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English Abstract
Embodied agents, both natural and artificial, can learn to interact with the
environment they are in through a process of trial and error. This process
can be formalized through the Reinforcement Learning framework, in which
the agent performs an action in the environment and observes its outcome
through an observation and a reward signal. It is the reward signal that tells
the agent how good the performed action is with respect to the task. This
means that the more often a reward is given, the easier it is to improve on the
current solution. When this is not the case, and the reward is given sparingly,
the agent finds itself in a situation of sparse rewards. This requires a big
focus on exploration, that is on testing different things, in order to discover
which action, or set of actions leads to the reward. RL agents usually struggle
with this. Exploration is the focus of Quality-Diversity methods, a family of
evolutionary algorithms that searches for a set of policies whose behaviors are
as different as possible, while also improving on their performances. In this
thesis, we approach the problem of sparse rewards with these algorithms, and
in particular with Novelty Search. This is a method that, contrary to many
other Quality-Diversity approaches, does not improve on the performances of
the discovered rewards, but only on their diversity. Thanks to this it can
quickly explore the whole space of possible policies behaviors.

The first part of the thesis focuses on autonomously learning a represen-
tation of the search space in which the algorithm evaluates the discovered
policies. In this regard, we propose the Task Agnostic eXploration of Out-
come spaces through Novelty and Surprise (TAXONS) algorithm. This method
learns a low-dimensional representation of the search space in situations in
which it is not easy to hand-design said representation. TAXONS has proven
effective in three different environments but still requires information on when
to capture the observation used to learn the search space. This limitation is
addressed by performing a study on multiple ways to encode into the search
space information about the whole trajectory of observations generated during
a policy evaluation. Among the studied methods, we analyze in particular the
mathematical transform called signature and its relevance to build trajectory-
level representations.

The manuscript continues with the study of a complementary problem to
the one addressed by TAXONS: how to focus on the most interesting parts of
the search space. Novelty Search is limited by the fact that all information
about any reward discovered during the exploration process is ignored. In our
second contribution, we introduce the Sparse Reward Exploration via Novelty
Search and Emitters (SERENE) algorithm. This method separates the ex-
ploration of the search space from the exploitation of the reward through a
two-alternating-steps approach. The exploration is performed through Nov-
elty Search, but whenever a reward is discovered, it is exploited by instances
of reward-based methods - called emitters - that perform local optimization
of the reward. Experiments on different environments show how SERENE
can quickly obtain high rewarding solutions without hindering the exploration
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performances of the method.
In our third and final contribution, we combine the two ideas presented

with TAXONS and SERENE into a single approach: SERENE augmented
TAXONS (STAX). This algorithm can autonomously learn a low-dimensional
representation of the search space while quickly optimizing any discovered
reward through emitters. Experiments conducted on various environments
show how the method can i) learn a representation allowing the discovery of
all rewards and ii) quickly exploit those rewards thanks to the emitters.

Throughout this thesis, we introduce methods that, while dealing with
sparse rewards situations, lower the amount of prior information needed at
design time. These contributions are a promising step towards the develop-
ment of methods that can autonomously explore and find high-performance
policies in a variety of sparse rewards settings. This could increase the range
of applicability of existing approaches leading to more autonomous embodied
agents.
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French Abstract
Les agents incarnés, qu’ils soient naturels ou artificiels, peuvent apprendre
à interagir avec l’environnement dans lequel ils se trouvent par un proces-
sus d’essais et d’erreurs. Ce processus peut être formalisé dans le cadre de
l’apprentissage par renforcement, dans lequel l’agent effectue une action dans
l’environnement et observe son résultat par le biais d’une observation et d’un
signal de récompense. C’est le signal de récompense qui indique à l’agent la
qualité de l’action effectuée par rapport à la tâche. Cela signifie que plus
une récompense est donnée, plus il est facile d’améliorer la solution actuelle.
Lorsque ce n’est pas le cas, et que la récompense est donnée avec parcimonie,
l’agent se retrouve dans une situation de récompenses éparses. Cela nécessite
de se concentrer sur l’exploration, c’est-à-dire de tester différentes choses, afin
de découvrir quelle action ou quel ensemble d’actions mène à la récompense.
Les agents RL ont généralement du mal à le faire. L’exploration est le point
central des méthodes de Qualité-Diversité, une famille d’algorithmes évolution-
naires qui recherche un ensemble de politiques dont les comportements sont
aussi différents que possible, tout en améliorant leurs performances. Dans
cette thèse, nous abordons le problème des récompenses éparses avec ces al-
gorithmes, et en particulier avec Novelty Search. Il s’agit d’une méthode qui,
contrairement à de nombreuses autres approches Qualité-Diversité, n’améliore
pas les performances des récompenses découvertes, mais uniquement leur di-
versité. Grâce à cela, elle peut explorer rapidement tout l’espace des com-
portements possibles des politiques.

La première partie de la thèse se concentre sur l’apprentissage autonome
d’une représentation de l’espace de recherche dans lequel l’algorithme évalue
les politiques découvertes. A cet égard, nous proposons l’algorithme Task
Agnostic eXploration of Outcome spaces through Novelty and Surprise (TAX-
ONS). Cette méthode apprend une représentation à faible dimension de l’espace
de recherche dans des situations où il n’est pas facile de concevoir manuelle-
ment cette représentation. TAXONS s’est avéré efficace dans trois environ-
nements différents mais nécessite encore des informations sur le moment où il
faut saisir l’observation utilisée pour apprendre l’espace de recherche. Cette
limitation est abordée en réalisant une étude sur les multiples façons d’encoder
dans l’espace de recherche des informations sur la trajectoire complète des ob-
servations générées pendant une évaluation de politique. Parmi les méthodes
étudiées, nous analysons en particulier la transformation mathématique ap-
pelée signature et sa pertinence pour construire des représentations au niveau
de la trajectoire.

Le manuscrit se poursuit par l’étude d’un problème complémentaire à celui
abordé par TAXONS : comment se concentrer sur les parties les plus in-
téressantes de l’espace de recherche. Novelty Search est limitée par le fait
que toute information sur une récompense découverte au cours du processus
d’exploration est ignorée. Dans notre deuxième contribution, nous présen-
tons l’algorithme Sparse Reward Exploration via Novelty Search and Emitters
(SERENE). Cette méthode sépare l’exploration de l’espace de recherche de
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l’exploitation de la récompense par une approche en deux étapes alternées.
L’exploration est effectuée par Novelty Search, mais lorsqu’une récompense
est découverte, elle est exploitée par des instances de méthodes basées sur la
récompense - appelées émetteurs - qui effectuent une optimisation locale de
la récompense. Des expériences sur différents environnements montrent com-
ment SERENE peut obtenir rapidement des solutions à forte récompense sans
nuire aux performances d’exploration de la méthode.

Dans notre troisième et dernière contribution, nous combinons les deux
idées présentées avec TAXONS et SERENE en une seule approche : TAXONS
augmentés par SERENE (STAX). Cet algorithme peut apprendre de manière
autonome une représentation à faible dimension de l’espace de recherche tout
en optimisant rapidement toute récompense découverte grâce à des émetteurs.
Des expériences menées sur différents environnements montrent comment la
méthode peut i) apprendre une représentation permettant la découverte de
toutes les récompenses et ii) exploiter rapidement ces récompenses grâce aux
émetteurs.

Tout au long de cette thèse, nous introduisons des méthodes qui, tout en
traitant des situations de récompenses éparses, réduisent la quantité d’informa-
tions préalables nécessaires au moment de la conception. Ces contributions
constituent une étape prometteuse vers le développement de méthodes ca-
pables d’explorer et de trouver de manière autonome des politiques perfor-
mantes dans une variété de situations de récompenses éparses. Cela pourrait
augmenter le champ d’application des approches existantes et conduire à des
agents incarnés plus autonomes.

vi





Acknowledgement
Completing a Ph.D. thesis is a huge task and the whole process is a though
but incredible journey. Doing all of this just by myself would have been im-
possible, even more considering the situation created by COVID in these past
years. I want to thank here all the people that, with their help and support,
made reaching the end of this journey possible.

First and foremost, I want to thank my supervisors. They believed in me,
giving me the opportunity to freely develop my research ideas. If I am here as
a young scientist, it is without any doubt thanks to them.

I am incredibly proud of having done this under the supervision of Stéphane
Doncieux. The support he gave me, and the patience shown in the most stress-
ful moments, meant a lot. His advice has always been incredibly helpful and
allowed me to grow as a scientist while keeping me on track towards the final
goal.

A great part of the supervision came also from Alban Laflaquière. He
proved to be a great manager and allowed me to have all the freedom I needed
within SBRE while keeping a close eye on my work. His suggestions have
always been of the highest quality, and I really enjoyed our discussions on the
most disparate topics.

A big thanks also to Alexandre Coninx, whose supervision and suggestions
helped me to get out of the many “local minima” that a Ph.D. student finds
in its path.

Both ISIR and SBRE provided me with the right working environment
and the resources needed to perform my research. Being part of these two
institutions allowed me to meet many great colleagues and friends.

In particular, I want to thank the members of the AMAC equipe, the AI
Lab, the Proto Lab, and the Interactivity team. The lunches, discussions, and
activities we did together were a great part of the experience of my Ph.D. and
I will always cherish these memories.

An important part of the life in the lab was also the open-ended learning
group, whose immensely interesting and stimulating discussion never ceased
to inspire me. I hope the spirit of discovery and discussion of the group will
continue to inspire future PhDs and members of the lab.

I want to thank my family. Even if far away, and even if they did not
always understand what I was doing, they never ceased to support me in any
possible way. I wouldn’t be here if it were not for them.

Living abroad, in the fantastic city that is Paris, I also made another fam-
ily: Ginevra, Sara, Maura, Michel, Laura, Carmine, Marwen, Hugo, Alessan-

viii



dro, Helena and all the amazing friends that made this experience incredible.
The list would be too long to mention everyone, but you’re all in my heart, and
the time and “adventures” we had together will always be very fond memories
for me.

Also thanks to Lisa, Désirée and Gabriele for the support (and the wifi
hotspot) in the last moments of this manuscript redaction.

Finally, I want to thank the members of the Jury of my Ph.D. defense for
accepting being here. Their opinion and judgment of my work will surely be a
good conclusion of these past 3 years and help me in defining my future career.

Sometimes I feel this went all too fast.
And as someone wiser than me once said: “Dovrò soltanto reimparare a

camminare”

Thanks for everything!

ix





Contents

English Abstract iii

French Abstract v

Contents x

1 Introduction 1

2 Background and related work 10
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . 11
2.1.2 Exploration-exploitation trade-off . . . . . . . . . . . . . 13
2.1.3 Sparse rewards . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Multi-objective optimization . . . . . . . . . . . . . . . 20
2.2.2 Searching for Diversity . . . . . . . . . . . . . . . . . . . 22

3 TAXONS 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Policy selection . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Search and Training . . . . . . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Signatures 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 The signature transform . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Signature of a discrete path . . . . . . . . . . . . . . . . 53
4.3 Signed Behavior Descriptor . . . . . . . . . . . . . . . . . . . . 53
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 57



4.5.2 Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 SERENE 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Emitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Exploration phase . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Exploitation phase . . . . . . . . . . . . . . . . . . . . . 68

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.1 Budgeting . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.3 Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.4 Final archive distribution . . . . . . . . . . . . . . . . . 77

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 STAX 82
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Policy Selection . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.2 Training of the autoencoder . . . . . . . . . . . . . . . . 84
6.2.3 Reward exploitation in a learned space . . . . . . . . . . 86

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.2 Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.3 Final archives distribution . . . . . . . . . . . . . . . . . 94
6.4.4 Exploration ablation studies . . . . . . . . . . . . . . . . 96
6.4.5 Autoencoder training regime . . . . . . . . . . . . . . . 100
6.4.6 Learned behavior space . . . . . . . . . . . . . . . . . . 103

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Discussion 108
7.1 Learning the behavior space . . . . . . . . . . . . . . . . . . . . 108

7.1.1 Distractors . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1.2 Disentangled representations . . . . . . . . . . . . . . . 111

7.2 Focusing on the interesting parts of the search space . . . . . . 111
7.3 Noisy environments . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Conclusion 115

Bibliography 120

xii



Acronyms

AE autoencoder.

BS Behaviour Space.

CNN Convolutional Neural Network.

DMP Dynamic Movement Primitive.

DoF degrees of freedom.

EA Evolutionary Algorithm.

ES Evolution Strategies.

GAN Generative Adversarial Network.

GEP Goal Exploration Processes.

HER Hindsight Experience Replay.

IM Intrinsic Motivation.

IMGEP Intrinsically Motivated Goal Exploration Processes.

LSTM Long Short-Term Memory.

MAB Multi-Armed Bandit.

MDP Markov Decision Process.

ME MAP-Elites.

MOO Multi-objective optimization.

NN neural network.

NS Novelty Search.

NSLC Novelty Search with Local Competition.



QD Quality-Diversity.

RL Reinforcement Learning.

RND Random Network Distillation.

SERENE SparsE Reward Exploration via Novelty and Emitters.

STAX SERENE augmented TAXONS.

TAXONS Task Agnostic eXploration of Outcome space through Novelty and
Surprise.

VAE Variational Autoencoder.

xiv



List of Figures

Figure 2.1 Reinforcement Learning cycle . . . . . . . . . . . . . . . 11
Figure 2.2 MDP example . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3 Sparse Reward environment . . . . . . . . . . . . . . . . 15
Figure 2.4 Evolutionary algorithms cycle . . . . . . . . . . . . . . . 19
Figure 2.5 Pareto front . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2.6 NSGA-II policy ordering . . . . . . . . . . . . . . . . . . 22
Figure 2.7 NSGA-II policy selection . . . . . . . . . . . . . . . . . . 23

Figure 3.1 TAXONS . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 3.2 Pixel-wise distance example . . . . . . . . . . . . . . . . 36
Figure 3.3 TAXONS test environments . . . . . . . . . . . . . . . . 39
Figure 3.4 TAXONS AE structure . . . . . . . . . . . . . . . . . . 40
Figure 3.5 TAXONS final archives . . . . . . . . . . . . . . . . . . 43
Figure 3.6 TAXONS coverage results . . . . . . . . . . . . . . . . . 44

Figure 4.1 Geometric representation of signature . . . . . . . . . . 51
Figure 4.2 Signature examples . . . . . . . . . . . . . . . . . . . . . 54
Figure 4.3 CollectBall environment . . . . . . . . . . . . . . . . . . 56
Figure 4.4 Signature coverage results . . . . . . . . . . . . . . . . . 58
Figure 4.5 Signature dimensionality experiments - coverage results 59
Figure 4.6 Signature reward results . . . . . . . . . . . . . . . . . . 60

Figure 5.1 SERENE . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 5.2 SERENE sets . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 5.3 SERENE test environments . . . . . . . . . . . . . . . . 72
Figure 5.4 SERENE budgeting results . . . . . . . . . . . . . . . . 75
Figure 5.5 SERENE coverage results . . . . . . . . . . . . . . . . . 76
Figure 5.6 SERENE reward results . . . . . . . . . . . . . . . . . . 78
Figure 5.7 SERENE final archives . . . . . . . . . . . . . . . . . . . 79

Figure 6.1 Example of multiplication of reward areas . . . . . . . . 88
Figure 6.2 Curling environment . . . . . . . . . . . . . . . . . . . . 90
Figure 6.3 HardMaze environment . . . . . . . . . . . . . . . . . . 90
Figure 6.4 Redundant Arm environment . . . . . . . . . . . . . . . 91
Figure 6.5 STAX AE structure . . . . . . . . . . . . . . . . . . . . 92
Figure 6.6 STAX coverage results . . . . . . . . . . . . . . . . . . . 93
Figure 6.7 STAX reward results . . . . . . . . . . . . . . . . . . . . 95



Figure 6.8 STAX final archives . . . . . . . . . . . . . . . . . . . . 97
Figure 6.9 STAX ablation experiments - coverage results . . . . . . 98
Figure 6.10 STAX ablation experiments - reward results . . . . . . . 99
Figure 6.11 STAX learned BS experiments - coverage results . . . . 101
Figure 6.12 STAX learned BS experiments - final archives . . . . . . 102
Figure 6.13 STAX AE reconstruction . . . . . . . . . . . . . . . . . 103
Figure 6.14 STAX AE behavior descriptors . . . . . . . . . . . . . . 105

xvi



Chapter

1
Introduction

An embodied agent is any agent situated in an environment with which it
interacts. The natural world around us is full of this kind of agents: not only
humans, but animals, plants, fungi, bacteria can all be considered embodied
agents. They all act and interact with the world they are in, the environment,
by following some kind of policy. This policy can be either innate, in which
case it is usually referred as instinct [1, 2], or learned during the life of the
agent itself. In both situations, the policy dictates which actions the agent
should perform on the environment as a reaction to the state the environment
or the agent itself are in. Up until very recently, the only existing type of
embodied agents were biological beings, evolved through natural evolution in
the enormous variety of living beings known today [3]. This is not the case
anymore, thanks to the many research advancements that have lead to the
development of artificial - albeit still rudimentary - embodied agents.

Humans have long dreamt of creating artificial agents capable of interacting
with the world they are in. The first accounts of these ideas date back to
ancient Greece: in Homer’s Iliad are described the creation of artificial agents
by both gods and humans [4]. Similar themes are present also in Chinese
and Egyptian mythology [5]. The appearance of stories like this in cultures
so distinct and far apart demonstrates how great for humans is the desire
to create artificial agents. A desire that continued through the Middle Ages
and the Renaissance, when many "embodied agents" were built and displayed
by scientists and engineers all around the world [6]. These machines were
known as automata, a word coming from ancient Greek meaning "acting on
one’s own will", a name highlighting how they could interact with the world
by following a policy, their "will". Notwithstanding the promise given by the
name, and the fascination these machines were provoking in people at the time,
automata were nothing more than complex mechanism, much more similar to
a clock than to an agent capable of reacting and adjusting to the state of the
world. The policy governing them was designed to perform only a limited set
of actions in a way that could give the illusion of will. Moreover, due to said
policy being part of the hardware design, it could not be modified without
rebuilding the whole machine.

Subsequent technological developments, an in particular the invention of
the computer, allowed the creation of ever more sophisticated agents, capable
of interacting with the world in multiple and better ways. Agents of this kind
are known today as robots, a word coming from the Slavic languages expres-



sion for forced labor [7]. Contrary to automata, the word robot stresses the
fact that these are machines, deprived of any will, that just follow a set of
instructions, the policy. At the same time, robots have an important advan-
tage on ancient automata in the fact that they have sensors. This enables the
creation of agents capable of dealing with a much bigger range of situations.
Thanks to this, the development of robots allowed the automation of many
labor-intense tasks. An example of this is the introduction of robots in assem-
bly lines, warehouses and other environments requiring heavy and repetitive
tasks, allowing the automation and the increase in production efficiency of
these systems [8, 9, 10]. In the future, even more advantages for human soci-
eties are predicted to come thanks to robots [11]. At the same time, these are
very controlled and well defined systems, for which relatively simple policies
can be hand-designed by the engineers. This is not the case for more complex
and difficult to control settings, for which the policy designer must take into
account all possible interactions between the robot and the elements of the
environment. A robot performing inspection of an industrial plant [12], has to
deal with uneven terrain, doors to open, objects to move or navigate around.
There is an almost infinite amount of different situations to deal with. For
this kind of problems, learning the controller policy is an effective alternative
approach to hand-designing it. This allows the agent to adapt its strategy to
the task at hand, while moving the engineer’s design effort on the training pro-
cess. The advantage of this approach is its generalizability: the same training
process can be used to learn policies for different tasks. There are multiple
ways in which a policy can be learned, but they typically consist in algorithms
optimizing a performance metric measuring how well the learned policy can
accomplish the desired goal. Algorithms of this kind belong to the field of
Artificial Intelligence, and as many of the methods in this discipline they take
huge inspiration from natural processes and the way animals learn. Depending
on which natural mechanics they are based on, policy learning methods can
be grouped in two families: Reinforcement Learning (RL) and Evolutionary
Algorithms (EAs).

Reinforcement Learning

RL is a framework that can be used for learning policies able to solve a given
task through a process of "trial-and-error" [13]. It is inspired by the way
animals learn how to solve tasks: try something and according to the outcome,
learn to repeat or to avoid the same action in similar situations [14]. The
origin of RL can in fact be traced back to Thorndike’s Law of Effect [15]
and Pavlov’s studies on conditioned reflexes [16]. Both scientists studied how
behaviors that were followed by positive outcomes were more likely to become
established and be repeated in similar situations. A famous experiment in this
regard is Pavlov’s dog study [16, 17]. The experiment consisted in placing a
dog in a room, in which some food is delivered every time a bell is rang. After
few of these interactions, the scientist observed that the dog’s salivation would
increase whenever the bell was rang, as if the animal was in presence of food,
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even if no food was delivered anymore. This shows how the dog learned a
behavior, the salivation, whenever a given conditioning, the sound of the bell,
happened; even if no food was given anymore. RL algorithms imitate the same
mechanism in order to learn a policy, rendering them extremely flexible on the
range of problems they can solve [18, 19, 20, 21]. A fundamental component
of any RL system is the reward function, used to drive the training process
towards learning a good policy. It is through this function that the engineer
"communicates" to the agent the task it needs to solve. This means that
a great part of the design effort has to be directed towards the definition
of that function. In general, RL methods require the reward to be dense.
This means that the reward function should give a feedback on every action
the agent performs. Unfortunately, this is not always the case. When the
reward is given only after multiple actions have been performed, or if a specific
situation is met, the agent has to deal with a sparse reward system. Sparse
rewards mean that in many of the states of the system there is no clear signal
of what is the best course of action. In these settings, standard RL algorithms
struggle to learn good policies, leading to poor performances or to no solution
at all. Nonetheless, given the ubiquity of sparse rewards systems, being able
to deal with them is fundamental. Even more so when the agent is in the
real world. There are many factors rendering the design of a dense reward
function difficult for real world problems. The task could be not well defined,
too broad or complex, or require too much information in order to calculate
a reward after each action. An example of this is a search-and-rescue mission
[22]. While the task is well defined - explore the area and look for people in
need of help - the design of a dense reward function is not easy. Awarding
the agent for every discovered person would be simple, but such a function
is incredibly sparse. To have a denser reward, the position of the dispersed
people would have to be known in advance, but this, other than requiring too
much information, would remove the search part from the search-and-rescue
mission. This is an extreme scenario, but it is a good example of how agents
capable of dealing with sparse rewards could help in addressing many difficult
and dangerous situations.

Recently, many scientists focused their research efforts on proposing algo-
rithms capable of solving sparse reward problems. This ranges from reward
shaping, in which the reward function is modified in a way that can lead the
agent to solve the task, [23], to intrinsic motivation, where the agent generates
the reward by itself by maximizing another metric [24, 25]. Other methods
include the agent learning from past experiences to reach self assigned goals
[26], or solving of auxiliary tasks that can help in learning how to reach the
main goal [27].

In general, when the reward is sparse the agent has no clue where to start
to solve the task. In these situations a good strategy is to focus on exploration,
to discover all the possible things that can be done in the environment. This
strategy also applies to the previous example of a search-and-rescue mission:
by focusing on exploring the environment, the agent can discover the missing
people and thus be able to maximize its reward. In this thesis, we approach
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the problem of sparse rewards with this idea in mind, studying and proposing
a set of algorithms capable of performing efficient exploration in this kind of
settings. Contrary to the methods discussed until now, this is done through
the other family of policy learning methods mentioned before: EAs [28]. The
reason behind this is the greater versatility of EAs algorithms thanks to them
being gradient-free. Not having to calculate any gradient allows for their
applications in a much wider range of situations, without the requirement to
have a differentiable policy parametrization. At the same time, this comes
at a price: EAs are slower than gradient-based methods in their optimization
process.

Evolutionary Algorithms

As the name indicates, EA are directly inspired by the natural evolution pro-
cess described by Darwin [3]. In his work, Darwin described how, given a
population of living beings in an environment, the elements better adapted
to the environment have higher chances of reproduction, while the ones less
suited are more likely to die prematurely. In time, the natural selection of
fitter elements will lead to the development of a population of agents highly
adapted to live in the environment in which it finds itself [3, 29].

A similar selection process is also applied by EAs when performing the
search for policies. These algorithms work with a population of policies
that are used to generate new policies through two operators: mutation and
crossover. The first, inspired by the generic mutation happening in nature,
randomly mutates some of the parameters of a policy to generate a new one.
The crossover is instead inspired by sexual reproduction: the parameters of
two or more policies are mixed to generate a new set of policies. The newly
generated policies according to these operators are then evaluated in the envi-
ronment. Among them, only the best ones are selected to form the next gen-
eration population, according to a given performance metric, usually called
fitness function. Notwithstanding the different name, EAs’ fitness function
has the same role the reward function has in RL. For this reason, and given
that in the literature the problem of sparse rewards is mainly defined with
respect to RL, throughout this thesis we will refer to the fitness of a policy
as to its reward. Contrary to RL algorithms, expecting a reward for every
action performed, the performance evaluation done by EAs on their policies
happens only at the end of their execution, rendering them better suited for
sparse rewards systems. Moreover, thanks to the fact that these algorithms
do not make any assumption about the fitness landscape they are in, they
have proven useful in many domains, from circuit design [30] to the evolution
of other artificial intelligence algorithms [31]. Nonetheless, researchers have
been wondering why standard EAs cannot generate the same amount of di-
versity generated by the natural evolution process. These algorithms are very
prone to converge to a single local minima, with the whole population being
the same, a phenomenon known as population collapse [32, 33]. One of the
possible culprits for this issue has been identified in the fitness function [34].
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If not properly designed, this function can lead the search astray or towards
dead ends. Moreover, relying on the fitness function to drive the search can
be problematic in situations in which this function is extremely sparse. In
these scenarios it can happen that no policy in a whole population can get
any reward at the end of its evaluation, rendering the search for a solution
difficult. To address these problems, Lehman and Stanley proposed a novel
take on the design of EAs by introducing the Novelty Search (NS) algorithm
[34, 35]. This algorithm works by completely ignoring the reward and just
focusing on exploration, looking for novel behaviors. The idea behind the NS
approach is that while the amount of behavior of a certain complexity is lim-
ited, many policies in the search space can express the same behavior. By only
focusing on novel behaviors the search can thus discover more complex and
diverse ways of acting, possibly finding a solution to the task. This allows the
algorithm to return a whole collection of policies, each one with a significantly
different behavior from the others. According to how the policies and their
behaviors are defined, this collection can then be used in many different ways
[36, 37, 38, 39]. The authors have shown that this way of performing the search
for policies, rather than optimizing a reward function, allows the discovery of
solutions for problems in which many other reward-based algorithms get stuck
[35].

Quality-Diversity algorithms

The introduction of NS extended the range of problems to which EAs can
be applied, sparking a renewed interest in using methods from this field for
learning policies. This lead to the development of many similar algorithms
that, rather than looking for the best solution to a problem, can perform
divergent search and find a set of many different solutions [40, 41, 42, 43, 44,
45]. Some of these algorithms are designed to not only optimize the diversity
of the discovered set of policies, but also their quality towards the given goal.
Due to this characteristic these methods are usually referred to as Quality-
Diversity (QD) algorithms [41, 42]. By discovering a whole set of policies
rather than a single one, these algorithms make the embodied agent more
adaptable to different situations and tasks. This has been shown by using
MAP-Elites (ME) [43], a well known QD methods, to train an hexapod to
walk and to quickly adapt to damages to its legs, even if no damage was
present at training time [46].

The generation of multiple policies, and the great exploration ability diver-
gent search algorithms have made us choose them as an approach to perform
policy search for sparse rewards. An overview of the literature on these meth-
ods and a detailed description of how both RL and EAs work will be given in
Chapter 2.

Notwithstanding their advantages, divergent search algorithms are still
limited in many ways. The most notable limitation is the way the diversity
of the policies’ behaviors is calculated. This is done in a space, called the
Behaviour Space (BS), in which the behaviors are represented and that is
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usually hand-designed by the engineer setting up the learning system. While
this can help tailor the solution to the problem at hand, it requires a significant
amount of prior knowledge about the features of the system, the robot and the
task itself. The search will also be constrained by the biases of the designer’s
choices or by the need to have access at runtime to informations difficult
to extract. For example, in the case of a robot learning to throw a ball in
different ways [47], the ball position needs to be properly tracked in order to
estimate where it touches the ground. Not doing so would make it difficult to
distinguish between different behaviors. This can strongly limit the range of
application of QD algorithms.

Learning the behavior space

In light of the problems just discussed, Chapters 3 and 4 explicitly address
the following question:

How to remove the requirement of hand designing the BS for NS,
and QD algorithms in general?

Having an algorithm capable of autonomously learning the BS in which
the search is performed could greatly help in this direction. A way to ad-
dress the issue is proposed in Chapter 3, with the introduction of the Task
Agnostic eXploration of Outcome space through Novelty and Surprise (TAX-
ONS) algorithm [48]. This is a divergent search algorithm based on NS and
designed to build in parallel, and in an unsupervised way, both a collection of
diverse policies and the space in which the behavior of said policies is repre-
sented. It does so by encoding the high-dimensional observation of the final
outcome generated by a policy evaluation into a lower dimensional representa-
tion through an autoencoder (AE) [49]. The conducted experiments show that
Task Agnostic eXploration of Outcome space through Novelty and Surprise
(TAXONS) can efficiently explore the whole space of possible behaviors in the
tested environments.

The evaluation of a policy behavior in TAXONS is done with respect to its
final outcome. To reach this outcome, the system traverses a whole trajectory
of states during the evaluation of a policy, that are ignored by the algorithm.
However, in some situations, considering only the final outcome is not enough
to properly explore. Let us consider a robot learning how to throw an object
against a wall. A good way to distinguish between the behaviors of different
policies is by measuring the different positions where the object hits the wall.
At the same time, without knowing the exact moment in which this happens, it
is difficult to determine which state - from the trajectory of traversed states - to
use to perform this measurement. In Chapter 4, a possible way of dealing with
this problem is presented: the signature transform. This is a mathematical
object consisting of an infinite series of integrals encoding a stream of data
into a vector representing the geometrical properties of this stream [50, 51,
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52]. Thanks to its many positive properties, the signature transform has been
used in the field of machine learning to encode sequences of data in a fast and
easy way [53, 54]. Given that the signature can encode a sequence of data into
a single vector, it is a good candidate to encode the whole trajectory of states
traversed by the system during the evaluation of a policy. This method is
compared against simpler approaches that can help in removing the limitation
of working only with the final outcome. The results show that these simpler
methods are as effective as the signature in this regard. For this reason, we
choose to use one of those simpler approaches in Chapter 6.

Exploiting sparse rewards
After addressing the issue of reducing the amount of prior information about
the search space and removing the limitation of hand-designing the BS, the
manuscript continues by focusing on another important question:

How to take advantage of the rewards discovered
during the search performed by NS?

NS is limited by the fact that all information about any reward discovered
during the exploration process is discarded. Even if sparse, the reward is
extremely useful in steering the search towards more interesting areas of the
search space. To address this problem, the SparsE Reward Exploration via
Novelty and Emitters (SERENE) algorithm is introduced in Chapter 5. This
method combines the exploration abilities of NS with the exploitation of the
reward provided by emitters, instances of reward based EAs performing local
exploration [55, 56]. By combining these methods, SERENE can separate the
exploration from the reward exploitation in an alternating two-steps process.
The algorithm can then seamlessly adapt to a wide range of situations, from
settings in which the reward is present in multiple areas of the search space
to ones in which it is not present at all. Similarly to other divergent search
algorithms, SERENE returns a collection of policies. This collection is divided
in two groups: one containing the high performing policies optimized by the
emitters and one containing the set of diverse policies usually returned by NS.
The conducted experiments show how this approach can quickly explore the
search space and optimize policies in settings of sparse rewards; even when
multiple reward areas are present in the search space.

The TAXONS and SERENE methods proposed in Chapters 3 and 5 ad-
dress complementary problems of NS: the hand-design of the BS and the ex-
ploitation of possible rewards found during the search. The final contribu-
tion of this manuscript is presented in Chapter 6: the SERENE augmented
TAXONS (STAX) algorithm. This is a method merging ideas from previous
chapters to address both problems at the same time. It does so by taking
advantage of the representation learning abilities of TAXONS to drive the
search in the two-steps process of SERENE. At the same time, the limita-
tion present in TAXONS due to only observing the outcome of a policy to
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describe its behavior is removed thanks to the lessons learned in Chapter 4.
Experiments show that STAX can properly learn a good representation of the
behavior space, discovering and quickly exploiting all the rewards present in
the environment. This allows to have an algorithm capable of dealing with
sparse reward environments, with minimal prior information about the task
and the environment in which the embodied agent operates.

STAX represents the culmination of the work conducted in this thesis,
that started with the identification of the sparse rewards problem and the
possible ways of dealing with it. The advantages and the shortcomings of the
approaches introduced throughout this manuscript are discussed in Chapter
7, highlighting the new and exciting possible research directions arising. The
manuscript concludes with Chapter 8, providing a final overview of the work
developed during this thesis.

As a recap, the work in this manuscript focuses on how to deal with sparse
rewards settings. A good strategy to use in these situations is to focus on ex-
ploration, which QD algorithms, and NS in particular, are explicitly designed
to do. At the same time, these methods perform the search in an hand-defined
space, which can be a strong limitation in certain situations. The first pre-
sented contributions address this issue by autonomously building a behavior
space, in order to reduce as much as possible the amount of prior information
given at design time. The manuscript continues by highlighting how NS dis-
cards all informations about the most interesting parts of the search space by
ignoring all rewards. The second presented contribution focuses on this limi-
tation by introducing a method that augments NS with the ability to exploit
any reward discovered in the search space. This is done without hindering the
exploration performed by NS. Finally, these two contributions are merged by
introducing a method that can autonomously build a behavior space while also
focusing on any discovered reward without hindering exploration.
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This chapter introduces the different research topics and algorithms on
which this thesis builds. Along with the overview of the theory, there will
be a discussion of the related approaches and the current state of the art.
The chapter starts with an overview of Reinforcement Learning (RL) and the
framework in which it operates when performing policy search for embodied
agents. This will help in properly framing the issue of sparse rewards and
describing some of the methods used to approach the problem. From there
the chapter will describe how an Evolutionary Algorithm (EA) works and
how, thanks to Novelty Search (NS), it is possible to overcomes some of the
limitations of classical EAs when optimizing policies. As said in Chapter 1,
NS sparked the development of a new family of EAs focusing on generating
a set of diverse solutions, rather than a single optimal one. An overview of
these methods will be given, with a detailed description of the most widely
used algorithms in the domain.

2.1 Reinforcement Learning

Chapter 1 discussed how an embodied agent can act in the environment it is
in by following a policy. The policy is what governs the agent and defines
how it acts in different situations. The goal of many learning algorithms for
embodied agents is to learn a policy allowing the agent to solve a given task
[57, 58, 59]. Reinforcement Learning (RL) [13] is a branch of machine learning
that can be used for this. The focus of the RL framework is in fact to learn
what actions an agent has to perform in an environment in order to maximize



a reward function. The learning is done through a trial-and-error approach in
which, at each time step, the agent performs an action in the environment and
observes the outcome of said action, expressed through an observation and a
reward. The agent will then use this observation and reward to select the next
action. The process is represented in Fig. 2.1.

Figure 2.1: Reinforcement Learning cycle

RL has proven to be a powerful and generic framework to model and
address problems in many different fields, from resource management [18] and
cross-light control [19], to robotics [20] and even chemistry [21]. In order to
properly address a problem through an RL algorithm, the problem needs to
be formulated as a Markov Decision Process (MDP).

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a time-discrete stochastic control model
that can be used to describe a decision process with possibly random outcomes
[60]. Thanks to its generality, it can be used to model problems in many fields,
from robotics to economy. For this reason it has been widely studied and
multiple approaches capable of solving an MDP have been proposed [61, 13,
62].

The main components of an MDP that need to be specified in order to
formulate a problem in this framework are the following:

• the set of states S. It represents all the possible states s ∈ S in which
the system can be in. The set can be either discrete or continuous;

• the set of actions A. It contains all the actions a ∈ A that the agent can
perform on the environment. As with S, A can also be either discrete
or continuous;

• the state transition probability function Pa(s′, s). This function de-
termines the probability of the system transitioning from state s at
time t to state s′ at time t + 1 due to the agent performing action a:
Pa(s′, s) = Pr(st+1 = s′|at = a, st = s);
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• the reward function Ra(s′, s). This function determines the immediate
reward the agent receives when transitioning in state s′ from state s due
to performing action a.

An important aspect of a problem formulated through an MDP is the fact
that the state transition function has to respect the Markov property. It states
that given a state st and an action at the probability that the system moves
to state st+1 is independent from all previous states and actions. Respecting
the Markov property allows to greatly simplify the problem and its solution,
thus many algorithms dealing with MDPs assume that the system respects it.

Finally, the policy function can be defined as π(st) = at. This function
determines the action at to perform at time t when the system is in state st.
The goal of a learning system acting on an MDP is to find the best policy π(·)
such that it maximizes the expected discounted sum over a potentially infinite
horizon:

E

 ∞∑
t0

γtRat(st, st+1)

 , (2.1)

where γt ∈ [0, 1] is a discount factor for future rewards. The closer γ is to 1,
the more importance is assigned to the future, the closer it is to 0, the more
shortsighted the agent will be with respect to the reward.
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Figure 2.2: Simple MDP. The two states
in which the system can be are represented
in blue, while the two possible actions are
in orange. In each state the agent can se-
lect either one of the two actions by follow-
ing the red arrow. This will cause the sys-
tem to transition to another state accord-
ing to the probabilities indicated over each
black arrow. The two possible rewards are
indicated by the green arrows.

Fig. 2.2 shows a simple MDP. In
this example, the system can find it-
self in two possible states, shown in
blue: [s0, s1]. At the same time, the
agent can perform two actions, de-
picted in orange: [a0, a1]. The se-
lection of an action while being in a
state is represented by the red ar-
rows. Each action makes the sys-
tem transition to either one of the
two states according to the probabil-
ity indicated over each black arrow.
In this system, the agent can obtain
two rewards, indicated by the green
arrows. Let us consider the case in
which the system is in state s1. The
agent can perform either action a0 or
action a1. By performing action a0,
the system can go either back to state
s1, with probability 0.8, or go to state
s0, with probability 0.2. In this last
case, the agent will receive a reward
of 5.

Finding optimal policies for MDPs
is not easy, even for the simple exam-
ple shown in Fig. 2.2. For this reason, a lot of research has addressed these
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problems, leading to the introduction of multiple methods capable of solving
them [13, 59, 63, 64]. These methods work by calculating the value of a state
s through the value function V (s) and updating the policy π(s) with respect
to V (s) [13]. The value function is the expected return when starting from
state s and following policy π and describes how good it is to be in a given
state:

V (s) = Eπ,Pa
[
R(s′|s) + γV (s′)

]
. (2.2)

The policy is updated with respect to the value of a state by selecting the
action leading to the highest valued next state:

π(s) = argmaxa

{∑
s′

P (s′|s, a)
(
R(s′|s, a) + γV (s′)

)}
. (2.3)

As it can be seen from Fig.2.2, how good an action is strongly depends from
the state the system is in. The reward obtained by performing action a0
in state s0 is different than the one obtained if the system was in s1. This
important aspect is evaluated through the Q-value function Q(a, s). This
function represents the state-action value, that is the value of performing an
action a in a state s and is defined as:

Qπ,Pa(s, a) = E
[
R(s′|s) + γEa∼πQ(s′, a|s)

]
. (2.4)

.
Different algorithms use these functions in different ways, but the final goal

remains the same: discover the policy leading to the highest reward.

2.1.2 Exploration-exploitation trade-off

Always selecting the action according to Eq. (2.3), can easily lead the algo-
rithm to get stuck in local minima. This would prevent it to find an optimal
solution to the problem. The reason behind this is that, by always choosing
the action that leads to the highest reward, the agent is only exploiting the
knowledge it already has, not collecting new informations about the environ-
ment. This strategy is called a greedy strategy and it can prevent the discovery
of other states and action combinations that can be more rewarding.

To discover new situations it is important to explore by testing different
actions and visiting different states. At the same time, it is not given that
higher rewarding situations can be found, so focusing too much on exploration
rather than exploitation can be a waste of time and resources. It is then
important to find a good balance between exploration and exploitation. This
problem is usually referred as the exploration-exploitation trade-off [13]. There
are multiple strategies that have been proposed to deal with it [65, 13] due to
the fact that it is a fundamental problem in many learning settings. Among
them, a very simple but well known one is the ε-greedy algorithm [13].

The idea behind this method is simple: each time the agent has to choose
an action, it selects the best action with probability 1 − ε or a random one

13



among the possible actions with probability ε. The balance between the ex-
ploration and exploitation can be easily decided by changing the value of ε.
To only focus on exploration is enough to set ε = 1, while a value of ε = 0
makes the agent completely greedy. By carefully setting ε, this strategy al-
lows to easily exploit what the agent already knows, but also to explore the
environment and gather new information.

Given what has been discussed until now, it is possible to notice how
the reward function R(·) plays a fundamental role in the way RL algorithms
operate. It is this function that is used to calculate both the value of each state
s and to select the action to perform at each given step. This means that the
reward function can be used by the designer of the problem to communicate
to the algorithm which goal it needs to achieve. At the same time, to learn
a good policy capable of obtaining the maximum reward possible, most RL
methods expect a dense reward function. This implies that R(·) needs to
provide a relevant feedback on every single action the agent can perform on
the environment. If the reward function rarely provide its feedback, it is
defined as being a sparse reward [13, 66].

2.1.3 Sparse rewards

Given the importance of the role played by the reward function in learning a
good policy, situations of sparse rewards can be extremely difficult to deal with
[66]. The ideal situation in which to apply a RL algorithm is one in which the
reward is well defined for each state and proportional to how beneficial that
state is to reach the goal. Unfortunately, for many problems and in many real
world settings this is not the case. Often the reward tends to be extremely
sparse. In these situations, it can happen that the agent never experiences
any reward at all, making learning a good policy impossible.

An example of a sparse reward system is given in Fig. 2.3, where a robotic
arm has to push the black puck towards the goal, in red. The reward is
given only if the puck reaches the target. This makes it very sparse: only
one state among all the possible ones the system can be in would generate a
reward. Another possible approach is to give the reward proportionally to how
close the puck is to the goal. At the same time, this would require a precise
measurement of its position at each time-step, requiring a more complex setup.
Moreover, there can be other situations in which simple workarounds like this
are not possible; the search-and-rescue example given in Chapter 1 is one of
those. To have embodied agents capable of efficiently dealing with real world
problems, approaches that can overcome sparse rewards problems needs to be
developed.

For these reasons, many researchers have focused on sparse rewards situa-
tions, leading to the development of many different approaches.

Reward shaping

The most simple way of dealing with a sparse rewards situation is by per-
forming reward shaping [23]. This consists in augmenting the original reward
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Figure 2.3: Sparse reward environment from OpenAI Gym [67].

function with additional features that can help the agent solve the task. Giv-
ing the reward depending on the distance between the puck and the goal, as
discussed for the robot arm example, is a form or reward shaping. This ap-
proach has proven useful in many situations [68, 69, 70, 71, 72]. Notable is the
work conducted by OpenAI on the Dota2 [73] game, in which the authors man-
aged to train an agent to reach superhuman performances [70]. Nonetheless,
reward shaping comes with multiple shortcomings. The new features added to
the reward require huge amount of prior knowledge about the system and the
task. Moreover, if not properly designed, this reward can introduce bias into
the problem, leading the agent astray and preventing it to efficiently solve the
problem.

Self-assigning goals

Another approach is to have the agent self assign goals in order to train itself.
This can be done by taking advantage of previously encountered situations,
as done with Hindsight Experience Replay (HER) [26]. The main idea of the
method is to store the state transitions in a replay buffer, even if no reward
has been achieved. These stored transitions then are used by the algorithm
to learn how to reach a goal, even if the given goal is not the one needed to
solve the task. A similar goal relabeling approach is also used in the works
from Levy et al. [74] and Nair et al. [75]. The first method takes advantage
of hierarchical RL, an approach that learns a hierarchy of policies in which at
each step high-level policies select low-level policies to perform the task [74].
As for HER, the self-assigned goals are sampled from the collection of already
visited states. On the contrary, the second approach takes advantage of an
unsupervised representation learning algorithm to generate the targets to reach
[75]. In this method the visited states are not collected into a buffer, but are
used to learn a compressed representation through a Variational Autoencoder
(VAE) [76] from which the goals are then sampled. This approach increases
the exploration abilities of the algorithm, allowing it to reach states not yet
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visited by the agent.
A similar strategy to deal with sparse rewards is the one used by Florensa

and his colleagues [77], sampling the goals from a Generative Adversarial Net-
work (GAN) [78] rather than from the latent space of a VAE. The adversarial
approach allows the agent to assign itself goals that become more complex with
time. This strategy creates a sort of curriculum that continuously pushes the
boundaries of the agent’s abilities. The strategy of using a curriculum to pro-
gressively increase the difficulty of the tasks to solve is also used by Riedmiller
and his colleagues [79]. In their work, the agent tries to solve auxiliary tasks
that start very simple and become more complex with time. This is repeated
until the agent can solve the main task. The capacity to solve auxiliary tasks
grants the agent a lot of flexibility in the range of goals that can be achieved.
However, in order for the curriculum of tasks to be meaningful towards reach-
ing the desired goal, the simpler tasks need to be selected by the engineer
before training the agent.

Intrinsic Motivation

A completely different idea for approaching sparse rewards problems is Intrin-
sic Motivation (IM) [80, 81]. Directly inspired from developmental psychology,
this approach consists in the agent generating its own learning signal, without
expecting any reward from the environment. This is similar to how kids learn
something driven by their own curiosity rather than expecting some external
reward [82]. An action can be defined intrinsically motivated if it is performed
with the goal of collecting more information about the outcome of the action
itself, rather than with the expectation of obtaining a reward [80, 81]. Given
this definition, there are multiple ways to provide IM to an agent [83, 80].

Novelty The agent can be rewarded if it reaches more novel states, where
the novelty is obtained by calculating an estimation of how often a state has
been visited. With discrete state spaces, this estimation can be calculated
by simply counting the number of times the agent visited a given state [84,
85]. For state spaces that are too big or continuous, this approach is not
possible, requiring different strategies. One of those strategies is the use of a
density estimation model over the state space to generate what the authors
call pseudo-count [86]. For instance, the Random Network Distillation (RND)
method uses a couple of neural networks (NNs) to estimate the novelty of each
visited state [87]. One of the two NNs remains untrained with random weights,
while the other is trained to reproduce the output of the untrained one. The
novelty of a state is then assumed to be proportional to the difference between
the output of the two models. The idea behind this is that the more often
a state has been visited, the more the trained network has been trained to
reproduce the same output of the random NN with respect to that state. This
leads to a lower difference between the outputs of the two models. On the
contrary, for a state that has been less visited, the trained model will return
an output that is less similar to the one of the non trained NN. This leads to
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the identification of a more novel state.

Empowerment Another possible way of providing IM to an embodied agent
is through empowerment [88, 89, 90]. Based on Information Theory [91], this
approach pushes the agent to maximize its control over the environment. This
can be done by maximizing the entropy of future states the system can move
into while also minimizing the entropy of the future states the system can
reach given the action [89]. The rationale behind this being that the more an
agent can influence the system to move to different states, the more control
it has on the environment. There have been other approaches to empower-
ment, but the method is still hindered by the complexity of calculating the
empowerment metric [81]. Simplifying this calculation would require a model
of the environment itself, as done by Mohamed and Rezende [92], but in many
situations this is not feasible.

Curiosity In a different direction goes the notion of curiosity [93, 94, 95].
This consists in providing the agent with a transition model on what can
happen in the environment. The error between the predictions of the agent
and what actually happens in the environment is then used as a reward signal
by the agent. This will push the agent to explore more and look for situations
in which it does not know what will happen, hopefully discovering a solution for
the task. Curiosity as an IM approach has been systematically studied in [25],
showing an alignment between the curiosity objective and the hand-designed
rewards present in many game environments. This leads to good performances
for curiosity-based methods in the tested situations. The agent’s error can
also be used when predicting the consequences of its own actions to drive the
learning process [24]. The error is calculated in a feature space learned through
a self-supervised inverse dynamics module. This approach offers the advantage
of not having to deal with the many unimportant informations present in pixel
space that can keep the error high, e.g. leaves moving in the background or
small changes in luminosity. The idea of curiosity can also be mixed with
the one of the agent self-assigning goals as done with Intrinsically Motivated
Goal Exploration Processes (IMGEP) [96, 97, 98]. IMGEPs work by having
the agent sample its own desired goals from a given goal space according to
a given strategy. Among the possible sampling strategies, a powerful one is
to have a Multi-Armed Bandit (MAB) [63] with the goal to maximize the
competence of the agent in reaching the sampled goals. This approach allows
the creation of a curriculum, starting from simpler targets and moving toward
more complex ones. Contrary to other goal self-assigning methods, IMGEPs
are usually based on a population approach, in which multiple policies are
tested at the same time. This allows more flexibility and an easier recovery of
discovered abilities compared to other approaches that do not use a population
[98].

Other than through curiosity, Goal Exploration Processes (GEP) help in
addressing sparse rewards settings thanks to the separation between the ex-
ploration of the search space and the exploitation of any possible discovered
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reward. Forestier et al. [97] use such a method by firstly learning a goal-
parametrized policy capable of reaching any goal from any state and then
using this policy to solve the task. This method has also been extended in
IMGEP-UGL [99], in which the searched goal space is learned in an unsuper-
vised fashion from the environment observations thanks to a dimensionality
reduction algorithm. Another method, proposed by Colas and his colleagues
[100], performs a task agnostic exploration phase before learning an inverse
policy on the task to solve. Similarly, GoExplore [101] deals with the problem
by using a two-phases strategy. It starts by exploring as much as possible,
without caring about the reward. This leads to the building of a set of in-
teresting states and trajectories leading to these states. Then in the second
phase, it chooses one of the trajectories to turn it into a robust policy.

As stated in Sec. 2.1.1, RL methods work best in situations of dense
rewards, rendering the problem of sparse rewards complex to address. Another
way to deal with the issue is to rely on a different family of policy search
algorithms, requiring the reward signal to be provided only at the end of the
policy evaluation: Evolutionary Algorithms (EAs).

2.2 Evolutionary Algorithms
A different approach in learning policies for embodied agents consists in us-
ing a Evolutionary Algorithm (EA) [102]. EAs are a family of optimization
algorithms inspired by the theory of natural evolution described by Darwin
in its work ”On the origin of species” [3]. These algorithms take advantage
of the concept of survival of the fittest to perform direct policy search. They
work with a population of individuals - each one of the corresponding to a
parametrized policy - that is randomly initialized at the beginning of the
search. This population is then evaluated in the environment and the perfor-
mance of the individuals in it is measured through a given fitness function.
Notwithstanding the different name, this function has a similar role than one
of the reward function in RL methods. The main difference between the two
functions is that the fitness function returns the reward for the whole evalua-
tion episode, rather than evaluating the time-steps. Similarly to what happens
in natural settings, the individuals whose fitness is too low will be discarded.
At the same time, the agents deemed fit to survive are selected and allowed to
reproduce through some variation operators, generating a new population of
individuals to evaluate. Each iteration of this process is called a generation.

The selection of the individuals that are used for the generation of the new
population can be performed in multiple ways [102, 103]. The most common
selection strategies are:

• Roulette wheel selection: the probability of selecting an individual
is proportional to its fitness; the better the fitness, the higher chance for
that individual to be chosen;

• Tournament selection: multiple tournaments are performed between
individuals sampled from the population. The winner of each tourna-
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ment is selected for reproduction. This method can be improved by
performing, at the end of each tournament, a probabilistic selection of
the individual to reproduce: select the first with probability p, the sec-
ond with probability p ∗ (1− p), the third with probability p ∗ (1− p)2,
etc. [104];

• Elitist selection: the new population is composed not only by the new
individual generated through reproduction, but also by the best elements
from the previous generation. This allows to preserve particularly good
set of parameters.

By continuously selecting the fittest agents the algorithm can generate
agents that reach higher and higher fitness scores, thus discovering better ways
to solve the task. The evolution cycle, represented in Fig. 2.4, is repeated until
a given termination condition is reached.

Initialization

Evaluation

Selection

Variation

Termination

Figure 2.4: Evolutionary algorithms cycle [103]

Genotype and Phenotype

Before defining how the creation of new individuals from the selected ones
in the current population is performed, it is useful to define two important
concepts for EAs: the genotype and the phenotype.

The genotype corresponds to any set of parameters used to define an indi-
vidual. In the case of natural living beings the genotype is the DNA, encoding
information about any aspect of the being. On the contrary, the phenotype
is the expression of the information contained in the genotype. Keeping the
parallel with the natural world, the phenotype expressed by the DNA can be
the shape of the body, the color of the eyes or of the hair, or even the behavior
of a living being. The mapping between the genotype and the phenotype of an
agent strongly depends on the kind of setting and environment the algorithm
is being applied to [103].
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Variation operators

In general, EAs act on the genotype in order to obtain and observe different
phenotypes. This is done through two operators, used during the variation
step of Fig. 2.4, to generate a new set of individuals from the existing one:

• Mutation: this operator is inspired by the genetic mutation happening
in nature. It works by randomly changing some of the values of the set
of parameters composing the genotype;

• Crossover: inspired by sexual reproduction, it combines the genotypes
of two or more individuals to generate a new one.

These two operators are blind to the reward, meaning that the operations the
perform do not depend on the reward. Nonetheless, they help the algorithm to
continuously generate new individuals, properly exploring the genotype space
in the search for solutions. At the same time, given that the crossover works
with multiple individuals at once, it is not always straightforward to apply,
depending on the structure of the genome and the way it is expressed in the
phenotype. For this reason, many works in recent years tend to only use the
mutation operator when generating new individuals [105].

The mutation and crossover operators are fundamentally stochastic in the
selection of both individual and parameters on which to operate. While this
renders the search less efficient compared to methods like RL, it also removes
the need for the calculation of a gradient. Moreover, contrary to RL meth-
ods requiring the problem to be structured as an MDP, EAs can work with
optimization problems structured as black-box functions [103]. The algorithm
does not require any information about the internal structure of the problem
or of the function it is optimizing, it just needs to provide an individual as
possible solution and observe its final performance. This allows EAs to be
applied to a wide variety of problems, from the design of buildings [106] to the
generation of music [107] and images [108] and the creation of virtual crea-
tures [40, 109]. EAs have also be used for the evolution of the topologies of
NNs through neuroevolution [110, 111], or for the generation of policies used
to control robots and embodied agents in general [112, 113, 46]. The only
requirement in this regard is that the policy π(·) has to be parametrized by a
set of parameters θ ∈ Θ. These parameters correspond to the genotype of the
controller policy, while the way the embodied agent acts in its environment is
its phenotype.

2.2.1 Multi-objective optimization

EAs can be applied also to Multi-objective optimization (MOO) problems, in
which the method optimize multiple objective functions at the same time [114].
An example of this can be seen in automated factories, in which the engineers
have to optimize both the speed and the accuracy of the robots working on the
assembly line. The solution of these kind of problems requires to find a good
trade-off between the different objectives to optimize. This is not an easy task,
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and the discovery of the right trade-off can require multiple evaluations of the
problem. The advantage EAs have in these situations is that being population
based they allow the discovery of multiple possible trade-offs at once.

An important concept when dealing with Multi-objective optimization
(MOO) problems is the one of Pareto dominance [114]. To explain it, consider
two candidate solutions for a MOO problem, x1 and x2. The solution x1 is
said to dominate x2 if and only if the two following conditions apply:

1. x1 is not worse than x2 on any of the problem’s objectives;

2. x1 is better than x2 on at least one of the objective functions.

An example of how a solution x1 divides the plane between dominated and non-
dominated regions is shown in Fig. 2.5.(a). Among all the possible solutions to
a MOO problem, the set of non dominated solutions contains all the best trade-
offs that can be found for the problem. This set is referred as Pareto front.
A representation of a possible Pareto front for a MOO with two objectives to
maximise is shown in red in Fig. 2.5.(b). In blue are represented the solutions
belonging to the front, while all the other dominated solutions are shown in
grey.
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Figure 2.5: An example of a MOO with two objectives to maximize. (a) A pos-
sible solution x1 divides the plane defined by the two objectives into multiple areas
of domination and non-domination. (b) A possible Pareto front, in red, for a MOO
problem.

A well known EA designed to deal with MOO problems is NSGA-II [115].
This method works by sorting all the possible solutions into non-dominated
fronts on an ascending level of non-domination, as shown in Fig. 2.6.(a).
At each generation g, the new population Γg+1 is then filled according to
front ranking, by first adding to it the elements from the most non-dominated
front, then the ones from the second-most non-dominated front, etc., until
the population is complete. If a front is only partially selected, that is, if the
solutions on the front are more than the remaining positions in Γg+1, only the
ones with the highest crowding distance are selected [115, 116]. This distance
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Figure 2.6: (a) Representation of non-dominated fronts sorting. Each grey circle
represents a solution with respect to the two optimization objectives. The blue arrow
represents the direction of increasing non-domination. (b) Representation of crowding
distance cuboid calculation around solution xi.

is a metric providing an estimate of the density of individuals around any
single solution xi. To have meaning, it needs to be calculated only between
solutions on the same non-dominated front. The calculation is performed by
measuring the area of the largest cuboid surrounding an individual xi, without
including any other solution on the same front, as shown in Fig. 2.6.(b) [116].

An overview of the whole NSGA-II selection procedure is illustrated in Fig.
2.7.

2.2.2 Searching for Diversity

EAs require the definition of a fitness function measuring the quality of the
solutions with respect to a given goal because they are objective-based. The
designer has to know in advance the goal to reach and the way the progress
towards this goal can be measured. Designing such a fitness function is not an
easy task. Moreover, if the function is not properly defined, it can lead the EA
to fall victim of deception and converge to local optima [35]. This can lead to
a phenomenon known as population collapse, in which the whole population is
composed by similar individuals, preventing any possible advancement out of
the local optimum [32, 33]. There are multiple ways to overcome this kind of
problem. An approach is to use additional objectives through a MOO approach
[117, 118]. By using the additional objectives, the population can escape local
optima with respect to the main optimization objective. Another promising
strategy is to force the algorithm to preserve the diversity of the population.
In order to do so, many approaches tried to preserve the diversity of the
population from the genotype point of view [119]. This can be done through
multiple mechanisms as speciation and clustering [110, 120] or tournament
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Figure 2.7: Schematic of the NSGA-II procedure as shown by [115]. Γg is the
population at generation g, while Γm

g are the corresponding offsprings. Fi are the
non-dominated fronts in which the solutions are divided before selection. Finally Γg+1
is the new population at generation g + 1.

selections [121]. However, preserving diversity in the genotype space does not
imply that the individuals will behave in different ways. Multiple genotypes
can express the same kind of phenotype. For this reason, a more interesting
approach is to push the algorithm to preserve diversity in the phenotype space.
Maximizing the diversity in the phenotype space also allows for the discovery
of many different ways in which a problem can be solved. This means that
rather than returning a single solution, the algorithm should return a whole
set of diverse solutions. A very well known algorithm using this strategy is
Novelty Search (NS) [34]. Introduced by Lehman and Stanley, the method
performs the search not by targeting a fitness objective, but by searching for
a set of individual whose phenotypes are as different as possible. Algorithms
performing the search through this strategy can be defined as divergent search
algorithms [122]. Moreover, this strategy allows the algorithm to not get stuck
in any local optima that could possibly be present in the fitness landscape.

Note that, since NS was introduced in the context of evolutionary robotics
and artificial life, the phenotype usually consisted in the way the agent be-
haved. For this reason NS, and similar methods, are said to maximize the
behavioral diversity of the individuals [123] and the phenotype itself is re-
ferred to as behavior descriptor. Considering this, and the fact that the focus
of this manuscript is the learning of policies in situations of sparse rewards,
from now on we will consider the individuals generated by the presented algo-
rithms as policies π(·) parametrized by a set of parameters θ ∈ Θ. As stated
in Sec. 2.2, this parameters correspond to the genotype of the individuals,
while their phenotype corresponds to the behavior these policies have in the
environment. Thanks to the flexibility of EAs, this point of view comes with
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little loss of generality but it will help in keeping the discussion aligned to the
way these methods are presented in the literature.

Novelty Search

Novelty Search (NS) is an EA that works by replacing the fitness metric used
by standard EAs with a novelty metric. This metric pushes the search towards
novel areas of the search space. The novelty is calculated in a space B called
Behaviour Space (BS) in which the behavior of each policy π(·) parametrized
by θi ∈ Θ is represented. This space is usually hand-designed by taking into
account the system and the task to be fulfilled. The policies generated by the
algorithm are run on the system for a given number of steps T , traversing a
trajectory of states τS = [s0, · · · , sT ], where each st corresponds to the state of
the system at time step t. These traversed states are observed through some
sensors, such that they produce a corresponding trajectory of observations
τO = [o0, · · · , oT ], with ot ∈ O, where ot ∈ O is a potentially under-complete
observation of the state of the system at time t. An observer function OB :
OT → B then maps this trajectory of observations to a hand-designed behavior
descriptor bi for the policy θi. The overall process can be summarized by
introducing a behavior function φ mapping each policy θi to its corresponding
behavior descriptor:

φ(θi) = bi (2.5)

The descriptor usually consists in a vector of real numbers. For example, in
the case of a robotic arm, it can be the final position and orientation of its
end effector.

Once computed, the descriptors are used to calculate the policies’ novelty.
This novelty represents how different the behavior of each policy is with re-
spect to the behavior of the other agents. In practice it is calculated as the
average distance between the behavior descriptor of a given policy θi and the
descriptors of the k closest policies in the behavior space B. It is calculated
as:

η(θi) = 1
|J |

∑
j∈J

dist(bi, bj) = 1
|J |

∑
j∈J

dist(φ(θi), φ(θj)), (2.6)

where J is the set of indexes of the k policies closest to θi in B.
The novelty of the policies is calculated at each generation g and used to

choose the policies for the next generation. Moreover, NQ policies are sampled
to be stored into an archive ANov, or repertoire, returned as outcome of the
algorithm. These policies can be chosen either randomly or by selecting the
most novel ones from the current generation of offsprings [124]. The archive
is also used to keep track of the already explored areas of the space B. This is
done by choosing the |J | closest neighbors used in equation (2.6) not only from
the current population and offspring but also from the archive. The whole NS
approach is shown in Alg. 1, in which the evaluation budget Bud is equal to
the total number of policy evaluations.

By choosing the most novel policies from the current generation to compose
the next population, the search is always pushed towards less explored areas
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Algorithm 1: Novelty Search
INPUT: evaluation budget Bud, parameter space Θ, behavior space
B, variation function V(·), population size M , number of offspring
per parent m, number of policies to add to archive NQ;

RESULT: archive ANov;
Initialize ANov = ∅;
Initialize generation counter g = 0;
Γ0 ←M policies from Θ;
Evaluate θi, ∀θi ∈ Γ0;
Calculate behavior descriptor bi = φ(θi) ∈ B ∀θi ∈ Γ0;
while Bud not depleted do

Generate offsprings Γmg ← V(Γg);
Evaluate θi, ∀θi ∈ Γmg ;
Calculate behavior descriptor bi = φ(θi) ∈ B ∀θi ∈ Γmg ;
Calculate novelty η(θi) = 1

|J |
∑
j∈J dist(bi, bj), ∀θi ∈ Γg

⋃
Γmg ;

ANov ← NQ samples from Γmg ;
Generate Γg+1 with most novel θi ∈ Γg

⋃
Γmg ;

g = g + 1;
end

of B. Doncieux et al. have shown that the repertoire will tend to uniformly
cover the BS [125]. At the same time, measuring and comparing behaviors
is still an open question, requiring the definition of a good behavior repre-
sentation. Nonetheless, as long as the BS is properly designed, NS is a very
good exploration algorithm in situations in which the reward is either sparse
or contains local minima.

Since the introduction of NS, many divergent search algorithms have been
developed, using different mechanisms to drive the search: curiosity [126],
empowerment [127], surprise [45], diversity [46, 44, 42, 41], and novelty [40].

Quality-Diversity algorithms

Notwithstanding the capacity for exploration of NS, completely ignoring the
fitness function prevents the algorithm to exploit any of the rewards potentially
found during the search. This leads the set of solutions returned by the method
to have arbitrary performances. Trying to overcome this problem has led to
the development of the QD family of algorithms [42, 41]. The methods of
this family generate a set of diverse solutions that at the same time have high
performances with respect to the given objective.

Among the first QD algorithms developed is Novelty Search with Local
Competition (NSLC), an algorithm that combines NS with the mechanism of
niching to foster the evolution of high performances solutions [40]. The niching
mechanism consists in considering policies that are close enough in the BS as
belonging to the same niche. The competition with respect to performances
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then happens only between members of the same niche. The rationale for this
approach is that agents with high performance in an area of the search space
cannot dominate the ones in a different area that have lower performances,
thus preventing the collapse of diversity during the search process. This is
done by calculating a local competition objective for each agent θi by counting
how many agents among the k nearest neighbors used to calculate the novelty
in Eq. (2.6) have lower fitness than θi. The objective encodes the performance
of an agent with respect only to its nearest neighbors. The algorithm then
uses a MOO strategy to optimize both the novelty of the agents and their
local competition objective. This strategy allowed the authors to generate a
wide set of robot morphologies capable of efficient locomotion.

NS based methods are characterized by two main factors: they can work
with continuous BS, and the population of agents performing the search is kept
separated from the archive of stored solutions. A different approach is the one
introduced by Mouret and Clune with MAP-Elites (ME) [43]. This method
works by discretizing its BS through a multidimensional grid in which the
agents are organized. Moreover, the algorithm does not keep the population
separated from the archive: the agents in the grid act both as population and
as archive. The method works by randomly initializing a set of policies θ that
are evaluated in order to calculate their behavior descriptor. The policies are
then placed in the cells of the BS grid corresponding to their descriptor. At this
point, the main cycle of ME starts. The algorithm samples one of the policies
from the grid and generates a new agent by mutating the sampled individual.
The new policy is then evaluated and its behavior descriptor bi calculated. If
the cell of the grid in which the policy belongs thanks to bi is empty, the agent
is placed in it and another element from the grid is sampled. On the contrary,
if the cell is already occupied by another policy, the algorithm performs a
tournament selection between the two policies, only storing the one with the
highest fitness. The cycle is repeated until the whole evaluation budget is
depleted. With time, this allows to improve on the quality of the discovered
solutions. The whole process is shown in Alg. 2.

The discretization of the search space allows ME to reduce its memory and
computational footprints with respect to the continuously growing archive of
NS. The cell look-up operation in ME has a computation cost of just O(1).
At the same time, the computational cost of the nearest neighbors calculation
in NS is O(n logn) [128], increasing at each generation with the size of the
archive. Thanks to its performances and its simplicity, ME has become one of
the most well known and widely used QD approaches.

Discovering multiple policies and collecting them into an archive, as done
by QD methods, allows for great generalization, even to settings not seen at
training time. An example of this is the work done by Cully et al. in which a six
legged robot learned how to recover from damage received to one of its legs and
still be able to walk [46]. Initially, the method generates a collection of policies
that allowed the undamaged robot to walk. After one of the robot’s legs is
disabled, the algorithm explores its collection of policies in order to find the
most promising solution that still allows the robot to advance. This solution
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Algorithm 2: MAP-Elites
INPUT: evaluation budget Bud, parameter space Θ, discretized
behavior space B, variation function V(·), number of initial policies
M ;

RESULT: discretized archive AME;
Initialize AME = ∅;
Γ0 ←M policies from Θ;
Evaluate θi, ∀θi ∈ Γ0;
Calculate behavior descriptor bi = φ(θi) ∈ B ∀θi ∈ Γ0;
AME ← θi, ∀θi ∈ Γ0;
while Bud not depleted do

Sample θi from AME;
Generate offspring θ̃i ← V(θi);
Evaluate θ̃i;
Calculate behavior descriptor bi = φ(θ̃i) ∈ B;
if AME(bi) == ∅ then
AME(bi)← θ̃i;

else
θj ← AME(bi);
if fitness(θj) < fitness(θ̃i) then
AME(bi) = ∅;
AME(bi)← θ̃i;

end
end

end

is then evaluated and its performance on the damaged robot calculated. The
algorithm then updates the performances not only of the selected policy, but
also of its neighbors, in order to quickly reduce its uncertainty about the
quality of all solutions with respect to the new situation. The rationale of this
is that similar behaviors have similar performances even in the new setting.
This reduced uncertainty allows the algorithm to better select which policy to
test next. The cycle repeats until performance on the damaged robot is 90%
or greater of the maximum expected performance for any behavior [46].

ME has been extended in CVT-ME to address the explosion in the num-
ber of cells of the grid while working in high-dimensional BS [129]. In sit-
uations of high-dimensional BS, the number of cells increases exponentially
with the number of dimensions. With 50 cells per dimension, in the case of
a 2-dimensional BS, the total number of cells will be 50 × 50 = 2500. This
numbers increases to 50× 50× 50 = 125000 in a space with just 3 dimensions.
The exponential increase in dimensions reduces the performances of ME due
to the fact that the occupancy of the cells will be very sparse, so very little
performances optimization will be performed. This explosion can be reduced
by autonomously changing the size and number of cells along each dimensions
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[129].
Other extensions address the issue of working in noisy domains. In order

to properly compare the behaviors of the policies, QD algorithms need to work
in deterministic settings. This greatly limits the range of applicability of these
methods. The problem can be addressed in multiple ways. Justensen et al.
used adaptive sampling and drifting elites [130] to strengthen the resistance
of ME to noise. The method consists in the multiple evaluation of the policies
in order to estimate their behaviors and performances. An agent is evaluated
multiple times until it either: it ends up in an empty cell or, if it remains in an
already filled cell, it has been evaluated as many times as the best performing
policy in that cell, the elite. If the mean performance is higher than the one of
the elite, the agent is added to the grid, otherwise it is discarded. Moreover,
the number of evaluations performed on each individuals is increased with
time, in order to refine their performance estimate. To prevent cells of the
grid to become empty once the reevaluation of a policy makes it move from
one cell to the other, multiple solutions are stored in the same cell. From all
the solutions in a single cell, only the best performing ones will be considered
for reproduction when the cell is selected to generate a new policy. Another
approach storing multiple agents in the same ME cell to deal with the problem
of noisy domains is deep-grids [131]. Contrary to what has been done by
Justensen et al., deep grids does not use only the elite from a selected cell
to generate new offsprings, but rather samples the agents according to their
fitness. This allows to generate a collection of policies that is more stable to
noise.

QD algorithms have also been combined with other kind of EAs, namely
Evolution Strategies (ES), to increase their efficiency and speed of conver-
gence. Evolution Strategies (ES) is a family of fitness based EAs that work
by estimating a distribution from which the population to be evaluated is
sampled [132]. After each evaluation, the distribution is updated according
to the performances of the sampled agents and a new population is sampled.
ESs are particularly efficient EAs and have been recently shown to perform
comparably to RL methods in certain situations [133].

Conti et al. introduced an ES that used NS’s novelty objective to look for
novel solutions while improving their performances. This allows to improve
the ES exploration in setting of sparse rewards while retaining scalability.
The novelty metric allowed the method to overcome the local optima in which
standard ES would easily get stuck. A different approach is the one of emitters
[55, 56]. These works use ME as a scheduler to launch instances of ES that
perform local search in the BS around their point of initialization. The search
is then performed while optimizing the quality of the discovered solutions.
These instances of ES performing search in a neighborhood of the search space
are called emitters. The concept of emitters is very flexible, allowing any
reward-based method to be used as an emitter in combination with a QD
algorithm.

QD algorithms have also been combined with RL methods [134, 135], by
using the EA to collect the data on which the RL algorithm is trained. This
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allows for better exploration by overcoming any possible deceptive gradients
that could undermine the performances of gradient-based approaches. At the
same time, the data efficiency of the RL approach allows to quickly optimize
the policy with respect to the goal. The higher-performing gradient-optimized
policy is then injected into the evolving population to steer the search towards
more profitable areas.

To conclude, the thesis focuses on the study and development of algorithms
capable of dealing with sparse reward settings. In these situations, a good
strategy for the agent is to focus on exploration until a reward is discovered, at
which point the agent has to be able to quickly optimize the rewarding solution.
While RL methods can efficiently optimize policies thanks to gradient descent,
they struggle with hard to explore problems. On the contrary, QD methods
have proven to be very powerful in solving problems in which exploration is
difficult. Nonetheless, they present one major limitation: diversity is measured
in low-dimensional BS that are usually hand-designed. This requires more
involvement from the system’s designer, leading to the possible introduction
of bias and to increased costs of deployment. The next chapter will present
an approach designed to deal with this limitation.
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This chapter is adapted from the following publication:

Paolo, G., Laflaquiere, A., Coninx, A., & Doncieux, S. Unsupervised learn-
ing and exploration of reachable outcome space. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA 2020).

3.1 Introduction
Chapter 2 discussed how, in order to deal with sparse rewards, a good strategy
is to completely focus on exploration. Divergent search EAs like QD methods
are good candidates for this. This is due to multiple reasons. First, these
methods generate simple policies, each one specialized in reaching a sub-part
of the search space, rather than looking for a single complex policy able to
cover the whole space as is the case for RL algorithms. This can seem lim-
iting from the point of view of generalization: being so simple, these policies
cannot generalize to new problems. However, the whole collection of policies
returned by QD methods can be used on different problems, as long as the
collected policies are reevaluated to asses their performances. This strategy
has been useful, for instance, in making a robot resilient to damage [46] or to
generate complex behaviors by combining these simple policies in the context
of hierarchical RL [44]. Moreover, these methods do not need any reward to



drive the exploration and find new policies, the search is therefore not misled
by deceiving reward gradients. At the same time, an outcome space can be
shared by different tasks and different domains, meaning that the same reper-
toire of policies can thus be applied to multiple tasks a posteriori [36, 37, 38,
39].

This chapter will present one of these divergent search algorithms: the
Task Agnostic eXploration of Outcome space through Novelty and Surprise
(TAXONS) method [136]. It takes advantage of the exploration strength of
NS while overcoming one of its main limitations: the need to hand-design the
outcome space, also called behavior space, in which the novelty of each policy
is evaluated. NS has recently been shown to tend towards a uniform explo-
ration of the outcome space, which is an unbiased strategy in the absence of
reward [125]. Removing the need to hand-design the BS helps in reducing the
amount of prior information needed at design time, rendering the algorithm
more widely applicable. The outcome space, in fact, needs to be adapted
for any new agent and/or environment. Apart from being costly in terms of
human resources, defining by hand the appropriate features of the outcome
space requires for the experiment designer to know the features of the robot,
environment, and tasks. The search will also be constrained by the biases of
the designer’s choices. Being able to autonomously learn the outcome space
in which policies are discriminated can remove said limitations while improv-
ing the applicability of these approaches. TAXONS does so by learning the
outcome space while performing the search through the use of an autoencoder
(AE) [49]. AEs are a family of NNs architectures commonly used for dimen-
sionality reduction.

In the following, other approaches from the literature that learn the BS
will be presented in section 3.2, then TAXONS will be introduced in section
3.3. Section 3.4 will discuss the experiments performed to test the method and
its related results. The chapter will conclude with section 3.5 with a recap of
what has been done and a discussion on the next steps and ideas explored in
the rest of the thesis.

3.2 Related work

Given the important role played by the BS in divergent search algorithms, its
design is fundamental. Hand-designing it can be problematic, requiring prior
knowledge on the system and on the problem to be solved. Moreover, the de-
signer can introduce some unexpected bias in situations in which it is not clear
what features would benefit the search. For these reasons, methods combin-
ing representation learning algorithms with EAs have recently been proposed.
Representation learning algorithms are a family of methods that can learn
abstract features characterizing data. They can be used to autonomously rep-
resent high-dimensional data into a lower dimensional space [137]. Combining
them with EAs reduces the amount of task related prior knowledge required
at design time, moving the engineering efforts from the design of the task spe-
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cific representation to the design of the task agnostic representation learning
algorithm. This makes the approaches more flexible with respect to the kind
of problem they are applied on: the same representation learning method can
learn good representations for different situations without many algorithmic
changes.

Meyerson et al. [138] proposed to learn a domain-specific behavior de-
scriptor by starting from an underlying, generic descriptor requiring minimal
domain-specific knowledge. The domain-specific descriptor then is in the form
of a weighted vector over all the possible state-action pairs, thus reducing
the need to take into account every situation at design time. At the same
time, having to weight every state-action pair limits the approach to discrete
and low-dimensional domains. In DeLeNoX[139], the authors developed a
NS-based algorithm to evolve 2-dimensional space-ships shapes in which the
novelty of each shape was calculated in the low-dimensional feature space of
an AE. The fact that the AE is trained from scratch on each new generation
of shapes is the limiting factor of the algorithm, removing any memory of
previous generations.

Autonomous learning has not been limited only to algorithms relying on
continuous BS like NS, but has also been applied to approaches with discrete
ones like MAP-Elites[46]. Innovation Engines [140] generate and classify novel
images thanks to the learned feature space of an AE. However, the AE is
trained beforehand on a dataset of images and not during the search process.
More recently, the approach introduced by Cully and Demiris [141] uses a
hierarchical strategy to combine hand-designed features with learned ones.
Having a hierarchy of BSs has the advantage of requiring the update of only
a part of the BSs stack when changing the task, rendering the algorithm
more flexible. Another approach that uses an AE to learn the BS online
while searching for policies is AURORA [142]. In this work the AE learns
the space from the trajectories of the raw observations of the internal states
of the system. The learned space is then used to differentiate the policies by
calculating the distances among the generated trajectories projected in the
learned space. Notwithstanding the power of the algorithm to discover a host
of different trajectories, using observations of the internal states can be limiting
in situations in which the states do not carry enough information. For example
if a robot is being trained to move a box from one position to another, the
box needs to be explicitly tracked in order to distinguish between the different
outcomes of the policies, adding another layer of complexity to the algorithm.
It is to notice that while AURORA is similar in spirit to TAXONS, there
are some important differences. Namely, TAXONS learns the search space
directly from high-dimensional RBG images of the environment, extracting
the features in an unsupervised way. Moreover, the diversity of each policy is
assessed not only by using the self-learned outcome space, but also by taking
advantage of the information provided by the reconstruction error of the AE.
This added measure helps improve both the quality of the search space and
the diversity of the generated policies. At the same time, AURORA can work
on whole trajectories while TAXONS can only work on the last observation.
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Figure 3.1: High level schematic of TAXONS. It consists of two processes operating
in parallel. The first one, the search process (gray arrows), generates a set of new
policies, evaluates them in the environment and stores the best ones in the repertoire.
The second process, highlighted by the red arrow, is the training of the AE on the
observations collected during the evaluation of the policies.

These features will be discussed in more detail in the next section.

3.3 Methodology
As already mentioned, hand-designing the BS requires a lot of involvement
from the system’s designer. Having to know exactly what he wants to measure,
what the task to be solved is, and how to measure the progress towards finding
a solution. All of this requires prior knowledge that has to be collected by
accurately studying the system.

This problem is approached with TAXONS[48], an algorithm based on NS.
Instead of relying on a hand-designed BS, TAXONS builds it in the form of
a low-dimensional representation of the trajectory of observations [o0, . . . , oT ]
collected during the evaluation of each policy. Here each observation ot ∈ O
corresponds to the observations defined in section 2.2.2. To simplify the ap-
proach, the last observation oT of the trajectory is considered to be informative
enough to characterize the behaviour of the system during the execution of
the related policy. Consequently, only this last observation will be used to
build the BS representing the outcome of the policy, for this reason also called
outcome space.

The observations are considered to be high-dimensional RGB images. Work-
ing directly on such high-dimensional observations can be complicated, if not
infeasible, due to two main reasons:

• The euclidean distance metric, used to calculate the novelty of the be-
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haviors, does not work properly in high-dimensional spaces [143];

• In the case of RGB images, calculating the pixel-wise distance would
return a distance between the images themselves rather than a distance
between the objects in the images. This makes it difficult to distinguish
between different situations. An example of this can be seen in figure
3.2. The pixel-wise distance between the second and third images with
respect to the first one is the same, notwithstanding the real distance
between the disks being different.

For these reasons a dimensionality reduction algorithm is needed to move to a
low-dimensional space where a more meaningful distance between observations
can be calculated. Among the many dimensionality reduction algorithms [144]
that can be used to build the low-dimensional space, this work uses an AE
[49], given the power and flexibility these methods have.

AEs are a class of neural network composed by an encoder E and a decoder
D. The encoder projects its input x ∈ O in a space called feature space F ,
usually of lower dimension than the input space. The decoder then returns
the projection from the feature space to the output space. The goal of the AE
is to learn to reconstruct its input x on its output:

E : O → F ,
D : F → O.

(3.1)

An important point of the process is the fact that the AE has to project
x in the lower-dimensional feature space. This forces it to extract only the
important features from the input to properly reconstruct it on its output.
This whole process happens in an unsupervised way, with the AE being trained
by minimizing the error function

L(x) = ||x−D(E(x))||2. (3.2)

The whole AE is trained in an online fashion on the observations generated at
each iteration when evaluating the new policies.

TAXONS uses the encoder E as observation function, to extract the fea-
tures from the image, and its lower dimensional feature space F as outcome
space. Note that in this process no task or reward is required, thus the al-
gorithm needs minimal interventions from the designer, apart from choosing
which observation to feed to the AE.

A high-level schematic of TAXONS is shown in figure 3.1, while a more
detailed view is given in Alg. 3. The method consists of two processes running
in parallel:

• Search process: highlighted in gray in figure 3.1, it generates and eval-
uates the policies, storing the ones with higher diversity in the repertoire.
It does so by firstly generating a population of policies, evaluating them
in the environment, and then selecting the most novel ones to add to the
repertoire. During the evaluation, the last observation oT from each of
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Figure 3.2: The pixel-wise distance between the second and third images with respect
to the first one is the same, notwithstanding the real distance of the circle in the
euclidean space being different.

the policies is collected and fed to the AE that will be used to extract
the features for the selection step. This last step is fundamental to the
correct operation of TAXONS and is described in detail in section 3.3.1;

• AE training: highlighted by the red arrow in figure 3.1, is the training
of the AE on the observations collected during the evaluation of the
policies. This training process happens in parallel with the search process
and is described in more detail in section 3.3.2.

3.3.1 Policy selection

While in NS only the distance in the BS is used as a metric, in our approach the
best policies are selected according to two metrics, ensuring both their novelty
and the representativity of the behaviour space. The first one, referred to as
novelty, corresponds to the novelty metric of NS already defined in Eq. (2.6),
reported here for clarity:

η(θi) = 1
|J |

∑
j∈J

dist(bi, bj) = 1
|J |

∑
j∈J

dist (φ (θi) , φ (θj)) , (3.3)

More precisely, the mapping φ in (2.5) is replaced by the mapping:

f(θi) = E(o(θi)
T ), (3.4)

where o(θi)
T is the last observation generated by the policy θi. This allows us

to rewrite Eq. (2.6) as:

η(θi) = 1
|J |

∑
j∈J

dist (f(θi), f(θj)) = 1
|J |

∑
j∈J

dist
(
E(o(θi)

T ), E(o(θj)
T )

)
(3.5)

The second metric, referred to as surprise, corresponds to the reconstruc-
tion error of the AE; it is expressed as:

s(θi) = ||o(θi)
T −D

(
E(o(θi)

T )
)
||2. (3.6)
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This reconstruction error tends to be large when the AE processes observations
which have not been frequently encountered yet. This idea is similar to the one
introduced with the RND approach [87]. Maximising this metric during the
search pushes new policies to explore novel parts of the state (observation)
space. This ensures that the observations are representative of the states
the system can reach. In practice, one of the two metrics is picked with a
probability of 0.5 to evaluate every new iteration of policies. This strategy
is similar to the one used by Doncieux and Mouret [113] to mix different
behaviour descriptors.

Combining these two metrics drives the search towards learning an outcome
space that is representative of the reachable states of the system and towards
policies that are diverse in this space.

Algorithm 3: TAXONS
INPUT: evaluation budget Bud, parameter space Θ, training
interval I, variation function V(·), population size M , number of
offsprings per parent m, number of policies to add to archive NQ;

RESULT: archive ANov;
Initialize AE D(E(·)) with random parameters;
Initialize population Γ0 ←M policies from Θ;
Initialize ANov = ∅;
Initialize dataset buffer DS = ∅;
while Bud not depleted do

Generate offsprings Γmg ← V(Γg);
for θi ∈ Γg

⋃
Γmg do

Evaluate policy π(θi)→ oT ;
Calculate outcome descriptor E(o(θi)

T ) = bi;
Calculate surprise s(θi) = ||o(θi)

T −D(E(o(θi)
T ))||2.;

Store outcome observation oT → DS;
end
Calculate novelty η(θi) = 1

|J |
∑
j∈J dist(bi, bj), ∀θi ∈ Γg

⋃
Γmg ;

ANov ← NQ most novel from Γmg ;
Substitute NQ less novel θi ∈ Γg with NQ most novel in θi ∈ Γmg ;
if g multiple of I then

Train D(E(·))← DS;
DS ← ∅;
Update stored policies’ descriptors bi, ∀θi ∈ Γg

⋃
ANov;

end
g = g + 1;

end
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3.3.2 Search and Training

Similarly to NS, the repertoire of diverse policies is built iteratively. At each
iteration, a set of M new policies, parametrized by θ ∈ Θ, is generated by
modifying the ones from the previous iteration. More precisely, the Q best
policies, according to the metric (novelty or surprise), are duplicated to replace
the Q worst ones. Then the parameters θ of all M policies are perturbed by
adding gaussian noise with probability pd. Moreover, in the process, theQ best
policies θi are also stored in the repertoire, along with their final observation
o

(θi)
T .

The AE is trained to minimize the reconstruction error by feeding it the
observations generated during the policies evaluation. In particular, the final
observations oT are stored for I iterations (for a total of M × I observations)
before the AE is trained for J epochs. This buffering step helps in collecting
enough data for the training process of the AE.
Note that, because the outcome space changes during the training of the AE,
the policies in the repertoire are reassigned an updated outcome descriptor
after each training episode of the AE, obtained by feeding the associated final
observation to the current version of the AE’s encoder.

The TAXONS search process is described in detail in algorithm 3.

3.4 Experiments

3.4.1 Experimental setup

To test if TAXONS can drive exploration by using only high-dimensional RGB
images, it has been tested on four different environments:

• Billiard: a 2-jointed arm pushing a ball in a 2D room, shown in figure
3.3.(a);

• Maze: a two wheeled robot navigating a 2D maze [34], shown in figure
3.3.(b);

• Ant: a four legged robot ant moving on the floor [145], represented in
figure 3.3.(c);

• Kuka: a 7-jointed Kuka robotic arm, simulated in Pybullet [146], that
has to learn how to push a box on a table. The setup is shown in figure
3.3.(d).

In all of these situations, driving exploration through images removes the need
to track the objects in order to extract the internal states used by NS to drive
the search, e.g. the ball or the robot position.

The scenarios are observed through an RGB-camera looking at the scene
from the top, with the exception of the Kuka environment that is observed
from the side.

TAXONS is compared against five different baselines:
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(a) (b) (c) (d)

Figure 3.3: The four different experimental environments.

• NS: a vanilla novelty search algorithm [34]. This algorithm works with
features that are hand-crafted using a priori knowledge about the agent
and environment;

• PNS: a novelty search algorithm, where the outcome space directly cor-
responds to the parameter space Θ of the policies. The outcome de-
scriptor characterizes the policy but not the final observation. The idea
behind this baseline is to verify if diversity in the policy space reflects in
diversity in the behavior space;

• RNS: a novelty search algorithm where the outcome description of each
policy is randomly sampled in a 10D space. The outcome descriptor
does not characterize the observation nor the policy. The reason for
using this baseline is to verify how important an accurate representation
of the behavior is when performing exploration thorugh NS;

• RS: a random search in which all policies are randomly generated and
randomly selected to be added to the repertoire. The idea behind the
selection of this baseline is to analyze if a random search algorithm can
compete with the exploration abilities of NS based algorithms;

• NT: a novelty search algorithm in which the outcome space corresponds
to the feature space of a AE whose weights are randomly generated
at the beginning of the search and left unmodified during the whole
search process. As with TAXONS, the AE is fed only with the last
observation oT of the environment. This baseline has been chosen to
test the importance of the training process of the AE.

The vanilla version of TAXONS is also compared against two ablated ver-
sions:

• TAXO-N: in which only the novelty calculated in the learned feature
space is used as selection metric;

• TAXO-S: in which only the reconstruction error of the AE is used as
selection metric.

All experiments have been conducted on a population of M = 100 policies
for each iteration. The novelty of each policy is calculated by using a value
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of k = 15 neighbours in Eq.(2.6), as proposed by Gomes et al. [124], with
the NQ = 5 best policies added to the repertoire. At each iteration, the
parameters θi of each policy are independently perturbed, with probability
pd = 0.2, by adding noise sampled from N (0, 0.05). The observations oT
consist of RGB images of size 64× 64× 3. The AE consists in an encoder E
with 4 convolutional layers, of sizes [32, 128, 128, 64] and 3 fully connected
layers, of sizes [1024, 256, 10]; followed by a decoder D with 2 fully connected
layers, of sizes [256, 512], and 4 convolutional layers of sizes [64, 32, 32, 3]. For
the convolutional operations, the kernel is of size 4 and a the stride of size 2
with padding of 1. Moreover, in order to improve the network performances a
batch normalization operation [147] is applied after each convolutional layer.
The activation functions used are SeLU [148] for every layer, except for the
last layer of the decoder, in which a ReLU activation is used to force the non-
negativity of the output values. The structure of the AE is shown in figure
3.4. Note that the decoder is smaller than the encoder in order to prevent it
from generalizing too well. By having a decoder that is too powerful, after few
training iterations, the reconstruction error will be small also for images that
have not been seen yet. This would reduce the effect of the surprise metric.
The training is done every I = 30 search iterations for J = 5 epochs, with a
learning rate of 0.001. The optimizer used is Adam[149].
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Figure 3.4: AE structure. The input and output of the network are represented
in green; in red are the convolutional layers, with the associated batch normalization
operation highlighted in orange. In blue are the fully connected layers.

3.4.2 Evaluation

The goal of TAXONS is to produce diverse policies. In light of this, the algo-
rithms are compared based on how well they cover the ground-truth outcome
space of the system. By design, this ground-truth outcome space corresponds
to the (x, y) position of the ball for the Billiard environment, of the center
of the robot for the Maze and Ant environment, and of the box on the table
for the Kuka arm environment. The coverage metric is thus defined as the
percentage of this (x, y) space reached by the final repertoire of policies. This
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is done by dividing this space in a 50× 50 grid and then calculating the ratio
of number of cells reached at least once over the total number of cells.
Note that the ground-truth (x, y) space is unknown to the methods (except
for NS) and is only used a posteriori to compare them.

Moreover, to evaluate the statistical significance of the results, each exper-
iment was run 20 times on different random seeds, and the results compared
by performing a Mann-Whitney test [150], with Holm-Bonferroni correction
[151].

The evolution of the coverage over the training for the different methods
is displayed in Fig. 3.6.(a) and the final coverage comparison is displayed in
Fig. 3.6.(b).

Billiard environment

As illustrated in Fig. 3.3.(a), the agent consists in a two-jointed arm, depicted
in gray, that can push a blue ball inside a squared room. Two additional cor-
ners are depicted in red; in the absence of a task they have no specific function
in the simulation. The policy controlling the speed of each joint of the agent
is defined by a fifth-degree polynomial Dynamic Movement Primitive (DMP)
[152]. The policy is run for a time horizon of 500 steps. In order to remove
any possible distractor [153], the arm is brought out of the experimental table
at the end of the evaluation of each policy. As shown in Fig. 3.5.(b), the final
observation oT consists in a top-view of the experimental table. Note that, for
the NS baseline the (x, y) ground-truth position of the ball is used as outcome
descriptor.
The search methods are run for 2000 evaluations.

Maze environment

As illustrated in Fig. 3.3.(b), the agent consists in a two-wheeled robot, de-
picted in blue, navigating in a maze [34]. The agent is equipped with 5 distance
sensors in the front, represented by the dotted lines. The policy controlling
the speed of each wheel of the agent is defined by a 2-layers, fully connected,
neural network that takes as input the robot sensors readings. The policy
is run for a time horizon of 2000 steps. As shown in Fig. 3.5.(b), the final
observation oT consists in a top-view of the maze and the agent. Note that,
for the NS baseline the (x, y) ground-truth position of the robot is used as
outcome descriptor.
The search methods are run for 1000 evaluations.

Ant environment

As illustrated in Fig. 3.3.(c), the agent consists in a four-legged ant robot
[154], moving in a 2D plane of size 3m×3m. The policy controlling the torque
of each of the 8 agent joints is defined by a sinusoidal DMP. The experiment
is run for a time horizon of 500 steps or until the robot reaches the borders of
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the plane. As shown in Fig. 3.5.(b), the final observation oT consists in a top-
view of environment. Note that, for the NS baseline the (x, y) ground-truth
position of the robot is used as outcome descriptor.
The search methods are run for 500 evaluations.

Kuka environment

As illustrated in Fig. 3.3.(d), the agent consists in a 7-jointed Kuka robotic
arm simulated in PyBullet [146]. The arm can move thanks to a joint position
controller and can push a red cube on a table. The policy consists of a sequence
of 5 points in the 7-dimensional joint space that need to be reached in a time
interval of 2000 timesteps. Moreover, at the end of the policy execution the
arm is reset to the initial position to prevent any obstruction of the view of the
cube and to reduce the factors of variations in the observation. As shown in
Fig. 3.5.(b), the final observation oT consists on a lateral view of the table on
which the cube rests. Note that, for the NS baseline the (x, y) ground-truth
position of the cube on the table is used as outcome descriptor.
The search methods are run for 1000 evaluations.

3.4.3 Results

The results displayed in Fig.3.6 show that TAXONS leads to a good coverage
of the ground-truth (x, y) outcome space. Its performance is lower than the
upper-bound performance of NS, which has direct access to the ground-truth
outcome space, but significantly higher than the other baselines, which use
as outcome descriptor the policy parameters (PNS), a random vector (RNS),
or no outcome descriptor at all (RS). This shows that i) performing NS in a
low-dimensional outcome space capturing informations about the final state of
the system (through the last observation) is beneficial, and ii) that TAXONS
can successfully build this space. Indeed when the generation and selection
of policies is purely random (RS) the coverage is very low. Similarly, when
low-dimensional outcome descriptors are randomly assigned to the policies
(RNS) the coverage is only slightly better than purely random (Ant), or as
bad (Billiard, Maze and Kuka). Finally, performing the NS directly in the
high-dimensional policy parameters space Θ (PNS), leads to a coverage that
is similar to the RNS case. This suggests that, in these different experiments,
performing the search in the high-dimensional policy parameter space is equiv-
alent to assigning random descriptors to the policy, meaning that optimizing
for diversity in the policy space does not help in exploring the behavior space.
In contrast, the performance of TAXONS is significantly higher and more
consistent in the four experiments (Billiard: p = 3.38 × 10−8, Maze: p =
3.38 × 10−8, Ant: p = 1.6 × 10−7, Kuka: p = 3.94 × 10−8), showing that by
learning the outcome space through an AE it is possible to capture relevant
information about each system. The final performance of TAXONS (Billiard:
78.03, Maze: 66.02, Ant: 41.55, Kuka: 39.2) even approaches that of NS
(Billiard: 83.66, Maze: 72.99, Ant: 55.88, Kuka: 63.9) although it remains
inferior (Maze: p = 3.69×10−5, Ant: p = 7.65×10−8, Kuka: p = 3.39×10−8),

42



K
u
ka

AE

Observation

-1 4.3...60.1

Reconstruction

Descriptor

B
ill
ia
rd

AE

Observation

-1 -2.3...30.1

Reconstruction

Descriptor

M
a
ze

Observation

2.8 0.3...-31

AE

Reconstruction

Descriptor

A
n
t

0.2 0.0...3.9-4
Descriptor

AE

Observation Reconstruction

(a) (b)

Figure 3.5: (a) Coverage of the repertoire of policies found by TAXONS in the
ground-truth (x, y) space. Highlighted in red are 3 policies for which the related final
observation oT are shown. (b) Sample policy from the repertoire generated by TAX-
ONS. The trajectories followed by the policies are highlighted in red; for the Billiard,
the trajectory of the point of the arm is also highlighted in blue. The final observation
of the trajectory, with the respective reconstruction and descriptor generated by the
AE, are also shown.
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Figure 3.6: (a) Evolution of coverage metric over the number of policies in the
repertoire. Note that the PSN and RNS curves are overlapping. (b) Final coverage
measures for the tested methods.
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especially for the Kuka environment, in which the skewed perspective requires
the AE to encode also informations about the changing size of the cube rather
than only its positions, rendering the task more complex, as the size covaries
with the position. It must be highlighted that NS has direct access to the
ground-truth (x, y) space, thus guaranteeing a very good performance.

Surprisingly, the NT baseline, in which the AE is never trained, performs
similarly to TAXONS in the Billiard environment and only slightly worse in the
other settings (Maze: p = 2.5×10−4, Ant: 1.44×10−7, Kuka: p = 1.5×10−3).
This is probably due to the intrinsic power of convolutional neural networks
in extracting relevant features in their inputs even when no training has been
done, as shown in [155], and can be an interesting direction of investigation.

The performance of the two ablated versions (TAXO-N and TAXO-S) is
similar to the one of TAXONS, as they lay between the NS upper-bound
and the PNS, RNS and RS baselines. Nonetheless, their efficiency varies be-
tween experiments. TAXO-S performs similarly to TAXONS in the Billiard
environment (p = 0.036), worse in the Maze (p = 1.53 × 10−6) and Kuka
environments (p = 1.34× 10−6) and better in the Ant one (p = 7.69× 10−8).
On the other hand, TAXO-N performs similarly to TAXONS in the Billiard,
Kuka and Maze environments, while being significantly worse in the Ant one
(p = 7.67 × 10−8). After investigation, we hypothesize that the low perfor-
mance of TAXO-N in the Ant environment is due to the specific dynamics of
the AE. In the first phase of the training, the AE learns to reconstruct the
large body of the agent while disregarding its legs. This leads to the outcome
space temporarily capturing informations about the position of the agent in
the (x, y) space, and thus allowing novelty search to better cover the ground-
truth space. In a second phase, the AE learns how to reconstruct the legs.
This leads the algorithm on exploring also different legs arrangements, rather
than fully focusing on only covering the (x, y) space. TAXO-S performs signif-
icantly better in the same environment, as the impact of the body position on
the reconstruction error is greater than the one of the legs. Thus maximizing
the surprise also leads to maximizing the coverage.

From the results, it is possible to see that while the performances of the
novelty and surprise are dependent of the dynamics of the environment, com-
bining them renders TAXONS more robust than its two ablated versions. This
allows performances almost as good as the ones of NS.

3.5 Conclusion

Studying the problem of sparse rewards, alongside the study of QD and diver-
gent algorithms led to focusing the research effort towards the development
of an algorithm that could learn and explore a search space with minimal
supervision. TAXONS can generate a repertoire of diverse policies, without
any external reward and with minimal prior knowledge about the system by
exploring the space of reachable outcomes available. It does so by taking ad-
vantage of the exploration power of NS in a low-dimensional outcome space
learned online by an AE trained directly on RGB images observations collected
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during the search. Using these observations to autonomously learn the search
space renders TAXONS easier to apply to different situations and tasks for
which is not clear what the important features are.

The approach was tested on four different simulated environments and
compared against different baselines. The results show that, by maximizing
both novelty in the learned outcome space and surprise, derived from the
AE’s reconstruction error, TAXONS finds a set of policies that covers the
ground-truth outcome space, while being robust to different environments. At
the same time, autonomously learning a BS means that the designer has no
control on which information will be embedded in the representation. This
can be a problem in more complex environments in which multiple aspects
need to be represented in order to perform proper exploration. Given its
nature, the algorithm will mainly focus on the most obvious aspects, while
ignoring the smaller, but possible important ones. Moreover, the presence of
distractors - elements not related to the ground-truth space to explore - can
lead the algorithm to learn a poor representation. These and other limitations
of similar methods will be discussed in depth in Chapter 7, together with the
proposition of strategies to deal with them.

As said, the main objective of TAXONS is to explore as much as possible,
but this is only a first step towards a more complete approach to sparse rewards
problems. Once exploration is over, and rewards have been discovered, the
algorithm should be able to take advantage of those rewards. At the same
time, to address this problem, good exploration algorithms requiring minimal
designer prior knowledge are fundamental. While TAXONS can efficiently
explore and learn a low-dimensional representation of an unknown outcome
space, it is still strongly limited by the restriction of working only on the last
observation of the trajectory. This requirements limits the application of the
algorithm only to environments whose last observation is informative enough
with respect to the task. There are many ways in which this problem can be
approached, some more naive than others. The next chapter will analyse one of
these possible approaches, the signature transform, comparing its effectiveness
to some simpler baselines.
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4.1 Introduction

Chapter 3 discussed a big limitation that QD algorithms, and NS in particular
have: the BS, that is the space in which the behavior of the policies is repre-
sented and the diversity is measured, needs to be hand-designed. To address
this problem, TAXONS was introduced. This is an algorithm that can learn,
online and in an unsupervised way, a BS representative of the outcome of each
policy, allowing to reduce the amount of prior information and the design effort
needed to solve a task. Notwithstanding the promising results of TAXONS,
the method still relies on a strong assumption: the last observation of a trajec-
tory should contain enough information to describe the behavior of a policy.
In situations in which the most informational moment of the policy behavior
happens at an unspecified time during the evaluation, the exploration process
can be less efficient, preventing the discovery of good solutions. An example
of this can be a robot trying to launch a ball against a wall, from which it can
bounce back. The final position reached by the ball is not informative of the
position in which it hit the wall. To properly explore, the method should take
into account the moment in which the ball hits the wall, but this is difficult to
know. This makes the maximization of the diversity of these positions com-
plicated. For this reason, in these situations the algorithm should be able to
push for diversity along the whole trajectory of traversed states, not only on
the last one.



Pushing for diversity over the space of trajectories requires a way to cal-
culate a distance between different trajectories. There are two strategies that
can be followed. The first one consists in calculating the distance between the
whole trajectories, either state-by-state, or through the dynamic time warp-
ing method [156]. The calculation of the distance state-by-state is not always
feasible because the trajectories can be of different lengths. At the same time
the dynamic time warping can be extremely slow when comparing distances
between thousands of trajectories, as it happens for NS based methods. The
other possible approach consists in first obtaining a compressed representation,
or encoding, of the trajectories and then calculating the distance on said com-
pressed representations. This has the advantage of reducing the dimensionality
of the space in which the distance is calculated, preventing many of the issues
related to distance metrics in high-dimensional spaces [143]. However, these
approaches add the additional complexity of calculating the compressed rep-
resentation of the trajectory. There are multiple way to do so, ranging from
a naive sub-sampling of the trajectory, to more sophisticated but also more
computationally intensive machine learning approaches like Long Short-Term
Memory (LSTM) encoders [157].

In this chapter, another method to perform the trajectory encoding will be
analyzed: the signature transform. This transform, introduced by Chen [50,
51, 52], is a mathematical object defined in the scope of rough field theory. It
allows to describe a stream of data as a single vector, the signature, obtained
through an infinite series of integrals. In practice the signature is calculated
up to a certain order of the infinite series of integrals, proving a quick and
easy way to compress a sequence of data to any desired precision. This, and
the other useful properties that the signature transform enjoys, have attracted
the attention of the machine learning community over this method with the
goal of encoding sequences of data in a fast and easy way [53, 54].

The signature transform can be used to describe the policies behaviors.
This is done by compressing the whole trajectory of states traversed by the
system during the policy evaluations into a smaller behavior descriptor vector.
The goal is to obtain more diverse solutions over the whole space of trajectories,
rather than only over the final outcome. Moreover, this approach will reduce
even more the amount of prior information needed at design time, allowing
the application of QD methods to new and more complex domains.

The chapter is structured as follows. Sec. 4.2 will present the signature
transform, while Sec. 4.3 will describe how it can be applied to NS. The testing
environment will be presented in Sec. 4.4 and the results discussed in Sec. 4.5.
The chapter will conclude with Sec. 4.6 in which the lessons learned during
this analysis will be discussed.

4.2 The signature transform

This section will describe in a formal way what the signature transform of a
sequence of data is and what its properties are.

Let’s start by noting that a sequence of data x = (x0, . . . , xT ) of length T ,
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where xi ∈ Rd, can be described by a continuous function:

f : [0, 1]→ Rd, such that f
( i
T

)
= xi ∈ Rd. (4.1)

Moreover, the function f can also be represented as the list of its components
along each dimension:

f(ti) =
{
f1(ti), . . . , fd(ti)

}
, (4.2)

with ti = i/T . Thanks to this function, the study of a sequence of data x can
be viewed as the geometrical study of the path of f(·) in the space Rd. For
example the changing temperature of a room during the day can be seen as
a path in R; the motion of an ant going back to its nest as a path in R2; the
changes within d indices of financial markets as a path in Rd; etc. [53].

These functions are called paths in the field of rough field theory. The goal
of the signature transform is to study the geometrical characteristic of these
paths. This is done by the iterated application of integrals on the function,
in order to obtain a vector encoding a collection of geometrical statistics of
f(·). This vector is called signature. The method allows to extract an accurate
summary of the path and to obtain arbitrarily good linear approximations of
continuous functions of paths [158].

The main assumption needed in order to calculate the signature of these
functions is that these paths are of bounded variation, i.e. the first derivative
of the function exists almost everywhere. More formally, a function f is of
bounded variation if its total variation is finite. The total variation is expressed
as:

||f ||1−var= sup
D

∑
ti∈D
|f(ti)− f(ti−1)|, (4.3)

where the supremum is calculated over all the finite partitions:

D = {(t0, . . . , tT )|T ≥ 1, 0 = t0 < t1 < · · · < tT−1 < tT = 1}, (4.4)

with ti = i/T .
To define the signature, let’s start by considering the simplest case of a

path for which d = 1. In this case the path would be f(ti) =
{
f1(ti)

}
, for

which its integral would be:

S(f)1
0,T =

∫
0≤t≤T

df1(t) = f1(T )− f1(0). (4.5)

This integral is what it is called the 1-fold iterated integral of the path and is
a real valued integral representing the increment, or the displacement, of this
one-dimensional path over the whole time interval [159].

The 2-fold iterated integral of the path can be obtained by reapplying the
same integral operator:

S(f)1,1
0,T =

∫
0<t2≤T

S(f)1
0,t2df

1(t2) = 1
2
(
f1(T )− f1(0)

)2
, (4.6)
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which represents the square of the increment of the path over the time interval.
The recursive application of this operator leads to the definition of the k-fold
iterated integral, which is proportional to the increment of the path to the
power of K:

(4.7)
S(f)IK0,T =

∫
0<tK≤T

· · ·
∫

0<t2≤t3

∫
0<t1≤t2

df1(t1) df1(t2) · · · df1(tK)

= 1
K!

(
f1(T )− f1(0)

)K
,

where IK = (1, 1, . . . , 1) is the set of indexes of size K.
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Figure 4.1: Geometric intuition of the 2-fold iterated integral of a 2D path as shown
by Yang et al. [159]. The path in red moves from point A to D during a time interval
of [0, T ]. The chord connecting the endpoints is shown as a dashed line. Figure (a)
and (b) show the last two elements of the 2-fold integral of the path.

In the case of a path of d = 2, the path would be f(ti) =
{
f1(ti), f2(ti)

}
.

This leads to a 1-fold iterated integral containing two elements, the same as
in Eq. 4.5 but for each single dimension:

S(f)1
0,T =

∫
0≤t≤T

df1(t) = f1(T )− f1(0), (4.8)

S(f)2
0,T =

∫
0≤t≤T

df2(t) = f2(T )− f2(0). (4.9)

At the same time, the 2-fold iterated integral will contain d2 = 4 elements,
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due to the cross-terms between the dimensions:

S(f)1,1
0,T =

∫
0<t2≤T

S(f)1
0,t2df

1(t2) = 1
2
(
f1(T )− f1(0)

)2
, (4.10)

S(f)2,2
0,T =

∫
0<t2≤T

S(f)2
0,t2df

2(t2) = 1
2
(
f2(T )− f2(0)

)2
, (4.11)

S(f)1,2
0,T =

∫
0<t2≤T

∫
0<t1≤t2

df1(t1) df2(t2), (4.12)

S(f)2,1
0,T =

∫
0<t2≤T

∫
0<t1≤t2

df2(t1) df1(t2). (4.13)

The first 2 correspond to the square of the displacement caused by the path
for each dimension, as in Eq. 4.6 for the 1 dimensional path. At the same
time, S(f)1,2

0,T and S(f)2,1
0,T , shown respectively in Fig. 4.1.(a) and Fig. 4.1.(b),

encode information about the area covered by the path.
This example can be generalized to the k-fold integral of a path in Rd.

Such an integral will have dK components that can be expressed as:

S(f)IK0,T =
∫

0<tK≤T

· · ·
∫

0<t2≤t3

∫
0<t1≤t2

df i1(t1) df i2(t2) · · · df iK (tK), (4.14)

where IK = (i1, . . . , iK) is the set of indexes of size K, with ij ∈ {1, . . . , d}.
Finally, the signature of a path f(·) can be defined. This will be the

collection of all the iterated integrals over the path and can be expressed as:

(4.15)
Sig(f)0,T =

(
1,S(f)1

0,T , . . . ,S(f)d0,T ,

S(f)1,1
0,T , . . . ,S(f)1,d

0,T ,S(f)2,d
0,T , . . . ,S(f)d,d0,T ,

. . . ,S(f)1,1,...,1
0,T , . . . ,S(f)d,d,...,d0,T , . . .

)
,

where the first element is set to 1 as a convention. Being calculated over all
possible combination of indices of finite length, the signature is a vector of
infinite size. In practice, it has to be truncated up to a certain level, or order,
K:

SigK(f)0,T =
(
1,S(f)1

0,T , . . . ,S(f)d0,T , . . .S(f)i1,i2,...,iK0,T , . . . ,S(f)d,d,...,d0,T

)
.

(4.16)
In this case, the dimensionality of SigK(f)0,T is: (dK+1 − d)(d − 1)−1. From
this two main observations can be made:

1. The size of the signature is fixed with respect to the length of the path.
This property is extremely useful in situations in which paths of different
lengths might have to be compared one against the other, as is the case
of NS;

2. The size of the signature increases exponentially with K and polynomi-
ally with d. This means that the right balance between the size of the
signature and the amount of information preserved when truncating it
needs to be found.
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4.2.1 Signature of a discrete path

As discussed, the path signature is defined for continuous paths with bounded
variation. This means that, in case of a sequence of sampled points, the path
function defined in Eq. (4.1) needs to perform interpolation between successive
points of the sequence. This operation is called embedding and it can be done
in multiple ways [54]. This work will consider two among them:

• Linear: consisting of connecting each consecutive points by a straight
line. This is one of the most used interpolation in the literature thanks
to its simplicity [160, 54, 159, 53];

• Time Path: building over the linear path, it adds another monotone
coordinate encoding the time [159, 54]. Having a monotone coordinate
allows to have an unique signature for each path. This is because the
path will contain information also about its speed rather than only its
geometry. However, this comes at the cost of having an additional coor-
dinate to the path, leading to higher dimensional signatures.

An example of the signature of order 3 for different oriented paths with
linear embedding is shown in Fig. 4.2. The distances calculated between the
signatures of these different paths are shown in Tab. 4.1. It is possible to see
how, in the signature transform space, the two straight lines Fig. 4.2.(a) and
4.2.(b) are the farthest ones. At the same time, they are both very close to the
sinusoidal in Fig. 4.2.(d), thanks to this having a trend piecewise similar to
either two of the straight lines. The other closest curves in the signature space
are the circle (Fig. 4.2.(c)) and the more complex path (Fig. 4.2.(e)). This
is likely due to the complex path having starting and finishing positions very
close one to the other. From this it is possible to observe that the signature
transform, and the distance in the corresponding space, can encode multiple
- and not immediately evident - aspects of a path.

4.3 Signed Behavior Descriptor
Extracting the behaviour descriptor from the trajectory of observations re-
quires the knowledge of the time-step at which the interesting behaviour has
happened. This can be limiting in situations in which the time-step is not
always the same or when multiple events can happen at different time-steps.

Using the whole trajectory of observations as behaviour descriptor can
help in overcoming this problem. At the same time, this requires to encode
this trajectory in a lower dimensional space to prevent the degeneration of the
distance metrics that happens in high-dimensional spaces [143]. The signature
transform provides exactly this while being fast to compute and having strong
mathematical guarantees.

This means that the signature transform can be used to extract the be-
havior descriptor bi used by NS to evaluate the novelty of a policy θi ∈ Θ.
In section 2.2.2, it was shown how a policy θi traverses a trajectory of states
τ = [s0, . . . , sT ] when evaluated. The states are observed through some sensors
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Figure 4.2: Signature of degree 3 of different oriented paths. The paths are shown
in orange. Each line of the signature represents the elements of a different order: in
red the elements of the first order, in blue of the second and in green of the third.

54



0 2.538 2.313 1.417 1.991

0 2.313 1.416 2.165

0 1.96 1.507

0 1.526

Table 4.1: Distances between the signatures of the curves shown in Fig. 4.2.

to generate a corresponding trajectory of observations τO = [o0, . . . , oT ]. NS
then uses an observer function OB : OT → B to extract the behavior descrip-
tor from the trajectory of observations. Usually the observer function only
works on some selected observations from the whole trajectory, forcing the
designer to know at which time-step the most interesting observations can be
found. Using the truncated signature transform SigK(·)0,T as observer func-
tion to encode the whole trajectory into bi can remove this limitation. This
means that Eq. (2.5) can be rewritten as:

φ(θi) = SigK(τ iO)0,T = bi, (4.17)

where τ iO is the trajectory of observations generated by the evaluation of the
policy θi.

To be able to use the signature in this way, the constraint defined at the
beginning of Sec. 4.2 has to be respected. This requires the function defined in
Eq.(4.1), representing the trajectory of observations, to be of bounded varia-
tion. In practice, this constraint is not too restraining: as long as ot ∈ Rd, the
simple linear embeddings defined in Sec. 4.2.1 will always limit f(·) according
to:

−∞ < min(τO) ≤ f(·) ≤ max(τO) <∞. (4.18)

Note that the most external inequalities are always true thanks to the closeness
of Rd with respect to addition and multiplication, meaning that neither −∞
nor ∞ are included in the set of the real numbers.

This method will be tested in the next sections, to study if a signature-
based behavior descriptor can help the exploration process of NS in discovering
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Figure 4.3: The CollectBall environment. In blue is shown the 2 wheeled robot,
while in red are the 6 balls to be collected. The collection point corresponds to the
same position of where the robot starts the episodes.

a more diverse set of solutions with respect to classical descriptors. Note that,
while the final goal is to apply the discussed ideas to TAXONS, the methods
in this Chapter will be tested on the ground-truth low-dimensional observa-
tions of the environment. This allows to better focus on the properties of the
methods themselves, without any possible interference from the dimensionality
reduction component of TAXONS.

4.4 Experiments
The signature based behavior descriptor for NS is tested in this section. The
question this study wants to answer is:

Is the signature encoding of the whole trajectory of traversed states beneficial
to the exploration performed by NS?

In light of this, the algorithm is tested in the CollectBall environment
[113], shown in Fig. 4.3. This consists of a maze in which a 2-wheeled robot
has the goal of collecting 6 red balls. The robot, in blue in the figure, is
controlled by a 2 layers NN, with each layer of size 5. The controller receives
a 10 dimensional state vector as input and outputs a 3 dimensional control
vector. The input state vector consists of the reading of the sensors with which
the robot is equipped: 3 distance sensors, 2 bumpers, 2 ball detection sensors,
2 goal detection sensors and a "collected ball" sensor. At the same time, the
control vector returned by the NN consists of the speed of the 2 wheels and a
"collect ball" signal. If the robot is close to a ball and the value of this signal
is over 0.5 the ball is collected; if the robot is carrying a ball and the value
of this signal is lower than 0.5, the ball is released. The robot can carry a
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single ball at a time. A ball is considered collected if it is released close to the
basket located at the initial position of the robot. On the contrary, if a ball is
released away from the basket, it appears in the maze at the position it was
released. Each policy is run in the environment for 2000 timesteps. The final
reward given to the agent is equal to the number of collected balls at the end
of an episode.

The following variants and baselines are compared in the experiments:

• NS: vanilla NS, whose behavior descriptor is calculated as the final (x, y)
position of the robot in the map;

• NS_multi: NS whose behavior descriptor is calculated by concate-
nating 5 vectors, sampled at regular intervals during each trajectory,
containing the (x, y) position of the robots. The descriptor has size 10;

• SIGN: NS in which the behavior descriptor is the signature of order
K = 5 of the trajectory of the robot. This baseline uses the linear
embedding: each datapoint along the trajectory consists of the (x, y)
position of the robot at the corresponding time-instant. This leads to a
descriptor of size 62;

• TIME-SIGN: NS in which the behavior descriptor is the signature of
order K = 5 of the trajectory of the robot. This baseline uses the
time path embedding: each datapoint of the trajectory is composed by
concatenating the (x, y) position of the robot and the time coordinate
t ∈ [0, 1]. This gives a descriptor of size 363.

Finally, the statistical results are computed over 15 runs for each experiment.

4.5 Results
This section discusses the results obtained during the experiments.

4.5.1 Exploration

The first thing to verify is the ability of the signature transform to drive explo-
ration for NS. To do so, this section studies how well the population can cover
the BS at any given moment while performing the trajectory. This means that
the trajectories are discretized in 100 equidistant timesteps and the coverage
is calculated at each timestep. The coverage itself is measured by calculat-
ing the percentage of occupied cells of a 50 × 50 grid discretizing the (x, y)
space in which the robot moves [43, 48]. The results for different generations
during the experiments are shown in Fig. 4.4. For the first generations all
the methods perform similarly, as can be see for generation 125 in the Figure.
With the passing of the generations a clear trend starts to emerge, with the
vanilla NS variant reaching the highest coverage at the end of the trajectories
(p = 3.93 × 10−11). This is not surprising, given that this version optimizes
for the higher diversity at the end of the trajectories themselves. The other
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Figure 4.4: Average coverage with respect to the time of the trajectory for 5 different
generations. The shaded areas represent one standard deviation.

methods optimizing for diversity along the whole trajectories reach higher cov-
erages earlier in the trajectory than NS. NS_multi can cover almost 80% of
the whole space just after only 30% of the total timesteps. NS to reaches the
same values only after more than 50% of the trajectories have been executed.
The signature based variants can also explore in a similar fashion to NS_-
multi, reaching high coverage values early on in the trajectories. This is also
expected: contrary to vanilla NS, these variants are designed to diverge along
the whole time dimension. At the same time, the signature based variants
perform worse or similarly than the simpler NS_multi. While early on in
the exploration, at generation 500, SIGN reaches higher coverage than both
NS_multi and TIME-SIGN (p = 1.81−4), by the end of the run, at generation
2500, both SIGN and TIME-SIGN perform worse or similar than NS_multi
(p = 0.389 for SIGN and p = 9.58× 10−3 for TIME-SIGN). This phenomenon
happens along the whole trajectory.

A possible explanation of this effect is the higher dimensionality of the
descriptor generated by the signature methods. Aggarwal et al. showed how
the euclidean distance, used to calculate the novelty of the policies’ behaviors
in Eq. (2.6), loses meaning in high-dimensional spaces. To test this hypothesis
experiments with variants of both SIGN and TIME-SIGN with a lower order
of the transform: K = 2 rather than K = 5 have been performed. While
this lowers the amount of information about the structure of the trajectory
included in the descriptor, it also reduces the dimension of the descriptor. The
two variants are called SIGN_K2 and TIME-SIGN_K2, with a descriptor
dimensionality of 6 and 12, respectively. The coverage results are shown in
Fig. 4.5. It is possible to see that while the TIME-SIGN variants perform in
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Figure 4.5: Average coverage with respect to the time of the trajectory for 5 different
generations. The shaded areas represent one standard deviation.

a very similar fashion, the SIGN_K2 tends to reach higher coverages towards
the end of the trajectory (p = 1.74× 10−05). This is due to the fact that the
signature of this order takes into account only the displacement caused by the
trajectory and the area covered, thus not being able to encode all the variations
in the path that can happen between different policies. A possible reason
for this is that the loss of information due to a lower order of the signature
balances out any improvements obtained by the reduction in dimensionality
of the descriptor. At the same time, the NS_multi still reaches the highest
coverage from early on in the trajectory, notwithstanding having similar final
coverage with SIGN. This shows how such a simple method can outperform
the more complex signature transform when using it in combination with NS
to drive exploration. This can be due to the signature fostering exploration
in a space not relevant to the task, thus different than the one in which the
coverage is calculated and NS_multi operates.

4.5.2 Rewards

This section studies the reward obtained by the tested variants in the envi-
ronment. Note that none of the methods used in this and in the previous
chapter have an explicit way of optimizing the reward. This means that any
obtained reward is only a by-product of the exploration process. However, an
exploration process capable of obtaining higher rewards is extremely useful
in sparse reward settings. This is because the method can easily be used in
conjunction with a reward exploitation approach to optimize the rewarding
solutions, as discussed in Chapter 5.
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In this setting, the reward corresponds to the amount of balls collected by
the robot. The idea behind this is that a diverse enough set of trajectories
should be able to collect more balls than policies diversified only with respect
to the final position of the robot. The average over 15 runs of the maximum
reward collected with respect to the policies evaluations of each variant is
shown in Fig. 4.6. It is possible to see how NS on average tends to collect less
than 1 ball, while the variants optimizing for diversity over the whole trajec-
tories reach higher rewards. The best performing one is NS_multi, proving a
more effective method than the signature based ones in performing exploration
geared towards sparse rewards systems.

4.6 Conclusion

This chapter analyzed a way to reduce the amount of prior information needed
by the TAXONS algorithm. Removing the reliance of the method - and NS
based methods in general - on a specific observation to calculate the behavior
descriptor of a policy can greatly extend the generalizability of these algo-
rithms. In order to do so, the signature transform was tested as a way to
encode information about the whole trajectory of traversed states into the be-
havior descriptors used to calculate the policies novelties. This novelty would
be calculated then not only on a single state, but with respect to the whole
trajectory. The idea has been inspired by the success of the application of
the signature transform in other domains of machine learning to encode a
stream of data into a single vector [54, 53]. Before applying the transform,
the stream of data can be embedded in multiple ways. Two of the most com-
monly used embeddings were considered: the linear and the time path. This
was compared against two other approaches of calculating the policy behavior
descriptor. The first one uses only the final observation. The other variant
concatenates multiple states sampled at regular intervals along the trajectory.
Notwithstanding its simplicity, this last variant has shown to perform better
than all the signatures based variants tested. A possible reason for this could
be the high dimensionality of the extracted features by the signature trans-
form. This was tested by running experiments with a lower order signature.
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The obtained results moved in the direction of confirming our hypothesis for
the variant with the linear encoding, but they also showed that the amount
of information discarded by the lower order tends to be too high to properly
diversify the behaviors along the whole trajectories. Finally, a test on which
of the variants could push for an exploration able to discover as much reward
as possible was conducted. This is a fundamental aspect in sparse rewards
settings. Once again the simpler method of stacking multiple observations
proved to be the best performing one. At the same time, these methods have
only been tested on a single setup. More experiments should be performed on
a bigger variety of environments in order to confirm these results.

Nonetheless, in Chapter 6 the simpler NS_multi strategy was used in order
to remove the limitation due to TAXONS working only on the last observation
of the trajectory. Another limiting aspect of the signature approach together
with TAXONS is that in order to keep the dimension of the signature vector
acceptable, the high-dimensional observations need to be encoded fist by the
AE. This would greatly increase the computational cost of the method, having
to use the encoder on all the observations of the trajectory rather than just
the few sampled ones for the NS_multi approach.

At the same time, this does not disqualify the use of the signature trans-
form with divergent search algorithms. More research should be done in this
regard, also in light of the usefulness that this method has shown in different
domains of machine learning research for the embedding of streams of data.

In the last two chapters, methods for reducing the amount of task-specific
prior information needed at design time for NS have been proposed. The
next chapter will focus on how to take advantage of the rewards discovered
during the search. This will be done by introducing a method augmenting NS
with the capability of focusing on these rewards to optimize the policies with
respect to them.
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This chapter is adapted from the following publication:

Paolo, G., Coninx, A., Doncieux, S., & Laflaquière, A. Sparse Reward
Exploration via Novelty Search and Emitters. In The Genetic and
Evolutionary Computation Conference 2021 (GECCO 2021).

5.1 Introduction

When NS was discussed in chapter 2, it was highlighted how well the algorithm
can explore and cover the search area by ignoring any potential reward and
tending towards a uniform exploration of the search space [125]. At the same
time, its strength is also its limitation: considering all the non-rewarding areas
of the search space as valuable as the rewarding ones prevents the algorithm
from finding the best possible solutions for solving the task. Augmenting NS
with the ability to shift its focus from pure exploration to reward exploitation
could help address this issue. One possible way of doing so is by using multi-
objective optimization methods like NSGA-II [115] that can focus both on the
diversity and on the reward at the same time. However, as it will be shown



in the following, merging exploration and exploitation through a Pareto front
can degrade the exploring power of the algorithm. A different approach is
taken by QD algorithms, a family of methods that build a set of both diverse
and high-quality solutions [41].

In this chapter, the SparsE Reward Exploration via Novelty and Emitters
(SERENE) method [161] is introduced. This is a QD algorithm explicitly
designed to address sparse reward problems. SERENE augments NS with
emitters [55] to perform rewards maximization while keeping its exploration
ability, thanks to a clear separation between exploration and exploitation. In-
troduced as a way to improve the efficiency of ME [43] in the CMA-ME method
[55], emitters are instances of reward-based algorithms scheduled to perform a
local optimization in the search space. In the original formulation, ME acts as
a scheduler by initializing emitters in different areas of the search space. The
emitters then perform both local exploration and exploitation of the reward,
leading to degraded performances in settings with very sparse rewards, where
not all policies can obtain a reward. Conversely, SERENE decouples explo-
ration from exploitation to better deal with these situations. The former is
performed through NS, completely ignoring the reward. Once a reward area
is found, SERENE spawns emitters focusing solely on its maximization. This
allows minimal interference between the two processes of exploration and ex-
ploitation while letting our algorithm shift its focus between the two processes
at any moment. Persisting in exploring even after some reward areas have
been found is essential, since other reward areas could be present in the search
space.

In the following, emitters and how they work will be presented in detail in
Section 5.2. SERENE itself will be introduced in Section 5.3, tested in Section
5.4, and the results discussed in Section 5.5. The Chapter will conclude with
Section 5.6, pointing at possible extensions and improvements.

5.2 Emitters

An emitter [55, 56] is an instance of an reward optimization algorithm. Its
objective is to rapidly examine a small area of the search space while optimizing
on the reward. In the work from Fontaine et al. [55] and Cully [56] the CMA-
ME algorithm combines CMA-ES-based emitters [162] with ME [43], by using
the latter as a scheduler for the emitters evaluation. It works by initializing
a population of policies θ by sampling their parameters from a distribution
N (µ,Σ) and adding them to the ME archive. The algorithm then samples
one of these policies and uses it to initialize the population of the emitter
Ei. At this point, Ei is evaluated until a termination criterion is met; e.g.
a lack of increase of the reward found. Moreover, the policies found during
the evaluation of the emitter are added to the ME archive according to ME
addition strategy. After the termination of Ei, a new emitter is initialized by
sampling another policy from the archive. This is repeated until the whole
evaluation budget is depleted.

Different types of algorithms can be used as emitters, changing how the
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search is performed and how the policies are selected. This shows the flexibil-
ity of the approach. At the same time, existing methods perform exploration
through reward-following emitters [55, 56]. This reduces performances in sit-
uations where the reward is very sparse and many of the policies do not get
any reward. Decoupling the exploitation of the reward from the exploration
allows to more efficiently deal with sparse rewards settings [100].

5.3 Method

SERENE disentangles the exploration of the behavior space B from the ex-
ploitation of the reward through a two-steps process. In the first phase, called
exploration phase, B is explored by performing NS. As per equation (2.5), the
policies θi found during exploration are assigned a behavior descriptor φ(θi).
A policy obtaining a reward means that its φ(θi) belongs to the subspace of
rewarding behaviors BRew ⊆ B. It is in this subspace that the exploitation
of the reward happens. This is done in the second phase, called exploitation
phase, in which emitters are initialized using the rewarding policies found in
BRew during exploration. During the exploitation phase the most rewarding
policies are stored to be returned as result of the algorithm. Moreover, the
particularly novel policies found by the emitters are stored together with the
policies found during the exploration process.

By launching emitters only in the neighborhoods of the reward areas,
SERENE keeps the exploitation of the reward separated from the exploration
of the search space. This results in taking the best of both worlds: the explo-
ration power of NS and the focused exploitation of reward-based algorithms.

The exploitation and exploration phases are alternated repeatedly through
a meta-scheduler. This scheduler divides a total evaluation budget Bud in
smaller chunks of size KBud and assigns them to either one of the two phases.
The whole process is illustrated in Figure 5.1 and described in Algorithm 4.

To keep track of policies generated during the different phases, SERENE
uses the following buffers and containers:

• novelty archive ANov: a repertoire of the novel policies found during the
exploration phase, and returned as first output of SERENE;

• reward archive ARew: a repertoire of rewarding policies found during the
exploitation phase, returned as second output of SERENE;

• candidates emitter buffer QCand_Em: a buffer containing the rewarding
policies φ(θi) ∈ BRew found during the exploration phase and used in the
exploitation phase to initialize emitters;

• emitter buffer QEm: a buffer containing all the initialized emitters to be
evaluated during the exploitation phase;
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Figure 5.1: SERENE consists of two exploration and exploitation processes, con-
trolled by a scheduler. The exploration process searches for novel solutions through
Novelty Search. The exploitation process uses emitters to optimize the rewards dis-
covered during exploration. The scheduler alternates between the two processes by
splitting the total evaluation budget into chunks of size K to assign to either of them.

Algorithm 4: SERENE
INPUT: evaluation budget Bud, budget chunk size KBud, population
size M , emitter population size ME , offspring per policy m, mutation
parameter σ, number of policies added to novelty archive NQ;

RESULT: Novelty archive ANov, rewarding archive ARew;
ANov = ∅; ARew = ∅;
QEm = ∅; QCand_Nov = ∅; QCand_Em = ∅;
Γ0 ←M policies from Θ;
Split Bud in chunks of size KBud;
while Bud not depleted do

if Γ0 then
Evaluate θi, ∀θi ∈ Γ0;
Calculate bi = φ(θi) ∈ B, ∀θi ∈ Γ0;

end
ExplorationPhase (KBud, m, σ, ANov, QCand_Em, Γg, NQ);
if not QCand_Em == ∅ or not QEm == ∅ then

ExploitationPhase (KBud, QCand_Em, λ, m, QEm, ANov, ARew,
ME);

end
end
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Figure 5.2: Overview of the sets used by SERENE to keep track of the explored areas
and the initialized emitters. Highlighted in red are the two archives returned as final
result of the algorithm execution.

• novelty candidates buffer QCand_Nov: a buffer containing the most novel
policies found by the emitter. Each emitter has its own instance of
this buffer and the policies in it are sampled for addition to the novelty
archive ANov once the emitter is terminated.

A high-level overview of how these sets interact during the two phases is given
in Figure 5.2, and a more detailed description is proposed in the two following
subsections.
SERENE uses multiple populations during each process of the search. They
are listed here for clarity:

• Γg: population of size M at generation g. Used by NS during the explo-
ration phase;

• Γmg : offspring population of size m ×M at generation g. Used by NS
during the exploration phase, it is generated by spawning m agents from
each policy θi ∈ Γg;

• Pγ : emitter population of size ME at the emitter generation γ. Used by
the emitter during the exploitation of the reward;

• Pmγ : emitter offspring population of size m×ME at the emitter genera-
tion γ. Used by the emitter during the exploitation of the reward, it is
generated by spawning m agents from each policy θ̃i ∈ Pγ .

5.3.1 Exploration phase

SERENE starts by generating an initial population Γ0 of sizeM . This is done
by sampling the parameters of the population’s policies θj from a normal
distribution N (0, I). The population is used to explore the behavior space
B through NS. At each generation g, a mutation operator generates m new
policies θij (offspring) from each of the policies θj ∈ Γg:

∀j, i ∈ {1, . . . ,M} × {1, . . . ,m}, θij = θj + ε, with ε ∼ N (0, σI). (5.1)
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The resulting offspring population Γmg , of size m ×M , is then evaluated to
obtain the behavior descriptors φ(θij) = bij ∈ B, used to calculate the novelty
of Γg and Γmg according to Eq. (5.2):

η(θi) = 1
|J |

∑
j∈J

dist(bi, bj) = 1
|J |

∑
j∈J

dist(φ(θi), φ(θj)), (5.2)

The novelty is then used to generate the next generation population Γg+1 by
taking the most novel policies from the current population and the offsprings.
At the same time, NQ policies among the offsprings are uniformly sampled
to be added to the novelty archive ANov. Finally, all the policies for which
ri > 0 are stored in the candidates emitters buffer QCand_Em. The process
just described is detailed in Algorithm 5.

The exploration phase is executed for the KBud evaluation steps in the
given budget chunk, where each evaluation step corresponds to one policy
evaluation. Once the chunk is depleted, the scheduler assigns the next chunk
to the exploitation phase only if QCand_Em 6= ∅. On the contrary, if the buffer
is empty, i.e. no new reward has been found during exploration, another
exploration phase is performed. This means that in the worst case scenario
where no reward can be discovered, i.e. BRew = ∅, SERENE performs exactly
like NS.

Algorithm 5: SERENE Exploration Phase
INPUT: budget chunk KBud, number of offspring per parent m,
mutation parameter σ, novelty archive ANov, candidate emitters
buffer QCand_Em, population Γg, number of policies NQ;

while KBud not depleted do
Generate offspring Γmg from population Γg;
Evaluate θi, ∀θi ∈ Γmg ;
Calculate bi = φ(θi) ∈ B, ∀θi ∈ Γmg ;
Calculate η(θi) = 1

|J |
∑
j∈J dist(bi, bj), ∀θi ∈ Γmg

⋃
Γg;

ANov ← NQ samples from Γmg ;
if φ(θi) ∈ BRew then
QCand_Em ← θi

end
Generate Γg+1 from most novel θi ∈ Γmg

⋃
Γg;

end

5.3.2 Exploitation phase

The exploitation phase consists of two sub-steps: the bootstrapping step, in
which the policies in the candidates emitter buffer QCand_Em are used to ini-
tialize and bootstrap emitters, and the emitter step, in which the initialized
emitters are evaluated.
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Bootstrap step

During this step, emitters are initialized from the rewarding policies θi in the
candidates emitter buffer QCand_Em, and their potential for reward improve-
ment evaluated. This insures that only emitters capable of improving the
rewards are considered for full evaluation, reducing wasted evaluation bud-
get. The policies used to initialize the emitters are selected according to their
novelty with respect to the reward archive ARew. This enables SERENE to
focus on less explored areas of the rewarding behavior space BRew. The whole
bootstrapping phase lasts KBud/3 evaluations.

As discussed in Section 5.2, an emitter is an instance of a reward-based
algorithm. Contrary to the previous work of Fontaine et al. [55] and Cully [56],
this work does not use estimation-of-distribution algorithms like CMA-ES [162]
but rather an elitist reward-based EA. The reason behind this choice is that, as
the name suggests, estimation-of-distribution algorithms work by estimating
a probability distribution, usually a gaussian, from where the policies for the
next generation are selected. Having to estimate a distribution requires the
estimation of a covariance matrix Σ whose reliability strongly depends on the
ratio between the dimension of the parameter space Θ and the size of the
population. If the size of population used to estimate the matrix is smaller
than the dimension of the parameter space, the estimation of Σ is not reliable.
CMA-ES circumvents the issue by using information from previous generations
to calculate Σ through the evolution path. While stabilizing Σ, having to wait
for multiple generations leads to a less efficient use of the evaluation budget.
Hence, the emitters used in this work are based on an elitist evolutionary
algorithm not requiring the estimation of any distribution. Conversely, the
population is composed with the most rewarding policies from the previous
generation’s population and offspring, while the offspring are generated by
mutating the parents according to equation 5.1.

An emitter Ei based on this algorithm consists of:

• a population P containing ME policies θ̃ ∈ Θ;

• a population of offspring Pm of size m×ME ;

• a generation counter γ;

• a tracker for the maximum reward found so far Rγ ;

• an improvement measure I(·);

• a novelty measure ηi equal to the novelty of the policy used to initialize
the emitter;

• a novelty candidate buffer QCand_Nov.

The emitter Ei is initialized from a policy θi in the candidates emitter buffer
by sampling its initial population P0 from the distribution N (θi, σiI). To keep
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the emitter’s exploration local and prevent overlapping with the search space
of possible nearby emitters, σi is initialized as:

σi = minj (dist(θi, θj))
3 , ∀θj ∈ Γmg ∪ Γg. (5.3)

This shapes N (θi, σiI) such that all other θj are at least 3 standard deviation
away from its center. Once Ei has been initialized, its potential is evaluated
by running it for λ generations and calculating its emitter improvement I(Ei).
This improvement is defined as the difference between the average rewards
obtained during the most recent and the initial generations of the emitter:

I(Ei) = 1
λME

 T∑
γ=T−λ/2

ME∑
j=0

r(γ,j) −
λ/2∑
γ=γ0

ME∑
j=0

r(γ,j)

 . (5.4)

Here T is the last evaluated generation, r(γ,j) is the reward of policy θ̃j ∈
Pγ , and γ0 is the generation at which the emitter is at the beginning of the
exploitation phase; it is always γ0 = 0 for an emitter in the bootstrap step. If
I(Ei) ≤ 0, the chances for the emitter to find better solutions than the initial
ones are low, so it is not worth allotting more budget to its evaluation. On the
contrary, I(Ei) > 0 means that the emitter has high potential for improvement.
Thus all the initialized emitters for which I(Ei) > 0 are added to the emitter
buffer QEm for further evaluation.

Emitter step

The initialized emitters in the emitter buffer QEm are run during this step. It
starts by calculating the pareto front between the improvement I(Ei) and the
novelty η(Ei) of each of the emitters Ei in the emitter buffer. The emitter to
run is then randomly sampled from the front of the non-dominated emitters.
Using both the novelty and the fitness to select which emitter to run allows
SERENE to focus both on the less explored and most promising areas of BRew.

The policies θ̃j generated by an emitter can be stored either for the reward
they achieve or for their novelty. At every generation γ all the policies θ̃j in the
current population with a reward r(θ̃j) > Rγ−1 are added to the reward archive
ARew. Additionally, the policies θ̃j with a novelty higher than the emitter
novelty ηi are stored into the emitter’s novelty candidates buffer QCand_Nov.

The emitter Ei is run until either the given budget chunk is depleted or
a termination condition is met. In the first case, SERENE recalculates the
improvement I(Ei) from the beginning of the emitter phase and assigns the
next budget chunk to the exploration phase. On the contrary, if a termination
condition is met, Ei is discarded and another emitter to evaluate is sampled
from the Pareto front. There can be multiple termination conditions depend-
ing on the algorithm used as emitter. A CMA-ES based emitter can use all
the termination criteria listed by Hansen in Appendix B.3 in its tutorial on
CMA-ES [162]. The one used in this work is also inspired from Hansen’s work
[162], namely the stagnation criterion, which stops the emitter when there is
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Algorithm 6: SERENE Exploitation Phase
INPUT: budget chunk KBud, candidate emitters buffer QCand_Em,
number of bootstrap generations λ, emitter population size ME ,
number of offspring per policy m, emitters buffer QEm, rewarding
archive ARew, novelty archive ANov;

/* Bootstrap step */
while KBud/3 not depleted do

Select most novel policy θi from QCand_Em;
Calculate σi;
Initialize: Ei, QiCand_Nov = ∅, and P0;
for γ ∈ {0, . . . , λ} do

if P0 then
Evaluate θ̃j , ∀θ̃j ∈ P0;

end
Generate offspring population Pmγ from Pγ ;
Evaluate θ̃j , ∀θ̃j ∈ Pmγ ;
Generate Pγ+1 from best θ̃j ∈ Pmγ

⋃
Pγ ;

end
Calculate I(Ei);
if I(Ei) > 0 then
QEm ← Ei;

end
end
/* Emitters step */
Calculate pareto fronts in QEm;
while 2/3KBud not depleted do

Sample Ei from non-dominated emitters in QEm;
while not terminate(Ei) do

Generate offspring population Pmγ from Pγ ;
Evaluate θ̃j , ∀θ̃j ∈ Pmγ ;
ARew ← θ̃j , ∀θ̃j ∈ Pmγ | r(θ̃j) > Rγ ;
QiCand_Nov ← θ̃j , ∀θ̃j ∈ Pmg | η(θ̃j) > ηi;
Generate Pγ+1 from best θ̃j ∈ Pmγ

⋃
Pγ ;

Update I(Ei) and Rγ ;
if terminate(Ei) then
ANov ← NQ samples from QiCand_Nov;
Discard emitter Ei;

end
end

end
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no more improvement on the reward. To do so the history of the rewards is
tracked over the last 120+20∗n/ME emitter’s generations, where n is the size
of the parameter space Θ andME is the emitter’s population size. The emitter
is terminated if either the maximum or the median of the last 20 rewards is
not better than the maximum or the median of the first 20 rewards. Before
starting the new emitter evaluation, NQ policies from the terminated emitter’s
novelty candidates buffer QCand_Nov are uniformly sampled to be added to the
novelty archive ANov. In addition to saving particularly novel solutions as part
of the final result, this prevents the exploration phase from re-exploring areas
covered by emitters during the exploitation phase.

The whole exploitation phase is detailed in Algorithm 6.

5.4 Experiments
This section testes if SERENE can efficiently deal with sparse reward settings,
finding all disjoint reward areas, and optimizing the reward in each of them.
For the evaluation, the following four sparse rewards environments - illustrated
in Fig. 5.3 - are considered:

Curling Redundant arm Robotic ant mazeHard Maze

Figure 5.3: Testing environments: Curling, HardMaze, Redundant arm, Robotic ant
maze.

Curling

A two degrees of freedom (DoF) robotic arm [163] controlled by a 3 layers NN
with each layer of size 5. The arm has to push the blue ball into one of the
two goal areas shown in orange and green. A reward is provided only if the
ball stops in one of the two areas. Moreover, the closer the ball is to the center
of the reward area, the higher the reward is. The controller takes as input a
6-dimensional vector containing the ball pose (x, y), and the two joints angles
and velocities. The output of the controller is the speed of each joint at the
next timestep. The size of the parameter space Θ is 94, and each policy is run
in the environment for 500 timesteps.

Hardmaze

Inspired by the Hardmaze environment introduced by Lehman and Stanley
[34], it consists of a two-wheeled robot, in blue, whose task is to navigate
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the maze and reach either one of the green and orange areas. The reward
is only given if the robot stops in one of the two areas, and is higher the
closer the robot is to its center. The robot is controlled by a 2-layers NN
with each layer of size 5. The controller takes as input the reading of the 5
distance sensors mounted on the robot; shown in red in Figure 5.3. Its output
is the 2-dimensional vector containing the speed of the 2 wheels at the next
timestep. The size of the parameter space Θ is 63, and each policy is run in
the environment for 2000 timesteps.

Redundant arm

A 20-DoF robotic arm in which the arm’s end-effector has to reach one of the
3 colored goal areas. The reward is maximal in the center of the areas, and
the arm is controlled by a NN with 2 layers of size 5. This environment is
based on the one introduced by Loviken and Hemion [164]. The controller
takes as input the 20-dimensional vector of each joint’s position, and outputs
the 20-dimensional joint’s torque vector. The size of the parameter space Θ is
228, and each policy is run in the environment for 100 timesteps.

Robotic ant maze

Based on the setup introduced by Cideron et al. [135], it consists of a 4-legged
robotic ant in a maze. There are two goal areas and the task is for the ant to
navigate the maze and reach the center of one of them. The robot is controlled
by a 3-layers NN, with each layer of size 10. The input of the controller is the
29-dimensional observation returned by the environment at each step, while
its output is the 8-dimensional joint’s torque control. The size of the parame-
ter space Θ is 574, and each policy is run in the environment for 3000 timesteps.

For all environments, the reward is given only if inside the reward area, and
as a continual value in the [0, 1] range. The reward varies with the distance to
the center of the area and is highest directly at the center. It can be expressed
as:

r(θ) =
{

0, if dr > radius
radius−dr
radius , if dr ≤ radius

where dr is the distance from the center and radius is the radius of the reward
area.

Structuring the reward in this way allows to have a reward gradient once
inside the reward area, providing the possibility to improve on it and to high-
light the advantages provided by the emitters. Were the reward to be binary,
there would be no need to use emitters because there is no improvement to be
done on the reward once discovered, thus vanilla NS would be enough.
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Baselines

SERENE is compared against 5 different baselines:

• NS[34]: vanilla NS, that performs pure exploration and does not attempt
to improve on the reward;

• MOO-NR[115]: a multi-objective evolutionary algorithm optimizing
both the novelty and the reward;

• CMA-ME[55]: the original algorithm introducing emitters that com-
bines ME with emitters over a 50×50 grid covering the behavior space of
all environments. Among the various emitters proposed with CMA-ME
[55], the “optimizing” emitter was selected;

• ME[43]: vanilla MAP-Elites that uses a 50×50 grid to cover the behavior
space of every environment;

• RND: pure random search in which no selection happens, and every
policy is sampled from a normal distribution N (0, I).

For each experiment the total evaluation budget is Bud = 500000, with
the chunk size set to KBud = 1000. The population size is M = 100, and
each policy generates m = 2 offspring. The mutation parameter is set to
σ = 0.5, while the number of policies uniformly sampled to be added to
the novelty archive is NQ = 5. SERENE uses an emitter population size
of ME = 6, with a bootstrap phase for each emitter of λ = 6 generations. The
implementation of CMA-ME uses the same parameters used in Fontaine et al.
[55]: 15 emitters, each one with a population size of 37. In every experiment,
the policies parameters are clipped in the [−5, 5] range. Finally, the statistical
results are computed over 15 runs for each experiment.

5.5 Results
This section discusses the results obtained during the experiments.

5.5.1 Budgeting

Balancing the exploration of the search space and the exploitation of the re-
ward is an aspect of paramount importance for reward-based algorithms. Even
more so in sparse reward environments. This balance can be studied by an-
alyzing the amount of evaluation budget dedicated to either one of the two
aspects. The exploration budget consists of all the evaluated policies that did
not get any reward. On the contrary, the exploitation budget is obtained by
counting all the evaluated policies that collected some reward from one of the
reward areas.

As Figure 5.4 shows, SERENE has a more balanced budget split between
exploration (in blue) and exploitation (other colors) compared to the other
baselines. In situations in which exploration is harder, a bigger part of the
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Figure 5.4: Average budget percentage between the exploration of the search space
(in blue) and the exploitation of each reward areas (other colors).

budget is assigned to exploration rather than exploitation of the reward. This
is the case for the robotic ant maze environment. Additionally, due to the way
emitters are selected, the algorithm can shift its exploitation focus among the
different reward areas. Figure 5.4 shows that most of SERENE’s exploitation
budget is assigned to the green reward area in the Curling, Hard maze and
Robotic ant maze environments. As it can be seen in Figure 5.3, this area is
more difficult to discover and to reach with respect to the orange area. This
makes the exploitation of the orange reward area faster, having both the nov-
elty and the improvement go to zero rapidly. On the contrary, the novelty of
the harder to reach green area remains higher for longer, making SERENE
more likely to select emitters focused on it. The effect can also be seen in Fig-
ure 5.6, where the reward for area 1 quickly reaches higher values compared
to the one of reward area 2. At the same time, in the Redundant arm environ-
ment where the 3 reward areas are equally easy to discover and to reach, this
effect is less present and the exploitation budget is more evenly split between
them. The ability to switch its focus is similar to intrinsic motivation based
methods [165, 166] and allows SERENE to reach high rewards in all reward
areas. Other baselines exhibit a less balanced distribution of the evaluation
budget, as they do not explicitly separate exploration from exploitation.
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5.5.2 Exploration
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Figure 5.5: Average coverage with respect to the given evaluation budget. The shaded
areas represent one standard deviation.

Performing good exploration in situations of sparse rewards is fundamental
in order to discover all the possible rewarding areas of the search space. In
the experiments, the exploration capacity of each of the tested algorithms was
measured through the coverage metric [43, 48]. It is evaluated by discretizing
the search space in a 50 × 50 grid and calculating the percentage of cells
occupied by the policies found during the search. This metric does not include
any measure of the performance of the solutions in the cells.

The plots in Figure 5.5 show that SERENE can perform exploration with
an efficiency comparable to NS, notwithstanding the lower budget assigned to
exploring the search space. At the same time, Figure 5.5 shows that the final
coverage obtained by ME is similar to the one of NS and SERENE.

On the contrary, although based on ME, CMA-ME results are more vari-
able across all environments, and exhibit lower exploration compared to ME.
This effect is likely due to the reliance on emitters for exploration, leading to
more local exploration in the parameter space Θ. It can prove useful in envi-
ronments like Curling or Redundant arm, where a small change in parameters
leads to big behavioral changes, increasing the probability of finding a reward.
On the contrary, environments like Hard Maze or Robotic ant maze in which
this does not happen can prove more challenging to explore.

At the same time, the exploration performance of MOO-NR is poor. In
the Redundant arm environment, exploration is even lower than the random
search baseline. This result is likely due to the multi-objective approach of
optimizing both novelty and reward through Pareto fronts. With time, finding
more novel parts of the environment becomes increasingly more difficult. This

76



is due to the rewarding solutions dominating all policies outside of the reward
areas that have no reward. The non-rewarding solutions - that can foster
exploration towards unexplored areas of the search space - will be then less
likely to be selected. This biases the algorithm towards the exploitation of the
already discovered rewards rather than the exploration of the search space.

5.5.3 Exploitation

Fig. 5.6 shows the average maximum reward achieved by the algorithms in the
reward areas of all environments. Emitters solely focusing on exploiting the
reward allow SERENE to reach almost the maximum reward on the easiest
to reach reward areas in less than 105 evaluations. High rewards are also
achieved on the harder to reach areas, even if the required time is higher.
On the contrary, ME improves on the reward at a much slower pace. This is
likely due to the random selection of policies from the archive to generate new
policies. In a sparse reward environment in fact, the probability of selecting a
rewarding policy is proportional to the ratio between the rewarding and non-
rewarding areas. The sparser the reward is, i.e. the smaller the reward area is,
the lower the probability of selecting a rewarding policy from the archive is,
and the slower the exploitation gets. A similar trend is exhibited by CMA-ME:
even if able to reach high rewards on the discovered reward areas, it is slow in
its optimization. At the same time, even NS reached high rewards on almost all
environments, but without any explicit reward optimization it did not exploit
the reward areas to the maximum. The multi-objective approach MOO-NR
can always find at least one of the multiple reward areas, but then tends to
extensively focus on it, instead of also exploring other areas. For this reason
only the easiest reward area is exploited to high values in all environments,
while the harder reward area is seldom exploited.

5.5.4 Final archive distribution

Fig. 5.7 shows the distribution of the behaviors of the policies in the final
archive. Each point represents a different policy. In blue are the policies that
do not get any reward, thus considered exploratory, while in orange are reward-
ing policies, considered exploitative. For SERENE the exploratory policies are
the ones in the novelty archive AN , while the exploitative policies are the ones
in the rewarding archive AR.

From the figure, it is possible to see that SERENE covers the search space
well, in a fashion similar to NS, with the exception of the reward areas, where
SERENE’s emitters allow to have a denser exploration (and thus exploitation
of the reward). A similar dense exploration of the reward areas is performed
by MOO-NR but at the cost of exploration. This is likely due to the fact that
once a reward is discovered, the reward scales more than the novelty, making
the algorithm focus more on the reward improvement than the exploration. In
the Curling and Robotic ant maze environments this effect is so strong that it
prevents the discovery of all the reward areas. At the same time, and contrary
to NS based methods, both ME and CMA-ME can explore the search space in
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areas represent one standard deviation.
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Figure 5.7: Distribution of the behavior descriptors of the archived policies. On
each column are shown the results for an environment, while on each row is shown
the distribution for each experiment. The archive plotted are from the runs achieving
highest coverage. In blue are the policies with no reward, in orange the policies with
a reward. For SERENE in blue are the policies in the novelty archive and in orange
the policies in the reward archive.
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a much more uniform fashion, thanks to the discretization of the search space
performed by the algorithm. While this discretization is enough to push the
exploration to cover the whole space for ME, this is not the case for CMA-ME,
as it can be seen especially in the hardest to explore environment: the Robotic
ant maze. This is the result of relying on emitters for both reward exploitation
and exploration. This strategy forces emitters to both diversify the behavior
of the discovered policies, trying to cover as much search space as possible,
and optimize the policies performances, focusing on a very narrow area of the
whole search space.

5.6 Conclusion
In this chapter SERENE was introduced, a method that efficiently deals with
sparse reward environments by augmenting NS with emitters. Contrary to
similar methods using emitters, SERENE keeps exploration and exploitation
of the reward as two distinct processes. Exploration is carried out by tak-
ing advantage of NS to discover all the reachable reward areas. These areas
are then exploited by using local instances of population-based optimization
algorithms called emitters. By using a meta-scheduler, SERENE can auto-
matically assign the evaluation budget to either exploration or exploitation.
This is advantageous also in situations in which no reward is present: in the
absence of reward to exploit, SERENE performs exactly like NS.

SERENE has been tested on four different sparse reward environments,
reaching high performances on all of them. At the same time, many kind
of emitters can be used to address different kind of problems [55, 56]. The
implementation of various types of reward-based algorithms as emitters and
their combination can prove an exciting line of work to extend the current
method to new domains.

Notwithstanding these encouraging results, the method still suffers from
the same limitations as other QD methods, and first and foremost from the
prior hand-design of the behavior space B. The next chapter will present
a method that can learn a behavior descriptor useful for exploration while
exploiting any discovered reward through emitters. This is done by building
on the ideas introduced through TAXONS and SERENE.
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6.1 Introduction

Previous chapters addressed two of the major shortcomings of NS when deal-
ing with sparse reward systems. Chapter 3 introduced TAXONS to reduce
the amount of prior information needed to be specified at design time. This is
done by learning the behavior descriptor during the search in an autonomous
way through an AE. Then, in chapter 5, the other limitation of NS, even more
relevant in sparse rewards settings, was addressed: the inability to optimize
any reward discovered during the search. When discovering a reward, in fact,
the algorithm should be able to shift its focus on it in order to find the best
possible solutions. SERENE does that through the use of emitters, by per-
forming local search around any possible reward discovered. The two methods
address separate but complementary limitations of NS. In this chapter, the
two algorithms are brought together by introducing STAX. This algorithm
uses TAXONS to perform exploration while learning a low-dimensional rep-
resentation of the search space; the discovery of a reward triggers the instan-
tiation of an emitter around the rewarding policy in order to locally explore



and exploit the reward. STAX performs the exploitation of the reward in the
same way SERENE does: through emitters and through the alternating of the
exploration and exploitation steps thanks to a meta-scheduler.

The advantages of this method are twofold: it removes the need of hand-
designing a BS by directly learning a low-representation of the search space
from high-dimensional observations of the policies behaviors. At the same
time, it also removes the reward-related limitation of NS-based approaches by
swiftly exploiting any reward discovered through emitters. All of this allows
STAX to efficiently deal with sparse reward environments with minimum prior
information required about the task at design time.

6.2 Method

As stated in the previous section, STAX deals with the limitations of NS for
sparse rewards settings by separating the search process in two alternating
sub-processes: one performing exploration of the search space and another
performing exploitation of any discovered reward. This allows STAX to find
different high reward policies with minimal prior information about the task.
This is done through a meta-scheduler whose task is to split the total evalua-
tion budget Bud in small chunks of size KBud and assigning them to either one
of the two sub-processes, in the same way the SERENE algorithm discussed
in Chapter 5 does.

While SERENE and STAX perform exploitation in the same way, that is
through emitters spawned around rewarding solutions, as shown in Alg. 6,
the main difference between the two algorithms lies in the way exploration is
performed. Rather than relying on NS to explore an hand-designed BS, as
SERENE does, STAX takes advantage of TAXONS to learn a BS represen-
tation while performing the search in it. This reduces the amount of prior
information needed to solve the task by removing the requirement of hand-
designing the BS.

As explained in Chapter 3, TAXONS learns a BS through the use of an AE
that is trained online on the data generated by the evaluation of the policies
θi ∈ Θ. The encoder part of the AE can then be used as observation function
and its feature space F as behavior space B, also called outcome space. The
way the different spaces are connected through the AE can be defined as in
Eq. (3.1), reported here in Eq. (6.1):

E : O → F ≡ B
D : F → O

(6.1)

where O is the observation space, E is the encoder of the AE and the D is the
decoder. There are two main differences between the exploration performed
by TAXONS and STAX: the policy selection and the AE’s training regime.
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6.2.1 Policy Selection

As discussed in Chapter 3, TAXONS drives the search for novel policies
through two different metrics: novelty and surprise. The first one is cal-
culated as the average distance between the policy θi and the |J | closest other
policies in the learned outcome space, as define in Eq. (3.5). The surprise
is calculated as the AE’s reconstruction error over the observations generated
by the policy θi, as defined in Eq. (3.6). A higher surprise on an outcome
oT implies that the AE has not seen that outcome very often, thus the area
of the observation space O close to oT has not yet been properly explored.
This means that by selecting policies whose outcome has higher surprise the
algorithm can push towards more exploration.

STAX also uses these two metrics, but instead of using only the last obser-
vation oT to calculate them, multiple observations sampled along the trajec-
tory are used. As discussed in Chapter 4, this allows to remove the assumption
of the last observation encoding enough information to describe the whole be-
havior of a policy θi. This requires some modifications to the way the behavior
descriptor is calculated with respect to TAXONS. STAX builds this descrip-
tor by concatenating the AE’s low-dimensional representations of the sampled
observations. Eq. (3.4) can then be rewritten as:

f(θi) = [. . . , E(otk), . . . , E(otK )], (6.2)

where otk is the observation generated by the policy θi at time-step tk.
At the same time, the surprise is calculated as the sum of the reconstruction
errors over each observation. Meaning that Eq. (3.6) can be rewritten as:

s(θi) =
∑
k∈K
||o(θi)

tk
−D(E(o(θi)

tk
))||2, (6.3)

where K is the list of indexes of the selected time-steps along the trajectory.
Other than the way novelty and surprise are calculated, STAX differs from

TAXONS in the way these metrics are exploited. At each generation g, TAX-
ONS randomly chooses only one between novelty and surprise to select the best
policies. On the contrary, during STAX’s exploration step, the two metrics
are combined through the NSGA-II multi-objective approach [115] detailed in
Sec. 2.2.1. This means that the algorithm can optimize at the same time both
the novelty and the surprise. The whole exploration process is shown in Alg.
7.

6.2.2 Training of the autoencoder

In STAX the exploration is driven thanks to the AE. This means that the way
the AE is trained is fundamental. In order to meaningfully look for diversity
in the learned feature space F used as BS, the AE has to be trained on the
data collected during the search for policies itself. This is done in a fashion
similar to what described in Chapter 3 for the TAXONS algorithm, with a
few differences. TAXONS built the dataset DS used to train the AE with
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Algorithm 7: STAX Exploration Phase
INPUT: budget chunk KBud, number of offspring per parent m,
mutation parameter σ, novelty archive ANov, candidate emitters
buffer QCand_Em, population Γg, number of policies NQ, autoencoder
AE;

while KBud not depleted do
Generate offspring Γmg from population Γg;
Evaluate θi, ∀θi ∈ Γmg ;
Calculate bi = φ(θi) = [. . . , E(otk), . . . , E(otK )] ∀θi ∈ Γmg ;
Calculate η(θi) = 1

|J |
∑
j∈J dist(bi, bj), ∀θi ∈ Γmg ;

Calculate s(θi) =
∑
k∈K ||o

(θi)
tk
−D(E(o(θi)

tk
))||2 ∀θi ∈ Γmg ;

ANov ← NQ samples from Γmg ;
if φ(θi) ∈ BRew then
QCand_Em ← θi

end
/* NSGA-II based policy selection */
Calculate non dominated fronts Fj , ∀θi ∈ Γmg

⋃
Γg;

Sort fronts according to non domination;
Generate Γg+1 from most non dominated solutions θi ∈ Fj ;
if If last front FJ is partially selected then

Calculate crowding distance ∀θi ∈ FJ ;
Complete filling up Γg+1 with less crowded solution θi ∈ FJ ;

end
end

the last observations oT generated by the policies of the last I generations.
On the contrary, STAX takes advantage of the alternating two-step process
inherited from SERENE. During this process, the algorithm generates two
collections of policies: the reward archive ARew and the novelty archive ANov.
The dataset DS is then formed with the observations generated by the policies
in both archives, plus the observations generated by the last population Γg
and the last offspring population Γmg . The data of the archives provides a
curriculum, preventing the search to cycle back to already explored areas.
This also prevents any possible destabilization of the training process due to
the ever changing data distribution used in TAXONS. Another destabilizing
factor can be the training of the AE on data collected thanks to the AE itself.
This problem should be attenuated by training the model also on the data
from policies in ARew. These policies are in fact selected not according to
the novelty calculated thanks to the AE, but only for their reward, that is
a factor independent from the feature space. At the same time, adding the
observations from the most recent population to the training dataset helps the
AE to better represent the frontier of the explored space, towards which the
search is to be pushed. Moreover, for each policy, the observations used to
form the training dataset are all the observations used to generate the behavior
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descriptor defined in Eq. (6.2). This is different from what done for TAXONS,
where only the last observation oT was used.

Once the dataset DS has been collected, it is split into two sub-datasets:
training dataset DSTrain and a validation dataset DSVal. For each training
episode, the AE is trained on the DSTrain. At the end of each training epoch
on DSTrain, the model validation error is calculated on DVal. The training
episode is stopped if the error increases for 3 consecutive epochs. Contrary
to TAXONS, here the training episodes do not happen at regular intervals.
Instead, the AE is trained less and less frequently the longer the search is
performed; this is the same strategy employed in the AURORA method [142].
Training according to this strategy allows to adapt the frequency of the train-
ing to the maturity of the learned BS. In fact, after the first training episodes,
the learned representation is mature enough for the AE to start focusing on
its refinement. This means that there is no reason anymore to train the AE
too often, allowing to save time and computational resources. Moreover, by
training less frequently, the possible overfitting of the AE on the data present
in the archives is limited. This shifting training regime is obtained by per-
forming the training process every TI exploration steps. At the beginning of
the search, STAX sets TI = 1. Its value is then increased by 1 every time a
training episode is performed.

Finally, at the end of each training episode, the behavior descriptor of all
the policies present in the archives and in the populations is updated with
the new descriptors generated by the retrained AE. This allows to keep the
behavior descriptors and the novelty measurements of the policies consistent
and meaningful. The complete STAX algorithm is shown in Alg. 8.

6.2.3 Reward exploitation in a learned space

As it was the case for SERENE, STAX exploits any discovered reward through
emitters. The power of this kind of approach has already been discussed in
Chapter 5, where thanks to simple elitist reward-based emitters, SERENE
could easily exploit any reward area discovered during the search. The ability
to disjointly optimize multiple reward areas in an efficient way is even more
fundamental for an approach like STAX. In hand-designed BS, like the ones
SERENE was designed to deal with, the engineer has total control over the BS
itself. This can help in reducing the disjointedness of the reward areas. This
is not the case when the behavior descriptor is generated by stacking multiple
learned representations extracted from high-dimensional observations, as done
by STAX. In this kind of settings there is no guarantee that the new BS will
have the same structure of the reward areas as the ground-truth hand-designed
BS. It can happen that this space will have multiple reward areas, even if only
one is present in the ground-truth BS. This can be explained by considering
the Hard Maze environment with just one reward area shown in Fig. 6.1. In
this example, the environment has a 2D ground-truth BS consisting of the
(x, y) position of the robot at the end of a trajectory. On the contrary, the
BS obtained by stacking the AE representations extracted from multiple RGB
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Algorithm 8: STAX
INPUT: evaluation budget Bud, budget chunk size KBud,
population size M , emitter population size ME , offspring per policy
m, mutation parameter σ, number of policies added to novelty
archive Q, AE training interval TI, randomly initialized AE;

RESULT: Novelty archive ANov, rewarding archive ARew, trained
AE;
ANov = ∅;
ARew = ∅;
QEm = ∅;
QCand_Nov = ∅;
QCand_Em = ∅;
D = 0;
Initialized training counter TIC = 0;
Sample population Γ0;
Split Bud in chunks of size KBud;
while Bud not depleted do

if Γ0 then
Evaluate θi, ∀θi ∈ Γ0;
Calculate bi = φ(θi) ∈ B, ∀θi ∈ Γ0;

end
Exploration Phase (KBud, m, σ, ANov, QCand_Em, Γg, Q, AE);
TIC = TIC + 1;
if TIC == TI then

DS = Extract dataset(ANov, ARew, Γg, Γmg );
Train Autoencoder (AE, DS);
Update descriptors (AE, Γg, Γmg , ANov, ARew, QEm,
QCand_Nov, QCand_Em);
TI = TI + 1;
TIC = 0;

end
if QCand_Em! = ∅ or QEm! = ∅ then

Exploitation Phase (KBud, QCand_Em, λ, m, QEm, ANov, ARew,
ME);

end
end

high-dimensional observations has higher dimensionality. This can lead to
multiple areas of this higher dimensional space representing the ground-truth
reward area. The effect is even more likely in the first phases of the search,
when the AE is not yet properly trained and its feature space not completely
mature. For these reasons, using an emitter-based approach as STAX capable
of focusing on multiple reward areas can give a strong advantage in situations
where the BS representation is so complex. This approach can be even more
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ENCODING
+

STACKING

Figure 6.1: The behavior space generated by stacking the learned representations
from multiple observations generated during the search can contain multiple reward
areas. Even if the original ground-truth space contained only one.

useful in settings in which the reward is difficult to express in the ground-
truth BS but easy to observe from the high-dimensional observations of the
trajectory. Being able to see the rewarding situations from these observations
means that it will be likely for them to be represented in the learned BS. This
will create zones in this space in which the reward can be achieved, allowing
the algorithm to use emitters to exploit it. The whole exploitation phase is
shown in Alg. 9.

6.3 Experiments

This section studies how STAX can discover highly rewarding policies while ex-
ploring an outcome space learned on the fly. All of this with minimal previous
information about the task at hand and the environment. The performances
of STAX will be compared against various baselines to study which ones are
the most important aspects of the method.

In order to perform this analysis STAX is evaluated on 3 of the sparse
rewards environments presented in Chapter 5:

Curling: it consists of a 2 DoF arm pushing a ball over a table [161]. The
arm is controller by a 3 layers NN with each layer of size 5. The input of
the controller is a 6-dimensional array containing the (x, y) ball pose and the
two joints angles and velocities. The controller outputs a 2-dimensional array
containing the speeds of the two joints at the next time-step. Each policy
is run in the environment for 500 timesteps. The reward is given only if the
ball is in one of the two rewarding areas and is higher the closer it is to the
center of the area. The ground truth behavior descriptor used by methods
that do not learn the BS representation is the (x, y) position of the ball. The
environment is shown in Fig. 6.2. Fig. 6.2.(b) shows the 64× 64 RGB image
the AE sees during the algorithm execution.

HardMaze: it consists of a 2-wheeled robot whose goal is to navigate a
maze with the aid of 5 distance sensors [34]. The robot, in blue in Fig. 6.3, is
controlled by a 2-layers NN with each layer of size 5. The controller receives
as inputs the reading of the 5 distance sensors, shown in red in Fig. 6.3.(a),
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Algorithm 9: STAX Exploitation Phase
INPUT: budget chunk KBud, candidate emitters buffer QCand_Em,
number of bootstrap generations λ, emitter population size ME ,
number of offspring per policy m, emitters buffer QEm, rewarding
archive ARew, novelty archive ANov;

/* Bootstrap step */
while KBud/3 not depleted do

Select most novel policy θi from QCand_Em;
Calculate σi;
Initialize: Ei, QiCand_Nov = ∅, and P0;
for γ ∈ {0, . . . , λ} do

if P0 then
Evaluate θ̃j , ∀θ̃j ∈ P0;

end
Generate offspring population Pmγ from Pγ ;
Evaluate θ̃j , ∀θ̃j ∈ Pmγ ;
Generate Pγ+1 from best θ̃j ∈ Pmγ

⋃
Pγ ;

end
Calculate I(Ei);
if I(Ei) > 0 then
QEm ← Ei;

end
end
/* Emitters step */
Calculate pareto fronts in QEm;
while 2/3KBud not depleted do

Sample Ei from non-dominated emitters in QEm;
while not terminate(Ei) do

Generate offspring population Pmγ from Pγ ;
Evaluate θ̃j , ∀θ̃j ∈ Pmγ ;
ARew ← θ̃j , ∀θ̃j ∈ Pmγ | r(θ̃j) > Rγ ;
QiCand_Nov ← θ̃j , ∀θ̃j ∈ Pmg | η(θ̃j) > ηi;
Generate Pγ+1 from best θ̃j ∈ Pmγ

⋃
Pγ ;

Update I(Ei) and Rγ ;
if terminate(Ei) then
ANov ← NQ samples from QiCand_Nov;
Discard emitter Ei;

end
end

end
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(a) (b)

Figure 6.2: Curling environment. (a) Real environment with reward areas. (b) RGB
observation of the environment as seen by the AE.

and outputs the speed of the wheels for the next timestep. The agent receives
a reward if the robot reaches one of the 2 reward areas, with the reward being
higher the closer to the center the robot stops. Each policy is run in the
environment for 2000 timesteps. The ground truth behavior descriptor used
by methods that do not learn the BS representation is the (x, y) position of the
robot. The whole environment is shown in Fig. 6.3.(a), while in Fig. 6.3.(b)
is shown the 64× 64 RGB observation fed to the AE.

(a) (b)

Figure 6.3: HardMaze environment. (a) Real environment with reward areas. (b)
RGB observation of the environment as seen by the AE.

Redundant Arm: it consists of a 20-DoF arm moving on a 2 dimensional
plane [164]. The arm is controlled by a NN with 2 layers, each one of size
5. The input of the controller is the 20-dimensional vector of each joints’
positions, while the output consists in the 20-dimensional joints’ torque vector.
The policies are run for 100 timestep each, or until the arm collides either with
the wall or itself. The ground truth behavior descriptor used by methods that
do not learn the BS representation is the (x, y) position of the end effector.
The reward is given if the end effector reaches one of the three highlighted
areas, with the reward being higher the closer the effector is to the center of
the reward area. The environment is shown in Fig. 6.4.(a). Fig. 6.4.(b) shows
the 64× 64 RGB image that the AE uses to build the behavior descriptors.
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(a) (b)

Figure 6.4: Redundant Arm environment. (a) Real environment with the 3 reward
areas. (b) RGB observation of the environment as seen by the AE.

In all of these environments, STAX builds the behavior descriptors by
stacking the low-dimensional representations extracted by the AE from multi-
ple high-dimensional observations. To this end, 5 samples collected at regular
intervals along the trajectories are used during the experiments.

Baselines

STAX is compared against the following baselines:

• NS [34]: vanilla NS, that performs pure exploration and does not at-
tempt to improve on the reward;

• ME [43]: vanilla MAP-Elites that uses a 50 × 50 grid to cover the
behavior space of every environment;

• MOO-NR [115]: the multi-objective evolutionary algorithm introduced
in Sec. 2.2.1. It optimizes both the novelty and the reward of the policies;

• TAXONS [48]: it performs pure exploration by learning the behavior
descriptor through an AE trained during the search process;

• SERENE [161]: it performs exploration through NS, exploiting any
discovered reward through emitters.

For each experiment the given evaluation budget is Bud = 500000, with
a chunk size of KBud = 100. The population used has a size of M = 100
and each policy generates m = 2 offsprings. This is done by using a mutation
parameter of σ = 0.5. At each generation, the number of policies sampled to
be added to the novelty archive is NQ = 5. The emitters have a population
size of ME = 6 with a bootstrap phase of λ = 6. For every experiment the
policies parameters are bounded in the [−5, 5] range. All approaches using an
AE to represent the behavior descriptor use the same structure for it, shown
in Fig. 6.5. The AE consists of an encoder E(·) with 4 convolutional layers of
sizes [32, 64, 32, 16], followed by a linear layer projecting the 256-dimensional
vector returned by the last convolutional layer into the 10-dimensional feature
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space. Each convolutional operation has a kernel of size 4, with a stride of
2 and a padding of 1. Every layer is followed by a SeLU activation function
[148], allowing the self-normalization of the NN. On the contrary, the decoder
D(·) starts with a linear layer projecting the 10-dimensional feature vector into
a 256-dimensional vector. Then it is followed by 4 convolutional layers of sizes
[32, 64, 32, 3], each one using a kernel of size 4, a stride of 2 and a padding
of 1. Every layer uses a SeLU activation function, with the exception of the
last convolutional one using a ReLU, in order to force the non-negativity of
the output value. The AE is trained with the Adam optimizer [149] with an
learning rate of 0.001. Finally,the statistical results are computed over 15 runs
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Figure 6.5: AE structure. The input and output of the network are represented in
green; in red are the convolutional layers, while in blue are the fully connected layers.

for each experiment.

6.4 Results
In this section, the results obtained during the experiments are discussed.

6.4.1 Exploration

Performing good exploration in situations of sparse rewards is fundamental but
is not an easy task, even more so with a minimal amount of prior information,
as STAX does. This section studies how well STAX can explore. This is done
by measuring the coverage metric obtained in the ground truth BS that are
defined in Sec. 6.3 for each one of the tested environments. As done in previous
chapters, the coverage metric is calculated by dividing said ground truth space
into a 50× 50 grid and calculating the percentage of cells occupied during the
search. A cell is considered occupied if a policy reaches it at the end of its
evaluation. Note that, while the coverage is calculated in the ground-truth
space, STAX has no access to this space at search time. The algorithm has
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Figure 6.6: Average coverage with respect to the given evaluation budget reached
by STAX against the different baselines. The shaded areas represent one standard
deviation.

to learn a representation from a collection of high-dimensional observations
in order to perform the exploration. This means that the method can also
explore in areas of the learned space that are not considered by the coverage
metric in the ground-truth space.

Fig. 6.6 shows the coverage reached by our method and all the tested base-
lines. It can be seen that STAX can perform exploration on a level comparable
with NS on all the environments, except on the Redundant Arm, in which the
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coverage is lower. All of this while having minimal information about the
environment and the task. At the same time, the methods using the hand-
designed ground-truth BS to drive the search, that is ME and SERENE, reach
high levels of coverage too. This is expected given that both method perform
the search in the same space in which the coverage metric is computed. This
is not the case for MOO-NR, which struggles in all environments, likely be-
cause of the interference of the multi-objective optimization between reward
and diversity maximization.

TAXONS also obtains high coverage, with the notable exception of the
Curling environment. This is in contrast with the results obtained in Chapter
3, where the coverage of TAXONS in the Billiard environment was comparable
to the one of NS. The culprit of this loss of performance is likely the presence
of the 2-Dof arm in the image fed to the AE, as shown in Fig. 6.2. The
arm can act as a distractor and was not present in the experiments done in
Chapter 3. At the same time, the presence of the arm is not an hindrance
to the performances of STAX. This is likely be due to both the more efficient
selection of new policies according to the pareto based approach, performed
by STAX, and the training of the AE on the observations from policies in
the reward archive. This last element allows STAX to observe many more
situations in which the ball is in different positions.

6.4.2 Exploitation

Fig. 6.7 shows the maximum reward achieved by the algorithms in all the
reward areas. Using emitters to exploit the reward allows STAX to reach
almost the maximum reward in very few evaluations. These performances are
very similar to the ones obtained by SERENE, thanks to the fact that the
reward exploitation performed by the emitters does not rely on any behavior
descriptor. Among the other baselines performing reward improvement, the
best performing one is ME, capable of reaching high values on all reward
areas, but with much slower pace than STAX. This is not the case for the
multi-objective approach, which suffers from the same problems highlighted in
Chapter 5, maximizing only the easiest to reach reward area. On the contrary,
while NS and TAXONS can perform good exploration, they cannot reach high
reward levels very quickly, with TAXONS being consistently worse in this
regard. This is even more noticeable on the redundant arm environment,
where even if TAXONS can reach similar coverage levels than STAX, the
absence of any reward improving mechanism leads to very low performances
on all reward areas.

6.4.3 Final archives distribution

Fig. 6.8 shows the final distribution of the behaviors representations for the
policies in the final archives. Each point represents a different policy. In blue
are shown the policies present in the novelty archive ANov, while in orange are
the policies in the reward archive ARew. For the baselines not using the double
archives structure, the blue points represent the policies that did not receive
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Figure 6.7: Average maximum reward reached in all the reward areas by STAX
against the different baselines. The shaded areas represent one standard deviation.

any reward, thus considered exploratory, while the orange points represent the
rewarding policies.

The coverage of the reward areas for STAX and SERENE is similar, both
approaches using emitters to exploit the rewards. At the same time, STAX
tends to cover the search space less densely than SERENE and NS, due to
not knowing the ground-truth BS at search time. The coverage of the space
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for STAX more closely resembles the one obtained by TAXONS, the other
method learning the BS representation at search time, with the exception of
the reward areas, better covered by STAX. Similar coverage of the reward
areas is obtained by MOO-NR, but as said in Chapter 5, this comes at the
cost of exploration of the rest of the search space. ME also obtains a uniform
distribution over the whole space, thanks to its discretization.

6.4.4 Exploration ablation studies

This section studies what are the contributing factors to the exploration results
obtained by STAX. The study focuses on two aspects of the algorithm: the
multi-objective approach for policy selection and the multiple observations
used to generate the behavior descriptor of a policy. Four ablated variants of
STAX are considered:

• STAX_multi: it is the vanilla version of STAX. It uses both the multi-
objective policy selection between novelty and surprise and the 5 obser-
vations sampled along the policy trajectory to generate the behavior
descriptor;

• STAX_single: this variant still uses the multi-objective policy selec-
tion strategy, but the behavior descriptor is calculated only from the last
observation;

• STAX-ALT_multi: this variant uses the same strategy used by TAX-
ONS to select between novelty and surprise, sampling either one of the
two at each generation. The behavior descriptor is generated by using 5
observations sampled at regular intervals along the trajectory;

• STAX-ALT_single: as the previous variant, here the TAXONS policy
selection strategy is used. Moreover, the behavior descriptor is generated
by only the last observation of the trajectory.

Both the coverage metric, calculated as in previous sections, and the maximum
reward reached by each variant over each reward areas are analyzed. It can
seem counterintuitive to analyze the maximum reward obtained by algorithms
separating exploration from exploitation when performing an ablation study
on the factors fostering exploration. The importance of this analysis lies in the
fact that STAX and its variants select emitters also according to the novelty
of the original policy. This means that the way the novelty is calculated has
an influence - albeit minimal - on the reward exploitation. Moreover, being
in a setting of sparse rewards, the way exploration is performed has a direct
influence on the speed each reward area is discovered and optimized.

The results on the average coverage reached by the algorithms are shown in
Fig. 6.9. From it, it is possible to see that the variants using multiple observa-
tions of the trajectory tend to perform consistently better on all environments.
This is also the case for the Redundant arm environment, in which while the
final coverage of the algorithms is equivalent, the two variants using multiple
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Figure 6.8: Distribution of the behavior descriptors of the archived policies. On
each column are shown the results for an environment, while on each row is shown
the distribution for each experiment. The archive plotted are from the runs achieving
highest coverage. In blue are the policies with no reward, in orange the policies with
a reward. For STAX and SERENE in blue are the policies in the novelty archive and
in orange the policies in the reward archive.
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observations tend to reach higher levels quicker. A possible explanation for
this is due to the AEs of these variants being trained on 5 times more data
than the ones of the variants using a single observation.
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Figure 6.9: Average coverage with respect to the given evaluation budget reached by
STAX against the ablated versions of the algorithm. The shaded areas represent one
standard deviation.

The improved performance provided by using multiple observations can be
seen also when analyzing the maximum reward reached in the environments, as
shown in Fig. 6.10. In each of the reward areas of all environments, STAX_-

98



multi reaches the highest performances in the quickest fashion. In general the
methods using only the last observation to extract a description of the behavior
of a policy performs the worst. At the same time, the multi-objective policy
selection method, used by both STAX_multi and STAX_single, has a weaker
but non negligible effect on both exploration and the exploitation. It can be
seen in fact that the version using both multiple observations and the multi-
objective policy selection strategy performs consistently better than all the
other variants.
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Figure 6.10: Average maximum reward reached in all the reward areas by STAX
against the ablated versions of the algorithm. The shaded areas represent one standard
deviation.
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6.4.5 Autoencoder training regime

This section analyzes how the way the BS is learned through the AE influences
the search. In this regard the study focuses on two aspects. The first one
concerns how important it is to learn the representation versus just using a
random one. The second aspect is the importance of continuously training
the AE during the whole search process. This training strategy produces a
curriculum effect over the borders of the explored space due to the training
on the last generation of the population and offsprings. The curriculum effect
is also given by training the AE over the archives. However, during the first
iterations of the search, when the archives are still small, the AE will mainly
be trained on the data coming from the last population and offsprings. This
means that at the beginning of the search the biggest contribution to the
"memory" of already explored areas for the AE comes from the continuous
training of the AE.

To analyze these two aspects,STAX is compared against 3 variants:

• STAX-NT: in which the search is driven through an AE whose weights
are randomly sampled at the beginning of the search and not modified
anymore;

• STAX-NT_reset: in which the search is driven through an AE whose
weights are randomly sampled every TI exploration steps. This means
that every time the vanilla version of STAX would train the AE, this
version randomly samples new weights for the AE;

• STAX_reset: in which the weights of the AE are randomly resampled
before each training episode. This effectively removes any memory from
previous iterations from the AE.

Thanks to the first two variants, it is possible to analyse if a random but
constant representation is better than a continuously changing random repre-
sentation to drive the search. The last variant allows to study the importance
of the curriculum effect given by the continuous training of the AE. Note that
the only change among all these version of STAX is the AE training regime.
The behavior descriptor is still generated by stacking the representations ex-
tracted from 5 frames sampled along the trajectory, as done in Sec. 6.4.1.
The coverage results for the 3 tested environments are shown in Fig. 6.11.
Not surprisingly, the results show that training the AE rather than using a
randomly generated one really pushes exploration. This means that the ran-
dom representations are not enough to discover all the areas of the ground
truth BS, even if said representations change during the search, as is the case
for the STAX-NT_reset variant. At the same time, the results show how the
continuous training of the AE does not have a big effect on the coverage in
any of the environments. This means that the archive can provide enough of
a curriculum when learning a representation of the BS. However, STAX has
a much smaller execution wall time compared to STAX_reset, not having to
retrain the AE from scratch every time.
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Figure 6.11: Average coverage with respect to the given evaluation budget reached
by STAX against the other versions of the algorithm. The shaded areas represent one
standard deviation.

Fig. 6.12 shows the final distribution of the archived policies behavior de-
scriptors. The results show how the variants in which the BS representation
is not learned really struggle to explore a big part of the space. This effect
is extreme in the Curling environment in which, in order to obtain good ex-
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Figure 6.12: Distribution of the behavior descriptors of the archived policies. On
each column are shown the results for an environment, while on each row is shown
the distribution for each experiment. The archive plotted are from the runs achieving
highest coverage. In blue are the policies in the novelty archive and in orange the
policies in the reward archive.

102



ploration it is not enough to randomly move the arm, but it is necessary to
properly hit the ball. In the HardMaze and the Redundant Arm environments
the non trained versions can explore the easier to reach areas of the space, but
not farther.

These experiments clearly show that each environment has different dy-
namics when it comes to exploration. This strengthens our assumption that
hand-designing a BS in order to properly explore can be difficult and require
adaptations to each single situation. For this reason, it is important to de-
sign algorithms like STAX that can learn said BS online while starting with
minimal prior information. These algorithms should adapt to all environment
dynamics by taking advantage as much as possible of the data generated dur-
ing the search.

6.4.6 Learned behavior space

This section studies how well the trained AE can represent the BS and how
close these learned representations are to the ground truth one. Given that
the results are comparable among all the environments, the section will focus
mainly on the harder to explore Redundant Arm environment. Fig. 6.13
shows how well STAX’s learned AE can reconstruct the observations collected
during the evaluation of the policies. The first row shows the 64 × 64 ×
3 final observation of the trajectories of a set of policies sampled form the
final archives. In the second row are shown the reconstructions produced by
the trained AE. While from this reconstruction it is possible to understand
the position of the arm, the image is not perfect. Nonetheless, this level of
reconstruction accuracy seems to be enough to push for good exploration in
the environment, as seen in Sec. 6.4.1.
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Figure 6.13: Reconstruction of the AE trained during the search performed by STAX.
The first row shows the original 64 × 64 × 3 images. The second row shows the
reconstructions of the images produced by the AE.

From this, the question on how close the learned BS representation is to
the ground truth one arises naturally. This has been studied by sampling
6 policies form the archives at 6 different positions in the ground truth BS.
Then, the distance between the learned behavior descriptors of the sampled
policies and the ones of the other policies in the archives is calculated. The
results can be seen in Fig. 6.14. Each row shows the results with respect to
one of the 6 sampled policies, whose ground truth descriptor is highlighted in

103



red in the plot in the first column.
The first column contains the policies’ ground-truth descriptors plotted by

color coding them according to their distance in the learned BS. Closer points
in this space are represented in darker colors, farther ones in lighter colors.
The second column represents the distances in the learned BS with respect to
the distances in the ground-truth space, while on the third column it is shown
the Pearson correlation coefficient [167] between these distances.

From the figure it is possible to see that closer points in the learned BS
are closer in the ground-truth space, and the farther this points are in the GT
space, the farther they become in the learned space. This is also shown by
analyzing the correlation between the distances in the two spaces. The cor-
relation coefficient shows that there is moderate to high correlation between
these distances, confirming that closer points in the ground-truth space tend
to be closer in the learned space and vice-versa. This means that the AE
has learned a meaningful representation that can be used to push for explo-
ration by calculating distances in the learned space, proving the efficacy of
this approach.
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Figure 6.14: Representation of the proximity between the learned BS and ground truth one. The first column represents the
points in the ground truth BS color coded according to the distance in the learned BS. The red circle is the sampled descriptor
for which the distance from the other descriptors is calculated. The second column represent the distances in the learned
space with respect to the ground truth BS. Finally, on the third column is shown the correlation coefficient calculated between
said distances in the two spaces.
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6.5 Conclusion
This chapter introduced STAX, a method that reduces the amount of prior
information about a task to minimal levels. It does so by combining the
representation learning ability of TAXONS when dealing with unknown BS
and the capacity to focus on interesting areas of the search space of SERENE
through emitters. In addition to what TAXONS does when learning the BS,
STAX uses multiple observations sampled along the trajectory generated by
the policies to extract their behavior descriptor. This allows to overcome the
limitation of dealing with environments where the final observation needs to be
descriptive enough to distinguish between the policies. Moreover, by using a
multi-objective approach to combine the two metrics of novelty and surprise,
STAX can perform better exploration compared to TAXONS. As discussed
in Sec. 6.2.3, performing exploitation through emitters that can deal with
multiple disjoint reward areas when learning a BS representation can prove
extremely useful. This is due to the fact that there is no guarantee that the
learned BS will represent all the rewards in a single connected area.

STAX has been tested on three different sparse rewards environments,
reaching high performances in all of them, both from the point of view of ex-
ploration and exploitation of the reward. These results are comparable to the
ones obtained by SERENE notwithstanding STAX being provided much less
prior information about the task to solve. Moreover, thanks to the representa-
tion learning capability provided by TAXONS, STAX is capable of overcoming
the main limitation of SERENE discussed in Sec. 5.6.

To properly study how the aspects of policy selection and BS learning of
STAX influence the exploration process, and the discovery and exploitation
of rewards, multiple ablation experiments have been performed. The results
show that the combination of using multiple observations collected during
the trajectory and the multi-objective policy selection strategy are important
in obtaining good coverage of the ground-truth search space. Moreover, the
continuous training of the AE during the whole search is shown to provide an
useful curriculum effect, in addition to the one provided by training on the
data from the archives. Finally, the Chapter shows how the learned BS has a
similar structure to the ground truth BS, allowing the algorithm to perform
good exploration in both.

Notwithstanding the multiple shortcomings of the original NS algorithm
addressed by STAX, there are still many aspects of this method that can be
further studied and improved. As for SERENE, STAX uses a simple scheduler
to alternate between the exploration and the exploitation processes. Applying
more complex and adaptive approaches to perform the switch between the
two processes can be an interesting line of work in improving the method even
more. Another stimulating direction of research is the one initiated by Cully
in [56], where multiple kind of emitters are combined through a multi-armed
bandit approach.
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Discussion
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This manuscript introduced methods to augment the capacity of NS, and
QD algorithms in general, when dealing with the problem of sparse rewards.
The main approach considered is to focus on exploration while reducing the
amount of prior information needed by the algorithm. The contributions can
be grouped in two main categories:

• Autonomously learning the behavior space while performing the search;

• Giving the methods the ability to focus on the most interesting areas of
the search space without sacrificing global exploration.

This chapter discusses these contributions in light of the introduced methods.
Their limitations are also analysed, with possible solutions and extensions,
and the research directions they open.

7.1 Learning the behavior space
The biggest contribution towards autonomously learning the search space is
the one provided by TAXONS, discussed in Chapter 3. By learning the space
in which the novelty of the policies is evaluated, this method greatly reduces
the amount of engineering effort needed at design time. At the same time, it
extends the range of domains in which NS and QD algorithms can be applied.
For many problems it is not easy to properly hand-design a BS that can foster
good exploration. For example, while trying to discover policies capable of
changing the position of an object, this position needs to be tracked. This
usually implies having multiple cameras capable of triangulating the location
of said object, or a dedicated software. Learning the behavior space through
high-dimensional RGB images removes this need, at the cost of not being able
to control the representation of the BS anymore. Sec. 3.4.3 showed how well



TAXONS can perform exploration by observing the environment through said
RGB images.

Most of the prior information provided to TAXONS comes from the selec-
tion of the final observation of the trajectory to generate the behavior descrip-
tor. This requires the final state of the whole system to contain information
about the whole behavior of the policy. A study in order to address this
limitation was conducted in Chapter 4. The focus of the study was the sig-
nature transform [54], a mathematical operator capable of encoding a whole
stream of data into a single vector. This could have been combined with
TAXONS through a two step process. First, the AE would represent each
high-dimensional RGB image generated during the trajectory in its learned
feature space, generating a trajectory of encoded representations. Then the
signature could be used on this trajectory to encode it even more, in a single,
fixed length vector. Before continuing on this path, the signature was tested
as a way to encode a trajectory of the simple ground-truth representations
generated during the policy evaluation. The results reported in Sec. 4.5 show
that even if signatures can foster good coverage along the whole trajectory of
states, simply sampling few observations from the trajectory allows to obtain
similarly good results. The probable reason is the exponential increase in di-
mensionality of the signature with respect to its order and to the size of the
datapoints. It has been shown that in high-dimensional spaces, distance met-
rics lose most of its relevance [143]. This can hinder the exploration power of
NS based algorithms that rely on distances in the BS to push for diversity. For
this reason, when STAX was introduced in Chapter 6, the method relied on a
subsampling and stacking of multiple observations along the trajectory to gen-
erate the BS. Even if relatively simple, this approach proved effective enough
in greatly reducing the amount of prior information with minimal overhead.
Sec. 6.4 shows that thanks to this approach, STAX can autonomously learn
a behavior descriptor from the whole trajectory, fostering good exploration in
the unknown ground-truth BS.

However, autonomously learning a representation of the BS does not come
without costs. The training of the AE adds significant overhead in both exe-
cution time and computation power required to execute the algorithm. Using
an AE, and even more so one based on Convolutional Neural Network (CNN),
requires the presence of a dedicated GPU to speed up training and inference,
requirement not usually necessary for QD algorithms with an hand-crafted
BS. Moreover, after every training episode of the AE, the descriptors of the
policies in all archives and current populations need to be updated with the
features extracted by the newly trained AE. This makes the methods scale
badly with the number of generations, given the continuously increasing num-
ber of policies in the archives that need to be updated. The problem is much
more important for TAXONS than for STAX: the former trains the AE at
regular intervals while the latter performs the training episodes less frequently
with the passing of generations.

At the same time, these are not the biggest shortcomings. As said, by
autonomously learning the BS the designer loses control on what features will
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be present in the descriptors. The AE will try to learn a representation of
everything present in the RGB observations. This includes distractors.

7.1.1 Distractors

Stone et al. define distractors as “variations in the input that are irrelevant
for the task” [153]. They can appear in multiple forms. It is possible to have
distractors controlled by the algorithm but not directly related to the task, or
distractors whose presence or actions are independent from the learning algo-
rithm. An example of the first kind of distractors is the arm in the Curling
environment used in Chapter 6 to test STAX. While directly controlled by
the policies, the position of the arm at any given moment is not important
with respect to the task of having the ball in different locations on the table.
At the same time, being represented in the RGB observations, it can greatly
influence the novelty of the corresponding behavior descriptor extracted from
these observations. In the case of the Curling experiments, said distractor
did not prove to be a limitation for STAX, as it can be seen from the results
reported in Chapter 6. However, this is more likely due to the simplicity of
the environment rather than the power of the algorithm itself. Nonetheless,
learning to represent this kind of distractors can be beneficial to the general-
ization capabilities of the algorithm. The final archive, selected according to
diversity in a space in which the distractor is encoded, can then be used to
address tasks for which what before was a distractor now is fundamental.

The second kind of distractors, the ones on which the algorithm has no
control, can be more difficult to deal with. These can be of different types,
going from an object randomly moving in the environment to the background
changing color. These aspects of the environment can be problematic for any
algorithm using intrinsic rewards to foster exploration. This is due to the great
source of randomness provided by these elements, rendering already visited
states novel enough for the algorithm to keep revisiting them. The problem
has been formalized as a thought experiment and given the name of Noisy TV
problem [87]. The experiment considers an agent in an environment trying
to maximize the novelty of its observed states. The environment contains
a TV in which random images are continuously displayed. This TV would
be able to attract the focus of the agent forever, thanks to the continuous
novelty provided by the unpredictability of these random images. In these
situations, the agent would need an external signal in order to understand what
is interesting and what is not. This is especially true when the representation
is learned in an unsupervised fashion as done for TAXONS and STAX. The
importance of the problem of distractors and the increased attention to it are
highlighted by the amount of recent publications proposing methods aiming
at dealing with distractors [98, 87, 168, 169, 170, 171, 172]. Moreover, Stone
et al.[153] extended the classical DeepMind control suite [173] with visual
distractors in order to benchmark existing algorithms against this kind of
problem.

While the methods introduced in this manuscript cannot deal with them,
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studying a way to address distractors in the framework of QD algorithms can
be an exciting line of future work. This could also lead to a much wider range
of application of this family of algorithms.

7.1.2 Disentangled representations

An interesting approach in dealing with distractors is to learn a set of dis-
entangled representations of the BS [174, 175]. Disentangled representation
learning allows to separate, or disentangle, each independent factor of varia-
tion in the input vector as a small set of variables in the learned feature space.
In other terms, it allows to separate the factor of variations in the inputs on
different axis in the feature space. Being able to do so would allow the designer
to easily select on which aspects of the learned BS the algorithm should focus,
thus also being able to steer the search in the desired direction.

There are many ways in which this problem can be tackled, all falling under
the umbrella of state representation learning. This field is rapidly growing
and attracting the interest of many researchers [137]. At the same time, there
are many aspects to consider. It was shown that through pure unsupervised
learning it is impossible to obtain a completely disentangled representation
of the factors of variation [176]. This means that some other factors need
to be taken in account while trying to learn this type of representations. In
this regard, an interesting approach is HOLMES [177], in which the authors
learn a hierarchy of representations to foster exploration. While the approach
is designed for morphogenetic systems, it should be possible to apply it to
settings similar to the ones addressed in this manuscript. A related problem
is that the autonomous learning of a single representation space, in which
exploration is performed, can be limiting on more complex problems, where
multiple aspects may need to be explored. The collection of policies can then
be biased toward a single one of these aspects. MC-AURORA [178] addresses
this problem by generating multiple collections. For each of these collections,
the policies are selected according to a different learned representation. This
helps in having a more diverse final collection of policies, covering many of the
aspects of a same problem. Generating multiple archives thanks to multiple
learned representations can be an interesting direction of research also for
methods like TAXONS and STAX.

7.2 Focusing on the interesting parts of the search
space

NS’s limitation of not focusing on any interesting part of the search space
was addressed in this manuscript in Chapters 5 and 6. The main contribu-
tion is the one introduced by SERENE, which can exploit any possible reward
discovered during the search by using emitters. This idea has then been ex-
tended with STAX, a method in which the exploration is driven not by NS
but by TAXONS, while still exploiting the reward through emitters. This way
of exploiting the reward areas has proven to be effective in quickly obtaining
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high rewards on all the disjoint reward areas, as shown in Sec. 5.5 and in
Sec. 6.4. An important aspect of these two methods, greatly contributing to
such results is the separation of the exploration and exploitation steps in two
alternating processes. The switch between the two is performed thanks to a
scheduler assigning computation budget to either one of them. The scheduler
used in this manuscript is fairly simple: if any reward is discovered, it assigns
the budget to the two processes in an alternating fashion, otherwise it com-
pletely focuses on exploration. Sec. 5.5.1 analyzed how this simple strategy
is effective in balancing the budget between exploration and exploitation of
the different reward areas. Nonetheless, there is still room for improvement.
Once all the discovered rewarding areas have been densely explored and op-
timized upon, it would be best to focus more on the exploration in order to
discover more reward areas. At the same time, after much of the search space
has been explored, there is no need anymore to spend half the budget on
exploration, but rather focusing on improving on the rewards could prove to
be more beneficial. For this reason, having a scheduling strategy capable of
adapting itself to the dynamics of the search process could help in optimizing
the efficiency of the search even more. This issue is what is usually referred as
exploration-exploitation trade-off [13]. A possible way to optimize the sched-
uler strategy in these situations could be to use a MAB approach [63], capable
of selecting the best option among the two at each given moment. At the
same time, to apply a MAB algorithm there is the need to define a metric
to optimize between exploration and exploitation. MABs can in fact be de-
scribed as stateless RL algorithms. This means that they learn a policy by
optimizing a reward function. In order to define a MAB reward function for an
emitter based approach like SERENE or STAX, there is the need for a way to
measure the exploration progress and the reward exploitation in comparable
ways. Even if this looks like an easy to address issue, it is not the case due to
the fundamentally different nature of the two aspects.

Another possible direction of development for SERENE based algorithms,
regards the type of emitters used. In this manuscript only a single type of
elitist-based algorithm has been used as emitter, but this needs not to be
the case. Different kind of emitters were already introduced in Fontaine’s
work [55], even if a single type was used at the time. Cully improved on
this by using multiple kind of emitters concurrently, selecting the best one at
each given time through a MAB [56]. Moreover, emitters do not have to be
necessarily based on EAs. On the contrary, any reward based algorithm can
be used as an emitter, RL ones included. Following this path of research could
help in improving the efficiency of emitter based algorithms and allow their
application to more complex problems.

7.3 Noisy environments

Another limitation of NS based algorithms, and more in general all QD ones,
is the inability to deal with noisy environments. This is due to the way the
behavior representation of each policy is compared against all the others. In
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order to have a meaningful comparison, the environment in which the policies
act needs to be deterministic, having as only reason for the difference among
behaviors the policy itself. The requirement for deterministic environments
greatly hinders the range of problems to which this kind of algorithms can be
applied. Many real world environments are in fact noisy by nature. For this
reason, being able to deal with noisy environments is an important aspect to
take into account, even more in comparison with the RL literature, for which
stochastic environments are common. Yet, while some work has been done in
dealing with noisy fitness functions for standard EAs [179, 180], not so much
effort has been done with respect to QD algorithms. The most straightfor-
ward approach to the problem is to perform multiple evaluations of the same
policy to strengthen its performance estimation when calculating its behavior
descriptor [141]. The same idea has also been used in conjunction with apply-
ing adaptive sampling to increase the efficiency of the evaluation [130]. Yet,
these approaches come with the added cost of testing multiple times the same
policies, greatly increasing the computational requirements of the algorithm.

A different strategy is the one introduced with DG-MAP-Elites [131], in
which the usual ME grid is extended in depth in order to host multiple policies
in the same cell. This allows a better estimate of the performance of a given
elite of solutions without the need for multiple evaluations. Said estimate
leads to an higher stability of the archive with respect to noise. At the same
time, while this strategy works for a grid based algorithm as ME, it might
be difficult to adapt to NS based algorithms. In this light, a different way
to approach the problem could be to use a multi-objective approach in which
policies are selected not only for their novelty but also for their robustness to
noise. While this would still require multiple evaluations for each policy, it
could lead to more robust and generalizable solutions.

Nonetheless, the problem is still far from solved, and working in this di-
rection could lead to great improvements in the range of applicability and
recognition from other communities of QD algorithms.
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Chapter

8
Conclusion

Throughout this manuscript, algorithms capable of addressing the issue of
sparse rewards with minimal prior information about the task have been in-
troduced and evaluated. The thesis started by framing the problem of sparse
rewards in the RL framework, proposing to address it by focusing on ex-
ploration. Doing so allows to efficiently analyze the whole search space and
discover any obtainable reward, giving us the opportunity to later exploit it.
At the same time, the search space needs to be properly defined in order to
perform efficient exploration and discover these rewards. Collecting the neces-
sary prior information about the task to solve and designing the search space
itself requires a lot of engineering effort. This limits the range of applicabil-
ity and the generalization ability of said policy learning algorithms. For this
reason, reducing the amount of prior information needed at design time can
prove beneficial. As a step in this direction, methods that can autonomously
learn the search space in an online fashion have been introduced.

An overview of the literature on the subject of sparse rewards in Chapter 2.
It starts by describing the framework of RL and how sparse reward problems
can affect the performances of RL algorithms. The best case scenario in which
to apply RL algorithms is in fact one in which the reward is dense. If it is not
the case, other strategies need to be considered. A technique usually employed
in these situations is to have the algorithm generate its own rewards. However,
this can be complicated or lead the search to get stuck on local minima, as for
example in the noisy TV problem discussed in Sec. 7.1.1. In light of this, the
work focused on EAs as an alternative to RL for learning policies in situations
of sparse rewards. Being episode-based rather than step-based means that
EAs can more naturally deal with sparse rewards settings compared to RL
methods. This is due to EAs needing the reward only at the end of the policy
evaluation and not after each single action. At the same time, there can be
situations in which the reward is extremely sparse and the policies do not
get any reward. To deal with this, the divergent search family of algorithms
has been considered. These EAs mainly focus on exploration. They do so by
looking for a set of policies covering a given search space, called Behaviour
Space (BS), as much as possible. Among all the possible divergent search
EAs, the work focused mainly on NS. The reason behind this choice lies in
the ability of this method to quickly explore the whole BS, tending towards
an uniform coverage of it. All of this is done while completely ignoring any
reward and without the discretization of the BS required by other methods in



the same family.
Notwithstanding the great exploration abilities of NS, it is still limited by

two main shortcomings. First, the search space needs to be hand-designed,
which requires a lot of effort from the designer point of view, while also lim-
iting the range of problems to which this algorithm can be applied. Second,
by completely discarding rewards, NS ignores important information that can
be useful for solving the task at hand. This thesis started by addressing the
two issues separately. This has been done with the introduction of two algo-
rithms: TAXONS and SERENE. Once proven the efficacy of these methods,
an approach merging the complementary aspects of TAXONS and SERENE
in a single algorithm was introduced: STAX. STAX can thus perform explo-
ration of the BS while exploiting any discovered reward, with minimal prior
information. This allows to address both limitations of NS at the same time.
Let us recap how each of the mentioned methods work and what contributions
they brought.

TAXONS

TAXONS, introduced in Chapter 3, addresses the issue of hand-defining the
search space in which NS evaluates the novelty of each policy. It does so by
autonomously learning said space during the search process. This is done by
taking advantage of the representation capabilities of an AE, while performing
the search directly in its learned feature space. This space is learned online on
the data generated by the policies during the search itself. The results show
how, by learning the BS directly from high-dimensional RGB observation of
the environment, it is possible to perform exploration almost as well as NS.
Doing so greatly reduces the amount of prior information needed. At the same
time, TAXONS relies on the assumption that the last image of the trajectory
contains enough information to extract the behavior descriptor of a policy. In
this regard, Chapter 4 discussed the Signature transform as a possible way
to remove this assumption by representing the whole trajectory as a single
vector. The aim was to be able to combine this method with TAXONS in
order to calculate the behavior descriptor of a policy from the trajectory of
high-dimensional RGB observations. This approach was compared against
the simpler strategy of obtaining the behavior descriptor by just stacking few
observations sampled along the trajectory. Eventually, this simpler strategy
proved as effective as the more complex signature transform. The possible
reason behind this is the high dimensionality of the descriptor extracted by
the signature. Euclidean distances on high-dimensional vectors lose most of
their relevance, lowering the effectiveness of the novelty metric in pushing for
exploration.

SERENE

The second limitation of NS, the discarding of any information coming from
the reward, has been addressed with the introduction of SERENE in Chapter
5. This algorithm performs exploration through NS, then once rewards are
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discovered it deploys emitters to exploit them. As explained in Sec. 5.2, emit-
ters are instances of reward-based algorithms performing local search around
the policies used to initialize the emitters themselves. This local search allows
to quickly optimize on the reward without interfering with the exploration
process. To this end, SERENE keeps the exploration of the search space
and the exploitation of the rewards separated through a two alternating-steps
process. This strategy allows the method to find a good compromise for the
exploration-exploitation trade-off. SERENE has been shown to perform explo-
ration in a fashion similar to NS. At the same time, it can efficiently optimize
the reward for each discovered area, overcoming NS’s limitation. The reward
optimization has been shown to be more efficient than other QD algorithms
as ME or CMA-ME that perform exploration and reward exploitation at the
same time. This proves that the separation of the exploration process from the
exploitation can be advantageous in situations of particularly sparse rewards.

STAX

As said, TAXONS and SERENE address two different problems of NS. These
two approaches can be considered complementary in dealing with NS limi-
tations and thus combined. This has been done in Chapter 6 with the in-
troduction of the STAX algorithm. The method augments SERENE with
TAXONS by using the latter to perform the search in the exploration step of
the former. This strategy allows STAX to explore an unknown search space
without relying on any prior information about the task. Then, once a reward
is discovered, an emitter is initialized and evaluated to exploit said reward.
At the same time, the TAXONS’s requirement for the last observation of the
trajectory to be informative enough with respect to the whole policy behavior
has been removed in STAX. This has been done by taking advantage of the
lessons learned in Chapter 4. Multiple high-dimensional observations are sam-
pled along a trajectory and their low-dimensional representations, generated
by the AE, are stacked to form the behavior descriptor of the policy. The
results show how this approach can foster exploration on levels similar to NS,
with the minimal amount of prior information given to the algorithm. All of
this without any loss in performance on the exploitation of the rewards. STAX
is in fact able to discover and quickly exploit all reward areas present in the
environment.

The advantages and contributions introduced by the methods developed
during this thesis have been discussed in Chapter 7. Starting from NS and
developing first TAXONS then SERENE, highlighted a path towards the intro-
duction of a family of algorithms that can seamlessly deal with sparse reward
environments. All the while requiring minimal knowledge about the task. This
could potentially lead to the introduction of algorithms capable of great gen-
eralization, reducing to the minimum the intervention of the engineer when
moving from one setting to the other. The introduction of STAX represents
a promising step in this direction, unifying the two aspects of learning the
Behaviour Space (BS) and exploiting any discovered reward. Nonetheless, the
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path towards a solution of the sparse rewards problem is still long. Many im-
provements and extensions can be developed to augment the ability of STAX,
and QD algorithms in general, to better address this problem. At the same
time, while framing the problem of sparse rewards from an RL point of view,
we did not take advantage of the many innovations introduced in the field of
RL. We believe that a lot can be learned from the union of the two fields of
RL and divergent search EAs, thanks to the complementarity of the two ap-
proaches. This could lead to the development of many innovative approaches,
the solution of many of the still unresolved problems in both fields and the
application of learning algorithm to new and exciting fields of research.
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