression of the bending energy given

in (2.2) and equation (2.13), the variation is computed as

δEmern

δci
= k (H0−H)

∂H0

∂ci
= kH i

0 (Λi)
2 (H0−H) . (2.14)

The potential for each species is given by summing (2.11) and (2.14)

µi =
1
β

[
−(Λi)

2

(Λ0)
2 ln

(
1−

n

∑
j=1

c j (Λ j)
2

)
+ ln

(
ci (Λi)

2
)]

+H i
0 (Λi)

2 (H0−H) , (2.15)

2.2.2 Equation of the diffusive proteins on the surface membrane

Now, we rearrange the diffusion equation (2.7). We define

Li (ci) = ln
(

ci (Λi)
2
)
, (2.16)

Ri (ci) =
−(Λi)

2

(Λ0)
2 ln

(
1−

m

∑
j=1

c j (Λ j)
2

)
, (2.17)

P(ci) = (H0 (ci)−H) . (2.18)

L indicates the leading order term for proteins, R corresponds to the size restrictions and P is the term

corresponding to the curvature function. Using equations (2.16), (2.17) and(2.18), the diffusion potential

(2.15) becomes

µi =
1
β

(
Li +Ri)+H i

0 (Λi)
2 P. (2.19)

In order to compute the flux (2.8), we have

∇sµi =
1
β

(
∇sLi +∇sRi)+H i

0 (Λi)
2

∇sP, (2.20)

The derivative of the leading term is the following

∇sLi =
∇sci

ci
. (2.21)
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We define

Mi = βH i
0 (Λi)

2 . (2.22)

If we consider the equation on a stationary membrane (v = 0) and neglect the size effect term involv-

ing R, the diffusion equation (2.7)) for each protein species becomes

∂c
∂ t

= D∇s · (∇sc+Mc∇s (H0−H)) . (2.23)

This equation shows that the curvature driven diffusive species is due to the difference in the actual

membrane curvature and the spontaneous curvature of the membrane H0 −H. This term is the one

responsible for driving the localization of proteins to the position on the membrane surface where the

preferred mean curvature is observed.

2.3 Fluctuations and instability of membrane in the presence in a diffusion

field using shape optimization

In this section we study the geometric shape optimization of membrane in the presence of a diffusion field

of protein molecules, which have the ability to adsorb on, and to desorb from the membrane. The main

idea of this study is to vary the position of the boundaries of a given initial shape of the membrane, without

changing its topology which remains the same as the initial shape. We develop a model that includes,

molecular diffusion along the membrane as well as the attachment and detachment of molecules to and

from the membrane.

Geometric shape optimization theory based on the boundary variation method, dates back to J.

Hadamard in 1907 [71]. It has been very classic since then. The first results of existence of an opti-

mal shape under constraint of geometric regularity are due to D. Chenais [39], F. Murat and J. Simon

[95],[96]. More recently, some results of existence under topological constraint for flat shapes have been

obtained by V. Sverak [128] for a membrane model, then by A. Chambolle [34] for the elasticity model.

There are other types of additional constraints for the existence of optimal shapes. For example, the work

of L. Ambrosio and G. Buttazzo [15] where an upper bound on the perimeter is imposed, which prevents

the creation of too many holes.

In this work we follow the method of F. Murat and J. Simon [96] based on the study of optimal

control problems where the control is the shape of a domain in which the state of the system is defined
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by a partial differential equation. Compared to other optimization problems, many new difficulties arise.

In particular, the mathematical representation of the shape. For example, a shape can be represented

by the characteristic function of its domain (which is 1 inside and 0 outside), but in this case, we don’t

know how we can represent shape variations. Indeed, a linear combination of characteristic functions is

not, in general, a characteristic function. Therefore we can not do "variations computation" in the space

of the characteristic functions, and compute the gradient. This is a typical difficulty in geometric shape

optimization that is important to focus on for both theoretical and numerical reasons.

A new numerical implementation of geometric shape optimization problem has been used in this

work. It is based on the level set method of S. Osher and J. Sethian [104]. The main idea is to represent

the membrane as the set of zero level of a discretized function on a fixed mesh. This method is based

on capturing shapes in an Eulerian fixed mesh. The main advantage of this method is that it allows to

considerably reduce the cost of the computations and gives a simple expression of the normal vector and

the curvature.

We present in this study a model of membrane (Γ0) in the presence of a diffusion field of molecules

cΩ0 . The aim of this work is to understand the effect of molecules on the membrane shape. First we

proved the existence of an optimal shape then we computed the first derivative with respect to the domain

of the free energy of the membrane in presence of diffusion and finally we did numerical simulation to

see the morphological instability of the membrane induced by interaction with molecules.

2.3.1 Mathematical Model

At rest, the membrane (Γ0) represent the variable part of the border of a reference domain Ω0 whose

border is divided into tow disjointed parts (see figure2.3)

∂Ω0 = Γ0∪ΓD,

where Γ0(the membrane) is the variable part of the boundary (Neumann boundary condition), ΓD is the

fixed part of the boundary (Dirichlet boundary condition). The tow parts of the boundary are assumed to

be non-empty. We assumed that the variable part Γ0 of the border is free of any effort, which means that

the membrane is supposed to be impermeable and the molecules can just adsorb on, or desorb from the

membrane(homogeneous Neumann boundary condition).

The concentration of the molecules in the surrounding environment (see Figure2.3: the blue part)
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Figure 2.3: The red part is the cell with membrane Γ0 and the blue part represent the surrounding fluid
containing the molecules

verifies the following system


ηcΩ0−d∆cΩ0 = f in Ω0,

∂cΩ0

∂n
= 0 on Γ0,

cΩ0 = 0 on ΓD.

(2.24)

where

• d is diffusion coefficient

• f is the reaction term

• η is a positive parameter

The total free energy of the membrane is given by [49]

E(Ω0) =
k
2

∫
∂Ω0

(KΩ0−K0)
2ds−

∫
∂Ω0

kΛKΩ0cΩ0 ds+
∫

∂Ω0

α

2
(cΩ0− c0)

2ds. (2.25)

The first term represents the curvature energy of the membrane, the second one represents the coupling

term between curvature and surface concentration and the last term represent the concentration deviation

of adsorbed molecules from its equilibrium value c0.

The physical parameters in (2.25) are

• K is the mean local curvature,

• K0 is the spontaneous curvature,

• k is the bending rigidity,

93



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

• Λ is the molecule size,

• α is supposed to be positive constant.
Remark 2.3.1

In this section we have changed the notation of the mean curvature H to K, to not be confused with the

Hilbert spaces

The geometric shape optimization problem is written us follows

inf
Ω∈Dad

E(Ω), (2.26)

where it remains to define the set of admissible shapes Dad .

This work is organized as follows. In the next subsection we will consider the existence of the

optimal shape under some regularity constraints.In this subsection we will also introduce a framework for

mathematical shape representation that will be useful to define a notion of derivation with respect to the

domain. Then we will develop this derivation theory which will allows to write the optimality conditions,

and finally construct numerical simulation.

2.3.2 Existence of optimal solution

The problem is rather the absence of an optimal shape than its existence. However, if additional con-

straints of a regularity nature are added, then there exist an optimal shape in a restricted class of admissible

shapes.

Existence under a condition of regularity

We give here some notions of topology on a domain of regular boundary, using the perturbations of the

identity. Taking inspiration from the approach developed in [95] and [96] to demonstrate the existence

result. We will take this framework further to establish a concept of derivation with respect to the domain.

Let Ω0 be a reference domain, which we assumed to be a connected bounded open set of Rn, of the

class W 2,∞. As in the introduction, we suppose that the border of Ω0 is divided into tow disjointed parts

(not empty)

∂Ω0 = Γ0∪ΓD,
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where ΓD is fixed and only Γ0 is variable.

The main idea is to define a set of admissible shapes Dad from which any element Ω is obtained by

applying a regular diffeomorphism to the reference domain Ω0. Thus the space of admissible shapes is

very significantly restricted, but we gain a very simple representation of the shape in terms of diffeomor-

phisms.

Let us first remind that, W 2,∞(Rn,Rn) is the space of Lipschitz functions φ from Rn to Rn such that

φ , ∇φ , and ∆φ are uniformly bounded in Rn to which we associate the following norm which makes it a

Banach space

‖ ϕ ‖W 2,∞(Rn,Rn)= sup
x∈Rn

ess
(
Σ0<|α|≤2 | Dα

ϕ(x) |2Rn

) 1
2 . (2.27)

We define a space of diffeomorphisms as follows

τ
2,∞ =

{
T suchthat (T − Id) ∈W 2,∞(Rn,Rn),

(
T−1− Id

)
∈W 2,∞(Rn,Rn)

}
. (2.28)

Somehow we can see diffeomorphisms of τ2,∞ as perturbations of the identity.

Now we can then introduce a space of admissible shapes obtained by deformation of Ω0

D2,∞
Ω0

=

{
Ω suchthat ∃T ∈ τ

2,∞,Ω = T (Ω0)

}
. (2.29)

Each admissible shape Ω ∈ D2,∞
Ω0

, is represented by a diffeomorphism T ∈ τ2,∞. This representation is

not unique because it is possible that two diffeomorphisms T 6= T2 in τ2,∞ lead to the same open set

Ω = T (Ω0) = T2(Ω0). Since the functions of W 2,∞(Rn,Rn) are continuous, the applications T of τ2,∞

are also homomorphisms, which implies that they preserve the topology of the domains to which they

are applied. Thus, all admissible shapes of W 2,∞(Rn,Rn) have the same topology as Ω0. Therefore

this approach is not helpful to optimize the topology (number of holes or connected components of the

boundary). We can then introduce a pseudo-distance on D2,∞
Ω0

(it verifies only a weak version of the

triangular inequality)

d2,∞(Ω,Ω2) = inf
T∈τ|T (Ω)=Ω2

(
‖ T − Id ‖W 2,∞(Rn,Rn) + ‖ T−1− Id ‖W 2,∞(Rn,Rn)

)
. (2.30)

We can now define a condition of uniform regularity of the admissible shapes by being limited to open
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sets Ω close to Ω0 in the sense of this pseudo-distance d2,∞. More precisely, for R > 0 we define

Dad =
{

Ω ∈D2,∞
Ω0

/ d2,+∞(Ω,Ω0)≤ R, Γ0∪ΓD ⊂ ∂Ω0, |Ω |=V0

}
. (2.31)

The choice of the regularity constant R is arbitrary as well as the choice of the reference domain Ω0.

Theorem 2.3.1

If we assume that

 Ω0 is a connected bounded open set o f Rn o f the class W 2,∞,

f ∈ L2(Rn), K0 ∈ H1(Rn) and c0 ∈ H1(Rn).
(2.32)

There exist an optimal shape Ω∗, such that

Ω
∗ ∈Dad , E(Ω∗)6 E(Ω), ∀Ω ∈Dad . (2.33)

Remark 2.3.2

The proof of this theorem rests on a compactness argument. The essential idea is that the admissible

shapes of Dad can not change their topology, and the uniform regularity bound R prevents the boundaries

of the Ω shape from being too oscillating.

Proof.

Let Ω0 be a fixed connected bounded open set of Rn of the class W 2,∞ such that |Ω0 |=V0, every domain

Ω ∈D2,∞ is a connected bounded open set of the class W 2,∞ [96]. We will prove that

• Dad is a compact of D2,∞

• E(Ω) is a continuous functional of D2,∞

For the compactness of Dad , let Ω ∈ Dad and R ≥ 0 fixed. For all sequence {Ωn}n∈N of Dad such that

d2,+∞(Ωn,Ω)≤ R and |Ωn |=V0, we can extract a subsequence that we can also call Ωn that converges to

Ω∗ ∈D2,∞ such that d2,+∞(Ω∗,Ω)≤ R in Ref.[96](theorem 2,4), it remains to show that | Ω∗ |=V0. Let

K1 and K2 be closed subsets of Rn such that K1 ⊂Ω∗ and K2 ⊂Rn−Ω∗.Then, according to the definition

of the Hausdorff distance, K1 ⊂Ωn and K2 ⊂ Rn−Ωn for n large enough.

We consider closed subsets reduced to a single point, since mes(∂Ω∗) = 0 it results that

χ(Ωn)−→ χ(Ω∗) a.e in Rn
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Using Lebesgue’s theorem, Ω∗ is bounded and the sequence Ωn is bounded in L∞(Rn) it comes that

χ(Ωn)−→ χ(Ω∗) in L∞(Rn) star weak and strongly in Lp(Rn) 1≤ p < ∞.

which means that |Ω∗ |=V0 and so Ω∗ ∈Dad . Hence the compactness of Dad .

For the continuity of the functional E we will use the variable change Ω = T (Ω0), T ∈ τ2,∞, where

Ω ∈D2,∞ is a connected bounded open set of the class W 2,∞, such that |Ω |=V0.

Let Ωn be a sequence of D2,∞
Ω0

that converges to Ω ∈ D2,∞
Ω0

, as a result of [96](theorem 2.4) we can

extract a subsequence Ωm, then we have

Ωm = Tm(Ω0), Ω = T (Ω0) where Tm,T ∈ τ2,∞. (2.34)

Now we need the continuity of the state transport cΩm to the fixed domain Ω0. The function cΩm is a

unique solution of the following equation in the domain Ωm = Tm(Ω0)


cΩm ∈ H1(Ωm),∫

Ωm

d∇cΩm∇ϕ +ηcΩmϕ =
∫

Ωm

f ϕ ∀ϕ ∈ H1(Ωm).
(2.35)

Applying the variable change Tm to equation (2.35) in order to return back to the fixed domain Ω0, as in

Ref.[96](lemma 4.1), we deduce that


c(Ωm)◦Tm ∈ H1(Ω0),∫

Ω0

d < t [T ′m]
−1

∇(c(Ωm)◦Tm),
t [T ′m]

−1
∇ϕ >| det[T ′m] |+η < c(Ωm)◦Tm,ϕ >| det[T ′m] |

=
∫

Ω0

< f ◦Tm,ϕ >| det[T ′m] | ∀ϕ ∈ H1(Ω0).

(2.36)

As a result see Ref.[96](lemma 4.2, 4.3 and 4.4), we get


t [T ′m]

−1 −→t [T ′]−1 in L∞(Rn,R2n),

| det[T ′m] |−→| det[T ′] | in L∞(Rn,R2n),

f ◦Tm −→ f ◦T in L2(Ω0).

(2.37)

The continuity of the solution of equation (2.36) with respect to its coefficients and to the second member
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(2.37) and the fact that Ωm −→Ω implies that

cΩm ◦Tm −→ cΩ ◦T in H1(Ω0).

The uniform ellipticity of the equation (2.36) in m gives


‖t [T ′m]

−1 ‖W 1,∞(Rn,R2n)≤C ∀ m,

| det[T ′m] |W 1,∞(Rn)≤C ∀ m,

‖ f ◦Tm ‖L2(Ω0)≤C ∀ m.

(2.38)

Since Ω0 is a bounded open set of the class W 2,∞, the sequence cΩm ◦Tm is bounded in H2(Ω0). We have

then

cΩm ◦Tm −→ cΩ ◦T in H2(Ω0) Weak. (2.39)

Lets now verify the continuity of the functional E. We denote by nΩ the exterior normal vector to ∂Ω,

we have

E(Ωm) =
∫

∂Ωm

k
2
(KΩm−K0)

2− kΛKΩmcΩm +
α

2
(cΩm− c0)

2ds. (2.40)

Where KΩm = div(nΩm). We apply the variable changes Tm

E(Ωm) =
∫

∂Ω0

[
k
2
(KΩm ◦Tm−K0 ◦Tm)

2− kΛKΩm ◦TmcΩm ◦Tm+

α

2 (cΩm ◦Tm− c0 ◦Tm)
2
]
× | det[T ′m] ||t [T ′m]−1n(Ω0) |Rn ds.

(2.41)

The convergence results of (2.37) also holds in L∞(∂Ω0), since Tm and T are C1(Rn,Rn). Furthermore,

we have

|t [T ′m]−1n(Ω0) |Rn≥ 1
‖ [T ′m] ‖L∞(Rn,R2n)

pp on ∂Ω0.

Finally by the results obtained in (2.38) and the continuity Lemma 4.4 i) in Ref.[96] we have

K(Ωm)◦Tm −→ K(Ω)◦T in L2(∂Ω0) strongly,

K0 ◦Tm −→ K0 ◦T in L2(∂Ω0) strongly,

c(Ωm)◦Tm −→ c(Ω)◦T in L2(∂Ω0) strongly.
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which implies that

E(Ωm)−→ E(Ω).

This convergence lies for all sequence {Ωn}n∈N which ends the proof

2.3.3 Differentiability with respect to domain

In this subsection we take again the shape representation introduced in section 2, which will allows to

naturally define a the notion of derivation with respect to the domain. Once we are able to differentiate,

we can write the optimality conditions that we will use to characterize the optimal shape and compute the

gradient to implement a numerical optimization method. It is therefore a fundamental concept both from

the theoretical and practical point of view.

Let Ω0 (reference domain) be a regular bounded open set of Rn . We consider the class of admissible

shapes D2,∞
Ω0

as defined before. It is natural to consider the variable θ defined by

T = Id +θ where θ ∈W 2,∞(Rn,Rn)small enough.

With this notation Ω is defined by

Ω = (Id +θ)(Ω0).

We can see θ(x) as a vector field which transports or displaces the reference domain Ω0( fig. 2.3.3). In

other words, each admissible shape Ω ∈ D2,∞
Ω0

is represented by a vector field θ(x) of Rn in Rn. We can

then define a notion of differentiability in Ω0 by using the derivation with respect to θ(x).

Remark 2.3.3

-If θ(x) is small enough then T = Id +θ belongs to the set τ2,∞ of diffeomomorphisms on Rn.

-A function E defined in D2,∞ is differentiable at Ω0 if the function θ −→ E((I + θ)(Ω0) = E(Ω) is

Frechet Differentiable ( in the usual sense) from W 2,∞ to R in 0, and its derivative is defined by

∂E
∂Ω

(Ω0) =
∂E((I +θ)(Ω0))

∂θ
(0) ∈Lc(W 2.∞(Rn,Rn),R).

We consider the equation defined by (2.24) in Ω which admits a unique solution cΩ ∈ H1(Ω). The
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Figure 2.4: Definition of a domain transported by a vector field θ .

variational formulation of (2.24) in Ω is to fined c ∈ H1(Ω) such that


c ∈ H1(Ω),∫

Ω

d∇c∇ϕ +ηcϕ =
∫

Ω

f ϕ ∀ϕ ∈ H1(Ω).
(2.42)

Theorem 2.3.2

Let Ω0 be a regular open set. The total free energy of the membrane E(Ω0), defined by (2.25), is differ-

entiable from D2,∞ to R, and it’s derivative with respect to the domain is defined by

E ′(Ω0)(θ) =
∫

∂Ω0

(θ .n)
{

ηcp+d∇c∇p− f p+ k(K−K0−Λc)
∂K
∂n

+
k
2

K(K−K0)
2− kΛK2c+

α

2
K(c− c0)

2 + k(∆∂Ω0K−Λ∆∂Ω0c)
}
.

Where n is the normal vector, ∆∂Ω0 is the Laplace Beltrami operator defined by ∆∂Ω0cΩ0 = ∆cΩ0 −

K
∂cΩ0

∂n
− ∂ 2cΩ0

∂n2 on Γ0, and pΩ0 is the solution of the adjoint state


η pΩ0−d∆pΩ0 = 0 in Ω0

d
d pΩ0

dn
= kΛK−α(cΩ0− c0) on Γ0

pΩ0 = 0 on ΓD

(2.43)

where ∂Ω0 = Γ0∪ΓD

Remark 2.3.4

The rigorous computation of the derivative of an objective function requires the ability to derive the

solution of the state equation (c) even though this derivative (C̃(Eulerian derivative of c) or C̄(Lagrangian

derivative of c)) does not appear in the final result [96]. There is a certain waste, especially since the

computation of C̃ or C̄ is quite delicate and tedious. Fortunately, there is a method faster to derive (at least

formally) an objective function called the Lagrangian method, developed by J. Cea in [33]. This method
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also allows to define the adjoint state pΩ0 in a very simple way. In practice, this is the most used method

and easy to compute.

Proof.

The proof of this theorem is based on the Lagrangian method.

E(Ω) =
∫

∂Ω

k
2
(K−K0)

2− kΛKu+
α

2
(u−u0)

2. (2.44)

We suppose first that u is a solution of (2.24) in Ω which means that u verifies (2.41) ∀q ∈ H1(Ω).

We introduce the Lagrangian which is the sum of the objective function and the variational formulation

of the equation of state

L (Ω,u,q) = E(Ω)+
∫

Ω

ηuq+d∇u∇q− f qdx, (2.45)

with u and q in H1(Rn). It is important to note that the space H1(Rn) does not depend on Ω then the

three variables of the Lagrangian L are independent. The partial derivative of L with respect to q in the

direction φ ∈ H1(Rn) is

<
∂L

∂q
(Ω,u,q),φ >=

∫
Ω

ηuq+d∇u∇q− f qdx, (2.46)

which, when it vanishes, gives (by construction) the variational formulation of the equation of state

(2.24). The partial derivative of L with respect to u in the direction φ ∈ H1(Rn) is

<
∂L

∂u
(Ω,u,q),φ >=

∫
Ω

ηφq−dφ∆qdx+
∫

∂Ω

d
dq
dn

φds+
∫

∂Ω

α(u−u0)φ − kΛKφds. (2.47)

Which, when it vanishes, gives nothing else than the variational formulation of the adjoint state equation

(2.43). Finally, the derivative of L with respect to the domain, evaluated by assuming that u and q are

fixed (i.e. as a partial derivative), in the direction θ is

∂L

∂Ω
(Ω0,u,q)(θ) =

∫
∂Ω0

(θ .n)
{

ηuq+d∇u∇q− f q+K(
k
2
(K−K0)

2− kΛKu+
α

2
(u−u0)

2)

+
∂

∂n
(

k
2
(K−K0)

2− kΛKu+
α

2
(u−u0)2)

{
ds+

∫
∂Ω0

k((K−K0)−Λu)
∂K
∂Ω

(Ω0)(θ)ds.

101



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

Where (see for example Ref.[80])

∂K
∂Ω

(Ω0)(θ) =
∂ (div(n))

∂Ω
(Ω0)(θ) = div(

∂n
∂Ω

(Ω0)(θ)) =−∇.(∇∂Ω0(θ .n)).

And
∂

∂n
(

k
2
(K−K0)

2− kΛKu+
α

2
(u−u0)2) = k(K−K0−Λu)

∂K
∂n

.

When it comes to evaluate this derivative at the state cΩ0 and the adjoint state pΩ0 , we find exactly the

value of the derivative of the objective function

∂L

∂Ω
(Ω0,c, p)(θ) = E ′(Ω0). (2.48)

This equation is not a coincidence. Indeed, for all q ∈ H1(Rn)

L (Ω,cΩ,q)(θ) = E(Ω). (2.49)

Since cΩ verifies the variational formulation of the state system (2.24) witch depends on Ω, but not q,

by deriving this expression and using the composite derivative theorem, it comes

E ′(Ω0) =
∂L

∂Ω
(Ω0,c(Ω0),q)(θ)+

〈
∂L

∂u
(Ω0,c(Ω0),q),c′(Ω0)(θ)

〉
. (2.50)

Taking q = pΩ0 solution of the adjoint state (2.43), the last term vanishes and we obtain

E ′(Ω0) =
∂L

∂Ω
(Ω0,cΩ0 , pΩ0)(θ)

=
∫

∂Ω0

(θ .n)
{

ηcΩ0 pΩ0 +d∇cΩ0∇pΩ0− f pΩ0 +
k
2

K(K−K0)
2− kΛK2cΩ0 +

α

2
K(cΩ0− c0)

2

+ k(K−K0−ΛcΩ0)
∂K
∂n

}
ds+

∫
∂Ω0

k((K−K0)−ΛcΩ0)(−∇.(∇∂Ω0(θ .n)))ds

=
∫

∂Ω0

(θ .n)
{

ηcΩ0 pΩ0 +d∇cΩ0∇pΩ0− f pΩ0 +
k
2

K(K−K0)
2− kΛK2cΩ0 +

α

2
K(cΩ0− c0)

2

+ k(K−K0−ΛcΩ0)
∂K
∂n

+ k(∆∂Ω0K−Λ∆∂Ω0cΩ0)

}
ds.

(2.51)

Thanks to this simple computation, we obtain a "good" result for E ′(Ω0) without going through the Eu-

lerian derivative or material derivative which are rather complicated to establish. However, this quick
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calculation of the derivative E ′(Ω0) is only formal. In fact, it assumes that we already know the differen-

tiability of c with respect to the domain, and that we can apply the rule of composed derivation

2.4 Numerical Analysis

2.4.1 Level-Set Method

In order to evolutes the shape we will consider the variable part of the border Γ and look for a function φ

such that Γ =
{

x ∈ R2/φ(x) = 0
}

. So, instead of deforming the shape by studying the evolution of Γ, we

will transform the function φ into φ̃ then take as a new border the set
{

x ∈ R2/φ̃(x) = 0
}

. The advantage

is that many geometric properties of Γ are expressed more easily using φ . For example, the vector normal

to Γ is defined by n =
∇φ

‖ ∇φ ‖
and the mean curvature defined by K = ∇.

(
∇φ

‖ ∇φ ‖

)
. Many φ functions

are suitable, we will then impose conditions which without leading to the uniqueness of φ , will allow us

to work with better functions. So we ask φ to be negative inside Γ and positive outside. In practice, we

choose a function whose gradient does not vanishes on Γ. In fact, we try to work with a function close to

the signed distance function at Γ.

We want to evaluate a shape Ω0 with border Γ0 =
{

x ∈ R2/φ0(x) = 0
}

along the vector field

−→
V =V.

∇φ0

‖ ∇φ0 ‖
,

where V is obtained by Theorem 2.3.2 (Eq. (2.51)) as follows

V =ηcp+d∇c∇p− f p+k(K−K0−Λc)
∂K
∂n

+
k
2

K(K−K0)
2−kΛK2c+

α

2
K(c−c0)

2+k(∆∂Ω0K−Λ∆∂Ω0c).

(2.52)

For that we will solve the system


∂tΦ+

−→
V .∇Φ = 0,

Φ(t0,0) = φ0.

(2.53)

As a new border we will take Γ =
{

x ∈ R2/φ(x) = 0
}

, where φ = Φ(t0 +∆t, .).

Remark 2.4.1

To know the evolution of φ in time. In practice, the problem lies from the fact that if x is a mesh node,
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x+
−→
V (t,x) is not necessarily one. However, we prefer to work with a fix mesh. That’s why we will use

the operator Convect.

With FreeFem++, it is very easy to perform this operation because an operator does it. Let’s consider

a transport equation defined by (15).

If the solution is φ0at time t0, then we get φ = Φ(t0 +∆t, .) by

φ = convect
([
−−→V .ex,−

−→
V .ey

]
,∆t,φ0

)
. (2.54)

This technique will also be used in the program to reset the function delimiting the domain Ω.

Remark 2.4.2

When we modify a function that serves only to delimit the curve
{

x ∈ R2 : φ(x) = 0
}

. φ can become less

suitable than other functions delimiting the same curve. In practice, we want that the gradient of φ has

approximately a constant norm in a neighborhood of the curve Γ. For this reason, we reset the function

φ , which means, that we substitute to φ a more interesting function which delimits the same curve Γ but

approaches of the ideal function which is the signed distance to Γ.

We denote φold the function that we want to improve and we solve the equation whose stationary

solution is the signed distance at Γ


∂tΦ+ sing(φold)(‖ ∇Φ ‖ −1) = 0,

Φ(t0,0) = φold .

(2.55)

Then we replace φold by φ = Φ(t0 +∆t, .). So on the set
{

x ∈ R2 : φold(x) = 0
}

as sign(φold) = 0, the

equation reduces to ∂tΦ= 0 and the curve
{

x ∈ R2 : φ(x) = 0
}

is then equal to
{

x ∈ R2 : φold(x) = 0
}

, the

border of the shape remains unchanged by this modification. Moreover, in a neighborhood of this curve,

∂tΦ is weak so the gradient is almost unit. To solve this system, we start by linearizing the equation by

the following approximation

∂tΦ+ sing(φold)

(
∇φold

‖ ∇φold ‖
.∇Φ−1

)
= 0.

Then we proceed in two steps, we solve the equation without the source term then we add dt× sign(φold)

to the solution found. By repeating this process, we get a function closer to the signed distance at Γ.
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2.4.2 Numerical Algorithm and Simulations

Algorithm 1 Representation of the shape of the membrane by Level Set method
1.Initialization of the level set function φ0 by solving (2.55).
2.Iteration until convergence for k ≥ 1 :
(a) Compute the direct stat cΩ0 solution of (2.24) and the adjoint stat pΩ0 solution of (2.43) for the shape
φk.
Deduce the shape gradient = normal velocity =Vk (2.52)
(b) Advect the shape with Vk (solving the Hamilton Jacobi equation (2.54)) to obtain a new shape φk+1.

2.5 Conclusion

Using geometrical shape optimization we have analyzed the coupling of the membrane to a diffused

molecules, we prove the existence of the optimal shape of a membrane and we computed its first derivative

with respect to the domain. We have focused on the situation where the system is in global equilibrium.

When the membrane is stable we have analyzed the effect of the various processes on the membrane fluc-

tuations by using level-set method. Numerical simulations show that the coupling between the membrane

and adsorbed molecules makes the membrane suffers from morphological instabilities.

Figure 2.5: Initial
shape.

Figure 2.6: Shape
evolution in time.

Figure 2.7: Final
shape.
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Chapter 3
Dynamical Behavior of Vesicles in the Steady

and Oscillatory Shear Flow

3.1 Introduction

Vesicles (also known as fluid membranes) are closed membranes suspended in an aqueous medium fig.

3.1. They are often evoked as a simplified model for understanding various intricate dynamics exhib-

ited by red blood cells (RBCs) and blood rheology, by including a minimal set of physical ingredients.

Nevertheless, vesicles have been and remain a challenge for different disciplines ranging from biology to

mathematics. The difficulty is that the vesicle shape is not known a priori and is determined dynamically

via a subtle interplay between the local flow and interfacial forces, which gives rise to a large variety

of shapes and dynamics for which exact analytical solutions in most cases are impossible and numerical

treatments are inevitable. When placed in a linear shear flow of the form u0 = (γ̇y,0,0), where γ̇ is the

steady shear rate see figure3.1, vesicles have attracted extensively experimental, theoretical and numerical

Figure 3.1: Scheme of a vesicle
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Figure 3.2: Ellipsoid membrane of a vesicle immersed in a viscous fluid a linear shear flow.

Figure 3.3: Different motion of vesicle [45]

studies (see Refs. [132]–[4] and the references therein).

The general picture is that vesicles share with RBCs and capsules in their behavior under flow a

variety of different regimes of motions, depending on three control parameters: (i) the excess area ∆ =

(A− 4πr2
0)/r2

0, where A is the vesicle area and r0 = (3V/4π)1/3 is the effective vesicle radius defined

via its volume V , (ii) the viscosity contrast λ = ηint/ηext, where ηint and ηext are the viscosities of the

internal and the external fluids, respectively, and (iii) the bending number Cκ = ηextγ̇r3
0/κ, that plays the

role of a capillary number, where the surface tension is replaced by the bending rigidity modulus κ. Due

to the impermeability and inextensibility of the membrane the volume and the surface area of the vesicle

are conserved.

At low deform ability (which means small enough Cκ ), the perturbation theory of Misbah [91] re-

vealed that a quasi spherical vesicle (i.e., its excess area ∆ is small) exhibits three major types of motions:

(a) tank-treading (TT) regime, (b) tumbling (TB) regime, and (c) vacillating-breathing (VB) regime see

figure 3.1. In the TT mode, the vesicle deforms into a prolate ellipsoid inclined at a stationary angle

with the flow direction, while its membrane undergoes a tank-treading motion. During the TB regime,

the vesicle undergoes a flipping motion like a rigid particle. The VB mode is an intermediate regime

between TT and TB. During this mode the inclination angle of the vesicle oscillates around zero in the

interval [−π/4,π/4], whereas its shape makes a breathing motion. The selection between these three

modes of motions depends only on two control parameters; ∆ and λ . For small enough λ , the TT motion
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is predicted. For large enough λ , the TT mode disappears in favor of TB which coexists with VB. At

low deformability, the TT-to-TB/VB transition occurs at a critical value λc = λc(∆). A fourth classical

mode, not observed in the small deformation limit, is the swinging mode during which the main axis

oscillates about a non-zero mean value. Sometimes, the VB regime is also called swinging (SW), or

trembling, and is qualified as a SW mode with a superimposed shape change resulting from the inclusion

of deformability in the model. The SW mode has been discovered by Abkarian et al. for RBCs [1].

Besides the classical TT, TB and SW or VB modes, experimental work of Abkarian et al. [1] showed

that the TB-to-SW transition occurred via a narrow intermediate, or the so-called intermittent behavior,

during which both SW and TB happen alternately in time evolution, where the numbers of SW and TB de-

pend on the shear rate, a mechanism similar to type-I intermittency of Pomeau-Manneville [109]. Based

on the theoretical model of Keller and Skalak (KS) [77], phenomenological models which approximate

RBCs or capsules by an ellipsoid of fixed shape predicted TB and SW, as well as intermittent motions

[1], [125], [2]. intermittent regimes, however, have generated certain debated questions and remain con-

troversial [132], [130], [76]–[42]. Some works, which allow shape deformation, predict new regimes and

also recover various regimes of motions, except intermittency. In Ref. [132], where a deformable capsule

was considered, the authors pointed out that the intermittency reported in Refs. [1] and [125] is an artifact

of the shape preservation. An intermittent behavior was found only if the capsule deforms in the shear

plane; the intermittency disappears if the shape is free to undergo breathing (a deformation along the

vorticity direction). Similar conclusion can be found in Ref. [103]. In Ref. [63] the authors found that the

deformation of the capsule shape plays a large part in its dynamics, at odds with Ref. [101] in which the

author concluded that deformability does not qualitatively change the dynamics. In Ref. [53] the authors

pointed out that the cell shape remains almost biconcave in the region where the intermittent is expected

to occur. Very recently, Cordasco and Bagchi [42] have observed intermittent motions for deformable

RBCs in a simple (steady) shear, by performing 3D numerical simulations using a front-taking numerical

method.

Recently, RBCs have been reported to also exhibit an intermittent regime by imposing a time-periodic

shear flow. More precisely, in order to explore the response of RBCs, or their biomimetic analogs, to flow

conditions in microcirculation, Dupire et al. [52] have analyzed the motion of nondeformable RBCs

subject to an oscillatory shear flow described by the velocity field (γ̇ = γ̇a sin(2π frt))

u0 = (γ̇a sin(2π frt)y,0,0), (3.1)
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with shear rate amplitude γ̇a and shear oscillatory frequency fr (period Tos = 1/ fr). The authors showed

that the time-dependent external flow allows the cell to have a complex, even chaotic motion, using

experiments supported by theoretical description. For analytical investigations, the authors used a nonau-

tonomous model of two coupled equations for the inclination angle ψ and the Lagrangian angular location

(the shape remains unchanged over time), by extending the model giving in Ref. [1] or Ref. [125]. It is

reported that RBCs can present either stable motions characterized by intermittent behaviors or chaotic

motions. For specific values of γ̇a and fr, an unstable nonperiodic motion that is highly sensitive to initial

conditions is also predicted. In Ref. [138], Zhao and Bagchi described numerically the dynamics of

deformable capsules with both qualitative agreement and discrepancy with Ref. [52].

Deformable vesicles under an oscillatory shear flow have been considered by Noguchi [99]. The

dynamics is described in terms of the Taylor deformation parameter and inclination angle ψ. It is shown,

for example, that during the TB regime (high λ ) ψ rotates clockwisely and then rotates back. For middle

λ and high γ̇a the vesicle shape and the inclination angle oscillate. In Ref. [62], Farutin and Misbah

pointed out that under the oscillatory shear rate

γ̇ = γ̇a cos(2π frt), (3.2)

with small enough γ̇a, the oscillatory shear flow has no influence on the vesicle motion, in the sense that

the vesicle undergoes oscillations without exhibiting TT, TB or VB and that the application of the pure

oscillatory (3.2) misses several interesting microscopic features of the suspension.

Sparked by the above results, we would like to examine responses of deformable vesicles as a function

of time to an oscillatory shear flow. As in Ref. [62], the case that we shall consider in the present work

is the oscillatory shear rate (3.2), which also yields the constant shear rate at the limit fr = 0 (for an easy

steady shear testing). A time-dependent shear rate of the form (3.2) is the commonly used one in analysis

of viscoelastic effects of many complex fluids. Note that the corresponding strain γ is then

γ(t) =
γ̇a

2π fr
sin(2π frt). (3.3)

Therefore, the peak strain (or the shear strain amplitude) is given by γa = γ̇a/2π fr.

Vesicle motions, under (3.2) or (3.3), are expected to deviate from the classical regimes as for capsules

and RBCs. Here, we focus on quasispherical vesicles at low deformability which allows for analytical
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tractability. The physical problem is described via a simplified model that is obtained by including os-

cillating shear rate (3.2) to the small deformation model derived by Misbah [91]. This facilities the

formulation of exact analytical solutions for the vesicle orientation and its shape. Here, particular atten-

tion is paid to vesicles which exhibit TB modes under steady shear rate. We report that the competition

between shape rate amplitude γ̇a and frequency fr inhibits or modifies the classical TB motion and excites

a variety of interesting and complex motions. More precisely, the small theory approach will allow us to

easily distinguish one motion from another in a predictable manner by varying γ̇a and fr independently,

or by varying γ̇a/ fr. In other words, imposing the oscillatory shear rate (3.2), or (3.1), leads to completely

different results (comparing with the steady shear flow), as for RBCs and capsules, which could have an

impact on the rheological response of suspensions.

3.2 A minimal model

In the spirit of Refs. [91], [44] and [69], we consider a nearly spherical vesicle and adapt the small de-

formation theory, which describes reasonably the TT, TB and VB modes under a steady share rate (figure

3.1). The fluid motion outside and inside the vesicle is described by the Stokes equations with the stress

balance, continuity of the velocity at the membrane and membrane inextensibility boundary conditions.

The induced velocity fields (outside and inside the vesicle) are given by the classical Lamb solution [91].

The contribution of thermal fluctuations is neglected in this analysis. At low deformability, the equations

of vesicle dynamics are expanded into perturbative series using ε =
√

∆ as the small expansion parameter

(unlike capsules where ε ≈ Ca). In the small deformation theory (or the lowest order of a perturbation

theory), the deviation of the shape from a sphere is parametrized by (r0 = 1, or in other words lengths are

measured in unit of r0)

r = 1+ ∑
|m|≤2

F2mY2m, (3.4)

where Y2m, |m| = 0,1,2, are the usual spherical harmonics of order two. Note that for a quasispherical

shape F1m can be set to zero since it corresponds to a solid translation. F2m are unknown time-dependent

coefficients satisfying the constraint of fixed total area

∆

2
= ∑
|m|≤2
|F2m|2. (3.5)
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The evolution equations for F2m are given by [130]

dF2m

dt
= γ̇a cos(2π frt)

{
−i

m
2

hδ2|m|+ i
m
2

F2m−h

√
6

5π
C−1

k (6+σ0)F2m

}
, (3.6)

where i2 = −1, |m| ≤ 2, h =
√

2π

15
60

(32+23λ ) , and σ0 is the isotropic part of the tension (or a Lagrange

multiplier). Here the bending number Ck is given by Ck = ηextγ̇ar3
0 cos(2π frt)/k, which can be written as

Ck = C ∗κ cos(2π frt), where C ∗k is the bending number in the steady shear flow.

The constraint of fixed total area leads to

σ0 =−6−C ∗k ∆
−1

√
40π

3
cos(2π frt)Im(F22). (3.7)

Therefore, Eq. (3.6) reads as

dF2m

dt
= γ̇a cos(2π frt)

{
−i

m
2

hδ2|m|+ i
m
2

F2m +
4h
∆

Im(F22)F2m

}
, (3.8)

which is independent of the bending number Ck . This is the main evolution equation for the quasispher-

ical vesicle shape to the leading order [91],[44]. The evolution in time of the vesicle shape configuration

in the shear plane is given by the dynamics of F22. F2±1 and F20 modes describe deformations out of the

shear plane. More precisely, the out-of-plane deformation along the vorticity direction is described by the

F20 mode. Usually, F2±1 modes are ignored for simplicity. In this case, it is shown that the three classical

regimes (TT,TB, and VB) are qualitatively described by a two-dimensional model [91] satisfied by R and

ψ , which are defined by F22 =
√

∆

2 Re−2iψ . The orientation angle ψ coincides with the inclination angle

of the long axis (with respect to the flow direction) of the vesicle in the flow and R is the amplitude of

deformation of the vesicle. This quantity measures the ellipticity of the vesicle contour in the shear plane

In this study we consider the vesicle problem (when F21 = 0), so the two order spherical harmonics

will be limited to Y m
2 ,m =−2,0,2, Fig. 3.4.

Then the deformed membrane is represented by the following spherical harmonic expansion around

a sphere (r0 = 1)

r = 1+Re2iψY −2
2 +F20Y

0
2 +Re−2iψY 2

2 , (3.9)

F20 mode, which describes the out-of-plane deformation along the vorticity, can be obtained from the area
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Figure 3.4: Spherical harmonics of order two

conservation constraint

∆ = 4|R|2 +2|F20|2. (3.10)

The simplified equations, that were firstly reported in Ref. [91] still hold at low deformability. The only

difference is that, as for RBCs and capsules [52], [99], [75], [102], [100], γ̇ is not a constant but a time-

periodic function satisfying (3.2). Therefore, the minimal model describing the dynamics of the vesicle

in the quasispherical approach at low deformability is the following coupled equations

dR

dt
= γ̇a cos(2π frt)

(
h
[

1−4
R2

∆

]
sin(2ψ)

)
, (3.11)

dψ

dt
= γ̇a cos(2π frt)

(
−1

2
+

h
2R

cos(2ψ)

)
, (3.12)

where h = 60
√

2π/15/(32+ 23λ ) and the unknown functions ψ and R are, respectively, the vesicle

inclination angle and its shape deformation.

Eqs. (3.11) and (3.12) are deduced from the shape evolution equation derived in Refs. [91] and [43],

which can be written as

dF22

dt
= γ̇a cos(2π frt)

[
−ih+ iF22 +4h∆

−1Im(F22)F22
]
, (3.13)

where F22 = R exp(−2iψ). Eq. (3.13) can also be deduced from the evolution equation for the vesicle

conformation f which can be written in a compact form (at leading order) [61], [43], [70];

Df
Dt

=
20

(23λ +32)
√

∆
e− 24κ

23λ +32
(Z0 +6κ)f, (3.14)
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e =
∇⊗u0 +(∇⊗u0)

T

2
, (3.15)

in which u0 is the imposed flow, Z0 is the isotropic part of the local surface tension (which is a Lagrange

multiplier ensuring local membrane incompressibility) and Df
Dt is the Jaumann (or corotational) derivative

defined as
DM
Dt

=
1
2
(
M(−)+M(+)

)
, (3.16)

where M(−) and M(+) are, respectively, the upper and lower convected derivatives, defined for a second-

order M as follows

M(−) =
DM
Dt
−M.(∇⊗u0)− (∇⊗u0)

T.M, (3.17)

M(+) =
DM
Dt

+M.(∇⊗u0)+(∇⊗u0)
T.M, (3.18)

where DM/Dt is the usual material derivative. The value of Z0 is determined by the demand that d∆/dt =

0. From this condition it follows that Z0 + 6κ = 8π(f : e)/κ
√

∆. Therefore, the equation for the vesicle

dynamics reads
Df
Dt

=
20

(23λ +32)
√

∆
e− 192π

(23λ +32)
√

∆
(f : e)f. (3.19)

In fact, Eq (3.19) is the general evolution equation of the vesicle conformation for an arbitrary linear flow

at low deformability. The rheological relation is obtained by performing the spatial average of the stress

over the total volume V: 〈σi j〉= 1
V

∫
V σi jdV [44], where

σi j

2η
= ei j +φ(

5
2
−2h

√
15
2π

)ei j +φh

√
15π

2
96 f12 fi j

5∆
. (3.20)

σi j is the average stress tensor, ei j =
∂iu j+∂ jui

2 is the symmetric part of the velocity gradient of the unper-

turbed flow, ϕ is the volume fraction of the suspension and fi j are the time-dependent amplitude in terms

of Cartesian coordinates, ri such that

2

∑
m=−2

F2m(t)y2m(θ ,φ) = ∑
i, j=x,y,z

3 fi j(t)rir j

fi j are linear combinations of F2m.

Equations (3.19) and (3.20) summarize the rheological equations of the composed fluid. In principle
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fi j is determined from Eq. (3.19). Plugging the result into Eq. (3.20) determines the stress tensor. The

deviation of the shape from a sphere is parametrized by the quadratic form rir j fi j(t), where ri is the ith

Cartesian component of the position vector r;

r = 1+ ∑
i, j=x,y,z

3rir j fi j. (3.21)

Functions fi j are linear combinations of F2m. In particular, F22 is given by [45]

Re(F22) =

√
6π

5
( f11− f22), Im(F22) =−

√
24π

5
f12. (3.22)

Let us return to the minimal model. Eqs. (3.11) and (3.12) contain four control parameters ∆,h, γ̇a and

fr which may induce a complex motion. In this work, we will qualitatively investigate vesicle responses

by varying parameters γ̇a and fr, for small enough h (or large enough λ ). Note that Eqs. (3.11) and

(3.12) at fr = 0, correspond to the constant shear rate case (γ̇ = γ̇a). In this case, it is found, as mentioned

before, that the three primary regimes (TT, TB and VB) are, at leading order, controlled only by the two

parameters λ and ∆, and not by γ̇a [91]. γ̇−1
a is used as unit of time. The TT motion is predicted when

λ < λc =−32
23 +

120
23 (2π/15∆)1/2 (the KS critical ratio). The shape and the inclination angle of the vesicle

relax to a certain steady state, which depends on parameters λ and ∆. Above λc, the vesicle dynamics

relaxes to TB/VB [132], [91]. Recently, the steady shear model ( fr = 0) has been solved exactly [69].

In particular, it is showed that TB and VB are distinguishable via a control parameter Γ (depending on

initial conditions as well as on h and ∆);

Γ =
4h2

∆

∆

4h −ξ0√
ω2ζ 2

0 +(ξ0−h)2
, (3.23)

where ω =
∣∣1−4h2/∆

∣∣1/2
, ξ0 = R(0)cos(2ψ(0)) and ζ0 = R(0)sin(2ψ(0)). It is found that |Γ| ≥ 2h√

∆
.

If 2h√
∆
≤ |Γ| < 1, ψ describes a TB regime, while a VB regime is obtained if |Γ| > 1. The transition

between TB and VB occurs at Γ =±1.

We turn to the unsteady shear rate case. Note that if there is no deformation along the vorticity

direction (i.e., F20 = 0), we have R =
√

∆/2 (fixed vesicle shape). In this case Eqs. (3.11) and (3.12)
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reduce to a nonautonomous Jeffery equation (or a nonautonomous (KS) equation)

dψ

dt
= cos(2π frt)(A+Bcos(2ψ)) , (3.24)

where A =−γ̇a/2 and B = γ̇ah/
√

∆. At fr = 0, we get the classical Jeffery equation

dψ

dt
= A+Bcos(2ψ). (3.25)

The above equation, which is solved in a closed form [77], describes very well the dynamics of TT and

TB modes for a rigid particle. The nonautonomous Jeffery equation can also be viewed as a reference

model for physical dynamics under oscillatory shear flow. When −A/B < 1 (i.e., h >
√

∆/2), both Eqs.

(3.24) and (3.25) have two steady states (the pure TT motion) ψ
±
0 = ±cos−1(

√
∆/2h). In steady shear

rate the "+" solution is stable and the "-" solution is unstable. However, for Eq. (3.24), as an intuitive

consequence of the presence of cos(2π frt), is that the inclination angle should oscillate without reaching

ψ
±
0 . For h <

√
∆/2, both Eqs. (3.24) and (3.25) have no steady state. The well known explicit general

solution to (3.25), the KS formula [77], showed that the vesicle tumbles and the period is easily obtained

as γ̇aTks = 2π/ω (Tks = π/
√

A2−B2). In contrast, Eq. (3.24) may present a new type of motion in which

the oscillatory shear flow disturbs the TB motion under certain conditions on fr and γ̇a. When the tumbling

frequency is small enough in comparison to the non-dimensional frequency flow (i.e., ω/2π < fr/γ̇a), we

may naively deduce that the oscillatory shear flow (3.2) could prevent a vesicle from tumbling. The

vesicle oscillates with the same frequency as the applied shear flow without exhibiting the TB motion, as

predicted in [62] for small enough γ̇a. This regime, which is known as the “linear" response, is expected

for small amplitude oscillatory shear (SAOS). There is insufficient time for the vesicle to tumble. This

constituted the motivation for the present work. We shall explore the complex vesicle dynamics that

results from the application of the pure oscillatory shear rate (3.2), for arbitrary γ̇a and fr.

3.3 Analytical results

3.3.1 Exact solutions

As in [69], the small deformation approach will allow us to easily discuss the dependence on shear rate

amplitude γ̇a and shear frequency fr, and to identify specific dynamical features that can be viewed as

115



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

physical essential for vesicles in the spirit of [52] and [138], by exploring a wide range of parameters

γ̇a and fr. In particular, condition ω/2π < fr/γ̇a, will be refined. Although Eqs. (3.11) and (3.12) are

nonautonomous, the vesicle orientation and its shape deformation can be obtained as follows.

Firstly, we define τ = γ̇0
2π fr

sin(2π fr), and then Eqs. (3.11) and (3.12) become

dR

dτ
= h

[
1−4

R2

∆

]
sin(2ψ), (3.26)

dψ

dτ
=−1

2
+

h
2R

cos(2ψ). (3.27)

This coupled equations were firstly reported in Ref.[91] in the quasispherical approach at low deforma-

bility. As in Ref. [70] the solution to Eqs. (3.26) and (3.27) are found to be

ψ(t) =
1
2

arctan

ω

∆

[
e

ωγ̇a
2π fr

sin(2π frt)−C1e−
ωγ̇a
2π fr

sin(2π frt)
]

4h2C2 +∆

[
dse

ωγ̇a
2π fr

sin(2π frt)+C1e−
ωγ̇a
2π fr

sin(2π frt)
]
 , (3.28)

and

R2(t) =
∆

4
+

ω2∆3

16h2

[
4h2C2

2
∆
−4C1

]
1(

C2 + e
ωγ̇a
2π fr

sin(2π frt)+C1e−
ωγ̇a
2π fr

sin(2π frt)
)2 , (3.29)

for λ < λc, where C1 and C2 are constants. For λ > λc, the inclination angle and the vesicle shape satisfy

ψ(t) = β (t)+
1
2

arctan

(
ω

cos(γ̇a
f ?r
fr

sin(2π frt))

Γ+ sin(γ̇a
f ?r
fr

sin(2π frt))

)
, (3.30)

where

β (t) =
π

4

cos(γ̇a
f ?r
fr

sin(2π frt))

|cos(γ̇a
f ?r
fr

sin(2π frt))

[
1−

Γ+ sin(γ̇a
f ?r
fr

sin(2π frt))

|Γ+ sin(γ̇a
f ?r
fr

sin(2π frt))|

]
, (3.31)

and

R2(t) =
∆

4
− ω2∆3

64h4

[
Γ

2− 4h2

∆

]
1(

Γ
∆

4h2 + sin(γ̇a
f ?r
fr

sin(2π frt))
)2 , (3.32)

where f ?r = ω/2π is the TB/VB frequency (under constant shear rate). β takes values ±π/2,0, and

parameter Γ, which is assumed here to be positive, is given by (3.23). That is to mean the vesicle under

(3.2) starts its motion from the identical initial condition as in the constant shear rate case. The method

of obtaining expressions (3.28)-(3.32) has used a similar procedure as in [69] for constant shear rate. As

for constant shear rate Eq. (3.32) implies that Γ ≥ 2h/
√

∆ = Γc by using constraint (3.10). It should

116



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

be noted that for Γ = Γc, which corresponds to the shape-preserving solution, the general solution to the

nonautonomous KS equation (3.24) can be written simply as

ψ(t) = arctan
(

A+B√
A2−B2

tan
[√

A2−B2 sin(2π frt)− sin(2π frt0)
2π fr

])
. (3.33)

As far as we know, the general solution to the nonautonomous KS equation has never been reported

before.

In the limit fr → 0 we recover the well known KS solution and the general solution reported in [69]

for vesicles under the constant shear rate (γ̇ = γ̇a), since the quantity sin(2π frt)/2π fr tends to t, as fr→ 0.

As the main purpose of the present work is to examine the effect of (3.2) on TB vesicles, we shall

present, in the next section, a panel of scenarios for λ > λc and Γ < 1. The case Γ > 1 (VB phase) is note

reported in this work, and the case λ < λc (TT phase) leading to oscillating profiles can be found in Ref.

[99] (see also Ref. [100]). For reader convenience, we provide here only a brief account (for TT phase).

It is transparent from (3.28) that the inclination angle oscillates with the frequency of the imposed

oscillatory shear flow between

ψ
±
os =

1
2

arctan

ω

∆

[
e±

ωγ̇a
2π fr −C1e∓

ωγ̇a
2π fr

]
4h2C2 +∆

[
dse±

ωγ̇a
2π fr +C1e∓

ωγ̇a
2π fr

]
 . (3.34)

Imposing (3.2) induces no preferable orientation for the vesicles (for λ < λc). This behavior qualitatively

corresponds to a VB or SW motion in simple (steady) shear flow. Expression (3.34) indicates that the

amplitude oscillation of the orientation depends on the initial conditions.

The maximum and minimum values of ψ are obtained at t = 0.25 fr and t = 0.753 fr, respectively,

when the oscillatory flow changes direction. As a function of the non-dimensional frequency fr/γ̇a, the os-

cillation amplitude, [ψ], decreases with increasing fr/γ̇a, and both ψ±os converge to 1
2 arctan

(
ω

∆(1−C1)
4h2C2+∆(1+C1)

)
for large enough fr/γ̇a ([ψ]→ 0 as fr/γ̇a→∞). In the limit fr/γ̇a→ 0, ψ±os tend to the fixed inclination an-

gles (the pure TT regime) ψ
±
0 =±1

2 arctanω. This result is qualitatively identical to the predicted results

reported in Refs [99] and [100].

In the limit of the spherical case ∆ = 0, we have ψ±os = ±π/4. The vesicle behaves exactly as rigid

body and oscillates between ±π/4, while for the constant shear flow the orientation angle is π/4.

Note that, ζ = Re(F22) and ξ = Im(F22) are fined to be as in [69].
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Figure 3.5: (Color online) Illustration of the CW/CCW SW (solid red line) for a vesicle with excess area
∆ = 0.437 and parameters h = 0.3,Γ = 0.99 in response to the oscillatory shear rate (dashed black line, in
arbitrary scale) with frequency fr = 0.02 (period Tsh = 50) and shear rate amplitude γ̇a = 0.55. A similar
behavior is shown in Fig. 7 of Ref. [138] for microcapsules.

For λ < λc

ζ (t) =
∆ω

4h
(e

γ̇aω

2π fr
sin(2π frt)−C1e−

γ̇aω

2π fr
sin(2π frt))2

(C2 + e
γ̇aω

2π fr
sin(2π frt)+C1e−

γ̇aω

2π fr
sin(2π frt))2

, (3.35)

and

ξ (t) =
∆

4h
+

∆ω2

4h
C2

C2 + e
γ̇aω

2π fr
sin(2π frt)+C1e−

γ̇aω

2π fr
sin(2π frt)

. (3.36)

For λ > λc

ζ (t) =
∆ω

4h

cos
(

γ̇a f ∗r
fr

sin(2π frt)+C3

)
C4 + sin

(
γ̇a f ∗r

fr
sin(2π frt)+C3

) , (3.37)

and

ξ (t) =
∆

4h
+

Γ+ sin
(

γ̇a f ∗r
fr

sin(2π frt)+C3

)
C4 + sin

(
γ̇a f ∗r

fr
sin(2π frt)+C3

) , (3.38)

where, C j, j = 1,2,3,4, are constants depending on the initial conditions, with C4 =
∆

4h2 Γ,

3.3.2 Oscillating motions

We investigate now the vesicle motion for λ > λc, with the aim to easily identify minimal ingredients that

are needed for an MOD type behavior. In this work, by MOD type behavior we mean a mixed oscillatory

dynamic motion (MOD) in which the alternation between TB and VB (or SW) modes occurs in a periodic

or regular manner.
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Although simple in appearance, expression (3.30) should be a significant help in clarifying the com-

plexity of motions that could be developed by quasispherical vesicles at low deformability. A number

of nontrivial features is described below on the basis of a family of solution curves obtained for fixed

∆ = 0.437,h = 0.3,Γ = 0.99 and for some specific values of γ̇a. We have kept fr fixed at fr = 0.02, de-

spite it may play an important role in the dynamics. The types of motions obtained here are representative

of those that are obtained (not shown here) with different values of Γ in the range 1 > Γ≥ Γc = 2h/
√

∆.

As mentioned before, Farutin and Misbah [62] showed that imposing (3.2), with small enough γ̇a,

induces no preferable orientation of the vesicles. The vesicle oscillates about its initial position. In

addition, the amplitude of these oscillations is small if fr/γ̇a� 1. Here, we firstly find that below a first

critical value, γ̇a < γ̇0
a ≈ 0.4702, Eq. (3.30) describes one type of unsteady motion: a SW motion in which

the vesicle inclination undergoes a continuous periodic motion around a mean value between 0 and π/4

(not shown here). In the case of low γ̇a, which corresponds to high fr, the SW regime is accompanied by

a small angular amplitude. The inclination angle behaves as

ψ(t)≈ 1
2

arctan
(

ω

Γ
(1− γ̇a f ?r

Γ fr
sin(2π frt))

)
, (3.39)

for small enough γ̇a. When γ̇a increases to γ̇0
a , the amplitude oscillation of ψ increases significantly and

reaches π/2.

The situation, however, changes when γ̇a is large. As the shear amplitude is further increased above

γ̇0
a , the vesicle does not tumble. It rather performs a new unsteady periodic motion. The vesicle undergoes

a new SW regime. In this regime, the angle undergoes sudden discontinuous jumps over the course of

time, as we see from Figure 3.5, in marked contrast with the usual VB and SW modes, in which the

angle evolves continuously. In fact, the vesicle tries to tumble. However, the oscillatory shear flow

(3.2) prevents the vesicle from tumbling when the flow changes direction and the vesicle rotates back

to the initial position. The imposed periodic flow acts as a spring element. The flow reverses before

the vesicle could exhibit a full (180◦) TB. Therefore, the vesicle makes clockwise (CW) from π/2 and

counterclockwise (CCW) back to π/2, and CCW from −π/2 and CW back to −π/2 (without making a

full 2π rotation). As for nondeformable RBCs [52] and capsules [138], the vesicle exhibits CW during

the forward motion (γ̇ > 0) and CCW during the backward motion (γ̇ < 0). The inclination angle has

local extrema at the same moment when γ̇ = 0, and its responses during CW/CCW and CCW/CW SW

are not identical and have unequal time-steps.
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Figure 3.6: Plots of γ̇ (dashed black line) and the orientation angle ψ/π (red solid line). The vesicle
exhibits alternatively TB and SW . Parameter γ̇a = 1.5 and other parameters are the same as in Figure 3.5.

Just above a second critical value γ̇1
a ≈ 1.4107, the vesicle dynamics enters into a different regime.

The motion is characterized by a successive transitions from CW/CCW SW to CCW TB to CCW/CW

SW to CW TB and then to CW/CCW SW, over the course of time in one cycle. In this mode, referred

here to as MOD1, the vesicle switch between TB and SW periodically. The vesicle performs exactly one

(CW or CCW) TB between two SW described above, as long as γ̇a takes place in the range from γ̇1
a to γ̇2

a

(region for MOD1), where γ̇2
a ≈ 2.3512 (the third critical value). A net MOD1 is illustrated in Fig. 3.6 for

γ̇ = 1.5.

In the range γ̇a > γ̇2
a , the vesicle presents sequences of alternating TB and SW. The vesicle exhibits

different mixed oscillating motions, which can be classified according to the number of TB before the

vesicle swings. For each MOD motion the number of CW TB and the number of CCW TB are equal

(over a period). SW modes are located in regions where γ̇ = 0. A MOD solution having n CW (or n

CCW) TB is referred here to as MODn (mixed oscillatory motion that displays a ratio of 1:n, SW to TB).

The vesicle swings once after n tumblings. A MOD2 tendency has been observed experimentally for

nondeformable RBCs in sinusoidal shear flow [52] (see Fig. 4(a) of [52]).

A question naturally arises: Can we define a criterion of the selection of MODn ? It is checked

here that the mixed oscillatory mode transition occurs continuously in the parameter space of γ̇a (at

fixed frequency), and that the MOD region width Λ of MODn is independent of n (Λ is defined as the

absolute value of the difference between γ̇n
a and γ̇n+1

a ). For the set of parameters explored here it is found

Λ ≈ 0.9405, irrespective of n. This suggests that the critical value for the transition from MODn−1 to
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Figure 3.7: Plots of γ̇ (dashed black line) and the inclination angle (red solid line) at γ̇a = γ̇2
a ≈ 2.351229,

with same other parameters as in Figure 3.5. The vesicle periodically presents horizontal reversals (ψ = 0)
and vertical reversals (ψ = π/2) separated by one TB.

MODn, should obey an equation of the form

γ̇
n
a = γ̇

0
a +nΛ. (3.40)

An important consequence of the above equation, which is justified rigorously later, is that a cascade of

doubling period, or a catastrophe solution, should not be favored. The interruption between TB and SW

are not based on chaotic dynamics. Recall that the shape-preserving assumption leads to nonautonomous

Jeffery equation (3.24). This equation resembles the nonautonomous Jeffery equation for non deformable

RBCs, in the limit where Lagrangian angular location remains very small [52]. In this case, the authors

pointed out that chaos is no longer possible.

3.3.3 The bifurcation phenomena

To demonstrate (3.40), we seek to study the time evolution of the inclination angle during the MODn−1-

to-MODn transition. Perhaps, the most interesting feature of Eq. (3.30) is obtained when looking more

closely at the vesicle motion at γ̇a = γ̇n
a . For n = 2, we have firstly observed that, during MOD1, the

local smooth minimum (resp. maximum) of SW decreases (resp. increases), upon increasing γ̇a up to

γ̇2
a , while the times for local extrema are independent of γ̇a (t = 0.25/ fr, and t = 0.75/ fr) as for RBCs

[100]. At γ̇a = γ̇2
a , the local smooth maxima becomes global (ψ = π/2), and the local smooth minimum

value vanishes (see Figure 3.7). That is to say that the vesicle exhibits periodically vertical and horizontal

reversals (at the same moment when the flow changes direction). More generally, at γ̇a = γ̇n
a one of
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the local smooth extrema becomes global and periodically reaches π/2 or −π/2, while the second one

reaches 0. For γ̇a slightly below γ̇n
a , the local smooth extremum does not significantly change, however,

the global smooth extremum splits into CCW and CW TB connected by a CCW/CW SW (with small

inclination oscillation amplitude), and then a new regime with additional one CCW TB and one CW TB,

progressively appears as in Figure 3.8. As a result, the numbers of CCW and CW TB increase and remain

equal. Critical value γ̇n
a can be estimated by solving |ψ|= π/2 and dψ/dt = 0, from which one sees that

γ̇n
a has to be

γ̇
n
a =

π

2
fr

f ?r
(1+2n), (3.41)

irrespective of Γ. Using again the equation |ψ|= π/2, we deduce that the vesicle exhibits an MODn only

for γ̇n
a < γ̇a < γ̇n+1

a , Eq. (3.41) shows that the width is given by Λ = π fr/ f ?r . At fixed frequency, the

threshold shear rate between SAOS and LAOS regimes is given by γ̇0
a = π fr/2 f ?r . Interval (0,π fr/2 f ?r )

can be referred to as the plateau region from the view point of linear viscosity theory. Note that Eq.

(3.41) can be rewritten as γ̇n
a = (1+2n)γ̇0

a . Parameter γ̇1
a = 3π fr/(2 f ?r ) is the threshold shear rate between

SW regimes and MOD behaviors. Eq. (3.41) indicates, in particular, that an MOD behavior is excited

whenever the oscillating frequency is equal to an integer multiple of the TB frequency. Beyond the critical

values of the shear rate, Eq. (3.41) allows us, also for an experimental testability, to estimate (at leading

order) the number of CW TB (or CCW TB), during each period, as a function of the ratio of γ̇a to fr;

n =

⌊
γ̇a f ?r
π fr
− 1

2

⌋
, (3.42)

where b.c stands for the floor function (bzc is obtained by omitting the fractional part of z). A higher

γ̇a/ fr forces the vesicle to tumble more frequently. Note that Eq. (3.42) is valid as soon as γ̇a > γ̇0
a

(or γ̇a > π2 fr). Of course, there is no TB for γ̇0
a < γ̇a < γ̇1

a . Note that number n goes to infinity as fr

approaches 0.

Analogous to (3.41), the transition also occurs, for any fixed γ̇a, at critical frequencies,

f n
r =

2
π

γ̇a f ?r
1+2n

=
1

1+2n
f 0
r . (3.43)

The above expression indicates, in particular, that no (periodic) MOD can occur for fr > f 0
r = 2γ̇a f ?r /π.

Eq. (3.43) can also be used to estimate (at leading order) the critical values of the shear strain amplitude
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Figure 3.8: Plots of γ̇ (dashed black line) and MOD2 behavior (red solid line) for γ̇a = 2.37 (just above
γ̇2

a ). The global maximum (see Figure 3.7) splits into two TB connected by a CCW/CW SW.

(see Eq. (3.3)) for the MOD transition;

γ
n
a = (1+2n)

π

2

(
1− 4h2

∆

)−1/2

, (3.44)

by knowing h, ∆ and n.

Finally, we shall examine how the viscosity ratio in turn influences the dynamics of the vesicle. From

(3.41) and (3.43) or (3.44), the viscosity ratio is also of special interest. Given the importance of this

parameter we need a more refined analysis of Eq. (3.41). We have fixed parameters γ̇a and fr, such that

γ̇a > π2 fr, and found that transitions between MOD behaviors take place at critical values

λ
n
c =−32

23
+

120
23

(
1− π4 f 2

r

γ̇2
a

(1+2n)2
)−1/2√

2π/15∆, (3.45)

provided that n ≤N =
⌊
( γ̇a

π2 fr
−1)/2

⌋
. When 1 < N = ( γ̇a

π2 fr
− 1)/2, we have an MODN −1 behavior

for any λ > λN −1
c , while if N < ( γ̇a

π2 fr
−1)/2 the vesicle exhibits an MODN behavior, for any λ > λN

c .

That is to say a large λ ensures the saturation of the MOD behavior. This result indicates, in particular,

that the viscosity contrast is no longer sufficient to induce the MODn behavior for arbitrary n. In contrast,

the vesicle tends to undergo a saturated mixed oscillatory behavior for large enough viscosity contrast λ

(the number of TB remains constant over one cycle), and this saturation depends only on the ratio of γ̇a

to fr.
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3.4 Rheology of vesicle suspension

We have seen above that the viscosity contrast λ and the time-dependent shear flow play a crucial role in

the vesicle dynamics. Once the exact expressions of solutions of each regime are obtained, the rheology

of a dilute suspension will be easily analyzed. More precisely we investigate the time variation of the

effective viscosity and normal stress differences for a dilute suspension in different regimes

3.4.1 Reduced effective viscosity

Danker and Misbah [44] and Danker et al. [43] reported on analytical and numerical observations of

the effective viscosity for steady shear flow. The time-average of the reduced effective viscosity [η ] (see

below) over one period has been determined. This quantity is a function of λ and ∆, for the three regimes,

and is denoted 〈[η ]〉. It is found that 〈[η ]〉 decreases with increasing λ and attains a minimum at λc.

For λ > λc, 〈[η ]〉 exhibits a sudden increase, in agreement with experiments [62]. Here, as mentioned

above, we study the time-dependent effective viscosity in the case where the shear flow is given by (3.2).

From the rheological equations (3.19) and (3.20), it is easy to show that the full expression of the time-

dependent effective viscosity ηe f f is defined by ηe f f =
σxy

γ̇a
, with σxy given in Eq (3.20).

ηe f f (t) = ηext cos(2π frt)

[
1+

5
2

ϕ(1− 4
5

√
15
2π

h)+
ϕ

∆
h

√
480
π

R2(t)sin2(2ψ)

]
, (3.46)

which is equivalent to,

ηe f f (t) = ηext cos(2π frt)

[
1+

5
2

ϕ(1− 4
5

√
15
2π

h)+
ϕ

∆
h

√
480
π

ζ
2(t)

]
, (3.47)

since, ζ (t) = R(t)sin(2ψ).

Note that in the limit fr −→ 0 we recover the time-dependent effective viscosity for vesicles under

the constant shear rate in [70].

η̊e f f (t) = ηext

[
1+

5
2

ϕ(1− 4
5

√
15
2π

h)+
ϕ

∆
h

√
480
π

ζ̊
2(t)

]
, (3.48)

where, ζ̊ (t) = R̊(t)sin(2ψ̊(t)), ψ̊ and R̊ are, respectively, the vesicle inclination angle and its shape
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deformation under the constant shear rate [69]. For fr 6= 0 we have

ηe f f (t) = cos(2π frt)η̊e f f

(
γ̇a

2π fr
sin(2π frt)

)
. (3.49)

Acording to Ref.[97] the effective viscosity is given by

ηe f f = ηext (1+[η ]ϕ) , (3.50)

where [η ] is the normalized viscosity (called the intrinsic viscosity when ϕ −→ 0) which represents the

contribution of the vesicle to the viscosity and ϕ is the volume fraction of the suspension (the volume

occupied by the vesicles over the total volume).

From Eq. (3.50) the reduced effective viscosity, or the normalized viscosity is defined by

[η ] =
ηe f f −ηext

ηextϕ
, (3.51)

Using eq. (3.47) The reduced effective viscosity reads

[η ] =
5
2
(1− 4

5

√
15
2π

h)cos(2π frt)+
h
∆

√
480
π

cos(2π frt)ζ 2(t)+
cos(2π frt)−1

ϕ
. (3.52)

Let us now evaluate the time-dependent effective viscosity. Making use the expression of ζ (t)that

[η ] = cos(2π frt)

[
5
2
(1− 4

5

√
15
2π

h)+ |4h2−∆|
√

480
π

1
16h

G

(
γ̇aω

2π fr
sin(2π frt)

)]
+

cos(2π frt)−1
ϕ

,

(3.53)

where the function G is given by

G (s) =
(es−C1e−s)2

(C2 + es +C1e−s)2 . (3.54)

For λ < λc and, for λ > λc

G (s) =
(cos(s+C3))

2

(C4 + sin(s+C3))2 . (3.55)
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Figure 3.9: Time-dependent reduced viscosity [η ] during TB and VB regimes for different values of Γ .
Parameters are ∆ = 0.437, h = 0.3, γ̇a = 2.37, Γ = 1.02 (dashed red line) and Γ = 0.91 (solid blue line).

This expression displays several interesting properties. As a function of t.

The time-dependent effective viscosity can also expressed as function of the effective viscosity under

the constant shear rate given in [70] by the following expression

[η ](t) = cos(2π frt)[η̊ ] (τ)+
cos(2π frt)−1

ϕ
, (3.56)

where

τ =
γ̇a

2π fr
sin(2π frt). (3.57)

We plotted in Fig. 3.4.1 the time evolution of the reduced effective viscosity (during TB and VB regimes)

for different values of the parameter (Γ = 4h2

∆
C4). In Fig.3.4.1 we plotted the quantity [η̂ ] = [η̊ ](τ) to

indicates the maximum and the minimum possible value of the instantaneous reduced effective viscosity

as it is reported in Ref. [70] that

5
2

(
1− 4

5

√
15
2π

h

)
≤ [η̊ ]≤ 5

2
. (3.58)

From eq. 3.56 and 3.58 we clearly see that [η ] oscillates between −5
2 and 5

2 .
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Figure 3.10: Time-dependent reduced viscosity
[η̊ ] at τ during TB and VB regimes. Parame-
ters are ∆ = 0.437, h = 0.3, γ̇a = 2.37, Γ = 1.02
(dashed red line) and Γ = 0.91 (solid blue line).

Figure 3.11: Time-dependent reduced viscosity
[η̊ ] at τ during TB and VB regimes. Parame-
ters are ∆ = 0.437, h = 0.3, γ̇a = 1.5, Γ = 1.02
(dashed red line) and Γ = 0.91 (solid blue line).

Figure 3.12: Time-dependent reduced viscosity [η ] during TB and VB regimes. Parameters are Γ = 1.02,
∆ = 0.437, h = 0.3, γ̇a = 2.37 and fr = 0.001.
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As in Ref. [70], we are also interested in the time average over one period. From eq. (3.53). We get

〈[η ]〉= 5
2
(1− 4

5

√
15
2π

h)+(4h2−∆)

√
480
π

1
16h

C4−
√

C2
4−1√

C2
4−1

. (3.59)

For λ < λc and, for λ > λc

〈[η ]〉= 5
2
(1− 4

5

√
15
2π

h)+(∆−4h2)

√
480
π

1
16h

√
4C1−C2

2−C2
2√

4C1−C2
2

, (3.60)

where C4 > 0. A similar expression has been derived in Ref. [70]. From Eq. (3.59) and (3.60) the reduced

effective viscosity first decreases, reaching the minimum at the critical value λ = λc,

〈[η ]〉= 5
2
−
√

15∆

2π
. (3.61)

Then increases with increasing λ , with a cusp singularity at λ = λc see Fig. 3.13.

3.4.2 Normal stress differences

As an interesting supplemental physical investigation and another consequence of the exact explicit so-

lutions is to compute the first normal stress difference N1 = σ11 − σ22 and the second normal stress

difference N2 = σ22−σ33. According to Ref.[44], N1 and N2 are given by

N1 =−2N2 =
16ϕγ̇ηext

∆

√
15

32π
R2 sin(4ψ). (3.62)

Using the identity sin(2x) = 2sinxcosx, Eq. (3.62) can be written simply as

N1 =−2N2 =
32ϕγ̇aηext

∆

√
15

32π
cos(2π frt)ξ (t)ζ (t). (3.63)

In the TB and VB based oscillatory regimes, the exact solutions (3.37)-(3.38) yield

N1 =−2N2 =
ϕγ̇aηext

2

√
15
2π

∆

h2
cos(ωτ +C3)[Γ+ sin(ωτ +C3)]

[C4 + sin(ωτ +C3)]2
cos(2π frt), (3.64)

where

τ =
γ̇a

2π fr
sin(2π frt). (3.65)
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Figure 3.13: Reduced average effective viscosity 〈[η ]〉 as a function of h for ∆ = 1. The cusp singularity
is due to the transition from T B or V B to T T .

It follows from (3.64) that the time-averaged (over a period) of N1 and N2 vanishes; 〈N1〉= 〈N2〉= 0 (there

is no preferred orientation of the vesicle). In Fig.3.4.2 the first normal stress difference N1 is plotted by

using the exact explicit solution (3.37)-(3.38).

3.5 Isotropic part of the tension

In this section, we investigate the time-dependent dynamics of the isotropic part of the tension (3.7). In

terms of R and ψ , the isotropic part of the tension σ0 reads

σ0 =−6+Ck∆
−1

√
40π

3
R sin(2ψ). (3.66)

Making use the expressions of ψ and R we obtain

σ0 =−6+C ∗k ∆
−1

√
40π

3
∆ω

4h
cos(2π frt)G

(
γ̇aω

2π fr
sin(2π frt)

)
, (3.67)

where the function G is given by Eq. (3.54) and Eq. (3.55).

In the limit fr −→ 0 we recover the time-dependent dynamics of the isotropic part of the tension under
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Figure 3.14: Time evolution of the first normal stress difference for ∆ = 0.5, h = 0.3, and Γ = 0.95
(tumbling oscillating regime). Parameters ϕ,ηext , and γ̇ are such that ϕηext γ̇ = 0.2.

the constant shear rate given in [69]

σ̊0 +6 = C ∗k ∆
−1

√
40π

3
∆ω

4h
G (ωt) . (3.68)

The isotropic part of the tension under the oscillatory shear rate reads

σ0 +6 = cos(2π frt)(σ̊0 +6)(τ), (3.69)

where τ is given by Eq.(3.65).

For λ < λc (TT based oscillatory regime)

σ0 =−6+C ∗k ∆
−1

√
40π

3
∆ω

4h
e

γ̇aω

2π fr
sin(2π frt)−C1e−

γ̇aω

2π fr
sin(2π frt)

C2 + e
γ̇aω

2π fr
sin(2π frt)+C1e−

γ̇aω

2π fr
sin(2π frt)

cos(2π frt), (3.70)

when fr tends to 0

σ0 +6 = (σ̊0 +6)(t), (3.71)

as t tends to infinity, which corresponds indeed to a pure TT regime where the shape is fixed. Quantity
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Figure 3.15: Time evolution of the isotropic tension (TT based oscillatory regime). Parameters are ∆ =
0.01, Ck = 0.5, fr = 0.05 and h = 0.3.

sin(2π frt) oscillates with frequency 1
fr

, and as fr tends to zero, σ0 takes the stationary value

σ
∞
0 =−6+

C ∗k
4h

√
40π

3

√
4h2

∆
−1. (3.72)

The quantity σ∞
0 increases linearly with C ∗k , takes the limit value −6 at h = hc, and monotonically

approaches −6+ C ∗k√
∆

for large h. For fr 6= 0 using eq.(3.69) we can easily see that σ0 oscillates between

−σ∞
0 and +σ∞

0 . From this, we may deduce that decreasing the bending number leads to the apparition

of a negative tension. More precisely, there exists a range of values of the bending number for which

the isotropic part of the tension is negative. That is to say, during a TT regime the membrane undergoes

compression for

C ∗k ≤ C ∗c =

√
54∆

5π
. (3.73)

In TB and VB based oscillatory dynamics (λ > λc), we use expression (3.55) of G to get from Eq. (3.67)

that

σ0 =−6+C ∗k ∆
−1

√
40π

3
∆ω

4h

cos( γ̇a f ∗r
fr

sin(2π frt)+C3)

C4 + sin( γ̇a f ∗r
fr

sin(2π frt)+C3)
cos(2π frt). (3.74)

Figure (3.16) shows the evolution of σ0 for C ∗k = 0.5 and for different values of Γ (Γ = 0.5,0.8,1,3).

As for capsules [69] it is instructive to study the maximum value of the isotropic tension over one

period. it is instructive to study the maximum value of the isotropic tension over one period. The min-
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Figure 3.16: (Color online) Time evolution of the isotropic tension for different values of Γ. Parameters
are ∆ = 0.01,Ck = 0.5, fr = 0.05 and h = 0.02. Γ = 0.5 for dotted black line (TB), 0.8 for dashed green
line (TB), 1 for solid blue line (VB), and 3 for dashed-dotted red line (VB).

imum value is always negative, indicating that the membrane is (momentarily) under compression and

then buckling may occur. First, we calculate the averaged value of σ0 over a period. From Eq. (3.74) we

immediately see that

〈σ0〉= 〈σ̊0〉=−6, (3.75)

for both the TB and VB based oscillatory regimes. As a function of h, σ0 behaves as the normal stress

differences (at the small deformation) [44], We note from Eq. (3.67) that σ0 = −6 at ψ = 0 (where the

vesicle aligns with the flow) and at ψ = π

2 (where the shape elongation is minimal). During the tumbling

KS solution (Γ = 2h√
∆
) since ζ oscillates between ±

√
∆

2 , σ0 oscillates between −6±C ∗k
10π

3∆
. Therefore,

the isotropic tension is negative for all times for the shape-preserving regime if Eq. (3.74) holds. For

Γ > 2h√
∆

the maximum value of σ0, noted σmax
0 , is given explicitly by

σ
max
0 =−6+

Ckωh
∆

√
40π

3
1√

Γ2
0−

16h4

∆2

, (3.76)

which decays monotonically to the limiting value σ0→−6 as Γ tends to infinity (see Fig.3.16 ). There-

fore, the isotropic part of the tension is negative for large enough Γ. Expression (3.76) also indicates that
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σmax
0 is negative for small enough C ∗k , i.e.,

C ∗k < C ∗c (Γ), (3.77)

where C ∗c (Γ) is the Γ-critical bending number

C ∗(Γ) =
∆

hω

√
27

10π

√
Γ2− 16h4

∆2 , (3.78)

below which the membrane undergoes compression during the Γ solution. Since Γ2 ≥ 4h2

∆
, one sees that

σ0 < 0 if Eq. (3.73) holds. This means that negative tension occurs in the three regimes for values of

C ∗k below C ∗c . A related question is the effect of the bending number on the formation of wrinkles on a

membrane at low deformability. For capsules, it was reported in Ref. [133] that the most extensive wrin-

kling is seen to occur as D12 approaches 0 (transition regime). When quasispherical vesicles are placed

in nonstationary elongation flows, it is shown theoretically that the relaxational dynamics of the vesicle

is accompanied by high-order membrane deformationmodes (wrinkles) which have been attributed to the

appearance of negative surface tension and that during a stage (third stage) the maximal amplitude of

wrinkles is observed at a time when F22 = 0. This corresponds to D12 = 0. As mentioned above, quanti-

tative three-dimensional analysis of vesicles under flow are presented in Ref. [25]. Numerical solutions,

for vesicles with the reduced volume ν = 0.95 (∆ = 0.437), showed that the VB mode is damped as long

long as 0.5 < C ∗k < 2. Beyond a value of the order of C ∗k = 2, the VB band exhibits a sudden ample

widening. In Ref.[60] it was reported that when

σ0 +20

√
∆

C ∗k
< 0, (3.79)

the fourth-order harmonic is excited. In addition, the authors found numerically that close to the VB-to-

TB transition at some times during the oscillation, quantity −σ0C
∗
k√

∆
exceeds 20. Here, we find that at the

circular shape in the shear plane, quantity σ0 +20
√

∆

C ∗k
is negative for

C ∗k >
10
3

√
∆. (3.80)

This constitutes a possible explanation of a wrinkled structure during the VB-TB phase transition for

quasispherical vesicles. As an example, if we take ∆ = 0.437 []we obtain, during the VB-TB phase
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border that quantity−σ0Ck√
∆

momentarily exceeds 20 for Ck > 2.203.

3.6 Conclusion

In conclusion, we analytically studied the dynamics of a deformable vesicle under a pure oscillating shear

flow. The investigation used the small deformation theory [91]. The advantage of this approach is that a

complete set of exact closed solutions for the vesicle orientation in the flow and its shape evolution are

derived (to leading order). As a result, a mixed oscillatory dynamics (MODn) regime, during which a

series of n TB is periodically interrupted by a SW is found (for λ > λc), in a reasonable agreement with

the result for RBCs [52]. Overall, we estimated n, as a function of the ratio of γ̇a to fr, and obtained an

unbounded sequence of critical values (γ̇n
a ) at which the transition between MODn−1 and MODn occurs.

Also, we noted that the mixed oscillatory structure is insensitive to initial conditions, and no cascade

of doubling period motion is observed as well as the parameters vary (at least to leading order). The

present results can be considered as a (relative) simplistic picture when compared to the actual complex

nature of RBCs. However, we strongly believe that our results can be used as a starting point to study

the mixed oscillatory dynamics behaviors for vesicles and microcapsules under oscillatory flow taking

into account higher-order contributions or/and thermal fluctuations in the shape deformation equations,

even for small amplitude oscillatory shear. We hope to investigate this matter further in a future work.

Finally, beyond the scope of this work, Eq. (3.30) or (3.33) can be considered as a simple analytical

example that describes a sequence of tumbles interrupted (periodically) by swinging. The exact closed

solutions also may provide a more elegant and simple way for analyzing the vesicle dynamics in the case

where the shear flow oscillates and is unbounded in the course of time. This problem is currently under

investigation.
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Chapter 4
Nonlinear parabolic equation having

nonstandard growth condition with respect to

the gradient and variable exponent

4.1 Introduction

In the last decade, theoretical studies of partial differential equations have given birth to a new type of

problem with nonstandard growth conditions. This new type of problem is often linked to the name

"variable exponent" which means that the equation and their operator has a variable growth condition.

Mathematical analysis of PDEs with variable exponent has undergone a great evolution in several fields

of applied science. Among which dynamics fluid, image processing [38, 57, 115, 123], pidemiology

models and their related predator-prey models [6, 14, 23]. The functional framework involving these type

of problems are Lp(x)(Ω) and W m,p(x)(Ω) which called respectively Lebesgue and Sobolev space with

variable exponent, for more details on these spaces, we refer the readers to see [57, 79, 67].

The purpose of this work is to study the existence of weak solution for a class of quasilinear parabolic

equation with variable exponent modeled by


∂tu−div(A(t,x,∇u)) = f (t,x,u,∇u) in QT := (0,T )×Ω

u(0,x) = u0(x) in Ω

u(t,x) = 0 on ΣT := (0,T )×∂Ω

(4.1)
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where Ω is an open bounded subset of RN , with smooth boundary ∂Ω, T > 0, the initial data u0 is assumed

to be a measurable function belonging in L2(Ω). The operator - div(A(t,x,∇u) is of the type Leray-Lions

with variable exponent p(x). We assume that p is a continuous function on Ω with inf
x∈Ω

p(x) > 1 and

A : QT ×RN → RN is a Carathéodory function satisfying

(H1) |A(t,x,ξ )| ≤ H(t,x)+ |ξ |p(x)−1

(H2) A(t,x,ξ )ξ ≥ d |ξ |p(x)

(H3) 〈A(t,x,ξ )−A(t,x,ξ ∗),ξ −ξ ∗〉> 0

for almost every (t,x) in QT and for every ξ ,ξ ∗ in RN (ξ 6= ξ ∗), with H ∈ L
p(x)

p(x)−1 (QT ) and d > 0. For the

nonlinearity f , we assume that

(H4) f : QT × [0,+∞)×R×RN → R is a Carathéodory function.

(H5) (s,r) 7→ f (t,x,s,r) is locally Lipschitz continuous for a.e (t,x) in QT .

(H6) f (t,x,s,0) = min
{

f (t,x,s,r),r ∈ RN
}
= 0.

Quasilinear partial differential equations has pulled the attention of several authors and great works

have been published not only for initial data [12, 10, 64, 113, 112, 67, 105, 85] but also for stationary and

periodic case (see for example the works [11, 36, 37, 35, 54]). To present the novelty and the originality

of our work, we propose to recall some recent works which have been dealt with the particular cases of the

problem (4.1). We start by the paper of Bendahmane et al [24], where the authors studied (4.1) when u0

belong to L1(Ω), f belongs to L1(QT ) and does not depend on (u,∇u). Based on the semigroup theory,

they established well-posedness (existence and uniqueness) of a renormalized solution to (4.1). They

proved that the obtained solution is also the entropy solution of the considered problem. Zhang and Zhou

in [137] were studied the existence-uniqueness of renormalized and entropy solution of the same equation

(4.1). They used the semi-discretization time method to prove the well-posedness of an approximate weak

solution to (4.1). Thereafter, they obtained the existence of a renormalized solution to (4.1) as a limit of an

approximate problem. Based on the choice of the used test function, the authors showed the uniqueness

of the obtained solution and they demonstrated the equivalence between the renormalized solution and

the entropy solution to (4.1). The results of [24, 137] was generalized by Li and Gao in their paper [84],

where they studied the existence of solutions to (4.1) with a particular sign assumption on the nonlinearity

f (u,∇u). Via the convergence of truncation, they obtained the existence of renormalized solution to
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the considered problem. In [85] Li et al studied the equation (4.1) with smooth initial condition and f

depends only on ∇u. Under the De Giorgi iteration technique, the authors proved the critical a priori L∞-

estimates and thus established the existence of weak solutions to (4.1). Note that all these work examined

the p(x)-Laplacian operator which is a particular case of the considered operator in the equation (4.1).

Therefore, the case of the Leray-Lions operator was discussed in the current literature. In particular,

Ouaro et al. [105] proved the existence and uniqueness of the entropy solutions to (4.1) with L1-data.

Their proof based on the nonlinear semigroup theory and involved Lebesgue and Sobolev spaces with

variable exponent. In view of the semilinear case of (4.1) ( f depending only on u), Rădulescu et al [67]

have been proposed a qualitative analysis on the existence and uniqueness of a weak solution to (4.1).

The authors assumed that f (x,u) is a Carathéodory function with respect to x and locally Lipschitz with

respect to u. Under a suitable assumption on the variable exponent, they established the existence and

uniqueness of the weak solution to (4.1). The authors discussed also the global behavior of the obtained

solutions, more precisely the convergence to a stationary solution as t→ ∞.

L2-solutions for PDEs with variable exponent was also examined by several authors. In [7] Akagi and

Matsuura proposed a mathematical analysis of parabolic p(x)-Laplacian equation with L2 data. Using the

subdifferential calculus, They proved the existence and uniqueness of L2-solution to the considered prob-

lem and they studied the large-time behavior of the obtained solution. Shangerganesh and Balachandran

[123] considered the reaction-diffusion model with variable exponents and L2 data and without growth

conditions on (u,∇u). The authors studied the existence of weak solutions to the considered model when

the nonlinearities does not depend on ∇u. Based on the standard Galerkin’s method and Gronwall lemma,

the authors established the existence and uniqueness of a weak solution to the considered model. How-

ever in contrast to the earlier mentioned works, here we present two existence results of a weak solution

to the quasilinear parabolic equation (4.1). For the first one, we will assume that f (u,∇u) is bounded

in QT . Under the application of Schaeffer’s fixed point theorem in a suitable Banach space, we prove

the existence of a weak solution to (4.1). Concerning the second existence result, we will assume that

f (u,∇u) has a critical growth with respect to the gradient. By combining the truncation technics with the

sub-and super-solution method, we establish the existence of a weak solution to (4.1).

We start initially with a recall in which we state the interesting results and properties of Lebesgue-

Sobolev spaces with exponents variables. Thereafter, we prove in section 3 the existence result of a weak

solution to the proposed equation with bounded nonlinearity. This is done with the help of Schaeffer’s
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fixed point theorem. In section 4, we use the method of sub- and super-solution to consider an approxi-

mate problem of (4.1), the existence of a weak solution to the last one is ensured by the result of section

3. After that, we give a suitable estimates on the approximate solutions and we pass to the limit in the

approximate problem. Section 5, is devoted to prove some auxiliaries results, the first result concerns the

existence and uniqueness result of a weak parabolic equation with L2 data. The second result presents an

interesting compactness result of a class of parabolic equations with variable exponent.

4.2 Preliminaries results and notations

4.2.1 Lebesgue-Sobolev spaces with variable exponent

We begin this section by a brief recall of Lebesgue and Sobolev spaces with variable exponent. Let

p : Ω̄→ [1,+∞[ be a continuous function, we define

p− = inf
x∈Ω̄

p(x) and p+ = sup
x∈Ω̄

p(x).

Throughout this chapter, we assume that

1 < p− ≤ p(x)≤ p+ < ∞. (4.2)

The variable exponent Lebesgue space is introduced such as

Lp(x)(Ω) =

{
u : Ω→ R;u is measurable with ρp(x)(u)< ∞

}
,

where ρp(x)(·) define the following convex modular

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx.

We equip the Lebesgue space Lp(x)(Ω) with the Luxemburg norm

‖u‖p(x) = inf
{

α > 0 : ρp(x)

(
u
α

)
≤ 1
}
.

From the hypothesis (4.2), the space Lp(x)(Ω) come to be a separable, uniformly convex Banach space, the

dual space of Lp(x)(Ω) is introduced as Lp′(x)(Ω) with p′(x) = p(x)
p(x)−1 . Let u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),
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then the following Hölder inequality

∫
Ω

|uv|dx≤
(

1
p−

+
1

p′−

)
‖u‖p(x)‖v‖p′(x),

holds true. The following proposition gives us the useful interesting properties of Lebesgue spaces with

variable exponent.

Proposition 4.2.1

1. min
{
‖u‖p−

p(x),‖u‖
p+

p(x)

}
≤ ρp(x)(u)≤max

{
‖u‖p−

p(x),‖u‖
p+

p(x)

}
.

2. If Ω is bounded, the inclusion result between Lp(x)(Ω) spaces still holds. Furthermore, let p1, p2 be

two variables exponents, such that p1(x) ≤ p2(x) almost everywhere in Ω, we have the following

continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

3. Let q∈C(Ω̄) such that 1≤ q(x)< p∗(x), for all x ∈ Ω̄, then the embedding W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is continuous and compact, where

p∗(x) :=


N p(x)

N−p(x) , p(x)< N,

+∞, p(x)≥ N.

To extend the variable exponent p : Ω̄→ [1,∞) to the general case QT = [0,T ]×Ω, we set p(t,x) := p(x)

for all (t,x) ∈ QT . Hence, the variable exponent Lebesgue space Lp(x)(QT ) is presented as follows

Lp(x)(QT ) =

{
u : QT → R measurable with

∫
QT

|u(t,x)|p(x)dxdt < ∞

}
,

equipped with the norm

||u||p(x) = inf
{

α > 0,
∫

QT

∣∣∣∣u(t,x)α

∣∣∣∣p(x)dxdt ≤ 1
}
,

which is a separable, uniformly convex Banach space. The variable exponent Sobolev space W 1,p(x)(Ω)

is defined such as

W 1, p(x)(Ω) =

{
u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)N

}
,

140



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

where its norm is presented as follows

‖u‖1, p(x) = ‖u‖p(x)+‖∇u‖p(x).

Due to this norm, the space W 1,p(x)(Ω) is a separable and reflexive Banach space. We assume that p(x)

satisfies the log-Hölder-continuity condition, i.e. there exists a constant C such that for all i = 1, ...,M

|p(x1)− p(x2)| ≤
C

−log|x1− x2|
, ∀x1,x2 ∈Ω, with |x1− x2|<

1
2
. (4.3)

Under the assumption (4.3), the space of smooth functions C ∞
c (Ω) is dense in the variable exponent

Sobolev space W 1,p(x)(Ω). For the sake of convenience, we define W 1,p(x)
0 (Ω) as the closure of C ∞

c (Ω) in

W 1,p(x)(Ω). For any u ∈W 1,p(.)
0 (Ω) the p(x)-Poincare inequality

||u||Lp(x)(Ω) ≤C||∇u||Lp(x)(Ω),

holds true, where the constant C depends only on p and Ω. Thus, we define the norm on W 1,p(x)
0 (Ω) such

as

‖u‖
W 1,p(x)

0 (Ω)
= ‖∇u‖p(x).

For more properties of Lebesgue and Sobolev spaces with variable exponent, we refer the reader to the

book [113].

4.2.2 Functional framework and definitions

In this paragraph, we present the functional framework used in this work and we enunciate the notion of

weak solution adapted to solve the problem (4.1).

For any 0 < T <+∞, we define the time space

Lp−(0,T ;W 1,p(x)
0 (Ω)) =

{
u ∈ Lp(x)(QT ) :

T∫
0

‖∇u‖p−

p(x)dt < ∞

}
,

endowed with the norm

‖u‖
Lp−

(
0,T ;W 1,p(x)

0 (Ω)
) =

 T∫
0

‖∇u‖p−

p(x)dt

 1
p−

.
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Now, let us introduce the space V which is already considered in the studies of a parabolic problems with

variable exponent

V =

{
v ∈ Lp−

(
0,T ;W 1,p(x)

0 (Ω)
)

: |∇v| ∈ Lp(x) (QT )
N
}
,

endowed with the norm

||u||V = ||∇u||Lp(x)(QT )
.

Due to the p(x)-Poincaré inequality and the continuity of the embedding Lp(x)(QT ) ↪→Lp−(0,T ;W 1,p(x)
0 (Ω))

the norm ||.||V is equivalent to the following norm

‖v‖V = ‖v‖
Lp−

(
0,T ;W 1,p(x)

0 (Ω)
)+‖∇v‖p(x).

The space V is a separable and reflexive Banach space and V ∗ denoted its dual space. Some interesting

properties of the space V are stating in the following lemma

Lemma 4.2.1

[24] Let V be the space defined as above. Then,

i) we have the following continuous dense embedding

Lp+(0,T ;W 1,p(x)
0 (Ω)) ↪→ V ↪→ Lp−(0,T ;W 1,p(x)

0 (Ω)). (4.4)

In particular, since C ∞
c (QT ) is dense in Lp+(0,T ;W 1,p(x)

0 (Ω)), it is dense in V and for the corre-

sponding dual spaces we have

L(p−)′(0,T ;(W 1,p(x)
0 (Ω))∗) ↪→ V ∗ ↪→ L(p+)′(0,T ;(W 1,p(x)

0 (Ω))∗). (4.5)

ii) Moreover, the elements of V ∗ are represented as follow: For all ζ ∈V ∗, there exists ξ =(ξ1, . . . ,ξN)∈

(Lp′(x)(QT ))
N such that: ζ = div(ξ ) and

< ζ ,ϕ >V ∗,V =
∫

QT

ξ ∇ϕdxdt,

for any ϕ ∈ V . Furthermore, we have

||ζ ||V ∗ = max{||ξi||Lp(x)(QT )
, i = 1, ...,N}.
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iii) For any u ∈ V the following relationship holds true

min
{
||u||p

−

V , ||u||p
+

V

}
≤
∫

QT

|∇u|p(x) dxdt ≤max
{
||u||p

−

V , ||u||p
+

V

}
. (4.6)

Definition 4.2.1

A measurable function u : QT → R is said to be a weak solution to the problem (4.1) if it satisfies the

following properties

u ∈ V ∩L∞(QT ), ∂tu ∈ V ∗+L1(QT ),

f (t,x,u,∇u) ∈ L1(QT ), u(0,x) = u0(x) in L2(Ω),

∫ T

0
〈∂tu,ϕ〉+

∫
QT

A(t,x,∇u)∇ϕ =
∫

QT

f (t,x,u,∇u)ϕ,

for every test function ϕ ∈ V ∩L∞(QT ).

Remark 4.2.1

According to the result of [24], we have the following embedding

{
u ∈ V ∩L∞(QT ); ∂tu ∈ V ∗+L1(QT )

}
↪→ C

(
[0,T ];L2(Ω)

)
,

which gives that the initial condition makes sense in the definition 4.2.1.

Lemma 4.2.2

[85] Assuming that π : R→ R is C1 piecewise function such that π(0) = 0 and π ′ = 0 outside a compact

set. Let Π(s) =
∫ s

0 π(σ)dσ . If u ∈ V with ∂tu ∈ V ∗+L1 (QT ) , then

∫ T

0
〈∂tu,π(u)〉dt = 〈∂tu,π(u)〉V ∗+L1(QT ),V ∩L∞(QT )

=
∫

Ω

Π(u(T ))dx−
∫

Ω

Π(u(0))dx

Before closing this section, we state some truncation functions which will be useful in this work. For

every positive real number k, we set Tk(s) = min(k,max(s,−k)) and Sk(r) =
∫ r

0 Tk(s)ds.

4.3 An existence result with bounded nonlinearity

The purpose of this section is to establish the existence of a weak solution to the problem (4.1) when the

nonlinearity f is bounded almost everywhere. We state in the following theorem the main result of this

section.
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Theorem 4.3.1

Under the hypotheses (H1)-(H6), we assume the existence of a nonnegative function M ∈ L∞(QT ) such

that for a.e. (t,x) in QT ,

| f (t,x,r,ξ )| ≤M(t,x) for all (r,ξ ) ∈ R×RN . (4.7)

Then for every u0 ∈ L2(Ω), the problem (4.1) has a weak solution.

Proof.

In order to prove the result of Theorem 4.3.1, we propose to apply Schaeffer fixed point method. We set

X := [0,1]×V and we consider the following mapping

H : X −→ V ,

(λ ,v) 7−→ u.

where u is a weak solution of the following parabolic equation


∂tu−div((t,x,∇u)) = f (t,x,v,λ∇v) in QT

u(0,x) = λu0(x) in Ω

u(t,x) = 0 on ΣT

(4.8)

Due to the assumption (4.7), the function f (t,x,v,λ∇v) belongs to L2(QT ) and the initial condition λu0

belongs to L2(QT ). Moreover, for (λ ,v) ∈X fixed, we deduce from Lemma 4.5.1 the existence of a

unique weak solution u ∈ V to the problem (4.8) in the sense that

∂tu ∈ V ∗+L2(QT ), u(0,x) = λu0(x) in L2(Ω),∫ T

0
〈∂tu,ϕ〉+

∫
QT

A(t,x,∇u)∇ϕ =
∫

QT

f (t,x,v,λ∇v)ϕ,
(4.9)

for every test function ϕ ∈ V ∩L2(QT ). As a consequence, the mapping H is well defined. Furthermore,

from the assumption (H6) and (4.9), it is easy to verify that for all v ∈ V , we have H (0,v) = 0. We set

U =

{
u ∈ V : u = H (λ ,u) for some λ ∈ [0,1]

}
.

To apply Schaeffer’s fixed point Theorem, we proceed by three steps:

144



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

Step 1: the mapping H is continuous

Let (λn,vn) be a sequence in X such that

(λn,vn)→ (λ ,v) strongly in X .

Let us define un = H (λn,vn), which means that un satisfies the following weak formulation

∂tun ∈ V ∗+L2(QT ), un(0,x) = λnu0(x) in L2(Ω),∫ T

0
〈∂tun,ϕ〉+

∫
QT

A(t,x,∇un)∇ϕ =
∫

QT

f (t,x,vn,λn∇vn)ϕ,
(4.10)

for all ϕ ∈ V ∩L2(QT ). To prove the continuity of H it suffices to prove that (un) converges strongly to

u in V . According to the result of Lemma 4.5.1, one obtains

‖un‖V ≤C(Ω,T )
(
‖λnu0‖L2(Ω)+‖ f (t,x,vn,λn∇vn)‖L2(QT )

)
,

‖∂tun‖V ∗+L2(QT ) ≤C(Ω,T )
(
‖H‖p′(x)+‖λnu0‖L2(Ω)+‖ f (t,x,vn,λn∇vn)‖L2(QT )

)
.

By using the assumption (4.7), it follows that (un) is bounded in V and (∂tun) is bounded in V ∗+L2(QT ).

On the other hand, due to the compactness result of Lemma 4.5.2, there exists a subsequence of (un) still

denoted by (un) for simplicity such that

un→ u strongly in Lp−(QT ) and a.e. in QT ,

∇un→ ∇u a.e. in QT ,

(4.11)

therefore,

A(t,x,∇un)⇀ A(t,x,∇u) weakly in Lp′(x)(QT ).

From the strong convergence of (λn,vn) in X , it follows that

f (t,x,vn,λn∇vn)→ f (t,x, ,v,λ∇v) a.e in QT ,

using hypotheses (4.7) and Lebesgue convergence theorem, one has

f (t,x,vn,λn∇vn)→ f (t,x, ,v,λ∇v) strongly in L(p−)′(QT ). (4.12)
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We Subtract the equation (4.10) for different indexes n and m, one gets

∫ T

0
〈∂t(un−um),ϕ〉+

∫
QT

(A(t,x,∇un)−A(t,x,∇um))∇ϕ

=
∫

QT

( f (t,x,vn,λn∇vn)− f (t,x,vm,λm∇vm))ϕ.

Setting ϕ = (un−um), one obtains

∫
QT

(A(t,x,∇un)−A(t,x,∇um))(∇un−∇um)≤
1
2

∫
Ω

|(λnu0−λmu0)|2

+
∫

QT

( f (t,x,vn,λn∇vn)− f (t,x,vm,λm∇vm))(un−um)

(4.13)

Using Hölder’s inequality on the right-hand side of (4.13), we get

∫
QT

(A(t,x,∇un)−A(t,x,∇um))(∇un−∇um)≤
|λn−λm|2

2

∫
Ω

|u0|2

+‖ f (t,x,vn,λn∇vn)− f (t,x,vm,λm∇vm)‖L(p−)′ (QT )
‖un−um‖Lp−(QT ).

(4.14)

By employing the almost everywhere convergence of (∇um) in QT , the assumption (H3) and (4.12), we

may employ Fatou’s Lemma in order to the limit in (4.14) as m→ ∞

∫
QT

(A(t,x,∇un)−A(t,x,∇u))(∇un−∇u)≤ |λn−λ |2

2

∫
Ω

|u0|2

+‖ f (t,x,vn,λn∇vn)− f (t,x,v,λ∇v)‖L(p−)′ (QT )
‖un−u‖Lp−(QT ).

(4.15)

From (4.11) and (4.12), it follows that

lim
n→∞

∫
QT

(A(t,x,∇un)−A(t,x,∇u))(∇un−∇u)≤ 0.

In view of the result [26], we deduce that (un) converges strongly to u in V . Passing to the limit in (4.10),

one gets

∂tu ∈ V ∗+L2(QT ), u(0,x) = λu0(x) in L2(Ω),∫ T

0
〈∂tu,ϕ〉+

∫
QT

A(t,x,∇u)∇ϕ =
∫

QT

f (t,x,v,λ∇v)ϕ,
(4.16)

for all ϕ ∈V ∩L2(QT ). Using the uniqueness of the weak solution of (4.16), we deduce that H (λ ,v)= u,

which gives the continuity of H .

Step 2: the mapping H is compact
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We consider (λn,vn) a bounded sequence in X , we will prove that un = H (λn,vn) is relatively compact

in V , we have

λn→ λ
∗,

vn→ v weakly in V .

In this step, the difficulties come back in the absence of the almost everywhere convergence of (∇vn) in

QT , but we can overcome these difficulties by employing the assumption (4.7). By following the same

reasoning of the first step, one gets

• un is bounded in V

• ∂tun is bounded in V ∗+L2(QT )

•
(

f (t,x,vn,λn∇vn)

)
n

is bounded in L2(QT )

Thanks to the compactness result of Lemma 4.5.2, there exist a subsequence still denoted by un for

simplicity such that for

un→ u strongly in Lp−(QT ) and a.e. in QT .

∇un→ ∇u and a.e. in QT .

Furthermore, we have

A(t,x,∇un)⇀ A(t,x,∇u) weakly in Lp′(x)(QT ).

We shall prove that (un) converges stongly in V . We follow the same reasoning of the first step, for

different index m and n, one has

∫
QT

(A(t,x,∇un)−A(t,x,∇um))(∇un−∇um)≤
|λn−λm|2

2

∫
Ω

|u0|2

+
∫

QT

( f (t,x,vn,λn∇vn)− f (t,x,vm,λm∇vm))(un−um).

(4.17)

To deal with the right-hand side of (4.17), we apply the assumption (4.7) and Hölder’s inequality, we have

∫
QT

( f (t,x,vn,λn∇vn)− f (t,x,vm,λm∇vm))(un−um)≤ 2‖M‖L∞(QT )

∫
QT

|un−um|

≤C‖un−um‖Lp−(QT ).
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Therefore,

∫
QT

(A(t,x,∇un)−A(t,x,∇um))(∇un−∇um)≤
|λn−λm|2

2

∫
Ω

|u0|2

+C‖un−um‖Lp−(QT ).

(4.18)

In view of the almost everywhere convergence of (∇um) and thanks to the assumption (H3), we can apply

Fatou’s Lemma to pass to the limit in (4.18) as m→ ∞, one obtains

∫
QT

(A(t,x,∇un)−A(t,x,∇u))(∇un−∇u)≤ |λn−λ ∗|2

2

∫
Ω

|u0|2

+C‖un−u‖Lp−(QT ).

(4.19)

Using the strong convergence of (un) in Lp−(QT ), one deduce

lim
n→∞

∫
QT

(A(t,x,∇un)−A(t,x,∇u))(∇un−∇u)≤ 0.

With the help of the result of [26], we conclude that (un) converges strongly to u in V which implies the

compactness of the mapping H .

Step 3: the set U is bounded in V

Let u ∈ V such that u = H (λ ,u) for some λ ∈ [0,1], we aim to prove that u is bounded in V indepen-

dently of λ . By taking ϕ = u as a test function in (4.9), it comes that

1
2

∫
Ω

u2(T )+
∫

QT

A(t,x,∇u)∇u =
λ 2

2

∫
Ω

u2
0 +

∫
QT

f (t,x,u,λ∇u)u.

Thanks to the coercivity assumption (H2) and by using (4.7), we get

d
∫

QT

|∇u|p(x) ≤
∫

Ω

u2
0 +

∫
QT

|Mu|.

Hölder’s inequality leads to

d
∫

QT

|∇u|p(x) ≤ ‖u0‖L2(Ω)+C‖M‖L∞(QT )‖u‖Lp− (QT )
.
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Applying the result of (4.4) and (4.6), one has

min
{
||u||p

−

V , ||u||p
+

V

}
≤C(‖u0‖L2(Ω)+‖M‖L∞(QT )‖u‖V ).

Using Young’s inequality, one obtains

min
{(

p−−1
p−

)
‖u‖p−

V ,

(
p+−1

p+

)
‖u‖p+

V

}
≤C.

where C is a constant depending only on T,Ω, p−, p+,d,‖u0‖L2(Ω) and ‖M‖L∞(QT ). As a consequence, U

is bounded in V , then, a direct application of Schaeffer’s fixed point theorem (see e.g [107]) permit us to

deduce the existence of a weak solution to the problem (4.1).

4.4 An existence result with nonstandard growth nonlinearity

In this section, we are concerned by the existence result of a weak solution to (4.1) in the case when the

nonlinearity f is nonnegative and has a critical growth with respect to the gradient namely

| f (t,x,r,ξ )| ≤ c(|r|)
[
G(t,x)+ |ξ |p(x)

]
, (4.20)

where c : [0,+∞)→ [0,+∞) is a non-decreasing function and G is a nonnegative function belonging to

L1(QT ).

Under the assumption that an order couple of sub- and super-solution existent, we prove the existence

of a weak solution to (4.1), which is a SOLA solution (Solution obtained as a limit of approximation).

First of all, let us define the notion of weak sub- and super-solution to (4.1).

Definition 4.4.1

A weak sub-solution of problem (4.1) is a function u ∈ V ∩L∞(QT ), ∂tu ∈ V ∗+L1(QT ) such that


∂tu−div(A(t,x,∇u))≤ f (t,x,u,∇u) in QT ,

u = 0 on ΣT ,

u(0,x)≤ u0(x) in Ω.

(4.21)

A weak super-solution of problem (4.1) is a function u satisfying (4.21) with ≤ is replaced by ≥.
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In the following theorem, we state the main result of this section.

Theorem 4.4.1

Assume that (H1)-(H6) and the nonlinearity f satisfies the growth assumption (4.20). Moreover, we as-

sume the existence of (u,u) sub- and super solution such as u ≤ u. Then, for any u0 ∈ L∞(Ω) such that

u(0)≤ u0 ≤ u(0), the system (4.1) has a weak solution u such that u≤ u≤ u a.e. in QT .

To establish the result of Theorem 4.4.1, we will truncate the nonlinearity f (t,x,u,∇u) to become bounded,

thereafter we consider an approximate problem of (4.1). The existence of a weak solution of the last one

will be proved by applying the result of section 3. Thereafter, to pass to the limit in the approximate

problem, we will provide necessaries a priori estimates on the approached solution.

4.4.1 Approximate problem

Let u and u respectively be the sub- and super-solution of the problem (4.1), we introduce for all u ∈ V

the following truncation function

T (u) = u− (u−u)++(u−u)+.

For any n≥ 0, we define the truncation function ψn ∈ C ∞
c (R) such as 0≤ ψn ≤ 1 and

ψn(s) =


1 if |s| ≤ n,

0 if |s| ≥ n+1.

For almost all (t,x) ∈ QT and for all (r,ξ ) ∈ R×RN , we approximate f by

fn(t,x,u,∇u) = ψn (|u|+‖∇u‖) f (t,x,T (u),∇T (u)). (4.22)

It is easy to verify that these functions fn satisfies the properties (H4)-(H6). Moreover, from (H5) and

(4.22), we deduce that | fn| ≤Mn, where Mn is a constante depending only on n. Now, we can define the

approximate problem of (4.1) as follows


∂tun−div(A(t,x,∇un) = fn(t,x,un,∇un) in QT ,

un(0,x) = u0(x) in Ω,

un(t,x) = 0 on ΣT .

(4.23)
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From the result of Theorem 4.3.1, we obtain the existence of un a weak solution to the approximate

problem (4.23). In the following lemma, we will prove that un is between u and u respectively the sub-

and super-solution of (4.1). These estimate leads to obtain that un is belonging in L∞(QT ).

Lemma 4.4.1

Let un be the weak solution of the approximate problem (4.23), then

u≤ un ≤ u a.e. in QT . (4.24)

Proof.

Let us prove that un ≤ u a.e. in QT . it is clearly that (un− u)+ ∈ V ∩L∞(Ω), then we can choose ϕ =

(un−u)+ as a test function in the weak formulation of (4.23), one has

∫ T

0
〈∂tun,(un−u)+〉+

∫
QT

A(.,∇un)∇(un−u)+ =
∫

QT

fn(.,un,∇un)(un−u)+. (4.25)

Since u is a super-solution of the problem (4.1), we then have

∫ T

0
〈∂tu,(un−u)+〉+

∫
QT

A(.,∇u)∇(un−u)+ ≥
∫

QT

f (.,u,∇u)(un−u)+. (4.26)

By subtracting (4.26) from (4.25) , we get

∫ T

0
〈∂t(un−u),(un−u)+〉+

∫
QT

(A(.,∇un)−A(.,∇u))∇(un−u)+

≤
∫

QT

( fn(.,un,∇un)− f (.,u,∇u))(un−u)+.
(4.27)

To deal with the first integral of (4.27) one may use Lemma 4.2.2, it comes that

∫ T

0
〈∂t(un−u),(un−u)+〉=

∫
Ω

Π((un−u)(T ))dx−
∫

Ω

Π((un−u)(0))dx,

where in this case Π(y) =
∫ y

0 s+ ds. Since u is a super-solution of (4.1), one may deduce that (un−u)(0)≤

0, then Π((un−u)(0))≤ 0. Therefore, one gets

∫ T

0
〈∂t(un−u),(un−u)+〉 ≥ .0
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For the right-hand side of (4.27), one may utilize (4.22) to obtain

∫
QT

( fn(.,un,∇un)− f (.,u,∇u))(un−u)+

≤
∫

QT

( f (t,x,T (un),∇T (un))− f (t,x,u,∇u))(un−u)+

≤
∫
{un≥u}

( f (t,x,u,∇u)− f (t,x,u,∇u))(un−u) = 0.

We therefore have ∫
QT

(A(t,x,∇un)−A(t,x,∇u))∇(un−u)+ ≤ 0.

which implies that, ∫
{un≥u}

(A(t,x,∇un)−A(t,x,∇u))∇(un−u)≤ 0.

Using the property (H3), one gets ∇(un−u) = 0 a.e. in the set {(t,x)∈QT , un ≥ u}. Consequently, un = u

a.e. in the set {(t,x) ∈ QT , un ≥ u} which implies that un ≤ u a.e. in QT .

By using similar reasoning of the first proof, we can obtain u≤ un a.e. in QT .

Remark 4.4.1

Note that the estimate (4.24) plays a crucial role in our work since it is helpful in several steps of the

proof of a priori estimates. Moreover, from (4.24) one may deduce that

‖un‖∞ ≤ ‖u‖∞ +‖u‖∞ := Λ,

which implies that (un) is bounded in L∞(QT ).

4.4.2 A priori estimates

First of all, we give a technical lemma which is frequently used in what follows.

Lemma 4.4.2

Let θ(s) = seηs2
,s ∈ R and let Θ(s) =

∫ s
0 θ(τ)dτ. Then

θ(0) = 0, Θ(s)≥ 0, θ
′(s)> 0.

When η ≥ b2

4a2 is fixed, the following relationships hold true

aθ
′(s)−b|θ(s)| ≥ a

2
, ∀s ∈ R. (4.28)

152



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

Lemma 4.4.3

Let un be the sequence defined as above. Then there exists a constant C independent of n such that

‖un‖V ≤C,

‖ fn(t,x,un,∇un)‖L1(QT ) ≤C,

‖∂tun)‖V ∗+L1(QT ) ≤C.

Proof.

Using the estimate (4.24), one may deduce that θ (un) ∈ V ∩ L∞(QT ), then by tacking θ (un) as a test

function in the weak formulation of (4.23), we obtain

∫ T

0
〈∂tun,θ (un)〉+

∫
QT

A(t,x,∇un)∇(un)θ
′ (un) =

∫
QT

fn(t,x,un,∇un)θ (un) . (4.29)

For the first integral, we have

∫ T

0
〈∂tun,θ (un)〉=

∫
Ω

[Θ(un(T ))−Θ(u0)] .

Then, from (H2) and (4.24) the inequality (4.29) becomes

∫
Ω

Θ(un(T ))+d
∫

QT

|∇un|p(x) θ
′ (un)≤

∫
Ω

Θ(u0)+
∫

QT

| fn(t,x,un,∇un)θ(un)|

≤
∫

Ω

Θ(u0)+
∫

QT

c(|un|)
(

G(t,x)+ |∇un|p(x)
)
|θ(un)|

≤
∫

Ω

Θ(u0)+ c(Λ)
∫

QT

(
G(t,x)+ |∇un|p(x)

)
|θ(un)| .

We rewrite the above inequality as

∫
Ω

Θ(un(T ))+
∫

QT

(
d θ
′ (un)− c(Λ) |θ (un)|

)
|∇un|p(x) ≤

∫
Ω

Θ(u0)dx+
∫

QT

G(t,x)|θ(un)|.

Choosing the constant η ≥ (c(Λ))2

4d2 in the Lemma 4.4.2, one obtains

d θ
′ (un(t,x))− c(Λ) |θ (un(t,x))| ≥

d
2

a.e in QT .

153



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

On the other hand Θ(un(T ))≥ 0, therefore

d
2

∫
QT

|∇un|p(x) ≤
∫

Ω

Θ(u0)+
∫

QT

G(t,x)|θ(un)|,

we may utilize estimate (4.24) to deduce that

∫
QT

|∇un|p(x) ≤C (4.30)

where C is a constant depending only on ‖u‖∞, ‖u‖∞ and ‖G‖L1(QT ). By employing the result of (4.6) in

(4.30), we conclude that un is uniformly bounded in V . To estimate the nonlinearity ( fn) in L1(QT ), we

use the growth condition (4.20), one gets

∫
QT

| fn(t,x,un,∇un)| ≤ c(|un|)
∫

QT

(
G(t,x)+ |∇un|p(x)

)
≤ c(Λ)

∫
QT

(
G(t,x)+ |∇un|p(x)

)
.

Applying the result of (4.30), we conclude that fn is bounded in L1(QT ). Consequently, from the equation

satisfies by un it follows that (∂tun) is bounded in V ∗+L1(QT ).

Lemma 4.4.4

The sequence (un) converges strongly to some u in V .

Proof.

From the result of Lemma 4.4.3, we have (un) is bounded in V and fn(t,x,un,∇un) is bounded in L1(QT ).

Then, by applying the compactness result of Lemma 4.5.2, we can extract a subsequence of (un) still

denoted by (un) such that

• (un)→ u strongly in Lp−(QT ) and a.e. in QT ,

• (∇un)→ ∇u a.e. in QT .

Therefore,

A(t,x,∇un)⇀ A(t,x,∇u) weakly in Lp′(x)(QT ).

We shall prove that (un) converges stongly in V . To do this, we use the difference between the equations

satisfied by un and um, we have

∂t (un−um)−div(A(∇un))+div(A(∇um)) = fn(un,∇un)− fm(um,∇um).
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Tacking θ(un−um) ∈ V ∩L∞(QT ) as a test function in the weak formulation of the latter equation, one

obtains

∫ T

0
〈∂t(un−um),θ(un−um)〉+

∫
QT

(A(∇un)−A(∇um)) ·∇(un−um)θ
′(un−um)

+
∫

QT

(
fn(un,∇un)− fm(um,∇um

)
θ(un−um) = 0.

Since un and um have the same initial condition, we have

∫ T

0
〈∂t(un−um),θ(un−um)〉=

∫
Ω

Θ(un(T )−um(T ))≥ 0.

On the other hand, employing the growth condition (4.20), one has

∫
QT

(A(∇un)−A(∇um)) ·∇(un−um)θ
′(un−um)

≤ c(Λ)
∫

QT

(G(t,x)+ |∇un|p(x)+ |∇um|p(x))|θ(un−um)|.

Since Θ is positive we get by using the coercivity condition (H2)

∫
QT

(A(∇un)−A(∇um)) ·∇(un−um)θ
′(un−um)≤ c(Λ)

∫
QT

G(t,x)|θ(un−um)|

+
c(Λ)

d

∫
QT

A(∇un) ·∇un|θ(un−um)|+
c(Λ)

d

∫
QT

A(∇um) ·∇um|θ(un−um)|

≤ c(Λ)
∫

QT

G(t,x)|θ(un−um)|+
c(Λ)

d

∫
QT

A(∇un) ·∇(un−um)|θ(un−um)|

+
c(Λ)

d

∫
QT

A(∇un) ·∇um|θ(un−um)|+
c(Λ)

d

∫
QT

A(∇um) ·∇un|θ(un−um)|

− c(Λ)
d

∫
QT

A(∇um) ·∇(un−um)|θ(un−um)|.

It follows that,

1
d

∫
QT

(
d θ
′(un−um)− c(Λ)|θ(un−um)|

)
(A(∇un)−A(∇um)) ·∇(un−um)

≤ c(Λ)
∫

QT

G(t,x)|θ(un−um)|+
c(Λ)

d

∫
QT

A(∇un) ·∇um|θ(un−um)|

+
c(Λ)

d

∫
QT

A(∇um) ·∇un|θ(un−um)|.
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Choosing the constant η ≥ c(Λ)2

4d2 in the Lemma 4.4.2, one has

1
2

∫
QT

(A(∇un)−A(∇um)) ·∇(un−um)≤ c(Λ)
∫

QT

G(t,x)|θ(un−um)|

+
c(Λ)

d

∫
QT

A(∇un) ·∇um|θ(un−um)|+
c(Λ)

d

∫
QT

A(∇um) ·∇un|θ(un−um)|.
(4.31)

Due to the fact that (∇un)→ ∇u a.e. in QT and (A(t,x,∇un))⇀ (A(t,x,∇un)) weakly in Lp′(x)(QT ), we

can use Fatou’s Lemma to pass the limit when m tends to +∞ in (4.31), one obtains

1
2

∫
QT

(A(∇un)−A(∇u)) ·∇(un−u)≤ c(Λ)
∫

QT

G(t,x)|θ(un−u)|

+
c(Λ)

d

∫
QT

A(∇un) ·∇u|θ(un−u)|+ c(Λ)
d

∫
QT

A(∇u) ·∇un|θ(un−u)|.

On the other hand, from (H3), (4.30), (4.24) and by applying Lebesgue theorem, we pass to the lim when

n tends to +∞ to obtain

lim
n→∞

∫
QT

(A(∇un)−A(∇u)) ·∇(un−u)≤ 0.

Consequently,

∇un→ ∇u strongly in Lp(x)(QT ).

4.4.3 Passing to the limit

In this stage, we will prove that the limit of the sequence un is a weak solution of the system (4.23)

in the sense of the definition 4.2.1. Thanks to the result of Lemma 4.4.4, we obtain the existence of a

subsequence, still denoted by un for simplicity, such that

∇un→ ∇u strongly in Lp(x)(QT ) and a.e. in QT

un→ u strongly in Lp−(QT ) and a.e. in QT

A(t,x,∇un)⇀ A(t,x,∇u) weakly in Lp′(x)(QT )

fn(t,x,un,∇un)→ f (t,x,u,∇u) a.e. in QT .

Let us show that

fn(t,x,un,∇un)→ f (t,x, ,u,∇u) strongly in L1(QT ).
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To do this, it suffices to prove that fn(t,x,un,∇un) is equi-integrable in L1(QT ), namely

∀ε > 0,∃δ > 0,∀E ⊂ QT , if |E|< δ then
∫
E

| fn(t,x,un,∇un)|dxdt ≤ ε.

Let E be a mesurable subset of QT and ε > 0, using the growth assumption (4.20) and (4.24), one has

∫
E
| fn(t,x,un,∇un)| ≤

∫
E

c(Λ)
(

G(t,x)+ |∇un|p(x)
)
. (4.32)

We have G ∈ L1(QT ) then G is equi-integrable in L1(QT ) and therefore there exists δ1 > 0, such that, if

| E |≤ δ1, we have

c(Λ)
∫

E
G(t,x)≤ ε

2
.

On the other hand, in view to the result of Lemma 4.4.4, it comes that (|∇un|p(x)) is equi-integrable in

L1(QT ), which implies the existence of δ2 > 0, such that, if | E |≤ δ2, we have

c(Λ)
∫

E
|∇un|p(x) ≤

ε

2
.

By choosing δ ∗ = inf(δ1,δ2), if | E |≤ δ ∗, it follows that

∫
E

| fn(t,x,un,∇un)| ≤ ε.

this finishes the proof of theorem 4.4.1.

4.5 Appendix

In this appendix, we propose to prove some auxiliaries results used in the proof of the main result.

Lemma 4.5.1

Assume that (H1)-(H3) hold, then

i) for any v0 ∈ L2(Ω) and g ∈ L2(QT ) the following problem


∂tv−div(A(t,x,∇v)) = g(t,x) in QT

v(0,x) = v0(x) in Ω

v(t,x) = 0 on ΣT

(4.33)
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has a unique solution v ∈ V ∩C ([0,T ],L2(Ω)) such that

∂tv ∈ V ∗+L2(QT ), v(0,x) = v0(x) in L2(Ω)

∫ T

0
〈∂tv,ϕ〉+

∫
QT

A(t,x,∇v)∇ϕ =
∫

QT

g(t,x)ϕ, (4.34)

with ϕ ∈ V ∩L2(QT ).

ii) if v is the solution of (4.33), then we have

‖v‖V + sup
0≤t≤T

‖v(t)‖L2(Ω) ≤C(Ω,T )
(
‖v0‖L2(Ω)+‖g‖L2(QT )

)
, (4.35)

‖∂tv‖V ∗+L2(QT ) ≤C(Ω,T )
(
‖H‖p′(x)+‖v0‖L2(Ω)+‖g‖L2(QT )

)
. (4.36)

Proof.

i) For the existence and uniqueness of the weak solution of the problem (4.33) we refer the reader for

to see [123] and by a direct application of the Aubin-Simon theorem, we deduce that v belongs to

C ([0,T ],L2(Ω)) which means that the initial condition makes a sens.

ii) By choosing ϕ = vχ(0,t) in (4.34) with t < T , one has

1
2

∫
Ω

v2(t)+
∫

Qt

A(τ,x,∇v)∇v =
1
2

∫
Ω

v2
0 +

∫
Qt

v g(τ,x), (4.37)

where Qt =]0, t[×Ω. Employing the coercivity assumption (H2) in (4.37), one has

1
2

∫
Ω

v2(t)+d
∫

Qt

|∇v|p(x) ≤ 1
2

∫
Ω

v2
0 +

∫
Qt

v g(τ,x). (4.38)

As a consequence, ∫
Ω

v2(t)≤
∫

Qt

g2(τ,x)+
∫

Qt

v2 +
∫

Ω

v2
0. (4.39)

By applying Gronwall’s lemma, it follows that

∫
QT

v2 ≤ (exp(T )−1)

(
‖g‖2

L2(QT )
+
∫

Ω

v2
0dx

)
. (4.40)
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Substituting the above expression in (4.39), one obtains

sup
0≤t≤T

∫
Ω

v2(t)≤ ‖g‖2
L2(QT )

+ exp(T )
(
‖g‖L2(QT )+

∫
Ω

v2
0

)
, (4.41)

then we have,

sup
0≤t≤T

‖v(t)‖L2(Ω) ≤C(T,Ω)

(
‖v0‖L2(Ω)+‖g‖L2(QT )

)
, (4.42)

by combining (4.37), (4.42) and (H2), we deduce that

∫
QT

|∇v|p(x)dxdt ≤C(T,Ω)

(∫
QT

g2dxdt +
∫

Ω

v2
0

)
. (4.43)

By applying the result of (4.6), one gets

‖v‖V ≤C(T,Ω)
(
‖g‖L2(QT )+‖v0‖L2(Ω)

)
, (4.44)

which implies that v is uniformly bounded in V . Due to the growth assumption (H1), we have

∫
QT

|A(t,x,∇v)|p′(x) ≤C
(∫

QT

|H(t,x)|p′(x)+
∫

QT

|∇v|p(x)
)

≤C(T,Ω)

(∫
QT

|H(t,x)|p′(x)+
∫

QT

g2 +
∫

Ω

v2
0

)
.

(4.45)

Hence,

‖A(t,x,∇v)‖p′(x) ≤C(T,Ω)
(
‖H‖p′(x)+‖g‖L2(QT )+‖v0‖L2(Ω)

)
. (4.46)

To estimate ∂tv in the norm of the space V ∗+L2(QT ), we use the equation satisfied by v, one has

‖∂tv‖V ∗+L2(QT ) ≤C
(
‖A(t,x,∇v)‖p′(x)+‖g‖L2(QT )

)
≤C(T,Ω)

(
‖H‖p′(x)+‖g‖L2(QT )+‖v0‖L2(Ω)

)
.

(4.47)
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Lemma 4.5.2

Assume that (H1)-(H4) hold and let un ∈ V ∩C
(
[0,T ];L2(Ω)

)
be the weak solution of the problem


∂tun−div(A(t,x,∇un)) = fn(t,x,un,∇un) in QT

un(0,x) = un
0(x) in Ω

un(t,x) = 0 on ΣT

(4.48)

in the sense that

∂tun ∈ V ∗, un(0,x) = un
0(x) in L2(Ω)∫ T

0
〈∂tun,ϕ〉+

∫
QT

A(t,x,∇un)∇ϕ =
∫

QT

fn(t,x,un,∇un)ϕ,
(4.49)

for all test function ϕ ∈ V . If (un
0) is bounded in L1(Ω), (un) is bounded in V and ( fn(t,x,un,∇un)) is

bounded in L1(QT ). Then, we have (up to a subsequence)

i) un→ u strongly in Lp−(QT ) and a.e. in QT

ii) ∇un→ ∇u a.e. in QT .

Proof.

i) For s fixed, we have the following embedding relationships

• s > N
2 , we have Hs

0(Ω) ↪→ L∞(Ω), and then L1(Ω) ↪→ H−s(Ω)

• s−1 > N
2 , one has Hs

0(Ω) ↪→W 1,p(x)(Ω), consequently, W−1,p′(x)(Ω) ↪→ H−s(Ω).

On the other hand, we have (un) is bounded in V and ( fn(t,x,un,∇un)) is bounded in L1(QT ), and

by employing the equation (4.48), it result that (∂tun) is bounded in L1 (0,T ;H−s(Ω)). Further-

more, by using the embedding relationship (4.4), we get (un) is bounded in Lp−(0,T ;W 1,p(x)
0 (Ω)).

Moreover, we have

W 1,p(x)
0 (Ω)

compact
↪→ Lp(x)(Ω) ↪→ H−s(Ω).

Thanks to the compactness result of Simon (see Corollary 4, page 85 of [124]), we deduce that (up

to a subsequence)

un→ u strongly in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT .
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Therefore, the continuous embedding Lp−(0,T ;Lp(x)(Ω)) ↪→ Lp−(QT ) implies that un→ u strongly

in Lp−(QT ) and a.e. in QT .

ii) In this stade, we aim to extend the compactness result of [110] to a more general class of quasilinear

parabolic equation with variable exponent. Then. to prove the almost everywhere convergence of

(∇un), we propose to show that (∇un) is a Cauchy sequence in measure, namely

∀δ > 0,∀ε > 0,∃N0 such that ∀n,m≥ N0

meas{(t,x), |(∇un−∇um)(t,x)| ≥ δ} ≤ ε.

To do this, let δ > 0 and ε > 0. We remark that for k > 0 and η > 0 the following inequality holds

meas{(t,x), |(∇un−∇um)(t,x)| ≥ δ} ≤meas(ω1)+meas(ω2)

+meas(ω3)+meas(ω4),

where,

ω1 = {(t,x), |∇un| ≥ k} , ω2 = {(t,x), |∇um| ≥ k} , ω3 = {(t,x), |un−um| ≥ η} ,

ω4 = {(t,x), |(∇un−∇um)| ≥ δ , |∇un| ≤ k, |∇um| ≤ k, |un−um| ≤ η} .

To bound meas(ω1) and meas(ω2), we will use the boundness of un and um in V . Let us remark

that

k meas(ω1)≤
∫

ω1

|∇un| ≤
∫

QT

|∇un| .

From assumption (4.2), the following continuous embedding V ↪→ L1(0,T ;W 1,1
0 (Ω)) holds true,

therefore

meas(ω1)≤
1
k
‖∇un‖L1(QT ) ≤

C
k
‖un‖V ≤

C
k
.

By the same manner, one has

meas(ω2)≤
C
k
.

Then, we fix k large enough such that meas(ω1) ≤ ε and meas(ω2) ≤ ε. To bound meas(ω3), we
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will utilize the strong convergence of un in Lp−(QT ). For all m, n ∈ N, we have

η meas(ω3)≤
∫

ω3

|(un−um)| ≤
∫

QT

|(un−um)| .

Using Hölder’s inequality, it follows that

meas(ω3)≤
C
η
‖un−um‖Lp− (QT )

.

On the other hand, from i) it results that (un) is strongly convergent in Lp−(QT ) which implies that

(un) is a Cauchy sequence in Lp−(QT ). Then, for a given η there exists N0 such that for m, n≥ N0

one gets

meas(ω3)≤ ε.

It remains to bound meas(ω4) and to choose η . Due to the assumption (H3), one has [A(t,x,ξ1)−A(t,x,ξ2)] (ξ1−ξ2)>

0 for ξ1−ξ2 6= 0. On the other hand, employing the fact that the set

{
(ξ1,ξ2) ∈ R2N such that |ξ1| ≤ k, |ξ2| ≤ k and |ξ1−ξ2| ≥ δ

}
,

is compact and the function ξ 7→ A(t,x,ξ ) is continuous for almost all (t,x) in QT , we deduce

that [A(t,x,ξ1)−A(t,x,ξ2)] (ξ1−ξ2) reaches its minimum on this compact. Let us denote γ(t,x)

this minimum, by applying the assumption (H3), one has γ(t,x) > 0 a.e. in QT . Moreover, using

γ(t,x)> 0 a.e. in QT , we deduce the existence of ε ′ > 0 such that, for all measurable set ω ⊂ QT

∫
ω

γ ≤ ε
′ ⇒ meas(ω)≤ ε. (4.50)

Then, to get meas(ω4)≤ ε , it suffices to prove that
∫

ω4
γ ≤ ε ′. According to the properties of γ and

A, one obtains

∫
ω4

γ ≤
∫

ω4

[A(t,x,∇un)−A(t,x,∇um)] (∇un−∇um)1{|un−um|≤η}.

It is clearly that ∇Tη (un−um) = (∇un−∇um)1{|un−um|≤η} and thanks to the monotony assumption

(H3), one has ∫
A4

γ ≤
∫

QT

[A(t,x,∇un)−A(t,x,∇um)]∇Tη (un−um) .
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In accordance with (4.49), using the equation satisfied by (un−um) and choosing ϕ = Tη(un−um)∈

V ∩L∞(QT ) as a test function, one obtains

∫ T

0
〈(un−um)t ,Tη (un−um)〉+

∫
QT

[A(t,x,∇un)−A(t,x,∇um)]∇Tη (un−um)

=
∫

QT

( fn(t,x,un,∇un)− fm(t,x,um,∇um))Tn (un−um) .

For the first integral, we have

∫ T

0
〈(un−um)t ,Tη (un−um)〉=

∫
Ω

Sη(un−um)(T )−
∫

Ω

Sη(un−um)(0).

We remark that Sη(r)≥ 0 and Sη(r)≤ η |r|, thus

∫
QT

[A(t,x,∇un)−A(t,x,∇um)]∇Tη (un−um)≤ η

∫
Ω

|un
0−um

0 |

+η

∫
QT

| fn(t,x,un,∇un)− fm(t,x,um,∇um)| .

Since (un
0) is bounded in L1(Ω) and ( fn(t,x,un,∇un)) is bounded in L1(QT ), then the last inequality

becomes

∫
QT

[A(t,x,∇un)−A(t,x,∇um)]∇Tη (un−um)≤ ηC.

Choosing η ≤ ε ′

C
, one obtains

∫
ω4

γ ≤ ε ′ and from the result of (4.50), it follows that meas(ω4)≤ ε .

As a consequence, η is fixed and due to boundness result of meas(ω3), we deduce the existence of

N0 ∈ N such that for all m, n≥ N0 we have

meas({|(∇un−∇um)(x)| ≥ δ})≤ 4ε.

Hence (∇un) is a Cauchy sequence in measure, furthermore, (∇un) converges almost everywhere

to ∇u in QT (up to a subsequence).
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Chapter 5
Weak solution for quasilinear parabolic

systems with variable exponents and critical

growth nonlinearities with respect to the

gradient

5.1 Introduction

In recent years, there has been considerable attention in the study of various mathematical problems

involving variable exponent conditions. These studies employs the new theory of Lebesgue and Sobolev

spaces (Lp(x)(Ω),W 1,p(x)(Ω)) instead of having the usual p-structure which employ the standard theory of

Lp(Ω) and W 1,p(Ω) spaces [65, 137]. The interest in studying such problems is stimulated and motivated

by their applications in elastic mechanics, dynamics fluid, nonlinear elasticity, electrorheological fluids,

chemical reactions, heat transfer, population dynamics, epidemiological models, image restoration, and so

forth [38, 48, 67, 89, 115, 123]. Special interest has been devoted to the study quasilinear boundary value

problems. To enrich our presentation, we begin by recalling some interesting work with the constant case

p(x) = p. A major and comprehensive introduction to quasilinear stationary problems still is the book by

Drabek et al [50]. The authors presented a qualitative analysis of the existence, uniqueness and regularity

properties of solutions included a general class of quasilinear partial differential equation.

In recent years , the exponent variable notion has given birth to a new type of partial differential
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equation. Several researchers have been interested in this topic and various works have been established

to answer the often questions about existence, uniqueness and asymptotic behavior of the solution to the

considered systems. For instance, the excellent book by Rădulescu et al [113] presents the most suitable

materials for the functional analysis of linear and nonlinear partial differential equations (PDEs) using

spaces with variable exponents, in particular those of elliptical type. This book also makes it possible to

introduce the readers to the most important variational methods in the case of PDEs described by non-

homogeneous differential operators and containing one or more nonlinearities of power type with variable

exponents as well as their applications to various processes from applied sciences. Shangerganesh et

al.[123] studied a reaction-diffusion system with variable exponents modeling the spread of epidemic

disease describing the spatial spread of the feline leukemia virus. The nonlinearities of their system

depending on the solutions and not on their gradients. Using the Schauder fixed point Theorem, they

showed the existence and uniqueness of a weak solution.

In this article, we consider a class of degenerate parabolic systems with variable exponents having

critical growth nonlinearities with respect to gradient of the solutions. Our work is original in the sense

that it constitutes a generalization of previous works on parabolic equations with variable exponent see

for example [78, 123, 85] and their references, and also generalizes work on reaction-diffusion systems

with Laplacian operator type with standard growth nonlinearities, see for example [11, 9, 12, 36, 37, 106].

We focus our interest in the existence of weak solutions of a class of quasilinear parabolic system

modeled as follows 

∀i = 1, ...,M,

∂tui−div(Ai(t,x,∇ui)) = fi(t,x,u,∇u) in QT

ui(0,x) = u0i(x) in Ω

ui(t,x) = 0 on ΣT

(5.1)

where u = (u1, . . . ,uM), ∇u = (∇u1, . . . ,∇uM), M > 2 and Ω is an open bounded subset of RN , with

smooth boundary ∂Ω, QT = (0,T )×Ω, ΣT = (0,T )×∂Ω, T > 0. The initial data u0 = (u01, . . . ,u0M) is

assumed to be a measurable function belonging to L2(Ω)M. For all i= 1, ...,M, the operator - div(Ai(t,x,∇ui)

is of type Leray-Lions with variable exponents and Ai : QT ×RN → RN is a Carathéodory function satis-

fying for almost every (t,x) in QT and, for every ξi, ξ ∗i in RN (ξi 6= ξ ∗i ) the following properties

|Ai(t,x,ξi)| ≤ Hi(t,x)+ |ξi|pi(x)−1 , (5.2)
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Ai(t,x,ξi)ξi ≥ di|ξi|pi(x), (5.3)

〈Ai(t,x,ξi)−Ai(t,x,ξ ∗i ),ξi−ξ
∗
i 〉> 0, (5.4)

where Hi ∈ L
pi(x)

pi(x)−1 (QT ) and di > 0.

For all i = 1, ...,M, we assume that fi satisfies the following assumptions

fi : QT × [0,+∞)M×RM×RN×M → R are measurable, (5.5)

fi : QT × [0,+∞)M×RM×RN×M → Rare locally Lipschitz continuous. (5.6)

The result of this work include the case of pi(x)-Laplacian operator modeled by the following system



∀i = 1, ...,M,

∂tui−div
(
|∇ui|pi(x)−2∇ui

)
= fi(t,x,u,∇u) in QT

ui(0,x) = u0i(x) in Ω

ui(t,x) = 0 on ΣT .

(5.7)

On the other view, the obtained theoretical results remains applicable to the following mean curvature

system 

∀i = 1, ...,M,

∂tui−div(
((

1+ |∇ui|2
) (pi(x)−2)

2 ∇ui

)
= fi(t,x,u,∇u) in QT

ui(0,x) = u0i(x) in Ω

ui(t,x) = 0 on ΣT .

We have organized this chapter as follows. In Section 2, we recall some elementary notations and proper-

ties of Lebesgue and Sobolev spaces with variable exponent and we introduce the notion of weak solution

adapted to the system (5.1). Section 3 deals with auxiliary results which must be useful in the proof of

the main result. In Section 4, we use Schauder fixed point Theorem to prove the existence of a weak

periodic solution to the system (5.1) when the nonlinearities are bounded. Section 5 is devoted to proving

the main result, we show the existence of a nonnegative weak approximate solution to the system (5.1),
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then we establish necessaries a priori estimates in order to pass to the limit in the approximate problem.

5.2 Notations and Preliminaries.

In this section, we recall some preliminary results of Lebesgue and Sobolev spaces with variable ex-

ponent, as well as some of their properties and basic facts. The readers can consult the details in the

references [47, 79, 113, 57].

Let P(Ω) be the set of continuous functions p : Ω→]1,∞)M, for a giving p = (pi)i=1,...,M in P(Ω), we

denote, for i = 1, ...,M

p+i = sup
x∈Ω

pi(x), p−i = inf
x∈Ω

pi(x).

we define

p+ = sup
1≤i≤M

p+i , p− = inf
1≤i≤M

p−i .

Throughout this chapter, we assume that for i = 1,2, ..,M

1 < p− ≤ pi(x)≤ p+ < ∞. (5.8)

The variable exponent Lebesgue space Lpi(x)(Ω) is defined such as

Lpi(x)(Ω) =

{
u : Ω→ R measurable such that ρpi(x)(u)< ∞

}
,

where ρpi(x) is the convex modular

ρpi(x)(u) =
∫
Ω

|u(x)|pi(x)dx.

The space Lpi(.)(Ω) is equipped by the so-called Luxemburg norm

||u||pi(x)(Ω) = inf
{

α > 0, ρpi(x)

(
u
α

)
≤ 1
}
.

Related to the system case, we will introduce the space

Lp(x)(Ω) = Lp1(x)(Ω)× ...×LpM(x)(Ω),
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endowed with the following norme

‖u‖p(x) =
M

∑
i=1
‖ui‖pi(x).

Under the assumption (5.8), the space Lp(x)(Ω) becomes a separable, uniformly convex Banach space,

the dual space of Lp(x)(Ω) is defined by Lp′(x)(Ω) where p′ = (p′i)i=1,...,M satisfying p′i(x) =
pi(x)

pi(x)−1 . For

any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder inequality

M

∑
i=1

∫
Ω

|uivi|dx≤ 2M‖u‖p(x)‖v‖p′(x).

We can easily show the following Propositions using the known results for the case M = 1.

Proposition 5.2.1

1. if ‖u‖p(x) ≥ 1, then ‖u‖p−

p(x) ≤ ‖u‖p(x) ≤ ‖u‖
p+

p(x),

2. if ‖u‖p(x) < 1, then ‖u‖p+

p(x) ≤ ‖u‖p(x) ≤ ‖u‖
p−

p(x),

3. if Ω is bounded, the inclusion result between Lp(x)(Ω) spaces still holds. Let p1 = (p1,i), p2 =

(p2,i) ∈P(Ω), such that p1(x)≤ p2(x) in the sense that

∀i = 1,2, ...,M inf
x∈Ω

(p2,i(x)− p1,i(x))≥ 0,

we have Lp2(x)(Ω) ↪→Lp1(x)(Ω) and the embedding is continuous. that is, the embedding Lp2(x)(Ω) ↪→

Lp1(x)(Ω) is continuous.

4. Let q∈C(Ω̄) such that 1≤ q(x)< p∗(x), for all x ∈ Ω̄, then the embedding W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is continuous and compact, where

p∗(x) :=


N p(x)

N−p(x) , p(x)< N,

+∞, p(x)≥ N.

To generalize the variable exponent p : Ω̄→]1,∞)M to the case QT = [0,T ]×Ω, we set p(t,x) := p(x)

for all (t,x) ∈ QT . Then, the generalized Lebesgue space is described as follows

Lp(x)(QT ) =

{
u : QT → R measurable such that

∫
QT

|u(t,x)|p(x)dxdt < ∞

}
.
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The space (Lp(x)(QT ), ||.||p(x)) is a separable, uniformly convex Banach space with

||u||p(x) = inf
{

α > 0,
∫

QT

∣∣∣∣u(t,x)α

∣∣∣∣p(x)dxdt ≤ 1
}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is introduced such as

W 1, p(x)(Ω) =

{
u ∈ Lp(x)(Ω), |∇u|= (|∇ui|)i=1,...,M ∈ Lp(x)(Ω)

}
,

we equipped with the norm

‖u‖1, p(x) = ‖u‖p(x)+‖∇u‖p(x).

Due to this norm, the space W 1,p(x)(Ω) is a separable and reflexive Banach space. We assume that p(x)

satisfies the log-Hölder-continuity condition, i.e. there exists a constant C such that for all i = 1, ...,M

|pi(x1)− pi(x2)| ≤
−C

log|x1− x2|
, ∀x1,x2 ∈Ω, with |x1− x2|<

1
2
. (5.9)

As a consequence, the space of smooth functions is dense in the variable exponent Sobolev spaces and we

define W 1,p(x)
0 (Ω) as the closure of C ∞

c (Ω) in W 1,p(x)(Ω). Moreover, the spaces W 1,p(x)
0 (Ω) are reflexives

and we denote by W−1,p′(x)(Ω) its dual space. In addition, the p(.)-Poincaré inequality holds true and for

all u ∈W 1,p(.)
0 (Ω), we have

‖u‖p(x) ≤C(Ω, p(.))‖∇u‖p(x),

where C(Ω, p(.)) is a constant depends only on Ω and p(.). Due to this result, one may deduce that

‖∇u‖p(x) becomes a norm in W 1,p(x)
0 (Ω).

For 0 < T <+∞ we introduce the time space

Lp−(0,T ;W 1,p(x)
0 (Ω)) =

{
u ∈ Lp(x)(QT ) :

M

∑
i=1

T∫
0

‖∇ui‖p−

pi(x)
< ∞

}
,

endowed with the norm

‖u‖
Lp−

(
0,T ;W 1,p(x)

0 (Ω)
) =

 M

∑
i=1

T∫
0

‖∇ui‖p−

pi(x)

 1
p−

.
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Now, we introduce our functional framework which is already useful in the studies of parabolic system

with variable exponent. We consider

V =

{
v ∈ Lp−

(
0,T ;W 1,p(x)

0 (Ω)
)

: |∇v|= (|∇vi|)1≤i≤M ∈ Lp(x) (QT )

}
,

endowed with the standard norm

‖v‖V = ‖v‖
Lp−

(
0,T ;W 1,p(x)

0 (Ω)
)+‖∇v‖p(x).

Thanks to the p(x)-Poincaré’s inequality and the continuity of the embedding Lp(x)(QT ) ↪→Lp−(0,T ;W 1,p(x)
0 (Ω))

the standard norm ||.||V is equivalent to the following norm

||u||V = ||∇u||Lp(x)(QT )
.

The space V is a separable and reflexive Banach space and V ∗ denoted its dual space. Some properties

of the space V are given in the following Lemma.

Lemma 5.2.1

[24] Let V be the space defined as above. Then we have

i) the following continuous dense embedding

Lp+(0,T ;W 1,p(.)
0 (Ω)) ↪→ V ↪→ Lp−(0,T ;W 1,p(.)

0 (Ω)). (5.10)

In particular, since C ∞
c (QT )

M is dense in Lp+(0,T ;W 1,p(.)
0 (Ω)), it is dense in V and for the corre-

sponding dual spaces we have

L(p−)′(0,T ;(W 1,p(.)
0 (Ω))∗) ↪→ V ∗ ↪→ L(p+)′(0,T ;(W 1,p(.)

0 (Ω))∗). (5.11)

ii) Moreover, the elements of V ∗ are represented as follow: For all S∈V ∗, there exists ξ =(ξ1, ...,ξN)∈

(Lp′(.)(QT ))
N such that: S = div(ξ ) and

< S,ϕ >V ∗,V =
∫

QT

ξ ∇ϕdxdt,
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for any ϕ ∈ V . Furthermore, we have

||S||V ∗ = max{||ξ j||Lp(.)(QT )
, j = 1, ...,N}.

Remark 5.2.1

Related to the results of Proposition 5.2.1 and Lemma 5.2.1, we can deduce the useful relationship

min
{
||u||p

−

V , ||u||p
+

V

}
≤
∫

QT

|∇ui|pi(x) dxdt ≤max
{
||u||p

−

V , ||u||p
+

V

}
. (5.12)

For the convenience of the readers, sometimes we work with f (t,x,u,∇u) instead of ( fi(t,x,u1, ..,uM,∇u1,∇u2, ...,∇uM))1≤i≤M.

We will also omit the space and time variable in the expressions of the functions operators and the inte-

grals when there is no ambiguity. In several steps of the proof of the main result, we will denote by C any

nonnegative constant independent on the index of the sequence.

It is necessary to precise in which sense we want to solve the system (5.1). For this reason, we propose

to enunciate the notion of weak solution used to study system (5.1).

Definition 5.2.1

We say that u ∈ V ∩C (0,T ;L2(Ω)M) is a weak solution of the system (5.1), if it satisfies ∂tu ∈ V ∗+

L1(QT )
M, f (t,x,u,∇u) ∈ L1(QT )

M and for i = 1, ...,M

ui(0,x) = u0i(x) in L2(Ω)

∫ T

0
〈∂tui,φ〉dt +

∫
QT

Ai(t,x,∇ui)∇φ =
∫

QT

fi(t,x,u,∇u)φ , (5.13)

holds for every φ ∈ V ∩L∞(QT )
M.

Remark 5.2.2

In the previous definition ∂tu ∈ V ∗+L1 (QT )
M is understood in the following sens

∫ T

0
〈∂tu,φ〉dt := 〈∂tu,φ〉V ∗+L1(QT ),V

=
〈

α
(1),φ

〉
V ∗×V

+
∫

QT

α
(2)

φdxdt,

where α(1) ∈ V ∗ and α(2) ∈ L1(QT )
M.

In the following Lemma, we propose to show an interesting compactness result which will be used in

several steps of our work.
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Lemma 5.2.2

Let (vn) be a bounded sequence in V such that (∂tvn) is bounded in V ∗+ L1(QT )
M. Then, up to a

subsequence

vn→ v strongly in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT .

Proof.

For a suitable fixed s, the following embedding relationships hold

• s > N
2 , we have Hs

0(Ω) ↪→ L∞(Ω), and then L1(Ω) ↪→ H−s(Ω),

• s−1 > N
2 , one has Hs

0(Ω)M ↪→W 1,p(x)(Ω), consequently, W−1,p′(x)(Ω) ↪→ H−s(Ω)M.

In accordance with (5.11), it leads to (∂tvn) is bounded in L1
(
0,T ;H−s(Ω)M

)
. Since (vn) is bounded

in V , it follows from the embedding relationship (5.10) that (vn) is bounded in Lp−(0,T ;W 1,p(x)
0 (Ω)).

Moreover, we have

W 1,p(x)
0 (Ω)

compact
↪→ Lp(x)(Ω) ↪→ H−s(Ω)M.

Then, by applying the compactness result of Simon (see Corollary 4, page 85 of [124]) we obtain that

(vn) converges strongly to v in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT (up to a subsequence).

Before closing this section, we recall a classical embedding result which can be viewed such as a

direct consequence of the Aubin-Simon Theorem [124].

Lemma 5.2.3

Assume that (5.8) and (5.9) hold true. If v belongs to V ∩L2(QT )
M with ∂tv belonging in V ∗+L2(QT )

M

, then v ∈ C ([0,T ],L2(Ω)M).

5.3 Auxilliary Results

In this section, we present the existence and uniqueness results of weak solutions for the system (5.1)

when the nonlinearities f does not depend on the solution u and their gradient, namely fi(t,x,r,ξ ) =

gi(t,x).
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Lemma 5.3.1

i) Let v0 ∈ L2(Ω)M, g ∈ L2(QT )
M then the following system



∀i = 1,2, ..,M

∂tvi−div(Ai(t,x,∇vi)) = gi(t,x) in QT

vi(t,x) = 0 on ΣT

vi(0,x) = v0i(x) in Ω,

(5.14)

has a unique solution v ∈ V ∩C ([0,T ],L2(Ω)M) such that

∂tv ∈ V ∗+L2(QT )
M, v(0,x) = v0(x) in L2(Ω)M,

and for i = 1, ...,M

∫ T

0
〈∂tvi,φi〉+

∫
QT

Ai(t,x,∇vi)∇φi =
∫

QT

gi(t,x)φi, (5.15)

with φ = (φ1, ...,φM) ∈ V ∩L2(QT )
M.

ii) Let v be the solution of (5.14), then

‖v‖V + sup
0≤t≤T

‖v(t)‖L2(Ω)M ≤C(Ω,T )
(
‖v0‖L2(Ω)M +‖g‖L2(QT )M

)
, (5.16)

‖∂tv‖V ∗+L2(QT )M ≤C(Ω,T )
(
‖H‖p′(x)+‖v0‖L2(Ω)M +‖g‖L2(QT )M

)
. (5.17)

Proof.

i) We refer the reader for to see [123] for the existence and uniqueness of the weak solution of the

system (5.14). Due to the Lemma 5.2.3, we deduce that v belongs to C ([0,T ],L2(Ω)M) which

means that the initial condition makes a sens.

ii) To prove the estimate (5.16), one may choose in (5.15) φi = viχ(0,t) with t < T , we obtain

1
2

∫
Ω

v2
i (t)+

∫
Qt

Ai(τ,x,∇vi)∇vi =
1
2

∫
Ω

v2
0i +

∫
Qt

vi gi(τ,x), (5.18)
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where Qt =]0, t[×Ω. By applying the coercivity assumption (5.3) in (5.18), one has

1
2

∫
Ω

v2
i (t)+di

∫
Qt

|∇vi|pi(x) ≤ 1
2

∫
Ω

v2
0i +

∫
Qt

vi gi(τ,x). (5.19)

Consequently, ∫
Ω

v2
i (t)≤

∫
Qt

g2
i (τ,x)+

∫
Qt

v2
i +

∫
Ω

v2
0i. (5.20)

Using Gronwall’s inequality we obtain

∫
QT

v2
i ≤ (exp(T )−1)

(
‖gi‖2

L2(QT )
+
∫

Ω

v2
0idx

)
. (5.21)

Substituting the above expression in (5.20), we get

sup
0≤t≤T

∫
Ω

v2
i (t)≤ ‖gi‖2

L2(QT )
+ exp(T )

(
‖gi‖L2(QT )+

∫
Ω

v2
0i

)
. (5.22)

It comes that,

sup
0≤t≤T

‖vi(t)‖L2(Ω) ≤C(T,Ω)

(
‖v0i‖L2(Ω)+‖gi‖L2(QT )

)
. (5.23)

Using (5.18) and (5.3), we deduce

∫
QT

|∇vi|pi(x)dxdt ≤C(T,Ω)

(∫
QT

g2
i dxdt +

∫
Ω

v2
0i

)
. (5.24)

Hence, from the result of (5.12) one obtains

‖v‖V ≤C(T,Ω)
(
‖g‖L2(QT )M +‖v0‖L2(Ω)M

)
, (5.25)

which implies that v is uniformly bounded in V . By arguing the results of (5.23) and (5.25) we

obtain the estimate (5.16). It remains to estimate ∂tv in the norm of the space V ∗+ L2(QT )
M.

Thanks to the growth assumption (5.2) we have

∫
QT

|Ai(t,x,∇vi)|p
′
i(x) ≤C

(∫
QT

|Hi(t,x)|p
′
i(x)+

∫
QT

|∇vi|pi(x)
)
,

≤C(T,Ω)

(∫
QT

|Hi(t,x)|p
′
i(x)+

∫
QT

g2
i dxdt +

∫
Ω

v2
0i

)
.

(5.26)
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Therefore,

‖Ai(t,x,∇vi)‖p′i(x) ≤C(T,Ω)
(
‖Hi‖p′i(x)+‖gi‖L2(QT )+‖v0i‖L2(Ω)

)
. (5.27)

Hence, employing the equation satisfied by vi with the help of (5.27), one gets

‖∂tv‖V ∗+L2(QT )M ≤C
(
‖A(t,x,∇v)‖p′(x)+‖g‖L2(QT )M

)
≤C(T,Ω)

(
‖H‖p′(x)+‖g‖L2(QT )M +‖v0‖L2(Ω)M

)
.

(5.28)

5.4 An existence result for bounded nonlinearities

We are concerned to study the existence of a weak solution to system (5.1) with bounded nonlinearities.
Theorem 5.4.1

Assume that (5.2)-(5.6) and (5.8) hold. If there exist a nonnegative function Λ = (Λi)i=1,2,..,M ∈ L∞(QT )
M

such that for almost everywhere (t,x) ∈ QT ,

| fi(t,x,r,ξ )| ≤ Λi(t,x) for all (r,ξ ) ∈ RM×RN×M, (5.29)

then for every u0 ∈ L2(Ω)M, the system (5.1) has a weak solution.

Proof.

To prove the result of Theorem 5.4.1, we propose to use Schauder fixed point Theorem [98]. We start by

introducing the following mapping

F : V → V

v 7−→ u,

where u is the unique weak solution to the following



∀i = 1, ...,M,

∂tui−div(Ai(t,x,∇ui)) = fi(t,x,v,∇v) in QT

ui(0,x) = u0i(x) in Ω

ui(t,x) = 0 on ΣT .

(5.30)

In view of the assumption (5.29), the function fi(t,x,v,∇v) belongs to L2(QT ) and since u0 ∈ L2(QT )
M,
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we deduce from Lemma 5.3.1 the existence of u ∈ V ∩C (0,T ;L2(Ω)M) unique weak solution to the

system (5.30) satisfying

∂tu ∈ V ∗+L2(QT )
M, u(0,x) = u0(x) in L2(Ω)M,∫ T

0
〈∂tui,φ〉+

∫
QT

Ai(t,x,∇ui)∇φi =
∫

QT

fi(t,x,v,∇v)φi,

∀φ = (φ1, ...,φM) ∈ V ∩L2(QT )
M.

(5.31)

which implies that the application F is clearly well defined. To apply Schauder fixed point Theorem, we

require to check the continuity and the compactness of the application F . To check the continuity of F ,

we take vn = (vn
1, ...,v

n
M) a sequence in V such that (vn) converges strongly to v = (v1, ...,vM) in V . We

put

un = (un
1, ...,u

n
M) = F (vn),

u = (u1, ...,uM) = F (v).

Hence, we shall prove that (un) converges strongly to u in V . Let us recall that u satisfies the weak

formulation (5.31) and (un) satisfies

∂tun ∈ V ∗+L2(QT )
M, un(0,x) = u0(x) in L2(Ω)M,∫ T

0
〈∂tun

i ,φ〉+
∫

QT

Ai(t,x,∇un
i )∇φi =

∫
QT

fi(t,x,vn,∇vn)φi,

∀φ = (φ1, ...,φM) ∈ V ∩L2(QT )
M.

(5.32)

Due to the results of Lemma 4.5.1, one has

‖un‖V ≤C(Ω,T )
(
‖u0‖L2(Ω)M +‖ f (t,x,vn,∇vn)‖L2(QT )M

)
,

‖∂tun‖V ∗+L2(QT )M ≤C(Ω,T )
(
‖H‖p′(x)+‖u0‖L2(Ω)M +‖ f (t,x,vn,∇vn)‖L2(QT )M

)
.

Therefore, by applying the assumption (5.29), we deduce that (un) is bounded in V and (∂tun) is bounded

in V ∗+ L2(QT )
M. Hence, one may deduce the existence of a subsequence still denoted by (un) for
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simplicity such that

un ⇀ u weakly in V ,

∂tun ⇀ ∂tu weakly in V ∗,

un→ u strongly in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT .

The later convergence is obtained by using the compactness result of Lemma 5.2.2. Furthermore, employ-

ing the continuous embedding Lp−(0,T ;Lp(x)(Ω)) ↪→ Lp−(QT ), one obtains that (un) converges strongly

to u in Lp−(QT ) and a.e. in QT . To prove the strong convergence of (un) in V , we subtract the weak

formulations (5.31) and (5.32). Thereafter, we take (un
i −ui) as a test function, one gets for i = 1, ...,M

∫ T

0
〈∂t(un

i −ui),(un
i −ui)〉+

∫
QT

(Ai(t,x,∇un
i )−Ai(t,x,∇ui))(∇un

i −∇ui)

=
∫

QT

( fi(t,x,vn,∇vn)− fi(t,x,v,∇v))(un
i −ui).

(5.33)

Let us remark that ∫ T

0
〈∂t(un

i −ui),(un
i −ui)〉=

1
2

∫
Ω

|(un
i −ui)(T )|2 ≥ 0.

In addition, by applying Hölder’s inequality in the right-hand side of (5.33), one obtains

∫
QT

(Ai(t,x,∇un
i )−Ai(t,x,∇ui))(∇un

i −∇ui)

≤ ‖ fi(t,x,vn,∇vn)− fi(t,x,v,∇v)‖L(p−)′ (QT )
‖un

i −ui‖Lp− (QT )
.

(5.34)

From the strong convergence of (vn) in V , it follows that for i = 1, ...,M

fi(t,x,vn,∇vn)→ fi(t,x, ,v,∇v) a.e in QT .

On the other hand, using hypothesis (5.29) and dominated convergence Theorem, one has

fi(t,x,vn,∇vn)→ fi(t,x, ,v,∇v) strongly in L(p−)′(QT ).

Now, we can pass to the limit in (5.34) to obtain

lim
n→∞

∫
QT

(Ai(t,x,∇un
i )−Ai(t,x,∇ui))(∇un

i −∇ui)≤ 0.
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Therefore, one may apply the result of the Lemma 5 in [27] to get

∇un→ ∇u strongly in Lp(x)(QT )
M

Which means that (un) converges strongly to u in V . In accordance with the previous convergence results,

one may pass to the limit in the weak formulation (5.32) to get

∂tu ∈ V ∗+L2(QT )
M, u(0,x) = u0(x) in L2(Ω)M,∫ T

0
〈∂tui,φ〉+

∫
QT

Ai(t,x,∇ui)∇φi =
∫

QT

fi(t,x,v,∇v)φi,

∀φ = (φ1, ...,φM) ∈ V ∩L2(QT )
M.

(5.35)

Which implies that the limit u verifies F (v) = u. Furthermore, the uniqueness of the weak solution to the

system (5.35) gives us the continuity of F .

To show the compactness of F , we consider vn = (vn
1, ...,v

n
M) a bounded sequence in V , we shall

prove that un = F (vn) is relatively compact in V . Following the same reasoning as of the continuity

step, it comes that

• un is bounded in V ,

• ∂tun is bounded in V ∗+L2(QT )
M,

•
(

fi(t,x,vn,∇vn)

)
n

is bounded in L2(QT ).

Due to the compactness result of Lemma 5.2.2, we can extract a subsequence still denoted by (un) for

simplicity such that

un→ u strongly in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT .

Following the same reasoning as in [135, 139], we can prove that ∇un→∇u a.e. in QT . Furthermore, we

have

Ai(t,x,∇un
i )⇀ Ai(t,x,∇ui) weakly in Lp′i(x)(QT ).

We shall prove that (un) converges stongly in V . To do this, we subtract the equation (5.32) with different

index m and n, we get for all i = 1,2, ..,M.

∂t (un
i −um

i )−div(Ai(∇un
i ))+div(Ai(∇um

i )) = fi(vn,∇vn)− fi(vm,∇vm). (5.36)
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We choose (un
i −um

i ) as a test function in the weak formulation of (5.36), we obtain

∫ T

0
〈∂t(un

i −um
i ),(u

n
i −um

i )〉+
∫

QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )

=
∫

QT

(
fi(vn,∇vn)− fi(vm,∇vm

)
(un

i −um
i ).

(5.37)

Concerning the first integral, we have

∫ T

0
〈∂t(un

i −um
i ),(u

n
i −um

i )〉=
1
2

∫
Ω

|(un
i −um

i )(T )|2 ≥ 0.

On the other hand, applying Hölder’s inequality in the right-hand side of (5.37) and using the assumption

(5.29), one gets

∫
QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )≤C‖Λi‖L∞(QT )‖u
n
i −um

i ‖Lp− (0,T ;Lp(x)(Ω)) (5.38)

By applying the strong convergence of (un) in Lp−(0,T ;Lp(x)(Ω)), we can pass to the limit in (5.38) as

m, n tends to +∞, we get

lim
n,m→∞

∫
QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )≤ 0.

Hence, we can use the Lemma 5 of [27] to obtain

∇un→ ∇u strongly in Lp(x)(QT )
M,

which implies that (un) converges strongly in V , as consequence F is compact.

It remains to prove the existence of a radius R such that the mapping F send the ball B(0,R) of V

to itself. To deal with this, we take v ∈ V such that u = F (v), as it demonstrates in (5.16) we will have

‖v‖V ≤C(Ω,T )
(
‖u0‖L2(Ω)M +‖ f (v,∇v)‖L2(QT )M

)
.

Thanks to assumption (5.29), it comes that by choosing

R≥C(Ω,T )
(
‖u0‖L2(Ω)M +‖Λ‖L2(QT )M

)
.
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One has

F

(
B(0,R)

)
↪→B(0,R).

Consequently, a direct application of Schauder fixed point Theorem implies the existence of a weak

solution to the system (5.1).

5.5 An existence result for subquadratic growth

The goal of this section is to establish an existence result of a nonnegative weak solution to (5.1) under

two fairly general conditions namely:

• The nonlinearities ( fi)1≤i≤M are nonegative and have a critical growth with respect to the gradient

namely

| fi(t,x,r1, ...rM,ξ1, ...,ξM)| ≤Ci

(
M

∑
j=1
|r j|

)[
Bi(t,x)+ |ξi|pi(x)

]
, (5.39)

where Ci : [0,+∞)→ [0,+∞) is a non-decreasing function and Bi is a nonnegative function belonging to

L1(QT ).

• The existence of a weak super-solution defined as follows:

Definition 5.5.1

A weak super-solution of system (5.1) is a function w = (w1, ...,wM) ∈ V ∩ L∞(QT )
M, ∂tw ∈ V ∗ +

L1(QT )
M and for i = 1, ...,M

wi(0,x)≥ u0i(x) in L2(Ω)

, ∫ T

0
〈∂twi,φ〉dt +

∫
QT

Ai(t,x,∇wi)∇φ ≥
∫

QT

fi(t,x,w,∇w)φ , (5.40)

for every nonnegative test function φ ∈ V ∩L∞(QT )
M.

Theorem 5.5.1

Assume that Ai satisfies (5.2)-(5.4) and the nonlinearities ( fi)1≤i≤M satisfies (5.5) , (5.6) and (5.39).

Moreover, we assume the existence of w a nonnegative super-solution to (5.1). Then, for any nonnegative

u0 ∈ L2(QT )
M, the system (5.1) has a weak solution u such that 0≤ u≤ w a.e. in QT .

Exemples 5.5.1

We propose to give an example of the construction of a weak super-solution to a particular case of (5.1),

which permit us to assure the validity of the proposed assumptions in Theorem 5.5.1. Let us consider the
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pi(x)-Laplacian system (5.7) such that the nonlinearities ( fi)1≤i≤M are nonnegative and satisfies

| fi(t,x,r1, ...rM,ξ1, ...,ξM)| ≤ Ki(t,x)+Li(t,x)|ξi|pi(x), (5.41)

where Ki and Li are a nonnegative functions belongings to L∞(QT ) and satisfying for all i = 1, ...,M

0≤ Ki(t,x)≤ ki, 0≤ Li(t,x)≤ li a.e in QT , (5.42)

with ki, li > 0 are a constants. It is clear that the assumption (5.41) can be viewed as a particular case of

(5.39), let us assume that u0 is a nonnegative function that belongs to L∞(QT )
M. To build a nonnegative

weak super-solution to (5.7), we consider the following system



∀i = 1, ...,M,

∂twi−div
(
|∇wi|pi(x)−2∇wi

)
= ki + li|∇wi|pi(x) in QT

wi(0,x) = u0i(x) in Ω

wi(t,x) = 0 on ΣT .

(5.43)

According to the result of [85], one may deduce the existence of (wi)1≤i≤M ∈ V ∩ L∞(QT )
M a weak

solution to (5.43). Furthermore, using (5.41)-(5.42) and following the same reasoning as of the proof

below of Lemma 5.5.1 (positivity part), we can conclude that (wi)1≤i≤M is a nonnegative weak super-

solution to (5.7).

To prove Theorem 5.5.1, we will proceed by steps. In the first step, we will truncate the problem and show

that the approximate system has a weak solution un. The second step is devoted to prove that 0≤ un ≤ w,

this means that the approximate solution un mains nonnegative and bounded by w. Thereafter, we will

provide some a prior estimates on the approximate solution in order to pass to the limit and rigorously

demonstrate the existence of a global weak solution of our system.

5.5.1 Construction of the approximate problem

Let n ∈ N, we consider the truncation function ψn ∈ C ∞
c (R) such that

0≤ ψn ≤ 1,
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and

ψn(s) =


1 if |s| ≤ n,

0 if |s| ≥ n+10

For almost everywhere (t,x) ∈ QT and for all (r,ξ ) ∈ RM×RM×N , we approximate fi by

f n
i (t,x,r,ξ ) = ψn

(
M

∑
j=1

(|r j|+‖ξ j‖)

)
fi(t,x,T (r),T (ξ )) (5.44)

Where T (r) = r− (r−w)+ and w is the super-solution defined in (5.40). We mention that these functions

enjoy the same propreties as fi, moreover they are measurable with respect to (t,x), locally Lipschitzian

with respect to (r,ξ ) and | f n
i | ≤ Λn

i , where Λn
i is a constante depending only on n (these estimates can be

derived from (5.6)).

Thus, we can state the following approximate system


∂tun

i −div(Ai(t,x,∇un
i ) = f n

i (t,x,u
n,∇un) in QT

un
i (0,x) = u0i(x) in Ω

un
i (t,x) = 0 on ΣT .

(5.45)

Thanks to the result of Theorem 5.4.1, the approximate system (5.45) has a weak solution un =(un
1, ...,u

n
M).

In the following, we establish necessaries estimates in order to pass to the limit in (5.45).

Lemma 5.5.1

Let un be the weak solution of (5.45), then

0≤ un ≤ w (5.46)

Proof.

Let ε > 0, we can build a sequence of convex functions jε(s) such as

• j′ε(s) is bounded for all s ∈ R,

• j′ε(s)→ sign−(s) when ε → 0,

• jε(s)→ (s)− when ε → 0,
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where sign− presents the following sign function

sign−(r) =

 −1 if r < 0

0 if r > 0

A typical construction of the function jε(s) can be given as follows

jε(s) =

 −
1
ε
+ 1

ε
exp
(
−εs− ε2 ln(| s−ε

ε
|)
)

if s < 0

0 if s≥ 0.

To prove the non-negativity of un, we multiply both sides of the first equation in (5.45) by j′ε(u
n
i ) and we

integrate over Qt with 0≤ t ≤ T , one has

∫ t

0
〈∂tun

i , j′ε(u
n
i )〉+

∫
Qt

Ai(.,∇un
i )∇ j′ε(u

n
i ) =

∫
Qt

f n
i (t,x,u

n,∇un) j′ε(u
n
i ).

Using (5.3), we have

∫
Ω

[ jε(un
i )(t)− jε(un

i )(0)]+di

∫
Qt

|∇un
i |pi(x) j′ε(u

n
i )≤

∫
Qt

f n
i (t,x,u

n,∇un) j′ε(u
n
i ).

Since
∫

Ω

jε(un
i )(0)dx = 0 and di

∫
Qt

|∇un
i |pi(x) j′ε(ui)≥ 0, we have

∫
Ω

jε(un
i )(t)≤

∫
Qt

f n
i (t,x,u

n,∇un) j′ε(u
n
i )

≤
∫
[un

i <0]
f n
i (t,x,u

n,∇un) j′ε(u
n
i )+

∫
[un

i≥0]
f n
i (t,x,u

n,∇un) j′ε(u
n
i ).

We remark that j′ε(u
n
i ) = 0 on the set where un

i ≥ 0, therefore

∫
Ω

jε(un
i )(t)≤

∫
[un

i <0]
f n
i (t,x,u

n,∇un) j′ε(u
n
i ),

letting ε → 0, we obtain ∫
Ω

(un
i )
−(t)≤−

∫
[un

i≤0]
f n
i (t,x,u

n,∇un)

Using the positivity of f n
i we deduce that (un

i )
−(t,x) = 0 on Ω, which means that un

i ≥ 0 a.e. on QT .

We have w ∈ V ∩ L∞(QT ), then we can choose vn = un− (un−w)+ as a test function in the weak
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formulation of (5.45), we obtain

∫ T

0
〈∂tun

i ,v
n
i 〉+

∫
QT

Ai(t,x,∇un
i )∇vn

i =
∫

QT

f n
i (t,x,u

n,∇un)vn
i (5.47)

Hence, we obtain

∫ T

0
〈∂tun

i ,(u
n
i −wi)

+〉+
∫

QT

Ai(.,∇un
i )∇(un

i −wi)
+ =

∫
QT

f n
i (.,u

n,∇un)(un
i −wi)

+. (5.48)

Since w is a super-solution of the system (5.1), one has

∫ T

0
〈∂twi,(un

i −wi)
+〉+

∫
QT

Ai(.,∇wi)∇(un
i −wi)

+ ≥
∫

QT

fi(.,w,∇w)(un
i −wi)

+ . (5.49)

By subtracting (5.49) from (5.48) , we get

∫
QT

(Ai(.,∇un
i )−Ai(.,∇wi))∇(un

i −wi)
+ ≤

∫
QT

( f n
i (.,un,∇un)− fi(.,w,∇w))(un

i −wi)
+ .

To deal with the right-hand side, we use the properties (5.44) one obtains

∫
QT

( f n
i (t,x,un,∇un)− fi(t,x,w,∇w))(un

i −wi)
+

≤
∫

QT

( fi (t,x,T (un),∇T (un))− fi(t,x,w,∇w))(un
i −wi)

+

≤
∫

un
i >wi

( fi (t,x,w,∇w)− fi(t,x,w,∇w))(un
i −wi) = 0.

We therefore have ∫
QT

(Ai(t,x,∇un
i )−Ai(t,x,∇wi))∇(un

i −wi)
+ ≤ 0,

which implies, ∫
un

i≥vi

(Ai(t,x,∇un
i )−Ai(t,x,∇wi))∇(un

i −wi)≤ 0.

Thanks to the monotony properties (5.4), one has ∇(un
i −wi) = 0 a.e. in {(t,x) ∈ QT ,un

i ≥ wi} for all

i = 1, ...,M. Then, un
i −wi = 0 a.e. in {(t,x) ∈ QT ,un

i ≥ wi} which means that un ≤ w a.e. in QT .

Remark 5.5.1

As we can see, the super-solution of (5.1) belongs to L∞(QT )
M, consequently the initial data u0 is be-

longing in L∞(Ω)M and due to the result of Lemma 5.5.1 it follows that un belongs to L∞(QT )
M.
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5.5.2 A priori estimates

We start by recalling a technical Lemma which has already used to estimate typical growth nonlinearities

with respect to the gradient.

Lemma 5.5.2

Let θ(s) = seηs2
, s ∈ R and let Θ(s) =

∫ s

0
θ(τ)dτ. Then

θ(0) = 0, Θ(s)≥ 0, θ
′(s)> 0.

When η ≥ b2

4a2 is fixed, the following relationships hold true

aθ
′(s)−b|θ(s)| ≥ a

2
, ∀s ∈ R. (5.50)

Lemma 5.5.3

Let (un) be a solution of (5.45) and w the super-solution to (5.1). Then there exists a constant C such that

‖un‖V ≤C

‖ f n(t,x,un,∇un)‖L1(QT )M ≤C.

Proof.

From the estimate (5.46), it follows that θ (un
i ) ∈ V ∩L∞(QT ), then by choosing θ (un

i ) as a test function

in the weak formulation of (5.45), we have

∫ T

0
〈∂tun

i ,θ (un
i )〉+

∫
QT

Ai(t,x,∇un
i )∇(un

i )θ
′ (un

i ) =
∫

QT

f n
i (t,x,u

n,∇un)θ (un
i ) . (5.51)

For the first integral, we have

∫ T

0
〈∂tun

i ,θ (un
i )〉=

∫
Ω

[Θ(un(T ))−Θ(ui0)] .

From (5.3) and (5.46) the inequality (5.51) becomes

∫
Ω

Θ(un
i (T ))+di

∫
QT

|∇un
i |

pi(x) θ
′ (un

i )≤
∫

Ω

Θ(u0i)+
∫

QT

f n
i (t,x,u

n,∇un)θ(un
i )

≤
∫

Ω

Θ(u0i)+
∫

QT

Ci (||w||∞)
(

Bi(x, t)+ |∇un
i |pi(x)

)
θ(un

i ).
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We rewrite the above inequality as

∫
Ω

Θ(un
i (T ))+

∫
QT

(
diθ
′ (un

i )−Ci (||w||∞) |θ (un
i )|
)
|∇un

i |
p(x)

≤
∫

Ω

Θ(u0i)dx+
∫

QT

|Bi(x, t)|θ(un
i ).

By choosing the constant η ≥ max
i∈{1,...,M}

{
Ci(‖w‖∞)

2

4d2
i

}
, we obtain from Lemma 5.5.2

diθ
′ (un

i (t,x))−Ci(‖w‖∞) |θ (un
i (t,x))| ≥

di

2
a.e in QT .

On the other hand Θ(un
i (T ))≥ 0, then

di

2

∫
QT

|∇un
i |

pi(x) ≤
∫

Ω

Θ(u0i)+
∫

QT

|Bi(x, t)|θ(un
i )

We may utilize estimate (5.46) to deduce that

∫
QT

|∇un
i |

pi(x) ≤C
(
‖Bi‖L1(QT ),‖wi(0)‖L∞(Ω) ,‖wi‖L∞(QT )

)
(5.52)

Employing the result of (5.12), we conclude that (un) is uniformly bounded in V . To estimate the nonlin-

earities, we use the growth condition (5.39) combined with (5.12), one gets

∫
QT

| f n
i (t,x,u

n,∇un)| ≤Ci(‖w‖L∞(QT ))
∫

QT

(
Bi(x, t)+ |∇un

i |pi(x)
)
.

By applying (5.52), we deduce that ( f n) is bounded in L1(QT )
M. Consequently, from the equation satisfies

by (un) it follows that (∂tun) is bounded in V ∗+L1(QT ).

Lemma 5.5.4

The sequence (un) converges strongly to some u in V .

Proof.

From the previous estimates, we have (un) is bounded in V and (∂tun) is bounded in V ∗+ L1(QT )
M.

Thanks to the compactness result of Lemma 5.2.2, we can extract a subsequence of (un) still denoted by

(un) such that

• (un)→ u strongly in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT ,

• (un)⇀ u weakly in V
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Since (un) belongs to L∞(QT ), we can use the same reasoning as in [135, 139] to obtain ∇un→ ∇u a.e.

in QT . As a consequence, we have

Ai(t,x,∇un
i )⇀ Ai(t,x,∇ui) weakly in Lp′i(x)(QT )

We shall show that (un) converges stongly in V . To do this, we use the difference between the equations

satisfied by (un) and (um), respectively. We have for all i = 1,2, ..,M.

∂t (un
i −um

i )−div(Ai(∇un
i ))+div(Ai(∇um

i )) = f n
i (u

n,∇un)− f m
i (um,∇um).

By choosing θ(un
i −um

i ) as a test function in the weak formulation of the latter equation, we obtain

∫ T

0
〈∂t(un

i −um
i ),θ(u

n
i −um

i )〉+
∫

QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )θ
′(un

i −um
i )

=
∫

QT

(
f n
i (u

n,∇un)− f m
i (um,∇um)

)
θ(un

i −um
i ).

Using the growth condition (5.39), we obtain

∫
Ω

Θ(un
i (T )−um

i (T ))+
∫

QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )θ
′(un

i −um
i )

≤Ci(‖w‖∞)
∫

QT

(Bi(t,x)+ |∇un
i |pi(x)+ |∇um

i |pi(x))|θ(un
i −um

i )|.
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Since Θ is positive we get by using the coercivity condition (5.4)

∫
QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )θ
′(un

i −um
i )

≤C(‖w‖∞)
∫

QT

Bi(t,x)|θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇un
i ) ·∇un

i |θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇um
i ) ·∇um

i |θ(un
i −um

i )|

≤C(‖w‖∞)
∫

QT

Bi(t,x)|θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇un
i ) ·∇(un

i −um
i )|θ(un

i −um
i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇un
i ) ·∇um

i |θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇um
i ) ·∇un

i |θ(un
i −um

i )|

−C(‖w‖∞)

di

∫
QT

Ai(∇um
i ) ·∇(un

i −um
i )|θ(un

i −um
i )|.

It follows that,

1
di

∫
QT

(
diθ
′(un

i −um
i )−C(‖w‖∞)|θ(un

i −um
i )|
)
(Ai(∇un

i )−Ai(∇um
i )) ·∇(un

i −um
i )

≤C(‖w‖∞)
∫

QT

Bi(t,x)|θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇un
i ) ·∇um

i |θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇um
i ) ·∇un

i |θ(un
i −um

i )|.

We choose the constant η ≥ max
i∈{1,...,M}

{
C(‖w‖∞)

2

4d2
i

}
in the Lemma 5.5.2, one has

1
2

∫
QT

(Ai(∇un
i )−Ai(∇um

i )) ·∇(un
i −um

i )≤C(‖w‖∞)
∫

QT

Bi(t,x)|θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇un
i ) ·∇um

i |θ(un
i −um

i )|

+
C(‖w‖∞)

di

∫
QT

Ai(∇um
i ) ·∇un

i |θ(un
i −um

i )|.

(5.53)

Using the almost everywhere convergence of (∇un
i ) in QT , the weak convergence of Ai(∇un

i ) in Lp′i(x)(QT )
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and with the help of Fatou’s Lemma we can pass to the limit when m tends to +∞ in (5.53) to obtain

1
2

∫
QT

(Ai(∇un
i )−Ai(∇ui)) ·∇(un

i −ui)≤C(‖w‖∞)
∫

QT

Bi(t,x)|θ(un
i −ui)|

+
C(‖w‖∞)

di

∫
QT

Ai(∇un
i ) ·∇ui|θ(un

i −ui)|

+
C(‖w‖∞)

di

∫
QT

Ai(∇ui) ·∇un
i |θ(un

i −ui)|

On the other hand, from (5.2), (5.52), (5.46) and by applying Lebesgue Theorem, we pass to the lim when

n tends to +∞ to obtain

lim
n→∞

∫
QT

(Ai(∇un
i )−Ai(∇ui)) ·∇(un

i −ui)≤ 0

Hence, we can deduce as in the Lemma 5 of [27], that

∇un→ ∇u strongly in Lp(x)(QT )
M.

5.5.3 Passing to the limit

The goal of this subsection is to prove that the limit of the sequence un is a weak solution of the system

(5.1) in the sense of the definition 5.2.1. According to Lemma 5.5.4 we conclude the existence of a

subsequence, still denoted by (un) for simplicity, such that

∇un→ ∇u strongly in Lp(x)(QT )
M and a.e. in QT

un→ u strongly in Lp−(0,T ;Lp(x)(Ω)) and a.e. in QT

Ai(t,x,∇un
i )→ Ai(t,x,∇ui) strongly in Lp′i(x)(QT ) and a.e. in QT

f n
i (t,x,u

n,∇un)→ fi(t,x,u,∇u) a.e. in QT .

It remains to prove that

f n
i (t,x,u

n,∇un)→ fi(t,x, ,u,∇u) strongly in L1(QT ).
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To do this, it suffices to prove that f n
i (t,x,u

n,∇un) is equi-integrable in L1(QT ) namely

∀ε > 0,∃δ > 0,∀E ⊂ QT , if |E|< δ then
∫
E

| f n
i (t,x,u

n,∇un)|dxdt ≤ ε.

Let E be a mesurable subset of QT and ε > 0, using the growth assumption (5.39) and (5.46), we have

for all i = 1,2, ..,M

∫
E
| f n

i (t,x,u
n,∇un)| ≤

∫
E

Ci(||w||∞)
(

Bi(t,x)+ |∇un
i |pi(x)

)
. (5.54)

Since Bi ∈ L1(QT ) then Bi is equi-integrable in L1(QT ) and therefore there exists δ1 > 0, such that, if

| E |≤ δ1, we have

Ci(||w||∞)
∫

E
Bi(t,x)≤

ε

2
.

On the other hand, we deduce from Lemma 5.5.4 that
(
|∇un

i |pi(x)
)

is equi-integrable in L1(QT ), which

implies the existence of δ2 > 0, such that, if | E |≤ δ2, we have

Ci(||w||∞)
∫

E
|∇un

i |pi(x) ≤ ε

2
.

Finally, by choosing δ ∗ = inf(δ1,δ2), if | E |≤ δ ∗, we obtain

∫
E

| f n
i (t,x,un,∇un)| ≤ ε,

this finishes the proof of Theorem 5.5.1.
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Chapter 6
Spherical Harmonics

6.0.4 Introduction

In mathematics, spherical harmonics are particular harmonic functions defined as the eigenfunctions of

the angular part of the Laplacian in three dimensions. Spherical harmonics are a set of functions used

to represent functions on the surface of the sphere S2. They are a higher-dimensional analogy of Fourier

series, which form a complete basis for the set of periodic functions of a single variable (functions on the

circle S1). They are particularly useful for solving rotational invariant problems and representing solutions

to partial differential equations in which the Laplacian appears. they are also particularly important for

representing physical quantities

Spherical harmonic decomposition can be applied to non-spherical domains using spherical parametriza-

tion. This is used in particular for 3D shapes described by triangular meshes. Common methods for

computing spherical harmonics representation of spherical functions, often samples these functions on

a regular 2D or 3D grid surrounding the sphere. Then, an algorithm is applied on this regular grid to

evaluate the coefficients of the spherical harmonics. In this chapter, we will study in details the spherical

harmonic decomposition. We will present the basics of the spherical coordinate system as well as spheri-

cal harmonics. Then we will show how the spherical functions are decomposed on the spherical harmonic

basis.

6.1 Spherical harmonics on S1

In this section, we discuss spherical harmonics in the circle S1.Then on the sphere S2. Spherical harmonics

are not only important for theoretical reasons, they have interesting practical applications in computer
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graphics and computer vision.

Fourier series was invented by Joseph Fourier (1768-1830) in order to solve heat equation[80]. Using

them, every square-integrable periodic function f (of period 2π) can be uniquely expressed as the sum of

a power series of the form

f (θ) = a0 +
∞

∑
k=1

(akcoskθ +bkcoskθ),

where the Fourier coefficients, ak and bk of f are given by the expression

a0 =
1

2π

∫
π

−π

f (θ)dθ ,ak =
1
π

∫
π

−π

f (θ)coskθdθ ,bk =
1
π

∫
π

−π

f (θ)sinkθdθ ,

for k > 1.

These remarkable series has many theoretical and practical applications in physics, signal processing,

engineering, etc. Fourier series can be described in a more conceptual way if we introduce the following

inner product on square-integrable functions

〈 f ,g〉=
∫

π

−π

f (θ)g(θ)dθ .

This can also be noted by

〈 f ,g〉=
∫

S1
f (θ)g(θ)dθ

where S1 represents the unit circle. Any periodic function (of period 2π) can be represented as functions

on the circle. Using this inner product, the space L2(S1) is a complete normed vector space, which is,

a Hilbert space. Also, if we define the subspaces, Hk(S1), of L2(S1), in order that H0(S1)(= R) is the

set of constant functions and Hk(S1) is the space of 2-dimension generated by the functions coskθ and

sinkθ , which gives a Hilbert sum decomposition

L2(S2) =
∞⊕

k=1

Hk(S1),

in pairwise orthogonal subspaces, where ∪∞
k=1Hk(S1) is dense in L2(S1). The functions coskθ et sinkθ

are also orthogonal in Hk(S1).

Now the spaces, Hk(S1), appear naturally when we look for homogeneous solutions of Laplace equa-

tion, ∆ f = 0, in R2. In short, a homogeneous function in R2 is a function which can be expressed in polar
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coordinates (r,θ), such that

f (r,θ) = rkg(θ),

where f : R2 −→ is a function which is at least of the class C2. In polar coordinates (r,θ), where

(x,y) = (r cosθ ,r sinθ) and r > 0, the Laplacian is given by

∆ f =
1
r

∂

∂ r
(r

∂ f
∂ r

)+
1
r2

∂ 2 f
∂θ 2 .

If f is restrict to the unit circle, S1, the Laplacian on S1 is given by

∆S1 f =
∂ 2 f
∂θ 2 .

To prove that the space H k(S1) is the eigenspace of ∆S1 for the eigenvalue−k2, we look for the harmonic

functions f on R2, solutions of the Laplace equation,

∆ f = 0.

Back to literature, the above equation can be solved by separation of variables. Which means that we

can write f (r,θ) = F(r)g(θ), where F(r) and g(θ) are independent functions. To this end, assume that

F(r) = rk, for k ≥ 0, which means that f is a homogeneous function of degree k.

f (tx, ty) = tk f (x,y) pour tout t > 0.

The Laplacian in polar coordinates, is given by

∆ f =
1
r

∂

∂ r
(r

∂ rkg(θ)
∂ r

)+
1
r2

∂ 2rkg(θ)
∂θ 2

=
1
r

∂

∂ r
(krkg)+ rk−2 ∂ 2g

∂θ 2

= rk−2k2g+ rk−2 ∂ 2g
∂θ 2

= rk−2(k2g+∆S1g).

Thus, we conclude that

∆ f = 0 if and only if ∆S1g =−k2g
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where g is an eigenfunction of ∆S1 for the eigenvalue −k2. Since the above equation is equivalent to the

following second order differential equation

∂ 2g
∂θ 2 + k2g = 0.

Whose general solution is given by the following expression

g(θ) = an coskθ +bn sinkθ .

In brief, the integers, 0,−1,−4,−9, ...,−k2,. . . are the eigenvalues of ∆S1 and the functions coskθ and

sinkθ are eigenfunctions for the eigenvalue −k2, with k ≥ 0. Therefore, the dimension of the subspace

corresponding to the eigenvalue −k2 is equal to 1 when k = 0 and equal to 2 when k ≥ 1.

Indeed, we can show that ∆S1 has no other eigenvalues and that the dimensions claimed for the

eigenspaces are correct. Note that if we go back to the homogeneous harmonic functions, f (r,θ) =

rkg(θ), we observe that this space is generated by the functions

uk = rkcoskθ , vk = rksinkθ .

Since (x+ iy)k = rk(coskθ + isinkθ), ℜ(x+ iy)k and ℑ(x+ iy)k are homogeneous polynomials, then

uk and vk are homogeneous polynomials called harmonic polynomials. As an example, here is a basic list

for harmonic polynomials (with two dimensions) of degree k = 0,1,2,3,4

k = 0 1

k = 1 x,y

k = 2 x2− y2,xy

k = 3 x3−3xy2,3x2y− y3

k = 4 x4−6x2y2 + y4,x3y− xy3

In summary, the Laplacian eigenfunctions on S1 are the restrictions of the harmonic polynomials on R2

into S1 and we get a Hilbert decomposition sum, L2(S1) =
⊕

∞
k=0 Hk(S1). This study can be generalized

to the sphere Sn ⊆ Rn+1 for every n > 1.
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6.2 Spherical harmonics on S2

The contains of this section is classical and can be found in many references, Andrews et all [16](chapter

9), Sansone [119](chapter 3), Hochstadt [73] (chapter 6) and Lebedev [39]. We recommend Lebedev [39]

as it is particularly clear.

As in the previous section, our goal is to find the homogeneous solutions of the Laplace equation,

∆ f = 0, but this time in R3, and show that they correspond to Hk(S2) spaces, Laplacian eigenfunctions,

∆S2 , on the sphere,

S2 = {(x,y,z) ∈ R3 | x2 + y2 + z2 = 1}.

Next, the space Hk(S2) will give us a Hilbert sum decomposition of the Hilbert space, L2(S2), of square

integrable functions on S2. This is a generalization of the Fourier series to the sphere. The functions

defined in the spaces Hk(S2) are called spherical harmonics.

The expression of the Laplacian in R3 is given by

∆ f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .

By using spherical coordinates

x = rsinθcosϕ,

y = rsinθsinϕ,

z = rcosθ ,

where 0 ≤ θ < π , 0 ≤ φ < 2π and r > 0 (π is the azimuthal angle originating at the x-axis and θ is the

polar angle from the z-axis), we derive the Laplacian in spherical coordinates, we have

∂

∂ r
= sinθ cosϕ

∂

∂x
+ sinθ sinϕ

∂

∂y
+ cosθ

∂

∂ z
= r̂,

∂

∂θ
= r

(
cosθ cosϕ

∂

∂x
+ cosθ sinϕ

∂

∂y
− sinθ

∂

∂ z

)
= rθ̂ ,

∂

∂ϕ
= r

(
−sinθ sinϕ

∂

∂x
+ sinθ cosϕ

∂

∂y

)
= rϕ̂.
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These base vectors are orthogonal, which gives

r̂.r̂ = θ̂ .θ̂ = ϕ̂.ϕ̂ = 1,

and

r̂.θ̂ = θ̂ .ϕ̂ = ϕ̂.r̂ = 0.

Then the matrix (gi j) is defined by

(gi j) =


1 0 0

0 r2 0

0 0 r2 sin2
θ

 ,

where | g |= r4 sin2
θ . The inverse of (gi j) is defined by

(gi j) =


1 0 0

0 r−2 0

0 0 r−2 sin−2
θ

 .

Then the Laplacian in spherical coordinates is given by

∆ f =
1
r2

∂

∂ r

(
r2 ∂ f

∂ r

)
+

1
r2sinθ

∂

∂θ

(
sinθ

∂ f
∂θ

)
+

1
r2sin2θ

∂ 2 f
∂ϕ2 .

As (θ ,ϕ) are the coordinates in the sphere S2 via

x = r sinθ cosϕ,

y = r sinθ sinϕ,

z = r cosθ .

We see that in these coordinates, the matrix, (g̃i j), over S2 is given by

(g̃i j) =

 1 0

0 sin2
θ

 ,
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as | g̃ |= sin2
θ , and the inverse of (g̃i j) and

(g̃i j) =

 1 0

0 sin−2
θ

 ,

which immediately gives

∆S2 f =
1

sinθ

∂

∂θ

(
sinθ

∂ f
∂θ

)
+

1
sin2θ

∂ 2 f
∂φ 2 ,

we have therefore verified that

∆ f =
1
r2

∂

∂ r

(
r2 ∂ f

∂ r

)
+

1
r2 ∆S2 f .

∆S2 is the Laplacian on the sphere, S2 Ref.[82](chapter 8). Now as in the previous section, we are looking

for the homogeneous harmonic functions f (r,θ ,φ) = rkg(θ ,φ) on R3 that represent solutions of the

Laplace equation

∆ f = 0.

We obtain

∆ f =
1
r2

∂

∂ r
(r2 ∂ rkg(θ)

∂ r
)+

1
r2 ∆S2 f

=
1
r

∂

∂ r
(krk+1g)+ rk−2

∆S2g

= rk−2k(k+1)g+ rk−2
∆S2g

= rk−2(k(k+1)g+∆S2g).

Thus,

∆ f = 0 if and only if ∆S2g =−k(k+1)g.

That means that g is an eigenfunction of ∆S2 for the eigenvalue −k(k+ 1). Therefore, we can look for

solutions of the above equation using the variable separation method. Let g(θ ,ϕ) = Θ(θ)Φ(ϕ), then we

get
Φ

sinθ

∂

∂θ

(
sinθ

∂Θ

∂θ

)
+

Θ

sin2θ

∂ 2Φ

∂ϕ2 =−k(k+1)ΘΦ.

By dividing by ΘΦ and multiplying by sin2
θ we get

sinθ

Θ

∂

∂θ

(
sinθ

∂Θ

∂θ

)
+ k(k+1)sin2

θ =− 1
Φ

∂ 2Φ

∂ϕ2 .

198



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

Since Θ and Φ are independent functions, the above result is possible only if both sides are equal to a

constant, µ . This leads to two equations

∂ 2Φ

∂ϕ2 +µΦ = 0,

sinθ

Θ

∂

∂θ

(
sinθ

∂Θ

∂θ

)
+ k(k+1)sin2

θ −µ = 0.

However, we want Φ to be periodic in ϕ since we are considering functions on S2, to this end we must

have µ = m2, where m is a positive integer. Therefore the space of solutions of the following equation

∂ 2Φ

∂ϕ2 +m2
Φ = 0,

is two-dimensional and generated by the following two functions

Φ(ϕ) = cosmϕ, Φ(ϕ) = sinmϕ.

But we still have to solve the equation

sinθ
∂

∂θ

(
sinθ

∂Θ

∂θ

)
+(k(k+1)sin2

θ −m2)Θ = 0.

Which is equivalent to a variant of Legendre’s equation as follows

sin2
θΘ
′′+ sinθ cosθΘ

′+(k(k+1)sin2
θ −m2)Θ = 0.

Using the variable change t = cosθ , and by considering the function, u, given by u(cosθ) = Θ(θ) (re-

member that 0 ≤ θ ≤ π), we get the following second order differential equation, sometimes called the

general Legendre equation

(1− t2)u′′−2tu′+(k(k+1)− m2

1− t2 )u = 0.

To solving this equation we have to make substitution [82]( chapter 7, Section 7.12), let

u(t) = (1− t2)
m
2 v(t),
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Then, we get

(1− t2)v′′−2(m+1)tv′+(k(k+1)−m(m+1))v = 0.

When m = 0 we obtain the Legendre equation

(1− t2)v′′−2tv′+ k(k+1)v = 0.

This equation has two fundamental solutions, Pk(t) and Qk(t), called the Legendre functions of the first

and second types. Pk(t) are polynomials and Qk(t) are given by power series of which diverge for t =

1, that’s why we only keep the Legendre polynomials, Pk(t) . Legendre polynomials are defined by

Rodriguez formula

Pn(t) =
1

2nn!
dn

dtn (t
2−1)n.

As they can be defined in various ways, this version of Legendre polynomials, they are normalized so that

Pn(1) = 1. They also verifies the following recurrence relation:

P0 = 1,

P1 = t,

(n+1)Pn+1 = (2n+1)tPn−nPn−1 n≥ 1.

For example, the first six Legendre polynomials are given by [82] (chapter 4, section 4.3)

1

t

1
2(3t2−1)

1
2(5t3−3t)

1
8(35t4−30t2 +3)

1
8(63t5−70t3 +15t).

Now back to our differential equation

(1− t2)v′′−2(m+1)tv′+(k(k+1)−m(m+1))v = 0. (6.1)
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Observe that if we drift with respect to t, we obtain the equation

(1− t2)v′′′−2(m+2)tv′′+(k(k+1)−m(m+1)(m+2))v′ = 0.

This shows that, if v is a solution of our equation (6.1) for given k and m, then v′ is a solution of the same

equation for k and m+ 1. Thus, if Pk(t) allows to solve (6.1)) for given k and m = 0, then P′K(t) allows

to solve (6.1) for the same k and m = 1, P′′K(t) solves (6.1) for the same k and m = 2, then in general,
dm

dtm (Pk((t)) solves (6.1) for k and m. Hence, our original equation

(1− t2)u′′−2tu′+(k(k+1)− m2

1− t2 )u = 0. (6.2)

has the solution of the form

u(t) = (1− t2)
m
2

dm

dtm (Pk(t)).

The function u(t) is generally denoted by Pm
k (t) and called the associated Legendre function, [82](chapter

7, Section 7.12). The index k is often called the band index. Indeed, Pm
k (t)≡ 0 if m > k and P0

k (t) = Pk(t),

the Legendre polynomial of degree k. An associated Legendre function is not a polynomial in general

and because of the factor (1− t2)
m
2 , it is defined only in the closed interval [−1,1].

Some authors add the factor (−1)m to the expression of the associated Legendre function Pm
k (t), as in

[82](chapter 7, Section 7.12). In the literature of quantum mechanics this seems to be common practice

where it is called the phase factor Condon Shortley

The associated Legendre functions satisfy various recurrence relations which allows there computa-

tions. For example, for m > 0 fixed, we have [82](chapter 7, Section 7.12) the following recurrence

(k−m+1)Pm
k+1(t) = (2k+1)tPm

k (t)− (k+m)Pm
k−1(t) k > 1,

for k ≥ 2 we have

Pm+2
k (t) =

2(m+1)t

(t2−1)
1
2

Pm+1
k (k−m)(k+m+1)Pm

k (t), 0≤ m≤ k−2,

which can also be used to compute Pm
k starting from

P0
k (t) = Pk(t),
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P1
k (t) =

kt

(t2−1)
1
2

Pk(t)−
k

(t2−1)
1
2

Pk−1(t).

Note that the recurrence relation for fixed m gives the following equation for k = m (Since Pm
m−1 = 0):

Pm
m+1(t) = (2m+1)tPm

m .

It is also easy to see that

Pm
m (t) =

(2m)!
2mm!

(1− t2)
m
2 .

Observe that
(2m)!
2mm!

= (2m−1)(2m−3)...5.3.1,

this expression sometimes denoted (2m−1)!! and called the double factorial.

Some papers in computer graphics adopt the definition of Legendre functions associated with the

scale factor (−1)m added, for example, [68]. The above equation allows us to "lift" Pm
m to the highest

band m+ 1. The graphical computer community [68] uses the following three steps to compute Pm
k (t)

where 0≤ m≤ k:

1 Compute

Pm
m (t) =

(2m)!
2mm!

(1− t2)
m
2 .

If m = k, stop. Otherwise, do step 2

2 Compute

Pm
m+1(t) = (2m+1)tPm

m (t).

If k = m + 1 Stop. Otherwise, do step 3:

3 From i = m+1, Compute

(i−m+1)Pm
i+1(t) = (2i+1)tPm

i (t)− (i+m)Pm
i+m(t),

until i+1=k.

we recall that the equation (6.2) was obtained from the following equation

sin2
θΘ
′′+ sinθ cosθΘ

′+(k(k+1)sin2
θ −m2)Θ = 0.
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Using u(cosθ) = Θ(θ), we get

Θ(θ) = Pm
k (cosθ),

which is a solution for the above equation. By bringing everything together, as f (r,θ ,ϕ) = rk Θ(θ)Φ(ϕ),

we proved that the homogeneous functions

f (r,θ ,ϕ) = rk cos(mϕ)Pm
k (cosθ), f (r,θ ,ϕ) = rk sin(mϕ)Pm

k (cosθ),

are solutions of the Laplacian ∆, in R3, and that the functions

cos(mϕ)Pm
k (cosθ), sin(mϕ)Pm

k (cosθ),

are Laplacian ∆S2 eigenfunctions on the sphere S2 for the eigenvalue−k(k+1). For fixed k, as 0≤m≤ k,

we obtain 2k+1 linearly independent functions.

The notation of the above functions varies a bit mainly due to the choice normalization factors used in

various fields (such as physics, quantum mechanics, magnetism, seismology, geodesy, spectral analysis,

etc.). In this study we will adopt the notation Y m
l , where l is a positive integer, but m is allowed to be

negative, with −l ≤ m≤ l. Then, we set

Y m
l (θ ,ϕ) =


N0

l Pl(cosθ) si m = 0,

√
2Nm

l cosmϕPm
l (cosϕ) si m > 0,

√
2Nm

l sin(−mϕ)Pm
l (cosϕ) si m < 0,

(6.3)

for l = 0,1,2, ..., And where the endpoint Nm
l are normalization functions. In physics and computer

graphics, Nm
l are chosen to be

Nm
l =

√
(2l +1)(l− | m |)!

4π(l+ | m |)!
.

Y m
l are called the real spherical harmonics of degree l and order m, l is called the index of the band 6.2.

The functions, Y m
l , have very nice properties, in order to explain them we have to recall the structure

of Hilbert space with the space, L2(S2), of square integrable functions on the sphere S2.

Recall that, the inner product on L2(S2) is given by

< f ,g >= intS2 f gΩ2 = int2π
0 intπ

0 f (θ ,ϕ)g(θ ,ϕ)sinθdθdϕ,
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Figure 6.1: 3D representation of the modulus of the Y m
l first terms.

where f ,g inL2(S2) and Ω2 is the volume form on S2 (induced by the metric in R3), with this inner

product, L2(S2) is a full normalized vector space using the norm ‖ f ‖=
√
〈( f , f )〉 associate with the

inner product such that L2(S2) is a Hilbert space. We can also show that the Laplacian ∆S2 on the sphere

is an self-adjoint linear operator with respect to this inner product. Since the functions Y m1
l1 and Y m2

l2 where

l1 6= l2 are eigenfunctions corresponding to distinct eigenvalues (−l1(l1 + 1) and (−l2(l2 + 1), they are

orthogonal such that

〈Y m1
l1 ,Y m2

l2 〉 si l1 6= l2.

It is also easy to show that for the fixed l

〈Y m1
l1 ,Y m2

l2 〉= δm1,m2 ,

Where Y m
l with −l 6 m 6 l form an orthonormal basis. We denote by Hl(S2) the space of dimension

(2l + 1) generated by these functions. It turns out that Y m
l form a basis of the eigenspace El of ∆S2

associated with the eigenvalue −l(l + 1) then El = Hl(S2) and ∆S2 has no other eigenvalue, besides the
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space L2(S2) is an orthogonal sum of Hilbert eigenspace Hl(S2) which means Hl(S2) is

1) Mutually orthogonal.

2) Closed.

3) The space L2(S2) is a Hilbert sum
⊕ in f ty

l=0 Hl(S2) that is to say for any function f ∈ L2(S2) there

exists a unique sequence of spherical harmonics f j ∈Hl(S2) such as

f =
∞

∑
l=0

fl,

see figure6.2 and the sequence ∑
∞
l=0 f j converges to f (for L2(S2) norm ). Observing that each fl is

a unique linear combination, fl = ∑ml
aml ,lY

ml
l .

Therefore, 3) shows the Fourier series decomposition on the sphere S2 which generalizes the Fourier

decomposition on the circle S1. Furthermore, Fourier coefficients aml ,l can be computed using the fact

that Y m
l form an orthonormal Hilbert basis

aml ,l = 〈 f ,Y
m
l 〉.

We also have the homogeneous harmonic functions Hm
l (r,θ ,ϕ) in R3 given by

Figure 6.2: Development of a spherical function in spherical harmonics

Hm
l (r,θ ,ϕ) = rlY m

l (θ ,ϕ).

Starting computing explicitly the expression of Hm
l for small values of l and m, we find that it is always

possible to explain these functions in terms of Cartesian coordinates x, y, z as homogeneous polynomials.

The Laplacian ∆S2 eigenfunctions and the spherical harmonics are the restrictions of the homogeneous

harmonic polynomials in R3(this remarkable fact holds in general). Here is a list of the bases of homoge-

neous harmonic polynomials of degree k in R up to k = 4
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k = 0 1

k = 1 x,y,z

k = 2 x2− y2,x2− z2,xy,xz,yz

k = 3 x3−3xy2,3x2y− y3,x3−3xz2,3x2z,−z3,y3−3yz2,3y2z− z3,xyz

k = 4 x4−6x2y2 + y4,x4−6x2z2 + z4,y4−6y2z2 + z4,x3y− xy3,x3z− xz3,y3z− yz2,3y2z− yz3,3x2yz−

yz3,3xy2z− xz3,3xyz2− x3y.

Figure 6.3: Analytical representation of the real part of the first spherical harmonics

6.3 Numerical implementation

This section is reserved for the numerical implementation in Matlab programming language to compute

and visualize the spherical harmonics for a fixed degree L and a discretization of longitude θ and colati-

tude ϕ angles.

6.3.1 Computation of the spherical harmonics

To compute spherical harmonics we use the predefined function Legendre in Matlab as follows
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P l = l e g e n d r e ( L , cos ( t h e t a ) , ’ norm ’ ) ;

This instruction evaluates at the point cos(θ), the normalized Legendre functions NP defined by

NP(L,M;X) = (−1)M

√
(L+1/2)(L−M)!

(L+M)!
P(L,M;X),

where P(L,M;X) denotes the usual Legendre function.

It should be noted that the Legendre function returns an object containing a superposition of (L+1)

ordered matrices according to the value of the coefficient M. To extract from this latter the matrix which

corresponds to the polynomial P(L,M;X) we use the following Matlab squeeze function

Plm= s q u e e z e ( P l (M+ 1 , : , : ) ) ;

Finally, we evaluate the expression of the harmonics for the orders M from 0 up to L by the following

instructions

Yp = [ ] ;

f o r M= 0 : 1 : L

Ylm=(−1)^M. ∗ s q u e e z e ( Plm (M+ 1 , : , : ) ) . ∗ exp (1 i ∗M∗ p h i ) ;

Yp=[Yp ; Ylm ] ;

end

Harmonics of negative order are deduced from positive orders by the following formula

Yn = [ ] ;

f o r i =1 : nyp−1

Yn=[Yn ; (−1)^(L−i −1)∗ conj ( Yp ( n l t−i ∗ n l +1 : n l t −( i −1)∗ nl , : ) ) ] ;

end

6.3.2 Visualization of the spherical harmonics

To visualize the geometric shape of spherical harmonics, we first sampled the angles θ and φ according

to a regular grid using the following instructions

t e = l i n s p a c e ( 0 , 2∗ pi , 2 0 0 ) ;

p= l i n s p a c e ( 0 , pi , 2 0 0 ) ;

[ t h e t a , p h i ]= meshgrid ( t e , p ) ;
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then we called the function spherical_harmonics implemented previously to compute the spherical har-

monics

Yl= s p h e r i c a l _ h a r m o n i c s ( L , t h e t a , p h i ) ;

finally to visualize a spherical harmonic Y m
l we draw the map

[0,π]× [0,2π[−→ R3

(θ ,φ)−→ |Y m
l (θ ,φ)| · (cos(φ)sin(θ),sin(φ)sin(θ),cos(θ)),

using the following instructions

x r = r r .∗ cos ( p h i ) . ∗ s i n ( t h e t a ) ;

y r = r r .∗ s i n ( p h i ) . ∗ s i n ( t h e t a ) ;

z r = r r .∗ cos ( t h e t a ) ;

f = f i g u r e ;

a x i s o f f ;

s u r f ( xr , yr , z r ) ;

colormap j e t ;

shading i n t e r p

a x i s e q u a l o f f ;
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Chapter 7
Application to Image Decomposition,

Reconstruction and Fingerprints

Identification.

7.0.3 Introduction

In the field of image processing and image analysis, particularly in medical imaging, the primary task is to

represent the original image in a standard description. The process begins with an initial representation of

the original object in a chosen coordinate system. The choice of the coordinate system in which the image

is represented is based on the symmetry of the original image. The spherical coordinate system is one of

the choices used to represent any object, the main topic of this chapter is to apply the tools of spherical

harmonics to represent and reconstruct an image. Spherical harmonics use the orthogonality relations

of its parameters to represent and process images. The image is first represented on the unit sphere it

undergoes a distortion which is maximum at the level of the north and south poles, the smoothing is

approximated by leaving 0.15π empty of space at each pole. Sampling is performed for the parameters

θ and φ and the image is represented by spherical harmonics whose coefficients are computed. The least

significant values of the spherical harmonics coefficients are truncated which induces compression in the

reconstructed image while keeping the memory allocation in view.
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7.1 Spherical representation

Let I be an image of size N×M see figure 7.1.

I : [0,N]× [0,M]−→ R

(i, j)−→ I(i, j),

Figure 7.1: The given image I

In order to represent and visualize the image on the sphere we apply the transformation

T : [0,π]× [0,2π[−→ R3

(θ ,ϕ)−→ (sinθ cosϕ,sinθ sinϕ,cosθ).

By discretizing the angles θ and φ according to a regular grid such that θ is discretized over the

interval [0,N] and ϕ is discretized over the interval [0,M], we get

I′ : [0,N]× [0,M]−→ R3 −→ R

(θi,ϕi)−→ (sinθi cosϕ j,sinθi sinϕ j,cosθi)−→ I′(θi,ϕ j) = T ◦ I.

Where I′ is the representation of the image I on the sphere we have therefore obtained a textured sphere

see figure7.1 The image is now represented on the sphere it is therefore decomposed on the basis of

spherical harmonics as follows

I(θi,ϕ j) =
lmax

∑
l=0

l

∑
m=−l

clmY m
l (θi,ϕ). (7.1)
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7.2 Reconstruction

To reconstruct an image using spherical harmonics, we must first represent it on the sphere in order to

be decompose it into HS (already done) then compute its coefficients and finally obtain the expression

which allows the image to be reconstructed

7.2.1 Coefficients computation

The coefficients of the spherical harmonics are necessary for the reconstruction of the image. Once cal-

culated, they can be used dynamically to reconstruct several versions of the original image with different

degree of precision depending on the value of the degree of spherical harmonics.

The coefficients are computed by multiplying the two sides of the equality by the conjugate of the

spherical harmonic. After integration over the whole domain we obtain the following expression

I(θ ,ϕ)Y m′
l′ (θ ,ϕ) =

lmax

∑
l=0

l

∑
m=−l

clmY m
l (θ),ϕ)Y m′

l′ (θ ,ϕ), (7.2)

∫ 2π

0

∫
π

0
I(θ ,φ)Y m′

l′ (θ ,ϕ)dΩ =
∫ 2π

0

∫
π

0

lmax

∑
l=0

l

∑
m=−l

clmY m
l (θ ,ϕ)Y m′

l′ (θ ,ϕ)dΩ,

where dΩ = sin(θ)dθdϕ

∫ 2π

0

∫
π

0
I(θ ,ϕ)Y m′

l′ (θ ,ϕ)dΩ =
lmax

∑
l=0

l

∑
m=−l

clm

∫ 2π

0

∫
π

0
Y m

l (θ ,ϕ)Y m′
l′ (θ ,φ)dΩ,

Figure 7.2: Image I’: sphere representation of the given image I

211



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

cl′,m′ =
∞

∑
l=0

l

∑
m=−l

Clmδll′δmm′ =
∫ 2π

0

∫
π

0
I(θ ,ϕ)Y m′

l′ (θ ,ϕ)dΩ,

we approximate the integral by a sum using one of the methods: Trapeze, Simpson, Monte-Carlo ...

A simple discretization leads to the following expression

lmax

∑
l=0

l

∑
m=−l

clmδll′δmm′ ≈
N

∑
i=0

M

∑
j=0

I(θi,ϕ j)Y m′
l′ (θi,ϕ j)sin(θi)∆(θi)∆(ϕ j).

In the next step, the coefficients are replaced in the equation (7.1) and by choosing the harmonic set to a

certain degree l, the image is reconstructed. The result for a part of the image I reconstructed for different

degrees l see figure 7.2.1

Figure 7.3: Representation of one part of the image I by different degrees

7.3 Numerical simulations

7.3.1 Representation of an image on the sphere

The program below establishes a correspondence between the pixels of a given image, in this case the

image "eight.tif" and the points of the sphere. the result of running this program is shown in figure ref

Fig: sphere.

%% O r i g i n a l image t o be c o n s t r u c t e d

I = imread ( ’ e i g h t . t i f ’ ) ;
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Figure 7.4: Representation of the image I on the sphere

I = im2double ( I ( : , : , 1 ) ) ;

t h e t a = l i n s p a c e ( 0 , pi , s i z e ( I , 1 ) ) ;

p h i = l i n s p a c e ( 0 , 2∗pi , s i z e ( I , 2 ) ) ;

[ p h i g r i d , t h e t a g r i d ]= meshgrid ( phi , t h e t a ) ;

X= cos ( p h i g r i d ) . ∗ s i n ( t h e t a g r i d ) ;

Y= s i n ( p h i g r i d ) . ∗ s i n ( t h e t a g r i d ) ;

Z= cos ( t h e t a g r i d ) ;

s u r f a c e (X, Y, Z , I , ’ EdgeColor ’ , ’ none ’ , ’ FaceCo lo r ’ , ’ t e x t u r e m a p ’ ) ;

r = 0 : 1 / 2 5 5 : 1 ; v = 0 : 1 / 2 5 5 : 1 ; b = 0 : 1 / 2 5 5 : 1 ;

map=[ r ’ v ’ b ’ ] ;

colormap ( map ) ; gr id on ,
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7.3.2 Reconstruction

This MATLAB code allows us to reconstruct an image from a calculation of the coefficients given by the

integral formula

cm
l =

∫ 2π

0

∫
π

0
I(θ ,ϕ)Y m

l (θ ,ϕ)dΩ.

The instruction

Ct = [ ] ;

f o r i = 0 : Lmax

Ct =[ Ct ; [ i ∗ ones (2∗ i +1 ,1 ) (− i : i ) ’ ] ] ;

end

allows to position the coefficients according to a connectivity table in the form

0 0

1 −1

1 0

1 1

2 −2

2 −1

2 0

2 1

2 2

. .

. .

. .

where the first column corresponds to the values of degree L and the second column corresponds to the

order M. This table allows to relate the spherical harmonic with its respective coefficient using the row

index of the connectivity table. For example: the spherical harmonic (L = 1,M = 1) is stored in row of

index 4 therefore c1
1 is stored in the fourth row of the vector of coefficients CLM. Then we compute the

integral using the predefined method trapeze

i nd1 = f i n d ( ( Ct ( : , 1 ) = = 0 ) & ( Ct ( : , 2 ) = = 0 ) ) ;
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CLM( ind1 )= t rapz ( phi , t rapz ( t h e t a , I .∗ conj (FLM) . ∗ s i n ( t h e t a g r i d ) ) ) ;

Finally, we move on to reconstruction by performing the following operation:

I(θi,ϕ j) =
lmax

∑
l=0

l

∑
m=−l

clmY m
l (θi,ϕ),

by multiplying the spherical harmonic by its coefficient cm
l obtained as previously by the connectivity

table.

7.4 Fingerprints identification by a shape descriptor based on spherical

harmonics

A fingerprint is the pattern formed by the lines of the skin of the fingers, palms of the hands, toes or the

soles of the feet. This pattern is formed during the foetal period.

There exist two types of imprints: the direct imprint (which leaves a visible mark) and the latent

imprint (dirt, sweat or other residue deposited on an object). They are unique and immutable, they do

absolutely not change over time (except by accident as a burn for example).

The probability of finding two similar fingerprints is 10−24. Twins, for example, coming from the

same cell, will have very close but not alike fingerprints. Fingerprints are classified according to a very

old system called the Henry system. In this system, the classification is based on the general topography

Figure 7.5: Henry Classification
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of the fingerprint, it allows to define families such as loops, arches and whorls. They are composed of

Figure 7.6: Arches, loops and whorls

endings in ridges, that is the point where the ridge ends, and bifurcations, which is, the point where the

ridge divides in two.

The core is the interior point, usually located in the middle of the fingerprint. It is often used as a

landmark to locate other minutiae. Other terms are also encountered: the lake, the island, the delta, the

valley ...

Figure 7.7: The components of a fingerprint

These fingerprints can be scanned. A complete fingerprints contains on average a hundred character-

istic points but the controls are performed only from 14 points.

Statistically, it is impossible to find 2 individuals with 14 identical characteristic points, even in a

population of several million people.
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Figure 7.8: Cores and deltas

In this chapter we will first look at the functionality of fingerprint extraction, which constitutes an

important components in fingerprint identification algorithms.

Next, we will introduce a shape descriptor based on spherical harmonics. Finally, numerical simula-

tions carried out on fingerprint databases confirm that this shape descriptor is very efficient,which means,

it allows to identify and even classify fingerprints.

Extraction of the characteristic points (minutiae)

The minutiae-based methods have been used in many systems to identify fingerprints. Based mainly on

a comparison model between the extracted points, these methods rely heavily on the precision of the

extraction of minutiae and the detection of landmarks like kernel and delta. Wrong or missing minutiae

Figure 7.9: Events on an edge (minutiae)

can introduce errors in the identification of fingerprints.

Fortunately, the contextual information provided by the peak flows and the orientation of the neigh-
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borhood of detected minutiae can help eliminate wrong minutiae.

Figure 7.10: Automatic classification (pattern recognition)

Recognition of a fingerprint

An essential component of fingerprint automatic recognition systems is the comparison module which

uses fingerprint identification algorithms in order to compare a test fingerprint to another model finger-

print for identification / verification (see figure7.4). Currently, the efficiency of fingerprint identification

algorithms is a significant problem due to environmental noise. The accuracy of these algorithms depends

on the image quality, the image enhancement methods, and the functionality of the extraction algorithms.

Noisy characteristics introduced by environmental factors such as dust, scarring, and dryness of the skin,

are highly desired to be removed or reduced to a minimum. Even very robust recognition algorithms

will suffer when inaccurate extraction, for example, a high noise, poor image quality, or unwanted im-

age enhancement effects occur. Even without having environmental noise, the deformations applied to a

fingerprint do not guarantee identification due to the variability of the deformations, rotation, translation,

noise effect and homothety. The deformations detected in translation, rotation, nonlinear distortion ... are

obviously due to the difference in the physical location of the finger on the scanner. Figure 7.4, shows

different deformations of the same finger and the notable variability in the fields mentioned. One aspect

that might be more difficult to see is the nonlinear distortion, which is due to both the elasticity of the

skin from the angular variability and the force of the applied pressure.

Extraction of minutiae

Since the vast majority of fingerprint identification algorithms rely on identifying minutiae, information

on minutiae is considered to be very important characteristics [17]. The two main methods of extracting
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Figure 7.11: Basic model for fingerprint verification and identification process

Figure 7.12: Eight prints of the same fingerprint from the FVC2002 database (Maio et al. 2002) with
differences in operations, translation, rotation and image quality.)

characteristic minutiae either require converting a gray-scale image to a binary image, or working directly

on a raw image where gray-scale is enhanced. In the binary image-based method, binarization of the gray-

scale image is the first step. This requires that each gray-scale pixel intensity value is transformed to a

binary intensity of black (0) or white (1). The simplest approach is to apply a global threshold to each

pixel and use the application.

I(x,y) =


1 si I(x,y)≥ t,

0 sinon.
(7.3)
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This method is generally not sufficient as the prints may have different levels of contrast throughout

the image. However, the same procedure can be applied locally at adaptive starting points. Once pro-

duced, the binary image naturally undergoes a thinning operation, where the structures are reduced to a

thickness of 1 pixel, called a skeleton, in order to facilitate the detection of the characteristic points. The

resulting thinned binary image analyzed at each pixel p in order to find the location of the minutiae.

cn(p) =
1
2 ∑

i=1...8
| val(p(i mod 8))− val(pi−1) | . (7.4)

Where val ∈ {0,1} (which means, the pixel intensity value of a binary image). the location of the pixels

of the minutiae can now be identified, such as for example the peak endings will have a cn = 1 and the

bifurcations will have a cn = 3.

Figure 7.13: Top left: Original grayscale image. top right: the binary image. on the bottom left: the
image to be thinned. on the bottom right: the image with thinned out with the core (green), delta (gold),
bifurcations (blue for θ ∈ [0◦− 180◦) and purple for θ ∈ [180◦− 360◦). crest endings (orange for θ ∈
[0◦−180◦) and red for θ ∈ [180◦−360◦).

7.4.1 Shape descriptor based on Spherical Harmonics

The oversize expansion of databases incorporating images and the extreme need to use them as decision

support has brought new challenges such as image storage and retrieval. Thus, the high demand for

better retrieval quality has caused a large amount of research activity around the world to improve the

underlying image-based content retrieval technologies. Thus, several effective methods, based solely on
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digital content, have succeeded in introducing a radical and efficient change in the field of image recovery.

The digitized image is considered as a set of directly interpreted meaningless pixels. The technologies

to improve based on the recovery of the images consists in analyzing these digital data in order to draw

invariant or stable information which should allow the measurement of the similarity between the images.

The criteria widely used in these approaches are color, texture and shape.

Shape descriptors have interesting properties and contain a lot of information about the identity of

objects contained in an image. This type of descriptor is suitable for representing part of the image rather

than the whole image. In fact, several works propose to use descriptors for recognition of images. In this

context, some authors are inspired by the famous transformation into spherical harmonics in their design

of descriptors. Spherical harmonics are effectively kept as robust 3D model descriptor.

In this part, we are inspired by spherical harmonics as they have the properties of being complete and

orthogonal on the unit sphere and separable in spherical coordinates, with a complex exponential for the

angular part as we saw in the first chapter. We will apply this transformation to obtain a shape descriptor

which has a respectful robustness to noise. The main motivation for our work is to speed up and improve

the image search process. We are therefore going to introduce a fast and robust shape descriptor which

processes the shape which is based globally on these spherical harmonics and which just requires a simple

preprocessing step.

Spherical Harmonics

According to the previous chapter, spherical harmonics are defined as follows

Y m
l (θ ,ϕ) = Nm

l Pm
l (cosθ)e jmϕ , −l 6 m 6 l and l > 0,

where Nm
l is the normalization function

Nm
l =

√
2l + l(l−m)!

4π(l +m)!
.

Pm
l denote the associated Legendre polynomial, and θ and φ denote the ordinary spherical coordinates.

The spherical harmonics Y m
l (θ ,φ) are orthogonal and normalized functions because they satisfy the

equality ∫
π

0

∫ 2π

0
Y m

l (θ ,φ)Y m′
l′ (θ ,φ)

∗sin(θ)dθdφ = δll′δmm′ .
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The spherical harmonics are related by the following relation

Y−m
l (θ ,φ) = (−1)mY m

l (θ ,φ)∗.

Spherical representation

Let M(x,y) be a point of R2 which will be represented on the sphere S2 by the point M′(X ,Y,Z) or

X = x, (7.5)

Y = y, (7.6)

Z =
√

1−X2−Y 2. (7.7)

We write, subsequently, the expression of X, Y and Z in spherical coordinates (θ ,φ)

X = sinθ cosφ , (7.8)

Y = sinθ sinφ , (7.9)

Z = cosθ . (7.10)

This transformation will allow us to represent the image on the sphere in order to get a spherical function

that can be decomposed into spherical harmonics.

Let I be a fingerprint, such that I can be decomposed in the bases of the spherical harmonics as follows

I(θ ,φ) =
lmax

∑
l=0

l

∑
m=−l

almY m
l (θ ,φ),

where alm is the spherical harmonic coefficient of degree l and order m, I(θ ,φ) an image function defined

on the unit sphere in spherical coordinates and Y m
l (θ ,φ) represents the spherical harmonic function

Generation of a new region-based shape descriptor

In this part, we use the spherical harmonic functions to design an efficient region-based shape descriptor,

called a shape descriptor based on spherical harmonics. The components of the characteristic vectors are

obtained from a sphere according to the transformation into spherical harmonics. We present below some

formulas to compute these harmonic coefficients and a vector extraction algorithm is detailed at the end
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of this section.

The coefficients of harmonics Cm
l based on TSH are obtained by the following integration formula

Cm
l =

∫
π

0

∫ 2π

0
Y m

l (θ ,φ)I(θ ,φ)sin(θ)dθdφ .

Numerically, this formula can be calculated as the sum over all the pixels located in the unit sphere

Cm
l =

π

N ∑
θ

∑
φ

I(θ ,φ)Y m∗
l (θ ,φ), 0 6 θ 6 π and 0 6 φ 6 2π.

The term π

N represents the weighting coefficients of the uniform sample points used in Monte Carlo

integration, where π represents the area of the unit disk and N is the number of stratified samples. We

just take all the pixels in the sphere as samples. NB: One can use other method to calculate the coefficient

numerically like the trapez method, simpson, ...

These coefficients Cm
l have complex values. In addition, the rotation of the I function results in a

phase shift of these SHs. If we want an invariance of rotation, then it is necessary to combine the Cm
l so

as to eliminate the dependence on φ . The simplest solution is to take their magnitudes ‖Cm
l ‖ .

The steps involved to extract the harmonic representation of a 3D shape are illustrated in figure 7.4.1.

Our DHS descriptor is rotational invariant. In order to provide the invariance of DHS with respect to

geometric transformations, some pres-steps are applied before computation of DHS.

Pretreatment:

We first proceed through pres-treatment phases which consists of

1. Represent the image on the sphere (the sphere which contains the form).

2. Resized the textured sphere to a standard scale.

3. Convert the coordinates of the pixels so that they belong to the unity sphere.

4. Decomposition of the image function (imprint) into spherical harmonics.

In order to ensure the invariance by rotation, the modulus of the corresponding coefficient ‖Cm
l ‖ is

calculated for each l and m and stored in the characteristic vector. By exploiting the symmetry relation

of spherical harmonics, we can considerably reduce the size of the characteristic vector, because we only

retain the ‖Cm
l ‖ coefficients with 0 6 m 6 l, but all the terms ‖C0

l ‖ (with m = 0) must be divided by 2.
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Figure 7.14: Extraction algorithm of the harmonic descriptor.

Once these steps are completed, we ensure the invariance, as well as the efficiency of our spherical

harmonics descriptor.

Coefficients Normalization

Finally, we apply the normalization of the surface by dividing the coefficients Modules ‖Cm
l ‖ by the first

coefficient ‖C0
0 ‖.

Characteristic vector

The characteristic vector V take the form of a triangular matrix

V = {V k/k = 1,2, ..., l} .

where

V k =
1
‖C0

0 ‖

{
‖C0

k ‖
2

,‖C1
k ‖, ...,‖Ck

k ‖
}
.
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Up to degree l, the size of the characteristic vector DFSH is equal to [(l +1)(l−2)/2−1]. For example,

for L = 10, the dimension is equal to 65.

The measure of the dissimilarity between the two fingerprints is computed according to the norm L1.

Distance(R, I) =
1
D

D

∑
k=1
| Discr(R)k−Discr(I)k | .

With Discr(I)k is the k-th coefficient of the descriptor vector of our image I, Discr(R)k is the k-th co-

efficient of the descriptor vector of the image R that we want to compare to I, and D represents the

characteristic vector dimension. Other types of distance measurement are also possible.

7.4.2 Matlab Code

Database

Before getting into the details of the fingerprint identification program code. We will first of all build

a database composed of images of 4 people’s fingerprints, each fingerprint undergoes 4 different defor-

mations, as translation, rotation, homothety and noise effects. This database will be used to test the

effectiveness of our shape descriptor established in the previous section.

Figure 7.15: Illustration of the database made up of 4 people fingerprints
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7.4.3 Construction of the database

This MATLAB code makes it possible to calculate and store the descriptor vector associated with each

image of the database. The latter include the images of the footprints of 4 people.

c l e a r a l l ; c l o s e a l l ; c l c ;

d e g r e =10;

f o r i =1 :4

e m p r e i n t e s ( i ) . image= s p r i n t f ( ’ p e r s o n n e%d . t i f ’ , i ) ;

e m p r e i n t e s ( i ) . d e s c r i p t e u r = g e t _ d e s c r i p t o r ( e m p r e i n t e s ( i ) . image , d e g r e ) ;

end

save e m p r e i n t e s

or the get_descriptor subroutine is used to calculate the shape descriptor vector.

7.4.4 Calculation of the descriptor vector

The function implemented below is used to calculate the descriptor vector defined by the expression

V = {V k/k = 1,2, ..., l} ,

where

V k =
1
‖C0

0 ‖

{
‖C0

k ‖
2

,‖C1
k ‖, ...,‖Ck

k ‖
}
,

the code is as follows

f u n c t i o n [ V ] = g e t _ d e s c r i p t o r ( image , Lmax )

I3 = im2double ( imread ( image ) ) ;

I = I3 ( : , : , 1 ) ;

t h e t a = l i n s p a c e ( 0 , pi , s i z e ( I , 1 ) ) ;

p h i = l i n s p a c e ( 0 , 2∗pi , s i z e ( I , 2 ) ) ;

226



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[ p h i g r i d , t h e t a g r i d ]= meshgrid ( phi , t h e t a ) ;

Ct = [ ] ;

f o r i =0 : Lmax

Ct =[ Ct ; [ i ∗ ones (2∗ i +1 ,1 ) (− i : i ) ’ ] ] ;

end

% I n i t i a l i s a t i o n o f t h e SH d e c o m p o s i t i o n c o e f f i c i e n t s

CLM= z e r o s ( s i z e ( Ct , 1 ) , 1 ) ;

%% Computa t ion o f n o r m a l i z e d Legendre

% f u n c t i o n i n t h e case where L=0

PLM= l e g e n d r e ( 0 , cos ( t h e t a g r i d ) , ’ norm ’ ) ;

FLM= s q r t ( 1 / 2 / pi )∗PLM;

%% Compute t h e c o e f f i c i e n t s c o r r e s p o n d i n g t o CT ( 1 , : ) = [ 0 0]

i nd1 = f i n d ( ( Ct ( : , 1 ) = = 0 ) & ( Ct ( : , 2 ) = = 0 ) ) ;

CLM( ind1 )= t rapz ( phi , t rapz ( t h e t a , I .∗ conj (FLM) . ∗ s i n ( t h e t a g r i d ) ) ) ;

%% Computa t ion o f n o r m a l i z e d

%Legendre f u n c t i o n i n t h e case where L~=0

f o r L=1: Lmax

PL= l e g e n d r e ( L , cos ( t h e t a g r i d ) , ’ norm ’ ) ;%l e g e n d r e

%f u c n t i o n s f o r p o s i t i v e m

f o r M=0:L
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PLM= s q u e e z e ( PL (M+ 1 , : , : ) ) ;

FLM=((−1)^M)∗ s q r t ( 1 / 2 / pi )∗PLM. ∗ exp (1 i ∗M∗ p h i g r i d ) ;

i nd1 = f i n d ( ( Ct ( : , 1 ) = = L)&( Ct ( : , 2 ) = =M) ) ;

i f (M~=0)

ind2 = f i n d ( ( Ct ( : , 1 ) = = L)&( Ct ( : ,2)==−M) ) ;

CLM( ind2 )=( (−1)^M)∗ conj (CLM( ind1 ) ) ;

end

end

end

%% R e c o n s t r u c t i o n o f t h e image

%u s i n g t h e p r e v i o u s l y computed c o e f f i c i e n t s CLM

PLM= l e g e n d r e ( 0 , cos ( t h e t a g r i d ) , ’ norm ’ ) ;

FLM= s q r t ( 1 / 2 / pi )∗PLM;

IR=CLM( 1 )∗FLM;

f o r L=1: Lmax

PL= l e g e n d r e ( L , cos ( t h e t a g r i d ) , ’ norm ’ ) ;%l e g e n d r e

% f u c n t i o n s f o r p o s i t i v e m

f o r M=0:L

PLM= s q u e e z e ( PL (M+ 1 , : , : ) ) ;

FLM=((−1)^M)∗ s q r t ( 1 / 2 / pi )∗PLM. ∗ exp (1 i ∗M∗ p h i g r i d ) ;

i n d = f i n d ( ( Ct ( : , 1 ) = = L)&( Ct ( : , 2 ) = =M) ) ;

IR=IR+CLM( i n d )∗FLM;

i f (M~=0)

ind2 = f i n d ( ( Ct ( : , 1 ) = = L)&( Ct ( : ,2)==−M) ) ;

IR=IR+CLM( ind2 )∗ ( ( −1)^M)∗ conj (FLM ) ;

end
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end

end

%% comput ing image d e s c r i p t o r

a0=abs (CLM( 1 ) ) ;

f o r L=1: Lmax

f o r M=0:L

i n d i c e = f i n d ( ( Ct ( : , 1 ) = = L)&( Ct ( : , 2 ) = =M) ) ;

i f (M==0)

V( L ,M+1)= abs (CLM( i n d i c e ) ) / ( 2 ∗ a0 ) ;

e l s e

V( L ,M+1)= abs (CLM( i n d i c e ) ) / ( a0 ) ;

end

end

end

end

This program allows to identify and recognize the shape by giving it a fingerprint, and compares it with

all the elements in the database in order to indicate the corresponding person.

Fingerprint search

f u n c t i o n [ name ] = s e a r c h _ e m p r e i n t e s ( image )

load e m p r e i n t e s ;

L= s i z e ( e m p r e i n t e s ( 1 ) . d e s c r i p t e u r , 1 ) ;

V= g e t _ d e s c r i p t o r ( image , L ) ;

f o r i =1 : s i z e ( e m p r e i n t e s , 2 )

Coef= e m p r e i n t e s ( i ) . d e s c r i p t e u r ;

d i s t ( i )=sum ( abs ( Coef ( : )−V ( : ) ) ) ;
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end

[ va l , i n d ]= min ( d i s t ) ;

name= s p r i n t f ( ’ l ’ image i d e n t i f i e e e s t %s ’ , e m p r e i n t e s ( i n d ) . image ) ;

end

We applied our program on the database illustrated in the figure 7.4.2 the preliminary results show that

our descriptor is efficient. Indeed, it allows to identify all the images of the database above. In practice,

to prove the robustness of our descriptor, the tests must be carried out on databases comprising at least

hundreds of images and this in large applications. However, the latter require efficient material resources.

This may be the subject of future work.

7.4.5 Conclusion

In this part of the thesis, we have made a contribution to the field of 2D and 3D object representation

using spherical harmonics. These representations have been used in two types of applications the first

application is related to the decomposition and reconstruction of images and the other constitutes in

fingerprints identification.

Both applications are in the field of image processing, the function representing the object is given

by the pixels of the image in spherical coordinates. Given a 2D object, we focused on the computation

of the coefficients of spherical harmonics performed directly on a sample of the object. In the case of

the function describing the pixels of the image on the sphere we have approached two applications the

first consists in using the calculated coefficients to reconstruct the image and the second this manifests in

the fact of using these coefficients to generate a shape descriptor that allowed us to identify fingerprints.

Subsequently, we are interested in applying this method on 3D objects.

In particular, objects of gender zero are homeomorphic to a sphere. They can therefore be parameter-

ized on a sphere by applying a spherical parameterization algorithm. Otherwise, non-zero gender objects

are first segmented into a set of zero gender sub-objects. The calculations of spherical harmonics are thus

applied locally to these sub-objects. Finally, the local representations in spherical harmonics are merged

within the framework of implicit surfaces for a recomposition of the object.

230



Bibliography

[1] Abkarian, M., Faivre, M., Viallat, A. (2007). Swinging of red blood cells under shear flow. Physical

review letters, 98(18), 188302.

[2] Abkarian, M., Viallat, A. (2008). Vesicles and red blood cells in shear flow. Soft Matter, 4(4),

653-657.

[3] Abraham, J., Kwan, P., Gao, J. (2011). Fingerprint matching using a hybrid shape and orientation

descriptor. State of the art in Biometrics, 25-56.

[4] Abreu, D., Levant, M., Steinberg, V., Seifert, U. (2014). Fluid vesicles in flow. Advances in colloid

and interface science, 208, 129-141.

[5] Adalsteinsson, D., Sethian, J. A. (2003). Transport and diffusion of material quantities on propa-

gating interfaces via level set methods. Journal of Computational Physics, 185(1), 271-288.

[6] Ainseba, B. E., Bendahmane, M., Noussair, A. (2008). A reaction–diffusion system modeling

predator–prey with prey-taxis. Nonlinear Analysis: Real World Applications, 9(5), 2086-2105.

[7] Akagi, G., Matsuura, K. (2011). Well-posedness and large-time behaviors of solutions for a

parabolic equation involving p (x)-Laplacian. In The eighth international conference on dynami-

cal systems and differential equations, a supplement volume of discrete and continuous dynamical

systems (pp. 22-31).

[8] Alaa, N. (1996). Solutions faibles d’équations paraboliques quasilinéaires avec données initiales

mesures. In Annales mathématiques Blaise Pascal (Vol. 3, No. 2, pp. 1-15).

231



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[9] Alaa, N., Lefraich, H. (2013). Computational simulation of a new system modelling ions elec-

tromigration through biological membranes. Theoretical Biology and Medical Modelling, 10(1),

51.

[10] Alaa, N., Mounir, I. (2001). Global existence for reaction-diffusion systems with mass control

and critical growth with respect to the gradient. Journal of mathematical analysis and applications,

253(2), 532-557.

[11] Alaa, N. E., Pierre, M. (1993). Weak solutions of some quasilinear elliptic equations with data

measures. SIAM journal on mathematical analysis, 24(1), 23-35.

[12] Alaa, N. E., Zirhem, M. (2018). Bio-inspired reaction diffusion system applied to image restora-

tion. International Journal of Bio-Inspired Computation, 12(2), 128-137.

[13] Alexandrov, A. D. (1962). A characteristic property of spheres. Annali di Matematica Pura ed

Applicata, 58(1), 303-315.

[14] Aliziane, T., Langlais, M. (2006). Degenerate diffusive SEIR model with logistic population con-

trol. Acta Mathematica Universitatis Comenianae. New Series, 75(2), 185-198.

[15] Ambrosio, L., Buttazzo, G. (1993). An optimal design problem with perimeter penalization. Cal-

culus of variations and partial differential equations, 1(1), 55-69.

[16] Andrews, G. E., Askey, R., Roy, R. (1999). Special functions (Vol. 71). Cambridge university

press.

[17] Antonny, B. (2011). Mechanisms of membrane curvature sensing. Annual review of biochemistry,

80, 101-123.

[18] Antontsev, S. N., Shmarev, S. I. (2005). A model porous medium equation with variable exponent

of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Analysis:

Theory, Methods and Applications, 60(3), 515-545.

[19] Au, T. K. K., Wan, T. Y. H. (2003). Analysis on an ODE arisen from studying the shape of a red

blood cell. Journal of mathematical analysis and applications, 282(1), 279-295.

[20] Axler, S., Bourdon, P., Wade, R. (2013). Harmonic function theory (Vol. 137). Springer Science

and Business Media.

232



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[21] Bagchi, P., Kalluri, R. M. (2009). Dynamics of nonspherical capsules in shear flow. Physical Re-

view E, 80(1), 016307.

[22] Baumgart, T., Capraro, B. R., Zhu, C., Das, S. L. (2011). Thermodynamics and mechanics of

membrane curvature generation and sensing by proteins and lipids. Annual review of physical

chemistry, 62, 483-506.

[23] Bendahmane, M., Saad, M. (2011). Mathematical analysis and pattern formation for a partial im-

mune system modeling the spread of an epidemic disease. Acta applicandae mathematicae, 115(1),

17-42.

[24] Bendahmane, M., Wittbold, P., Zimmermann, A. (2010). Renormalized solutions for a nonlinear

parabolic equation with variable exponents and L1-data. Journal of Differential Equations, 249(6),

1483-1515.

[25] Biben, T., Farutin, A., Misbah, C. (2011). Three-dimensional vesicles under shear flow: Numerical

study of dynamics and phase diagram. Physical Review E, 83(3), 031921.

[26] Boccardo, L., Murat, F. (1992). Almost everywhere convergence of the gradients of solutions to

elliptic and parabolic equations. Nonlinear Analysis: Theory, Methods & Applications, 19(6), 581-

597.

[27] Boccardo, L., Murat, F., Puel, J. P. (1988). Existence of bounded solutions for non linear elliptic

unilateral problems. Annali di Matematica Pura ed Applicata, 152(1), 183-196.

[28] Bull, B. (1973). Red Cell Biconcavity and Deformability A macromodel based on flow chamber

observations. In Red Cell Shape (pp. 115-124). Springer, Berlin, Heidelberg.

[29] Byun, S. S., Lee, K. A., Oh, J., Park, J. (2019). Regularity results of the thin obstacle problem for

the p (x)-Laplacian. Journal of Functional Analysis, 276(2), 496-519.

[30] Dieudonn, J. (1980). Special functions and linear representations of Lie groups (Vol. 42). American

Mathematical Soc..

[31] Canham, P. B. (1970). The minimum energy of bending as a possible explanation of the biconcave

shape of the human red blood cell. Journal of theoretical biology, 26(1), 61-81.

[32] Cantat, I. (2012). Le globule rouge, http://images.math.cnrs.fr/Le-globule-rouge.

233



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[33] Céa, J. (1986). Conception optimale ou identification de formes, calcul rapide de la dérivée direc-

tionnelle de la fonction coût. ESAIM: Mathematical Modelling and Numerical Analysis, 20(3),

371-402.

[34] Chambolle, A. (2003). A density result in two-dimensional linearized elasticity, and applications.

Archive for rational mechanics and analysis, 167(3), 211-233.

[35] Charkaoui, A., Alaa, N. E. (2020). Weak Periodic Solution for Semilinear Parabolic Problem with

Singular Nonlinearities and L1 Data. Mediterranean Journal of Mathematics, 17(4), 1-17.

[36] Charkaoui, A., Kouadri, G., Selt, O., Alaa, N. E. (2019). Existence results of weak periodic so-

lution for some quasilinear parabolic problem with L1 data. Annals of the University of Craiova-

Mathematics and Computer Science Series, 46(1), 66-77.

[37] Charkaoui, A., Kouadri, G., Alaa, N. Some Results on The Existence of Weak Periodic Solutions

For Quasilinear Parabolic Systems With L1 Data. Boletim da Sociedade Paranaense de Matemática.

[38] Chen, Y., Levine, S., Rao, M. (2006). Variable exponent, linear growth functionals in image

restoration. SIAM journal on Applied Mathematics, 66(4), 1383-1406.

[39] Chenais, D. (1975). On the existence of a solution in a domain identification problem. Journal of

Mathematical Analysis and Applications, 52(2), 189-219.

[40] Cherkaev, A., Kohn, R. (Eds.). (1997). Topics in the mathematical modelling of composite materi-

als. Boston: Birkhäuser.

[41] Choksi, R., Veneroni, M. (2013). Global minimizers for the doubly-constrained Helfrich energy:

the axisymmetric case. Calculus of Variations and Partial Differential Equations, 48(3-4), 337-366.

[42] Cordasco, D., Bagchi, P. (2014). Intermittency and synchronized motion of red blood cell dynamics

in shear flow. Journal of fluid mechanics, 759, 472.

[43] Danker, G., Biben, T., Podgorski, T., Verdier, C., Misbah, C. (2007). Dynamics and rheology of a

dilute suspension of vesicles: Higher-order theory. Physical Review E, 76(4), 041905.

[44] Danker, G., Misbah, C. (2007). Rheology of a dilute suspension of vesicles. Physical review letters,

98(8), 088104.

234



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[45] Danker, G., Verdier, C., Misbah, C. (2008). Rheology and dynamics of vesicle suspension in com-

parison with droplet emulsion. Journal of non-newtonian fluid mechanics, 152(1-3), 156-167.

[46] Deuling, H. J., Helfrich, W. (1976). Red blood cell shapes as explained on the basis of curvature

elasticity. Biophysical journal, 16(8), 861-868.

[47] Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M. (2011). Lebesgue and Sobolev spaces with

variable exponents. Springer.

[48] Diening, L., Hästö, P., Nekvinda, A. (2004). Open problems in variable exponent Lebesgue and

Sobolev spaces. FSDONA04 proceedings, 38-58.

[49] Divet, F., Danker, G., Misbah, C. (2005). Fluctuations and instability of a biological membrane

induced by interaction with macromolecules. Physical Review E, 72(4), 041901.

[50] Drábek, P., Kufner, A., Nicolosi, F. (2011). Quasilinear elliptic equations with degenerations and

singularities (Vol. 5). Walter de Gruyter.

[51] Du, Q., Liu, C., Wang, X. (2006). Simulating the deformation of vesicle membranes under elastic

bending energy in three dimensions. Journal of computational physics, 212(2), 757-777.

[52] Dupire, J., Abkarian, M., Viallat, A. (2010). Chaotic dynamics of red blood cells in a sinusoidal

flow. Physical review letters, 104(16), 168101.

[53] Dupire, J., Socol, M., Viallat, A. (2012). Full dynamics of a red blood cell in shear flow. Proceed-

ings of the National Academy of Sciences, 109(51), 20808-20813.

[54] Elaassri, A., Uahabi, K. L., Charkaoui, A., Alaa, N. E., Mesbahi, S. (2019). Existence of weak

periodic solution for quasilinear parabolic problem with nonlinear boundary conditions. Annals of

the University of Craiova-Mathematics and Computer Science Series, 46(1), 1-13.

[55] Ennahnahi, N., Oumsis, M., Bouhouch, A., Meknassi, M. (2010). Fast shape description based on

a set of moments defined on the unit disc and inspired by three-dimensional spherical harmonics.

IET image processing, 4(2), 120-131.

[56] Evans, E., Fung, Y. C. (1972). Improved measurements of the erythrocyte geometry. Microvascular

research, 4(4), 335-347.

235



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[57] Fan, X., Zhao, D. (2001). On the spaces Lp(x)(Ω) and W m,p(x)(Ω). Journal of mathematical analysis

and applications, 263(2), 424-446.

[58] Faraudo, J. (2002). Diffusion equation on curved surfaces. I. Theory and application to biological

membranes. The Journal of chemical physics, 116(13), 5831-5841.

[59] Farsad, K., De Camilli, P. (2003). Mechanisms of membrane deformation. Current opinion in cell

biology, 15(4), 372-381.

[60] Farutin, A., Biben, T., Misbah, C. (2010). Analytical progress in the theory of vesicles under linear

flow. Physical Review E, 81(6), 061904.

[61] Farutin, A., Misbah, C. (2012). Squaring, parity breaking, and S tumbling of vesicles under shear

flow. Physical review letters, 109(24), 248106.

[62] Farutin, A., Misbah, C. (2012). Rheology of vesicle suspensions under combined steady and oscil-

lating shear flows. Journal of fluid mechanics, 700, 362.

[63] Finken, R., Kessler, S., Seifert, U. (2011). Micro-capsules in shear flow. Journal of physics: Con-

densed matter, 23(18), 184113.

[64] Fu, Y. Q. (2002). The existence of solutions for elliptic systems with nonuniform growth. Studia

Mathematica, 151, 227-246.

[65] Fu, Y., Pan, N. (2010). Existence of solutions for nonlinear parabolic problem with p (x)-growth.

Journal of Mathematical Analysis and Applications, 362(2), 313-326.

[66] Fung, Y. C. B., Tong, P. (1968). Theory of the sphering of red blood cells. Biophysical journal,

8(2), 175-198.

[67] Giacomoni, J., Radulescu, V., Warnault, G. (2018). Quasilinear parabolic problem with variable

exponent: qualitative analysis and stabilization. Commun. Contemp. Math, 20(8), 38.

[68] Green, R. (2003). Spherical harmonic lighting: The gritty details. In Archives of the Game Devel-

opers Conference (Vol. 56, p. 4).

[69] Guedda, M., Abaidi, M., Benlahsen, M., Misbah, C. (2012). Dynamic modes of quasispherical

vesicles: Exact analytical solutions. Physical Review E, 86(5), 051915.

236



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[70] Guedda, M., Benlahsen, M., Misbah, C. (2014). Rheological properties of a vesicle suspension.

Physical Review E, 90(5), 052302.

[71] Hadamard, J. (1908). Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques

encastrées (Vol. 33). Imprimerie nationale.

[72] Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments.

Zeitschrift für Naturforschung C, 28(11-12), 693-703.

[73] Hochstadt, H. (2012). The functions of mathematical physics. Courier Corporation.

[74] Kaoui, B., Biros, G., Misbah, C. (2009). Why do red blood cells have asymmetric shapes even in

a symmetric flow?. Physical review letters, 103(18), 188101.

[75] Kessler, S., Finken, R., Seifert, U. (2009). Elastic capsules in shear flow: Analytical solutions for

constant and time-dependent shear rates. The European Physical Journal E, 29(4), 399-413.

[76] Kessler, S., Finken, R., Seifert, U. (2007). Swinging and tumbling of elastic capsules in shear flow.

arXiv preprint arXiv:0709.2610.

[77] Keller, S. R., Skalak, R. (1982). Motion of a tank-treading ellipsoidal particle in a shear flow.

Journal of Fluid Mechanics, 120, 27-47

[78] Khalfi, H., Fahim, H. and Alaa N., (2019). Mathematical analysis of a modified Weikert system

for image enhancement Annals of the University of Craiova, Mathematics and Computer Science

Series, 46 1, 90—98.
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[116] Růžička, M. (1999). Flow of shear dependent electrorheological fluids. Comptes Rendus de

l’Académie des Sciences-Series I-Mathematics, 329(5), 393-398.

[117] Sadollah, A., Sayyaadi, H., Yadav, A. (2018). A dynamic metaheuristic optimization model in-

spired by biological nervous systems: Neural network algorithm. Applied Soft Computing, 71,

747-782.

[118] Salac, D., Miksis, M. (2011). A level set projection model of lipid vesicles in general flows. Journal

of Computational Physics, 230(22), 8192-8215.

[119] Sansone, G. (1991). Orthogonal Functions, rev. English ed, 158.

[120] Seifert, U. (1997). Configurations of fluid membranes and vesicles. Advances in physics, 46(1),

13-137.

[121] Seifert, U., Berndl, K., Lipowsky, R. (1991). Shape transformations of vesicles: Phase diagram for

spontaneous-curvature and bilayer-coupling models. Physical review A, 44(2), 1182.

240



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[122] Segal, S. S. (2005). Regulation of blood flow in the microcirculation. Microcirculation, 12(1),

33-45.

[123] Shangerganesh, L., Balachandran, K. (2014). Solvability of reaction–diffusion model with variable

exponents. Mathematical Methods in the Applied Sciences, 37(10), 1436-1448.

[124] Simon, J. (1986). Compact sets in the spacel Lp(0,T ;B). Annali di Matematica pura ed applicata,

146(1), 65-96.

[125] Skotheim, J. M., Secomb, T. W. (2007). Red blood cells and other nonspherical capsules in shear

flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Physical review letters,

98(7), 078301.

[126] Stein, E. M., Weiss, G. (2016). Introduction to Fourier Analysis on Euclidean Spaces (PMS-32),

Volume 32. Princeton university press.

[127] Sui, Y., Low, H. T., Chew, Y. T., Roy, P. (2008). Tank-treading, swinging, and tumbling of liquid-

filled elastic capsules in shear flow. Physical Review E, 77(1), 016310.

[128] Šverák, V. (1993). On optimal shape design. Journal de mathématiques pures et appliquées, 72(6),

537-551.

[129] Villarrubia, G., De Paz, J. F., Chamoso, P., De la Prieta, F. (2018). Artificial neural networks used

in optimization problems. Neurocomputing, 272, 10-16.

[130] Vlahovska, P. M., Barthes-Biesel, D., Misbah, C. (2013). Flow dynamics of red blood cells and

their biomimetic counterparts. Comptes Rendus Physique, 14(6), 451-458.

[131] Vlahovska, P. M., Gracia, R. S. (2007). Dynamics of a viscous vesicle in linear flows. Physical

Review E, 75(1), 016313.

[132] Vlahovska, P. M., Young, Y. N., Danker, G., Misbah, C. (2011). Dynamics of a non-spherical

microcapsule with incompressible interface in shear flow. Journal of fluid mechanics, 678, 221.

[133] Walter, J., Salsac, A. V., Barthes-Biesel, D. (2011). Ellipsoidal capsules in simple shear flow:

prolate versus oblate initial shapes. Journal of Fluid Mechanics, 676, 318.

[134] Willmore, T. J. (1996). Riemannian geometry. Oxford University Press.

241



Contribution to the mathematical and numerical study of certain problems of biological membrane,
magnetorheological fluid and image processing

[135] Xu, X. (1996). On the Cauchy problem for a singular parabolic equation. Pacific Journal of Math-

ematics, 174(1), 277-294.

[136] Zhang, S.,Constantinides, A. G. (1992). Lagrange programming neural networks. IEEE Transac-

tions on Circuits and Systems II: Analog and Digital Signal Processing, 39(7), 441-452.

[137] Zhang, C., Zhou, S. (2010). Renormalized and entropy solutions for nonlinear parabolic equations

with variable exponents and L1 data. Journal of Differential Equations, 248(6), 1376-1400.

[138] Zhao, M., Bagchi, P. (2011). Dynamics of microcapsules in oscillating shear flow. Physics of

Fluids, 23(11), 111901.

[139] Zhou, S. (2000). A priori L∞-estimate and existence of solutions for some nonlinear parabolic

equations. Nonlinear Analysis: Theory, Methods and Applications, 42(5), 887-904.

[140] Zhong-Can, O. Y., Helfrich, W. (1989). Bending energy of vesicle membranes: General expres-

sions for the first, second, and third variation of the shape energy and applications to spheres and

cylinders. Physical Review A, 39(10), 5280.

242



Conclusion and Perspectives

The aim of this thesis was to study several biological and physical problems in order to translate obser-

vations by applying mathematical tools, techniques and theories, or vice versa, to translate mathematical

results obtained into predictions or operations in the real world.

The first problem we chose to study in this thesis is a first step towards understanding the blood

rheology. This work, concern the mathematical and numerical modeling of red blood cells, biological

membranes in the presence of diffusive molecules and the dynamical behavior of vesicles. Despite there

simplicity, these models remains difficult to solve theoretically and even numerically and constitutes very

rich models to exploit. This is why several computation tools must be set up to overcome these difficulties.

Initially, a special attention was paid to modeling the equilibrium shape of red blood cells. According

to this model, the shape of the red blood cell is the solution of an optimization problem under constraint:

minimization Canham Helfrich energy for a fixed volume and area. After formalizing the problem mathe-

matically, we derive the optimality condition leading to a nonlinear ordinary differential equation verified

by the red blood cell shapes. We treat the two-dimensional and three-dimensional axis-symmetric cases.

The qualitative analyzes of the obtained shapes by simulations seem to validate the Canham-Helfrich-

Evans model. An interesting perspective would be to study the stability of these shapes, by looking at

the second derivative of Canham-Helfrich energy and by studying the sign of the latter. Thus, shapes not

observed in nature may be unstable which would explain the impossibility of observing them. If some

unobserved shapes are stable, then it will be necessary to highlight such shapes in nature, in order to see

if the model can surpass the experiment, which would complete the validation of this latter.

Then we introduced a molecule concentration of the bilayer membrane. The bending energy and

energy of molecules distributions consist of the total energy of the interacting protein-membrane sys-

tem. The transport of molecules on membrane surfaces follows the gradient flow of this total energy.
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We derived a drift-diffusion equation for the gradient flow, where the difference between the local mem-

brane curvature and the molecule concentration dependent local spontaneous curvature appears as a drift

potential, a feature that models the biophysics of molecular localization on membrane surfaces. The nu-

merical simulations, corresponding to the diffusive molecules using level set method shows the effect of

the diffusion on the surface membrane.

Finally, we have developed an effective tool to model the dynamics of a vesicle in an oscillatory

shear flow. The analytical results showed, first, that we find certain classic results and secondly, have

enabled us to predict, the dynamics of vesicles in flow. These latest results are original, they open up

promising avenues for the study of blood rheology. It would be interesting to consider other types of

dynamic such as the case where the vesicle is near a substrate. The Experimental results have shown

that, during the movement of the chariot caterpillar, vesicles slide and roll. In addition, the deformability

of the vesicles generates a lifting force, originally purely viscous, which makes them nonstick from the

substrate. Numerical simulations are used to determine a dependence law between the lift force and the

distance to the substrate. At the same time, it would be interesting to study the passage of the vesicles in

a bifurcation. These two dynamics poses problems of the vesicle/substrate contact process in numerical

point of view. In order to see the effect of the presence of vesicles on the rheological blood behavior, it is

important to increase the concentration of vesicles in the dynamics. The difficulty of this problem lies in

avoiding the inter-penetration between different particles.

The second part of this thesis deals with the study of variational problems involving variable growth

conditions. Since, a great attention has been paid in the recent years, to study mathematical models of

electro-rheological fluids. These models include parabolic or elliptic equations which are nonlinear with

respect to gradient of the solution and with variable exponents of nonlinearity. Besides, another important

application is the image processing where the anisotropy and nonlinearity of the diffusion operator and

convection terms are used to underline the borders of the distorted image and to eliminate noises. In this

part we prove the existence of a weak solution for a nonlinear parabolic equation having a nonstandard

growth condition with respect to the gradient and the variable exponent using Schaeffer’s fixed point

theorem and the sub- and super- solution method under appropriate assumptions. We also prove the

existence of a global weak solution for a class of degenerate parabolic systems with variable exponents

and nonlinearities critical growth with respect to the gradient. In this work we establish two interesting

existence results for this class of degenerate parabolic system with variable exponents. The first result

concerns the case where the non-linearities are bounded. In this case, we prove the existence of solutions
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using the Schauder fixed point theorem in appropriate spaces. The second relates to the case where the

nonlinearities have a critical growth with respect to the gradient of the solution, the existence of a weak

solution is obtained via the existence of a weak super-solution. It would be interesting to study this

kind of problems, since there are only a few works about parabolic equations with variable exponents of

nonlinearity, knowing that they have many applications in various fields.

The third and the last part of this thesis is related to the field of image processing, especially to

reconstruction and recognition of digital images. In this work we propose to use an orthogonal spherical

expansion to convert the 2D image into a 3D object (which consists a representation of the image on

the sphere S2). The conversion technique is efficient. Once the 3D image is obtained and decomposed

using spherical harmonics, the original image can be reconstructed from the characteristic coefficients.

The algorithm is implemented and computer simulations results shows the efficiency and accuracy of

the proposed reconstruction algorithm. In this field, another result is obtained, in which we build a

strong and efficient shape descriptor for fingerprints identification based on spherical harmonics, where

the components of the characteristic vector of the fingerprints is obtained from a sphere according to the

transformation into spherical harmonics. Numerical simulations show that our based spherical harmonics

descriptor is efficient. It allows the identification of all the images in a database composed of 16 image,

these images are composed of 4 people’s fingerprints, each fingerprint undergoes 4 different deformations,

as translation, rotation, homothety and noise effects. In practice, to prove the robustness of our descriptor,

the tests must be carried out on databases comprising at least hundreds of images. However, the latter

require efficient material resources. This may be a perspective for future work.
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Abstract
The aim of the present PhD thesis is to study some ordinary differential equations and partial differential equations arising

in modeling the deformation of biological membranes, electro-rheological fluids and image processing. This thesis is divided

into three independent parts. The first part focuses on the dynamics and deformation of red blood cells and vesicles. We

have analytically obtain the biconcave shape red blood cells by using the energy of Canham and Helfrich, and analyzed a

mathematical model for the diffusion of several species on a biological membrane. We have also examined the motion and

dynamics of a deformable vesicle under an oscillatory shear flow, and obtained an analytical expression of the effective viscosity

of a suspension of vesicles.

In the second part, we focus on the study of a family of partial differential equations and systems of partial differential

equations involving the operators of type-p(x) Laplacian. Here, we have demonstrated the existence of a weak solution for a

nonlinear parabolic equation having a nonstandard growth condition with respect to the gradient (presence of variable exponent).

We have also shown the existence of a weak global solution for a class of degenerate parabolic systems with variable exponents

and critical growth nonlinearities with respect to the gradient.

In the third part, we present applications in the image processing. Our contribution concerns the representation of 2D and

3D objects using spherical harmonics.

Keywords: Red blood cells, vesicles, rheology, membrane morphology, simple and oscillatory shear flows, ordinary differential

equation, partial differential equations, electro and magneto rheological fluids, image processing.

Résumé
Le but de cette thèse de doctorat est d’étudier des équations différentielles et équations aux dérivées partielles apparais-

sent dans la modélisation de la déformation des membranes biologiques, des fluides électro-rhéologique et dans le traitement

d’images. Cette thèse est divisée en trois parties indépendantes. La première partie porte sur de la dynamique et la déformation

des globules rouges et des vésicules. Nous avons obtenu analytiquement la forme biconcave des globules rouges en utilisant

l’énergie de Canham et Helfrich, et nous avons analysé un modèle mathématique pour la diffusion de plusieurs espèces sur une

membrane biologique. Nous avons aussi examiné le mouvement et la dynamique d’une vésicule déformable sous un écoulement

oscillatoire, et nous avons obtenu une expression analytique de la viscosité effective d’une suspension de vésicules.

Dans la deuxième partie, nous étudiant une famille d’équations aux dérivées partielles et systèmes d’équations aux dérivées

partielles avec des opérateurs de type p(x)-Laplacien. Nous avons obtenu l’existence d’une solution faible pour une équation

parabolique non-linéaire avec une condition de croissance non standard par rapport au gradient (présence d’exposant variable).

Nous avons également montré l’existence d’une solution globale faible pour une classe de systèmes paraboliques dégénérés avec

exposants variables et des non-linéarités à croissance critique par rapport au gradient.

Dans la troisième partie, nous présentons des applications en traitement d’image. Notre contribution concerne la représen-

tation d’objets 2D et 3D à l’aide des harmoniques sphériques.

Mots clé: Globules rouges, vésicules, rhéologie, morphologie de la membrane, écoulement de cisaillement simple et oscilla-

toire, équations différentielles ordinaires et équations aux dirivées partielles, fluides électro et magnéto rhéologiques, traitement

d’image.
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