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CHAPTER

1
GENERAL INTRODUCTION

P article flows underlie many phenomena, at multiple length scales, such as pedestrian and vehicular traffic,
granular and macromolecular transport, and gaseous motion. It is often desirable to predict and control
how they depend on the characteristics of their confining space. This thesis will study different models of

particulate flow: those that exchange matter and energy with an external environment, and those that don’t. The
exchange with an external environment may be manifested by particle arrival and exit, or by the presence stochas-
ticity. Properties of the system, such as temperature, constituent particle size, softness, the confining geometry
or its capacity, will be modified to study the various conditions for which the flow may be irreversibly stopped,
continuously varied, or made intermittent. Intermittency can be initially understood as an irregular change of state
with time, the presence and consequences of which, are described in the next section.

1.1 Motivation

Pedestrian traffic is a part of everyday life. It can be modelled as confined particulate flow [1–4], where each
particle is acted on by forces from other particles, and the confining boundary. These account for a mixture of
individualistic and ‘herding’ behaviours often attributed to social contagion. The interparticle forces may be a
mixture of repulsive ‘psychological’ and ‘overlap’ (space exclusion) forces. Frictional forces that depend on the
relative velocity of collision and overlap may also impede tangential motion. In escape panic, the presence of
constrictions may lead to a buildup of pressure between people, with life or death consequences [5]. Experi-
ments simulating pedestrian evacuation drills have provided evidence of intermittent flow [6] due to clogging and
bursting phenomena. The characteristic exponential size distribution of the bursts imply a constant probability
of arrest. These systems also display paradoxical ‘slower is faster’ effects [6], after an initial transient time, and
for a period before the end [7]. A simplified phenomenological model [8], suggests that the effect arises from
competition between linear and non-linear forces. Finally, empirical results on pedestrian flows in both normal
and panic situations shows that the geometric boundaries enclosing the flow not only influence the capacity of
the space under consideration, but also influence the time-gap distribution of exiting pedestrians [9]. These ideas
are also applicable to minimising vehicular traffic congestion, by suppressing fluctuations. The characteristics of
the passages through which traffic flows may be modified through the use of traffic-controlling measures, such as
intelligent speed limits, on-ramp controls or driver-assistance systems. Industrial estimates of the potential market
of these applications exceed US $1 billion a year [10].

At a smaller scale, granular matter is one of the most manipulated types of material [11]. For example, the
pharmaceutical industry relies heavily on the processing of powders and pills. In agriculture and the food pro-
cessing industry, sugar, salt and seeds are three obvious examples of granular materials which are transported

1



2 CHAPTER 1. GENERAL INTRODUCTION

and manipulated in bulk. The reliance of so many industries upon the transportation and storage of granular
matter accentuates the importance of understanding how it behaves under manipulation. Tumblers are, perhaps
the most common granular processing devices, used for mixing [12]. These are hollow rotating vessels that are
partially filled with granular material, producing a circulating flow. Tumblers exhibit many behaviours, including
avalanche, slumping, rolling, cascading and centrifuging [13]. Snapshots at every half (or quarter) rotation of
tumbler flow show chaotic motion, as applied to half filled circular, elliptical and square tumblers [14]. Early
studies of linear discharge of granular matter from silos showed that significant changes in the flow over a well
chosen range of opening diameter [15]. Later it was realised that the clogging phenomena result from the forma-
tion of arches spanning the orifice [16–18]. Ref [19] observed that intermittent flow regimes precede clogging
events in work studying the flow of colloidal suspensions through small orifices. Particle jamming has been long
appreciated as an underlying mechanism for unpredictable behaviours in the fields of mechanical and chemical
engineering. There are estimations that 40% [20, 21] of the capacity of many industrial plants is wasted because of
problems related to the transport of these materials. Even a modest improvement in the understanding of granular
matter flows has the potential to yield significant economic benefits, and more importantly, better coffee machines.
Driven granular matter, where the constituents are rendered motile by, for example, gravity or a global vibration of
the container, can exhibit both solid-like and liquid-like phases. The description of the latter has been the subject
of much debate [11] because of marked deviations from established fluid flow principles, resulting from bridging
and jamming phenomena caused by forces between particles neighbouring each other and the enclosing walls [22].

Colloidal systems display similar jamming, or blocking, phenomena. Examples include: filtration processes [23],
the transit of macromolecules through artificial or biological channels [24] [25] and many other instances in the
wider field of nanofluidics [26] [27]. Biological microswimmers produce dipolar fluid flows by the combined
action of their flagella and the cell body on the fluid. These are described as either ‘pusher’ or ‘puller’ stresslets
in the far field domain, which corresponds to the flagella being located behind or in front of the cell body respec-
tively [28]. Such groups of swimming micro-organisms undergo a complex interplay with the surrounding fluid,
which in turn can reorient and advect them. These may be related to geometrical induced turbulence for mixing
processes as observed in micro-fluidic channels [29].

Our aim is to understand the effects of geometrical confinement on flows, and how it fundamentally changes
dynamical properties by the limitation of the configuration space accessible to the flow’s components. Ref [30]
has also shown that as the channel width shrinks toward the diameter of the particles, the magnitude of any
hydrodynamic effect caused by the presence of a medium becomes comparable to the entropic effect. The chaotic
dynamics of many, finitely sized, elastic, microscopic particles, has, historically formed the basis of explaining
fluid motion [31]. This description, in the low density limit, led in 1872, to the famous non-linear Boltzmann
equation [32]. In 1905 the Lorentz gas was introduced to describe the evolution of a dilute electron gas in a metal
[33], where the heavier atoms were assumed to be fixed. Like Boltzmann, Lorentz assumed that the particles
could be modelled by elastic spheres. The Lorentz gas consists of a point particle freely moving except for
reflections from an infinite collection of scatterers, and remains one of the iconic models of chaotic diffusion, for
both random and periodic scatterer configurations. Apart from its unbounded domain, the Lorentz gas presents
dynamics identical to 2D mathematical billiards [34], which provide an understanding of the fundamental role
the confining geometry plays in causing non-linear intermittent phenomena. Billiards provide a deep insight into
the foundations of statistical physics [34] such as the limits of ergodicity [35, 36], and may also help to explain
phenomena observed in Tokamak physics [37–39]. Furthermore, the correspondence principle [40] demands that
classical phase structures must have an equivalent in the semi-classical (short wavelength) regime [41].

1.2 Dynamical systems

The various models studied in this thesis all fall under the umbrella of ‘dynamical systems’. In the following,
we introduce some basic ideas to help appreciate the differences between the models studied. Dynamical systems
evolve with time, in some dynamical space, that is fully determined by a given interaction and the initial condi-
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tions. One way to describe the motion of the system is by a smoothly evolving function that is the solution of the
following equation of motion,

∂txd(t) = f (xd(t)). (1.1)

f : Rd → Rd assigns a rule of evolution, f (x(t)), to each d-dimensional vector xd(t), whose variables may be
chosen to describe some physical system at time t ∈ R. The vector components, [x1(t),x2(t),x3(t)...xd(t)], form
the system’s state space, whose time evolution is a trajectory or orbit. The number of variables chosen to represent
the physical system, d, denotes the number of degrees of freedom, associated with the dynamical system, and so
the dimension of its state space. When the state space is continuous we refer to it as the phase space. Projecting
the trajectory onto a discrete partition of the phase space at discrete instants of time, replaces t with n ∈ Z. We
therefore go from the motion of differential equations to difference equations by assigning a mapping T : Rd→Rd

such that:

xd
n+1 = T◦xd

n. (1.2)

In addition to it being possible to express the time evolution laws in continuously or iteratively, the state space on
which the laws acts may be also discrete or continuous. An ideal coin toss might be modelled by the evolution of a
state occupying one element by a state space consisting of only d = 2 states, heads and tails, [πH(t),πT (t)], where
πi(t) = 0.5 ∀i ∈ [H,T ] is the probability that the system is in either state at time t. In the context of probability,
this set of all possible outcomes is referred to as the sample space S, and a single realisation of an experiment is
an event. Once the dynamical evolution law is known, it must be applied many times to determine the entirety of
the future accessible states.

Dynamical systems are strictly deterministic if, having specified an initial state x0, the trajectory may be uniquely
determined n steps in the future as xn = Tn ◦ x0 n ∈ Z. They are stochastic if there is a probability distribution
of outcomes (e.g. for every initial state, the ideal coin toss has two outcomes with equal probability). Initially
we will consider simple deterministic versus stochastic systems. We then examine a deterministic billiard that
displays chaotic behaviour. Dynamical chaos may be characterised in terms of either individual trajectories or
trajectory ensembles. Almost all chaotic trajectories are complicated in the sense that they are unpredictable from
observations of any preceding motion [42].

A final, yet important, distinction to make when classifying dynamical systems depends on the preservation of the
state/phase space volume. They may be categorised as:

• Dissipative systems The volume of the state/phase space contracts with increasing time. These are normally
characterised by the presence of attracting sets within the phase space.

• Conservative systems The state/phase space constrains the motion, and its volume does not vary in time. As a
result, these systems do not possess, what are normally understood as, ‘attractors’. Non-integrable Hamil-
tonian systems contain coexisting periodic, quasiperiodic and chaotic orbits.

Dissipative systems contain an approximation [42] of a complicated interaction with some heat bath, that in-
evitably leads to random noise, from the fluctuation-dissipation theorem. Conservative systems are therefore
necessarily closed, i.e. decoupled from the environment, for both matter and energy exchange, consistent with the
absence of any random parameters or noise in the evolution laws.

1.3 Thesis overview

This thesis presents and analyses three distinct model dynamical systems, with the guiding thread of identifying
various conditions of intermittent flow.
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1. 1D models of particulate flow through single and multiple coupled and uncoupled channel bundles, with a
limited carrying capacity. Different rules of blocking are used, and the transient and steady state dynamics
are analytically and numerically studied.

2. Finite sized, soft particles driven through a 2D channel with a single or double constriction, are studied
using overdamped Brownian dynamics simulation. Special conditions for intermittency, related to the for-
mation of metastable structures, are observed. The geometrical origin of the effects are further explored and
characterised in the near-ballistic regime.

3. The Iris Billiard, consisting of a freely moving point particle confined by a unit circle enclosing a central
scattering ellipse in 2D is investigated numerically. When the ellipse degenerates to a circle, the system is
integrable, otherwise it displays mixed dynamics. Recurrence analysis of the chaotic regime is applied to
identify critical geometries that signal whether a transition to global chaos is possible. The transition can
be associated with a symbolic intermittency via a simple partition of the billiard’s state space.
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Stochastic models of blocking phenomena
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CHAPTER

2
INTRODUCTION

Particle transport in confined channel geometries is a non-equilibrium phenomenon that may arise for various rea-
sons: pressure differences at each end of the channel, contact with a reservoir full of chemically distinct particles,
external driving forces acting on the system’s components, or the particulate components being active. The most
interesting and relevant observable characteristic of this sort of channel based system is its flux, i.e. its particulate
throughput. The flux’s behaviour depends on both the inter-particle interaction and the properties of the confining
space.

The first part of this thesis considers flows of particles through 1D channels that are characterised by a limited
carrying capacity, applicable over a range of length scales [43]. Carrying capacities present an impediment to
transport. Once a channel’s capacity is reached, it becomes blocked, i.e. the flow is stopped, no more particles
may enter or exit. The blockage is reversible if the flow resumes after a finite amount of time and, given a con-
stant entering flux, a steady state with alternating open and blocked states will eventually be reached [44]. In
the absence of blockage, increasing the intensity of incoming particles leads to a proportionate increase in the
throughput, or rate of exiting particles. When the system is subject to blockage, increasing the input intensity
increases the probability of blockage, which therefore disrupts the throughput. Thus, it is expected that, under
certain conditions, the throughput will be maximised for some finite intensity of entering particles.

Flux constraints often occur when it is necessary to overcome some ‘limiting final step’ before fully passing
through the system in question. For example, when one must pay for items in a shop by passing by a checkout
before leaving. If too many people arrive at once, a queue forms. Queuing theory has long been used to analyse
service operations performed on units arriving according to a given distribution [45, 46]. Traditional applications
of this branch of mathematics include industrial engineering, telecommunications and traffic flow. More recently,
queuing theory has been used in biophysics to model enzymatic servers [47] and will be applied here in Chapter 4.

Bundles of parallel particle conveying channels, each of limited capacity and therefore subject to blockage, will
also be considered. If the blockage is irreversible, the failure of one channel results in an increased load on the
remaining open channels. This can trigger a cascade, ultimately leading to a complete breakdown of the system
[48–50]. An analogous phenomenon of multiple failures can be observed in the exertion of an external force on
textile fibres. The fibre bundle model (FBM) [51–54] consists of a number of parallel threads subjected to an
applied load. If the load on a single thread exceeds its threshold, the thread breaks and the global load is then
redistributed over the remaining intact threads [55], with the attendant possibility of the material tearing. Self-
healing materials[56] are examples of multilayer network structures which have local finite storage capacities.
When an overload occurs in a node of the network, this leads to a local failure and the network is able to rebuild a
new local node. To describe these phenomena, Manfredi et al. [57] proposed a stochastic model showing that the

7
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Figure 2.1: A fragile stone forest bridge

optimal performance is reached via complex trade-offs between physical parameters. This feature can be viewed
as analogous to the ‘slower-is-faster’ phenomenon[58], also present in pedestrian traffic flows[59, 60]. Further
examples include blackouts in power distribution networks that are generally preceded by a cascade of failures
resulting from local overloads[61]. Earthquakes[62, 63], vehicular traffic jams [64], network traffic jams[65–68],
material fractures[69, 70] and internet attacks (DoS) [71] all exhibit similar features.

2.1 Scenarios of controlled particle flux

2.1.1 Unstable forest bridge at crossroads

A couple explore a path in a mountain forest. They encounter a wide, rapid creek, with a single stone arch as a
bridge to the other side. Sensing that the arch would collapse under too much weight, they carefully cross one
after the other. The time before re-embarking together on the other side of the bridge is longer than it would have
been for a lone walker. In the ‘irreversible’ scenario, the couple, in a rush, attempt to walk the bridge together, and
fall off. This passage has a carrying capacity, N = 2, that must not be reached to ensure the normal functioning of
the passage.

Much later, two lone walkers, following separate paths meet at the same bridge, within a small enough time
interval, ∆t, to impede each other’s passage. Not being in a rush, after crossing they choose to take time to discuss
about the weather and share a drink before parting ways, all of which results in a longer shared time of passage
than would have been had ∆t been sufficiently large to allow each to pass without impediment.
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(a) (b)

Figure 2.2: (a) A view of the arches formed by dry grains, all with the same characteristics, of a sieve at the end
of a filtration test [72]. (b) A model of filtration. In the first (top) scenario, the particles arrive with enough space
between them to pass the filter. Whereas in the second scenario (bottom) they arrive close enough to each other
to create a blockage at the filter.

2.1.2 Granular filtration

One of the main blockage phenomena found in a range of physical situations, whether in everyday life, engineer-
ing or the environment, is filtration. A flow of a heterogeneous mixture in suspension passes through a sieve,
a porous structure that allows certain particles to be filtered out. Filtration is widely used to purify fluids or to
separate particle species in microfluidics, nanofluidics or chromatography. Filtration is a technique that can be
used in the fields of food processing, pharmaceuticals. It can also be found directly in nature, for example: when
fine sediments accumulate in gravel bed streams, in wastewater treatment using sand [73] or in aquaculture, where
the water is filtered by oysters or other bivalves [74]. Filtration can be done via two different processes, screening
or absorption both of which block objects whose size is smaller than the pore[75–77]. Blocking phenomena were
experimentally explored by Roussel et al. with a flow of monodisperse glass beads suspended in a viscoelastic gel
[72] through a sieve. This was studied by analysing the fraction of balls retained as a function of the ratio between
their diameter and mesh size as well as the density of balls in the gel. This fraction was found to be non-zero even
for values of particle diameter smaller than the pore width, as shown in Fig 2.2a. A simple interpretation of this
phenomenon comes by recognising that, if two particles arrive with a separation less than a critical value yc, then
they block the mesh. Assuming that all balls fall at the same speed, we can then define a critical time, τ , which
must separate their arrival, below which they will block.

This type of blockage is also found in granular flows of a two-dimensional hopper flow [78] or in granular material
inside narrow vertical tubes [79], for example an hourglass [80]. The latter experiment consists of flowing granular
material along narrow tubes that extract and reinsert the material at a constant ratio.

2.1.3 Ion microchannels

Many biological processes involve blocking phenomena, which determine whether bacteria, or ions, pass through
channels that have specific shapes, asymmetries or irregularities. Channels across cell membranes allow the
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(a) (b)

Figure 2.3: (a) 3D image of nuclear pores embedded in a nuclear envelope [81], that transport matter between
cytoplasm and the nucleus. Entering particles are depicted in green, and exiting particles in red. (b) Channel
creation in a bilipid layer by gramicidine.

transport of ions, but are sometimes blocked by drugs or toxins [82, 83]. Macromolecules bidirectionally flow
through the pores of the cell nuclei [81]; entering and exiting molecules being unable to pass through a particular
pore simultaneously. Fig. 2.3a illustrates these nuclear pores. At times, the limited capacity of the pores restricts
the flow of one type of molecule. In [81] it is shown that at low density the flow alternates very quickly, and
molecules enter and exit in an alternating manner without producing blockage; at higher density the times of
change of direction increase, causing some particles to be blocked.
Gramicidin is a mixture of antibiotics, the activity of which consists in the creation of channels in the bilipid
membrane, thereby increasing the permeability of the target bacteria [84], as shown in Fig. 2.3b. These channels
selectively transport ions and water in single pathways.

2.1.4 Internet attacks (DoS)

Some internet attacks are carried out by saturating a server, rendering it unavailable. These are known as denial of
service (DoS) attacks [71], and come in different forms. The physical network may be overcrowded by requests,
saturating the network flow: which can be understood as a high density case. Alternatively, the server saturates
well before the network capacities. The type of attack that fits the models studied here best is the flooding of
a computer server, which induces an overload preventing proper function or even saturating the server [85–87].
In these situations, blocking is caused by a bombardment of data that arrives at a server too quickly. It is the
characteristics of the server that most influence the system failure (the density of requests before an attack can be
low).

2.2 Previous models studied

To provide context of the results presented in Chapters 3 and 4, previously developed models of stochastic 1D
particle flow, and their characteristics are examined.
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1 2     ….    L

α β

Figure 2.4: A TASEP model of L sites. The arrows represent transition probabilities. A particle hops to the next
cell, at rate one to the right, iff it’s empty. Site 1, if already empty, receives incoming particles at a rate α . Site L
expels particles at a rate β , if already occupied.

2.2.1 TASEP

A first approach to modelling high density flux is by considering the interplay between stochastic forces and steric
exclusion effects [88]. The totally asymmetric simple exclusion process (TASEP) [89, 90] provides a theoretical
approach to out-of-equilibrium blocking phenomena. The simplest model is a finite set of regularly spaced sites,
where particles can randomly jump from left to right [91], under the condition that a particle cannot transition
to an already occupied site. It is necessary to choose an evolution principle, i.e. the order in which the particles
advance. There are several types in the literature: in the input order, with a random order at each time step [92,
93], or a random order kept throughout the simulation [89, 94], etc. Once the particle has been chosen, it passes to
an adjacent site on the right if it is empty. Particles enter the system with a probability α ∈ [0,1] and exit, through
site L, with a probability β ∈ [0,1].

It is possible to draw a phase diagram according to the input and output flow [95, 96]. There are three phases: low
density (LD), high density (HD) and maximum current (MC). The low-density phase is well understood, since the
input rate, α , is very low compared to the output rate β . The high-density phase corresponds to β > α . Between
these two phases there is a first order phase transition, i.e. there is a discontinuity in density. The third and final
maximum current phase is in the region where both α and β are high. In this phase, the limiting factor is the chain
size. For transport models this phase transition is particularly important for many of the applications seen earlier
in the general introduction.

This model and its derivatives also provide a quantitative description of car and pedestrian traffic [97, 98], which
may be rendered more complex through the addition of, for example, traffic lights [99, 100]. Some models
consider bidirectional TASEP flows [101–104]. There are also microscopic applications of this model to study the
movement of ribosomes in RNA [88], and protein synthesis has also been modelled via TASEP [105]. Collective
movements similar to those observed in car traffic are visible at almost all levels in biological systems [106].

2.2.2 Non-Markovian models of blocking

In 2013 Gabrielli et al [107] introduced and solved a stochastic model describing this type of clogging in a canal.
The original idea was to study what happens when two cars pass each other on a small road that allows only
the passage of one car at a time. A single valued transit time was used, which accounts for the physical time of
passage through a channel, and would well-represent closed loop conveyor systems with homogeneous servers
[108] such as found in industrial engineering. Previous work [107, 109] studied various properties of interest,
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Figure 2.5: A 1D, N = 2 channel. Left: When empty. Middle: Occupied by one transiting particle. Right:
Overloaded by two simultaneously present particles.

such as the survival probability at time t, mean blockage time, exiting particle flux, and the total number of exiting
particles can be calculated exactly. The original model considered one channel with capacity N = 2, i.e., two
particles must be simultaneously present in the channel to block the system. Fig 2.5 illustrates the single channel
which, when empty, carries one particle, and is blocked by two particles. While, every 1D channel model in this
thesis will model an independent particle arrival, the nature of the transit time will be varied. Particles enter at
random times according to a Poisson process of intensity λ and exit, if no blockage occurs, after a fixed transit
time τ . If the blockage is irreversible, the mean total number of exiting particles can be continually increased by
reducing the intensity to values approaching zero [109]. This, of course, requires an ever-increasing amount of
time. Subsequently, several generalisations were studied, including a higher blocking threshold (N > 2) [110],
an inhomogeneous entering flux [111], and multiple channels [112, 113]. The work presented here considers the
problem of maximising the final quantity of the total number particles that exit the system in a given finite time.
Sections 3.3 and 3.4 study the case where the blockage is irreversible and reversible, respectively. In the latter
case, the system is reactivated after a constant waiting time, τb, which gives rise to a transient regime leading to a
steady state [114].

2.3 Part I overview

The blocking phenomena under consideration may be caused by either ‘extrinsic’ or ‘intrinsic’ mechanisms. The
former refers to the situation where the number of particles present somehow exceeds the channel carrying ca-
pacity, and will be the focus of the first part of this thesis. A model based on this phenomenology successfully
accounted for experimental data [115, 116]. These results provide an effective tool for optimising particle trans-
port in channels and for other applications, such as self-healing materials. The latter mechanism arises from
collective effects such as encountered in filtration processes. In this case, while isolated particles can pass through
a mesh hole, clogging occurs when two or more particles arrive in near concurrence, causing one to impede the
other. This effect, due to the delicate and often non-linear interplay between the spatio-temporal closeness of the
particles and the confining geometry, could be seen as setting the capacity of a channel to greater than one.
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Chapter 3 revisits the already published stochastic model of blocking phenomena with single-valued transit times,
described in Section 2.2.2. Conditions for the optimisation of the steady state and time-dependent flux are studied
for both single and multi-channel systems. When the blockages are of finite duration, the system reaches a steady
state with an exiting flux that is reduced compared to the incoming. For many of the applications in the previous
section, the throughput of serviced jobs is a crucial quantity.

Chapter 4 modifies the original 1D channel model, such that both the transit time and deblocking time (where
applicable) follow a Poisson distribution, rendering the system ‘memoryless’. This feature allows the time evolu-
tion of the model to be described by a set of differential equations, for which exact solutions can, in principle, be
obtained.
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CHAPTER

3
NON-MARKOVIAN MODELS OF BLOCKING

This chapter revisits the already published model of single channel blocking phenomena, discussed in Section
2.2.2. The following introduces key concepts that will be repeatedly used to describe the Poisson process driven
particle arrival.

3.1 Key concepts

3.1.1 Random variables

A ‘random variable’, X(t), is either a number or vector whose value is the result of a random phenomenon. A
stochastic dynamical process is a family of random variables indexed by a set T , representing different events in
time such that X(t)t∈T ∈R. The process is defined on a probability space (Ω,S,P), where each ω ∈Ω governs the
realisation of the process. We now define a ‘counting process’ {X(t), t ≥ 0} ∈ N that keeps count of the number
of random events that have occurred until time t. The variable representing the counting process is also a random
variable that is monotonically increasing in t. X(t)−X(s) represents the number of events in the time interval
(s, t],s < t.

3.1.2 Poisson process

Poisson processes, {X(t), t ≥ 0}, are counting processes that describe many real processes that occur in large
populations. Poisson processes possess the additional properties that the number of events counting in disjoint
time intervals are independent, and that the mean number of event occurrences within the time interval, λ , is
stationary over all time. The probability of i events occurring in the time interval (0, t] is:

p(i, t) = P{X(t) = i}= (λ t)i

i!
e−λ t , i ∈ N (3.1)

The only changes in the process are unit jumps upwards, whose inter-event time intervals are independant, expo-
nentially distributed variables with mean 1/λ and variance 1/λ 2, λ > 0.

the following conditional probability transition probability is given as:

P{Xn = k|Xn−1 = j}= λ k− j

(k− j)!
e−λ , (3.2)

where k > j.

15
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3.2 Presentation of model

A stream of particles enter the channel, of capacity N, according to a homogeneous Poisson process with the
following density function:

ψ(t) = λeλ t , (3.3)

of intensity, λ . The probability that i particles enter the channel in the time interval (0, t) is given by Eq.(3.1.2).
Any particle within the channel that is not blocked transits the system over a single time, τ . If N particles are
simultaneously present, the channel blocks ( Fig.2.5 illustrates for the case N = 2), and ejects the blocking particles
after a time τb > τ . The following section will first consider the case where the channel blocks irreversibly, i.e.
τb→ ∞.

3.3 Single channel with irreversible blockage

The average number of particles that exit in the time interval (0, ts) can be computed by integrating the exiting
particle flux,

m(ts) =
∫ ts

1
j(t)dt (3.4)

The lower limit of the integral is t = τ = 1, as no particle can exit before this time (assuming that the channel is
empty at t = 0.) For ts→ ∞:

m(∞) = j̃(u = 0) =
1

eλ −1
, (3.5)

where j̃(u) =
∫

∞

0 e−ut j(t)dt is the Laplace transform of the time dependent flux. The number of exiting particles
tends to infinity as λ → 0 and to zero as λ → ∞. The dynamics of the sysmtem is studied for finite ts. In this case
there is clearly a finite entering intensity that optimises the total number of exiting particles. If the intensity is too
small, blocking is unlikely as only a few particles enter, whereas if λ is too large more particles are injected but
blocking is highly probable. The explicit equation for the time dependent flux [109] is given by:

j(t) = e−λ t
btc

∑
k=1

λ k(t− k)k−1

(k−1)!
. (3.6)

Substituting this in Eq.(3.4) gives:

m(ts) =
btsc

∑
k=1

exp(−λk)
[

1− Γ(k,λ (ts− k))
(k−1)!

]
=
btsc

∑
k=1

exp(−λk)
γ(k,λ (ts− k))

(k−1)!
, (3.7)

where Γ(k,x) and γ(k,x) are the upper and lower incomplete gamma functions respectively. The results shown in
Fig. 3.1 demonstrate that the expected number of exiting particles displays a maximum, at finite intensity for a
finite stopping time, ts. The value of λ that maximizes the output increases as ts decreases and that the maximum
sharpens as ts increases. The explicit expression for the intensity that maximizes the output is a piece-wise
function. For 1≤ ts ≤ 2,

m(ts) = e−λ − e−λ ts . (3.8)

It is easy to show that a maximum occurs for

λ =
ln(ts)
ts−1

, (3.9)

which returns λ = ln(2) when ts = 2. For 2≤ ts ≤ 3:

m(ts) = e−λ − e−λ ts + e−2λ − e−λ ts(1+λ (ts−2)). (3.10)
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Figure 3.1: Average number of exiting particles as a function of the intensity for different stopping times, ts =
32,16,8,4,2,1.5 top to bottom. The dashed line shows the long-time limit, Eq.(3.5).

m(t) being a piece-wise continuous function, it may be readily confirmed that for ts = 2, the value is the same
as that given by Eq.(3.8). There is no analytic expression of the value of λ that maximizes this expression for
t > 2, but numerical solutions are, however, straightforward. Moreover, for large ts, which corresponds to small
intensity, λ , an asymptotic solution may be obtained. By using the Laplace’s method[109], j(t) if found to decay
as :

j(t)' λe−λ 2t . (3.11)

Integrating Eq.(3.11), one obtains that m(ts) is given by:

m(ts)'
1
λ
(1− e−λ 2ts). (3.12)

Differentiating Eq.(3.12) with respect of λ , one obtains a maximum of m(ts) when :

λ ' C√
ts
. (3.13)

Where C is a constant. The limitation of the flux route is that it does not allow us to calculate higher moments
of the exiting particle distribution, but only the mean value. To go further, we therefore introduce the function
f (m, t) giving the probability that m particles have exited at time t, regardless of the state of the channel (open
or closed) at time t (the joint probabilities that m particles have exited at time t and the channel is still open are
discussed in Appendix A). The equations describing the evolution of these functions are as follows:

d f (0, t)
dt

=−λe−λ qs(0, t−1) (3.14)

d f (1, t)
dt

= λe−λ qs(0, t−1)−λe−2λ qs(1, t−2) (3.15)

d f (n, t)
dt

= λe−2λ qs(n−1, t−2)−λe−2λ qs(n, t−2), n > 1, (3.16)

where qs(n, t) is the joint probability that n particles have entered the channel and that the channel is still open
[109]. The loss term for the evolution of f (0, t) is the result of a particle exiting the channel at time t that had
previously entered the channel at t−1. This term is also the gain term for the evolution of f (1, t). For n > 1 the
gain term consists of the entry of a particle at t−1 that exits at t. For this to be possible the channel must have been
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open at t−2 with n−1 particles entering in the interval (0, t−2), which occurs with probability qs(n−1, t−2),
and no particle must enter in the intervals (t−2, t−1) and (t−1, t) giving rise to the factor of e−2λ . The loss term
is similar except that n particles must have entered in the interval (0, t−2) with an additional particle entering at
t−1 and exiting at t. The gain term for n = 1 is slightly different as the particle entering the channel at t−1 is the
first one, so the channel is certainly empty at this time. The telescopic structure of equations (3.14), (3.15) and
(3.16) is consistent with the conservation of probability, ∑

∞
n=0 d f (n, t)/dt = 0. We obtain the complete solution

by introducing the generating function:

G f (x, t) =
∞

∑
n=0

zn f (n, t). (3.17)

Taking the time derivative and substituting the above expressions for f (n, t) we obtain

∂G f (z, t)
∂ t

= λ (z−1)(e−λ qs(0, t−1)+ e−2λ (G(z, t−2)−qs(0, t−2))), (3.18)

where G(z, t) = ∑
∞
n=0 znqs(n, t). Taking the Laplace transform and using the initial condition G f (z,0) = 1 we

finally obtain

G̃ f (z,u) =
u+λ −λe−(u+λ )

u(u+λ −λ ze−(u+λ ))
. (3.19)

The individual functions can be recovered from

f̃ (n,u) =
1
n!

∂ nG̃ f (z,u)
∂ zn

∣∣∣∣
z=0

. (3.20)

The first two are
f (0, t) = 1+(e−λ t − e−λ )θ(t−1) (3.21)

and
f (1, t) = ((e−λ t(1+λ (t−2))− e−2λ )θ(t−2)− (e−λ t − e−λ )θ(t−1), (3.22)

where θ(t) is the Heaviside function. These results can also be obtained by direct solution of Eqs. (3.14) and
(3.15), respectively. The first two moments are

〈m̃(u)〉=
∂ G̃ f (u,z)

∂ z

∣∣∣∣
z=1

=
λe−(u+λ )

u(u+λ −λe−(u+λ ))
, (3.23)

and

〈m̃2(u)〉 =
∂ 2G̃ f (u,z)

∂ z2

∣∣∣∣
z=1

+
∂ G̃ f (u,z)

∂ z

∣∣∣∣
z=1

= λe−(u+λ )(λ+(u+λ )e−(u+λ ))

u(λ−(u+λ )e−(u+λ ))2 . (3.24)

from which the first and second moments at infinite time may be obtained as

〈m〉= lim
u→0

u〈m̃(u)〉= 1
eλ −1

(3.25)

and

〈m2〉= lim
u→0

u〈m̃2(u)〉= 1+ eλ

(1− eλ )2 , (3.26)

giving for the variance

〈m2〉−〈m〉2 = eλ

(eλ −1)2 . (3.27)
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At small intensity, this behaves as λ−2, while for large intensity it approaches zero as e−λ . In order to obtain the
variance of m at time t, we have to invert 〈m2(u)〉 and 〈m(u)〉. By using Eq.(3.23), one has

〈m(u)〉 = e−(u+λ )

1−e−(u+λ )

[
1
u −

1
u+λ−λe−(u+λ )

]
(3.28)

= ∑n≥1 e−n(u+λ )
[

1
u −∑k≥0

(λe−(u+λ ))k

(u+λ )k+1

]
, (3.29)

which gives

〈m(t)〉= ∑
n≥1

(
e−λn

θ(t−n)− e−λ t
∑
k=0

λ k(t− k−n)kθ(t− k−n)
k!

)
. (3.30)

This expression corresponds to that obtained from the survival probability [44]. Similarly, by using Eq.(A.18),
one obtains

〈m2(u)〉 = e−(u+λ )(1+e−(u+λ ))

(1−e−(u+λ ))2

[
1
u −

1
u+λ−λe−(u+λ )

]
−2 λe−2(u+λ )

1−e−(u+λ )
1

(u+λ−λe−(u+λ ))2 . (3.31)

By using the identity 1
(1−a)2 = ∑n=0(n+1)an, one has

〈m2(u)〉 = ∑n=0(n+1)(1+ e−(u+λ ))e−(n+1)(u+λ )
[

1
u −∑k=0

(λe−(u+λ ))k

(u+λ )k+1

]
−2∑n=0 λe−(n+2)(u+λ )

∑k=0(k+1) (λe−(u+λ ))k

(u+λ )k+1 . (3.32)

This can be inverted to give the second moment as a function of time:

〈m2(t)〉= ∑
n≥0

(1+n)e−(2+n)λ
(

θ(t−n−2)+ eλ
θ(t−n−1)

)
−∑

n≥0
∑
k≥0

e−tλ (1+n)λ k

k!

(
(t−n− k−2)k

θ(t−n− k−2)+(t−n− k−1)k
θ(t−n− k−1)

)
−∑

n≥0
∑
k≥0

2e−kλ−(2+n)λ−(t−n−k−2)λ λ k+1

(k+1)!
(1+ k)(t−n− k−2)1+k

θ(t−n− k−2). (3.33)

Numerical results for the second moment and the variance as a function of λ are shown in Figs. 3.2 a & b,
respectively. Like the first moment (Fig. 3.1), the second moment displays a maximum at a finite value of λ .
The family of curves at different stopping times approaches the long-time limit, Eq.(3.26) as time increases. The
variance also displays a maximum as a function of intensity, see Fig. 3.2b, but the location of the maximum for
a given stopping time is displaced to a higher value of the intensity. The time dependent variance for different
values of λ is shown in Fig. 3.3a. Finally, Fig. 3.3b shows the value of λ that maximises the mean and variance as
a function of the stopping time. We observe that the intensity that maximises the mean number of exiting particles
is a strictly decreasing function of the stopping time. The intensity that maximises the variance of the number of
exiting particles, however, has a non-trivial behaviour. It is the same that maximises the intensity for 1 ≤ ts ≤ 2,
but it then increases to a maximum value for ts ≈ 3 and then decreases. For ts > 2, the variance is maximised at a
higher value of λ than that which maximises the mean number.

3.4 Reversible single channel model

Reversible blockages, in single file channel flow [114], are now considered. During a blockage, the N particles
are retained in the channel, and no more may enter. After the single valued deblocking time, τb the channel
instantaneously releases all N particles, thereby resetting to the empty state, allowing new particles to enter. The
dynamics is therefore described by a recurring cycle of alternating open and closed states, that ultimately leads to
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Figure 3.2: (a) Second moment of the number of exiting particles as a function of the intensity for different
stopping times, ts = 20,10,5,3,2 top to bottom. The dashed line shows the long time limit, Eq.(3.26). (b) Variance
of the number of exiting particles as a function of the intensity for different stopping times, ts = 10,6,4,2,1.5 top
to bottom. The dashed line shows the long time limit, Eq.(3.27).
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Figure 3.3: (a)Variance of the number of exiting particles as a function of time for different intensities, λ =
0.1,0.5,1,2. The dashed lines show the long time limit, Eq.(b) Intensity that maximizes the variance (upper
curve) and mean of number of exiting particles as a function of the stopping time.
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a stationary state. In an average steady state recurrence cycle, the channel is open for an average time, 〈t〉, and
blocked for a fixed time τb. The stationary probability that the system is open is therefore:

po(λ ) =
〈t〉
〈t〉+ τb

, (3.34)

where the denominator represents the total mean recurrence time. The stationary output flux is then given by the
ratio of the mean number of particles released during one cycle to the cycle period,

j(λ ) =
〈m〉+N
〈t〉+ τb

. (3.35)

〈m〉 is the mean number of output particles between two successive blockages. By equating the number of entering
particles in one period to those exiting we obtain the following ‘number balance’

〈m〉+N = λ 〈t〉. (3.36)

Finally, from the above three equations we deduce that:

j(λ ) = λ po(λ ). (3.37)

The latter relation does not depend on the existence of a cycle, as it is the result of number conservation. The
output flux is equal to the entering one minus the part that is rejected when the channel is in the closed state. By
taking the limit λτ � 1, the mean blockage time and the mean number of exiting particles between blockages
behave asymptotically as 〈t〉 � τb and 〈m〉 � N, respectively. Therefore, for a given τb, the probability that
the channel is open is close to unity and the flux j(λ ) ' λ . Blockages rarely occur at low λ . In this limit, the
mean blockage time can be estimated by noting that a blockage occurs when a batch of particles enters in a finite
duration τ , leading to 〈t〉= τ

(N−1)!
(λτ)N [110]. Expanding po(λ ) to first order gives

po(λ )'
1

1+ (λτ)Nτb
(N−1!)τ

. (3.38)

When λτ � 1, blockages are very frequent, and both the mean number of exiting particles between blockages,
〈m〉, and mean time between blockages, 〈t〉, approach zero. The resulting flux consists entirely of successive
releases of the blocked particles, j(λ ) = N/τb and po(λ )' 0. In this limit, 〈t〉 corresponds to the time necessary
for N particles to enter an empty channel, N/λ . The open probability and the flux in this high intensity limit are
therefore:

po(λ )'
N

N +λτb
, (3.39)

and

j(λ )' Nλ

N +λτb
. (3.40)

3.4.1 Solvable models: N ≤ 3

For small capacities, N ∈ [1,2,3], the time evolution of the process can be expressed by analytically tractable
differential or integro-differential equations [114]. For larger values of N, the time evolution cannot be solved by
any known means.

We first consider N = 1, which corresponds to a stochastic switch. The transit time, τ , is an irrelevant variable
because no particle can exit the channel without having already blocked it. For N > 1, it is possible for particles
to pass through the channel without causing a blockage. Let po(t) denote the probability that the channel is open
at time t. Its time evolution obeys:

d po(t)
dt

=−λ po(t)+λ po(t− τb). (3.41)
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The loss term corresponds to the entrance of a particle at time t, while the channel is open, causing the channel to
block. The gain term corresponds to the exit of a particle that became blocked at time t− τb, with the subsequent
reopening of the channel at time t. The mean output flux at time t is given by:

j(t) = λ po(t− τb), (3.42)

which corresponds to the release of a blocked particle that entered at t−τb. Applying the time Laplace transform,
f̃ (u) =

∫
∞

0 dte−ut f (t), to Eqs.(3.41) and (3.42) gives,

p̃o(u) =
1

λ +u−λe−uτb
, (3.43)

and,

j̃(u) =
λe−uτb

λ +u−λe−uτb
. (3.44)

Expanding the denominator of Eq.(3.43) in terms of λe−uτb/(λ + u), allows one to easily invert the Laplace
transform, term by term, giving,

po(t) =
∞

∑
n=0

[λ (t−nτb)]
n

n!
e−λ (t−nτb)θ(t−nτb), (3.45)

where θ(t) is the Heaviside function. The stationary open probability, po(λ ), and flux, j(λ ), can be obtained
from Eqs.(3.43) and (3.44) by using f̃ (u)' f (λ )

u ,

po(λ ) =
1

1+λτb
, (3.46)

and

j(λ ) =
λ

1+λτb
. (3.47)

These results can be easily inferred from Eqs. (3.34) and (3.35) by setting 〈m〉 = 0 and 〈t〉 = 1/λ . The exiting
particle flux is controlled by the incoming flux, λ and the time of blockage, τb.

We now consider the N = 2 model, i.e. blockage occurs when two particles are simultaneously in the channel, for
which exact results have already been obtained [114]. Here we propose an alternative, simpler derivation using
the state probabilities of the channel. Let p0(t), p1(t) denote the probability that an open channel contains zero or
one particle respectively, and p2(t) be the probability that it contains two particles and is therefore blocked. The
time evolution of the process is given by:

d p0

dt
=−λ p0(t)+λe−λτ p0(t− τ)+λ p1(t− τb), (3.48)

d p1

dt
=−λe−λτ p0(t− τ)−λ p1(t)+λ p0(t), (3.49)

d p2

dt
=−λ p1(t− τb)+λ p1(t), (3.50)

with the following initial conditions:

p0(0) = 1, p1(0) = p2(0) = 0. (3.51)

In Eq.(3.48), the loss term corresponds to the entrance of a particle in the empty channel at time t. The two gain
terms λe−λτ p0(t− τ) and λ p1(t− τb) correspond to a particle exiting the channel at time t and a channel release
(with a blockage occurring at time t− τb), respectively. In Eq.(3.49), the two loss terms describe either a particle
exiting the occupied channel at time t or a particle entering the occupied channel. The gain term corresponds to a
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Figure 3.4: Exiting flux, j(λ ), versus λ for N = 2 and τb = 3,4. · · · ,12 from top to bottom. The blue curves
show cases where the flux increases monotonically with λ . The green curves show cases where the flux displays
a maximum at a finite value of λ . The dotted lines correspond to the asymptotic values of the flux, Eq.(3.40 ).

particle entering a free channel. In Eq.(3.50), the loss term corresponds to a channel release and the gain term to
a particle entering a channel with one particle already inside. Summing the three equations verifies that the total
probability is conserved: p0(t)+ p1(t)+ p2(t) = 1. Taking the Laplace transform of Eqs.(3.48-3.50) gives:[

u+λ (1− e−τ(u+λ ))
]

p̃0(u)−λe−uτb p̃1(u) = 1, (3.52)

−λ (1− e−τ(u+λ ))p̃0(u)+(λ +u)p̃1(u) = 0, (3.53)

−λ (1− e−uτb)p̃1(u)+up̃2(u) = 0. (3.54)

These simultaneous equations may be solved to give

p̃0(u) =
u+λ

∆
, (3.55)

p̃1(u) =
λ

∆
(1− e−τ(u+λ )), (3.56)

p̃2(u) =
λ 2

u∆
(1− e−uτb)(1− e−τ(u+λ )), (3.57)

where
∆ = (u+λ )2−λ (λ +u)e−τ(u+λ )−λ

2e−uτb(1− e−τ(u+λ )). (3.58)

The mean exiting flux j(t) is the sum of two contributions: the exit of a particle from an open channel and the
release of two particles from a closed channel. j(t) is therefore given by

j(t) = λe−λτ p0(t− τ)+2λ p1(t− τb). (3.59)
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By using Eqs.(3.55),(3.56), the Laplace transform of the output flux j̃(u) is

j̃(u) =
λ

∆
[(u+λ )e−(u+λ )τ +2λe−uτb(1− e−τ(u+λ ))]. (3.60)

As expected, we recover the results of Ref.[114] and the time-dependent mean flux can be obtained by a Laplace
inversion of Eq.(3.60). The key quantities we focus on are the stationary probability po(λ ) that the system is
open and the mean flux j(λ ). po(λ ) is the sum of the two stationary probabilities p0 and p1, each obtained by
evaluating limu→0 up̃i(u) with i = 0,1:

po(λ ) =
2− e−λτ

2+λτb− (1+λτb)e−λτ
, (3.61)

and

j(λ ) = λ
2− e−λτ

2+λτb− (1+λτb)e−λτ
. (3.62)

Figure 3.4 displays j(λ ) versus λτ for different integer values of τb from 3 to 12. The dashed lines correspond
to the asymptotic values of the exiting flux limλ−>∞ j(λ ) = 2

τb
. One first observes that the stationary flux reaches

the asymptotic values more rapidly as τb increases. Moreover, j(λ ) displays a maximum when τb is larger than
7. It is possible to obtain the exact value of τb for which the flux j(λ ) displays a maximum at a finite value of
λ [117] by solving ∂ j(λ )

∂λ
= 0. A real solution for λ exists if τb > 6.2. Note that for N = 1 the flux is always a

monotonically increasing function of λ .

Figure 3.5: Exiting flux, j(λ ) versus λ for N = 3 and τb = 2,3, · · · ,9 from top to bottom. The blue curves indicate
cases where the flux increases monotonically with λ . The green curves indicate the cases where the fluxes display
a maximum at a finite value of λ . The black crosses show simulation results for τb = 3,4,6, which perfectly match
with the exact results. The dotted lines indicate the asymptotic values of the flux, Eq.(3.40).
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For N = 3, the complete kinetic description of the model is cumbersome so we restrict our attention to the station-
ary quantities for which analytical expressions have been obtained [110]. In particular, the mean time to blockage
starting from an empty channel is given by

λ 〈t〉= 2eν sinh(gν)+geλτ

−g−2sinh(gν)e−ν + eν (sinh(gν)+gcosh(gν))
+1 (3.63)

for λτ > 2ln(2) and

λ 〈t〉= 2eν sin(gν)+geλτ

−g−2sin(gν)e−ν + eν (sin(gν)+gcos(gν))
+1 (3.64)

for λτ < 2ln(2), where g =
√
|1−4e−λτ | and ν = λτ

2 . The two stationary quantities po(λ ) and j(λ ) are obtained
by inserting this result in Eqs.(3.34) and(3.35). Fig. 3.5 displays j(λ ) as a function of λτ for different values of
τb. There are several differences compared with the N = 2 model. First, a maximum exiting flux occurs if the
blockage time τb > 3.6, which is significantly smaller for N = 2 (τb > 6.2). Second, the asymptotic values are
reached at a lower value of λ , and finally, the intensity of λ at which j(λ ) is maximum is also shifted towards
larger intensity.

3.4.2 Steady state simulation results: N > 3

Figure 3.6: Exiting particle flux, j(λ ), versus λ for N = 4,6,10,20 and τb = 4. Dotted curves correspond to the
asymptotic values at low and high intensity.
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Figure 3.8: Open probability po versus λτ for N = 4,6,10 and τb = 4. Dotted curves correspond to the asymptotic
values at low and high intensity.

Figure 3.7: (left) Critical values of τb as a function of N above which the steady state flux of a single channel
displays a maximum at finite λ . (right) The corresponding values of λτ .

As a result of strong time correlations between the transiting particles, it was not possible to obtain analytic solu-
tions for N > 3. We therefore used numerical simulations to investigate these cases. To benchmark our code, we
compared the simulation results for the stationary flux for N = 3 with the exact expressions for three different val-
ues of τb. In Fig. 3.5 we observe perfect agreement between the analytical expressions and the simulation results.
Figure 3.6 displays the stationary exiting flux as a function of the intensity for different values of N and τb = 4. At
low intensity, the flux increases linearly, and at high intensity the asymptotic behaviour of the simulation results is
well-described by Eq.(3.40). The behaviour in the intermediate region is due to complex dynamics that alternates
between blockages and sequences of uninterrupted transport. For N > 3, the stationary flux, j(λ ), may display a
maximum at finite λτ , whose amplitude increases with N. The stationary flux also exhibits a minimum which is
always smaller than the asymptotic value, N/τb.
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Figure 3.9: Numerically obtained transient average flux through system for different N (shown in legend). Results
were obtained using the Gillespie algorithm.

We performed a systematic study of the behaviour of the exiting flux as a function of λ ,τb and N. The flux always
displays a maximum when τb exceeds a threshold value. Figure 3.7 shows that the critical value of τb decreases
rapidly with N, showing that the feature observed in Fig. 3.4 is very general and occurs for smaller values of τb
when N increases. For τb below the critical value, the stationary flux is a monotonically increasing function of
λτ . The right panel of Fig. 3.7 shows the values of λτ corresponding to the critical values of τb. The behaviour
of the open probability po(λ ), shown in Fig. 3.8, is consistent with Eq.(3.37).
In particular, a plateau whose length increases in proportion to N (roughly as N/2 ), is observed. This corresponds
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to the situation where blockage events are rare and the output flux is close to λ .

3.4.3 Single channel time-dependent flux

Figure 3.9 show simulation outputs for the time-dependant average flux, with a transit time τ = 1, and a deblocking
time of τb = 2,5 respectively from a single channel for different values of N and λ = 1,5. As the channel capacity
increases, the time dependent flux presents fewer oscillations, and tends towards a higher steady state value that
depends on the intensity of the entering stream. Furthermore, increasing the value of τb, for a given value of
intensity increases the spacing between flux oscillations.

3.5 Bundle model

We now consider a bundle of Nc identical channels. Each channel has the same properties as the single channel
model, i.e. blockage occurs when N particles are present in a channel at the same time. In the following we
assume that the total intensity, Λ = λNc, is constant and is equally distributed over the open channels. Thus, after
k blockages the intensity on each of these open Nc− k channels is

λk = λ
Nc

Nc− k
. (3.65)

Since a blocked channel releases all particles after finite time τb, the system’s mean output flux evolves towards
a non-zero stationary value. The bundle has two states: open, in which at least one of the constituent channels is
open and closed, if all the constituent channels are blocked. If a particle arrives while the bundle is in the latter
state, it is rejected.

Equations (3.34,3.35,3.36) cannot be applied to the channel bundle in the steady state, as it does not cycle between
closed and empty states for finite intensity, Λ. In the limit of very large intensities, however, we have

Po(Λ)∼
1
Λ

(3.66)

and

lim
Λ→∞
〈M〉= 0 (3.67)

where 〈M〉 is the mean number of exiting particles that are not the due to blockage releases, and

lim
Λ→∞

J(Λ) =
NNc

τb
. (3.68)

In this limit the intensity is so high that all channels block instantaneously and simultaneously and the blocked
particles are released after a time τb. The exiting flux is entirely the result of these releases. The analogue of
Eq.(3.37),

J(Λ) = ΛPo(Λ), (3.69)

is valid for arbitrary intensity since, as for the single channel case, it is result of the conservation of particle
number.
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3.5.1 Exact solution: N = 1

When N > 1 a particle may traverse the channel in a time, τ , without causing a blockage. In comparison, the
N = 1 model is singular as no unimpeded transit is possible: each entering particle causes a blockage that lasts
for a fixed time, τb. The variable, τ , is thus absent in this model. Despite the relative simplicity of the N = 1
model, its dynamics cannot be written as a system of differential equations for the state probabilities P(i, t), where
i denotes the number of blocked channels at time t. However, in the stationary state, by applying detailed balance
(known as the ‘rate up - rate down’ principle in queuing theory), we have:

ΛP(i) = (i+1)
P(i+1)

τb
(3.70)

Solving the difference equation and applying conservation of the total probability leads to

P(k) =
(Λτb)

k

k!∑
Nc
n=0

(Λτb)n

n!

, k ∈ [0,Nc] (3.71)

The stationary exiting flux is given by Eq.(3.69) with

Po = 1−P(Nc) = 1− (Λτb)
Nc

Nc!∑
Nc
n=0

(Λτb)n

n!

(3.72)

The result can be written in the form

J(Λ) = Λ

(
1− (Λτb)

Nc

eΛτbΓ(1+Nc,Λτb)

)
, (3.73)

where Γ(n,x) is the incomplete gamma function. The asymptotic behaviour at small intensity, Λ is

J = Λ

[
1− (Λτb)

Nc

Nc!
+O((Λτb)

Nc+1)

]
, (3.74)

whereas at large intensity the flux behaves as,

J =
Nc

τb

[
1− 1

Λτb
+O

(
1

(Λτb)2

)]
, (3.75)

whose leading term is in accordance with Eq.(3.68). For all values of Nc, J(Λ) is always a monotonically increas-
ing function of Λ. The expression for P(Nc) is Erlang’s first formula [118, 119] for a stochastic queuing process
with Nc servers with exponential entry and service time distributions under the condition that when all servers are
busy an arrival is rejected. Both models are ‘birth-and-death’ processes that have the same stationary solution.
Their transient regimes, however, are significantly different.

3.5.2 Simulation results: N > 1

For the multichannel models, no exact solution can be obtained for N > 1. Therefore we have performed numer-
ical simulations to obtain the stationary exiting flux, J and the stationary probability that at least one channel is
open, Po for bundles composed of different numbers of channels with increasing capacity N and for τb = 4τ . All
quantities were investigated as a function of the mean incoming flux Λ. As discussed in the previous section, the
stationary flux rapidly displays a maximum at a finite value of λτ when N > 1.

Figure 3.10 shows J as a function of Λτ for Nc = 2,10 and for N = 2,3,4,6,10. When Λτ � 1, the rate of
incoming particles is very small and the finite capacity of the channel is rarely reached, meaning that blockage
events are scarce. The stationary exiting flux is therefore equal to the input flux, J 'Λ. This behaviour is observed
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Figure 3.10: J(Λ) versus Λτ for N = 2,3,4,6,10 and τb = 4, for (left) Nc = 2, and (right) Nc = 10. The dashed
lines correspond to the asymptotic values, Eq.(3.68).

for a larger range of Λτ for larger values of N and Nc . Figure 3.11a shows the rescaled flux J/Nc versus the re-
scaled intensity, Λ/Nc for different values of Nc. In the low intensity regime J is equal to Λ and displays a finite
discontinuity at Λc. At high intensities the curve evolves towards an asymptotic and the best fit is given by

Figure 3.12: (a) Four coupled low capacity (LC) channels, each with capacity N = 2, sharing the input particle
flux of intensity, Λ. If one channel is blocked, the flux is evenly redistributed between the remaining open chan-
nels; (b) Four independent LC channels, each of capacity N = 2, where each channel recieves a flux of particles
at intensity, Λ/4. If one channel is blocked, its incoming particles are simply rejected and not redirected to the
remaining open channels. (c) One high capacity (HC) channel. While blocked, incoming particles are simply re-
jected. The first scenario compares systems (b) and (c). For a fair comparison in the case shown, the HC threshold
should equal NHC = Nc ∗N = 8. The second scenario compares systems (a) and (b).
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(a) N = 10. Many Nc. (b) Nc = 20, ManyN.

Figure 3.11: Left: Exiting flux of a channel bundle composed of Nc channels each with N = 10: J/Nc versus
Λτ/Nc for different values of Nc and τb = 4. The dashed curves show the asymptotic behaviour. Right: J/N
versus Λτ/N for different values of N and τb = 4. The dashed curves correspond to the asymptotic behaviours.
The inset shows the value of Λ that maximises the exiting flux as a function of N and the red dashed line shows
the logarithmic fit, of form 2.73log(0.89N)+0.65.

J ' NcN
τb

(
1− 3N

2Λτb

)
. (3.76)

We observe an abrupt change of kinetic behaviour: Below the critical value Λc, almost all particles cross the
bundle without triggering a significant number of blockages, whereas for larger Λ, all channels are closed and the
stationary flux is essentially given by the release of blocked particles.

Fig. 3.11b shows the rescaled flux J/N versus the rescaled intensity, Λ/N for different values of N for a given
Nc = 10. At a low input intensity, the exiting flux J is equal to Λ until it reaches a maximum close to a critical value
that closely follows a logarithmic law, as shown in the inset of Fig. 3.11a. For higher values of input intensity
the rescaled exiting flux, for all values of N, rapidly collapses to a single curve whose best fit is again given by
Eq.(3.76).

3.6 Flux optimization

Here we compare the stationary flux of a bundle of coupled channels with that of a bundle of uncoupled channels
and one ‘high capacity’ (HC) channel. Fig. 3.12 illustrates the configurations compared. The transport efficiency
is measured by the difference in output flux, ∆J. The systems are chosen so that in the limits of low and high
input flux intensity, ∆J = 0. In the low intensity limit, since blocking events are rare, the exiting flux is equal the
input flux Λ, irrespective of the configuration. In the high intensity limit, Eqs.(3.39) and (3.68) demonstrate that
the exiting fluxes of the single high capacity, bundled uncoupled or coupled channels are also be equal. Since
the stationary flux of a bundle of coupled channels displays non-trivial behaviour with increasing Nc and N, we
therefore expect non-trivial behaviour of ∆J.
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Figure 3.13: Total exiting flux from the coupled (lines) and uncoupled (dotted) channel configurations. From
Left to right, Nc = 2,5, τb = 4. The insets show the difference between the two.

3.6.1 Coupled versus uncoupled channels

We first compare a channel bundle composed of Nc channels, each of capacity N. The entering flux, Λ, is equally
distributed over the coupled open channels. In contrast, the Nc independent channels, each of capacity N, each
receive an incoming flux of intensity, Λ/Nc. The difference in the output flux of the two configurations is defined
as:

∆J = JNc
N (Λ)−Nc jN(Λ/Nc). (3.77)

Simulation results comparing the output flux of each configuration for Nc = 2,5, τb = 4, are shown in Fig. 3.13.
The differences are shown in the inset of the figure. At low intensity, for all configurations, the output flux is
approximately equal for each setup, and linearly increases with Λ until a critical value, which itself is a monoton-
ically increasing function of N.
The behaviour for N = 1 can be understood quantitatively using the results of Sec. 3.5.1 and Eq.(3.47). At low
intensity, the flux difference is

∆J =
Λ2τb

Nc
+O(Λ3), (3.78)

and at high density we find

∆J ' Nc(Nc−1)
Λτ2

b
(3.79)

and confirmed that ∆J > 0 for 0 < Λ < ∞. We conclude that the coupled channels are always more efficient than
the uncoupled ones. The difference is maximised for a finite value of Λ. For all N > 1, we note the appearance of
two maxima in the flux difference with an intervening minimum. The increased complexity is due to the presence
of two characteristic times: the transit time τ and the blockage time τb (while the N = 1 system has only the latter).

Fig. 3.14 shows the flux difference between the bundle configurations at Nc = 2, N = 2, as a function of intensity
of entering flux, Λ, for different values of τb. For τb > 2 the behaviour is more complex after the first maximum,
with the appearance of a minimum followed by a second maximum before tending towards zero.
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Figure 3.14: Difference in the output flux between Nc = 2 coupled and uncoupled channels, with N = 2 as a
function of intensity, Λ, for different values of τb.

3.6.2 Single HC channel verses coupled LC channels
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Figure 3.15: Single HC channel, versus coupled LC channels. From top to bottom, Nc = 2,5. All curves display
a single maximum followed by a single minimum, before tending to zero at high intensity.



34 CHAPTER 3. NON-MARKOVIAN MODELS OF BLOCKING

The transport efficiency of a single ‘high capacity’ (HC) channel is now compared with a bundle of several coupled
channels, of a proportionately reduced capacity. Figure 3.15 shows the difference in the output stationary state
flux between a single HC channel and a bundle of Nc = 2,5 coupled LC channels, with different capacities. The
flux difference in this case is

∆J = jNcN(Λ)− JNc
N (Λ). (3.80)

For all N, the flux difference displays a minimum, followed by a maximum, before tending towards zero for in-
creasing intensity. The amplitudes of the maxima are always greater than those of the minima.

The next chapter will present an extension of the 1D model of blockage studied.



CHAPTER

4
MARKOV MODELS OF BLOCKING

This chapter extends the 1D channel model previously introduced in Chapter 3 by now taking the transit and
deblocking times, τ and τb, as exponentially distributed random variables with mean µ and µ∗ respectively. This
generalisation permits a distribution of service and deblocking times, which increases the range of applicability
to real physical scenarios, despite allowing for the possibility of non-physical events manifesting as both transit
and deblockage in zero time. The definition of all the system’s transition rates as stochastic variables renders the
system ‘memoryless’, the properties and consequences of which shall be examined in the next section.

4.1 Markov processes

Markov processes are random processes whose future state is purely determined by the current one. Poisson
processes, defined in Section 3.1.2 are a special type of continuous time Markov processes. The next section
introduces Markov chains, that will form the foundation of the extension of the model presented in Chapter 3.

4.1.1 Markov chains & Markov property

A Markov chain is a Markov process that may be either discrete or continuous in time, t, and occurs within a
countable sample space of size N, S = {π0(t),π1(t), ...πN(t)}. In the discrete case, this process, for n successive
events, may be succinctly denoted as :

X = (X(n))n∈Z = (X(0),X(1),X(2)...), Xn ∈ S ∀n, (4.1)

whose lack of memory, in the order 11 case, is expressed by:

P(Xn+1 = xn+1|Xn = xn, ...X0 = x0) = P(Xn+1 = xn+1|Xn = xn). (4.2)

i.e. given a current state of the system and the time step, no information about the future is obtained by gathering
information of past states.

1The order n case accounts for the past n states

35
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Figure 4.1: Circular N + 1 state Markov chain systems. (a) N = 1, (b) N = 2, which corresponds to the system
shown in Fig 2.5, (c) ∀N ∈ Z+. The transition rates correspond to the FIFO queueing discipline.

4.1.2 Markov dynamics

To fully characterise the dynamics of a Markov chain we require an initial probability distribution, which can be
described as a state vector P = [π0(0),π1(0), ...πN(0)] where πk(0), 0≤ k ≤ N is the probability that the system
is in state k at time t = 0. N denotes the countable number of possible states within S:

P(X0 = x0) = P(x0) ∀x0 ∈ S. (4.3)

and an N×N transition probability matrix, from state xn = i to xn+1 = j expressed by Eq. 4.1.1 as:

pi j = P(Xn+1 = j|Xn = i), i, j ∈ S×S. (4.4)

From these, the total probabilistic dynamics may be recurrently computed.

A Markov process is termed ‘homogeneous’ if its transition probabilities do not change with time. In what follows,
we will study uniquely these processes. The probability distribution at time n+ 1, P(j) relative to the system’s
probability distribution at time n, P(i), is written as:

P( j) = P(Xn+1 = j) = ∑
i∈S

P(Xn = i)P(Xn+1 = j|Xn = i) = ∑
i∈S

P(i)pi j (4.5)

The dynamics of the finite state space Markov chains studied will be represented as oriented graphs. Each node
within the graph represents a state, and for all pairs of states (i, j), an edge going from one to the other represents
a transition probability pi j > 0, and so takes its value. See Fig. 4.1

4.2 Queuing theory

Much of what follows will be presented in the framework of queuing theory, which define a system in terms of
three parameters: clients, i.e. people, objects, particles, that request a service, servers, components of the system



4.2. QUEUING THEORY 37

in question that respond to the request, and service, which is the action required to respond to the request. A client
can use a service if it’s not occupied, and once a service has been carried out, the server then becomes available
for the next client. Every model is defined by three factors: the arrival process, the service mechanism, and the
queuing discipline. Kendall notation a/b/s/c is employed [120] where:

• a: The time distribution of arriving demands of service.

• b: The service time distribution.

• s: The number of servers.

• c: The system size (i.e. the number of objects that may be accommodated while awaiting service).

The fourth parameter, c may be omitted if there is no capacity restriction. If c = s, the model is termed a ‘loss’
system as there is no waiting room. The arrival and service time distribution may be described by:

• M: exponential distribution

• D: deterministic (i.e. constant service time) as studied in Chapter 3.

• G: ‘General distribution’

Further characteristics include the client and service behaviour: If a client arrives to find all servers occupied, it
may either wait, or leave. And finally, the service behaviour, may serve the clients one by one, according to their
order of arrival, randomly, or by priority. The most frequently used is the discipline of ‘first in, first out’ (FIFO) 2,
and will be often considered in the following sections.

4.2.1 M/M/1 model

This is the most well known and widely studied, queuing model. It consists of a single server, with client arrival
following a Poisson process of intensity λ , and an average exponential service time 1/µ . If λ/µ > 1, the rate of
client arrival is greater than their departure, and an indefinitely long queue forms. In this case the system does not
have a stationary distribution. The server follows the ‘first in first out’ (FIFO) discipline. The time evolution of
the system’s state probabilities is described by the following differential equations:

π̇0 =−λπ0(t)+µπ1(t) (4.6)

π̇n =−(λ +µ)πn(t)−µπn+1(t)+λπn−1(t) (4.7)

The stationary probability that k clients are simultaneously in the system is simply given by:

πk = π0

(
λ

µ

)k

, (4.8)

where:

π0 =

(
1 =

∞

∑
k=1

(
λ k

µ

))
= 1− λ

µ
. (4.9)

2In the mundane example of supermarket checkouts, this discipline is clearly not followed due to the distinction between ‘normal and
self checkouts’ or the option to pay by cash or card.
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4.2.2 M/M/N/N model

We consider the system where service demands arrive following the Poisson process of intensity λ , and the ser-
vice time has an exponential distribution with mean 1/µ . There are s = N servers, and no waiting room. The
finite state space is defined by the number of demands of service present within the system. Unlike the previous
model examined, the servers do not follow the FIFO discipline.

Let πk be the probability that, at an arbitrary time while in the stationary state, there are k ∈ [0,N] clients in the
system. The corresponding set of balance equations is then given by:

λπ0 = µπ1, (4.10)

λπk−1 +(k+1)µπk+1 = (λ + kµ)πk, 1≤ k ≤ N−1, (4.11)

λπN−1 = NµπN (4.12)

the above three expressions are equivalent, by the application of both the rate up = rate down principle, and
recursion, to:

πk =
λ

kµ
πk−1 =

λ 2

k(k−1)µ2 = ...=
1
k!

(
λ

µ

)k

π0, 1≤ k ≤ N. (4.13)

applying the normalisation condition ∑
N
k=0 πk = 1, the probability distribution for k service demands to the system

is:

πk =
1
k!

(
λ

µ

)k

π0 =

1
k!

(
λ

µ

)k

∑
k
i=0

1
i!

(
λ

µ

)i , 0≤ k ≤ N. (4.14)

Service demands that arrive while all servers are being used are blocked. Since the probability that there are k
demands of service immediately before an arrival equals the probability that there are k service demands at an
arbitrary time, given by Eq. 4.2.2. Therefore the blocking probability is:

πN =

1
N!(

λ

µ
)N

∑
N
i=0

1
i!(

λ

µ
)i
. (4.15)

This is the Erlang loss formula, first derived in 1917 [121].

4.2.3 Other models

A further generalisation is to consider group arrivals or services [122–124]. The batch service is denoted M/M(a,b)/1,
where a is the size of the arriving group, and b is the maximum capacity of the server. The service starts when
clients enter the system such that b ≥ a ≥ 1. Group arrivals are used to model many physical applications [125,
126], and group service applies to the management of transport systems with limited capacities, such as elevators
[127]. Models with heterogeneous servers, i.e. where each server can have a different service time, have also been
studied [128, 129].
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4.3 Single channel model

We consider a channel that blocks when N particles are simultaneously present, represented by the circular Markov
chain in Fig. 4.1 c. Particles enter the channel according to a Poisson process, defined in Section 3.1.2, with a
constant intensity λ . Particle exit is also modelled as Poisson process with a constant rate µ . The channel remains
open if it contains fewer than N particles. In the open state, any particle that is present exits the channel at a rate µ ,
independent of the time already spent inside. However, when N particles are simultaneously present, a blockage
occurs with the consequence that all incoming particles are rejected until the channel reopens after a time given by
an exponentially distributed blockage time with rate µ∗ < µ . When the channel reopens all the trapped particles
are instantaneously ejected. The models introduced here can be viewed as an extension of the, previously seen,
approaches developed in queuing theory[46, 130], and encompass situations characterised by both temporary or
permanent blockages.

4.3.1 Non-FIFO model

The stochastic dynamics is described by using N+1 state probabilities, π(0, t),π(1, t), · · · ,π(N−1, t) and π(N, t)
which correspond to 0,1, · · · ,N−1 and N particles in the channel, respectively. P(t) = (π(0, t),π(1, t), · · · ,π(N−
1, t),π(N, t)) denotes the state vector. The time evolution of the process is described by:

dP(t)
dt

= P(t) ·QN+1 (4.16)

where QN+1 is the (N +1)× (N +1) transition matrix that gives the dynamical rule of evolution,

QN+1 =


−λ λ 0
µ −(λ +µ) λ

. . . . . . . . .
(N−1)µ −(λ +(N−1)µ) λ

µ∗ 0 −µ∗

 . (4.17)

Except for the first and last columns, every state has two gain terms and two loss terms: The two loss terms
correspond to a channel with i particles (with 0 < i < N), where a particle enters at time t (with a rate λ ) or
where a particle exits (at rate µ). The two gain terms correspond to the entrance of a particle (with a rate λ ) in
a channel with i− 1 particles, and to the exit of a particle (at rate µ) from a channel with i+ 1 particles. As the
discipline employed in this model in non-FIFO, increasing the number of attendant particles, under the block-
ing limit, therefore increases the probability that one will exit. The description is completed by considering the
two boundary situations: for an empty channel, there is one loss term corresponding to a particle entrance and
two gain terms: the first corresponds to a particle exit from an empty channel and the second to the release of
a blocked channel (with N particles). Conversely, for a blocked channel, one has a single loss term correspond-
ing to a release at rate µ∗ and a gain term corresponding to a particle entering a channel containing N−1 particles.

The time evolution of P(t) is supplemented by the conservation of the total probability, ∑
N−1
i=0 π(i, t)+π(N, t) = 1.

Consequently, the sum of each row of the transition matrix is equal to 0, which leads to a zero eigenvalue of the
matrix. The steady-state probabilities of the circular processes are explicitly calculated in Adan and Resing [130].
In the steady state, i.e. Ṗ = 0, the probabilities are given by πN =CNλ N and, for k = 1,2, . . . ,N,

πN−k =CN µ
∗

k

∑
j=1

(
λ

N− j
µ

j−1
j−1

∏
i=1

[N− k+ i]

)
, (4.18)

where CN is a normalization constant so that ∑
N
i=0 πi = 1, given as:

CN =

(
λ

N +µ
∗

N−1

∑
j=0

N!
( j+1)(N− j−1)!

µ
j
λ

N−1− j

)−1

. (4.19)



40 CHAPTER 4. MARKOV MODELS OF BLOCKING

2 4 6 8 10
λ

0.5

1.0

1.5

2.0

2.5

3.0

j

5 10 15 20
λ

2

4

6

8

j

Figure 4.2: (a) Steady state throughput, j, Eq. (4.22), as a function of the intensity, λ , for µ = 1,µ∗ = 0.1 and
N = 2,3, ...,10 bottom to top. The dashed line shows the behaviour in the limit of small intensity, j = λ . The
limiting value at large intensity is given by Nµ∗. (b) Steady state throughput of the M/M/N/N queue as a function
of the intensity, λ , for µ = 1. The limiting value at large intensity is given by Nµ .

Following the analysis presented by Cohen [131] we find the following formula for the mean first passage time
from the empty state 0 to the blocked state with N particles. Appendix A contains the full calculation.

ν0,N =
1
λ

N−1

∑
m=0

m!
m

∑
k=0

1
k!

(
λ

µ

)k−m

. (4.20)

The throughput can be calculated by noting that state k ∈ [0,N] contributes kµπk(t) particles per unit time, which
is the rate of exiting particles kµ multiplied by the probability that the channel is in state k. There is an additional
contribution from the blocked state whose N particles are simultaneously ejected at the rate µ∗, which adds
Nµ∗πN(t). The general expression of the time dependent throughput is the sum of these contributions

jN(λ , t) = kµ

N−1

∑
k=1

πk(t)+Nµ
∗
πN(t). (4.21)

In the stationary state, j can be expressed as

j = λ (1−π(N)), (4.22)

i.e. the incoming flux multiplied by the probability that the channel is open. From πN =CNλ N and Eq. (4.19) we
also find the following explicit expression

jN(λ ) =
λ[

µ∗∑
N−1
j=0

N!
( j+1)(N− j−1)! µ jλ−( j+1)

]−1
+1

. (4.23)

In the large intensity limit, the throughput may be written as:

jN(λ → ∞) = Nµ
∗, (4.24)

which corresponds to the situation where no particle can cross the channel without blockage. The flux is given by
the number of particles trapped in each blockage, N, times the rate of the channel release, µ∗. At low intensity the
throughput is given by

jN(λ ) = λ − λ N+1

(N−1)!µN−1µ∗
+O(λ N+2). (4.25)
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Figure 4.3: Left: N = 2. Steady state throughput, j as a function of intensity, λ for µ = 1,µ∗ =
0.3,0.25,0.2,0.1,0.05 top to bottom. The dashed lines show the limiting value, 2µ∗. Global maxima are evi-
dent for certain values of µ∗ (see text). Right: jmax, as a function of µ∗ (µ = 1). The dashed lines shows the
limiting value, 2µ∗.

In this limit almost all particles cross the channel, which corresponds to the leading term λ . The decrease of the
flux corresponding to the term of order λ N+1 is due to the rare events where the channel is blocked and is given
by λ

µ∗τ , where τ is the mean time of blockage at low intensity[132], τ = (N− 1)! µN−1

λ N . The outgoing flux as a
function of the intensity is shown for several values of N and for µ = 1,µ∗ = 0.1 in Fig. 4.2. One notes the initial
linear regime corresponds to no loss of the incoming flux, which increases in importance with increasing N. This
is followed by a maximum throughput at a finite intensity. We compare our model with the M/M/N/N queue
[130], introduced in Section 4.2.2, i.e. one with exponentially distributed arrival and service times with rates λ

and µ , respectively, N servers and no waiting line [46]. The Markov chain of this model is similar to Fig. 4.1
except that there is no direct transition from state N to state 0. Instead there is a transition from state N to state
N−1 with rate Nµ . An arriving unit is lost to the system if all N servers are busy. The probability of this event is
given by the Erlang loss formula, introuced in Section 4.2.2:

πN =

1
N!(

λ

µ
)N

∑
N
i=0

1
i!(

λ

µ
)i
. (4.26)

The throughput, given by substituting this probability in Eq. (4.22), always increases monotonically towards the
maximum value Nµ as λ increases: See Fig. 4.2. In the following we examine in more detail the behaviour of
the systems N = 2 and 3. For simplicity, and without loss of generality, we will set µ = 1, which is equivalent to
taking the unit of time as µ−1.

4.3.2 N=2

The explicit equations describing the evolution of the three state probabilities, with µ = 1, are;

π̇0 =−λπ0(t)+µπ1(t)+µ
∗
π2(t),

π̇1 = λπ0(t)− (µ +λ )π2(t),

π̇2 = λπ1(t)−µ
∗
π2(t). (4.27)

and the time dependent throughput is

j(λ , t) = µπ1(t)+2µ
∗
π2(t). (4.28)
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As the system evolves towards a steady state the throughput approaches a constant value. In the steady state, the
stationary probabilities are

[π0,π1,π2] =C2[(λ +µ)µ∗,λ µ
∗,λ 2]. (4.29)

with C2 = ((2λ +µ)µ∗+λ 2)−1. As expected Eq. (4.21) and Eq. (4.22) yield the same result for the steady state
throughput:

j(λ ) = λ
2λ +µ

λ 2/µ∗+2λ +µ
(4.30)

Figure 4.3a displays the steady state throughput as a function of the intensity, λ . The limiting values of the steady
state throughput at small and large intensity are

j(λ ) = λ − λ 3

µµ∗
+O(λ 4), (4.31)

lim
λ→∞

j(λ ) = 2µ
∗. (4.32)

We search for a non-trivial maximum throughput at finite λ by seeking solutions of d j/dλ = 0 which requires
4λ µµ∗+µ2µ∗−λ 2(µ−4µ∗) = 0. The solutions can be written as

λ

µ
=

√
r+2r

1−4r
≥ 0, (4.33)

where r = µ∗/µ . Thus, solutions exist for r < rc = 1/4. If r > 1/4 there is no maximum at finite λ . If r < 1/4
the maximum throughput is given by

jmax =
µ
√

r
2(1−

√
r)

=
µ∗

2(1−
√

r)
√

r
(4.34)

Figure 4.3b shows that this approaches the limiting value 2µ∗ as µ → 1/4. To obtain the the mean time to first
blockage. From Eq. (4.20) we have

ν0,2 =
2
λ
+

µ

λ 2 . (4.35)

Following [44] we note that in the steady state there is an alternation of open and blocked states with average times
of ν0,2 and 1/µ∗, respectively whose sum defines a cycle with period 1/µ∗+ ν0,2. This provides an alternative
route to the probability that the system is in the blocked state, π(1,0) which is the fraction of the cycle spent in
the blocked state: π2 = (1/µ∗)/((1/µ∗)+ν0,2) = λ 2/((µ +2λ )µ∗+λ 2), as obtained previously. To obtain the
kinetic behaviour, the system of equations in Eq. (4.27) may be solved analytically. The eigenvalues of the matrix
Q3 are 0 (associated with the conservation of the total probability), and two real negative values γ1,2 given by

γ1,2 =−
µ +µ∗+2λ ±β

2
(4.36)

where β =
√

(µ−µ∗)2 +4λ (µ−µ∗). The probabilities are therefore given by

πi(t) = πi +aieγ1t +bieγ2t , (4.37)

where π are the stationary values and ai and bi are determined by the initial conditions for i = 0,1,2. One easily
obtains that

a0 =
γ2

β
(1−π0)+

λ

β
, b0 =−

γ1

β
(1−π0)−

λ

β

a1 =−
γ2

β
π1−

λ

β
, b1 =

γ1

β
π1 +

λ

β

a2 =−
γ2

β
π2 b2 =

γ1

β
π2.

(4.38)
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Figure 4.4: Time evolution of j for N = 2. Left: µ∗ = 0.05, λ = 3, 1, 0.1, 0.05, top to bottom. Right: λ = 1,
µ∗ = 0.05,0.1,0.3,0.5 bottom to top. The dashed lines show the steady state value, Eq. (5.4).
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Figure 4.5: State diagram for N = 2. The shaded region bounded by the upper solid line, Eq. (4.41), corresponds
to the parameter space in which a maximum throughput occurs at a finite time given by Eq. (4.40). No maximum
at any time occurs if r > 1/2 (upper dashed line). The solid, red line, Eq. (4.33), corresponds to the intensity that
maximizes the steady state throughput for a given value of r = µ∗/µ . No maximum occurs for finite λ if r > 1/4
(lower dashed line).
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Figure 4.6: N = 3. Steady state throughput, j, as a function of λ for µ = 1,µ∗ = 0.3333,0.15,0.1,0.05 top to
bottom. The dashed lines show the limiting value, 3µ∗.

Figure 4.4 illustrates the behaviour of the time dependent throughput for different parameter values. We note
two distinct behaviours: either the throughput increases monotonically to the steady state value, or it displays a
maximum at a finite time before decreasing to the steady state value. Applying Eq.(4.28) returns

∂ j(t)
∂ t

= γ1(µa1 +2µ
∗a2)eγ1t + γ2(µb1 +2µ

∗b2)eγ2t (4.39)

The solution for ∂ j(t)
∂ t = 0 is given by

tmax =
1
β

ln
(

µ∗(µ +2λ )+ γ1µ

µ∗(µ +2λ )+ γ2µ

)
. (4.40)

For a solution to exist the argument of the logarithm must be finite and positive. Setting the denominator equal to
zero thus gives the boundary of the set of parameter values at which j(t) displays a maximum:

µ
∗
b (λ ) =

µ

2

(
1−
√

µ

2λ +µ

)
, (4.41)

It is the limiting value of µ∗, for a given value of λ , at which the non-trivial maxima of the time dependent
throughput exists. We note that if r > 1/2 no maximum at finite time exists; rather the throughput approaches the
steady state value from below. The kinetic and steady state behaviours are shown in Fig. 4.5.

4.3.3 N=3

The master equations describing the evolution of the four state probabilities are;

π̇0 =−λπ0(t)+µπ1(t)+µ
∗
π3(t),

π̇1 = λπ0(t)− (µ +λ )π1(t)+2µπ2(t),

π̇2 = λπ1(t)− (2µ +λ )π2(t),

π̇3 = λπ2(t)−µ
∗
π3(t). (4.42)
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Figure 4.7: N = 3. Time evolution of j(t). Left: µ∗ = 0.05 fixed, for λ = 3,1,0.1,0.05, top to bottom. Right:
λ = 1 fixed; µ∗ = 0.05, .1,0.3,0.5, bottom to top. The dashed lines show the steady state value, Eq. (4.45).

And the time dependent throughput is;

j(λ , t) = µπ1(t)+2µπ2(t)+3µ
∗
π3(t). (4.43)

The steady state probabilities are given by:

[π0,π1,π2,π3] =C3[(λ
2 +λ µ +2µ

2)µ∗,λ (λ +2µ)µ∗,λ 2
µ
∗,λ 3]. (4.44)

with C3 = (λ 3 +3µ∗λ 2 +3µµ∗λ +2µ2µ∗)−1, and the system’s throughput is

j(λ ) = λ (1−π(1,0)) =
λ (3λ 2 +3λ µ +2µ2)µ∗

λ 3 +3µ∗λ 2 +3µµ∗λ +2µ2µ∗
(4.45)

with the limiting values at small and large intensities are

j(λ ) = λ − λ 4

2µ2µ∗
+O(λ 5), (4.46)

lim
λ→∞

j(λ ) = 3µ
∗, (4.47)

respectively. Some examples are shown in Fig. 4.6. For r < rc = 1/3 there is a maximum throughput at finite
intensity. To explore the transient behaviour, we solved Eqs. (4.42) numerically. Some results are shown in Fig.
4.7. The same two distinct behaviours, as remarked for N = 2, are present. No maximum at finite time is observed
if µ∗ > 0.75.

We have studied the optimisation of the throughput of a stream of particles subject to blocking using a circular
Markov chain model. The sojourn time of a particle contained in an open channel is exponentially distributed with
rate µ . If N particles are simultaneously present the channel is blocked and all newly arriving particles are rejected.
After an exponentially distributed blockage time with rate µ∗ all particles forming the blockage simultaneously
exit the channel. We presented general expressions for the steady state probabilities and throughput. For N = 2
we showed that the steady state throughput assumes a maximum value at finite intensity if µ∗/µ < 1/4. The time
dependent throughput may also display a maximum if µ∗/µ < 1/2. We showed that this behaviour is qualitatively
different from the well-known M/M/N/N queue whose steady state throughput always increases monotonically
with the intensity of entering particles.
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(a) µ∗/µ = 0.05,λ = 1

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

J t

 10
 9
 8
 7
 6
 5
 4
 3
 2

(b) µ∗/µ = 0.05,λ = 3
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(c) µ∗/µ = 0.3,λ = 1
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(d) µ∗/µ = 0.3,λ = 3

Figure 4.8: Numerically obtained transient average flux through a single non-FIFO Markovian channel for
different N (shown in legend). Results were obtained using the Gillespie algorithm.

Non-FIFO single channel time dependent flux

Fig 4.8 display simulation results of the transient, non-FIFO, mean flux, for a range of configurations well beyond
those analytically considered. Unlike the results already seen for the non-Markovian case, in Fig 3.9, the Marko-
vian time dependant average flux does not undergo the same degree of oscillation. However, depending on the
parameters chosen, the time dependant flux may or may not present a maximum before settling to its equilibrium
value. As for the Non-Markovian case, however, increasing the channel capacity causes the average transient flux
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to match the incoming flow intensity.

4.3.4 FIFO model

The single channel model is revisited and is the same in every respect, except that it now employs the ‘first in first
out’ (FIFO) queuing discipline to determine the egress of any transiting particles within. As before, the stochastic
dynamics is described by using N +1 state probabilities, π(0, t),π(1, t), · · · ,π(N−1, t) and π(N, t) which corre-
spond to 0,1, · · · ,N−1 and N particles in the channel, respectively. As before, P(t) = (π(0, t),π(1, t), · · · ,π(N−
1, t),π(N, t)) denotes the (N+!) state vector, so that the time evolution of the process is described by:

dP(t)
dt

= P(t) ·QN+1. (4.48)

QN+1 is the (N +1)× (N +1) matrix,

QN+1 =



−λ λ 0 ... 0 0

µ −(λ+µ) λ ... 0 0
...

...
...

. . .
...

...
0 ... µ −(λ+µ) λ 0
0 ... 0 µ −(λ+µ) λ

µ∗ ... ... 0 0 −µ∗


. (4.49)

The change of state i, in all but the first and last columns, contains two gain terms and two loss terms. The former
correspond to the entrance of a particle (at rate λ ) in a channel with i−1 particles, and to the exit of a particle (at
rate µ) from a channel with i+1 particles. The two loss terms correspond to a channel with i particles ( 0 < i < N)
where a particle enters at time t (at rate λ ) or where a particle exits (at rate µ). Although in the non-FIFO model
the state k ∈ [0,N] contributed kµπk(t) particles per unit time, here they only contribute µπk(t) per unit time. As
before, the description is completed by including the previously omitted boundary situations: the empty channel
has a loss term corresponding to a particle entrance and two gain terms. The first term corresponds to a particle
exit from an empty channel and the second to the release of a blocked channel (with N particles). A blocked
channel has a single loss term corresponding to a release with rate µ∗ and a gain term corresponding to a particle
entering the channel while in the (N−1)th state.

The time evolution of P(t) is again supplemented by the conservation of total probability, ∑
N
i=0 π(i, t) = 1, leading

the sum of each row of the transition matrix to be equal to 0. The channel throughput is given by

j(t) = µ

N−1

∑
k=1

π(k, t)+Nµ
∗
π(N, t). (4.50)

This is again different to the original single channel throughput expression given by Eq. (4.21), due to the appli-
cation of the FIFO discipline. The second term remains unchanged, and describes the re-opening of a blocked
channel that instantaneously releases N particles. The expression for stationary state, j, remains unchanged from
the expression given by Eq. (4.22).

Figure 4.9 shows the stationary flux with respect to λ for N = 2,3,4,6 (shown bottom to top). For µ∗ = 0.5, at low
intensity λ , the flux increases linearly with λ since blockage events are improbable, and finally saturates at high
intensity. The flux is a monotonically increasing function of λ . The dashed lines correspond to the limit j = Nµ∗.
For µ∗ = 0.1, j displays a global maximum for a finite value of λ for N = 2,3,4,6. One can show the critical
value of µ∗, for which the asymptotic behaviour changes, is µ∗/µ = 0.25,0.22,0.187,0.139 for N = 2,3,4,6,
respectively. To solve Eq.(4.48), one notes that the process belongs to the class of circular Markov chains [130,
133] for which a solution can be obtained for the stationary state. After some calculations, the blocking probability



48 CHAPTER 4. MARKOV MODELS OF BLOCKING

Figure 4.9: Single channel stationary flux, j, from Eq.(4.52), as a function of λ for N = 2,3,4,6 (from bottom to
top) with µ = 1 and for two values of µ∗: (left) µ∗ = 1/2 and (right) µ∗ = 0.1. The dashed lines show the limiting
value, Nµ∗.

is found as

π(N) =
1

1+ µ∗

λ
∑

N
i=1(N +1− i)

(
µ

λ

)i−1 , (4.51)

and by using Eq.(4.22 ), the stationary flux of exiting particles, j, reads:

j =
µ∗∑

N
i=1(N +1− i)

(
µ

λ

)i−1

1+ µ∗

λ
∑

N
i=1(N +1− i)

(
µ

λ

)i−1 . (4.52)

The asymptotic regimes can be easily analysed. When λ → ∞ the flux, j, is found to be:

j ' Nµ
∗+

µ∗

λ
((N−1)µ−N2

µ
∗). (4.53)

The leading term corresponds to an alternation of open (empty) and closed (blocked) states. The former is of
an infinitesimally short duration where no particles exit and the latter is followed by the release of N blocked
particles. This explains why the exiting flux j is independent of λ at large intensity. The second term of the
asymptotic expansion, Eq.4.53, shows that the limit is approached from below when µ∗ < N−1

N2 µ and from above
when µ∗ > N−1

N2 µ . This implies that, in the latter case, the flux, j, displays a maximum at a finite value of λ ,
whereas j is a monotonically increasing function of λ in the former case. The same behaviour is observed in the
non-FIFO single channel model studied in Section 4.3.1 [134]. It is, therefore, worth noting that the choice of
discipline has no effect on a channel, or bundle of channels, when each has a threshold capacity of N = 2. At
small λ , j is given by:

j ' λ − λ N+1

µN−1µ∗
. (4.54)

The leading term of this expansion represents all particles leaving the channel without blockage and the sub-
leading term corresponds to a decrement that becomes very small as the threshold N increases. The stationary
probabilities allow the computation of many other quantities. For example, the variance of the stationary flux σ2

j
is given by

σ
2
j = µ

2
N−1

∑
k=1

π(k)+N2
µ
∗2

π(N))−

(
µ

N−1

∑
k=1

π(k)+Nµ
∗
π(N)

)2

(4.55)
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Figure 4.10: Variance of the stationary flux σ2
j , from Eq. (4.55), as a function of λ for N = 2,3,4 (from bottom

to top) with µ = 1 and for two values of µ∗: (left) µ∗ = 1/2 and (right) µ∗ = 0.1.

For N = 2, one has

σ
2
j = µ

∗
λ
[(µ2−4µµ∗+8µ∗2)λ 2 +µµ∗(µ +4µ∗)λ +µ3µ∗]

(λ 2 +2λ µ∗+µµ∗)2 (4.56)

For N > 2, the expressions are lengthy and so are not displayed. For small λ , the variance vanishes as

σ
2
j ' µλ (4.57)

and is independent of µ∗. This can be interpreted by noting that blockages are rare in this regime and do not
contribute to the leading term of variance. For large λ , the variance also vanishes as

σ
2
j '

µ∗

λ

[
(N−1)(µ−Nµ

∗)2 +N2
µ
∗2] . (4.58)

Figure 4.10 shows the variance of the stationary flux σ2
j as a function of λ for µ = 1 and µ∗ = 0.1,0.5. As shown

above, the variance increases linearly at small values of λ , and decays to 0 at large λ . These results confirm
that for low intensity the system is most likely to be in state 1, λ � 1,π(N)� π(1), while for high intensity the
system is most likely to be in the blocked state, λ � 1,π(N)� π(1).

FIFO single channel time dependent flux

Fig 4.8 display simulation results of the transient, FIFO, mean flux, for a range of configurations well beyond
those analytically considered. As for the NON-FIFO case, the time dependant average flux does, depending on
the parameters chosen, may or may not present a maximum before settling to its equilibrium value. An observed
difference is that the value of the equilibrium exiting flux for the channels following the FIFO queuing discipline
is, in general, lower than for the NON-FIFO case, apart from the in the high capacity limit, which is expected.

4.4 Multi-channel FIFO model

We consider a bundle of Nc particle conveying channels [112]. As before, a single channel is open if the number
of particles inside is less than N, and blocked at the threshold of N particles. When blocked, no more particles can
enter until the channel is flushed. Particles randomly enter an open channel according to a Poisson process with
intensity (rate) Λ/(Nc− k) where k is the number of blocked channels at time t. The FIFO queuing discipline is
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again used, in contrast with the discipline employed in Section 4.3.1 [134]. As in Section 4.3, a channel can be
in one of N + 1 states, corresponding to an index, i, ranging from 0 when the channel is empty to N, when it is
blocked. The time evolution of Nc channels can be described by introducing Nc indices, which gives a number of
states (N +1)Nc . The flux of exiting particles depends on the number of channels in state i. The number of states
can be labelled using indices i j (whose values range from 0 to Nc) associated with the number of channels in a
state j, with the global constraint ∑

N
j=0 i j = Nc.

0 2 4 6 8 10
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

J t

 10
 7
 5
 4
 3
 2

(a) µ∗/µ = 0.05,λ = 1
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(b) µ∗/µ = 0.05,λ = 3
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(c) µ∗/µ = 0.3,λ = 1
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(d) µ∗/µ = 0.3,λ = 3

Figure 4.11: Numerically obtained transient average flux through a single FIFO Markovian channel for different
N (shown in legend).
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Figure 4.12: State diagrams for the multichannel models (for N = 2): The left and right indices correspond to the
number of blocked channels and the number of particles present while open, respectively. The arrows represent
all possible transitions between states: Curved purple and blue arrows correspond to a transition between open
states by the gain/loss of a particle, respectively. The black arrows correspond to a channel blockage due to a
particle entrance and the red arrows correspond to a deblockage. (left) Nc = 2 (right) Nc = 3 (Figure courtesy of
Pascal Viot).

New notation is introduced such that, for N = 2, the state probabilities are given by π(i, j, t) where i is an index
counting the number of blocked channels and j is an index for the total number of open channels (i.e with one
particle present). Because the total number of channels is given by ∑

2
j=0 i j = Nc, the index i0 is not necessary to

define the state probabilities. This labelling reduces the number of state probabilities to (Nc+1)(Nc+2)/2. Figure
4.12 displays state diagrams for Nc = 2 (left) and Nc = 3 (right). An example of the extension of the graphical
method is as follows: For N = 3, the state probabilities are defined by three indices i, j,k, denoting the number of
channels with 3,2,1 particles, respectively. For example, for Nc = 2 when one-channel is blocked and the other
has two particles present is denoted by (1,1,0). The number of state probabilities is (Nc +1)(Nc +2)(Nc +3)/6.
By using a three dimensional cubic lattice (whose nodes are labelled with the indices corresponding to the axes),
one needs to add the the different arrows connecting the nearest neighbouring nodes with the rules described
above. It is clear that when one increases both Nc and N, it is necessary to code these rules in order to build
the transition matrix and finally to obtain the stationary probabilities by using a matrix inversion, which remains
feasible.

4.4.1 Nc = 2,N = 2

The kinetic equations of the model are given by the matrix differential equation:

dP(t)
dt

= P(t) ·Q6, (4.59)

where P(t) is the state vector with 6 components, P(t)= (π(0,0, t),π(0,1, t), π(0,2, t),π(1,0, t), π(1,1, t),π(2,0, t))
and the transition probability matrix Q6 is:

Q6 =


−Λ Λ 0 0 0 0

µ −(Λ+µ) Λ

2
Λ

2 0 0

0 2µ −(Λ+2µ) 0 Λ 0

µ∗ 0 0 −(Λ+µ∗) Λ 0

0 µ∗ 0 µ −(Λ+µ∗+µ) Λ

0 0 0 2µ∗ 0 −2µ∗

 . (4.60)

The non-zero coefficients of the matrix correspond to the different arrows shown in Fig.4.12. For clarity, we shall
examine two example terms in detail. The time evolution of π(0,1, t) has three gain terms and two loss terms:
the gain terms correspond to the entry of one particle in an empty system, a particle exit from a state where each
channel contains one particle (thus contributing a factor of 2), and the release of a blockage from a system with
one blocked channel and a channel with one particle. The loss terms correspond to the entrance or exit of a particle
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for a system in the state (0,1). As a second example, the time evolution of π(0,2, t) has one gain term and two
loss terms. The gain term is associated with the entry of a particle in an empty channel, while the other channel
already contains one particle (resulting in the factor of 1/2). The two loss terms are associated with the entrance
of a new particle and the exit of one particle. (The factor 2 comes from the fact that a particle can exit from either
channel). The throughput of the two channel system is given by:

J = µ[π(0,1, t)+2π(0,2, t)]+2µ
∗
π(1,0, t)+(µ +2µ

∗)π(1,1, t)+4µ
∗
π(2,0, t), (4.61)

where the first term corresponds to the exit of a particle from a system with no blocked channels. The second
term corresponds to a blockage release. (The factor 2 is the number of particles in the blocked channel). The
third term contains two contributions: a particle exit from the open channel and a blockage release. The last term
corresponds to the release of two particles from one of the two blocked channels.
In the stationary state,

J = Λ(1−π(2,0)), (4.62)

which corresponds to the product of the entrance flux and the probability that at least one of the channels is open.
We find

π(2,0) =
2Λ5 +(2µ +µ∗)Λ4

∆
, (4.63)

with

∆ = 2Λ5 +(2µ +9µ∗)Λ4 +4µ∗(3µ +5µ∗)Λ3 +2µ∗(2µ2 +21µµ∗+4µ∗2)Λ2

+16µµ∗2(2µ +µ∗)Λ+8(µµ∗)2(µ +µ∗). (4.64)

By using Eq. (4.61), one obtains the stationary throughput J, which at small Λ, behaves as:

J ' Λ− 2µ +µ∗

8(µµ∗)2(µ +µ∗)
Λ

5. (4.65)

Compared to the single channel model (with N = 2) (Eq.4.54), where the first term has a λ 3 dependence, the first
term has now a Λ5 dependence, which corresponds to a smaller probability of a full blockage of the system. At
large Λ, one obtains

J ' 4µ
∗− 2µ∗(µ−4µ∗)

Λ
. (4.66)

As expected, in this limit the only contribution to the throughput are deblocked particles. We note that the limit is
approached from below for µ∗ < µ/4 and from above for µ∗ > µ/4. The latter case results in a maximum of the
flux for a finite value of Λ. Both behaviours are shown in Fig. 4.13. The change of behaviour for the two-channel
model at µ∗ = µ/4 is also present in the previous one-channel model [134].

4.4.2 Nc > 2,N = 2

It is possible to derive the time evolution for a model with Nc > 2. The time evolution of the process with Nc = 3
is given by a system of differential equations similar to Eq.(4.59). The state vector P(t) is now given as a 10-
component vector, P(t)= (π(0,0, t),π(0,1, t), π(0,2, t),π(0,3, t),π(1,0, t),π(1,1, t),π(1,2, t),π(2,0, t),π(2,1, t)
,π(3,0, t)) . The matrix Q10 is given by:
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Figure 4.13: Stationary flux, J, from the theory as a function of Λ for Nc = 1,2,3,4 (from bottom to top) with
N = 2, µ = 1 and for two values of µ∗: (left) µ∗ = 0.5 and (right) µ∗ = 0.1.

Q10 =



−Λ Λ 0 0 0 0 0 0 0 0

µ −(Λ+µ) 2Λ

3 0 Λ

3 0 0 0 0 0

0 2µ −(Λ+2µ) Λ

3 0 2Λ

3 0 0 0 0

0 0 3µ −(Λ+3µ) 0 0 Λ 0 0 0

µ∗ 0 0 0 −(Λ+µ∗) Λ 0 0 0 0

0 µ∗ 0 0 µ −(Λ+µ∗+µ) Λ

2
Λ

2 0 0

0 0 µ∗ 0 0 2µ −(Λ+µ∗+2µ) 0 Λ 0

0 0 0 0 2µ∗ 0 0 −(Λ+2µ∗) Λ 0
0 0 0 0 0 2µ∗ 0 µ −(Λ+2µ∗+µ) Λ

0 0 0 0 0 0 0 3µ∗ 0 −3µ∗


.

(4.67)
The exact solution is too lengthy to be displayed, but we focus on some partial results. The stationary throughput
is given by

J = Λ(1−π(3,0)). (4.68)

At low Λ, one obtains

J ' Λ− 18µ3 +39µ2µµ +22µµ∗2 +4µ∗3

324(µµ∗)3(µ +2µ∗)(µ +µ∗)(2µ +µ∗)
Λ

7. (4.69)

We have also solved the model for Nc = 4 with 15 probabilities. Since the expressions are very lengthy, we
present the results graphically in Fig.4.13. For larger values of N, a complete solution can be obtained, by using
symbolic software, once the transition matrix is obtained by using the graphical method depicted in the above
section. However, because the linear size of the matrix increases as (Nc + 1)(Nc + 2)/2, the calculation rapidly
becomes cumbersome. For general Nc we conjecture that the small λ expansion is

J ' Λ−Λ
2Nc+1 f (µ,µ∗), (4.70)

where f (µ,µ∗) is a positive function of µ and µ∗, and the Λ→ ∞ limit is

J = 2Ncµ
∗+

Ncµ∗(µ−4µ∗)

Λ
. (4.71)
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Figure 4.14: Flux difference, ∆J, between one HC channel of different thresholds NHC = 4,6,8,10 and Nc =
2,3,4,5 LC channels each of threshold N = 2 (from top to bottom, right hand side) as a function of Λ with µ = 1
and µ∗ = 0.5 (left) and µ∗ = 0.1 (right). From Eq. (4.72)

Figure 4.13 shows the stationary flux J as a function of Λ for Nc = 1,2,3,4. As discussed above, J is a monotoni-
cally increasing function when µ∗ = 0.5, whereas J displays a maximum for µ∗ = 0.1. This result is independent
of the number of channels Nc.

4.5 Optimized transport

Here we examine two different scenarios for conveying a particulate flux of given intensity Λ. The configurations
studied are as already studied in the non-Markovian case, as shown in Section 3.6 Fig. 3.12, a. The first scenario
compares a single, high capacity (HC), channel with a threshold equal to NHC = 2Nc with a bundle of Nc identical
channels each with a low capacity (LC) of N = 2. For a bundle of identical channels, the intensity is equally
distributed. The second scenario compares a system of Nc coupled channels, i.e. the total intensity is equally
distributed over all open channels, each with threshold N = 2 with Nc independent channels each with threshold
N = 2. In both cases we seek to determine which of the two configurations optimises the steady state throughput.

4.5.1 One HC channel versus several LC channels.

At low intensity, both configurations present few blockage events and so their fluxes are equal to Λ. At large
intensity, the throughput of the HC channel is equal to 2Ncµ∗. Since each LC channel has a throughput equal to
2µ∗, the total outgoing flux is also equal to 2Ncµ∗. In order to determine the most efficient system for different
values of the intensity Λ, one compares both systems by calculating the difference of their stationary fluxes.

∆J(Λ) = JNHC(Λ)−NcJ2

(
Λ

Nc

)
, (4.72)

where JNHC(Λ) denotes the stationary flux of the HC channel with entering intensity Λ and J2

(
Λ

Nc

)
the stationary

flux of a LC channel of threshold N = 2 with a shared intensity Λ/Nc. This quantity clearly goes to zero for small
and large Λ, illustrating the fact that the two systems have the same stationary flux in these limits.
Fig.4.14 displays the difference of stationary flux ∆J(Λ) between the HC channel JNHC and the total flux of the
LC channels, J2, as a function of Λ for µ∗ = 0.5,0.1, (µ = 1) and for NHC = 4,6,8,10. One observes that the HC
channel is slightly more efficient at low intensity. At large intensity the HC channel is always less efficient than
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Figure 4.15: Flux difference ∆JC between Nc = 2,3,4 coupled channels with N = 2 and their uncoupled equiva-
lents (lower and upper curves, respectively) as a function of Λ. µ = 1 and µ∗ = 1/2 (left) and µ∗ = 0.1 (right).
From Eq. (4.75).

the bundle of LC channels. This behaviour is more pronounced when Nc increases.

In summary, the throughput difference reaches a positive maximum for a finite value of Λ and then passes through
zero before attaining a negative minimum, corresponding to the maximum efficiency of the bundle of LC channels.
By expanding Eq. (4.72) to the first order it becomes clear that ∆J is not a flat function of Λ:

∆J ' Λ3

µ∗µ2

[
Nc−

(
Λ

µ

)2(Nc−1)
]
, (4.73)

which is positive for Nc > 1. Conversely at high intensity

∆J =−(Nc−1)2µ∗µ

Λ
, (4.74)

which is always negative.

4.5.2 Comparison of Nc coupled with uncoupled channels of capacity N = 2.

We consider the flux difference between the two systems

∆JC(Λ) = JNc
2 (Λ)−NcJ2

(
Λ

Nc

)
(4.75)

where JNc
2 denotes the total stationary flux of Nc coupled channels of threshold 2. At low intensity, there are few

blockages in either system and the throughput is Λ in both. At large intensity, the throughput of the independent
channels and the coupled correlated channels are both equal to 2Ncµ∗. By calculating the flux difference, one can
determine the most efficient system for different values of intensity. Fig.4.15 shows the flux difference, ∆JC(Λ),
between the Nc coupled channels and the total flux of the independent channels as a function of Λ for two values of
µ∗, (µ = 1) and for Nc = 2,3,4. If the deblocking rate is sufficiently large, µ∗ > 0.25, the independent channels
always convey the flux less effectively than the coupled channels. If µ∗ < 0.25 the behaviour is similar to the
first scenario: ∆J reaches a maximum for a finite value of Λ. At higher intensities, the coupled channels are less
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efficient and ∆J shows a minimum. At very large intensity, both models converge to the same limit as expected.
This behaviour can be understood by examining the limiting behaviour of ∆J. For small Λ one has (for Nc > 1)

∆J ' Λ3

N2
c µ∗µ2 , (4.76)

which is always positive, while at high intensity

∆J '−Nc(Nc−1)µ∗

Λ
(µ−4µ

∗), (4.77)

which is negative if µ∗/µ < 0.25 and positive otherwise. Coupled channels are always more efficient at low
intensity and also at high intensity if the deblocking rate is sufficiently high. If, however, µ∗ < µ/4 the coupled
channels convey the flux less efficiently due to an accelerating cascade of blockages that is reminiscent of the
irreversible model [135].

The next section will provide a discussion, and comparison of the two 1D models of blocking phenomena studied
in Chapters 3 and 4.



CHAPTER

5
DISCUSSION

This Chapter compares the non-Markovian and Markovian models of 1D channel flow studied in Chapters 3 &
4 respectively. The physical assumption of constant transit and deblocking times, τ and τb respectively, of the
former model is responsible for strong memory effects which prevented analytical solutions for general N from
being obtained. Chapter 4 introduced Markovian models [117, 136], where the average transit and deblocking
times are stochastic variables given by exponential distributions of intensity µ and µ∗, respectively.

The kinetic description of the Markovian model was given by a set of differential equations for the time evo-
lution of the state probabilities P(i, t) with i ∈ [0 · · ·N] giving the number of particles in the channel. Unlike the
non-Markovian model, analytic solutions for the steady state properties can be obtained for arbitrary N (some gen-
eralisations of the Markovian models for which time-dependent solutions can be obtained [137, 138] and could
be investigated in the future ).

5.1 Markovian versus non-Markovian models

A Markovian channel is open for a mean time, 〈t〉, and blocked for a mean time 1/µ∗. The stationary flux was
obtained using recurrence arguments, giving

j(λ ) =
λ 〈t〉

〈t〉+1/µ∗
. (5.1)

The average time for which the Markovian system is open in a recurrence cycle may be obtained from Eq.(4.23)
[117] as:

〈t〉= 1
λ

N−1

∑
j=0

N!
( j+1)(N− j−1)!

(
µ

λ

) j
. (5.2)

To compare the two models, µ and µ∗ must be related to τ , τb and λ . Eq. (5.1) with Eq. (3.35) shows that µ∗

must equal 1/τb. To obtain an expression for µ , we consider the system’s behavior at low and high intensities.
When λτ << 1, the non-Markovian transit time is equal to τ . The mean transit time is 1/µ in the Markovian
model. A first approach was to therefore set µ = 1/τ . When λτ >> 1, we expect µ to decrease to zero. Figure
5.1(a) shows that the stationary flux of the Markovian model is always larger than that of the non-Markovian
model. Even though the two models behave similarly at small and large input intensity, they increasingly deviate
for intermediate intensities with increasing N.
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Figure 5.1: (a) Comparison of stationary exiting flux, j(λ ), versus λτ obtained for the non-Markovian model
(dotted curves), the Markovian model by setting µ = 1/τ (dashed curves) and the Markovian model by using the
ansatz given by Eq.(5.6) (full curves), τb = 4. (b) Time evolution of the average flux < J > from a bundle of
Nc = 2,N = 1 channels, Λ = 1. To relate the steady state of both systems, τb = 1/µ∗. Where τb = 4.

For Nc = 1,N = 1 (i.e., the channel is blocked by the entry of the first particle) it is easy to show that the steady
state properties for the model with an exponentially distributed blocking time with rate µ∗ are the same as for a
model with a constant blocking time, τb, if the deblocking rate is equal to the inverse of the (constant) blocking
time. The probabilities that the channel is open are po = µ∗/(µ∗+λ ) and po = 1/(1+λτb), respectively, and are
therefore equal if τb = 1/µ∗. The kinetics of the two models are, however, different. When the blockage time is
constant the exiting flux is strictly zero for t < τb, while for an exponentially distributed blockage time the mean
flux is finite for all t > 0. Figure 5.1 b shows the same behaviour for the time evolution of the average flux of
a system of Nc = 2 channels, each with capacity N = 1, emphasising the fact that, even under this mapping, the
transient regimes of the two models are appreciably different.

The corresponding Nc = 1,N = 2 model, with constant transit and blockage times, was originally examined in
[44]. The steady state exiting flux is given by:

j∞ =
λ (2− e−λτ)

λτb(1− e−λτ)+2− e−λτ
. (5.3)

This equation may be compared to the steady state throughput of the N = 2 Markovian model, introduced in
Chapter 4:

j∞ = λ
2λ +µ

λ 2/µ∗+2λ +µ
. (5.4)
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There is no simple mapping that replaces τ with 1/µ and τb with 1/µ∗. However, the two systems can be mapped
by introducing the following effective exit (service) rate :

µ
∗ =

1
τb
,

µ =
λe−λτ

1− e−λτ
. (5.5)

i.e. substituting these effective rate equations into Eq. (5.4) returns Eq. (5.3). This is also obtained by equating
the mean blocking time of the two models. For N = 2 we equate 〈t〉 given by Eq. (5.2) with the result for the
non-Markovian model [107], 〈t〉= (2−e−λτ)/(λ (1−e−λτ)). With this mapping, we recover the aforementioned
expected limiting behaviour for both extremes of entering flux intensity. The exiting flux, Eq. (5.3) may be max-
imised for a finite value of intensity if τ/τb < 0.16.

The same procedure can be carried out for N = 3 using Eqs. (3.63) and (3.64), but the resulting expression for µ is
considerably more complex. For general values of N we therefore propose the following ansatz, taking a similar
form as the mapping for N = 2:

µ =
2λ/N

e2λτ/N−1
, (5.6)

which behaves as 1/τ at low intensity and approaches zero exponentially at large intensity. Substituting Eq.(5.6)
into Eq.(5.1), produces a lower bound of the stationary flux (full curves). Furthermore, the maximum of the flux
is underestimated and shifted to a lower intensity than in the non-Markovian model. For N = 3 and N = 4, the
curves are very close to the results of the non-Markovian model. For N > 4, the ansatz leads to a significant
underestimation of the exiting flux for small λτ .

5.2 Overview of results

A previously studied and published channel model, with a finite capacity of N that leads to blockage was studied
in Chapter 3. The channel was exposed to an entering flux of fixed intensity, λ for a finite time, non blocking
particles transit at a constant time, τ , and if N particles are simultaneously present, the channel blocks for time τb.

The irreversible case (τb→ ∞) was first studied, where it was demonstrated that the first and second moments of
the number of exiting particles are maximised for a finite intensity. For a single channel with capacity N > 1 the
exiting flux displays a maximum value at finite intensity if τb is sufficiently large. If not, the exiting flux increases
monotonically with the intensity.

The single channel model was then studied for the scenario of reversible blockage [114]. In this case, a particle
transits through an open channel in time τ , but if N particles are simultaneously present in a channel, it is blocked
for a time τb, before being emptied. Bundles consisting of Nc constituent channels, each with capacity N, were
also considered. When a single channel is blocked, the entering flux is redistributed over the remaining open
channels. A bundle of channels is open if, at least, one of its constituent channels is not blocked. If the entering
stream is of constant intensity, the bundle evolves to a stationary state with a steady exiting flux, or throughput,
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that depends on the intensity, τb and N. In the steady state the exiting flux is simply related to the probability that
the bundle is open. For large N, the models display an abrupt change from a state with few blockages to one in
which the bundle is permanently blocked and the output flux is entirely due to the release of blocked particles.
This behaviour raises new questions about whether more general relationships describing the abrupt transitions in
dynamics may be obtained for general N and Nc. The transport efficiency of a bundle, in which the entering flux
is equally distributed over the open channels, was also compared with a bundle composed of independent chan-
nels. For N = 1, the coupled channels always have a higher throughput, but for larger values of N the behaviour
becomes more complex.

Chapter 4 extends the model presented here so that both the transit time, and deblocking time (where applicable)
follow a Poisson distribution, rendering the system ‘memoryless’. This feature allows the time evolution of a
stochastic circular Markov chain model of intermittent particle flow through a 1D channel to be described by a set
of differential equations, for which exact solutions can, in principle, be obtained.

The optimisation of the throughput of a stream of particles subject to blocking was studied, by defining the entry
and sojourn times of a particle transiting an open channel as exponentially distributed with rates λ & µ , respec-
tively. If N particles are simultaneously present the channel is blocked and all newly arriving particles are rejected.
After an exponentially distributed blockage time with rate µ∗ < µ all blocking particles are ejected.

General expressions were derived for the steady state probabilities and throughput. For N = 2 the steady state
throughput was shown to assume a maximum value at finite intensity if µ∗/µ < 1/4. The time dependent through-
put also displays a maximum if µ∗/µ < 1/2. This behaviour was shown to be qualitatively different from the
well-known M/M/N/N queuing model, whose steady state throughput always increases monotonically with the
intensity of entering particles. The circular Markov chain model was then applied to multi-channel systems where
the entering flux is evenly distributed over the open channels [135].

A bundle of Nc particle conveying channels was also considered. The total particulate flux enters the system
according to a Poisson process of intensity Λ. If a single channel is blocked, the flux that would have other-
wise entered is evenly distributed over the remaining open channels. If all channels are blocked, the input flux
is rejected. A framework was provided to obtain both the time-dependent and steady state properties and have
presented explicit results for the steady state throughput for Nc = 2,3,4. Analytical results were used to compare
different configurations for transporting a particulate flux of given intensity.

A single ‘high capacity’ (HC) channel is shown to be more efficient than several coupled ‘low capacity’ (LC)
channels at low intensity. but the reverse is true at higher values of Λ. We also compared Nc coupled channels
with capacity, N = 2 with its uncoupled version. The coupled channels always have a higher throughput if
µ∗/µ > 0.25. For µ∗/µ < 0.25 the coupled channels are more efficient at low intensity, but at higher intensities
the order reverses.

5.3 Conclusion and outlook

The model introduced in Chapter 4 is fully stochastic in the sense that the interval between particle entries, transit
and blockage times are all sampled from exponential distributions with given rates. While this choice can lead to
a considerable simplification of the mathematics, it may be unrealistic in certain physical applications. A particle
cannot traverse a channel instantaneously, while according to the exponential distribution this is the most likely
outcome. For this reason, the model was compared with the constant transit and/or blockage times version [44],
studied in Chapter 3.

Both the Markovian and non-Markovian channel models present a maximum in the stationary flow as a function of
entering intensity. Furthermore, it was shown that Markovian model can be made to display the same steady state
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behaviour with an appropriate mapping between the two models’ parameters. Despite the transient behaviour
being very different, the qualitative similarities in the steady state between the non-Markovian and Markovian
models, as well as between the two queuing disciplines followed suggests that the details of the channel transport
mechanisms and the blockage releases are irrelevant for determining whether or not a maximum in the steady state
flux will be present for different variables. This behaviour can, therefore, be interpreted as universal of systems
with carrying capacity, and may even be seen as related to the ‘slower is faster’ mechanism.

The next section will consider a microscopic approach to blockage induced intermittency in particle flow. The
mechanism leading to blockage induced intermittency are explored by varying the system’s parameters such as
temperature, particle interaction force, constriction width and geometry. Just as in the simulations performed by
Helbing [4, 139, 140], particles will acted on by many forces, such as the drift of the medium, inter-particle and
particle-wall interaction forces, and Gaussian noise.
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Part II

Metastable arches in constricted 2D channels
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CHAPTER

6
INTRODUCTION

The second part of this thesis introduces a 2D microscopic approach to blocking phenomena. While the first
part highlighted different behaviours directly related to the finite capacity of a 1D channel, the goal is now to
identify different physical characteristics that may be tuned to induce intermittency. A single channel is studied,
permitting 2D flow, with a well defined geometrical narrowing. The presence, size and shape of the narrowing
will, among other factors such as the particle stiffness, determine whether stream of 2D Brownian particles will
display intermittency. The new model parameters that will be introduced replace the previously used ‘channel
capacity’ as the channel’s control parameter.

6.1 Motivation

Early studies of the discharge of granular matter from silos showed that significant changes in the flow occur
when the ratio of the orifice to particle diameter is in the range 3−5 [15]. Later it was realised that the clogging
phenomena is due to the formation of arches spanning the orifice [16–18]. The arch stability is normally strongly
associated with interparticle frictional forces and is, for example, responsible for the well-known Janssen effect
[141–143]. Recently a ‘reverse Janssen effect’ has been observed in narrow granular columns [144]. For granular
materials, clogging is very often permanent and an additional shaking of the system is required to restart the flow.
For many of these systems, when friction effects become negligible or entirely absent, the blockages become
temporary, which leads to intermittent dynamics.

Recent studies have focused on the statistics of blocking processes [145–147]. The number of escaping particles
in each successive burst, as well as the time intervals between bursts, are distributed exponentially, which implies
a constant probability of blocking during the whole burst, however the time lapse distribution between successive
particles has been shown to exhibit a power law tail, p(τ)∼ τ−α [148]. The transition to clogging is characterised
by the divergence of the average time lapse, i.e. α ≤ 2. Thomas and Durian [149] examined the fraction of
grain configurations near the exit of granular hopper flow that cause clogging and concluded that there is no sharp
transition. Colloidal systems, including bacteria [150], involve blocking mechanisms that are governed by, in
addition to D/d, the driving force acting on the particles, long range hydrodynamic interactions and the nature of
the particle-particle and particle-wall interactions. Ref [29] considers geometrical induced turbulence for bacterial
mixing processes in micro-fluidic channels and Marin et al. [147] reported experimental results of clogging in
charged-stabilized suspensions of particles flowing through a single constricted channel. The behaviour is remark-
ably similar to that observed in dry granular matter, even though the inter-particle interactions are considerably
different. For D/d < 3 blockages form randomly while for D/d > 3 the flow is uninterrupted. They attributed
this to the low friction of the particles. Recently, Souzy et al. [151], using a set up similar to that of Marin et al.
[147] but with a larger constriction angle, observed an intermittent flow for 2.43 < D/d < 5.26 with a power law
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Figure 6.1: A channel of width Ly and length Lx with a constriction formed by two fixed disks each of diameter σ2.
lw is the minimum distance between the obstacles and σ1 is the particle diameter. A periodic boundary condition
is imposed along the x-axis.

exponent α < 2 in all cases. Hidalgo et al. [19] studied the flow of colloidal suspensions through small orifices us-
ing lattice Boltzmann methods with a focus on the effect of varying temperature. They observed that intermittent
flow regimes precede clogging events. The mean number of colloids crossing the orifice between clogging events
decreased with increasing temperature, i.e. thermal fluctuations can inhibit particle flow through the orifice, an ex-
ample of ‘freezing by heating’. Zimmermann et al. [152] studied a two-dimensional model of Brownian particles
driven through a constriction by an external force using Brownian dynamics simulation and density functional
theory. They observed four scenarios: complete blockage, monotonic decay to a constant flux, damped oscillatory
behaviour or long-lived stop-and-go behaviour. State diagrams of the behaviour were constructed as a function of
the coupling and the ratio of the constriction width to the channel width. Clogging phenomena can be strongly
modified by placing an obstacle before the orifice: this can reduce or eliminate clogging in silos [43], sheep egress
[153] and panic escape [154].

While these observations display some universal aspects, a simple model with a limited number of relevant pa-
rameters capable of capturing the essential dynamics of these systems is still missing. The new features in the
work presented in this section are the consideration of the channel width Ly, the constriction width lw, non-rigid
frictionless particles and to highlight the essential role of the geometry of the constriction.

6.2 Model overview

We consider a minimal system, illustrated in Fig. 6.1, of identical soft discs of mass m of diameter σ1 flowing
through a channel of width Ly. The disks undergo Brownian motion and are driven, from left to right, by the drift
force related to the flow of the immersing fluid. The particles we study can be deformed by the channel, i.e. the
walls, or by neighbouring particles. In many biological situations, deformable molecules move through transport
vesicles, which are spherical structures formed by a closed biological membrane, containing molecules and many
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trans-membrane proteins [155, 156]. A constriction formed by two fixed disks of diameter σ2 is symmetrically
placed about the channel axis, at x = 0 so that the minimum distance between them is lw = Ly +σ1−σ2, i.e they
are not centred on the channel walls, but displaced outward by σ1/2. The curvature of the constriction is the
inverse of radius of the disk obstacle radius, 2/σ2. In order to maintain a constant lw, for varying channel width Ly

the constriction’s curvature needs to be changed. The total channel length, Lx is chosen to be significantly greater
than Ly to minimise correlation effects.

The particle flow in the microchannel depends on several physical properties, including the ratio of the constriction
width to the particle diameters, inter-particle, particle-wall interactions and drag forces.
The inter-particle force between the mobile particles i and j is

Fi j = kθ(σ12− ri j)(ri j−σ12)r̂i j. (6.1)

ri j is the distance between two particles, and r̂i j is the unit vector along ri j. θ(x) is the Heaviside function, k is the
rigidity factor and σ12 =

σ1+σ2
2 . The same interaction force is used between a mobile particle i and the stationary

particles that make up the constriction, i0. The forces between particle i and the channel walls, denoted w±, is
given by

Fw±,i = kwθ(riw±−σi/2)(ri,w±−σi/2)r̂iw±, (6.2)

where ri,w± is the distance between the particle i and the wall w±, r̂iw±, the unit vector, and the rigidity factor kw.
The force between a moving particle and the two obstacles is given by Eq. 6.1. Finally, the moving particles are
driven an external drag force

Fd,i =−α(v−v0), (6.3)

where v0 is a constant vector along the channel axis, v0 = v0ex, and α is the drag coefficient of the driving medium.
The mobile disks move under the the influence of both Brownian motion and the frictional force arising from the
fluid in which the disks are immersed. The resulting equation of motion is given by:

m
dvi(t)

dt
= ∑

j 6=i
Fi j +∑

w
Fw,i +∑

i0

Fi,i0 +η(t), (6.4)

η(t) is Gaussian noise, such that < η(t) >= 0 and < η(t)η(t ′) >= δ (t − t ′). To be sure that the noise used
accurately represents the random shocks of the components of the immersing milieu the following must be true:

< η(t)η(t ′)>= 2mDδ (t− t ′), (6.5)

where D is the velocity diffusion coefficient, which, by Einstein’s relation is given by:

D =
kBT α

m
. (6.6)

T is the temperature of the bath, and kB is the Boltzmann constant. Substituting Eq. (6.6) into Eq. (6.5) returns:

< η(t)η(t ′)>= 2kBT αδ (t− t ′). (6.7)

finally returning the Brownian equation of motion, with the rescaled noise, as:

m
dvi(t)

dt
= ∑

j 6=i
Fi j +∑

w
Fw,i +∑

i0

Fi,i0 +
√

2kBT αη(t). (6.8)

η(t) is Gaussian noise, such that < η(t)>= 0 and < η(t)η(t ′)>= δ (t− t ′). In what follows, we only consider
overdamped Brownian motion, i.e. the acceleration term is neglected. As a result, the system’s dynamics is
described by the following overdamped Langevin equation:

vi(t) = v0 +
1
α

(
∑
j 6=i

Fi j +∑
w

Fw,i +∑
i0

Fi,i0

)
+

√
2kBT

α
η(t).
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Further physical parameters characterising the model are the intensities of the soft core repulsion k and kw and
the dimensions of the channel Lx and Ly. The particle density is ρ = N/(LxLy), where the volume occupied
by the constriction is neglected. This is reasonable if Lx >> Ly. It is convenient to switch to non-dimensional
system parameters. Since in the case of overdamped motion studied here, the particle mass is irrelevant we select
σ1, σ1/v0 and σ1v0α as units of length, time and energy, respectively. The unit of time corresponds to ballistic
displacement of a particle with the velocity v0 and the unit of energy is the work done against the drag force in
this time. With this choice of units, we switch to the following non-dimensional quantities:

k′ =
kσ1

αv0
, k′w =

kwσ1

αv0
, (6.9)

which are the reduced force strengths between particle-particle and particle-wall, respectively, and:

T ′ =
kBT

αv0σ1
, ρ

′ = ρσ
2
1 (6.10)

are the the reduced temperature and particle density. The channel’s geometric parameters are:

L′x =
Lx

σ1
, L′y =

Ly

σ1
, l′w =

lw
σ1

(6.11)

and,

v′i(t) =
vi(t)

v0
, r′ij =

rij

σ1
(6.12)

dsep

Figure 6.2: When dsep is sufficiently large, the particles line the channel to form a passage between the two
obstacles.

are the dimensionless velocity and interparticle distance. The Péclet number, giving the ratio of advective transport
to diffusive transport is:

Pe =
σ1v0α

kBT
=

1
T ′

. (6.13)

In the following, we drop the primes of variables and of parameters. In order to decrease the dimensions of the
parameter space, we furthermore assume that: k = kw. In the limit of a long channel, which minimizes corre-
lations between exiting and entering particles, Lx is an irrelevant parameter. Particles are initially randomly and
uniformly placed within the channel without overlapping each other, the walls or the constriction. The collective
particle trajectories were generated by using an Euler algorithm with a timestep ∆t = 10−2. Periodic boundary
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conditions were imposed in the direction of the channel: as a particle exits the channel when the abscissa is equal
to Lx/2, it is reinserted at x = −Lx/2. The channel domain is, thus, topologically an annulus. The dynamical
motion in this model is purely rotational around the annulus due to the application of the unidirectional drift force.
Whether the y-coordinate of the reinserted particle is conserved or chosen randomly within the interval of the
channel has no noticeable influence on the dynamics of the system. The next chapter will investigate a simple
convex constriction formed by two fixed large discs located in the middle of the channel (as in Fig. 6.1). Section
7.2 considers a double constriction formed by four fixed large discs, whose separation by a finite distance dsep,
creates a non-convex geometry see Fig. 6.2.

We focus on the low temperature regime, where the mobile particle display near-ballistic motion, as the the flux
most prominently displays intermittent dynamics, due to blocking. Cascade statistics were monitored for various
geometries, and the angular distribution of the blocking particles were collected.
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CHAPTER

7
SIMULATION RESULTS

7.1 Single constriction
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Figure 7.1: Mean velocity, 〈V 〉, as a function of constriction lw and for various rigidities kw =
150,200,250,275,300 and with LY = 5.5, ρ = 0.55 at different temperatures.

Simulations were performed for reduced densities in the interval 0.5≤ ρ ≤ 0.6 and Péclet numbers 1 < Pe < 100.
In this density range, high and low density regions coexist on each side of the obstacle when blocking occurs.
After a transient time, which increases as the width of the constriction decreases, the system reaches a stationary
state with a well-defined mean particle flux. The upper bound of the time required for the system to reach the
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stationary state is Lx/v0 which is equal to the time taken for the system’s average velocity to equal zero when
completely blocked.
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Figure 7.2: Mean velocity 〈V 〉 as a function of lW at low temperature T = 0.01 for different values of Ly

7.1.1 Velocity statistics

We first consider the mean velocity of the system of particles, 〈V (t)〉, as a function of the minimum distance lw
with Ly = 5.5 and for different values of kw. Fig. 7.1 shows the following behaviour is repeatedly observed: When
lw ≥ 3 the constriction has a small effect and the mean velocity remains close to v0. For lw1 ≤ lw ≤ 3, the velocity
decreases almost linearly with a slope which increases with decreasing temperature. The lower bound of the linear
region, lw1 , depends on the temperature: for T = 1 and T = 0.5, lw1 ' 2 while for T = 0.1 and T = 0.01, lw1 ' 1.8.
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A second regime is observed in the range lw2 ≤ lw ≤ lw1 where lw2 is slightly below 1. The mean velocity is a
convex function of ly and decreases more rapidly than before.

(a) N = 0, just after random initialisation.

(b) N = 10, steady flow through the constriction.

(c) N = 40, first blockage

(d) N = 49, deblockage

(e) N = 56 Cascade of size 6

(f) N = 192 Continued cascading.

Figure 7.3: Time slices of the evolution of the driven particle flow. Ly = 6, σ2 = 5.75.
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T = [ … 1 , 0 , 1, 0, 1, 0, 0, 1, 0, 0, 0, 0 …, 0, 0, 0, 1, 0, 1, 0 , 1, 0 , 0, … , 0, 1 …]

 τi > tc τi+1 > tc

1 0

∀Δt

si = 3

Figure 7.4: Illustration of the technique employed to characterise the system’s cascade size and inter-time distri-
bution. A slice is defined just beyond the geometrical constriction. If, in a time-step ∆t, a particle passes over the
slice, a 1 is recorded; otherwise, a 0. The time evolution of the system can then be represented as the binary stream
T. If an unbroken string of zeros is longer than some predefined critical value, tc, the system is said to be blocked
for time τi, giving an intercascade time. The number of 1s counted between two consecutive blocking events is
the cascade size, s. N(τ) and N(s) are the cascades inter-time and size distribution, respectively, collected over a
simulation.

There is little dependence on kw, except at the lowest temperature T = 0.01. Finally, for lw3 < lw < lw2 , which
corresponds to a minimum distance less than a particle diameter, the velocity decreases rapidly to zero. The slope
of the nearly linear curve increases as the temperature decreases. Moreover, whereas the behaviour in this regime
depends on the strength of the forces for T = 1,0.5,0.1, it is almost independent of kw at low temperature. lw3

depends on both the temperature and kw. This regime corresponds to single particle passing through the constric-
tion. Finally, for lw < lw3 , the channel is unequivocally blocked, because the force required to sufficiently deform
a particle exceeds the force exerted by the other particles behind the constriction.

At low temperatures one observes the formation of a dense region before the constriction in which the particles
are almost at rest. When the size of this region exceeds a threshold length, the particles are able to pass through
the constriction. The resulting burst is of short duration and is followed by a period of arrest before the next group
of particles is released.

Figure 7.2 shows the mean velocity as a function of lw for different channel widths Ly. The different regimes de-
scribed for Ly = 5.5 are only slightly modified for Ly = 4.5,6.5,7.0. Substantial changes are, however, observed
for Ly = 5 and Ly = 6: For Ly = 5, when 1 < lw < 1.5, the mean velocity is almost constant which is associated
with the fact that only one particle at a time enters the constriction from the dense region before the bottleneck.
Conversely, when Ly = 6, one observes a non-monotonic variation of the mean velocity with lw.

The system now favours two vertically aligned particles at the entrance of the constriction. This configuration
is metastable in the sense that when the fluctuation forces acting on the two particles are sufficiently large, one
observes a small deviation of the vertical axis defined by the two particle centres that allows one of the two
particles to enter the constriction, rapidly followed by the other. This effect only appears if the channel width,
Ly, is able to ‘select’ this configuration at the entrance of the channel and if the core repulsion is not large (for
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Figure 7.5: Ly = 6, σ2 = 5.75, T = 0.01 and tc = 0.1 (a) Statistics for cascade size distribution. The inset displays
a log-linear plot of the distribution envelop. s0 = 100 (b) Log-linear plot of the inter cascade time distribution.
τ0 = 0.09 .

kw = 300 this same configuration leads to a quasi-permanent blockage for lw < 1.5, namely larger than a diameter
of particle). Conversely, when kw = 100 the particles are highly deformable and the minimum of the mean
velocity versus lw disappears. For a suitable choice of parameters, the model develops metastable minimal arches,
resulting in blockages of finite duration, leading to cascading behaviour, as illustrated in Fig. 7.3. We also present
the distribution of angles formed by the line passing through the centres of the two blocking particles, obtained
over long simulation times. The next section examines this intermittent regime in more detail.

7.1.2 Cascade statistics

The dynamics is characterised by a sequence of cascades alternating with periods of arrest. Distributions of both
the cascade size and the inter-cascade times (Fig. 7.5 ) were obtained for Ly = 6,kw = 200,σ2 = 5.75. This
geometry was chosen as it corresponded to the local minimum in the mean velocity, as shown in Fig: 7.2 at
T = 0.01. These were determined by recording the times at which a particle crosses a line perpendicular to the
channel axis and just beyond the constriction, as illustrated by Figure 7.4. If, in a time-step ∆t, a particle passes
over the slice, a 1 is recorded. Else, a 0 is recorded. The time evolution of the system can then be represented as
the binary stream T. If the elapsed time between the passage of two particles is greater than a chosen characteristic
time, tc, the system is said to be blocked for time τi. The number of 1s counted between two consecutive blocking
events is the cascade size, s. N(τ) and N(s) are the cascades inter-time and size distribution, respectively, collected
over a simulation. The cascade distributions are independent of tc. Practically, we found that a good choice was
tc = 10∆t. As Fig. 7.5 b confirms, the histogram of inter-cascade times, τ follows exponential distributions:
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Figure 7.6: Angular distributions of axis running through blocking particle pairs

p(τ) =
1
τ0

e−τ/τ0 . (7.1)

where τ0 is the characteristic exponent. Similarly, as shown in the subfigure of Fig. 7.5a, the cascade size peaks
also follow exponential distributions, as shown by Eq. 7.1, but with speaks replacing τ , and s0 replacing τ0. For
the single constriction case, a single peak, with a maximum at θb = 0 is observed, which is as expected.

dsep

(a)

(b1)

(b2)

θb

θb

Figure 7.7: The two types of blocking mechanism that are possible with a double constriction lw = 1.5, dsep = 3.
(a) Type I, which is the sole cause of the non-monotonic variation in the mean velocity as shown in Fig. 7.9; (b)
Type II, arising from the non-convex geometry for dsep > 0. The blocking angle, θb, is also illustrated.

7.1.3 Angular distribution

The angular distribution of the blocking particles, whose presence leads to the intermittent dynamics is studied.
The blocking angle, θb is defined as the angle between the line passing through the axis of the two blocking
particles, and the y-axis, as illustrated in Fig. 7.7. As the temperature is increase, the distribution broadens, and
fewer blocking events are recorded, as expected.
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7.2 Double constriction

We now consider a double constriction consisting of four disks, i.e. the original pair plus a replica displaced
by dsep. When dsep = 0, the two pairs fully overlap and we recover the previous model. When dsep > 0, the
non-convex region between the two constrictions may trap the moving particles. Simulations were performed for
different values of separation dsep = {0,1,2,3,4,5,6} between the two pairs of obstacles. All the other parameters
are chosen to correspond to those of the original model for which both monotonic and non-monotonic behaviour
was observed, i.e., for T = 0.01, kw = 200, Ly = 5.5,6,6.5.

Two distinct blocking mechanisms are now possible, as shown in Fig. 7.7: Type 1, involving the previously ob-
served arch formation before the first pair of obstacles, and (depending on the geometries chosen) Type II, arising
from the trapping of particles between the two pairs of obstacles. As illustrated in the figure, these mechanisms
can be distinguished by the orientation of the blocking particles, θb. For the Type I mechanism, the points of
contact between the two blocking particles and the obstacles lie almost parallel to the y-axis. Conversely, the
non-convex geometry that gives rise to the Type II mechanism causes θb to be significantly misaligned with the
y-axis in one of two different, yet symmetrically equivalent, orientations. The arches forming within the space
encompassed by the non-convex geometry in Figs 7.7 b1 and b2 lead to regular triangular formations.

It is possible that different choices of lw and dsep will lead to the formation of different finite regular polygonal
structures within the non-convex bound space, each of which may be associated to various degrees of inter-
mittency, according to the structure’s stability. The presence of the second blocking mechanism increases the
likelihood of intermittent dynamics for values of Ly that would otherwise not display an overshoot in the mean
velocity. It is often observed that the system passes a significant amount of time undergoing Type I followed
by Type II blocking before releasing a cascade. It should also be noted that, once dsep exceeds a certain length,
particles between the two constrictions organise to form a passage from one obstacle pair to another, therefore
reducing the possibility of the Type II blocking. See Fig. 6.2.

7.2.1 Velocity statistics

(a) dsep = 3 (b) dsep = 4

Figure 7.9: Mean velocity 〈V 〉 as a function of lw for increasing temperature T , and Ly = 6 for two values of
dsep. At low temperatures singular reductions in the velocity for certain geometries are present. Minor variations,
of the order of 10−6, corresponding to the numerical precision of the geometry explored, are sufficient to enter or
leave the singular region.
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Figure 7.8: Mean velocity 〈V 〉, as a function of lw for two values of Ly, each for various values of dsep. ρ = 0.55
and T = 0.01. Non-monotonic behaviour is observed for different non-zero values of dsep for non-integer values
of Ly.

Fig. 7.8 shows the mean velocity as a function of lw for various values of dsep. Let us first consider the system
with channel width Ly = 6. For lw > 2, the mean velocity decreases weakly with increasing dsep, showing that the
inter-constriction geometry has little influence. In the intermediate range, 0.7 < lw < 2.0, the situation is consid-
erably different: for dsep = 1,2, one observes an overshoot of the mean velocity for smaller values of lw, followed
by a minimum comparable to that displayed by the single constriction (dsep = 0). For larger values, dsep = 3,4,
the minimum of the velocity is much smaller than the previous cases and occurs for lw = 1.1,1.3, respectively.
For dsep = 5, the velocity is almost monotonic (except for a tiny plateau in the interval lw = [1.0,1.1]), while for
dsep = 6, it increases monotonically with lw.

The non-monotonic evolution of the mean velocity, for non-zero values of dsep, persists for cases where the chan-
nel width is a non-integer (Ly = 5.5,6.5). This indicates regions of geometry that display intermittent dynamics
that are principally (but not solely) caused by the Type II blocking mechanism illustrated in Fig. 7.7. Figure
7.9 shows the effect of varying temperatures on the mean velocity as a function of lw, around the geometries of
interest for Ly = 6,dsep = 3,4 . At low temperatures, the mean velocity varies non-monotonically with lw. The
region in which the mean velocity displays a local minimum is associated with strongly intermittent behaviour, at
low temperature. Increasing the temperature causes these regions to disappear, and the non-monotonic nature of
the mean velocity decreases. For T = 0.01 the mean velocity undergoes many singular reductions. For dsep = 3
the greatest observed singular reduction for T = 0.01 occurs at σ2 = 5.844737 ( i.e. lw = 1.155263). It is inter-
esting to note that the non-monotonicity exhibited for dsep = 3, while showing fewer observed singular regions, is
nonetheless more robust to increasing temperature than for dsep = 4.

Particle-particle or particle-wall friction has been evoked to explain the formation of arches in silos and other
situations, however, in the present model solid friction is absent, so it is reasonable to conclude that this effect
is purely geometrical in origin. It must furthermore be noted that there exist some geometries that are critical in
the sense that, at low temperatures, they cause the mean velocity to decrease to zero in a non-smooth fashion,
for example, as seen in Fig. 7.9. Characterising the mean velocity with higher precision data points, at low
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temperature, reveals the presence of multiple values at which the mean velocity approaches zero in a non-smooth
manner. This effect is most prominent at low temperatures. Increasing the temperature, as shown in Fig. 7.9 causes
these singular points to vanish, but the mean non-monotonic behaviour persists for a large range of increasing
temperatures, as shown for the specific case of dsep = 3.

7.2.2 Cascade statistics

This section characterises the intermittent behaviour observed for certain specific values of non-convex geometry
that, at low temperature, result in the singular minima of the mean velocity, as seen in Figs. 7.8 and 7.9. The low
temperature regime was chosen, as it is where the flux displays intermittent dynamics. Avalanche statistics were
monitored for various geometries.

The intermittent dynamics can be best described as a sequence of particle cascades that are blocked during the
inter-cascade times by one of the two blocking mechanisms shown in Fig. 7.7. The cascades are detected by
counting the number of particles that pass a 1D section through the channel between pauses greater than a pre-
defined critical time tc.

Figures 7.10 a - c show cascade statistics for three increasing temperatures, at the geometry corresponding to the
lowest valued minima for Ly = 6 dsep = 3 as shown in Fig. 7.8. The appearance of peaks in the distribution
of cascade sizes that were not present for dsep = 0 ; shown in Fig 7.5, is a striking feature. The lower inset
of each figure shows that the peaks follow exponential distributions, whose exponent increases with temperature.
Furthermore, as for the dsep = 0 case, the distribution of inter-cascade times also follows exponential distributions,
whose exponent decreases with temperature.

T s0 τ0

0.01 5.88 0.11
0.02 9.09 0.06
0.05 33.33 0.05

Table 7.1: Table showing the exponential fit parameters of both the distribution of intercascade times, τ0 and peak
distribution s0, with increasing temperature, T , for Ly = 6, σ2 = 5.844737
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Figure 7.10: Cascade size distribution for σ2 = 5.844737 , Ly = 6, dsep = 3, T ∈ [0.01,0.02,0.05] , tc = 0.1; The
main figures show the distribution of cascade sizes. The inset show the distribution of the cascade peaks, on a
log-linear plot.
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An initial study of the cascade statistics that manifest for Ly = 6, dsep = 3, σ2 = 5.75, show a distribution that is
qualitatively very simlar to that presented in the dsep = 0 case, as shown in Fig. 7.5.

7.2.3 Angular statistics

Distributions of θb are again taken, but for both Type I and II blocking mechanisms, for the specially chosen
geometry studied in Sec 7.2.2, that induced a singular reduction in the system’s global velocity, as well for the
value of σ2 already studied for the original constriction.
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Figure 7.11: Type I distribution: σ2 = 5.844737, Ly = 6, dsep = 3
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Figure 7.12: Type II distribution: σ2 = 5.844737, Ly = 6, dsep = 3
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Figure 7.13: Type I distribution: σ2 = 5.75, Ly = 6, dsep = 3
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Figure 7.14: Type II distribution: σ2 = 5.75, Ly = 6, dsep = 3

The Type I angular distributions are of the same form as already seen for dsep = 0 convex case, after accounting for
possible correlations arising from any particle tailback caused by Type II blockages. In every geometry presented,
increasing the temperature has the repeated effect of spreading the distribution of θb, and reducing its peak value,
with the notable exception at Fig. 7.12 b, where increasing the temperature from T = 0.01 to 0.02, causes the
peak of the distribution to increase three-fold, in an apparent ‘freezing by heating’ phenomenon, this may be a
characteristic only found at the geometries that case the singular reduction in the system’s average velocity.

Every θb distribution shown, displays a single peak with a maximum at θb = 0, with the exception of the Type II
blocking angle distributions at σ2 = 5.75, Ly = 6, dsep = 3. Here, three peaks are observed that clearly correspond
to metastable arch formation induced by the dispersive and focussing elements of the modified constriction, that
nonetheless disappears with increasing temperature.
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CHAPTER

8

DISCUSSION

8.1 Importance of geometrical detail

The clogging phenomena that served as the mechanism leading to the intermittent flow observed in this system, are
clearly of geometrical origin, as there are no inter-particle nor particle-wall frictional force. Decreasing the noise
term caused the appearance of multiple parameter regimes, in which the mean velocity followed a non-monotonic
evolution with constriction width, indicating when closing is more likely to happen. Increasing the contribution
of the stochastic term reduces this likelihood, without eliminating it. The distribution of cascade times were mea-
sured, and shown to be exponential. Increasing the temperature reduced the cascade size, in agreement with [157]
, while also increasing the number of cascade size peaks.

This chapter considered possible geometries in a somewhat course grained manner by, for example, only consid-
ering integer values of dsep. We expect that the observed non-intuitive behaviour is also present for non-integer
values of dsep, though the complex behaviour makes it unlikely that a single universal relation between the con-
striction geometry and observable dynamical features could be easily observed. We have studied particle flow
through single and double constrictions and have identified a novel blocking mechanism that leads to non-intuitive
phenomena such as singular reductions of the mean particle velocity, indicating the presence of strongly intermit-
tent dynamics. While increasing the temperature reduces this effect, some geometries are more ‘robust’ than
others in retaining their intermittent character.

While most studies concerning the formation of arches and other blocking phenomena rely on the presence of
frictional forces, this chapter demonstrates that, even in the absence of said forces, the geometrical detail of the
constriction, especially in the double constriction case, plays a major role in the formation of arches that lead to
intermittent dynamics. This poses the question relating to which geometrical conditions promote the the stability
of the structures, which, as Fig. 7.9 demonstrates, is variable. i.e. Some structures are more likely to persist at
higher temperatures than others.

These results suggest the presence of a geometrical phenomenon that is inverse to that shown by the presence of
an obstacle upstream of the outlet of a flow. The upstream obstacle strongly reduced the occurrence of blockage,
which may reduce or eliminate clogging in silos [43], panic escape [154], and even the flow of sheep [153]. How-
ever, in the work presented here, the introduction of the second pair of obstacles serves to increase the likelihood
of blockage by the creation of spaces within which metastable arches may form.
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8.2 Overview of results

The second part of this thesis studied a single channel permitting the flow of a set of soft 2D disks, of diameter
σ1 = 1, driven through a well defined geometrical narrowing, via Brownian dynamics simulation. The narrowing
was initial defined by the placement of two stationary particles of diameter σ2.

Regions of particle stiffness and channel geometry were identified where the average velocity of the system
behaves non-monotonically, in the low temperature (near-ballistic) regime, signalling conditions for clogging-
induced intermittency. Cascade size and inter-time distributions were collected, and were both shown to follow
exponential distributions. The cascades were then further characterised by counting the number of particles that
pass over a slice of the channel geometry, per unit time. To further understand the source of intermittency, a new
observable was introduced, as the angular distribution of the axis passing through the pair of blocking particles.

The geometrical constriction was then modified to form four overlapping fixed particles, thus creating a boundary
with both dispersive and focussing elements. The system’s global velocity, cascade size and time statistics, and
angular distribution of blocking were again taken, showing parameter values where the system’s average velocity
decreases in a singular fashion, which had not been seen before. The relationship between the non-monotonic
evolution of the average global velocity and some specific channel geometries were also studied under increasing
temperature. Some geometrical regions where consequently shown to have a more ‘robust’ non-monotonic effect
on the system’s average velocity than others. Finally, the distributions of blocking angle, θb, were taken for
specially chosen geometries, that either do, or do not case a singular reduction in the system’s global velocity.

8.3 Outlook

The current Brownian dynamics simulation does not account for the hydrodynamic effect in narrow channels.
A direction for future research might, therefore be, to include the hydrodynamic interactions of a particle in the
system with all the other particles. As our system is geometrically confined, the hydrodynamic interactions of a
particle with its own image, and with the images of the other particles in the system, would have to be included.
This is motivated by observed scattered and bound states of hydrodynamically coupled particles in narrow chan-
nels [158], whose effects have already been explored for Volvox algae colonies (Volvocine algae may be used to
study collective dynamics of self-propelled objects [dancing]).

To include hydrodynamic interactions in a 2D domain, the ‘Ermak McCammon’ scheme [159] could be applied,
where the displacement of the particle’s centre of mass position is given by:

∆Xi(∆t) =
N

∑
j

Di jFj

kbT
∆t +

N

∑
j

∂Di j

∂ r j
∆t +Ri(∆t) (8.1)

Di j is a dN×dN diffusion tensor which couples the N particles and their d translational degrees of freedom, and is
directly applied to external forces. The hydrodynamically correlated random displacements Ri(∆t) are described
by:

< Ri(∆t)>= 0 < Ri(∆t)R j(∆t)>= 2Di j∆t. (8.2)

For N identical circular particles, of radius σ1, choices for the diffusion tensor may either be the Onseen tensor
or the Rotne-Prager-Yamakawa tensors [160]. Ref [161] provides steps towards generalising to both systems of
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particles of differing radii as well as systems of non-circular particles. The work reviewed uses the latter, which
consists of the following d×d submatrices Di j:

Dii =
kbT

6πησ1
I, (8.3)

Di j =
kbT

8πηri j

[
(I +~ri j⊗~ri j)+

2σ2
1

3r2
i j
(I−3~ri j⊗~ri j)

]
i 6= j & ri j ≥ 2σ1. (8.4)

Di j =
kbT

6πησ1

[(
1−

9ri j

32σ1
~ri j

)
I +

3ri j

32σ1
~ri j⊗~ri j

]
i 6= j & ri j < 2σ1. (8.5)

The entire tensor is positive definite for all particle configurations. To obtain the random motion, as presented in
Eq. 8.2, B is defined such that D = BBT . The method employed by Ermack and McCammon applies Cholesky
factorisation to return B as a triangular matrix. The random motion is then resolved as ~R = B~X . Unfortunately,
this results in a computational procedure whose complexity scales as O(N3). Alternative methods proposed a
Chebyshev approximation [162], whose runtime scales as O(N2.5), and a further approximation, that employs the
so called ‘truncated expansion ansatz’, scales as O(N2) [163].
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CHAPTER

9
INTRODUCTION

Figure 9.1: Geometry vs. dynamics [164]. An integrable elliptical billiard (top left and centre) has two types
of regular motion depending on the initial condition, a dispersing diamond (top right) is chaotic, a defocusing
stadium (bottom left) is intermittent, with orbits switching between regular and chaotic motion, and a mushroom
(bottom centre and right) is mixed, with regular or chaotic motion depending on the initial condition. Apart from
the ellipse, all these are constructed from circular arcs and straight lines; many other examples with more subtle
dynamical distinctions exist. Figure courtesy of Carl Dettmann

The third and final part of this thesis will study dynamical chaos arising from a conservative Hamiltonian system,
which, unlike the previous models studied, contains no statistical hypothesis [42]. Despite every aspect of these
sorts of systems being deducible from their laws of evolution, deterministic randomness is nonetheless typical
for a minimal number of degrees of freedom (> 1), and even familiar statistical properties may be recovered in
special ergodic cases [165]. Throughout this thesis, fluctuation has been a key, repeatedly employed, statistical be-
haviour. However, it is well known that chaotic motion is a generator of noise that is purely intrinsic by definition
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of the dynamical system. Examples where chaotic motion is retrieved include perturbed Kepler motion, which is
a particular case of the famous three body problem. The motion of the comet Halley, perturbed by Jupiter, was
found to be chaotic with an estimated lifetime in the solar system of the order of ten million years [166]. Another
example of chaotic dynamics is found in the case of a charged particle confined in an adiabatic magnetic trap [167].

Our goal is to better understand the fundamental connection between geometry and chaotic dynamics, by studying
a 2D billiard. These [168] are Hamiltonian systems in which a point particle freely moves within a compact,
planar, Euclidean domain, whose motion is governed by the Hamiltonian:

H(q, p) =

{
p2/2, q ∈ B/∂B.
∞, q ∈ ∂B.

(9.1)

The speed and mass of the particle can both be assumed to equal unity. The infinite boundary potential causes
every collision to be elastic. Therefore, the component of the momentum projected onto the normal of each point
of contact changes sign, while the tangential component stays constant. The momentum vector, pi+1, after the ith

collision at point qi is:

pi+1 = pi−2[pi · n̂(qi)]n̂(qi). (9.2)

n̂(qi) being the normal of the boundary at each collision. The particle exhibits dynamics that are purely deter-
mined by the interplay between its initial conditions and the boundary. These systems exhibit three behaviours:
1) Regular, i.e. periodic or quasiperiodic orbits, as found in circular [169, 170] elliptic [171] or confocal elliptic
[172] billiards. 2) Ergodic, with orbits that fill the entire phase space, as found in the Sinai [35], Bunimovich sta-
dium [173] and cardioid [174] billiards. 3) Mixed dynamics, i.e. with coexisting regular and irregular trajectories,
as found in the family of limaçon, eccentric annular and mushroom billiards [175, 176].

A billiard phase space is mixed when it contains stable and unstable trajectories. Unstable (chaotic) trajectories
have many interesting and unexpected characteristics, such as the existence of dynamical barriers to chaotic trans-
port [177] and quasiregular chaotic motion near regions of stability, otherwise known as ‘stickiness’ [178–180].
Indeed, there are different varieties of stickiness in billiards that may be distinguished between, as discussed in
[181]. ‘Internal’ stickiness presents in systems with no islands of stability, such as the Bunimovich stadium, or
else are due to the presence of marginally unstable periodic orbits (MUPOs) that are completely contained with-
ing the chaotic sea, such as in mushroom billiards [182]. ‘External’ stickiness, however, arises because of the
existence of the boundaries between regular and chaotic regions. Stickiness results in non-exponential decays of
both the time-correlation functions and Poincaré recurrence distributions [183–186].

The mathematics of billiard systems may be applied to experiments employing both two and three dimensional
geometries that may be either open [169] or closed. Examples include situations where particles or waves are
confined to cavities or other homogeneous regions [169] such as waveguides [187], electrons in semiconductors
confined by electric potentials [188] and atoms interacting with laser beams [189, 190]. Dynamical tunnelling
between classically isolated phase space regions has also been investigated and observed in both desymmetrized
mushroom and eccentric annular superconducting microwave resonators [191, 192].

The behaviour of both closed and open systems is crucially determined by their geometry-dependent classical
dynamics [169]. Escape rates of open billiards is a characteristic that is both experimentally accessible [190] and
important for transport properties of many related systems, such as fractal conductance fluctuations [193, 194].
The billiard setup described may be subject to numerous variations [168], such as including a magnetic field [195],
with strength, B, perpendicular to the plane.
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9.1 Simple systems

Two related, simple, and well-studied systems are reviewed to provide greater detail and context of the concepts
and results presented later.

9.1.1 Circle map

The circle map is the simplest possible 1D dynamical system, given by:

T : θn+1 = θn +Ω, mod 2π. (9.3)

The time evolution of the circle map is characterised by a quotient of numbers such that: Ωn = 2πω1/ω2, that
defines the ‘frequency’ of the system. If rational, i.e. ω1,ω2 ∈ Z+, the orbit closes on itself after a finite number
of iterations, i.e. it is periodic. If irrational, the set of points that defines it, θ ∈ [0,2π], will fill ergodically as time
tends to infinity.

It will be advantageous, at this stage, to distinguish between different categories of irrational number. It is well
known that rational approximations of some irrational frequency are obtained through its continued fraction rep-
resentation [196]:

Ω = a0 +
1

a1 +
1

a2+..

= [a0,a1,a2...], (9.4)

a0,a1,a2.. ∈ Z+ are called partial quotients. Irrational numbers are represented by an infinite sequence of partial
quotients, whereas it is finite for rationals. Numbers can be irrational to different degrees, the highest of which
is the golden mean, represented by a continued fraction whose partial quotients are all equal to 1, which is an
element of the set of noble frequencies, whose partial quotients always end in ones, although the first quotients
may be different.

The simple, but little known, Slater’s theorem [197] states that for any irrational value of Ω/2π , the distribution
of return times, τi, is at most three, and that the largest is the sum of the other two. This property of rotational
quasiperiodic orbits allows for the fast and useful detection of quasiperiodicity from short trajectories. Further-
more, two of the three return times are always consecutive denominators in the continued fraction expression of
the irrational Ω. Slater’s theorem does not impose any requirement on the size of the recurrence interval, provided
that it does not cover the whole trajectory in phase space [186].

9.1.2 Chirikov standard map

The Chirikov standard map is a simple system that presents universal characteristics of generic dynamics when
integrable islands of stability are surrounded by a chaotic sea. Systems reducible to the standard map include
charged particle confinement in mirror magnetic traps [198], particle dynamics in accelerators [199] and even
comet dynamics in the solar system [166, 200]. Its significance is that it serves as a simple model for the Poincaré
first return map of an area-preserving Hamiltonian system with two degrees of freedom. The standard map is
given, with respect to its phase space coordinates (x, p), as:

T :

{ xn+1 = xn + pn+1 [ mod 1], (9.5a)

pn+1 = pn−
k

2π
sin(2πxn) [ mod 1], (9.5b)

where pn+1 replaces the Ω used in the 1D circle map and the subindex, n, is the number of iterations. The non-
linear perturbation parameter, k, is a dimensionless constant that determines the extent to which the, otherwise
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regular, unperturbed circle map displays chaotic dynamics. Due to the periodicity of sin, the dynamics may be
considered as lying on a torus T=C×C, and may be interpreted as the Poincaré section of a periodically kicked
rotor.

The onset of dynamical chaos is due to the destruction of tori (i.e. their cantor-set like transformation to cantori
[201]), with increasing perturbation. As a result, chaotic and regular trajectories intermingle. Kolmogorov-
Arnold-Moser (KAM) surfaces isolate stochastic layers from each other, forming transport barriers from one
region to the other. ( See Appendix B, for a discussion of the role of symmetry breaking in the creation of the
system’s mixed dynamics, and for some example phase portraits.) ‘Converse KAM’ theory states that no invariant
rotational barriers will persist [202, 203] in a sufficiently perturbed area preserving twist map. Some transport
barriers are more resistant than others to perturbation, as has been verified in work that numerically determined
the frequency of the final destroyed invariant transport barrier for the standard map [204]. The obtained frequency
of the final destroyed transport barrier is Ω = γ , where γ is the golden mean (1+

√
5)/2 = [1;1,1,1...], which is

destroyed at k = 0.971635... [205]. The standard map may be given as a composition of two involutions, which
was used to identify periodic orbits. Appendix B examines this decomposition and the repeated application of the
involutions to identify fixed points within the standard map phase space for different values of k.

9.2 Iris Billiard geometry

The Iris Billiard is defined as a central scattering ellipse, with tunable axes, enclosed by a unit circle. When the
ellipse degenerates to a circle, the system is integrable, and the system consequently displays dynamics that are
equivalent to the circle map, introduced in Section 9.1.1.

(b)

(a) (c)

R = 1

θ

β
β

Figure 9.2: The Iris Billiard. (a) Generic configuration: a 6= b (b) Limiting case a = b, which forms an annulus.
(c) Case b = 1, which forms two separate crescents a ∈ (0,1]. Orientation, θ and reflection angle β are shown.

The billiard domain, B ⊂ R2, has a two-part, continuous, boundary. The initial conditions of a given trajectory
are defined by the arc length distance s = θ ∈ (−π,π] along the outer circular boundary, and the initial direction
of motion, described by the angle between the initial velocity and the center-facing normal to the outer boundary,
β ∈ (−π/2,π/2]. At any instant the point particle, mass m= 1, is described by its position, q∈B, and momentum,
|p|= 1.
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9.2.1 Ellipse geometry

An ellipse is the locus of points with cartesian coordinates (x,y) following the equation:

x2

a2 +
y2

b2 = 1. (9.6)

b,a ∈R are, respectively, the semi-major, and minor axes, ( b ∈ (0,1] and a ∈ (0,b] ). If a = b, the ellipse reduces
to a circle. If a = 0, then the ellipse reduces to a line of length 2b. The elongation, e = b/a, is used as a measure
of the degree of the ellipse’s eccentricity, and therefore the degree to which the system’s symmetry is broken.
Rewriting Eq.(9.6) in polar coordinates (ρ,θ) returns:

ρ(θ ,e,a) =
a e√

e2 cos2 θ + sin2
θ

, (9.7)

The symmetry of the ellipse means that for a given geometry, ρ(θ) = ρ(−θ) = ρ(θ±π). When e = 1, the system
is totally symmetric, and integrable, by conservation of angular momentum, and so reduces to the 1D circle map.
For e > 1, the ellipse acts as a non-linear perturbation on the 1D circle map, but much more complex nature than
that applied to the standard map.

9.3 Symbolic representation of Iris dynamics

We represent the dynamics by a course grained partition of the state space, namely collisions with the (inner)
ellipse E and the (outer) circle C. Thereby creating a finite alphabet A = {E,C}. The following diagram shows a
state diagram of the flow of both systems:

    C     EΛc → c  

ΛC → E  

ΛE→ C  

Figure 9.3: Symbolic flow diagram representation of billiard dynamics with finite state space partition.

The resulting symbolic trajectories are a projection (not a substitution) of the true trajectory onto a discrete parti-
tion of the phase space at discrete instants of time. Given the dispersive nature of the inner boundary, ΛE→C = 1
for all geometries, i.e. there are no consecutive Es 1. Two types of trajectory exist: those that never hit the central

1which corresponds to the definition of the Golden Mean vertex shift.
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(a) (b) (c)

Figure 9.4: A selection of regular, circle map, trajectories. a) A periodic orbit with frequency ω1/ω2 = 1/3. b)
A periodic orbit with frequency ω1/ω2 = 2/9. c) A rotational quasiperiodic orbit with frequency ω1/ω2 = 1/

√
2

that would densely fill the annulus if allowed to run for infinite time. All trajectories were generated with 104

collisions, and may be directly associated with the 1D circle map studied in Section 9.1.1.

ellipse and those that do. The first type, illustrated by Fig. 9.4, would be represented as a bi-infinite sequence of
outer circle collisions:

T = [..,ci,ci+1,ci+2,ci+3,ci+4,ci+5,ci+6, ....]. (9.8)

These trajectories correspond to the dynamics already studied for the unperturbed circle map, and, in the quiasiperi-
odic case, are most simply characterised by a β that obeys the following tangency condition:

β ≥ βc = arcsinb. (9.9)

b is the radius of the inaccessible circular region, defined by a caustic edge, as seen in Fig 9.4c . The trajectories
are regular, i.e. either periodic or quasiperiodic, with constant β , and reduce back to the 1D circle map, introduced
in 9.1.1 such that:

θn+1 = θn +Ω mod 2π, with Ω = π−2β . (9.10)

However, if the tangency condition is not satisfied, some rational ω1/ω2 circle map orbits may continue to exist
over a finite range of geometries. A rational ω1/ω2 orbit, where ω1 < ω2, defines a ω2 polygon, whose radius of
intersection of the enclosed caustic formed by its rotation through θ ∈ [0,2π] follows:

rω1,ω2 =

∣∣∣∣cos
(

ω1π

ω2

)∣∣∣∣ . (9.11)

Considering the parametric form of the ellipse, and applying simple geometric arguments returns the following
condition for intersection,
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(a) (b) (c)

Figure 9.5: A selection of orbits that collide with the ellipse. a) a = 0.2,e = 1.05. Perturbed rotational Ω =
1/
√
(5) Quasiperiodic orbit b) a = 0.2,e = 4. Perturbed librational quasiperiodic orbit: launched from initial

conditions: θ = 2.48,β = 0.577. Librational orbits reverse direction, rotational orbits don’t. c) a = 0.2,e = 4.
Chaotic orbit. All trajectories were generated with 104 collisions.

b2 sin2
θ +a2 cos2

θ − r2
ω1,ω2

≥ 0, (9.12)

which is true for all values of θ iff r2
ω1,ω2

≤ a2. Conversely, there are no intersections for any value of θ when
r2

ω1,ω2
≥ b2. In the regime a2 ≤ r2

ω1,ω2
≤ b2, the following must be solved to determine if there’s an intersection:

b2 sin2
θ +a2 cos2

θ − r2
ω1,ω2

= 0, (9.13)

returning:

sin2
θ =

r2
ω1,ω2

−a2

b2−a2 . (9.14)

Therefore the conditions for intersection with the inner ellipse are therefore met by:

|θ −π/2| ≤ arccos

√
r2

ω1,ω2
−a2

b2−a2 , (9.15)

or, by the symmetry of the system,

|θ −3π/2| ≤ arccos

√
r2

ω1,ω2
−a2

b2−a2 , (9.16)

In order for a rational ω1/ω2 orbit to exist, one must avoid intersections for all θ + 2πn/ω2 ∀n ∈ [0, ..,ω2− 1].
Therefore, the following condition must be met:
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arccos

√
r2

ω1,ω2
−a2

b2−a2 <
π

κ(ω2) ω2
, ω2 ∈ {3,4,5...} (9.17)

where:

κ(ω2) = 1+ω2 mod 2. (9.18)

Equation (9.17) may be finally rearranged to give:

b
a
≥ emin =

[
1

cos2(π/κ(ω2) ω2)

(
r2

ω1,ω2

a2 −1

)
+1

]1/2

. (9.19)

fixing ω1 at some value and taking the limit ω2→ ∞ returns, for both cases, the limit:

lim
ω2→∞

emin = 1/a. (9.20)

On the contrary, the maximum value of e, at which a collision must happen follows:

emax = rω1,ω2/a. (9.21)

and so approaches the same limit as emin.

The second type of trajectory that involves collisions with the ellipse which, as illustrated by Fig. 9.5, results in
rotational and librational periodic and quasiperiodic orbits (i.e. β 6= constant) as well as chaotic orbits. Figure
9.5 (b) is an example of a librational orbit. These differ from rotational orbits, shown in Fig. 9.4, and Fig. 9.5 (a)
in that they change direction, which may be interpreted as time reversal. Both rotational and librational orbits are
possible for trajectories that interact with the ellipse. The trajectories shown in Figures 9.5 (a) and (b) may also
be represented by the following different ordered bi-infinite symbolic codes :

T = [..,ci,ei+1,ci+2,ei+3,ci+4,ei+5,ci+6,ei+7,ci+8,ei+9...], (9.22)

and

T = [..,ci,ci+1,ei+2,ci+3,ci+4,ei+5,ci+6,ci+7,ei+8,ci+9...], (9.23)

respectively. A priori it is reasonable to expect that a chaotic orbit, launched at random within the chaotic phase
space, as shown in Fig. 9.5c, will follow a disordered symbolic codification. The following sections show that
there is an uncountable number of ordered sequences that both stable and unstable, periodic or quasiperiodic
trajectories could follow. To better understand how the interaction with the central ellipse may give rise to chaotic
motion, we must first perform a linear stability analysis for the simplest period-two orbits along the axes of
symmetry of the ellipse.

9.4 Linear stability analysis: Geometrical derivation

The main condition for dynamical chaos is a strong local instability of motion, i.e. whether or not the long time
motion is sensitive to minute changes in the initial condition [36]. The initial conditions may be changed in four
ways:
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1) A displacement along the initial direction of the particle’s trajectory, r||.

2) A displacement perpendicular to the initial direction of the particle’s trajectory, r⊥0 .

3) An increase in magnitude of the particle’s initial momentum.

4) A change in direction in the initial momentum, δβ0.

Changes 1 and 3 have no effect on the system as they only serve to displace the particle along its preset trajectory,
or to run through said trajectory at a different velocity, respectively. However, changes 2 and 4 have non-trivial
effects on the overall trajectory. Let

( r⊥
δβ

)
denote the change to a trajectory subject to a change in initial condition

which combines small shifts perpendicular to the trajectory r ⊥0, and shifts in the initial angle β0.

9.4.1 Straight lines

l

𝛿β0

𝛿β

r⊥0

r⊥

Figure 9.6: Initial deviations r⊥0 and δβ0, and final deviations r⊥ and β for a straight line of length l.

Considering a straight line segment of length, l, along this path the perpendicular deviation increases by
limδβ0→0 tanδβ0l→ lδβ0 . r⊥ can be approximated by r⊥0 + lδβ0.

Since in a straight line, the direction never changes, δβ = δβ0. The resulting change to a straight line trajectory
may be finally described in matrix form by:

(
r⊥
δβ

)
= L

(
r⊥0

β0

)
, L≈

(
1 l
0 1

)
(9.24)

This equation is an approximation to the leading order in r⊥0 and δβ0.
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9.4.2 Reflections

γ

β

β

R

β’

β’

R

|r⊥| |r⊥0|

π/2 - β π/2 - β 

Figure 9.7: Initial deviations and final deviations for a reflection on a curve, approximated as a circle of radius R.

We study reflections at a boundary that may be locally approximated by a circle. (The radius of that circle, R, is
the radius of curvature of the boundary at that point). The centre of the circle is assumed to lie outside the billiard,
i.e. it is dispersive. The trajectory is reflected from the circle with an angle of incidence and reflection of β , as
shown in Fig. 9.7. To understand the effect of applying deviations r⊥0 and δβ0 to the trajectory after a reflection,
we compare the original trajectory to a slightly changed path, with angles of incidence and reflection, β ′. The
angle difference between the two trajectories is denoted δβ0 before the reflection, and δβ after. Similarly, the
perpendicular separation before the reflection is denoted r⊥0 ,and r⊥ for after.

As we are only interested in an approximation for small deviations r⊥0 , we are not concerned if this is taken
perpendicular to the original or changed trajectory.

We treat the two reflection points as being close enough to approximate the part of the circle between them by a
straight line.

The two constructed triangles in Fig. 9.7 are, therefore, similar, as they share one side, both contain one right
angle and angle, β . Hence |r⊥0 |= |r⊥|. The directions of the perpendicular deviations are, however, opposite, i.e

r⊥0 =−r⊥. (9.25)

To determine δβ with respect to r⊥0 and δβ0, we must first observe that the line, approximating the distance
between the two reflection points has length r⊥0/cosβ . Therefore, the angle γ in the figure can be approximated
by by

γ ≈ r⊥0

Rcosβ
. (9.26)
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R

𝛿β0

γ/2
γ/2

-𝛿β

2β

2β’

Figure 9.8: Angles involved in a reflection.

In order to relate δβ0, δβ , β , β ′, and γ , we consider Fig. 9.8, where the three points, as marked in Fig. 9.7, are
overlayed. The angle between the two incoming trajectories must be δβ0 by definition. The sign is made positive
as the incoming line of the changed trajectory is further to the left than the original. The angle between the out-
going trajectories is, therefore related to δβ , however a minus sign must be included as the changed trajectory is
now deviated to the right of the original. From Fig. 9.7, we may now write the following relation:

−δβ = β
′− (β − γ), (9.27)

Using that the lower angle β ′ is a sum of δβ0, β and γ

=

β ′︷ ︸︸ ︷
(δβ0 +β + γ)−(β − γ), (9.28)

= δβ0 +2γ, (9.29)

which upon substituting Eq. 9.26 returns:

≈ β0 +
2

Rcosβ
r⊥0 . (9.30)

Finally, writing both Eqs. 9.30 & 9.25 in matrix form allows the description of a resulting change to a reflection,
after an initial deviation, as:
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(
r⊥
δβ

)
= C

(
r⊥0

δβ0

)
, C≈

(
−1 0
−2

Rcosβ
−1

)(
r⊥0

δβ0

)
(9.31)

R is the radius of curvature of the circle that locally approximates the curvature of the boundary (positive if dis-
persive, negative if focusing, ∞ if straight). β is the angle between the incoming trajectory and the normal of the
boundary.

9.4.3 Trajectories with several reflections and straight lines

A trajectory consists of an ensemble of alternating straight lines and reflections. To describe the effect of chang-
ing the initial conditions on the trajectory as a whole, we construct a stability matrix, which is the product of all
the straight line and reflection matrices derived in Sections 9.4.1 & 9.4.2, that make up the entire trajectory of n
straight lines and n reflections:

(
r⊥
δβ

)
= Mn

(
r⊥0

δβ0

)
, Mn =

n

∏

(
1 ln
0 1

)
·
(
−1 0
−2

Rncosβn
−1

)
. (9.32)

From now on, βn describes the angle from the normal of the nth collision with the boundary. As det|L|= det|C|=
1, the determinant of the stability matrix is also equal to 1. Therefore, the eigenvalues of the stability matrix are
related by m1m2 = 1. As Tr(M) = m1 +m2, the following is true:

m1,2 =
1
2

(
Tr(Mn)±

√
Tr(Mn)2−4

)
(9.33)

|Tr(Mn)|< 2: Stable case

The eigenvalues of the stability matrix are complex and conjugate (as are the associated eigenvectors), i.e.

Mnu1 = eiφ u1 (9.34)

Mnu∗1 = e−iφ u∗1 (9.35)

To understand the effect on the total deviation of the trajectory, the initial deviation,
(r⊥0

δβ0

)
, is split into components

along the real and imaginary basis of the eigenvector u1 which are Re(u1), −Im(u1) ∈ R2 respectively, with
components a0 and b0. The initial deviation may now be written as:

a0Re(u1)−b0Im(u1), (9.36)

Rewriting the initial deviation as z0 = a0 + ib0,

= Re(z0)Re(u1)− Im(z0)Im(u1) = Re(z0u1). (9.37)

The deviation at the end of the trajectory may be similarly written as:

aRe(u1)−bIm(u1) = Re(zu1) = MnRe(z0u1) = Re(z0Mnu1). (9.38)
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Applying the eigenvalue equation above therefore shows:

z = eiφ z0, (9.39)

i.e. any initial deviation is rotated in the complex plane, spanned by Re(u1), Im(u1), but neither increases nor
decreases.

|Tr(Mn)|= 2: Marginally stable case

m1,2 =
1
2

Tr(Mn) =±1 (9.40)

The deviation between two slightly displaced trajectories remains the same, or flips signs. This can be found in
many integrable systems, such as the rectangular or circular billiard.

|Tr(Mn)|> 2: Unstable case

Both m1 and m2 take real values, and may be expressed as:

m1 =±eλLL m2 =±e−λLL. (9.41)

L is the length of the trajectory. λL is ‘Lyapunov’s exponent’, which characterises the rate of separation of two
infinitesimally close trajectories. Note, as one of the eigenvalues is the inverse of the other, one will continue to
expand while the other diminishes to zero.

The eigenvalues of the stability matrix Mn, and therefore the properties of the trajectory, depend only upon the
trace of Mn. To obtain the analytical properties of the trajectory, its residue, R, as defined by Greene [205], is
typically used, where:

R =
1
4
(2− trMn). (9.42)

The values of R, determined by the value of trMn, characterise the analytic properties of a trajectory as follows:
R < 0 Hyperbolic
R = 0, Marginally stable
0 < R < 1 Stable.
R > 1 Reflection hyperbolic

(9.43)

Hyperbolic trajectories correspond to Mn having real eigenvalues that are positive (or negative in the reflection
case). They always undergo significant deviation due to the finite limits of numerical precision. Marginally stable
trajectories correspond to eigenvalues of ±1. The stable case yields complex eigenvalues with magnitude unity.
Two stable trajectories, with slightly different initial conditions, undergo a linear deviation over time.

9.5 Stability analysis of period-two orbits

This section will carry out a linear stability analysis on the simplest period-two orbits that make contact with the
ellipse. The stability matrix of a period-two orbit, reflecting off the vertex of the semi-minor axis, a, is:

Ma
2 = La ·C⊥ ·La ·Ea (9.44)

where La is the contribution to the stability matrix arising from a straight line, of length l = 1− a, between the
inner and outer boundary as derived in Section 9.4.1,

La =

(
1 1−a
0 1

)
, (9.45)
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The outer circular boundary is defined as having a negative radius of curvature, as it is focusing (the typical
convention here is opposite to that normally encountered elsewhere). The resulting contribution to the stability
matrix, from Eq. (9.31), is therefore:

C⊥ =

(
−1 0
2 −1

)
, (9.46)

The radius of curvature at the vertice of the minor axis has the largest dispersive radius of value curvature of b2/a.

Ea =

(
−1 0
−2a
b2 −1

)
. (9.47)

Note, that the matrix components reflect that the angle of incidence of the particle on each boundary is zero.

After some calculation, one obtains :

Ma
2 =

 −2(a−1)(2a−1)a
b2 +4a−3 2(a−1)

(
(a−1)a

b2 −1
)

−2(−2a2+a+b2)
b2 1− 2(a−1)a

b2

 (9.48)

with trace:

Tr(Ma
2) =

4b
(
e2−1

)
e3 +

4
e2 −2. (9.49)

where e = b/a. |Tr(Ma
2)| ≤ 2 ∀a,e. Therefore the residue of the orbit always indicates stability (0 < R < 1).

period-two orbit along semi-major axis.

We repeat the above calculation, for a period-two orbit along the semi-major axis (i.e. l = 1− b). The radius of
curvature of the ellipse at the point of contact is a2/b. Upon substitution of the new values, the resulting trace of
the stability matrix is:

Tr(Mb
2) =−4b

(
e2−1

)
+4e2−2. (9.50)

In this case the orbit is always hyperbolic (R < 0), except for when the orbit yields marginal stability (R = 0) in
the limiting cases, a = b and b = 1. (If a = b, i.e. for a circular inner scatterer, all trajectories from every initial
condition are either periodic or quasiperiodic, with conserved angular momentum. If b = 1, the system becomes
two separate crescents). As time tends to infinity, the stable orbit will continue unchanged; while the unstable orbit
will always be knocked off course by inherent numerical imprecision. This important property will be repeatedly
exploited in the following sections.

9.6 Phase space

The phase space is a set of points, each of which fully describes the system. For planar billiard systems it is four
dimensional, (x,y,vx,vy). However, the conservation of energy reduces the dimension by one. It will furthermore
be shown that the complete description of an orbit can be shown using a two-dimensional Poincaré phase section.
The next section will introduce the Birkhoff coordinates [206], (θ ,sin(β )) used to define the section.
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9.6.1 Birkhoff coordinates

A Poincaré section requires a surface that is everywhere transversal to the dynamical flow. The outer circle is
chosen as the surface, so that θ describes where on the circle the collision occurs. Due to the system’s axial
symmetry, it can be restricted to the range θ ∈ (−π/2,π/2]. sinβ ∈ (−1,1) is the momentum component, at
the point of collision, tangential to the boundary. The phase section is created by the repeated application of the
Poincaré first return map, which may be written as f (θn,sinβn)→ (θn+1,sinβn+1). For the Iris Billiard, the ‘twist
condition’ [203], ∂θn+1/∂ sinβn 6= 0, is always satisfied.

9.6.2 Phase section selection

a=0.9, below: e=1.068 above: e=1.070

a=0.5, below: e=1.068 above: e=1.178

a=0.1, below: e=1.320 above: e=1.321

Figure 9.9: A set of complete Poincaré phase sections. Top row: Constant elongation: e = 2, for increasing semi-
minor axis from left to right. Bottom row: Constant semi-minor axis: a = 0.2, for increasing elongation from left
to right.

Fig. 9.9 shows a series of sections constructed by trajectories launched from initial conditions spanning θ ,β ∈
(−π/2,π/2). If the tangency condition, Eq.(9.9), is obeyed, all quasiperiodic trajectories follow the rotational
curves above and below the central mixed region, defined by β = constant. The periodicity in θ makes the phase
section topologically an annulus, S× [−1,1], unlike the torus for the, previously seen, standard map. Lines corre-
sponding to periodic, but from a disjoint set of initial conditions, and rotational quasiperiodic motion shown in Fig.
9.4, smoothly wind around the annulus. These circles are homotopically non-trivial and are known as ‘rotational
circles’. Increasing the elongation of the ellipse, e, until the tangency condition, Eq.(9.9), is just violated, causes
the trajectory to make contact with the ellipse, therefore deforming the orbit’s associated invariant rotational circle
in the phase section. The curves often persist with increasing elongation, as predicted by KAM theory, and there
is, consequently, no flux of trajectories between the regions partitioned by the deformed circle. As the elongation
is further increased the invariant curves are increasingly deformed until a critical value is reached, corresponding
to the quasiperiodic frequency of the deformed curve in question. At this point the curve is destroyed. When
β < βc, the phase section displays mixed dynamics. i.e. it is divided into several invariant components.
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Figure 9.10: 1-4, Successive magnifications of the archipelago seen in the top left of the phase section obtained
for e = 4,a = 0.2. (Figure 9.9, bottom, centre).

The centre of the billiard phase section, i.e. θ = 0,β = 0, or equivalently ±π , is an elliptical fixed point for all
geometries, corresponding to the stable period-two orbit along the semi-minor axis. Sets of concentric, circles,
known as ‘liberational circles’, representing quasiperiodic motion (as seen, for example, in Fig. 9.5b) bifurcate
out of the elliptical period-two orbit, for all geometries, as well as from other geometry-dependent elliptical peri-
odic orbits. It is thought that these curves only cause a limited impediment to the diffusion of chaotic orbits since
they do not encircle the entire annulus [205]. Librational circles occur in concentric sets. The outermost circle
forms the critical boundary of the ‘island of stability’, which can be destroyed by an arbitrarily small perturbation.
The boundaries between the regular and chaotic components of the phase space exhibit scale invariant structures,
as illustrated by Fig. 9.10, in which an island archipelago is magnified indicating where a critical curve used to lie.

The whole phase space can be decomposed into a complicated mixture of domains, with chaotic trajectories co-
existing with regular, or periodic ones. These sub-regions are associated with qualitatively distinct dynamical
properties. In what follows, we will focus on the properties of the chaotic portion of the phase space.



9.6. PHASE SPACE 105

The hyperbolic period-two orbit along the ellipse semi-major axis is always within the chaotic sea, as Eq 9.5
suggests. (The exception to this is when e = 1, i.e. when the system is integrable). Fig. 9.10, provides a deeper
view of the scale invariant structures found between the regular and chaotic components of the phase space. in
which an island archipelago is magnified indicating where a critical curve used to lie. Insets 2-4 clearly show
scale invariant structures that reveal the different dynamics present inside the islands, i.e. quasiperiodic trajecto-
ries enclosing narrow stochastic layers. These island chains create partial barriers to chaotic transport, and are the
source of external stickiness.

As there is no known way to exactly determine the boundaries of the KAM islands, a frequently used method is the
estimation of the, previously introduced, Lyapunov exponents. However, when applied to numerical calculations,
finite time (or ‘local’) Lyapunov exponents can only be applied. However stickiness causes substantial difficulties
[186] in the characterisation of a chaotic orbit, which therefore demands much more computational effort. Chapter
10 therefore introduces different tools that enable the deeper characterisation of stickiness and its relationship with
the system’s geometry.

9.6.3 Fractal dimension of the chaos/order boundary.

The fractal nature of the chaos/order boundary in the billiard system’s phase space is demonstrated. The boundary
is the feature of greatest interest in the system due to the great variety of behaviours associated with the extreme
complexity of this frontier with the regular components of the phase space, as illustrated in Fig. 9.10. To gain
deeper information of its structure within the phase space, the special unstable period-two orbit studied in Section
9.5 is chosen as the initial condition. This initial condition is special as it is always within the largest chaotic
component of phase space for all values of e except e = 1. The total phase space is partitioned into a grid of L×L
cells, where each cell has a side of length ε ∝ 1/L in the y-axis, and rescaled length ε ∝ π/L in the x-direction.
This is equivalent to covering the phase space by L×L (square) L∞ neighbourhoods.

We characterise the chaos/order boundary by considering its box-counting dimension. This is done by defining
NB(ε) as the number of cells needed to cover the chaos border at given value of ε . We understand dimension to
mean how much space a set occupies near each of its points.
The idea of a ‘measurement’ of a set at scale, ε , defined by L∞., is fundamental. For each ε , one measures the set
in a way that detects irregularities of size ∆ε . Ultimately we want to know how these measurements behave as
ε → 0 [207].

Defining the chaos border as the subset, B, for ε > 0, define the smallest number of sets of maximum diameter
ε as NB(ε). The dimension of B reflects the way in which NB(ε) grows as ε → 0. If NB(ε) even approximately
behaves as a power law, i.e.

NB(ε)' c ε
−D, ∀c,D≥ 0 (9.51)

where c is some constant, B is then said to have a ‘box-counting dimension’ D. This is solved via:

logNB(ε)' log(c)−Dlog(ε) (9.52)

∴ D' −logNB(ε)

log(ε)
+

log(c)
log(ε)

(9.53)

alowing us to obtain D, in the limit, as:

D = limε→0
logNB(ε)

log(1/ε)
. (9.54)

The second term disappears in the limit. The chaos border subset, B, is defined as the set of ‘border cells’, i.e. that
have been visited but have at least one ‘empty’ neighbouring cell alongside. The chaotic orbit must have visited
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(a) L = 200 (b) L = 500

Figure 9.11: Plots showing the border cells, outlining the largest chaotic component in the vicinity of the central
stable island for a = 0.9,e = 1.11, for different numbers of grid cells L.

a border cell at least once, meaning that some part of the phase space contained within is the chaotic component.
However, it must be recognised that, in all probability, the whole cell is not filled by the chaotic phase component.

To determine the fractal dimension, grid cells between L = 500 and L = 1500 were used. The length of each
chaotic orbit was 2× 109, to ensure a large number of counts per cell, even for larger values of L. Using short
trajectories to fill the chaotic set results in an anomalous deviation of the border cell count with number of cells
L from the expected power law. This is because the sparsity of points recorded within the chaotic phase por-
tion leads to the misidentification of border cells where, in fact, there are none. The following set of tables show
the power law evolution of the chaos boundary with L, and hence its fractal nature, for a set of different geometries.

e D e D
1.1 1.21±4×10−3 6 1.02±5×10−4

2 1.02±8×10−4 7 1.03±9×10−4

3 1.11±7×10−4 8 1.05±1×10−3

4 1.03±5×10−4 9 1.15±4×10−3

5 1.32±8×10−3 − −

Table 9.1: Table of the evolution of the fractal dimensions for the border of the chaotic component, for a = 0.1.
The error is estimated from the linear regression slope.
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e D e D
1.1 1.13±3×10−3 1.6 1.01±5×10−4

1.2 1.41±5×10−3 1.7 1.23±9×10−3

1.3 1.62±1×10−2 1.8 1.07±7×10−3

1.4 1.30±9×10−3 1.9 1.02±2×10−3

1.5 1.27±1×10−2 − −

Table 9.2: Same as for Table 10.2, but for a = 0.5.

e D e D
1.01 1.003±2×10−4 1.06 1.13±4×10−3

1.02 1.002±2×10−4 1.07 1.92±8×10−3

1.03 1.002±1×10−4 1.08 1.71±1×10−2

1.04 1.002±2×10−4 1.09 1.51±8×10−3

1.05 1.01±1×10−3 1.10 1.47±1×10−2

Table 9.3: Same as for Table 10.2, but for a = 0.9.

The fractal dimension of the chaos/order boundary is always between one and two, which is expected as this set
outlines the fractal codimensional transport barriers confining the explored chaotic portion of the phase space,
and gives a measure for how much the 1D outline ‘fills’ the enclosing 2D space. However, the measured fractal
dimension of the boundary does not follow a simple evolution with increasing elongation e. One striking feature
can be observed for a = 0.9, where the fractal dimension undergoes a pronounced increase between e = 1.06 and
1.07. These power laws allow us to understand that a major cause of fluctuations in the billiard’s chaotic dynamics
is the presence of an infinite structure between the chaotic and regular phase space components.
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CHAPTER

10
DYNAMICAL RECURRENCES IN THE IRIS

BILLIARD

We make predictions and have developed memory. The sun rises every morning, and sets every evening. Birds
seasonally migrate. We roughly guess where a thrown rock might land. Often, these predictions come, not from
the development and evaluation of long, complicated mathematical expressions, but rather, from two crucial facts
[208]:

• similar situations often evolve in similar ways;

• some situations are repeated.

These facts are linked to a certain determinism in real world systems. However, we understand that some deter-
ministic systems, such as the Iris Billiard, may be sensitive to fluctuations at any scale. The smallest perturbation
to an initial condition in the chaotic set can render long term prediction impossible, as examined in the case of the
unstable period-two orbit in the previous chapter. Typical chaotic motion can be regarded as a superposition of an
infinite number of different frequencies with respect to the unstable periodic orbits within the phase space of the
system. Homoclinic orbits were discovered by Henri Poincaré in 1890, in his work addressing the stability of the
solar system. Recurrences were formally introduced as a by-product, and shown to always apply to chaotic motion

However, we now account for recurrence properties, in the sense that the dynamics returns to a state similar to one
already visited. The time between subsequent recurrences to a measurable set, A ∈ X of a measurable dynamical
system is:

τ(A) = min{n > 0 : Tn A∩A 6=∅}. (10.1)

In the following, the previously visited idea of an L∞ ‘ε measure’, is and always will be, used to demark the
measurable set A, within X , the chaotic portion of the billiard phase space explored in the previous section.
Recurrences, and recurrence quantification analysis (RQA), will be applied to better understand the chaotic motion
of the Iris Billiard. The following examines the proof demonstrating this behaviour.

10.1 Poincaré recurrence theorem

Poincaré demonstrated, in 1890 [209], that a conservative dynamical system returns arbitrarily close to its initial
condition an infinite number of times as time tends to infinity [210].

109
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Consider the dynamical system (X ,T ), where X is the compact metric space and T is a homeomorphism of X ,
generating a group {T n,n ∈ Z} of transformations. x ∈ X is recurrent if T nx ∈ A for some n > 0, where A is the
finite measurable neighbourhood of x. Recurrence is treated as a topological property of the individual points
that compose the space. For the system to be measure-preserving, we require a quadruple (X ,B,µ,T ). B is a
σ -algebra of subsets of X , µ is a probability measure in B and T is now a measure-preserving transformation of
(X ,B,µ) 1. For µ(A)≥ 0 A ∈B, and T−1A ∈B with µ(T−1A) = µ(A).

Poincarés recurrence theorem. Let (X ,B,µ,T ) be a measure-preserving set, with µ(X) = 1, and V ∈B with
µ(A)> 0. There exists some point x ∈ A with T nx ∈ A for some n > 0.

Proof. Assume that no point x∈A ever returned to A. Then T−nA∩A=∅ ∀n> 0. ∴ T−nA∩T−mA=∅ whenever
n 6= m. However, this is impossible as by definition the sets T−mV are measure-preserving with µ(A)> 0, and are
not disjoint since µ (

⋃
∞
n=1 T−nA)≤ µ(X) = 1.

It follows, from Poincaré’s theorem, that every point, x ∈ A, with non-zero measure must return to A an arbitrary
number of times as time tends to infinity, i.e, even though nearby trajectories in the chaotic set will deviate
exponentially in a finite time, they must nonetheless return arbitrarily close and evolve in ways similar to before,
an arbitrary number of times, as time approaches infinity [211]. Poincaré’s theorem, however, neither gives an
indication of the frequency with which the orbit of a point visits a given set, nor does it give the rate at which the
point particle will return to an arbitrarily small neighbourhood around its initial condition. A complete answer to
the former is given by Birkhoff’s ergodic theorem. Recurrence Plots allow the quantitative and qualitative study
of the latter recurrence behaviour of dynamical systems [212] by visualising their recurrences in phase space.

10.2 Recurrence plots

Recurrence plots (RPs), introduced in 1980 [208, 212], permit the quantitative and qualitative study of phase
space recurrences. This tool has already been applied in the fields of economy [213], physiology [214], ecology
[215], neuroscience [216] and astrophysics [217]. Although recurrence statistics have been extensively studied in
billiards [177, 180, 185], RPs appear to have only been applied to position recurrences in a two particle billiard
system of an eccentric annular billiard [218]. We will consider time recurrences in the billiard’s phase section.
Poincare’s theorem states that every point with non-zero measure will return to its neighbourhood, after a finite
number of measure preserving transformations, an arbitrary number of times, as time approaches infinity. There-
fore even exponentially deviant chaotic billiard trajectories [219] must, given enough time, return arbitrarily close
to their initial conditions and evolve in ways similar to before, an arbitrary number of times, as time approaches
infinity [211]. Although this theorem gives no indication of the frequency at which recurrences occur, RPs allow
the quantitative and qualitative study of this property [212]. Throughout an orbit of length Ncol , the particle col-
lides with the enclosing circular boundary N◦ times. The time evolution of the points corresponding to a trajectory
in the phase section can be symbolised as: {vi} i = 1...N◦. A state, vj , is defined as recurrent to a former state,
vi, if both are within each others neighbourhood, i.e. a region around each state defined by ε .

The neighbourhood, A, may be defined in different ways. The L∞ norm, originally introduced in Section 9.6.3, is
always applied, which defines a square of length ε with vi at its centre, such that vj is a recurrent state of vi if and
only if the two states lie within the same square region. The value of ε is important. If too small, no recurrences
would be recorded in a finite time. If too big, every point would be recorded as a recurrence of every other point,
leading to artefacts unrelated to the dynamics. Although these artefacts may be analytically determined for simple
periodic and quasiperiodic motions [220], in general they cannot be completely removed by any known means.

1Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable unions and intersections. Let X
be a set. Then a σ -algebra, F is a nonempty collection of subsets of X such that the following hold: 1. X is in F. 2. If A is in F, then so is
the complement of A. (i.e. we partition the collection of sets) 3. If An is a sequence of elements of F, then the union of the Ans is in F.
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We have followed the convention of consistently defining ε as 10% of the width of its corresponding phase com-
ponent [208].

The binary, N◦×N◦, recurrence matrix is defined as:

Ri, j = Θ(ε−||vi−vj ||), i, j = 1...N◦, (10.2)

where Θ(·) is the Heaviside function. RPs are the graphical representation of Ri, j. The value ‘1’, encoded by
a black point, indicates that |vi− vj | < ε . Otherwise, points are blank, representing the value ‘0’. All RPs
will show a diagonal line, i.e. Ri, j = 1 ∀i = j, known as the Line of Identity (LOI). RPs display many patterns
associated with different behaviours. At the small scale, they exhibit single points, diagonal lines and vertical
lines, (the combination of the latter two results in rectangular clusters of recurrence points) [208]. Single, isolated
recurrence points indicate that a state is rare, or only briefly persists. Diagonal lines, running parallel to the LOI,
of length l occur when part of a trajectory runs almost in same phase neighbourhood as a previous portion, for l
segments. Finally, vertical lines indicate time intervals in which a state is either stationary or changes very slowly.

10.2.1 Recurrence plot selection

Recurrence plots of the various dynamics of the Iris Billiard are shown. Applying the L∞ neighbourhood, the
trajectory’s return times τ , as defined by Eq. 10.1, are also shown such that N(τ) is the total distribution of
return times measured over the total trajectory. Figures 10.2 and 10.3 show rotational unperturbed periodic and
quasiperiodic orbits. These orbits can be directly mapped to the 1D circle map. Figs. 10.3 & 10.4 show un-
perturbed and perturbed quasiperiodic orbits respectively. These demonstrate that Slater’s theorem, examined in
Section 9.1.1, applies. Furthermore this provides an effective way to distinguish between rotational quasiperiodic
and chaotic orbits using short trajectories, as has been verified in the case of the standard map [186]. Figure 10.5
shows one RP of an arbitrarily chosen chaotic orbit, where many recurrence times are now present. Variations in
the density and the presence of many white spaces indicate the presence of dynamical transitions. We focus on
the recurrence properties of the chaotic orbits of the Iris Billiard, for different geometries. The next section will
introduce two typically used measures that quantify some of the features observed in the RPs so far presented.
These features will then be applied to the chaotic orbits of the Iris billiard, as sensitive indicators of stickiness.

10.3 Recurrence quantification analysis of chaotic Iris orbits

To study the structures presented by RPs, several measures [221], known as Recurrence Quantification Analysis
(RQA), are already in use. We will focus specifically on two in the context of the chaotic dynamics of the Iris
Billiard. The first measure is the recurrence rate (RR), defined as the percentage of black points in an RP:

RR(ε) =
1

N2

N

∑
i, j=1

Ri, j(ε). (10.3)

This may be better understood as the ‘sparsity’ of the N ×N binary matrix under consideration. In the limit
N→ ∞, RR is the probability that a state recurs to its phase neighbourhood, as demarked by ε .
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i + 1 i + 2 i + l...

j+ 1 j+ 2 j+ l...

 Ɛ

 Ɛ

Figure 10.1: A diagonal line in an RP corresponds with a part of a trajectory (blue) that stays within the ε defined
Ł∞ neighbourhood of another section (red) , for l iterations. The proportions of these present above a minimal
length lmin

Figure 10.2: RP of an unperturbed periodic Ω = 1/10 orbit
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Figure 10.3: RP of an unperturbed quasiperiodic Ω = 1/
√

10 orbit. The distribution of return times shows
τ ∈ [3,16,19]. The return time distribution demonstrates that Slater’s three-gap theorem, introduced with the 1D
circle map, in Sec, 9.1.1 is satisfied.

Figure 10.4: RP of a perturbed rotational quasiperiodic orbit. a = 0.2, e = 1.25. Launched from θ = 0, β = 0.2.
The distribution of return times shows τ ∈ [5,9,14], in accordance with the three-gap theorem.
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Figure 10.5: RP or an arbitarily chosen chaotic orbit. a = 0.2, e = 2. Many recurrence times are now present.

Figure 10.6: RP of a 2×104 long chaotic trajectory, launched from the unstable period-two orbit, for a = 0.9,e =
1.1. RRcrit = 0.1. DEcrit = 0.3. Three separate regions of interest are selected and marked as I, II and III.
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Figure 10.7: Domain I, i ∈ 352,1100: Rotational motion, of different frequencies,

The second measure is based on the distribution of diagonal lines present within the RP:

P(ε, l) =
N

∑
i, j=1

(1−Ri−1, j−1)(1−Ri+l, j+l)
l−1

∏
k=0

Ri+k, j+k (10.4)

Recurrence plots principally show diagonal lines for periodic and quasiperiodic orbits, as shown by Figs 10.2 10.3
,10.4. A diagonal line of length l shows that a segment of a trajectory is close to another segment from a different
time, for l iterations, as illustrated in Fig. 10.1. The trajectory’s determinism (DET), is defined as the percentage
of black points belonging to a diagonal line of at least lmin. The ratio of recurrence points that form a diagonal line,
of at least length lmin, to all the recurrence points, therefore, provides a measure of how deterministic (predictable)
the trajectory is,

DET =
∑

N
l=lmin

lP(ε, l)

∑
N
l=1 lP(ε, l)

. (10.5)

In what follows, lmin = 3. For all periodic orbits DET = 1. To apply these measures as indicators of stickiness
within the billiard dynamics, windows of size lw = 200 will be overlayed the original recurrence plot. RQA will be
applied to each window, and the evolution of the above introduced variables will serve as indicators of dynamical
transitions.

10.3.1 Indicators of stickiness

An example RP applied to a chaotic orbit of length 2× 104 is shown. The measures introduced above are ap-
plied as a particularly sensitive measurement of intra-chaotic dynamical transitions. Fig 10.6 shows the RP of
a long, chaotic orbit for a = 0.9,e = 1.1. The trajectory is then analysed by applying the previously introduced
RQA measures to moving windows of length w = 200. The selected RQA measures (RR & DET ) are monitored
with respect to time. When the chaotic trajectory encounters a sticky region, the RR significantly changes as
its evolution becomes much more regular. Three examples are highlighted in Fig 10.6 as Domains I, II and III.
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Figure 10.8: Domain II, i ∈ 9420,5200: Librational diffusion.

Figure 10.9: Domain III, i ∈ 9400,9540 Short rotational motion.
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Figure 10.10: Recurrence Plots (RPs), visualizing the dynamics resulting from the unstable period-two orbit for
different geometries. a = 0.2 Top left: e = 1.01, where the measure of interest; Nε is indicated, Top right: e = 1.1,
Bottom left: e = 1.2, Bottom right: e = 1.3, for which dynamical transitions, as indicated by the variation of
density of recurrence points, are clearly present.
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Figure 10.11: The ratio of the number of collisions within the initial recurrence phase section region of the
unstable period -two orbit, Nε , to the total number of collisions with the outer circular boundary, N◦, as a function
of the elongation, e. A logarithmic scale is used to show the transition point clearly on each curve. X-axis: The
elongation of the inner scatterer for different values of a, each identified by a color in the legend. In each case,
total trajectory length, Ncol = 104.

These correspond to regions where both RR and DET surpass RRcrit and DETcrit , defined as 0.1 and 0.3 respec-
tively. These values were chosen for the purpose of demonstrating the presence and detection of stickiness for
one specific geometry, and would have to be reevaluated for each different geometry considered. Domain III is of
particular interest as it corresponds a high deviation for only the DET measure, but not for RR. Figs. 10.7 10.8 &
10.9 show the phase occupation of the sticky orbits observed by the RR and DET measures.

While it is clear that further study of recurrence plot features, their associated quantitative measures and their
relation to the billiard geometry would very likely be fruitful, the next section will focus instead on a new measure,
defined by a, until now unconsidered, feature of recurrence plots of chaotic trajectories.

10.3.2 Study of new time measure

We carry out a simple analysis by introducing a new time measure, Nε : The number of collisions with the
outer boundary before the particle, launched from the unstable period two orbit, studied in Section 9.5, exits
its initial L∞,ε-neighbourhood for the first time. RPs of a 103 iteration trajectory, with geometries a = 0.2,
e = 1.01,1.1,1.2,1.3 are illustrated in Fig.10.10. The new time measure of interest manifests as the black box in
the bottom left-hand corner of all four plots in Fig.10.10.

Fig.10.11 shows the evolution of Nε/N◦, for a fixed value of Ncol = 104, for different geometries. For all values
of a considered, as e→ 1, so does Nε/N◦. This is because the initial period -two orbit approaches stability, as
demonstrated in Sec. 9.5, so it always remains in its initial neighbourhood. Similarly, as e→ 1/a, Nε/N◦ again
approaches unity as the period -two orbits approaches stability. This can be expected as, intuitively, as the region
becomes more confined, the distance the particle traverses between each collision approaches zero, meaning that
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a=0.9, below: e=1.068 above: e=1.070

a=0.5, below: e=1.068 above: e=1.178

a=0.1, below: e=1.320 above: e=1.321

a = 0.1 a = 0.5 a = 0.9

a = 0.1 a = 0.9

e = 1.321 e = 1.178 e = 1.069

e = 1.320 e = 1.068

a = 0.5

e = 1.177

(a)                             (b)                             (c)

Figure 10.12: Evolution of ecrit(a) for a ∈ (0,1). Trajectories of length Ncol = 26 were used to obtain each point.
The curve indicates the geometry at which the final rotational curve is destroyed. The subfigures show the phase
section occupation of the long time chaotic trajectory (Ncol = 107 ) for values of geometry just above and below
ecrit (a) a = 0.1, below: e = 1.320 above: e = 1.321. (b) a = 0.5, below: e = 1.178 above: e = 1.179. (c) a = 0.9,
below: e = 1.068 above: e = 1.069.

small deviations from the initial conditions will have an increasingly negligible effect on the orbits stability matrix.

The most important feature of the main plot in Fig. 10.11 is the transition of Nε/N◦ from smooth to rough. This
happens at different values of elongation for each value of semi-minor axis, a. To understand this phenomenon,
recall that the trajectory begins as the unstable period -two orbit, i.e. The particle collides with the boundary at
every other iteration. When e= 1, Nε =N◦=Ncol/2. As e increases, Nε/N◦ smoothly evolves until a critical value
of the elongation, e = ecrit(a). This critical geometry causes a non-zero probability that the particle, having just
collided with the circular outer boundary, will miss the ellipse, and collide again with the outer circle, therefore
breaking the parity condition. The first time this event occurs in a trajectory will be referred to as the ‘endogenous
escape event’, or E for brevity. This must not be confused with the escape events normally studied in open billiard
systems, as the hole through which the particle is escaping in this case is intrinsic to the system’s phase space.
The true value of ecrit depends neither on ε , nor the numerical precision chosen. ecrit(a) is defined as the set of
geometries for which the following is true:

lim
Ncol→∞

(
N◦−

Ncol

2

)
= 1. (10.6)

Due to finite simulation times, any obtained value of ecrit will inevitably be an overestimation. Figure 10.12
shows that ecrit(a) demarks the geometries that permit two classes of behaviour by reconstructing, and including
as insets, the long-term trajectories of the unstable period -two orbit for values below and above ecrit(a). When
e < ecrit(a), the trajectory explores an extended stochastic region that is bounded by a dense rotational KAM
curve/surface. This rotational curve is destroyed at e = ecrit(a), i.e. holes are created which allow the trajectory to
escape its reduced chaotic portion of the phase space after a finite number of iterations. By simple inspection of
Fig. 10.12, the absence of any further similar transitions suggests that for elongations beyond the critical value,
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the chaotic region of the phase space is never again so divided nor reconnected.

Figure 10.13: Heatmap of the reduced chaotic portion of the phase space, prior to global connection, filled by a
2×109 long trajectory launched from the unstable period-two orbit. L = 300, a = 0.9,e = 1.067. All trajectories
launched from any initial condition, within this chaotic set, will obey the symbolic parity condition for all time.

For values of elongation below the critical value, ecrit(a), the trajectories exploring the bounded chaotic region are
clearly still subject to both position and momentum diffusion, yet under the constraint that the point particle will
always alternately collide with the circle (c) and the ellipse (e). In this case, one may symbolize the trajectory, T
as:

T = [..,ei,ci+1,ei+2,ci+3,ei+4,ci+5,ei+6,ci+7....]. (10.7)

For e > ecrit , this constraint no longer applies. The moment this parity condition is broken implies the dynamical
transition has occurred, and is characterized by E , i.e. the first passage of the particle’s trajectory from one major
fractal subset to the rest of the chaotic phase space. In this case, the trajectory may now be symbolized as:

T = [..,cnesc−4,enesc−3,cnesc−2,enesc−1,

E︷ ︸︸ ︷
cnesc ,c, ?? ]. (10.8)

The first, bold, consecutive c represents E by hitting the outer circular boundary twice in a row, which, as before
specified, never occurs when e < ecrit(a). We note that lime→ecrit nesc = ∞. It is not currently possible to predict
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the order of the following c and es following E , though any future work on characterising the average separation
between consecutive endogenous escape events would likely bring some interesting results. The set [E1,E2,E3...],
is defined as the first, second, third, etc. times the trajectory consecutively hits the outer boundary after E .

10.4 Discussion

Figure 10.14: Heatmap of chaotic potion of the phase space post global connection. L = 300, a = 0.9,e = 1.069,
filled by a 2×109 long trajectory launched from the unstable period-two orbit. In this case, all chaotic trajectories,
may diffuse in and out of the region that obeys the parity condition. The closer to the critical geometry one
approaches, from above, the more time passes between the passages between the two dynamical regime. For
values of geometry that approach the critical limit from above, the rate of diffusion lessens.

10.4.1 Chaos-order fractal dimension around critical geometries

The fractal dimension of the chaos/order boundary at values of geometry above and below the critical geometry
values measured by trajectories of length N = 2× 109 are presented. The methods introduced in Sec. 9.6.3 are
employed. We observe a much higher than the average of what was previously measured.
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a e D
0.1 1.317 1.70±1×10−2

0.5 1.175 1.62±2×10−3

0.9 1.067 1.80±7×10−3

Table 10.1: Table the fractal dimensions of the border of the chaotic component, for chosen values under the
critical geometry set.

a e D
0.1 1.321 1.63±1×10−2

0.5 1.178 1.53±3×10−3

0.9 1.069 1.95±1×10−2

Table 10.2: Table of the evolution of the fractal dimensions for the border of the chaotic component, for chosen
values above the critical geometry set.

Both Figs. 10.13 and 10.14 show very clearly the presence of cantori (destroyed remnants of perturbed robust
transport barriers) above and below the critical destroyed barrier, that must correspond to the the remains of pre-
viously destroyed (but nonetheless robust) rotational transport barriers. The marked presence of these structures
is what causes the fractal dimension of the chaos order border for a = 0.9 to be very high, higher than any other
measured, and close to the upper dimensional limit, 2. The effect they have on the dynamics at, and shortly after,
the endogenous escape event will be characterised in the next chapter.

10.4.2 Conclusion

The result presented in Fig. 10.12 is consistent with predictions given by the "Converse KAM" theorem, which
states that no invariant rotational barriers will persist [202, 203] in a sufficiently perturbed area preserving twist
map. In the cases of both the standard map, introduced in Section 9.1.2, and the double pendulum, the obtained
frequency of the ultimately destroyed transport barrier is Ω = γ , where γ is the golden ratio (1+

√
5)/2. The

subfigures within Fig. 10.12 clearly show that the frequencies of the ultimately destroyed rotational transport
barriers correspond to different values of β . Contrary to the result obtained for the transition to global chaos in the
standard map, we therefore expect that each critical value of elongation is directly associated to a different noble
fraction, each defining the frequency of the final destroyed rotational transport barrier. As Ω = γ corresponds to
only one value of β from Eq. 9.10. The evidence suggests a connection between the set of noble numbers and the
critical ellipse geometries, with deep consequences for the global structure of the chaotic phase space. To further
explore this phenomenon, in the context of the system’s symmetries, one would need a Poincaré first return map
which, until now, is unobtainable by any known means. Furthermore, is is well known that analytically tractable
Poincaré first return maps are more the exception than the rule [222, 223].
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11
DISCUSSION

“I wish it need not have happened in my time,” said Frodo.
“So do I,” said Gandalf, “and so do all who live to see such times. But that is not for them to decide.
All we have to decide is what to do with the time that is given us.”
Tolkien.

The values of θ at which the escaping trajectory segment comes closest to the ellipse, denoted θesc, and the
distance of closest approach, dmin are presented. These quantities were obtained by following the argument that,
at the point of E s closest approach, it will lie parallel to the ellipse at the closest point on the ellipse circumference.
These quantities therefore define the space at which the trajectory tangentially intersects some constructed ellipse
that is confocal to the scatterer. It will be demonstrated that values presented below can sometimes be ‘virtual’, in
the sense that the θesc and dmin calculated don’t belong to a part of the trajectory within the billiard domain.

11.1 Study of escape event

11.1.1 Geometric derivation of measured quantities

Figure 11.1: An illustration of the endogenous dynamical escape event, E , of a trajectory launched from the
unstable period-two orbit, that signals the transition to global chaos. The relevant observable variables, θesc and
dmin are indicated. The unit vector of the escape segment, û is also shown.

123
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(a) (b) (c)

r_e1

r_e1

Figure 11.2: Geometrical construction used to obtain θesc and dmin. (a) A ‘real’ case. Where dmin is obtained via
reasoning shown in (b): L2 = û · (r1− re). (c) A ‘virtual’ case, where the escaping trajectory is only parallel to
the ellipse at a constructed point extended beyond the Iris boundary. This situation is most likely for geometries
close to the crescent configuration.

Let û be the unit vector specifying the trajectory. For a non-intersecting trajectory, there is a point of closest
approach on the ellipse, re = (xe,ye), whose tangent is parallel to û. Thus

dy
dx

=−xb2

ya2 =
uy

ux
. (11.1)

Substituting for x in the ellipse equation, returns:

y2 =
b4

(auy/ux)2 +b2 . (11.2)

Since there are two points on the ellipse whose tangents are parallel to û, we obtain two solutions: (xe,ye) and
(xe1,ye1). Applying simple geometric reasoning, as shown in Fig. 11.2, gives the minimum distance of approach
as:

d2
min = |r1− re/e1|2−

[
û · (r1− re/e1)

]2
. (11.3)

The sought after solution is the one that returns the smallest value of dmin, from which one may directly obtain the
associated value of θesc.

11.1.2 Numerical procedure

To ensure that the results presented reflect the global properties of the chaotic region of the phase space, the
Nsample trajectories studied were launched from slightly different initial conditions, within the neighborhood of
the unstable period-two orbit. The starting position on the outer boundary is defined by:

θk = (−)k
π/2+ εθ ηθ (11.4)
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Where 1≤ k ≤ Nsample. The starting orientation is defined by:

βk = εβ ηβ (11.5)

Where εβ = εθ = 10−10 and ηθ , ηβ are random numbers chosen from independent uniform random distributions
between [1−1]. i.e. the starting position for the two unstable orbits with very slight, unbiased variations, which
will cause the trajectories to exponentially deviate over a finite time, and therefore follow very different trajecto-
ries within the reduced chaotic phase space before escaping. All following results displayed only minor variations
upon setting εθ or εβ to zero. Nsample = 106 for each result presented.

11.1.3 Results

The set [E1,E2,E3...], is defined as the first, second, third, etc. times the trajectory consecutively hits the outer
boundary after E . A principal function f (θesc) is defined that describes the distribution of θesc in θ ∈ [−π/2,π/2],
so that we can write the escape angle distribution over the total domain, Ψ(θesc), for all geometries as:

Ψ(θesc) =

{
f (|θesc|) : |θesc| ≤ π/2
f (π−|θesc|) : π > |θesc| ≥ π/2

(11.6)

Figures 11.1.3 and Figure 11.1.3 show the escape angle and the minimum escape distance distributions respec-
tively for E ,E10 and E50, for a = 0.1,e = 1.4. The joint probability distribution of θesc and dmin are thereafter
displayed as heatmaps for E ,E10 and E50 for elongations approaching the ecrit . This may be written as:

Ψ(θesc) =
∫ b−a

0
f (2)(θesc,dmin)d(dmin) (11.7)

where f (2) (θesc,dmin) is the joint probability of observing the dmin,θesc (within some neighbourhood). The fol-
lowing heatmaps were constructed by discretizing the θesc and dmin values for each geometry studied, and plotting
the correspondences between the two values on a 2D histogram. The global heatmaps were made with a resolu-
tion of L×L cells where L = 500. A colorbar is used to count the number of events recorded per ‘cell’, whose
units are given as ‘counts per bin’: cpb. Results for a = 0.1,0.5,0.9 are collected for two values of e above and
approaching ecrit .
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Figure 11.3: f (θesc) for different escape segments.
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Figure 11.4: Distribution of minimum escape for dif-
ferent escape segments.

Survival probabilities before E are presented of which a semi-log linear fit is performed log(Psurvival) = An+B ,
over the domain demarked by the two vertical red dashed lines, using the method of least squares. Both A and B
are given within the figures. nmin is the minimum recorded value before any escape, and so may be thought of as
a deterministic dead time. Each value is given in the figures. No power-law behaviours were observed.
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(a) E

(b) E10

(c) E50

Figure 11.5: Heatmaps of θesc against dmin. a = 0.1,e =
1.4.
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Figure 11.6: Survival probability on semi-log scale.
nmin = 239. a = 0.1,e = 1.4.
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Figure 11.7: Heatmaps of θesc against dmin. a = 0.1,e =
1.321
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Figure 11.8: Survival probability on semi log scale.
nmin = 83759. a = 0.1,e = 1.321.
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(a) E

(b) E10

(c) E50

Figure 11.9: Heatmaps of θesc against dmin. a = 0.5,e =
1.2.
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Figure 11.10: Survival probability on semi log scale.
nmin = 469. a = 0.5,e = 1.2.
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Figure 11.11: Heatmaps of θesc against dmin. a =
0.5,e = 1.178.
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Figure 11.12: Survival probability on semi log scale.
nmin = 52137. a = 0.5,e = 1.178.
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(a) E
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(c) E50

Figure 11.13: Heatmaps of θesc against dmin. a =
0.9,e = 1.1.
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Figure 11.14: Survival probability on semi log scale.
nmin = 495. a = 0.9,e = 1.1.
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Figure 11.15: Heatmaps of θesc against dmin. a =
0.9,e = 1.069.
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Figure 11.16: Survival probability on semi log scale.
nmin = 48891. a = 0.9,e = 1.069.



130 CHAPTER 11. DISCUSSION

Figure 11.17: Closeup of Fig. 11.5a highlighting the consistent ‘merging’ feature, present in most of the above
heatmaps at E .

As it is challenging to fully characterise the forms displayed by the results, we focus on their common properties.
In every case, the distribution of the joint probability distribution, shown by the heatmap of θesc, dmin, at E ,
is unintuitive and even, as for Fig. 11.11a, counter-intuitive. One might expect E to occur when the distance
between the inner and outer boundaries is maximum, i.e. at θesc = 0, yet here it is clearly a minimum. However,
for every geometry, the distributions of θesc and dmin approach those that might be expected intuitively by E50,
i.e. θesc = 0 approaches a maximum. The holes that persist must relate to the structure of the global chaotic
phase space, i.e. any trajectories within them belong to a disjoint set of trajectories within some KAM island.
However, the same cannot be said for the dark bands within the heatmaps at E . A common feature of most of
the heatmaps at E is shown in greater detail within Fig. 11.17, where two distinctive band formations seem to
merge into one. The difference in colour is due to the variation of occupancy within different regions of the escape
variable space, indicating that even within the set of coordinates at which the trajectory may escape, some are,
nonetheless, more likely to be occupied than others. This may be analogous to the stickiness observed within the
usual Poincaré phase sections. For values of e close to the critical value, the survival probability distribution is
exponential. However, for values well above the critical value, the behaviours observed can be broken into two
classes, those that clearly exponentially decrease immediately after nmin, and those that decrease exponentially
after a transitory regime following nmin. For all geometries studied, the prefactor A of the linear semi-log fit of the
survival probability distribution decreases by several orders of magnitude as e approaches ecrit . This is expected
as, during this approach, the probability of escape in a finite time decreases to zero. Section 11.1.4 displays the
joint probability distributions of f (θesc) and nesc.
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11.1.4 Heat maps of θesc vs nesc

The following heatmaps show the distributions of the number of iterations before escape, n, against the distribution
of angles of escape, f (θesc), for the same values of escaping trajectory as before. These results stress the high
sensitivity of the escape event’s dynamics to the billiard geometry. An example is given in Figs. 11.20 (a) and
11.21 (b), where there is only a 2% difference in the elongation. Furthermore, for every case studied, there is a
clear averaging effect on the distribution of the observable as the number of ellipse misses increases, whereas the
statistics of the first escape show bands of non-occupation, that can be related to the structures observed in Sec.
11.1.3.

(a) E

(b) E10

(c) E50

Figure 11.18: Heat maps relating the escape angle θesc

to the number of trajectory iterations at (a) the first es-
cape event (i.e. the first miss), (b) the tenth miss, (c)
the fiftieth miss. The sample was collected from a set of
trajectories launches from the unstable period-two orbit
with slight deviations as given in Eqs. 11.1.2 11.1.2.
Geometry of the system is: a = 0.1,e = 1.4

.

(a) E

(b) E10

(c) E50

Figure 11.19: Same as for Fig. 11.18, but a = 0.1,e =
1.321
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(a) E

(b) E10

(c) E50

Figure 11.20: Same as for Fig. 11.18, but a = 0.5,e =
1.2

(a) E

(b) E10

(c) E50

Figure 11.21: Same as for Fig. 11.18, but a = 0.5,e =
1.178
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(a) E

(b) E10

(c) E50

Figure 11.22: Same as for Fig. 11.18, but a = 0.9,e =
1.1

(a) E

(b) E10

(c) E50

Figure 11.23: Same as for Fig. 11.18, but a = 0.9,e =
1.069
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11.2 Overview of results

The third and final part of this thesis introduced a new 2D billiard system, whose geometry is defined by a unit
circle enclosing a centred ellipse of variable geometry. The trajectory described by a freely moving point particle,
that undergoes elastic collisions at the boundary are distinguished as periodic, quasiperiodic, and chaotic.

In chapter Chapter 9, the geometric conditions for the existence of periodic orbits that are equivalent to the circle
map were identified. It was then demonstrated, by a linear stability analysis that the period-two orbit lying along
the ellipse’s semi-major axis is unstable for all but the totally symmetry geometrical configurations.

The billiards Poincaré phase section was obtained for a range of geometries, and it was demonstrated that the frac-
tal dimension of the chaos-order boundary is always between one and two. No simple relationship was observed,
however, between the evolution of the dimension with elongation.

Chapter 10 explored in greater depth the recurrence properties of the billiard’s chaotic motion, which is a direct
consequence of the universal nature of the chaos/order boundary via recurrence plots. Two associated recurrence
quantification analysis tools, the recurrence rate (RR) and determinism (DET). The two measures were applied
top a long orbit to demonstrate their use as sensitive indicators of stickiness in the Iris Billiard’s chaotic motion.

The study of recurrence plots of the billiard’s chaotic motion, when launched from the unstable periodic orbit
revealed a new time measure, the study of which showed the existence of a set of critical ellipse geometries,
which, in relation to the unit circle surrounding it, indicates whether or not the phase space of the billiard system
undergoes a transition to global chaos, signalled by an ’escape event’ symbolised by Eq. (10.3.2). This result may
prove to be a generalisation of the global chaotic transition observed for the Chirikov standard map, examined in
Section 9.1.2. This conclusion was further reinforced by measuring the fractal dimension of the chaos order, for
very close values of elongation, above and below the critical value.

Finally, joint distributions of the escape angle, and minimum distance to the inner scatterer, as well as for the
escape angle and the number of iterations until the first, tenth and fiftieth escape event were presented. The re-
sulting forms obtained are very rich, and provide a new insight into the dynamical behaviour of the system at the
moments of escape studied.

11.3 Outlook

The Iris billiard’s Hamiltonian is always non-degenerate, i.e. there are no two different values of β that would
map to the same θ , which would manifest as ‘meandering’ transport barriers in the phase space. This situation
would however change, if one were to use the ‘n symmetrical general’ ellipse:

ρn(θ ,a,e) =
a e√

e2 cos2 nθ

2 + sin2 nθ

2

. (11.8)

Various examples are shown in Fig. 11.24, whose symbolic dynamical flow, for all n > 2, in all but the degenerate
cases is shown in Fig: 11.25. These new symmetry configurations may permit a deeper exploration of the rela-
tionship between geometry and symbolic intermittency, which, following the new symbolic flow diagram in Fig.
11.24, that will display a richer variety of symbolic trajectories than those already studied.
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(a) n = 3 (b) n = 7 (c) n = 19 

Figure 11.24: Generalised n symmetrical Iris Billiard. a = 0.2,e = 4.

  C   EG

Λc → c  

ΛC → EG  

ΛEG→ C  

ΛEG → EG  

Figure 11.25: Symbolic flow diagram representation of the Iris Billiard’s dynamics with a generalised n > 3
symmetrical ellipse. The state space is partitioned as before.

For values of n > 2, the central ellipse has both focusing and defocusing parts of the boundary.
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Initial investigations of the 3D version of the Iris Billiard, suggest that an analogous critical geometric property
discussed in this paper persists. It would therefore be natural to carry out a similar characterisation of the 3D
escape event E . It is not clear how to obtain the observable escape features in 3 dimensions by the similar geo-
metrical arguments as employed here.

It would be interesting, and straightforward, to carry out a comparative study on the same phenomena, in the
context of the eccentric annular billiard [218]. If the transition to global chaos is again observed, it would then be
possible to study the Poincaré map, which has already been obtained [218], in order to identify the periodic orbits
that become unstable at the critical perturbation value, via Greene’s residue criterion [205, 224]. Appendix C
studies how the, already obtained, Poincaré map of the annular billiard may be decomposed into two involutions,
as has been done for the standard map in Appendix B. Finally, it would be of great interest to perform super-
conducting microwave resonator experiments, such as those previously used to explore chaos-assisted dynamical
tunnelling [191, 192], with an Iris domain, or its desymmetrized version [191]. These could be carried out, for
precisely machined geometries close to the critical values presented here. Such experiments could facilitate a de-
tailed study of transport between the wave analogues of the parts of phase space that always, sometimes or never
impinge upon the central ellipse.
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12
GENERAL CONCLUSION

This thesis presented three distinct dynamical models of particle flow, each characterised by different parameters
such as temperature, constituent particle size, softness, confining geometry and its carrying capacity, to examine
different conditions for intermittent flow. The first two models exchange matter or energy with their environment,
while the final model is completely isolated.

Part I studied blocking phenomena in 1D channels. Chapter 3, considers a previously introduced model, with
a finite capacity N that, when reached, causes a blockage that lasts for a constant time τb. When not blocked,
a particle transits in a time τ < τb. The irreversible (τb → ∞) and reversible[114] cases were studied. Channel
bundles, each subjected to reversible blocking, with different capacities, were also considered. Chapter 4 extended
the first model by taking the transit and deblocking times, τ and τb, as exponentially distributed random variables
with mean µ and µ∗ respectively. This mathematically simpler circular Markov model, generalizable to arbitrary
N, was applied to both a single channel and bundles of coupled channels. Both models present a maximum in
the stationary flow as a function of entering intensity. Furthermore, it was shown in Chapter 5 that the Markovian
model can be made to display the same steady state behaviour as the non-Markovian model, with an appropriate
mapping between the two models’ parameters. The transient behaviours of the two systems are, however, quite
different. The qualitative similarities in the steady state between the non-Markovian and Markovian models sug-
gest that the details of the channel transport mechanisms and the blockage releases are irrelevant for determining
whether a maximum in the steady state flux will be present. This behaviour can therefore be interpreted as a
universal property of systems with a restricted carrying capacity.

Part II studied a single channel permitting the flow of a set of soft 2D disks driven through a well defined geometri-
cal narrowing. The particles within the channel were subject to repulsive ‘soft-core’ interparticle and particle-wall
forces, as well as a driving force and a stochastic (thermal) contribution. The motivation was to introduce a
statistical physics model of blockage induced intermittency with a small number of parameters. In Chapter 7, re-
gions of particle stiffness and channel geometry were identified where the average velocity of the system behaves
non-monotonically, in the low temperature regime, signalling conditions for intermittency caused by clogging.
Cascade size and inter-time distributions were collected, and were both shown to follow an exponential distri-
bution. The cascades were measured by counting the number of particles that pass over a slice of the channel
geometry, per unit time. The angular distribution of the axis passing through the clogging particles were also col-
lected. The geometrical constriction was then modified to form four overlapping fixed particles, to explore the role
that the resulting competing dispersive and focussing elements play in causing intermittency. The system’s global
velocity, cascade size and time statistics, and angular distribution of blocking were again taken. The relationship
between the non-monotonic evolution of the average global velocity and some specific channel geometries are
shown to be more ‘robust’ to increasing stochastic perturbations (i.e. increasing temperature) than others. This
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robustness determines how likely the dynamics shows intermittency for a given geometry and temperature. The
importance of the system’s geometrical detail, permitting the formation of meta-stable arches in the absence of
friction, was highlighted.

Part III, introduced a new 2D billiard, consisting of a unit circle enclosing a centred ellipse. The trajectories
described by a freely moving point particle undergoing elastic collisions with the boundaries are distinguished as
periodic, quasiperiodic, and chaotic. Chapter 9 identifies the conditions for the existence of orbits equivalent to
the circle map. A linear stability analysis carried out on the period-two orbit lying along the ellipse’s semi-major
axis showed it to be unstable for all but the totally symmetric geometrical configurations. The billiards phase
space was studied, and the fractal dimension of the chaos-order boundary was characterised for a range of ge-
ometries. In Chapter 10, recurrence plots were applied to the billiard’s chaotic motion, and quantifiable variables
were demonstrated to be sensitive indicators of chaotic stickiness. A new time measure was introduced and used
to investigate whether the system can undergo a major global chaos transition. This behaviour was then repre-
sented using a symbolic code, derived from a simple partitioning of the system’s state space. The geometrically
tunable symbolic intermittency signals an endogenous escape event, marked by the first time a chaotic trajectory,
launched from the unstable period-two orbit, hits the outer boundary two consecutive times. Chapter 11 presented
joint distributions of the escape angle, and minimum distance to the inner scatterer, as well as for the escape
angle and the number of iterations until the first, tenth and fiftieth escape event, that display both unintuitive and
counter-intuitive behaviours. Finally, a superconducting microwave resonator experiment, with an Iris domain for
precisely machined geometries for values close above and below the critical values was proposed, for the critical
geometries observed and presented, that would facilitate a detailed study of intermittent chaos-assisted tunnelling
between the wave analogues of the parts of the phase space connected by the transition to global chaos.

This thesis presented different models of particulate flow, exhibiting complex behaviours delicately poised be-
tween order and disorder, as often encountered in real-life situations. Such systems often have critical states,
which in the context of phase transitions, describe sharp changes in its properties upon changing an accessible
control parameter. Many different control parameters were varied. These include, but are not limited to: a rule of
blocking due to a finite capacity, the rigidity of a two-dimensional flow’s components, and finally the symmetry
breaking of the flow’s enclosing geometry. The theme connecting the results produced in pursuit of this thesis is
the suggestion that, for confined particulate flow, the richest dynamical behaviour requires controlling the motile
components and its surrounding space in a way that can be interpreted as the optimal trade-off between robustness
and flexibility.



APPENDIX

A
DERIVATION OF THE MEAN FIRST

PASSAGE TIME TO THE BLOCKED STATE

In Cohen [131] the following formulas can be found for the average first hitting times νi, j of hitting level j, starting
from level i, in a birth-death process with birth rates λn and death rates µn in state n:
For i < j,

νi, j =
j−1

∑
n=i

1
λnπn

n

∑
k=0

πk. (A.1)

For i = j (= average first return time of state j),

νi, j =
∑

∞
k=0 πk

(λ j +µ j)π j
. (A.2)

For i > j,

νi, j =
i−1

∑
n= j

1
λnπn

∞

∑
k=n+1

πk. (A.3)

Here,

π0 = 1, πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
. (A.4)

In the special case of an M/M/∞ queue we have λn = λ and µn = nµ , leading to πn =
λ n

n!µn =
ρn

n! , where ρ = λ/µ .
In this case, we obtain

ν0, j =
j−1

∑
n=0

1
λ

ρn

n!

n

∑
k=0

ρk

k!
=

1
λ

j−1

∑
n=0

n!
n

∑
k=0

ρk−n

k!
. (A.5)

that is Eq. (4.20).

A.0.1 Joint probabilities for irreversible blockage at finite time

In [109] we considered the joint probability that m particles have exited at time t and the system is blocked, which
we denoted as h(m, t). Let us consider the joint probability g(m, t) that m particles have exited the channel at time
t and that the channel is still open. Clearly

m(t) =
∞

∑
k=1

k(g(k, t)+h(k, t)) (A.6)

and f (k, t) introduced in Sec. 3.3 is simply f (k, t) = g(k, t)+h(k, t).
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The time evolution of g(n, t) is given by

dg(0, t)
dt

= −λ

∫ min(t,1)

0
dt1λe−λ t1qs(0, t− t1)−λe−λ qs(0, t−1)

dg(1, t)
dt

= λe−λ qs(0, t−1)−λ

∫ min(t−1,1)

0
dt1λe−λ (t1+1)qs(1, t−1− t1)−λe−2λ qs(1, t−2)

dg(n, t)
dt

= λe−2λ qs(n−1, t−2)−λ

∫ min(t−1,1)

0
dt1λe−λ (t1+1)qs(n, t−1− t1)−λe−2λ qs(n, t−2).

(A.7)

The time derivative of g(n, t) is given as the sum of a gain term and two loss terms. The gain term is the probability
density that the nth particle exits at time t and that the channel is still open. This corresponds to the event where the
nth particle enters at t−1 and that n−1 particles have already exited the channel. The first loss term corresponds
to a particle which blocks the channel at time t knowing that n particles already exited. This means that a particle
is still in the channel at t and a new one entering at time t blocks the channel. The last term corresponds to the
exit of the nth particle at time t with a channel still open. The boundary term for n = 0 does not require a time
lag in the two loss terms because for t > 1 a particle can enter without clogging the channel. A similar argument
applies for n = 1 to the gain term. Defining the Laplace transform as

g̃(u) =
∫

∞

0
dte−utg(t), (A.8)

the differential equations become

ug̃(0,u)−1 =−λ
λ +ue−(λ+u)

λ +u
q̃s(0,u). (A.9)

Knowing that q̃s(0,u) = 1
λ+u , the inverse Laplace transform of g̃(0,u) is

g̃(0,u) =
1
u
− λ

u

(
λ +ue−(λ+u)

(λ +u)2

)
, (A.10)

which gives
g(0, t) = (1+λ t−θ(t−1)λ (t−1))e−λ t . (A.11)

To go further, let us recall that the generating function for h(k, t), Gh(z, t) = ∑k zkh(k, t), is given in Laplace space
by (see [109])

G̃h(z,u) =
λ 2(1− e−(λ+u))

u(λ +u)(u+λ (1− ze−(λ+u))
. (A.12)

Introducing a generating function for g(k, t),Gg(z, t) =∑k zkg(k, t), one can express the number of exiting particles
as

m(t) =
∂Gg

∂ z
(1, t)+

∂Gh

∂ z
(1, t). (A.13)

By combining the differential equations of g(k, t) and h(k, t), one obtains

∂ (Gg(z, t)+Gh(z, t))
∂ t

= (z−1)λe−λ qs(0, t−1)+(z−1)λe−2λ (G(z, t−2)−qs(0, t−2)), (A.14)

where G(z, t) is the generating function of qs(k, t). By taking the Laplace transform of Eq.(A.14), one has

u(G̃g(z,u)+ G̃h(z,u))−1 = (z−1)
λe−(λ+u)

λ +u
+(z−1)λe−2(λ+u)(G̃(z,u)− 1

λ +u
). (A.15)
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Taking the partial derivative of Eq.(A.15) with respect to z and using Eq.(A.13), one obtains

m̃(u) =
1
u

(
λ

λ +u
e−(λ+u)(1− e−(λ+u))+λe−2(λ+u)G̃(1,u)

)
. (A.16)

Let us recall that (see Ref.[109])

G̃(1,u) =
1

λ +u

[
1+

λ

λ +u−λe−(λ+u)

]
. (A.17)

Finally, inserting Eq. (A.17) in Eq. (A.16), the Laplace transform of m(t) is given by

m̃(u) =
λ

u
e−(λ+u)

λ +u−λe−(λ+u)
. (A.18)

Note that Eq. (A.18) can be written as

m̃(u) =
j̃(u)
u

(A.19)

and one now recovers that m(t) =
∫ t

1 dt ′ j(t ′). One also checks that m(∞) = limu→0 um̃(u) = e−λ

1−e−λ
as expected.
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APPENDIX

B
SYMMETRY LINES OF THE STANDARD

MAP

Many thanks to Charles Antoine for this calculation, permitting an insight of the role of the involution structure
of a 2D area preserving map for identifying its periodic orbits.

B.1 Involutions of standard map, and fixed points

T may be written as the composition of two different involutions: T = I1 ◦ I0. I2
0 = I2

1 = I . As a result of the
composition:

T−1 = (I1 ◦ I0)
−1 = I0 ◦ I1 = I0 ◦T◦ I0. (B.1)

New involutions may be generated by following the rule:

Ij = Tj ◦ I0, Ij ◦ Ij = I. (B.2)

We may therefore consider the set of all transformations, Tk, Ij, {k, j} ∈Z which constitutes the following discrete
infinite group [225] :

Tk ◦ Ij = Ij+k, (B.3)

Ij ◦ Ik = Tj−k, (B.4)

Ij ◦Tk = Ij−k. (B.5)

In the linear regime (k = 0), the position inversion operator, I0 is given by:

I0

(
x
p

)
=

(
−1 0
0 1

)(
x
p

)
=

(
−x
p

)
(B.6)

However, as we move beyond the linear regime (k 6= 0), we must instead apply operator notation such that:

I0 :

{ x =−x [ mod 1], (B.7a)

p = p− k
2π

sin(2πx) [ mod 1]. (B.7b)
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Note: once may equally well define a momentum inversion operator, that result from T’s time reversal symmetry,
which would in turn lead to the generation of a different set of involution operators, that will not be considered
here.

A point, r = (x, p) is N periodic of T when N is the smallest integer that satisfies TNr = r. We define a symmetry
line, Γ j , j ∈ Z, as the set of fixed points of the involution Ij, i.e.

Γ j : { r | Ijr = r }. (B.8)

A point, lying on the symmetry is only a fixed point (FP ) if both the x and p components of the involution under
study satisfy (B.8), i.e. one condition is contained within the other. Upon re-examining Eq.(B.4), we can therefore
expect that any point of intersection of the symmetry lines Γi, Γ j, resulting from the set of fixed points of Ii, Ij
will be a periodic point. Eqs: (B.3) & (B.5) show that a symmetry line is transformed by TN or IN onto other
symmetry lines [223].

The symmetry lines are fundamental to the structure of the mixed dynamics of the standard map, as they can be
used to determine the system’s periodic orbits that form the ‘skeleton’ of the phase space. These periodic orbits
are determined by the set of fixed points of the set of involution operators that are generated by the above rules.

B.1.1 FP of I0

We introduce a new variable, g ∈ Z, to help us account for fixed points within the toroidal structure of the phase
space. It is important to note at this point that every value of g considered for each condition must be seen as a
seperate variable. Applying Eq:(B.8) to Eq (B.7a) returns:

2x = g ∈ Z. (B.9)

As x ∈ [0,1], therefore g = {0,1,2}. The values of x that correspond to the fixed points are therefore x =
{0,1/2,1}. Considering the fixed point behavior derived from Eq (B.7b) gives:

− k
2π

sin(2πx) = g ∈ Z, (B.10)

Setting g = 0 returns the previously obtained x = {0,1/2,1}. Otherwise setting |g|> 0 gives:

sin(2πx) =±2πg
k

(B.11)

which only returns solutions ∀k > 2π|g|, otherwise, condition (B.7b) returns no solutions. Therefore, the fixed
points of I0, for k ≤ 1 are : (

0
p

)
,

(
1/2

p

)
,

(
1
p

)
, ∀p. (B.12)

B.2 Definition & FP of I1.

Applying the rule given by Eq:(B.2) to I0, and some simplification returns :

I1 :
{

x =−x+ p [ mod 1], (B.13a)

p = p [ mod 1]. (B.13b)
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We immediately see that Eq (B.13b) gives no conditions. Considering Eq (B.13a) and following the same proce-
dure as in Sec B.1.1, returns:

pg−2x = g ∈ Z | 0≤ x≤ 1, 0≤ pg ≤ 1 ∴ −2≤ pg−2x≤ 1. (B.14)

Therefore, the permitted values of g within the above bounds are {1,0,−1,−2}. Setting p as subject returns the
following four lines of fixed points of I1, ∀k 6= 0 :(

x
2x+1

)
,

(
x

2x

)
,

(
x

2x−1

)
,

(
x

2x−2

)
. (B.15)

B.3 Definition & FP of I−1

To understand how to obtain inverse involutions, we again consider the decomposition of the standard map:

T = I1 ◦ I0, (B.16)

whose inverse may be obtained, as shown in (B.1) by:

T−1 = (I1 ◦ I0)
−1 = I0

−1 ◦ I1
−1 = I0 ◦ I1. (B.17)

The final term follows from the intrinsic characteristics of involutes. We can therefore define the inverse of the
first involute by:

I−1 = T−1 ◦ I0 = I0 ◦
T︷ ︸︸ ︷

I1 ◦ I0 = I0 ◦T. (B.18)

Applying the inverse of the first involute to some pair of co-ordinates (x, p) returns:

I−1 ◦
(

x
p

)
= I0 ◦

(
T◦
(

x
p

))
= I0 ◦

(
x+ p− k

2π
sin(2πx)→ x′

p− sin(2πx)→ p′

)
=

(
−x′

p′− k
2π

sin(2πx′).

)
(B.19)

therefore:

I−1 ◦
(

x
p

)
=

(
−(x+ p)+ k

2π
sin(2πx)

p− k
2π

sin(2πx)− k
2π

sinAx,p

)
. (B.20)

where:

Ax,p = 2π

(
x+ p− k

2π
sin(2πx)

)
. (B.21)

Considering Eq B.20 returns:

I−1 :


x =−(x+ p)+

k
2π

sin(2πx) [ mod 1], (B.22a)

p = p− k
2π

sin(2πx)− k
2π

sinAx,p [ mod 1]. (B.22b)

Condition (B.22a) may be rewritten as:

2x+ pg−
k

2π
sin(2πx) = g ∈ Z. (B.23)
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Reconsidering the limits imposed on x, p ∈ [0,1] returns the possible values of g = {0,1,2,3} ∀k ≤ 2. Further
increasing k widens in both directions the set of possible values of g. Within the range 0≤ k ≤ 2, we obtain four
lines of fixed points by setting pg as the subject:

(
x

−2x+ k
2π

sin(2πx),

)
,

(
x

1−2x+ k
2π

sin(2πx),

)
,

(
x

2−2x+ k
2π

sin(2πx),

)
,

(
x

3−2x+ k
2π

sin(2πx).

)
.

(B.24)
We now consider condition (B.22b) which returns:

sin(2πx)+ sin(2π(x+ p)− k sin(2πx)) =
2π

k
g g ∈ Z. (B.25)

in the limit k < 1, the only possible solution corresponds to g = 0, which, by considering the arguments of both
left hand sin terms, returns the following possible solutions:

x+ pg−
k

2π
sin(2πx) =−x [mod1], (B.26)

= x+1/2 [mod1]. (B.27)

Eq (B.26) returns the same condition as (B.22a), whose four fixed points were obtained. Simplifying condition
(B.27) returns:

pg−
(

1
2
+

k
2π

sin(2πx)
)
= g ∈ Z. (B.28)

therefore, g ∈ [−1/2− k/(2π),1/2+ k/(2π)]. Therefore, for k < π , g = 0, giving:

p0 =
1
2
+

k
2π

sin(2πx) (B.29)

which gives the points satisfied by both (B.22b) & (B.22a).

B.4 Definition & FP of I2

Following the rule given by Eq. (B.2) , the re-application of the standard map operator,I2 = T◦ I1, returns :

I2 :


x =−x+2p− k

2π
sinXx,p [ mod 1], (B.30a)

p = p− k
2π

sinXx,p [ mod 1]. (B.30b)

where

Xx,p = 2π(p− x), (B.31)

Considering the fixed point of Eq. B.30a returns:

2(p− x)− k
2π

sinXx,p = 2(p− x)− k
2π

sin(2π(p− x)) = g ∈ Z. (B.32)

for k < 2π , g ∈ {−2,−1,0,1,2}, therefore returning a set of five implicit equations given by.

pg = x+
g
2
+

1
4π

sin(2π(pg− x)) , g ∈ {−2,−1,0,1,2}. (B.33)
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However, we now take advantage of the fact that any equation of the form :

α = β sinα, (B.34)

presents only one root, α = 0, given |β | ≤ 1. More than one roots are present for greater values of β . We
accordingly re-arrange the system of equations given by B.33 as:

2π(pg− x−g/2) = (−)g k
2

sin(2π(pg− x−g/2)), g ∈ {−2,−1,0,1,2}. (B.35)

Where both the (−)g term and the −g/2 in the argument of the right hand sine term are introduced, which the
periodic and anti-symmetric nature of the sine function permits. We therefore retrieve the form of Eq. B.34,
which, given k < 2, returns roots satisfying:

α/(2π) = pg− x−g/2 = 0. (B.36)

i.e.

pg = x+g/2, g ∈ {−2,−1,0,1,2}. (B.37)

therefore returning the following five lines of fixed points of I2.(
x

x−1

)
,

(
x

x−1/2

)
,

(
x
x

)
,

(
x

x+1/2

)
,

(
x

x+1

)
. (B.38)

We now consider the fixed points obtained from condition (B.30b) which returns:

sin(2π(p− x)) =
2πg

k
, g ∈ Z. (B.39)

which as similarly seen in section B.1.1, will only return solutions for g = 0 for sufficiently small k. Under this
condition, reconsidering the term within the left hand sin argument gives:

2(p− x)︸ ︷︷ ︸
∈[−1,1]

= 0 [mod1]. (B.40)

therefore returning the same condition as in B.37.

B.4.1 Definition & FP of I−2

We construct I−2 by reapplying the rule given by (B.2) on to I−1:

I−2 = T−1 ◦ I−1 = T−2 ◦ I0. (B.41)

Therefore:

I−2 ◦
(

x
p

)
= I0 ◦ I1 ◦ I−1 ◦

(
x
p

)
(B.42)

We have already studied the application of I−1 to r = (x, p), and so we reuse the result here to give:

I−2 ◦
(

x
p

)
= I0 ◦ I1 ◦

(
−(x+ p)+ k

2π
sin(2πx)→ x′

p− k
2π

sin(2πx)− k
2π

sinAx,p→ p′

)
, (B.43)

We can finally write the application of the second inverse involution as:

I−2 ◦
(

x
p

)
= I0 ◦ I1 ◦

(
x′

p′

)
= I0 ◦

(
p′− x′

p′

)
=

(
x′− p′

p′− k
2π

sin(2π(p′− x′))

)
. (B.44)
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Which, upon re-substitution of x′ and p′ returns:

I−2 ◦
(

x
p

)
=

(
−(x+2p)+ k

π
sin(2πx)+ k

2π
sinAx,p

p− k
2π

sin(2πx)− k
2π

sinAx,p +
k

2π
sinBx,p

)
. (B.45)

Where

Bx,p = 2π

(
x+2p− k

2π
sin(2πx)− k

2π
sinAx,p

)
. (B.46)

To find the FP, the following is considered:

I−2 :


x =−(x+2p)+

k
π

sin(2πx)+
k

2π
sinAx,p [ mod 1], (B.47a)

p = p− k
2π

sin(2πx)− k
2π

sinAx,p +
k

2π
sinBx,p [ mod 1] . (B.47b)

Considering the fixed points of Eq B.47a returns:

2x+2p− k
π

sin(2πx)− k
2π

sinAx,p = g ∈ Z. (B.48)

which for small enough k < 2π/3, gives g ∈ [0,1,2,3,4]. We now search for the fixed points in a similar way as
for I2 by retrieving an equation of form (B.34) by the following re-arrangement:

2π

(
x+ p− k

2π
sin(2πx)− g

2

)
=

k
2

sinAx,p =
k
2

sin
(

2π

(
x+ p− k

2π
sin(2πx)

))
. (B.49)

As before, we introduce a new variable, αg such that:

αg = 2π

(
x+ p− k

2π
sin(2πx)− g

2

)
. (B.50)

which substituting into Eq. B.49 gives:

αg =
k
2

sin(αg±πg) = (−)g k
2

sin(αg). (B.51)

which ∀g , |k| < 2 only permits one solution, αg = 0. We can therefore determine the five solutions to condition
(B.47a) :

pg =
k

2π
sin(2πx)+

g
2
− x, g ∈ {0,1,2,3,4}. (B.52)

Considering the fixed points of Eq. (B.47b) returns:

sin(2πx)+ sinAx,p + sinBx,p =
2πg

k
, g ∈ Z. (B.53)

Therefore g ∈ [−3k/2π,3k/2π]. Meaning, that ∀k < 2π/3, g = 0.

The true fixed points of I−2 are those that satisfy both (B.54) & (B.52). As (B.54) with (B.49) shows that sinAx,p =
0, which upon substitution to (B.52) which in turn is resubstituted into (B.52) returns:

sin(2πx)+0+ sin

2π

g−x︷ ︸︸ ︷(
x+2p− k

2π
sin(2πx)

)= sin(2πx)− sin(2πx) = 0. (B.54)

Therefore (B.54) provides the fixed points of I−2.
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B.5 Definition & FP of I3

We will once more apply the standard map operator to return I3 = T◦ I2, giving:

I3 :


x =−x+3p− k

π
sinXx,p−

k
2π

sinYx,p [ mod 1], (B.55a)

p = p− k
2π

sinXx,p−
k

2π
sinYx,p [ mod 1], (B.55b)

where

Yx,p = 2π

(
−x+2p− k

2π
sinXx,p

)
. (B.56)

Re-arranging Eg (B.55a) gives:

2x−3p+
k
π

sinXx,p +
k

2π
sinYx,p = g ∈ Z. (B.57)

returns the limits of g as g ∈ [−2− 3k
2π
,3+ 3k

2π
], therefore giving five values of g ∈ [−2,−1,0,1,2,3] in turn defin-

ing five lines of fixed points that must be implicitly solved.

Note: In the limit k = 0, these FP lines follow:

pg =
2
3

x+
g
3
, g ∈ {−2,−1,0,1,2,3}. (B.58)

We now consider (B.55b) , which re-arranging returns:

k
π
(sinXx,p + sinYx,p) = g ∈ Z (B.59)

Therefore, the range of values within which g may lie is ∈ [−k/π,k/π]. i.e. for small values of k, g = 0. Re-
arranging returns:

−Xx,p = Yx,p [mod 2π], (B.60)

= π−Yx,p [mod 2π]. (B.61)

Unpacking Xx,p & Yx,p in (B.60) and re-arranging returns:

3p−2x+
k

2π
sin(2π(p− x)) = g ∈ Z. (B.62)

returning the limits of g as g ∈ [−2− k/2π,3+ k/2π], which therefore ∀k < 2π returns g ∈ {−2,−1,0,1,2,3}
and so rearranging we obtain the following six FP lines:

pg(x) =
2x+g

3
− k

6π
sin(2π(pg(x)− x)) =

2x+g
3
− k

6π
sinXx,pg g ∈ {−2,−1,0,1,2,3}. (B.63)

Returning condition(B.62) into (B.55a) (as well as considering (B.60) ) returns g = g , showing that the results are
satisfied by both conditions.
We may also Unpack Xx,p & Yx,p in (B.61) which returns:

p− 1
2
− k

2π
sin(2π(p− x)) = g ∈ Z (B.64)
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returning the limits of g as g ∈ [−1
2 −

k
2π
, 1

2 +
k

2π
] which when considering again small values of k < 2π gives

g = 0 as the only possible solution. We therefore obtain one more FP line:

p0(x) =
1
2
+

k
2π

sin(2π(p0(x)− x)) =
1
2
+

k
2π

sin(Xx,p0). (B.65)

We can finally give all FP of I3 as the implicit equation given by (B.63), which will be numerically plotted. The
condition given by Eq. (B.65) is not included as it is not included in (B.60).

B.6 Graphics of analytical symmetry lines
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Figure B.1: k = 0.0, Symmetry lines : → I0 → I1 → I−1 → I2 → I−2 → I3
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Figure B.2: k = 0.25, Symmetry lines : → I0 → I1 → I−1 → I2 → I−2 → I3
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Figure B.3: k = 0.5, Symmetry lines : → I0 → I1 → I−1 → I2 → I−2 → I3
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Figure B.4: k = 0.97, Symmetry lines : → I0 → I1 → I−1 → I2 → I−2 → I3



APPENDIX

C
ECCENTRIC ANNULAR BILLIARD

POINCARÉ MAP

Many thanks to Charles Antoine for this calculation, permitting a first step for applying the involution structure of
a first return map of the 2D eccentric annular billiard, for identifying its periodic orbits.

The Eccentric Annular billiard, like the Iris billiard, is composed of a two part boundary. An outer circle, and an
inner curve that in both cases, reduces to a centred annulus at the symmetric integrable limit. Chaotic dynamics is
introduced in both systems but making the system pass from having only one centred geometric focus, to many.
In the case of of the iris billiard, for e > 1, the number of foci is three. One central focus for the outer circle, and
two foci corresponding to the ellipse. In the case of the eccentric annular billiard however, there are two. One,
again for the outer circle, and the other corresponding to the displaced inner circle, at distance d from the origin
along the axis of displacement. In both cases, the use of d > 0 or e > 1 serve a role analogous to that of k > 0 in
the standard map, in that it causes the onset of chaotic dynamics.

Figure C.1: Schema of eccentric annular billiard system. (a) showing {..O,O..} dynamic. (b) showing
{..O,I,O..} dynamic. Source: Ref. [218].

The annular billiard, like the Iris billiard, displays two types of dynamics when undergoing a first return to the
outer boundary, O. Either a direct transition O→ O, or with an intermediate collision with the inner scatter:

153
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O→ I→ O. The latter is considered, whose Poincaré map is given by:

Pn :
{

αn+1 = sin−1(r sinβ −d sin(2β +θn−αn)), (C.1a)

θn+1 = 2β +θn−αn−αn+1. (C.1b)

where

β = sin−1
[

1
r
{sinαn−d sin(θn−αn)}

]
. (C.2)

Here we use the notation as in Ref [218].

C.1 Theory for obtaining billiard periodic orbits

Given a billiard map P, & a time reversal symmetry T involution such that:

T−1 ◦P◦T = P−1 (C.3)

under the condition that T2 = I. The curves of fixed points (FP) of Pn ◦T return the periodic orbits of P. If
r = (α,θ) is a FP of both Pn ◦T & Pm ◦T, m 6= n, r is therefore a FP of Pn−m

Proof.
Pn−m ◦ r = Pn ◦P−m ◦ r = Pn ◦ T−1︸︷︷︸

=T

◦Pm ◦T◦ r = (Pn ◦T)◦ (Pm ◦T)◦ r (C.4)

therefore Pn−m ◦ r = r since Pn ◦ r = r and Pm ◦ r = r.

We now consider the case of two different time reversal symmetries, under the involution condition T1 & T2 s.t.
T1

2 = T2
2 = I. Recall, we now can write:

P−1 = T1
−1 ◦P◦T1 = T2

−1 ◦P◦T2. (C.5)

The intersection of FP lines of Pn ◦T1 & Pm ◦T2 give the 2(n−m) period orbits of P.

Proof. Given that Pn ◦T1 ◦ r = r & Pm ◦T2 ◦ r = r:

Pn ◦T1 ◦Pm︸ ︷︷ ︸
P−m◦T1

◦T2 ◦ r = r. (C.6)

therefore:

Pn−m ◦T1 ◦T2 ◦ r = r. (C.7)

Which means that the double application of (C.8) therefore returns:(
Pn−m ◦T1 ◦T2

)
◦
(
Pn−m ◦T1 ◦T2

)
◦ r = r. (C.8)

We then respectively apply T2 ◦Pn−m = Pm−n ◦T2 followed by T1 ◦Pm−n = Pm−n ◦T1 to return:

P2(n−m) ◦ (T1 ◦T2)
2 ◦ r = P2(n−m) ◦ r = r. (C.9)

Where the final manipulation was made possible by the fact that T′ = T1 ◦T2 may be squared to return T′2 = I.



C.2. SYMMETRY CONSIDERATIONS 155

C.2 Symmetry considerations

We follow the reasoning employed in (CITE: Symbolic Dynamics and Periodic Orbits for the Cardioid Billiard).
The time symmetry properties of the billiard dynamics along with its spatial symmetry leads to symmetry classes
of orbits.

The time reversal symmetry T is given by:

T(α,θ) :
{

αn+1 =−αn (C.10a)

θn+1 = θn. (C.10b)

The eccentric annular billiard also has a reflection symmetry with respect to the x axis, X.

X(α,θ) :
{

αn+1 = αn, (C.11a)

θn+1 =−θn. (C.11b)

NOTE: Extra symmetry of Iris billiard.

The Iris billiard contains yet an extra symmetry with respect to the y axis, that may be expressed as

Y(α,θ) :
{

αn+1 =−αn, (C.12a)

θn+1 = θn−π. (C.12b)

To identify the periodic orbits of interest, X, Y and T must be involutions, i.e. X2 = Y2 = T2 = I.

C.3 Verification of involution properties

The double application of the time inversion operator T returns us to the original vector, i.e:

T2 ◦
(

α

θ

)
= T◦

(
−α

θ

)
=

(
α

θ

)
=⇒ T2 = I. (C.13)

similarly for X:

X2 ◦
(

α

θ

)
= X◦

(
α

−θ

)
=

(
α

θ

)
=⇒ X2 = I. (C.14)

We now pose the question if X−1 ◦Pn ◦X ?
= P−1

n s.t. P−1
n ◦Pn = I. We first consider:

Pn ◦X
(

αn

θn

)
= Pn ◦

(
αn

−θn

)
=

(
sin−1 (r sinβ ′−d sin(2β ′−θn−αn))→ α ′

2β ′−θn−αn−α ′→ θ ′

)
, (C.15)

where β ′ is defined as:

β
′ = sin−1

[
1
r
{sinαn +d sin(θn +αn)}

]
. (C.16)

We may now write:

P−1
n ◦

(
αn

θn

)
?
= X−1︸︷︷︸

X

◦Pn ◦X◦
(

αn

θn

)
= X◦

(
α ′

θ ′

)
=

(
α ′

−θ ′

)
(C.17)
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which we now verify is indeed the inverse Poincaré map by calculating:

Pn ◦P−1
n ◦

(
αn

θn

)
= Pn ◦

(
α ′

−θ ′

)
=

(
sin−1 (r sinβX −d sin(2βX −θ ′−α ′))→ αX

2βX −θ ′−α ′−αX → θX

)
(C.18)

where βX is defined as for β ′ (C.16) but with θn→ θ ′ and αn→ α ′. We may say that βX = β ′ [π].

We now focus on the αX term which returns:

αX = sin−1

 sinβX=sinβ ′︷ ︸︸ ︷
sinαn +d sin(αn +θn)+d sin(α ′+θ

′−2

β ′︷︸︸︷
βX )︸ ︷︷ ︸

α ′+θ ′−2β ′=−θn−αn

 (C.19)

= sin−1 (sinαn +d sin(αn +θn)−d sin(αn +θn)) = αn. (C.20)

Focusing on the θX term returns:

θX =

θn+αn︷ ︸︸ ︷
2 βX︸︷︷︸

β ′

−θ
′−α

′−αn = θn. (C.21)

Therefore demonstrating that Pn ◦P−1
n = I.

We may also similarly pose the question if T−1 ◦Pn ◦T ?
= P−1

n such that Pn ◦P−1
n = I. We consider:

Pn ◦T
(

αn

θn

)
= Pn ◦

(
−αn

θn

)
=

(
sin−1 (r sinβ ′′−d sin(2β ′′+θn +αn))→ α ′′

2β ′′+θn +αn−α ′′→ θ ′′

)
, (C.22)

where β ′′ is defined as:

β
′′ =−sin−1

[
1
r
{sinαn +d sin(θn +αn)}

]
. (C.23)

We may now write:

P−1
n ◦

(
αn

θn

)
?
= T−1︸︷︷︸

T

◦Pn ◦T◦
(

αn

θn

)
= T◦

(
α ′′

θ ′′

)
=

(
−α ′′

θ ′′

)
(C.24)

which we also verify is indeed the inverse Poincaré map by calculating:

Pn ◦P−1
n ◦

(
αn

θn

)
= Pn ◦

(
−α ′′

θ ′′

)
=

(
sin−1 (r sinβT −d sin(2βT +θ ′′+α ′′))→ αT

2βT +θ ′′+α ′′−αT → θT

)
(C.25)

where βT is defined as for β ′′ (C.23) but with θn→ θ ′′ and αn→ α ′′. Expanding and simplifying βT returns:

βT = sin−1

1
r

d sin(β ′′−θn−αn)− r sinβ
′′)−d sin(

θ ′′︷ ︸︸ ︷
2β
′′+θn +αn−α

′′−

−α ′′︷ ︸︸ ︷
sin−1(d sin(β ′′+θn +αn)− r sinβ

′′) )




(C.26)

= sin−1
(

1
r

(
d sin(β ′′−θn−αn)− r sinβ

′′)−d sin(2β
′′+θn +αn )

) )
=−β

′′ (C.27)



C.3. VERIFICATION OF INVOLUTION PROPERTIES 157

We may say that βT =−β ′′ [π]. We now focus on αT to obtain:

αT = sin−1 (−r sinβ
′′−d sin(−2β

′′+2β
′′+θn +αn−α

′′+α
′′)
)
= sin−1

 sinαn︷ ︸︸ ︷
−r sinβ

′′−d sin(θn +αn)

= αn.

(C.28)
where the last manipulation comes from Eq. (C.23). We now consider θT

θT =−2β
′′+

θ ′′︷ ︸︸ ︷
2β
′′+θn +αn−α

′′+α
′′− αT︸︷︷︸

αn

= θn. (C.29)

Therefore demonstrating that Pn ◦P−1
n = I.
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Sujet : Modélisations d’écoulement intermittent

Résumé :
Les écoulements de particules sont au cœur d’un grand nombre de phénomènes physiques régulables
et ce sur plusieurs échelles de taille : le déplacements des piétons, le flux des ions dans des canaux
et le transfert d’informations pour n’en citer que quelques uns. Ces phénomènes sont d’autant plus
intéréssants que la variation de certains paramètres peuvent entrainer une myriade de comportements
intéréssants et imprévus, et notamment exhiber des phénomènes de flux intermitents.

Cette thèse présente et analyse trois modèles distincts qui peuvent être utilisés pour décrire ces
phénomènes :

1) Nous présentons d’abord une modélisation des flux de particules dans d’abord dans un canal uni-
dimensionnel, puis dans des groupes de canaux couplés ou non, en considérant dans tout ces cas que
chaque canal à une occupation maximale. La dynamique aléatoire de ces modèles est étudiée en utilisant
des outils de la théorie des queues et une technique de régénération.

2) Nous étudions ensuite le flux de particules de taille finies et molles qui se déplacent dans un canal
bidimensionnel avec une simple ou double contrainte et qui se déplacent par dynamique browinienne.
Nous observions dans ce cas là que des conditions spécifiques mènent à des phénomènes d’intermittence
du flux de particules, liée à l’apparition de structures metastables. L’origine géométrique de ces effets est
particulierement étudiée et caractérisée dans le régime ballistique.

3) Nous finissons par une analyse du Billard Iris, un système qui consiste en une particule point qui bouge
librement, confinée dans un disque de taille unitaire qui contient une ellipse qui limite son mouvement.
Ce système est d’abord étudié numériquement puis analytiquement dans les cas spécifiques ou l’éllipse
mène à des trajectoires intégrables analytiquement. Par exemple, dans le cas limite ou l’ellipse devient
un cercle, le sytème est intégrable, mais dans les autres cas, une dynamique mixte apparaît entre un
comportement analytique et un régime chaotique. Une analyse par diagramme de récurrence du régime
chaotique est utilisée pour identifier les géométries critiques qui mènent à des dynamiques complètement
chaotiques.



Subject : Models of Intermittent Particle Flow

Abstract:
Particle flows underlie many regulatable phenomena at multiple length scales, such as pedestrian traffic,
ion channel flux and information flow. Tuning the system parameters produces a myriad of interesting
and unexpected behaviour, notably intermittent dynamics. This thesis presents and analyses three distinct
models systems motivated by these phenomena:

1) Analytical models of particulate flow through 1D single channels, as well as coupled and uncoupled
channel bundles, with a limited carrying capacity. The stochastic dynamics is studied using queuing
theory and regeneration techniques.

2) Finite sized, soft particles driven through a 2D channel, with a single or double constriction are
studied using overdamped brownian dynamics simulation. Special conditions for intermittency, related
to the formation of metastable structures, are observed. The geometrical origin of the effects are further
explored and characterised in the near-ballistic regime.

3) The Iris Billiard, consisting of a freely moving point particle confined by a unit circle enclosing a
central scattering ellipse in 2D is investigated numerically. When the ellipse degenerates to a circle, the
system is integrable, otherwise it displays mixed dynamics. Recurrence analysis of the chaotic regime is
applied to identify critical geometries that signal a transition to global chaos.
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