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RÉSUMÉ EN FRANÇAIS

L’IoT a pris de l’ampleur au cours des dernières années en tant que nouveau paradigme
permettant de connecter efficacement des milliards de dispositifs [1]. Au-delà des services
traditionnels de voix, de vidéo et de données où le débit de données est l’objectif principal,
dans le contexte du IoT, l’accent est mis dans ce mémoire sur les déploiements à faible coût
avec de grandes zones de couverture. Pour fournir cette connectivité, les Low Power Wide
Area Networks (LPWAN) sont considérés comme la principale technologie, en particulier
le LoRaWAN dont la conception établit un compromis entre une faible consommation
d’énergie et une grande portée de communication des dispositifs IoT [2], comme le montre
la figure 1. Cette capacité se manifeste surtout dans les dispositifs LoRa typiques, qui
peuvent couvrir des distances de plus de 10 km en utilisant une puissance d’émission
maximale de 10 mW dans le spectre ISM sans licence, tout en maintenant des durées
de vie de batterie extrêmement longues, jusqu’à plusieurs mois [3]. Ainsi, un module
LoRaWAN fonctionnant dans la bande 868 MHz consomme 2.8 mA, à l’état "on", 38.9 mA
en transmission de données et 14.2 mA en réception de données [4].
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Figure 1 – Consommation d’énergie en fonction de la portée de communication pour divers
protocoles radio, comme illustré dans [5].

La localisation est critique pour de nombreuses applications LPWAN en raison de la
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Résumé en Français

nature même des données collectées à partir des terminaux [6]. Ces utilisations concernent
les données de santé, la surveillance des animaux domestiques ou du bétail, de la faune ou
des applications pour les villes intelligentes utilisant des capteurs tels que la température
ou la surveillance de la qualité de l’air dans les environnements urbains [7]. Ce problème
pourrait être résolu simplement en équipant chaque capteur d’une puce Global Navigation
Satellite Systems (GNSS), par exemple en utilisant le Global Positioning System (GPS).
Bien que cette solution soit facile, l’ajout d’un tracker GPS à un appareil augmente à la
fois le coût et la consommation d’énergie [8]. Ainsi, il doit être rechargé tous les quelques
jours car la consommation de courant d’un récepteur GPS est d’environ 30 mA à 50 mA,
ce qui comprend à plus d’énergie que cette requise par la plupart des IoT à faible puis-
sance. Par la suite, de nombreuses recherches dans le domaine de la localisation sans GPS
dans les IoT, ont étudié des méthodes basées sur les RSSI, AoA, ToA, TDoA et leurs
multiples intégrations [9]. Ces mesures sont utilisées par les passerelles pour déterminer
leurs relations de position relative avec la source pour la localisation.

D’autre part, la perte de paquets sera le point faible de ces réseaux car elle dégrade les
performances de l’ensemble du réseau à long terme. Par exemple, le protocole LoRaWAN
ne disposant pas de droits exclusifs dans les bandes sans licence, également appelées ban-
des d’application ISM, des dégradations de canaux peuvent se produire sur la liaison
entre le nœud final et la passerelle, réduisant ainsi la fiabilité des communications dans
ces réseaux. Ces dégradations de canaux peuvent être dues à des collisions, comme le
montre le document [10], ou à des effets de propagation, comme le montrent les docu-
ments [11], [12] et [13]. Cet échec de transmission peut avoir des conséquences graves
pour diverses applications IoT, en particulier celles qui utilisent le mode de messagerie
avec accusé de réception pour les données importantes des capteurs. Si le nœud final ne
reçoit pas le paquet Acknowledgment (ACK), il retransmet le paquet de données. Cepen-
dant, cette retransmission nécessite une consommation d’énergie supplémentaire qui a un
impact sur la durée de vie de la batterie des dispositifs du nœud final, en plus d’occuper
une patron de spectre supplémentaire et d’augmenter le niveau d’interférence. De plus, un
temps supplémentaire est occupé qui pourrait être utilisé pour les liaisons montantes. En
outre, l’augmentation de la demande de retransmissions, en particulier du côté du réseau,
entraînera l’épuisement des ressources énergétiques et une augmentation potentielle des
émissions de CO2. Par conséquent, l’industrie des télécommunications occupe une quan-
tité équivalente de 2% à 10% de la consommation électrique mondiale. Cette quantité de
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consommation d’énergie provient principalement des stations de base à hauteur de 60%
à 80%.

Tout au long de cette thèse, la précision de la localisation est améliorée tout en préser-
vant la faible consommation d’énergie du LPWAN, tandis que des techniques d’allocation
de spectre sont proposées pour réduire les pertes de paquets. Ainsi, les propriétés de
propagation du canal sans fil sont utilisées pour permettre aux dispositifs IoT de fonc-
tionner avec une consommation d’énergie aussi faible que possible, comme indiqué dans
les sections suivantes.

0.1 Objectifs et contributions

L’objectif initial de cette thèse est d’améliorer les techniques de localisation dans le
réseau LPWAN qui dépendent de techniques centralisées (du côté du réseau). Ensuite,
le travail s’oriente vers l’utilisation des mesures de canaux pour proposer des techniques
d’allocation de spectre afin de réduire les pertes de paquets. En effet, ces deux approches
utilisent les paramètres de propagation du canal pour réduire la consommation d’énergie
dans le IoT afin d’être plus économe en énergie dans une perspective écologique, comme
indiqué dans les sous-sections suivantes.

0.1.1 Localisation

La localisation est optimisée en améliorant la précision de la technique TDoA qui est
considérée comme l’une des techniques les plus populaires, car elle ne nécessite aucune
synchronisation du côté du nœud [4]. Seule la synchronisation temporelle du côté de
la passerelle utilise un module GPS pour horodater le paquet reçu. Après avoir acquis
les différences entre les horodatages d’une transmission, celle-ci est considérée comme
un problème de multilatération qui implique la résolution d’un ensemble de fonctions
hyperboliques. Ici, l’amélioration de TDoA est réalisée comme suit :
• Proposer une technique paramétrique de TDoA qui dépend des fonctions hyper-

boliques pour localiser le noeud sur une hyperbole, plutôt que de le localiser dans
une position libre dans l’espace pouvant subir l’influence des imperfections de
l’horodatage, comme le montre la figure 2.
• Un algorithme de prétraitement est proposé pour éliminer les horodatages aber-
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rants à l’aide d’une méthode de seuillage robuste.
• Une autre méthodologie de prétraitement des TDoA pour éliminer les valeurs

TDoA aberrantes est présentée, après avoir instrumenté un CRLB apparié. L’approche
proposée détecte les meilleures valeurs de TDoA, qui ont les plus faibles valeurs
de CRLB appariées, à proximité de l’emplacement du nœud supposé, en se basant
sur une méthode de seuillage robuste.

Un simulateur est mis en œuvre pour l’analyse des performances de ces méthodes pro-
posées dans un environnement de simulation bien défini. Ainsi, une comparaison est ef-
fectuée en étudiant les précisions atteignables pour la localisation basée sur ces approches
TDoA proposées et la méthode classique TDoA, sur un environnement de simulation bien
défini. Dans les résultats donnés, la faisabilité de ces techniques proposées est confirmée
par une amélioration drastique sur une large gamme du nombre de passerelles ainsi que
des variances du bruit de mesure. Comme le montre la Figure 3, la méthode paramétrique
TDoA surpasse la méthode classique TDoA, ce qui indique que la méthode proposée est
plus robuste aux fortes dérives des valeurs d’horodatage.

0 2000 4000 6000 8000 10000
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2000

3000

4000

5000

Y-
ax

is 
[m

]

  Euclidean distance error = 301.32 m
   Euclidean distance error = 38.71 m

Gateway 
Node
Classical TDOA
Parametric TDOA

Figure 2 – Un scénario de localisation envisagé qui est généré avec le simulateur proposé.

D’autre part, la faisabilité de l’utilisation du CSI pour la localisation est étudiée, après
avoir su que le CSI contient des informations sur le canal entre l’émetteur et le récepteur
au niveau des sous-porteuses de données individuelles. Contrairement à la plupart des
travaux précédents, l’approche envisagée consiste à utiliser l’intégralité des amplitudes
des sous-porteuses sans calcul de moyenne ni réduction du CSI à bande étroite obtenu.
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(a) Erreurs à chaque valeur de l’écart-type de la dérive.

(b) L’ensemble des résultats de simulation de σ2 allant de 0 m to 600 m.

Figure 3 – Erreur de distance euclidienne et CDF tout en changeant l’écart type de la
dérive σ2.
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De plus, le saut de fréquence dans les systèmes LoRa devrait être un avantage pour
la localisation en permettant l’accès à une bande plus large. Afin d’obtenir une base
fiable pour cette approche, une campagne de mesure en extérieur est réalisée dans la
zone du Campus Beaulieu à Rennes pour estimer le CSI des signaux LoRa transmis
depuis différents endroits. Les signaux LoRa transmis à partir de différents emplacements.
Dans les résultats donnés, la faisabilité de l’utilisation de l’approche proposée est établie
par la stabilité drastique de la pente du CSI dans le temps et l’espace, contrairement à
l’amplitude moyenne du CSI. Ceci démontre la robustesse du CSI aux fluctuations du
signal et sont rendu plus fiable que le RSSI.

0.1.2 Allocation du spectre

Le PDR est considéré comme une mesure majeure de la performance du réseau, tandis
que sa dépendance aux dégradations du signal est confirmée [13]. Dans cette thèse, le
PDR est étudié comme suit :
• Une étude approfondie de la dépendance en fréquence du PDR est effectuée en

réalisant une campagne de mesure en extérieur dans la zone du Campus de Beaulieu
à Rennes. A partir de chaque emplacement différent, les valeurs de ESP et Signal-
to-Noise Ratio (SNR) sont obtenues ainsi que l’influence de ces paramètres sur le
PDR est évaluée à chaque bande de fréquence indépendamment. Comme le montre
la figure 4, la faisabilité de l’utilisation du ESP est prouvée par sa portée élargie
lorsque le SINR est très faible, contrairement au RSSI qui présente une limitation.
• La modélisation du PDR à l’aide d’une fonction de distribution bêta ESP paramétrée

est proposée. La faisabilité du modèle proposé est assurée par la simulation de PDR
par rapport à l’ESP, comme le montre la figure 5. Ainsi, les valeurs de PDR simulées
suivent bien la distribution des valeurs mesurées.

Cette investigation montre que l’utilisation de l’ESP dans les futures applications IoT,
notamment la localisation à l’aide de l’empreinte digitale ESP. De plus, le modèle PDR
proposé donne des directives importantes pour la régulation et l’optimisation des réseaux
LoRaWAN futurs.

Sur cette base, la qualité du canal dans les différentes bandes de fréquences est prise
en compte pour réduire les pertes de paquets dans le IoT, en particulier dans les réseaux
LPWAN. Ainsi, les techniques d’allocation de spectre sont proposées comme suit :
• Une technique d’apprentissage QoC-A basée sur des algorithmes de bandit est pro-
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Figure 4 – Comparaison du RSSI et du ESP mesurés avec le SINR.

posée afin de choisir le canal de transmission, de sorte qu’il atténue les dégradations
du canal en utilisant le paramètre de qualité du canal, c’est-à-dire ESP.
• Un algorithme DQoC-A est proposé pour s’adapter rapidement à tout changement

abrupt dans les conditions des canaux.
De plus, une campagne expérimentale réaliste est réalisée dans la ville de Rennes pour
démontrer la faible complexité et la faisabilité de ces algorithmes proposés tout en les im-
plémentant du côté du dispositif IoT (approche décentralisée). Dans les résultats donnés,
QoC-A surpasse la politique classique UCB avec un processus d’apprentissage plus ac-
céléré. D’autre part, la faisabilité de l’utilisation de la DQoC-A dans les scénarios non sta-
tionnaires est prouvée par sa convergence rapide lorsque des changements abrupts dans les
conditions des canaux se produisent. À la fin du processus, ces techniques d’apprentissage
proposées sont assurées de donner moins de pertes de paquets que les techniques de pointe
avec une allocation de fréquence aléatoire, comme le montrent le tableau 1 et le tableau 2.
Ces algorithmes d’apprentissage par renforcement proposés sont recommandés pour être
mis en œuvre du côté du nœud final. De plus, des remarques importantes sont données
pour ajuster les configurations des algorithmes en fonction des propriétés de chacune des
applications IoT potentielles.
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(b) PDR simulé en fonction de différentes valeurs de ESP.

Figure 5 – PDR contre différentes valeurs de ESP.

Table 1 – Nombre de paquets transmis avec succès et perdus dans le scénario stationnaire

Algorithme Succès Perte
Uniform 668 132
UCB 761 39
QoC-A 768 32
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Table 2 – Nombre de paquets transmis avec succès et perdus dans le scénario non-
stationnaire

Algorithme Succès Perte
Uniform 405 195
UCB 487 113
QoC-A 497 103
DQoC-A 520 80

0.2 Organisation de la thèse

L’ordre de lecture du manuscrit peut être quelconque entre l’introduction du chapitre 1,
et la Conclusion du dernier chapitre 7. La thèse est organisée en deux parties, correspon-
dant aux deux colonnes de la figure 6.

Tout d’abord, dans la partie I (première colonne), elle commence par le chapitre 2 qui
est nécessaire pour le reste de cette partie, car il présente l’état de l’art des techniques
de localisation et les notations utilisées dans ce domaine. Les chapitres 3 présentent les
approches proposées pour améliorer la précision des techniques TDoA. Ces améliorations
se manifestent dans la méthode paramétrique TDoA proposée et les algorithmes de pré-
traitement. Dans le chapitre 4, la faisabilité de l’utilisation de la CSI pour la LPWAN
localisation est affirmée expérimentalement.

Ensuite, la partie II (deuxième colonne) contient deux chapitres, qui peuvent être lus
de manière indépendante. Le chapitre 5 commence par présenter les différents facteurs
de pertes de paquets dans IoT, puis PDR est modélisé en fonction de l’ESP. Ainsi, il
est prouvé que l’ESP est plus fiable que le RSSI sur la base d’une campagne de mesure
réalisée. Enfin, le chapitre 6 présente les techniques d’allocation de spectre proposées pour
réduire ces pertes de paquets et leurs résultats expérimentaux.
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Chapter 1
Introduction

Chapter 7
General Conclusions and Future Works
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Figure 6 – Une carte de lecture de la thèse. Tout parcours descendant contenant le chapitre
1, au moins une des deux colonnes colorées et la conclusion est une manière possible de
lire cette thèse.
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Chapter 1

INTRODUCTION

IoT has been scaling up over the last few years as a new paradigm enabling the con-
nection of billions of devices efficiently [1]. Beyond the traditional voice, video and data
services where data throughput is the main purpose, in the context of IoT, the focus here
is the low-cost deployments with large coverage areas. For providing this connectivity,
LPWAN are considered the major technology, especially the LoRaWAN whose design
compromises between low energy consumption and a large communication range of the
underlying IoT-enabled devices [2], as shown in Figure 1.1. This ability is mostly exhib-
ited in the typical LoRa devices, which can cover distances of more than 10 km using
a maximum transmit power of 10 mW in the unlicensed ISM spectrum while maintain-
ing extremely long battery lifetimes at the scale of up to several months [3]. Hence, a
LoRaWAN module operating in the 868 MHz band consumes 2.8 mA, in the “on” state,
38.9 mA transmitting data and 14.2 mA receiving data [4].
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Figure 1.1 – Power consumption versus communication range for various radio protocols,
as depicted in [5].

Localization is critical for many LPWAN applications due to the very nature of the
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data collected from the terminals [6]. These usages involve health data, monitoring of pets
or livestock, wildlife or applications for smart cities using sensors such as temperature or
air quality monitoring in urban environments [7]. This problem could be simply solved by
equipping each sensor with a GNSS chip, for example, using GPS. While this solution is
tempting, adding a GPS tracker to a device will increase both cost and power consump-
tion [8]. Thus, it needs to be recharged every few days as the current consumption of a
GPS receiver is about 30 mA to 50 mA, which is considered more energy required by most
low power IoT devices. Subsequently, plenty of researches within the domain of GPS-Free
localization in IoT, have investigated methods based on RSSI, AoA, ToA, TDoA and their
multiple integrations [9]. These measurements are utilized by the gateways to determine
their relative position relations with the source for localization.

On the other hand, packet loss will be the weak point of these networks as it degrades
the performance of the entire network in the long term. For instance, LoRaWAN protocol
has no exclusive rights in the unlicensed bands [14], also called ISM application bands,
channel impairments may occur on the link between the end node and the gateway, reduc-
ing the reliability of communications in these networks [15]. These channel impairments
may occur either due to collisions as depicted in [10], or propagation effects as manifested
in [11], [12] and [13]. Serious outcomes are caused by this transmission failure that may af-
fect various IoT applications, in particular those using the acknowledged messaging mode
for the important sensor data. If the end node does not receive the ACK packet, the end
node will retransmit the data packet. However, extra energy consumption is required by
this retransmission that impacts the battery life of the end node devices plus occupying
an additional spectrum and raising the interfering level. Moreover, extra time is occupied
that could be used for uplinks. Over and above, exhaustion of energy resources and a
potential increase in the CO2 emissions will occur by increasing the demand for these
retransmissions, particularly at the network side. Hence, the telecommunication industry
occupies an equivalent amount of 2% to 10% of the global power consumption [16]. This
amount of power consumption is mainly from the base stations by an amount of 60% to
80% [17].

Throughout this thesis, localization accuracy is improved while preserving the low
power consumption of the LPWAN, whereas spectrum allocation techniques are proposed
to reduce the packet losses. Thus, the propagation properties of the wireless channel are
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utilized to let the IoT devices function with less energy consumption as much as possible,
as discussed in the following sections.

1.1 Objectives and Contributions

The initial target of this thesis is to enhance the localization techniques in the LPWAN
that depend on centralized techniques (on the network side). Then, the work is shifted
toward utilizing the channel measurements to propose spectrum allocation techniques
owing to reduce the packet losses. Indeed, these two approaches are using the channel
propagation parameters for reducing the power consumption in IoT to be more energy
efficient in a green perspective, as briefed in the following subsections.

1.1.1 Localization

Localization is enhanced by improving the accuracy of the TDoA technique that is
considered as one of the most popular techniques, as it does not need any synchronization
on the node side [4]. Only time synchronization at the gateway side using a GPS module
to timestamp the received packet. After acquiring the differences between the timestamps
of a transmission, it is considered a multilateration problem that involves solving a set of
hyperbolic functions. Here, the improvement in TDoA is achieved as follows:
• Proposing a parametric TDoA technique which depends on the hyperbolic func-

tions to localize the node on a hyperbola, rather than locating it in a free position in
the space potentially suffering from the influence of the timestamp imperfections.
• A pre-processing algorithm is proposed for dropping out the outlier timestamps

based on a robust thresholding method.
• Another TDoA pre-processing methodology for dropping out the outlier TDoA val-

ues is presented, after instrumentalizing a paired CRLB. This proposed approach is
detecting the best TDoA values, which have the lowest paired CRLB values specif-
ically, in the vicinity of the guessed node location, based on a robust thresholding
method.

A simulator is implemented for the performance analysis of these proposed methods in a
well-defined simulation environment. Hence, a comparison is performed investigating the
attainable accuracies for localizing based on these proposed TDoA approaches and the
classical TDoA method, on a well-defined simulation environment. In the given results,
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the feasibility of these proposed techniques is asserted by a drastic improvement over a
wide range of the number of gateways as well as measurement noise variances. Moreover,
the parametric TDoA outperforms the classical TDoA, hence, it indicates that the pro-
posed method is more robust to the high drifts in the timestamp values.

On the other hand, the feasibility of utilizing the CSI for localization is studied, after
knowing that the CSI contains information about the channel between the sender and
receiver at the level of individual data subcarriers. Unlike most of the previous work, the
intended approach is to use the entire subcarrier magnitudes without averaging or any
reduction of the obtained narrowband CSI. Moreover, the frequency hopping in the LoRa
systems should be a profit for localization by getting access to a wider band. In order to
obtain a reliable basis for this approach, an outdoor measurement campaign is performed
in the area of Beaulieu Campus in Rennes to estimate the CSI of transmitted LoRa signals
from different locations. In the given results, the feasibility of using the proposed approach
is asserted by the drastic stability of the CSI slope over time and space, contrary to the
CSI average amplitude. This manifests the robustness of the CSI to the signal fluctuations
and its more valuable rendering than the RSSI.

1.1.2 Spectrum Allocation

PDR is considered as a major measure of the network performance, whereas its depen-
dency on the signal impairments is confirmed [13]. In this thesis, the PDR is investigated
as follows:
• An in-depth investigation of the frequency dependency of the PDR is done by

performing an outdoor measurement campaign in the area of Beaulieu Campus in
Rennes. From each different location, the ESP and SNR values are obtained as well
as the influence of these parameters on the PDR is evaluated at each frequency
band independently. Within the given results, the feasibility of using the ESP is
proven by its enlarged range when the SINR is very low, unlike the RSSI which
has a limitation.
• Modelling the PDR using an ESP-parameterized beta distribution function is pro-

posed. The feasibility of the proposed model is assured by simulating PDR against
ESP, hence, the simulated PDR values follow the distribution of the measured ones
well.

This investigation manifests using ESP in the future IoT applications, especially local-
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ization using ESP fingerprinting. Moreover, the proposed PDR model gives important
guidelines for future LoRaWAN network regulation and optimization.

Based on that, the channel quality across the different frequency bands is considered
to reduce the packet losses in IoT, especially in LPWAN. Thus, spectrum allocation
techniques are proposed as follows:
• A QoC-A learning technique based on bandit algorithms is proposed in order to

choose the transmission channel, so that it mitigates the channel impairments using
the channel quality parameter, i.e. ESP.
• A DQoC-A algorithm is proposed to adapt rapidly to any abrupt change in the

channels’ conditions.
Moreover, a real experimental campaign is performed in the city of Rennes to demonstrate
the low complexity and the feasibility of these proposed algorithms while implementing
them on the IoT device side (decentralized approach). In the given results, QoC-A out-
performs the classical UCB policy with a more accelerated learning process. On the other
hand, the feasibility of using the DQoC-A in the non-stationary scenarios is proven by
its rapid convergence when abrupt changes in the channels’ conditions occur. At the end
of the process, these proposed learning techniques are assured to give fewer packet losses
than the state-of-the-art ones with a random frequency allocation. These proposed rein-
forcement learning algorithms are recommended to be implemented in the end node side,
moreover, important remarks are given for adjusting the algorithms’ configurations based
on the properties of each of the potential IoT application.

1.2 Organization of the Thesis

The reading order of the manuscript can be any top-down path between the Introduc-
tion in Chapter 1, and the Conclusion in the last Chapter 7. The thesis is organized in
two parts, corresponding to the two columns of the following Figure 1.2.

First, in Part I (first column), it starts by Chapter 2 that is required for the rest of
this part, as it introduces the state of the art localization techniques and the notations
used in it. Chapters 3 present the proposed approaches for improving the accuracy of the
TDoA techniques. These improvements are manifested in the proposed parametric TDoA
method and the pre-processing algorithms. In Chapter 4, the feasibility of utilizing the
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CSI for LPWAN localization is asserted experimentally.

Then, Part II (second column) contains two chapters, that should be read dependently.
Chapter 5 starts by presenting different factors of the packet losses in IoT, subsequently,
PDR is modeled as a function of ESP. Thus, ESP is proven to be more reliable than RSSI
based on an accomplished measurement campaign. Finally, Chapter 6 introduces the pro-
posed spectrum allocation techniques to reduce these packet losses and their experimental
results.
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Figure 1.2 – A reading map of the thesis. Any top-down path containing Chapter 1, at
least one of the two colored columns and the Conclusion is a self contained way to read
this thesis.

1.3 Publications

This PhD thesis led to the publications that are mentioned in the following subsections.
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Chapter 2

BACKGROUND ON IOT POSITIONING

TECHNIQUES

Localization of the end devices is a mandatory requirement for specific usages, par-
ticularly in Industry 4.0 [6]. A GPS can achieve an accuracy of less than 10 m or even
centimeter-level accuracy in an open outdoor scenarios [18]. However, GPS-based solu-
tions are not feasible due to cost, processing and energy consumption, as discussed in the
previous chapter. Hence, this chapter presents an overview of the localization techniques
in the IoT, especially LPWAN which mainly depend on network-based localization meth-
ods [8]. Before proceeding, an overview of the LoRa technology is presented in Section 2.1.
Then, Section 2.2 describes the main observable signal measurements that can be utilized
for localization, as shown in Figure 2.1. Accordingly, Section 2.3 explains how to localize
the end node using the two different types of algorithms that are based on a fingerprinting
or geometric approaches.

IoT Localization

Signal Measurements Localization Algorithm

Received Signal Strength Indicator 
(RSSI)

Time of Arrival 
(ToA)

Time Difference of Arrival 
(TDoA)

Angle of Arrival 
(AoA)

Channel State Information 
(CSI)

Geometrical Based Fingerprinting Based

Proximity Triangulation Trilateration Multilateration

Figure 2.1 – Localization system in IoT including the signal measurements and classifica-
tion of the positioning techniques.
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2.1. LoRa Technology

2.1 LoRa Technology

This section first presents LoRa physical layer, then, the basic LoRaWAN network
components are introduced.

2.1.1 LoRa Physical Layer

LoRa is considered the leading radio standard for wide area networks that is patented
by the semiconductor manufacturer Semtech [19]. This technique uses a Chirp Spread
Spectrum (CSS) modulation to improve robustness against noise and then allows Internet-
connected applications to communicate with low-power devices over long-range wireless
transmission [20]. Hence, LoRa symbols are encoded into multiple signals of increasing
(up-chirp) or decreasing (down-chirp) frequencies. As shown in Figure 2.2, one LoRa
symbol is generated from the mth cyclic time shift of the basic chirp such as:

xm[n] =
√

1
2SF exp(j2π (((m+ n) mod 2SF )− 2SF−1)2

21−SF ) (2.1)

withm = 0 for the basic chirp symbol, while n depicts the sample index n = 0, 1, 2, ..., 2SF−
1. Moreover, the Spreading Factor (SF) of the LoRa chirp can be modified ranging from 7
to 12 based on the required data rate and transmission range of the application [21]. Since
one chirp consists of 2SF samples, a higher SF increases the airtime of the packet and
then resulting in greater receiving sensitivity. However, using high SF increases the power
consumption and decreases the data rate. On the other hand, LoRa uses a bandwidth of
125 kHz, 250 kHz or 500 kHz to transmit a packet on the sub-1 GHz bands. In Europe,
LoRa mostly operates in the 868 MHz ISM band.

Frame Structure

LoRa has a maximum packet size of 256 bytes [19], moreover, its frame structure
contains the following main fields:
• Preamble: It is a variable-sized sequence of base chirps that is used for the time

synchronization to detect the frame, as shown in Figure 2.2.
• Frame synchronization symbols: It can be used as a network identifier and it

is composed of two modulated chirps [22].
• Frequency synchronization symbols: It is a two conjugate base chirps followed

by a 0.25 conjugate chirp which are both utilized for fine frequency synchronization.

29



Part I, Chapter 2 – Background on IoT Positioning Techniques

• Header (optional): It is a used field in the explicit mode that specifies the payload
length, Forward Error Correction (FEC) code rate, the presence of a payload Cyclic
Redundancy Check (CRC). In the implicit mode, this header field is not included
to reduce the transmission time, hence, these configurations must be manually
specified between the Transmitter (Tx) and the Receiver (Rx).
• Payload: It has the Media Access Control (MAC) payload containing the actual

transmitted data. Moreover, its MAC header defines the frame type (data or ACK)
and the protocol version. Finally, an optional 2-byte CRC of this data could be
included.
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Figure 2.2 – LoRa packet structure.

2.1.2 LoRaWAN Network Architecture

LoRaWAN is a proposed MAC protocol by the LoRa Alliance for defining the network
architecture and layers above the LoRa physical layer [2]. Without peering with a specific
gateway, end nodes communicate with nearby gateways using an ALOHA-based protocol.
Each gateway within range receives the message and then forwards it to the connected
network server, as shown in Figure 2.3. Thus, the network server handles the message
deduplication. On this basis, four basic elements compose a LoRaWAN network as follows:

1. End Node: It is an object with an embedded low-power communication de-
vice, hence, they are often battery operated. This can be a sensor, an actuator
or both. Using LoRa modulation, these end devices are wirelessly connected to the
LoRaWAN network through gateways. By default, the end node operates using
class A, nevertheless, one of the three classes (A, B or C) can be used to imply a
different media access procedure. Class A has two receiving windows scheduled to
send the downlink packet in one of them, following each uplink packet. This class is
the most commonly used for battery-powered devices, as it is considered the lowest
energy consumption by spending most of the time in sleep mode. Class B devices
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extend class A by adding scheduled receive windows for downlink messages from
the server. Last, class C devices extend class A by continuously keep the receiving
windows open unless they are transmitting a packet.

2. Gateway: It is an equipment with an antenna that receives broadcasts from
the end nodes and sends data back to them. Each gateway is registered to the
LoRaWAN network, subsequently, it forwards the messages to the network server
through a backbone IP network based on a communication protocol. This commu-
nication protocol can be a cellular network, Wi-Fi, ethernet, fiber-optic or 2.4 GHz
radio links.

3. Network Server: It is a server that manages the entire LoRaWAN network and
routes messages from the end nodes to be delivered to the respective application
server, and vice versa. It is also responsible for decoding the packets, managing
Adaptive Data Rate (ADR), providing the Over-The-Air-Activation (OTAA) and
acknowledgment of the confirmed data messages.

4. Application Server (AS): It is a server that hosts the final user application.
This application allows users to interact or send data to the end nodes, moreover,
measured data from sensors can be analyzed by it.

End node Gateway Network Server Application Server

Figure 2.3 – General LoRaWAN architecture.
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2.2 IoT Localization Signal Measurements

Passive geolocation is the preferred methods that depends on the information already
available in most of the IoT networks. This section illustrates the commonly used local-
ization signals that are estimated on the gateway side.

2.2.1 RSSI

Received Signal Strength Indicator (RSSI) is typically measured in dBm in the base
station front end when the data packet is received from the end node [23, 24], as shown
in Figure 2.4. In free space, this value directly reflects the distance between the Tx and
Rx [25]. The high RSSI value obtained means that Tx and Rx are close to each other and
vice versa. In practical life, the distance d between Tx and Rx can be determined using
different path loss models where the transmission power at the Tx is known. For example,
the determined RSSI value is related to a distance d using the following path loss model
[26]:

RSSI = C − 10n log10(d), (2.2)

where C is a fixed constant that accounts for system losses, n is the path loss exponent
that varies depending on the environment. Thus, the value of n determines how quickly
RSSI falls with respect to d.

Using RSSI has many advantages as:
• No extra hardware is required on the gateway side, hence, RSSI can be straight-

forwardly obtained [27].
• RSSI can be flexibly used for various localization algorithms, such as trilateration

or fingerprinting approaches [28], as detailed in the following section.
However, the challenges for using RSSI include:
• The path-loss model parameters are difficult to be determined accurately in many

scenarios such as urban and indoor environments [29, 30].
• RSSI value variations and interference often happen, especially over large trans-

mission distances, due to environmental factors [31, 23]. These uncertainties are
problematic issues as every 1 dB change in the RSSI value may lead to distance
differences of meters.
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Figure 2.4 – Example of localization based on RSSI.

2.2.2 ToA

ToA is defined as the time spent by the signal to propagate between the end node
and the gateway [32]. The distance d is acquired simply as the product of the measured
transmission time by the speed of light (c ≈ 3× 108 m s−1) as:

d = c× (tarrived − ttransmitted), (2.3)

where tarrived and ttransmitted are the time of receiving and transmitting the packet, re-
spectively.

Using ToA includes the following advantages:
• The distance d can be obtained directly by linearly converting the ToA value to a

spacial distance without knowing any path loss model, as shown in Figure 2.5.
• Localizing with ToA can achieve high accuracy of centimeter-level in Line-of-Sight

(LoS) environments [33].
• The accuracy assessment of ToA method is available [34].

Nevertheless, ToA localization requires precise timing on both the end node and gateway,
or synchronization between them. For instance, ten-nanosecond-level timing accuracy is
required to achieve meter-level ranging. Such precise timing is not affordable for many
IoT devices with low complex hardware.
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Figure 2.5 – Example of localization based on trilateration.

2.2.3 TDoA

TDoA is measured by computing the signal arrival time differences among multiple
gateways [35]. As shown in Figure 2.6, a mobile node transmits data to the network. Each
gateway within reach records the timestamp of the received packet. The timestamps of
each gateway are then forwarded to the network server which in turn sends a request to
the geolocation solver.

Hence, TDoA localization has the following advantages:
• No precise timing on nodes is required. Instead, only the gateways are required

to have synchronized clocks. This accurate time synchronization can be achieved
easily by the use of a GPS receiver at each gateway.
• An accurate localization of hundreds to thousands of meters can be achieved based

on TDoA localization methods.
• TDoA localization methods have many accuracy assessment mechanisms in theory

[36].
On the other hand, the challenges for TDoA localization include:
• TDoA localization accuracy is affected by the signal bandwidth W [37]. In case of

multi-path, a receiver can recognize a minimum difference in the distance ∆d that
is traveled by two signals as:

∆d = c

W
, (2.4)
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where c is the speed of light. A direct and a reflected signal with a path length
difference less than ∆d will not be distinguished as separate signals but grouped
as these signals will be summed and the phase shift will be added. This will result
in harming the range estimation. For the typical LoRa signal with bandwidth
W = 125 kHz, this gives the worst-case ambiguity as ±∆d

2 ≈ ±1200 m [38].
• To have an accurate time synchronization, the base stations’ cost increases by

adding a GPS receiver module [39].
• The TDoA based localization algorithms are more sensitive to the noise [40]. More-

over, the impact of noise is enhanced by the use of differential measurements.

Gateway 2 Gateway 3

Gateway 1

IoT device

Figure 2.6 – Example of localization based on TDoA.

2.2.4 AoA

The AoA estimation is a mechanism that indicates the direction of arrival of the
received signal by processing the incoming signal on an antenna array [41], as shown in
Figure 2.7. Thus, AoA positioning has the following advantages:
• A high accuracy of a decimeter level can be achieved using a typical AoA localiza-

tion system [42].
• Few gateways are needed to estimate a position [42]. For 2-Dimensional (2-D)

localization, using two gateways only is feasible which is less than the required in
ToA or TDoA.
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• The well researched accuracy assessment mechanism of the AoA localization ap-
proaches [43].

However, the challenges for AoA localization include:
• Relatively large and complex hardware of the AoA system as it requires specific

hardware, such as an antenna array and phase detector [44]. These requirements
make the IoT gateway has a high cost.
• Both angular measuring and positioning accuracy degrade significantly by shadow-

ing and multipath reflections [45, 46, 47], particularly when the distance between
the node and gateway increases in LoRaWAN networks [48].

Gateway 1 Gateway 2

IoT device

Angle 1 Angle 2

Figure 2.7 – Example of localization based on AoA.

2.2.5 CSI

CSI between IoT node and the gateway is possible to be obtained to identify each
location by it [49]. Moreover, utilizing CSI for localization has the following advantages:
• A decimeter-level or higher accuracy can be achieved, especially for wide-band

signals such as the typical Wi-Fi signal with bandwidth W = 40 MHz [50].
• CSI has more features than RSSI, thus, CSI is fine-grained information from the

physical layer which describes the amplitude and phase on each sub-carrier in the
frequency domain [51]. Hence, the signal travels along different fading or scatter-
ing paths on account of the multi-path effects over different sub-carriers. In the
frequency diversity attribute of CSI, these bring different amplitudes and phases
on each sub-carrier.
• CSI is more robust to noise and signal strength fluctuations which contribute to

most of the estimation errors in the localization systems [52, 53]. Hence, RSSI is
easily affected by the temporal and spatial variance due to the multi-path effect.

36



2.3. IoT Localization Methods

However, not all the Network Interface Controllers (NICs) or the IoT gateways provide
the CSI information [54].

2.3 IoT Localization Methods

This section presents the main state-of-the-art localization approaches with the advan-
tages and challenges for each type of localization method. Importantly, these approaches
don’t impose any hardware or firmware changes for the end devices. Actually, these algo-
rithms convert the different signal properties between the end node and the gateway to
estimate the position of the node [55]. Before the development of the machine learning
techniques, the majority of the localization methods were based on geometric measure-
ments, such as distances and angles. Later, Database-Matching (fingerprinting) methods
are developed, thanks to the machine learning techniques and the diversification of the
signal measurements, as discussed in the following subsections.

2.3.1 Geometrical Localization Methods

Range-based techniques are based on the measurement of distances or angles between
the end node and the gateway, as the following detailed techniques.

Proximity

Proximity is regarded as a simple localization approach as it considers the estimated
node location as the gateway location [56]. Therefore, it is commonly used in localization
systems based on Radio Frequency Identification (RFID) and infrared [57]. Moreover,
the cell identification system of the mobile phone is another example of proximity. This
method detects the probable position of a User Element (UE) by identifying which cell id
is used at a given time from which base station, whereas the base station location is well-
known by the cellular network. Consequently, the proximity technique does not provide
an absolute position of an object, only a piece of location information is provided [58].
Hence, the gateway with the highest RSSI is considered to estimate the node position
when the transmitted packet is identified by more than one gateway [59]. On this basis,
the performance of this approach relies on the dense deployment of the gateways with
well-known positions.
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Although this coarse localization method has the largest localization uncertainty, it
has the lowest computational load and the lowest number of gateways. Subsequently, this
method is profitable for bridging the outages when the other localization methods do
not have a sufficient number of gateways or signal measurements are acquired with low
precision.

Triangulation

The triangulation technique is the way to use the geometric properties of triangles to
localize the targeted nodes [44]. It estimates the node location by computing the angles
relative to multiple gateways, as shown in Figure 2.7. Using at least two gateways’ loca-
tions as references, the intersection of the two independent Lines of Bearing (LoB) gives
the estimated 2-D-position. A set of N gateways are considered with known positions

G =
[
g1, . . . ,gn, . . . ,gN

]
(2.5)

with
gn = [xn, yn]T , (2.6)

while p = [x, y]T is any node position in the plane. Thus, the measured angle of the
received signal from p on gateway n is defined as:

θ̂n = tan−1
(
y − yn
x− xn

)
+ un, (2.7)

where un ∼ N (δ, σ2) is an additive Gaussian random variable which is assumed indepen-
dent and identically distributed (i.i.d.). In the classical AoA localization techniques, the
node location p̂ = [x̂, ŷ]T is estimated using the conventional algorithms such as the Least
Squares (LS), or by minimizing a cost function on the unknown coordinates as:

p̂ = arg min
x,y

(
N∑
i=1
|θ̂i − tan−1

(
y − yi
x− xi

)
|). (2.8)

For example, a node positioning method is experimentally proposed based on AoA
estimation in [42]. For the angle estimation, MUltiple SIgnal Classification (MUSIC) al-
gorithm is used due to its high angular resolution and sensitivity. The AoA is estimated
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at two gateways (anchors) which are equipped with 4 antennas. For the defined scenario
in Figure 2.8, this approach is able to successfully determine the position of a node with
an average accuracy of 14 cm.
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Fig. 4. RMSE of the estimated AOA versus predefined SNR at AOA
θ = 0◦.

the advertising packet size as the accuracy of MUSIC
algorithm depends on the number of data samples. In
addition, the accuracy of experimental results is less than
that of simulation results because of multi-path effects
and hardware imperfections.

In addition, an experimental scenario is defined to
show the accuracy of proposed BLE transmitter position-
ing when there are two fixed anchors and one beacon in
the room. The location coordinates of the anchors are as
followed: Anchor1 (1, 1.5), Anchor2 (3, 0.5) in meters.
A grid with 36 points (6 × 6) is defined in the middle
of the room. AOAs are measured at each anchor for 36
different beacon positions when the minimum PDU size
is transmitted. In GNU Radio, TX and RX Gains of
USRPs are fixed to 30 dB and 20 dB, respectively. Each
time, the position of the beacon can be estimated using
known positions of the anchors and measured AOAs at
each anchor. The intersection of two line of bearings
(LOBs) from the beacon to the anchors will give the
estimated beacon location. Fig. 5 displays a heat map
of the RMSE of the estimated position. The average
positioning error is around 14 cm and the maximum error
is 30 cm. As can be seen, the RMSE of the estimated
position for each point depends on the angle and the
distance to each anchor. Therefore, it explains the higher
RMSE on the farther edge of the grid.

V. CONCLUSION

This paper investigates experimentally the positioning
of BLE beacons in an indoor environment. The AOA is
estimated at two anchors located in a room, equipped
with 4 antennas. It is shown that this approach is able
to successfully determine the position of a beacon with
the average accuracy of 14 cm in the defined scenario.
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Figure 2.8 – RMSE of the estimated node position [42].

Trilateration

The trilateration technique estimates the node position using the geometric properties
of circles and spheres [60], as shown in Figure 2.5. This classical technique is widely used
in GNSS as well as indoor positioning. In contrary to the triangulation, at least three
gateways at known reference locations are used to estimate the 2-D position of the targeted
node. Besides, the node altitude can be obtained as well as precision of the node location
can be improved using more distance measurements. These distance measurements can
be obtained from the ToA values or by converting the RSSI values into distances using
a path loss model as in [23, 61, 62]. Using each distance measurement d̂ from a gateway,
a circle of ambiguity, where the node can be located, is defined. Accordingly, the node
location can be estimated from the intersection of these circles using the Pythagorean
theorem as:

p̂ = arg min
x,y

(
N∑
i=1
|d̂i −

√
(x− xi)2 + (y − yi)2|). (2.9)

On this basis, [63] develops a GPS-independent positioning system using a low-cost
LoRa device. Using the trilateration algorithm, an RSSI-based positioning system is devel-
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oped and evaluated on different rural scenarios and environmental considerations. Using
this low-cost system, an average error of ≈12.11 m is obtained for a 150 m × 150 m sce-
nario.

Multilateration

Multilateration is solving a set of hyperbolic functions to localize the node after ac-
quiring the differences between the timestamps (TDoA values) of a transmission [64].
Therefore, at least three gateways are needed to locate the node on the intersection point
of the hyperbolas in 2-D space, as shown in Figure 2.6. Indeed, by increasing the number
of gateways, more hyperbolas are acquired, and then the higher the accuracy is obtained
with denser intersections at the node location [65]. First, the timestamp of the transmitted
packet from the node location p is measured on gateway n as:

τn = dn
c

+ un, (2.10)

where c is the celerity of light and un ∼ N (δ, σ2) is an additive Gaussian random variable
which is accounting for the departure between the timestamp τn and the node to gateway
time of flight toan. Notice that the standard deviation σ could be made dependent on
the gateway index but this dependency is here omitted. Moreover, the time offset δ is
assumed to be equal for all the gateways, and LoS conditions are implicitly assumed,
while dn = ‖gn−p‖2 is the distance between any node position and the gateway n, where
‖.‖2 denotes the 2-norm. Each combination of 2 among N gateways leads to:

H =
N

2

 = N !
2!(N − 2)! = N(N − 1)

2 (2.11)

constraints, each being associated with one hyperbola. An hyperbola j involves the 2 gate-
ways l(j) and r(j), while l =

[
l(1), l(2), . . . , l(H)

]
and r =

[
r(1), r(2), . . . , r(H)

]
.

Accordingly,
Gr =

[
gr(1), . . . ,gr(H)

]
, (2.12)

Gl =
[
gl(1), . . . ,gl(H)

]
, (2.13)

hl(i),r(i) = dl(i) − dr(i), (2.14)
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τl(i),r(i) = τl(i) − τr(i), (2.15)

h =
[
hl(1),r(1), . . . , hl(H),r(H)

]
(2.16)

and
δτ =

[
τl(1),r(1), . . . τl(H),r(H)

]
. (2.17)

In the classical TDoA techniques, the estimated node location p̂ = [x̂, ŷ]T is obtained
using the conventional algorithms such as the LS or under Gaussianity assumption by
Maximum Likelihood (ML) estimation [66]:

p̂ML = arg min
x,y

((h− cδτ )TR−1(h− cδτ )) (2.18)

with the associated H ×H covariance matrix:

R =



2σ2 σ2|0 . . . . . .

σ2|0 2σ2 . . . . . .
... ... . . . ...
... ... . . . 2σ2

 , (2.19)

where the notation σ2|0 means that each off-diagonal term of R is either equal to σ2 or 0
provided that the two couples of gateways i.e., involved in that term, share respectively
either one gateway or none.

Originally, multilateration is utilized for military purposes such as aircraft monitoring
and detecting jammer signal sources in the 1960s [67]. Later, it is used in the control
towers in the airports to detect the airplane position passively without the need to send it
a special request. In case GPS does not function as intended, this is considered a backup
localization approach. With the rising star of IoT, multilateration is often preferred as
one of the localization methods by many LPWAN network providers, after considering
the cost of implementing localizations and the limits of these networks [68].

In [4], the authors implement a localization system that is capable of estimating the
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node location by exploiting the transmitted LoRa packets. This is done by applying the
multilateration algorithm on the gateway timestamps of the received packet. This exper-
iment is accomplished outdoor in Denmark using only four gateways, a server and a java
application to store the obtained information in a database. The results demonstrated
that it is feasible to localize a stationary node with an accuracy of ≈100 m using a TDoA
based technique (multilateration).

Furthermore in [69], the performance of TDoA geolocation for outdoor tracking pur-
poses has been investigated on a public LoRaWAN network. For different trajectories
(walking, cycling, and driving) and LoRa Spreading Factors (SFs), localization accuracy,
update probability, and update frequency are evaluated. The results show a median local-
ization accuracy of 200 m, whereas 90% of the obtained errors are less than 480 m. When
varying the mobility or the SF value, no trend is found on the performance of the local-
ization error but in general, the best localization accuracies are obtained for SF12. Hence,
a higher probability of a location update is a result of using a higher SF with a higher
communication range. On the other hand, the number of potential location updates can
be increased when using lower SF with more transmissions allowance after respecting the
duty cycle.

2.3.2 Fingerprinting Localization Methods

Fingerprinting techniques utilize the database of previously measured signal parame-
ters corresponding to well-known node positions [70]. Thus, the fingerprinting approaches
find the closest matched location by computing the difference between the measured fin-
gerprint and the reference fingerprint in the database [71]. In contrary to the ranging
methods, the gateways’ locations are not required in order to estimate the location of the
end node. Consequently, this localization process consists of two phases as follows:

1. Offline (training) phase: Signal features are extracted from known positions
[72]. These signal measurements are considered as the training data which can be
RSSI, CSI, magnetic intensity, visual features or any other signal properties [73].
In this thesis, RSSI values are estimated from different locations using LoRaWAN
field test device, as shown in Figure 2.9. Accordingly, the Radial Basis Function
(RBF) interpolation method is utilized for interpolating the RSSI values and then
producing the heat map.
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2. Online phase: The real-time measured signal feature is compared with the stored
database to predict the node location [74]. To map the measured feature to the
reference one, many pattern recognition techniques are commonly used such as K-
Nearest Neighbors (KNN), Support Vector Machine (SVM) and neural networks
[75].

To have an accurate localization, the signal measurements, i.e. acquired in the training
phase, should be stable over time for each location. However, the environment can alter
rapidly, moreover, the signal measurements can be affected by thermal noise, multi-path,
scattering and reflection effects [76, 77]. On the other hand, significant time and hard
work are required in the offline stage to generate and update the database or filter out
the outlier signal measurements [78, 79, 80]. Nevertheless, fingerprinting-based localiza-
tion techniques are often better than the geometrical ones in terms of performance and
localization accuracy [81].

In [82], the usability and accuracy of the fingerprinting localization approach are evalu-
ated for the large coverage areas in the LoRaWAN networks. In a 340 m × 340 m test area,
a private LoRa network is constructed using four gateways and an end node to collect the
training RSSI measurements in the offline phase. Consequently, the RBF interpolation
method is utilized for interpolating the RSSI values to fill grids that have no RSSI value
in the matrix with 340 × 340 cells. After fully interpolating this RSSI map, the location
is estimated using proposed probabilistic methods in the online phase. Based on that, a
mean localization error of 24.1 m is obtained using 46 test points.

On the other hand, the work in [83] is focused on averting the time and effort that are
consumed for acquiring manually the signal measurements in the offline phase. For that,
SateLoC technique is proposed that uses the high-resolution satellite images of the area of
interest to generate the fingerprinting map. Thus, the environment type (such as urban,
rural or vegetation) of each pixel in the image is identified and then assigned to a proper
path loss model, as shown in Figure 2.10. To obtain the expected signal power at each pixel,
an overall path loss is calculated that accounts for all the traversed environment types of
an arbitrary LoRa link (from the gateway to the targeted pixel), as shown in Figure 2.11.
This virtual fingerprinting approach is evaluated by localizing commercial LoRa devices
in an urban area of 277 500 m2. The results confirm that this approach outperforms the
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classical model-based approaches by achieving a median localization error of 47.1 m, while
saving the human effort during the fingerprinting acquisition process.
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Figure 2.9 – Interpolated RSSI map at the Beaulieu campus by integrating 70 measured
points (labeled by circles).

Figure 3: Overview of SateLoc and the workflow.

5 LAND-COVER CLASSIFICATION
In this section, we show how to identify land-cover types with the

high-resolution satellite image datasets provided via DeepGlobe [13].
SateLoc uses Random Forest (RF) for the multi-class segmentation
task. We select RF as our classification approach due to its
capabilities of dealing with such large-scale datasets, modeling
complex relationships among multiple image features, and avoiding
overfitting.

5.1 Building an RF Model
The inputs to train the RF model are the 803 satellite images

associated with labeled land-cover types at a spatial resolution of
50cm in the DeepGlobe dataset. We extract a feature vector for each
pixel in satellite images. Each feature vector contains five typical
spectral features, including the three raw RGB values, the Local
Binary Patterns (LBP) [29], and the Normalized Different Vegetation
Index (NDVI) [26]. During preprocessing, we first extract the same
number of samples (i.e., 16,800 samples) for each land-cover type
to eliminate the imbalance of sample sizes. Then we standardize all
features to zero mean and unit variance to accelerate the convergence
of the RF model.
We use 70% of the feature vectors and their corresponding labels

as the training set and the rest as the test set. We perform a grid-based
search on the training set to automatically find the optimal hyper-
parameters with a five-fold cross-validation strategy to maximize
the classification accuracy. Specifically, we test the following key
parameters in RF: decision tree number in [50,500] in increments
of 50, max features per tree in [1,5] in increments of 1, and min
samples split in [2,512] in exponentially increments. Finally, we find
that RF performs the best when the decision tree number is equal to
400, max features per tree are equal to 1, and min samples split is
equal to 32. We use the above configuration to construct the final
RF model, which can be applied to the satellite image of the area
of interest to predict the land-cover type of each pixel and further
output a land-cover map.

5.2 Predicting Land-cover Type
To evaluate classification accuracy, we assess the experimental

results with Overall Accuracy (OA), precision and recall. OA is
the percentage of correctly classified pixels of all pixels, while
precision and recall are at a granularity of each type. The values of
OA, precision, and recall are in the range of 0 to 1, and the higher
value indicates better classification performance.

Table 3: Classification accuracy of the RF model.

Type Built-up Forest Field Water Rangeland
Precision 0.57 0.46 0.44 0.68 0.39
Recall 0.52 0.56 0.49 0.66 0.31
OA 0.51

(a) Satellite image (b) Land-cover map

Figure 4: An example of land-cover type classification: (a) the
ground truth satellite image in RGB, and (b) the corresponding
land-cover map generated by SateLoc in a 5×5 km2 urban area
of Hangzhou, China.

Table 3 shows the classification accuracy of the trained RF
model. The OA is 0.51. This is because the labels provided in
the dataset are far from perfect [13]. In the dataset, many masks
ignore terrain details and small structures not annotated in the ground
truth. Incomplete and often inaccurate labeling presents a significant
barrier for model development and evaluation. However, compared
to the baseline CNN-based approach proposed in [13] with an OA
of 0.433, our RF model still improves the accuracy by 17.8%.
Figure 4(a) shows an example satellite image of a portion of

urban areas in Hangzhou, China. The image is directly sampled
from Google Earth and its corresponding land-cover map is shown
in Figure 4(b). We see that the classification and segmentation quality
is good enough, except for some uncertainty between water (blue)
and forest (green). However, these misclassified pixels are sparsely
distributed with each covers an area of 0.6× 0.6 m2. These pixels are
a small number of the long LoRa link and the induced path loss error
is still acceptable. In addition, the land-cover map has a property that
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Figure 2.10 – An example of environment type type classification the in a 5 km × 5 km
urban area of Hangzhou, China. The ground truth satellite image in RGB is converted to
the corresponding environment type map by SateLoc [83].
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Figure 5: Illustration of ESP map generation with an example
land-cover map. LoRa node at Pixel 1 transmits its packets in
the same land-cover type (i.e. built-up) while node at Pixel 2
needs to transmit across multiple types.

each land-cover area is composed of a number of clustered pixels

with clear boundaries. This property helps speed up the generation

of the corresponding ESP map, which will be described in the next

section.

6 GENERATING ESP MAPS
In this section, we describe how to utilize the land-cover map

to generate the virtual fingerprinting map, i.e., ESP map, for each

gateway.

Figure 5 shows an example land-cover map and each square

represents a pixel in the map. We aim to generate the ESP map for

the gateway (shown as the yellow circle). The basic idea of ESP map

generation is to first select the pixels on the wireless link between

the LoRa gateway and each candidate location, and then calculate

the path loss with the land-cover types of these pixels. Take Pixel 1

as an example, we first connect it with the gateway using a straight

line. Then we extract the coordinates and label of each pixel on

the line. Since these pixels all belong to the built-up type, SateLoc
directly uses the path loss model in Equation 1, along with the

distance d(Gateway,Pixel1) and the corresponding path loss exponent

nbuilt−up, to calculate the ESP value at Pixel 1. It is worth noting that

we set σbuilt−up = 0 to eliminate the randomness of the generated
fingerprinting maps.

In a more complicated case shown in Figure 5, the link between

Pixel 2 and the LoRa gateway goes through several land-cover types.

There will be two intersections A and B at the boundaries between
different types. Starting from the gateway, we first calculate the

path loss PL(Gateway,A) on segment (Gateway,A) with Equation 1.
For the next step, we replace the reference distance d0 with the
distance d(Gateway,A) between gateway and intersection A in the path

loss model. The reference path loss PL(d0) will also be replaced by
PL(Gateway,A) correspondingly. Now we can calculate the path loss

PL(A,B) on segment (A,B) with the updated path loss model and the
path loss exponent nwater. We repeat the above steps until we obtain

the path loss of the last segment, i.e., segment (B,Pixel2), of the link.

Algorithm 1 ESP map generation algorithm
Input: Land-cover map LM with X×Y pixels; Gateway location (xG,yG);
Basic ESP value ESP0; Path loss exponents n′s of five land-cover types;
Receiver sensitivity S; Pixel resolution R; The reference path loss PL(d0)
(set with Table 2 according to the land-cover type of the pixel where the

gateway is placed) at the reference distance d0
Output: ESP map EM = {EM(1,1), ...,EM(X ,Y )}
1: for i = 1 to X do
2: for j = 1 to Y do
3: // Get the pixel array P that consists of the coordinates [x,y]
and land-cover types c of all pixels on link ((xG,yG),(i, j)]. The
getTraversedPixels function is designed based on the Bresenham’s
algorithm.

4: P= getTraversedPixels(xG,yG, i, j,LM)
5: // Initialize the link length L and the path loss PL using the first
pixel P1 in P. P1x,P1y,P1c are the attributes x,y,c of P1, respectively.

6: xend = P1x, yend = P1y, n= nP1c

7: D= R
√

(xend − xG)2+(yend − yG)2

8: PL = PL(d0)+10n log D
d0

9: L = D, xstart = P1x, ystart = P1y
10: // Search for the segments whose pixels belong to the same type,

and iteratively calculate their path losses with their distances to the

gateway. Pkx,Pky,Pkc indicate the attributes x,y,c of the k-th pixel in P,
respectively. |P| is the total pixel number of array P.

11: for k = 2 to |P|−1 do
12: if Pkc == Pk+1c then
13: continue
14: else
15: xend = Pkx, yend = Pky, n= nPkc

16: D= R
√

(xend − xstart)2+(yend − ystart)2

17: PL = PL+10n log L+D
L

18: L = L+D, xstart = Pkx, ystart = Pky

19: // Add the path loss of the last segment to get the overall path

loss.

20: xend = P|P|x, yend = P|P|y, n= nP|P|c
21: D= R

√
(xend − xstart)2+(yend − ystart)2

22: PL = PL+10n log L+D
L

23: EM(i, j) = ESP0−PL
24: if EM(i, j) < S then
25: EM(i, j) =−∞
26: return EM

After that, we sum up the path loss of all segments and get the ESP

value at Pixel 2.

Algorithm 1 shows the details of our ESP map generation

algorithm. For each pixel in the land-cover map, SateLoc first

extracts all the traversed pixels from it to the gateway (not included)

using a form of Bresenham’s line drawing algorithm [7]. Then

SateLoc divides these pixels into segments, each of which belongs

to the same land-cover type. The path loss of each segment can be

iteratively calculated with the corresponding path loss exponent

and its distance to the gateway. Finally, SateLoc calculates the

overall path loss and further the ESP value of the pixel. While pixels

belonging to the same type are usually clustered in an area(illustrated

in Section 5), there will be reasonable ESP calculations (each

corresponds to a segment) for each pixel. Therefore, the overall

map generation cost (including time cost and computing resource

overhead) will be acceptable.
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Figure 2.11 – Envision of a generated environment type map. Thus, LoRa node at Pixel 1
transmits its packets in the same environment type, i.e. built-up, while the packets need
to propagate across multiple environment types node when transmitting from Pixel 2 [83].

2.4 Summary and Conclusion

This chapter summarizes the main signal features and the two major approaches for
IoT localization. Although these approaches have different characteristics, they are com-
plementary for localizing properly in different scenarios as follows:
• Geometrical approaches: For outdoor scenarios with open space, the geometri-

cal methods take the lead as the path loss models can be explicitly modeled and
parameterized. Moreover, the other signal measurements, for instance, ToA, TDoA
or AoA values, are exposed to fewer error sources, such as reflection and multipath
conditions, in such open environments.
• Fingerprinting approaches: In contrast, fingerprinting approaches are more

suitable for indoor and urban scenarios with complex structures whose channel
propagation properties are difficult to be modeled. With fingerprinting methods,
these signal propagation phenomenons and multipath effects are exploited as ad-
ditional information to enhance the localization accuracy. Subsequently, more po-
tential is given to the fingerprinting methods for providing higher resolution and
more details on complex localization scenarios.

For more accurate localization solutions, it is feasible to fuse different signal mea-
surements [9, 84], or integrate the geometrical and fingerprinting methods [85, 86]. For
example, [87] proposes a hybrid RSSI-AoA localization system for localizing a LoRa device
with one gateway only. To estimate the node position, the distance between the gateway
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and the node is calculated using a path loss model based on the RSSI value, after estimat-
ing the AoA of the received signal. This localization system is evaluated outdoor in a 55 m
× 101 m playground in Kookmin University, Seoul, Korea. The results confirm the fea-
sibility of estimating the end node position precisely using only one gateway in LoRaWAN.

However, these presented solutions are often sub-optimal when looking at what is
needed for many IoT applications. Even the classical localization approaches should be
optimized to meet the requirements for most IoT network operators, as detailed in the
following chapters.
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Chapter 3

ENHANCEMENT OF THE TDOA
TECHNIQUE

3.1 Introduction

The last decade has witnessed the development of the localization methods based on
RSSI, AoA, ToA, TDoA and their multiple combinations [26], as detailed in the previous
chapters. The gateways utilize these measurements to determine their relative position
relations with the source for localization. In RSSI techniques, the existing relation be-
tween received power and the node position is exploited [9]. However, these techniques
are sensitive to the channel environments and often require a good knowledge of the signal
attenuation model [82]. In AoA techniques the angle from which the signal propagates is
determined. The maintenance of an antenna array and precise calibration is always re-
quired, which results in extra expenses, moreover, their localization accuracy is sensitive
to the distances between the node and the gateways [88]. ToA is one of the most accurate
techniques available as it uses timestamps embedded in transmitted packets along with
the received time to determine how far the packet had to travel to reach the destination
[89]. Through the use of synchronized clocks, the signal propagation time between the
transmitter and receiver can be determined. However, when using a ToA setup, devices
in the network need synchronized clocks down to nanosecond scale in order to achieve a
proper distance approximation, which requires additional hardware, thus increasing the
cost of the system. Therefore, these three kinds of techniques are not so practical.

TDoA is similar to ToA but it is a more popular technique for localization as it does not
require the transmitter to be synchronized with the receivers [4]. Only the gateways are
required to have synchronized clocks to compute the differences between the timestamps
of a transmission. After recalling from the previous chapters, these accurate timestamps
are given at each gateway when receiving a packet by N gateways. These N gateways
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are considered the anchor points with well-known locations at different distances to the
end node, therefore, LoRa packet is received at different instances in time. Accurate time
stamping is possible since each gateway has a GPS receiver for time synchronization.
After acquiring the differences between the timestamps of a transmission, it is considered
a multilateration problem that involves solving a set of hyperbolic functions, and therefore
at least three gateways are needed to locate the node on the intersecting point of the
hyperbolas. Based on that, the conventional geolocation for LoRa networks can be based
on TDoA measurements, where hundreds to thousands of meters of accuracy can be
achieved. In this chapter, the accuracy of the TDoA localization technique is improved
by compensating for its shortcomings.

3.2 A Parametric TDoA Technique

3.2.1 Problem Statement and Contribution

In the practical situations of TDoA localization, the quality of each timestamp can
vary largely from one gateway to another. This is due mostly to the time drift which occurs
in the timestamping process and the effect of the multipath in Non-line-of-sight (NLoS)
situations. These outliers timestamps may have an extremely deleterious effect on the
final position accuracy with the classical TDoA solving techniques.

In this section, to tackle this problem, a novel parametric TDoA method is proposed
that uses hyperbolic parameterization to localize the node on one of the hyperbolas instead
of localizing it on the space far from the vicinity of the hyperbolas. Thus, the proposed
approach is finding this location on a hyperbola at a point that has the minimum Euclidean
distance to all the other hyperbolas. The accuracy and ease of use of this algorithm are
evaluated through simulations. It is shown that the proposed approach effectively reduces
localization errors in a wide range of situations covering different densities of gateways
and noise models on ranging data.

3.2.2 Organization

The remainder of this section is organized as follows. Section 3.2.3 provides sufficient
detail to allow implementation of the proposed algorithm. Section 3.2.4 provides guid-
ance on the simulation model used to evaluate the performance of the algorithm on the
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localization accuracy. The results of the simulation are then presented and commented in
Section 3.2.5. Finally, Section 3.2.6 is dedicated for conclusions.

3.2.3 Parametric TDoA

Unlike the classical TDoA i.e., its system model is introduced in Section 2.3.1, in
which the estimated position p̂ could be any point in the plane R2, the main concept
of the parametric TDoA is obtaining the point p̂h,i to be placed on hyperbola i to be
determined, by parameterizing the hyperbolic functions. This method is achieved using
the following two steps:

1. Minimizing the Euclidean distance matrix by letting a set of points, each
one lying in a different hyperbola among H hyperbolas to be expressed as:

Ph(t) =
[
ph,1(t1), . . . ,ph,H(tH)

]
=
xh,1(t1), . . . , xh,H(tH)
yh,1(t1), . . . , yh,H(tH)

 , (3.1)

where t =
[
t1, t2, . . . , tH

]
is the vector of the so called hyperbolic angles. Then,

finding for every pair of gateways the distance between them as [90]:

d =
[
‖gl(1) − gr(1)‖2, . . . , ‖gl(H) − gr(H)‖2

]
(3.2)

and also the difference of distances vector a which is defined for each hyperbola as
the timestamps difference at both gateways expressed in meter as:

a = c · τl,r, (3.3)

while the distances from a focus to either asymptote i.e., the semi-minor axis, are
defined as:

b =
√

d2 − a2, (3.4)

as well as, the exact centroid between each pair of gateways are calculated as:

q = Gl + Gr

2 . (3.5)
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Accordingly, all the H points on all the hyperbolas are initially acquired as:

Ph(t) = q + a
2 � cosh(t)�U + b

2 � sinh(t)�V (3.6)

with
U = Ph(tr)−Ph(tl)

d
=
[
û1, . . . , ûH

]
(3.7)

and

V =
[
ẑ× û1, . . . , ẑ× ûH

]
, (3.8)

where � and × are defined as the element wise matrix product and the vector cross
product, respectively. Based on that, the obtained points Ph(t) have a deterministic
Euclidean distance matrix defined as:

Dh(t) =



0 d2
12 d2

13 . . . d2
1H

d2
21 0 d2

23 . . . d2
2H

d2
31 d2

32 0 . . . d2
3H

... ... ... . . . ...
d2
H1 d2

H2 d2
H3 . . . 0


(3.9)

where d2
ij = dij(ti, tj)2 = ‖ph,i(ti) − ph,j(tj)‖2

2 is the Euclidean distance between
the hyperbola i and j. Here, the main target is to find the proper hyperbolic angles
tmin which minimize the summation of the Euclidean distance matrix Dh(t), and
this can be achieved using a solver as:

tmin = arg min
t

(
H∑
i=1

H∑
j=1

dij(ti, tj)2). (3.10)

2. Electing the convenient point from the set of estimated points Ph(tmin) is
the final step i.e., one of the points among the small cross blue markers as shown
in Figure 3.1. This is achieved by picking the index of the point which has the
minimum Euclidean distance to all the other hyperbolas as:

imin = arg min
i

(
H∑
j=1

dij(tmin,i, tmin,j)2). (3.11)
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Hence, the final estimated location of the node is considered as:

p̂h,imin = ph,imin(tmin,imin), (3.12)

which is the large cross blue marker in Figure 3.1, actually most of the cases closer
to the true position than the classical TDoA estimation with the large cross green
marker. The reason behind the proposed method is that it should be less sensitive
to the outliers because of the constraint imposed on the points of belonging by
construction to hyperbolas associated with the constraints.

3.2.4 Simulation Model

In this section, a brief overview of the simulator model is given in order to allow for
a dynamic study of the system performance. Thus, the two main aspects shaping the
simulation scenarios are the distributions of the gateway locations with respect to the
node location and the choice of convenient uncertainty in the timestamps, to be closer to
the real measurements as detailed in the following subsections.

Gateway locations

The gateway locations are produced by the Poisson disk distributions algorithm which
has been introduced in [91]. This is considered as a fast 2-D blue noise sampler, easily
implemented in arbitrary dimensions and it is guaranteed to take O(M) time to generate
M Poisson disk samples. To start the process, this algorithm takes as input the length
len and width wid of the samples domain in R2, and the minimum distance ρ between the
samples. First, it initializes a 2-D background grid for storing samples and accelerating
the spatial searches. Then, it selects the initial sample randomly chosen uniformly from
the domain and inserts it into a cell in the background grid. The cell size is picked to
be bounded by ρ√

2 , so that each grid cell will contain at most one sample. In the next
iteration, the neighboring point is chosen uniformly from the spherical annulus between
radius ρ and 2ρ around the previous sample. This linear algorithm is done recursively until
all theM samples are generated. At this point, the node location is chosen randomly from
the samples, while maintaining the other samples to be the gateway positions, as shown
in Figure 3.1.
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Figure 3.1 – A sample pattern from the algorithm (ρ = 2.5 km, wid = 10 km, len = 5 km).

Timestamp perturbation model

From our knowledge of what is observed in LoRaWAN practical situations, it often
happens that few gateways are suffering from much larger uncertainty than the others. To
model this fact, a Gaussian mixture distribution is proposed. The first Gaussian is taking
into account the measurement noise whereas the second is taking into consideration the
larger oscillator drift perturbation. Hence, the timestamp is individually calculated after
extending Equation 2.10 by modeling the uncertainty term un as:

τn = dn
c

+ uw1 + (1− u)w2 (3.13)

with
Pr(u = 1) = p = 1− Pr(u = 0), (3.14)

where w1 ∼ N (0, σ2
1) and w2 ∼ N (0, σ2

2) are the normal Gaussian distributions of the ther-
mal noise and the gateway oscillator drift, respectively, by assuming zero means in both
cases. Thus, the probability p is chosen equal to 0.8 taking into account the occurrence
probability of the oscillator drift by 20%.
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3.2.5 Simulation Results

In the previous section, the simulation framework is provided including the location
distributions and the chosen noise model. In this section, the simulation results are pre-
sented, using the Euclidean distance error between the true position of the node and
the estimated location, as a measure of performance for the localization methods. This
is measured by Monte Carlo simulations after utilizing the proposed parametric TDoA
technique and the classical TDoA using LS i.e., introduced in [66], for comparison. More-
over, the two main parameters which shape the simulation scenarios are the magnitude
of the oscillator drift variance and the number of gateways, as detailed in the following
subsections.

Impact of the oscillator drift variance

The robustness of the system against the outlier timestamps is checked by changing
the drift standard deviation σ2 in Equation 3.13 to be in the range from 0 µs to 2 µs (≡
0 m to 600 m), while maintaining the thermal noise standard deviation σ1 to be equal to
0.1 µs (≡ 30 m). For the gateway location distribution, the length len and width wid of the
map are fixed to 5 km and 10 km, respectively, while the minimum distance ρ between the
points is equal to 2.5 km. This distribution configuration usually gives a median number
of gateways between 5 and 8.

As shown in Figure 3.2a, the simulation result shows an obvious reduction in the lo-
calization error medians when using the parametric TDoA, especially for the large values
of the drift. This indicates that the proposed method is more robust to the high drifts.
Accordingly as shown in Figure 3.2b, the CDF curves obtained for all the drift values pre-
serve the same performance rank over the whole simulations with 50% of the error values
less than 40 m and 65 m, using the proposed parametric and classical TDoA, respectively.

Impact of the number of gateways

The localization performance assessment for various number of gateways is studied by
utilizing the minimum distance ρ between the gateways to be in the range from 1.6 km to
4 km, while fixing the length len and width wid of the map to be 5 km and 10 km, respec-
tively. Moreover in all the results, the drift standard deviation σ2 and the thermal noise
standard deviation σ1 are assumed to be equal to 1.2 µs (≡ 360 m) and 0.1 µs (≡ 30 m),
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(a) Errors at each value of the drift standard deviation.

(b) The whole simulation results of σ2 ranging from 0 m to 600 m.

Figure 3.2 – Euclidean distance error and CDF while changing drift standard deviation
σ2.
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respectively.

As shown in Figure 3.3a, it is clear that all the medians of the parametric method
are drastically the lowest values for all the network densities. While by observing the
extreme error values, the main parameter in achieving the performance promised by the
proposed algorithm without these outlier values, is the large number of gateways (>4)
i.e., a realistic value in the near future. Thus, it is clear in the lower network density
that the number of hyperbolas decreases accordingly, resulting in an incorrect selection
of the convenient point i.e., discussed in Section 3.2.1, from the set of estimated points
P(tmin) and a less accurate localization. Only at these low number of gateways, there is a
trade-off to find between the two methods, the parametric one being better regarding the
median and worst regarding the outliers. Nevertheless as shown in Figure 3.3b, the CDF
curves obtained for all the inner radius values still confirm the prevalence of the proposed
method over most of the simulations with 95% of the error values less than 840 m and
2200 m, using the proposed parametric and classical TDoA, respectively.

3.2.6 Conclusion

In this section, a novel TDoA parametric method for IoT localization is presented. The
technique improves the accuracy of localization in the presence of outliers, even when high
levels of drift in gateways can hardly be avoided. The principle is based on the choice of
the node position to be located on one of the hyperbolas by bringing the optimization
into the parametric space of the hyperbolic constraint sets. For performance assessment of
this technique, a simulator has been developed that uses a Poisson distribution approach
for determining the location of gateways and nodes based on configurations chosen to
be as close as possible to the realistic situations encountered in the LoRaWAN context.
Moreover, a noise model is proposed to emulate the proper disturbance in the timestamp
values by considering the drift variance. Simulation results prove the high performance
of our parametric method over a wide range of drift standard deviations and network
densities. In some configurations the achieved performance using the proposed technique,
almost matches the performance in non-drifted timestamp scenarios. This competes par-
ticularly well regarding localization accuracy with more traditional approaches. This is
going to become increasingly useful when situations of localization with a greater number
of gateways will be more frequent in the future.
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(a) Errors at each number of gateways.

(b) The whole simulation results of ρ ranging from 1.6 km to 4 km.

Figure 3.3 – Euclidean distance error and CDF while changing inner radius ρ.
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For future work, parametric TDoA can be used to detect outliers as well as an initial
guess point for more sophisticated localization approaches that integrate other a priori
information.

3.3 A Pre-processing Algorithm Utilizing a Paired
CRLB for TDoA

3.3.1 Problem Statement and Contribution

In the practical situations of TDoA localization, not all pairs of gateways are equiv-
alent concerning the amount of extra information they bring to the estimation problem.
Using the entire combinations as the classical TDoA solving techniques may have an ex-
tremely deleterious effect on the final position accuracy. Thus, it could be advantageous
to define some criteria to select the best combination of gateways or equivalently the best
hyperbolas to resolve the estimation problem.

In this section, to tackle this issue, a novel preprocessing method is proposed by
utilizing a paired CRLB as an instrumental tool to detect the mostly perturbated TDoA
values. This capability is due to the relative position of the node with respect to each
pair of gateway locations which affect the paired CRLB values specifically. Accordingly,
the perturbation probability in each TDoA value can vary largely. In the vicinity of the
guessed node location, the proposed approach is detecting the best TDoA values, which
have the lowest paired CRLB values specifically, based on a robust thresholding method.
The accuracy and ease of use of this pre-processing algorithm are evaluated through
simulations. It is shown that the proposed approach effectively reduces localization errors
in a wide range of situations covering different densities of gateways and measurement
noise variances.

3.3.2 Organization

The remainder of this section is organized as follows. Section 3.3.3 presents instructions
to allow implementation of the proposed algorithm. Section 3.3.4 provides guidance on the
simulation model used to evaluate the performance of the algorithm on the localization
accuracy. The results of the simulation are then presented and commented in Section 3.3.5.
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Finally, Section 3.3.6 is dedicated for conclusions.

3.3.3 Paired CRLB pre-processing

The CRLB is a lower bound on the covariance of any unbiased estimation algorithm
based on the measurement [92]. This is calculated for the whole TDoA combinations from
the inverse of the Fisher Information Matrix (FIM) J as:

E[(p̂− pt)(p̂− pt)T ] ≥ J−1, (3.15)

where E[·] determines the expectation value and pt is the true node position.

As mentioned before, when dealing with a rather large number of gateway combi-
nations, not all relative configurations with respect to the unknown node position are
equivalent. Therefore, the proposed method invokes the paired CRLB information applied
on each combination of 2 gateways to detect these most suitable hyperbolas associated
with the best configurations. Thus, the node is localized after removing the combinations
which have the highest paired CRLB values at an initial guess location po = [xo, yo]T

rather than, using the whole combinations including the ones whose configurations are
less favorable and have been observed to introduce large errors. This algorithm is achieved
using the following two steps:

1. Estimating the paired CRLB values is done separately for each combination by
assuming a constant standard deviation σ for all the gateways. Thus, the covariance
matrix at each pair of gateways is reduced to the scalar value R = 2σ2. Accordingly,
the Jacobian of the measurement function for a given pair of gateways i evaluated
at position po is calculated as:

f oi = ∂hl(i),r(i)
∂p

∣∣∣∣
p=po

(3.16)

=
[
∂hl(i),r(i)

∂x

∣∣∣∣
p=po

,
∂hl(i),r(i)

∂y

∣∣∣∣
p=po

]
(3.17)

=
[
xo−xl(i)
do
l(i)
− xo−xr(i)

do
r(i)

,
yo−yl(i)
do
l(i)
− yo−yr(i)

do
r(i)

]
, (3.18)

with dol(i) = ‖gl(i) − po‖2 and dor(i) = ‖gr(i) − po‖2.
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Hence, the computation of the Fisher Information Matrix follows as:

Joi = 1
2σ2 f oi

T f oi , (3.19)

thus, the paired CRLB value is calculated from the inverse of the FIM Joi , then,
calculating the square root of its trace as:

coi =
√
tr(Joi−1). (3.20)

2. Determining the outliers from all the determined paired CRLB values

Co =
[
co1, . . . , c

o
H

]
(3.21)

, which are shown in Figure 3.4, by observing that the high peak at any com-
bination index is considered as an outlier combination, while the low peaks are
the proper combinations to be utilized for the localization. Thus, several threshold
methods have been investigated, which all try to separate the outliers from the
regular paired CRLB values without other a priori knowledge. These investigated
thresholding techniques are mainly based on analyzing the variance of the paired
CRLB values since it is observed that the regular values have amplitudes close to
one another. Subsequently, all these methods assume that the combinations have
two classes: ordinary paired CRLB value class and outlier class which are below
and above the shown threshold in Figure 3.4, respectively.

In this section, the proposed thresholding technique is based on Median Absolute
Deviation (MAD) which is a robust measure of how spread out a set of data is [93].
Hence, the classical standard deviation estimator could also measure the spread,
but it is more affected by the extremely high or extremely low values and non-
normality due to the presence of outliers. Accordingly, this threshold is computed
as:

γ = median(Co) + 3 · σ̂MAD (3.22)

with
σ̂MAD = b ·median(|Co −median(Co)|), (3.23)
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where 3 has been heuristically chosen and the normalization factor b is set to
1.4826 in order to be consistent for the standard deviation at the normal Gaussian
distribution i.e., usually the region of interest.
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Figure 3.4 – The CRLB values of all the combinations (H = 6).

After labeling the outlier CRLB values by this threshold technique, the node is lo-
calized without these combinations, as shown in Figure 3.5. After removing the outlier
combination based on its poor Geometric Dilution of Precision (GDoP), such a strategy
reduces the error variance in the final estimated position.

The worst combination ! {

Figure 3.5 – A typical geometrical configuration of gateways with an outlier combination.
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3.3.4 Simulation Model

Two main aspects shape the simulator model which allows for a dynamic study of the
system performance. These are the distributions of the gateway locations with respect to
the node location and the choice of convenient uncertainty in the timestamps, to be closer
to the real measurements as detailed in the following subsections.

Gateway locations

The gateway locations are produced by the Poisson disk distributions algorithm which
has been introduced in Section 3.2.4. After generating M samples, the node location is
chosen randomly from the samples, while maintaining N extracted samples to be the
gateway positions. Notice that generating the node location out of the dense M samples
set forbids the node location to be less than ρ meter from any gateway.

Timestamp perturbation model

For the sake of simplicity, only the thermal noise using a normal Gaussian distribution
is considered. Thus, the timestamp is individually calculated as in Equation 2.10 while
assuming a zero mean of the uncertainty term un ∼ N (0, σ2).

3.3.5 Simulation Results

In the previous section, the simulation framework is provided including the location
distributions and the chosen noise model. In this section, the simulation results are pre-
sented, using the Euclidean distance error between the true position of the node and the
estimated location, as a measure of performance for the localization methods. This is
measured by Monte Carlo simulations after utilizing the parametric TDoA technique i.e.,
introduced in [94], with and without paired CRLB pre-processing for comparison. More-
over, the two main parameters which shape the simulation scenarios are the magnitude
of the thermal noise variance and the number of gateways, as detailed in the following
subsections.

Impact of the noise variance

The robustness of the system against the outlier combinations is checked by changing
the thermal noise standard deviation σ in Equation 2.10 to be in the range from 0.1 µs to
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1 µs (≈ 30 m to 300 m), while maintaining the number of gateways to be N = 7 which are
chosen randomly from a fixed location distribution. For this gateway locations configura-
tion, the length len and width wid of the map are fixed to 5 km and 10 km, respectively,
while the minimum distance ρ between the M samples is fixed to 100 m.

As shown in Figure 3.6a, the simulation result shows a noticeable reduction in the local-
ization error medians when using the paired CRLB pre-processing algorithm. Accordingly
as shown in Figure 3.6b, the CDF curves obtained for all the noise values preserve the
same performance rank over the whole simulations with 50% of the error values less than
200 m and 230 m, while turning the proposed algorithm ON and OFF, respectively. This
indicates that the proposed method is robust to the high noise variances.

Impact of the number of gateways

The localization performance assessment for a various number of gateways is studied
by utilizing the same gateway locations configuration i.e., introduced in the previous sub-
section, while choosing randomly from them a particular number of gateways N to be in
the range from 3 to 15. Moreover in all the results, the thermal noise standard deviation
σ is assumed to be equal to 0.1 µs (≈ 30 m).

As shown in Figure 3.7a, it is clear that all the medians of the proposed method are
drastically the lowest values for all the network densities, especially for a large number
of gateways (> 3) i.e., a realistic value in the near future. Thus, it is clear in the lower
network density that the number of hyperbolas decreases (≈ 3), accordingly, only one
hyperbola might be dropped resulting in a tiny or almost no gain. Nevertheless as shown
in Figure 3.7b, the CDF curves obtained for all number of gateways range still confirm
the prevalence of the proposed method over most of the simulations with 95% of the error
values less than 1600 m and 1940 m, while turning the proposed algorithm ON and OFF,
respectively.

3.3.6 Conclusion

In this section, a novel TDoA pre-processing method for IoT localization is presented.
This technique improves the accuracy of positioning in the presence of outlier hyperbo-
las by choosing only the best hyperbolic constraint sets for estimating the node location

62



3.3. A Pre-processing Algorithm Utilizing a Paired CRLB for TDoA

29.98 83.94 137.9 191.87 245.83 299.79
Noise standard deviation [m]

10 1

100

101

102

103

E
rr

o
r 

[m
]

(a) Errors at each value of the noise standard deviation.

(b) The whole simulation results of σ ranging from 30 m to 300 m.

Figure 3.6 – Euclidean distance error and CDF while changing noise standard deviation
σ.
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(a) Errors at each number of gateways N .

(b) The whole simulation results of N ranging from 3 to 15.

Figure 3.7 – Euclidean distance error and CDF while changing the number of gateways
N .
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based on their low paired CRLB values. Thus, the principle is based on dropping the
combinations, whose paired CRLB values are high in the proximity of the node location,
using a robust thresholding technique. For performance assessment of this algorithm, a
simulator has been developed. It uses a Poisson distribution approach parameterized for
setting the location of gateways and nodes as close as possible to realistic situations. The
used simulator also emulates the proper disturbance in the timestamp values. Simulation
results demonstrate the high performance of our pre-processing algorithm over a wide
range of noise standard deviations and network densities.

For future work, an optimum technique for outliers detection could be investigated
rather than using a thresholding method.

3.4 A Pre-processing Algorithm for Outlier Times-
tamp Detection

3.4.1 Problem Statement and Contribution

In the practical situations of TDoA localization, the accuracy of each timestamp can
vary largely from one gateway to another. This time drift in the timestamping process is
due mostly to a large thermal noise or any imperfection that could accidentally happen in
the process. Using the entire timestamps degrade the localization accuracy of the TDoA
techniques.

In this section, to tackle this problem, a pre-processing method is proposed by uti-
lizing an initial guess of the node position to detect the mostly perturbated timestamp
values. This capability is due to the relative position of the node with respect to each
hyperbola. First, the proposed approach is measuring the Euclidean distances from the
guessed location to all the hyperbolas. Accordingly, the proposed approach detects the
worst timestamps based on a robust thresholding method. These perturbated timestamps
should be removed before using any TDoA localization technique, as detailed in the fol-
lowing subsections.
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3.4.2 Outlier Timestamp Detection

The main concept of the proposed method is dropping the outlier timestamps which
make some hyperbolas far away from the vicinity of the node location, as the bold hyper-
bolas in Figure 3.8. This method is achieved using the following two steps:

1. Estimating the Euclidean distances between the initial guess location po =
[xo, yo]T to all the hyperbolas is the first step. This initial guess location i.e., labeled
by the large cross green markers in Figure 3.8, can be obtained by the paramet-
ric TDoA localization technique which is introduced in Section 3.2. Using Equa-
tion 3.10, the set of points Ph(tmin) which are lying on the H hyperbolas are
acquired, as labeled by the small cross green markers in Figure 3.8. Then, the eu-
clidean distances between each hyperbola and the initial guess of the node location
are calculated as:

doh =
[
doh,1, . . . , d

o
h,H

]
=
[
‖po − ph,1(tmin,1)‖2, . . . , ‖po − ph,H(tmin,H)‖2

]
. (3.24)

As shown in Figure 3.9a, some of the euclidean distances have relatively extreme
values than the other ones due to the inclusion of an outlier timestamp in the
TDoA values which make these hyperbolas.

2. Determining the outlier timestamps is done by calculating first the average
euclidean distances corresponding to each gateway index n as:

doa =
[
doa,1, . . . , d

o
a,n, . . . , d

o
a,N

]
(3.25)

with
doa,n = 1∑H

i=1 1l(i)|r(i)=n

H∑
i=1

doh,i1l(i)|r(i)=n ∀n. (3.26)

As shown in Figure 3.9b, the estimated average euclidean distances doa have a high
peak at gateway index 4 which is considered as an outlier, while the low peaks cor-
respond to the proper timestamps to be utilized for the localization. As previously
discussed in Section 3.3.3, several thresholding methods have been investigated,
which all try to separate the outliers from the average euclidean distances without
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other a priori knowledge. These investigated thresholding techniques are mainly
based on analyzing the variance of the average euclidean distances since it is ob-
served that the regular values have amplitudes close to one another. Consequently,
all these methods assume that the average euclidean distances have two classes:
ordinary average euclidean distances class and outlier class which are below and
above the shown threshold in Figure 3.9b, respectively. Again, a thresholding tech-
nique based on MAD is proposed. Accordingly, this threshold is computed as:

γ = median(doa) + 3 · σ̂MAD (3.27)

with
σ̂MAD = b ·median(|doa −median(doa)|), (3.28)

where 3 has been heuristically chosen and the normalization factor b is set to 1.4826
in order to be consistent for the standard deviation at the normal Gaussian distri-
bution i.e., usually the region of interest.

After labeling the indices of the outlier timestamps by this thresholding technique,
the node is localized without these timestamps. As shown in Figure 3.8, the euclidean
distance error of the new estimated position i.e., labeled by a large cross blue marker,
is reduced after dropping the outlier timestamps in comparison to the scenario with the
large cross green marker before dropping the outlier timestamps. Such a strategy increases
the accuracy of the estimated position as the estimation process is not attracted to the
outlier hyperbolas i.e., relatively far away from the node position, after dropping the
outlier timestamps.

3.5 Summary and Conclusion

This chapter introduces the proposed strategies and methods to improve the localiza-
tion accuracy of TDoA localization. These proposed approaches could be used as indepen-
dent or complementary methods to obtain a more precise localization. For complementary
usage, the proposed approaches are recommended to be utilized sequentially in the fol-
lowing order:

1. An outlier timestamp detection algorithm is a proposed preprocessing algo-
rithm to drop out the perturbated timestamps before localizing using any TDoA
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Figure 3.8 – Improvement of the localization accuracy after dropping the outlier times-
tamps.

technique. An initial guess of the node location and the euclidean distances from
it to each hyperbola are the only requirement for this approach. Then, the per-
turbated timestamps are detected from examining the most perturbed hyperbolas
whose locations are far away from the vicinity of the node location. Dropping these
outlier timestamps is proven to increase the localization accuracy by preventing
any unreliable sensitivity from them.

2. An outlier TDoA detection algorithm is another proposed preprocessing
method to detect the outlier TDoA values by utilizing a paired CRLB as an in-
strumental tool. From the vicinity of an initial guess of the node location, the
TDoA combinations, whose paired CRLB are low, are dropped based on a thresh-
olding technique. Using an implemented simulator, this proposed method is proven
to decrease the localization error by localizing with the best TDoA values whose
perturbation probabilities are less.

3. A parametric TDoA technique is a proposed approach to localize the node on
one of the hyperbolas, contrary to the classical TDoA technique which localizes
very often on the space far away from the vicinity of node location. The simulation
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(a) Euclidean distances from the initial guess of the node location to all
the hyperbolas (H = 15).
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(b) Average euclidean distances corresponding to each gateway times-
tamp.

Figure 3.9 – Detecting the outlier timestamps.
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results show that this proposed parametric method outperforms the classical one
over different timestamps drift variances and number of gateways. Based on that,
this proposed method is asserted to be less sensitive to any perturbation in the
timestamps or the TDoA values.

For future work, the presented TDoA techniques can be complemented with classical
machine learning techniques for merging other radio observations such as RSSI, AoA
estimates or digital elevation model of the propagation environment.
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Chapter 4

FEASIBILITY OF UTILIZING THE CSI FOR

LORA LOCALIZATION

4.1 Introduction

Among all the localization technologies, wireless RSSI fingerprinting has proven as an
effective positioning technique due to its simplicity and deployment practicability [82].
Fingerprinting based localization avoids hardware deployment cost and effort by relying
on existing network infrastructure. It just relies on the received signal strength at each
gateway to localize the node. However, RSSI-based fingerprinting localization methods
may have poor positioning performance as RSSI always vary due to the large signal
power fluctuations both in time and space, moreover, each measured RSSI value depends
on the hardware accuracy as well as the system calibration for every measurement [49].
Besides, RSSI contains coarse information so as to not fully utilize the abundant channel
information in each subcarrier. Therefore, some little work has been published whose aim
is to take the average value of the whole CSI subcarrier amplitudes which is proven to
be more temporally stable in different environments and helps maintain the performance
over time in comparison with RSSI [95]. This chapter investigates the feasibility of using
the CSI for localization in LoRaWAN, moreover, the advantage of utilizing ESP rather
than RSSI in many prospective IoT applications is investigated.

4.2 Related Works

Recently, different characteristics of LoRa propagation are mentioned in many works.
For example, the physical and data link layer performance are evaluated by field tests and
simulations in [15]. While the coverage and channel attenuation of LoRa technology are
evaluated for real environments in [96] and [97], path loss models are developed and com-
pared with widely used empirical models based on empirical results in [98]. On the other

71



Part I, Chapter 4 – Feasibility of Utilizing the CSI for LoRa Localization

hand, the feasibility of utilizing the CSI for localization is studied in [99]. However, these
previous works don’t investigate either the spatial correlation of CSI or, the reciprocity
between the uplink and downlink CSI which could be exploited in some security proce-
dures in the LoRaWAN [100]. Moreover, these previous works do not inspect or utilize
the ESP, i.e. introduced in [101].

4.3 A Robustness Comparison of Measured Narrow-
band CSI vs RSSI for IoT Localization

4.3.1 Contribution

In this section, it is favorable to show the possibility to leverage CSI for improving
the performance of positioning by investigating the profit of using the entire subcarrier
magnitudes without averaging or any reduction. Thus, an initial measurement campaign is
done to compute the narrowband CSI of transmitted LoRa signals from different locations.
To achieve significant localization gain, it is necessary for the individual channels from
each different position to be uncorrelated with one another. Thus, the presented short time
data indicate that channel slopes with even short separated distances will be quite stable
and show weak intercorrelations between them. Furthermore, the CSI in each position
after a while is more correlated with itself which can achieve a significant diversity gain
in comparison with the mean amplitude of the CSI. This trial allows us also to derive
recommendations for the use of diversity at the receiving site in short-range outdoor-
to-outdoor transmission systems, asking questions like: "At what distance must vertically
polarized antennas be placed such that intercorrelation is low and hence gateway diversity
is potentially beneficial for localization?" or "Can also the LoRa frequency hopping add a
diversity gain for a static transmitting node scenario?".

4.3.2 Organization

The remainder of this section is organized as follows. Section 4.3.3 presents the mea-
surement overview and Section 4.3.4 provides sufficient detail of the proposed post-
processing algorithm. The results of the channel correlation analysis are then presented
and commented in Section 4.3.5. Finally, Section 4.3.6 is dedicated for conclusions.
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4.3.3 System and Measurement Setup

The main concept of the proposed experiment is transmitting repeated up-chirps sig-
nal to sense the channels consecutively at the typical uplink frequency bands, i.e 9 chan-
nels with center frequency fk ∈ {867.1, 867.3, 867.5, 867.7, 867.9, 868.1, 868.3, 868.5, 868.8}
MHz, and 125 kHz bandwidth. This is considered as a traditional channel sounder with
a typical structure which has the Tx and Rx placed at two different locations, as shown
in Figure 4.1. Thus, the Rx antenna is fixed on the roof of the university building, as
shown in Figure 4.2a. While the Tx has a mobile structure with a laptop and a Universal
Software Radio Peripheral (USRP), as it is described in Figure 4.2c. First, the Tx, i.e.
located in specific positions within the area of the Campus Beaulieu in Rennes, should
generate a signal by a laptop and transmit it using the USRP to sample the channel for a
specific time interval. While the stationary Rx, whose antenna is located above the build-
ing, should receive the signal with its USRP at the same time interval of transmitting,
as shown in Figure 4.2b. After the Rx picks up the signal, the desktop computer stores
it to perform an essential post-processing algorithm on the received signal to mitigate
the imperfections and obtain the channel transfer function, as detailed in the following
subsection.

Figure 4.1 – The locations of the three measured points in the area of the Campus
Beaulieu. Positions of Tx and the Rx are labeled by black, and red markers respectively.
(©by OpenStreetMap Contributers)

Whereas the aforementioned emulated preamble LoRa signal is generated using python
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such that x[n] is expressed as depicted in equation 2.1, while the SF is chosen to be equal
to 7 and m = 0 for the basic chirp symbol.

(a) Position of the Rx
monopole antenna fixed
on the roof of the IETR
lab.

(b) The Rx USRP con-
nected to the computer
and the antenna cable.

(c) A trolley shelf with the different parts of the
transmission equipment at Tx location 2.

Figure 4.2 – Views from the Tx and the Rx sites.

4.3.4 Data Processing

On the Rx side, the saved file is imported to be analysed for each center frequency fk,
as shown in Figure 4.3. Thus, the following main signal processing techniques are carried
out with the same order.

Frequency synchronization

The frequency and time synchronization are applied at first, respectively. The objective
of frequency synchronization is to establish the subcarrier orthogonality by correcting
the phase as an initial step before applying any further processing [102]. Let define the
Carrier Frequency Offset (CFO) by ∆fk as being the difference between the up and down
conversion frequencies. This CFO results in a phase offset ∆φk = 2π∆fk

fs
between two

samples with the same index in consecutive upchirps. The residual part of this offset can
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Figure 4.3 – A typical 40 s of received data from location 2.
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be estimated by taking the average across the received entire symbol yk[n] as:

∆̂φk[l] = arg (
2SF−1∑
n=0

yk[l + n]y∗k[l + n+ 2SF ]). (4.1)

This method of detecting the CFO is described as the frequency acquisition algorithm
and is utilized over the whole handled signal portion. As shown in Figure 4.4, the angles of
the differential correlation function indicate that there are some phase deviations. Hence,
the phase error is compensated and the angles of the corrected differential correlation
function become concentrated around zero.

l

Figure 4.4 – The angles of differential correlation function ∆̂φk[l] before and after correc-
tion of the whole portion of about 30 symbols.

Channel estimation

The up-chirps in the LoRa preamble, i.e. typically consist of eight symbols, are con-
sidered as a channel sounder. Therefore, the least squares estimate of the raw channel
transfer function Hraw can be estimated for a simple division as[103]:

Hraw = Y
X
, (4.2)
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where X and Y are the training and the received symbol in the frequency domain respec-
tively. Hence, the proposed denoising technique is applied on the raw channel transfer
function Hraw. This imposes doing an incipient step, i.e. removing the thermal noise from
the subcarriers in the channel transfer function. Thus, the raw channel transfer function
Hraw is low-passed in the frequency domain using Finite Impulse Response (FIR) filter
to maintain the property of linear phase as:

Hfiltered = Rh ·Hraw, (4.3)

where Rh is the autocorrelation matrix of the channel and the filtered channel Hfiltered is
also defined as Hl

fk
. Where fk and l are the center frequency value in MHz and the location

number, respectively. As shown in Figure 4.5, one can observe that the obtained CSI is
smooth without any noise at the three different locations. Moreover, it is obvious that the
channels have a different magnitude of attenuation at the same subcarrier through the
different locations.
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Figure 4.5 – The normalized CSI with 125 kHz bandwidth.

4.3.5 Correlation Analysis

To check the plausibility of utilizing the CSI for localization, the CSI spatial and
temporal evolution at each location is analysed using a proposed method based on the
CSI slope. Furthermore, this technique is also compared to the traditional method which
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determines each position from its CSI average amplitude, as detailed in the following
subsections.

CSI slope

Based on the LoRa narrow-band characteristic, i.e. with a bandwidth W = 125 kHz
in Europe, a linear variation of the channel transfer function is assumed over frequency
bandwidth centered on fk. This condition is generally valid under the considered reality
of such a very narrow bandwidth, thus, all the obtained channel transfer functions are
almost flat, as shown in Figure 4.5. Nevertheless, it is clear that each CSI has a unique
slope. In this section, the CSI slopes are estimated to analyse the CSI evolution from each
location i as:

sifk =
| Hi

fk
[0] | − | Hi

fk
[2SF − 1] |

W
. (4.4)

Then, the Normalized Slope Distance (NSD) between any two positions for the whole K
uplink frequency bands is defined as:

Si,j = 1
2K

K−1∑
k=0
| s̃ifk − s̃

j
fk
| (4.5)

with
s̃ifk =

sifk
Smax

, (4.6)

where Smax is equivalent to the absolute value of the maximum observed slope in the
measured dataset. This is chosen to be the scaling factor for the slope normalization.
Consequently,

0 ≤ Si,j ≤ 1. (4.7)

The magnitudes of the aforementioned normalized slope s̃ifk are given in Figure 4.6a
for each different location i and center frequency fk. Thus, the full scale is normalized and
lies in [−1, 1], whereas every amplitude can vary on a several order of magnitude levels.
Each frequency of the K uplink frequency bands is labeled with a specific color. In order
to analyse the time variation of the CSI slope at each position, over a time duration τ of
about 10 minutes, an arrow is drawn for every center frequency from the first time instant
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to the second one. This measurement dataset demonstrates the slow alteration of the CSI
slope with respect to time.

Moving to the NSD Si,j values in Figure 4.7a, one can observe the high level of NSD
values in the three location combinations, which are S1,2, S1,3 and S2,3. This indicates
that CSI models from different positions are distinctly different. While the CSI for each
location significantly underlines a low NSD value with itself after a τ time interval. This is
obvious in S1,1τ , S2,2τ and S3,3τ whose values are near zero as well as they are far away from
the other NSD values, i.e. labeled by circles. So the environment of the propagation paths
for each specific position is stable with only marginal modification during this duration.

CSI average magnitude

On the other hand, the channel evolution at each location is investigated by the mech-
anism, which depends on calculating the CSI mean magnitude. This method is considered
as an alternative way rather than estimating the RSSI value. Thus, the CSI average am-
plitude is estimated for each location i as:

rifk = 1
2SF

2SF−1∑
n=0

| Hi
fk

[n] |, (4.8)

hence, the Amplitude Distance (AD) between any two positions for the entire K uplink
frequency bands is computed as:

Ri,j = 1
K

K−1∑
k=0
| rifk − r

j
fk
| . (4.9)

For the whole evaluated locations and frequency bands, the measured values of the
CSI average amplitude rifk are given in Figure 4.6b. It is foremost supposed that the CSI
slope variability from one sub-band to another is more informative than in the CSI aver-
age magnitude whose amplitudes at various bands are evaluating roughly at near levels.
Moreover, it seems that the CSI average amplitude has more alternation in time than the
CSI slope, which is particularly clear at location 2 when considering the shift between the
values of 2 and 2τ .
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As depicted in Figure 4.7b, the AD Ri,j values obtained for all the location combina-
tions preserve proper values. However, the AD values, i.e. labeled by triangles, for each
location with itself after the time interval τ are near to the AD values of different loca-
tion combinations, i.e. labeled by circles. This could be observed explicitly in the high
AD value of R2,2τ . This confirms the proposed hypothesis which asserts that the CSI is
more robust to the signal fluctuations than the RSSI, because, the CSI average magnitude
values don’t have the same temporal stability as the CSI slopes.
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(a) The normalized slope s̃ifk values.
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Figure 4.6 – A comparison between the two families of the distinct observables.
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Figure 4.7 – The distance values.
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4.3.6 Conclusion

Rather than using RSSI fingerprinting, in this section, the feasibility of utilizing the
CSI for localization is presented. This hypothesis intends to improve the accuracy of
positioning by utilizing the rich channel information in each subcarrier as well as the
frequency hopping in the LoRa systems. To allow a dynamic study of this approach, an
outdoor measurement campaign is carried out in the area of Beaulieu Campus in Rennes
to estimate the CSI of transmitted LoRa signals from different locations. Hence, the in-
dividual channels from each different location have to be appropriately different with one
another to achieve significant localization gain. This difference in the CSI for every two
locations is done based on two aspects, i.e. CSI slope and its average amplitude. Thus, the
presented data indicate that CSI slopes are more stable and robust to the signal imper-
fections than the CSI average amplitudes. This result demonstrates the high performance
of the CSI-based fingerprinting for positioning than RSSI, as well as its temporal stability.

For future work, CSI-based fingerprinting could be more efficient by using more than
one gateway i.e., a realistic value in the near future, to obtain more than one CSI for the
instant singular center frequency. Moreover, it could be improved with classical machine
learning techniques for merging other radio observables such as RSSI, AoA estimates or
the propagation model.

4.4 Spatial Correlation of CSI in Real LoRa Mea-
surement

4.4.1 Contribution

In this section, a real network deployment in the area of Beaulieu Campus in Rennes
is employed to investigate the CSI at various locations. Hence, the ESP is used for the
investigation to overcome the limitation of the RSSI at low SNR (< 0 dB) as proven.
Thus, ESP values are average at each frequency band to estimate the absolute CSI of the
uplink and downlink transmission. Consequently, the CSI reciprocity, as well as the spatial
evolution of the CSI, are analyzed using the Pearson Correlation Coefficient (PCC).
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4.4.2 Organization

The remainder of this section is organized as follows. Section 4.4.3 presents the mea-
surement overview. Section 4.4.4 provides sufficient detail about the derivation and ob-
taining of ESP values. Section 4.4.5 provides sufficient detail about the estimation of the
CSI shape. The reciprocity between uplink and downlink CSI is then investigated in Sec-
tion 4.4.6. Hence, Section 4.4.7 provides an evaluation of the spatial correlation between
the CSI shapes. Finally, the work is concluded in Section 4.4.8.

4.4.3 Measurement Overview

The main aim of the proposed experiment is obtaining an averaged ESP value at each
frequency band. This is done by placing an IoT node at various distances in the range of
≈ 5 m to ≈ 800 m, as shown in Figure 4.8. While setting the LoRaWAN Configuration
as depicted in Table 4.1. At the typical frequency bands for Europe, i.e. 8 channels with
center frequency fk, confirmed LoRa packets are transmitted sequentially with 125 kHz
bandwidth W .

5

10

(a) The end node locations in the area of the
Residence University Beaulieu. Location 8, 9
and 10 are indoor.

2

1

3

4

(b) The end node locations in the area of the
Campus Beaulieu. Location 1 is indoor.

Figure 4.8 – Positions of the node and the gateway are labeled by black, and red markers
respectively. (©by OpenStreetMap Contributers)

A Tektelic KONA Macro Gateway is used whose antenna is fixed on the roof of the
university building [104], as shown in Figure 4.9a. The end node is implemented using a
Pycom card, i.e. programmed in the MicroPython language, composed of an Expansion
Board and a LoPy 4 module which can support LoRa wireless connectivity [105], as shown
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Table 4.1 – LoRaWAN Configuration

LoRaWAN Parameter Value
Modulation technique LoRa (based on CSS)

SF 7
Coding rate 4/5

Bandwidth W 125 kHz
Transmission power 14 dBm
Center frequency fk {867.1, 867.3, 867.5, 867.7, 867.9, 868.1, 868.3, 868.5} MHz

in Figure 4.9b. This Pycom node transmits an uplink packet for each specific channel fk
sequentially. While the gateway attempts to send an acknowledgment by default at the
same frequency as the message transmitted. Accordingly, the node writes the information
of the last received downlink packet (packet number, ESP, etc.) to the payload of the next
uplink packet. A desktop computer runs a Python program is used as an AS which receives
data from the LoRa Network Server (LNS), as well as LoRa metadata with all parameters
of the LoRaWAN transmission (fk, SF, Bandwidth W , RSSI, SNR, etc.). Consequently,
the computer stores this data for processing as detailed in the following sections. For the
research society, the data is provided on this online repository [106].

(a) The gateway con-
nected to the antenna
cable.

(b) The end node at lo-
cation 4.

(c) The end node at lo-
cation 5.

(d) The end node at lo-
cation 7.

Figure 4.9 – The gateway and views from the end node sites. For the end node, a packaged
Pycom device fixed on a rod and connected to a battery is used.
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4.4.4 Effective Signal Power

The LoRa system can operate at SNR below 0 dB as LoRa signals can be decoded
with signal power below the noise floor [101]. Based on the independence between signal
and noise, the measured power Pr at the input Radio Frequency (RF) chain is the sum
of the signal power Ps, the potential interference power Pi and the noise power Pn. These
are related on a linear scale as:

Pr = Ps + Pi + Pn (4.10)

and the signal to interference plus noise ratio is:

ρ = Ps
Pi + Pn

. (4.11)

By assuming the power quantities are expressed in milliwatt, these can be redefined on a
logarithmic scale as:

RSSIdBm = 10 log10 Pr, (4.12)

ESPdBm = 10 log10 Ps, (4.13)

and the SINR is:
SINRdB = 10 log10 ρ. (4.14)

Hence, the computation of the RSSI follows as:

RSSIdBm =10 log10(Ps + Ps
ρ

)

=10 log10(Ps) + 10 log10(1 + 1
ρ

)

=ESPdBm + 10 log10(1 + ρ)− 10 log10(ρ)

=ESPdBm + 10 log10(1 + 10
SINRdB

10 )− SINRdB,

(4.15)

then the ESP can be expressed as:

ESPdBm = RSSIdBm + SINRdB − 10 log10(1 + 100.1SINRdB). (4.16)

By ignoring the potential interference power Pi, the RSSI lower limit can also be
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defined with respect to the thermal noise power Pn as:

RSSIdBm =10 log10(Pnρ+ Pn)
=10 log10(Pn) + 10 log10(ρ+ 1)
=10 log10(Pn) + 10 log10(1 + 100.1SINRdB)

(4.17)

with
Pn = kBTW · 1000, (4.18)

where the Boltzmann constant kB is 1.381× 10−23 J K−1 and the temperature T is set to
293.15 K. By using equation 4.16, the ESP lower limit can also be defined as:

ESP dBm = 10 log10(Pn) + SINRdB. (4.19)

At this point, these can be estimated as:

RSSIdBm ≈ −123 + 10 log10(1 + 100.1SINRdB) (4.20)

and
ESP dBm ≈ −123 + SINRdB. (4.21)

Taking the measured data in Rennes as an example, Figure 4.10 shows a comparison
between RSSI and ESP against different SINR values. For positive SINR, ESP coincides
with RSSI, but it differs for the negative SINR. The most striking observation is that
the raw measurement of RSSI and ESP provided by the experimental setup are very
precisely limited by expressions 4.20 and 4.21, while those lower limits are obtained by
only considering the thermal noise assumption. Thus, the RSSI distribution saturates
when the received power is approaching −120 dBm. In contrary to RSSI, ESP at negative
SINR goes below this previous limited value of the RSSI. It is worth mentioning that
when the ESP limitation gets to an extreme value, it refers to the maximum receiving
sensitivity, i.e. −142 dBm as mentioned in the Tektelic gateway specifications sheet [104].
Since some packets are received with SINR below 0 dB in the practical experiments, ESP
is more reliable to be used for CSI estimation and analysis, as detailed in the following
sections. It could be utilized for IoT localization also, particularly ESP instead of RSSI
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fingerprinting.
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Figure 4.10 – Comparison of the measured RSSI and ESP against SINR.

4.4.5 CSI Estimation

At the gateway side, the received data is extracted from the payload of each received
packet plus the metadata. As an approach for obtaining the absolute CSI, uplink ESP,
uplink and downlink ESP values are averaged at each frequency channel fk. As the shown
example in Figure 4.11a, the absolute CSI from location 2 is frequency selective with a
deep fade of more than 15 dB depth, particularly at 867.5 MHz. Moreover, channel reci-
procity is manifested between the uplink and downlink CSI with almost the same fading
position. While in Figure 4.11b, the obtained CSI also indicates multipath propagation
whose deep fades are up to 10 dB depth. Apart from a constant value whose compensa-
tion would require an accurate calibration of the transceiver RF chains, the same channel
reciprocity across all the frequency bands is preserved.

On the other hand, one can observe that the gap between the uplink RSSI and ESP
is larger in Figure 4.11b than in Figure 4.11a, as indicated by the black arrows. This
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behavior is clarified by equation 4.16, thus, the gap between the RSSI and ESP increases
when SNR decreases below 0 dB. Therefore, the RSSI values are ignored, whereas the ESP
values are utilized for further investigations as detailed in the following sections.

(a) The absolute CSI from location 2.

(b) The absolute CSI from location 7.

Figure 4.11 – The absolute CSI shape from different locations.

4.4.6 Reciprocity of the CSI

In this section, the magnitude of the aforementioned CSI reciprocity is evaluated for all
the locations. To quantitatively appreciate the similarity or dissimilarity of the frequency
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dependency of quantities, for example, the uplink versus downlink ESP values, the PCC
is used [107]. Let:

x = [x0, . . . , xN−1]T (4.22)

and
y = [y0, . . . , yN−1]T (4.23)

be two frequency dependent vectors of the same size N , where N in this experiment cor-
responds to the number of the frequency channels fk. Consequently, the centered versions
of those two vectors are:

xc = x− xT .1N
N

= x− x̄ (4.24)

and
yc = y− yT .1N

N
= y− ȳ. (4.25)

At this point, the PCC between those two vectors is classically expressed as a simple dot
product between their normalized versions as:

ρxy = x̂Tc .ŷc = xc
T .yc

√
xcTxc

√
ycTyc

. (4.26)

This correlation coefficient is a measure of the linear correlation between those two vec-
tors which captures only their fluctuations around their centers. Hence, this coefficient
is essentially a normalized value, such that the result always has a value between -1 and 1.

By utilizing the PCC for quantifying the reciprocity of the uplink versus downlink CSI,
Figure 4.12 shows the magnitudes of the PCC across all the locations. The result shows
that most of the PCC values are greater than 0.9 which represents a nearly identical shape
of CSI in the uplink and downlink. For future IoT applications, this reciprocity feature
could be exploited for the physical layer security between the end node and the gateway
[100]. However, location 3 and 10 have lower PCC values due to the lack of the averaged
ESP values at some frequency bands, hence, this often happens as a reason of the packet
transmission losses.

4.4.7 Spatial Correlation of the CSI

For investigating the spatial correlation between the CSI shapes from different posi-
tions, the CSI spatial evolution at each location is also analyzed using the aforementioned
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Figure 4.12 – The PCC magnitude between the uplink and downlink CSI at each location.

method based on the PCC between each location combination i and j. As depicted in
Figure 4.13a, most of the PCC magnitudes are generally unrelated to the Euclidean dis-
tance at any two locations in Figure 4.13b. In contrary to the nearly similar uplink and
downlink CSI which is demonstrated by the high reciprocity for a single stationary loca-
tion, hence, the CSI shape is varying from one place to another even for short separations.
This behavior is reasonable as the minimum Euclidean distance between any two loca-
tions is ≈ 4.9 m in this experiment. This suggests the feasibility of utilizing the CSI for
localization provided this CSI remains stationary enough over time. Thus, the accuracy
of positioning could be improved by utilizing the rich channel information in each subcar-
rier fk as well as the frequency hopping in the LoRa systems. Hence, the individual CSI
from each different location has to be appropriately different from one another to achieve
significant localization gain.

4.4.8 Conclusion

This section investigates both the spatial evolution of the CSI from different locations,
as well as, the reciprocity between the uplink and downlink CSI in LoRa is analyzed. Ac-
cordingly, a measurement campaign is carried out in the city of Rennes to estimate the
CSI by averaging ESP values at each frequency band. Hence, ESP is more reliable than
RSSI as it overcomes the RSSI limitation, especially at low SNR (< 0 dB). Thus, PCC
is utilized to measure the linear correlation between two CSI, as a result, the uplink and
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Figure 4.13 – PCC and Euclidean distance values across all the combinations.
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downlink CSI are almost analogous at most of the locations. Furthermore, the CSI shapes
from different locations are highly uncorrelated from each other.

For future work, this section recommends using this reciprocity feature for the physical
layer security between the end node and the gateway. Moreover, the unique CSI shape at
each location could achieve significant localization gain by utilizing the frequency hopping
in the LoRa systems to get the rich channel information in each subcarrier.

4.5 Summary and Conclusion

This chapter investigates the feasibility of localizing using LoRa CSI, by performing
outdoor measurement campaigns in the area of Beaulieu Campus in Rennes. Thus, the
spatial and temporal stability of CSI are asserted to be relatively stronger than the RSSI
values. At each different location, the CSI reciprocity is quantified using the PCC which
shows a very high linear correlation between the uplink and downlink CSI. On the other
hand, most of the CSI shapes from different locations are highly uncorrelated to each
other. Hence, it can be anticipated that this could achieve significant localization gain by
utilizing the frequency hopping in the LoRa systems by getting access to a wider band.
In the given results, the feasibility of using the ESP is proven by its enlarged range when
the SNR is very low, unlike the RSSI which has a limitation. Without loss of generality,
LoRa CSI can be obtained using the following proposed approaches:

1. Estimating the CSI from the IQ samples of the received LoRa preamble chirps
at the gateway. For each center frequency, a narrowband CSI is estimated until the
whole CSI shape is acquired by the frequency hopping, as shown in Figure 4.14.

2. Estimating the CSI by averaging the ESP values for each center frequency
until the whole CSI shape is acquired by the frequency hopping. This approach is
considered the most feasible one as it doesn’t require any additional hardware on
the gateway side. To obtain the ESP value, the value of RSSI and SNR is the only
requirement that is mostly available in any traditional gateway.

For future work, this chapter highly recommends using ESP for the potential IoT appli-
cations, especially localization using ESP fingerprinting instead of using RSSI. Thus, the
different channel gains can be used as additional information to increase the localization
accuracy.
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Figure 4.14 – Estimating the wide-band CSI shape by either integrating the narrow-band
CSI shapes or the ESP values of the frequency bands.
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Chapter 5

CHARACTERIZING AND MODELING OF

PDR IN AN ACTUAL LORAWAN
NETWORK

5.1 Introduction

With the growth of the IoT, it is critical to understand the packet transmission perfor-
mance in LPWAN, especially LoRaWAN. Hence, the transmission quality of data packets
has a significant impact on the performance of the entire LoRaWAN [15]. Thus, the re-
liability of communications in the network is impaired by the channel quality of the link
between the end node and the gateway. Consequently, packet loss may occur due to the
channel attenuation or interference. This transmission failure affects various IoT applica-
tions and even causes serious outcomes. Furthermore, the data integrity and accuracy in
IoT data analytics may be reduced by a large amount of packet loss. Therefore, LoRaWAN
supports both unconfirmed and confirmed messaging. Confirmed messaging is most prob-
ably used for important sensor data. In contrary to the unconfirmed message, the end
node requires the message to be acknowledged as received by the network server when
sending a confirmed message. Accordingly, the end node will retransmit the data packet
when it does not receive the acknowledgment. However, this retransmission requires an
extra energy consumption that impacts the battery life of end node devices plus occupy-
ing an additional spectrum, raising the interfering level and occupying time that could be
used for uplinks.

95



Part II, Chapter 5 – Characterizing and Modeling of PDR in an Actual LoRaWAN Network

5.2 Related Works

Recently, many papers are addressing the different origins of LoRa packet loss. For
example, in [101] the authors conduct experiments to evaluate a characterization of
LoRaWAN frame collision conditions. Moreover, the PDR and coverage of LoRa tech-
nology are evaluated for outdoor cases in [96] and [14]. Based on empirical results in
[98], path loss models are developed for LoRaWAN communications and compared with
widely used empirical models. In [108], authors study the impact of environmental factors
on the performance of LoRa, and show that higher temperatures decrease the RSSI and
may drastically affect PDR. While in [13], the first attempt to investigate the PDR in
a real city-scale LoRaWAN network is presented. However, these previous works do not
evaluate the ESP, i.e. introduced in Section 4.4.4, as one of the main factors affecting
the PDR rather than evaluating RSSI only. Besides, they do not focus on the frequency
dependency of PDR. Over and above, these previous works don’t introduce the modeling
of PDR corresponding to the received power. Hence, the received power is considered as
one of the main factors affecting the PDR.

5.3 Contribution

In this chapter, an in-depth investigation of the frequency dependency of the PDR
is done by utilizing the measured data of a measurement campaign, i.e. introduced in
Section 4.3.3. From each different location, the ESP and SINR values are obtained as
well as the influence of these parameters on the PDR is evaluated at each frequency band
independently. Hence, the whole ESP values in the experiment are extensively evaluated,
and the other possible causes of packet loss are thoroughly explained. With the given
results, the feasibility of using the ESP is proven by its enlarged range when the SINR is
very low, unlike the RSSI which has a limitation. Accordingly, modeling the PDR using
an ESP parameterized beta distribution function is proposed. Feasibility of the proposed
model is assured by simulating PDR against ESP, hence, the simulated PDR values follow
the distribution of the measured ones well. This PDR model gives important guidelines
for future LoRaWAN network regulation and optimization. Moreover, this investigation
manifests and gives important guidelines for using ESP in the future IoT applications.
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5.4 Organization

The remainder of this chapter is organized as follows. Section 5.5 presents the main
factors of the packet losses. Section 5.6 provides an evaluation of the PDR’s frequency
dependency. The effect of the channel quality on PDR are then presented and commented
in Section 5.7. Hence, Section 5.8 provides the modeling of PDR from the measured data.
Finally, the work is concluded in Section 5.9.

5.5 Key Factors of Packet Loss

Packet losses are the main drawback for IoT [21]. Hence, packet losses cause many
retransmissions at the cost of a lower battery lifetime of the end nodes and may lead
to an increase of the RF contention level. Even worse, a total failure of the IoT service
could happen, either because end nodes can not succeed in sending any data to the
gateway or because all their energy is consumed much faster than expected due to the
multiple repetitions of the transmission. Without loss of generality, LoRaWAN is used
as an example in this thesis but any other IoT protocol could be utilized. Thus, the
major sources of the packet loss are described in the following subsections, as shown in
Figure 5.1.

IoT device

Shadowing
Electronic device

Another IoT device

Gateway

ISM device

Figure 5.1 – An envisioned IoT network with the potential factors of the packet losses.
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5.5.1 Packet collision

Channel contention occurs when multiple devices attempt to send data over the same
channel simultaneously [10, 109]. Whereas the end nodes are uncoordinated, the packet
transmission is initiated by the end node, not the network. Hence, the traditional LoRa
device does not check if the channel is preempted by other devices before transmitting a
packet, so it may cause packet collision. Additionally, the IoT networks are superposed
with no coordination between them. So, these collisions could also occur no matter whether
the interfered signal is from other end nodes of the same network or the surrounding IoT
networks, using the same IoT standard or not. Moreover, interference could occur from
other radio signals present in the ISM bands which are not IoT signals, so they can be
considered “jammers” by definition. Last but not least, electromagnetic radiations could
disturb the end nodes due to the proximity of other electronic devices suffering from
leakage radiations, for instance, this could happen in an industrial environment.

5.5.2 Channel factors

The end node can be located far away from the gateway, especially in LPWAN net-
works, which causes shadowing and signal attenuation across the transmission range [98].
Packet transmission success is closely related to the channel state, indeed, a channel facing
bad propagation conditions has the same effect as caused by collisions. These propagation
conditions are directly determined by the channel parameters which are SNR, RSSI and
ESP. SNR is the ratio of signal power to the measured noise power. Consequently, the
higher SNR is, the smaller the noise mixed in the signal, and the easier it is to separate
the effective signal. RSSI is a relative value of signal power measured by the end node or
the gateway at its receiving end. However, ESP is a more reliable parameter as it over-
comes the RSSI limitation, especially at low SNR (< 0 dB) as depicted in the previous
Section 4.4.4.

Without loss of generality, ESP is computed from SNR | SINR as depicated in
Equation 4.16. In general, ESP value decays with the shadowing effect and increase of
distance, in particular for the long transmission range, as in most IoT applications. Due to
the low transmission power, i.e. maximum transmit power of the LoRa signal is 14 dBm,
and the large propagation attenuation, this value is usually negative in dBm. Furthermore,
these channel parameter values depend on the specific environmental conditions around
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each end node, hence, each CSI is different from one location to another.

5.6 Frequency Dependency of PDR

The radio channel between a gateway and an IoT node in a LoRaWAN is very specific
at each location. Its quality has an impact on the capability to establish a successful
transmission, as it is confirmed in the previous sections. Moreover, the LoRa channel with
such a small bandwidth of 125 kHz is almost flat. However, this section shows that there
are significant variations of the channel gain over different LoRa center frequencies fk, with
only a 200 kHz spacing in the 868 MHz ISM band. Consequently, the impact of the channel
on the successful packet rate is investigated for each center frequency independently. In an
offline mode, the received data is extracted from the payload of each LoRa packet at the
gateway side. Thus, ESP value is extracted and analyzed against the PDR value at each
frequency channel fk. On the other hand, PDR is calculated at each different channel fk
independently as:

PDR = Number of received packets
Number of transmitted packets , (5.1)

where the number of transmitted packets to obtain the PDR value at each frequency band
fk is 20.

As an example shown in Figure 5.2a, the absolute CSI from location 4 is frequency se-
lective with a deep fade of more than 10 dB depth. On the other hand, channel reciprocity
is clearly manifested between the uplink and downlink CSI apart from a constant value
whose compensation would require an accurate calibration of the transceiver RF chains.
While the PDR values preserve almost the same magnitude ranks across all the frequency
bands, as shown in Figure 5.2b. Here, downlink PDR values are preferred because they
are more correlated with the absolute CSI shape in these near transmission conditions.

5.6.1 CSI shape variability over the ISM-Band

Figure 5.3a shows exemplary signal level spectra observed in all the scenarios of the
experiment, averaged over the whole trial. A progressive reduction is observed in the
received power across location 1 to 10. This reduction is reasonable as the distance between
the gateway and the node gradually increases from ≈ 5 m at location 1 to ≈ 760 m at
location 10. The first category of CSI is represented in location 1, 3, 8, 9, and 10 which
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Figure 5.2 – Result from location 4 at each different frequency band.
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shows moderate fades with a low indication of multipath propagation. Thus, the variation
of signal level is less than 6 dB over the 1.5 MHz frequency range. The opposite is the signal
level spectrum of location 2, 4, 5, 6, and 7 which stand for another category of channels
showing strong frequency selectivity. This category indicates multipath propagation with
a path delay so it has many deep fades with up to 15 dB depth, in such a small bandwidth
of 1.5 MHz only.

5.6.2 Impact of the channel quality on PDR

The PDR values on each center frequency for all the locations are shown in Figure 5.3b.
Location 1 and 3 show total successful transmissions across the whole frequency bands
which is reasonable as they already have almost flat fading channels, and high received
power as shown in Figure 5.3a. While PDR values in the other locations preserve the
same pattern of their CSI shape. For example, location 5 has PDR values that fit well with
respective properties of the corresponding frequency bands, particularly at 867.1 MHz and
867.3 MHz with low PDR values like their ESP values. This confirms the strong frequency
dependency of the PDR in the LoRa system.

5.7 Impact of channel parameters on PDR

To check the plausibility of utilizing the ESP, the main causes of the packet loss events
are discussed in this section. Two main aspects can affect the PDR, which are measured
received power and SINR, as detailed in the following subsections.

5.7.1 Impact of received power

Figure 5.4a explores how downlink PDR changes along with uplink RSSI and ESP.
Hence, one can observe that the PDR magnitudes are uniformly quantized with a reso-
lution of 1

20 . Nevertheless, there are some irregular gaps between the PDR values which
could be compensated by taking more measurement data. On the other hand, the result
shows that high PDR values reduce significantly with the decrease of RSSI, which is simi-
lar when the ESP decreases. However, RSSI distribution is limited when approaching the
aforementioned noise floor limitation, i.e. RSSI ≈ −120 dBm at SINR = 0 dB. One can
observe the rather large gap between the ESP values and the RSSI values, especially when
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(a) ESP values over different frequency bands at each location.

(b) PDR values over different frequency bands at each location.

Figure 5.3 – Result from the ten different locations.
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the received power is below −120 dBm. Therefore, ESP has a simpler and more natural
relationship with PDR than RSSI.

5.7.2 Impact of SINR

The result shows a general rise in PDR when the color-coded ESP or SINR increases, as
shown in Figure 5.4b. This direct proportionality is established in the previous works [13].
On the other hand, it can be noticed that this long-term observation exhibits two kinds of
unexpected behavior. These should be related in two manners in how the interference can
affect the relationship between received power and SINR. The first unexpected situation
is to have at the same time a low SINR and a rather high received power, as depicted in
Figure 4.10. Those situations correspond to a case where the SINR is probably measuring
an additional interfering power coming from a colliding packet. The second unexpected
situation is having a high SINR and nevertheless, a low packet success rate as depicted
in Figure 5.4b, which is most probably due to a typically accomplished interference in
the downlink. Those observations suggest that the joint observation of SINR and RSSI or
ESP can be exploited for detecting interfered conditions.

5.8 Modeling of PDR as a function of ESP

5.8.1 Contribution

In this section, an in-depth investigation of the PDR using the traces collected from the
real network deployment of the aforementioned measurement campaign. Hence, the whole
ESP values in the experiment are extensively evaluated, and then a stochastic model is
proposed for modeling PDR as a function of the ESP rather than using RSSI to overcome
the RSSI’s limitation at low SNR (< 0 dB).

5.8.2 Organization

The remainder of this section is organized as follows. Section 5.8.3 provides sufficient
detail about the PDR modeling based on the measurement’s result. Hence, Section 5.8.4
provides an evaluation of the simulated PDR based on the proposed model. Finally, the
work is concluded in Section 5.8.5.
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Figure 5.4 – PDR for various received power and SINR values.
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5.8.3 PDR Modeling using Beta distribution

For system-level simulations or for dimensioning actual IoT deployment performances,
it is very useful to benefit from a PDR model that encompasses all the possible situa-
tions and their very large observed variability. However, the PDR values show extreme
variations which make the exploitation of their empirical mean difficult, as shown in Fig-
ure 5.5a. Therefore, the first step of the proposed approach is to get access to a reasonable
estimation of the expected PDR average by logistic regression. This regression takes into
account all the datasets at once by fitting a smooth and reasonable curve to the mea-
sured values. Consequently, the mean of the PDR distribution can have a deterministic
model using a logistic function or logistic curve which is a common sigmoid curve with
an equation as:

E[PDR] = 1
1 + e−k(ESP−ESP0) , (5.2)

where k is the logistic growth rate or steepness of the curve which is estimated to be 0.238.
While the ESP value of the sigmoid’s midpoint ESP0 is −119.794 dBm. These parame-
ters are estimated while setting SF equal to 7 during the experiment, hence, these values
can be different if another configuration is set. On the other hand, the expected PDR
values lie around an interval that can be sized with a given level of confidence 2σ. This
σ value is obtained based on the number of packets used in this experiment to produce
the empirical estimation of each PDR value. This confidence region is the shaded blue re-
gion in Figure 5.5a, accordingly, the PDR values are estimated roughly around this region.

In a second step, in order to simulate the observed huge variability in the measured
PDR, an ESP parameterized Beta distribution of PDR is proposed [110]. Consequently,
the Probability Density Function (PDF) of the PDR distribution can have a stochastic
model using a Beta distribution function as:

f(PDR;α, β) = 1
B(α, β)PDR

α−1(1− PDR)β−1

= Γ(α + β)
Γ(α)Γ(β)PDR

α−1(1− PDR)β−1
(5.3)

with
Γ(z) =

∫ ∞
0

xz−1e−x dx, (5.4)

where Γ(z) is the gamma function. While the beta function B(α, β) is a normalization
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constant to ensure that the total probability is 1. In the above equation, PDR is a
realization, i.e. an estimated PDR value that actually occurred, of a random process.
Moreover, this Beta distribution function f(PDR;α, β) has a mean E[PDR] which is
computed as:

E[PDR] = α

α + β
. (5.5)

By exploiting the noticeable formal similarity between the two expression of the expecta-
tion in equation 5.2 and 5.5, α and β are estimated as α = 1 and β = e−k(ESP−ESP0). At
this point, these can also be redefined as:

E[PDR] = 1
1 + β

(5.6)

and the variance Var[PDR] is:

Var[PDR] = αβ

(α + β)2(α + β + 1) = β

(1 + β)2(β + 2) . (5.7)

5.8.4 Simulation Results

In this section, the performance of the proposed PDR model is evaluated by generating
PDR distributions at each ESP value. Figure 5.5b shows the simulated PDR distribution
which follows the distribution of the measured PDR in Figure 5.5a. Consequently, the ex-
pectation of the simulated PDR values lies within the 2σ confidence interval around the
sigmoid curve, whereas the extreme variations of the PDR are well simulated as promised
by this proposed model. For obtaining the same resolution of the measured PDR, the simu-
lated PDR values are uniformly quantized with the same resolution of the measured PDR.

On the other hand, the PDR distribution is different at each ESP value as manifested
by their corresponding Beta distribution functions in Figure 5.6. For example, the Beta
distribution function at −130 dBm has a distribution concentrated around low PDR val-
ues, in contradiction with the distribution at−110 dBm which has high PDR values. While
the distribution at −119.794 dBm, i.e. sigmoid’s midpoint ESP0 as depicted in equation
5.2, is considered the most ambiguous one which is an almost uniform distribution. In
this uniform case, the packet delivery rate has an equivalent probability of success and
failure.
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Figure 5.5 – PDR against different ESP values.
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Figure 5.6 – Beta distribution function f(PDR;α, β) at different ESP values.

Moving to the fine parameters of the Beta distribution function f(PDR;α, β). Fig-
ure 5.7a shows the constant α and the variable β across different ESP values. One can
observe that as β is changed, the shape of the distribution changes. As α becomes larger
than β (more successful packets), the bulk of the probability distribution will shift to-
wards the high PDR values as shown in Figure 5.5b, whereas an increase in β moves the
distribution towards the low PDR values (more failures). While α and β are equal to 1 at
−119.794 dBm which is depicted by a green arrow and as a uniform distribution function
in Figure 5.6.

Focusing on the introduced mean E[PDR] and variance Var[PDR] of the Beta dis-
tribution function, Figure 5.7b showcases their values with a wide range of ESP values.
Generally, as ESP increases, the mean increases until it starts to saturate when ESP is
above −100 dBm. While the variance is very small at most of the ESP values, however,
it has a peak when the ESP is around −119.794 dBm as shown by the green arrow. This
peaky region is indicated in Figure 5.5b when PDR distribution has a large variance
around −119.794 dBm.

5.8.5 Conclusion

ESP is considered to be more reliable than RSSI as it overcomes the RSSI limitation,
especially at low SNR (< 0 dB). Accordingly, this section presents the modeling of the
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ESP

(a) α and β evolution against ESP.

ESP

(b) Mean E[PDR] and variance Var[PDR] evolution against ESP.

Figure 5.7 – Parameters of the Beta distribution function f(PDR;α, β).
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PDR as a function of ESP. From the data of an accomplished measurement campaign,
the measured PDR is investigated against ESP and is modeled using a Beta distribution
function. Besides, the PDR distribution is simulated using the proposed model, as a re-
sult, the simulated PDR follows the measured one well. Furthermore, the fine parameters
of the Beta distribution function are tuned at each ESP value for analyzing their effect
on the PDR distribution.

For future work, this section recommends using this Beta distribution function for
modeling PDR as a function of ESP. Thus, the potential studies in IoT can simulate the
PDR against ESP to have an estimation for dimensioning the LoRaWAN network.

5.9 Summary and Conclusion

In this chapter, the frequency dependency of PDR in LoRa is studied. Thus, the chan-
nel parameters (RSSI, ESP, SINR) from different node locations are estimated during a
measurement campaign in the city of Rennes. Hence, PDR is investigated against ESP
at each different frequency. At each different location, the CSI shape is proven to be cor-
related with the PDR values. On the other hand, the presented data indicate that ESP
has a more natural relationship with PDR than RSSI. Based on that, PDR is modeled
as a function of ESP, hence, this proposed model could be utilized for future LoRaWAN
network regulation and optimization.

As detailed in the next chapter, this frequency dependency of ESP should be exploited
to improve PDR.
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Chapter 6

DECENTRALIZED ADAPTIVE SPECTRUM

LEARNING IN WIRELESS IOT NETWORKS

BASED ON CHANNEL QUALITY

INFORMATION

6.1 Introduction

With the growth of the IoT usages in various applications, packet losses are increasing
due to channel impairments on the link between the end node and the gateway, as detailed
in the previous chapter. Therefore, it is essential to reduce the packet losses, especially
in LPWAN. Decentralized artificial intelligence techniques have been proposed against
collisions, but the approach here is extended to cope with the propagation disturbances.
In this chapter, a QoC-A learning technique based on bandit algorithms is proposed in or-
der to choose the transmission channel, so that it mitigates the propagation impairments
between the radio channels using the channel quality parameter, i.e. ESP. Moreover, a
DQoC-A algorithm is proposed to adapt rapidly to any abrupt change in the channels’
conditions. A real experiment campaign is performed in the city of Rennes to demonstrate
the low complexity and the feasibility of these proposed algorithms while implementing
them on the IoT device side (decentralized approach). In the given results, QoC-A out-
performs the classical UCB policy with a more accelerated learning process. On the other
hand, the feasibility of using the DQoC-A in non-stationary scenarios is illustrated by its
rapid convergence when abrupt changes in the channels’ conditions occur. At the end of
the process, these proposed learning techniques are assured to give fewer packet losses
than the state-of-the-art ones with a random frequency allocation. These proposed rein-
forcement learning algorithms are recommended to be implemented in the end node side,
moreover, important remarks are given for adjusting the algorithms’ configurations based
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on the properties of each of the potential IoT application.

6.2 Related Works and Motivation

Recently, many works are proposing different solutions for reducing the packet loss
rate. For example, in [111] the authors propose DyLoRa, a dynamic LoRa transmis-
sion control system to improve energy efficiency, as an alternative to the state-of-the-art
LoRaWAN ADR. Thus, the idea of DyLoRa is to adjust the transmission parameters, i.e.
transmission power and SF, among different environments. Moreover, a Collision Avoid-
ance Resource Allocation (CARA) algorithm is proposed in [112] with the objective of
increasing the system capacity by mitigating packet losses from the collisions. However,
these previous works are either centralized approaches (on the network side), hence, they
do not consider the different interference conditions in the proximity of each end node
which is located in a specific area. Or, they are imposing changes on the IoT protocol
with extra packet transmissions and time synchronization between the end nodes. While
in [113] and [109], the first implementation of a decentralized spectrum learning for IoT
wireless networks is proposed in order to mitigate radio collisions without changing any-
thing to LoRaWAN protocol. Moreover, they can be used in addition to conventional
ADR techniques. They propose to use a learning algorithm on LoRa devices that can
cope with spectrum scarcity which could occur in unlicensed bands. Nevertheless, this
learning algorithm does not exploit the channel quality at each frequency band on the
end node side to accelerate the learning process. This decentralized approach could be
extended, which was just to avoid collisions to the management of channel quality too.
Hence, the channel quality is estimated from the channel parameters, i.e. SNR, RSSI
and ESP, which are considered as one of the main factors affecting the packet loss rate
[11, 12]. Moreover, these channel parameters could be obtained on the end node side for
implementing a decentralized approach, thanks to the reciprocity between the uplink and
downlink CSI.

6.3 Contribution

In this chapter, a machine learning algorithm is proposed for spectrum allocation
which could be embedded at the IoT end node side with low hardware extra cost in terms
of processing power, memory footprint, etc. This algorithm reduces the packet losses by
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learning a proper frequency allocation schema based on ESP as the channel quality in-
dication to avert using a channel with poor propagation conditions and accelerating the
learning process. Moreover, an adaptive algorithm is also proposed for non-stationary
scenarios when the end node moves from one place to another or alternatively the CSI
shape changes. Another non-stationary example could be when the end node exhibits a
changing environment model, for example, if it is placed in a road where there are moving
cars and objects. These moving obstacles may introduce a temporal evolution of the CSI
shape between the morning and night period [114]. In a real network deployment in the
university campus in Rennes, these algorithms are implemented inside an end node device
and executed in different scenarios, i.e. stationary and non-stationary. Consequently, the
whole results from the experiment are extensively evaluated among the proposed rein-
forcement learning algorithms against the state-of-the-art ones with random frequency
allocation.

6.4 Organization

The remainder of this chapter is organized as follows. Section 6.5 provides sufficient
detail about the system model of the proposed algorithm. The proposed algorithms are
then illustrated in Section 6.6. While Section 6.7 shows the experimental architecture
and network configuration used for the measurement campaign. In Section 6.8, the ex-
perimental results of the proposed algorithms are tested through the different scenarios.
Additional remarks are given for adjusting the algorithms’ configurations in Section 6.9.
Finally, the work is concluded in Section 6.10.

6.5 System Model

The proposed learning approach can help IoT devices to reduce packet losses due to
both weak channel propagation conditions and also collisions. That for, the proposed ap-
proach is inspired from [113] and [109] where a solution to radio collisions is proposed,
while imposing no change on the IoT protocols, as, for instance, LoRaWAN. Employing
the acknowledged messaging mode is the only required condition to utilize the proposed
solution. Based on the investigation in [11], the underlying hypothesis is that the channels’
PDR is not equally balanced across the K different frequency bands an IoT device can
use. In other words, some channels are less attenuated than others. These channel con-
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ditions are possibly be predicted online in time and space in a decentralized manner (on
the end node side). As the end nodes may be quite far away from the gateways and suffer
from different jamming and channel conditions, it is much more efficient to implement
a spectrum allocation approach on the end node side than on a centralized unit. While
taking into consideration that no extra processing can be afforded at the end node where
every Watt is counted at transmission to save energy.

To be compatible with the constraint of low complexity of the end node hardware,
a kind of Artificial Intelligence (AI) algorithm is considered. This proposed approach is
based on reinforcement learning algorithms which have been introduced by the machine
learning community [115] and first proposed for cognitive radio communications more than
10 years ago [116]. It is also experimentally validated on real radio signals for cognitive
radio and especially for Opportunistic Spectrum Access (OSA) in [117]. As asserted for
OSA, Multi-Armed Bandit (MAB) problem can be utilized to model the IoT spectrum
access issue [113]. Thus, reinforcement learning is based on a feedback loop that gives a
success|failure measure of the action. In the IoT context, a binary reward, i.e. 1|0 for the
presence|absence of the ACK packet which is sent by the gateway to the end node, is
considered, as shown in Figure 6.1. If a message has been successfully transmitted from
the end node to the gateway on the uplink channel, as well as the ACK message has
been successfully transmitted from the gateway and received by the end node on the
same channel in the downlink, a reward of “1” is given plus the channel parameters, i.e.
SNR, RSSI and ESP, are estimated to optimize and accelerate the learning process as
illustrated in the following sections. While a reward of “0” means that packet loss has
happened either on uplink or downlink so that ACK has not been received by the end
node. Maximizing the PDR is the main target, or equivalently, maximizing its cumulated
reward. This proposed approach can adapt to any other IoT protocol, moreover, it has
the following main advantages:

• Coordination between the end nodes is not necessary. Therefore, no extra retrans-
mission, no data to be added into the uplink or downlink packet. While the content
of the ACK packet isn’t changed.
• The very low processing and memory overhead of both the implementation and

execution of the proposed approach [113]. Consequently, it is possible to execute
the proposed algorithm in the end node devices whose complexity is negligible in
terms of processing, hardware, memory as well as energy consumption overhead.
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• The strong mathematical proof of convergence of the Bandit algorithms [118].
Thanks to the good matching between models and reality, these proofs are verified
in real radio conditions [117].
• Rapid convergence of the proposed learning techniques in real experiments [119].
• Thanks to the reinforcement learning concept, any prior training isn’t needed. This

proposed algorithm can efficiently start learning from scratch.
• These proposed learning algorithms’ results will always outperform the given state-

of-the-art ones with random frequency allocation [119].

Gateway

Uplink packet
at channel i

ACK packet
at channel i

Reward = 1 

Reward = 0 

Reward = 0 

Figure 6.1 – An end node sends a packet with the acknowledged messaging mode, whereas
the reward value depends on the presence|absence of the ACK packet.

6.6 Proposed Reinforcement Learning Techniques

Bandit algorithms are used at the end node side to handle IoT wireless spectrum
issues. While LoRaWAN is the considered example, a simple ALOHA-based protocol is
the utilized communications between the end nodes and the gateway. Whenever the end
nodes decide, they can transmit their packets in one of the K ≥ 2 channels which are
predefined in frequency fi. As stated in the previous sections, the channel conditions in
unlicensed ISM bands suffer in particular from propagation conditions and interference
which are different from one place to another. Even in one place, these channel conditions
are very often unevenly distributed over the K different channels.

From the point of view of a single end node in the network, it has to choose one
channel (or arm), denoted as i ∈ {1, ..., K}, every time slot n when it sends a packet to
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the gateway, then, it starts to wait for a fixed delay (one second in LoRaWAN) in the
same channel i for receiving an ACK packet from the gateway, as shown in Figure 6.1. But
due to propagation issues, the message sent by the end node to the gateway, or the ACK
sent by the gateway to the end node, could be lost. Hence, selecting the channel i at time
n yields a random feedback, i.e. the binary reward ri(n) and the channel quality gi(n).
Maximizing the transmission success rate of the end node or, equivalently, maximizing
the cumulative reward is the main target. Sequence of rewards drawn from a given arm
i is assumed to be i.i.d., consequently, this problem is considered as a “stochastic” MAB
[118]. A player (here, an end node) has to try all arms (here, channels), a sufficient number
of times to get a robust estimate of their qualities, while not selecting the worst arms too
much. This requires tackling the so-called exploration-exploitation dilemma to be able to
progressively focus on the best arm i.e., the arm with the largest average reward, using
the proposed algorithms in the following subsections.

6.6.1 UCB Algorithm

Exploiting the channel with the highest estimated mean by selecting it at each time
could be a first naive solution, however, this “greedy” approach is known to fail dramat-
ically [115]. Thus, the selection of arms is highly dependent on the first draws with this
greedy policy. For example, if the first transmission in one channel succeeds and the first
one on the other channel fails, the end node will never use the other channel again, even
it is the best one and has the best channel conditions on average. While UCB algorithm
instead is adding an extra exploration term to the empirical mean, which can be viewed as
a confidence bound [118]. At each end node, the number of times the channel i is selected
up-to time index n ≥ 1 is calculated as:

Ti(n) =
n∑

m=1
1A(m)=i ∀i, (6.1)

whereA(m) ∈ {1, ..., K} is a discrete action which corresponds to the chosen channel index
at time index m. Hence, the empirical mean estimation of the successful transmissions
obtained in channel i by selecting it up to time n, is denoted by the mean reward as:

Ri(n) = 1
Ti(n)

n∑
m=1

ri(m)1A(m)=i ∀i. (6.2)
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Subsequently, the upper confidence bound Bi(n) of the channel i is denoted by the sum
of the empirical mean and a confidence term as:

Bi(n) = Ri(n) + α

√
lnn
Ti(n) , (6.3)

where the exploration factor α is recommended by the theory to be ≥ 0.25 [120]. At this
point, the maximum upper confidence bound Bi(n) is chosen by the end node to decide
the next channel for sending the packet, thus, the next action A(n + 1) is obtained by
choosing the best channel as:

A(n+ 1) = arg max
i

(Bi(n)). (6.4)

For each end node, the time index n corresponds to the total number of transmitted
packets from the beginning. As time is not slotted, this time index n isn’t shared across
different end nodes. Every end node implements its own UCB algorithm independently,
which can be described as follows in Algorithm 1.

Data: K, [α]
Result: A(n+ 1)
for n = 1 to ∞ do

if n < K then
Initialize policy by trying each channel for at least one time.
A(n+ 1) = n+ 1

else
Ti(n) = ∑n

m=1 1A(m)=i ∀i
Ri(n) = 1

Ti(n)
∑n
m=1 ri(m)1A(m)=i ∀i

Bi(n) = Ri(n) + α
√

lnn
Ti(n)

A(n+ 1) = arg max
i

(Bi(n))

end
end

Algorithm 1: UCB policy as depicted in [118].
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6.6.2 QoC-A Algorithm

As mentioned in the previous sections, there is a strong dependency between the PDR
and the channel quality. Hence, a QoC-A policy is proposed to find the channel which
is optimal in terms of both quality and probability of receiving the ACK packet [121].
As first stated in Algorithm 2, all the channels are explored at least once to acquire the
initial binary reward and their channel qualities. At the final step, Algorithm 2 returns
the channel index A(n+1) which has to be used in the next time slot. Again, Ti(n) defines
the number of times channel i has been utilized up to time n. After n ≥ K iterations, the
term Bi(n), i.e. corresponding to the score of the i − th channel at time n, are updated
as [121]:

Bi(n) = Ri(n)−Qi(n) + α

√
lnn
Ti(n) , (6.5)

where Ri(n) denotes the exploitation term, or equivalently the empirical mean of the
states (ACK packet received or not) of the i− th channel at time n. While the bias term
α
√

lnn
Ti(n) forces to explore the other channels, if the scheme leads to a channel whose average

rewards degrades. Furthermore, the quality term Qi(n) defines the quality information of
the channel i which can be calculated as:

Qi(n) = β(1− Gi(n)
Gmax(n)) lnn

Ti(n) (6.6)

with

Gi(n) = 1
Ti(n)

Ti(n)∑
k=1

gi(k) (6.7)

and
Gmax(n) = max

i
Gi(n), (6.8)

where Gi(n) is the empirical mean of quality observations gi(n) collected from channel i
and Gmax(n) is the maximum expected quality value within the set of channels. More-
over, the new parameter β forces the algorithm to give some weight to the quality in the
score computation, whereas the parameter α forces the exploration of other channels to
check their probability of receiving the ACK packet. Such a formulation tends to select a
channel with the highest quality and probability to be acknowledged.

An important contribution of this chapter compared to the previous works in the
cognitive radio field [121], is that the quality observation gi(n) is the channel quality,
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i.e. ESP in linear scale, of the ACK packet. On the contrary, the channel parameters
are obtained from a sensing phase before sending the packet in the OSA context, as the
“listen-before-talk” model in [122], which consumes power. It also worth mentioning that
ESP is the used parameter that is obtained as a function of SNR, thus, it has an enlarged
range when the SNR is very low, unlike the RSSI which has a limitation as detailed in
Section 4.4.4. Accordingly, this proposed algorithm is simple to implement and to use
in practice, even on embedded microprocessors with limited computation and memory
capabilities as detailed in the following sections.

Data: K, [α, β]
Result: A(n+ 1)
for n = 1 to ∞ do

if n < K then
Initialize policy by trying each channel for at least one time.
A(n+ 1) = n+ 1

else
Ti(n) = ∑n

m=1 1A(m)=i ∀i
Ri(n) = 1

Ti(n)
∑n
m=1 ri(m)1A(m)=i ∀i

Gi(n) = 1
Ti(n)

∑Ti(n)
k=1 gi(k)

Gmax(n) = maxiGi(n)
Qi(n) = β(1− Gi(n)

Gmax(n))
lnn
Ti(n)

Bi(n) = Ri(n)−Qi(n) + α
√

lnn
Ti(n)

A(n+ 1) = arg max
i

(Bi(n))

end
end

Algorithm 2: QoC-A policy.

6.6.3 DQoC-A Algorithm

In many IoT applications, the end node could be in a non-stationary scenario, for
instance, when it moves across different locations whose CSI shapes are different. Based
on that, the probability of receiving the ACK packet and the quality of each channel are
likely to experience changes in time, which exhibits the limitation of the aforementioned
MAB algorithms. Although the convergence of these algorithms is very fast, however, the
stationarity of the environment is required. Resetting the learning algorithm from time
to time can be a simple solution, however, it may fail to determine when the propagation
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conditions change as the acquired reward distribution evolves with time occasionally.

In this chapter, a DQoC-A algorithm is proposed to learn on the same channel condi-
tions, i.e. quality and the probability of receiving the ACK packet, as the previous QoC-A
but in non-stationary scenarios [123]. Since the confidence interval of the standard QoC-A
policy becomes tighter when time goes up, it is not appropriated for the non-stationary
environment as stated before. While the motivation for the DQoC-A policy is to find an
optimal channel in the case of changing environments, with less exploration. Therefore,
discount factors (λ and λg) are considered for the DQoC-A to guaranty the adaptiveness
of DQoC-A policy in a non-stationary environment, as stated in Algorithm 3. The idea
behind the inclusion of these discount factors (λ and λg) is to give more weight to recent
observations compared to the ones acquired in the past. A remarkable contribution of this
chapter compared to the previous work in [123], is that two different discount factors (λ
and λg) are considered rather than using one. Thus, λ and λg should have different values
as they are used to average two different distributions, which are the binomial distribution
of the binary reward ri(n) and the log-normal distribution of the channel quality gi(n),
respectively.

Based on that, this proposed DQoC-A policy learns a channel that is optimal in terms
of the probability of receiving the ACK packet and quality in a gradual manner. As with
QoC-A policy, an end node employing DQoC-A policy first starts to explore all channels
at least once initially. After n ≥ K iterations, it updates the scoring term Bi(n), however,
each term in the equation is adapted to take into account the non-stationary hypothesis
as:

Bi(n) = Ri(n)−Qi(n) + α

√√√√ lnW (n)
Ni(n) , (6.9)

where Ni(n) is the discounted number of times channel i has been used up to time n,
and W (n) is the total discounted time. Contrary to QoC-A policy, the empirical mean of
rewards Ri(n) and channel quality Gi(n) are estimated by taking into account the discount
factors (0 < λ < 1 and 0 < λg < 1), as shown in Algorithm 3. While the coefficients α
and β, are the same as in the QoC-A policy, to weight exploration for the probability of
receiving the ACK packet and channel quality, respectively.
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Data: K, [α, β, λ, λg]
Result: A(n+ 1)
for n = 1 to ∞ do

if n < K then
Initialize policy by trying each channel for at least one time.
A(n+ 1) = n+ 1

else
Ni(n) = ∑n

m=1 λ
n−m

1A(m)=i ∀i
W (n) = ∑K

i=1Ni(n)
Ri(n) = 1

Ni(n)
∑n
m=1 λ

n−mri(m)1A(m)=i ∀i
Ngi(n) = ∑n

m=1 λ
n−m
g 1A(m)=i ∀i

Gi(n) = 1
Ngi(n)

∑n
m=1 λ

n−m
g gi(m)1A(m)=i ∀i

Gmax(n) = maxiGi(n)
Qi(n) = β(1− Gi(n)

Gmax(n))
lnW (n)
Ni(n)

Bi(n) = Ri(n)−Qi(n) + α
√

lnW (n)
Ni(n)

A(n+ 1) = arg max
i

(Bi(n))

end
end

Algorithm 3: DQoC-A policy.

6.7 Experiment Setup

Comparing the proposed algorithms against the state-of-the-art method with random
frequency allocation in real conditions of operation, is the main target of the experiment.
This is done by setting the LoRaWAN configuration as presented in Section 4.4.3, but it
could be done with any other IoT standard, as soon as it uses acknowledged messaging.
Again, the Tektelic KONA Macro Gateway is used whose antenna is fixed on the roof of
the university building [104], as shown in Figure 4.2a and 4.9a. While the end node is
implemented using a Pycom card which is composed of an Expansion Board and a LoPy
4 module [105], as shown in Figure 6.2.

First, the network is joined with an OTAA. Then, the proposed algorithms are ex-
ecuted sequentially at each time index n inside the Pycom node. An uplink packet is
transmitted at the channel i which is chosen by the algorithm, then the node waits about
10 seconds before sending the next packet to respect the duty cycle. By default, the gate-
way attempts to send one acknowledgment at the same channel i and center frequency
fi as the message transmitted. Subsequently, the node writes the information of the last
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received downlink packet (packet number, ESP, etc.) to the payload of the next uplink
packet. In this experiment, there is no retransmission attempt if the node does not receive
the ACK packet. A desktop computer that runs a Python program is used as an AS only
for analyzing purposes in this experiment. This computer receives data from the LNS, as
well as LoRa metadata with all parameters of the LoRaWAN transmission (fi, SF, W ,
RSSI, SNR, etc.). Those data are analyzed as detailed in the following sections. They are
provided to the research community on this online repository [124].

Figure 6.2 – The packaged Pycom device is fixed on a rod and connected to a battery
inside a building.

6.8 Experimental Results

The scope of this section is to compare the aforementioned learning policies against the
state-of-the-art ones with random frequency allocation that is considered as the reference.
For emulating the state-of-the-art frequency allocation, a uniform Round-Robin algorithm
is executed that simply transmits the packets sequentially at each frequency band fi

across the time index n. Furthermore, the experiments are performed in two different
environments as detailed in the following subsections.
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6.8.1 Scenario 1: Stationary IoT node

The first experiment is carried out by placing the end node in a fixed position with-
out moving it to have stationary channel conditions. Hence, the CSI shapes are almost
identical across the whole experiment duration of ≈ 8.8 hours and 800 iterations (800
transmitted packets), as shown by the received power level in Figure 6.3. Each CSI shape
is acquired by averaging the ESP values at each frequency band fi independently ev-
ery 200 iterations. Moreover, the frequency selectivity of this CSI is clear, particularly
at 867.3 MHz with a deep fade of more than 10 dB depth. These unequal channel quali-
ties across the frequency bands fi could be exploited using the proposed algorithm QoC-A.

As depicted in Figure 6.4, the performance of UCB (α = 0.6), and QoC-A (α = 0.6 and
β = 0.2), i.e. with ESP in the linear scale as the quality observation gi(n) that is shown in
Algorithm 2, are compared against the uniform frequency allocation. As promised in the
previous sections, all the learning algorithms outperform the uniform frequency allocation.
On the other hand, the final average reward obtained using the QoC-A policy outperforms
the UCB policy, as manifested in Figure 6.4a. Accordingly as shown in Figure 6.4b, the
cumulative regret obtained for all the methods preserve the same performance rank over
the whole time index n with final total lost packets of 32, 39 and 132, while using the
proposed algorithm QoC-A, the classical UCB, and the uniform frequency allocation,
respectively. As shown in Table 6.1, QoC-A policy outperforms all the other algorithms
by a total number of successfully transmitted packets of 768 over 800. This indicates
that the proposed policy QoC-A is exploiting properly the channel quality to converge
faster. Hence, it does not need to lose some time to acquire this knowledge before learning
actually ends.

Table 6.1 – Number of successfully transmitted and lost packets in the stationary scenario

Algorithm Succeed Lost
Uniform 668 132
UCB 761 39
QoC-A 768 32
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Figure 6.3 – Stability of the CSI shape throughout the 800 iterations (one CSI every 200
iterations) in the stationary scenario.

6.8.2 Scenario 2: Non-Stationary IoT node

For analyzing the behavior of MAB learning policies in a non-stationary scenario with
an abrupt changing environment, the end node is moved during the experiment across
three different positions to have unconstant channel conditions. As shown in Figure 6.5,
the CSI shapes are different across the whole experiment duration of ≈ 6.6 hours. Again,
each CSI shape is estimated by averaging the ESP values every 200 iterations at each
frequency band fi independently. Although all the locations are indoor, nevertheless, a
progressive reduction is observed in the received power across locations 1 to 3. This re-
duction is reasonable as the end node goes deeper inside the building from location 1, i.e.
behind the window as shown in Figure 6.2, to location 3. Moreover, the CSI shape which
is represented in location 1 shows fades of ≈5 dB, especially at 867.1 MHz and 868.5 MHz,
while the best channel quality is obtained at 867.9 MHz. The opposite behavior is obvious
in the CSI shapes of locations 2 and 3 whose best channel conditions are almost around
868.1 MHz, 868.3 MHz and 868.5 MHz. While they have degradation in the channel quality
at 867.9 MHz, contrary to the CSI of location 1. These abrupt changes in the channel qual-
ities from one location to another could be learned using the proposed algorithm DQoC-A.

In this non-stationary environment, identifying the abrupt change in the reward dis-
tribution with reduced delay should be the ability of an optimal policy. As shown in
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(a) Average reward across the iteration number.
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(b) Cumulative regret across the iteration number.

Figure 6.4 – Result of the algorithms against the uniform frequency allocation (non-
learning) in the stationary scenario.
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Figure 6.6, the performance of UCB (α = 0.6), QoC-A (α = 0.6 and β = 0.2) and
DQoC-A (α = 0.6 , β = 0.2, λ = 0.98 and λg = 0.90) are compared against the naive
frequency allocation. For both the QoC-A and DQoC-A algorithms, the linear scale of the
ESP value is utilized as the quality observation gi(n). Moreover, the discount factor λ is
equal to 0.98 in the DQoC-A policy, while λg is set to 0.90 to acquire more rapidly the
most recent ESP values, which follows a log-normal distribution from the channel shad-
owing when the end node moves and subsequently to converge faster. Motions of the end
node are represented by the two breakpoints at time index n = 200 and n = 400 in which
an abrupt change in the reward distribution is indicated. Before the first breakpoint (at
n = 200), the evolution of the cumulative regret is almost flat using any algorithm. This
is a reasonable behavior as most of the frequency bands fi at location 1 have relatively
high ESP values and low packet losses. While after the first breakpoint (at n = 200),
DQoC-A achieves significantly lower regret and higher average reward than QoC-A and
UCB policy in this non-stationary environment. As shown in Table 6.2, DQoC-A policy
outperforms all the other algorithms by a total number of successfully transmitted packets
of 520 over 600. This is plausible due to the inclusion of the discount factors (λ and λg)
in the DQoC-A calculation, so it wastes significantly less time than QoC-A to identify
an abrupt change (at n = 200 or n = 400) in the channel conditions. While the UCB
and QoC-A are prevented to adapt quickly to changes as the old rewards have a higher
influence on them. In other words, all the learning algorithms converge to the optimal
mean reward in the long run, but DQoC-A policy benefits from less dependency on past
observations.

Table 6.2 – Number of successfully transmitted and lost packets in the non-stationary
scenario

Algorithm Succeed Lost
Uniform 405 195
UCB 487 113
QoC-A 497 103
DQoC-A 520 80
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Figure 6.5 – Evolution of the CSI shape throughout the 600 iterations (one CSI every 200
iterations) in the non-stationary scenario.

6.9 Additional Remarks on the Algorithms’ Config-
urations

The aforementioned results confirm the feasibility of utilizing the proposed policies
to achieve lower packet losses in different scenarios. However, the parameters of all the
proposed learning algorithms should be adjusted based on the environment’s conditions.
Thus, the exploration factor α is chosen depending on the channel conditions in terms of
channel qualities or presence of interference signals [125]. Furthermore, the influence of
the optimal choice of α is higher as the number K of channels increases, and less as it
decreases. In the case of a small number of arms, choosing the value of the exploration
factor α does not influence the policy performance much. In the opposite case, if the
number of arms to explore is large, the choice of this factor will have a greater influence.
If, for example, the chosen alpha parameter is deviated from the optimal value for a large
number of arms to be explored, significant degradation in performances may be observed.
Hence, the algorithm will then have either a tendency either to over-explore or to over-
exploit.

On the other hand, the discount factors (λ and λg) values should be adjusted based
on the requirements of the potential application. Thus, they will regulate properly the
amount of dependency on the old observations to track an abrupt change in the reward
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(a) Average reward across the iteration number.

(b) Cumulative regret across the iteration number.

Figure 6.6 – Result of the algorithms against the uniform frequency allocation (non-
learning) in the non-stationary scenario.
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distribution. For example, if an IoT node sends one packet every a fixed short time,
therefore, the discount factors in the DQoC-A algorithm should be close to one to benefit
also from the older observations as the environment is stationary over such a short horizon
of time, and vice versa.

6.10 Summary and Conclusion

This chapter introduces a decentralized learning technique to mitigate the channel
impairments in the IoT signal propagation. Thus, the proposed QoC-A policy could learn
a proper frequency allocation based on the channel quality, i.e. ESP, as an extra observa-
tion to avert using the channels whose quality is poor. Besides, another DQoC-A policy
is proposed to adapt rapidly to any change in the channels’ conditions, as a result of the
IoT node motion for example. To demonstrate the low complexity of these proposed algo-
rithms and the feasibility of implementing them on the IoT device side, at a very low cost
of implementation and no protocol overhead, a real experiment campaign is carried out in
the city of Rennes. Consequently, the results show that QoC-A has a more optimized and
accelerated learning process than the classical UCB policy, and then it has lower packet
losses at the end of the process. On the other hand, DQoC-A policy converges faster than
QoC-A policy in the non-stationary scenario, thanks to the discount factor in DQoC-A
algorithm which decreases the dependency on the old observations gradually.

For future work, these proposed reinforcement learning algorithms could be imple-
mented to decrease the packet losses in the potential IoT applications. Thus, the config-
urations of the implemented policy should be adjusted based on the application.
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Chapter 7

GENERAL CONCLUSIONS AND FUTURE

WORKS

7.1 Conclusions

In this thesis, the propagation properties of the wireless channel are utilized for dif-
ferent purposes which all have an impact on the overall efficiency of the IoT functions,
especially in LPWAN. Thus, the thesis is based on the following two axes:

1. Localization is optimized after presenting background on the passive localization
techniques which are implemented on the gateway side with low energy consump-
tions. Thus, strategies and methods are proposed to improve the accuracy of the
most popular LPWAN localization technique, i.e. TDoA. To obtain a more precise
localization, these proposed approaches could be used as independent or comple-
mentary methods. Contrary to the classical TDoA technique which localizes very
often on the space far away from the vicinity of node location, a parametric TDoA
technique is proposed to localize the node on one of the hyperbolas. Over differ-
ent timestamps drift variances and number of gateways, this proposed parametric
method outperforms the classical one, therefore, this method is asserted to be less
sensitive to any perturbation in the timestamps or the TDoA values.

A preprocessing algorithm to drop out the perturbated timestamps before local-
izing using any TDoA technique is proposed. For implementing this approach, an
initial guess of the node location and the euclidean distances from it to each hy-
perbola are the only requirement. After examining the most perturbed hyperbolas
whose locations are far away from the vicinity of the node location, the perturbated
timestamps are detected. After dropping these outlier timestamps, the localization
accuracy is improved, as any unreliable sensitivity from them is prevented.
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By utilizing a paired CRLB as an instrumental tool, another preprocessing method
is proposed to detect the outlier TDoA values. The only requirement for this
method is an initial guess of the node location, hence, the paired CRLB of each
TDoA combination is estimated from the vicinity of this initial guess location.
Based on a robust thresholding technique, the low paired CRLB are detected and
then their corresponding TDoA combinations are dropped. By localizing with the
best TDoA values whose perturbation probabilities are less, this proposed method
is proven to decrease the localization error.

On the other hand, the feasibility of localizing using LoRa CSI is investigated
by performing outdoor measurement campaigns in the area of Beaulieu Campus
in Rennes. In contrary to the RSSI values, the spatial and temporal stability of
CSI are asserted to be relatively stronger. Using the PCC, the CSI reciprocity
is quantified which shows a very high linear correlation between the uplink and
downlink CSI, at each different location. On the contrary, most of the CSI shapes
from different locations are highly uncorrelated to each other. By utilizing the fre-
quency hopping in the LoRa systems to get access to a wider band, a significant
localization gain could be achieved. Moreover, the reliability of using the ESP is
proven by its enlarged range when the SNR is very low, unlike the RSSI which
has a limitation. Based on that, a wider CSI can be obtained by the frequency
hopping after estimating the narrowband CSI from the IQ samples of the received
LoRa preamble chirps at each center frequency. Or, by averaging the ESP values
for each center frequency until the wider CSI shape is acquired by integrating these
averaged values.

2. Spectrum Allocation algorithms are proposed for the IoT, after studying the
frequency dependency of PDR. During a measurement campaign in the city of
Rennes, the channel parameters (RSSI, ESP, SINR) from different node locations
are estimated. Hence, PDR is investigated against ESP at each different frequency.
At each different location, the PDR values is proven to be correlated with the CSI
shape. On the other hand, the presented data indicate that PDR has a more natural
relationship with ESP than RSSI. Based on these investigations, an ESP parame-
terized beta distribution function is deployed to model PDR. For the LoRaWAN

131



network regulation and optimization, this proposed model could be utilized.

The aforementioned frequency dependency of ESP is exploited to improve PDR.
Hence, a decentralized learning technique is proposed to mitigate the channel im-
pairments in the IoT signal propagation. A proposed QoC-A policy considers the
ESP value as an extra observation of the channel quality information to learn a
proper frequency allocation. Accordingly, this proposed algorithm averts using the
channels whose quality is poor. Moreover, to adapt rapidly to any change in the
channels’ conditions, as a result of the IoT node motion, for example, another
DQoC-A policy is proposed. An experimental campaign is carried out in the city
of Rennes, hence, the low complexity and the feasibility of implementing these
proposed algorithms on the IoT device side with no protocol overhead are demon-
strated. With the obtained results at the end of the process, the QoC-A policy is
proven to have lower packet losses, thus, its learning process is more optimized and
accelerated than the classical UCB policy. While in the non-stationary scenario,
DQoC-A policy converges faster than QoC-A policy as a result of the discount
factor inclusion in the DQoC-A algorithm, which decreases the dependency on the
old observations gradually.

7.2 Future Works

In this thesis, the presented works in each contribution suggest many possible direc-
tions for future studies, such as the following perspectives:
• The parametric TDoA can be optimized, for instance, by merging its two main

steps.
• For outlier timestamps and TDoA values detection, an optimum weighting tech-

nique could be investigated rather than using a thresholding method.
• Machine learning techniques could be used to integrate other signal measurements

with the proposed TDoA techniques such as RSSI or CSI.
• Utilizing ESP for all the potential IoT applications is highly recommended, espe-

cially localization using ESP fingerprinting instead of using RSSI in LoRaWAN.
• The proposed PDR model can be utilized to have an estimation of the PDR against

ESP for having a proper envision of the LoRaWAN network design.
• To decrease the packet losses in IoT, the proposed spectrum allocation algorithms
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could be optimized or implemented properly. Therefore, many hints are presented
for adjusting properly the configurations of the proposed learning algorithms based
on the application requirements.
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Titre : Exploitation ciblée du canal dans l’IoT : Amélioration de la localisation et de l’allocation
du spectre dans les réseaux LPWAN

Mot clés : IoT, Localisation, PDR, ESP, Apprentissage automatique, Allocation de spectre

Résumé : L’objectif principal de ce travail est
d’améliorer diverses fonctions LPWAN, en ex-
ploitant la connaissance des propriétés de
propagation du canal sans fil. Tout d’abord,
les techniques de localisation (sans GPS) sont
étudiées, puis améliorées en proposant une
technique TDoA paramétrique originale. Dans
ce contexte, des techniques de prétraitement
des observables spécifiques à la technique
TDoA sont proposées. En utilisant un simula-
teur spécifique implémenté dans le cadre de
la thèse, les résultats montrent que les ap-
proches proposées sont plus efficaces que la
technique TDoA classique. D’autre part, l’uti-
lisation du CSI pour la localisation est pré-
conisée, la thèse étudie sa variabilité spa-

tiale et temporelle. A travers une campagne
de mesure, la fiabilité de l’utilisation du ESP
en substitution du RSSI est affirmée par sa
portée accrue. A ce stade, le LoRaWAN PDR
est modélisé en fonction du ESP. Ensuite, le
travail est orienté vers l’amélioration du PDR
en proposant des algorithmes d’allocation de
spectre qui exploitent la dépendance en fré-
quence du PDR. Ainsi, deux politiques décen-
tralisées sont proposées pour apprendre un
schéma d’allocation de fréquence approprié
basé sur le ESP comme information sur la
qualité du canal. Expérimentalement, les algo-
rithmes proposés sont plus performants que la
politique conventionnelle UCB avec moins de
perte de paquets à la fin du processus.

Title: Purposely Exploiting the Channel in IoT: Enhancement of Localization and Spectrum
Allocation in LPWAN

Keywords: IoT, Localization, PDR, ESP, Machine Learning, Spectrum Allocation

Abstract: The main objective of this work is to
improve various LPWAN functions, by exploit-
ing the knowledge of the propagation prop-
erties of the wireless channel. First, localiza-
tion techniques (without GPS) are studied and
then enhanced by proposing an original para-
metric TDoA technique. In this context, pre-
processing techniques for observables spe-
cific to the TDoA technique are proposed. Us-
ing a specific simulator implemented in the
framework of the thesis, the results show that
the proposed approaches are more efficient
than the classical TDoA technique. On the
other hand, the use of CSI for localization is
advocated, the thesis studies its spatial and

temporal variability. Through a measurement
campaign, the reliability of the use of ESP
in substitution of RSSI is affirmed by its in-
creased range. At this stage, the LoRaWAN
PDR is modeled according to the ESP. Then,
the work is oriented towards the improvement
of the PDR by proposing spectrum allocation
algorithms that exploit the frequency depen-
dency of the PDR. Thus, two decentralized
policies are proposed to learn an appropri-
ate frequency allocation scheme based on the
ESP as channel quality information. Experi-
mentally, these proposed algorithms outper-
form the conventional UCB policy with less
packet loss at the end of the process.
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