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Models of Intermittent Particle Flow

article flows underlie many phenomena, at multiple length scales, such as pedestrian and vehicular traffic, granular and macromolecular transport, and gaseous motion. It is often desirable to predict and control how they depend on the characteristics of their confining space. This thesis will study different models of particulate flow: those that exchange matter and energy with an external environment, and those that don't. The exchange with an external environment may be manifested by particle arrival and exit, or by the presence stochasticity. Properties of the system, such as temperature, constituent particle size, softness, the confining geometry or its capacity, will be modified to study the various conditions for which the flow may be irreversibly stopped, continuously varied, or made intermittent. Intermittency can be initially understood as an irregular change of state with time, the presence and consequences of which, are described in the next section.

Motivation

.

. For example, the pharmaceutical industry relies heavily on the processing of powders and pills. In agriculture and the food processing industry, sugar, salt and seeds are three obvious examples of granular materials which are transported 1 Part I Stochastic models of blocking phenomena 5 CHAPTER 2

and manipulated in bulk. The reliance of so many industries upon the transportation and storage of granular matter accentuates the importance of understanding how it behaves under manipulation. Tumblers are, perhaps the most common granular processing devices, used for mixing [START_REF] Shinbrot | Nonequilibrium patterns in granular mixing and segregation[END_REF]. These are hollow rotating vessels that are partially filled with granular material, producing a circulating flow. Tumblers exhibit many behaviours, including avalanche, slumping, rolling, cascading and centrifuging [START_REF] Zablotny | Movement of charge in rotary kilns[END_REF]. Snapshots at every half (or quarter) rotation of tumbler flow show chaotic motion, as applied to half filled circular, elliptical and square tumblers [START_REF] Hill | Mixing of granular materials: a test-bed dynamical system for pattern formation[END_REF]. Early studies of linear discharge of granular matter from silos showed that significant changes in the flow over a well chosen range of opening diameter [START_REF] Beverloo | The flow of granular solids through orifices[END_REF]. Later it was realised that the clogging phenomena result from the formation of arches spanning the orifice [START_REF] Hong | Molecular dynamics simulations of hard sphere granular particles[END_REF][START_REF] To | Jamming of granular flow in a twodimensional hopper[END_REF][START_REF] Janda | Clogging of granular materials in narrow vertical pipes discharged at constant velocity[END_REF]. Ref [START_REF] Hidalgo | Flow of colloidal suspensions through small orifices[END_REF] observed that intermittent flow regimes precede clogging events in work studying the flow of colloidal suspensions through small orifices. Particle jamming has been long appreciated as an underlying mechanism for unpredictable behaviours in the fields of mechanical and chemical engineering. There are estimations that 40% [START_REF] Ennis | The legacy of neglect in the us[END_REF][START_REF] Knowlton | The importance of storage, transfer, and collection[END_REF] of the capacity of many industrial plants is wasted because of problems related to the transport of these materials. Even a modest improvement in the understanding of granular matter flows has the potential to yield significant economic benefits, and more importantly, better coffee machines. Driven granular matter, where the constituents are rendered motile by, for example, gravity or a global vibration of the container, can exhibit both solid-like and liquid-like phases. The description of the latter has been the subject of much debate [START_REF] De Gennes | Granular matter: a tentative view[END_REF] because of marked deviations from established fluid flow principles, resulting from bridging and jamming phenomena caused by forces between particles neighbouring each other and the enclosing walls [START_REF] Franklin | Flow of granular material through a circular orifice[END_REF].

Colloidal systems display similar jamming, or blocking, phenomena. Examples include: filtration processes [START_REF] Schwartz | Particle filtration in consolidated granular systems[END_REF], the transit of macromolecules through artificial or biological channels [START_REF] Sharp | On flow-blocking particle structures in microtubes[END_REF] [START_REF] Berezhkovskii | Single-file transport of water molecules through a carbon nanotube[END_REF] and many other instances in the wider field of nanofluidics [START_REF] Eijkel | Nanofluidics: what is it and what can we expect from it?[END_REF] [START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF]. Biological microswimmers produce dipolar fluid flows by the combined action of their flagella and the cell body on the fluid. These are described as either 'pusher' or 'puller' stresslets in the far field domain, which corresponds to the flagella being located behind or in front of the cell body respectively [START_REF] Drescher | Direct measurement of the flow field around swimming microorganisms[END_REF]. Such groups of swimming micro-organisms undergo a complex interplay with the surrounding fluid, which in turn can reorient and advect them. These may be related to geometrical induced turbulence for mixing processes as observed in micro-fluidic channels [START_REF] Wioland | Directed collective motion of bacteria under channel confinement[END_REF].

Our aim is to understand the effects of geometrical confinement on flows, and how it fundamentally changes dynamical properties by the limitation of the configuration space accessible to the flow's components. Ref [START_REF] Yang | Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels[END_REF] has also shown that as the channel width shrinks toward the diameter of the particles, the magnitude of any hydrodynamic effect caused by the presence of a medium becomes comparable to the entropic effect. The chaotic dynamics of many, finitely sized, elastic, microscopic particles, has, historically formed the basis of explaining fluid motion [START_REF] Bernoulli | Hydrodynamica[END_REF]. This description, in the low density limit, led in 1872, to the famous non-linear Boltzmann equation [START_REF] Boltzmann | Weitere studien über das wärmegleichgewicht unter gasmolekülen[END_REF]. In 1905 the Lorentz gas was introduced to describe the evolution of a dilute electron gas in a metal [START_REF] Lorentz | Le mouvement des électrons dans les métaux[END_REF], where the heavier atoms were assumed to be fixed. Like Boltzmann, Lorentz assumed that the particles could be modelled by elastic spheres. The Lorentz gas consists of a point particle freely moving except for reflections from an infinite collection of scatterers, and remains one of the iconic models of chaotic diffusion, for both random and periodic scatterer configurations. Apart from its unbounded domain, the Lorentz gas presents dynamics identical to 2D mathematical billiards [START_REF] Dettmann | Diffusion in the lorentz gas[END_REF], which provide an understanding of the fundamental role the confining geometry plays in causing non-linear intermittent phenomena. Billiards provide a deep insight into the foundations of statistical physics [START_REF] Dettmann | Diffusion in the lorentz gas[END_REF] such as the limits of ergodicity [35,[START_REF] Berry | Regular and irregular motion[END_REF], and may also help to explain phenomena observed in Tokamak physics [START_REF] Birkhoff | On the periodic motions of dynamical systems[END_REF][START_REF] Portela | Tokamak magnetic field lines described by simple maps[END_REF][START_REF] Oliveira | On the dynamical properties of an elliptical-oval billiard with static boundary[END_REF]. Furthermore, the correspondence principle [START_REF] Haake | Quantum signatures of chaos[END_REF] demands that classical phase structures must have an equivalent in the semi-classical (short wavelength) regime [START_REF]Regular and irregular spectra[END_REF].

Dynamical systems

The various models studied in this thesis all fall under the umbrella of 'dynamical systems'. In the following, we introduce some basic ideas to help appreciate the differences between the models studied. Dynamical systems evolve with time, in some dynamical space, that is fully determined by a given interaction and the initial condi-tions. One way to describe the motion of the system is by a smoothly evolving function that is the solution of the following equation of motion, ∂ t x d (t) = f (x d (t)).

(1.1) f : R d → R d assigns a rule of evolution, f (x(t)), to each d-dimensional vector x d (t), whose variables may be chosen to describe some physical system at time t ∈ R. The vector components, [x 1 (t), x 2 (t), x 3 (t)...x d (t)], form the system's state space, whose time evolution is a trajectory or orbit. The number of variables chosen to represent the physical system, d, denotes the number of degrees of freedom, associated with the dynamical system, and so the dimension of its state space. When the state space is continuous we refer to it as the phase space. Projecting the trajectory onto a discrete partition of the phase space at discrete instants of time, replaces t with n ∈ Z. We therefore go from the motion of differential equations to difference equations by assigning a mapping T : R d → R d such that:

x d n+1 = T • x d n .
(1.2)

In addition to it being possible to express the time evolution laws in continuously or iteratively, the state space on which the laws acts may be also discrete or continuous. An ideal coin toss might be modelled by the evolution of a state occupying one element by a state space consisting of only d = 2 states, heads and tails, [π H (t), π T (t)], where π i (t) = 0.5 ∀i ∈ [H, T ] is the probability that the system is in either state at time t. In the context of probability, this set of all possible outcomes is referred to as the sample space S, and a single realisation of an experiment is an event. Once the dynamical evolution law is known, it must be applied many times to determine the entirety of the future accessible states.

Dynamical systems are strictly deterministic if, having specified an initial state x 0 , the trajectory may be uniquely determined n steps in the future as x n = T n • x 0 n ∈ Z. They are stochastic if there is a probability distribution of outcomes (e.g. for every initial state, the ideal coin toss has two outcomes with equal probability). Initially we will consider simple deterministic versus stochastic systems. We then examine a deterministic billiard that displays chaotic behaviour. Dynamical chaos may be characterised in terms of either individual trajectories or trajectory ensembles. Almost all chaotic trajectories are complicated in the sense that they are unpredictable from observations of any preceding motion [START_REF] Chirikov | Natural laws and human prediction[END_REF].

A final, yet important, distinction to make when classifying dynamical systems depends on the preservation of the state/phase space volume. They may be categorised as:

• Dissipative systems The volume of the state/phase space contracts with increasing time. These are normally characterised by the presence of attracting sets within the phase space.

• Conservative systems The state/phase space constrains the motion, and its volume does not vary in time. As a result, these systems do not possess, what are normally understood as, 'attractors'. Non-integrable Hamiltonian systems contain coexisting periodic, quasiperiodic and chaotic orbits.

Dissipative systems contain an approximation [START_REF] Chirikov | Natural laws and human prediction[END_REF] of a complicated interaction with some heat bath, that inevitably leads to random noise, from the fluctuation-dissipation theorem. Conservative systems are therefore necessarily closed, i.e. decoupled from the environment, for both matter and energy exchange, consistent with the absence of any random parameters or noise in the evolution laws.

Thesis overview

This thesis presents and analyses three distinct model dynamical systems, with the guiding thread of identifying various conditions of intermittent flow.

1. 1D models of particulate flow through single and multiple coupled and uncoupled channel bundles, with a limited carrying capacity. Different rules of blocking are used, and the transient and steady state dynamics are analytically and numerically studied.

2. Finite sized, soft particles driven through a 2D channel with a single or double constriction, are studied using overdamped Brownian dynamics simulation. Special conditions for intermittency, related to the formation of metastable structures, are observed. The geometrical origin of the effects are further explored and characterised in the near-ballistic regime.

3. The Iris Billiard, consisting of a freely moving point particle confined by a unit circle enclosing a central scattering ellipse in 2D is investigated numerically. When the ellipse degenerates to a circle, the system is integrable, otherwise it displays mixed dynamics. Recurrence analysis of the chaotic regime is applied to identify critical geometries that signal whether a transition to global chaos is possible. The transition can be associated with a symbolic intermittency via a simple partition of the billiard's state space.

INTRODUCTION

Particle transport in confined channel geometries is a non-equilibrium phenomenon that may arise for various reasons: pressure differences at each end of the channel, contact with a reservoir full of chemically distinct particles, external driving forces acting on the system's components, or the particulate components being active. The most interesting and relevant observable characteristic of this sort of channel based system is its flux, i.e. its particulate throughput. The flux's behaviour depends on both the inter-particle interaction and the properties of the confining space.

The first part of this thesis considers flows of particles through 1D channels that are characterised by a limited carrying capacity, applicable over a range of length scales [START_REF] Zuriguel | Silo clogging reduction by the presence of an obstacle[END_REF]. Carrying capacities present an impediment to transport. Once a channel's capacity is reached, it becomes blocked, i.e. the flow is stopped, no more particles may enter or exit. The blockage is reversible if the flow resumes after a finite amount of time and, given a constant entering flux, a steady state with alternating open and blocked states will eventually be reached [START_REF] Barré | Stochastic model of single-file flow with reversible blockage[END_REF]. In the absence of blockage, increasing the intensity of incoming particles leads to a proportionate increase in the throughput, or rate of exiting particles. When the system is subject to blockage, increasing the input intensity increases the probability of blockage, which therefore disrupts the throughput. Thus, it is expected that, under certain conditions, the throughput will be maximised for some finite intensity of entering particles.

Flux constraints often occur when it is necessary to overcome some 'limiting final step' before fully passing through the system in question. For example, when one must pay for items in a shop by passing by a checkout before leaving. If too many people arrive at once, a queue forms. Queuing theory has long been used to analyse service operations performed on units arriving according to a given distribution [START_REF] Hunt | Sequential arrays of waiting lines[END_REF][START_REF] Medhi | Stochastic models in queueing theory[END_REF]. Traditional applications of this branch of mathematics include industrial engineering, telecommunications and traffic flow. More recently, queuing theory has been used in biophysics to model enzymatic servers [START_REF] Cookson | Queueing up for enzymatic processing: correlated signaling through coupled degradation[END_REF] and will be applied here in Chapter 4.

Bundles of parallel particle conveying channels, each of limited capacity and therefore subject to blockage, will also be considered. If the blockage is irreversible, the failure of one channel results in an increased load on the remaining open channels. This can trigger a cascade, ultimately leading to a complete breakdown of the system [START_REF] Watts | A simple model of global cascades on random networks[END_REF][START_REF] Crucitti | Model for cascading failures in complex networks[END_REF][START_REF] Zhao | Cascading failures in interconnected networks with dynamical redistribution of loads[END_REF]. An analogous phenomenon of multiple failures can be observed in the exertion of an external force on textile fibres. The fibre bundle model (FBM) [START_REF] Kim | Universality class of the fiber bundle model on complex networks[END_REF][START_REF] Peirce | 32-x.-tensile tests for cotton yarns v.-"the weakest link" theorems on the strength of long and of composite specimens[END_REF][START_REF] Daniels | The statistical theory of the strength of bundles of threads. i[END_REF][START_REF] Coleman | On the strength of classical fibres and fibre bundles[END_REF] consists of a number of parallel threads subjected to an applied load. If the load on a single thread exceeds its threshold, the thread breaks and the global load is then redistributed over the remaining intact threads [START_REF] Pradhan | Failure processes in elastic fiber bundles[END_REF], with the attendant possibility of the material tearing. Selfhealing materials [START_REF] Hager | Self-healing materials[END_REF] are examples of multilayer network structures which have local finite storage capacities. When an overload occurs in a node of the network, this leads to a local failure and the network is able to rebuild a new local node. To describe these phenomena, Manfredi et al. [START_REF] Manfredi | Mobility and congestion in dynamical multilayer networks with finite storage capacity[END_REF] proposed a stochastic model showing that the 7 Figure 2.1: A fragile stone forest bridge optimal performance is reached via complex trade-offs between physical parameters. This feature can be viewed as analogous to the 'slower-is-faster' phenomenon [START_REF] Gershenson | When slower is faster[END_REF], also present in pedestrian traffic flows [START_REF] Garcimartín | Flow of pedestrians through narrow doors with different competitiveness[END_REF][START_REF] Nicolas | Pedestrian flows through a narrow doorway: effect of individual behaviours on the global flow and microscopic dynamics[END_REF]. Further examples include blackouts in power distribution networks that are generally preceded by a cascade of failures resulting from local overloads [START_REF] Dobson | A loading-dependent model of probabilistic cascading failure[END_REF]. Earthquakes [START_REF] Sornette | Mean-field solution of a blockspring model of earthquakes[END_REF][START_REF] Newman | An exact renormalization model for earthquakes and material failure statics and dynamics[END_REF], vehicular traffic jams [START_REF] Chakrabarti | A fiber bundle model of traffic jams[END_REF], network traffic jams [START_REF] Ezaki | Taming macroscopic jamming in transportation networks[END_REF][START_REF] Daganzo | Macroscopic relations of urban traffic variables: bifurcations, multivaluedness and instability[END_REF][START_REF] Gayah | Clockwise hysteresis loops in the macroscopic fundamental diagram: an effect of network instability[END_REF][START_REF] Ji | On the spatial partitioning of urban transportation networks[END_REF], material fractures [START_REF] Mishnaevsky | Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: a review[END_REF][START_REF] Raischel | Failure process of a bundle of plastic fibers[END_REF] and internet attacks (DoS) [START_REF] Bhunia | Stochastic model for cognitive radio networks under jamming attacks and honeypotbased prevention[END_REF] all exhibit similar features.

2.1 Scenarios of controlled particle flux

Unstable forest bridge at crossroads

A couple explore a path in a mountain forest. They encounter a wide, rapid creek, with a single stone arch as a bridge to the other side. Sensing that the arch would collapse under too much weight, they carefully cross one after the other. The time before re-embarking together on the other side of the bridge is longer than it would have been for a lone walker. In the 'irreversible' scenario, the couple, in a rush, attempt to walk the bridge together, and fall off. This passage has a carrying capacity, N = 2, that must not be reached to ensure the normal functioning of the passage.

Much later, two lone walkers, following separate paths meet at the same bridge, within a small enough time interval, ∆t, to impede each other's passage. Not being in a rush, after crossing they choose to take time to discuss about the weather and share a drink before parting ways, all of which results in a longer shared time of passage than would have been had ∆t been sufficiently large to allow each to pass without impediment.

(a) (b)

Figure 2.2: (a) A view of the arches formed by dry grains, all with the same characteristics, of a sieve at the end of a filtration test [START_REF] Roussel | General probabilistic approach to the filtration process[END_REF]. (b) A model of filtration. In the first (top) scenario, the particles arrive with enough space between them to pass the filter. Whereas in the second scenario (bottom) they arrive close enough to each other to create a blockage at the filter.

Granular filtration

One of the main blockage phenomena found in a range of physical situations, whether in everyday life, engineering or the environment, is filtration. A flow of a heterogeneous mixture in suspension passes through a sieve, a porous structure that allows certain particles to be filtered out. Filtration is widely used to purify fluids or to separate particle species in microfluidics, nanofluidics or chromatography. Filtration is a technique that can be used in the fields of food processing, pharmaceuticals. It can also be found directly in nature, for example: when fine sediments accumulate in gravel bed streams, in wastewater treatment using sand [START_REF] Edwards | Adsorptive filtration using coated sand: a new approach for treatment of metal-bearing wastes[END_REF] or in aquaculture, where the water is filtered by oysters or other bivalves [START_REF] Jones | Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study[END_REF]. Filtration can be done via two different processes, screening or absorption both of which block objects whose size is smaller than the pore [START_REF] Goldsztein | Suspension extraction through an opening before clogging[END_REF][START_REF] Roussel | Physical phenomena involved in flows of fresh cementitious materials[END_REF][START_REF] Veylon | Performance of geotextile filters after 18 years' service in drainage trenches[END_REF]. Blocking phenomena were experimentally explored by Roussel et al. with a flow of monodisperse glass beads suspended in a viscoelastic gel [START_REF] Roussel | General probabilistic approach to the filtration process[END_REF] through a sieve. This was studied by analysing the fraction of balls retained as a function of the ratio between their diameter and mesh size as well as the density of balls in the gel. This fraction was found to be non-zero even for values of particle diameter smaller than the pore width, as shown in Fig 2.2a. A simple interpretation of this phenomenon comes by recognising that, if two particles arrive with a separation less than a critical value y c , then they block the mesh. Assuming that all balls fall at the same speed, we can then define a critical time, τ, which must separate their arrival, below which they will block.

This type of blockage is also found in granular flows of a two-dimensional hopper flow [START_REF] To | Jamming of granular flow in a twodimensional hopper[END_REF] or in granular material inside narrow vertical tubes [START_REF] Zuriguel | Silo clogging reduction by the presence of an obstacle[END_REF], for example an hourglass [START_REF] Morita | Oocyte apoptosis: like sand through an hourglass[END_REF]. The latter experiment consists of flowing granular material along narrow tubes that extract and reinsert the material at a constant ratio.

Ion microchannels

Many biological processes involve blocking phenomena, which determine whether bacteria, or ions, pass through channels that have specific shapes, asymmetries or irregularities. Channels across cell membranes allow the (a) (b) Figure 2.3: (a) 3D image of nuclear pores embedded in a nuclear envelope [START_REF] Kapon | A possible mechanism for selfcoordination of bidirectional traffic across nuclear pores[END_REF], that transport matter between cytoplasm and the nucleus. Entering particles are depicted in green, and exiting particles in red. (b) Channel creation in a bilipid layer by gramicidine.

transport of ions, but are sometimes blocked by drugs or toxins [START_REF] Kim | Papaverine, a vasodilator, blocks the pore of the herg channel at submicromolar concentration[END_REF][START_REF] Twiner | Marine algal toxin azaspiracid is an open-state blocker of herg potassium channels[END_REF]. Macromolecules bidirectionally flow through the pores of the cell nuclei [START_REF] Kapon | A possible mechanism for selfcoordination of bidirectional traffic across nuclear pores[END_REF]; entering and exiting molecules being unable to pass through a particular pore simultaneously. Fig. 2.3a illustrates these nuclear pores. At times, the limited capacity of the pores restricts the flow of one type of molecule. In [START_REF] Kapon | A possible mechanism for selfcoordination of bidirectional traffic across nuclear pores[END_REF] it is shown that at low density the flow alternates very quickly, and molecules enter and exit in an alternating manner without producing blockage; at higher density the times of change of direction increase, causing some particles to be blocked.

Gramicidin is a mixture of antibiotics, the activity of which consists in the creation of channels in the bilipid membrane, thereby increasing the permeability of the target bacteria [START_REF] Finkelstein | The gramicidin a channel: a review of its permeability characteristics with special reference to the single-file aspect of transport[END_REF], as shown in Fig. 2.3b. These channels selectively transport ions and water in single pathways.

Internet attacks (DoS)

Some internet attacks are carried out by saturating a server, rendering it unavailable. These are known as denial of service (DoS) attacks [START_REF] Bhunia | Stochastic model for cognitive radio networks under jamming attacks and honeypotbased prevention[END_REF], and come in different forms. The physical network may be overcrowded by requests, saturating the network flow: which can be understood as a high density case. Alternatively, the server saturates well before the network capacities. The type of attack that fits the models studied here best is the flooding of a computer server, which induces an overload preventing proper function or even saturating the server [START_REF] Gao | Research of sip dos defense mechanism based on queue theory[END_REF][START_REF] Jin | A covariance analysis model for ddos attack detection[END_REF][START_REF] Limkar | An effective defence mechanism for detection of ddos attack on application layer based on hidden markov model[END_REF].

In these situations, blocking is caused by a bombardment of data that arrives at a server too quickly. It is the characteristics of the server that most influence the system failure (the density of requests before an attack can be low).

Previous models studied

To provide context of the results presented in Chapters 3 and 4, previously developed models of stochastic 1D particle flow, and their characteristics are examined. 

TASEP

A first approach to modelling high density flux is by considering the interplay between stochastic forces and steric exclusion effects [START_REF] Macdonald | Kinetics of biopolymerization on nucleic acid templates[END_REF]. The totally asymmetric simple exclusion process (TASEP) [START_REF] Derrida | An exactly soluble non-equilibrium system: the asymmetric simple exclusion process[END_REF][START_REF] Spitzer | Interaction of markov processes[END_REF] provides a theoretical approach to out-of-equilibrium blocking phenomena. The simplest model is a finite set of regularly spaced sites, where particles can randomly jump from left to right [START_REF] Cividini | Multilane transport systems: application to pedestrian traffic[END_REF], under the condition that a particle cannot transition to an already occupied site. It is necessary to choose an evolution principle, i.e. the order in which the particles advance. There are several types in the literature: in the input order, with a random order at each time step [START_REF] Wölki | Asymmetric exclusion processes with shuffled dynamics[END_REF][START_REF] Keßel | Microscopic simulation of pedestrian crowd motion[END_REF], or a random order kept throughout the simulation [START_REF] Derrida | An exactly soluble non-equilibrium system: the asymmetric simple exclusion process[END_REF][START_REF] Appert-Rolland | Frozen shuffle update for an asymmetric exclusion process on a ring[END_REF], etc. Once the particle has been chosen, it passes to an adjacent site on the right if it is empty. Particles enter the system with a probability α ∈ [0, 1] and exit, through site L, with a probability β ∈ [0, 1].

It is possible to draw a phase diagram according to the input and output flow [START_REF] Derrida | An exact solution of a onedimensional asymmetric exclusion model with open boundaries[END_REF][START_REF] Krug | Boundary-induced phase transitions in driven diffusive systems[END_REF]. There are three phases: low density (LD), high density (HD) and maximum current (MC). The low-density phase is well understood, since the input rate, α, is very low compared to the output rate β . The high-density phase corresponds to β > α. Between these two phases there is a first order phase transition, i.e. there is a discontinuity in density. The third and final maximum current phase is in the region where both α and β are high. In this phase, the limiting factor is the chain size. For transport models this phase transition is particularly important for many of the applications seen earlier in the general introduction.

This model and its derivatives also provide a quantitative description of car and pedestrian traffic [START_REF] Moussaid | Traffic instabilities in selforganized pedestrian crowds[END_REF][START_REF] Appert-Rolland | Intersection of two tasep traffic lanes with frozen shuffle update[END_REF], which may be rendered more complex through the addition of, for example, traffic lights [START_REF] Chowdhury | Selforganization of traffic jams in cities: effects of stochastic dynamics and signal periods[END_REF]100]. Some models consider bidirectional TASEP flows [101][102][103][104]. There are also microscopic applications of this model to study the movement of ribosomes in RNA [START_REF] Macdonald | Kinetics of biopolymerization on nucleic acid templates[END_REF], and protein synthesis has also been modelled via TASEP [105]. Collective movements similar to those observed in car traffic are visible at almost all levels in biological systems [106].

Non-Markovian models of blocking

In 2013 Gabrielli et al [107] introduced and solved a stochastic model describing this type of clogging in a canal. such as the survival probability at time t, mean blockage time, exiting particle flux, and the total number of exiting particles can be calculated exactly. The original model considered one channel with capacity N = 2, i.e., two particles must be simultaneously present in the channel to block the system. Fig 2 .5 illustrates the single channel which, when empty, carries one particle, and is blocked by two particles. While, every 1D channel model in this thesis will model an independent particle arrival, the nature of the transit time will be varied. Particles enter at random times according to a Poisson process of intensity λ and exit, if no blockage occurs, after a fixed transit time τ. If the blockage is irreversible, the mean total number of exiting particles can be continually increased by reducing the intensity to values approaching zero [109]. This, of course, requires an ever-increasing amount of time. Subsequently, several generalisations were studied, including a higher blocking threshold (N > 2) [START_REF] Barré | Generalized model of blockage in particulate flow limited by channel carrying capacity[END_REF], an inhomogeneous entering flux [111], and multiple channels [112,113]. The work presented here considers the problem of maximising the final quantity of the total number particles that exit the system in a given finite time. Sections 3.3 and 3.4 study the case where the blockage is irreversible and reversible, respectively. In the latter case, the system is reactivated after a constant waiting time, τ b , which gives rise to a transient regime leading to a steady state [114].

Part I overview

The blocking phenomena under consideration may be caused by either 'extrinsic' or 'intrinsic' mechanisms. The former refers to the situation where the number of particles present somehow exceeds the channel carrying capacity, and will be the focus of the first part of this thesis. A model based on this phenomenology successfully accounted for experimental data [115,116]. These results provide an effective tool for optimising particle transport in channels and for other applications, such as self-healing materials. The latter mechanism arises from collective effects such as encountered in filtration processes. In this case, while isolated particles can pass through a mesh hole, clogging occurs when two or more particles arrive in near concurrence, causing one to impede the other. This effect, due to the delicate and often non-linear interplay between the spatio-temporal closeness of the particles and the confining geometry, could be seen as setting the capacity of a channel to greater than one.

Chapter 3 revisits the already published stochastic model of blocking phenomena with single-valued transit times, described in Section 2.2.2. Conditions for the optimisation of the steady state and time-dependent flux are studied for both single and multi-channel systems. When the blockages are of finite duration, the system reaches a steady state with an exiting flux that is reduced compared to the incoming. For many of the applications in the previous section, the throughput of serviced jobs is a crucial quantity.

Chapter 4 modifies the original 1D channel model, such that both the transit time and deblocking time (where applicable) follow a Poisson distribution, rendering the system 'memoryless'. This feature allows the time evolution of the model to be described by a set of differential equations, for which exact solutions can, in principle, be obtained.

CHAPTER

NON-MARKOVIAN MODELS OF BLOCKING

This chapter revisits the already published model of single channel blocking phenomena, discussed in Section 2.2.2. The following introduces key concepts that will be repeatedly used to describe the Poisson process driven particle arrival.

Key concepts

Random variables

A 'random variable', X(t), is either a number or vector whose value is the result of a random phenomenon. A stochastic dynamical process is a family of random variables indexed by a set T , representing different events in time such that X(t) t∈T ∈ R. The process is defined on a probability space (Ω, S, P), where each ω ∈ Ω governs the realisation of the process. We now define a 'counting process' {X(t),t ≥ 0} ∈ N that keeps count of the number of random events that have occurred until time t. The variable representing the counting process is also a random variable that is monotonically increasing in t. X(t) -X(s) represents the number of events in the time interval (s,t], s < t.

Poisson process

Poisson processes, {X(t), t ≥ 0}, are counting processes that describe many real processes that occur in large populations. Poisson processes possess the additional properties that the number of events counting in disjoint time intervals are independent, and that the mean number of event occurrences within the time interval, λ , is stationary over all time. The probability of i events occurring in the time interval (0,t] is:

p(i,t) = P{X(t) = i} = (λt) i i! e -λt , i ∈ N (3.1)
The only changes in the process are unit jumps upwards, whose inter-event time intervals are independant, exponentially distributed variables with mean 1/λ and variance 1/λ 2 , λ > 0.

the following conditional probability transition probability is given as:

P{X n = k|X n-1 = j} = λ k-j (k -j)! e -λ , (3.2) 
where k > j.

CHAPTER 3. NON-MARKOVIAN MODELS OF BLOCKING

Presentation of model

A stream of particles enter the channel, of capacity N, according to a homogeneous Poisson process with the following density function:

ψ(t) = λ e λt , (3.3) 
of intensity, λ . The probability that i particles enter the channel in the time interval (0,t) is given by Eq.(3.1.2). Any particle within the channel that is not blocked transits the system over a single time, τ. If N particles are simultaneously present, the channel blocks ( Fig. 2.5 illustrates for the case N = 2), and ejects the blocking particles after a time τ b > τ. The following section will first consider the case where the channel blocks irreversibly, i.e. τ b → ∞.

Single channel with irreversible blockage

The average number of particles that exit in the time interval (0,t s ) can be computed by integrating the exiting particle flux,

m(t s ) = t s 1 j(t)dt (3.4)
The lower limit of the integral is t = τ = 1, as no particle can exit before this time (assuming that the channel is empty at t = 0.) For t s → ∞:

m(∞) = j(u = 0) = 1 e λ -1 , (3.5) 
where j(u) = ∞ 0 e -ut j(t)dt is the Laplace transform of the time dependent flux. The number of exiting particles tends to infinity as λ → 0 and to zero as λ → ∞. The dynamics of the sysmtem is studied for finite t s . In this case there is clearly a finite entering intensity that optimises the total number of exiting particles. If the intensity is too small, blocking is unlikely as only a few particles enter, whereas if λ is too large more particles are injected but blocking is highly probable. The explicit equation for the time dependent flux [109] is given by: .6) Substituting this in Eq. (3.4) gives:

j(t) = e -λt t ∑ k=1 λ k (t -k) k-1 (k -1)! . ( 3 
m(t s ) = t s ∑ k=1 exp(-λ k) 1 - Γ(k, λ (t s -k)) (k -1)! = t s ∑ k=1 exp(-λ k) γ(k, λ (t s -k)) (k -1)! , (3.7) 
where Γ(k, x) and γ(k, x) are the upper and lower incomplete gamma functions respectively. The results shown in Fig. 3.1 demonstrate that the expected number of exiting particles displays a maximum, at finite intensity for a finite stopping time, t s . The value of λ that maximizes the output increases as t s decreases and that the maximum sharpens as t s increases. The explicit expression for the intensity that maximizes the output is a piece-wise function. For 1

≤ t s ≤ 2, m(t s ) = e -λ -e -λt s . (3.8)
It is easy to show that a maximum occurs for

λ = ln(t s ) t s -1 , (3.9) 
which returns λ = ln(2) when t s = 2. For 2 ≤ t s ≤ 3: 32, 16, 8, 4, 2, 1.5 top to bottom. The dashed line shows the long-time limit, Eq. (3.5).

m(t s ) = e -λ -e -λt s + e -2λ -e -λt s (1 + λ (t s -2)). ( 3 
m(t) being a piece-wise continuous function, it may be readily confirmed that for t s = 2, the value is the same as that given by Eq. (3.8). There is no analytic expression of the value of λ that maximizes this expression for t > 2, but numerical solutions are, however, straightforward. Moreover, for large t s , which corresponds to small intensity, λ , an asymptotic solution may be obtained. By using the Laplace's method[109], j(t) if found to decay as :

j(t) λ e -λ 2 t . (3.11) 
Integrating Eq. (3.11), one obtains that m(t s ) is given by: .12) Differentiating Eq.(3.12) with respect of λ , one obtains a maximum of m(t s ) when :

m(t s ) 1 λ (1 -e -λ 2 t s ). ( 3 
λ C √ t s . (3.13)
Where C is a constant. The limitation of the flux route is that it does not allow us to calculate higher moments of the exiting particle distribution, but only the mean value. (3.16) where q s (n,t) is the joint probability that n particles have entered the channel and that the channel is still open [109]. The loss term for the evolution of f (0,t) is the result of a particle exiting the channel at time t that had previously entered the channel at t -1. This term is also the gain term for the evolution of f (1,t). For n > 1 the gain term consists of the entry of a particle at t -1 that exits at t. For this to be possible the channel must have been open at t -2 with n -1 particles entering in the interval (0,t -2), which occurs with probability q s (n -1,t -2), and no particle must enter in the intervals (t -2,t -1) and (t -1,t) giving rise to the factor of e -2λ . The loss term is similar except that n particles must have entered in the interval (0,t -2) with an additional particle entering at t -1 and exiting at t. The gain term for n = 1 is slightly different as the particle entering the channel at t -1 is the first one, so the channel is certainly empty at this time. The telescopic structure of equations (3.14), (3.15) and (3.16) is consistent with the conservation of probability, ∑ ∞ n=0 d f (n,t)/dt = 0. We obtain the complete solution by introducing the generating function:

d f (0,t) dt = -λ e -λ q s (0,t -1) (3.14) d f (1,t) dt = λ e -λ q s (0,t -1) -λ e -2λ q s (1,t -2) (3.15) d f (n,t) dt = λ e -2λ q s (n -1,t -2) -λ e -2λ q s (n,t -2), n > 1,
G f (x,t) = ∞ ∑ n=0 z n f (n,t).
(3.17)

Taking the time derivative and substituting the above expressions for f (n,t) we obtain

∂ G f (z,t) ∂t = λ (z -1)(e -λ q s (0,t -1) + e -2λ (G(z,t -2) -q s (0,t -2)
)), (3.18) where G(z,t) = ∑ ∞ n=0 z n q s (n,t). Taking the Laplace transform and using the initial condition G f (z, 0) = 1 we finally obtain

G f (z, u) = u + λ -λ e -(u+λ ) u(u + λ -λ ze -(u+λ ) ) . (3.19)
The individual functions can be recovered from

f (n, u) = 1 n! ∂ n G f (z, u) ∂ z n z=0 . (3.20) 
The first two are

f (0,t) = 1 + (e -λt -e -λ )θ (t -1) (3.21) and f (1,t) = ((e -λt (1 + λ (t -2)) -e -2λ
)θ (t -2) -(e -λte -λ )θ (t -1), (3.22) where θ (t) is the Heaviside function. These results can also be obtained by direct solution of Eqs. (3.14) and (3.15), respectively. The first two moments are

m(u) = ∂ G f (u, z) ∂ z z=1 = λ e -(u+λ ) u(u + λ -λ e -(u+λ ) ) , (3.23) 
and .24) from which the first and second moments at infinite time may be obtained as

m2 (u) = ∂ 2 G f (u,z) ∂ z 2 z=1 + ∂ G f (u,z) ∂ z z=1 = λ e -(u+λ ) (λ +(u+λ )e -(u+λ ) ) u(λ -(u+λ )e -(u+λ ) ) 2 . ( 3 
m = lim u→0 u m(u) = 1 e λ -1 (3.25)
and (3.26) giving for the variance

m 2 = lim u→0 u m2 (u) = 1 + e λ (1 -e λ ) 2 ,
m 2 -m 2 = e λ (e λ -1) 2 .
(3.27)

At small intensity, this behaves as λ -2 , while for large intensity it approaches zero as e -λ . In order to obtain the variance of m at time t, we have to invert m 2 (u) and m(u) . By using Eq. (3.23), one has (3.29) which gives .30) This expression corresponds to that obtained from the survival probability [START_REF] Barré | Stochastic model of single-file flow with reversible blockage[END_REF]. Similarly, by using Eq.(A.18), one obtains

m(u) = e -(u+λ ) 1-e -(u+λ ) 1 u - 1 u+λ -λ e -(u+λ ) (3.28) = ∑ n≥1 e -n(u+λ ) 1 u -∑ k≥0 (λ e -(u+λ ) ) k (u+λ ) k+1 ,
m(t) = ∑ n≥1 e -λ n θ (t -n) -e -λt ∑ k=0 λ k (t -k -n) k θ (t -k -n) k! . ( 3 
m 2 (u) = e -(u+λ ) (1+e -(u+λ ) ) (1-e -(u+λ ) ) 2 1 u - 1 u+λ -λ e -(u+λ ) -2 λ e -2(u+λ ) 1-e -(u+λ ) 1 (u+λ -λ e -(u+λ ) ) 2 .
(3.31)

By using the identity 1 .32) This can be inverted to give the second moment as a function of time: .33) Numerical results for the second moment and the variance as a function of λ are shown in Figs. 3.2 a & b, respectively. Like the first moment (Fig. 3.1), the second moment displays a maximum at a finite value of λ . The family of curves at different stopping times approaches the long-time limit, Eq. (3.26) as time increases. The variance also displays a maximum as a function of intensity, see Fig. 3.2b, but the location of the maximum for a given stopping time is displaced to a higher value of the intensity. The time dependent variance for different values of λ is shown in Fig. 3.3a. Finally, Fig. 3.3b shows the value of λ that maximises the mean and variance as a function of the stopping time. We observe that the intensity that maximises the mean number of exiting particles is a strictly decreasing function of the stopping time. The intensity that maximises the variance of the number of exiting particles, however, has a non-trivial behaviour. It is the same that maximises the intensity for 1 ≤ t s ≤ 2, but it then increases to a maximum value for t s ≈ 3 and then decreases. For t s > 2, the variance is maximised at a higher value of λ than that which maximises the mean number.

(1-a) 2 = ∑ n=0 (n + 1)a n , one has m 2 (u) = ∑ n=0 (n + 1)(1 + e -(u+λ ) )e -(n+1)(u+λ ) 1 u -∑ k=0 (λ e -(u+λ ) ) k (u+λ ) k+1 -2 ∑ n=0 λ e -(n+2)(u+λ ) ∑ k=0 (k + 1) (λ e -(u+λ ) ) k (u+λ ) k+1 . ( 3 
m 2 (t) = ∑ n≥0 (1 + n)e -(2+n)λ θ (t -n -2) + e λ θ (t -n -1) -∑ n≥0 ∑ k≥0 e -tλ (1 + n)λ k k! (t -n -k -2) k θ (t -n -k -2) + (t -n -k -1) k θ (t -n -k -1) -∑ n≥0 ∑ k≥0 2e -kλ -(2+n)λ -(t-n-k-2)λ λ k+1 (k + 1)! (1 + k)(t -n -k -2) 1+k θ (t -n -k -2). ( 3 

Reversible single channel model

Reversible blockages, in single file channel flow [114], are now considered. During a blockage, the N particles are retained in the channel, and no more may enter. After the single valued deblocking time, τ b the channel instantaneously releases all N particles, thereby resetting to the empty state, allowing new particles to enter. The dynamics is therefore described by a recurring cycle of alternating open and closed states, that ultimately leads to a stationary state. In an average steady state recurrence cycle, the channel is open for an average time, t , and blocked for a fixed time τ b . The stationary probability that the system is open is therefore: .34) where the denominator represents the total mean recurrence time. The stationary output flux is then given by the ratio of the mean number of particles released during one cycle to the cycle period, .35) m is the mean number of output particles between two successive blockages. By equating the number of entering particles in one period to those exiting we obtain the following 'number balance'

p o (λ ) = t t + τ b , ( 3 
j(λ ) = m + N t + τ b . ( 3 
m + N = λ t . (3.36)
Finally, from the above three equations we deduce that:

j(λ ) = λ p o (λ ). (3.37)
The latter relation does not depend on the existence of a cycle, as it is the result of number conservation. The output flux is equal to the entering one minus the part that is rejected when the channel is in the closed state. By taking the limit λ τ 1, the mean blockage time and the mean number of exiting particles between blockages behave asymptotically as t τ b and m N, respectively. Therefore, for a given τ b , the probability that the channel is open is close to unity and the flux j(λ ) λ . Blockages rarely occur at low λ . In this limit, the mean blockage time can be estimated by noting that a blockage occurs when a batch of particles enters in a finite duration τ, leading to t = τ (N-1)! (λ τ) N [START_REF] Barré | Generalized model of blockage in particulate flow limited by channel carrying capacity[END_REF]. Expanding p o (λ ) to first order gives .38) When λ τ 1, blockages are very frequent, and both the mean number of exiting particles between blockages, m , and mean time between blockages, t , approach zero. The resulting flux consists entirely of successive releases of the blocked particles, j(λ ) = N/τ b and p o (λ ) 0. In this limit, t corresponds to the time necessary for N particles to enter an empty channel, N/λ . The open probability and the flux in this high intensity limit are therefore:

p o (λ ) 1 1 + (λ τ) N τ b (N-1!)τ . ( 3 
p o (λ ) N N + λ τ b , (3.39) 
and .40) 3.4.1 Solvable models: N ≤ 3

j(λ ) Nλ N + λ τ b . ( 3 
For small capacities, N ∈ [1, 2, 3], the time evolution of the process can be expressed by analytically tractable differential or integro-differential equations [114]. For larger values of N, the time evolution cannot be solved by any known means.

We first consider N = 1, which corresponds to a stochastic switch. The transit time, τ, is an irrelevant variable because no particle can exit the channel without having already blocked it. For N > 1, it is possible for particles to pass through the channel without causing a blockage. Let p o (t) denote the probability that the channel is open at time t. Its time evolution obeys:

d p o (t) dt = -λ p o (t) + λ p o (t -τ b ). (3.41)
The loss term corresponds to the entrance of a particle at time t, while the channel is open, causing the channel to block. The gain term corresponds to the exit of a particle that became blocked at time tτ b , with the subsequent reopening of the channel at time t. The mean output flux at time t is given by: 3.42) which corresponds to the release of a blocked particle that entered at tτ b . Applying the time Laplace transform, f (u) = ∞ 0 dte -ut f (t), to Eqs. (3.41) and (3.42) gives,

j(t) = λ p o (t -τ b ), ( 
po (u) = 1 λ + u -λ e -uτ b , (3.43) 
and,

j(u) = λ e -uτ b λ + u -λ e -uτ b . (3.44)
Expanding the denominator of Eq. (3.43) in terms of λ e -uτ b /(λ + u), allows one to easily invert the Laplace transform, term by term, giving,

p o (t) = ∞ ∑ n=0 [λ (t -nτ b )] n n! e -λ (t-nτ b ) θ (t -nτ b ), (3.45) 
where θ (t) is the Heaviside function. The stationary open probability, p o (λ ), and flux, j(λ ), can be obtained from Eqs. (3.43) and (3.44) by using f (u

) f (λ ) u , p o (λ ) = 1 1 + λ τ b , (3.46) 
and .47) These results can be easily inferred from Eqs. (3.34) and (3.35) by setting m = 0 and t = 1/λ . The exiting particle flux is controlled by the incoming flux, λ and the time of blockage, τ b .

j(λ ) = λ 1 + λ τ b . ( 3 
We now consider the N = 2 model, i.e. blockage occurs when two particles are simultaneously in the channel, for which exact results have already been obtained [114]. Here we propose an alternative, simpler derivation using the state probabilities of the channel. Let p 0 (t), p 1 (t) denote the probability that an open channel contains zero or one particle respectively, and p 2 (t) be the probability that it contains two particles and is therefore blocked. The time evolution of the process is given by:

d p 0 dt = -λ p 0 (t) + λ e -λ τ p 0 (t -τ) + λ p 1 (t -τ b ), (3.48) 
d p 1 dt = -λ e -λ τ p 0 (t -τ) -λ p 1 (t) + λ p 0 (t), (3.49) 
d p 2 dt = -λ p 1 (t -τ b ) + λ p 1 (t), (3.50) 
with the following initial conditions: .51) In Eq. (3.48), the loss term corresponds to the entrance of a particle in the empty channel at time t. The two gain terms λ e -λ τ p 0 (tτ) and λ p 1 (tτ b ) correspond to a particle exiting the channel at time t and a channel release (with a blockage occurring at time tτ b ), respectively. In Eq. (3.49), the two loss terms describe either a particle exiting the occupied channel at time t or a particle entering the occupied channel. The gain term corresponds to a particle entering a free channel. In Eq. (3.50), the loss term corresponds to a channel release and the gain term to a particle entering a channel with one particle already inside. Summing the three equations verifies that the total probability is conserved: p 0 (t) + p 1 (t) + p 2 (t) = 1. Taking the Laplace transform of Eqs. (3.48-3.50) gives:

p 0 (0) = 1, p 1 (0) = p 2 (0) = 0. ( 3 
u + λ (1 -e -τ(u+λ ) ) p0 (u) -λ e -uτ b p1 (u) = 1, (3.52) -λ (1 -e -τ(u+λ ) ) p0 (u) + (λ + u) p1 (u) = 0, (3.53) -λ (1 -e -uτ b ) p1 (u) + u p2 (u) = 0. (3.54)
These simultaneous equations may be solved to give

p0 (u) = u + λ ∆ , (3.55) p1 (u) = λ ∆ (1 -e -τ(u+λ ) ), (3.56) p2 (u) = λ 2 u∆ (1 -e -uτ b )(1 -e -τ(u+λ ) ), (3.57) 
where u+λ ) ).

∆ = (u + λ ) 2 -λ (λ + u)e -τ(u+λ ) -λ 2 e -uτ b (1 -e -τ(
(3.58)

The mean exiting flux j(t) is the sum of two contributions: the exit of a particle from an open channel and the release of two particles from a closed channel. j(t) is therefore given by

j(t) = λ e -λ τ p 0 (t -τ) + 2λ p 1 (t -τ b ). (3.59)
By using Eqs. (3.55), (3.56), the Laplace transform of the output flux j(u) is

j(u) = λ ∆ [(u + λ )e -(u+λ )τ + 2λ e -uτ b (1 -e -τ(u+λ ) )]. (3.60)
As expected, we recover the results of Ref. [114] and the time-dependent mean flux can be obtained by a Laplace inversion of Eq. (3.60). The key quantities we focus on are the stationary probability p o (λ ) that the system is open and the mean flux j(λ ). p o (λ ) is the sum of the two stationary probabilities p 0 and p 1 , each obtained by evaluating lim u→0 u pi (u) with i = 0, 1:

p o (λ ) = 2 -e -λ τ 2 + λ τ b -(1 + λ τ b )e -λ τ , (3.61) 
and

j(λ ) = λ 2 -e -λ τ 2 + λ τ b -(1 + λ τ b )e -λ τ .
(3.62) For N = 3, the complete kinetic description of the model is cumbersome so we restrict our attention to the stationary quantities for which analytical expressions have been obtained [START_REF] Barré | Generalized model of blockage in particulate flow limited by channel carrying capacity[END_REF]. In particular, the mean time to blockage starting from an empty channel is given by λ t = 2e ν sinh(gν) + ge λ τ -g -2 sinh(gν)e -ν + e ν (sinh(gν) + g cosh(gν))

+ 1 (3.63) for λ τ > 2 ln(2) and λ t = 2e ν sin(gν) + ge λ τ -g -2 sin(gν)e -ν + e ν (sin(gν) + g cos(gν))

+ 1 (3.64) for λ τ < 2 ln [START_REF] Nagatani | Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck[END_REF], where g = |1 -4e -λ τ | and ν = λ τ 2 . The two stationary quantities p o (λ ) and j(λ ) are obtained by inserting this result in Eqs. (3.34) and (3.35). Fig. 3.5 displays j(λ ) as a function of λ τ for different values of τ b . There are several differences compared with the N = 2 model. First, a maximum exiting flux occurs if the blockage time τ b > 3.6, which is significantly smaller for N = 2 (τ b > 6.2). Second, the asymptotic values are reached at a lower value of λ , and finally, the intensity of λ at which j(λ ) is maximum is also shifted towards larger intensity. As a result of strong time correlations between the transiting particles, it was not possible to obtain analytic solutions for N > 3. We therefore used numerical simulations to investigate these cases. To benchmark our code, we compared the simulation results for the stationary flux for N = 3 with the exact expressions for three different values of τ b . In Fig. 3.5 we observe perfect agreement between the analytical expressions and the simulation results. Figure 3.6 displays the stationary exiting flux as a function of the intensity for different values of N and τ b = 4. At low intensity, the flux increases linearly, and at high intensity the asymptotic behaviour of the simulation results is well-described by Eq. (3.40). The behaviour in the intermediate region is due to complex dynamics that alternates between blockages and sequences of uninterrupted transport. For N > 3, the stationary flux, j(λ ), may display a maximum at finite λ τ, whose amplitude increases with N. The stationary flux also exhibits a minimum which is always smaller than the asymptotic value, N/τ b . In particular, a plateau whose length increases in proportion to N (roughly as N/2 ), is observed. This corresponds CHAPTER 3. NON-MARKOVIAN MODELS OF BLOCKING to the situation where blockage events are rare and the output flux is close to λ . As the channel capacity increases, the time dependent flux presents fewer oscillations, and tends towards a higher steady state value that depends on the intensity of the entering stream. Furthermore, increasing the value of τ b , for a given value of intensity increases the spacing between flux oscillations.

Single channel time-dependent flux

Bundle model

We now consider a bundle of N c identical channels. Each channel has the same properties as the single channel model, i.e. blockage occurs when N particles are present in a channel at the same time. In the following we assume that the total intensity, Λ = λ N c , is constant and is equally distributed over the open channels. Thus, after k blockages the intensity on each of these open N ck channels is

λ k = λ N c N c -k . ( 3.65) 
Since a blocked channel releases all particles after finite time τ b , the system's mean output flux evolves towards a non-zero stationary value. The bundle has two states: open, in which at least one of the constituent channels is open and closed, if all the constituent channels are blocked. If a particle arrives while the bundle is in the latter state, it is rejected.

Equations (3.34,3.35,3.36) cannot be applied to the channel bundle in the steady state, as it does not cycle between closed and empty states for finite intensity, Λ. In the limit of very large intensities, however, we have

P o (Λ) ∼ 1 Λ (3.66) and lim Λ→∞ M = 0 (3.67)
where M is the mean number of exiting particles that are not the due to blockage releases, and .68) In this limit the intensity is so high that all channels block instantaneously and simultaneously and the blocked particles are released after a time τ b . The exiting flux is entirely the result of these releases. The analogue of Eq. (3.37),

lim Λ→∞ J(Λ) = NN c τ b . ( 3 
J(Λ) = ΛP o (Λ), (3.69) 
is valid for arbitrary intensity since, as for the single channel case, it is result of the conservation of particle number.

Exact solution: N = 1

When N > 1 a particle may traverse the channel in a time, τ, without causing a blockage. In comparison, the N = 1 model is singular as no unimpeded transit is possible: each entering particle causes a blockage that lasts for a fixed time, τ b . The variable, τ, is thus absent in this model. Despite the relative simplicity of the N = 1 model, its dynamics cannot be written as a system of differential equations for the state probabilities P(i,t), where i denotes the number of blocked channels at time t. However, in the stationary state, by applying detailed balance (known as the 'rate up -rate down' principle in queuing theory), we have:

ΛP(i) = (i + 1) P(i + 1) τ b (3.70)
Solving the difference equation and applying conservation of the total probability leads to

P(k) = (Λτ b ) k k! ∑ N c n=0 (Λτ b ) n n! , k ∈ [0, N c ] (3.71)
The stationary exiting flux is given by Eq. (3.69) with

P o = 1 -P(N c ) = 1 - (Λτ b ) N c N c ! ∑ N c n=0 (Λτ b ) n n! (3.72)
The result can be written in the form

J(Λ) = Λ 1 - (Λτ b ) N c e Λτ b Γ(1 + N c , Λτ b ) , (3.73) 
where Γ(n, x) is the incomplete gamma function. The asymptotic behaviour at small intensity, Λ is

J = Λ 1 - (Λτ b ) N c N c ! + O((Λτ b ) N c +1 ) , (3.74) 
whereas at large intensity the flux behaves as,

J = N c τ b 1 - 1 Λτ b + O 1 (Λτ b ) 2 , ( 3.75) 
whose leading term is in accordance with Eq. (3.68). For all values of N c , J(Λ) is always a monotonically increasing function of Λ. The expression for P(N c ) is Erlang's first formula [118,119] for a stochastic queuing process with N c servers with exponential entry and service time distributions under the condition that when all servers are busy an arrival is rejected. Both models are 'birth-and-death' processes that have the same stationary solution.

Their transient regimes, however, are significantly different.

Simulation results: N > 1

For the multichannel models, no exact solution can be obtained for N > 1. Therefore we have performed numerical simulations to obtain the stationary exiting flux, J and the stationary probability that at least one channel is open, P o for bundles composed of different numbers of channels with increasing capacity N and for τ b = 4τ. All quantities were investigated as a function of the mean incoming flux Λ. As discussed in the previous section, the stationary flux rapidly displays a maximum at a finite value of λ τ when N > 1. 2, 3, 4, 6, 10. When Λτ 1, the rate of incoming particles is very small and the finite capacity of the channel is rarely reached, meaning that blockage events are scarce. The stationary exiting flux is therefore equal to the input flux, J Λ. This behaviour is observed .76) We observe an abrupt change of kinetic behaviour: Below the critical value Λ c , almost all particles cross the bundle without triggering a significant number of blockages, whereas for larger Λ, all channels are closed and the stationary flux is essentially given by the release of blocked particles. Fig. 3.11b shows the rescaled flux J/N versus the rescaled intensity, Λ/N for different values of N for a given N c = 10. At a low input intensity, the exiting flux J is equal to Λ until it reaches a maximum close to a critical value that closely follows a logarithmic law, as shown in the inset of Fig. 3.11a. For higher values of input intensity the rescaled exiting flux, for all values of N, rapidly collapses to a single curve whose best fit is again given by Eq.(3.76).

J N c N τ b 1 - 3N 2Λτ b . ( 3 

Flux optimization

Here we compare the stationary flux of a bundle of coupled channels with that of a bundle of uncoupled channels and one 'high capacity' (HC) channel. Fig. 3.12 illustrates the configurations compared. The transport efficiency is measured by the difference in output flux, ∆J. The systems are chosen so that in the limits of low and high input flux intensity, ∆J = 0. In the low intensity limit, since blocking events are rare, the exiting flux is equal the input flux Λ, irrespective of the configuration. In the high intensity limit, Eqs. (3.39) and (3.68) demonstrate that the exiting fluxes of the single high capacity, bundled uncoupled or coupled channels are also be equal. Since the stationary flux of a bundle of coupled channels displays non-trivial behaviour with increasing N c and N, we therefore expect non-trivial behaviour of ∆J. The behaviour for N = 1 can be understood quantitatively using the results of Sec. 3.5.1 and Eq.(3.47). At low intensity, the flux difference is

∆J = Λ 2 τ b N c + O(Λ 3 ), (3.78) 
and at high density we find

∆J N c (N c -1) Λτ 2 b (3.79)
and confirmed that ∆J > 0 for 0 < Λ < ∞. We conclude that the coupled channels are always more efficient than the uncoupled ones. The difference is maximised for a finite value of Λ. For all N > 1, we note the appearance of two maxima in the flux difference with an intervening minimum. The increased complexity is due to the presence of two characteristic times: the transit time τ and the blockage time τ b (while the N = 1 system has only the latter). All curves display a single maximum followed by a single minimum, before tending to zero at high intensity.

J = J 2 2 2j 2 b =2 b =3 b =4 b =8 b =10
The transport efficiency of a single 'high capacity' (HC) channel is now compared with a bundle of several coupled channels, of a proportionately reduced capacity. Figure 3.15 shows the difference in the output stationary state flux between a single HC channel and a bundle of N c = 2, 5 coupled LC channels, with different capacities. The flux difference in this case is .80) For all N, the flux difference displays a minimum, followed by a maximum, before tending towards zero for increasing intensity. The amplitudes of the maxima are always greater than those of the minima.

∆J = j N c N (Λ) -J N c N (Λ). ( 3 
The next chapter will present an extension of the 1D model of blockage studied.

CHAPTER

MARKOV MODELS OF BLOCKING

This chapter extends the 1D channel model previously introduced in Chapter 3 by now taking the transit and deblocking times, τ and τ b , as exponentially distributed random variables with mean µ and µ * respectively. This generalisation permits a distribution of service and deblocking times, which increases the range of applicability to real physical scenarios, despite allowing for the possibility of non-physical events manifesting as both transit and deblockage in zero time. The definition of all the system's transition rates as stochastic variables renders the system 'memoryless', the properties and consequences of which shall be examined in the next section.

Markov processes

Markov processes are random processes whose future state is purely determined by the current one. Poisson processes, defined in Section 3.1.2 are a special type of continuous time Markov processes. The next section introduces Markov chains, that will form the foundation of the extension of the model presented in Chapter 3.

Markov chains & Markov property

A Markov chain is a Markov process that may be either discrete or continuous in time, t, and occurs within a countable sample space of size N, S = {π 0 (t), π 1 (t), ...π N (t)}. In the discrete case, this process, for n successive events, may be succinctly denoted as :

X = (X(n)) n∈Z = (X(0), X(1), X(2)...), X n ∈ S ∀n, (4.1) 
whose lack of memory, in the order 11 case, is expressed by:

P(X n+1 = x n+1 |X n = x n , ...X 0 = x 0 ) = P(X n+1 = x n+1 |X n = x n ). (4.2) 
i.e. given a current state of the system and the time step, no information about the future is obtained by gathering information of past states. 

Markov dynamics

To fully characterise the dynamics of a Markov chain we require an initial probability distribution, which can be described as a state vector P = [π 0 (0), π 1 (0), ...π N (0)] where π k (0), 0 ≤ k ≤ N is the probability that the system is in state k at time t = 0. N denotes the countable number of possible states within S: P(X 0 = x 0 ) = P(x 0 ) ∀x 0 ∈ S. (4.3) and an N × N transition probability matrix, from state x n = i to x n+1 = j expressed by Eq. 4.1.1 as:

p i j = P(X n+1 = j|X n = i), i, j ∈ S × S. (4.4) 
From these, the total probabilistic dynamics may be recurrently computed.

A Markov process is termed 'homogeneous' if its transition probabilities do not change with time. In what follows, we will study uniquely these processes. The probability distribution at time n + 1, P(j) relative to the system's probability distribution at time n, P(i), is written as:

P( j) = P(X n+1 = j) = ∑ i∈S P(X n = i)P(X n+1 = j|X n = i) = ∑ i∈S P(i)p i j (4.5)
The dynamics of the finite state space Markov chains studied will be represented as oriented graphs. Each node within the graph represents a state, and for all pairs of states (i, j), an edge going from one to the other represents a transition probability p i j > 0, and so takes its value. See Fig. 4.1

Queuing theory

Much of what follows will be presented in the framework of queuing theory, which define a system in terms of three parameters: clients, i.e. people, objects, particles, that request a service, servers, components of the system in question that respond to the request, and service, which is the action required to respond to the request. A client can use a service if it's not occupied, and once a service has been carried out, the server then becomes available for the next client. Every model is defined by three factors: the arrival process, the service mechanism, and the queuing discipline. Kendall notation a/b/s/c is employed [120] where:

• a: The time distribution of arriving demands of service.

• b: The service time distribution.

• s: The number of servers.

• c: The system size (i.e. the number of objects that may be accommodated while awaiting service).

The fourth parameter, c may be omitted if there is no capacity restriction. If c = s, the model is termed a 'loss' system as there is no waiting room. The arrival and service time distribution may be described by:

• M: exponential distribution • D: deterministic (i.e. constant service time) as studied in Chapter 3.

• G: 'General distribution' Further characteristics include the client and service behaviour: If a client arrives to find all servers occupied, it may either wait, or leave. And finally, the service behaviour, may serve the clients one by one, according to their order of arrival, randomly, or by priority. The most frequently used is the discipline of 'first in, first out' (FIFO)2 , and will be often considered in the following sections.

M/M/1 model

This is the most well known and widely studied, queuing model. It consists of a single server, with client arrival following a Poisson process of intensity λ , and an average exponential service time 1/µ. If λ /µ > 1, the rate of client arrival is greater than their departure, and an indefinitely long queue forms. In this case the system does not have a stationary distribution. The server follows the 'first in first out' (FIFO) discipline. The time evolution of the system's state probabilities is described by the following differential equations:

π0 = -λ π 0 (t) + µπ 1 (t) (4.6) πn = -(λ + µ)π n (t) -µπ n+1 (t) + λ π n-1 (t) (4.7)
The stationary probability that k clients are simultaneously in the system is simply given by:

π k = π 0 λ µ k , (4.8) 
where:

π 0 = 1 = ∞ ∑ k=1 λ k µ = 1 - λ µ . (4.9)

M/M/N/N model

We consider the system where service demands arrive following the Poisson process of intensity λ , and the service time has an exponential distribution with mean 1/µ. There are s = N servers, and no waiting room. The finite state space is defined by the number of demands of service present within the system. Unlike the previous model examined, the servers do not follow the FIFO discipline.

Let π k be the probability that, at an arbitrary time while in the stationary state, there are k ∈ [0, N] clients in the system. The corresponding set of balance equations is then given by:

λ π 0 = µπ 1 , (4.10 
)

λ π k-1 + (k + 1)µπ k+1 = (λ + kµ)π k , 1 ≤ k ≤ N -1, (4.11) λ π N-1 = Nµπ N (4.12)
the above three expressions are equivalent, by the application of both the rate up = rate down principle, and recursion, to:

π k = λ kµ π k-1 = λ 2 k(k -1)µ 2 = ... = 1 k! λ µ k π 0 , 1 ≤ k ≤ N. (4.13)
applying the normalisation condition ∑ N k=0 π k = 1, the probability distribution for k service demands to the system is:

π k = 1 k! λ µ k π 0 = 1 k! λ µ k ∑ k i=0 1 i! λ µ i , 0 ≤ k ≤ N. (4.14)
Service demands that arrive while all servers are being used are blocked. Since the probability that there are k demands of service immediately before an arrival equals the probability that there are k service demands at an arbitrary time, given by Eq. 4.2.2. Therefore the blocking probability is: 

π N = 1 N! ( λ µ ) N ∑ N i=0 1 i! ( λ µ ) i . ( 4 

Other models

A further generalisation is to consider group arrivals or services [122][123][124]. The batch service is denoted M/M(a,b)/1, where a is the size of the arriving group, and b is the maximum capacity of the server. The service starts when clients enter the system such that b ≥ a ≥ 1. Group arrivals are used to model many physical applications [125,126], and group service applies to the management of transport systems with limited capacities, such as elevators [127]. Models with heterogeneous servers, i.e. where each server can have a different service time, have also been studied [128,129].

Single channel model

We consider a channel that blocks when N particles are simultaneously present, represented by the circular Markov chain in Fig. 4.1 c. Particles enter the channel according to a Poisson process, defined in Section 3.1.2, with a constant intensity λ . Particle exit is also modelled as Poisson process with a constant rate µ. The channel remains open if it contains fewer than N particles. In the open state, any particle that is present exits the channel at a rate µ, independent of the time already spent inside. However, when N particles are simultaneously present, a blockage occurs with the consequence that all incoming particles are rejected until the channel reopens after a time given by an exponentially distributed blockage time with rate µ * < µ. When the channel reopens all the trapped particles are instantaneously ejected. The models introduced here can be viewed as an extension of the, previously seen, approaches developed in queuing theory [START_REF] Medhi | Stochastic models in queueing theory[END_REF]130], and encompass situations characterised by both temporary or permanent blockages.

Non-FIFO model

The stochastic dynamics is described by using

N + 1 state probabilities, π(0,t), π(1,t), • • • , π(N -1,t) and π(N,t) which correspond to 0, 1, • • • , N -1 and N particles in the channel, respectively. P(t) = (π(0, t), π(1, t), • • • , π(N - 1, t), π(N, t))
denotes the state vector. The time evolution of the process is described by:

dP(t) dt = P(t) • Q N+1 (4.16)
where Q N+1 is the (N + 1) × (N + 1) transition matrix that gives the dynamical rule of evolution,

Q N+1 =        -λ λ 0 µ -(λ + µ) λ . . . . . . . . . (N -1)µ -(λ + (N -1)µ) λ µ * 0 -µ *        . ( 4.17) 
Except for the first and last columns, every state has two gain terms and two loss terms: The two loss terms correspond to a channel with i particles (with 0 < i < N), where a particle enters at time t (with a rate λ ) or where a particle exits (at rate µ). The two gain terms correspond to the entrance of a particle (with a rate λ ) in a channel with i -1 particles, and to the exit of a particle (at rate µ) from a channel with i + 1 particles. As the discipline employed in this model in non-FIFO, increasing the number of attendant particles, under the blocking limit, therefore increases the probability that one will exit. The description is completed by considering the two boundary situations: for an empty channel, there is one loss term corresponding to a particle entrance and two gain terms: the first corresponds to a particle exit from an empty channel and the second to the release of a blocked channel (with N particles). Conversely, for a blocked channel, one has a single loss term corresponding to a release at rate µ * and a gain term corresponding to a particle entering a channel containing N -1 particles.

The time evolution of P(t) is supplemented by the conservation of the total probability, ∑ N-1 i=0 π(i,t) + π(N,t) = 1. Consequently, the sum of each row of the transition matrix is equal to 0, which leads to a zero eigenvalue of the matrix. The steady-state probabilities of the circular processes are explicitly calculated in Adan and Resing [130]. In the steady state, i.e. Ṗ = 0, the probabilities are given by π N = C N λ N and, for k = 1, 2, . . . , N,

π N-k = C N µ * k ∑ j=1 λ N-j µ j-1 j-1 ∏ i=1 [N -k + i] , (4.18) 
where C N is a normalization constant so that ∑ N i=0 π i = 1, given as: Following the analysis presented by Cohen [131] we find the following formula for the mean first passage time from the empty state 0 to the blocked state with N particles. Appendix A contains the full calculation.

C N = λ N + µ * N-1 ∑ j=0 N! ( j + 1)(N -j -1)! µ j λ N-1-j -1 . (4.19)
ν 0,N = 1 λ N-1 ∑ m=0 m! m ∑ k=0 1 k! λ µ k-m . (4.20) 
The throughput can be calculated by noting that state k ∈ [0, N] contributes kµπ k (t) particles per unit time, which is the rate of exiting particles kµ multiplied by the probability that the channel is in state k. There is an additional contribution from the blocked state whose N particles are simultaneously ejected at the rate µ * , which adds Nµ * π N (t). The general expression of the time dependent throughput is the sum of these contributions

j N (λ ,t) = kµ N-1 ∑ k=1 π k (t) + Nµ * π N (t). (4.21)
In the stationary state, j can be expressed as

j = λ (1 -π(N)), (4.22) 
i.e. the incoming flux multiplied by the probability that the channel is open. From π N = C N λ N and Eq. ( 4. [START_REF] Hidalgo | Flow of colloidal suspensions through small orifices[END_REF] we also find the following explicit expression

j N (λ ) = λ µ * ∑ N-1 j=0 N! ( j+1)(N-j-1)! µ j λ -( j+1) -1 + 1 . (4.23)
In the large intensity limit, the throughput may be written as: (4.24) which corresponds to the situation where no particle can cross the channel without blockage. The flux is given by the number of particles trapped in each blockage, N, times the rate of the channel release, µ * . At low intensity the throughput is given by In this limit almost all particles cross the channel, which corresponds to the leading term λ . The decrease of the flux corresponding to the term of order λ N+1 is due to the rare events where the channel is blocked and is given by λ µ * τ , where τ is the mean time of blockage at low intensity

j N (λ → ∞) = Nµ * ,
j N (λ ) = λ - λ N+1 (N -1)!µ N-1 µ * + O(λ N+2 ).
[132], τ = (N -1)! µ N-1 λ N .
The outgoing flux as a function of the intensity is shown for several values of N and for µ = 1, µ * = 0.1 in Fig. 4.2. One notes the initial linear regime corresponds to no loss of the incoming flux, which increases in importance with increasing N. This is followed by a maximum throughput at a finite intensity. We compare our model with the M/M/N/N queue [130], introduced in Section 4.2.2, i.e. one with exponentially distributed arrival and service times with rates λ and µ, respectively, N servers and no waiting line [START_REF] Medhi | Stochastic models in queueing theory[END_REF]. The Markov chain of this model is similar to Fig. 4.1 except that there is no direct transition from state N to state 0. Instead there is a transition from state N to state N -1 with rate Nµ. An arriving unit is lost to the system if all N servers are busy. The probability of this event is given by the Erlang loss formula, introuced in Section 4.2.2:

π N = 1 N! ( λ µ ) N ∑ N i=0 1 i! ( λ µ ) i . (4.26)
The throughput, given by substituting this probability in Eq. (4.22), always increases monotonically towards the maximum value Nµ as λ increases: See Fig. 4.2. In the following we examine in more detail the behaviour of the systems N = 2 and 3. For simplicity, and without loss of generality, we will set µ = 1, which is equivalent to taking the unit of time as µ -1 .

N=2

The explicit equations describing the evolution of the three state probabilities, with µ = 1, are; .27) and the time dependent throughput is

π0 = -λ π 0 (t) + µπ 1 (t) + µ * π 2 (t), π1 = λ π 0 (t) -(µ + λ )π 2 (t), π2 = λ π 1 (t) -µ * π 2 (t). ( 4 
j(λ ,t) = µπ 1 (t) + 2µ * π 2 (t).
(4.28)

As the system evolves towards a steady state the throughput approaches a constant value. In the steady state, the stationary probabilities are

[π 0 , π 1 , π 2 ] = C 2 [(λ + µ)µ * , λ µ * , λ 2 ]. (4.29)
with C 2 = ((2λ + µ)µ * + λ 2 ) -1 . As expected Eq. ( 4.21) and Eq. ( 4.22) yield the same result for the steady state throughput:

j(λ ) = λ 2λ + µ λ 2 /µ * + 2λ + µ (4.30)
Figure 4.3a displays the steady state throughput as a function of the intensity, λ . The limiting values of the steady state throughput at small and large intensity are

j(λ ) = λ - λ 3 µ µ * + O(λ 4 ), (4.31) lim λ →∞ j(λ ) = 2µ * . (4.32)
We search for a non-trivial maximum throughput at finite λ by seeking solutions of d j/dλ = 0 which requires 4λ µ µ * + µ 2 µ *λ 2 (µ -4µ * ) = 0. The solutions can be written as

λ µ = √ r + 2r 1 -4r ≥ 0, (4.33) 
where r = µ * /µ. Thus, solutions exist for r < r c = 1/4. If r > 1/4 there is no maximum at finite λ . If r < 1/4 the maximum throughput is given by

j max = µ √ r 2(1 - √ r) = µ * 2(1 - √ r) √ r (4.34) 
Figure 4.3b shows that this approaches the limiting value 2µ * as µ → 1/4. To obtain the the mean time to first blockage. From Eq. ( 4.20) we have

ν 0,2 = 2 λ + µ λ 2 . (4.35)
Following [START_REF] Barré | Stochastic model of single-file flow with reversible blockage[END_REF] we note that in the steady state there is an alternation of open and blocked states with average times of ν 0,2 and 1/µ * , respectively whose sum defines a cycle with period 1/µ * + ν 0,2 . This provides an alternative route to the probability that the system is in the blocked state, π (1,0) which is the fraction of the cycle spent in the blocked state:

π 2 = (1/µ * )/((1/µ * ) + ν 0,2 ) = λ 2 /((µ + 2λ )µ * + λ 2 )
, as obtained previously. To obtain the kinetic behaviour, the system of equations in Eq. ( 4.27) may be solved analytically. The eigenvalues of the matrix Q 3 are 0 (associated with the conservation of the total probability), and two real negative values γ 1,2 given by

γ 1,2 = - µ + µ * + 2λ ± β 2 (4.36)
where

β = (µ -µ * ) 2 + 4λ (µ -µ * ).
The probabilities are therefore given by (4.37) where π are the stationary values and a i and b i are determined by the initial conditions for i = 0, 1, 2. One easily obtains that

π i (t) = π i + a i e γ 1 t + b i e γ 2 t ,
a 0 = γ 2 β (1 -π 0 ) + λ β , b 0 = - γ 1 β (1 -π 0 ) - λ β a 1 = - γ 2 β π 1 - λ β , b 1 = γ 1 β π 1 + λ β a 2 = - γ 2 β π 2 b 2 = γ 1 β π 2 .
(4.38) 4.41), corresponds to the parameter space in which a maximum throughput occurs at a finite time given by Eq. (4.40). No maximum at any time occurs if r > 1/2 (upper dashed line). The solid, red line, Eq. (4.33), corresponds to the intensity that maximizes the steady state throughput for a given value of r = µ * /µ. No maximum occurs for finite λ if r > 1/4 (lower dashed line). We note two distinct behaviours: either the throughput increases monotonically to the steady state value, or it displays a maximum at a finite time before decreasing to the steady state value. Applying Eq.( 4.28) returns

∂ j(t) ∂t = γ 1 (µa 1 + 2µ * a 2 )e γ 1 t + γ 2 (µb 1 + 2µ * b 2 )e γ 2 t (4.39)
The solution for ∂ j(t) ∂t = 0 is given by

t max = 1 β ln µ * (µ + 2λ ) + γ 1 µ µ * (µ + 2λ ) + γ 2 µ . (4.40)
For a solution to exist the argument of the logarithm must be finite and positive. Setting the denominator equal to zero thus gives the boundary of the set of parameter values at which j(t) displays a maximum:

µ * b (λ ) = µ 2 1 - µ 2λ + µ , (4.41) 
It is the limiting value of µ * , for a given value of λ , at which the non-trivial maxima of the time dependent throughput exists. We note that if r > 1/2 no maximum at finite time exists; rather the throughput approaches the steady state value from below. The kinetic and steady state behaviours are shown in Fig. 4.5.

N=3

The master equations describing the evolution of the four state probabilities are; And the time dependent throughput is;

π0 = -λ π 0 (t) + µπ 1 (t) + µ * π 3 (t), π1 = λ π 0 (t) -(µ + λ )π 1 (t) + 2µπ 2 (t), π2 = λ π 1 (t) -(2µ + λ )π 2 (t), π3 = λ π 2 (t) -µ * π 3 (t). (4.42)
j(λ ,t) = µπ 1 (t) + 2µπ 2 (t) + 3µ * π 3 (t). (4.43)
The steady state probabilities are given by:

[π 0 , π 1 , π 2 , π 3 ] = C 3 [(λ 2 + λ µ + 2µ 2 )µ * , λ (λ + 2µ)µ * , λ 2 µ * , λ 3 ]. (4.44) 
with C 3 = (λ 3 + 3µ * λ 2 + 3µ µ * λ + 2µ 2 µ * ) -1 , and the system's throughput is

j(λ ) = λ (1 -π (1,0) ) = λ (3λ 2 + 3λ µ + 2µ 2 )µ * λ 3 + 3µ * λ 2 + 3µ µ * λ + 2µ 2 µ * (4.45)
with the limiting values at small and large intensities are We have studied the optimisation of the throughput of a stream of particles subject to blocking using a circular Markov chain model. The sojourn time of a particle contained in an open channel is exponentially distributed with rate µ. If N particles are simultaneously present the channel is blocked and all newly arriving particles are rejected. After an exponentially distributed blockage time with rate µ * all particles forming the blockage simultaneously exit the channel. We presented general expressions for the steady state probabilities and throughput. For N = 2 we showed that the steady state throughput assumes a maximum value at finite intensity if µ * /µ < 1/4. The time dependent throughput may also display a maximum if µ * /µ < 1/2. We showed that this behaviour is qualitatively different from the well-known M/M/N/N queue whose steady state throughput always increases monotonically with the intensity of entering particles. 

j(λ ) = λ - λ 4 2µ 2 µ * + O(λ 5 ), (4.46) 

FIFO model

The single channel model is revisited and is the same in every respect, except that it now employs the 'first in first out' (FIFO) queuing discipline to determine the egress of any transiting particles within. As before, the stochastic dynamics is described by using N + 1 state probabilities, π(0,t), π(1,t), • • • , π(N -1,t) and π(N,t) which correspond to 0, 1, • • • , N -1 and N particles in the channel, respectively. As before,

P(t) = (π(0, t), π(1, t), • • • , π(N - 1, t), π(N, t))
denotes the (N+!) state vector, so that the time evolution of the process is described by:

dP(t) dt = P(t) • Q N+1 . (4.48) Q N+1 is the (N + 1) × (N + 1) matrix, Q N+1 =          -λ λ 0 ... 0 0 µ -(λ +µ) λ ... 0 0 . . . . . . . . . . . . . . . . . . 0 ... µ -(λ +µ) λ 0 0 ... 0 µ -(λ +µ) λ µ * ... ... 0 0 -µ *          . (4.49)
The change of state i, in all but the first and last columns, contains two gain terms and two loss terms. The former correspond to the entrance of a particle (at rate λ ) in a channel with i -1 particles, and to the exit of a particle (at rate µ) from a channel with i + 1 particles. The two loss terms correspond to a channel with i particles ( 0 < i < N) where a particle enters at time t (at rate λ ) or where a particle exits (at rate µ). Although in the non-FIFO model the state k ∈ [0, N] contributed kµπ k (t) particles per unit time, here they only contribute µπ k (t) per unit time. As before, the description is completed by including the previously omitted boundary situations: the empty channel has a loss term corresponding to a particle entrance and two gain terms. The first term corresponds to a particle exit from an empty channel and the second to the release of a blocked channel (with N particles). A blocked channel has a single loss term corresponding to a release with rate µ * and a gain term corresponding to a particle entering the channel while in the (N -1) th state.

The time evolution of P(t) is again supplemented by the conservation of total probability, ∑ N i=0 π(i,t) = 1, leading the sum of each row of the transition matrix to be equal to 0. The channel throughput is given by

j(t) = µ N-1 ∑ k=1 π(k,t) + Nµ * π(N,t). (4.50)
This is again different to the original single channel throughput expression given by Eq. ( 4.21), due to the application of the FIFO discipline. The second term remains unchanged, and describes the re-opening of a blocked channel that instantaneously releases N particles. The expression for stationary state, j, remains unchanged from the expression given by Eq. (4.22).

Figure 4.9 shows the stationary flux with respect to λ for N = 2, 3, 4, 6 (shown bottom to top). For µ * = 0.5, at low intensity λ , the flux increases linearly with λ since blockage events are improbable, and finally saturates at high intensity. The flux is a monotonically increasing function of λ . The dashed lines correspond to the limit j = Nµ * . For µ * = 0.1, j displays a global maximum for a finite value of λ for N = 2, 3, 4, 6. One can show the critical value of µ * , for which the asymptotic behaviour changes, is µ * /µ = 0.25, 0.22, 0.187, 0.139 for N = 2, 3, 4, 6, respectively. To solve Eq.( 4.48), one notes that the process belongs to the class of circular Markov chains [130,133] for which a solution can be obtained for the stationary state. After some calculations, the blocking probability is found as

π(N) = 1 1 + µ * λ ∑ N i=1 (N + 1 -i) µ λ i-1 , (4.51) 
and by using Eq. (4.22 ), the stationary flux of exiting particles, j, reads:

j = µ * ∑ N i=1 (N + 1 -i) µ λ i-1 1 + µ * λ ∑ N i=1 (N + 1 -i) µ λ i-1 . (4.52)
The asymptotic regimes can be easily analysed. When λ → ∞ the flux, j, is found to be:

j Nµ * + µ * λ ((N -1)µ -N 2 µ * ). (4.53)
The leading term corresponds to an alternation of open (empty) and closed (blocked) states. The former is of an infinitesimally short duration where no particles exit and the latter is followed by the release of N blocked particles. This explains why the exiting flux j is independent of λ at large intensity. The second term of the asymptotic expansion, Eq.4.53, shows that the limit is approached from below when µ * < N-1 N 2 µ and from above when µ * > N-1 N 2 µ. This implies that, in the latter case, the flux, j, displays a maximum at a finite value of λ , whereas j is a monotonically increasing function of λ in the former case. The same behaviour is observed in the non-FIFO single channel model studied in Section 4.3.1 [134]. It is, therefore, worth noting that the choice of discipline has no effect on a channel, or bundle of channels, when each has a threshold capacity of N = 2. At small λ , j is given by:

j λ - λ N+1 µ N-1 µ * . (4.54)
The leading term of this expansion represents all particles leaving the channel without blockage and the subleading term corresponds to a decrement that becomes very small as the threshold N increases. The stationary probabilities allow the computation of many other quantities. For example, the variance of the stationary flux σ 2 j is given by For N = 2, one has

σ 2 j = µ 2 N-1 ∑ k=1 π(k) + N 2 µ * 2 π(N)) -µ N-1 ∑ k=1 π(k) + Nµ * π(N) 2 (4.55)
σ 2 j = µ * λ [(µ 2 -4µ µ * + 8µ * 2 )λ 2 + µ µ * (µ + 4µ * )λ + µ 3 µ * ] (λ 2 + 2λ µ * + µ µ * ) 2 (4.56)
For N > 2, the expressions are lengthy and so are not displayed. For small λ , the variance vanishes as

σ 2 j µλ (4.57)
and is independent of µ * . This can be interpreted by noting that blockages are rare in this regime and do not contribute to the leading term of variance. For large λ , the variance also vanishes as

σ 2 j µ * λ (N -1)(µ -Nµ * ) 2 + N 2 µ * 2 . (4.58)
Figure 4.10 shows the variance of the stationary flux σ 2 j as a function of λ for µ = 1 and µ * = 0.1, 0.5. As shown above, the variance increases linearly at small values of λ , and decays to 0 at large λ . These results confirm that for low intensity the system is most likely to be in state 1, λ 1, π(N) π(1), while for high intensity the system is most likely to be in the blocked state, λ 1, π(N) π(1). As for the NON-FIFO case, the time dependant average flux does, depending on the parameters chosen, may or may not present a maximum before settling to its equilibrium value. An observed difference is that the value of the equilibrium exiting flux for the channels following the FIFO queuing discipline is, in general, lower than for the NON-FIFO case, apart from the in the high capacity limit, which is expected.

FIFO single channel time dependent flux

Multi-channel FIFO model

We consider a bundle of N c particle conveying channels [112] 2,0 0,2 0,0 New notation is introduced such that, for N = 2, the state probabilities are given by π(i, j,t) where i is an index counting the number of blocked channels and j is an index for the total number of open channels (i.e with one particle present). Because the total number of channels is given by ∑ 2 j=0 i j = N c , the index i 0 is not necessary to define the state probabilities. This labelling reduces the number of state probabilities to (N c +1)(N c +2)/2. Figure 4.12 displays state diagrams for N c = 2 (left) and N c = 3 (right). An example of the extension of the graphical method is as follows: For N = 3, the state probabilities are defined by three indices i, j, k, denoting the number of channels with 3, 2, 1 particles, respectively. For example, for N c = 2 when one-channel is blocked and the other has two particles present is denoted by (1, 1, 0). The number of state probabilities is (N c + 1)(N c + 2)(N c + 3)/6. By using a three dimensional cubic lattice (whose nodes are labelled with the indices corresponding to the axes), one needs to add the the different arrows connecting the nearest neighbouring nodes with the rules described above. It is clear that when one increases both N c and N, it is necessary to code these rules in order to build the transition matrix and finally to obtain the stationary probabilities by using a matrix inversion, which remains feasible.

0,1 1,0 1,1 0,2 0,0 0,1 1,0 1,1 0,3 1,2 3,0 2,0 2,1

N

c = 2, N = 2
The kinetic equations of the model are given by the matrix differential equation:

dP(t) dt = P(t) • Q 6 , (4.59) 
where P(t) is the state vector with 6 components,

P(t) = (π(0, 0, t), π(0, 1, t), π(0, 2,t), π(1, 0,t), π(1, 1,t), π(2, 0,t))
and the transition probability matrix Q 6 is:

Q 6 =         -Λ Λ 0 0 0 0 µ -(Λ+µ) Λ 2 Λ 2 0 0 0 2µ -(Λ+2µ) 0 Λ 0 µ * 0 0 -(Λ+µ * ) Λ 0 0 µ * 0 µ -(Λ+µ * +µ) Λ 0 0 0 2µ * 0 -2µ *         . (4.60)
The non-zero coefficients of the matrix correspond to the different arrows shown in Fig. 4.12. For clarity, we shall examine two example terms in detail. The time evolution of π(0, 1,t) has three gain terms and two loss terms: the gain terms correspond to the entry of one particle in an empty system, a particle exit from a state where each channel contains one particle (thus contributing a factor of 2), and the release of a blockage from a system with one blocked channel and a channel with one particle. The loss terms correspond to the entrance or exit of a particle for a system in the state (0, 1). As a second example, the time evolution of π(0, 2,t) has one gain term and two loss terms. The gain term is associated with the entry of a particle in an empty channel, while the other channel already contains one particle (resulting in the factor of 1/2). The two loss terms are associated with the entrance of a new particle and the exit of one particle. (The factor 2 comes from the fact that a particle can exit from either channel). The throughput of the two channel system is given by:

J = µ[π(0, 1,t) + 2π(0, 2,t)] + 2µ * π(1, 0,t) + (µ + 2µ * )π(1, 1,t) + 4µ * π(2, 0,t), (4.61) 
where the first term corresponds to the exit of a particle from a system with no blocked channels. The second term corresponds to a blockage release. (The factor 2 is the number of particles in the blocked channel). The third term contains two contributions: a particle exit from the open channel and a blockage release. The last term corresponds to the release of two particles from one of the two blocked channels.

In the stationary state,

J = Λ(1 -π(2, 0)), (4.62) 
which corresponds to the product of the entrance flux and the probability that at least one of the channels is open. We find

π(2, 0) = 2Λ 5 + (2µ + µ * )Λ 4 ∆ , (4.63) 
with

∆ = 2Λ 5 + (2µ + 9µ * )Λ 4 + 4µ * (3µ + 5µ * )Λ 3 + 2µ * (2µ 2 + 21µ µ * + 4µ * 2 )Λ 2 +16µ µ * 2 (2µ + µ * )Λ + 8(µ µ * ) 2 (µ + µ * ). (4.64)
By using Eq. ( 4.61), one obtains the stationary throughput J, which at small Λ, behaves as:

J Λ - 2µ + µ * 8(µ µ * ) 2 (µ + µ * ) Λ 5 . (4.65)
Compared to the single channel model (with N = 2) (Eq. 4.54), where the first term has a λ 3 dependence, the first term has now a Λ 5 dependence, which corresponds to a smaller probability of a full blockage of the system. At large Λ, one obtains

J 4µ * - 2µ * (µ -4µ * ) Λ . (4.66)
As expected, in this limit the only contribution to the throughput are deblocked particles. We note that the limit is approached from below for µ * < µ/4 and from above for µ * > µ/4. The latter case results in a maximum of the flux for a finite value of Λ. Both behaviours are shown in Fig. 4.13. The change of behaviour for the two-channel model at µ * = µ/4 is also present in the previous one-channel model [134].

4.4.2 N c > 2, N = 2
It is possible to derive the time evolution for a model with N c > 2. The time evolution of the process with N c = 3 is given by a system of differential equations similar to Eq.(4.59). The state vector P(t) is now given as a 10component vector, P(t) = (π(0, 0, t), π(0, 1, t), π(0, 2,t), π(0, 3,t), π(1, 0,t), π(1, 1,t), π(1, 2,t), π(2, 0,t), π(2, 1,t) , π(3, 0,t)) . The matrix Q 10 is given by: 

Q 10 =                  -Λ Λ 0 0 0 0 0 0 0 0 µ -(Λ+µ) 2Λ 3 0 Λ 3 0 0 0 0 0 0 2µ -(Λ+2µ) Λ 3 0 2Λ 3 0 0 0 0 0 0 3µ -(Λ+3µ) 0 0 Λ 0 0 0 µ * 0 0 0 -(Λ+µ * ) Λ 0 0 0 0 0 µ * 0 0 µ -(Λ+µ * +µ) Λ 2 Λ 2 0 0 0 0 µ * 0 0 2µ -(Λ+µ * +2µ) 0 Λ 0 0 0 0 0 2µ * 0 0 -(Λ+2µ * ) Λ 0 0 0 0 0 0 2µ * 0 µ -(Λ+2µ * +µ) Λ 0 0 0 0 0 0 0 3µ * 0 -3µ *                  . (4.
67) The exact solution is too lengthy to be displayed, but we focus on some partial results. The stationary throughput is given by

J = Λ(1 -π(3, 0)). (4.68)
At low Λ, one obtains

J Λ - 18µ 3 + 39µ 2 µ µ + 22µ µ * 2 + 4µ * 3 324(µ µ * ) 3 (µ + 2µ * )(µ + µ * )(2µ + µ * ) Λ 7 . (4.69)
We have also solved the model for N c = 4 with 15 probabilities. Since the expressions are very lengthy, we present the results graphically in Fig. 4.13. For larger values of N, a complete solution can be obtained, by using symbolic software, once the transition matrix is obtained by using the graphical method depicted in the above section. However, because the linear size of the matrix increases as (N c + 1)(N c + 2)/2, the calculation rapidly becomes cumbersome. For general N c we conjecture that the small λ expansion is

J Λ -Λ 2N c +1 f (µ, µ * ), (4.70) 
where f (µ, µ * ) is a positive function of µ and µ * , and the Λ → ∞ limit is 

J = 2N c µ * + N c µ * (µ -4µ * ) Λ . ( 4 

Optimized transport

Here we examine two different scenarios for conveying a particulate flux of given intensity Λ. The configurations studied are as already studied in the non-Markovian case, as shown in Section 3.6 Fig. 3.12, a. The first scenario compares a single, high capacity (HC), channel with a threshold equal to N HC = 2N c with a bundle of N c identical channels each with a low capacity (LC) of N = 2. For a bundle of identical channels, the intensity is equally distributed. The second scenario compares a system of N c coupled channels, i.e. the total intensity is equally distributed over all open channels, each with threshold N = 2 with N c independent channels each with threshold N = 2. In both cases we seek to determine which of the two configurations optimises the steady state throughput.

One HC channel versus several LC channels.

At low intensity, both configurations present few blockage events and so their fluxes are equal to Λ. At large intensity, the throughput of the HC channel is equal to 2N c µ * . Since each LC channel has a throughput equal to 2µ * , the total outgoing flux is also equal to 2N c µ * . In order to determine the most efficient system for different values of the intensity Λ, one compares both systems by calculating the difference of their stationary fluxes.

∆J(Λ) = J N HC (Λ) -N c J 2 Λ N c , (4.72) 
where J N HC (Λ) denotes the stationary flux of the HC channel with entering intensity Λ and J 2 Λ N c the stationary flux of a LC channel of threshold N = 2 with a shared intensity Λ/N c . This quantity clearly goes to zero for small and large Λ, illustrating the fact that the two systems have the same stationary flux in these limits. Fig. 4.14 displays the difference of stationary flux ∆J(Λ) between the HC channel J N HC and the total flux of the LC channels, J 2 , as a function of Λ for µ * = 0.5, 0.1, (µ = 1) and for N HC = 4, 6, 8, 10. One observes that the HC channel is slightly more efficient at low intensity. At large intensity the HC channel is always less efficient than the bundle of LC channels. This behaviour is more pronounced when N c increases.

In summary, the throughput difference reaches a positive maximum for a finite value of Λ and then passes through zero before attaining a negative minimum, corresponding to the maximum efficiency of the bundle of LC channels. By expanding Eq. (4.72) to the first order it becomes clear that ∆J is not a flat function of Λ:

∆J Λ 3 µ * µ 2 N c - Λ µ 2(N c -1) , (4.73) 
which is positive for N c > 1. Conversely at high intensity

∆J = - (N c -1) 2 µ * µ Λ , (4.74) 
which is always negative. We consider the flux difference between the two systems

∆J C (Λ) = J N c 2 (Λ) -N c J 2 Λ N c (4.75)
where J N c 2 denotes the total stationary flux of N c coupled channels of threshold 2. At low intensity, there are few blockages in either system and the throughput is Λ in both. At large intensity, the throughput of the independent channels and the coupled correlated channels are both equal to 2N c µ * . By calculating the flux difference, one can determine the most efficient system for different values of intensity. Fig. 4.15 shows the flux difference, ∆J C (Λ), between the N c coupled channels and the total flux of the independent channels as a function of Λ for two values of µ * , (µ = 1) and for N c = 2, 3, 4. If the deblocking rate is sufficiently large, µ * > 0.25, the independent channels always convey the flux less effectively than the coupled channels. If µ * < 0.25 the behaviour is similar to the first scenario: ∆J reaches a maximum for a finite value of Λ. At higher intensities, the coupled channels are less efficient and ∆J shows a minimum. At very large intensity, both models converge to the same limit as expected. This behaviour can be understood by examining the limiting behaviour of ∆J. For small Λ one has (for N c > 1)

∆J Λ 3 N 2 c µ * µ 2 , (4.76)
which is always positive, while at high intensity The kinetic description of the Markovian model was given by a set of differential equations for the time evolution of the state probabilities

∆J - N c (N c -1)µ * Λ (µ -4µ * ), ( 4 
P(i,t) with i ∈ [0 • • • N]
giving the number of particles in the channel. Unlike the non-Markovian model, analytic solutions for the steady state properties can be obtained for arbitrary N (some generalisations of the Markovian models for which time-dependent solutions can be obtained [137,138] and could be investigated in the future ).

Markovian versus non-Markovian models

A Markovian channel is open for a mean time, t , and blocked for a mean time 1/µ * . The stationary flux was obtained using recurrence arguments, giving

j(λ ) = λ t t + 1/µ * .
(5.1)

The average time for which the Markovian system is open in a recurrence cycle may be obtained from Eq.(4.23)

[117] as:

t = 1 λ N-1 ∑ j=0 N! ( j + 1)(N -j -1)! µ λ j .
(5.2)

To compare the two models, µ and µ * must be related to τ, τ b and λ . Eq. ( 5.1) with Eq. (3.35) shows that µ * must equal 1/τ b . To obtain an expression for µ, we consider the system's behavior at low and high intensities.

When λ τ << 1, the non-Markovian transit time is equal to τ. The mean transit time is 1/µ in the Markovian model. A first approach was to therefore set µ = 1/τ. When λ τ >> 1, we expect µ to decrease to zero. The corresponding N c = 1, N = 2 model, with constant transit and blockage times, was originally examined in [START_REF] Barré | Stochastic model of single-file flow with reversible blockage[END_REF]. The steady state exiting flux is given by:

j ∞ = λ (2 -e -λ τ ) λ τ b (1 -e -λ τ ) + 2 -e -λ τ .
( 5.3) This equation may be compared to the steady state throughput of the N = 2 Markovian model, introduced in Chapter 4:

j ∞ = λ 2λ + µ λ 2 /µ * + 2λ + µ . (5.4)
There is no simple mapping that replaces τ with 1/µ and τ b with 1/µ * . However, the two systems can be mapped by introducing the following effective exit (service) rate :

µ * = 1 τ b , µ = λ e -λ τ
1e -λ τ .

(5.5)

i.e. substituting these effective rate equations into Eq. ( 5.4) returns Eq. (5.3). This is also obtained by equating the mean blocking time of the two models. For N = 2 we equate t given by Eq. ( 5.2) with the result for the non-Markovian model [107], t = (2e -λ τ )/(λ (1e -λ τ )). With this mapping, we recover the aforementioned expected limiting behaviour for both extremes of entering flux intensity. The exiting flux, Eq. ( 5.3) may be maximised for a finite value of intensity if τ/τ b < 0.16.

The same procedure can be carried out for N = 3 using Eqs. (3.63) and (3.64), but the resulting expression for µ is considerably more complex. For general values of N we therefore propose the following ansatz, taking a similar form as the mapping for N = 2:

µ = 2λ /N e 2λ τ/N -1 , (5.6) 
which behaves as 1/τ at low intensity and approaches zero exponentially at large intensity. Substituting Eq.(5.6) into Eq.( 5.1), produces a lower bound of the stationary flux (full curves). Furthermore, the maximum of the flux is underestimated and shifted to a lower intensity than in the non-Markovian model. For N = 3 and N = 4, the curves are very close to the results of the non-Markovian model. For N > 4, the ansatz leads to a significant underestimation of the exiting flux for small λ τ.

Overview of results

A previously studied and published channel model, with a finite capacity of N that leads to blockage was studied in Chapter 3. The channel was exposed to an entering flux of fixed intensity, λ for a finite time, non blocking particles transit at a constant time, τ, and if N particles are simultaneously present, the channel blocks for time τ b .

The irreversible case (τ b → ∞) was first studied, where it was demonstrated that the first and second moments of the number of exiting particles are maximised for a finite intensity. For a single channel with capacity N > 1 the exiting flux displays a maximum value at finite intensity if τ b is sufficiently large. If not, the exiting flux increases monotonically with the intensity.

The single channel model was then studied for the scenario of reversible blockage [114]. In this case, a particle transits through an open channel in time τ, but if N particles are simultaneously present in a channel, it is blocked for a time τ b , before being emptied. Bundles consisting of N c constituent channels, each with capacity N, were also considered. When a single channel is blocked, the entering flux is redistributed over the remaining open channels. A bundle of channels is open if, at least, one of its constituent channels is not blocked. If the entering stream is of constant intensity, the bundle evolves to a stationary state with a steady exiting flux, or throughput, that depends on the intensity, τ b and N. In the steady state the exiting flux is simply related to the probability that the bundle is open. For large N, the models display an abrupt change from a state with few blockages to one in which the bundle is permanently blocked and the output flux is entirely due to the release of blocked particles. This behaviour raises new questions about whether more general relationships describing the abrupt transitions in dynamics may be obtained for general N and N c . The transport efficiency of a bundle, in which the entering flux is equally distributed over the open channels, was also compared with a bundle composed of independent channels. For N = 1, the coupled channels always have a higher throughput, but for larger values of N the behaviour becomes more complex.

Chapter 4 extends the model presented here so that both the transit time, and deblocking time (where applicable) follow a Poisson distribution, rendering the system 'memoryless'. This feature allows the time evolution of a stochastic circular Markov chain model of intermittent particle flow through a 1D channel to be described by a set of differential equations, for which exact solutions can, in principle, be obtained.

The optimisation of the throughput of a stream of particles subject to blocking was studied, by defining the entry and sojourn times of a particle transiting an open channel as exponentially distributed with rates λ & µ, respectively. If N particles are simultaneously present the channel is blocked and all newly arriving particles are rejected. After an exponentially distributed blockage time with rate µ * < µ all blocking particles are ejected.

General expressions were derived for the steady state probabilities and throughput. For N = 2 the steady state throughput was shown to assume a maximum value at finite intensity if µ * /µ < 1/4. The time dependent throughput also displays a maximum if µ * /µ < 1/2. This behaviour was shown to be qualitatively different from the well-known M/M/N/N queuing model, whose steady state throughput always increases monotonically with the intensity of entering particles. The circular Markov chain model was then applied to multi-channel systems where the entering flux is evenly distributed over the open channels [135].

A bundle of N c particle conveying channels was also considered. The total particulate flux enters the system according to a Poisson process of intensity Λ. If a single channel is blocked, the flux that would have otherwise entered is evenly distributed over the remaining open channels. If all channels are blocked, the input flux is rejected. A framework was provided to obtain both the time-dependent and steady state properties and have presented explicit results for the steady state throughput for N c = 2, 3, 4. Analytical results were used to compare different configurations for transporting a particulate flux of given intensity.

A single 'high capacity' (HC) channel is shown to be more efficient than several coupled 'low capacity' (LC) channels at low intensity. but the reverse is true at higher values of Λ. We also compared N c coupled channels with capacity, N = 2 with its uncoupled version. The coupled channels always have a higher throughput if µ * /µ > 0.25. For µ * /µ < 0.25 the coupled channels are more efficient at low intensity, but at higher intensities the order reverses.

Conclusion and outlook

The model introduced in Chapter 4 is fully stochastic in the sense that the interval between particle entries, transit and blockage times are all sampled from exponential distributions with given rates. While this choice can lead to a considerable simplification of the mathematics, it may be unrealistic in certain physical applications. A particle cannot traverse a channel instantaneously, while according to the exponential distribution this is the most likely outcome. For this reason, the model was compared with the constant transit and/or blockage times version [START_REF] Barré | Stochastic model of single-file flow with reversible blockage[END_REF], studied in Chapter 3.

Both the Markovian and non-Markovian channel models present a maximum in the stationary flow as a function of entering intensity. Furthermore, it was shown that Markovian model can be made to display the same steady state behaviour with an appropriate mapping between the two models' parameters. Despite the transient behaviour being very different, the qualitative similarities in the steady state between the non-Markovian and Markovian models, as well as between the two queuing disciplines followed suggests that the details of the channel transport mechanisms and the blockage releases are irrelevant for determining whether or not a maximum in the steady state flux will be present for different variables. This behaviour can, therefore, be interpreted as universal of systems with carrying capacity, and may even be seen as related to the 'slower is faster' mechanism.

The next section will consider a microscopic approach to blockage induced intermittency in particle flow. The mechanism leading to blockage induced intermittency are explored by varying the system's parameters such as temperature, particle interaction force, constriction width and geometry. Just as in the simulations performed by Helbing [START_REF] Helbing | Social force model for pedestrian dynamics[END_REF]139,140], particles will acted on by many forces, such as the drift of the medium, inter-particle and particle-wall interaction forces, and Gaussian noise.

INTRODUCTION

The second part of this thesis introduces a 2D microscopic approach to blocking phenomena. While the first part highlighted different behaviours directly related to the finite capacity of a 1D channel, the goal is now to identify different physical characteristics that may be tuned to induce intermittency. A single channel is studied, permitting 2D flow, with a well defined geometrical narrowing. The presence, size and shape of the narrowing will, among other factors such as the particle stiffness, determine whether stream of 2D Brownian particles will display intermittency. The new model parameters that will be introduced replace the previously used 'channel capacity' as the channel's control parameter.

Motivation

Early studies of the discharge of granular matter from silos showed that significant changes in the flow occur when the ratio of the orifice to particle diameter is in the range 3 -5 [START_REF] Beverloo | The flow of granular solids through orifices[END_REF]. Later it was realised that the clogging phenomena is due to the formation of arches spanning the orifice [START_REF] Hong | Molecular dynamics simulations of hard sphere granular particles[END_REF][START_REF] To | Jamming of granular flow in a twodimensional hopper[END_REF][START_REF] Janda | Clogging of granular materials in narrow vertical pipes discharged at constant velocity[END_REF]. The arch stability is normally strongly associated with interparticle frictional forces and is, for example, responsible for the well-known Janssen effect [141][142][143]. Recently a 'reverse Janssen effect' has been observed in narrow granular columns [144]. For granular materials, clogging is very often permanent and an additional shaking of the system is required to restart the flow. For many of these systems, when friction effects become negligible or entirely absent, the blockages become temporary, which leads to intermittent dynamics.

Recent studies have focused on the statistics of blocking processes [145][146][147]. The number of escaping particles in each successive burst, as well as the time intervals between bursts, are distributed exponentially, which implies a constant probability of blocking during the whole burst, however the time lapse distribution between successive particles has been shown to exhibit a power law tail, p(τ) ∼ τ While these observations display some universal aspects, a simple model with a limited number of relevant parameters capable of capturing the essential dynamics of these systems is still missing. The new features in the work presented in this section are the consideration of the channel width L y , the constriction width l w , non-rigid frictionless particles and to highlight the essential role of the geometry of the constriction.

Model overview

We consider a minimal system, illustrated in Fig. 6.1, of identical soft discs of mass m of diameter σ 1 flowing through a channel of width L y . The disks undergo Brownian motion and are driven, from left to right, by the drift force related to the flow of the immersing fluid. The particles we study can be deformed by the channel, i.e. the walls, or by neighbouring particles. In many biological situations, deformable molecules move through transport vesicles, which are spherical structures formed by a closed biological membrane, containing molecules and many trans-membrane proteins [155,156]. A constriction formed by two fixed disks of diameter σ 2 is symmetrically placed about the channel axis, at x = 0 so that the minimum distance between them is l w = L y + σ 1σ 2 , i.e they are not centred on the channel walls, but displaced outward by σ 1 /2. The curvature of the constriction is the inverse of radius of the disk obstacle radius, 2/σ 2 . In order to maintain a constant l w , for varying channel width L y the constriction's curvature needs to be changed. The total channel length, L x is chosen to be significantly greater than L y to minimise correlation effects.

The particle flow in the microchannel depends on several physical properties, including the ratio of the constriction width to the particle diameters, inter-particle, particle-wall interactions and drag forces.

The inter-particle force between the mobile particles i and j is

F i j = kθ (σ 12 -r i j )(r i j -σ 12 )r i j . (6.1)
r i j is the distance between two particles, and ri j is the unit vector along r i j . θ (x) is the Heaviside function, k is the rigidity factor and σ 12 = σ 1 +σ 2 2 . The same interaction force is used between a mobile particle i and the stationary particles that make up the constriction, i 0 . The forces between particle i and the channel walls, denoted w±, is given by

F w±,i = k w θ (r iw± -σ i /2)(r i,w± -σ i /2)r iw± , (6.2) 
where r i,w± is the distance between the particle i and the wall w±, riw± , the unit vector, and the rigidity factor k w .

The force between a moving particle and the two obstacles is given by Eq. 6.1. Finally, the moving particles are driven an external drag force

F d,i = -α(v -v 0 ), (6.3) 
where v 0 is a constant vector along the channel axis, v 0 = v 0 e x , and α is the drag coefficient of the driving medium.

The mobile disks move under the the influence of both Brownian motion and the frictional force arising from the fluid in which the disks are immersed. The resulting equation of motion is given by:

m dv i (t) dt = ∑ j =i F i j + ∑ w F w,i + ∑ i 0 F i,i 0 + η(t), (6.4) 
η(t) is Gaussian noise, such that < η(t) >= 0 and < η(t)η(t ) >= δ (tt ). To be sure that the noise used accurately represents the random shocks of the components of the immersing milieu the following must be true:

< η(t)η(t ) >= 2mDδ (t -t ), (6.5) 
where D is the velocity diffusion coefficient, which, by Einstein's relation is given by:

D = k B T α m . (6.6)
T is the temperature of the bath, and k B is the Boltzmann constant. Substituting Eq. ( 6.6) into Eq. ( 6.5) returns:

< η(t)η(t ) >= 2k B T αδ (t -t ). (6.7)
finally returning the Brownian equation of motion, with the rescaled noise, as:

m dv i (t) dt = ∑ j =i F i j + ∑ w F w,i + ∑ i 0 F i,i 0 + 2k B T αη(t). (6.8) η(t) is Gaussian noise, such that < η(t) >= 0 and < η(t)η(t ) >= δ (t -t ).
In what follows, we only consider overdamped Brownian motion, i.e. the acceleration term is neglected. As a result, the system's dynamics is described by the following overdamped Langevin equation:

v i (t) = v 0 + 1 α ∑ j =i F i j + ∑ w F w,i + ∑ i 0 F i,i 0 + 2k B T α η(t).
Further physical parameters characterising the model are the intensities of the soft core repulsion k and k w and the dimensions of the channel L x and L y . The particle density is ρ = N/(L x L y ), where the volume occupied by the constriction is neglected. This is reasonable if L x >> L y . It is convenient to switch to non-dimensional system parameters. Since in the case of overdamped motion studied here, the particle mass is irrelevant we select σ 1 , σ 1 /v 0 and σ 1 v 0 α as units of length, time and energy, respectively. The unit of time corresponds to ballistic displacement of a particle with the velocity v 0 and the unit of energy is the work done against the drag force in this time. With this choice of units, we switch to the following non-dimensional quantities:

k = kσ 1 αv 0 , k w = k w σ 1 αv 0 , (6.9) 
which are the reduced force strengths between particle-particle and particle-wall, respectively, and:

T = k B T αv 0 σ 1 , ρ = ρσ 2 1 (6.10)
are the the reduced temperature and particle density. The channel's geometric parameters are:

L x = L x σ 1 , L y = L y σ 1 , l w = l w σ 1 (6.11)
and, are the dimensionless velocity and interparticle distance. The Péclet number, giving the ratio of advective transport to diffusive transport is: .13) In the following, we drop the primes of variables and of parameters. In order to decrease the dimensions of the parameter space, we furthermore assume that: k = k w . In the limit of a long channel, which minimizes correlations between exiting and entering particles, L x is an irrelevant parameter. Particles are initially randomly and uniformly placed within the channel without overlapping each other, the walls or the constriction. The collective particle trajectories were generated by using an Euler algorithm with a timestep ∆t = 10 -2 . Periodic boundary conditions were imposed in the direction of the channel: as a particle exits the channel when the abscissa is equal to L x /2, it is reinserted at x = -L x /2. The channel domain is, thus, topologically an annulus. The dynamical motion in this model is purely rotational around the annulus due to the application of the unidirectional drift force.

v i (t) = v i (t) v 0 , r ij = r ij σ 1 (6.
Pe = σ 1 v 0 α k B T = 1 T . ( 6 
Whether the y-coordinate of the reinserted particle is conserved or chosen randomly within the interval of the channel has no noticeable influence on the dynamics of the system. The next chapter will investigate a simple convex constriction formed by two fixed large discs located in the middle of the channel (as in Fig. 6.1). Section 7.2 considers a double constriction formed by four fixed large discs, whose separation by a finite distance d sep , creates a non-convex geometry see Fig. 6.2.

We focus on the low temperature regime, where the mobile particle display near-ballistic motion, as the the flux most prominently displays intermittent dynamics, due to blocking. Cascade statistics were monitored for various geometries, and the angular distribution of the blocking particles were collected. Simulations were performed for reduced densities in the interval 0.5 ≤ ρ ≤ 0.6 and Péclet numbers 1 < Pe < 100. In this density range, high and low density regions coexist on each side of the obstacle when blocking occurs. After a transient time, which increases as the width of the constriction decreases, the system reaches a stationary state with a well-defined mean particle flux. The upper bound of the time required for the system to reach the A second regime is observed in the range l w 2 ≤ l w ≤ l w 1 where l w 2 is slightly below 1. The mean velocity is a convex function of l y and decreases more rapidly than before. T = [ … 1 , 0 , 1, 0, 1, 0, 0, 1, 0, 0, 0, 0 …, 0, 0, 0, 1, 0, 1, 0 , 1, 0 , 0, … , 0, 1 …] τi > tc τi +1 > tc 1 0 ∀Δt si = 3

Figure 7.4: Illustration of the technique employed to characterise the system's cascade size and inter-time distribution. A slice is defined just beyond the geometrical constriction. If, in a time-step ∆t, a particle passes over the slice, a 1 is recorded; otherwise, a 0. The time evolution of the system can then be represented as the binary stream T. If an unbroken string of zeros is longer than some predefined critical value, t c , the system is said to be blocked for time τ i , giving an intercascade time. The number of 1s counted between two consecutive blocking events is the cascade size, s. N(τ) and N(s) are the cascades inter-time and size distribution, respectively, collected over a simulation.

There is little dependence on k w , except at the lowest temperature T = 0.01. Finally, for l w 3 < l w < l w 2 , which corresponds to a minimum distance less than a particle diameter, the velocity decreases rapidly to zero. The slope of the nearly linear curve increases as the temperature decreases. Moreover, whereas the behaviour in this regime depends on the strength of the forces for T = 1, 0.5, 0.1, it is almost independent of k w at low temperature. l w 3 depends on both the temperature and k w . This regime corresponds to single particle passing through the constriction. Finally, for l w < l w 3 , the channel is unequivocally blocked, because the force required to sufficiently deform a particle exceeds the force exerted by the other particles behind the constriction.

At low temperatures one observes the formation of a dense region before the constriction in which the particles are almost at rest. When the size of this region exceeds a threshold length, the particles are able to pass through the constriction. The resulting burst is of short duration and is followed by a period of arrest before the next group of particles is released.

Figure 7.2 shows the mean velocity as a function of l w for different channel widths L y . The different regimes described for L y = 5.5 are only slightly modified for L y = 4.5, 6.5, 7.0. Substantial changes are, however, observed for L y = 5 and L y = 6: For L y = 5, when 1 < l w < 1.5, the mean velocity is almost constant which is associated with the fact that only one particle at a time enters the constriction from the dense region before the bottleneck. Conversely, when L y = 6, one observes a non-monotonic variation of the mean velocity with l w .

The system now favours two vertically aligned particles at the entrance of the constriction. This configuration is metastable in the sense that when the fluctuation forces acting on the two particles are sufficiently large, one observes a small deviation of the vertical axis defined by the two particle centres that allows one of the two particles to enter the constriction, rapidly followed by the other. This effect only appears if the channel width, L y , is able to 'select' this configuration at the entrance of the channel and if the core repulsion is not large (for k w = 300 this same configuration leads to a quasi-permanent blockage for l w < 1.5, namely larger than a diameter of particle). Conversely, when k w = 100 the particles are highly deformable and the minimum of the mean velocity versus l w disappears. For a suitable choice of parameters, the model develops metastable minimal arches, resulting in blockages of finite duration, leading to cascading behaviour, as illustrated in Fig. 7.3. We also present the distribution of angles formed by the line passing through the centres of the two blocking particles, obtained over long simulation times. The next section examines this intermittent regime in more detail.

Cascade statistics

The dynamics is characterised by a sequence of cascades alternating with periods of arrest. Distributions of both the cascade size and the inter-cascade times (Fig. 7.5 ) were obtained for L y = 6, k w = 200, σ 2 = 5.75. This geometry was chosen as it corresponded to the local minimum in the mean velocity, as shown in Fig: 7.2 at T = 0.01. These were determined by recording the times at which a particle crosses a line perpendicular to the channel axis and just beyond the constriction, as illustrated by Figure 7.4. If, in a time-step ∆t, a particle passes over the slice, a 1 is recorded. Else, a 0 is recorded. The time evolution of the system can then be represented as the binary stream T. If the elapsed time between the passage of two particles is greater than a chosen characteristic time, t c , the system is said to be blocked for time τ i . The number of 1s counted between two consecutive blocking events is the cascade size, s. N(τ) and N(s) are the cascades inter-time and size distribution, respectively, collected over a simulation. The cascade distributions are independent of t c . Practically, we found that a good choice was t c = 10∆t. As Fig. where τ 0 is the characteristic exponent. Similarly, as shown in the subfigure of Fig. 7.5a, the cascade size peaks also follow exponential distributions, as shown by Eq. 7.1, but with s peaks replacing τ, and s 0 replacing τ 0 . For the single constriction case, a single peak, with a maximum at θ b = 0 is observed, which is as expected. 

Angular distribution

The angular distribution of the blocking particles, whose presence leads to the intermittent dynamics is studied. The blocking angle, θ b is defined as the angle between the line passing through the axis of the two blocking particles, and the y-axis, as illustrated in Fig. 7.7. As the temperature is increase, the distribution broadens, and fewer blocking events are recorded, as expected.

Double constriction

We now consider a double constriction consisting of four disks, i.e. the original pair plus a replica displaced by d sep . When d sep = 0, the two pairs fully overlap and we recover the previous model. When d sep > 0, the non-convex region between the two constrictions may trap the moving particles. Simulations were performed for different values of separation d sep = {0,1,2,3,4,5,6} between the two pairs of obstacles. All the other parameters are chosen to correspond to those of the original model for which both monotonic and non-monotonic behaviour was observed, i.e., for T = 0.01, k w = 200, L y = 5.5, 6, 6.5.

Two distinct blocking mechanisms are now possible, as shown in Fig. 7.7: Type 1, involving the previously observed arch formation before the first pair of obstacles, and (depending on the geometries chosen) Type II, arising from the trapping of particles between the two pairs of obstacles. As illustrated in the figure, these mechanisms can be distinguished by the orientation of the blocking particles, θ b . For the Type I mechanism, the points of contact between the two blocking particles and the obstacles lie almost parallel to the y-axis. Conversely, the non-convex geometry that gives rise to the Type II mechanism causes θ b to be significantly misaligned with the y-axis in one of two different, yet symmetrically equivalent, orientations. The arches forming within the space encompassed by the non-convex geometry in Figs 7.7 b1 and b2 lead to regular triangular formations.

It is possible that different choices of l w and d sep will lead to the formation of different finite regular polygonal structures within the non-convex bound space, each of which may be associated to various degrees of intermittency, according to the structure's stability. The presence of the second blocking mechanism increases the likelihood of intermittent dynamics for values of L y that would otherwise not display an overshoot in the mean velocity. It is often observed that the system passes a significant amount of time undergoing Type I followed by Type II blocking before releasing a cascade. It should also be noted that, once d sep exceeds a certain length, particles between the two constrictions organise to form a passage from one obstacle pair to another, therefore reducing the possibility of the Type II blocking. See Fig. 6.2. The non-monotonic evolution of the mean velocity, for non-zero values of d sep , persists for cases where the channel width is a non-integer (L y = 5.5, 6.5). This indicates regions of geometry that display intermittent dynamics that are principally (but not solely) caused by the Type II blocking mechanism illustrated in Fig. 7.7. Figure 7.9 shows the effect of varying temperatures on the mean velocity as a function of l w , around the geometries of interest for L y = 6, d sep = 3, 4 . At low temperatures, the mean velocity varies non-monotonically with l w . The region in which the mean velocity displays a local minimum is associated with strongly intermittent behaviour, at low temperature. Increasing the temperature causes these regions to disappear, and the non-monotonic nature of the mean velocity decreases. For T = 0.01 the mean velocity undergoes many singular reductions. For d sep = 3 the greatest observed singular reduction for T = 0.01 occurs at σ 2 = 5.844737 ( i.e. l w = 1.155263). It is interesting to note that the non-monotonicity exhibited for d sep = 3, while showing fewer observed singular regions, is nonetheless more robust to increasing temperature than for d sep = 4.

Velocity statistics

Particle-particle or particle-wall friction has been evoked to explain the formation of arches in silos and other situations, however, in the present model solid friction is absent, so it is reasonable to conclude that this effect is purely geometrical in origin. It must furthermore be noted that there exist some geometries that are critical in the sense that, at low temperatures, they cause the mean velocity to decrease to zero in a non-smooth fashion, for example, as seen in Fig. 7.9. Characterising the mean velocity with higher precision data points, at low temperature, reveals the presence of multiple values at which the mean velocity approaches zero in a non-smooth manner. This effect is most prominent at low temperatures. Increasing the temperature, as shown in Fig. 7.9 causes these singular points to vanish, but the mean non-monotonic behaviour persists for a large range of increasing temperatures, as shown for the specific case of d sep = 3.

Cascade statistics

This section characterises the intermittent behaviour observed for certain specific values of non-convex geometry that, at low temperature, result in the singular minima of the mean velocity, as seen in Figs. 7.8 and 7.9. The low temperature regime was chosen, as it is where the flux displays intermittent dynamics. Avalanche statistics were monitored for various geometries.

The intermittent dynamics can be best described as a sequence of particle cascades that are blocked during the inter-cascade times by one of the two blocking mechanisms shown in Fig. 7.7. The cascades are detected by counting the number of particles that pass a 1D section through the channel between pauses greater than a predefined critical time t c . An initial study of the cascade statistics that manifest for L y = 6, d sep = 3, σ 2 = 5.75, show a distribution that is qualitatively very simlar to that presented in the d sep = 0 case, as shown in Fig. 7.5.

Angular statistics

Distributions of θ b are again taken, but for both Type I and II blocking mechanisms, for the specially chosen geometry studied in Sec 7.2.2, that induced a singular reduction in the system's global velocity, as well for the value of σ 2 already studied for the original constriction. The Type I angular distributions are of the same form as already seen for d sep = 0 convex case, after accounting for possible correlations arising from any particle tailback caused by Type II blockages. In every geometry presented, increasing the temperature has the repeated effect of spreading the distribution of θ b , and reducing its peak value, with the notable exception at Fig. 7.12 b, where increasing the temperature from T = 0.01 to 0.02, causes the peak of the distribution to increase three-fold, in an apparent 'freezing by heating' phenomenon, this may be a characteristic only found at the geometries that case the singular reduction in the system's average velocity.

Every θ b distribution shown, displays a single peak with a maximum at θ b = 0, with the exception of the Type II blocking angle distributions at σ 2 = 5.75, L y = 6, d sep = 3. Here, three peaks are observed that clearly correspond to metastable arch formation induced by the dispersive and focussing elements of the modified constriction, that nonetheless disappears with increasing temperature. CHAPTER 8 DISCUSSION

Importance of geometrical detail

The clogging phenomena that served as the mechanism leading to the intermittent flow observed in this system, are clearly of geometrical origin, as there are no inter-particle nor particle-wall frictional force. Decreasing the noise term caused the appearance of multiple parameter regimes, in which the mean velocity followed a non-monotonic evolution with constriction width, indicating when closing is more likely to happen. Increasing the contribution of the stochastic term reduces this likelihood, without eliminating it. The distribution of cascade times were measured, and shown to be exponential. Increasing the temperature reduced the cascade size, in agreement with [157] , while also increasing the number of cascade size peaks. This chapter considered possible geometries in a somewhat course grained manner by, for example, only considering integer values of d sep . We expect that the observed non-intuitive behaviour is also present for non-integer values of d sep , though the complex behaviour makes it unlikely that a single universal relation between the constriction geometry and observable dynamical features could be easily observed. We have studied particle flow through single and double constrictions and have identified a novel blocking mechanism that leads to non-intuitive phenomena such as singular reductions of the mean particle velocity, indicating the presence of strongly intermittent dynamics. While increasing the temperature reduces this effect, some geometries are more 'robust' than others in retaining their intermittent character.

While most studies concerning the formation of arches and other blocking phenomena rely on the presence of frictional forces, this chapter demonstrates that, even in the absence of said forces, the geometrical detail of the constriction, especially in the double constriction case, plays a major role in the formation of arches that lead to intermittent dynamics. This poses the question relating to which geometrical conditions promote the the stability of the structures, which, as Fig. 7.9 demonstrates, is variable. i.e. Some structures are more likely to persist at higher temperatures than others.

These results suggest the presence of a geometrical phenomenon that is inverse to that shown by the presence of an obstacle upstream of the outlet of a flow. The upstream obstacle strongly reduced the occurrence of blockage, which may reduce or eliminate clogging in silos [START_REF] Zuriguel | Silo clogging reduction by the presence of an obstacle[END_REF], panic escape [154], and even the flow of sheep [153]. However, in the work presented here, the introduction of the second pair of obstacles serves to increase the likelihood of blockage by the creation of spaces within which metastable arches may form.

Overview of results

The second part of this thesis studied a single channel permitting the flow of a set of soft 2D disks, of diameter σ 1 = 1, driven through a well defined geometrical narrowing, via Brownian dynamics simulation. The narrowing was initial defined by the placement of two stationary particles of diameter σ 2 .

Regions of particle stiffness and channel geometry were identified where the average velocity of the system behaves non-monotonically, in the low temperature (near-ballistic) regime, signalling conditions for clogginginduced intermittency. Cascade size and inter-time distributions were collected, and were both shown to follow exponential distributions. The cascades were then further characterised by counting the number of particles that pass over a slice of the channel geometry, per unit time. To further understand the source of intermittency, a new observable was introduced, as the angular distribution of the axis passing through the pair of blocking particles.

The geometrical constriction was then modified to form four overlapping fixed particles, thus creating a boundary with both dispersive and focussing elements. The system's global velocity, cascade size and time statistics, and angular distribution of blocking were again taken, showing parameter values where the system's average velocity decreases in a singular fashion, which had not been seen before. The relationship between the non-monotonic evolution of the average global velocity and some specific channel geometries were also studied under increasing temperature. Some geometrical regions where consequently shown to have a more 'robust' non-monotonic effect on the system's average velocity than others. Finally, the distributions of blocking angle, θ b , were taken for specially chosen geometries, that either do, or do not case a singular reduction in the system's global velocity.

Outlook

The current Brownian dynamics simulation does not account for the hydrodynamic effect in narrow channels. A direction for future research might, therefore be, to include the hydrodynamic interactions of a particle in the system with all the other particles. As our system is geometrically confined, the hydrodynamic interactions of a particle with its own image, and with the images of the other particles in the system, would have to be included. This is motivated by observed scattered and bound states of hydrodynamically coupled particles in narrow channels [158], whose effects have already been explored for Volvox algae colonies (Volvocine algae may be used to study collective dynamics of self-propelled objects [dancing]).

To include hydrodynamic interactions in a 2D domain, the 'Ermak McCammon' scheme [159] could be applied, where the displacement of the particle's centre of mass position is given by:

∆X i (∆t) = N ∑ j D i j F j k b T ∆t + N ∑ j ∂ D i j ∂ r j ∆t + R i (∆t) (8.1)
D i j is a dN × dN diffusion tensor which couples the N particles and their d translational degrees of freedom, and is directly applied to external forces. The hydrodynamically correlated random displacements R i (∆t) are described by:

< R i (∆t) >= 0 < R i (∆t)R j (∆t) >= 2D i j ∆t. (8.2)
For N identical circular particles, of radius σ 1 , choices for the diffusion tensor may either be the Onseen tensor or the . Ref [161] provides steps towards generalising to both systems of particles of differing radii as well as systems of non-circular particles. The work reviewed uses the latter, which consists of the following d × d submatrices D i j : (8.4)

D ii = k b T 6πησ 1 I, (8.3) 
D i j = k b T 8πηr i j (I + r i j ⊗ r i j ) + 2σ 2 1 3r 2 i j (I -3 r i j ⊗ r i j ) i = j & r i j ≥ 2σ 1 .
D i j = k b T 6πησ 1 1 - 9r i j 32σ 1 r i j I + 3r i j 32σ 1 r i j ⊗ r i j i = j & r i j < 2σ 1 . (8.5)
The entire tensor is positive definite for all particle configurations. The third and final part of this thesis will study dynamical chaos arising from a conservative Hamiltonian system, which, unlike the previous models studied, contains no statistical hypothesis [START_REF] Chirikov | Natural laws and human prediction[END_REF]. Despite every aspect of these sorts of systems being deducible from their laws of evolution, deterministic randomness is nonetheless typical for a minimal number of degrees of freedom (> 1), and even familiar statistical properties may be recovered in special ergodic cases [165]. Throughout this thesis, fluctuation has been a key, repeatedly employed, statistical behaviour. However, it is well known that chaotic motion is a generator of noise that is purely intrinsic by definition of the dynamical system. Examples where chaotic motion is retrieved include perturbed Kepler motion, which is a particular case of the famous three body problem. The motion of the comet Halley, perturbed by Jupiter, was found to be chaotic with an estimated lifetime in the solar system of the order of ten million years [166]. Another example of chaotic dynamics is found in the case of a charged particle confined in an adiabatic magnetic trap [167].

Our goal is to better understand the fundamental connection between geometry and chaotic dynamics, by studying a 2D billiard. These [168] are Hamiltonian systems in which a point particle freely moves within a compact, planar, Euclidean domain, whose motion is governed by the Hamiltonian:

H(q, p) = p 2 /2, q ∈ B/∂ B. ∞, q ∈ ∂ B. (9.1)
The speed and mass of the particle can both be assumed to equal unity. The infinite boundary potential causes every collision to be elastic. Therefore, the component of the momentum projected onto the normal of each point of contact changes sign, while the tangential component stays constant. The momentum vector, p i+1 , after the i th collision at point q i is:

p i+1 = p i -2[p i • n(q i )]n(q i ). (9.2)
n(q i ) being the normal of the boundary at each collision. The particle exhibits dynamics that are purely determined by the interplay between its initial conditions and the boundary. These systems exhibit three behaviours: 1) Regular, i.e. periodic or quasiperiodic orbits, as found in circular [169,170] elliptic [171] or confocal elliptic [172] billiards. 2) Ergodic, with orbits that fill the entire phase space, as found in the Sinai [35], Bunimovich stadium [173] and cardioid [174] billiards. 3) Mixed dynamics, i.e. with coexisting regular and irregular trajectories, as found in the family of limaçon, eccentric annular and mushroom billiards [175,176].

A billiard phase space is mixed when it contains stable and unstable trajectories. Unstable (chaotic) trajectories have many interesting and unexpected characteristics, such as the existence of dynamical barriers to chaotic transport [177] and quasiregular chaotic motion near regions of stability, otherwise known as 'stickiness ' [178-180]. Indeed, there are different varieties of stickiness in billiards that may be distinguished between, as discussed in [181]. 'Internal' stickiness presents in systems with no islands of stability, such as the Bunimovich stadium, or else are due to the presence of marginally unstable periodic orbits (MUPOs) that are completely contained withing the chaotic sea, such as in mushroom billiards [182]. 'External' stickiness, however, arises because of the existence of the boundaries between regular and chaotic regions. Stickiness results in non-exponential decays of both the time-correlation functions and Poincaré recurrence distributions [183][184][185][186].

The mathematics of billiard systems may be applied to experiments employing both two and three dimensional geometries that may be either open [169] or closed. Examples include situations where particles or waves are confined to cavities or other homogeneous regions [169] such as waveguides [187], electrons in semiconductors confined by electric potentials [188] and atoms interacting with laser beams [189,190]. Dynamical tunnelling between classically isolated phase space regions has also been investigated and observed in both desymmetrized mushroom and eccentric annular superconducting microwave resonators [191,192].

The behaviour of both closed and open systems is crucially determined by their geometry-dependent classical dynamics [169]. Escape rates of open billiards is a characteristic that is both experimentally accessible [190] and important for transport properties of many related systems, such as fractal conductance fluctuations [193,194].

The billiard setup described may be subject to numerous variations [168], such as including a magnetic field [195], with strength, B, perpendicular to the plane.

Simple systems

Two related, simple, and well-studied systems are reviewed to provide greater detail and context of the concepts and results presented later.

Circle map

The circle map is the simplest possible 1D dynamical system, given by:

T : θ n+1 = θ n + Ω, mod 2π. (9.
3)

The time evolution of the circle map is characterised by a quotient of numbers such that: Ω n = 2πω 1 /ω 2 , that defines the 'frequency' of the system. If rational, i.e. ω 1 , ω 2 ∈ Z + , the orbit closes on itself after a finite number of iterations, i.e. it is periodic. If irrational, the set of points that defines it, θ ∈ [0, 2π], will fill ergodically as time tends to infinity.

It will be advantageous, at this stage, to distinguish between different categories of irrational number. It is well known that rational approximations of some irrational frequency are obtained through its continued fraction representation [196]: 9.4) a 0 , a 1 , a 2 .. ∈ Z + are called partial quotients. Irrational numbers are represented by an infinite sequence of partial quotients, whereas it is finite for rationals. Numbers can be irrational to different degrees, the highest of which is the golden mean, represented by a continued fraction whose partial quotients are all equal to 1, which is an element of the set of noble frequencies, whose partial quotients always end in ones, although the first quotients may be different.

Ω = a 0 + 1 a 1 + 1 a 2 +.. = [a 0 , a 1 , a 2 ...], ( 
The simple, but little known, Slater's theorem [197] states that for any irrational value of Ω/2π, the distribution of return times, τ i , is at most three, and that the largest is the sum of the other two. This property of rotational quasiperiodic orbits allows for the fast and useful detection of quasiperiodicity from short trajectories. Furthermore, two of the three return times are always consecutive denominators in the continued fraction expression of the irrational Ω. Slater's theorem does not impose any requirement on the size of the recurrence interval, provided that it does not cover the whole trajectory in phase space [186].

Chirikov standard map

The Chirikov standard map is a simple system that presents universal characteristics of generic dynamics when integrable islands of stability are surrounded by a chaotic sea. Systems reducible to the standard map include charged particle confinement in mirror magnetic traps [198], particle dynamics in accelerators [199] and even comet dynamics in the solar system [166,200]. Its significance is that it serves as a simple model for the Poincaré first return map of an area-preserving Hamiltonian system with two degrees of freedom. The standard map is given, with respect to its phase space coordinates (x, p), as:

T : 9.5b) where p n+1 replaces the Ω used in the 1D circle map and the subindex, n, is the number of iterations. The nonlinear perturbation parameter, k, is a dimensionless constant that determines the extent to which the, otherwise regular, unperturbed circle map displays chaotic dynamics. Due to the periodicity of sin, the dynamics may be considered as lying on a torus T = C ×C, and may be interpreted as the Poincaré section of a periodically kicked rotor.

x n+1 = x n + p n+1 [ mod 1], (9.5a) p n+1 = p n - k 2π sin(2πx n ) [ mod 1], ( 
The onset of dynamical chaos is due to the destruction of tori (i.e. their cantor-set like transformation to cantori [201]), with increasing perturbation. As a result, chaotic and regular trajectories intermingle. Kolmogorov-Arnold-Moser (KAM) surfaces isolate stochastic layers from each other, forming transport barriers from one region to the other. ( See Appendix B, for a discussion of the role of symmetry breaking in the creation of the system's mixed dynamics, and for some example phase portraits.) 'Converse KAM' theory states that no invariant rotational barriers will persist [202,203] in a sufficiently perturbed area preserving twist map. Some transport barriers are more resistant than others to perturbation, as has been verified in work that numerically determined the frequency of the final destroyed invariant transport barrier for the standard map [START_REF] Paul | Application of greenes method and the MacKay residue criterion to the double pendulum[END_REF]. The obtained frequency of the final destroyed transport barrier is Ω = γ, where γ is the golden mean

(1 + √ 5)/2 = [1; 1, 1, 1...],
which is destroyed at k = 0.971635... [205]. The standard map may be given as a composition of two involutions, which was used to identify periodic orbits. Appendix B examines this decomposition and the repeated application of the involutions to identify fixed points within the standard map phase space for different values of k.

Iris Billiard geometry

The Iris Billiard is defined as a central scattering ellipse, with tunable axes, enclosed by a unit circle. When the ellipse degenerates to a circle, the system is integrable, and the system consequently displays dynamics that are equivalent to the circle map, introduced in Section 9. 

Ellipse geometry

An ellipse is the locus of points with cartesian coordinates (x, y) following the equation:

x 2 a 2 + y 2 b 2 = 1. (9.6)
b, a ∈ R are, respectively, the semi-major, and minor axes, ( b ∈ (0, 1] and a ∈ (0, b] ). If a = b, the ellipse reduces to a circle. If a = 0, then the ellipse reduces to a line of length 2b. The elongation, e = b/a, is used as a measure of the degree of the ellipse's eccentricity, and therefore the degree to which the system's symmetry is broken. Rewriting Eq. (9.6) in polar coordinates (ρ, θ ) returns:

ρ(θ , e, a) = a e e 2 cos 2 θ + sin 2 θ , (9.7)
The symmetry of the ellipse means that for a given geometry, ρ(θ ) = ρ(-θ ) = ρ(θ ± π). When e = 1, the system is totally symmetric, and integrable, by conservation of angular momentum, and so reduces to the 1D circle map. For e > 1, the ellipse acts as a non-linear perturbation on the 1D circle map, but much more complex nature than that applied to the standard map. The resulting symbolic trajectories are a projection (not a substitution) of the true trajectory onto a discrete partition of the phase space at discrete instants of time. Given the dispersive nature of the inner boundary, Λ E→C = 1 for all geometries, i.e. there are no consecutive Es 1 . Two types of trajectory exist: those that never hit the central 1 which corresponds to the definition of the Golden Mean vertex shift. (9.8)

Symbolic representation of Iris dynamics

These trajectories correspond to the dynamics already studied for the unperturbed circle map, and, in the quiasiperiodic case, are most simply characterised by a β that obeys the following tangency condition:

β ≥ β c = arcsin b. (9.9)
b is the radius of the inaccessible circular region, defined by a caustic edge, as seen in Fig 9 .4c . The trajectories are regular, i.e. either periodic or quasiperiodic, with constant β , and reduce back to the 1D circle map, introduced in 9.1.1 such that:

θ n+1 = θ n + Ω mod 2π, with Ω = π -2β . (9.10)
However, if the tangency condition is not satisfied, some rational ω 1 /ω 2 circle map orbits may continue to exist over a finite range of geometries. A rational ω 1 /ω 2 orbit, where ω 1 < ω 2 , defines a ω 2 polygon, whose radius of intersection of the enclosed caustic formed by its rotation through θ ∈ [0, 2π] follows: .11) Considering the parametric form of the ellipse, and applying simple geometric arguments returns the following condition for intersection, b 2 sin 2 θ + a 2 cos 2 θr 2 ω 1 ,ω 2 ≥ 0, (9.12) which is true for all values of θ iff r 2 ω 1 ,ω 2 ≤ a 2 . Conversely, there are no intersections for any value of θ when r 2 ω 1 ,ω 2 ≥ b 2 . In the regime a 2 ≤ r 2 ω 1 ,ω 2 ≤ b 2 , the following must be solved to determine if there's an intersection: (9.13) returning: .14) Therefore the conditions for intersection with the inner ellipse are therefore met by: (9.15) or, by the symmetry of the system,

r ω 1 ,ω 2 = cos ω 1 π ω 2 . ( 9 
b 2 sin 2 θ + a 2 cos 2 θ -r 2 ω 1 ,ω 2 = 0,
sin 2 θ = r 2 ω 1 ,ω 2 -a 2 b 2 -a 2 . ( 9 
|θ -π/2| ≤ arccos r 2 ω 1 ,ω 2 -a 2 b 2 -a 2 ,
|θ -3π/2| ≤ arccos r 2 ω 1 ,ω 2 -a 2 b 2 -a 2 , (9.16) 
In order for a rational ω 1 /ω 2 orbit to exist, one must avoid intersections for all θ + 2πn/ω 2 ∀n ∈ [0, .., ω 2 -1]. Therefore, the following condition must be met:

arccos r 2 ω 1 ,ω 2 -a 2 b 2 -a 2 < π κ(ω 2 ) ω 2
, ω 2 ∈ {3, 4, 5...} (9.17) where: .18) Equation ( 9.17) may be finally rearranged to give: .19) fixing ω 1 at some value and taking the limit ω 2 → ∞ returns, for both cases, the limit:

κ(ω 2 ) = 1 + ω 2 mod 2. ( 9 
b a ≥ e min = 1 cos 2 (π/κ(ω 2 ) ω 2 ) r 2 ω 1 ,ω 2 a 2 -1 + 1 1/2 . ( 9 
lim ω 2 →∞
e min = 1/a. (9.20) On the contrary, the maximum value of e, at which a collision must happen follows:

e max = r ω 1 ,ω 2 /a. (9.21) 
and so approaches the same limit as e min .

The second type of trajectory that involves collisions with the ellipse which, as illustrated by Fig. 9.5, results in rotational and librational periodic and quasiperiodic orbits (i.e. β = constant) as well as chaotic orbits. Figure 9.5 (b) is an example of a librational orbit. These differ from rotational orbits, shown in Fig. 9.4, and Fig. 9.5 (a) in that they change direction, which may be interpreted as time reversal. Both rotational and librational orbits are possible for trajectories that interact with the ellipse. The trajectories shown in Figures 9.5 (a) and (b) may also be represented by the following different ordered bi-infinite symbolic codes :

T = [.., c i , e i+1 , c i+2 , e i+3 , c i+4 , e i+5 , c i+6 , e i+7 , c i+8 , e i+9 ...], (9.22) 
and

T = [.., c i , c i+1 , e i+2 , c i+3 , c i+4 , e i+5 , c i+6 , c i+7 , e i+8 , c i+9 ...], (9.23) 
respectively. A priori it is reasonable to expect that a chaotic orbit, launched at random within the chaotic phase space, as shown in Fig. 9.5c, will follow a disordered symbolic codification. The following sections show that there is an uncountable number of ordered sequences that both stable and unstable, periodic or quasiperiodic trajectories could follow. To better understand how the interaction with the central ellipse may give rise to chaotic motion, we must first perform a linear stability analysis for the simplest period-two orbits along the axes of symmetry of the ellipse.

Linear stability analysis: Geometrical derivation

The main condition for dynamical chaos is a strong local instability of motion, i.e. whether or not the long time motion is sensitive to minute changes in the initial condition [START_REF] Berry | Regular and irregular motion[END_REF]. The initial conditions may be changed in four ways:

1) A displacement along the initial direction of the particle's trajectory, r || .

2) A displacement perpendicular to the initial direction of the particle's trajectory, r ⊥ 0 .

3) An increase in magnitude of the particle's initial momentum.

4) A change in direction in the initial momentum, δ β 0 .

Changes 1 and 3 have no effect on the system as they only serve to displace the particle along its preset trajectory, or to run through said trajectory at a different velocity, respectively. However, changes 2 and 4 have non-trivial effects on the overall trajectory. Let r ⊥ δ β denote the change to a trajectory subject to a change in initial condition which combines small shifts perpendicular to the trajectory r ⊥ 0 , and shifts in the initial angle β 0 . Considering a straight line segment of length, l, along this path the perpendicular deviation increases by lim δ β 0 →0 tan δ β 0 l → lδ β 0 . r ⊥ can be approximated by r ⊥ 0 + lδ β 0 .

Since in a straight line, the direction never changes, δ β = δ β 0 . The resulting change to a straight line trajectory may be finally described in matrix form by:

r ⊥ δ β = L r ⊥ 0 β 0 , L ≈ 1 l 0 1 (9.24)
This equation is an approximation to the leading order in r ⊥ 0 and δ β 0 . We study reflections at a boundary that may be locally approximated by a circle. (The radius of that circle, R, is the radius of curvature of the boundary at that point). The centre of the circle is assumed to lie outside the billiard, i.e. it is dispersive. The trajectory is reflected from the circle with an angle of incidence and reflection of β , as shown in Fig. 9.7. To understand the effect of applying deviations r ⊥ 0 and δ β 0 to the trajectory after a reflection, we compare the original trajectory to a slightly changed path, with angles of incidence and reflection, β . The angle difference between the two trajectories is denoted δ β 0 before the reflection, and δ β after. Similarly, the perpendicular separation before the reflection is denoted r ⊥ 0 ,and r ⊥ for after.

As we are only interested in an approximation for small deviations r ⊥ 0 , we are not concerned if this is taken perpendicular to the original or changed trajectory.

We treat the two reflection points as being close enough to approximate the part of the circle between them by a straight line.

The two constructed triangles in Fig. 9.7 are, therefore, similar, as they share one side, both contain one right angle and angle, β . Hence

|r ⊥ 0 | = |r ⊥ |.
The directions of the perpendicular deviations are, however, opposite, i.e

r ⊥ 0 = -r ⊥ . (9.25) 
To determine δ β with respect to r ⊥ 0 and δ β 0 , we must first observe that the line, approximating the distance between the two reflection points has length r ⊥ 0 / cos β . Therefore, the angle γ in the figure can be approximated by by In order to relate δ β 0 , δ β , β , β , and γ, we consider Fig. 9.8, where the three points, as marked in Fig. 9.7, are overlayed. The angle between the two incoming trajectories must be δ β 0 by definition. The sign is made positive as the incoming line of the changed trajectory is further to the left than the original. The angle between the outgoing trajectories is, therefore related to δ β , however a minus sign must be included as the changed trajectory is now deviated to the right of the original. From Fig. 9.7, we may now write the following relation:

γ ≈ r ⊥ 0 R cos β . ( 9 
-δ β = β -(β -γ), (9.27) 
Using that the lower angle β is a sum of δ β 0 , β and γ

= β (δ β 0 + β + γ) -(β -γ), (9.28) 
= δ β 0 + 2γ, (9.29) 
which upon substituting Eq. 9.26 returns:

≈ β 0 + 2 R cos β r ⊥ 0 . (9.30) 
Finally, writing both Eqs. 9.30 & 9.25 in matrix form allows the description of a resulting change to a reflection, after an initial deviation, as:

r ⊥ δ β = C r ⊥ 0 δ β 0 , C ≈ -1 0 -2 Rcosβ -1 r ⊥ 0 δ β 0 (9.31)
R is the radius of curvature of the circle that locally approximates the curvature of the boundary (positive if dispersive, negative if focusing, ∞ if straight). β is the angle between the incoming trajectory and the normal of the boundary.

Trajectories with several reflections and straight lines

A trajectory consists of an ensemble of alternating straight lines and reflections. To describe the effect of changing the initial conditions on the trajectory as a whole, we construct a stability matrix, which is the product of all the straight line and reflection matrices derived in Sections 9.4.1 & 9.4.2, that make up the entire trajectory of n straight lines and n reflections: .32) From now on, β n describes the angle from the normal of the n th collision with the boundary. As det|L| = det|C| = 1, the determinant of the stability matrix is also equal to 1. Therefore, the eigenvalues of the stability matrix are related by m 1 m 2 = 1. As Tr(M) = m 1 + m 2 , the following is true:

r ⊥ δ β = M n r ⊥ 0 δ β 0 , M n = n ∏ 1 l n 0 1 • -1 0 -2 R n cosβ n -1 . ( 9 
m 1,2 = 1 2 Tr(M n ) ± Tr(M n ) 2 -4 (9.33) |Tr(M n )| < 2: Stable case
The eigenvalues of the stability matrix are complex and conjugate (as are the associated eigenvectors), i.e.

M n u 1 = e iφ u 1 (9.34)

M n u * 1 = e -iφ u * 1 (9.35)
To understand the effect on the total deviation of the trajectory, the initial deviation,

r ⊥ 0 δ β 0
, is split into components along the real and imaginary basis of the eigenvector u 1 which are Re(u 1 ), -Im(u 1 ) ∈ R 2 respectively, with components a 0 and b 0 . The initial deviation may now be written as:

a 0 Re(u 1 ) -b 0 Im(u 1 ), (9.36) 
Rewriting the initial deviation as z 0 = a 0 + ib 0 , = Re(z 0 )Re(u 1 ) -Im(z 0 )Im(u 1 ) = Re(z 0 u 1 ). (9.37) The deviation at the end of the trajectory may be similarly written as:

aRe(u 1 ) -bIm(u 1 ) = Re(zu 1 ) = M n Re(z 0 u 1 ) = Re(z 0 M n u 1 ). (9.38) 
Applying the eigenvalue equation above therefore shows:

z = e iφ z 0 , (9.39) 
i.e. any initial deviation is rotated in the complex plane, spanned by Re(u 1 ), Im(u 1 ), but neither increases nor decreases. 9.40) The deviation between two slightly displaced trajectories remains the same, or flips signs. This can be found in many integrable systems, such as the rectangular or circular billiard.

|Tr(M n )| = 2: Marginally stable case m 1,2 = 1 2 Tr(M n ) = ±1 ( 
|Tr(M n )| > 2: Unstable case
Both m 1 and m 2 take real values, and may be expressed as:

m 1 = ±e λ L L m 2 = ±e -λ L L . (9.41)
L is the length of the trajectory. λ L is 'Lyapunov's exponent', which characterises the rate of separation of two infinitesimally close trajectories. Note, as one of the eigenvalues is the inverse of the other, one will continue to expand while the other diminishes to zero.

The eigenvalues of the stability matrix M n , and therefore the properties of the trajectory, depend only upon the trace of M n . To obtain the analytical properties of the trajectory, its residue, R, as defined by Greene [205], is typically used, where:

R = 1 4 (2 -trM n ). (9.42) 
The values of R, determined by the value of trM n , characterise the analytic properties of a trajectory as follows:

           R < 0 Hyperbolic R = 0, Marginally stable 0 < R < 1 Stable. R > 1
Reflection hyperbolic (9.43) Hyperbolic trajectories correspond to M n having real eigenvalues that are positive (or negative in the reflection case). They always undergo significant deviation due to the finite limits of numerical precision. Marginally stable trajectories correspond to eigenvalues of ±1. The stable case yields complex eigenvalues with magnitude unity. Two stable trajectories, with slightly different initial conditions, undergo a linear deviation over time.

Stability analysis of period-two orbits

This section will carry out a linear stability analysis on the simplest period-two orbits that make contact with the ellipse. The stability matrix of a period-two orbit, reflecting off the vertex of the semi-minor axis, a, is:

M a 2 = L a • C ⊥ • L a • E a (9.44)
where L a is the contribution to the stability matrix arising from a straight line, of length l = 1a, between the inner and outer boundary as derived in Section 9.4.1,

L a = 1 1 -a 0 1 , (9.45) 
The outer circular boundary is defined as having a negative radius of curvature, as it is focusing (the typical convention here is opposite to that normally encountered elsewhere). The resulting contribution to the stability matrix, from Eq. ( 9.31), is therefore:

C ⊥ = -1 0 2 -1 , (9.46) 
The radius of curvature at the vertice of the minor axis has the largest dispersive radius of value curvature of b 2 /a. .47) Note, that the matrix components reflect that the angle of incidence of the particle on each boundary is zero.

E a = -1 0 -2a b 2 -1 . ( 9 
After some calculation, one obtains :

M a 2 =   -2(a-1)(2a-1)a b 2 + 4a -3 2(a -1) (a-1)a b 2 -1 - 2(-2a 2 +a+b 2 ) b 2 1 -2(a-1)a b 2   (9.48)
with trace:

Tr(M a 2 ) = 4b e 2 -1 e 3 + 4 e 2 -2. ( 9.49) 
where e = b/a. |Tr(M a 2 )| ≤ 2 ∀a, e. Therefore the residue of the orbit always indicates stability (0 < R < 1).

period-two orbit along semi-major axis.

We repeat the above calculation, for a period-two orbit along the semi-major axis (i.e. l = 1b). The radius of curvature of the ellipse at the point of contact is a 2 /b. Upon substitution of the new values, the resulting trace of the stability matrix is: .50) In this case the orbit is always hyperbolic (R < 0), except for when the orbit yields marginal stability (R = 0) in the limiting cases, a = b and b = 1. (If a = b, i.e. for a circular inner scatterer, all trajectories from every initial condition are either periodic or quasiperiodic, with conserved angular momentum. If b = 1, the system becomes two separate crescents). As time tends to infinity, the stable orbit will continue unchanged; while the unstable orbit will always be knocked off course by inherent numerical imprecision. This important property will be repeatedly exploited in the following sections.

Tr(M b 2 ) = -4b e 2 -1 + 4e 2 -2. ( 9 

Phase space

The phase space is a set of points, each of which fully describes the system. For planar billiard systems it is four dimensional, (x, y, v x , v y ). However, the conservation of energy reduces the dimension by one. It will furthermore be shown that the complete description of an orbit can be shown using a two-dimensional Poincaré phase section.

The next section will introduce the Birkhoff coordinates [206], (θ , sin(β )) used to define the section.

Birkhoff coordinates

A Poincaré section requires a surface that is everywhere transversal to the dynamical flow. The outer circle is chosen as the surface, so that θ describes where on the circle the collision occurs. Due to the system's axial symmetry, it can be restricted to the range θ ∈ (-π/2, π/2]. sin β ∈ (-1, 1) is the momentum component, at the point of collision, tangential to the boundary. The phase section is created by the repeated application of the Poincaré first return map, which may be written as f (θ n , sin β n ) → (θ n+1 , sin β n+1 ). For the Iris Billiard, the 'twist condition ' [203], ∂ θ n+1 /∂ sin β n = 0, is always satisfied. Fig. 9.9 shows a series of sections constructed by trajectories launched from initial conditions spanning θ , β ∈ (-π/2, π/2). If the tangency condition, Eq.( 9.9), is obeyed, all quasiperiodic trajectories follow the rotational curves above and below the central mixed region, defined by β = constant. The periodicity in θ makes the phase section topologically an annulus, S × [-1, 1], unlike the torus for the, previously seen, standard map. Lines corresponding to periodic, but from a disjoint set of initial conditions, and rotational quasiperiodic motion shown in Fig. 9.4, smoothly wind around the annulus. These circles are homotopically non-trivial and are known as 'rotational circles'. Increasing the elongation of the ellipse, e, until the tangency condition, Eq.(9.9), is just violated, causes the trajectory to make contact with the ellipse, therefore deforming the orbit's associated invariant rotational circle in the phase section. The curves often persist with increasing elongation, as predicted by KAM theory, and there is, consequently, no flux of trajectories between the regions partitioned by the deformed circle. As the elongation is further increased the invariant curves are increasingly deformed until a critical value is reached, corresponding to the quasiperiodic frequency of the deformed curve in question. At this point the curve is destroyed. When β < β c , the phase section displays mixed dynamics. i.e. it is divided into several invariant components. The centre of the billiard phase section, i.e. θ = 0, β = 0, or equivalently ±π, is an elliptical fixed point for all geometries, corresponding to the stable period-two orbit along the semi-minor axis. Sets of concentric, circles, known as 'liberational circles', representing quasiperiodic motion (as seen, for example, in Fig. 9.5b) bifurcate out of the elliptical period-two orbit, for all geometries, as well as from other geometry-dependent elliptical periodic orbits. It is thought that these curves only cause a limited impediment to the diffusion of chaotic orbits since they do not encircle the entire annulus [205]. Librational circles occur in concentric sets. The outermost circle forms the critical boundary of the 'island of stability', which can be destroyed by an arbitrarily small perturbation.

The boundaries between the regular and chaotic components of the phase space exhibit scale invariant structures, as illustrated by Fig. 9.10, in which an island archipelago is magnified indicating where a critical curve used to lie.

The whole phase space can be decomposed into a complicated mixture of domains, with chaotic trajectories coexisting with regular, or periodic ones. These sub-regions are associated with qualitatively distinct dynamical properties. In what follows, we will focus on the properties of the chaotic portion of the phase space.

The hyperbolic period-two orbit along the ellipse semi-major axis is always within the chaotic sea, as Eq 9.5 suggests. (The exception to this is when e = 1, i.e. when the system is integrable). Fig. 9.10, provides a deeper view of the scale invariant structures found between the regular and chaotic components of the phase space. in which an island archipelago is magnified indicating where a critical curve used to lie. Insets 2-4 clearly show scale invariant structures that reveal the different dynamics present inside the islands, i.e. quasiperiodic trajectories enclosing narrow stochastic layers. These island chains create partial barriers to chaotic transport, and are the source of external stickiness.

As there is no known way to exactly determine the boundaries of the KAM islands, a frequently used method is the estimation of the, previously introduced, Lyapunov exponents. However, when applied to numerical calculations, finite time (or 'local') Lyapunov exponents can only be applied. However stickiness causes substantial difficulties [186] in the characterisation of a chaotic orbit, which therefore demands much more computational effort. Chapter 10 therefore introduces different tools that enable the deeper characterisation of stickiness and its relationship with the system's geometry. 9.6.3 Fractal dimension of the chaos/order boundary.

The fractal nature of the chaos/order boundary in the billiard system's phase space is demonstrated. The boundary is the feature of greatest interest in the system due to the great variety of behaviours associated with the extreme complexity of this frontier with the regular components of the phase space, as illustrated in Fig. 9.10. To gain deeper information of its structure within the phase space, the special unstable period-two orbit studied in Section 9.5 is chosen as the initial condition. This initial condition is special as it is always within the largest chaotic component of phase space for all values of e except e = 1. The total phase space is partitioned into a grid of L × L cells, where each cell has a side of length ε ∝ 1/L in the y-axis, and rescaled length ε ∝ π/L in the x-direction. This is equivalent to covering the phase space by L × L (square) L ∞ neighbourhoods.

We characterise the chaos/order boundary by considering its box-counting dimension. This is done by defining N B (ε) as the number of cells needed to cover the chaos border at given value of ε. We understand dimension to mean how much space a set occupies near each of its points.

The idea of a 'measurement' of a set at scale, ε, defined by L ∞ ., is fundamental. For each ε, one measures the set in a way that detects irregularities of size ∆ε. Ultimately we want to know how these measurements behave as

ε → 0 [207].
Defining the chaos border as the subset, B, for ε > 0, define the smallest number of sets of maximum diameter ε as N B (ε). The dimension of B reflects the way in which N B (ε) grows as ε → 0. If N B (ε) even approximately behaves as a power law, i.e.

N B (ε) c ε -D , ∀c, D ≥ 0 (9.51)
where c is some constant, B is then said to have a 'box-counting dimension' D. This is solved via:

logN B (ε) log(c) -Dlog(ε) (9.52) ∴ D -logN B (ε) log(ε) + log(c) log(ε) (9.53)
alowing us to obtain D, in the limit, as:

D = lim ε→0 logN B (ε) log(1/ε) . (9.54) 
The second term disappears in the limit. The chaos border subset, B, is defined as the set of 'border cells', i.e. that have been visited but have at least one 'empty' neighbouring cell alongside. The chaotic orbit must have visited a border cell at least once, meaning that some part of the phase space contained within is the chaotic component. However, it must be recognised that, in all probability, the whole cell is not filled by the chaotic phase component.

To determine the fractal dimension, grid cells between L = 500 and L = 1500 were used. The length of each chaotic orbit was 2 × 10 9 , to ensure a large number of counts per cell, even for larger values of L. Using short trajectories to fill the chaotic set results in an anomalous deviation of the border cell count with number of cells L from the expected power law. This is because the sparsity of points recorded within the chaotic phase portion leads to the misidentification of border cells where, in fact, there are none. The following set of tables show the power law evolution of the chaos boundary with L, and hence its fractal nature, for a set of different geometries. 10.2, but for a = 0.9.

The fractal dimension of the chaos/order boundary is always between one and two, which is expected as this set outlines the fractal codimensional transport barriers confining the explored chaotic portion of the phase space, and gives a measure for how much the 1D outline 'fills' the enclosing 2D space. However, the measured fractal dimension of the boundary does not follow a simple evolution with increasing elongation e. One striking feature can be observed for a = 0.9, where the fractal dimension undergoes a pronounced increase between e = 1.06 and 1.07. These power laws allow us to understand that a major cause of fluctuations in the billiard's chaotic dynamics is the presence of an infinite structure between the chaotic and regular phase space components.

CHAPTER 10 DYNAMICAL RECURRENCES IN THE IRIS BILLIARD

We make predictions and have developed memory. The sun rises every morning, and sets every evening. Birds seasonally migrate. We roughly guess where a thrown rock might land. Often, these predictions come, not from the development and evaluation of long, complicated mathematical expressions, but rather, from two crucial facts [208]:

• similar situations often evolve in similar ways;

• some situations are repeated.

These facts are linked to a certain determinism in real world systems. However, we understand that some deterministic systems, such as the Iris Billiard, may be sensitive to fluctuations at any scale. The smallest perturbation to an initial condition in the chaotic set can render long term prediction impossible, as examined in the case of the unstable period-two orbit in the previous chapter. Typical chaotic motion can be regarded as a superposition of an infinite number of different frequencies with respect to the unstable periodic orbits within the phase space of the system. Homoclinic orbits were discovered by Henri Poincaré in 1890, in his work addressing the stability of the solar system. Recurrences were formally introduced as a by-product, and shown to always apply to chaotic motion However, we now account for recurrence properties, in the sense that the dynamics returns to a state similar to one already visited. The time between subsequent recurrences to a measurable set, A ∈ X of a measurable dynamical system is:

τ(A) = min{n > 0 : T n A ∩ A = ∅}. (10.1)
In the following, the previously visited idea of an L ∞ 'ε measure', is and always will be, used to demark the measurable set A, within X, the chaotic portion of the billiard phase space explored in the previous section. Recurrences, and recurrence quantification analysis (RQA), will be applied to better understand the chaotic motion of the Iris Billiard. The following examines the proof demonstrating this behaviour.

Poincaré recurrence theorem

Poincaré demonstrated, in 1890 [209], that a conservative dynamical system returns arbitrarily close to its initial condition an infinite number of times as time tends to infinity [210].

Consider the dynamical system (X, T ), where X is the compact metric space and T is a homeomorphism of X, generating a group {T n , n ∈ Z} of transformations. x ∈ X is recurrent if T n x ∈ A for some n > 0, where A is the finite measurable neighbourhood of x. Recurrence is treated as a topological property of the individual points that compose the space. For the system to be measure-preserving, we require a quadruple (X, B, µ, T ). B is a σ -algebra of subsets of X, µ is a probability measure in B and T is now a measure-preserving transformation of (X, B, µ) 1 . For µ(A) ≥ 0 A ∈ B, and

T -1 A ∈ B with µ(T -1 A) = µ(A).
Poincarés recurrence theorem. Let (X, B, µ, T ) be a measure-preserving set, with µ(X) = 1, and V ∈ B with µ(A) > 0. There exists some point x ∈ A with T n x ∈ A for some n > 0.

Proof. Assume that no point x ∈ A ever returned to A. Then T -n A∩A = ∅ ∀n > 0. ∴ T -n A∩T -m A = ∅ whenever n = m. However, this is impossible as by definition the sets T -m V are measure-preserving with µ(A) > 0, and are not disjoint since µ

( ∞ n=1 T -n A) ≤ µ(X) = 1.
It follows, from Poincaré's theorem, that every point, x ∈ A, with non-zero measure must return to A an arbitrary number of times as time tends to infinity, i.e, even though nearby trajectories in the chaotic set will deviate exponentially in a finite time, they must nonetheless return arbitrarily close and evolve in ways similar to before, an arbitrary number of times, as time approaches infinity [211]. Poincaré's theorem, however, neither gives an indication of the frequency with which the orbit of a point visits a given set, nor does it give the rate at which the point particle will return to an arbitrarily small neighbourhood around its initial condition. A complete answer to the former is given by Birkhoff's ergodic theorem. Recurrence Plots allow the quantitative and qualitative study of the latter recurrence behaviour of dynamical systems [212] by visualising their recurrences in phase space.

Recurrence plots

Recurrence plots (RPs), introduced in 1980 [208, 212], permit the quantitative and qualitative study of phase space recurrences. This tool has already been applied in the fields of economy [213], physiology [214], ecology [215], neuroscience [216] and astrophysics [217]. Although recurrence statistics have been extensively studied in billiards [177,180,185], RPs appear to have only been applied to position recurrences in a two particle billiard system of an eccentric annular billiard [218]. We will consider time recurrences in the billiard's phase section. Poincare's theorem states that every point with non-zero measure will return to its neighbourhood, after a finite number of measure preserving transformations, an arbitrary number of times, as time approaches infinity. Therefore even exponentially deviant chaotic billiard trajectories [219] must, given enough time, return arbitrarily close to their initial conditions and evolve in ways similar to before, an arbitrary number of times, as time approaches infinity [211]. Although this theorem gives no indication of the frequency at which recurrences occur, RPs allow the quantitative and qualitative study of this property [212]. Throughout an orbit of length N col , the particle collides with the enclosing circular boundary N • times. The time evolution of the points corresponding to a trajectory in the phase section can be symbolised as:

{v i } i = 1...N • .
A state, v j , is defined as recurrent to a former state, v i , if both are within each others neighbourhood, i.e. a region around each state defined by ε.

The neighbourhood, A, may be defined in different ways. The L ∞ norm, originally introduced in Section 9.6.3, is always applied, which defines a square of length ε with v i at its centre, such that v j is a recurrent state of v i if and only if the two states lie within the same square region. The value of ε is important. If too small, no recurrences would be recorded in a finite time. If too big, every point would be recorded as a recurrence of every other point, leading to artefacts unrelated to the dynamics. Although these artefacts may be analytically determined for simple periodic and quasiperiodic motions [220], in general they cannot be completely removed by any known means.

1 Borel sets are the sets that can be constructed from open or closed sets by repeatedly taking countable unions and intersections. Let X be a set. Then a σ -algebra, F is a nonempty collection of subsets of X such that the following hold: 1. X is in F. 2. If A is in F, then so is the complement of A. (i.e. we partition the collection of sets) 3. If A n is a sequence of elements of F, then the union of the A n s is in F.

We have followed the convention of consistently defining ε as 10% of the width of its corresponding phase component [208].

The binary, N • × N • , recurrence matrix is defined as:

R i, j = Θ(ε -||v i -v j ||), i, j = 1...N • , (10.2) 
where Θ( 

Recurrence plot selection

Recurrence plots of the various dynamics of the Iris Billiard are shown. Applying the L ∞ neighbourhood, the trajectory's return times τ, as defined by Eq. 10.1, are also shown such that N(τ) is the total distribution of return times measured over the total trajectory. Figures 10.2 and 10.3 show rotational unperturbed periodic and quasiperiodic orbits. These orbits can be directly mapped to the 1D circle map. Figs. 10.3 & 10.4 show unperturbed and perturbed quasiperiodic orbits respectively. These demonstrate that Slater's theorem, examined in Section 9.1.1, applies. Furthermore this provides an effective way to distinguish between rotational quasiperiodic and chaotic orbits using short trajectories, as has been verified in the case of the standard map [186]. Figure 10.5 shows one RP of an arbitrarily chosen chaotic orbit, where many recurrence times are now present. Variations in the density and the presence of many white spaces indicate the presence of dynamical transitions. We focus on the recurrence properties of the chaotic orbits of the Iris Billiard, for different geometries. The next section will introduce two typically used measures that quantify some of the features observed in the RPs so far presented. These features will then be applied to the chaotic orbits of the Iris billiard, as sensitive indicators of stickiness.

Recurrence quantification analysis of chaotic Iris orbits

To study the structures presented by RPs, several measures [221], known as Recurrence Quantification Analysis (RQA), are already in use. We will focus specifically on two in the context of the chaotic dynamics of the Iris Billiard. The first measure is the recurrence rate (RR), defined as the percentage of black points in an RP:

RR(ε) = 1 N 2 N ∑ i, j=1
R i, j (ε). (10.3) This may be better understood as the 'sparsity' of the N × N binary matrix under consideration. In the limit N → ∞, RR is the probability that a state recurs to its phase neighbourhood, as demarked by ε. The second measure is based on the distribution of diagonal lines present within the RP: (10.4) Recurrence plots principally show diagonal lines for periodic and quasiperiodic orbits, as shown by Figs 10.2 10.3 ,10.4. A diagonal line of length l shows that a segment of a trajectory is close to another segment from a different time, for l iterations, as illustrated in Fig. 10.1. The trajectory's determinism (DET), is defined as the percentage of black points belonging to a diagonal line of at least l min . The ratio of recurrence points that form a diagonal line, of at least length l min , to all the recurrence points, therefore, provides a measure of how deterministic (predictable) the trajectory is, .5) In what follows, l min = 3. For all periodic orbits DET = 1. To apply these measures as indicators of stickiness within the billiard dynamics, windows of size l w = 200 will be overlayed the original recurrence plot. RQA will be applied to each window, and the evolution of the above introduced variables will serve as indicators of dynamical transitions. These correspond to regions where both RR and DET surpass RR crit and DET crit , defined as 0.1 and 0.3 respectively. These values were chosen for the purpose of demonstrating the presence and detection of stickiness for one specific geometry, and would have to be reevaluated for each different geometry considered. Domain III is of particular interest as it corresponds a high deviation for only the DET measure, but not for RR. Figs. 10.7 10.8 & 10.9 show the phase occupation of the sticky orbits observed by the RR and DET measures.

P(ε, l) = N ∑ i, j=1 (1 -R i-1, j-1 )(1 -R i+l, j+l ) l-1 ∏ k=0 R i+k, j+k
DET = ∑ N l=l min lP(ε, l) ∑ N l=1 lP(ε, l) . ( 10 

Indicators of stickiness

While it is clear that further study of recurrence plot features, their associated quantitative measures and their relation to the billiard geometry would very likely be fruitful, the next section will focus instead on a new measure, defined by a, until now unconsidered, feature of recurrence plots of chaotic trajectories.

Study of new time measure

We carry out a simple analysis by introducing a new time measure, N ε : The number of collisions with the outer boundary before the particle, launched from the unstable period two orbit, studied in Section 9.5, exits its initial L ∞ , ε-neighbourhood for the first time. RPs of a 10 3 iteration trajectory, with geometries a = 0.2, e = 1.01, 1.1, 1.2, 1.3 are illustrated in Fig. 10.10. The new time measure of interest manifests as the black box in the bottom left-hand corner of all four plots in Fig. 10.10. Fig. 10.11 shows the evolution of N ε /N • , for a fixed value of N col = 10 4 , for different geometries. For all values of a considered, as e → 1, so does N ε /N • . This is because the initial period -two orbit approaches stability, as demonstrated in Sec. 9.5, so it always remains in its initial neighbourhood. Similarly, as e → 1/a, N ε /N • again approaches unity as the period -two orbits approaches stability. This can be expected as, intuitively, as the region becomes more confined, the distance the particle traverses between each collision approaches zero, meaning that small deviations from the initial conditions will have an increasingly negligible effect on the orbits stability matrix.

The most important feature of the main plot in Fig. 10.11 is the transition of N ε /N • from smooth to rough. This happens at different values of elongation for each value of semi-minor axis, a. To understand this phenomenon, recall that the trajectory begins as the unstable period -two orbit, i.e. The particle collides with the boundary at every other iteration. When e = 1, N ε = N • = N col /2. As e increases, N ε /N • smoothly evolves until a critical value of the elongation, e = e crit (a). This critical geometry causes a non-zero probability that the particle, having just collided with the circular outer boundary, will miss the ellipse, and collide again with the outer circle, therefore breaking the parity condition. The first time this event occurs in a trajectory will be referred to as the 'endogenous escape event', or E for brevity. This must not be confused with the escape events normally studied in open billiard systems, as the hole through which the particle is escaping in this case is intrinsic to the system's phase space.

The true value of e crit depends neither on ε, nor the numerical precision chosen. e crit (a) is defined as the set of geometries for which the following is true: (10.6) Due to finite simulation times, any obtained value of e crit will inevitably be an overestimation. Figure 10.12 shows that e crit (a) demarks the geometries that permit two classes of behaviour by reconstructing, and including as insets, the long-term trajectories of the unstable period -two orbit for values below and above e crit (a). When e < e crit (a), the trajectory explores an extended stochastic region that is bounded by a dense rotational KAM curve/surface. This rotational curve is destroyed at e = e crit (a), i.e. holes are created which allow the trajectory to escape its reduced chaotic portion of the phase space after a finite number of iterations. By simple inspection of Fig. 10.12, the absence of any further similar transitions suggests that for elongations beyond the critical value, the chaotic region of the phase space is never again so divided nor reconnected. For e > e crit , this constraint no longer applies. The moment this parity condition is broken implies the dynamical transition has occurred, and is characterized by E , i.e. the first passage of the particle's trajectory from one major fractal subset to the rest of the chaotic phase space. In this case, the trajectory may now be symbolized as: The first, bold, consecutive c represents E by hitting the outer circular boundary twice in a row, which, as before specified, never occurs when e < e crit (a). We note that lim e→e crit n esc = ∞. It is not currently possible to predict the order of the following c and es following E , though any future work on characterising the average separation between consecutive endogenous escape events would likely bring some interesting results. The set [E 1 , E 2 , E 3 ...], is defined as the first, second, third, etc. times the trajectory consecutively hits the outer boundary after E .

lim N col →∞ N • - N col 2 = 1.

Discussion

Figure 10.14: Heatmap of chaotic potion of the phase space post global connection. L = 300, a = 0.9, e = 1.069, filled by a 2 × 10 9 long trajectory launched from the unstable period-two orbit. In this case, all chaotic trajectories, may diffuse in and out of the region that obeys the parity condition. The closer to the critical geometry one approaches, from above, the more time passes between the passages between the two dynamical regime. For values of geometry that approach the critical limit from above, the rate of diffusion lessens.

Chaos-order fractal dimension around critical geometries

The fractal dimension of the chaos/order boundary at values of geometry above and below the critical geometry values measured by trajectories of length N = 2 × 10 9 are presented. The methods introduced in Sec. 9.6.3 are employed. We observe a much higher than the average of what was previously measured. a e D 0.1 1.317 1.70 ± 1 × 10 -2 0.5 1.175 1.62 ± 2 × 10 -3 0.9 1.067 1.80 ± 7 × 10 -3 Both Figs. 10.13 and 10.14 show very clearly the presence of cantori (destroyed remnants of perturbed robust transport barriers) above and below the critical destroyed barrier, that must correspond to the the remains of previously destroyed (but nonetheless robust) rotational transport barriers. The marked presence of these structures is what causes the fractal dimension of the chaos order border for a = 0.9 to be very high, higher than any other measured, and close to the upper dimensional limit, 2. The effect they have on the dynamics at, and shortly after, the endogenous escape event will be characterised in the next chapter.

Conclusion

The result presented in Fig. 10.12 is consistent with predictions given by the "Converse KAM" theorem, which states that no invariant rotational barriers will persist [202,203] in a sufficiently perturbed area preserving twist map. In the cases of both the standard map, introduced in Section 9.1.2, and the double pendulum, the obtained frequency of the ultimately destroyed transport barrier is Ω = γ, where γ is the golden ratio (1 + √ 5)/2. The subfigures within Fig. 10.12 clearly show that the frequencies of the ultimately destroyed rotational transport barriers correspond to different values of β . Contrary to the result obtained for the transition to global chaos in the standard map, we therefore expect that each critical value of elongation is directly associated to a different noble fraction, each defining the frequency of the final destroyed rotational transport barrier. As Ω = γ corresponds to only one value of β from Eq. 9.10. The evidence suggests a connection between the set of noble numbers and the critical ellipse geometries, with deep consequences for the global structure of the chaotic phase space. To further explore this phenomenon, in the context of the system's symmetries, one would need a Poincaré first return map which, until now, is unobtainable by any known means. Furthermore, is is well known that analytically tractable Poincaré first return maps are more the exception than the rule [222,223]. CHAPTER 11 DISCUSSION "I wish it need not have happened in my time," said Frodo. "So do I," said Gandalf, "and so do all who live to see such times. But that is not for them to decide. All we have to decide is what to do with the time that is given us." Tolkien.

The values of θ at which the escaping trajectory segment comes closest to the ellipse, denoted θ esc , and the distance of closest approach, d min are presented. These quantities were obtained by following the argument that, at the point of E s closest approach, it will lie parallel to the ellipse at the closest point on the ellipse circumference. These quantities therefore define the space at which the trajectory tangentially intersects some constructed ellipse that is confocal to the scatterer. It will be demonstrated that values presented below can sometimes be 'virtual', in the sense that the θ esc and d min calculated don't belong to a part of the trajectory within the billiard domain. Let û be the unit vector specifying the trajectory. For a non-intersecting trajectory, there is a point of closest approach on the ellipse, r e = (x e , y e ), whose tangent is parallel to û. Thus

dy dx = - xb 2 ya 2 = u y u x . (11.1)
Substituting for x in the ellipse equation, returns:

y 2 = b 4 (au y /u x ) 2 + b 2 . (11.2)
Since there are two points on the ellipse whose tangents are parallel to û, we obtain two solutions: (x e , y e ) and (x e1 , y e1 ). Applying simple geometric reasoning, as shown in Fig. 11.2, gives the minimum distance of approach as:

d 2 min = |r 1 -r e/e1 | 2 -û • (r 1 -r e/e1 ) 2 . (11.3)
The sought after solution is the one that returns the smallest value of d min , from which one may directly obtain the associated value of θ esc .

Numerical procedure

To ensure that the results presented reflect the global properties of the chaotic region of the phase space, the N sample trajectories studied were launched from slightly different initial conditions, within the neighborhood of the unstable period-two orbit. The starting position on the outer boundary is defined by: 11.4) Where 1 ≤ k ≤ N sample . The starting orientation is defined by: 11.5) Where ε β = ε θ = 10 -10 and η θ , η β are random numbers chosen from independent uniform random distributions between [1 -1]. i.e. the starting position for the two unstable orbits with very slight, unbiased variations, which will cause the trajectories to exponentially deviate over a finite time, and therefore follow very different trajectories within the reduced chaotic phase space before escaping. All following results displayed only minor variations upon setting ε θ or ε β to zero. N sample = 10 6 for each result presented.

θ k = (-) k π/2 + ε θ η θ ( 
β k = ε β η β ( 

Results

The set [E 1 , E 2 , E 3 ...], is defined as the first, second, third, etc. times the trajectory consecutively hits the outer boundary after E . A principal function f (θ esc ) is defined that describes the distribution of θ esc in θ ∈ [-π/2, π/2], so that we can write the escape angle distribution over the total domain, Ψ(θ esc ), for all geometries as:

Ψ(θ esc ) = f (|θ esc |) : |θ esc | ≤ π/2 f (π -|θ esc |) : π > |θ esc | ≥ π/2 (11.6) 
Figures 11.1.3 and Figure 11.1.3 show the escape angle and the minimum escape distance distributions respectively for E , E 10 and E 50 , for a = 0.1, e = 1.4. The joint probability distribution of θ esc and d min are thereafter displayed as heatmaps for E , E 10 and E 50 for elongations approaching the e crit . This may be written as:

Ψ(θ esc ) = b-a 0 f (2) (θ esc , d min )d(d min ) (11.7)
where f (2) (θ esc , d min ) is the joint probability of observing the d min , θ esc (within some neighbourhood). The following heatmaps were constructed by discretizing the θ esc and d min values for each geometry studied, and plotting the correspondences between the two values on a 2D histogram. The global heatmaps were made with a resolution of L × L cells where L = 500. A colorbar is used to count the number of events recorded per 'cell', whose units are given as 'counts per bin': cpb. Results for a = 0.1, 0.5, 0.9 are collected for two values of e above and approaching e crit . Survival probabilities before E are presented of which a semi-log linear fit is performed log(P survival ) = An + B , over the domain demarked by the two vertical red dashed lines, using the method of least squares. Both A and B are given within the figures. n min is the minimum recorded value before any escape, and so may be thought of as a deterministic dead time. Each value is given in the figures. No power-law behaviours were observed. As it is challenging to fully characterise the forms displayed by the results, we focus on their common properties. In every case, the distribution of the joint probability distribution, shown by the heatmap of θ esc , d min , at E , is unintuitive and even, as for Fig. 11.11a, counter-intuitive. One might expect E to occur when the distance between the inner and outer boundaries is maximum, i.e. at θ esc = 0, yet here it is clearly a minimum. However, for every geometry, the distributions of θ esc and d min approach those that might be expected intuitively by E 50 , i.e. θ esc = 0 approaches a maximum. The holes that persist must relate to the structure of the global chaotic phase space, i.e. any trajectories within them belong to a disjoint set of trajectories within some KAM island. However, the same cannot be said for the dark bands within the heatmaps at E . A common feature of most of the heatmaps at E is shown in greater detail within Fig. 11.17, where two distinctive band formations seem to merge into one. The difference in colour is due to the variation of occupancy within different regions of the escape variable space, indicating that even within the set of coordinates at which the trajectory may escape, some are, nonetheless, more likely to be occupied than others. This may be analogous to the stickiness observed within the usual Poincaré phase sections. For values of e close to the critical value, the survival probability distribution is exponential. However, for values well above the critical value, the behaviours observed can be broken into two classes, those that clearly exponentially decrease immediately after n min , and those that decrease exponentially after a transitory regime following n min . For all geometries studied, the prefactor A of the linear semi-log fit of the survival probability distribution decreases by several orders of magnitude as e approaches e crit . This is expected as, during this approach, the probability of escape in a finite time decreases to zero. Section 11.1.4 displays the joint probability distributions of f (θ esc ) and n esc .
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Heat maps of θ esc vs n esc

The following heatmaps show the distributions of the number of iterations before escape, n, against the distribution of angles of escape, f (θ esc ), for the same values of escaping trajectory as before. These results stress the high sensitivity of the escape event's dynamics to the billiard geometry. An example is given in Figs. 11.20 (a) and 11.21 (b), where there is only a 2% difference in the elongation. Furthermore, for every case studied, there is a clear averaging effect on the distribution of the observable as the number of ellipse misses increases, whereas the statistics of the first escape show bands of non-occupation, that can be related to the structures observed in Sec. 11.1.3. 

Overview of results

The third and final part of this thesis introduced a new 2D billiard system, whose geometry is defined by a unit circle enclosing a centred ellipse of variable geometry. The trajectory described by a freely moving point particle, that undergoes elastic collisions at the boundary are distinguished as periodic, quasiperiodic, and chaotic.

In chapter Chapter 9, the geometric conditions for the existence of periodic orbits that are equivalent to the circle map were identified. It was then demonstrated, by a linear stability analysis that the period-two orbit lying along the ellipse's semi-major axis is unstable for all but the totally symmetry geometrical configurations.

The billiards Poincaré phase section was obtained for a range of geometries, and it was demonstrated that the fractal dimension of the chaos-order boundary is always between one and two. No simple relationship was observed, however, between the evolution of the dimension with elongation.

Chapter 10 explored in greater depth the recurrence properties of the billiard's chaotic motion, which is a direct consequence of the universal nature of the chaos/order boundary via recurrence plots. Two associated recurrence quantification analysis tools, the recurrence rate (RR) and determinism (DET). The two measures were applied top a long orbit to demonstrate their use as sensitive indicators of stickiness in the Iris Billiard's chaotic motion.

The study of recurrence plots of the billiard's chaotic motion, when launched from the unstable periodic orbit revealed a new time measure, the study of which showed the existence of a set of critical ellipse geometries, which, in relation to the unit circle surrounding it, indicates whether or not the phase space of the billiard system undergoes a transition to global chaos, signalled by an 'escape event' symbolised by Eq. (10.3.2). This result may prove to be a generalisation of the global chaotic transition observed for the Chirikov standard map, examined in Section 9.1.2. This conclusion was further reinforced by measuring the fractal dimension of the chaos order, for very close values of elongation, above and below the critical value.

Finally, joint distributions of the escape angle, and minimum distance to the inner scatterer, as well as for the escape angle and the number of iterations until the first, tenth and fiftieth escape event were presented. The resulting forms obtained are very rich, and provide a new insight into the dynamical behaviour of the system at the moments of escape studied.

Outlook

The Iris billiard's Hamiltonian is always non-degenerate, i.e. there are no two different values of β that would map to the same θ , which would manifest as 'meandering' transport barriers in the phase space. This situation would however change, if one were to use the 'n symmetrical general' ellipse: For values of n > 2, the central ellipse has both focusing and defocusing parts of the boundary.

Initial investigations of the 3D version of the Iris Billiard, suggest that an analogous critical geometric property discussed in this paper persists. It would therefore be natural to carry out a similar characterisation of the 3D escape event E . It is not clear how to obtain the observable escape features in 3 dimensions by the similar geometrical arguments as employed here.

It would be interesting, and straightforward, to carry out a comparative study on the same phenomena, in the context of the eccentric annular billiard [218]. If the transition to global chaos is again observed, it would then be possible to study the Poincaré map, which has already been obtained [218], in order to identify the periodic orbits that become unstable at the critical perturbation value, via Greene's residue criterion [205,[START_REF] Fox | Greene's residue criterion for the breakup of invariant tori of volumepreserving maps[END_REF]. Appendix C studies how the, already obtained, Poincaré map of the annular billiard may be decomposed into two involutions, as has been done for the standard map in Appendix B. Finally, it would be of great interest to perform superconducting microwave resonator experiments, such as those previously used to explore chaos-assisted dynamical tunnelling [191,192], with an Iris domain, or its desymmetrized version [191]. These could be carried out, for precisely machined geometries close to the critical values presented here. Such experiments could facilitate a detailed study of transport between the wave analogues of the parts of phase space that always, sometimes or never impinge upon the central ellipse.

CHAPTER

GENERAL CONCLUSION

This thesis presented three distinct dynamical models of particle flow, each characterised by different parameters such as temperature, constituent particle size, softness, confining geometry and its carrying capacity, to examine different conditions for intermittent flow. The first two models exchange matter or energy with their environment, while the final model is completely isolated.

Part I studied blocking phenomena in 1D channels. Chapter 3, considers a previously introduced model, with a finite capacity N that, when reached, causes a blockage that lasts for a constant time τ b . When not blocked, a particle transits in a time τ < τ b . The irreversible (τ b → ∞) and reversible[114] cases were studied. Channel bundles, each subjected to reversible blocking, with different capacities, were also considered. Chapter 4 extended the first model by taking the transit and deblocking times, τ and τ b , as exponentially distributed random variables with mean µ and µ * respectively. This mathematically simpler circular Markov model, generalizable to arbitrary N, was applied to both a single channel and bundles of coupled channels. Both models present a maximum in the stationary flow as a function of entering intensity. Furthermore, it was shown in Chapter 5 that the Markovian model can be made to display the same steady state behaviour as the non-Markovian model, with an appropriate mapping between the two models' parameters. The transient behaviours of the two systems are, however, quite different. The qualitative similarities in the steady state between the non-Markovian and Markovian models suggest that the details of the channel transport mechanisms and the blockage releases are irrelevant for determining whether a maximum in the steady state flux will be present. This behaviour can therefore be interpreted as a universal property of systems with a restricted carrying capacity.

Part II studied a single channel permitting the flow of a set of soft 2D disks driven through a well defined geometrical narrowing. The particles within the channel were subject to repulsive 'soft-core' interparticle and particle-wall forces, as well as a driving force and a stochastic (thermal) contribution. The motivation was to introduce a statistical physics model of blockage induced intermittency with a small number of parameters. In Chapter 7, regions of particle stiffness and channel geometry were identified where the average velocity of the system behaves non-monotonically, in the low temperature regime, signalling conditions for intermittency caused by clogging. Cascade size and inter-time distributions were collected, and were both shown to follow an exponential distribution. The cascades were measured by counting the number of particles that pass over a slice of the channel geometry, per unit time. The angular distribution of the axis passing through the clogging particles were also collected. The geometrical constriction was then modified to form four overlapping fixed particles, to explore the role that the resulting competing dispersive and focussing elements play in causing intermittency. The system's global velocity, cascade size and time statistics, and angular distribution of blocking were again taken. The relationship between the non-monotonic evolution of the average global velocity and some specific channel geometries are shown to be more 'robust' to increasing stochastic perturbations (i.e. increasing temperature) than others. This 137 robustness determines how likely the dynamics shows intermittency for a given geometry and temperature. The importance of the system's geometrical detail, permitting the formation of meta-stable arches in the absence of friction, was highlighted.

Part III, introduced a new 2D billiard, consisting of a unit circle enclosing a centred ellipse. The trajectories described by a freely moving point particle undergoing elastic collisions with the boundaries are distinguished as periodic, quasiperiodic, and chaotic. Chapter 9 identifies the conditions for the existence of orbits equivalent to the circle map. A linear stability analysis carried out on the period-two orbit lying along the ellipse's semi-major axis showed it to be unstable for all but the totally symmetric geometrical configurations. The billiards phase space was studied, and the fractal dimension of the chaos-order boundary was characterised for a range of geometries. In Chapter 10, recurrence plots were applied to the billiard's chaotic motion, and quantifiable variables were demonstrated to be sensitive indicators of chaotic stickiness. A new time measure was introduced and used to investigate whether the system can undergo a major global chaos transition. This behaviour was then represented using a symbolic code, derived from a simple partitioning of the system's state space. The geometrically tunable symbolic intermittency signals an endogenous escape event, marked by the first time a chaotic trajectory, launched from the unstable period-two orbit, hits the outer boundary two consecutive times. Chapter 11 presented joint distributions of the escape angle, and minimum distance to the inner scatterer, as well as for the escape angle and the number of iterations until the first, tenth and fiftieth escape event, that display both unintuitive and counter-intuitive behaviours. Finally, a superconducting microwave resonator experiment, with an Iris domain for precisely machined geometries for values close above and below the critical values was proposed, for the critical geometries observed and presented, that would facilitate a detailed study of intermittent chaos-assisted tunnelling between the wave analogues of the parts of the phase space connected by the transition to global chaos.

This thesis presented different models of particulate flow, exhibiting complex behaviours delicately poised between order and disorder, as often encountered in real-life situations. Such systems often have critical states, which in the context of phase transitions, describe sharp changes in its properties upon changing an accessible control parameter. Many different control parameters were varied. These include, but are not limited to: a rule of blocking due to a finite capacity, the rigidity of a two-dimensional flow's components, and finally the symmetry breaking of the flow's enclosing geometry. The theme connecting the results produced in pursuit of this thesis is the suggestion that, for confined particulate flow, the richest dynamical behaviour requires controlling the motile components and its surrounding space in a way that can be interpreted as the optimal trade-off between robustness and flexibility.

Note: once may equally well define a momentum inversion operator, that result from T's time reversal symmetry, which would in turn lead to the generation of a different set of involution operators, that will not be considered here.

A point, r = (x, p) is N periodic of T when N is the smallest integer that satisfies T N r = r. We define a symmetry line, Γ j , j ∈ Z, as the set of fixed points of the involution I j , i.e. The symmetry lines are fundamental to the structure of the mixed dynamics of the standard map, as they can be used to determine the system's periodic orbits that form the 'skeleton' of the phase space. These periodic orbits are determined by the set of fixed points of the set of involution operators that are generated by the above rules.

B.1.1 FP of I 0

We introduce a new variable, g ∈ Z, to help us account for fixed points within the toroidal structure of the phase space. It is important to note at this point that every value of g considered for each condition must be seen as a seperate variable. Applying Eq:(B. Applying the rule given by Eq:(B.2) to I 0 , and some simplification returns : We immediately see that Eq (B.13b) gives no conditions. Considering Eq (B.13a) and following the same procedure as in Sec B.1.1, returns:

p g -2x = g ∈ Z | 0 ≤ x ≤ 1, 0 ≤ p g ≤ 1 ∴ -2 ≤ p g -2x ≤ 1. (B.14)
Therefore, the permitted values of g within the above bounds are {1, 0, -1, -2}. Setting p as subject returns the following four lines of fixed points of I 1 , ∀k = 0 :

x 2x + 1 , x 2x , x 2x -1 , x 2x -2 . (B.15)

B.3 Definition & FP of I -1

To understand how to obtain inverse involutions, we again consider the decomposition of the standard map: (B.16) whose inverse may be obtained, as shown in (B.1) by:

T = I 1 • I 0 ,
T -1 = (I 1 • I 0 ) -1 = I 0 -1 • I 1 -1 = I 0 • I 1 . (B.17)
The final term follows from the intrinsic characteristics of involutes. We can therefore define the inverse of the first involute by:

I -1 = T -1 • I 0 = I 0 • T I 1 • I 0 = I 0 • T. (B.18)
Applying the inverse of the first involute to some pair of co-ordinates (x, p) returns: 

I -

B.4 Definition & FP of I 2

Following the rule given by Eq. (B.2) , the re-application of the standard map operator,I 2 = T • I 1 , returns : for k < 2π, g ∈ {-2, -1, 0, 1, 2}, therefore returning a set of five implicit equations given by. Where both the (-) g term and the -g/2 in the argument of the right hand sine term are introduced, which the periodic and anti-symmetric nature of the sine function permits. We therefore retrieve the form of Eq. B.34, which, given k < 2, returns roots satisfying:

α/(2π) = p gxg/2 = 0. (B.36)

i.e. We construct I -2 by reapplying the rule given by (B.2) on to I -1 : [START_REF]Regular and irregular spectra[END_REF] Therefore:

I -2 = T -1 • I -1 = T -2 • I 0 . (B.
I -2 • x p = I 0 • I 1 • I -1 • x p (B.42)
We have already studied the application of I -1 to r = (x, p), and so we reuse the result here to give:

I -2 • x p = I 0 • I 1 • -(x + p) + k 2π sin(2πx) → x p -k 2π sin(2πx) -k 2π sin A x,p → p , (B.43)
We can finally write the application of the second inverse involution as: As before, we introduce a new variable, α g such that: 

I -2 • x p = I 0
α g = 2π x + p - k 2π sin ( 

B.5 Definition & FP of I 3

We will once more apply the standard map operator to return I 3 = T • I 2 , giving: returns the limits of g as g ∈ [-2 -3k 2π , 3 + 3k 2π ], therefore giving five values of g ∈ [-2, -1, 0, 1, 2, 3] in turn defining five lines of fixed points that must be implicitly solved.

I 3 :      x = -x + 3p - k π sin X x
Note: In the limit k = 0, these FP lines follow: which we now verify is indeed the inverse Poincaré map by calculating:

P n • P -1 n • α n θ n = P n • α -θ = sin -1 (r sin β X -d sin(2β X -θ -α )) → α X 2β X -θ -α -α X → θ X (C.18)
where β X is defined as for β (C.16) but with θ n → θ and α n → α . We may say that β X = β [π].

We now focus on the α X term which returns: Focusing on the θ X term returns:

α X = sin -1   
θ X = θ n +α n 2 β X β -θ -α -α n = θ n . (C.21)
Therefore demonstrating that P n • P -1 n = I.

We may also similarly pose the question if T -1 • P n • T ? = P -1 n such that P n • P -1 n = I. We consider:

P n • T α n θ n = P n • -α n θ n = sin -1 (r sin β -d sin(2β + θ n + α n )) → α 2β + θ n + α n -α → θ , (C.22)
where β is defined as: We may now write:

P -1 n • α n θ n ? = T -1 T •P n • T • α n θ n = T • α θ = -α θ (C.24)
which we also verify is indeed the inverse Poincaré map by calculating:

P n • P -1 n • α n θ n = P n • -α θ = sin -1 (r sin β T -d sin(2β T + θ + α )) → α T 2β T + θ + α -α T → θ T (C.25)
where β T is defined as for β (C.23) but with θ n → θ and α n → α . Expanding and simplifying β T returns: Cette thèse présente et analyse trois modèles distincts qui peuvent être utilisés pour décrire ces phénomènes :

β T = sin -1   
1) Nous présentons d'abord une modélisation des flux de particules dans d'abord dans un canal unidimensionnel, puis dans des groupes de canaux couplés ou non, en considérant dans tout ces cas que chaque canal à une occupation maximale. La dynamique aléatoire de ces modèles est étudiée en utilisant des outils de la théorie des queues et une technique de régénération.

2) Nous étudions ensuite le flux de particules de taille finies et molles qui se déplacent dans un canal bidimensionnel avec une simple ou double contrainte et qui se déplacent par dynamique browinienne. Nous observions dans ce cas là que des conditions spécifiques mènent à des phénomènes d'intermittence du flux de particules, liée à l'apparition de structures metastables. L'origine géométrique de ces effets est particulierement étudiée et caractérisée dans le régime ballistique.

3) Nous finissons par une analyse du Billard Iris, un système qui consiste en une particule point qui bouge librement, confinée dans un disque de taille unitaire qui contient une ellipse qui limite son mouvement. Ce système est d'abord étudié numériquement puis analytiquement dans les cas spécifiques ou l'éllipse mène à des trajectoires intégrables analytiquement. Par exemple, dans le cas limite ou l'ellipse devient un cercle, le sytème est intégrable, mais dans les autres cas, une dynamique mixte apparaît entre un comportement analytique et un régime chaotique. Une analyse par diagramme de récurrence du régime chaotique est utilisée pour identifier les géométries critiques qui mènent à des dynamiques complètement chaotiques.

Subject : Models of Intermittent Particle Flow

Abstract:

Particle flows underlie many regulatable phenomena at multiple length scales, such as pedestrian traffic, ion channel flux and information flow. Tuning the system parameters produces a myriad of interesting and unexpected behaviour, notably intermittent dynamics. This thesis presents and analyses three distinct models systems motivated by these phenomena:

1) Analytical models of particulate flow through 1D single channels, as well as coupled and uncoupled channel bundles, with a limited carrying capacity. The stochastic dynamics is studied using queuing theory and regeneration techniques.

2) Finite sized, soft particles driven through a 2D channel, with a single or double constriction are studied using overdamped brownian dynamics simulation. Special conditions for intermittency, related to the formation of metastable structures, are observed. The geometrical origin of the effects are further explored and characterised in the near-ballistic regime.

3) The Iris Billiard, consisting of a freely moving point particle confined by a unit circle enclosing a central scattering ellipse in 2D is investigated numerically. When the ellipse degenerates to a circle, the system is integrable, otherwise it displays mixed dynamics. Recurrence analysis of the chaotic regime is applied to identify critical geometries that signal a transition to global chaos.
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 24 Figure 2.4: A TASEP model of L sites. The arrows represent transition probabilities. A particle hops to the next cell, at rate one to the right, iff it's empty. Site 1, if already empty, receives incoming particles at a rate α. Site L expels particles at a rate β , if already occupied.
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 25 Figure 2.5: A 1D, N = 2 channel. Left: When empty. Middle: Occupied by one transiting particle. Right: Overloaded by two simultaneously present particles.

Figure 3 . 1 :

 31 Figure 3.1: Average number of exiting particles as a function of the intensity for different stopping times, t s =32, 16, 8, 4, 2, 1.5 top to bottom. The dashed line shows the long-time limit, Eq.(3.5).

Figure 3 . 2 :

 32 Figure 3.2: (a) Second moment of the number of exiting particles as a function of the intensity for different stopping times, t s = 20, 10, 5, 3, 2 top to bottom. The dashed line shows the long time limit, Eq.(3.26). (b) Variance of the number of exiting particles as a function of the intensity for different stopping times, t s = 10, 6, 4, 2, 1.5 top to bottom. The dashed line shows the long time limit, Eq.(3.27).

Figure 3 . 3 :

 33 Figure 3.3: (a)Variance of the number of exiting particles as a function of time for different intensities, λ = 0.1, 0.5, 1, 2. The dashed lines show the long time limit, Eq.(b) Intensity that maximizes the variance (upper curve) and mean of number of exiting particles as a function of the stopping time.
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 34 Figure 3.4: Exiting flux, j(λ ), versus λ for N = 2 and τ b = 3, 4. • • • , 12 from top to bottom. The blue curves show cases where the flux increases monotonically with λ . The green curves show cases where the flux displays a maximum at a finite value of λ . The dotted lines correspond to the asymptotic values of the flux, Eq.(3.40 ).

Figure 3 .

 3 Figure 3.4 displays j(λ ) versus λ τ for different integer values of τ b from 3 to 12. The dashed lines correspond to the asymptotic values of the exiting flux lim λ ->∞ j(λ ) = 2 τ b . One first observes that the stationary flux reaches the asymptotic values more rapidly as τ b increases. Moreover, j(λ ) displays a maximum when τ b is larger than 7. It is possible to obtain the exact value of τ b for which the flux j(λ ) displays a maximum at a finite value of λ [117] by solving ∂ j(λ ) ∂ λ = 0. A real solution for λ exists if τ b > 6.2. Note that for N = 1 the flux is always a monotonically increasing function of λ .
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 35 Figure 3.5: Exiting flux, j(λ ) versus λ for N = 3 and τ b = 2, 3, • • • , 9 from top to bottom. The blue curves indicate cases where the flux increases monotonically with λ . The green curves indicate the cases where the fluxes display a maximum at a finite value of λ . The black crosses show simulation results for τ b = 3, 4, 6, which perfectly match with the exact results. The dotted lines indicate the asymptotic values of the flux, Eq.(3.40).
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 42336 Figure 3.6: Exiting particle flux, j(λ ), versus λ for N = 4, 6, 10, 20 and τ b = 4. Dotted curves correspond to the asymptotic values at low and high intensity.

Figure 3 . 8 :

 38 Figure 3.8: Open probability p o versus λ τ for N = 4, 6, 10 and τ b = 4. Dotted curves correspond to the asymptotic values at low and high intensity.

Figure 3 . 7 :

 37 Figure 3.7: (left) Critical values of τ b as a function of N above which the steady state flux of a single channel displays a maximum at finite λ . (right) The corresponding values of λ τ.

5 Figure 3 . 9 :

 539 Figure 3.9: Numerically obtained transient average flux through system for different N (shown in legend). Results were obtained using the Gillespie algorithm.

Figure 3 .

 3 Figure 3.9 show simulation outputs for the time-dependant average flux, with a transit time τ = 1, and a deblocking time of τ b = 2, 5 respectively from a single channel for different values of N and λ = 1, 5.As the channel capacity increases, the time dependent flux presents fewer oscillations, and tends towards a higher steady state value that depends on the intensity of the entering stream. Furthermore, increasing the value of τ b , for a given value of intensity increases the spacing between flux oscillations.

Figure 3 .

 3 Figure 3.10 shows J as a function of Λτ for N c = 2, 10 and for N =2, 3, 4, 6, 10. When Λτ 1, the rate of incoming particles is very small and the finite capacity of the channel is rarely reached, meaning that blockage events are scarce. The stationary exiting flux is therefore equal to the input flux, J Λ. This behaviour is observed

Figure 3 .

 3 Figure 3.10: J(Λ) versus Λτ for N = 2, 3, 4, 6, 10 and τ b = 4, for (left) N c = 2, and (right) N c = 10. The dashed lines correspond to the asymptotic values, Eq.(3.68).

Figure 3 .

 3 11a shows the rescaled flux J/N c versus the rescaled intensity, Λ/N c for different values of N c . In the low intensity regime J is equal to Λ and displays a finite discontinuity at Λ c . At high intensities the curve evolves towards an asymptotic and the best fit is given by

Figure 3 .

 3 Figure 3.12: (a) Four coupled low capacity (LC) channels, each with capacity N = 2, sharing the input particle flux of intensity, Λ. If one channel is blocked, the flux is evenly redistributed between the remaining open channels; (b) Four independent LC channels, each of capacity N = 2, where each channel recieves a flux of particles at intensity, Λ/4. If one channel is blocked, its incoming particles are simply rejected and not redirected to the remaining open channels. (c) One high capacity (HC) channel. While blocked, incoming particles are simply rejected. The first scenario compares systems (b) and (c). For a fair comparison in the case shown, the HC threshold should equal N HC = N c * N = 8. The second scenario compares systems (a) and (b).

  (a) N = 10. Many N c . (b) N c = 20, ManyN.

Figure 3 .

 3 Figure 3.11: Left: Exiting flux of a channel bundle composed of N c channels each with N = 10: J/N c versus Λτ/N c for different values of N c and τ b = 4. The dashed curves show the asymptotic behaviour. Right: J/N versus Λτ/N for different values of N and τ b = 4. The dashed curves correspond to the asymptotic behaviours. The inset shows the value of Λ that maximises the exiting flux as a function of N and the red dashed line shows the logarithmic fit, of form 2.73 log(0.89N) + 0.65.

Figure 3 . 13 :

 313 Figure 3.13: Total exiting flux from the coupled (lines) and uncoupled (dotted) channel configurations. From Left to right, N c = 2, 5, τ b = 4. The insets show the difference between the two.

3. 6 . 1

 61 Coupled versus uncoupled channels We first compare a channel bundle composed of N c channels, each of capacity N. The entering flux, Λ, is equally distributed over the coupled open channels. In contrast, the N c independent channels, each of capacity N, each receive an incoming flux of intensity, Λ/N c . The difference in the output flux of the two configurations is defined as: ∆J = J N c N (Λ) -N c j N (Λ/N c ). (3.77) Simulation results comparing the output flux of each configuration for N c = 2, 5, τ b = 4, are shown in Fig. 3.13. The differences are shown in the inset of the figure. At low intensity, for all configurations, the output flux is approximately equal for each setup, and linearly increases with Λ until a critical value, which itself is a monotonically increasing function of N.

Fig. 3 .

 3 Fig. 3.14 shows the flux difference between the bundle configurations at Nc = 2, N = 2, as a function of intensity of entering flux, Λ, for different values of τ b . For τ b > 2 the behaviour is more complex after the first maximum, with the appearance of a minimum followed by a second maximum before tending towards zero.
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 314 Figure 3.14: Difference in the output flux between N c = 2 coupled and uncoupled channels, with N = 2 as a function of intensity, Λ, for different values of τ b .

Figure 3 . 15 :

 315 Figure 3.15: Single HC channel, versus coupled LC channels. From top to bottom, N c = 2, 5. All curves display a single maximum followed by a single minimum, before tending to zero at high intensity.

Figure 4

 4 Figure 4.1: Circular N + 1 state Markov chain systems. (a) N = 1, (b) N = 2, which corresponds to the system shown in Fig 2.5, (c) ∀N ∈ Z + . The transition rates correspond to the FIFO queueing discipline.

. 15 )

 15 This is the Erlang loss formula, first derived in 1917[121].

Figure 4 . 2 :

 42 Figure 4.2: (a) Steady state throughput, j, Eq. (4.22), as a function of the intensity, λ , for µ = 1, µ * = 0.1 and N = 2, 3, ..., 10 bottom to top. The dashed line shows the behaviour in the limit of small intensity, j = λ . The limiting value at large intensity is given by Nµ * . (b) Steady state throughput of the M/M/N/N queue as a function of the intensity, λ , for µ = 1. The limiting value at large intensity is given by Nµ.

Figure 4 . 3 :

 43 Figure 4.3: Left: N = 2. Steady state throughput, j as a function of intensity, λ for µ = 1, µ * = 0.3, 0.25, 0.2, 0.1, 0.05 top to bottom. The dashed lines show the limiting value, 2µ * . Global maxima are evident for certain values of µ * (see text). Right: j max , as a function of µ * (µ = 1). The dashed lines shows the limiting value, 2µ * .
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 4445 Figure 4.4: Time evolution of j for N = 2. Left: µ * = 0.05, λ = 3, 1, 0.1, 0.05, top to bottom. Right: λ = 1, µ * = 0.05, 0.1, 0.3, 0.5 bottom to top. The dashed lines show the steady state value, Eq. (5.4).

Figure 4 . 6 :

 46 Figure 4.6: N = 3. Steady state throughput, j, as a function of λ for µ = 1, µ * = 0.3333, 0.15, 0.1, 0.05 top to bottom. The dashed lines show the limiting value, 3µ * .

Figure 4 .

 4 Figure 4.4 illustrates the behaviour of the time dependent throughput for different parameter values. We note two distinct behaviours: either the throughput increases monotonically to the steady state value, or it displays a maximum at a finite time before decreasing to the steady state value. Applying Eq.(4.28) returns

Figure 4 . 7 :

 47 Figure 4.7: N = 3. Time evolution of j(t). Left: µ * = 0.05 fixed, for λ = 3, 1, 0.1, 0.05, top to bottom. Right: λ = 1 fixed; µ * = 0.05, .1, 0.3, 0.5, bottom to top. The dashed lines show the steady state value, Eq. (4.45).

  examples are shown in Fig. 4.6. For r < r c = 1/3 there is a maximum throughput at finite intensity. To explore the transient behaviour, we solved Eqs. (4.42) numerically. Some results are shown in Fig. 4.7. The same two distinct behaviours, as remarked for N = 2, are present. No maximum at finite time is observed if µ * > 0.75.

3 Figure 4 . 8 :

 348 Figure 4.8: Numerically obtained transient average flux through a single non-FIFO Markovian channel for different N (shown in legend). Results were obtained using the Gillespie algorithm.

Figure 4 . 9 :

 49 Figure 4.9: Single channel stationary flux, j, from Eq.(4.52), as a function of λ for N = 2, 3, 4, 6 (from bottom to top) with µ = 1 and for two values of µ * : (left) µ * = 1/2 and (right) µ * = 0.1. The dashed lines show the limiting value, Nµ * .

Figure 4 .

 4 Figure 4.10: Variance of the stationary flux σ 2 j , from Eq. (4.55), as a function of λ for N = 2, 3, 4 (from bottom to top) with µ = 1 and for two values of µ * : (left) µ * = 1/2 and (right) µ * = 0.1.

Fig 4 . 8

 48 Fig 4.8 display simulation results of the transient, FIFO, mean flux, for a range of configurations well beyond those analytically considered.As for the NON-FIFO case, the time dependant average flux does, depending on the parameters chosen, may or may not present a maximum before settling to its equilibrium value. An observed difference is that the value of the equilibrium exiting flux for the channels following the FIFO queuing discipline is, in general, lower than for the NON-FIFO case, apart from the in the high capacity limit, which is expected.

3 Figure 4 . 11 :

 3411 Figure 4.11: Numerically obtained transient average flux through a single FIFO Markovian channel for different N (shown in legend).

Figure 4 . 12 :

 412 Figure 4.12: State diagrams for the multichannel models (for N = 2): The left and right indices correspond to the number of blocked channels and the number of particles present while open, respectively. The arrows represent all possible transitions between states: Curved purple and blue arrows correspond to a transition between open states by the gain/loss of a particle, respectively. The black arrows correspond to a channel blockage due to a particle entrance and the red arrows correspond to a deblockage. (left) N c = 2 (right) N c = 3 (Figure courtesy of Pascal Viot).

Figure 4 . 13 :

 413 Figure 4.13: Stationary flux, J, from the theory as a function of Λ for N c = 1, 2, 3, 4 (from bottom to top) with N = 2, µ = 1 and for two values of µ * : (left) µ * = 0.5 and (right) µ * = 0.1.

Figure 4 .

 4 Figure 4.14: Flux difference, ∆J, between one HC channel of different thresholds N HC = 4, 6, 8, 10 and N c = 2, 3, 4, 5 LC channels each of threshold N = 2 (from top to bottom, right hand side) as a function of Λ with µ = 1 and µ * = 0.5 (left) and µ * = 0.1 (right). From Eq. (4.72)

Figure 4 .

 4 Figure 4.15: Flux difference ∆J C between N c = 2, 3, 4 coupled channels with N = 2 and their uncoupled equivalents (lower and upper curves, respectively) as a function of Λ. µ = 1 and µ * = 1/2 (left) and µ * = 0.1 (right). From Eq. (4.75).
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 52 Comparison of N c coupled with uncoupled channels of capacity N = 2.

Figure 5 .Figure 5

 55 Figure 5.1: (a) Comparison of stationary exiting flux, j(λ ), versus λ τ obtained for the non-Markovian model (dotted curves), the Markovian model by setting µ = 1/τ (dashed curves) and the Markovian model by using the ansatz given by Eq.(5.6) (full curves), τ b = 4. (b) Time evolution of the average flux < J > from a bundle of N c = 2, N = 1 channels, Λ = 1. To relate the steady state of both systems, τ b = 1/µ * . Where τ b = 4.

Figure 6

 6 Figure 6.1: A channel of width L y and length L x with a constriction formed by two fixed disks each of diameter σ 2 .l w is the minimum distance between the obstacles and σ 1 is the particle diameter. A periodic boundary condition is imposed along the x-axis.

Figure 6 . 2 :

 62 Figure 6.2: When d sep is sufficiently large, the particles line the channel to form a passage between the two obstacles.

Figure 7 . 1 :

 71 Figure 7.1: Mean velocity, V , as a function of constriction l w and for various rigidities k w = 150, 200, 250, 275, 300 and with L Y = 5.5, ρ = 0.55 at different temperatures.

  (a) N = 0, just after random initialisation. (b) N = 10, steady flow through the constriction. (c) N = 40, first blockage (d) N = 49, deblockage (e) N = 56 Cascade of size 6 (f) N = 192 Continued cascading.

Figure 7 . 3 :

 73 Figure 7.3: Time slices of the evolution of the driven particle flow. L y = 6, σ 2 = 5.75.

Figure 7 . 5 :

 75 Figure 7.5: L y = 6, σ 2 = 5.75, T = 0.01 and t c = 0.1 (a) Statistics for cascade size distribution. The inset displays a log-linear plot of the distribution envelop. s 0 = 100 (b) Log-linear plot of the inter cascade time distribution. τ 0 = 0.09 .

Figure 7 . 6 :

 76 Figure 7.6: Angular distributions of axis running through blocking particle pairs

Figure 7 . 7 :

 77 Figure 7.7: The two types of blocking mechanism that are possible with a double constriction l w = 1.5, d sep = 3. (a) Type I, which is the sole cause of the non-monotonic variation in the mean velocity as shown in Fig. 7.9; (b) Type II, arising from the non-convex geometry for d sep > 0. The blocking angle, θ b , is also illustrated.
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 479787 Figure 7.9: Mean velocity V as a function of l w for increasing temperature T , and L y = 6 for two values of d sep . At low temperatures singular reductions in the velocity for certain geometries are present. Minor variations, of the order of 10 -6 , corresponding to the numerical precision of the geometry explored, are sufficient to enter or leave the singular region.
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 75710 Figures 7.10 a -c show cascade statistics for three increasing temperatures, at the geometry corresponding to the lowest valued minima for L y = 6 d sep = 3 as shown in Fig. 7.8. The appearance of peaks in the distribution of cascade sizes that were not present for d sep = 0 ; shown in Fig 7.5, is a striking feature. The lower inset of each figure shows that the peaks follow exponential distributions, whose exponent increases with temperature. Furthermore, as for the d sep = 0 case, the distribution of inter-cascade times also follows exponential distributions, whose exponent decreases with temperature.
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 711712713714 Figure 7.11: Type I distribution: σ 2 = 5.844737, L y = 6, d sep = 3

INTRODUCTIONFigure 9 . 1 :

 91 Figure 9.1: Geometry vs. dynamics [164]. An integrable elliptical billiard (top left and centre) has two types of regular motion depending on the initial condition, a dispersing diamond (top right) is chaotic, a defocusing stadium (bottom left) is intermittent, with orbits switching between regular and chaotic motion, and a mushroom (bottom centre and right) is mixed, with regular or chaotic motion depending on the initial condition. Apart from the ellipse, all these are constructed from circular arcs and straight lines; many other examples with more subtle dynamical distinctions exist. Figure courtesy of Carl Dettmann

Figure 9 . 2 :

 92 Figure 9.2: The Iris Billiard. (a) Generic configuration: a = b (b) Limiting case a = b, which forms an annulus. (c) Case b = 1, which forms two separate crescents a ∈ (0, 1]. Orientation, θ and reflection angle β are shown.

Figure 9 . 3 :

 93 Figure 9.3: Symbolic flow diagram representation of billiard dynamics with finite state space partition.

Figure 9 . 4 :

 94 Figure 9.4: A selection of regular, circle map, trajectories. a) A periodic orbit with frequency ω 1 /ω 2 = 1/3. b) A periodic orbit with frequency ω 1 /ω 2 = 2/9. c) A rotational quasiperiodic orbit with frequency ω 1 /ω 2 = 1/ √ 2 that would densely fill the annulus if allowed to run for infinite time. All trajectories were generated with 10 4 collisions, and may be directly associated with the 1D circle map studied in Section 9.1.1.

Figure 9 . 5 :

 95 Figure 9.5: A selection of orbits that collide with the ellipse. a) a = 0.2, e = 1.05. Perturbed rotational Ω = 1/ (5) Quasiperiodic orbit b) a = 0.2, e = 4. Perturbed librational quasiperiodic orbit: launched from initial conditions: θ = 2.48, β = 0.577. Librational orbits reverse direction, rotational orbits don't. c) a = 0.2, e = 4. Chaotic orbit. All trajectories were generated with 10 4 collisions.

Figure 9 . 6 :

 96 Figure 9.6: Initial deviations r ⊥ 0 and δ β 0 , and final deviations r ⊥ and β for a straight line of length l.

Figure 9 . 7 :

 97 Figure 9.7: Initial deviations and final deviations for a reflection on a curve, approximated as a circle of radius R.

Figure 9 . 8 :

 98 Figure 9.8: Angles involved in a reflection.

Figure 9 . 9 :

 99 Figure 9.9: A set of complete Poincaré phase sections. Top row: Constant elongation: e = 2, for increasing semiminor axis from left to right. Bottom row: Constant semi-minor axis: a = 0.2, for increasing elongation from left to right.

Figure 9 .

 9 Figure 9.10: 1-4, Successive magnifications of the archipelago seen in the top left of the phase section obtained for e = 4, a = 0.2. (Figure 9.9, bottom, centre).

Figure 9 . 11 :

 911 Figure 9.11: Plots showing the border cells, outlining the largest chaotic component in the vicinity of the central stable island for a = 0.9, e = 1.11, for different numbers of grid cells L.
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 10 Figure 10.1: A diagonal line in an RP corresponds with a part of a trajectory (blue) that stays within the ε defined Ł ∞ neighbourhood of another section (red) , for l iterations. The proportions of these present above a minimal length l min

Figure 10 . 3 :

 103 Figure 10.3: RP of an unperturbed quasiperiodic Ω = 1/ √ 10 orbit. The distribution of return times shows τ ∈ [3, 16, 19]. The return time distribution demonstrates that Slater's three-gap theorem, introduced with the 1D circle map, in Sec, 9.1.1 is satisfied.
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 104 Figure 10.4: RP of a perturbed rotational quasiperiodic orbit. a = 0.2, e = 1.25. Launched from θ = 0, β = 0.2.The distribution of return times shows τ ∈[START_REF] Helbing | Simulating dynamical features of escape panic[END_REF][START_REF] Helbing | Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions[END_REF][START_REF] Hill | Mixing of granular materials: a test-bed dynamical system for pattern formation[END_REF], in accordance with the three-gap theorem.

Figure 10 . 5 :

 105 Figure 10.5: RP or an arbitarily chosen chaotic orbit. a = 0.2, e = 2. Many recurrence times are now present.

Figure 10 . 6 :

 106 Figure 10.6: RP of a 2 × 10 4 long chaotic trajectory, launched from the unstable period-two orbit, for a = 0.9, e = 1.1. RR crit = 0.1. DE crit = 0.3. Three separate regions of interest are selected and marked as I, II and III.

Figure 10 . 7 :

 107 Figure 10.7: Domain I, i ∈ 352, 1100: Rotational motion, of different frequencies,

  An example RP applied to a chaotic orbit of length 2 × 10 4 is shown. The measures introduced above are applied as a particularly sensitive measurement of intra-chaotic dynamical transitions.Fig 10.6 shows the RP of a long, chaotic orbit for a = 0.9, e = 1.1. The trajectory is then analysed by applying the previously introduced RQA measures to moving windows of length w = 200. The selected RQA measures (RR & DET ) are monitored with respect to time. When the chaotic trajectory encounters a sticky region, the RR significantly changes as its evolution becomes much more regular. Three examples are highlighted inFig 10.6 as Domains I, II and III. 
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 108 Figure 10.8: Domain II, i ∈ 9420, 5200: Librational diffusion.
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 1091010 Figure 10.9: Domain III, i ∈ 9400, 9540 Short rotational motion.

Figure 10 . 11 :

 1011 Figure 10.11: The ratio of the number of collisions within the initial recurrence phase section region of the unstable period -two orbit, N ε , to the total number of collisions with the outer circular boundary, N • , as a function of the elongation, e. A logarithmic scale is used to show the transition point clearly on each curve. X-axis: The elongation of the inner scatterer for different values of a, each identified by a color in the legend. In each case, total trajectory length, N col = 10 4 .

Figure 10 . 12 :

 1012 Figure 10.12: Evolution of e crit (a) for a ∈ (0, 1). Trajectories of length N col = 2 6 were used to obtain each point. The curve indicates the geometry at which the final rotational curve is destroyed. The subfigures show the phase section occupation of the long time chaotic trajectory (N col = 10 7 ) for values of geometry just above and below e crit (a) a = 0.1, below: e = 1.320 above: e = 1.321. (b) a = 0.5, below: e = 1.178 above: e = 1.179. (c) a = 0.9, below: e = 1.068 above: e = 1.069.

Figure 10 . 13 :

 1013 Figure 10.13: Heatmap of the reduced chaotic portion of the phase space, prior to global connection, filled by a 2 × 10 9 long trajectory launched from the unstable period-two orbit. L = 300, a = 0.9, e = 1.067. All trajectories launched from any initial condition, within this chaotic set, will obey the symbolic parity condition for all time.
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  = [.., c n esc -4 , e n esc -3 , c n esc -2 , e n esc -1 , E c n esc , c, ?? ]. (10.8) 

11. 1

 1 Study of escape event 11.1.1 Geometric derivation of measured quantities

Figure 11 Figure 11 . 2 :

 11112 Figure 11.1: An illustration of the endogenous dynamical escape event, E , of a trajectory launched from the unstable period-two orbit, that signals the transition to global chaos. The relevant observable variables, θ esc and d min are indicated. The unit vector of the escape segment, û is also shown.
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 113 Figure 11.3: f (θ esc ) for different escape segments.
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 50114 Figure 11.4: Distribution of minimum escape for different escape segments.
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 50115116 Figure 11.5: Heatmaps of θ esc against d min . a = 0.1, e = 1.4.
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 50117118 Figure 11.7: Heatmaps of θ esc against d min . a = 0.1, e = 1.321

50 Figure 11 . 9 :

 50119 Figure 11.9: Heatmaps of θ esc against d min . a = 0.5, e = 1.2.

Figure 11 . 10 :

 1110 Figure 11.10: Survival probability on semi log scale. n min = 469. a = 0.5, e = 1.2.

50 Figure 11 . 11 :Figure 11 . 12 :

 5011111112 Figure 11.11: Heatmaps of θ esc against d min . a = 0.5, e = 1.178.

50 Figure 11 . 13 :

 501113 Figure 11.13: Heatmaps of θ esc against d min . a = 0.9, e = 1.1.

Figure 11 . 14 :

 1114 Figure 11.14: Survival probability on semi log scale. n min = 495. a = 0.9, e = 1.1.

50 Figure 11 . 15 :Figure 11 . 16 :

 5011151116 Figure 11.15: Heatmaps of θ esc against d min . a = 0.9, e = 1.069.

Figure 11 . 17 :

 1117 Figure 11.17: Closeup of Fig. 11.5a highlighting the consistent 'merging' feature, present in most of the above heatmaps at E .

50 Figure 11 . 18 :

 501118 Figure 11.18: Heat maps relating the escape angle θ esc to the number of trajectory iterations at (a) the first escape event (i.e. the first miss), (b) the tenth miss, (c) the fiftieth miss. The sample was collected from a set of trajectories launches from the unstable period-two orbit with slight deviations as given in Eqs. 11.1.2 11.1.2. Geometry of the system is: a = 0.1, e = 1.4 .
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 501119501120501121501122501123 Figure 11.19: Same as for Fig. 11.18, but a = 0.1, e = 1.321

  examples are shown in Fig.11.24, whose symbolic dynamical flow, for all n > 2, in all but the degenerate cases is shown inFig: 11.25. These new symmetry configurations may permit a deeper exploration of the relationship between geometry and symbolic intermittency, which, following the new symbolic flow diagram in Fig.11.24, that will display a richer variety of symbolic trajectories than those already studied.

Figure 11 . 24 :Figure 11 . 25 :

 11241125 Figure 11.24: Generalised n symmetrical Iris Billiard. a = 0.2, e = 4.

Γ

  j : { r | I j r = r }. (B.8) A point, lying on the symmetry is only a fixed point (FP ) if both the x and p components of the involution under study satisfy (B.8), i.e. one condition is contained within the other. Upon re-examining Eq.(B.4), we can therefore expect that any point of intersection of the symmetry lines Γ i , Γ j , resulting from the set of fixed points of I i , I j will be a periodic point. Eqs: (B.3) & (B.5) show that a symmetry line is transformed by T N or I N onto other symmetry lines [223].

  [START_REF] Suzuno | Analytical investigation of the faster-is-slower effect with a simplified phenomenological model[END_REF] to Eq (B.7a) returns: 2x = g ∈ Z.(B.9)As x ∈ [0, 1], therefore g = {0, 1, 2}. The values of x that correspond to the fixed points are therefore x = {0, 1/2, 1}. Considering the fixed point behavior derived from Eq (B.7b) gives:k 2π sin(2πx) = g ∈ Z, (B.10)Setting g = 0 returns the previously obtained x = {0, 1/2, 1}. Otherwise setting |g| > 0 gives:sin(2πx) = ± 2πg k (B.11)which only returns solutions ∀k > 2π|g|, otherwise, condition (B.7b) returns no solutions. Therefore, the fixed points of I 0 , for k ≤ 1 are :

  I 1 : x = -x + p [ mod 1], (B.13a) p = p [ mod 1]. (B.13b)

  .22a) may be rewritten as:2x + p g -k 2π sin(2πx) = g ∈ Z. (B.23)Reconsidering the limits imposed on x, p ∈ [0, 1] returns the possible values of g = {0, 1, 2, 3} ∀k ≤ 2. Further increasing k widens in both directions the set of possible values of g. Within the range 0 ≤ k ≤ 2, we obtain four lines of fixed points by setting p g as the subject: condition (B.22b) which returns:sin(2πx) + sin (2π(x + p)k sin(2πx)) = 2π k g g ∈ Z. (B.[START_REF] Berezhkovskii | Single-file transport of water molecules through a carbon nanotube[END_REF] in the limit k < 1, the only possible solution corresponds to g = 0, which, by considering the arguments of both left hand sin terms, returns the following possible solutions:x + p g -k 2π sin(2πx) = -x [mod1], (B.26) = x + 1/2 [mod1]. (B.27) Eq (B.26) returns the same condition as (B.22a), whose four fixed points were obtained. Simplifying condition (B.27) returns: ∈ [-1/2k/(2π), 1/2 + k/(2π)]. Therefore, for k < π, g = 0, giving: points satisfied by both (B.22b) & (B.22a).

  ,p = 2(px) -k 2π sin(2π(px)) = g ∈ Z. (B.32) 

  (p gx)) , g ∈ {-2, -1, 0, 1, 2}. (B.33) However, we now take advantage of the fact that any equation of the form :α = β sin α, (B.34)presents only one root, α = 0, given |β | ≤ 1. More than one roots are present for greater values of β . We accordingly re-arrange the system of equations given by B.33 as:2π(p gxg/2) = (-) g k 2 sin(2π(p gxg/2)), g ∈ {-2, -1, 0, 1, 2}.(B.35) 

  p g = x + g/2, g ∈ {-2, -1, 0, 1, 2}.(B.37) therefore returning the following five lines of fixed points of I 2 . the fixed points obtained from condition (B.30b) which returns:sin(2π(px)) = 2πg k , g ∈ Z. (B.39)which as similarly seen in section B.1.1, will only return solutions for g = 0 for sufficiently small k. Under this condition, reconsidering the term within the left hand sin argument gives: same condition as in B.37.B.4.1 Definition & FP of I -2

  g ± πg) = (-) g k 2 sin(α g ). (B.51) which ∀g , |k| < 2 only permits one solution, α g = 0. We can therefore determine the five solutions to condition (B.47a) : points of Eq. (B.47b) returns: sin(2πx) + sin A x,p + sin B x,p = 2πg k , g ∈ Z. (B.53) Therefore g ∈ [-3k/2π, 3k/2π]. Meaning, that ∀k < 2π/3, g = 0. The true fixed points of I -2 are those that satisfy both (B.54) & (B.52). As (B.54) with (B.49) shows that sin A x,p = 0, which upon substitution to (B.52) which in turn is resubstituted into (B.52) returns: sin(2πx) + 0 + sin sin(2πx)sin(2πx) = 0. (B.54) Therefore (B.54) provides the fixed points of I -2 .

  Figure B.2: k = 0.25, Symmetry lines :→ I 0 → I 1 → I -1 → I 2 → I -2 → I 3

=

  sin β X =sin β sin α n + d sin(α n + θ n ) +d sin (α + θsin -1 (sin α n + d sin(α n + θ n )d sin(α n + θ n )) = α n .(C.20)

β

  =sin -1 1 r {sin α n + d sin(θ n + α n )} . (C.[START_REF] Schwartz | Particle filtration in consolidated granular systems[END_REF] 

=

  βθ nα n )r sin β )d sin( θ 2β + θ n + α nα --α sin -1 (d sin(β + θ n + α n )r sin β ) ) sin -1 1 r d sin(βθ nα n )r sin β )d sin(2β + θ n + α n ) = -β (C.27)We may say that β T = -β [π]. We now focus on α T to obtain:α T = sin -1 -r sin βd sin(-2β + 2β + θ n + α n -α + α ) = sin -1 βd sin(θ n + α n ) manipulation comes from Eq. (C.23). We now consider θ T θ T = -2β + θ 2β + θ n + α nα +αα T α n = θ n . (C.29)Therefore demonstrating that P n • P -1 n = I. Sujet : Modélisations d'écoulement intermittent Résumé : Les écoulements de particules sont au coeur d'un grand nombre de phénomènes physiques régulables et ce sur plusieurs échelles de taille : le déplacements des piétons, le flux des ions dans des canaux et le transfert d'informations pour n'en citer que quelques uns. Ces phénomènes sont d'autant plus intéréssants que la variation de certains paramètres peuvent entrainer une myriade de comportements intéréssants et imprévus, et notamment exhiber des phénomènes de flux intermitents.

  

  

  

  

  

  The FIFO queuing discipline is again used, in contrast with the discipline employed inSection 4.3.1 [134]. As in Section 4.3, a channel can be in one of N + 1 states, corresponding to an index, i, ranging from 0 when the channel is empty to N, when it is blocked. The time evolution of N c channels can be described by introducing N c indices, which gives a number of states (N + 1) N c . The flux of exiting particles depends on the number of channels in state i. The number of states can be labelled using indices i j (whose values range from 0 to N c ) associated with the number of channels in a state j, with the global constraint ∑ N j=0 i j = N c .
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. As before, a single channel is open if the number of particles inside is less than N, and blocked at the threshold of N particles. When blocked, no more particles can enter until the channel is flushed. Particles randomly enter an open channel according to a Poisson process with intensity (rate) Λ/(N ck) where k is the number of blocked channels at time t.

(a) µ * /µ = 0.05, λ = 1

  .77) which is negative if µ * /µ < 0.25 and positive otherwise. Coupled channels are always more efficient at low intensity and also at high intensity if the deblocking rate is sufficiently high. If, however, µ * < µ/4 the coupled channels convey the flux less efficiently due to an accelerating cascade of blockages that is reminiscent of the irreversible model[135].

	CHAPTER
	5
	DISCUSSION
	The next section will provide a discussion, and comparison of the two 1D models of blocking phenomena studied
	in Chapters 3 and 4.

This Chapter compares the non-Markovian and Markovian models of 1D channel flow studied in Chapters 3 & 4 respectively. The physical assumption of constant transit and deblocking times, τ and τ b respectively, of the former model is responsible for strong memory effects which prevented analytical solutions for general N from being obtained. Chapter 4 introduced Markovian models [117, 136], where the average transit and deblocking times are stochastic variables given by exponential distributions of intensity µ and µ * , respectively.

Table 9 .

 9 1: Table of the evolution of the fractal dimensions for the border of the chaotic component, for a = 0.1. The error is estimated from the linear regression slope.

	e	D	e	D
	1.1	1.13 ± 3 × 10 -3	1.6	1.01 ± 5 × 10 -4
	1.2	1.41 ± 5 × 10 -3	1.7	1.23 ± 9 × 10 -3
	1.3	1.62 ± 1 × 10 -2	1.8	1.07 ± 7 × 10 -3
	1.4	1.30 ± 9 × 10 -3	1.9	1.02 ± 2 × 10 -3
	1.5	1.27 ± 1 × 10 -2	-	-

Table 9 .

 9 2: Same as for Table10.2, but for a = 0.5.

	e	D	e	D
	1.01	1.003 ± 2 × 10 -4	1.06	1.13 ± 4 × 10 -3
	1.02	1.002 ± 2 × 10 -4	1.07	1.92 ± 8 × 10 -3
	1.03	1.002 ± 1 × 10 -4	1.08	1.71 ± 1 × 10 -2
	1.04	1.002 ± 2 × 10 -4	1.09	1.51 ± 8 × 10 -3
	1.05	1.01 ± 1 × 10 -3	1.10	1.47 ± 1 × 10 -2

Table 9 .

 9 3: Same as for Table

  •) is the Heaviside function. RPs are the graphical representation of R i, j . The value '1', encoded by a black point, indicates that |v i -v j | < ε. Otherwise, points are blank, representing the value '0'. All RPs will show a diagonal line, i.e. R i, j = 1 ∀i = j, known as the Line of Identity (LOI). RPs display many patterns associated with different behaviours. At the small scale, they exhibit single points, diagonal lines and vertical lines, (the combination of the latter two results in rectangular clusters of recurrence points)[208]. Single, isolated recurrence points indicate that a state is rare, or only briefly persists. Diagonal lines, running parallel to the LOI, of length l occur when part of a trajectory runs almost in same phase neighbourhood as a previous portion, for l segments. Finally, vertical lines indicate time intervals in which a state is either stationary or changes very slowly.

Table 10 .

 10 1: Table the fractal dimensions of the border of the chaotic component, for chosen values under the critical geometry set.

	a	e	D
	0.1 1.321 1.63 ± 1 × 10 -2
	0.5 1.178 1.53 ± 3 × 10 -3
	0.9 1.069 1.95 ± 1 × 10 -2

Table 10 . 2 :

 102 Table of the evolution of the fractal dimensions for the border of the chaotic component, for chosen values above the critical geometry set.

  which for small enough k < 2π/3, gives g ∈ [0,1,[START_REF] Nagatani | Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck[END_REF][START_REF] Ezaki | Pedestrian flow through multiple bottlenecks[END_REF][START_REF] Helbing | Social force model for pedestrian dynamics[END_REF]. We now search for the fixed points in a similar way as for I 2 by retrieving an equation of form (B.34) by the following re-arrangement:

	Which, upon re-substitution of x and p returns:			
		I -2 •	x p	=	-(x + 2p) + k π sin(2πx) + k 2π sin A x,p p -k 2π sin(2πx) -k 2π sin A x,p + k 2π sin B x,p	.	(B.45)
	Where												
					B x,p = 2π x + 2p -	k 2π	sin(2πx) -	k 2π	sin A x,p .	(B.46)
	To find the FP, the following is considered:					
	I -2 :	    	x = -(x + 2p) + p = p -k 2π sin(2πx) -k π sin(2πx) + k 2π sin A x,p + k sin A x,p 2π k 2π sin B x,p	[ mod 1], [ mod 1] .	(B.47a) (B.47b)
	Considering the fixed points of Eq B.47a returns:			
						2x + 2p -	k π	sin(2πx) -	k 2π	sin A x,p = g ∈ Z.	(B.48)
	2π x + p -	k 2π	sin(2πx) -	g 2		=	k 2	sin A x,p =	k 2	sin 2π x + p -	k 2π	sin(2πx)	.	(B.49)
						• I 1 •	x p		= I 0 •	p -x p	=	x -p 2π sin(2π(p -x )) p -k	.	(B.44)

The order n case accounts for the past n states

In the mundane example of supermarket checkouts, this discipline is clearly not followed due to the distinction between 'normal and self checkouts' or the option to pay by cash or card.

Remerciements

These past three years have created so many connections, which like threads in a tapestry, weaved together to

Part II

Metastable arches in constricted 2D channels stationary state is L x /v 0 which is equal to the time taken for the system's average velocity to equal zero when completely blocked. 

Velocity statistics

We first consider the mean velocity of the system of particles, V (t) , as a function of the minimum distance l w with L y = 5.5 and for different values of k w . Fig. 7.1 shows the following behaviour is repeatedly observed: When l w ≥ 3 the constriction has a small effect and the mean velocity remains close to v 0 . For l w 1 ≤ l w ≤ 3, the velocity decreases almost linearly with a slope which increases with decreasing temperature. The lower bound of the linear region, l w 1 , depends on the temperature: for T = 1 and T = 0.5, l w 1 2 while for T = 0.1 and T = 0.01, l w 1 1.8.

Part III

The Iris Billiard

A DERIVATION OF THE MEAN FIRST PASSAGE TIME TO THE BLOCKED STATE

In Cohen [131] the following formulas can be found for the average first hitting times ν i, j of hitting level j, starting from level i, in a birth-death process with birth rates λ n and death rates µ n in state n:

For i = j (= average first return time of state j),

For i > j,

Here,

In the special case of an M/M/∞ queue we have λ n = λ and µ n = nµ, leading to π n = λ n n!µ n = ρ n n! , where ρ = λ /µ. In this case, we obtain

that is Eq. (4.20).

A.0.1 Joint probabilities for irreversible blockage at finite time

In [109] we considered the joint probability that m particles have exited at time t and the system is blocked, which we denoted as h(m,t). Let us consider the joint probability g(m,t) that m particles have exited the channel at time t and that the channel is still open. Clearly

The time evolution of g(n,t) is given by

The time derivative of g(n,t) is given as the sum of a gain term and two loss terms. The gain term is the probability density that the nth particle exits at time t and that the channel is still open. This corresponds to the event where the nth particle enters at t -1 and that n -1 particles have already exited the channel. The first loss term corresponds to a particle which blocks the channel at time t knowing that n particles already exited. This means that a particle is still in the channel at t and a new one entering at time t blocks the channel. The last term corresponds to the exit of the nth particle at time t with a channel still open. The boundary term for n = 0 does not require a time lag in the two loss terms because for t > 1 a particle can enter without clogging the channel. A similar argument applies for n = 1 to the gain term. Defining the Laplace transform as

the differential equations become

Knowing that qs (0, u) = 1 λ +u , the inverse Laplace transform of g(0, u) is

To go further, let us recall that the generating function for

Introducing a generating function for g(k,t), G g (z,t) = ∑ k z k g(k,t), one can express the number of exiting particles as

By combining the differential equations of g(k,t) and h(k,t), one obtains

where G(z,t) is the generating function of q s (k,t). By taking the Laplace transform of Eq.(A.14), one has

Taking the partial derivative of Eq.(A.15) with respect to z and using Eq.(A.13), one obtains

Let us recall that (see Ref.

[109])

(A.17) Finally, inserting Eq. (A.17 λ + uλ e -(λ +u) .

(A.18)

Note that Eq. (A.18) can be written as .19) and one now recovers that m(t) = t 1 dt j(t ). One also checks that m(∞) = lim u→0 u m(u) = e -λ 1-e -λ as expected.

APPENDIX B SYMMETRY LINES OF THE STANDARD MAP

Many thanks to Charles Antoine for this calculation, permitting an insight of the role of the involution structure of a 2D area preserving map for identifying its periodic orbits.

B.1 Involutions of standard map, and fixed points

T may be written as the composition of two different involutions:

As a result of the composition:

New involutions may be generated by following the rule:

We may therefore consider the set of all transformations, T k , I j , {k, j} ∈ Z which constitutes the following discrete infinite group [225] :

In the linear regime (k = 0), the position inversion operator, I 0 is given by:

However, as we move beyond the linear regime (k = 0), we must instead apply operator notation such that:

returning the limits of g as g ∈ [-1 2 -k 2π , 1 2 + k 2π ] which when considering again small values of k < 2π gives g = 0 as the only possible solution. We therefore obtain one more FP line:

We can finally give all FP of I 3 as the implicit equation given by (B.63), which will be numerically plotted. The condition given by Eq. (B.65) is not included as it is not included in (B.60). 

B.6 Graphics of analytical symmetry lines

Many thanks to Charles Antoine for this calculation, permitting a first step for applying the involution structure of a first return map of the 2D eccentric annular billiard, for identifying its periodic orbits.

The Eccentric Annular billiard, like the Iris billiard, is composed of a two part boundary. An outer circle, and an inner curve that in both cases, reduces to a centred annulus at the symmetric integrable limit. Chaotic dynamics is introduced in both systems but making the system pass from having only one centred geometric focus, to many.

In the case of of the iris billiard, for e > 1, the number of foci is three. One central focus for the outer circle, and two foci corresponding to the ellipse. In the case of the eccentric annular billiard however, there are two. One, again for the outer circle, and the other corresponding to the displaced inner circle, at distance d from the origin along the axis of displacement. In both cases, the use of d > 0 or e > 1 serve a role analogous to that of k > 0 in the standard map, in that it causes the onset of chaotic dynamics. 153

The latter is considered, whose Poincaré map is given by:

where

Here we use the notation as in Ref [218].

C.1 Theory for obtaining billiard periodic orbits

Given a billiard map P, & a time reversal symmetry T involution such that:

under the condition that T 2 = I. The curves of fixed points (FP) of P n • T return the periodic orbits of

We now consider the case of two different time reversal symmetries, under the involution condition T 1 & T 2 s.t. T 1 2 = T 2 2 = I. Recall, we now can write:

The intersection of FP lines of P n • T 1 & P m • T 2 give the 2(nm) period orbits of P.

Proof. Given that

therefore:

Which means that the double application of (C.8) therefore returns:

We then respectively apply T 2 • P n-m = P m-n • T 2 followed by T 1 • P m-n = P m-n • T 1 to return:

Where the final manipulation was made possible by the fact that T = T 1 • T 2 may be squared to return T 2 = I.

C.2 Symmetry considerations

We follow the reasoning employed in (CITE: Symbolic Dynamics and Periodic Orbits for the Cardioid Billiard).

The time symmetry properties of the billiard dynamics along with its spatial symmetry leads to symmetry classes of orbits.

The time reversal symmetry T is given by: T(α, θ ) :

The eccentric annular billiard also has a reflection symmetry with respect to the x axis, X.

X(α, θ ) :

NOTE: Extra symmetry of Iris billiard.

The Iris billiard contains yet an extra symmetry with respect to the y axis, that may be expressed as Y(α, θ ) : α n+1 = -α n , (C.12a)

To identify the periodic orbits of interest, X, Y and T must be involutions, i.e. X 2 = Y 2 = T 2 = I.

C.3 Verification of involution properties

The double application of the time inversion operator T returns us to the original vector, i.e:

similarly for X:

We now pose the question if X -1 • P n • X ? = P -1 n s.t. P -1 n • P n = I. We first consider:

where β is defined as:

We may now write: