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RICHOU Adrien Examinateur
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Autour de la marche aléatoire de l’éléphant

Résumé : Cette thèse porte sur l’étude de la marche aléatoire de l’éléphant et des proces-

sus qui en découlent. Cette marche aléatoire s’appelle ainsi car elle possède un paramètre

de mémoire et il est bien connu que les éléphants ont une excellente mémoire et se sou-

viennent de tous les endroits qu’ils ont visités. On va établir des résultats probabilistes

de types lois des grands nombres et normalité asymptotique, mais aussi des lois du log-

arithme itéré et des lois fortes quadratiques à l’aide de martingales. On commence par

généraliser la marche de l’éléphant pour toute dimension en utilisant des processus de

comptage des pas dans chaque direction de la dimension. On s’intéresse ensuite au com-

portement asymptotique du centre de masse de la marche aléatoire de l’éléphant. On est

amené à introduire deux martingales de sorte que leur étude simultanée permet d’obtenir

des résultats analogues à ceux de la marche de l’éléphant. On réutilise ensuite cette ap-

proche afin d’étudier la marche de l’éléphant avec mémoire renforcée linéairement et la

marche aléatoire de l’éléphant avec une amnésie progressive. On propose aussi une étude

statistique explicite de l’estimation de la mémoire. Enfin, on présente une approche mar-

tingale pour l’étude des urnes de Pólya à deux couleurs.

Mots clés : marche aléatoire, martingale, estimation, urnes de Pólya

About the elephant random walk

Abstract : This thesis focuses on the study of the elephant random walk and the pro-

cesses related to it, using martingales. It is a stochastic process with a memory parameter

introduced at the beginning of the 2000s and which induces three regimes of behavior.

We aim to obtain probabilistic results such as laws of large numbers and asymptotic nor-

mality, as well as laws of iterated logarithm and quadratic strong laws. We start by gener-

alizing the elephant random walk to dimensions greater than 2 using counting processes

of the steps in each direction of the dimension. Then, we are interested in the center of

mass of the random walk of the elephant random walk. We introduce two martingales

such that studying them simultaneously makes it possible to obtain results analogous to

those of the elephant random walk. This approach is used again to study the random

walk with linearly reinforced memory or smooth amnesia. We also propose an explicit

statistical analysis to estimate the memory. Finally, we present a martingale approach for

the study of two-color Pólya urns.

Keywords : random walk, martingale, estimation, Pólya urns
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Aperçu de la thèse

Introduction

Marche aléatoire

Une marche aléatoire est un processus stochastique consistant en une suite de
pas faits au hasard, indépendamment ou non des pas précédents. Le modèle
le plus simple est celui de la marche symétrique. Considérons un crabe1 qui
ne peut se déplacer que de gauche à droite sur une plage de taille infinie. Le
crabe démarre son voyage depuis un certain point qu’on appelle origine, puis il
se déplace d’un pas vers la droite avec probabilité 1/2 ou d’un pas vers la gauche
avec probabilité 1/2. Il répète ensuite cette action à chaque instant et de manière
totalement indépendante de ce qu’il a fait avant. On représente la plage par la
droite des entiers relatifs Z.

−1−2 0 1 Sn

1/21/2 1/21/2

Pour tout n ≥ 0, la position Sn+1 du crabe à l’instant n + 1 est donnée par la
relation de récurrence

Sn+1 = Sn + Xn+1

où Xn+1 est la variable aléatoire qui représente le n + 1-ème pas. La famille (Xn)

des pas est une suite de variables aléatoires indépendantes et identiquement
distribuées (i.i.d.) de loi de Rademacher de paramètre 1/2 notée R(1/2), c’est-à-
dire que

Xn+1 =

{
+1 avec probabilité 1/2,
−1 avec probabilité 1/2.

La loi des grands nombres (LGN) et le théorème central limite (TCL) pour les
suites de variables i.i.d. nous indiquent immédiatement que

Sn

n
p.s.−→

n→∞
E[X1] = 0 et

Sn√
n

L−→
n→∞

N (0, 1).

1Modélisation fortement inspirée de : La marche du crabe (trilogie), Arthur de Pins (2010).
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Aperçu de la thèse

Figure 1: Marche aléatoire symétrique (p = 0.5).

Une première généralisation consiste à considérer des pas de loi R(p), où le
paramètre 0 < p < 1, de sorte que

Xn+1 =

{
+1 avec probabilité p,
−1 avec probabilité 1− p.

−1−2 0 1 Sn

p1− p p1− p

Dans ce cas, la loi des grands nombres et le théorème central limite assurent que

Sn

n
p.s.−→

n→∞
E[X1] = 2p− 1 et

Sn − (2p− 1)n√
4p(1− p)n

L−→
n→∞

N (0, 1).

En particulier, la loi de la position Sn+1 à l’instant n + 1 n’est influencée que par
la position Sn à l’instant n et le pas Xn+1. Plus précisement, pour x, y ∈ Z, on a

P(Sn+1 = x | Sn = y) =


p si x = y + 1,

1− p si x = y− 1,
0 si x 6= y± 1.

Figure 2: Marche aléatoire pour p = 0.4. Figure 3: Marche aléatoire pour p = 0.6.
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Aperçu de la thèse

Bien qu’il ne se déplace que sur une ligne, la plage où évolue le crabe est un plan
quadrillé. Imaginons à présent que le crabe rencontre un autre crabe qui peut
se déplacer de haut en bas uniquement. Les crabes réalisent qu’à eux deux, ils
pourront parcourir toute la plage ! On obtient alors la marche symétrique sur le
réseau du plan Z2, c’est-à-dire en dimension 2.

1
4

On peut généraliser de la même manière pour toute dimension entière d avec
d ≥ 1.

La marche aléatoire de l’éléphant

La marche aléatoire de l’éléphant (ERW) s’appelle ainsi car il est bien connu que
les éléphants ont une très bonne mémoire et se souviennent de tous les endroits
par où ils sont passés. Elle est définie de la manière suivante. À l’instant n = 0,
l’éléphant se trouve à l’origine S0 = 0. À l’instant n = 1, l’éléphant fait un pas
vers la droite avec probabilité q ou un pas vers la gauche avec probabilité 1− q
où q est un nombre réel entre 0 et 1. La position de l’éléphant à l’instant n = 1 est
donnée par la variable aléatoire S1 = X1 où X1 suit la loi de RademacherR(q).

−1 0 1

q1− q

Ensuite, pour chaque instant n ≥ 1, l’éléphant choisit uniformément au hasard
un instant k parmi les instants précédents 1, . . . , n et on définit

Xn+1 =

{
+Xk avec probabilité p,
−Xk avec probabilité 1− p,

où le paramètre p ∈ [0, 1] est la mémoire de l’éléphant.

0 1 Sn

p1− p

1− pp

3



Aperçu de la thèse

Ainsi, selon si l’éléphant se souvient d’un pas vers la droite ou vers la gauche, les
probabilités sont échangées. La position de l’éléphant est donnée par la relation
de récurrence

Sn+1 = Sn + Xn+1.

Le cas particulier p = 1/2 correspond exactement à la marche aléatoire symétrique.

Contrairement à la marche aléatoire classique (symétrique ou non), le comporte-
ment de la marche aléatoire de l’éléphant change selon que sa mémoire p < 3/4
(régime diffusif), p = 3/4 (régime critique) ou p > 3/4 (régime superdiffusif).
Les différents résultats de type loi des grands nombres et théorème central limite
sont présentés ci-dessous, où L est une variable aléatoire (non dégénérée).

Diffusif Critique Superdiffusif

LGN
Sn

n
p.s.−→

n→∞
0

Sn√
n log n

p.s.−→
n→∞

0
Sn

n2p−1
p.s. / L4

−→
n→∞

L

TCL
Sn√

n
L−→

n→∞
N
(

0,
1

3− 4p

) Sn√
n log n

L−→
n→∞

N
(
0, 1
) Sn − n2p−1L√

n
L−→

n→∞
N
(

0,
1

4p− 3

)

Pour étudier l’ERW, les deux approches principales sont la théorie des martin-
gales et les urnes de Pólya. L’utilisation des martingales permet d’obtenir la
LGN et le TCL, mais aussi la loi du logarithme itéré (LLI) et la loi forte quadra-
tique (LFQ). La connexion avec les urnes de Pólya permet également d’obtenir
la LGN et le TCL, mais aussi le TCL fonctionnel (convergence vers un processus
gaussien).

Contributions

Les contributions suivantes sont présentées dans l’ordre chronologique d’étude.
[9] BERCU, B., AND LAULIN, L. On the multi-dimensional elephant random

walk. Journal of Statistical Physics 175, 6 (2019), 1146–1163.
[11] BERCU, B., AND LAULIN, L. On the center of mass of the elephant random

walk. Stochastic Processes and their Applications 133 (2021), 111 – 128.
[56] LAULIN, L. A martingale approach for Pólya urn processes. Electronic

Communications in Probabilities 25 (2020), 13 pp.
[57] LAULIN, L. New insights on the reinforced elephant random walk using a

martingale approach. Journal of Statistical Physics 186 (2022).
[10] BERCU, B., AND LAULIN, L. How to estimate the memory of the elephant

random walk. (Submitted) arXiv:2112.10405 (2021).
[58] LAULIN, L. Introducing smooth amnesia to the memory of the elephant

random walk. arXiv:2204.10542 (2022).
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Aperçu de la thèse

Chapitre 1 – La marche aléatoire de l’éléphant en dimension
supérieure

Le but de ce chapitre est d’étudier le comportement asymptotique de la marche de
l’éléphant multi-dimensionnelle (MERW). On y étend les résultats connus pour
l’ERW en dimension 1 à la dimension d ≥ 2. Pour cela, on introduit une martin-
gale multi-dimensionnelle et on utilise la théorie des martingales.
Dans les régimes diffusif et critique, on montre la loi forte des grands nombres
(LGN), la loi du logarithme itéré (LLI) et la loi forte quadratique (LFQ) pour la
MERW. La normalité asymptotique (TCL) avec une bonne renormalisation est
aussi obtenue. Dans le régime superdiffusif, on montre la convergence presque
sûre et la convergence en moyenne quadratique vers un vecteur aléatoire de Rd

non dégénéré.

Chapitre 2 – Le centre de masse de la marche aléatoire de
l’éléphant

Le but de ce chapitre est d’étudier le comportement asymptotique du centre de
masse (ou barycentre) de la marche de l’éléphant (CMERW) en dimension d. On
obtient le même type de résultats connus pour la MERW. Toute l’étude repose
sur l’utilisation et l’étude simultanée de deux martingales multi-dimensionnelles
avec normalisation matricielle.
Dans les régimes diffusif et critique, on montre la loi forte des grands nombres
(LGN), la loi du logarithme itéré (LLI) et la loi forte quadratique (LFQ) pour le
CMERW. La normalité asymptotique (TCL) avec une bonne renormalisation est
aussi obtenue. Dans le régime superdiffusif, on montre la convergence presque
sûre et la convergence en moyenne quadratique vers un vecteur aléatoire de Rd

non dégénéré, liée au vecteur aléatoire limite de la MERW.

Chapitre 3 – La marche aléatoire de l’éléphant renforcée

Le but de ce chapitre est d’étudier le comportement asymptotique de la marche
aléatoire de l’éléphant linéairement renforcée (RERW). Le renforcement agit sur la
mémoire de l’éléphant, de façon qu’un instant dont l’éléphant s’est déjà souvenu
a plus de chance d’être à nouveau choisi, proportionellement au nombre de fois
que l’instant a été choisi.
On obtient le même type de résultats connus pour l’ERW. Toute la stratégie repose
sur l’utilisation et l’étude simultanée de deux martingales avec normalisation ma-
tricielle.
Dans les régimes diffusif et critique, on montre la loi forte des grands nombres
(LGN), la loi du logarithme itéré (LLI) et la loi forte quadratique (LFQ) pour la
RERW. La convergence vers un processus gaussien est aussi obtenue (TCLF).
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Dans le régime superdiffusif, on montre la convergence presque sûre et la con-
vergence en moyenne quadratique vers une variable aléatoire non dégénérée.

Chapitre 4 – La marche aléatoire de l’éléphant amnésique

Ce chapitre est une adaptation du chapitre précédent. Le renforcement de type
“amnésique” agit encore une fois sur la mémoire. Ainsi, la probabilité de choisir
un instant récent est beaucoup plus forte que celle de choisir un instant loin dans
le passé.
On obtient à nouveau des résultats de type LGN, LLI, LFQ et TCLF, analogues à
ceux du Chapitre 3.

Chapitre 5 – Estimation statistique du paramètre de mémoire

Dans ce chapitre, on propose une solution pour l’estimation de la mémoire de
l’éléphant. L’estimateur est basé sur l’approximation de Taylor d’ordre 2 de la
log-vraissemblance. L’étude repose à nouveau sur la théorie des martingales et
les variations quadratiques qui y sont associées.
On prouve que l’estimateur est fortement consistant dans les trois régimes. On
montre de plus des propriétés d’efficacité asymptotique et de normalité asymtp-
totique locale. Enfin on propose des intervalles de confiances exacts obtenus via
des inégalités de concentration pour les martingales, des intervalles de confiance
asymptotiques ainsi que des tests statistiques.

Chapitre 6 – Une approche martingale pour les urnes de Pólya

Ce chapitre présente une approche martingale pour l’étude des processus d’urnes
de Pólya généralisées. Le comportement de l’urne change selon si le ratio des
valeurs propres de la matrice moyenne de remplacement est plus petit que, égal
à, ou plus grand que 1/2.
On retrouve les résultats connus de LGN peu importe le type d’urnes et de TCL
dans le cas des petites urnes. On montre de nouveaux résultats comme la LLI et
la LFQ pour les petites urnes.

Chapitre 7 – Conclusion et perspectives

6
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I.1 – Random walks

A random walk is a mathematical process which consists of a sequence of steps
performed at random, independently or not of the previous steps. The simplest
model is the one of the symmetric random walk on the integers Z with steps +1
or −1. Consider a crab2 that can only move to the left or to the right over a beach
of infinite size. The crab starts its journey from a certain point called the origin,
then it moves one step to the right with probability 1/2 or one step to the left
with probability 1/2. Then, it repeats this action at each instant, and completely
independently of what it has done before. The beach is represented by the line of
the integers Z.

−1−2 0 1 Sn

1/21/2 1/21/2

For any n ≥ 0, the position Sn+1 of the crab at instant n+ 1 is given by the relation

Sn+1 = Sn + Xn+1

where Xn+1 is the random variable that represents the (n + 1)-th step. The se-
quence (Xn) of the steps is a sequence of random variables independent and
identically distributed (i.i.d.) with Rademacher distributionR(1/2), which means
that

Xn+1 =

{
+1 with probability 1/2,
−1 with probability 1/2.

The (strong) law of large numbers (LLN) and the central limit theorem (CLT)
for sequences of i.i.d. random variables ensure that

Sn

n
a.s.−→

n→∞
E[X1] = 0 and

Sn√
n

L−→
n→∞

N (0, 1).

2This model is strongly inspired by : La marche du crabe (trilogie), Arthur de Pins (2010).
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Figure I.4: A path of symmetric random walk.

More precisely, the law of iterated logarithm explains how big the fluctuations
of Sn/

√
n can be,

lim sup
n→∞

Sn√
2n log log n

= 1 and lim inf
n→∞

Sn√
2n log log n

= −1 a.s.

A first generalization consists in considering steps of distribution R(p), where
0 < p < 1, in the way that

Xn+1 =

{
+1 with probability p,
−1 with probability 1− p.

−1−2 0 1 Sn

p1− p p1− p

In that case, the law of large numbers and the central limit theorem ensure that

Sn

n
a.s.−→

n→∞
E[X1] = 2p− 1 and

Sn − (2p− 1)n√
4p(1− p)n

L−→
n→∞

N (0, 1).

In particular, the law of the position Sn+1 at the instant n + 1 is only influenced
by the position Sn at the instant n and the step Xn+1. More precisely, for x, y ∈ Z,

P(Sn+1 = x | Sn = y) =


p if x = y + 1,

1− p if x = y− 1,
0 if x 6= y± 1.

8
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Figure I.5: A path of random walk when p =

0.4.
Figure I.6: A path of random walk when p =

0.6.

Although it only moves on the integers, the beach where the crab moves is a grid
plan. Now, imagine that the crab encounters another crab which can move up
and down only. The crabs realize that the two of them will be able to cover the
entire beach! We then obtain the simple random walk on the lattice Z2, i.e. in
dimension 2.

1
4

We can generalize in the same way for any integer dimension d, with d ≥ 1. In
that case, if (e1, . . . , ed) is the standard basis of Zd (or Rd), then the symmetric
random walk on Zd is defined by

S0 = 0d, Sn+1 = Sn + Xn+1

and, for any 1 ≤ i ≤ d,

P(Xn+1 = +ei) = P(Xn+1 = −ei) =
1

2d
.

9
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Figure I.7: A path of symmetric random walk in
dimension 2.

Finally, there exists a ”continuous time version” of the process. More precisely,
Donsker’s Theorem ensures that, in the symmetric case where p = 0.5,(Sbntc√

n
, t ≥ 0

)
=⇒

(
Bt, t ≥ 0

)
The notation ”=⇒” stands for convergence with respect to the Skorokhod space.
See Theorem 4.20 in [50] for one example of this version of the Theorem.
Many other questions regarding random walks deserve our attention, for exam-
ple, the number of times a random walk returns to the origin, or the time it took
to do so, depending on the dimension d. Those types of questions will not be
explicited here.

I.2 – The Elephant Random Walk

Random walks with long-memory arose naturally in applied mathematics, the-
oretical physics, computer sciences and econometrics. One of them is the so-
called elephant random walk (ERW). It is a one-dimensional discrete-time ran-
dom walk on integers, which has a complete memory of its whole history. It was
introduced in 2004 by Schütz and Trimper [69] in order to investigate the long-
term memory effects in non-Markovian random walks. It was referred to as the
ERW in allusion to the famous saying that elephants can remember where they
have been. It appears to be a time-inhomogeneous Markov chain.
A wide range of literature is now available on the ERW in dimension d = 1 and its
extensions [3, 20, 25, 28, 27, 29, 54, 55]. One of the natural questions regarding the
ERW concerns the influence of the memory parameter p on the asymptotic behav-
ior of the ERW. Depending on the value of p with respect to 3/4, the behavior of
the ERW is quite different and we observe three regimes. More precisely, a strong
law of large numbers and a central limit theorem for the position Sn, properly nor-
malized, were established in the diffusive regime p < 3/4 and the critical regime
p = 3/4, see [3, 25, 26, 69] and the more recent contributions [7, 24, 32, 36, 64, 75].

10
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The main change between the two regimes is the normalization needed to prove
the convergences.
The superdiffusive regime p > 3/4 turns out to be harder to deal with. Both
Coletti et al. [25] and Bercu [5] proved that the limit of the position of the ERW
is not Gaussian. After that, Kubota and Takei [53] showed that the fluctuation of
the ERW around its limit in the superdiffusive regime is Gaussian. Finally, Bercu
and Laulin in [9] extended all the results of [5] to the multi-dimensional ERW
(MERW) where d ≥ 1 and to its center of mass [11]. Moreover, functional central
limit theorems were also provided via a connection to Pólya-type urns, see Baur
and Bertoin [3] for the ERW, Baur [2] for a particular class of random walks with
reinforced memory such as the ERW and the Shark Random Swim introduced by
Businger [21], and more recently Bertenghi [13] for the MERW.
The one-dimensional ERW is defined as follows. The random walk starts at the
origin at time zero, S0 = 0. At time n = 1, the elephant moves to the right with
probability q and to the left with probability 1− q where q lies between zero and
one. Hence, the position of the elephant at time n = 1 is given by S1 = X1 where
X1 has a RademacherR(q) distribution.

−1 0 1

q1− q

Afterwards, at any time n ≥ 1, the elephant chooses uniformly at random an
integer k among the previous times 1, . . . , n, and we define

Xn+1 =

{
+Xk with probability p,
−Xk with probability 1− p,

where the parameter p ∈ [0, 1] is the memory of the ERW.

0 1 Sn

p1− p

1− pp

Then, the position of the ERW is given by

Sn+1 = Sn + Xn+1. (I.1)

There are multiple ways to study the asymptotical behavior of the ERW. Baur and
Bertoin [3] extensively used the connection to Pólya-type urns [44] as well as two
functional limit theorems for multitype branching processes due to Janson [48],
see also [23]. Bercu [5] and Coletti et al. [25] used martingales to obtain the almost
sure convergences and asymptotic normality, among other results. Kürsten [55]
and Businger [21] used the construction of random trees with Bernoulli percola-
tion, which ensures that one remembers all of the past information. The first two
methods are presented in the following subsections.
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I.2.1 – The martingale approach

The first use of martingales was done by Coletti et al. [25] in order to obtain the
law of large numbers and the central limit theorem. Afterwards, Bercu [5] used a
more general martingale to obtain the law of iterated logarithm and the quadratic
strong law in the diffusive and critical regimes, as well as the convergence in L4

in the superdiffusive regime, and also retrieved the previous results.
In order to understand well how the elephant moves, it is straightforward to see
that for any time n ≥ 1,

Xn+1 = αn+1Xβn+1 (I.2)

where αn+1 and βn+1 are two independent discrete random variables such that
αn+1 has a Rademacher R(p) distribution while βn+1 is uniformly distributed
over the integers {1, · · · , n}. Moreover, αn+1 is independent of X1, . . . , Xn.
Let (Fn) be the increasing sequence of σ-algebras, Fn = σ(X1, . . . , Xn). For any
time n ≥ 1, we clearly have

E[Xn+1|Fn] = E[αn+1]×E[Xβn+1 |Fn] = (2p− 1)
Sn

n
a.s. (I.3)

which implies that

E[Sn+1|Fn] = γnSn where γn =
(n + 2p− 1

n

)
. (I.4)

Moreover,
n

∏
k=1

γk =
Γ(n + 2p)

Γ(n + 1)Γ(2p)

where Γ stands for the Euler gamma function. Therefore, let (Mn) be the sequence
of random variables defined, for all n ≥ 0, by Mn = anSn where a1 = 1 and, for
all n ≥ 2,

an =
n−1

∏
k=1

γ−1
k =

Γ(n)Γ(2p)
Γ(n + 2p− 1)

. (I.5)

Since an = γnan+1, we clearly deduce from (I.4) that for any time n ≥ 1,

E[Mn+1|Fn] = Mn a.s.

In other words, the sequence (Mn) is a martingale. Obviously, for any n ≥ 1, Xn

is a binary random variable taking values in {+1,−1}. Consequently, |Sn| ≤ n,
which implies that (Mn) is locally square integrable. The martingale (Mn) can be
rewritten in the additive form

Mn =
n

∑
k=1

akεk (I.6)

where
εn = Sn − γn−1Sn−1 (I.7)
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since its increments ∆Mn = Mn −Mn−1 satisfy ∆Mn = anSn − an−1Sn−1 = anεn.
The predictable quadratic variation [31] associated with (Mn) is given by 〈M〉0 =

0 and, for all n ≥ 1,

〈M〉n =
n

∑
k=1

E[∆M2
k | Fk−1]. (I.8)

We immediately obtain from (I.4) that E[εn+1|Fn] = 0. Moreover, it follows from
(I.1) together with (I.3) that

E[S2
n+1|Fn] = E[S2

n + 2SnXn+1 + 1|Fn] = 1 + (2γn − 1)S2
n a.s. (I.9)

Consequently, as E[ε2
n+1|Fn] = E[S2

n+1|Fn]− γ2
nS2

n, we deduce from (I.9) that, for
all n ≥ 1,

E[ε2
n+1|Fn] = 1 + (2γn − 1)S2

n − γ2
nS2

n = 1− (γn − 1)2S2
n a.s.

= 1− (2p− 1)2
(Sn

n

)2
a.s. (I.10)

By the same token,

E[ε4
n+1|Fn] = 1− 3(γn − 1)4S4

n + 2(γn − 1)2S2
n a.s.

= 1− 3(2p− 1)4
(Sn

n

)4
+ 2(2p− 1)2

(Sn

n

)2
a.s. (I.11)

Equation (I.10) is necessary to compute the quadratric variations of (Mn) while
(I.11) is useful to obtain bound on the 4− th order moment of (εn). On the one
hand, if p = 1/2, E[ε2

n+1|Fn] = 1 and E[ε4
n+1|Fn] = 1 a.s. On the other hand, we

obtain from (I.10) and (I.11) the almost sure upper bounds

sup
n≥0

E[ε2
n+1|Fn] ≤ 1 and sup

n≥0
E[ε4

n+1|Fn] ≤
4
3

. (I.12)

Hereafter, we deduce from (I.6), (I.8) and (I.10) that

〈M〉n =
n

∑
k=1

a2
k − (2p− 1)2ζn where ζn =

n−1

∑
k=1

a2
k+1

(Sk
k

)2
. (I.13)

The asymptotic behavior of the martingale (Mn) is closely related to the one of

vn =
n

∑
k=1

a2
k =

n

∑
k=1

( Γ(k)Γ(2p)
Γ(k + 2p− 1)

)2
.

We introduce the parameter a = 2p− 1. Via standard results on the asymptotic
behavior of the Euler gamma function, we have three regimes. In the diffusive
regime where 0 ≤ p < 3/4 or a < 1/2,

lim
n→∞

vn

n1−2p = ` where ` =
(Γ(2p))2

1− 2p
. (I.14)

In the critical regime where p = 3/4 or a = 1/2,

lim
n→∞

vn

log n
=

π

4
. (I.15)
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In the superdiffusive regime where 3/4 < p ≤ 1 or 1/2 < a ≤ 1, vn converges
to the finite value

lim
n→∞

vn =
∞

∑
k=0

(Γ(k + 1)Γ(2p)
Γ(k + 2p)

)2
=

∞

∑
k=0

(1)k (1)k (1)k
(2p)k (2p)k k!

= 3F2

(1, 1, 1
2p, 2p

∣∣∣1) (I.16)

where, for any x ∈ R, (x)k = x(x + 1) · · · (x + k− 1) for k ≥ 1, (x)0 = 1 stands
for the Pochhammer symbol and 3F2 is the generalized hypergeometric function
defined by

3F2

(a, b, c
d, e

∣∣∣z) =
∞

∑
k=0

(a)k (b)k (c)k
(d)k (e)k k!

zk.

The strategy here to obtain asymptotical results for the ERW relies on the theory
of martingales. To be more precise, they are obtained by making use of the strong
law of large numbers and the central limit theorem for martingales [31, 42] as well
as the law of iterated logarithm for martingales [71, 72] and the quadratic strong
law for martingales [4].

I.2.2 – The Pólya-type urns approach

This approach was first introduced by Baur and Bertoin [3] in order to obtain
functional convergences for the elephant random walk. It was later generalized
by Bertenghi [13] for the multidimensional ERW. The idea comes from the work
of Janson [48]. The method uses a connection to Pólya-type urns that was al-
ready known before in the literature (see the survey of Pemantle [66]). A bit more
precisely, given what is known from the theory of urns, it implies that the asymp-
totic behavior of such models is determined by the spectral decomposition of the
(mean) replacement matrix of the corresponding urn.

Let (Un) be discrete-time urn with balls of two colors, red and blue. The com-
position of the urn at time n ∈ N is given by a vector Un = (Rn, Bn) where Rn

stands for the number of red balls and Bn for the number of blue balls at time
n. The starting composition of the urn is (1, 0) with probability q or (0, 1) with
probability 1− q. Then, the urn is implemented as follows. At any time n ≥ 2
a ball is drawn uniformly at random, its color observed, then it is returned to
the urn together with a ball of the same color with probability p, or with a ball
of the other color with probability 1− p . The connection to the ERW model is
straightforward. Let (Sn) denotes the ERW started from S0 = 0 and such that
S1 = R1 − B1, then for every n ≥ 1

Sn
L
= Rn − Bn (I.17)

where L
= refers to equality in law. In other words, the difference between the

number of red and blue balls in the urn behaves like an ERW with first step equals
to R1 − B1.
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Figure I.8: The corresponding urn adapted to the ERW.

To study this process, we are interested in the spectral decomposition of the mean
replacement matrix A, given by

A =

(
p 1− p

1− p p

)
. (I.18)

The eigenvalues of A are λ1 = 1 and λ2 = 2p− 1 = a and the corresponding unit
vectors in L1 are

vT
1 =

1
2
(1, 1), vT

2 =
1
2
(1, −1).

It is well-known, see [23, 33, 34, 48], that the asymptotics of the urn depends
on the ratio λ2/λ1 with respect to 1/2. This is coherent and yet another good
explanation to why the transition between the regimes for the ERW occurs at
a = 1/2 which, as expected, is equivalent to p = 3/4 .

I.2.3 – Main results

I.2.3.1 – The diffusive regime

The following results concerns the asymptotic behavior of the ERW when 0 ≤
p < 3/4, which is equivalent to −1 < a < 1/2. The law of large numbers is
due to Coletti et al. [25], but can also be obtained using the approach of Baur and
Bertoin [3].

Theorem I.1. We have the almost sure convergence

lim
n→∞

Sn

n
= 0 a.s. (I.19)

The almost sure rates of convergence of the ERW were obtained by Bercu [5].
Independently, Coletti et. al obtained the law of iterated logarithm [26].
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Theorem I.2. We have the quadratic strong law

lim sup
n→∞

1
log n

n

∑
k=1

(Sk
k

)2
=

1
1− 2a

a.s. (I.20)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

( 1
2n log log n

)1/2
Sn = − lim inf

n→∞

( 1
2n log log n

)1/2
Sn

=
1√

1− 2a
a.s. (I.21)

In particular,

lim sup
n→∞

S2
n

2n log log n
=

1
1− 2a

a.s. (I.22)

The next result is devoted to the functional convergence and the asymptotic nor-
mality of the ERW in the diffusive regime 0 ≤ p < 3/4. The distributional con-
vergence holds in the Skorokhod space D([0, ∞[) of right-continuous functions
with left-hand limits. See [19, Chapter 3] for more details on the definition of the
distributional convergence in the Skorokhod Space D([0, ∞[).
The functional convergence was obtained by Baur and Bertoin [3]. The asymp-
totic normality can be deduced from the distributional convergence, but it can
also be obtained using martingales [25, 5].

Theorem I.3. We have the following convergence in D(0, ∞)(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
where

(
Wt, t ≥ 0

)
is a real-valued mean-zero Gaussian process starting from the origin

and
E[WsWt] =

1
1− 2a

s
( t

s

)a
.

In particular, we have the asymptotic normality

Sn√
n

L−→
n→∞

N
(

0,
1

1− 2a

)
. (I.23)

Remark I.4. In the particular case p = 1/2, one find again the central limit theorem for
the simple random walk

Sn√
n

L−→
n→∞

N (0, 1).

Remark I.5. In 2017, Coletti et al. [26] proved a strong invariance principle for the
ERW in the three regimes.

Finally, we consider the counting process of zeros,

Zn = card
{

1 ≤ i ≤ n, Sj = 0
}

, n ≥ 1.

Coletti and Papageorgiou [24] pointed the first result in the next theorem. After
that, Bertoin [16] explicited the asymptotic more precisely.
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Theorem I.6. The ERW is recurrent in the diffuse regime, which is equivalent to

lim
n→∞

Zn = +∞ a.s.

In particular,
Zn√

n
L−→

n→∞
V (I.24)

where V is some random variable.

I.2.3.2 – The critical regime

Hereafter, we investigate the critical regime where a = 1/2 and the memory
parameter is p = 3/4. This law of large numbers can be found in Bercu [5].

Theorem I.7. We have the almost sure convergence

lim
n→∞

Sn√
n log n

= 0 a.s. (I.25)

Once again, the almost sure rates of convergence of the ERW were obtained by
Bercu [5]. Independently, Coletti et. al obtained the law of iterated logarithm [26].

Theorem I.8. We have the quadratic strong law

lim sup
n→∞

1
log log n

n

∑
k=2

( Sk
k log k

)2
= 1 a.s. (I.26)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

( 1
2n log n log log log n

)1/2
Sn = − lim inf

n→∞

( 1
2n log n log log log n

)1/2
Sn

= 1 a.s. (I.27)

In particular,

lim sup
n→∞

S2
n

2n log n log log log n
= 1 a.s. (I.28)

One can observe a very unusual rate of convergence in the law of iterated loga-
rithm. The next result deals with the functional convergence [3] and the asymp-
totic normality [5, 25]of the ERW in the critical regime p = 3/4.

Theorem I.9. We have the following convergence in D(0, ∞)( Sbntc√
nt log n

, t ≥ 0
)
=⇒

(
Bt, t ≥ 0

)
where (Bt, t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we
have the asymptotic normality

Sn√
n log n

L−→
n→∞

N (0, 1). (I.29)
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I.2.3.3 – The superdiffusive regime

Finally, we are interested in the more complicated superdiffusive regime where
1/2 < a ≤ 1 and 3/4 < p ≤ 1. The law of large numbers was proved in the works
of Baur and Bertoin [3] and [5]. The convergence in L2 is one of the first things
known about the ERW [69, 29]. After that, Bercu [5] proved the convergence in
L4.

Theorem I.10. We have the almost sure convergence

(Sbntc
na , t ≥ 0

)
=⇒ (Λt, t ≥ 0) (I.30)

where the limiting Λt = taL and L is some non-degenerate random variable. In particu-
lar, we have

lim
n→∞

Sn

na = L a.s. (I.31)

Theorem I.11. The convergence also holds in L4, which means that

lim
n→∞

E
[∣∣∣Sn

na − L
∣∣∣4] = 0. (I.32)

The first three moments of Sn were previously calculated in [29] in the special
case q = 1. After that, Bercu [5] gave the computation of the first four moments.

Theorem I.12. The first four moments of L are given by

E[L] = 2q− 1
Γ(2p)

, (I.33)

E[L2] =
1

(4p− 3)Γ(2(2p− 1))
, (I.34)

E[L3] =
2p(2q− 1)

(2p− 1)(4p− 3)Γ(3(2p− 1))
, (I.35)

E[L4] =
6(8p2 − 4p− 1)

(8p− 5)(4p− 3)2Γ(4(2p− 1))
. (I.36)

It appears that the random variable L is not Gaussian [29, 3, 5].

Remark I.13. Bercu et al. [7] used the computations of the moments of L to obtain new
results on hypergeometric functions.

Finally, Kubota and Takei [53] showed that, even though L is not Gaussian, the
fluctuation of the ERW aroud its limit L are Gaussian. They used martingale
theory and Hall and Heyde results [42].

Theorem I.14. We have the asymptotic normality

Sn − naL√
n

L−→
n→∞

N
(

0,
1

2a− 1

)
. (I.37)
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Figure I.9: Histogram of L values when q =

0.5 depending on the value of p.
Figure I.10: Histogram of L values when q =

0.3 depending on the value of p.

I.3 – ERW with general steps distribution

In the recent work [18], Bertoin introduced the noise reinforced Brownian motion(
B̂t, t ≥ 0

)
as the universal limit of random walks with some steps reinforcement.

More precisely, let (Xn) be a sequence of i.i.d. real random variables and (εn) a
sequence of i.i.d. Bernoulli random variables with parameter p̂. Then, set X̂1 =

X1 and, for n ≥ 1,

X̂n+1 =

{
Xn+1 if εn+1 = 0,
X̂U(n) if εn+1 = 1,

where U(n) stands for the uniform distribution on {1, . . . , n}. The sequence

Ŝn = X̂1 + . . . + X̂n

is referred to as the (positively) step-reinforced random walk (pSRRW). In his
work, Bertoin showed that, if p̂ ∈ (0, 1/2), E[X] = 0 and E[X2] = 1( Ŝbntc√

n
, t ≥ 0

)
=⇒

(
B̂t, t ≥ 0

)
where

(
B̂t, t ≥ 0

)
has the same distribution as( t p̂√

1− 2p̂
Bt1−2p̂ , t ≥ 0

)
.

In the case where X1 has the standard Rademacher distribution R(1/2), Kürsten
[55] explained that Ŝ is the elephant random walk with memory parameter

p =
p̂ + 1

2

(hence, such that a = p̂). It implies that some of the results on the ERW when
a > 0 can be retrieved by studying the pSRRW, and that the process W in Theorem
I.3 is exactly B̂. When X1 has a symmetric stable distribution, Ŝ is the so-called
shark random swim which has been studied by Businger [21].
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By the same token, it is possible to define the (negatively or counterbalanced)
step reinforced random walk (nSRRW) process S, the main change being that
X̌n = −X̌U(n−1) if εn = 1. In that case, when X1 has the standard Rademacher
distribution R(1/2), Š is simply the elephant random walk with memory param-
eter

p =
1− p̌

2

(hence, such that a = − p̌).
Consequently, the ERW can be understood using both the pSRRW and the nSRRW.
We would also like to notify the reader that this approach of the ERW using the
pSRRW is related to generalized (or correlated) Bernoulli processes, as studied
by Heyde [47]. In this case and with the corresponding notations, the parameters
are θ = p̂ (or θ = a) and p = 1/2. The behavior of the pSSRW Ŝn is equal is dis-
tribition to the one of Sn − n, where Sn is the generalized binomial, see Drezner
and Farnum [30]. This approach only works for a > 0.
The asymptotic results regarding the SRRW have been obtained by using martin-
gale theory and embeding the SRRW in a branching process via the introduction
of a Yule process. The following have been established by Bertoin [18, 17, 15] and
Bertenghi [12].

Theorem I.15. (Step reinforced random walk) Let X1 ∈ L2 and p̂ ∈]1/2, 1]. Then, we
have the law of large numbers

lim
n→∞

Ŝn − nE[X1]

n p̂
P−→

n→∞
Ŵ

where Ŵ is some non-degenerate random variable. Moreover, we also have the asymptotic
normality

Ŝn − nE[X1]− n p̂Ŵ√
n

L−→
n→∞

N
(

0,
V[X1]

2p̂− 1

)
.

Theorem I.16. (Counterbalanced random walk) Let X1 ∈ L1 and p̂ ∈ [0, 1]. Then, we
have the law of large numbers

Šn

n
L2
−→
n→∞

p̂
2− p̂

E[X1].

Moreover, if X1 ∈ L2, we also have the asymptotic normality

Šn − n p̂
2− p̂E[X1]
√

n
L−→

n→∞
N

0,
E[X2

1]−
( p̂

2− p̂E[X1]
)2

3− 2p̂

 .

Finally, very recently, Bertenghi and Rosales-Ortiz [14] established the following
results which give exactly the relation between the usual random walk and the
reinforced or counterbalanced random walks associated.
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Theorem I.17. (Joint invariance principles) Fix p̂ ∈ [0, 1/2[ and consider the triplet
(Sn, Ŝn, Šn) consisting of the random walk (Sn) with its positively and negatively rein-
forced versions of parameter p̂. Assume further that X1 is centered, E[X1] = 0, with
variance V[X1] = 1. Then, the following weak convergence holds in the sense of Sko-
rokhod, (Sbntc√

n
,

Ŝbntc√
n

,
Šbntc√

n
, t ≥ 0

)
=⇒

(
Bt, B̂t, B̌t t ≥ 0

)
,

where the processes B, B̂, B̌ denote respectively a standard BM, a positively noise rein-
forced BM and a counterbalanced BM with covariances,

E[BsB̌t] = t− p̂(t∧ s)1+ p̂ 1− p̂
1 + p̂

, E[BsB̂t] = t p̂(t∧ s)1− p̂, E[B̂sB̌t] = t p̂s− p̂(t∧ s)
1− p̂
1 + p̂

.

I.4 – Outline of the thesis

Contributions

The following contributions are sorted chronogically.
[9] BERCU, B., AND LAULIN, L. On the multi-dimensional elephant random

walk. Journal of Statistical Physics 175, 6 (2019), 1146–1163.
[11] BERCU, B., AND LAULIN, L. On the center of mass of the elephant random

walk. Stochastic Processes and their Applications 133 (2021), 111 – 128.
[56] LAULIN, L. A martingale approach for Pólya urn processes. Electronic
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Chapter 1 – The multidimensional elephant random walk

The goal of this chapter is to extend the results on the one-dimensional ERW to
the mutidimensional elephant random walk (MERW) in Rd, using a martigale
approach.
In the diffusive and critical regimes, we establish the almost sure convergence,
the law of iterated logarithm and the quadratic strong law for the MERW. The
asymptotic normality of the MERW, properly normalized, is also provided. In
the superdiffusive regime, we prove the almost sure convergence as well as the
mean square convergence of the MERW to a non degenerate random vector of
Rd.
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Chapter 2 – The center of masse of the elephant random walk

The goal of this chapter is to investigate the asymptotic behavior of the center of
mass of the elephant random walk (CMERW) in Rd. The entire analysis relies on
asymptotic results for multi-dimensional martingales.
In the diffusive and critical regimes, we establish the almost sure convergence, the
law of iterated logarithm and the quadratric strong law for CMERW. The asymp-
totic normality of the center of mass, properly normalized, is also provided. Fi-
nally, we prove a strong limit theorem for the center of mass in the superdiffusive
regime.

Chapter 3 – The lineary reinforced elephant random walk

This chapter is devoted to a direct martingale approach for the linearly reinforced
elephant random walk (RERW). All the analysis relies on asymptotic results for
multi-dimensional martingales with matrix normalization.
We establish the almost sure convergence, the law of iterated logarithm and the
quadratic strong law for the RERW in the diffusive and critical regimes. The
distributional convergences of the RERW to some Gaussian processes are also
provided. In the superdiffusive regime, we prove the distributional convergence
as well as the mean square convergence of the RERW.

Chapter 4 – The amnesic elephant random walk

This chapter is an adaptation of Chapter 3 and gives a direct martingale approach
for some type of amnesic change in the memory of the ERW (AERW). Once again,
all the analysis relies on asymptotic results for multi-dimensional martingales
with matrix normalization.

Chapter 5 – How to estimate the memory parameter

In this chapter, we introduce an original way to estimate the memory parame-
ter of the elephant random walk. Our estimator is nothing more than a quasi-
maximum likelihood estimator, based on a second order Taylor approximation of
the log-likelihood function. The analysis relies on asymptotic results for martin-
gales and the quadratic variations associated.
We show the almost sure convergence of our estimate in the diffusive, critical and
superdiffusive regimes. The local asymptotic normality of our statistical proce-
dure is established in the diffusive regime, while the local asymptotic mixed nor-
mality is proven in the superdiffusive regime. Asymptotic and exact confidence
intervals as well as statistical tests are also provided.
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Chapter 6 – A martingale approach for Pólya urn processes

This chapter is devoted to a direct martingale approach for Pólya urn models. A
Pólya process is said to be small when the ratio of its replacement matrix eigen-
values is less than or equal to 1/2, otherwise it is called large.
We find again some well-known results on the asymptotic behavior for small and
large urn processes. We also provide new almost sure properties for small urn
processes.

Chapter 7 – Conclusion and perspectives

23





1
The Multi-dimensional

Elephant Random Walk

This chapter presents the results of [9] :

BERCU, B., AND LAULIN, L. On the Multi-dimensional Elephant Random Walk.
J. Stat. Phys. 175, 6 (2019), 1146–1163.

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . 25
1.2 The multi-dimensional elephant random walk . 26
1.3 Main results . . . . . . . . . . . . . . . . . . . . . 29
1.4 A multi-dimensional martingale approach . . . . 31
1.5 Another approach using Pólya-type urns . . . . 34
1.6 Proofs of the almost sure convergence results . . 35
1.7 Proofs of the asymptotic normality results . . . . 42

1.1 – Introduction

Over the last decade, the Elephant Random Walk has received considerable at-
tention in the mathematical physics literature in the diffusive regime p < 3/4
and the critical regime p = 3/4, see e.g. [3, 5, 20, 25, 28, 27, 29, 54, 55, 65] and the
references therein.
Surprisingly, to the best of our knowledge, no references were available on the
multi-dimensional elephant random walk (MERW) on Zd, except [28, 63] in the
special case d = 2. The goal of the paper explicited in this chapter is to fill the gap
by extending the results on the one-dimensional ERW to the MERW. To be more
precise, we shall study the influence of the memory parameter p on the MERW
and we will show that the critical value is given by

pd =
2d + 1

4d
.

In the diffusive and critical regimes p ≤ pd, the reader will find the natural exten-
sion to higher dimension of the results established in [3, 5, 25, 26] on the almost
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sure asymptotic behavior of the ERW as well as on its asymptotic normality. In
the superdiffusive regime p > pd, we will also prove some extensions of the re-
sults in [5, 28, 63].
Our strategy is to make an extensive use of the theory of martingales [31, 42], in
particular the strong law of large numbers and the central limit theorem for multi-
dimensional martingales [31], as well as the law of iterated logarithm [71, 72].

We strongly believe that our approach could be successfully extended to MERW
with stops [28, 43], to amnesiac MERW [27], as well as to MERW with reinforced
memory [3, 44].

The chapter is organized as follows. In Section 1.2, we introduce the exact MERW
and the multi-dimensional martingale we will extensively make use of. The main
results are given in Section 1.3. As usual, we first investigate the diffusive regime
p < pd and we establish the almost sure convergence, the law of iterated loga-
rithm and the quadratic strong law for the MERW. The asymptotic normality of
the MERW, properly normalized, is also provided. Next, we prove similar re-
sults in the critical regime p = pd. At last, we study the superdiffusive regime
p > pd and we prove the almost sure convergence as well as the mean square
convergence of the MERW to a non-degenerate random vector. Our martingale
approach is described in Section 1.4, while all technical proofs are postponed to
Sections 1.6 and 1.7. We also give an alternative approach using Pólya-type urns
in Section 1.5.

1.2 – The multi-dimensional elephant random walk

First of all, let us introduce the MERW. It is the natural extension to higher di-
mension of the one-dimensional ERW defined in the pioneer work of Schütz and
Trimper [69]. For a given dimension d ≥ 1, let (Sn) be a random walk on Zd, start-
ing at the origin at time zero, S0 = 0. At time n = 1, the elephant moves in one
of the 2d directions with the same probability 1/2d. Afterwards, at time n ≥ 1,
the elephant chooses uniformly at random an integer k among the previous times
1, . . . , n. Then, it moves exactly in the same direction as that of time k with prob-
ability p or in one of the 2d − 1 remaining directions with the same probability
(1− p)/(2d− 1), where the parameter p stands for the memory parameter of the
MERW. Denote

Id =



1 0 · · · · · · 0

0 1 . . . . . . ...
... . . . . . . . . . ...
... . . . . . . . . . ...
0 · · · · · · 0 1


and Jd =



0 1 0 · · · 0
... 0 1 . . . ...
... . . . . . . . . . 0

0 . . . . . . . . . 1
1 0 · · · · · · 0


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1 – The Multi-dimensional Elephant Random Walk

and let (An+1) be a sequence of random matrices such that

An =



+Id with probability p

−Id with probability 1−p
2d−1

+Jd with probability 1−p
2d−1

−Jd with probability 1−p
2d−1

...

+Jd−1
d with probability 1−p

2d−1

−Jd−1
d with probability 1−p

2d−1

.

One can observe that the permutation matrix Jd satisfies Jd
d = Id. Therefore, the

position of the elephant at time n ≥ 1 is given by

Sn+1 = Sn + Xn+1. (1.1)

It follows from our very definition of the MERW that at any n ≥ 1, Xn+1 =

An+1Xbn+1 where An+1 is the random d × d matrix described before while bn+1

is a random variable uniformly distributed on {1, ..., n}. Moreover, as An+1 and
bn+1 are conditionally independent, we clearly have

E [Xn+1 | Fn] = E [An+1]E
[
Xbn+1 | Fn

]
(1.2)

where Fn stands for the σ-algebra, Fn = σ(X1, . . . , Xn). Hence, we can deduce
from the law of total probability that at any time n ≥ 1,

E [Xn+1 | Fn] =
1
n

(2dp− 1
2d− 1

)
Sn =

a
n

Sn a.s. (1.3)

where a is the fundamental parameter of the MERW,

a =
2dp− 1
2d− 1

. (1.4)

Consequently, we immediately obtain from (1.1) and (1.3) that for any n ≥ 1,

E [Sn+1 | Fn] = γnSn where γn = 1 +
a
n

. (1.5)

Furthermore,
n

∏
k=1

γk =
Γ(a + 1 + n)

Γ(a + 1)Γ(n + 1)

where Γ is the standard Euler Gamma function. The critical value associated with
the memory parameter p of the MERW is

pd =
2d + 1

4d
. (1.6)

As a matter of fact,

a <
1
2
⇐⇒ p < pd, a =

1
2
⇐⇒ p = pd, a >

1
2
⇐⇒ p > pd.
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All our investigation in the three regimes relies on a martingale approach. To be
more precise, the asymptotic behavior of (Sn) is closely related to the one of the
sequence (Mn) defined, for all n ≥ 0, by Mn = anSn where a0 = 1, a1 = 1 and,
for all n ≥ 2,

an =
n−1

∏
k=1

γ−1
k =

Γ(a + 1)Γ(n)
Γ(n + a)

. (1.7)

It follows from a well-known property of the Euler Gamma function that

lim
n→∞

Γ(n + a)
Γ(n)na = 1. (1.8)

Hence, we obtain from (1.7) and (1.8) that

lim
n→∞

naan = Γ(a + 1). (1.9)

Furthermore, since an = γnan+1, we can deduce from (1.5) that for all n ≥ 1,

E [Mn+1 | Fn] = Mn a.s.

It means that (Mn) is a multi-dimensional martingale. Our goal is to extend the
results recently established in [5] to MERW.

One can observe that our approach is much more tricky than that of [5] as it
requires to study the asymptotic behavior of the multi-dimensional martingale
(Mn). More precisley, while this appears to be similar to the ERW, the main dif-
ficulty here relies on the introduction of the NX

n (i) process counting the number
of times a direction has been chosen (positively or negatively). This was not nec-
essary in dimension 1 due to the fact that Sn = S+

n − S−n and S+
n + S−n = n.

Hence, there was only one direction. Finally, the reader can note that the ERW is
a time-inhomogeneous Markov chain, while in contrast the MERW in dimensions
greater or equal to two is non-Markovian.

Figure 1.1: The 2-dimensional ERW when p = 0.4.
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1.3 – Main results

1.3.1 – The diffusive regime

Our first result deals with the strong law of large numbers for the MERW in the
diffusive regime where 0 ≤ p < pd.

Theorem 1.1. We have the almost sure convergence

lim
n→∞

1
n

Sn = 0 a.s. (1.10)

Remark 1.2. For any α > 1/2, we have the more precise result

lim
n→∞

1
nα

Sn = 0 a.s.

Some refinements on the almost sure rates of convergence for the MERW are as
follows.

Theorem 1.3. We have the quadratic strong law

lim
n→∞

1
log n

n

∑
k=1

1
k2 SkST

k =
1

d(1− 2a)
Id a.s. (1.11)

In particular,

lim
n→∞

1
log n

n

∑
k=1

‖Sk‖2

k2 =
1

(1− 2a)
a.s. (1.12)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Sn‖2

2n log log n
=

1
(1− 2a)d

a.s. (1.13)

Our next result is devoted to the asymptotic normality of the MERW in the diffu-
sive regime 0 ≤ p < pd.

Theorem 1.4. We have the asymptotic normality

1√
n

Sn
L−→

n→∞
N
(

0,
1

(1− 2a)d
Id

)
. (1.14)

Remark 1.5. We clearly have from (1.4) that

1
1− 2a

=
2d− 1

2d(1− 2p) + 1
.

Hence, in the special case d = 1, the critical value pd = 3/4 and the asymptotic variance

1
1− 2a

=
1

3− 4p
.

Consequently, we find again the asymptotic normality for the one-dimensional ERW in
the diffusive regime 0 ≤ p < 3/4 recently established in [3, 5, 25].
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1.3.2 – The critical regime

We now focus our attention on the critical regime where the memory parameter
p = pd.

Theorem 1.6. We have the almost sure convergence

lim
n→∞

1√
n log n

Sn = 0 a.s. (1.15)

Remark 1.7. For any α > 1/2, we have the more precise result

lim
n→∞

1√
n(log n)α

Sn = 0 a.s.

We continue with some refinements on the almost sure rates of convergence for
the MERW.

Theorem 1.8. We have the quadratic strong law

lim
n→∞

1
log log n

n

∑
k=2

1
(k log k)2 SkST

k =
1
d

Id a.s (1.16)

In particular,

lim
n→∞

1
log log n

n

∑
k=2

‖Sk‖2

(k log k)2 = 1 a.s. (1.17)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Sn‖2

2n log n log log log n
=

1
d

a.s. (1.18)

Our next result concerns the asymptotic normality of the MERW in the critical
regime p = pd.

Theorem 1.9. We have the asymptotic normality

1√
n log n

Sn
L−→

n→∞
N
(

0,
1
d

Id

)
. (1.19)

Remark 1.10. As before, in the special case d = 1, we find again [3, 5, 25] the asymptotic
normality for the one-dimensional ERW

Sn√
n log n

L−→
n→∞

N (0, 1).

1.3.3 – The superdiffusive regime

Finally, we get a handle on the more arduous superdiffusive regime where pd <

p ≤ 1.
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Theorem 1.11. We have the almost sure convergence

lim
n→∞

1
na Sn = Ld a.s. (1.20)

where the limiting value L is a non-degenerate random vector. We also have the mean
square convergence

lim
n→∞

E
[∥∥∥ 1

na Sn − Ld

∥∥∥2]
= 0. (1.21)

Theorem 1.12. The expected value of L is E[Ld] = 0, while its covariance matrix is
given by

E
[
LdLT

d

]
=

1
d(2a− 1)Γ(2a)

Id. (1.22)

In particular,

E
[
‖Ld‖2

]
=

1
(2a− 1)Γ(2a)

. (1.23)

Remark 1.13. Another possibility for the MERW is that, at time n = 1, the elephant
moves in one direction, say the first direction e1 of the standard basis (e1, . . . , ed) of Rd,
with probability q or in one of the 2d− 1 remaining directions with the same probability
(1− q)/(2d− 1), where the parameter q lies in the interval [0, 1]. Afterwards, at any
time n ≥ 2, the elephant moves exactly as before, which means that his steps are given by
(1.2). Then, the results of Section 1.3 hold true except Theorem 1.12 where

E[Ld] =
1

Γ(a + 1)

(2dq− 1
2d− 1

)
e1

and

E[LdLT
d ] =

1
Γ(2a + 1)

(2dq− 1
2d− 1

)(
e1eT

1 −
1
d

Id

)
+

1
d(2a− 1)Γ(2a)

Id,

which also leads to

E
[
‖Ld‖2

]
=

1
(2a− 1)Γ(2a)

.

1.4 – A multi-dimensional martingale approach

It is clear that for any time n ≥ 1, ‖Xn‖ = 1. Consequently, it follows from (1.1)
that ‖Sn‖ ≤ n. Therefore, the sequence (Mn) given, for all n ≥ 0, by Mn = anSn,
is a locally square-integrable multi-dimensional martingale. It can be rewritten
in the additive form

Mn =
n

∑
k=1

akεk (1.24)

where

εn = Sn − γn−1Sn−1 (1.25)
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since its increments ∆Mn = Mn −Mn−1 satisfy ∆Mn = anSn − an−1Sn−1 = anεn.
The predictable quadratic variation associated with (Mn) is the random square
matrix of order d given, for all n ≥ 1, by

〈M〉n =
n

∑
k=1

E
[
∆Mk(∆Mk)

T|Fk−1

]
. (1.26)

We already saw from (1.5) that E [εn+1 | Fn] = 0. Moreover, we deduce from (1.1)
together with (1.3) that

E
[
Sn+1ST

n+1 | Fn

]
= E

[
SnST

n | Fn

]
+

2a
n

SnST
n +E

[
Xn+1XT

n+1 | Fn

]
=

(
1 +

2a
n

)
SnST

n +E
[
Xn+1XT

n+1 | Fn

]
a.s. (1.27)

In order to calculate the right-hand side of (1.27), one can notice that for any
n ≥ 1,

XnXT
n =

d

∑
i=1

1Xi
n 6=0eieT

i

where (e1, . . . , ed) stands for the standard basis of the Euclidean space Rd and Xi
n

is the i-th coordinate of the random vector Xn. Moreover, it follows from (1.2)
together with the law of total probability that, at any time n ≥ 1 and for any
1 ≤ i ≤ d,

P(Xi
n+1 6= 0|Fn) =

1
n

n

∑
k=1

P((AnXk)
i 6= 0|Fn)

=
1
n

n

∑
k=1

1Xi
k 6=0P(An = ±Id) +

1
n

n

∑
k=1

(1− 1Xi
k 6=0)P(An = ±Jd)

=
NX

n (i)
n

(
P(An = Id)− P(An = Jd)

)
+ 2P(An = Jd)

which implies that for any 1 ≤ i ≤ d,

E
[
1Xi

n+1 6=0 | Fn
]
=

a
n

NX
n (i) +

(1− a)
d

a.s. (1.28)

where

NX
n (i) =

n

∑
k=1

1Xi
k 6=0

and the parameter a is given by (1.4). Hence, we infer from (1.27) and (1.28) that

E
[
Xn+1XT

n+1 | Fn

]
=

a
n

Σn +
(1− a)

d
Id a.s. (1.29)

where

Σn =
d

∑
i=1

NX
n (i)eieT

i . (1.30)
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One can observe the elementary fact that for all n ≥ 1, Tr(Σn) = n where Tr(Σn)

stands for the trace of the positive definite matrix Σn. Therefore, we obtain from
(1.27) together with (1.29) that

E
[
εn+1ε

T
n+1 | Fn

]
= E

[
Sn+1ST

n+1 | Fn

]
− γ2

nSnST
n

=
(

1 +
2a
n

)
SnST

n +
a
n

Σn +
(1− a)

d
Id − γ2

nSnST
n

=
a
n

Σn +
(1− a)

d
Id −

( a
n

)2
SnST

n a.s. (1.31)

which ensures that

E
[
‖εn+1‖2 | Fn

]
=

a
n

Tr(Σn) +
1− a

d
Tr(Id)−

( a
n

)2
‖Sn‖2

= 1− (γn − 1)2‖Sn‖2 a.s. (1.32)

By the same token,

E
[
‖εn+1‖4 | Fn

]
= 1− 3(γn − 1)4‖Sn‖4 − 2(γn − 1)2‖Sn‖2 + 4(γn − 1)2ξn

where, thanks to (1.29),

ξn = E
[
〈Sn, Xn+1〉2|Fn

]
=

a
n

ST
n ΣnSn +

(1− a)
d
‖Sn‖2.

It leads to

E
[
‖εn+1‖4 | Fn

]
= 1− 3(γn − 1)4‖Sn‖4 − 2

(
1− 2(1− a)

d

)
(γn − 1)2‖Sn‖2

+
4a
n
(γn − 1)2ST

n ΣnSn a.s. (1.33)

Therefore, as Σn ≤ nId for the usual order of positive definite matrices, we clearly
obtain from (1.33) that

E
[
‖εn+1‖4 | Fn

]
≤ 1− 3(γn − 1)4‖Sn‖4

+
2
d
(γn − 1)2

(
2a(d− 1) + 2− d

)
‖Sn‖2 a.s. (1.34)

Consequently, we obtain from (1.32) and (1.34) the almost sure upper bounds

sup
n≥0

E
[
‖εn+1‖2 | Fn

]
≤ 1 and sup

n≥0
E
[
‖εn+1‖4 | Fn

]
≤ 4

3
a.s. (1.35)

Hereafter, we deduce from (1.26) and (1.31) that

〈M〉n = a2
1E[ε1ε

T
1 ] +

n−1

∑
k=1

a2
k+1E

[
εk+1ε

T
k+1 | Fk

]
=

1
d

Id

n

∑
k=1

a2
k + a

n−1

∑
k=1

a2
k+1

(1
k

Σk −
1
d

Id

)
− ζn (1.36)

where

ζn = a2
n−1

∑
k=1

( ak+1

k

)2
SkST

k .
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Hence, by taking the trace on both sides of (1.36), we find that

Tr〈M〉n =
n

∑
k=1

a2
k − a2

n−1

∑
k=1

( ak+1

k

)2
‖Sk‖2. (1.37)

The asymptotic behavior of the multi-dimensional martingale (Mn) is closely re-
lated to the one of

vn =
n

∑
k=1

a2
k =

n

∑
k=1

(Γ(a + 1)Γ(k)
Γ(a + k)

)2
.

One can observe that we always have Tr〈M〉n ≤ vn. Once again, we have three
regimes. In the diffusive regime where a < 1/2,

lim
n→∞

vn

n1−2a = ` where ` =
(Γ(a + 1))2

1− 2a
. (1.38)

In the critical regime where a = 1/2,

lim
n→∞

vn

log n
= (Γ(a + 1))2 =

π

4
. (1.39)

Finally, in the superdiffusive regime where a > 1/2, vn converges to the finite
value

lim
n→∞

vn =
∞

∑
k=0

(Γ(a + 1)Γ(k + 1)
Γ(a + k + 1)

)2
=

∞

∑
k=0

(1)k (1)k (1)k
(a + 1)k (a + 1)k k!

= 3F2

( 1, 1, 1
a + 1, a + 1

∣∣∣1) (1.40)

where, for any α ∈ R, (α)k = α(α + 1) · · · (α + k− 1) for k ≥ 1, (α)0 = 1 stands
for the Pochhammer symbol and 3F2 is the generalized hypergeometric function
defined by

3F2

(a, b, c
d, e

∣∣∣z) =
∞

∑
k=0

(a)k (b)k (c)k
(d)k (e)k k!

zk.

1.5 – Another approach using Pólya-type urns

In his work [13], Bertenghi used the approach developed by Baur and Bertoin [3]
to obtain functional limit theorems for the MERW. More precisely, if you consider
an urn filled with balls of 2d distinct colors and its composition at any time n ∈ N
Un =

(
U1

n, . . . , U2d
n
)

where each component Uk
n represents the numbers of balls of

color k at time n. A time zero, there are no balls in the urn such that U0 = 02d.
Then, we set U1 = (1, 0, . . . , 0) meaning that we start the urn with exactly one
ball of the first color. Then, we add one ball at each time as follows. At any time
n ≥ 2, we draw a ball uniformly at random from the urn, observe its colour, put
it back to the urn and add a ball of the same color with probability p, or add a
ball of the one of the 2d − 1 other colors with probability (1 − p)/(2d − 1) for
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1 – The Multi-dimensional Elephant Random Walk

each color (uniformly). The connection to the MERW model is once again quite
simple: If Sn denotes the position of the MERW started from zero at time zero,
then

Sn
L
= (X1

n − Xd+1
n )e1 + . . . + (Xd

n − X2d
n )ed.

To study this process, it is once again necessary to explicit mean replacement
matrix of order 2d, which is given in this case by

A =



p 1−p
2d−1 · · · · · ·

1−p
2d−1

1−p
2d−1

. . . . . . . . . ...
... . . . . . . . . . ...
... . . . . . . 1−p

2d−1
1−p
2d−1 · · · · · · 1−p

2d−1 p


.

The eigenvalues of A are λ1 = 1 and λ2 = (2dp − 1)/(2d − 1)with mutiplicity
2d− 1. Then, studying the ratio λ2/λ1 < 1/2 is indeed equivalent to a < 1/2 .

Theorem 1.14. The following convergences in D([0, ∞[) hold. In the diffusive regime,(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(1.41)

where
(
Wt, t ≥ 0

)
is a Rd-valued centered Gaussian process starting from the origin

with covariance
E[WsWt] =

1
(1− 2a)d

s
( t

s

)a
Id (1.42)

for 0 < s ≤ t. In the critical regime,( Sbntc√
nt log n

, t ≥ 0
)
=⇒ 1√

d

(
Bt, t ≥ 0

)
(1.43)

where
(
Bt, t ≥ 0

)
is a standard d-dimensional Brownian motion.

1.6 – Proofs of the almost sure convergence results

1.6.1 – The diffusive regime

Proof of Theorem 1.1. First of all, we focus our attention on the proof of the al-
most sure convergence (1.10). We already saw from (1.37) that Tr〈M〉n ≤ vn.
Moreover, we obtain from (1.38) that, in the diffusive regime where 0 < a < 1/2,
vn increases to infinity with the speed n1−2a. On the one hand, it follows from
the strong law of large numbers for multi-dimensional martingales, see Theorem
A.3, that for any γ > 0,

‖Mn‖2

λmax〈M〉n
= o

((
log Tr〈M〉n

)1+γ)
a.s (1.44)
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where λmax〈M〉n stands for the maximal eigenvalue of the random square matrix
〈M〉n. However, as 〈M〉n is a positive definite matrix and Tr〈M〉n ≤ vn, we clearly
have

λmax〈M〉n ≤ Tr〈M〉n ≤ vn.

Consequently, we obtain from (1.44) that

‖Mn‖2 = o
(
vn(log vn)

1+γ
)

a.s

which implies that

‖Mn‖2 = o
(
n1−2a(log n)1+γ

)
a.s. (1.45)

Hence, as Mn = anSn, it follows from (1.9) and (1.45) that for any γ > 0,

‖Sn‖2 = o
(
n(log n)1+γ

)
a.s.

which completes the proof of Theorem 1.1.

�

Proof of Theorem 1.3. We shall now proceed to the proof of the almost sure rates
of convergence given in Theorem 1.3. First of all, we claim that

lim
n→∞

1
n

Σn =
1
d

Id a.s. (1.46)

where Σn is the random square matrix of order d given by (1.30). As a matter of
fact, in order to prove (1.46) it is only necessary to show that for any 1 ≤ i ≤ d,

lim
n→∞

NX
n (i)
n

=
1
d

a.s. (1.47)

For any 1 ≤ i ≤ d, denote

Λn(i) =
NX

n (i)
n

.

One can observe that

Λn+1(i) =
n

n + 1
Λn(i) +

1
n + 1

1Xi
n+1 6=0

which leads, via (1.28), to the recurrence relation

Λn+1(i) =
n

n + 1
γnΛn(i) +

(1− a)
d(n + 1)

+
1

n + 1
δn+1(i) (1.48)

where δn+1(i) = 1Xi
n+1 6=0 − E[1Xi

n+1 6=0 | Fn]. After straightforward calculations,
the solution of this recurrence relation is given by

Λn(i) =
1

nan

(
Λ1(i) +

(1− a)
d

n

∑
k=2

ak + Ln(i)
)

(1.49)
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where

Ln(i) =
n

∑
k=2

akδk(i).

However, (Ln(i)) is a square-integrable real martingale with predictable quadratic
variation 〈L(i)〉n satisfying 〈L(i)〉n ≤ vn a.s. Then, it follows from the stan-
dard strong law of large numbers for martingales given by Theorem A.2 that
(Ln(i))2 = O(vn log vn) a.s. Consequently, as na2

n is equivalent to (1− 2a)vn, we
obtain that for any 1 ≤ i ≤ d,

lim
n→∞

1
nan

Ln(i) = 0 a.s. (1.50)

Furthermore, one can easily check from (1.9) that

lim
n→∞

1
nan

n

∑
k=1

ak =
1

1− a
. (1.51)

Therefore, we find from (1.49) together with (1.50) and (1.51) that for any 1 ≤ i ≤
d,

lim
n→∞

Λn(i) =
1
d

a.s. (1.52)

which immediately leads to (1.47). Hereafter, it follows from the conjunction of
(1.10), (1.31) and (1.47) that

lim
n→∞

E
[
εn+1ε

T
n+1 | Fn

]
=

1
d

Id a.s. (1.53)

By the same token, we also obtain from (1.36) and Toeplitz lemma that

lim
n→∞

1
vn
〈M〉n =

1
d

Id a.s. (1.54)

We are now in the position to prove the quadratic strong law (1.11). For any
vector u of Rd, denote Mn(u) = 〈u, Mn〉 and εn(u) = 〈u, εn〉. We clearly have
from (1.24)

Mn(u) =
n

∑
k=1

akεk(u).

Consequently, (Mn(u)) is a square-integrable real martingale. Moreover, it fol-
lows from (1.53) that

lim
n→∞

E
[
|εn+1(u)|2 | Fn

]
=

1
d
‖u‖2 a.s.

Moreover, we can deduce from (1.35) and the Cauchy-Schwarz inequality that

sup
n≥0

E
[
|εn+1(u)|4 | Fn

]
≤ 4

3
‖u‖4 a.s.

Furthermore, we clearly have from (1.9) and (1.38) that

lim
n→∞

n fn = 1− 2a where fn =
a2

n
vn

,
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which of course implies that fn converges to zero. Therefore, it follows from the
quadratic strong law for real martingales, see Theorem A.5, that for any vector u
of Rd,

lim
n→∞

1
log vn

n

∑
k=1

fk

(M2
k(u)
vk

)
=

1
d
‖u‖2 a.s. (1.55)

Consequently, we find from (1.38) and (1.55) that

lim
n→∞

1
log n

n

∑
k=1

a2
k

v2
k

M2
k(u) =

(1− 2a)
d

‖u‖2 a.s. (1.56)

Hereafter, as Mn = anSn and n2a4
n is equivalent to (1− 2a)2v2

n, we obtain from
(1.56) that for any vector u of Rd,

lim
n→∞

1
log n

n

∑
k=1

1
k2 uTSkST

k u =
1

d(1− 2a)
‖u‖2 a.s. (1.57)

By virtue of the second part of Proposition 4.2.8 in [31], we can conclude from
(1.57) that

lim
n→∞

1
log n

n

∑
k=1

1
k2 SkST

k =
1

d(1− 2a)
Id a.s. (1.58)

which completes the proof of (1.11). By taking the trace on both sides of (1.58),
we immediately obtain (1.12). Finally, we shall proceed to the proof of the law
of iterated logarithm given by (1.13). We already saw that a4

nv−2
n is equivalent to

(1− 2a)2n−2. It ensures that
+∞

∑
n=1

a4
n

v2
n
< +∞. (1.59)

Hence, it follows from the law of iterated logarithm for real martingales due to
Stout [71, 72], see Theorem A.4, that for any vector u of Rd,

lim sup
n→∞

( 1
2vn log log vn

)1/2
Mn(u) = − lim inf

n→∞

( 1
2vn log log vn

)1/2
Mn(u)

=
1√
d
‖u‖ a.s. (1.60)

Consequently, as Mn(u) = an〈u, Sn〉, we obtain from (1.38) together with (1.60)
that

lim sup
n→∞

( 1
2n log log n

)1/2
〈u, Sn〉 = − lim inf

n→∞

( 1
2n log log n

)1/2
〈u, Sn〉

=
1√

d(1− 2a)
‖u‖ a.s.

In particular, for any vector u of Rd,

lim sup
n→∞

1
2n log log n

〈u, Sn〉2 =
1

d(1− 2a)
‖u‖2 a.s. (1.61)
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By taking all rational points on the unit sphere Sd−1 in Rd, the bound in (1.61)
holds simultaneously for all of them, which implies that

lim sup
n→∞

‖Sn‖2

2n log log n
≤ sup

u∈Qd∩Sd−1
lim sup

n→∞

‖Sn‖2

2n log log n
=

1
d(1− 2a)

a.s.

In addition, for any single u ∈ Sd−1, we also obtain the reverse inequality

lim sup
n→∞

‖Sn‖2

2n log log n
≥ lim sup

n→∞

〈u, Mn〉2
2n log log n

=
1

d(1− 2a)
a.s.

It immediately leads to

lim sup
n→∞

‖Sn‖2

2n log log n
=

1
d(1− 2a)

a.s.

which achieves the proof of Theorem 1.3.

�

1.6.2 – The critical regime

Proof of Theorem 1.6. We already saw from (1.39) that in the critical regime where
a = 1/2, vn increases slowly to infinity with a logarithmic speed log n. We obtain
once again from Theorem A.3 that for any γ > 0,

‖Mn‖2 = o
(
vn(log vn)

1+γ
)

a.s

which leads to

‖Mn‖2 = o
(

log n(log log n)1+γ
)

a.s. (1.62)

However, we clearly have from (1.9) with a = 1/2 that

lim
n→∞

na2
n =

π

4
. (1.63)

Consequently, as Mn = anSn, we deduce from (1.62) and (1.63) that for any γ > 0,

‖Sn‖2 = o
(
n log n(log log n)1+γ

)
a.s.

which completes the proof of Theorem 1.6.

�

Proof of Theorem 1.8. The proof of Theorem 1.8 is left to the reader as it follows
the same lines as that of Theorem 1.3.

�
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1.6.3 – The superdiffusive regime

Proof of Theorem 1.11. We already saw from (1.40) that in the superdiffusive
regime where 1/2 < a ≤ 1, vn converges to a finite value. As previously seen,
Tr〈M〉n ≤ vn. Hence, we clearly have

lim
n→∞

Tr〈M〉n < ∞ a.s.

Therefore, if

Ln =
Mn

Γ(a + 1)
, (1.64)

we can deduce from Theorem A.3 that

lim
n→∞

Mn = M and lim
n→∞

Ln = Ld a.s. (1.65)

where the limiting values M and Ld are the random vectors of Rd given by the
following series (which are not absolutely convergent)

M =
∞

∑
k=1

akεk and Ld =
1

Γ(a + 1)

∞

∑
k=1

akεk.

Consequently, as Mn = anSn, (1.20) clearly follows from (1.9) and (1.65). We now
focus our attention on the mean square convergence (1.21). As M0 = 0, we have
from (1.24) and (1.26) that for all n ≥ 1,

E[‖Mn‖2] =
n

∑
k=1

E[‖∆Mk‖2] = E[Tr〈M〉n] ≤ vn.

Hence, we obtain from (1.40) that

sup
n≥1

E
[
‖Mn‖2

]
≤ 3F2

( 1, 1, 1
a + 1, a + 1

∣∣∣1) < ∞,

which means that the martingale (Mn) is bounded in L2. Therefore, we have the
mean square convergence

lim
n→∞

E
[
‖Mn −M‖2] = 0,

which clearly leads to (1.21).

�

Proof of Theorem 1.12. First of all, we clearly have for all n ≥ 1, E[Mn] = 0 which
implies that E[M] = 0 leading to E[L] = 0. Moreover, taking expectation on both
sides of (1.27) and (1.29), we obtain that for all n ≥ 1,

E
[
Sn+1ST

n+1

]
=

(
1 +

2a
n

)
E
[
SnST

n

]
+E

[
Xn+1XT

n+1

]
=

(
1 +

2a
n

)
E
[
SnST

n

]
+

a
n
E [Σn] +

(1− a)
d

Id. (1.66)
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However, we claim that
E [Σn] =

n
d

Id. (1.67)

As a matter of fact, taking expectation on both sides of (1.49), we find that for any
1 ≤ i ≤ d,

E[Λn(i)] =
1

nan

(
E[Λ1(i)] +

(1− a)
d

n

∑
k=2

ak

)
. (1.68)

On the one hand, we clearly have

E[Λ1(i)] =
1
d

.

On the other hand, it follows from Lemma B.1 in [5] that

n

∑
k=2

ak =
n

∑
k=2

Γ(a + 1)Γ(k)
Γ(k + a)

=
n−1

∑
k=1

Γ(a + 1)Γ(k + 1)
Γ(k + a + 1)

=
1

(a− 1)

(
1− Γ(a + 1)Γ(n + 1)

Γ(a + n)

)
=

(1− nan)

(a− 1)
. (1.69)

Consequently, we can deduce from (1.68) and (1.69) that for any 1 ≤ i ≤ d,

E[Λn(i)] =
1

nan

(1
d
− (1− nan)

d

)
=

1
d

. (1.70)

Therefore, we get from (1.30) and (1.70) that

E[Σn] = n
d

∑
i=1

E[Λn(i)]eieT
i =

n
d

d

∑
i=1

eieT
i =

n
d

Id.

Hereafter, we obtain from (1.66) and (1.67) that

E
[
Sn+1ST

n+1

]
=
(

1 +
2a
n

)
E
[
SnST

n

]
+

1
d

Id. (1.71)

It is not hard to see that the solution of this recurrence relation is given by

E
[
SnST

n

]
=

Γ(n + 2a)
Γ(2a + 1)Γ(n)

(
E[S1ST

1 ] +
1
d

n−1

∑
k=1

Γ(2a + 1)Γ(k + 1)
Γ(k + 2a + 1)

Id

)

=
Γ(n + 2a)

Γ(n)

(
n

∑
k=1

Γ(k)
Γ(k + 2a)

)
1
d

Id (1.72)

since
E[S1ST

1 ] =
1
d

Id.

Therefore, it follows once again from Lemma B.1 in [5] that

E
[
SnST

n

]
=

n
(2a− 1)

(
Γ(n + 2a)

Γ(n + 1)Γ(2a)
− 1
)

1
d

Id. (1.73)

Hence, we obtain from (1.64) together with (1.73) that

E[LnLT
n ] =

na2
n

(2a− 1)(Γ(a + 1))2

(
Γ(n + 2a)

Γ(n + 1)Γ(2a)
− 1
)

1
d

Id

=
n

(2a− 1)

(
Γ(n)

Γ(n + a)

)2( Γ(n + 2a)
Γ(n + 1)Γ(2a)

− 1
)

1
d

Id. (1.74)
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Finally, we find from (1.21) and (1.74) that

lim
n→∞

E[LnLT
n ] = E[LdLT

d ] =
1

d(2a− 1)Γ(2a)
Id

which achieves the proof of Theorem 1.12.

�

1.7 – Proofs of the asymptotic normality results

1.7.1 – The diffusive regime

Proof of Theorem 1.4. In order to establish the asymptotic normality (1.14), we
shall make use of the central limit theorem for multi-dimensional martingales,
given by Theorem A.6. First of all, we already saw from (1.54) that

lim
n→∞

1
vn
〈M〉n =

1
d

Id a.s. (1.75)

Consequently, it only remains to show that (Mn) satisfies Lindeberg’s condition,
in other words, for all ε > 0,

1
vn

n

∑
k=1

E
[
‖∆Mn‖21{‖∆Mn‖≥ε

√
vn}|Fk−1

]
P−→

n→∞
0.

We have from (1.35) that for all ε > 0

1
vn

n

∑
k=1

E
[
‖∆Mn‖21{‖∆Mn‖≥ε

√
vn}|Fk−1

]
≤ 1

ε2v2
n

n

∑
k=1

E
[
‖∆Mn‖4|Fk−1

]
≤ sup

1≤k≤n
E
[
‖εk‖4 | Fk−1

] 1
ε2v2

n

n

∑
k=1

a4
k

≤ 4
3ε2v2

n

n

∑
k=1

a4
k.

However, we already saw from (1.59) that

+∞

∑
n=1

a4
n

v2
n
< +∞.

Hence, it follows from Kronecker’s lemma that

lim
n→∞

1
v2

n

n

∑
k=1

a4
k = 0,

which ensures that Lindeberg’s condition is satisfied. Therefore, we can conclude
from the central limit theorem for martingales that

1√
vn

Mn
L−→

n→∞
N
(

0,
1
d

Id

)
. (1.76)
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As Mn = anSn and
√

nan is equivalent to
√

vn(1− 2a), we find from (1.76) that

1√
n

Sn
L−→

n→∞
N
(

0,
1

d(1− 2a)
Id

)
,

which completes the proof of Theorem 1.4.

�

1.7.2 – The critical regime

Proof of Theorem 1.9. Via the same lines as in the proof of (1.54), we can deduce
from (1.15), (1.37) and (1.39) that in the critical regime

lim
n→∞

1
vn
〈M〉n =

1
d

Id a.s. (1.77)

Moreover, it follows from (1.39) and (1.63) that a2
nv−1

n is equivalent to (n log n)−1.
It implies that

∞

∑
k=1

a4
n

v2
n
< +∞. (1.78)

As previously seen, we infer from (1.78) that (Mn) satisfies Lindeberg’s condition.
Therefore, we can conclude from the central limit theorem for martingales that

1√
vn

Mn
L−→

n→∞
N
(

0,
1
d

Id

)
. (1.79)

Finally, as Mn = anSn and an
√

n log n is equivalent to
√

vn, we obtain from that
(1.79) that

1√
n log n

Sn
L−→

n→∞
N
(

0,
1
d

Id

)
,

which achieves the proof of Theorem 1.9.
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2.1 – Introduction

Let (Sn) be a standard random walk in Rd. The center of mass Gn of Sn is defined
by

Gn =
1
n

n

∑
k=1

Sk. (2.1)

The question of the asymptotic behavior of Gn was first raised by Paul Erdös.
Very recently, Lo and Wade [62] extended the results of Grill [38] by studying the
asymptotic behavior of (Gn). More precisely, let Sn = X1 + · · ·+ Xn where the
increments (Xn) are independent and identically distributed square integrable
random vectors of Rd with mean µ and covariance matrix Γ. They proved the
strong law of large numbers

lim
n→∞

1
n

Gn =
1
2

µ a.s. (2.2)

together with the asymptotic normality,

1√
n

(
Gn −

n
2

µ
)

L−→
n→∞

N
(

0,
1
3

Γ
)

. (2.3)
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2 – The Center of Mass of the Elephant Random Walk

The proofs of many results on the convex hull Cn as well as on the center of mass
Gn rely on independence and exchangeability of the increments of the walk. For
example, one can observe that

Gn =
1
n

n

∑
k=1

Sk =
1
n

n

∑
k=1

(
n− k + 1

)
Xk (2.4)

shares the same distribution as

Σn =
1
n

n

∑
k=1

kXk.

A natural question concerns the asymptotic behavior of Gn in other situations
where the increments of the walk are not independent and not identically dis-
tributed. In this chapter, we investigate the asymptotic behavior of the center of
mass of the multi-dimensional elephant random walk introduced in Chapter 1.
Our strategy for proving asymptotic results for the center of mass of the elephant
random walk (CMERW) is as follows. On the one hand, the behavior of position
Sn is closely related to the one of the locally square-integrable martingale adapted
to the filtration (Fn). The sequence (Mn) is defined, for all n ≥ 0, by Mn = anSn

with a1 = 1 and, for all n ≥ 2,

an =
n−1

∏
k=1

( k
k + a

)
=

Γ(a + 1)Γ(n)
Γ(n + a)

(2.5)

where Γ stands for the Euler Gamma function and a is the fundamental parameter
of the ERW defined by

a =
2dp− 1
2d− 1

. (2.6)

It can be rewritten, see (1.24) or [9], in the additive form

Mn =
n

∑
k=1

akεk (2.7)

where ε1 = S1 and, for all n ≥ 2,

εn = Sn −
( an−1

an

)
Sn−1 = Sn −

(
1 +

a
n− 1

)
Sn−1. (2.8)

On the other hand, an analogue of equation (2.4) is given by

Gn =
1
n

n

∑
k=1

Sk =
1
n

n

∑
k=1

1
ak

Mk =
1
n

n

∑
k=1

1
ak

k

∑
`=1

a`ε` =
1
n

n

∑
k=1

akεk

n

∑
`=k

1
a`

,

=
1
n

n

∑
k=1

ak(bn − bk−1)εk (2.9)

where the sequence (bn) is given by b0 = 0 and, for all n ≥ 1,

bn =
n

∑
k=1

1
ak

. (2.10)
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2 – The Center of Mass of the Elephant Random Walk

Denoting

Nn =
n

∑
k=1

akbk−1εk, (2.11)

it is straightforward to see that E [Nn+1 | Fn] = Nn a.s. since E [εn+1 | Fn] = 0.
Hence, (Nn) is also a locally square-integrable martingale adapted to the filtration
(Fn). We deduce from (2.9) that

Gn =
1
n
(bnMn −Nn). (2.12)

Relation (2.12) allows us to establish the asymptotic behavior of the CMERW via
an extensive use of the strong law of large numbers and the central limit theorem
for multi-dimensional martingales [22], [31], [42], [73].
The chapter is organized as follows. The main results are given in Section 2.2.
We first investigate the diffusive regime p < pd and we establish the almost sure
convergence, the law of iterated logarithm and the quadratic strong law for the
CMERW. The asymptotic normality of the CMERW, properly normalized, is also
provided. Next, we prove similar results in the critical regime p = pd. Finally, we
establish a strong limit theorem in the superdiffusive regime p > pd. Our marti-
nagle approach is described in Section 2.3 while all technical proofs are postponed
to Sections 2.4 and 2.5.

2.2 – Main results

2.2.1 – The diffusive regime

Our first result deals with the strong law of large numbers for the CMERW in the
diffusive regime where 0 ≤ p < pd. The following strong law for the CMERW
will be deduced as a simple consequence of the strong law for (Sn).

Theorem 2.1. We have the almost sure convergence

lim
n→∞

1
n

Gn = 0 a.s. (2.13)

Remark 2.2. For any α > 1/2, we have the more precise result

lim
n→∞

1
nα

Gn = 0 a.s.
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2 – The Center of Mass of the Elephant Random Walk

Figure 2.1: The 2-dimensional ERW in blue and the
CMERW in red, for n = 104 steps and a diffusive
memory parameter p = 1/2.

The almost sure rates of convergence for CMERW are as follows.

Theorem 2.3. We have the quadratic strong law

lim
n→∞

1
log n

n

∑
k=1

1
k2 GkGT

k =
2

3(1− 2a)(2− a)d
Id a.s. (2.14)

where Id stands for the identity matrix of order d. In particular,

lim
n→∞

1
log n

n

∑
k=1

‖Gk‖2

k2 =
2

3(1− 2a)(2− a)
a.s. (2.15)

Moreover, we have the upper-bound in the law of iterated logarithm

lim sup
n→∞

‖Gn‖2

2n log log n
≤
(√

3 +
√

1− 2a
)2

3(a + 1)2(1− 2a)d
a.s. (2.16)

We are now interested in the asymptotic normality of the CMERW.

Theorem 2.4. We have the asymptotic normality

1√
n

Gn
L−→

n→∞
N
(

0,
2

3(1− 2a)(2− a)d
Id

)
. (2.17)

Remark 2.5. It is possible to show that the following convergence in D([0, ∞[) holds(Gbntc√
n

, t ≥ 0
)
=⇒

(
Gt, t ≥ 0

)
where

(
Gt, t ≥ 0

)
is a real-valued centered Gaussian process starting from the origin

with covariance

E[GsGt] =
s

d(a + 1)(2− a)

( 1
1− 2a

( t
s
)a − 1

3
( s

t
))

Id

for 0 < s ≤ t.
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2 – The Center of Mass of the Elephant Random Walk

Remark 2.6. One can observe from Theorem 3.3 in [9] that the ratio of the asymptotic
variances between the CMERW and the ERW is given by

R(a) =
2

3(2− a)
.

In the diffusive regime, this ratio lies between 2/9 and 4/9 and it is always smaller than
1, as one can see in Figure 2.1. Moreover, in the special case where the elephant moves in
one of the 2d directions with the same probability p = 1/2d < pd, it follows from (2.6)
that the fundamental parameter a = 0. Consequently, we deduce from (2.17) that

1√
n

Gn
L−→

n→∞
N
(

0,
1

3d
Id

)
.

We find again the asymptotic normality (2.3) where the mean value µ = 0 and the
covariance matrix Γ = 1

d Id, that is the result in the simple symmetric case.

Remark 2.7. The convergence (2.17) can also be obtained using the functional result
from Bertenghi [13], given here in Theorem 1.14. More precisely, we observe that

Gn√
n
=
∫ 1

0

Sbntc√
n

dt.

Consequently, Gn/
√

n is a continuous function of Sbntc/
√

n in D([0, 1]). Hence, the
functional distribution from Theorem 1.14 gives us that

Gn√
n
=
∫ 1

0

Sbntc√
n

dt L−→
n→∞

∫ 1

0
Wtdt.

2.2.2 – The critical regime

Hereafter, we investigate the critical regime where the memory parameter p = pd.

Theorem 2.8. We have the almost sure convergence

lim
n→∞

1√
n log n

Gn = 0 a.s. (2.18)

Remark 2.9. For any α > 1/2, we have the more precise result

lim
n→∞

1√
n(log n)α

Gn = 0 a.s.
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2 – The Center of Mass of the Elephant Random Walk

Figure 2.2: The 2-dimensional ERW in blue and the
CMERW hull in red, for n = 104 steps and the criti-
cal memory parameter p = 5/8.

The almost sure rates of convergence for the CMERW are as follows.

Theorem 2.10. We have the quadratic strong law

lim
n→∞

1
log log n

n

∑
k=2

1
(k log k)2 GkGT

k =
4

9d
Id a.s. (2.19)

In particular,

lim
n→∞

1
log log n

n

∑
k=2

‖Gk‖2

(k log k)2 =
4
9

a.s. (2.20)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Gn‖2

2n log n log log log n
=

4
9d

a.s. (2.21)

Our next result concerns the asymptotic normality of the CMERW.

Theorem 2.11. We have the asymptotic normality

1√
n log n

Gn
L−→

n→∞
N
(

0,
4

9d
Id

)
. (2.22)

Remark 2.12. In the critical regime, the ratio of the asymptotic variances between the
CMERW and the ERW is 4/9.

2.2.3 – The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where p > pd. The
almost sure convergence of (Sn), properly normalized by na, yields the following
strong limit theorem for the CMERW.

Theorem 2.13. We have the almost sure convergence

lim
n→∞

1
na Gn = G a.s. (2.23)

50



2 – The Center of Mass of the Elephant Random Walk

where the limiting value G is a non-degenerate random vector of Rd. We also have the
mean square convergence

lim
n→∞

E
[∥∥∥ 1

na Gn −G
∥∥∥2]

= 0. (2.24)

Remark 2.14. The limiting value G is in fact completely related to the one of the MERW
Ld as

G =
1

a + 1
Ld.

Remark 2.15. The expected value of G is zero and its covariance matrix is given by

E
[
GGT

]
=

1
d(a + 1)2(2a− 1)2Γ(2a− 1)

Id.

Figure 2.3: The 2-dimensional ERW in blue, the
CMERW in red, for n = 104 steps and a superdif-
fusive memory parameter p = 3/4.

2.3 – A multi-dimensional martingale approach

We already saw from (2.12) that the CMERW can be rewritten as

Gn =
1
n
(bnMn −Nn).

In order to investigate the asymptotic behavior of (Gn), we introduce the multi-
dimensional martingale (Mn) defined by

Mn =

(
Mn

Nn

)
(2.25)

where (Mn) and (Nn) are the two locally square-integrable martingales given by
(2.7) and (2.11). The main difficulty we face here is that the predictable quadratic
variations of (Mn) and (Nn) increase to infinity with two different speeds. A
matrix normalization is necessary to establish the asymptotic behavior of the
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2 – The Center of Mass of the Elephant Random Walk

CMERW. Let (Vn) be the sequence of positive definite diagonal matrices of or-
der 2d given by

Vn =
1

n
√

n

(
bn 0
0 1

)
⊗ Id (2.26)

where A⊗ B stands for the Kronecker product of the matrices A and B.

Lemma 2.16. The sequence (Mn) is a locally square-integrable martingale of R2d. Its
predictable quadratic variation 〈M〉n satisfies in the diffusive regime where a < 1/2,

lim
n→∞

Vn〈M〉nVT
n = V a.s. (2.27)

where the limiting matrix

V =
1

d(a + 1)2

(
1

1−2a
1

2−a
1

2−a
1
3

)
⊗ Id. (2.28)

Remark 2.17. Via the same lines as in the proof of Lemma 2.16, we find that in the
critical regime a = 1/2, the sequence of normalization matrices (Vn) has to be replaced
by

Wn =
1

n
√

n log n

(
bn 0
0 1

)
⊗ Id. (2.29)

Moreover, the limiting matrix in (2.27) must be changed by

W =
4

9d

(
1 0
0 0

)
⊗ Id. (2.30)

Proof of Lemma 2.16. The increments of the ERW are bounded by 1, that is for
any time n ≥ 1, ‖Xn‖ = 1. Hence, it follows from (1.1) that ‖Sn‖ ≤ n and
‖Gn‖ ≤ n which imply that ‖Mn‖ ≤ nan and ‖Nn‖ ≤ nanbn + n2. We already
saw in Section 2.1 that (Mn) is a locally square-integrable martingale. Denote
∆Mn = Mn −Mn−1, and similarly for other processes. It follows from (2.7), (2.8)
and (2.11) that the predictable quadratic variation associated with (Mn) is the
square matrix of order 2d given, for all n ≥ 1, by

〈M〉n=
n

∑
k=1

E

(∆Mk

∆Nk

)(
∆Mk

∆Nk

)T∣∣∣Fk−1

= n

∑
k=1

a2
k

(
1 bk−1

bk−1 b2
k−1

)
⊗E

[
εkε

T
k
∣∣Fk−1

]
.

(2.31)
Moreover, we deduce from formulas (A.7) and (B.3) in [9] that for all n ≥ 1,

E
[
εn+1ε

T
n+1 | Fn

]
=

1
d

Id + a
( 1

n
Σn −

1
d

Id

)
−
( a

n

)2
SnST

n a.s. (2.32)

where Σn is a random positive definite matrix of order d satisfying

lim
n→∞

1
n

Σn =
1
d

Id a.s. (2.33)
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Consequently, we obtain from (2.32) that

〈M〉n =
1
d

n

∑
k=1

a2
k

(
1 bk−1

bk−1 b2
k−1

)
⊗ Id + a

n−1

∑
k=1

a2
k+1

(
1 bk

bk b2
k

)
⊗
(1

k
Σk −

1
d

Id

)
− ξn

(2.34)
where

ξn = a2
n−1

∑
k=1

( ak+1

k

)2
(

1 bk

bk b2
k

)
⊗ SkST

k .

According to Theorem 3.1 in [9], the remainder ξn plays a negligible role as

lim
n→∞

Sn

n
= 0 a.s. (2.35)

Hereafter, it is not hard to see that

Vn

( n

∑
k=1

a2
k

(
1 bk−1

bk−1 b2
k−1

)
⊗ Id

)
VT

n =
1
n3

(
b2

n ∑n
k=1 a2

k bn ∑n
k=1 a2

kbk−1

bn ∑n
k=1 a2

kbk−1 ∑n
k=1 a2

kb2
k−1

)
⊗ Id.

Furthermore, from a well-known property of the Euler Gamma function, we have

lim
n→∞

Γ(n + a)
Γ(n)na = 1. (2.36)

Hence, we obtain from (2.5), (2.10) and (2.36) that

lim
n→∞

naan = Γ(a + 1) and lim
n→∞

bn

na+1 =
1

Γ(a + 2)
. (2.37)

Consequently, as soon as a < 1/2, we immediately find from (2.37) that

lim
n→∞

b2
n

n3

n

∑
k=1

a2
k =

1
(1− 2a)(a + 1)2 ,

lim
n→∞

bn

n3

n

∑
k=1

a2
kbk−1 =

1
(2− a)(a + 1)2 ,

lim
n→∞

1
n3

n

∑
k=1

a2
kb2

k−1 =
1

3(a + 1)2 .

Therefore,

lim
n→∞

Vn

( n

∑
k=1

a2
k

(
1 bk−1

bk−1 b2
k−1

)
⊗ Id

)
VT

n =
1

(a + 1)2

(
1

1−2a
1

2−a
1

2−a
1
3

)
⊗ Id. (2.38)

Finally, it follows from the combinaition of (2.33), (2.34), (2.35) and (2.38) that

lim
n→∞

Vn〈M〉nVT
n =

1
d(a + 1)2

(
1

1−2a
1

2−a
1

2−a
1
3

)
⊗ Id. a.s. (2.39)

which is exactly what we wanted to prove.

�
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2.4 – Proofs of the almost sure convergence results

2.4.1 – The diffusive regime.

Proof of Theorem 2.1. We already saw from Theorem 3.1 in [9] that

lim
n→∞

Sn

n
= 0 a.s. (2.40)

Consequently, the almost sure convergence (2.13) immediately follows from (2.40)
together with the Toeplitz lemma given e.g. by Lemma 2.2.13 in [31].

�

Proof of Theorem 2.3. Our goal is to check that all the hypotheses of Theorem
A.8 are satisfied. Thanks to Lemma 2.16, hypothesis (H.1) holds almost surely. In
order to verify that Lindeberg’s condition (H.2) is satisfied, we have from (2.25)
together with (2.7), (2.11) and Vn given by (2.26) that for all 1 ≤ k ≤ n

Vn∆Mk =
ak

n
√

n

(
bnεk

bk−1εk

)
,

which implies that

‖Vn∆Mk‖2 ≤
2a2

kb2
n

n3 ‖εk‖2. (2.41)

Consequently, we obtain that for all ε > 0,

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ 1

ε2

n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
,

≤ 4b4
n

ε2n6

n

∑
k=1

a4
kE
[
‖εk‖4 | Fk−1

]
,

≤ 4b4
n

ε2n6 sup
1≤k≤n

E
[
‖εk‖4 | Fk−1

] n

∑
k=1

a4
k.

(2.42)

However, it follows from the right-hand side of formula (4.11) in [9] that

sup
1≤k≤n

E
[
‖εk‖4 | Fk−1

]
≤ 4

3
a.s. (2.43)

Therefore, we infer from (2.42) that for all ε > 0,

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ 16 b4

n
3 ε2n6

n

∑
k=1

a4
k a.s. (2.44)

Moreover, we have from (2.37) that

b4
n

n

∑
k=1

a4
k = O(n5). (2.45)
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Consequently, (2.44) together with (2.45) ensure that Lindeberg’s condition (H.2)
holds almost surely, that is for all ε > 0,

lim
n→∞

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
= 0 a.s. (2.46)

We will now check that condition (H.3) is satisfied in the special case β = 2, that
is

∞

∑
n=1

1(
log(det V−1

n )2
)2E

[
‖Vn∆Mn‖4 | Fn−1

]
< ∞ a.s. (2.47)

We have from (2.26) that

det V−1
n =

(n3/2

bn

)d
. (2.48)

Hence, we find from (2.37) and (2.48) that

lim
n→∞

log(det V−1
n )2

log n
= d(1− 2a). (2.49)

Consequently, we can replace log(det V−1
n )2 by log n in (2.47). Hereafter, we ob-

tain from (2.41) and (2.43) that

∞

∑
n=2

1
(log n)2E

[
‖Vn∆Mn‖4 | Fn−1

]
= O

( ∞

∑
n=1

1
(log n)2

a4
nb4

n
n6 E

[
‖εn‖4 | Fn−1

])
,

= O
( ∞

∑
n=1

1
(log n)2

a4
nb4

n
n6

)
. (2.50)

However, we have from (2.37) that

lim
n→∞

a4
nb4

n
n4 =

1
(a + 1)4 . (2.51)

Therefore, (2.50) together with (2.51) immediately lead to (2.47). We are now in a
position to apply the quadratic strong law given by Theorem A.8. We have from
(A.11) and (2.49) that

lim
n→∞

1
log n

n

∑
k=1

( (det Vk)
2 − (det Vk+1)

2

(det Vk)2

)
VkMkMT

k VT
k = d(1− 2a)V a.s. (2.52)

where the limiting matrix V is given by (2.28). However, it follows from (2.9),
(2.25) and (2.26) that

1√
n

Gn = vTVnMn where v =

(
1
−1

)
⊗ Id. (2.53)

Consequently, we deduce from (2.52) and (2.53) that

lim
n→∞

1
log n

n

∑
k=1

( (det Vk)
2 − (det Vk+1)

2

(det Vk)2

)1
k

GkGT
k = d(1− 2a)vTVv a.s. (2.54)

55



2 – The Center of Mass of the Elephant Random Walk

Furthermore, we obtain from (2.48) and (2.37) that

lim
n→∞

n
( (det Vn)2 − (det Vn+1)

2

(det Vn)2

)
= d(1− 2a).

Hence, (2.54) clearly leads to convergence (2.14),

lim
n→∞

1
log n

n

∑
k=1

1
k2 GkGT

k = vTVv =
2

3(1− 2a)(2− a)d
Id a.s. (2.55)

By taking the trace on both sides of (2.55), we also obtain that

lim
n→∞

1
log n

n

∑
k=1

‖Gk‖2

k2 =
2

3(1− 2a)(2− a)
a.s. (2.56)

Finally, we shall proceed to the proof of the upper-bound (2.16) in the law of
iterated logarithm. Denote

τn =
n

∑
k=1

a2
kb2

k−1. (2.57)

We already saw from (2.51) that a4
nb4

n−1τ−2
n is equivalent to 9n−2. It implies that

+∞

∑
n=1

a4
nb4

n−1
τ2

n
< ∞. (2.58)

Moreover, we have from (2.33), (2.34), (2.35) and (2.57) that

lim
n→∞

1
τn
〈N〉n =

1
d

Id a.s.

Consequently, we deduce from the law of iterated logarithm for martingales due
to Stout [72], see Theorem A.4, that (Nn) satisfies for any vector u ∈ Rd,

lim sup
n→∞

( 1
2τn log log τn

)1/2
〈u, Nn〉 = − lim inf

n→∞

( 1
2τn log log τn

)1/2
〈u, Nn〉

=
1√
d
‖u‖ a.s. (2.59)

However, since τn is equivalent to n3/3(a + 1)2, (2.59) immediately leads to

lim sup
n→∞

( 1
2n log log n

)1/2 1
n
〈u, Nn〉 = − lim inf

n→∞

( 1
2n log log n

)1/2 1
n
〈u, Nn〉

=
1√

3d(a + 1)
‖u‖ a.s. (2.60)

Furthermore, it was already shown by formula (5.17) in [9] that for any vector
u ∈ Rd,

lim sup
n→∞

( n2a

2n log log n

)1/2
〈u, Mn〉 = − lim inf

n→∞

( n2a

2n log log n

)1/2
〈u, Mn〉

=
Γ(a + 1)√
d(1− 2a)

‖u‖ a.s. (2.61)
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Therefore, we deduce from (2.12) and (2.37) together with (2.60) and (2.61) that
for any vector u of Rd,

lim sup
n→∞

( 1
2n log log n

)1/2
〈u, Gn〉 = lim sup

n→∞

( 1
2n log log n

)1/2 1
n
〈u, bnMn −Nn〉

≤ lim sup
n→∞

( 1
2n log log n

)1/2 1
n
〈u, bnMn〉 (2.62)

+ lim sup
n→∞

( 1
2n log log n

)1/2 1
n
〈u,−Nn〉

≤ lim sup
n→∞

( 1
2n log log n

)1/2 1
n
〈u, bnMn〉 (2.63)

− lim inf
n→∞

( 1
2n log log n

)1/2 1
n
〈u, Nn〉

≤ ‖u‖√
d(a + 1)

( 1√
1− 2a

+
1√
3

)
a.s. (2.64)

By the same token, we also find that for any vector u of Rd,

lim inf
n→∞

( 1
2n log log n

)1/2
〈u, Gn〉 = lim inf

n→∞

( 1
2n log log n

)1/2 1
n
〈u, bnMn −Nn〉

(2.65)

≥ − ‖u‖√
d(a + 1)

( 1√
1− 2a

+
1√
3

)
a.s. (2.66)

Consequently, we obtain from (2.64) and (2.66) that for any vector u of Rd,

lim sup
n→∞

( 1
2n log log n

)
〈u, Gn〉2 ≤

‖u‖2

d(a + 1)2

( 1√
1− 2a

+
1√
3

)2
a.s. (2.67)

One can observe that the upper-bound in (2.67) is close to the optimal bound

(vu)TVvu =
2‖u‖2

3(1− 2a)(2− a)d
.

Finally, by taking all rational points on the unit sphere Sd−1 in Rd, the bound in
(2.67) holds simultaneously for all of them, which implies that

lim sup
n→∞

‖Gn‖2

2n log log n
≤ sup

u∈Qd∩Sd−1
lim sup

n→∞

〈u, Gn〉2
2n log log n

≤
(√

3 +
√

1− 2a
)2

3(a + 1)2(1− 2a)d
a.s.

completing the proof of Theorem 2.3.

�

2.4.2 – The critical regime.

Proof of Theorem 2.8. We have from Theorem 3.4 in [9] that

lim
n→∞

1√
n log n

Sn = 0 a.s. (2.68)

Hence, (2.18) clearly follows from (2.68) together with the Toeplitz lemma.

�
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2 – The Center of Mass of the Elephant Random Walk

Proof of Theorem 2.10. The proof of the quadratic strong law (2.19) is left to the
reader as it follows essentially the same lines as that of (2.14). The only minor
change is that the matrix Vn has to be replaced by the matrix Wn defined in (2.30).
We shall now proceed to the proof of the law of iterated logarithm given by (2.21).
On the one hand, it follows from (2.60) with a = 1/2 that for any vector u ∈ Rd,

lim sup
n→∞

( 1
2n log log n

)1/2 1
n
〈u, Nn〉 = − lim inf

n→∞

( 1
2n log log n

)1/2 1
n
〈u, Nn〉

=
2

3
√

3
‖u‖ a.s.

which immediately leads to

lim sup
n→∞

( 1
2n log n log log log n

)1/2 1
n
〈u, Nn〉 = 0 a.s.

On the other hand, we obtain from the law of iterated logarithm for Sn given in
Theorem 3.5 of [9] that for any vector u ∈ Rd,

lim sup
n→∞

( 1
2n log n log log log n

)1/2
〈u, Gn〉

= lim sup
n→∞

( 1
2n log n log log log n

)1/2 1
n
〈u, bnMn −Nn〉

= lim sup
n→∞

( 1
2n log n log log log n

)1/2 1
n
〈u, bnMn〉

= lim sup
n→∞

( 1
2n log n log log log n

)1/2 1
n
〈u, anbnSn〉

= lim sup
n→∞

( 1
2n log n log log log n

)1/2 2
3
〈u, Sn〉

=− lim inf
n→∞

( 1
2n log n log log log n

)1/2 2
3
〈u, Sn〉

=
2

3
√

d
‖u‖ a.s. (2.69)

Hence, we clearly deduce from (2.69) that for any vector u ∈ Rd,

lim sup
n→∞

1
2n log n log log log n

〈u, Gn〉2 =
4

9d
‖u‖2 a.s. (2.70)

By taking all rational points on the unit sphere Sd−1 in Rd, the bound in (2.70)
holds simultaneously for all of them, which implies that

lim sup
n→∞

‖Gn‖2

2n log n log log log n
≤ sup

u∈Qd∩Sd−1
lim sup

n→∞

〈u, Gn〉2
2n log n log log log n

=
4
9

a.s.

In addition, for any single u ∈ Sd−1, we also obtain the reverse inequality

lim sup
n→∞

‖Gn‖2

2n log n log log log n
≥ lim sup

n→∞

〈u, Gn〉2
2n log n log log log n

=
4
9

a.s.

It immediately leads to (2.21) which achieves the proof of Theorem 2.10.

�
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2.4.3 – The superdiffusive regime.

Proof of Theorem 2.13. It follows from Theorem 3.7 in [9] that

lim
n→∞

1
na Sn = Ld a.s. (2.71)

where the limiting value L is a non-degenerate random vector of Rd. Hence, (2.71)
together with the Toeplitz lemma imply (2.23) where the limiting value

G =
1

a + 1
Ld.

Moreover, we have from (2.12) that

E
[∥∥∥ 1

na Gn −G
∥∥∥2]

= E
[∥∥∥ 1

na+1 (bnMn −Nn)−G
∥∥∥2]

,

≤ 2E
[∥∥∥ anbn

na+1 Sn −G
∥∥∥2]

+ 2E
[∥∥∥ 1

na+1 Nn

∥∥∥2]
.

On the one hand, we already saw from (2.37) that

lim
n→∞

anbn

n
=

1
a + 1

.

Consequently, we deduce from the mean square convergence (3.12) in [9] that

lim
n→∞

E
[∥∥∥ anbn

na+1 Sn −G
∥∥∥2]

= 0. (2.72)

On the other hand, E[‖Nn‖2] = E[Tr〈Nn〉)] ≤ τn where τn is given by (2.57).
Since τn is equivalent to n3/3(a + 1)2 and a > 1/2, it is not hard to see that

lim
n→∞

E
[∥∥∥ 1

na+1 Nn

∥∥∥2]
= 0. (2.73)

Finally, we obtain (2.24) from (2.72) and (2.73), completing the proof of Theorem
2.13.

�

2.5 – Proofs of the asymptotic normality results

2.5.1 – The diffusive regime.

Proof of Theorem 2.4. On the one hand, we already saw from (2.53) that

1√
n

Gn = vTVnMn where v =

(
1
−1

)
⊗ Id.

On the other hand, we deduce from (2.27) and (2.46) that the two conditions (H.1)
and (H.2) of Theorem A.7 are satisfied. Consequently, we obtain that

1√
n

Gn
L−→

n→∞
N
(
0, vTv

)
where the matrix V is given by (2.28). It clearly leads to (2.17) as

vTVv =
2

3(1− 2a)(2− a)d
Id.

�
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2.5.2 – The critical regime.

Proof of Theorem 2.11. The proof follows exactly the same lines as that of Theo-
rem 2.4 replacing Vn by Wn. The details are left to the reader.

�
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3
The linearly Reinforced
Elephant Random Walk

This chapter presents the results of [57] :

LAULIN, L. New insights on the Reinforced Elephant Random Walk using a
martingale approach. Journal of Statistical Physics 186 (2021).

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 61
3.2 The reinforced elephant random walk . . . . . . 62
3.3 Main results . . . . . . . . . . . . . . . . . . . . . 64
3.4 A two-dimensional martingale approach . . . . 68
3.5 Another approach using Pòlya-type urns . . . . 70
3.6 Proofs of the almost sure convergence results . . 71
3.7 Proofs of the functional limit theorems . . . . . . 79

3.1 – Introduction

Reinforced random walks have generated much interest in the recent years with
the focus being mainly on graphs, edge or vertex reinforced random walk, see for
example [52] or [66] for a comprehensive and extensive overview on the subject,
as well as the recent contributions [2, 15].
In this chapter, we investigate a special case of reinforced random walks in con-
nection with the Elephant Random Walk (ERW).
The reinforcement we are interested in here acts on the memory. As it was done
in [5], we can write the (n + 1)-th increment Xn+1 under the form

Xn+1 = αn+1Xβn+1 . (3.1)

In the case of the ERW, we had αn+1 ∼ R(p) and βn+1 ∼ U{1, . . . , n}. The
major change for the RERW is that the distribution of βn is no longer uniform but
depends on a reinforcement parameter c ≥ 0. Whereas the original ERW (when
c = 0) had a Markovian property, providing that one considers both the position
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3 – The linearly Reinforced Elephant Random Walk

of the ERW and the time, the reinforcement implies that the RERW (when c > 0)
is strongly non-Markovian : the position of the RERW at time n depends on all
of the steps performed up to time n as well as on their weight. Precisely, the
conditional distribution of Xn+1 no longer depends on the position at time n,
but on the ”weight” of each previous instants and the ”weighted” random walk
associated.

Very recently, Baur [2] studied the asymptotic behavior of the RERW using a
Pólya-type urns approach. He established interesting functional limit theorems
thanks to the seminal work of Janson [48]. Our strategy here is different as it relies
on a martingale approach. On the one hand, we prove new almost sure conver-
gence results such as strong laws of large numbers, laws of iterated logarithms, as
well as quadratic strong laws. On the other hand, we give an alternative method
to obtain the functional limit theorems without making use of the results from
[48]. The martingale approach we propose fulfills these two objectives. The main
strength of our approach is that calculations are self-contained and rather easy to
follow. It should also be noted that using the martingale theory is sufficient on
its own to obtain all the results presented in this chapter. Moreover, we strongly
believe that this approach could be used to study several variations of the ERW
with reinforced memory or more generally reinforced random walks, as done in
Chapter 4.

This chapter is organized as follows: The model of reinforced memory is pre-
sented in Section 3.2 while the main results are given in Section 3.3. We first in-
vestigate the diffusive regime and we establish the strong law of large numbers,
the law of iterated logarithm and the quadratic strong law for the RERW. The
functional central limit theorem is also provided. Next, we prove similar results
in the critical regime. Finally, we establish a strong limit theorem in the superdif-
fusive regime. Our martingale approach is described in Section 3.4. Finally, all
technical proofs are postponed to Sections 3.6–3.7.

3.2 – The reinforced elephant random walk

We assume in all the sequel that the memory parameter p 6= 1/2 since the par-
ticular case p = 1/2 reduces to the standard random walk. Let Fn be the natural
σ-algebra up to time n, Fn = σ(X1, . . . , Xn, β1, . . . , βn), and denote by ρn(k) the
weight of the instant k after n steps. The ERW is associated with the special case
where ρn(k) = 1 if k ≤ n and 0 elsewise. Adding a reinforcement of weight c,
where c is a non-negative real number, implies that the weight ρn(k) of instant k
is modified as follows:

ρn(k) =


0 if k ≥ n + 1,
1 if k = n,
ρn−1(k) + c1βn=k if 1 ≤ k < n.
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Consequently, it follows from the very definition of ρn(k) that the conditional
distribution of βn+1 is given by, for 1 ≤ k ≤ n,

P(βn+1 = k | Fn) =
ρn(k)

∑n
j=1 ρn(j)

=
ρn(k)

(c + 1)n− c
.

The parameter c represents the intensity of the reinforcement. The reader can
notice that the case c = 0 corresponds to the traditional ERW, and that in this case
the distribution of βn+1 is only dependent of the time n.

Figure 3.1: Multiple paths of the RERW depending
on the reinforcement parameter c when p = 0.35.

Hereafter, recall that a = 2p− 1, such that −1 ≤ a ≤ 1. We have by the definition
of Xn,

E[Xn+1 | Fn] = E[αn+1]E[Xβn+1 | Fn]

= aE
[ n

∑
k=1

Xk1βn+1=k | Fn

]
=

a
(c + 1)n− c

n

∑
k=1

Xkρn(k).

Then, denote

Yn =
n

∑
k=1

Xkρn(k) (3.2)

such that Yn = Sn when c = 0, and

E[Xn+1 | Fn] =
a

(c + 1)n− c
Yn. (3.3)

Hence, we immediately get

E[Sn+1 | Fn] = Sn +E[Xn+1 | Fn] = Sn +
a

(c + 1)n− c
Yn. (3.4)

Hereafter, notice that

Yn+1 =
n+1

∑
k=1

Xkρn+1(k) =
n

∑
k=1

Xk
(
ρn(k) + c1βn+1=k

)
+ Xn+1 = Yn + (αn+1 + c)Xβn+1

(3.5)
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we obtain
E[Yn+1 | Fn] =

(
1 +

a + c
(c + 1)n− c

)
Yn. (3.6)

Finally, for any n ≥ 1 let

γn = 1 +
a + c

(c + 1)n− c
=

n + aλ

n− cλ
where λ =

1
c + 1

(3.7)

and

an =
n−1

∏
k=1

γ−1
k =

Γ(n− cλ)Γ(1 + aλ)

Γ(n + aλ)Γ(λ)
. (3.8)

It follows from standard calculations on the Gamma function that

lim
n→∞

n(a+c)λan =
Γ(1 + aλ)

Γ(λ)
. (3.9)

Our strategy for proving asymptotic results for the reinforced elephant random
walk is as follows. On the one hand, the behavior of the position Sn of the RERW
is closely related to the one of the sequences (Mn) and (Nn) defined for all n ≥ 0
by

Mn = anYn and Nn = Sn −
a

a + c
Yn. (3.10)

We immediately get from (3.6) and (3.8) that (Mn) is a locally square-integrable
martingale adapted to Fn. Moreover, we have from (3.3), (3.4) and (3.6) that

E
[
Sn+1 −

a
a + c

Yn+1 | Fn

]
= Sn −

a
a + c

Yn

which means that (Nn) is also a locally square-integrable martingale adapted to
Fn. On the other hand, we can rewrite Sn as

Sn = Nn +
a

a + c
a−1

n Mn (3.11)

and equation (3.11) allows us to establish the asymptotic behavior of the RERW
via an extensive use of the strong law of large numbers and the functional central
limit theorem for multi-dimensional martingales [22], [31], [42], [73].

3.3 – Main results

3.3.1 – The diffusive regime

Our first result deals with the strong law of large numbers for the RERW in the
diffusive regime where p < (3− c)/4.

Theorem 3.1. We have the convergence

lim
n→∞

Sn

n
= 0 a.s. (3.12)

The almost sure rate of convergence for RERW is as follows.
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Theorem 3.2. We have the quadratic strong law

lim
n→∞

1
log n

n

∑
k=1

S2
k

k2 =
2ac + c− 1
2a + c− 1

a.s. (3.13)

Remark 3.3. In addition, we could also obtain an upper-bound for the law of iterated
logarithm as it was done for the center of mass of the MERW in [11].

Hereafter, we are interested in the distributional convergence of the RERW, which
holds in the Skorokhod space D([0, ∞[) of right-continuous functions with left-
hand limits. The following theorem was first obtained by Baur [2, Theorem 3.2]
in the case of a memory parameter equal to (p + 1)/2.

The notation ”=⇒” indicates convergence with respect to the Skorokhod space
while ” L−→” stands for convergence in distribution (or weak convergence). See
[19, Chapter 3] for more details on the definition of the distributional convergence
in the Skorokhod Space D([0, ∞[).

Theorem 3.4. The following convergence in D([0, ∞[) holds(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(3.14)

where
(
Wt, t ≥ 0

)
is a real-valued centered Gaussian process starting from the origin

with covariance

E[WsWt] =
a(1− c2)

(a + c)(1− 2a− c)
s
( t

s

)λ(a+c)
+

c(a + 1)
a + c

s (3.15)

for 0 < s ≤ t. In particular, we have

Sn√
n

L−→
n→∞

N
(

0,
2ac + c− 1
2a + c− 1

)
. (3.16)

Remark 3.5. When c = 0 we find again the results from [3] for the ERW(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
where

(
Wt, t ≥ 0

)
is a real-valued mean-zero Gaussian process starting from the origin

and
E[WsWt] =

1
1− 2a

s
( t

s

)a
.

In particular, we also obtain the asymptotic normality from [5, 25]

Sn√
n

L−→
n→∞

N
(

0,
1

1− 2a

)
.

As it was done in [13], we also obtain the asymptotic normality for the center of
mass of the RERW defined by

Gn =
1
n

n

∑
k=1

Sn.
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Corollary 3.6. We have the asymptotic normality

Gn√
n

L−→
n→∞

N
(

0,
2− c(c + 1 + 3ca + 3a− 2a2)

3(2 + c− a)(1− 2a− c)

)
. (3.17)

Remark 3.7. When c = 0, we find again the asympotic normality established in [11, 13]

Gn√
n

L−→
n→∞

N
(

0,
2

3(1− 2a)(2− a)

)
.

Figure 3.2: Asymptotic normality for the RERW in
the diffusive regime, when p = 0.35 and c = 1.

3.3.2 – The critical regime

Hereafter, we investigate the critical regime where p = (3− c)/4.

Theorem 3.8. We have the convergence

lim
n→∞

Sn√
n log n

= 0 a.s. (3.18)

The almost sure rates of convergence for the RERW are as follows.

Theorem 3.9. We have the quadratic strong law

lim
n→∞

1
log log n

n

∑
k=1

S2
k

(k log k)2 =
(c− 1)2

c + 1
a.s. (3.19)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

S2
n

2n log n log log log n
=

(c− 1)2

c + 1
a.s. (3.20)

Once again, our next result concerns the functional convergence in distribution
for the RERW. The following theorem was also first obtained by Baur [2, Theorem
3.2].
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Theorem 3.10. The following convergence in D([0, ∞[) holds

( Sbntc√
nt log n

, t ≥ 0
)
=⇒

√
(c− 1)2

(c + 1)
(

Bt, t ≥ 0
)

(3.21)

where (Bt, t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we
have

Sn√
n log n

L−→
n→∞

N
(

0,
(c− 1)2

c + 1

)
. (3.22)

Remark 3.11. When c = 0, we find again the results from [3] for the ERW

( Sbntc√
nt log n

, t ≥ 0
)
=⇒

(
Bt, t ≥ 0

)
where (Bt, t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we
find once again the asymptotic normality from [3, 5, 25]

Sn√
n log n

L−→
n→∞

N (0, 1) .

Figure 3.3: Asymptotic normality for the RERW in
the critical regime, when c = 2 (i.e. p = 0.25).

3.3.3 – The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where p > (3− c)/4.
The reader can notice that it is the only type of behavior for the RERW that still
holds when c > 3 since a ≥ −1. The following convergence in D([0, ∞[) can also
be found in [2, Theorem 3.2]. The almost sure and mean-square convergences are
new.

Theorem 3.12. We have the following distributional convergence in D([0, ∞[)

( Sbntc

nλ(c+a)
, t ≥ 0

)
=⇒ (Λt, t ≥ 0) (3.23)
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where the limiting Λt = tλ(c+a)Lc, Lc being some non-denegerate random variable. In
particular, we have

lim
n→∞

Sn

n(a+c)λ
= Lc a.s. (3.24)

We also have the mean square convergence

lim
n→∞

E
[∣∣∣ Sn

n(a+c)λ
− Lc

∣∣∣2] = 0. (3.25)

Theorem 3.13. The expected value of Lc is

E[Lc] =
a(2q− 1)Γ(λ)

(a + c)Γ(1 + aλ)
(3.26)

while its variance is given by

E
[
L2

c
]
=

a2(1 + 2ac + c2)Γ(λ)
(a + c)2λ(2a + c− 1)Γ((2a + c)λ)

. (3.27)

Remark 3.14. When c = 0, we find once again the moments of L established in [5]

E[L] = 2q− 1
Γ(a + 1)

and E
[
L2] = 1

(2a− 1)Γ(2a)
.

3.4 – A two-dimensional martingale approach

In order to investigate the asymptotic behavior of (Sn), we introduce the two-
dimensional martingale (Mn) defined by

Mn =

(
Nn

Mn

)
(3.28)

where (Mn) and (Nn) are the two locally square-integrable martingales intro-
duced in (3.10). As for the center of mass of the ERW [11], the main difficulty we
face is that the predictable quadratic variations of (Mn) and (Nn) increase to in-
finity with two different speeds. A matrix normalization will again be necessary
to establish the asymptotic behavior of the RERW. We will study (Mn), instead
of (Mn) or (Nn).

Let εn+1 = Yn+1 − γnYn and ξn = (αn − a)Xβn . We have from equations (3.5),
(3.8) and (3.10)

∆Mn+1 =Mn+1 −Mn

=

(
Sn+1 − Sn − a

a+c
(
Yn+1 −Yn

)
an+1Yn+1 − anYn

)

=

(
αn+1Xβn+1 −

a
a+c (αn+1 + c)Xβn+1

an+1εn+1

)

= an+1εn+1

(0
1

)
+

c
a + c

ξn+1

(1
0

)
. (3.29)
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We also find from (3.5) that

E[ε2
n+1 | Fn] = E[Y2

n+1 | Fn]− γ2
nY2

n

= Y2
n + 2(γn − 1)Y2

n + 1 + 2ac + c2 − γ2
nY2

n

= 1 + 2ac + c2 − (γn − 1)2Y2
n . (3.30)

In addition, we obtain once again from (3.5) that

E[ξ2
n+1 | Fn] = 1− a2 (3.31)

and finally

E[εn+1ξn+1 | Fn] = E
[(
(1− γn)Yn + (αn+1 + c)Xβn+1

)
(αn+1 − a)Xβn+1 | Fn

]
= E

[(
(1− γn)(αn+1 − a)YnXβn+1 + (αn+1 + c)(αn+1 − a) | Fn

]
= 1− a2. (3.32)

Hereafter, we deduce from (3.29), (3.30), (3.31) and (3.32) that

E
[
(∆Mn+1)(∆Mn+1)

T | Fn
]
= a2

n+1
(
1 + 2ac + c2 − (γk − 1)2Y2

k
) (0 0

0 1

)

+ an+1
c

a + c
(1− a2)

(
0 1
1 0

)

+
( c

a + c

)2
(1− a2)

(
1 0
0 0

)
.

We are now able to compute the quadratic variation ofMn, that is

〈M〉n =
n−1

∑
k=0

a2
k+1
(
1 + 2ac + c2 − (γk − 1)2Y2

k
) (0 0

0 1

)

+
n−1

∑
k=0

ak+1
c

a + c
(1− a2)

(
0 1
1 0

)

+ n
( c

a + c

)2
(1− a2)

(
1 0
0 0

)
.

Consequently,

〈M〉n = vn(1 + 2ac + c2)

(
0 0
0 1

)
+ wn

c
a + c

(1− a2)

(
0 1
1 0

)

+ n
( c

a + c

)2
(1− a2)

(
1 0
0 0

)
−Rn

(
0 0
0 1

)
(3.33)

where

vn =
n

∑
k=1

a2
k , wn =

n

∑
k=1

ak and Rn =
n−1

∑
k=0

a2
k+1(γk − 1)2Y2

k .
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Hereafter, we immediately deduce from (3.33) that

〈M〉n = (1 + 2ac + c2)
n

∑
k=1

a2
k −Rn (3.34)

and that
〈N〉n =

( c
a + c

)2
(1− a2)n. (3.35)

The asympotic behavior of Mn is closely related to the one of (vn) as one can
observe that we always have 〈M〉n ≤ (1 + 2ac + c2)vn and thus 〈M〉n = O(vn).
Consequently to the definition of (an), we have three regimes of behavior for
(Mn). In the diffusive regime where p < (3− c)/4 or a < (1− c)/2,

lim
n→∞

vn

n1−2(a+c)λ
= ` where ` =

1
1− 2(a + c)λ

(
Γ(1 + aλ)

Γ(λ)

)2

. (3.36)

In the critical regime where p = (3− c)/4 or a = (1− c)/2,

lim
n→∞

vn

log n
=

(
Γ( c+3

2(c+1))

Γ( 1
c+1)

)2

. (3.37)

In the superdiffusive regime where p > (3− c)/4 or a > (1− c)/2,

lim
n→∞

vn =
∞

∑
n=1

(
Γ(n− cλ)Γ(1 + aλ)

Γ(n + aλ)Γ(λ)

)2

< +∞. (3.38)

3.5 – Another approach using Pòlya-type urns

As it was done in [2, 3, 13], it is possible to use another approach based on Pòlya-
type urns and the results from [48]. This was presented in the work of Baur [2].
Here, we have to consider an urn Un = (Gn, Bn, Rn)T for n ∈ N, with balls of
three different types and with mean replacement matrix given by

A =

c + p 1− p 1− p
0 c c

1− p p p

 . (3.39)

The coefficient aij of the matrix A represents the mean number of balls of type i
which are added to the urn if a ball of type j is drawn, observed and then returned
to the urn. Here, let say we have three colors of balls that are green, blue and red.
The numbers of balls of each color at instant n ≥ 1 are given by Gn, Bn and
Rn. In our configuration, the number of red balls corresponds to the number
of steps towards the right direction. The number of blue balls corresponds to the
additional weight of the right direction. The number of green balls corresponds to
the total weight of the left direction. For example, let say a green ball is drawn, it
is then returned to the urn together c (because a step to the left was remembered).
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Then, with probability p one other green ball is added, meaning a step to the left
is performed, and with probability 1− p one red ball is added, meaning a step to
the right is performed. No blue balls are added because the instant remembered
was a left one. Hereafter, it follows from the dynamics of the urn that the number
of steps to the right of the RERW until time n is distributed as Rn. Consequently,
we have for the position Sn of the reinforced ERW at time n that

Sn
L
= 2Rn − n. (3.40)

Hereafter, the eigenvalues associated with the mean replacement matrix A de-
fined in (3.39) are λ1 = c + 1, λ2 = c + a and λ3 = 0 and the corresponding unit
vectors in L1 are

vT
1 =

1
2(c + 1)

(c + 1, c, 1), vT
2 =

1
2(c + a)

(−(c + a), c, a), vT
3 =

1
2
(0, −1, 1).

Then, we denote u1, u2 and u3 the vectors of a corresponding dual basis where

uT
1 = (1, 1, 1), uT

2 = (−1, 1, 1),

uT
3 =

1
(c + 1)(c + a)

(c(a− 1), −(2a + ca + c), c(2c + a + 1)).

The study of the process (Un) relies on the value of the ratio λ2/λ1. In particular,
the case λ2/λ1 = 1/2 corresponds to the case where a = (1 − c)/2, which is
coherent with the previous trichotomy. This connection allows us to retrieve the
results from Theorems 3.4 and 3.10 using Theorem 3.31 from [48]. We also find
again the distributional convergence (3.23) from Theorem 3.12 using once again
[48], Theorem 3.24.

3.6 – Proofs of the almost sure convergence results

Lemma 3.15. Let (Vn) be the sequence of positive definite diagonal matrices of order 2
given by

Vn =
1√
n

1 0

0
a

a + c
a−1

n

 . (3.41)

Then, the quadratric variation of 〈M〉n satisfies in the diffusive regime where a < (1−
c)/2,

lim
n→∞

Vn〈M〉nVn = V a.s. (3.42)

where the matrix V is given by

V =
1

(a + c)2

 c2(1− a2) ac(c + 1)(1 + a)

ac(c + 1)(1 + a)
a2(1 + 2ac + c2)(c + 1)

1− c− 2a

 . (3.43)

71



3 – The linearly Reinforced Elephant Random Walk

Remark 3.16. Following the same steps as in the proof of Lemma 3.15, we find that in
the critical regime a = (1− c)/2, the sequence of normalization matrices (Vn) has to be
replaced by

Wn =
1√

n log n

1 0

0
a

a + c
a−1

n

 . (3.44)

The limit matrix V also needs to be replaced by

W =
(c− 1)2

c + 1

(
0 0
0 1

)
. (3.45)

Proof of Lemma 3.15. We immediately obtain from Theorem 3.1 and (3.9), (3.33),
(3.36) that

lim
n→∞

Vn〈M〉nVT
n =

( a
a + c

)2 1
1− 2λ(a + c)

(1 + 2ac + c2)

(
0 0
0 1

)

+
1

1− λ
(1− a2)

ac
(a + c)2

(
0 1
1 0

)

+ (1− a2)
( c

a + c

)2
(

1 0
0 0

)

=
1

(a + c)2

 c2(1− a2) ac(c + 1)(1 + a)

ac(c + 1)(1 + a)
a2(1 + 2ac + c2)(c + 1)

1− c− 2a


which is exactly what we wanted to prove.

�

3.6.1 – The diffusive regime

Proof of Theorem 3.1. We shall make extensive use of the strong law of large
numbers for martingales, see Theorem A.2. First, we have for Mn that for any
γ > 0,

M2
n = O

(
(log vn)

1+γvn
)

a.s.

Then, by definition of Mn and as an is asymptotically equivalent to n−(a+c)λ and
vn is asymptotically equivalent to n1−2(a+c)λ, it ensures

Y2
n

n2 = O
(
(log n)1+γ n1−2(a+c)λ

n2(1−(a+c)λ)

)
a.s.

and finally
Y2

n
n2 = O

( (log n)1+γ

n

)
a.s.

This implies that

lim
n→∞

Yn

n
= 0 a.s. (3.46)
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We now focus our attention on Nn. By the same token as before, we have that for
any γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s.

which by definition of Nn gives us(
Sn − a

a+cYn
)2

n2 = O
( (log n)1+γ

n

)
a.s.

and we conclude
lim

n→∞

Sn

n
− a

a + c
Yn

n
= 0 a.s. (3.47)

This achieves the proof of Theorem 3.1 as the convergences (3.46) and (3.47) hold
almost surely.

�

Proof of Theorem 3.2. We need to check that all the hypotheses of Theorem A.8
are satisfied. Thanks to Lemma 3.15, hypothesis (H.1) holds almost surely. In
order to verify that Lindeberg’s condition (H.2) is satisfied, we have from (3.10)
together with (3.28) and Vn given by (3.41) that for all 1 ≤ k ≤ n

Vn∆Mk =
1

(a + c)
√

n

(
cξn+1

aa−1
n akεk

)

which implies that

‖Vn∆Mk‖2 =
1

(a + c)2n
(
c2 + a2a−2

n a2
kε2

k
)

(3.48)

and
‖Vn∆Mk‖4 =

1
(a + c)4n2

(
c4 + 2a2c2a−2

n a2
kε2

k + a−4
n a4

kε4
k
)
. (3.49)

Consequently, we obtain that for all ε > 0,

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ 1

ε2

n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
. (3.50)

It follows from (3.9) that

a−2
n

n

∑
k=1

a2
k = O(n) and a−4

n

n

∑
k=1

a4
k = O(n).

Hence, using that the sequence (εn) is uniformly bounded

sup
1≤k≤n

|εk| ≤ c + 2 a.s. (3.51)

we find that
n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
= O

( 1
n

)
a.s.
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which ensures that Lindeberg’s condition (H.2) holds almost surely, that is for all
ε > 0,

lim
n→∞

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
= 0 a.s. (3.52)

Hereafter, we need to verify (H.3) is satisfied in the special case β = 2 that is

∞

∑
n=1

1(
log(det V−1

n )2
)2E

[
‖Vn∆Mn‖4 | Fn−1

]
< ∞ a.s.

We immediately have from (3.41)

det V−1
n =

a + c
a
√

nan. (3.53)

Hence, we obtain from (3.9) and (3.53) that

lim
n→∞

log(det V−1
n )2

log n
= 1− 2(a + c)λ. (3.54)

Therefore, we can replace log(det V−1
n )2 by log n in (3.6.1). Hereafter, we obtain

from (3.49) and (3.51) that

∞

∑
n=2

1
(log n)2E

[
‖Vn∆Mn‖4 | Fn−1

]
= O

( ∞

∑
n=1

1
(n log n)2

)
. (3.55)

Thus, (3.55) guarentees that (H.3) is verified. We are now going to apply the
quadratic strong law given by Theorem A.2 in [11]. We get from equation (3.54)
that

lim
n→∞

1
log n

n

∑
k=1

( (det Vk)
2 − (det Vk+1)

2

(det Vk)2

)
VkMkMT

k VT
k = (1− 2(a + c)λ)V a.s.

(3.56)
However, we obtain from (3.9) and (3.53) that

lim
n→∞

n
( (det Vn)2 − (det Vn+1)

2

(det Vn)2

)
= 1− 2(a + c)λ. (3.57)

Finally, let u =
(

1, 1
)T

we have

uTVnMn =
Sn√

n
(3.58)

and we deduce from (3.56), (3.57) and (3.58) that

lim
n→∞

1
log n

n

∑
k=1

S2
k

k2 = vTVv a.s. (3.59)

which, together with

uTVu =
2ac + c− 1
2a + c− 1

(3.60)

completes the proof of Theorem 3.2.

�
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3.6.2 – The critical regime

Proof of Theorem 3.8. Again, we shall make use of the strong law of large num-
bers for martingales, see Theorem A.2. First, we have for Mn that for any γ > 0,

M2
n = O

(
(log vn)

1+γvn
)

a.s.

which by definition of Mn and as an is asymptotically equivalent to n−1/2 and vn

is asymptotically equivalent to log n ensures that

Y2
n

(
√

n log n)2 = O
(
(log log n)1+γ log n

(log n)2

)
a.s.

and finally that
Y2

n
(
√

n log n)2 = O
( (log log n)1+γ

log n

)
a.s.

This implies that

lim
n→∞

Yn√
n log n

= 0 a.s. (3.61)

In addition, we still have that for any γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s.

which by definition of Nn gives us(
Sn − a

a+cYn
)2

(
√

n log n)2 = O
(
(log n)γ−1

)
a.s.

Taking e.g. γ = 1
2 we can conclude that

lim
n→∞

Sn√
n log n

− a
a + c

Yn√
n log n

= 0 a.s. (3.62)

This achieves the proof of Theorem 3.8 as the convergences (3.61) and (3.62) hold
almost surely.

�

Proof of Theorem 3.9. The proof of the quadratic strong law (3.19) is left to the
reader as it follows essentially the same lines as that of (3.13). The only minor
change is that the matrix Vn has to be replaced by the matrix Wn defined in (3.44).
We shall now proceed to the proof of the law of iterated logarithm given by (3.20).
On the one hand, it follows from (3.9) and (3.36) that

+∞

∑
n=1

a4
n

v2
n
< ∞. (3.63)

Moreover, we have from (3.34) and (3.35) that

lim
n→∞

〈M〉n
vn

= 1 + 2ac + c2 a.s. and lim
n→∞

〈N〉n
n

=
( c

a + c

)2
(1− a2) a.s.
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Consequently, we deduce from the law of iterated logarithm for martingales due
to Stout [72], see Theorem A.4, that (Mn) satisfies when a = (1− c)/2

lim sup
n→∞

Mn

(2vn log log vn)1/2 = − lim inf
n→∞

Mn

(2vn log log vn)1/2

=
√

1 + c a.s.

However, as anv−1/2
n is asymptotically equivalent to (n log n)−1/2, we immedi-

ately obtain from (3.37) that

lim sup
n→∞

Yn

(2n log n log log log n)1/2 = − lim inf
n→∞

Yn

(2n log n log log log n)1/2

=
√

1 + c a.s. (3.64)

The law of iterated logarithm for martingales also allow us to find that (Nn) sat-
isfies

lim sup
n→∞

Nn

(2n log log n)1/2 = − lim inf
n→∞

Nn

(2n log log n)1/2

=
2c

c + 1

√
(1− a2) a.s.

which ensures that

lim sup
n→∞

Nn

(2n log n log log log n)1/2 = 0 a.s.

Hence, we deduce from (3.11) and (3.64) that

lim sup
n→∞

Sn

(2n log n log log log n)1/2 = lim sup
n→∞

Nn +
1−c
1+c a−1

n Mn

(2n log n log log log n)1/2

= lim sup
n→∞

1− c
1 + c

Yn

(2n log n log log log n)1/2

= − lim inf
n→∞

1− c
1 + c

Yn

(2n log n log log log n)1/2

= − lim inf
n→∞

Sn

(2n log n log log log n)1/2 .

Hence, we obtain that

lim sup
n→∞

S2
n

2n log n log log log n
= lim sup

n→∞

(1− c
1 + c

)2 Y2
n

2n log n log log log n

=
(1− c)2

1 + c

which immediately leads to (3.20), thus completing the proof of Theorem 3.9.

�
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3.6.3 – The superdiffusive regime

Proof of Theorem 3.12. Hereafter, we shall again make extensive use of the strong
law of large numbers for martingales in order to prove (3.24), see Theorem A.2.
When a > (1− c)/2, we have from (3.38) that vn converges. Hence, as 〈M〉n ≤
(1 + 2ac + c2)vn, we clealy have that 〈M〉∞ < ∞ almost surely and we can con-
clude that

lim
n→∞

Mn = M a.s. where M =
∞

∑
k=1

akεk

which by definition of Mn and as an is asymptotically equivalent to Γ(1+aλ)
Γ(λ) n−(a+c)λ

ensures that

lim
n→∞

Yn

n(a+c)λ
= Y a.s. where Y =

Γ(λ)
Γ(1 + aλ)

M. (3.65)

Moreover, we still have that for any γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s.

which by definition of Nn gives us for all t ≥ 0(
Sn − a

a+cYn
)2

n2(a+c)λ
= O

( (log n)1+γ

n2(a+c)λ−1

)
a.s.

As a > (1− c)/2 in the superdiffusive regime, we obtain thanks to (3.46) that for
all t ≥ 0

lim
n→∞

Sbntc

bntc(a+c)λ
− a

a + c
Ybntc

bntc(a+c)λ
= 0 a.s. (3.66)

The convergences (3.65) and (3.66) hold almost surely and bntc is asymptotically
equivalent to nt which implies

lim
n→∞

Sbntc

n(a+c)λ
= t(a+c)λLc a.s. (3.67)

Finally, the fact that (3.67) holds almost surely ensures that it also holds for the
finite-dimensional distributions, and we obtain (3.23) with Λt = t(a+c)λLc and
Lc =

a
a+cY.

We shall now proceed to the proof of the mean square convergence (3.25). On the
one hand, as M0 = 0 we have from (3.34) that

E
[
M2

n
]
= E

[
〈M〉n

]
≤ (1 + 2ac + c2)vn.

Hence, we obtain from (3.38) that

sup
n≥1

E
[
M2

n
]
< ∞

which ensures that the martingale (Mn) is bounded in L2. Therefore, we have the
mean square convergence

lim
n→∞

E
[
| Mn −M |2

]
= 0
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which implies that

lim
n→∞

E
[∣∣∣ Yn

n(a+c)λ
−Y

∣∣∣2] = 0. (3.68)

On the other hand, for any n ≥ 0, the martingale (Nn) satisfies

E
[
N2

n
]
= E

[
〈N〉n

]
≤ (1− a2)

( c
a + c

)2
n

and since (a + c)λ > 1
2 we obtain

lim
n→∞

E
[∣∣∣ Nn

n(a+c)λ

∣∣∣2] = 0. (3.69)

Finally, we obtain the mean square convergence (3.25) from (3.68) and (3.69) and
we achieve the proof of Theorem 3.12.

�

Proof of Theorem 3.13. We start by the calculation of the expectation (3.26). We
immediately have from (3.6) that

E[Yn+1] = γnE[Yn] =
(n + aλ

n− cλ

)
E[Yn]

which leads to

E[Yn] =
n−1

∏
k=1

(k + aλ

k− cλ

)
E[Y1] =

n−1

∏
k=1

(k + aλ

k− cλ

)
E[X1] = (2q− 1)a−1

n . (3.70)

Hence, we immediately get equation (3.26) from (3.70), that is

E[Lc] =
aΓ(λ)

(a + c)Γ(1 + aλ)
E[M] =

aΓ(λ)
(a + c)Γ(1 + aλ)

E[Mn] =
a(2q− 1)Γ(λ)

(a + c)Γ(1 + aλ)
.

Hereafter, we obtain from (3.30) by taking expectation on both sides that

E[Y2
n+1] = 1 + 2ac + c2 + (2γn − 1)E[Y2

n ] = 1 + 2ac + c2 +
(n + (2a + c)λ

n− cλ

)
E[Y2

n ]

and thanks to well-known recursive relation solutions and Lemma B.1 in [5], we
get

E[Y2
n ] = (1 + 2ac + c2)

n−1

∏
k=0

(k + (2a + c)λ
k− cλ

) n−1

∑
k=0

k

∏
i=0

i− cλ

i + (2a + c)λ

=
(1 + 2ac + c2)Γ(n + (2a + c)λ)Γ(λ)

Γ(n− cλ)Γ(1 + (2a + c)λ)

n−1

∑
k=0

Γ(k + λ)Γ(1 + (2a + c)λ)
Γ(k + 1 + (2a + c)λ)Γ(λ)

=
(1 + 2ac + c2)Γ(n + (2a + c)λ)

Γ(n− cλ)

n

∑
k=1

Γ(k + λ− 1)
Γ(k + (2a + c)λ)

=
(1 + 2ac + c2)Γ(n + (2a + c)λ)

λ(2a + c− 1)Γ(n− cλ)

( Γ(λ)
Γ((2a + c)λ)

− Γ(n + λ)

Γ(n + (2a + c)λ)

)
.

Hence, we obtain from (3.9), (3.10) and (3.68) that

E[Y2] = lim
n→∞

E[Y2
n ]

n2(a+c)λ
=

(1 + 2ac + c2)Γ(λ)
λ(2a + c− 1)Γ((2a + c)λ)

. (3.71)

�
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3.7 – Proofs of the functional limit theorems

3.7.1 – The diffusive regime

Proof of Theorem 3.4. In order to apply Theorem A.9 in the Appendix, we must
verify that (H’.1), (H’.2) and (H.4) are satisfied.

(H’.1) We have from (3.42) and the fact that abntc is asymptotically equivalent to
t−(a+c)λan that

Vn〈M〉bntcV
T
n −→n→∞

Vt a.s.

where

Vt =
1

(a + c)2

 c2(1− a2)t ac(c + 1)(1 + a)t1−(a+c)λ

ac(c + 1)(1 + a)t1−(a+c)λ a2(1 + 2ac + c2)(c + 1)
1− c− 2a

t1−2(a+c)λ

 .

(H’.2) We also get that Lindeberg’s condition is satisfied as we already know from
(3.52) that for all ε > 0

lim
n→∞

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
= 0 a.s.

which implies from (3.49) and the fact that VnV−1
bntc converges

lim
n→∞

bntc

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ lim

n→∞

bntc

∑
k=1

E
[
‖Vn∆Mk‖4]

≤ lim
n→∞

bntc

∑
k=1

E
[
‖(VnV−1

bntc)Vbntc∆Mk‖4]
= 0 a.s.

(H.4) In this particular case, we have Vt = tK1 + tα2K2 + tα3K3 where

α2 = 1− (a + c)λ > 0 and α3 = 1− 2(a + c)λ > 0

as a ≤ (1− c)/2, and the matrices are symmetric

K1 =
c2(1− a2)

(a + c)2

(
1 0
0 0

)
, K2 =

ac(c + 1)(a + 1)
(a + c)2

(
0 1
1 0

)
,

K3 =
a2(1 + 2ac + c2)(c + 1)
(1− 2a− c)(a + c)2

(
0 0
0 1

)
.

Consequently, we obtain that(
VnMbntc, t ≥ 0

)
=⇒

(
Bt, t ≥ 0

)
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3 – The linearly Reinforced Elephant Random Walk

where B is defined as in (A.9). Finally, using the fact that Sbntc is asymptotically

equivalent to Nbntc + t(a+c)λ a
a+c a−1

n Mbntc and multiplying ut =
( 1

t(a+c)λ

)
we con-

clude ( 1√
n

Sbntc, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(3.72)

where Wt = uT
t Bt. It only remains to compute the covariance function of W that

is for 0 ≤ s ≤ t

E
[
WsWt

]
= uT

s E
[
BsBT

t
]
ut

= uT
s Vsut

= uT
s
(
sK1 + s1−(a+c)λK2 + s1−2(a+c)λK3)ut

=
c2(1− a2)

(a + c)2 s +
ac(c + 1)(a + 1)

(a + c)2 s1−(a+c)λ(s(a+c)λ + t(a+c)λ)

+
a2(1 + 2ac + c2)(c + 1)
(1− 2a− c)(a + c)2 s1−2(a+c)λ(st)(a+c)λ

=
( c2(1− a2)

(a + c)2 +
ac(c + 1)(a + 1)

(a + c)2

)
s

+
( ac(c + 1)(a + 1)

(a + c)2 +
a2(1 + 2ac + c2)(c + 1)
(1− 2a− c)(a + c)2

)
s
( t

s

)(a+c)λ

=
c(a + 1)

a + c
s +

a(1− c2)

(a + c)(1− 2a− c)
s
( t

s

)(a+c)λ
.

�

Proof of Corollary 3.6. As for Corollary 4.1 from [13], we observe that

Gn√
n
=
∫ 1

0

Sbntc√
n

dt.

Consquently, Gn/
√

n is a continuous function of Sbntc/
√

n in D([0, 1]). Hence,
the functional distribution from Theorem 3.4 gives us that

Gn√
n
=
∫ 1

0

Sbntc√
n

dt L−→
n→∞

∫ 1

0
Wtdt.

The process
(
Wt, t ≥ 0

)
is a continuous real-valued and centered Gaussian pro-

cess starting from the origin, which implies that
∫ 1

0 Wtdt is also one. Its covariance

80



3 – The linearly Reinforced Elephant Random Walk

is given by

E
[( ∫ 1

0
Wsds

)( ∫ 1

0
Wtdt

)]
= 2

∫ 1

0

∫ t

0
E
[
WsWt

]
dsdt

= 2
a(1− c2)

(a + c)(1− 2a− c)

∫ 1

0

∫ t

0
s
( t

s

)λ(a+c)
dsdt

+ 2
c(a + 1)

a + c

∫ 1

0

∫ t

0
sdsdt

=
2a(1− c2)(c + 1)

3(2 + c− a)(a + c)(1− 2a− c)
+

c(a + 1)
3(a + c)

=
2− c(c + 1 + 3ca + 3a− 2a2)

3(2 + c− a)(1− 2a− c)
.

�

3.7.2 – The critical regime

Proof of Theorem 3.10. First, we have from (3.35) that for all t ≥ 0

〈N〉bntc
nt log n

−→ 0 a.s.

which implies from Theorem A.2 that

Nbntc
nt log n

−→ 0 a.s. (3.73)

Hereafter, in order to apply Theorem A.9 to the one-dimensional martingale (Mn),
we must once again verify that (H’.1), (H’.2) and (H.4) are satisfied.

(H’.1) Let wn =
√

v−1
n , we have from (3.34), Remark 3.16 and the fact that abntc is

asymptotically equivalent to n−t/2 that

wn〈M〉bntcwn−→n→∞
t(c + 1) a.s.

(H’.2) We also get that Lindeberg’s condition is satisfied as vn is increasing as
log n and we have for all ε > 0

lim
n→∞

1
vn

nt

∑
k=1

E
[
∆M2

k1{|∆Mk|>ε
√

vn} | Fk−1
]
≤ lim

n→∞

1
ε2v2

n

bntc

∑
k=1

E
[
∆M4

k
]

≤ lim
n→∞

(vbntc
vn

)2 1
ε2v2
bntc

bntc

∑
k=1

E
[
∆M4

k
]

≤ lim
n→∞

t2

ε2(log nt)2

bntc

∑
k=1

E
[
∆M4

k
]
.
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Moreover, we have from the very definition of Mn that

n

∑
k=1

E
[
∆M4

k
]
= O

( n

∑
k=1

a4
k

)
a.s.

and as an is asymptotically equivalent to n−1/2, we can conclude that

lim
n→∞

1
vn

nt

∑
k=1

E
[
∆M2

k1{|∆Mk|>ε
√

vn} | Fk−1
]
= 0 a.s.

(H.4) In this particular case, we have wt = t(c + 1). Hence, we obtain that(
wnMbntc, t ≥ 0

)
=⇒

(
Wt, t ≥ 0

)
where W is defined as in Theorem A.9. Moreover, when a = (1− c)/2 we obtain
from (3.10), (3.73) and the fact that (abntcvn)−1 is asymptotically equivalent to√

nt log n
−1

that

( Sbntc√
nt log n

−
Nbntc√
nt log n

, t ≥ 0
)
=⇒ 1− c

c + 1
(
Wt, t ≥ 0

)
.

Consequently, using that W is a centered Brownian motion with variance (c + 1),
we can conclude that

( Sbntc√
nt log n

, t ≥ 0
)
=⇒

√
(1− c)2

c + 1
(

Bt, t ≥ 0
)

and this achieves the proof of Theorem 3.10.

�
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4
The Amnesic Elephant

Random Walk

This chapter presents the results of [58] :

LAULIN, L. Introducing smooth amnesia to the memory of the elephant random
walk. arXiv:2204.10542 (2022).

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 83
4.2 Main results . . . . . . . . . . . . . . . . . . . . . 86
4.3 A two-dimensional martingale approach . . . . 88
4.4 Preview of the proofs . . . . . . . . . . . . . . . . 90

4.1 – Introduction

In Chapter 3, we investigated how the ERW behaves if the distribution of the
memory of the elephant is no longer uniform at over the previous instants, but
dependent on the past and the number of times an instant is remembered.
The idea of this chapter is to use the tools developed in Chapters 2 and 3 to
study how changing the memory allows us to induce amnesia to the ERW. More
precisely, the new distribution of the memory βn is such that the probability of
choosing a fixed instant k ∈ N∗ at time n ≥ k decreases approximatly with speed
(β + 1)kβ/nβ+1 for some amnesia parameter β ≥ 0.

The very interesting question of amnesic elephant random walk (AERW) has not
really been studied. Gut and Stadmüller [40, 41] investigated variations of the
memory for the special cases of ERW with delays or gradually increasing mem-
ory. In [40] the elephant could stop and only remembered the first (and second)
step it took. Consequently, it did not induce a phase transition. In [41], the ele-
phant only remembered a portion of its past (recent or distant), this portion being
fixed or depending on the time n, but was always “small”.

The entire study we conduct below can be generalized when β < 0 is not an
integer. This can be interpreted as cases where the elephant only remembers the
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4 – The Amnesic Elephant Random Walk

first steps it performed. When β < −1, it appears that the AERW only have one
regime that is the diffusive regime. This observation is coherent with the work of
Gut and Stadmüller [41].

As in the previous chapters, we can write the (n + 1)-th increment Xn+1 under
the form

Xn+1 = αn+1Xβn+1 . (4.1)

In the case of the ERW, we had αn+1 ∼ R(p) and βn+1 ∼ U{1, . . . , n}. The
major change for the AERW is that the distribution of βn is no longer uniform
but depends on the amnesia parameter β ≥ 0. In this case, the elephant chooses
an instant according to βn+1 as follows,

P(βn+1 = k) =
(β + 1)Γ(k + β)Γ(n)

Γ(k)Γ(n + β + 1)
=

(β + 1)
n

µk
µn+1

for 1 ≤ k ≤ n, (4.2)

where

µn =
n−1

∏
k=1

(
1 +

β

k

)
=

Γ(n + β)

Γ(n)Γ(β + 1)
. (4.3)

The case β = 0 corresponds to the traditional ERW. As β grows, the probability
of choosing a recent instant gets bigger.

Figure 4.1: Mass function of
β100 in the usual case β = 0.

Figure 4.2: Mass function of
β100 when β = 1.

Figure 4.3: Mass function of
β100 when β = 2.

Figure 4.4: Mass function of
β100 when β = 3.

Figure 4.5: Mass function of
β100 when β = 10.

Figure 4.6: Mass function of
β100 when β = 100.

We have by the definition of the step Xn+1 given in (4.1) that

E[Xn+1 | Fn] = E[αn+1]E[Xβn+1 | Fn]

= (2p− 1)E
[ n

∑
k=1

Xk1βn+1=k | Fn

]
=

(2p− 1)(β + 1)
nµn+1

n

∑
k=1

Xkµk. (4.4)
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Then, denote a = 2p− 1 and

Yn =
n

∑
k=1

Xkµk. (4.5)

We deduce from (4.4) that

E[Yn+1 | Fn] =
(

1 +
a(β + 1)

n

)
Yn. (4.6)

Hereafter, for any n ≥ 1, let

γn = 1 +
a(β + 1)

n
(4.7)

and

an =
n−1

∏
k=1

γ−1
k =

Γ(n)Γ(a(β + 1) + 1)
Γ(n + a(β + 1))

. (4.8)

It follows from standard results on the Gamma function that

lim
n→∞

na(β+1)an = Γ(a(β + 1) + 1). (4.9)

Our strategy for proving asymptotic results for the AERW is as follows. On the
one hand, the behavior of the position Sn is closely related to the one of the se-
quences (Mn) and (Nn) defined, for all n ≥ 0, by

Mn = anYn and Nn = Sn +
a(β + 1)

β− a(β + 1)
µ−1

n Yn. (4.10)

We immediately get from (4.6) and (4.8) that (Mn) is a locally square-integrable
martingale adapted to (Fn). Moreover, we have from (4.4) that

E
[
Sn+1 +

a(β + 1)
β− a(β + 1)

µ−1
n+1Yn+1 | Fn

]
= Sn +

a(β + 1)
β− a(β + 1)

µ−1
n Yn

which also means that (Nn) is also a locally square-integrable martingale adapted
to Fn. On the other hand, we can rewrite Sn as

Sn = Nn −
a(β + 1)

β− a(β + 1)
(µnan)

−1Mn (4.11)

and equation (4.11) allows us to establish the asymptotic behavior of the AERW
via an extensive use of the same tools as in Chapters 2 and 3.

The main results of this chapter are given in Section 4.2. We first investigate the
diffusive regime and we establish the strong law of large numbers, the law of it-
erated logarithm and the quadratic strong law for the AERW. The functional cen-
tral limit theorem is also provided. Next, we prove similar results in the critical
regime. Finally, we establish a strong limit theorem in the superdiffusive regime.
Our martingale approach is described in Section 4.3. Finally, we give some of the
technical proofs in Section 4.4.

85



4 – The Amnesic Elephant Random Walk

4.2 – Main results

4.2.1 – The diffusive regime

Our first result deals with the strong law of large numbers for the AERW in the
diffusive regime where p < 4β+3

4(β+1) . The following strong law for the AERW will
be deduced from both the strong laws for (Nn) and (Mn).

Theorem 4.1. We have the almost sure convergence

lim
n→∞

Sn

n
= 0 a.s. (4.12)

The almost sure rate of convergence for the AERW is as follows, for

σ2
β =

2β + 1− a
(1− a)(1 + 2β− 2a(β + 1))

.

Theorem 4.2. We have the quadratic strong law

lim
n→∞

1
log n

n

∑
k=1

S2
k

k2 = σ2
β a.s. (4.13)

Hereafter, we are interested in the distributional convergence of the AERW, which
holds in the Skorokhod space D([0, ∞[) of right-continuous functions with left-
hand limits.

Theorem 4.3. The following convergence in distribution in D([0, ∞[) holds(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(4.14)

where
(
Wt, t ≥ 0

)
is a real-valued centered Gaussian process starting from the origin

with covariance

E[WsWt] =
a(1 + β)(1− a) + aβ

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
s
( t

s

)a−β(1−a)

+
β

(β(1− a)− a)(1− a)
s (4.15)

for 0 < s ≤ t. In particular, we have

Sn√
n

L−→
n→∞

N
(

0, σ2
β

)
. (4.16)

Remark 4.4. When β = 0 we find again the results from [3] for the ERW(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
where

(
Wt, t ≥ 0

)
is a real-valued mean-zero Gaussian process starting from the origin

and
E[WsWt] =

1
1− 2a

s
( t

s

)a
.
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4.2.2 – The critical regime

Hereafter, we investigate the critical regime where p = 4β+3
4(β+1) . It is interesting to

notice that, when β is really large (or β→ ∞) the critical regime is reached for the
memory parameter p = 1. Hence, the greater β is, the more there are values of
the memory parameter p for which the AERW stays in the diffusive regime; but
whatever the value of β, we still observe a phase transition.

Theorem 4.5. We have the almost sure convergence

lim
n→∞

Sn√
n log n

= 0 a.s. (4.17)

The almost sure rates of convergence for the AERW are as follows.

Theorem 4.6. We have the quadratic strong law

lim
n→∞

1
log log n

n

∑
k=1

S2
k

(k log k)2 = (2β + 1)2 a.s. (4.18)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

S2
n

2n log n log log log n
= (2β + 1)2 a.s. (4.19)

Once again, our next result concerns the asymptotic normality of the AERW.

Theorem 4.7. The following convergence in distribution in D([0, ∞[) holds( Sbntc√
nt log n

, t ≥ 0
)
=⇒ (2β + 1)

(
Bt, t ≥ 0

)
(4.20)

where (Bt, t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we
have the asymptotic normality

Sn√
n log n

L−→
n→∞

N
(

0, (2β + 1)2
)

. (4.21)

4.2.3 – The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where p > 4β+3
4(β+1) .

Theorem 4.8. We have the almost sure convergence

lim
n→∞

Sn

na(β+1)−β
= Lβ a.s. (4.22)

where the limiting Lβ is a non-degenerate random variable. We also have the mean square
convergence

lim
n→∞

E
[∣∣∣ Sn

na(β+1)−β
− Lβ

∣∣∣2] = 0. (4.23)
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Theorem 4.9. The expected value of Lβ is

E[Lβ] =
a(β + 1)(2q− 1)Γ(β + 1)(

a(β + 1)− β
)
Γ
(
a(β + 1) + 1

) (4.24)

while its second order moment is given by

E
[
L2

β

]
=

a2(β + 1)2Γ(β + 1)2Γ
(
2(a− 1)(β + 1) + 1

)(
a(β + 1)− β

)2Γ
(
(2a− 1)(β + 1) + 1

)2 . (4.25)

Remark 4.10. When β = 0 we find again the expected values for the ERW from [5]

E[L] = 2q− 1
Γ(a + 1)

and E[L2] =
1

(2a− 1)Γ(2a)
.

4.3 – A two-dimensional martingale approach

In order to investigate the asymptotic behavior of (Sn), we introduce the two-
dimensional martingale (Mn) defined by

Mn =

(
Nn

Mn

)
(4.26)

where (Mn) and (Nn) are the two locally square-integrable martingales intro-
duced in (4.10). As for the CMERW and the RERW, the main difficulty we face
is that the predictable quadratic variations of (Mn) and (Nn) increase to infinity
with two different speeds. A matrix normalization will again be necessary to es-
tablish the asymptotic behavior of the AERW. We will alternatively study (Mn),
(Mn) or (Nn). Denote the martingale increment εn+1 = Yn+1 − γnYn. We obtain
that

∆Mn+1 =Mn+1 −Mn

=

(
Sn+1 − Sn +

a(β+1)
β−a(β+1)

(Yn+1
µn+1
− Yn

µn

)
an+1Yn+1 − anYn

)

=

((
1 + a(β+1)

β−a(β+1)

)
Xn+1 − a(β+1)

(β−a(β+1))µn+1

β
nYn

an+1εn+1

)

=

(
β

(β−a(β+1))µn+1

(
Yn + Xn+1µn+1 − (γn − 1)Yn

)
an+1εn+1.

)
Consequently

∆Mn+1 =
( β
(β−a(β+1))µn+1

an+1

)
εn+1.

We also obtain that

E[ε2
n+1 | Fn] = E[Y2

n+1 | Fn]− γ2
nY2

n

= Y2
n + 2(γn − 1)Y2

n + µ2
n+1 − γ2

nY2
n

= µ2
n+1 − (γn − 1)2Y2

n . (4.27)

88



4 – The Amnesic Elephant Random Walk

Therefore, we deduce that

E
[
(∆Mn+1)(∆Mn+1)

T | Fn
]
=

(µ2
n+1 − (γn − 1)2Y2

n)

( β
(β−a(β+1))µn+1

)2 βan+1
(β−a(β+1))µn+1

βan+1
(β−a(β+1))µn+1

a2
n+1

 .

We are now able to compute the quadratic variation ofMn

〈M〉n =
n−1

∑
k=0

( β
β−a(β+1)

)2 βak+1µk+1
β−a(β+1)

βak+1µk+1
β−a(β+1) (ak+1µk+1)

2

− ξn (4.28)

where

ξn =
n−1

∑
k=0

(γk − 1)2Y2
k

( β
(β−a(β+1))

)2 βak+1µk+1
(β−a(β+1))

βak+1µk+1
(β−a(β+1)) (ak+1µk+1)

2

 .

Hereafter, we immediately deduce from (4.28) that

〈M〉n =
n

∑
k=1

(akµk)
2 − ζn where ζn =

n

∑
k=1

a2
k(γk − 1)2Y2

k (4.29)

and

〈N〉n =
( β

β− a(β + 1)

)2
n. (4.30)

The asymptotic behavior of Mn is closely related to the one of

wn =
n

∑
k=1

(akµk)
2 (4.31)

as one can observe that we always have 〈M〉n ≤ wn and that ζn is negligible when
compared to wn. Consequently, it follows from the definitions of (an) and (µn)

that we have three regimes of behavior for (Mn). In the diffusive regime where
is p < 4β+3

4(β+1) or a < 1− 1
2(β+1) ,

lim
n→∞

wn

n1−2(a(β+1)−β)
= ` where ` =

1
1 + 2(β− a(β + 1))

(Γ(a(β + 1) + 1)
Γ(β + 1)

)2
.

(4.32)
In the critical regime where p = 4β+3

4(β+1) or a = 1− 1
2(β+1) ,

lim
n→∞

wn

log n
=
(Γ(β + 1 + 1

2)

Γ(β + 1)

)2
. (4.33)

In the superdiffusive regime where p > 4β+3
4(β+1) or a > 1− 1

2(β+1) ,

lim
n→∞

wn =
∞

∑
k=1

(Γ(a(β + 1) + 1)Γ(k + β)

Γ(k + a(β + 1))Γ(β + 1)

)2
< +∞. (4.34)
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4.4 – Preview of the proofs

Lemma 4.11. Let (Vn) be the sequence of positive definite diagonal matrices of order 2
given by

Vn =
1√
n

(
1 0

0 a(β+1)
β−a(β+1)(anµn)−1

)
. (4.35)

Let v =

(
1
−1

)
such that

vTVnMn =
Sn√

n
. (4.36)

The quadratic variation of 〈M〉n satisfies in the diffusive regime where is a < 1− 1
2(β+1) ,

lim
n→∞

Vn〈M〉nVT
n = V a.s. (4.37)

where the matrix V is given by

V =
1

(β− a(β + 1))2

(
β2 aβ

1−a
aβ

1−a
a2(β+1)2

1+2β−2a(β+1)

)
. (4.38)

Remark 4.12. Following the same steps as in the proof of Lemma 4.11, we find that in
the critical regime a = 1− 1

2(β+1) , the sequence of normalization matrices (Vn) has to be
replaced by

Wn =
1√

n log n

(
1 0
0 2a(β + 1)(anµn)−1

)
. (4.39)

The limit matrix V also needs to be replaced by

W = (2β + 1)2

(
0 0
0 1

)
. (4.40)

Proof of Lemma 4.11. We obtain from Theorem 4.1, equations (4.9) and (4.32) that

lim
n→∞

Vn〈M〉nVT
n

= lim
n→∞

1
n

 ∑n−1
k=0

( β
(β−a(β+1))

)2 a(β+1)β
(β−a(β+1))2anµn

∑n−1
k=0 ak+1µk+1

a(β+1)β
(β−a(β+1))2anµn

∑n−1
k=0 ak+1µk+1

( a(β+1)
(β−a(β+1))anµn

)2
∑n−1

k=0 (ak+1µk+1)
2


=

1
(β− a(β + 1))2

 β2 a(β+1)β
β+1−a(β+1)

a(β+1)β
β+1−a(β+1)

a(β+1)2

2(β−a(β+1))+1


which is exactly what we wanted to prove.

�

The proofs of all the results in Section 4.2 follow essentially the same lines as
the ones explicited in Sections 3.6 and 3.7. We give two examples, both in the
diffusive regime, in order to convince the reader.
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Proof of Theorem 4.1. Again, we shall make extensive use of the strong law of
large numbers for martingales, see Theorem A.2. First, we have for (Mn) that for
any γ > 0,

M2
n = O

(
(log wn)

1+γwn
)

a.s.

which by definition of Mn and as an is asymptotically equivalent to n−a(β+1) and
wn is asymptotically equivalent to n1+2(β−a(β+1)) ensures that

Y2
n

n2 = O
(
(log n)1+γ n1+2(β−a(β+1))

n2(1−a(β+1))

)
a.s.

Finally as µn is asymptotically equivalent to nβ, we obtain that

Y2
n

(µnn)2 = O
( (log n)1+γ

n

)
a.s.

which reduces to
lim

n→∞

Yn

µnn
= 0 a.s. (4.41)

We now focus our attention on (Nn). By the same token as before, we have that
for any γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s.

which by definition of (Nn) gives us(
Sn − a(β+1)

β−a(β+1)µ−1
n Yn

)2

n2 = O
( (log n)1+γ

n

)
a.s.

and we conclude that

lim
n→∞

Sn

n
− a(β + 1)

β− a(β + 1)
Yn

µnn
= 0 a.s. (4.42)

This achieves the proof of Theorem 4.1 as the convergences (4.41) and (4.42) hold
almost surely.

�

Proof of Theorem 4.3. In order to apply Theorem A.9 in the Appendix, we must
verify that (H’.1), (H’.2) and (H.4) are satisfied.

(H’.1) We have from (4.37) and the fact that abntc is asymptotically equivalent to
t−a(β+1)an that

Vn〈M〉bntcV
T
n −→n→∞

Vt a.s.

where

Vt =
1

(β− a(β + 1))2

 β2t
aβ

1− a
t1+β−a(β+1)

aβ

1− a
t1+β−a(β+1) a2(β + 1)2

1 + 2β− 2a(β + 1)
t1+2β−2a(β+1)

 .
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(H’.2) In order to verify that Lindeberg’s condition is satisfied, we start by deduc-
ing from (4.10) together with (4.26) and Vn given by (4.35) that for all 1 ≤ k ≤ n

Vn∆Mn =
1

(β− a(β + 1))
√

nµn

(β

a

)
εn

which implies that

‖Vn∆Mk‖2 =
1

(β− a(β + 1))2nµ2
n
(β2 + a2)ε2

n. (4.43)

Consequently, we obtain that for all ε > 0,

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ 1

ε2

n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
. (4.44)

It follows from (4.9) that

a−2
n

n

∑
k=1

a2
k = O(n) and a−4

n

n

∑
k=1

a4
k = O(n).

Hence, using that the sequence (εn) is bounded

sup
1≤k≤n

|εk| ≤ (β + 2)µn a.s. (4.45)

we find that
n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
= O

( 1
n

)
a.s.

which ensures that Lindeberg’s condition (H.2) holds almost surely, that is for all
ε > 0,

lim
n→∞

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
= 0 a.s. (4.46)

Since VnV−1
bntc converges, we immediately obtain that

lim
n→∞

bntc

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ lim

n→∞

bntc

∑
k=1

E
[
‖Vn∆Mk‖4]

≤ lim
n→∞

bntc

∑
k=1

E
[
‖(VnV−1

bntc)Vbntc∆Mk‖4]
= 0 a.s.

(H.4) In this particular case, we have Vt = tK1 + tα2K2 + tα3K3 where

α2 = 1− a(β + 1) > 0 and α3 = 1− 2a(β + 1) > 0

as a < 1− 1
2(β+1) , and the matrices are symmetric

K1 =
β2

(β− a(β + 1))2

(
1 0
0 0

)
, K2 =

aβ

(1− a)(β− a(β + 1))2

(
0 1
1 0

)
,
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K3 =
a2(β + 1)2

(1 + 2β− 2a(β + 1))(β− a(β + 1))2

(
0 0
0 1

)
.

Consequently, we obtain that(
VnMbntc, t ≥ 0

)
=⇒

(
Bt, t ≥ 0

)
where B is defined as in (A.9). Finally, using the fact that Sbntc is asymptotically

equivalent to Nbntc + tβ−a(β+1) a(β+1)
β−a(β+1)(µnan)−1Mbntc, and multiplying by ut =( 1

ta(β+1)−β

)
, we conclude

( 1√
n

Sbntc, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(4.47)

where Wt = uT
t Bt. It only remains to compute the covariance function of (Wt)

that is for 0 ≤ s ≤ t

E
[
WsWt

]
= uT

s E
[
BsBT

t
]
ut

= uT
s Vsut

= uT
s
(
sK1 + s1+β−a(β+1)K2 + s1+2β−2a(β+1)K3)ut

=
β2

(β− a(β + 1))2 s +
aβs1+β−a(β+1)

(1− a)(β− a(β + 1))2 (s
a(β+1)−β + ta(β+1)−β)

+
a2(β + 1)2

(1 + 2β− 2a(β + 1))(β− a(β + 1))2 s1+2β−2a(β+1)(st)a(β+1)−β

=
a(1 + β)(1− a) + aβ

(2(β + 1)(1− a)− 1)(a− β(1− a))(1− a)
s
( t

s

)a−β(1−a)

+
β

(β(1− a)− a)(1− a)
s.

�
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Statistical estimation of the

memory parameter

This chapter presents the results of [10] :

BERCU, B. AND LAULIN, L. How to estimate the memory of the Elephant Ran-
dom Walk. arXiv:2112.10405 (2021).

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 95
5.2 Quasi-maximum likelihood estimation . . . . . . 97
5.3 Main results . . . . . . . . . . . . . . . . . . . . . 99
5.4 The martingale approach . . . . . . . . . . . . . . 104
5.5 Proofs of the main results . . . . . . . . . . . . . 105

5.1 – Introduction

In this chapter, we aim to provide a statistical analysis of the ERW. We start by
recalling to the reader that X1 ∼ R(q) and that, for all n ≥ 1, the (n + 1)-th step is
performed by choosing at random an integer k among the previous times 1, . . . , n
and the elephant moves according to

Xn+1 =

 +Xk with probability p,

−Xk with probability 1− p.
(5.1)

The position of the ERW at time n + 1 is given by

Sn+1 = Sn + Xn+1. (5.2)

We have already seen that the asymptotic behavior of the ERW is closely related
to the value of the memory parameter p. Whatever the value of p in [0, 1], it has
been shown that

lim
n→∞

Sn

n
= 0 a.s. (5.3)
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Moreover, it has been proven in the diffusive regime 0 ≤ p < 3/4 that

Sn√
n

L−→
n→∞

N
(

0,
1

3− 4p

)
, (5.4)

while in the critical regime p = 3/4 that

Sn√
n log n

L−→
n→∞

N (0, 1). (5.5)

We refer the reader to [3, 25, 26, 5] and to the recent contributions [17, 24, 32, 64,
75]. In the superdiffusive regime 3/4 < p ≤ 1, it has been established by three
different approaches [3, 5, 25] that

lim
n→∞

Sn

n2p−1 = L a.s. (5.6)

where L is a non-degenerate random variable which is not Gaussian [5]. How-
ever, the fluctuation of the ERW around its limit L is Gaussian [53] since, on the
event {L2 > 0},

√
n4p−3

( Sn

n2p−1 − L
)

L−→
n→∞

N
(

0,
1

4p− 3

)
. (5.7)

In this chapter, we shall focus our attention on the parametric estimation of the
memory parameter p. To the best of our knowledge, no one has tackled this
statistical analysis. It has been mentioned by Heyde [47] that, in the case of gen-
eralized Bernoulli processes, it is possible to consistently estimate θ by maximum
likelihood but that an explicit expression is not available for the estimator. Heyde
added that the Fisher information for a sample of size n only increases propor-
tionally to log n if θ < 1/2 , (log n)2 if θ = 1/2 and n2θ−1 if θ > 1/2, but gave no
more details. We also find those speeds in our analysis.

Our estimator is explicitly given, for all n ≥ 2, by

p̂n =

n−1

∑
k=1

Sk
k

(
Xk+1 +

Sk
k

)
2

n−1

∑
k=1

(Sk
k

)2
. (5.8)

The chapter is organized as follows. In Section 5.2, we explain in detail how we
are led to introduce the estimator p̂n via a quasi-maximum likelihood approach.
Section 5.3 is devoted to the main results of the chapter. We show the almost sure
convergence of p̂n to p whatever the value of the memory parameter. This pre-
liminary estimation allows us to say whether the ERW is in the diffusive, critical
or superdiffusive regimes. The local asymptotic normality of our statistical pro-
cedure is established in the diffusive regime, while the local asymptotic mixed
normality is proven in the superdiffusive regime. In both regimes, asymptotic
and exact confidence intervals as well as statistical tests are also provided. Our
martingale approach is described in Section 5.4, while all technical proofs are
postponed to Section 5.5.

96



5 – Statistical estimation of the memory parameter

5.2 – Quasi-maximum likelihood estimation

Denote by Fn = σ(X1, . . . , Xn) the σ-algebra of events occurring up to time n. It
follows from (5.1) that for all n ≥ 1,

P(Xn+1 = 1 | Fn) =
p
n

n

∑
k=1

1{Xk=1} +
(1− p)

n

n

∑
k=1

1{Xk=−1},

=
p

2n

(
n + Sn

)
+

(1− p)
2n

(
n− Sn

)
,

=
1
2

(
1 + (2p− 1)

Sn

n

)
.

It clearly means that the conditional distribution of Xn+1 givenFn is a Rademacher
R(pn) distribution where

pn =
1
2

(
1 + a

Sn

n

)
and a = 2p− 1. (5.9)

Therefore, we obtain that for xn+1 ∈ {−1, 1}

P(Xn+1 = xn+1 | Fn) = p(1+xn+1)/2
n (1− pn)

(1−xn+1)/2. (5.10)

For all n ≥ 1 and x ∈ Rn with x = (x1, . . . , xn), let Pp(x) = P(X1 = x1, . . . , Xn =

xn). We clearly deduce from (5.10) that for all n ≥ 2,

Pp(x) =
n−1

∏
k=1

P(Xk+1 = xk+1 | X1 = x1, . . . , Xk = xk)P(X1 = x1),

=
n−1

∏
k=1

(
p(1+xk+1)/2

k (1− pk)
(1−xk+1)/2

)
q(1+x1)/2(1− q)(1−x1)/2

where, for all 1 ≤ k ≤ n, Sk is replaced by sk = x1 + · · · + xk in the definition
of pk. Consequently, the likelihood function associated with (X1, . . . , Xn) is given
by

Ln(p) =
n−1

∏
k=1

(
p(1+Xk+1)/2

k (1− pk)
(1−Xk+1)/2

)
q(1+X1)/2(1− q)(1−X1)/2. (5.11)

It is easier to work with the log-likelihood function `n(p) = log(Ln(p)). We have
from (5.11) that

`n(p) =
n−1

∑
k=1

(1 + Xk+1

2

)
log pk +

(1− Xk+1

2

)
log(1− pk)

+
(1 + X1

2

)
log q +

(1− X1

2

)
log(1− q). (5.12)
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Hence, if Xn stands for the empirical mean of (X1, . . . , Xn), it follows from (5.9)
and (5.12) that

`′n(p) =
n−1

∑
k=1

(
1 + Xk+1

)( Xk

1 + aXk

)
−
(
1− Xk+1

)( Xk

1− aXk

)
,

=
n−1

∑
k=1

2Xk(Xk+1 − aXk)

1− a2X2
k

,

=
n−1

∑
k=1

2Xk+1Xk

1 + aXk+1Xk
. (5.13)

It is well-known that the process (`′n(p)) is a locally square integrable martingale
[45]. Its predictable quadratic variation is nothing else than the conditional Fisher
information In(p) associated with (X1, . . . , Xn). We shall see that

In(p) =
n−1

∑
k=1

X2
k

pk(1− pk)
. (5.14)

It is not possible to find an explicit solution of the equation `′n(p) = 0. However,
we already saw from (5.3) that whatever the value of p in [0, 1], Xn goes to zero
almost surely. Consequently, it makes sense to replace `n(p) by its second order
Taylor approximation

λn(p) =
n−1

∑
k=1

aXk

(
Xk+1 −

a
2

Xk

)
− (n− 1) log 2

+
(1 + X1

2

)
log q +

(1− X1

2

)
log(1− q). (5.15)

Since a = 2p− 1, (5.15) clearly implies that

λ′n(p) =
n−1

∑
k=1

2Xk+1Xk
(
1− aXk+1Xk

)
and λ

′′
n(p) = −4

n−1

∑
k=1

X2
k.

Therefore, λn is a strictly concave function reaching its maximum at the value
where its first derivative is equal to zero, which leads to

p̂n =

n−1

∑
k=1

Sk
k

(
Xk+1 +

Sk
k

)
2

n−1

∑
k=1

(Sk
k

)2
.

It appears that our statistical approach is the most efficient strategy as it satisfies
the local asymptotic normality (LAN) property in the diffusive regime and the
local asymptotic mixed normality (LAMN) property in the superdiffusive regime
[74].
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5.3 – Main results

Our first result deals with the almost sure convergence of p̂n to p.

Theorem 5.1. Whatever the value of the memory parameter p in [0, 1], p̂n is a strongly
consistent estimator of p,

lim
n→∞

p̂n = p a.s. (5.16)

5.3.1 – The diffusive regime

Our next result is devoted to the asymptotic normality of the estimator p̂n in the
diffusive regime where 0 ≤ p < 3/4. Denote by I(p) the asymptotic Fisher
information

I(p) =
4

3− 4p
. (5.17)

Theorem 5.2. We have the asymptotic normality

√
log n

(
p̂n − p

) L−→
n→∞

N
(

0,
3− 4p

4

)
. (5.18)

It means that p̂n is an asymptotically efficient estimator of p. In particular,

2
√

log n

(
p̂n − p

)√
3− 4p̂n

L−→
n→∞

N (0, 1). (5.19)

We now focus our attention on the LAN property in the diffusive regime.

Theorem 5.3. The sequence of experiments (Pn(p), p ∈ [0, 3/4[) is locally asymptot-
ically normal. More precisely, there exists a sequence of real random variables (∆n(p))
such that

∆n(p) L−→
n→∞

N
(
0, I(p)

)
and for any sequence of real numbers (hn) converging to h, the log-likelihood ratio satis-
fies

log
(Ln(p + (log n)−1/2hn)

Ln(p)

)
= h∆n(p)− h2

2
I(p) + o(1) a.s. (5.20)

Our next result concerns an asymptotic confidence interval for the memory pa-
rameter p.

Theorem 5.4. In the diffusive regime and for any 0 < α < 1, we have the asymptotic
confidence interval for p with confidence level 1− α,

I(p) =
[

p̂n −
√

3− 4p̂n

2
√

log n
t1−α/2, p̂n +

√
3− 4p̂n

2
√

log n
t1−α/2

]
(5.21)

where t1−α/2 stands for the (1− α/2)-quantile of the standard N (0, 1) distribution.
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5.3.2 – The critical regime

We now focus our attention on the more complicated critical regime where p =

3/4. Denote by Vn a suitable approximation of the conditional Fisher information
In(p) given by (5.14),

Vn = 4
n−1

∑
k=1

(Sk
k

)2
. (5.22)

Theorem 5.5. We have the convergence in distribution

1
(log n)2 Vn

L−→
n→∞

4Λ (5.23)

where Λ stands for the integral of the squared standard Brownian motion

Λ =
∫ 1

0
B2

t dt. (5.24)

Remark 5.6. It is impossible to prove the almost sure convergence as well as the con-
vergence in probability in (5.23). By the sharp analysis of Li [60, 61] concerning the
L2-norm of the Brownian motion, we can only show that

lim inf
n→∞

( log log log n
(log n)2

)
Vn =

1
2

a.s.

while
lim sup

n→∞

( 1
(log n)2 log log log n

)
Vn =

32
π2 a.s.

This is the reason why we cannot establish the asymptotic normality of our estimator p̂n

in the critical regime.

Remark 5.7. It follows from the Karhunen-Loève expansion of the Brownian motion that

Λ =
∞

∑
n=1

4
(2n− 1)2π2 ξ2

n (5.25)

where (ξn) is a sequence of independent and identically distributed random variables
withN (0, 1) distribution, see e.g. Lemma 4 in [60]. Formula (5.25) allows the numerical
computation of the α-quantiles of Λ, see [51].

5.3.3 – The superdiffusive regime

Our next result deals with the asymptotic normality of p̂n in the superdiffusive
regime where 3/4 < p ≤ 1. We recall here that L is the limiting non-degenerate
random variable given in (5.6). The conditional hypothesis {L2 > 0} we are
working under is believed to be satisfied almost surely. However, it has not yet
been proved as the study of the distribution of L appears to be a really hard
problem.
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Theorem 5.8. Conditionally on the event {L2 > 0}, we have the asymptotic normality
√

Vn( p̂n − p) L−→
n→∞

N (0, 1). (5.26)

Figures 1 and 2 show the asymptotic normality of our estimator p̂n in the diffusive
and superdiffusive regimes with p = 0.4 and p = 0.9, respectively. The density
function of the standard normal distribution is in red and the bins represent N =

3000 different values of
√

Vn( p̂n − p) for n = 1000. We have used equation (5.26)
to obtain both of the figures, as Theorem 5.8 is also true in the diffusive regime. In
fact, using directly the approximation of Vn made in Theorem 5.2 can not provide
such good convergence results by simulations in the diffusive regime since Vn

increases almost surely to 4/(3− 4p) with the slow speed log n.

Figure 5.1: Asymptotic normality for p = 0.4. Figure 5.2: Asymptotic normality for p = 0.9.

The LAMN property in the superdiffusive regime is as follows.

Theorem 5.9. Conditionally on the event {L2 > 0}, the sequence of experiments
(Pn(p), p ∈]3/4, 1]) is locally asymptotically mixed normal. More precisely, there exists
two sequences of real random variables (∆n(p)) and (Jn(p)) such that(

∆n(p), Jn(p)
) L−→

n→∞

(
∆(p), J(p)

)
and that the conditional distribution of ∆(p) given J(p) = J is a standard N (0, J)
distribution, and for any sequence of real numbers (hn) converging to h, the log-likelihood
ratio satisfies

log
(Ln(p + (n4p−3)−1/2hn)

Ln(p)

)
= h∆n(p)− h2

2
Jn(p) + o(1) a.s. (5.27)

We also propose an asymptotic confidence interval for the memory parameter p.

Theorem 5.10. In the superdiffusive regime and for any 0 < α < 1, we have condition-
ally on the event {L2 > 0}, the asymptotic confidence interval for p with confidence level
1− α,

I(p) =
[

p̂n −
1√
Vn

t1−α/2, p̂n +
1√
Vn

t1−α/2

]
(5.28)

where t1−α/2 stands for the (1− α/2)-quantile of the standard N (0, 1) distribution.
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5.3.4 – Exact confidence intervals

Our purpose is now to provide an exact confidence interval for the memory pa-
rameter p whatever its value in [0, 1].

Theorem 5.11. For any 0 < α < 1, an exact confidence interval for p with confidence
level 1− α is given, for all n ≥ 1, by

J (p) =

[
p̂n −

2
√

3n log(2/α)

Vn
, p̂n +

2
√

3n log(2/α)

Vn

]
. (5.29)

Moreover, in the diffusive regime with 1/4 ≤ p < 3/4, the exact confidence interval
J (p) can be slightly improved by

K(p) =

[
p̂n −

√
29n log(2/α)√

3Vn
, p̂n +

√
29n log(2/α)√

3Vn

]
. (5.30)

Remark 5.12. Our confidence interval is better than the one obtained using Azuma-
Hoeffding inequality which is given, for all n ≥ 3, by

A(p) =

[
p̂n −

2
√

8n log(2/α)

Vn
, p̂n +

2
√

8n log(2/α)

Vn

]
. (5.31)

Figure 3 shows the three confidence intervals I(p), J (p) and A(p) in the su-
perdiffusive regime with p = 0.9, for n varying from 1 to 100. As expected, the
asymptotic confidence interval I(p) is always more accurate thanJ (p) andA(p),
providing that the Gaussian approximation is justified. One can also observe that
J (p) and A(p) are always true whatever the value of n and that J (p) is more
accurate than A(p).

Figure 5.3: Confidence intervals for p = 0.9 and α = 0.05.

5.3.5 – Statistical tests

We are now in position to propose a bilateral statistical test built on our statistic
p̂n. We start by fixing some memory value 0 < p0 < 1 such that p0 6= 3/4. Our
goal is to test

H0 : “p = p0” against H1 : “p 6= p0”.
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Theorem 5.13. Under the null hypothesisH0 : “p = p0”,

Vn( p̂n − p0)
2 L−→

n→∞
χ2 (5.32)

where χ2 has a Chi-square distribution with one degree of freedom. Moreover, under the
alternative hypothesisH1 : “p 6= p0”,

lim
n→∞

Vn( p̂n − p0)
2 = +∞ a.s. (5.33)

For a significance level α where 0 < α < 1, the acceptance and rejection regions
are given byA = [0, zα] andR =]zα,+∞[ where zα stands for the (1− α)-quantile
of the Chi-square distribution with one degree of freedom. The null hypothesis
H0 will not be rejected if the empirical value

Vn( p̂n − p0)
2 ≤ zα

and will be rejected otherwise.

The purpose of our second test is to find out if the ERW is in the critical or the
diffusive regime. Concretely, we wish to test

H0 : “p = 3/4” against H1 : “p < 3/4”.

We immediately obtain Theorem 5.14, whose proof directly follows from (5.23).

Theorem 5.14. Under the null hypothesisH0 : “p = 3/4”,

1
(log n)2 Vn

L−→
n→∞

4Λ (5.34)

where Λ is the integral of the squared Brownian motion given by (5.24). Moreover, under
the alternative hypothesisH1 : “p < 3/4”,

lim
n→∞

1
(log n)2 Vn = 0 a.s. (5.35)

For a significance level α where 0 < α < 1, the acceptance and rejection regions
are given by A = [λ1−α,+∞[ and R = [0, λ1−α[ where λ1−α stands for the α-
quantile of the random variable Λ which can be found in [51]. For example,
λ0.05 = 1.656 and λ0.10 = 1.196. The null hypothesis H0 will not be rejected if the
empirical value

1
4(log n)2 Vn ≥ λ1−α

and will be rejected otherwise. The goal of our third is to find out if the ERW is
in the critical or superdiffusive regime. More precisely, we wish to test

H0 : “p = 3/4” against H1 : “p > 3/4”.
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Theorem 5.15. Under the null hypothesisH0 : “p = 3/4”,

1
(log n)2 Vn

L−→
n→∞

4Λ (5.36)

where Λ is given by (5.24). Moreover, under the alternative hypothesisH1 : “p > 3/4”
and conditionally to {L2 > 0},

lim
n→∞

1
(log n)2 Vn = +∞ a.s. (5.37)

For a significance level α where 0 < α < 1, the acceptance and rejection regions
are given by A = [0, λα] and R =]λα,+∞[ where λα stands for the (1 − α)-
quantile of Λ, see [51]. The null hypothesisH0 will not be rejected if the empirical
value

1
4(log n)2 Vn ≤ λα

and will be rejected otherwise.

5.4 – The martingale approach

We already saw at the beginning of Section 5.2 that for all n ≥ 1,

E[Xn+1 | Fn] = a
(Sn

n

)
(5.38)

where a = 2p− 1. For all n ≥ 1, let

εn+1 = Xn+1 − a
(Sn

n

)
with the initial value ε1 = X1. Since (Xn) is a binary sequence of random vari-
ables taking values in {+1,−1}, it clearly follows from (5.38) that (εn) is a mar-
tingale difference sequence such that for all n ≥ 1,

E[ε2
n+1 | Fn] = 1− a2

(Sn

n

)2
. (5.39)

Equation (5.39) immediately implies that

sup
n≥1

E[ε2
n] ≤ 1.

Denote for all n ≥ 2,

Mn =
n−1

∑
k=1

(Sk
k

)
εk+1 (5.40)

with M1 = 0. As |Sn| ≤ n, (Mn) is a locally square integrable martingale. Its
predictable quadratic variation is given by 〈M〉1 = 0 and for all n ≥ 2,

〈M〉n =
n−1

∑
k=1

E[∆M2
k+1 | Fk] =

n−1

∑
k=1

(Sk
k

)2
E[ε2

k+1 | Fk].
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We obtain from (5.39) that

〈M〉n =
n−1

∑
k=1

(Sk
k

)2(
1− a2

(Sk
k

)2)
=

n−1

∑
k=1

(Sk
k

)2
− a2

n−1

∑
k=1

(Sk
k

)4
. (5.41)

Consequently, we deduce from (5.3) and (5.22) that

lim
n→∞

Vn

〈M〉n
= 4 a.s. (5.42)

which means that the asymptotic behavior of the martingale (Mn) is closely re-
lated to the one of the conditional Fisher information In(p) and its approximation
Vn. Moreover, we have from (5.8) that

p̂n =

n−1

∑
k=1

Sk
k

(
Xk+1 +

Sk
k

)
2

n−1

∑
k=1

(Sk
k

)2
=

n−1

∑
k=1

Sk
k

(
Xk+1 − a

Sk
k

)
+ (a + 1)

n−1

∑
k=1

(Sk
k

)2

2
n−1

∑
k=1

(Sk
k

)2

which reduces, via (5.40), to

p̂n − p =
2Mn

Vn
. (5.43)

It ensures that the study of the asymptotic behavior of p̂n can be achieved through
convergence results for the martingale (Mn).

5.5 – Proofs of the main results

Proof of Theorem 5.1. In the diffusive regime 0 ≤ p < 3/4, we have from the
quadratic strong law given by Theorem 3.2 in [5] that

lim
n→∞

1
log n

n

∑
k=1

(Sk
k

)2
=

1
3− 4p

a.s. (5.44)

which implies that

lim
n→∞

Vn

log n
=

4
3− 4p

a.s. (5.45)

In the critical regime p = 3/4, it follows once again from the quadratic strong law
given by Theorem 3.5 in [5] that

lim
n→∞

1
log log n

n

∑
k=2

( Sk
k log k

)2
= 1 a.s.

leading to
lim

n→∞
Vn = +∞ a.s.

In the superdiffusive regime 3/4 < p ≤ 1, we deduce from (5.3) together with
Toeplitz’s lemma that

lim
n→∞

1
n4p−3

n

∑
k=1

(Sk
k

)2
=

L2

4p− 3
a.s. (5.46)
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which ensures that

lim
n→∞

Vn

n4p−3 =
4L2

4p− 3
a.s. (5.47)

where L is a non-degenerate random variable. Consequently, whatever the value
of the memory parameter p in [0, 1], we obtain that Vn is increasing to infinity
almost surely. Hence, we get from (5.42) that 〈M〉n also goes to infinty almost
surely in the three regimes. Therefore, we can conclude from the strong law of
large numbers for martingales, see Theorem A.1, that

lim
n→∞

Mn

Vn
= 0 a.s. (5.48)

Finally, (5.43) together with (5.48) immediately lead to (5.16).

�

5.5.1 – The diffusive regime

Proof of Theorem 5.2. In the diffusive regime 0 ≤ p < 3/4, we already saw from
(5.44) that

lim
n→∞

〈M〉n
log n

=
1

3− 4p
a.s.

Moreover, (Mn) satisfies the conditional Lindeberg condition, that is for all ε > 0,

1
log n

n−1

∑
k=1

E
[
|∆Mk+1|21|∆Mk+1|>ε

√
log n | Fk

]
P−→

n→∞
0

where, for all n ≥ 1,

∆Mn+1 = Mn+1 −Mn =
(Sn

n

)
εn+1.

As a matter of fact, as |Sn| ≤ n, we clearly have |εn+1| ≤ 2 and |∆Mn+1| ≤ 2.
Hence, we obtain that for all ε > 0,

1
log n

n−1

∑
k=1

E
[
(∆Mk+1)

21|∆Mk+1|>ε
√

log n | Fk

]
≤ 1

ε2(log n)2

n−1

∑
k=1

E
[
(∆Mk+1)

4 | Fk

]
,

≤ 4
ε2 (log n)2

n−1

∑
k=1

(Sk
k

)2
,

≤ Vn

ε2(log n)2 .

Therefore, we clearly deduce from (5.45) that

lim
n→∞

1
log n

n−1

∑
k=1

E
[
|∆Mk+1|21|∆Mk+1|>ε

√
log n | Fk

]
= 0 a.s.

which means that the conditional Lindeberg condition is satisfied. Hence, we can
conclude from Corollary 3.1 in [42] that

Mn√
〈M〉n

L−→
n→∞

N (0, 1). (5.49)
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Finally, we obtain from (5.42) and (5.43) together with Slutsky’s Lemma that

√
Vn( p̂n − p) L−→

n→∞
N (0, 1)

leading via (5.45) to

√
log n

(
p̂n − p

) L−→
n→∞

N
(

0,
3− 4p

4

)
.

One can observe that the asymptotic variance is the inverse of the Fisher infor-
mation given by (5.17), which completes the proof of Theorem 5.2.

�

Proof of Theorem 5.3. As in the proof of Theorem 7.2 in [74] devoted to the Taylor
expansion of the log-likelihood ratio, let

log(1 + x) = x− x2

2
+ x2R(x)

where the function R(x) tends to zero as x goes to zero. For any sequence of real
numbers (hn) converging to h, we have from (5.12) that

`n(p + (log n)−1/2hn)− `n(p) =
n−1

∑
k=1

(1 + Xk+1

2

)
log
(

1 +
2(log n)−1/2hnXk

1 + aXk

)
+

n−1

∑
k=1

(1− Xk+1

2

)
log
(

1− 2(log n)−1/2hnXk

1− aXk

)
Consequently, we obtain the Taylor expansion

`n(p + (log n)−1/2hn)− `n(p) =
n−1

∑
k=1

(1 + Xk+1)
( (log n)−1/2hnXk

1 + aXk
− (log n)−1h2

nX2
k

(1 + aXk)2

)
+ 2

n−1

∑
k=1

(1 + Xk+1)
(log n)−1h2

nX2
k

(1 + aXk)2
R
(2(log n)−1/2hnXk

1 + aXk

)
−

n−1

∑
k=1

(1− Xk+1)
( (log n)−1/2hnXk

1− aXk
+

(log n)−1h2
nX2

k

(1− aXk)2

)
+ 2

n−1

∑
k=1

(1− Xk+1)
(log n)−1h2

nX2
k

(1− aXk)2
R
(2(log n)−1/2hnXk

1− aXk

)
.

From now on, we are going to make repeated use that (Xn) is a binary sequence
of random variables taking values in {+1,−1}. We can split the log-likelihood
ratio into three terms,

`n(p + (log n)−1/2hn)− `n(p) =
2hn√
log n

Pn −
2h2

n
log n

Qn +
2h2

n
log n

Rn (5.50)
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where

Pn =
1
2

n−1

∑
k=1

( (1 + Xk+1)Xk

1 + aXk
− (1− Xk+1)Xk

1− aXk

)
=

1
2

n−1

∑
k=1

2(Xk+1 − aXk)Xk

1− (aXk)2

=
n−1

∑
k=1

(Xk+1 − aXk)Xk

X2
k+1 − (aXk)2

=
n−1

∑
k=1

Xk

Xk+1 + aXk
=

n−1

∑
k=1

Xk+1Xk

1 + aXk+1Xk
,

Qn =
1
2

n−1

∑
k=1

( (1 + Xk+1)X2
k

(1 + aXk)2
+
(1− Xk+1)X2

k

(1− aXk)2

)
=

1
2

n−1

∑
k=1

2(1− 2aXkXk+1 + a2X2
k)X2

k

(1− (aXk)2)2

=
n−1

∑
k=1

(X2
k+1 − 2aXkXk+1 + a2X2

k)X2
k

(X2
k+1 − (aXk)2)2

=
n−1

∑
k=1

(Xk+1 − aXk)
2X2

k

(Xk+1 + aXk)2(Xk+1 − aXk)2

=
n−1

∑
k=1

X2
k

(Xk+1 + aXk)2
=

n−1

∑
k=1

X2
k

(1 + aXk+1Xk)2
,

and

Rn =
n−1

∑
k=1

( (1 + Xk+1)X2
k

(1 + aXk)2
R
(2(log n)−1/2hnXk

1 + aXk

)
+
(1− Xk+1)X2

k

(1− aXk)2
R
(2(log n)−1/2hnXk

1− aXk

))
.

On the one hand, we have

Pn =
n−1

∑
k=1

Xk+1Xk

1 + aXk+1Xk
=

n−1

∑
k=1

Xk+1Xk
(
1− aXk+1Xk

)(
1 + aXk+1Xk

)(
1− aXk+1Xk

)
=

n−1

∑
k=1

Xk
(
Xk+1 − aXk

)
1− a2X2

k

=
n−1

∑
k=1

Xk εk+1

1− a2X2
k

.

It clearly means that the sequence (Pn) is a square integrable martingale. We
obtain from (5.39) that the predictable quadratic variation associated with (Pn) is
given by

〈P〉n =
n−1

∑
k=1

X2
k(

1− a2X2
k
)2E[ε

2
k+1 | Fk] =

n−1

∑
k=1

X2
k

1− a2X2
k

.

Hence, we immediately deduce from (5.3) and (5.44) that

lim
n→∞

〈P〉n
log n

=
1

3− 4p
a.s.

Moreover, as it was previously done for the martingale (Mn), one can easily check
that (Pn) satisfies the conditional Lindeberg condition. Consequently, it follows
from Corollary 3.1 in [42] that

Pn√
log n

L−→
n→∞

N
(

0,
1

3− 4p

)
. (5.51)

On the other hand, we also have from (5.3) and (5.22) that

Qn =
n−1

∑
k=1

X2
k

(1 + aXk+1Xk)2
=

1
4

Vn + o(Vn) a.s. (5.52)
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In the same way,

|Rn| = o

(
n−1

∑
k=1

X2
k

(1 + aXk)2

)
+ o

(
n−1

∑
k=1

X2
k

(1− aXk)2

)
= o(Vn) a.s. (5.53)

Finally, we obtain from the conjunction of (5.50), (5.51), (5.52) and (5.53) that

`n(p + (log n)−1/2hn)− `n(p) = hn∆n(p)− h2
n

2
Vn

log n
+ o(1) a.s. (5.54)

where
∆n(p) =

2Pn√
log n

L−→
n→∞

N
(

0,
4

3− 4p

)
,

which is exactly what we wanted to prove.

�

Proof of Theorem 5.4. The proof directly follows from Theorem 5.2. Indeed, we
obtain from the asymptotic normality (5.19) that for any 0 < α < 1,

lim
n→∞

P
(

2
√

log n

∣∣ p̂n − p
∣∣√

3− 4p̂n
≤ t1−α/2

)
= 1− α

where t1−α/2 stands for the (1− α/2)-quantile of the standard N (0, 1) distribu-
tion. Moreover, one can easily see that

P
(
2
√

log n

∣∣ p̂n − p
∣∣√

3− 4p̂n
≤ t1−α/2

)
=P
(

p̂n−
√

3− 4p̂n

2
√

log n
t1−α/2 ≤ p ≤ p̂n +

√
3− 4p̂n

2
√

log n
t1−α/2

)
.

It implies that

lim
n→∞

P
(

p ∈
[

p̂n −
√

3− 4p̂n

2
√

log n
t1−α/2, p̂n +

√
3− 4p̂n

2
√

log n
t1−α/2

])
= 1− α,

which completes the proof of Theorem 5.4.

�

5.5.2 – The critical regime

Proof of Theorem 5.5. It follows from (5.2) and (5.38) with a = 1/2 that for all
n ≥ 1,

Sn+1 =
(

1 +
1

2n

)
Sn + εn+1.

It clearly implies that for all n ≥ 1,

Xn+1 =
(

1− 1
2(n + 1)

)
Xn +

1
n + 1

εn+1. (5.55)

Consequently, we obtain from (5.55) that for all n ≥ 2,

Xn =
n

∏
k=2

(
1− 1

2k

)
X1 +

n

∑
k=2

n

∏
i=k+1

(
1− 1

2i

)1
k

εk
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leading to

Xn =
Γ(n + 1/2)

Γ(n + 1)

( 2√
π

X1 +Mn

)
(5.56)

where

Mn =
n

∑
k=2

Γ(k)
Γ(k + 1/2)

εk. (5.57)

We already saw that (εn) is a martingale difference sequence satisfying (5.39).
Hence, (Mn) is a locally square integrable martingale with predictable quadratic
variation given, for all n ≥ 2,

〈M〉n =
n

∑
k=2

( Γ(k)
Γ(k + 1/2)

)2
− 1

4

n

∑
k=2

( Γ(k)
Γ(k + 1/2)

)2
X2

k. (5.58)

Moreover, one can easily see that E[S2
n] = nHn where Hn stands for the harmonic

number

Hn =
n

∑
k=1

1
k

.

Therefore, we obtain from (5.58) that

〈M〉n −E[〈M〉n] = −
1
4

n

∑
k=2

( Γ(k)
Γ(k + 1/2)

)2(
X2

k −
Hk
k

)
. (5.59)

On the one hand, we have for all n ≥ 1,

n +
1
4
<
( Γ(n + 1)

Γ(n + 1/2)

)2
< n +

1
2

,

which is equivalent to

1
n
+

1
4n2 <

( Γ(n)
Γ(n + 1/2)

)2
<

1
n
+

1
2n2 .

It ensures that
∞

∑
n=2

( Γ(n)
Γ(n + 1/2)

)2 Hn

n
<

∞

∑
n=2

2Hn

n2 < ∞. (5.60)

On the other hand, it follows from the quadratic strong law for the ERW given in
Theorem 3.5 of [5] that

lim
n→∞

1
log log n

n

∑
k=2

X2
k

(log k)2 = 1 a.s. (5.61)

Hence, we get from (5.61) together with Toeplitz lemma [31] that

lim
n→∞

1
log log n

n

∑
k=2

X2
k

k
= 0 a.s.

which leads to

lim
n→∞

1
log log n

n

∑
k=2

( Γ(k)
Γ(k + 1/2)

)2
X2

k = 0 a.s. (5.62)
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Thus, we obtain from (5.59), (5.60) and (5.62) that

〈M〉n −E[〈M〉n] = o(log log n) a.s.

Therefore, we deduce from the strong invariance principle for martingales given
in Theorem 2.1 of [70] with an = log log n and bn = log n that

Mn − Blog n = o(log log n) a.s. (5.63)

Consequently, we obtain from (5.56) and (5.63) the decomposition

Xn =
Γ(n + 1/2)

Γ(n + 1)
Blog n + Rn a.s. (5.64)

where the remainder Rn satisfies
n

∑
k=1

R2
k = o

(
log n(log log n)2) a.s. (5.65)

In order to prove (5.23), it only remains to show that

1
(log n)2

n

∑
k=1

(Γ(k + 1/2)
Γ(k + 1)

)2
B2

log k
L−→

n→∞
Λ (5.66)

where Λ is the integral of the squared standard Brownian motion

Λ =
∫ 1

0
B2

t dt.

We have for all n ≥ 1,

1
n + 1

<
(Γ(n + 1/2)

Γ(n + 1)

)2
<

1
n

.

Consequently, the left-hand side in (5.66) shares the same asymptotic behavior as

1
(log n)2

n

∑
k=1

1
k

B2
log k.

Moreover, we have
n

∑
k=1

1
k

B2
log k =

∫ n

1

1
t

B2
log tdt + o(log n) a.s.

=
∫ log n

0
B2

s ds + o(log n) a.s. (5.67)

using the change of variables s = log t. Hereafter, it follows from the self-similarity
of the Brownian motion that∫ log n

0
B2

s ds L
= (log n)2

∫ 1

0
B2

t dt = (log n)2Λ. (5.68)

Finally, we deduce from (5.64), (5.65), (5.67) and (5.68) that

1
(log n)2

n

∑
k=1

X2
k

L−→
n→∞

Λ

which completes the proof of Theorem 5.5.

�
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5.5.3 – The superdiffusive regime

Proof of Theorem 5.8. In the superdiffusive regime 3/4 < p ≤ 1, we already saw
from (5.46) that

lim
n→∞

〈M〉n
n4p−3 =

L2

4p− 3
a.s.

�

Moreover, as it was previously done in the diffusive regime, it is not hard to see
that (Mn) satisfies the conditional Lindeberg condition. Hence, it follows from
(5.43) together with Corollary 3.2 in [42] that, conditionally on the event {L2 > 0},
we have the asymptotic normality

√
Vn( p̂n − p) L−→

n→∞
N (0, 1).

Proof of Theorem 5.9. As it was previously done in the proof of Theorem 5.3, we
can split the log-likelihood ratio into three terms,

`n(p + (n4p−3)−1/2hn)− `n(p) =
2hn√
n4p−3

Pn −
2h2

n
n4p−3 Qn +

2h2
n

n4p−3 Rn a.s. (5.69)

where the random variables Pn and Qn are exactly the same, while the speed log n
is replaced by n4p−3 in the expression of Rn. We immediately deduce from (5.6)
and (5.46) that

lim
n→∞

〈P〉n
n4p−3 =

L2

4p− 3
a.s.

Once again, (Pn) satisfies the conditional Lindeberg condition in the superdiffu-
sive regime. Hence, it follows from Corollary 3.2 in [42] that, conditionally on the
event {L2 > 0},

Pn√
n4p−3

L−→
n→∞

L×N
(

0,
1

4p− 3

)
. (5.70)

Hereafter, we obtain from equations (5.69), (5.70), (5.52) and (5.53) that

`n(p + (n4p−3)−1/2hn)− `n(p) = hn∆n(p)− h2
n

2
Jn(p) + o(1) a.s. (5.71)

where
∆n(p) =

2Pn√
n4p−3

and Jn(p) =
Vn

n4p−3 .

Finally, as the convergence in (5.70) is stable [42], we immediately have that(
∆n(p), Jn(p)

) L−→
n→∞

(
∆(p), J(p)

)
where

J(p) =
4L2

4p− 3
.

In addition, conditionally on the event {J(p) = J},

∆n(p) =
2Pn√
n4p−3

L−→
n→∞

N
(
0, J
)
,

which completes the proof of Theorem 5.9.

�
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5.5.4 – Exact confidence intervals

Proof of Theorem 5.11. In order to prove Theorem 5.11, we shall make use of
concentration inequalities for martingales [8]. First of all, one can observe that
(Mn) is a bounded difference martingale as equation (5.40) implies that for all
n ≥ 2,

|∆Mn| =
∣∣εnXn−1

∣∣ ≤ (1 + |a|)
∣∣Xn−1

∣∣ a.s.

Inspired by the Azuma-Hoeffding inequality for bounded difference martingales,
denote

Bn = (1 + |a|)2
n−1

∑
k=1

X2
k.

Since |a| ≤ 1, we clearly have from (5.41) that

5〈M〉n + Bn ≤
1
4
(
5 + (1 + |a|)2)Vn ≤ 9n.

Hence, Theorem 3.4 in [8] ensures again that for any x > 0,

P(|Mn| ≥ x) ≤ 2 exp
(
− x2

3n

)
. (5.72)

Consequently, it follows from (5.43) and (5.72) that for any x > 0,

P(Vn| p̂n − p| ≥ 2nx) ≤ 2 exp
(
− nx2

3

)
. (5.73)

Hereafter, denote

α = 2 exp
(
− nx2

3

)
.

As soon as nx2 > 3 log(2), the value 0 < α < 1. Therefore, we deduce from (5.73)
that an exact confidence interval for p, with confidence level 1− α, is given by

J (p) =

[
p̂n −

2
√

3n log(2/α)

Vn
, p̂n +

2
√

3n log(2/α)

Vn

]
.

In the diffusive regime with 1/4 ≤ p < 3/4, we have |a| ≤ 1/2 which implies
that

5〈M〉n + Bn ≤
1
4
(
5 + (1 + |a|)2)Vn ≤

29
4

n.

Hence, proceeding as in the previous calculation, we obtain the exact confidence
interval for p, with confidence level 1− α,

K(p) =

[
p̂n −

√
29n log(2/α)√

3Vn
, p̂n +

√
29n log(2/α)√

3Vn

]
.

�

113



5 – Statistical estimation of the memory parameter

5.5.5 – Statistical tests

Proof of Theorem 5.13. The proof is quite straightforward. As a matter of fact,
we already know from (5.18) or (5.26) that under the null hypothesisH0,

√
Vn( p̂n − p0)

L−→
n→∞

N (0, 1)

which immediately implies (5.32). It only remains to show that under the alterna-
tive hypothesis H1, our test’s statistic goes to infinity. Under H1, we obtain from
Theorem 5.1 that

lim
n→∞

p̂n − p0 = p− p0 a.s.

and this limit is not zero. Consequently,

lim
n→∞

Vn( p̂n − p0)
2 = +∞ a.s.

as we already saw that whatever the value of the memory parameter p in [0, 1],
Vn is increasing to infinity almost surely, completing the proof of Theorem 5.13.

�

Proof of Theorem 5.14. The first part of Theorem 5.14 immediately follows from
(5.23) under the null hypothesis. It only remains to show that under the alterna-
tive hypothesisH1, our test’s statistic goes to 0. UnderH1, we have from equation
(5.45) that

lim
n→∞

Vn

log n
=

4
3− 4p

a.s.

which clearly implies that

lim
n→∞

Vn

(log n)2 = 0 a.s.

which is exactly what we wanted to prove.

�

Proof of Theorem 5.15. The first part of Theorem 5.15 follows once again from
(5.23) under the null hypothesis. It only remains to show that under the alterna-
tive hypothesis H1, our test’s statistic goes to infinity. Under H1, we have from
equation (5.47) that

lim
n→∞

Vn

n4p−3 =
4L2

4p− 3
a.s.

which implies that, conditionally on {L2 > 0},

lim
n→∞

Vn

(log n)2 = +∞ a.s.

completing the proof of Theorem 5.15.

�
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6
A martingale approach for

Pòlya urn processes

This chapter presents the results of [56] :

LAULIN, L. A martingale approach for Pólya urn processes. Electron. Commun.
Probab. 25 (2020), 13 pp.

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . 115
6.2 Traditional Pólya urn model . . . . . . . . . . . . 117
6.3 Generalized Pólya urn model . . . . . . . . . . . 117
6.4 Proofs of the almost sure convergence results . . 122
6.5 Proofs of the asymptotic normality results . . . . 128

6.1 – Introduction

At the inital time n = 0, an urn is filled with α ≥ 0 red balls and β ≥ 0 white
balls. Then, at any time n ≥ 1 one ball is drawn randomly from the urn and its
color observed. If it is red it is then returned to the urn together with a additional
red balls and b ≥ 0 white ones. If it is white it is then returned to the urn together
with c ≥ 0 additional red balls and d white ones. The model corresponding
replacement matrix is given, for a, b, c, d ∈ N, by

R =

(
a b
c d

)
.

The urn process is said to be balanced if the total number of balls added at each
step is a constant, S = a + b = c + d ≥ 1. Thanks to the balance assumption, S is
the maximum eigenvalue of RT. In fact, S is the Perron–Frobenius eigenvalue so
it is simple. Moreover, the second eigenvalue of RT is given by m = a− c = d− b.
Throughout the rest of this chapter, our processes will be balanced and we shall
denote

σ = m/S < 1
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6 – A martingale approach for Pòlya urn processes

the ratio of the two eigenvalues. It is straightforward that the respective eigen-
vectors of RT are given by

v1 =
S

b + c

(
c
b

)
and v2 =

S
b + c

(
1
−1

)
.

We can rewrite RT under the following form

RT = PDP−1 =
1

b + c

(
c 1
b −1

)(
S 0
0 m

)(
1 1
b −c

)
.

Hereafter, let us define the process (Un), the composition of the urn at time n, by

Un =

(
Xn

Yn

)
and U0 =

(
α

β

)

where Xn is the number of red balls and Yn is the number of white ones. Then, let
τ = α + β ≥ 1 and τn = τ + nS be the number of balls inside the urn at time n. In
particular, one can observe that Xn + Yn = τn is a deterministic quantity.
The traditional Pólya urn model corresponds to the case where the replacement
matrix R is diagonal, while the generalized Pólya urn model corresponds to the
case where the replacement matrix R is not diagonal.

The questions about the asymptotic behavior of (Un) have been extensively stud-
ied, firstly by Freedman [35] and by many after, see for example [23, 33, 34, 48, 67,
49]. We also refer the reader to Pouyanne’s CIMPA summer school lectures 2014
[68] for a very comprehensive survey on Pólya urn processes that has been a great
source of inspiration. The reader may notice that this study is related to Bercu [5]
on the elephant random walk. This is due to the paper of Baur and Bertoin [3] on
the connection between elephant random walks and Pólya-type urns.

Our strategy is to use the martingale theory [31, 42] in order to propose a direct
proof of the asymptotic normality associated with (Un). We also establish new
refinements on the almost sure convergence of (Un). The chapter is organized as
follows. In Section 6.2, we briefly present the traditional Pólya urn model, as well
as the martingale related to this case. We establish the almost sure convergence
and the asymptotic normality for this martingale. In Section 6.3, we present the
generalized Pólya urn model with again the martingale related to this case, and
we also give the main results for this model. Hence, we first investigate small
urn regime where σ ≤ 1/2 and we establish the almost sure convergence, the
law of iterated logarithm and the quadratic strong law for (Un). The asymptotic
normality of the urn composition is also provided. We finally study the large urn
where σ > 1/2 and we prove the almost sure convergence as well as the mean
square convergence of (Un) to a non-degenerate random vector whose moments
are given. The proofs are postponed to Sections 6.4 and 6.5.
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6.2 – Traditional Pólya urn model

This model corresponds to the case where the replacement matrix is diagonal

R =

(
S 0
0 S

)
.

It means that at any time n ≥ 1, one ball is drawn randomly from the urn, its
color observed and it is then returned to the urn together with S ≥ 1 additional
balls of the same color. Let us define the process (Mn) by

Mn =
Xn

τn

and write

Xn = α + S
n

∑
k=1

εk

where the conditional distribution of εn+1 given the past up to time n is L(εn+1 |
Fn) = B(Mn) and B denotes the Bernoulli distribution. We clearly have

E[Mn+1 | Fn] = Mn

which means that (Mn) is a martingale. We have ∆Mn+1 = S
τn+1

(
εn+1 − Mn

)
.

Hence,

E
[
∆M2

n+1|Fn
]
=

S2

τ2
n+1

(
E
[
ε2

n+1|Fn
]
−M2

n

)
=

S2Mn(1−Mn)

τ2
n+1

.

We now focus our attention on the asymptotic behavior of (Mn).

Theorem 6.1. The process (Mn) converges to a random variable M∞ almost surely and
in any Lp for p ≥ 1. The limit M∞ has a beta distribution, with parameters α

S and β
S .

Remark 6.2. This result was first proved by Freedman, Theorem 2.2 in [35].

Our first new result on the Gaussian fluctuation of (Mn) is as follows.

Theorem 6.3. We have the following convergence in distribution

√
n

M∞ −Mn√
Mn(1−Mn)

L−→
n→∞

N
(
0, 1
)
. (6.1)

6.3 – Generalized Pólya urn model

This model corresponds to the case where the replacement matrix is not diagonal,

R =

(
a b
c d

)
.
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Let us rewrite

Xn = α + a
n

∑
k=1

εk + c
n

∑
k=1

(1− εk)

where the conditional distribution of εn+1 given the past up to time n is L(εn+1 |
Fn) = B(τ−1

n Xn). We have

Un+1 = Un + RT

(
εn+1

1− εn+1

)
and

Un −E[Un] =

(
Xn −E[Xn]

Yn −E[Yn]

)
=
( 1
−1

)(
Xn −E[Xn]

)
=

b + c
S
(
Xn −E[Xn]

)
v2.

Hence, we obtain that

E
[
Un+1 −E[Un+1] | Fn

]
= Un −E[Un] + RTE

[ ( εn+1

1− εn+1

)
−E

[ ( εn+1

1− εn+1

) ]
| Fn

]
=

(
I2 + τ−1

n RT)(Un −E[Un]
)

=
(

I2 + τ−1
n RT)( 1

−1

)(
Xn − E[Xn]

)
=

(
1 + τ−1

n m
)( 1
−1

)(
Xn − E[Xn]

)
=

(
1 + τ−1

n m
)(

Un −E[Un]
)
. (6.2)

Finally, denote

σn =
n−1

∏
k=0

(
1 + τ−1

k m
)−1

=
Γ(n + τ

S )Γ(
τ
S + σ)

Γ( τ
S )Γ(n + τ

S + σ)
. (6.3)

One can observe that

lim
n→∞

nσσn = λ where λ =
Γ( τ

S + σ)

Γ( τ
S )

. (6.4)

Hereafter, we define the process (Mn) by

Mn = σn
(
Un −E[Un]

)
. (6.5)

Thanks to equation (6.2), we immediately get that

E[Mn+1 | Fn] = Mn.

Hence, the sequence (Mn) is a locally bounded and square integrable martingale.
We are now allowed to compute the quadratic variation of (Mn). First of all

∆Mn+1 = mσn+1
(
εn+1 −E[εn+1 | Fn]

)( 1
−1

)
= mσn+1

(
εn+1 − τ−1

n Xn
)( 1
−1

)
.

(6.6)
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Moreover,

E
[(

εn+1 − τ−1
n Xn

)2∣∣Fn] = τ−1
n Xn

(
1− τ−1

n Xn
)
. (6.7)

Consequently, we obtain from (6.6) and (6.7) that

E
[
∆Mn+1∆MT

n+1
∣∣Fn] = m2σ2

n+1τ−1
n Xn

(
1− τ−1

n Xn
) ( 1 −1
−1 1

)
. (6.8)

Therefore

〈M〉n =
n−1

∑
k=0

E
[
∆Mk+1∆MT

k+1
∣∣Fk]

= m2

(
1 −1
−1 1

)
n−1

∑
k=0

σ2
k+1τ−1

k Xk
(
1− τ−1

k Xk
)
. (6.9)

As τ−1
k Xk

(
1− τ−1

k Xk
)
≤ 1

4 , it is not hard to see that

Tr〈M〉n ≤ m2wn where wn =
n

∑
k=1

σ2
k . (6.10)

The asymptotic behavior of (Mn) is closely related to the one of (wn) with the
following trichotomy:

– The diffusive regime where σ < 1/2: The urn is said to be small and we
have

lim
n→∞

wn

n1−2σ
=

λ2

1− 2σ
.

– The critical regime where σ = 1/2: The urn is said to be critically small and
we have

lim
n→∞

wn

log n
=

Γ( τ
S + 1

2)

Γ( τ
S )

.

– The superdiffusive regime where σ > 1/2: The urn is said to be large and
we have

lim
n→∞

wn =
∞

∑
k=0

(Γ(k + τ
S )Γ(

τ
S + σ)

Γ( τ
S )Γ(k +

τ
S + σ)

)2
< +∞.

Proposition 6.4. We have for small and large urns

E[Un] = nv1 + σ−1
n

(bα− cβ

S

)
v2 +

τ

S
v1. (6.11)

Proof of Proposition 6.4. First of all, denote Λn = I2 + τ−1
n RT = P

(
I2 + τ−1

n D
)

P−1

where I2 is the identity matrix of order 2, and Tn = ∏n−1
k=0 Λk. For any n ∈ N, Tn is

diagonalisable and

Tn = PDnP−1 =
1

b + c

(
c 1
b −1

)(
τn/τ 0

0 σ−1
n

)(
1 1
b −c

)
.
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Since E[Un+1 | Fn] = ΛnUn we easily get that E[Un] = TnU0, which leads to

E[Un] =
1

b + c

(τn

τ

(
c c
b b

)
+ σ−1

n

(
b −c
−b c

))
U0

= nv1 +
τ

S
v1 + σ−1

n
bα− cβ

S
v2.

�

6.3.1 – Small urns

The almost sure convergence of (Un) for small urns is due to Janson, Theorem
3.16 in [48].

Theorem 6.5. When the urn is small, σ < 1/2, we have the following convergence

lim
n→∞

Un

n
= v1 (6.12)

almost surely and in any Lp, p ≥ 1.

Our new refinements on the almost sure rates of convergence are as follows.

Theorem 6.6. When the urn is small and bc 6= 0, we have the quadratic strong law

lim
n→∞

1
log n

n

∑
k=1

1
k2 (Uk − kv1)(Uk − kv1)

T =
1

1− 2σ

bcm2

(b + c)2

(
1 −1
−1 1

)
a.s.

(6.13)
In particular,

lim
n→∞

1
log n

n

∑
k=1

‖Uk − kv1‖2

k2 =
2

1− 2σ

bcm2

(b + c)2 a.s. (6.14)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Un − nv1‖2

2n log log n
=

2
1− 2σ

bcm2

(b + c)2 a.s. (6.15)

Remark 6.7. The law of iterated logarithm for (Xn) was previously established by Bai,
Hu and Zhang via a strong approximation argument, see Corollary 2.1 in [1].

Theorem 6.8. When the urn is small and bc 6= 0, we have the following asymptotic
normality

Un − nv1√
n

L−→
n→∞

N
(
0, K

)
(6.16)

where K =
1

1− 2σ

bcm2

(b + c)2

(
1 −1
−1 1

)
.

Remark 6.9. An invariance principle for (Xn) was proved by Gouet, see Proposition 2.1
in [37].
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Figure 6.1: Asymptotic normality for α = 1, β = 2

and R =
(3 1

2 2

)
.

6.3.2 – Critically small urns

The almost sure convergence of (Un) for critically small urns is again due to Jan-
son, Theorem 3.16 in [48].

Theorem 6.10. When the urn is critically small, σ = 1/2, we have the following con-
vergence

lim
n→∞

Un

n
= v1 (6.17)

almost surely and in any Lp, p ≥ 1.

Once again, we have some refinements on the almost sure rates of convergence.

Theorem 6.11. When the urn is critically small and bc 6= 0, we have the quadratic
strong law

lim
n→∞

1
log log n

n

∑
k=1

1
(k log k)2 (Uk − kv1)(Uk − kv1)

T = bc

(
1 −1
−1 1

)
a.s. (6.18)

In particular,

lim
n→∞

1
log log n

n

∑
k=1

‖Uk − kv1‖2

(k log k)2 = 2bc a.s. (6.19)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Un − nv1‖2

2 log n log log log n
= 2bc a.s. (6.20)

Remark 6.12. The law of iterated logarithm for (Xn) was also established by Bai, Hu
and Zhang via a strong approximation argument, see Corollary 2.2 in [1].

Theorem 6.13. When the urn is critically small and bc 6= 0, we have the following
asymptotic normality

Un − nv1√
n log n

L−→
n→∞

N
(
0, K

)
(6.21)
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where K = bc

(
1 −1
−1 1

)
.

Remark 6.14. An invariance principle for (Xn) was also proved by Gouet, see Proposi-
tion 2.1 in [37].

Figure 6.2: Asymptotic normality in the case of crit-

ically small urns for α = β = 1 and R =
(3 1

1 3

)
.

6.3.3 – Large urns

The convergences of n−σ(Un − nv1) to Wv2 first appeared in Pouyanne [67], The-
orem 3.5. The almost sure convergence of (Un) for large urns is again due to
Janson, Theorem 3.16 in [48]. The explicit calculations of the moments of W are
new.

Theorem 6.15. When the urn is large, σ > 1/2, we have the following convergence

lim
n→∞

Un

n
= v1 (6.22)

almost surely and in any Lp, p ≥ 1. Moreover, we have

lim
n→∞

Un − nv1

nσ
= Wv2 (6.23)

almost surely and in L2, where W is a real-valued random variable and

E[W] =
Γ( τ

S )

Γ( τ
S + σ)

bα− cβ

S
, (6.24)

E[W2] = σ2 Γ( τ
S )

Γ( τ
S + 2σ)

( bc
2σ− 1

τ

S
+ (b− c)

bα− cβ

σS
+

(bα− cβ)2

σ2S2

)
. (6.25)

6.4 – Proofs of the almost sure convergence results
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6.4.1 – Generalized urn model – small urns

Proof of Theorem 6.5. We denote the maximum eigenvalue of 〈M〉n by λmax〈M〉n.
We make use of the strong law of large numbers for martingales given by Theo-
rem A.3, that is for any γ > 0,

‖Mn‖2

λmax〈M〉n
= o

(
(log Tr〈M〉n)1+γ

)
a.s.

It follows from (6.10) that

‖Mn‖2 = o
(
wn(log wn)

1+γ
)

a.s.

which implies
‖Mn‖2 = o

(
n1−2σ(log n)1+γ

)
a.s.

Hence, we deduce from (6.4) and (6.5) that

‖Un −E[Un]‖2 = o
(
n(log n)1+γ

)
a.s.

which completes the proof for the almost sure convergence. The convergence in
any Lp for p ≥ 1 holds since n−1‖Un−E[Un]‖ is uniformly bounded by 2

√
2(τ +

S).

�

Proof of Theorem 6.6. We shall make use of Theorem A.5. For any u ∈ R2 let

Mn(u) = 〈u, Mn〉 and denote fn =
σ2

n
wn

. We have from (6.4) and (6.10) that fn

is asymptotically equivalent to (1 − 2σ)n−1 and converges to 0. Moreover, we
obtain from equations (6.9), (6.12) and the Toeplitz lemma that

lim
n→∞

1
wn
〈M〉n = lim

n→∞

m2

wn

(
1 −1
−1 1

)
n−1

∑
k=0

σ2
k+1τ−1

k Xk
(
1− τ−1

k Xk
)

=
bcm2

(b + c)2

(
1 −1
−1 1

)
a.s.

which implies that

lim
n→∞

1
wn
〈M〉n = (1− 2σ)K a.s. (6.26)

where K is the covariance matrix from Theorem 6.8.. Therefore, we get from (6.26)
that

lim
n→∞

1
log wn

n

∑
k=1

fk

(Mk(u)2

wk

)
= (1− 2σ)uTKu a.s.

which leads to

lim
n→∞

1
log n

n

∑
k=1

f 2
k uT(Uk − E[Uk])(Un − E[Uk])

Tu = (1− 2σ)2uTKu a.s.

123



6 – A martingale approach for Pòlya urn processes

Furthermore, we have from (6.11) that E[Un] is asymptotically equivalent to nv1.
Consequently, we obtain that

lim
n→∞

1
log n

n

∑
k=1

1
k2 (Uk − kv1)(Uk − kv1)

T = K a.s.

We now focus our attention on the law of iterated logarithm. We already saw that

∞

∑
n=1

σ4
n

w2
n
< ∞.

Hence, it follows from the law of iterated logarithm for real martingales that first
appeared in Stout [71, 72], see Theorem A.4, that for any u ∈ Rd,

lim sup
n→∞

1√
2wn log log wn

Mn(u) = −lim inf
n→∞

1√
2wn log log wn

Mn(u)

=
√
(1− 2σ)uTKu a.s.

Consequently, as Mn(u) = σn〈u, Un −E[Un]〉, we obtain that

lim sup
n→∞

1√
2n log log n

〈u, Un −E[Un]〉 = −lim inf
n→∞

1√
2n log log n

〈u, Un −E[Un]〉

=
√

uTKu a.s.

In particular, for any vector u ∈ R2

lim sup
n→∞

1
2n log log n

uT(Un −E[Un])(Un −E[Un])
Tu = uTKu a.s.

Finally, we deduce from Un −E[Un] =
( 1
−1

)
(Xn −E[Xn]) and for u =

(1
0

)
that

lim sup
n→∞

1
2n log log n

‖Un −E[Un]‖2 = lim sup
n→∞

2
2n log log n

(Xn −E[Xn])
2

=
2

1− 2σ

bcm2

(b + c)2 a.s.

which together with (6.11) completes the proof of Theorem 6.6.

�

6.4.2 – Generalized urn model – critically small urns

Proof of Theorem 6.10. Again, we make use of the strong law of large numbers
for martingales given e.g. by Theorem A.3, that is for any γ > 0,

‖Mn‖2

λmax〈M〉n
= o

(
(log Tr〈M〉n)1+γ

)
a.s.
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Since Tr〈M〉n ≤ m2wn and the quadratic version of Mn is a semi-definite positive
matrix we have λmax〈M〉n ≤ m2wn so that

‖Mn‖2 = o
(
wn(log wn)

1+γ
)

a.s.

which implies
‖Mn‖2 = o

(
log n(log log n)1+γ

)
a.s.

Moreover, by definition of Mn and using σn equivalent we get

‖Un −E[Un]‖2 = o
(√

n log n(log log n)1+γ
)

a.s.

which completes the proof for the almost sure convergence. The convergence in
any Lp for p ≥ 1 holds by the same arguments as in the proof of Theorem 6.5.

�

Proof of Theorem 6.11. We shall once again make use of Theorem A.5. For any

u ∈ R2 let Mn(u) = 〈u, Mn〉 and denote fn =
σ2

n
wn

. We have from (6.4) that fn is

equivalent to (n log n)−1 and converges to 0. When σ = 1/2 we have b + c = m.
Moreover, we obtain from equations (6.9), (6.17) and Toeplitz lemma that

lim
n→∞

1
wn
〈M〉n = lim

n→∞

m2

wn

(
1 −1
−1 1

)
n−1

∑
k=0

σ2
k+1τ−1

k Xk
(
1− τ−1

k Xk
)

= bc

(
1 −1
−1 1

)
a.s.

which implies that

lim
n→∞

1
wn
〈M〉n = K a.s. (6.27)

Therefore, we get from (6.26) that

lim
n→∞

1
log wn

n

∑
k=1

fk

(Mk(u)2

wk

)
= uTKu a.s.

which leads to

lim
n→∞

1
log log n

n

∑
k=1

f 2
k uT(Uk − E[Uk])(Un − E[Uk])

Tu = uTKu a.s.

Consequently, we obtain from (6.11) that

lim
n→∞

1
log log n

n

∑
k=1

1
(k log k)2 (Uk − kv1)(Uk − kv1)

T = K a.s.

We now focus our attention on the law of iterated logarithm. It is not hard to see
that

∞

∑
n=1

σ4
n

w2
n
< ∞.
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Hence, it follows once again from the law of iterated logarithm for real martin-
gales, see Theorem A.4, that for any u ∈ Rd,

lim sup
n→∞

1√
2wn log log wn

Mn(u) = −lim inf
n→∞

1√
2wn log log wn

Mn(u)

=
√

uTKu a.s.

Consequently, we obtain that

lim sup
n→∞

1√
2 log n log log log n

〈u, Un −E[Un]〉

=− lim inf
n→∞

1√
2 log n log log log n

〈u, Un −E[Un]〉

=
√

uTKu a.s.

In particular, for any vector u ∈ R2

lim sup
n→∞

1
2 log n log log log n

uT(Un −E[Un])(Un −E[Un])u = uTKu a.s.

Finally, we deduce once again from Un − E[Un] =

(
1
−1

)
(Xn − E[Xn]) and for

u =

(
1
0

)
that

lim sup
n→∞

1
2 log n log log log n

‖Un −E[Un]‖2 = lim sup
n→∞

2
2 log n log log log n

(Xn −E[Xn])
2

= 2bc a.s.

which together with (6.11) completes the proof of Theorem 6.11.

�

6.4.3 – Generalized urn model – large urns

Proof of Theorem 6.15. First, as Tr〈M〉n ≤ m2wn < ∞, we have that (Mn) con-
verges almost surely to a random vector Mv2, where M is a real-valued random
variable and

lim
n→∞

σn
(
Xn −E[Xn]

)
=

S
b + c

M =
1

1− σ
M a.s.

Hence, it follows from (6.5) that

lim
n→∞

σn(Un −E[Un]) = Mv2 a.s. (6.28)

which implies via (6.4) that

lim
n→∞

σn‖Un −E[Un]‖ = lim
n→∞

λ

nσ
‖Un −E[Un]‖ = ‖Mv2‖ a.s.
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Therefore, we obtain that

lim
n→∞

‖Un −E[Un]‖
n

= 0 a.s. (6.29)

Hence, we deduce (6.22) from (6.11), (6.28) and (6.29). The convergence in any
Lp for p ≥ 1 holds again by the same arguments as before. We now focus our
attention on equation (6.23). We have from (6.11) and (6.28) that

lim
n→∞

σn
(
Un −E[Un]

)
= lim

n→∞
σn
(
Un − nv1

)
−
(bα− cβ

S

)
v2 = Mv2 a.s.

Consequently,

lim
n→∞

Un − nv1

nσ
= Wv2 a.s.

where the random variable W is given by

W =
1
λ

(
M +

bα− cβ

S
)
. (6.30)

Using the fact that
E
[
‖Mn‖2] = E

[
Tr〈M〉n] ≤ m2wn,

we get
sup
n≥1

E
[
‖Mn‖2] < ∞

which means that (Mn) is a martingale bounded in L2, thus converging in L2.
Finally, as E[Mn] = 0 and (Mn) converges in L1 to M, E[M] = 0. Hence, we find
from (6.4.3) that

E[W] =
Γ( τ

S )

Γ( τ
S + σ)

bα− cβ

S
.

We shall now proceed to the computation of E[W2]. It is not hard to see that

E
[
(Xn+1−E[Xn+1])

2] = (1+ 2mτ−1
n )E

[
(Xn−E[Xn])

2]+m2τ−1
n E[Xn]

(
1− τ−1

n E[Xn])

which leads to

E
[
(Xn −E[Xn])

2] = m2 Γ(n + τ
S + 2σ)

Γ(n + τ
S )

n−1

∑
k=0

Γ(k + 1 + τ
S )

Γ(k + 1 + τ
S + 2σ)

τ−1
k E[Xk]

(
1− τ−1

k E[Xk])

=
σ2

(1− σ)2

Γ(n + τ
S + 2σ)

Γ(n + τ
S )

Sn.

It follows from (6.11) that

Sn = bcAn + (b− c)
bα− cβ

S
Γ( τ

S )

Γ( τ
S + σ)

Bn −
(bα− cβ)2

S2

Γ( τ
S )

2

Γ( τ
S + σ)2 Cn

where An, Bn and Cn are as follows, and we obtain from lemma B.1 in [5] that

An =
n

∑
k=1

Γ(k + τ
S )

Γ(k + τ
S + 2σ)

=
1

2σ− 1
( Γ( τ

S + 1)
Γ( τ

S + 2σ)
−

Γ(n + τ
S + 1)

Γ(n + τ
S + 2σ)

)
,
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Bn =
n

∑
k=1

Γ(k− 1 + τ
S + σ)

Γ(k + τ
S + 2σ)

=
1
σ

( Γ( τ
S + σ)

Γ( τ
S + 2σ)

−
Γ(n + τ

S + σ)

Γ(n + τ
S + 2σ)

)
,

Cn =
n

∑
k=1

Γ(k− 1 + τ
S + σ)2

Γ(k + τ
S )Γ(k +

τ
S + 2σ)

=
1
σ2

( Γ(n + τ
S + σ)2

Γ(n + τ
S )Γ(n + τ

S + 2σ)
−

Γ( τ
S + σ)2

Γ( τ
S )Γ(

τ
S + 2σ)

)
.

Consequently, we have

E[M2] =
σ2λ2Γ( τ

S )

Γ( τ
S + 2σ)

( bc
2σ− 1

τ

S
+ (b− c)

bα− cβ

σS
+

(bα− cβ)2

σ2S2

)
− (bα− cβ)2

S2

(6.31)
which via (6.30) and (6.31) achieves the proof of Theorem 6.15.

�

6.5 – Proofs of the asymptotic normality results

6.5.1 – Traditional urn model

Proof of Theorem 6.3. We shall make use of part (b) of Theorem 1 and Corollaries
1 and 2 from [46]. Let

s2
n =

∞

∑
k=n

E[∆M2
k ].

It is not hard to see that

lim
n→∞

s2
n = 0

since
∞

∑
n=1

E[∆M2
n] ≤

S2

4

∞

∑
n=1

1
τ2

n
< +∞.

Moreover, using the convergence of (Mn) in L2 and the moments of a beta distri-
bution with parameters α

S and β
S , we get that

lim
n→∞

( ∞

∑
k=n

1
τ2

k+1

)−1
s2

n =
αβS2

(α + β)(α + β + S)
,

leading to

lim
n→∞

ns2
n = ` where ` =

αβ

(α + β)(α + β + S)
.

Hence

lim
n→∞

1
s2

n

∞

∑
k=n

E
[
∆M2

k+1|Fk
]

= lim
n→∞

1
s2

n

∞

∑
k=n

c2Mk(1−Mk)

τ2
k+1

a.s.

= lim
n→∞

1
`S2

( ∞

∑
k=n

1
τ2

k+1

)−1 ∞

∑
k=n

S2Mk(1−Mk)

τ2
k+1

a.s.

=
M∞(1−M∞)

`
a.s.
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Consequently, the first condition of part (b) of Corollary 1 in [46] is satisfied with
η2 = `−1M∞(1−M∞). Let us now focus on the second condition of Corollary 1
in [46] and let ε > 0. On the one hand, we get that for all ε > 0

1
s2

n

∞

∑
k=n

E
[
∆M2

k+11|∆Mk+1|>εsn

]
≤ 1

ε2s4
n

∞

∑
k=n

E
[
∆M4

k+1
]
≤ 7S4

ε2s4
n

∞

∑
k=n

1
τ4

k
≤ 7

ε2s4
n

∞

∑
k=n

1
k4 .

On the other and, using that s4
n increases at speed n2 and that

lim
n→∞

3n3
∞

∑
k=n

1
k4 = 1,

we can conclude that

lim
n→∞

1
s2

n

∞

∑
k=n

E
[
∆M2

k1|∆Mk|>εsn

]
= 0 a.s.

Hereafter, we easily get that

∞

∑
k=1

1
s4

k
E
[
∆M4

k |Fk−1
]
≤ 7

∞

∑
k=1

1
k2 < +∞. (6.32)

Noting that
n

∑
k=1

1
s2

k

(
|∆Mk|2 −E

[
|∆Mk|2 | Fk−1

])
is a martingale, the equation (6.32) proves that its bracket is convergent, wich
implies that the martingale is also convergent. This gives us

∞

∑
k=1

1
s2

k

(
|∆Mk|2 −E

[
|∆Mk|2 | Fk−1

])
< +∞ a.s.

Hence, the second condition of Corollary 1 in [46] is satisfied. Therefore we obtain
that

M∞ −Mn√
〈M〉∞ − 〈M〉n

L−→
n→∞

N
(
0, 1
)
. (6.33)

Moreover, since

lim
n→∞

√
Mn(1−Mn)

n(〈M〉∞ − 〈M〉n)
= 1 a.s.

we finally obtain from Slutsky’s Lemma that

√
n

M∞ −Mn√
Mn(1−Mn)

L−→
n→∞

N
(
0, 1
)
. (6.34)

which achieves the proof of Theorem 6.3.

�
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6.5.2 – Generalized urn model – small urns

Proof of Theorem 6.8. We shall make use of the central limit theorem for mul-
tivariate martingales, see Theorem A.6. First of all, we already saw from (6.26)
that

lim
n→∞

1
wn
〈M〉n = (1− 2σ)Γ a.s.

It only remains to show that Lindeberg’s condition is satisfied, that is for all ε > 0,

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

] P−→
n→∞

0.

We clearly have

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

]
≤ 1

εw2
n

n−1

∑
k=0

E
[
‖∆Mk+1‖4] ≤ m2

εw2
n

n−1

∑
k=0

σ4
k a.s.

However, it is not hard to see that

lim
n→∞

1
w2

n

n−1

∑
k=0

σ4
k = 0

which ensures Lindeberg’s condition is satisfied. Consequently, we can conclude
that

Mn√
wn

L−→
n→∞

N
(
0, (1− 2σ)Γ

)
.

As Mn = σn
(
Un−E[Un]

)
and
√

nσn is asymptotically equivalent to
√
(1− 2σ)wn,

together with (6.11), we obtain that

Un − nv1√
n

L−→
n→∞

N
(
0, Γ
)
.

�

6.5.3 – Generalized urn model – critically small urns

Proof of Theorem 6.13. We shall also make use of the central limit thoerem for
multivariate martingales. We already saw from (6.27) that

lim
n→∞

1
wn
〈M〉n = bc

(
1 −1
−1 1

)
.

Once again, it only remains to show that Lindeberg’s condition is satisfied, that
is for all ε > 0,

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

] P−→
n→∞

0.

As in the proof of Theorem (6.8), we have

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

]
≤ 1

εw2
n

n−1

∑
k=0

E
[
‖∆Mk+1‖4] ≤ m2

2εw2
n

n−1

∑
k=0

σ4
k . a.s.
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It is not hard to see that once again

lim
n→∞

1
w2

n

n−1

∑
k=0

σ4
k = 0.

Hence, Lindeberg’s condition is satisfied and we find that

Mn√
wn

L−→
n→∞

N
(
0, Γ
)
.

As Mn = σn
(
Un − E[Un]

)
and σn

√
n log n is asymptotically equivalent to

√
wn,

together with (6.11), we can conclude that

Un − nv1√
n

L−→
n→∞

N
(
0, Γ
)
.

�
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7
Conclusion and

perspectives

In this thesis, we studied the elephant random walk (ERW) and processes related
to it. Most of the processes we studied in this work are non-Markovian. The
martingale theory turned out to be an excellent solution to overcome this and to
solve the problems studied in this thesis.

At first, we generalized the elephant random walk to any dimension. To do so,
we used the counting processes of the steps in each direction of the dimension
and auxillary martingales deduced from those processes. We showed probabilis-
tic results such as laws of large numbers and asymptotic normality, as well as
laws of iterated logarithm and quadratic strong laws in the three regimes of be-
havior, depending on the dimension. Afterwards, we focused our attention on
the center of mass of the random walk. We explained why it was not possible to
find a martingale from this process only. To overcome this issue, we proposed
a suitable approach that consists in finding two martingales such that studying
them simultaneously made possible to obtain results analogous to those of the
ERW. Then, we used this method again to study the elephant random walk with
linearly reinforced memory or smooth amnesia. Next, we gave an explicit estima-
tor of the memory of the ERW, using a quasi-likelihood estimate. Finally, because
of the link between the ERW and Pólya-type urns, our last work constisted in
giving a martingale approach to study the two-color case.

Here are some research perspectives related to the works presented above.

Who (or what) is L ?

The question of the distribution of L is one of the trickiest question regarding
the ERW. It seems hard to obtain explicitly the law of L based on the methods
previously introduced. For example, the ERW is related to Pólya urns with ran-
dom replacement but the distributions of the limiting random variables for large
urns have only been explicited in the case of two-color urns with deterministic
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replacement.
It might be possible to show the absolute continuity of its distribution using the
connection with random recursive trees and Bernoulli percolation [55, 21], and
the more general framework introduced in [12, 17].
Another approach could come from the last work of Bercu [6] on the ERW with
stops. The calculation of the Pochhammer moments together with a nice identity
that links the Pochhammer and the classical moments ensure that the random
variable couting the numbers of non-zero steps, properly normalized, converges
almost surely to a Mittag-Leffler distribution. We can only conjecture here that
the distribution of L is closely related to a mixture of Mittag-Leffler distributions.

ERW with general steps distribution

There are various ways to modify the behavior of the ERW. A first question is
about the effects of step-reinforced random walks with independent but not iden-
tically distributed steps, as a generalization of [12]. The interesting parts here are
the processes that could appear when looking at the convergence in D(0, ∞) and
the use of martingale theory.
Another variation deals with the distribution of the memory. This distribution is
usually uniform [9, 17, 21], but it can be modified in an appropriate way, see [2]
and Chapters 3 and 4. It would be interesting to study how other changes in the
distribution of the memory affect the behavior of the ERW, and more generally of
step-reinforced RW. Again, being able to establish the universality of the limiting
process, as it was done by Bertoin [18] for the noise reinforced Brownian motion
(nBM), would be a nice achievement.

Local limit theorems for Pólya urns processes

The question of the recurrence/transience property of a random walk is impor-
tant. The ERW is recurrent in the diffusive and critical regimes, and transient in
the superdiffusive regime. More precisely, it was recently proved by Bertoin [17]
that the ERW is positive recurrent in the diffusive regime (only when p < 1/4).
However, no results are available in the multi-dimensional setting. A first idea
would be to prove local limit theorems in the case of generalized Pólya urns with
deterministic replacement. This result would make it possible to conclude on the
the recurrent cases for a fixed number of colors m ≥ 3. If that is done, it would be
interesting to try to generalize this to random replacement (possibly with some
stronger hypothesis) in order to conclude on the (multi-dimensional) ERW.

Estimation for Póya urns processes

In 2014, Le Goff and Soulier [59] explained how to estimate one particular pa-
rameter in the special case of two-color urn model when only one ball is added
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at each instant. They considered more general law for the replacement, possi-
bly nonlinear, and based their estimation on multiple realisations of the process.
Surprisingly, no other statistical study have been led on the estimation of param-
eters for generalized two-color Pólya urn models. Hence, a good question is to
determine explicit estimators of the parameters in the balanced case with deter-
ministic replacement, which reduces to two parameters. Then, it may be possible
to adapt the method to the random replacement case which could offer a new
way to estimate the memory parameter of the ERW.

Estimation for variations of the ERW

Very few results are devoted to statistical inference for elephant random walks.
In [10] we addressed this problem using the well-known approach of the quasi-
maximum likelihood estimator. This method could also be adapted in the case of
ERW with general steps distribution, providing the law of the steps have a second
order moment. It should also be possible to propose a statistical estimation of the
parameters in the case of ERW with stops [6, 39], or with memory changes [57, 58]
as well as the minimal random walk [64]. The difficulty here is that there are at
least two parameters to estimate simultaneously.
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A
Martingale Theory

In this appendix, we give results regarding martingale theory that are extensively
used in the presented work. Most of the following results were obtained thanks
to the impressive work of Hall and Heyde on the subject [42, 46, 45]. We refer the
reader to the book of Duflo [31] for a very complete survey of martingales theory.
This book will be given as a reference for many of the following Theorems.

A.1 – ”Classical” results

The following results can be found in [31], see Theorems 1.3.15, 1.3.24 and 4.3.15.

Theorem A.1. (Law of Large Numbers for Martingales) Let (Mn) be a real square in-
tegrable martingale adapted to F with quadratic variations 〈M〉n, and set 〈M〉∞ =

lim〈M〉n.
1. Suppose that 〈M〉∞ < ∞, then Mn

a.s.−→
n→∞

M∞ where M∞ is a finite random vari-
able.

2. Suppose that 〈M〉∞ = ∞, then

Mn

〈M〉n
a.s.−→

n→∞
0

and more precisely, for all γ > 0, we have

Mn

〈M〉n
= o

((
log〈M〉n

)1+γ
)

a.s. (A.1)

Theorem A.2. (Law of Large Numbers for regressive series) Let (εn) be a square-integrable
sequence of d-dimensional random variables adapted to F such that

E[εn+1 | Fn] = 0, sup
n

E[‖εn+1‖2 | Fn] ≤ C

for C a finite random variable. Suppose that (Φn) is another sequence of d-dimensional
random variables adapted toF . Then, set sn = ∑n

k=0 ‖Φk‖2 and let Mn = ∑n
k=1〈Φk−1, εk〉

be a martingale adapted to F .
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1. Suppose that s∞ < ∞, then Mn
a.s.−→

n→∞
M∞ where M∞ is a finite random variable.

2. Suppose that s∞ = ∞, then
Mn

sn−1

a.s.−→
n→∞

0 (A.2)

and more precisely, for all γ > 0, we have

M2
n = O

(
(log sn−1)

1+γsn−1
)

a.s. (A.3)

Moreover, if C is a constant and if for some a > 2, supn E[‖εn+1‖a | Fn] < ∞,
we also have

M2
n = O

(
(log sn−1)sn−1

)
a.s. (A.4)

Theorem A.3. (Law of Large Numbers for vector Martingales) Suppose that (Mn) is a
square-integrable vector martingale adapted to F with quadratic variations 〈M〉n.

1. Suppose that Tr(〈M〉∞) < ∞, then Mn
a.s.−→

n→∞
M∞ where M∞ is a finite random

variable.
2. Suppose that Tr(〈M〉∞) = ∞, then

Mn

λmax〈M〉n
a.s.−→

n→∞
0 (A.5)

and more precisely,

‖Mn‖2

λmax〈M〉n
= o

((
log Tr〈M〉n

)1+γ)
a.s (A.6)

We give the law of iterated logarithm for real martingales which is due to Stout
[71, 72], see also Corollary 6.4.25 in [31].

Theorem A.4. (Law of iterated logarithm) Let Mn = ∑ Φk−1εk be a real martingale
defined as in Theorem A.2, with the same notations. Assume that E[ε2

n+1 | Fn] ≤ σ2

and that for some 1 < a ≤ 2, supn E[|εn+1|2a | Fn] < ∞. Let (Tn) be a sequence
adapted to F such that |Φn| ≤ Tn, and set τn = ∑n

k=0 T2
k . Then, if τ∞ = ∞ and

∑ T2a
k /τa

k < ∞, we have

lim sup
n→∞

( 1
2τn log log τn

)1/2
Mn = − lim inf

n→∞

( 1
2τn log log τn

)1/2
Mn = σ a.s.

(A.7)

The following result is an adaptation of the one in [4], see Theorem 3.

Theorem A.5. (Quadratic strong law) Let Mn = ∑ Φk−1εk be a real martingale defined
as in Theorem A.2, with the same notations. Moreover, assume that limn E[ε2

n+1 | Fn] =

σ2 and that for some a > 2, supn E[|εn+1|a | Fn] < ∞. Let the explosion coefficient
associated with (Φn) be defined by fn = Φn/sn and assume that fn

a.s.−→
n→∞

0. Then,

lim
n→∞

1
log sn

n

∑
k=1

fk

( M2
k

sk−1

)
= σ2 a.s. (A.8)
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A – Martingale Theory

The following result is the usual central limit theorem for vector martingales, it
can be found for example in [31], see Corollary 2.1.10.

Theorem A.6. (Central Limit Theorem for vector Martingales) Let (Mn) be a square in-
tegrable vector martingale adapted to F with quadratic variations 〈M〉n. Let ∆Mn =

Mn −Mn−1 and suppose that for (sn) a real deterministic sequence, such that sn is in-
creasing to +∞, the following assumptions hold :

1.
1
sn
〈M〉n

P−→
n→∞

Γ;

2. Lindeberg’s condition is satisfied, that is, for all ε > 0

1
sn

n

∑
k=1

E
[
‖∆Mn‖21{‖∆Mn‖≥ε

√
sn}|Fk−1

]
P−→

n→∞
0.

Then, we have
1
sn

Mn
a.s.−→

n→∞
0 and

1√
sn

Mn
L−→

n→∞
N
(
0, Γ
)
. (A.9)

A.2 – Non-standard results on martingales

The proofs of our results rely on two non-standard central limit theorem and
quadratic strong law for multi-dimensional martingales. A simplified version of
Theorem 1 of Touati [73] is as follows.

Theorem A.7. (Central limit for matrix normalisation) Let (Mn) be a locally square-
integrable martingale of Rδ adapted to a filtration (Fn), with predictable quadratic vari-
ation 〈M〉n. Let (Vn) be a sequence of non-random square matrices of order δ such that
‖Vn‖ decreases to 0 as n goes to infinity. Assume that there exists a symmetric and
positive semi-definite matrix V such that

(H.1) Vn〈M〉nVT
n

P−→
n→∞

V.

Moreover, assume that Lindeberg’s condition is satisfied, that is for all ε > 0,

(H.2)
n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε}

∣∣Fk−1
] P−→

n→∞
0

where ∆Mn =Mn −Mn−1. Then, we have the asymptotic normality

VnMn
L−→

n→∞
N
(
0, V

)
. (A.10)

The quadratic strong law requires more restrictive assumptions. The following
result is a simplified version of Theorem 2.1 of Chaabane and Maaouia [22] where
the normalization matrices (Vn) are diagonal.

Theorem A.8. (Quadratic strong law for matrix normalisation) Let (Mn) be a locally
square-integrable martingale ofR∆ adapted to a filtration (Fn), with predictable quadratic
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variation 〈M〉n. Let (Vn) be a sequence of non-random positive definite diagonal matri-
ces of order ∆ such that its diagonal terms decrease to zero at polynomial rates. Assume
that (H.1) and (H.2) hold almost surely. Moreover, suppose that there exists β ∈]1, 2]
such that

(H.3)
∞

∑
n=1

1(
log(det V−1

n )2
)β

E
[
‖Vn∆Mn‖2β

∣∣Fn−1
]
< ∞ a.s.

Then, we have the quadratic strong law

lim
n→∞

1
log(det V−1

n )2

n

∑
k=1

( (det Vk)
2 − (det Vk+1)

2

(det Vk)2

)
VkMkMT

k VT
k = V a.s. (A.11)

The proofs of our functional results rely on the non-standard functional central
limit theorem, which is a simplified version of Theorem 1 part 2) of Touati [73].

Theorem A.9. (Functional convergence for matrix normalisation) Let (Mn) be a locally
square-integrable martingale ofRδ adapted to a filtration (Fn), with predictable quadratic
variation 〈M〉n. Let (Vn) be a sequence of non-random square matrices of order δ such
that ‖Vn‖ decreases to 0 as n goes to infinity. Moreover let τ : R+ → R+ be a non-
decreasing function going to infinity at infinity. Assume that there exists a symmetric
and positive semi-definite matrix Vt that is deterministic and such that for all t ≥ 0

(H’.1) Vn〈M〉τ(nt)V
T
n

P−→
n→∞

Vt.

Moreover, assume that Lindeberg’s condition is satisfied, that is for all t ≥ 0 and ε > 0,

(H’.2)
τ(nt)

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε}

∣∣Fk−1
] P−→

n→∞
0

where ∆Mn =Mn −Mn−1. Finally, assume that

(H.4) Vt =
q

∑
j=1

tαj Kj

where αj > 0 and Kj is a symmetric matrix, for some q ∈ N∗. Then, we have the dis-
tributional convergence in the Skorokhod space D([0, ∞[) of right-continuous functions
with left-hand limits, (

VnMτ(nt), t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(A.12)

whereW =
(
Wt, t ≥ 0

)
is a continuous Rd-valued centered Gaussian process starting

at 0 with covariance, for 0 ≤ s ≤ t,

E[WsWT
t ] = Vs. (A.13)
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[34] FLAJOLET, P., GABARRÓ, J., AND PEKARI, H. Analytic urns. Ann. Probab.
33, 3 (05 2005), 1200–1233.

[35] FREEDMAN, D. A. Bernard friedman’s urn. The Annals of Mathematical Statis-
tics 36, 3 (1965), 956–970.
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