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Résumé en français

L’incertitude est l’une des caractéristiques déterminantes de l’expérience humaine. À
toutes les échelles humaines, des individus aux sociétés globales, beaucoup d’efforts
sont consacrés à anticiper les événements futurs et choisir en conséquence la meilleure
ligne de conduite. La plupart du temps, nos projections s’avèrent correctes, ce qui
renforce la confiance dans nos capacités de prédiction. Cependant, bien que rarement,
des événements complètement inattendus se produisent, changeant nos plans. Malgré
leur faible probabilité, ces événements extrêmes peuvent jouer un rôle majeur dans nos
vies. Pour comprendre l’impact dévastateur des événements extrêmes, il suffit de penser
aux épisodes récents tels que les crises financières et les pandémies mondiales. D’autres
exemples peuvent être trouvés dans différentes situations, y compris l’ingénierie et la
physique. De plus, l’étude des phénomènes météorologiques extrêmes, par exemple
les vagues de chaleur, les ouragans et les tsunamis, est devenue vitale en raison des
changements climatiques [1–4]. Par conséquent, acquérir une meilleure compréhension
de ce type d’événements est une tâche d’une importance fondamentale.

Les caractéristiques statistiques des événements extrêmes ont été systématiquement
étudiées au cours du siècle dernier dans le domaine de la théorie des valeurs extrêmes
(TVE) [5–7] (voir [8] pour une revue récente à ce sujet). Un modèle stochastique spé-
cifique est typiquement considéré dans le but de calculer la distribution de probabilité
des propriétés extrêmes. Par exemple, les quantités pertinentes sont l’ampleur des ex-
trêmes (maxima ou minima) et le moment auquel ils se produisent. Fait intéressant, on
obtient souvent des résultats généraux qui s’avèrent indépendants des détails spécifiques
du modèle, un phénomène généralement appelé universalité. L’un des résultats les plus
fondamentaux dans la TVE est le fait que la distribution du maximum de nombreuses
variables aléatoires indépendantes et identiquement distribuées appartient toujours à
l’une des trois classes d’universalité, indépendamment de la distribution spécifique des
variables [7]. L’identification de faits généraux sur les événements extrêmes, valables
pour divers systèmes et disciplines, est l’un des principaux objectifs de la TVE.

Au cours des dernières décennies, l’étude des extrêmes a trouvé des applications
dans une pléthore de situations. Par exemple, la TVE a été appliquée au domaine
de la biologie évolutive, où l’universalité du maximum a été utilisée pour estimer la
distribution de l’augmentation de la valeur sélective après une mutation génétique [9].
Les outils de la TVE permettent également d’étudier des systèmes désordonnés [10–12],
puisque leur physique à basse température est gouvernée par des niveaux d’énergie

– xi –



Résumé en français

proches de l’état fondamental, c.-à.-d. l’état d’énergie minimale.
Même si les résultats classiques de la TVE traitent de variables aléatoires non cor-

rélées [7], plusieurs solutions exactes ont été obtenues pour le cas le plus difficile où des
corrélations sont présentes. Par exemple, des variables extrêmes ont été étudiées pour
des interfaces fluctuantes dans les classes d’universalité Edwards-Wilkinson ou Kardar-
Parisi-Zhang [13–16]. La TVE a également été appliquée au domaine de la théorie des
matrices aléatoires, où il est pertinent d’étudier la distribution de la plus grande valeur
propre d’une matrice aléatoire [17–22]. De plus, les méthodes de la TVE ont été util-
isées pour comprendre comment de nouveaux records sont établis, par exemple dans les
domaines du sport, du climat ou de la finance [23].

L’un des exemples les plus célèbres d’universalité est le théorème central limite
(TCL), qui stipule que lorsque de nombreuses variables indépendantes sont addition-
nées, leur distribution se rapproche de celle d’une variable aléatoire gaussienne [24].
Cependant, le TCL ne décrit que les événements typiques, c.-à-d. ceux proches du pic
de la distribution et il ne peut pas être utilisé pour décrire les valeurs atypiques dans
les queues de la distribution de probabilité. En effet, dans plusieurs cas, le TCL sous-
estime la probabilité d’événements rares, ce qui peut entraîner des quantités qui sont
des ordres de grandeur plus importantes que celles attendues. Par conséquent, utiliser le
TCL pour guider les décisions peut potentiellement avoir des conséquences désastreuses.
Le cadre mathématique qui décrit les queues de la distribution de probabilité en dehors
de la plage de validité du TCL est connu sous le nom de théorie de grandes déviations
(TGD) [25, 26]. Cette technique d’investigation d’événements inattendus est complé-
mentaire à la TVE et permet de quantifier les probabilités d’événements rares. En
particulier, toutes les informations importantes sur la queue de la distribution peuvent
être encodées dans une seule fonction appelée fonction de taux ou fonction de Cramér.

Dans le contexte de la mécanique statistique hors équilibre, les grandes déviations
ont été étudiées pour différents systèmes, y compris les matrices aléatoires [19–22]. De
plus, la TGD a également été largement utilisée dans le contexte de la thermodynamique
stochastique, où elle a fourni les principaux outils pour dériver les relations fondamen-
tales entre les quantités thermodynamiques, telles que l’entropie et le travail, à l’échelle
microscopique [27–29]. Fait intéressant, dans certains cas, la fonction de taux contient
des informations qui vont au-delà de la quantification de la probabilité d’événements
rares. En particulier, il a été observé que les singularités dans la fonction de taux sont
généralement associées à une transition de phase dans le système [22,25]. Les transitions
de phase sont souvent observées dans la nature, un exemple classique est la transition
entre différents états de l’eau. Mathématiquement, les transitions de phase sont asso-
ciées à une singularité dans l’énergie libre du système. En revanche, lorsque le système
n’admet pas de description d’équilibre, la fonction de taux joue le rôle de l’énergie libre,
signalant la présence de transitions de phase hors d’équilibre dans le régime de grandes
déviations. Une transition de phase du troisième ordre (ce qui signifie qu’une disconti-
nuité est présente dans la dérivée troisième de la fonction de taux) a été observée, par
exemple, dans le régime de grandes déviations de la plus grande valeur propre d’une
matrice aléatoire [22].

Dans cette thèse, nous étudions les propriétés extrémales d’une large classe de proces-
sus stochastiques, y compris le mouvement brownien et les “run-and-tumble particles”
(RTP). Ce travail se pose trois objectifs principaux : (i) fournir de nouveaux résultats
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exacts, pour améliorer notre compréhension des propriétés extrémales des processus
stochastiques, (ii) identifier de nouvelles propriétés universelles, valables pour de nom-
breux systèmes et (iii) rechercher de nouveaux phénomènes physiques intéressants, par
exemple, des transitions de phase dans des systèmes physiques hors d’équilibre. La
recherche d’une solution exacte est motivée par le besoin de modèles simples et solubles
pour guider notre compréhension dans des situations plus complexes. Notamment, les
solutions exactes révèlent souvent de nouveaux aspects fondamentaux du système étudié,
y compris des quantités universelles et des transitions de phase inattendues. La sim-
plicité et la généralité des systèmes que nous allons considérer pourraient rendre nos
résultats applicables dans une variété de contextes. Avant d’entrer dans le détail de nos
résultats, nous présentons brièvement les principaux modèles stochastiques que nous
allons considérer.

Le mouvement brownien tire son nom du botaniste écossais Robert Brown qui a
décrit ses caractéristiques en étudiant la dynamique de petites particules en suspension
dans l’eau. Le mouvement des particules observé par Brown était dominé par les colli-
sions avec les molécules d’eau rapides et chaotiques, résultant en une marche aléatoire.
En raison de la généralité de ce phénomène, les marches aléatoires apparaissent dans un
large éventail de disciplines, de la finance à la physique. La première description math-
ématique de ce processus est attribuée à Louis Bachelier, qui, dans sa thèse de doctorat
La théorie de la spéculation publiée en 1900 [30], a introduit un modèle stochastique, qui
correspond précisément aux marches aléatoires, décrivant l’évolution des prix en finance.
Quelques années plus tard, en 1905, Albert Einsein étudia le mouvement brownien dans
sa théorie de la diffusion [31], introduisant ce modèle dans la communauté des physiciens.

Depuis lors, le mouvement brownien est sans doute devenu le processus stochastique
le plus étudié, avec des applications en physique, en informatique et en finance. Dans
le contexte de la TVE, les marches aléatoires font partie des rares modèles de variables
corrélées pour lesquelles des résultats exacts peuvent être obtenus (les positions du pro-
cessus à différents instants sont fortement corrélées). Par exemple, la distribution de
probabilité du maximum global est connue pour un mouvement brownien à une dimen-
sion [24,32–34], ainsi que pour plusieurs généralisations [35,36]. De plus, la distribution
de probabilité du moment auquel une marche aléatoire atteint son maximum global
dans une fenêtre de temps fixe peut être calculé exactement [37, 38]. Cette quantité,
le temps du maximum, a trouvé des applications dans plusieurs domaines différents,
dont la finance [39] et la thermodynamique stochastique [40]. De plus, les statistiques
complètes des records se sont avérées universelles pour une large classe de marches aléa-
toires [23, 41]. Dans cette thèse, nous considérerons différentes propriétés extrémales
du mouvement brownien et de plusieurs généralisations, dont le mouvement brownien
contraint [16, 42, 43], le mouvement brownien dans un potentiel de confinement et le
mouvement brownien avec “resetting” [36].

La deuxième classe de processus stochastiques que nous allons considérer décrit des
systèmes de matière active. Contrairement à leur homologue passif (par exemple le
mouvement brownien), les systèmes actifs sont composés d’unités individuelles capables
d’absorber localement l’énergie, la convertissant en travail thermodynamique. Des ex-
emples de matière active peuvent être observés à plusieurs échelles dans la nature, des
bactéries [44, 45] aux vols d’oiseaux [46, 47]. Ces dernières années, il y a eu un grand
intérêt pour les propriétés statistiques de ces systèmes [48–50].
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Afin de décrire le mouvement persistant des particules actives, plusieurs modèles ont
été proposés. Par exemple, dans le processus actif d’Ornstein-Uhlenbeck [51], la vitesse
des particules est choisie pour être un processus d’Ornstein-Uhlenbeck, dont la fonction
d’autocorrélation décroît de manière exponentielle dans le temps. Un autre modèle
est le mouvement brownien actif [49], dont l’angle d’orientation effectue un mouvement
brownien. Dans cette thèse, nous nous concentrerons principalement sur le modèle RTP,
qui décrit le mouvement persistant d’une classe de bactéries, dont l’Escherichia Coli.
Dans sa formulation la plus simple, les particules se déplacent avec une série de « runs
» (périodes de mouvement dans une direction fixe), séparées par des randomisations
instantanées de la direction (« tumblings ») à des moments aléatoires. Malgré son
apparente simplicité, le calcul exact des propriétés statistiques pertinentes de ce modèle
est hautement non trivial. De plus, ce modèle simple présente plusieurs caractéristiques
intéressantes dans le cas à plusieurs particules [49, 52]. En particulier, les particules
autopropulsées ont tendance à ralentir à des densités élevées (généralement pour des
raisons biochimiques), entraînant une séparation de phase entre une phase dense et une
phase diluée, même en l’absence d’interactions attractives. Ce phénomène, appelé «
motility-induced phase separation » (séparation de phase induite par la motilité), est
un effet de non-équilibre sans équivalent en physique d’équilibre [52].

Malgré la popularité du modèle RTP, de nombreuses questions ouvertes restent à
résoudre. En effet, contrairement aux processus passifs étudiés depuis longtemps dans le
cadre de la TVE, la caractérisation systématique des propriétés extrémales des processus
actifs n’a commencé que récemment. Compte tenu de la nature générale de la TVE et
de l’omniprésence des processus actifs dans les systèmes vivants, il est fondamental
d’améliorer notre compréhension des propriétés extrémales de la matière active. Il est
significatif de noter que de nombreuses caractéristiques statistiques surprenantes du
modèle RTP, par exemple l’état d’équilibre non-Bolzmann dans un potentiel [53–56], ont
été observées même au niveau d’une seule particule. La description analytique du modèle
RTP peut être grandement simplifiée dans une dimension, où plusieurs résultats ont été
dérivés dans le cadre de la TVE, notamment les propriétés de persistance [54, 57, 58].
Obtenir des résultats exacts dans des systèmes multidimensionnels est un problème
mathématique majeur car le processus décrivant la position de la particule n’est pas
markovien 1. L’identification de modèles non-markoviens pour lesquels les propriétés
extrémales peuvent être calculées avec précision est en général assez difficile. Ainsi,
l’étude du modèle RTP est également pertinente d’un point de vue théorique.

Panorama de la thèse
Cette thèse se concentre sur les statistiques des valeurs extrêmes et les grandes déviations
des processus stochastiques.

Le chapitre 1 donne un aperçu des principaux résultats et techniques que nous em-
ploierons dans le reste de la thèse. Dans un premier temps, nous présenterons les
résultats classiques de la TVE dans le cas de variables aléatoires indépendantes et iden-
tiquement distribuées, en mettant l’accent sur trois observables principales : la valeur

1Un processus stochastique est markovien si la probabilité d’un événement ne dépend que du ré-
sultat du précédent événement (et non de l’historique complet du processus). Cette propriété simplifie
grandement la description mathématique du système correspondant.
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Résumé en français

du maximum global de la séquence, l’instant auquel ce maximum se produit et la statis-
tique de records. Ensuite, nous généraliserons ces résultats aux systèmes corrélés, à la
fois en temps continu et en temps discret.

Dans le chapitre 2, nous nous intéresserons à la distribution des instants auxquels
les extrema des processus stochastiques se produisent. Dans une première section,
nous étudierons le temps entre un maximum global et le minimum global d’un pro-
cessus stochastique unidimensionnel. Nous calculerons la distribution exacte dans le
cas paradigmatique du mouvement brownien puis nous considérerons plusieurs général-
isations. Dans une deuxième section, nous nous intéresserons à la distribution de
l’instant auquel le maximum se produit dans des processus stochastiques stationnaires,
à l’équilibre et hors équilibre.

Dans le chapitre 3, nous calculerons exactement la probabilité de survie du modèle
RTP dans des dimensions arbitraires, montrant que cette quantité est complètement
universelle, c.-à-d. indépendante de la dimension du système ainsi que des fluctuations
de vitesse de la particule. De plus, nous allons également étendre ce résultat à d’autres
observables (temps du maximum et records) et à différentes généralisations du modèle
RTP.

Dans le chapitre 4, nous considérerons les propriétés de grandes déviations de la
distribution de la position d’une seule RTP, pour une dimension arbitraire et différentes
distributions de vitesse. Nous montrerons comment, sous certaines conditions, une
transition de condensation peut être observée dans ce système : au-delà d’une valeur
seuil du déplacement total de la particule, la trajectoire RTP est dominée par un seul
long saut. Cette transition est signalée par une singularité dans la fonction de taux de
la distribution de la position du RTP.

Enfin, dans le chapitre 5, nous fournirons d’abord une courte introduction à la théorie
des processus stochastiques avec resetting. Ensuite, nous introduirons une nouvelle
méthode, basée sur la théorie du contrôle optimal, qui permet de contrôler de manière
optimale un système stochastique à travers des redémarrages.
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Introduction

Uncertainty is one of the defining features of the human experience. At all human
scales, from individuals to global societies, a great deal of effort is put to anticipate
future events and accordingly select the best course of action. Most of the time, our
guesses turn out to be correct, reinforcing the confidence in our prediction capabilities.
However, rarely but surely, unexpected events occur, interfering with our plans. Despite
their modest probability, these extreme events tend to play a major role in shaping our
lives. To understand the devastating impact of extreme events it is sufficient to think of
recent circumstances such as financial crises and global pandemics. Crucially, the study
of extreme weather events, e.g., heat waves, hurricanes, and tsunamis, has become vital
in the context of climate change [1–4]. Several other examples can be found in different
contexts, including engineering and physics. Therefore, gaining a better understanding
of this type of event is a task of clear practical importance.

The statistical features of extreme events have been systematically studied during
the last century within the field of Extreme Value Statistics (EVS) [5–7] (for a recent
review see [8]). In the typical setting, a specific stochastic model is considered with
the goal of computing the probability distribution of its extremal properties. Relevant
quantities can be the magnitude of the extremes (maxima or minima) and the time at
which they occur. Interestingly, one often obtains general results which turn out to be
independent of the specific details of the model, a phenomenon called universality. One
of the fundamental results in EVS is the fact that the distribution of the maximum of
many independent and identically distributed (i.i.d.) random variables always belongs
to one of three universality classes, independently of the specific distribution of the
variables [7]. Identifying general facts about extreme events, valid across systems and
disciplines, is one of the goals of EVS.

Throughout the last decades, the study of extremes has found applications in a
plethora of situations. For instance, EVS has been applied to the field of evolutionary
biology [59–61], where the universality of the maximum has been used to estimate the
distribution of the increment in fitness after a genetic mutation [9]. Tools from EVS
can be used to study disordered systems [10–12], since their low-temperature physics is
governed by energy levels close to the ground state, i.e., the state of minimal energy.

Even though the classical results of EVS deal with uncorrelated random variables
[7], several exact solutions have been obtained for the more challenging case where
correlations are present. For instance, extremal variables have been investigated for
fluctuating interfaces in the Edwards-Wilkinson or the Kardar-Parisi-Zhang universality
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position

time

Figure 0.1: Schematic representation of a stochastic process in the presence of an ab-
sorbing boundary at position L (dashed red line). The process is absorbed (or “dies”)
when the boundary at L is reached for the first time. The first passage time is denoted
by TF .

classes [13–16]. EVS has also been applied to the field of random matrix theory, where it
is relevant to study the distribution of the largest eigenvalue of a random matrix [17–22].

Moreover, ideas from EVS have been applied to understand how new records2 are
set. The statistical properties of records have been widely investigated both in the math-
ematical literature [62–65] and, more recently, in the context of physics [23, 41, 66, 67].
Questions related to records naturally emerge in many different disciplines, including
climate science [4, 68], finance [69, 70], and theoretical evolution [59–61]. Typical ob-
servables related to records are the total number of records in a given sequence and the
time between two successive record-breaking events. Interestingly, the distributions of
these quantities were shown to be universal for a large class of RWs [23, 41, 67]. Note
that the statistics of records are closely related to EVS. For instance, the current record
value in a sequence corresponds to the global maximum of the sequence.

Interestingly, the field of EVS has also deep connections with first-passage properties,
which have been widely investigated both in mathematics [38, 71, 72] and in physics
[32, 73]. The first time TF at which a stochastic process reaches a target state is a
quantity of fundamental importance in several situations, from chemical reactions [74]
to search processes [75,76]. The connection with EVS becomes clear with the following
simple example. Let us consider a one-dimensional stochastic process evolving in the
presence of an absorbing barrier at position L (see Fig. 0.1). The process is absorbed
as soon as the barrier is reached for the first time. We denote by QL(t) the survival
probability, i.e., the probability that the process is not absorbed up to time t. Then,
denoting by Mt the maximal position reached by the process up to time t, it is clear
that the survival probability is exactly the cumulative distribution of Mt, i.e., that
QL(t) = Prob.(Mt ≤ L). Thus, computing the survival probability QL(t) of the process
is equivalent to investigating the distribution of the global maximum, which is a central
quantity in EVS.

One of the most celebrated examples of universality is the central limit theorem

2In a sequence of values, an entry is said to be a record if it is larger than every previous entry.
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(CLT), which states that when many independent variables are summed up their distri-
bution approaches that of a Gaussian random variable (the famous “bell shape”) [24].
However, the CLT only describes typical events, i.e., those close to the peak of the bell,
and it cannot be used to describe the atypical values in the “tails” of the probability
distribution. Indeed, in many cases, the CLT underestimates the probability of rare
events, which can result in quantities that are orders of magnitude larger than the ex-
pected ones. Therefore using it to guide decisions can potentially lead to disastrous
consequences. The mathematical framework that describes the tails of probability dis-
tributions outside the range of validity of the CLT is known as Large Deviation Theory
(LDT) [25, 26]. This theory allows making precise statements about the probability of
occurrence of rare events. In particular, all the relevant information about the tail of
a distribution can be encoded in a single function known as rate function or Cramér
function.

In the context of nonequilibrium statistical mechanics, large deviations have been
investigated for different systems, including single-file diffusion [77], random matri-
ces [19–22], and disordered systems [78–80]. Moreover, LDT has also been widely used
in the context of stochastic thermodynamics, where it has provided the main tools to
derive fundamental relations between thermodynamic quantities, e.g., entropy and work,
at the microscopic scale [27–29]. Interestingly, in some cases, the rate function contains
information that goes beyond the quantification of the probability of rare events. In
particular, it has been observed that singularities in the rate function are usually asso-
ciated with phase transitions in the underlying system [22, 25]. Phase transitions are
widely observed in nature, a classical example being the transition between different
states of water. At equilibrium, phase transitions are associated with a singularity in
the free energy of the system. On the other hand, when the system does not admit
an equilibrium description, the rate function plays the role of the free energy, signaling
the presence of nonequilibrium phase transitions in the large deviation regime. As an
example, dynamical phase transitions have been observed in the relaxation to the steady
state of stochastic processes with resetting [81].

In this thesis, we investigate the extremal properties of a large class of stochastic
processes, including Brownian motion (BM) and run-and-tumble particles (RTPs). This
work has three main goals: (i) providing new exact results to improve our understanding
of the extremes of stochastic processes, (ii) identifying new universal properties valid
across systems, and (iii) searching for new relevant physical phenomena, e.g., phase
transitions, in simple models of nonequilibrium physics. The search for exact solutions
is motivated by the need for simple and solvable models to guide our understanding of
more complex settings. Notably, exact solutions often uncover new fundamental aspects
of the system under investigation, including universal quantities and unexpected phase
transitions. The simplicity and generality of the systems that we will consider will
hopefully make our results applicable in a variety of contexts. Before going into the
details of our results, let us briefly introduce the main stochastic models that we will
consider.

Brownian motion is named after the Scottish botanist Robert Brown who famously
described its features by looking at the dynamics of small particles suspended in water.
The motion of the particles observed by Brown was dominated by the collisions with
the fast and chaotic water molecules, apparently resulting in a random walk (RW).
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Due to the generality of this phenomenon, BM appears in a wide range of disciplines,
from finance to physics. The first mathematical description of this process is attributed
to Louis Bachelier, who in 1900 introduced BM as a stochastic model to describe the
evolution of prices in finance [30]. A few years later, in 1905, Albert Einstein studied
BM in his theory of diffusion [31], introducing this model to the physics community.

Since then BM has become arguably the most studied stochastic process, with ap-
plications to physics, computer science, and finance. In the context of EVS, RWs and
BM 3 are among the few models of correlated random variables for which exact results
can be obtained. Indeed, the positions of the process at different times are strongly cor-
related. For instance, the full probability distribution of the global maximum is known
for a BM in one dimension [24,32–34], as well as for several generalizations [35,36] (for a
comprehensive list of references see the review article [8]). Moreover, the distribution of
the time at which an RW reaches its global maximum within a fixed time window can be
exactly computed [37,38]. The time of the maximum has found applications in different
fields, including finance [39] and stochastic thermodynamics [40]. In this thesis, we will
consider different extremal properties of BM [82] and several generalizations, including
constrained Brownian motion [16,42,43] and BM subject to a confining potential.

A variant of BM which has attracted a lot of attention in the last decade is BM
with stochastic resetting (for a recent review, see [83]). Stochastic resetting describes
situations in which a dynamical process is restarted at random times from some fixed
configuration. Restarting processes can be observed in the different contexts, from com-
puter science [84] to chemical reactions [85]. The simplest model of resetting, introduced
in [36], consists of a Brownian particle that is reset to its starting position at a con-
stant rate r. The restarting dynamics lead to several nontrivial features, including the
convergence to a nonequilibrium steady state [36, 86, 87] and dynamical phase transi-
tions [88–90]. Besides Brownian motion, resetting has been investigated for several other
stochastic systems, from active particles [91–94] to the Ising model [95].

The second class of stochastic processes that we will consider describes systems of
active matter. At variance with their passive counterpart, e.g., Brownian motion, which
is driven by the random-like collisions with the surrounding environment, active systems
are composed of individual units that are able to locally absorb energy, converting it into
work (e.g., self-propelled motion). Examples of active matter can be observed in nature
at different scales, from bacteria [44,45] to flocks of birds [46,47]. In recent years, there
has been a surge of interest in the statistical properties of these systems [48–51]. At a
mathematical level, the noise that drives BM is memoryless, while for active particles
the noise has a short but finite memory.

Several models of active particles have been proposed to encode the memory effects
in different ways. For instance, in the active Ornstein-Uhlenbeck process [51] the particle
velocity is chosen to be an Ornstein-Uhlenbeck process, whose autocorrelation function
decays exponentially in time. Another model is the active Brownian particle [49], whose
orientation angle performs a BM. In this thesis, we will instead focus on the RTP
model, which describes the persistent motion of a class of bacteria, including Escherichia
Coli. In its simplest formulation, the particles move with a series of “runs” (periods of
motion in a fixed direction), separated by instantaneous randomizations of the direction

3To be precise, the term random walk usually refers to a discrete-time process, while Brownian
motion is defined in continuous time.
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(“tumblings”) at random times. Despite its apparent simplicity, computing exactly
the relevant statistical properties of this model is highly nontrivial. Moreover, this
simple model displays several interesting features in the many-particle case [49, 52].
In particular, self-propelled particles tend to slow down at high densities (usually for
biochemical reasons), leading to phase separation between a dense and a dilute phase,
even in the absence of attractive interactions. This phenomenon, called motility-induced
phase separation, is a nonequilibrium effect with no counterpart in equilibrium physics
[52,96]. Other nontrivial effects, such as clustering at the boundaries [49] and jamming
[97,98], have also been observed.

Despite the popularity of the RTP model, many interesting open questions remain
to be addressed even at the single-particle level, i.e., without interactions. Indeed, at
variance with passive processes that have been investigated in the context of EVS for a
long time, the systematic characterization of extremal properties of active processes has
only begun recently. Given the general nature of EVS and the ubiquity of active pro-
cesses in living systems, it is paramount to improve our understanding of the extremal
properties of active matter. Interestingly, many relevant statistical features of the RTP
model, e.g., non-Bolzmann steady state in a potential [53–56], have been observed even
at the single-particle level. The analytical description of the RTP model can be greatly
simplified in one dimension, where several results have been derived within the frame-
work of EVS. These include persistence properties [54, 57, 58] and the distribution of
the time of the maximum [99]. Deriving exact results in higher dimensions is a major
mathematical challenge because the process describing the position of the particle is
non-Markovian 4. Identifying non-Markovian models for which the extremal properties
can be exactly computed is in general quite challenging. Thus, studying the RTP model
is also relevant from a theoretical point of view.

Overview of the thesis
This thesis is focused on extreme value statistics and large deviations of stochastic
processes.

Chapter 1 provides an overview of the main results and techniques that we will
employ in the rest of the thesis. First, we will present the classical EVS results in the
case of independent and identically distributed random variables, with a focus on three
main quantities: the value of the global maximum of the sequence, the time at which this
maximum occurs, and the statistics of records. Then, we will generalize these results to
correlated systems, both in continuous and discrete time.

In Chapter 2, we will focus on the distribution of the times at which extrema of
stochastic processes occur. In Section 2.1, we will investigate the time between the global
maximum and the global minimum of a one-dimensional stochastic process. We will
compute the exact distribution in the paradigmatic case of Brownian motion and then
we will consider several generalizations. In Section 2.2, we will focus on the distribution
of the time of the maximum of stationary stochastic processes, both at equilibrium and
out-of-equilibrium.

4A stochastic process is Markovian if the probability of an event only depends on the outcome of the
previous event (and not on the full history of the process). The Markovian property greatly simplifies
the mathematical description of the corresponding system.
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In Chapter 3, we will compute exactly the survival probability of the run-and-tumble
particle model in arbitrary dimension, showing that this quantity is completely universal,
i.e., independent of the dimension of the system as well as of the speed fluctuations of
the particle. Moreover, we will also extend this result to other quantities (time of the
maximum and record statistics) and different generalizations of the RTP model.

In Chapter 4, we will consider the large-deviation properties of the position distri-
bution of a single RTP, for arbitrary dimension and different speed distributions. We
will show how, under certain conditions, a condensation transition can be observed in
this system: above a threshold value of the total displacement of the particle, the RTP
trajectory is dominated by a single long running phase. This transition is signaled by
a singularity in the rate function of the position distribution of the RTP and can be of
arbitrary order.

Finally, in Chapter 5, we will first provide a short introduction to the theory of
stochastic processes with resetting. Then, we will introduce a new framework, based
on optimal control theory, that allows to optimally drive a stochastic system through
restarts.
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We provide here a summary of the main results of the thesis. In addition, we also
present the results obtained in Articles 10 and 11, which are related to the geometrical
properties of resetting Brownian motion and are not discussed in this thesis.

In this thesis, we investigate the extremal properties of three solvable stochastic pro-
cesses: (i) Brownian motion (BM), (ii) resetting BM, and (iii) run-and-tumble particles
(RTPs). These models are defined as follows.

• Brownian motion. We will consider a single overdamped Brownian particle, whose
position x(t) evolves according to the Langevin equation

dx(t)
dt

=
√

2Dη(t) , (0.1)

where η(t) is Gaussian white noise with zero mean and correlator 〈η(t)η(t′)〉 =
δ(t − t′) and D > 0 is the diffusion constant. We will also consider the case in
which the particle is subject to an external confining potential.

• Resetting Brownian motion. We will also consider the case of BM with resetting.
In this case, the position x(t) of the particle still follows Eq. (0.1) and in addition
the particle is reset to some position x0 with constant rate r. In a small time
interval dt, this dynamics can be described as

x(t+ dt) =


x(t) + η(t)dt with probability 1− rdt ,

x0 with probability rdt .
(0.2)

• Run-and-tumble particle. We will consider a single RTP, moving in a d-dimensional
space. Initially, the particle chooses a random direction (isotropically in space) and
a random speed v1 > 0, drawn from some distribution W (v), and starts moving
in that direction with constant speed v1. After a random time τ1, exponentially
distributed with rate γ, the particle tumbles, i.e., it randomizes its direction and
chooses a new speed v2, independently drawn from W (v). After this “tumbling”,
which is assumed to be instantaneous, the particle “runs” for another time interval
τ2, again exponential with rate γ, then it tumbles again, and so on. This process
continues up to time t. Note that by definition the distribution W (v) has positive
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support. We will also consider several generalizations of this model, including
non-exponential running times and non-instantaneous tumblings.

Even though we have defined BM and resetting BM in one dimension (d = 1), these
processes can be straightforwardly generalized to d > 1.

Time between the maximum and the minimum of stochastic
processes
In Section 2.1 of Chapter 2, we consider the distribution P (τ = tmax−tmin|T ) of the time
difference τ between the maximum and the minimum of a one-dimensional stochastic
process of duration T . This time difference has applications to finance, where one can
model the evolution of the price of a stock as a random walk. In the case of Brownian
motion with diffusion coefficient D, using a path-decomposition technique we derive the
exact result

P (τ |T ) = 1
T
fBM

(
τ

T

)
, (0.3)

where

fBM(y) = 1
|y|

∞∑
n=1

(−1)n+1tanh2

nπ
2

√√√√ |y|
1− |y|

 . (0.4)

We generalize this result to Brownian bridges, i.e., periodic Brownian motions of period
T . Moreover, we apply our results to other stochastic processes, including discrete-time
random walks and fluctuating interfaces.

From the analysis of the properties of the time τ between the maximum and the
minimum, we also obtain a universal result for discrete-time random walks. We prove
that the probability that an n-step random walk with continuous and symmetric jumps
always remains above its starting position and reaches the global maximum at the final
step is 1/(2n), independently of the jump distribution and for any n ≥ 1.

These results have been published in the following articles:

1 Time between the maximum and the minimum of a stochastic process. F. Mori, S.
N. Majumdar, and G. Schehr, Phys. Rev. Lett. 123, 200201 (2019).
2 Distribution of the Time Between Maximum and Minimum of Random Walks. F.
Mori, S. N. Majumdar, and G. Schehr, Phys. Rev. E 101, 052111 (2020).

Time of the maximum of stationary processes
In Section 2.2 of Chapter 2, we consider a one-dimensional stationary process of dura-
tion T . We investigate the distribution P (tmax|T ) of the time tmax at which the pro-
cess reaches its global maximum before time T . We compute exactly the distribution
P (tmax|T ) for several processes, both at equilibrium (for instance, for the Ornstein-
Uhlenbeck process) and out of equilibrium (e.g., for Brownian motion with resetting).
Moreover, we find that for a large class of equilibrium processes, corresponding to an
overdamped Brownian particle in a confining potential, the distribution of tmax becomes
universal at late times.
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In addition, we show that for any equilibrium process the probability density function
P (tmax|T ) is symmetric around its midpoint tmax = T/2, i.e., P (tmax|T ) = P (T − tmax).
We also show that this is usually not the case if the process is nonequilibrium. Thus, this
symmetry provides a simple method to detect nonequilibrium fluctuations in stationary
time series.

These results have led to the following publication:

3 Distribution of the time of the maximum for stationary processes, F. Mori, S. N.
Majumdar, and G. Schehr, Europhys. Lett. 135, 30003 (2021).

Universal properties of a run-and-tumble particle
In Chapter 3, we consider a single run-and-tumble particle moving in d dimensions and
with arbitrary speed distribution (after each tumbling event the speed of the particle
is randomized, with PDF W (v)). We investigate the survival probability S(t), i.e., the
probability that the x component of the position of the particle does not change sign up
to time t. We show that this probability S(t) is completely universal, i.e., independent
of d and W (v), and is given by

S(t) = 1
2e
−γt/2

[
I0

(
γt

2

)
+ I1

(
γt

2

)]
, (0.5)

where γ is the tumbling rate of the particle and I0(z) and I1(z) are modified Bessel
functions. Note that this result is exact for any t and not only for late times.

To derive this result, we develop a technique, based on a mapping from the RTP
trajectory to a discrete-time random walk, that allows extending the universality to
other observables (time of the maximum and records) and to more complicated RTP
models (including a persistent random walk model in discrete time).

These results have been published in the following articles:

4 Universal survival probability for a d-dimensional run-and-tumble particle. F. Mori,
P. Le Doussal, S. N. Majumdar, and G. Schehr, Phys. Rev. Lett. 124, 090603 (2020).

5 Universal properties of a run-and-tumble particle in arbitrary dimension. F. Mori,
P. Le Doussal, S. N. Majumdar, and G. Schehr, Phys. Rev. E 102, 042133 (2020).

6 Universal survival probability for a correlated random walk and applications to
records. B. Lacroix-A-Chez-Toine and F. Mori, J. Phys. A: Math. Theor. 53, 495002
(2020).

Large deviations and condensation phase transitions in the
RTP model
In Chapter 4, we investigate the distribution P (~R,N) of the position ~R of a single RTP
after N running phases. Considering a family of RTP models, parametrized by the
dimension d of the system and the speed distribution W (v) of the particle, we compute
the rate function associated with the large deviations of the position of the particle.
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Depending on the model, this large deviation regime corresponds to ||~R|| ∼ O(N) or
||~R|| ∼ O(Nα), with 1/2 < α < 1. We observe that in several cases, this rate function
becomes singular at a critical value of the particle displacement. This singularity turns
out to be associated with a condensation phase transition. Indeed, upon varying the
final position of the particle, a sharp transition occurs between a fluid phase, in which
the different runs of the particle are roughly of the same order, and a condensed phase,
in which a long run dominates the trajectory.

To characterize this transition, we identify an order parameter, i.e., the participa-
tion ratio (defined precisely in Chapter 4), which we compute exactly as a function
of the total displacement of the particle. Moreover, we identify a simple criterion to
determine whether or not an RTP model will display a condensation transition and we
show that the order of the transition can be tuned by changing the parameters of the
model. We verify our theoretical results with numerical simulations, performed with a
constrained Markov chain Monte Carlo method, which allows us to sample rare events
with probabilities smaller than 10−100.

These results have led to the following articles:

7 Condensation transition in the late-time position of a Run-and-Tumble particle. F.
Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr, Phys. Rev. E 103, 062134 (2021).

8 First-order condensation transition in the position distribution of a run-and-tumble
particle in one dimension. F. Mori, G. Gradenigo, and S. N. Majumdar, J. Stat. Mech.
103208 (2021).

Optimal control with resetting
In Chapter 5, we consider the problem of optimally driving a dynamical system through
restarts. We consider a generic resetting system, i.e., a dynamical (stochastic or deter-
ministic) system that can be reset to a known state from time to time. Associating a
cost to each resetting, we investigate the optimal restarting procedure to achieve a given
goal.

We develop a general framework, analogous to the Hamilton-Jacobi-Bellman equa-
tion from optimal control theory [100, 101], to identify the optimal resetting policy in
a wide range of situations. We also apply our technique to different control problems,
both with an infinite and a finite time horizon.

These results have led to the following preprint article:

9 Resetting in Stochastic Optimal Control. B. De Bruyne and F. Mori, preprint
arXiv:2112.11416 (2021).

Geometrical properties of random walks with resetting
Finally, we have also worked on the geometrical properties of Brownian motion under
stochastic resetting. Although these works are not discussed in this thesis, we include
here a short summary of the main results.
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In a first work, we have investigated the spatial spread of a two-dimensional resetting
BM with constant resetting rate r and diffusion constantD. To do so, we have computed
different statistical properties of the convex hull of the process. In particular, we have
computed the exact expression, at any time t, of the mean perimeter 〈L(t)〉 and the
mean area 〈A(t)〉 of the process, showing that

〈L(t)〉 = 2π
√
D

r
f1(rt) , (0.6)

and
〈A(t)〉 = 2πD

r
f2(rt) , (0.7)

where the scaling function f1(z) and f2(z) are computed exactly. In particular, for late
times, we show that the perimeter and the area of the convex hull grow extremely slowly
as 〈L(t)〉 ∼ log(rt) and 〈A(t)〉 ∼ log2(rt) for late times. Our results indicate that, as a
consequence of resetting, the convex hull approaches a circular shape at late times.

These results have led to the following article:

10 Mean perimeter and area of the convex hull of a planar Brownian motion in the
presence of resetting. S. N. Majumdar, F. Mori, H. Schawe, and G. Schehr, Phys. Rev.
E 103, 022135 (2021).

Moreover, in a second work, we have studied the number Vp(n) of distinct sites
visited by an n-step random walk on a d-dimensional hypercubic lattice with resetting
probability p. We have computed the average number of distinct sites 〈Vp(n)〉 and we
have derived analytically the late-time behavior of 〈Vp(n)〉 for any d , showing that
it grows logarithmically slowly as ∼ [log(n)]d. Moreover, in the case d = 1, we have
computed the full probability distribution of Vp(n) at late times.

These results have led to the following preprint article:

11 Number of distinct sites visited by a resetting random walker. M. Biroli, F. Mori,
and S. N. Majumdar, preprint arXiv:2202.04906 (2022).
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Chapter 1

A brief introduction to Extreme Value
Statistics

In this chapter, we provide an introduction to some basic concepts in EVS. We will
only consider a few results that will be useful in the coming Chapters. For a more
complete pedagogical introduction to the topic, we recommend the lecture notes [34]
and the review article [8]. We will first illustrate the classical results on the universal
distributions of the extremes of i.i.d. random variables. We will then show how these
facts can be generalized to the case of weakly-correlated random variables. Finally, we
will consider the more challenging case of strongly correlated random variables and we
will present different techniques to study extremal properties of random walks, both in
discrete and continuous time.

Let us first define the observables that we will be interested in. We consider a
sequence of T random variables X1 , . . . , XT , where the variable Xi represents the con-
figuration of the process at the discrete time i (see Fig. 1.1). We will be mainly interested
in the statistical properties of three observables: the maximal value, the time of this
maximum, and the records. The global maximum up to time T is simply defined as

M = max
1≤i≤T

Xi . (1.1)

Similarly, one can also define the minimum

m = min
1≤i≤T

Xi . (1.2)

The time nmax at which the process reaches the global maximum is

nmax = argmax1≤i≤T Xi . (1.3)

Similarly, the time of the minimum is defined as

nmin = argmin1≤i≤T Xi . (1.4)

Finally, records can be defined as follows. A new (positive) record is set at step i if
Xi is larger than all previous entries of the sequence, i.e., if Xi > Xj for all j < i (see
Fig. 1.6). Similarly, one can also define negative records, that occur at step i if Xi < Xj
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Chapter 1. A brief introduction to Extreme Value Statistics

Figure 1.1: Schematic representation of a random sequence Xi as a function of the
discrete time i, for 1 ≤ i ≤ T . The global maximum M is reached at time nmax, while
the global minimum m occurs at time nmin. Records are highlighted in red.

for all j < i. The properties of records are intimately related to extremes. Indeed, it is
clear that the last record in the sequence corresponds to the global maximum. There
are different relevant observables associated with records, including the number NR(T )
of records up to time T and the times at which the records occur.

The definitions above can be easily generalized to a continuous-time process X(τ),
where now τ is a continuous variable with 0 ≤ τ ≤ T . In particular, the maximum and
the minimum are respectively defined as

M = max
0≤τ≤T

X(τ) , m = min
0≤τ≤T

X(τ) . (1.5)

Similarly the times of the maximum and the minimum read

tmax = argmax0≤τ≤T X(τ) , tmin = argmin0≤τ≤T X(τ) . (1.6)

Records are usually not considered for continuous-time processes since their number
typically diverges in continuous time.

1.1 Independent and identically distributed
random variables

We first consider the case of i.i.d. random variables, i.e., we assume that the variables
X1 , . . . XT are uncorrelated and drawn from the same probability density function
(PDF) p(X).

Distribution of the maximum

We are interested in the distribution of the global maximum M . As anticipated, this
distribution becomes universal at late times [5–7]. This is a classical result that we

– 14 –



1.1. Independent and identically distributed random variables
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Figure 1.2: Universal scaling functions for the maximum of i.i.d. random variables. The
Fréchet distribution shown in figure corresponds to µ = 1, while the Weibull distribution
has been obtained with α = 2.

present without derivation, for a proof see [7]. Using the fact that the joint distribution
of X1 , . . . XT factorizes into the product of the marginal distribution, the cumulative
distribution of M can be written as

ST (x) =
[∫ x

−∞
dy p(y)

]T
=
[
1−

∫ ∞
x

dy p(y)
]T

, (1.7)

where ST (x) = Prob.(M ≤ x). By analyzing this expression in the limit of large T , it is
possible to show that

ST (x) ≈ F
(
x− aT
bT

)
, (1.8)

for large x. Here aT and bT are scaling factors and are not universal, i.e., they depend
on the specific details of the distribution p(X). In particular, aT represents the typical
value of the maximum and bT describes the fluctuations around it. On the other hand,
the scaling function F (z) is completely universal and only depends on the tail behavior
of p(X). Interestingly, there are only three possible forms for F (z). Before considering
the specific cases, it is interesting to note that the result in Eq. (1.8) implies that, for
large T , the maximum behaves as

M ≈ aT + bT z , (1.9)

where z is a random variable with cumulative distribution F (z).
Unbounded distributions with a tail faster than power-law. We start by considering

the case where the distribution p(x) decays, for large x, faster than any power, i.e.,
p(x)� x−µ for any µ > 0. In particular, if p(x) ∼ e−x

α with α > 0, one finds

F (z) = e−e
−z
, (1.10)

with aT = (log(T ))1/α and bT = (log(T ))1/α−1/α. The corresponding PDF reads

f(z) = F ′(z) = e−z−e
−z
, (1.11)
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Table 1.1: Summary of the universality classes for maxima of i.i.d. variables.

Class p(x) aT bT F (z)
Gumbel ∼ e−x

α (log(T ))1/α ∼ (log(T ))1/α−1 e−e
−z

Fréchet ∼ x−1−µ 0 ∼ T 1/µ e−z
−µ
θ(z)

Weibull ∼ (c− x)α−1θ(c− x) c ∼ T−1/α e−(−z)αθ(−z) + θ(z)

which is the celebrated Gumbel distribution [7]. In this case, the global maximum in
Eq. (1.9) behaves deterministically at leading order with subleading random fluctuations.

Distributions with a power-law tail. In the case where p(x) ∼ x−1−µ for large x with
µ > 0, one gets

F (z) = e−z
−µ
θ(z) (1.12)

where θ(z) is the Heaviside theta function, with θ(z) = 1 for z > 0 and θ(z) = 0 for
z < 0. The scaling factors in this case behave as aT = 0 and bT ∼ T 1/µ and the PDF is
given by

f(z) = µ

zµ+1 e
−z−µθ(z) , (1.13)

which is known as the Fréchet distribution. Thus, for power-law distributions, the
late-time behavior of the global maximum is dominated by random fluctuations (see
Eq. (1.9)).

Distributions with upper-bounded support. In the case where p(x) ∼ (c−x)α−1θ(c−x)
for x→ c− with α > 0, one gets

F (z) =


e−(−z)α for z ≤ 0 ,

1 for z > 0 ,
(1.14)

The scaling factors are aT = c and bT ∼ T−1/α. The PDF in this case is given by

f(z) = α(−z)α−1e−(−z)αθ(−z) , (1.15)

which is known as the Weibull distribution. Thus, in this case, the maximum will
approach the value c for large T . The three universality classes are summarized in
Table 1.1 and the corresponding universal scaling functions f(z) are shown in Fig. 1.2.

Time of the maximum

Since the variables are i.i.d., the probability that one particular value is the global
maximum is simply 1/T . Thus, the distribution of the time nmax of the maximum is
uniform in the interval [1, T ]

P (nmax|T ) = 1
T
. (1.16)

Note that here we are assuming that the marginal distribution p(X) of the variables
X1 , . . . , XN is continuous. Similarly, one can show that the distribution of the time
nmin of the minimum is also uniform, i.e., that

P (nmin|T ) = 1
T
. (1.17)
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Moreover, the joint distribution of nmax and nmin simply reads

P (nmax, nmin|T ) = 1
T (T − 1) , (1.18)

if nmax 6= nmin and P (nmax, nmin|T ) = 0 if nmax = nmin (since the maximum and the
minimum of the sequence cannot occur at the same time). From this, one can easily
compute the distribution of quantities that depend on both nmax and nmin. One of these
is the time τ = nmin−nmax between the global maximum and the global minimum (with
−T < τ < T ). One can easily show that

P (τ |T ) = T − |τ |
T (T − 1) (1.19)

for τ 6= 0 and P (τ |T ) = 0 for τ = 0.
From the distribution in Eq. (1.18) one can also compute the covariance function of

the variables nmax and nmin. We recall that the covariance function is defined as

cov(nmax, nmin) = 〈nmaxnmin〉 − 〈nmax〉〈nmin〉 . (1.20)

Using the expression in Eq. (1.18), it is easy to show that

cov(nmax, nmin) = −T + 1
12 . (1.21)

Thus, the times nmax and nmin are negatively correlated. These anti-correlations simply
arise from the fact that the times of maximum and minimum cannot occur at the same
time, i.e., nmax 6= nmin.

The number of records

With a similar argument, one can easily compute the average number of records. Indeed,
the total number of records up to step T can be written as

NR(T ) =
T∑
i=1

σi , (1.22)

where

σi =


1 if Xi is a record ,

0 otherwise .

(1.23)

Taking the average of Eq. (1.22), we get

〈NR(T )〉 =
T∑
i=1

Prob.(Xi is a record) , (1.24)

where the symbol 〈. . .〉 indicates the average over all realizations of the variables. Since
the variables are i.i.d. one simply has

Prob.(Xi is a record) = 1
i
, (1.25)
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and thus
〈NR(T )〉 =

T∑
i=1

1
i
≈ log(T ) + γ , (1.26)

where γ = 0.5772 . . . is the Euler-Mascheroni constant.
Thus, the average number of records grows very slowly with the sequence length T .

This is a consequence of the fact that it becomes harder and harder to set a new record
for late times. Indeed, the rate of new records in Eq. (1.25) decays as 1/i with the
discrete time i.

Interestingly, it is possible to compute the full distribution of the number NR(T ) of
records up to time T . In particular, for large T , one can show that this distribution
approaches the Gaussian form [67]

Prob.(NR(T ) = N) ≈ 1√
2π log(T )

exp
[
−(N − log(T ))2

2 log(T )

]
. (1.27)

Thus, for late times, the distribution of NR(T ) concentrates around the mean value
〈NR(T )〉 ≈ log(T ) with fluctuations which scale as

√
log(T ). Note that these properties

are completely independent of the marginal distribution p(X) (even for finite T ).

1.2 Correlated random variables
Computing the extremal properties of correlated random variables is in general a chal-
lenging task. Nevertheless, there exist cases in which one can make progress. The first
example that we will consider is that of weakly correlated random variables, where some
of the results obtained in the case of i.i.d. variables turn out to be still applicable [8].
There are also few models with strong correlations for which the statistical properties
of extremes can be computed exactly. In particular, we will focus on the case of random
walks.

1.2.1 Weak correlations
Here we consider the case where the correlations decay exponentially as

〈x(t)x(t′)〉 − 〈x(t)〉〈x(t′)〉 ∼ e−|t−t
′|/ξ , (1.28)

where ξ is the correlation length. In this case, one can use the following “blocking”
argument, valid for T � 1/ξ. We first regroup the variables in N ≈ T/ξ blocks of
duration ξ (see Fig. 1.3). The first block contains the variables x(t) for 0 < t < ξ, the
second block the variables x(t) for ξ < t < 2ξ, and so on. We defineMi, with 1 ≤ i ≤ N ,
as the maximum within block i. Then, the global maximum M can be written as

M = max
1≤i≤N

Mi . (1.29)

Moreover, since the size of the blocks coincides with the correlation length, variables
belonging to different blocks are roughly uncorrelated. As a consequence, the local
maximaM1 , . . . ,MN can be considered as independent variables. Hence, one can apply
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1 2 3 ... N 1 Ni 1 i i + 1 ...

0

Mi

t

x
(t

)

Figure 1.3: Typical realization of a weakly-correlated stochastic process x(t) as a func-
tion of time t. The process is divided into N blocks of duration ξ, where ξ is the corre-
lation time of the process. The maximal value within block i is denoted by Mi. Then
the variables M1 , . . . ,MN can be considered independent and identically distributed.

the known results for i.i.d. variables and obtain the distribution of M . Note that the
only missing piece of knowledge is the tail behavior of the distribution p(m) of the local
maxima m. However, the expression of p(m) for large m can generally be guessed. For
instance, in the case of stationary processes, one can assume that the tail behavior of
p(m) is the same as the one of the distribution of the variables Xi.

Using the same argument, one also finds that the distribution of the time of the
maximum is approximately uniform

P (nmax|T ) ≈ 1
T
. (1.30)

As discussed in Chapter 2, this typically turns out to be correct only in the bulk of
the distribution, i.e., where nmax, T � 1/ξ with 0 < nmax/T < 1. In the edge regimes,
nmax → 0 and nmax → T , the result obtained with the blocking argument is often not
correct. Finally, note also that the blocking argument above can be used to show that for
weakly correlated random variables the average number of records grows logarithmically
with T .

1.2.2 Strong correlations: Brownian motion
When strong correlations are present it is in general harder to obtain exact results. Here
we consider the case of random walks, both in the discrete-time description and the
continuous-time one, corresponding to BM. There are several other models of strongly
correlated variables for which analytical progress is possible, including fluctuating inter-
faces [13–16] and random matrices [17–22].
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Distribution of the maximum

We consider a one-dimensional BM x(τ) with 0 ≤ τ ≤ T , evolving in time according to
the Langevin equation

dx

dt
=
√

2Dη(t) , (1.31)

where η(t) is Gaussian white noise with zero mean and correlator 〈η(t)η(t′)〉 = δ(t− t′).
The constant D > 0 is usually called diffusion coefficient. For simplicity we also assume
x(0) = 0. The correlation function of BM reads

〈x(t)x(t′)〉 = 2Dmin(t, t′) , (1.32)

thus the process is strongly correlated.
For this model, the distribution P (M |T ) of the maximum can be computed as follows.

We define QL(x, t) as the probability that the process remains below position L up
to time t, starting from position x. This quantity QL(x, t) is usually called survival
probability, since one asserts that the process is immediately “killed” when it arrives at
position L. This then selects only the trajectories which stay below position L up to
time t. The probability QL(x, t) satisfies the backward Fokker-Planck equation

∂tQ
L(x, t) = D∂xxQ

L(x, t) . (1.33)

The first boundary condition is
QL(L, t) = 0 , (1.34)

since if the process starts at L, it will immediately go above L. The second boundary
condition simply reads

QL(−∞, t) = 1 , (1.35)
since if the process starts from−∞, it will never reach position L in finite time. Similarly,
the initial condition is QL(x, 0) = 1. Solving this differential equation, we find [32]

QL(x, t) = erf
(
L− x√

4Dt

)
θ(L− x) . (1.36)

Interestingly, the survival probability is related to the distribution of the global
maximum M . Indeed, it is clear that

QL(0, t) = Prob.(M ≤ L) = erf
(

L√
4Dt

)
θ(L) . (1.37)

Thus, differentiating with respect to L, we find that the distribution of the global max-
imum reads

P (M |T ) = 1√
πDt

e−M
2/(4Dt)θ(M) . (1.38)

Note that the PDF of the maximum M has no support in M < 0 because the process is
starting from x = 0 and thus the maximum cannot be negative. From this expression,
it is easy to compute the average maximum

〈M〉 = 2√
π

√
DT . (1.39)
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We next consider a discrete time random walk xk of T steps. The position of the
walker evolves according to

xk = xx−1 + ηk , (1.40)
where the steps η1 , . . . , ηT are i.i.d. random variables with distribution f(η) and we
assume x0 = 0. For simplicity, we also assume that f(η) is symmetric around η = 0,
i.e., that f(η) = f(−η).

When the variance of the steps

σ2 =
∫ ∞
−∞

dη f(η)η2 , (1.41)

is finite, the result in Eq. (1.39) is still valid for large T at leading order (with σ2 = 2D).
The corrections to this asymptotic results turns out to be rather nontrivial [33, 102].
In the case of Lévy flights, corresponding to f(η) ∼ 1/ηµ+1 with 1 < µ < 2, the step
variance diverges and the average maximum grows instead as [33]

〈M〉 ∼ T 1/µ . (1.42)

Time of the maximum

The distribution of the time of the maximum can be exactly computed both for BM
and for RWs. The techniques used to compute this distribution will be fundamental
to obtaining the main results of this thesis. For this reason, we will present the full
derivation in the cases of both continuous and discrete time.

Continuous-time case - Path-decomposition method. We consider a one-dimensional
BM x(τ), starting from x(0) = x0 and evolving according to Eq. (1.31) up to time
T . A typical realization of the process is shown in Fig. 1.4. In order to compute
the distribution of the time tmax of the maximum, we will use a path-decomposition
technique. Doing so, we first obtain the joint distribution P (tmax,M |T ) of tmax and of
the maximum M = x(tmax). Then, integrating over M , we will obtain P (tmax|T ). This
approach was for instance used in Ref. [43] and can be described as follows. Using the
Markov property of the process, we can write the joint probability of tmax and M as the
product of the probabilities of two independent segments: (I) [0, tmax] and (II) [tmax, T ]
(see Fig. 1.4). In the first interval (I), the process starts from the origin and reaches
the global maximum M at time tmax. In the second interval (II), the BM starts from
position M at time tmax and has to remain below this position M up to time T .

To compute the probability weight of the first interval, it is useful to define the con-
strained propagator GM(x, t|x0) as the probability that the process goes from position
x0 to position x after time t, while always remaining below position M . This quantity
can be computed using the method of images [32] and reads

GM(x, t|x0) = 1√
4πDt

[
e(x−x0)2/(4Dt) − e(2M−x−x0)2/(4Dt)

]
. (1.43)

Since in the first interval the particle goes from x0 to M in a time tmax while remaining
below position M (since M is the global maximum), one would naively guess that the
probability weight of this interval is GM(M, t|x0). However, using the expression in
Eq. (1.43), we get

GM(M, t|x0) = 0 . (1.44)
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Figure 1.4: Brownian motion x(τ) during the time interval [0, T ]. The value of the
global maximum is M − ε, with ε > 0, and the time of the maximum is tmax. The time
interval [0, T ] is divided into the two subintervals [0, tmax] (I) and [tmax, T ] (II).

This is a consequence of the continuous-time nature of the process. Indeed, it is possible
to show that if the BM arrives at position M at time tmax, it will go above position M
infinitely many times in any time interval [tmax−δ, tmax] with δ > 0. In other words, one
cannot simultaneously impose that the BM remains below the level M (i.e., x(τ) < M)
and that it arrives at M at a specific time (i.e., x(tmax) = M).

A way around this issue is to introduce a cutoff ε > 0 and to impose that the process
arrives at position M − ε (instead of M) at time tmax (see Fig. 1.4). We will compute
the distribution P (tmax|T ) with ε fixed and then we will take the limit ε→ 0. Thus, the
probability weight of the first interval ([0, tmax]) reads

PI = GM(M − ε, tmax|x0) . (1.45)

In the second interval ([tmax, T ]) the process starts from position M − ε at time tmax
and remains below position M up to time T . This is precisely the survival probability
defined above and hence the weight of the second interval reads

PII = QM(M − ε, T − tmax) , (1.46)

where the function QL(x, t) is given in Eq. (1.36).
Using the Markov property of the process, we can write the joint distribution of M

and tmax as

P (M, tmax|T, ε) = PI PII = N (ε)GM(M − ε, tmax|x0)QM(M − ε, T − tmax) , (1.47)

where N (ε) is a normalization constant. Integrating this expression over M > 0, we
obtain

P (tmax|T, ε) = N (ε)
∫ ∞
x0

dM GM(M − ε, tmax|x0)QM(M − ε, T − tmax) . (1.48)

Finally, taking the limit of small ε, we find the following formula for the distribution of
tmax

P (tmax|T ) = lim
ε→0

[
N (ε)

∫ ∞
x0

dM GM(M − ε, tmax|x0)QM(M − ε, T − tmax)
]
. (1.49)
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Figure 1.5: Probability density function P (tmax|T ) of the time tmax of the maximum for
T = 1. The blue curve corresponds to Lévy’s Arcsine Law, given in Eq. (1.53).

Substituting the expressions forGM(M−ε, tmax|x0) andQM(M−ε, T−tmax), respectively
given in Eqs. (1.43) and (1.36), and expanding for small ε, we get

P (tmax|T ) = lim
ε→0

[
N (ε)ε2

] 1
2πD

√
t3max(T − tmax)

∫ ∞
0

dM Me−M
2/(4Dtmax) (1.50)

= lim
ε→0

[
N (ε)ε2

] 1
π
√
tmax(T − tmax)

, (1.51)

where we have set x0 = 0. Finally, imposing that P (tmax|T ) is correctly normalized to
unity ∫ T

0
dtmax P (tmax|T ) = 1 , (1.52)

we find N (ε) = ε−2 and hence

P (tmax|T ) = 1
π
√
tmax(T − tmax)

. (1.53)

This result is the celebrated Arcsine Law of Lévy 1. This distribution (see Fig. 1.5) is
maximal for tmax → 0 and for tmax → T , meaning that the maximum is more likely to
occur at the beginning or at the end of the time interval [0, T ].

Discrete-time case - The Sparre Andersen theorem
We consider a discrete-time random walk xk moving on a line according to the

evolution rule in Eq. (1.40). We assume that the steps are independent and distributed
according to the PDF f(η), which is continuous and symmetric around η = 0, i.e.,
f(η) = f(−η) (this corresponds to a random walk without drift).

1The reason for this name is that the cumulative distribution of tmax is Prob.(tmax < t|T ) =
(2/π) sin−1(

√
t/T ).
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Figure 1.6: Typical trajectory of an n-step random walk xk. The global maximum M
is reached at step nmax. Records are signaled by filled red circles.

It is useful to define the survival probability qn as the probability that the position
of the walker remains positive up to step n, i.e.,

qn = Prob.(x1 > 0 , x2 > 0 , . . . , xn > 0|x0 = 0) . (1.54)

Quite remarkably, the Sparre Andersen theorem [38] states that the survival probability
is completely independent of the jump distribution and is given by the simple formula

qn =
(

2n
n

)
2−2n . (1.55)

Note that this result is completely universal for any n (and not only asymptotically for
large n). It is also valid for fat-tailed distributions f(η) for which the average value
and/or the variance are divergent. Interestingly, the survival probability can be used as
a building block to compute several other quantities, including the distribution of the
time of the maximum and the records statistics.

In order to compute the distribution of the step nmax at which the global maximum is
reached (see Fig. 1.6), we adopt a strategy similar to the path-integral method described
above. We divide the interval [0, n] into the two subintervals [0, nmax] (I) and [nmax, n]
(II). The probability weight of the first interval is

PI = Prob.(x0 < xnmax , x1 < xnmax , . . . , xnmax−1 < xnmax) . (1.56)

We define the RW yk = xnmax − xnmax−k for k = 0 , . . . , nmax. Then, the probability of
the interval [0, nmax] can be rewritten in terms of yk as

PI = Prob.(y1 > 0 , y2 > 0 , . . . ynmax > 0|y0 = 0) . (1.57)

Moreover, it is easy to show that the steps of the random walk yk are distributed
according to the PDF f(η). Thus, recalling the definition of qn in Eq. (1.54), we find

PI = qnmax . (1.58)
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With an analogous argument and using the transformation yk = xnmax − xnmax+k, it is
easy to show that

PII = qn−nmax . (1.59)

Thus, we find that the probability distribution of the step nmax of the maximum is

P (nmax|n) = qnmaxqn−nmax . (1.60)

Using the Sparre Andersen theorem in Eq. (1.55), we finally obtain

P (nmax|n) =
(

2nmax

nmax

)(
2(n− nmax)
n− nmax

)
2−2n . (1.61)

Remarkably, as a consequence of the Sparre Andersen theorem, the distribution of the
time of the maximum is completely universal, i.e., it does not depend on the particular
shape of the jump distribution f(η) (as long as f(η) is continuous and symmetric).

Interestingly, taking the Brownian limit n, nmax → ∞ in Eq. (1.61) one recovers
Arcsine law in Eq. (1.53). Note however that the result in Eq. (1.61) is also valid for
fat-tailed distribution for which the first and second moments may not be defined and
which do not converge to a BM in the limit of many steps.

The number of records

Using the Sparre-Andersen theorem, it is possible to show that the full record statistics
of RW with continuous and symmetric steps is completely universal. In particular, the
distribution of the number NR(n) of records up to step n reads [23]

Prob.(NR(n) = N) =
(

2n−N + 1
n

)
2−2n+N−1 , (1.62)

which is completely universal for any finite n. Interestingly, in the large-n limit, this
distribution assumes the scaling form

Prob.(NR(n) = N) ≈ 1√
n
g

(
N√
n

)
, (1.63)

where
g(z) = 1√

π
e−z

2/4θ(z) . (1.64)

Here θ(z) is the Heaviside theta function. Thus, the distribution of the number of
records converges for late times to a half-Gaussian distribution and is characterized by
the single scale

√
n. Indeed, the average number of records reads

〈NR(n)〉 = (2n+ 1)
(

2n
n

)
2−2n , (1.65)

which for large n grows as
〈NR(n)〉 ≈ 2√

π

√
n . (1.66)
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Thus, in the case of RW, the number of records grows faster than in the i.i.d. case,
where the growth was logarithmic in time. Note that the statistics of records have
been investigated for several generalizations of the RW model, including RWs with
resetting [103,104], RWs with a drift [105], and RWs in a random landscape [106].

In the next chapters, we will show how these classical results and techniques can be
used to investigate more complicated systems.
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Chapter 2

Time of the maximum of stochastic
processes

In this chapter, we present our main results on the times at which the extrema (maxima
and minima) of stochastic processes are reached. The time at which a time series of
duration T attains its maximal value is a quantity of practical interest in several contexts,
including physics [40,107], finance [39,108], and sports [109]. For instance, in finance, it
is important to know when the price of a stock will reach its maximal or minimal value
within a given time window (e.g., a trading day).

Since the classical result of Lévy, who computed the full distribution of tmax for a
one-dimensional BM (see Eq. (1.53)), the distribution of the time of the maximum has
been studied for a variety of stochastic processes. For instance, this quantity has been
investigated for several generalizations of BM, including constrained BM [43, 82, 110],
BM with drift [111, 112], fractional BM [113, 114], heterogeneous diffusion [115], and
resetting BM [116]. Moreover, the distribution of tmax has also been computed for
systems composed of many particles [117,118]. In addition, the time of the maximum has
been investigated for a single run-and-tumble particle in one dimension [99]. Similarly,
the distribution of the time tmin of the minimum has been studied. For instance, in
the case of BM, tmax and tmin have the same distribution, given by the Arcsine law in
Eq. (1.53).

This chapter is divided into two main sections. In the first one, we present the exact
computation of the distribution of the time between the maximum and the minimum of
BM. This first part corresponds to the Articles 1 and 2. In the second one, correspond-
ing to Article 3, we investigate the distribution of tmax for a wide range of stationary
processes.

2.1 Time between the maximum and the minimum
The statistical properties of the time tmax of the maximum and the time tmin of the
minimum have been investigated for several different processes of fixed duration T .
Despite this, even in the case of BM, the joint distribution P (tmax, tmin|T ) of tmax and
tmin was only recently computed in the Articles 1 and 2. Indeed, as a consequence of
the correlations between tmax and tmin, the joint distribution does not factorize into the
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xmin

0

xmax

tmintmax T

xf

t

x(t)

Figure 2.1: Typical trajectory of a BM x(t) in the time interval [0, T ]. The global
maximum xmax is reached at time tmax, while the global minimum −xmin is reached at
time tmin. The time between the maximum and the minimum is τ = tmax − tmin. The
final position of the process, measured from the global minimum is xf = x(T ) + xmin.

product of the marginals P (tmax|T ) and P (tmin|T ). To understand the origin of these
correlations, it is sufficient to think that if the global maximum occurs at time tmax, it
is very unlikely that the minimum will be reached immediately before or after. This
introduces an effective repulsion between tmax and tmin, which we will precisely quantify.

Besides encoding the correlations between tmax and tmin, the joint probability dis-
tribution P (tmax, tmin|T ) allows us also to investigate other important observables. One
of these is the time difference between tmin and tmax: τ = tmin − tmax. This observable
takes values in [−T, T ] and has applications in finance. Indeed, one of the simplest
models to describe the evolution of the price of a stock is to consider the exponential of
a BM. Within this description, τ would represent the time between the occurrence of
the maximal and minimal prices. As an example, in the case tmax < tmin (as in Fig. 2.1),
an agent would typically want to sell their assets at the time tmax, when the price is the
highest, and to buy the stocks back at time tmin, when the price drops to its minimal
value. Thus, in the context of finance, τ represents the optimal time between buying
and selling a stock. Interestingly, quantities related to τ , e.g., the time between a local
maximum and a local minimum, have been studied empirically for financial data [119].
Therefore, finding an exact expression for the probability density function P (τ |T ) is a
task of fundamental importance. Interestingly, before our Articles 1 and 2, the exact
expression for P (τ |T ) was not known even in the paradigmatic case of BM.

In this section, following the content of Articles 1 and 2, we will present the exact
computation of the PDF P (τ |T ) for BM and other stochastic processes. The main
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technique that we will employ is the path-decomposition method presented in Chapter
1. We will first present the derivation of P (τ |T ) in the case of BM. Then, we will consider
generalizations to other stochastic processes. We will sometimes omit the details of the
more technical parts, which can be found in Article 2.

2.1.1 Brownian motion
To compute the distribution of the time τ between the maximum and the minimum, we
will use the path-decomposition technique described in Chapter 1. Doing so, we will first
compute the joint PDF of the time tmax of the maximum, the time tmin of the minimum,
the maximum xmax, and the minimum −xmin. Note that by definition xmin > 0.

We consider a one-dimensional BM, whose position x(t) evolves according to
dx

dt
=
√

2Dη(t) , (2.1)

where η(t) is Gaussian white noise with zero mean and correlator 〈η(t)η(t′)〉 = δ(t− t′).
Without loss of generality, we assume that the process is initially located at the origin:
x(0) = 0 (note that τ does not change after a constant shift of the process).

We will first study the case tmax < tmin, where the global maximum occurs first.
Using the Markov property of the process, we can write the joint grand PDF of tmax,
tmin, xmax, and xmin as the product of the probability weights PI, PII, and PIII of the
three intervals (see Fig. 2.2): [0, tmax] (I), [tmax, tmin] (II), and [tmin, T ] (III). In each of
the three intervals, the process has to remain inside the box [−xmin, xmax]. In the first
time interval [0, tmax] the process starts from the origin and arrives at position xmax
at time tmax. In the second interval, it goes from the global maximum xmax to the
global minimum xmin in time tmin − tmax. Finally, in the last interval the process starts
from the global minimum −xmin and remains inside the interval [−xmin, xmax] up to the
final time T . As described in Chapter 1, due to the continuous-time nature of BM,
one cannot simultaneously impose that the process remains inside the box [−xmin, xmax]
(−xmin < x(t) < xmax) while constraining it to arrive exactly at the boundary of the
interval at some fixed time (x(tmax) = xmax and x(tmin) = xmin). This is because if we
impose for instance that x(tmax) = xmax, then the process will go above xmax infinitely
many times in any time interval [tmax − δ, tmax], with δ > 0. As a consequence, we
introduce a small cutoff ε1 > 0 and we constrain the trajectory to arrive at xmax − ε1 at
time tmax. Similarly, we constrain the process to reach position −xmin + ε2, with ε2 > 0
and small, at time tmin. To obtain the joint distribution of tmax and tmin, we will consider
the limit ε1, ε2 → 0 at the end of the computation. For simplicity, we take ε1 = ε2 = ε
and D = 1/2. We also denote by

M = xmax + xmin , (2.2)

the size of the interval [−xmin, xmax].
The main building block that we need is the constrained propagator GM(x, t|x0, t0),

defined as the probability density that the process goes from position x0 at time t0 to
position x at time t while always remaining inside the box [0,M ]. An explicit expression
for this propagator can be found by solving the diffusion equation

∂tGM(x, t|x0, t0) = 1
2∂

2
xGM(x, t|x0, t0) , (2.3)
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t

x(t)

I II III

Figure 2.2: Path decomposition of the trajectory of a Brownian motion x(t) for 0 ≤ t ≤
T . In the first interval [0, tmax] (I), the process goes from the origin to position xmax− ε.
In the second interval [tmax, tmin] (II), the process goes from the global maximum xmax−ε
to the global minimum −xmin + ε. Finally, in the last interval [tmin, T ], the process has
to remain inside the box [−xmin, xmax].

with absorbing boundary conditions GM(M, t|x0, t0) = GM(0, t|x0, t0) = 0. Solving this
equation yields [32]

GM(x, t|x0, t0) = 2
M

∞∑
n=1

sin
(
nπx

M

)
sin

(
nπx0

M

)
e−

n2π2
2M2 (t−t0) . (2.4)

By shifting the origin in Fig. 2.2 to−xmin, we can now use the propagator to compute
the weights PI, PII, and PIII. We start with the segment (I), by definition we have

PI ∝ GM(M − ε, tmax|xmin, 0) , (2.5)

where we recall that M = xmax + xmin. Substituting the expression in Eq. (2.4) and
expanding to leading order in ε, we get

PI ∝ −
2πε
M2

∞∑
n1=1

(−1)n1n1 sin
(
n1π xmin

M

)
e−

n2
1π

2

2M2 tmax . (2.6)

Similarly, in segment II, the probability weight reads

PII ∝ GM(ε, tmin|M − ε, tmax) . (2.7)
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Plugging again the expression in Eq. (2.4), and expanding for small ε, we obtain

PII ∝ −
2π2 ε2

M3

∞∑
n2=1

(−1)n2n2
2 e
−
n2

2π
2

2M2 (tmin−tmax) . (2.8)

Finally, to compute the weight of the third time segment (III), we call xf the final posi-
tion of the motion, measured from the global minimum −xmin (see Fig. 2.2). Integrating
over all possible values of xf , we get

PIII ∝
∫ M

0
GM(xf , T |ε, tmin) dxf , (2.9)

Using Eq. (2.4) and performing the integral over xf , we obtain

PIII ∝
2ε
M

∞∑
n3=1

[1− (−1)n3 ] e−
n2

3π
2

2M2 (T−tmin) , (2.10)

where we have expanded to leading order for small ε.
Using the expressions for PI, PII, and PIII, respectively given in Eqs. (2.6), (2.8), and

(2.10), we can now write the grand joint PDF of tmax, tmin, xmax, and xmin as

P (xmin, xmax, tmin, tmax|T ) ∝ PIPIIPIII ∝
ε4

M6

∞∑
n1=1

(−1)n1n1 sin
(
n1π xmin

M

)

× e−
n2

1π
2

2M2 tmax
∞∑

n2=1
(−1)n2n2

2 e
−
n2

2π
2

2M2 (tmin−tmax)
∞∑

n3=1
[1− (−1)n3 ] e−

n2
3π

2

2M2 (T−tmin) , (2.11)

which is valid for tmin > tmax. Note that this expression in Eq. (2.11) was previously de-
rived in [82] using real-space renormalization group techniques. Integrating over xmin > 0
and xmax > 0, we obtain the joint distribution of tmax and tmin

P (tmin, tmax|T ) =
∫ ∞

0
dxmin

∫ ∞
0

dxmaxP (xmin, xmax, tmin, tmax|T ) . (2.12)

Substituting the expression in Eq. (2.11) and performing the integrals over xmax and
xmin, we obtain

P<(tmin, tmax|T ) = A<
∞∑

n1,n2,n3=1

(−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmax + n2

2(tmin − tmax) + n2
3(T − tmin)]2

, (2.13)

where the subscript < indicates that the expression is valid in the case tmax < tmin
and A< is a normalization constant. To fix this constant A<, we use the normalization
condition ∫ T

0
dtmax

∫ T

tmax
dtmin P<(tmin, tmax|T ) = Prob.(tmax < tmin) = 1

2 , (2.14)

since the maximum will occur before the minimum for half of the trajectories by the
x→ −x symmetry of the process. Using the expression in Eq. (2.13), we obtain A< =
4/π2. Thus, we get

P<(tmin, tmax|T ) = 4
π2

∞∑
n1,n2,n3=1

(−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmax + n2

2(tmin − tmax) + n2
3(T − tmin)]2

. (2.15)
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Repeating the computation in the case tmin < tmax we find

P>(tmin, tmax|T ) = 4
π2

∞∑
n1,n2,n3=1

(−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmin + n2

2(tmax − tmin) + n2
3(T − tmax)]2

, (2.16)

which is valid for tmin < tmax. We notice the nontrivial symmetry

P<(tmin, tmax|T ) = P>(tmax, tmin|T ) , (2.17)

which can be understood as a consequence of the x → −x symmetry of the process.
Overall, the joint distribution of tmin and tmax can be written as

P (tmin, tmax|T )=θ(tmax − tmin) 4
π2

∞∑
n1,n2,n3=1

(−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmin + n2

2(tmax − tmin) + n2
3(T − tmax)]2

+θ(tmin − tmax) 4
π2

∞∑
n1,n2,n3=1

(−1)n2+1n2
2[1− (−1)n1 ][1− (−1)n3 ]

[n2
1tmax + n2

2(tmin − tmax) + n2
3(T − tmin)]2

, (2.18)

where θ(z) is the Heaviside theta function.
We can now compute the PDF of the time τ = tmin − tmax between maximum and

minimum. The PDF of τ can be obtained from the joint PDF of tmin and tmax as

P (τ |T ) =
∫ T

0
dtmax

∫ T

0
dtminP (tmin, tmax|T )δ(tmin − tmax − τ) , (2.19)

Substituting the expression for P (tmin, tmax|T ) in Eq. (2.18), we obtain, after few steps
of algebra

P (τ |T ) = 1
T
fBM

(
τ

T

)
, (2.20)

where

fBM(y) = 1
|y|

∞∑
n=1

(−1)n+1tanh2

nπ
2

√√√√ |y|
1− |y|

 , (2.21)

which is defined for −1 ≤ y ≤ 1. This exact result is shown in Fig. 2.3a) and is in
excellent agreement with numerical simulations.

Asymptotic behaviors

As a consequence of the x → −x symmetry of BM, this scaling function fBM(y) is
symmetric around y = 0, i.e., fBM(y) = fBM(−y). Moreover, it has asymptotic behaviors

fBM(y) ≈



1
2 + 1− |y|

2 as y → ±1

8
y2 e

−π/
√
|y| − 8

|y|
e−π/
√
|y| as y → 0 .

(2.22)
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Figure 2.3: a) The scaled probability density function T P (τ |T ) as a function of the
scaled time τ/T between maximum and minimum for the BM. The solid orange line
corresponds to the exact scaling function fBM(y), given in Eq. (2.21), while the filled blue
circles are the results of simulations. b) The same scaled probability density function
for the Brownian bridge where the exact scaling function fBB(y) is given in Eq. (2.44).

The first asymptotic behavior (y → ±1) can be obtained directly from Eq. (2.21) by
using the relation 1

∞∑
n=1

(−1)n+1 = 1
2 . (2.23)

On the other hand, the second asymptotic behavior (for |y| → 0) can be obtained using
the alternative representation

fBM(y) = 2(1− |y|)
|y|2

∞∑
m=−∞

2m+ 1

sinh
(

(2m+ 1)π
√

1−|y|
|y|

) , (2.24)

obtained using Poisson summation formula.
We observe that for y → 0 (corresponding to τ → 0 and hence tmax → tmin) the

scaling function fBM(y) has an essential singularity. As a consequence, it is very unlikely
to observe a Brownian trajectory in which the maximum and the minimum are close in
time. Indeed, we will show that tmax and tmin are anticorrelated.

On the other hand, for y > 0, the distribution of τ is non-monotonic. For small
values of y = τ/T the probability is increasing as a function of y. The probability is
maximal at some intermediate value y = y∗. This maximum y∗ can be computed by
solving the equation

dfBM(y)
dy

= 0 . (2.25)

We find y∗ = 0.5563 . . . where we have solved the equation numerically with Mathemat-
ica.

1This relation has to be interpreted as the limit limα→−1
∑
n≥1 α

n+1.
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Finally, for τ → ±T , the PDF of τ goes to the limit value 1/(2T ). In the coming
sections, we will show that this is a very general result. The value τ = T can only be
obtained if tmin = T and tmax = 0. This corresponds to configurations in which the
process always remains below its starting position and reaches its minimal value at the
final time. We will show that even for discrete-time random walks with n steps, the
probability of such an event is always 1/(2n), independently of the step distribution
(even if this distribution is fat-tailed). This is a nice example of universality that holds
for all times and not only asymptotically (à la Sparre Andersen).

Moments of τ

Due to the symmetry of P (τ |T ) around τ = 0, the odd moments of the distribution
trivially vanish. Hence, we decide to study the moments of the absolute value |τ |.

It turns out to be quite challenging to compute the moments of τ from the scaling
function fBM. Luckily, we were able to find the following integral identity satisfied by
fBM(y) ∫ 1

0
dy
fBM(y)
1 + uy

=
∫ ∞

0
dz

1
sinh(z) tanh2

(
z

2
√

1 + u

)
. (2.26)

The derivation of this relation is given in Article 2, where it appears quite naturally in
the investigation of τ for discrete-time random walks. Interestingly, the moments of τ
can be obtained by expanding both sides of this identity in powers of u. In particular,
we find that the first four moments are

〈|τ |〉 = 4 log(2)− 1
3 T = (0.5908 . . .)T , (2.27)

〈τ 2〉 = 7ζ(3)− 2
16 T 2 = (0.4009 . . .)T 2 ,

〈|τ |3〉 = 147ζ(3)− 34
480 T 3 = (0.2972 . . .)T 3 ,

〈τ 4〉 = 1701ζ(3)− 930ζ(5)− 182
3840 T 4

= (0.2339 . . .)T 4 ,

where ζ(z) is the Riemann zeta function. These results are in perfect agreement with
numerical simulation.

Covariance of tmax and tmin

The covariance of tmin and tmax can be computed from the second moment of τ . The
covariance function is defined as

cov (tmin, tmax) = 〈tmintmax〉 − 〈tmin〉〈tmax〉 . (2.28)

Computing this quantity from the joint PDF P (tmin, tmax|T ) in Eq. (2.13) turns out to
be quite lengthy. We can instead apply the following idea. Using τ = tmin − tmax, we
have

〈τ 2〉 = 〈t2min〉+ 〈t2max〉 − 2〈tmin tmax〉 . (2.29)
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And hence

cov (tmin, tmax) = 1
2
(
〈t2min〉+ 〈t2max〉 − 〈τ 2〉

)
− 〈tmin〉〈tmax〉 . (2.30)

Thus, we just need to compute the first two moments of tmin, tmax. As anticipated, the
marginal distributions of tmin and tmax are both given by the Arcsine law

P (tmin|T ) = 1
π
√
tmin(T − tmin)

, (2.31)

and

P (tmax|T ) = 1
π
√
tmax(T − tmax)

. (2.32)

From Eqs. (2.31) and (2.32), we obtain

〈tmin〉 = 〈tmax〉 = T

2 , (2.33)

〈t2min〉 = 〈t2max〉 = 3
8T

2 . (2.34)

Plugging the results from Eqs. (2.27), (2.33), and (2.34) into Eq. (2.30), we finally find

covBM(tmin, tmax) = −7ζ(3)− 6
32 T 2 = −(0.0754 . . .)T 2. (2.35)

As expected, the random variables tmin and tmax are negatively correlated.

2.1.2 Brownian Bridge
In this section, we compute the distribution of τ = tmin = tmax in the case of a Brownian
bridge, i.e., a periodic BM of fixed period T . The process starts from x(0) = 0 and
is conditioned to go back to the starting position at the final time T (for a typical
realization, see Fig. 2.4). The results derived for a BB will be directly applicable to
the case of fluctuating interfaces, both Edwards-Wilkinson (EW) and Kardar-Parisi-
Zhang (KPZ) types, with periodic boundary conditions (PBC). Moreover, constrained
BM trajectories and in particular BBs have been applied to model the movement of
animals while foraging for food [120–123]. Indeed, animals search for food starting from
and going back to some fixed location, e.g., their nest.

In the case of BB, the PDF of the time tmax of the maximum (and by symmetry also
the PDF of tmin) is uniform in the interval [0, T ] [24]

P (tmax|T ) = 1
T
. (2.36)

This is a consequence of the periodicity of the process. Nevertheless, we will show that
the distribution of the time τ between the maximum and the minimum is instead highly
nontrivial.

There are two possible ways of deriving the distribution of P (τ |T ) for a BB. The
first one is to employ a path-decomposition strategy analogous to the one used for a
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Figure 2.4: Path decomposition of the trajectory of a Brownian bridge x(t) for 0 ≤ t ≤ T .
The process is constrained to go back to its starting position x(0) = 0 at the final time
T . In the first interval [0, tmax] (I), the process goes from the origin to position xmax− ε.
In the second interval [tmax, tmin] (II), the process goes from the global maximum xmax−ε
to the global minimum −xmin + ε. Finally, in the last interval [tmin, T ], the process has
to go from the global minimum xmin + ε to the origin. Moreover, the process has to
always remain inside the box [−xmin, xmax].

BM, using the same path-decomposition as in Fig. 2.4. The main difference with the
BM computation is that one does not have to integrate over the final position xf , which
is instead fixed. We will not present the details of this computation, which can be found
in Article 2.

The second way of computing the distribution P (τ |T ) for a Brownian bridge is to use
a mapping to a Brownian excursion (BE), which is a BB with the additional constraint
that the process has to remain above its starting position during the whole time interval
[0, T ]. The mapping is known as Vervaat construction in the literature of probability
theory [124,125].

The Vervaat construction (see Fig. 2.5) can be used to map any BB trajectory to
a BE trajectory. Moreover, Vervaat showed that the resulting BE is sampled with the
correct statistical weight [124]. For our purposes, it is relevant to notice that the time
τ between the maximum and the minimum of a BB gets mapped into the time tBE

max of
the maximum (measured from the right end of the interval [0, T ]) of the BE. We denote
the PDF of tBE

max by

PBE(τ |T ) = Prob.
(
tBE
max = τ |T

)
. (2.37)
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a) b)

x(t) x(t)

t t

Figure 2.5: Mapping between a Brownian bridge (BB) of duration T (panel a) and a
Brownian excursion (BE) (panel b). Starting with the BB in panel a), we first identify
the time tmin of the global minimum. Then we decompose the trajectory into two parts:
the one in the interval [0, tmin] (yellow part) and the one in the interval [tmin, T ] (blue
part). We then shift the yellow part by the total time T , gluing it to the right of the
blue part. Finally, we shift the origin of the x-axis to −xmin. In this way, we obtain the
BE shown in panel b). Crucially, the time τ between the maximum and the minimum of
the BB (red double arrow) gets mapped into the time of the maximum tBE

max (measured
from the right end of the interval) of the Brownian excursion.

Note however that with this mapping different BB trajectories can be mapped into
the same BE. For the mapping to be one-to-one, one has to also fix the value of the
time tmin of the minimum of the BB. As a consequence, considering the case τ > 0, we
get the exact relation

PBB(tmin − tmax|tmin, T ) = PBE(tmin − tmax|T ) , (2.38)

where we used the subscript “BB” in the left-hand side to stress that we are considering
the distribution of τ for a BB. The PDF PBE(τ |T ) of the time of the maximum of a BE
was computed exactly in [43] and reads

PBE(τ |T ) = 3T 3/2
∞∑

m,n=1

(−1)m+nm2n2

[m2τ + n2(T − τ)]5/2
. (2.39)

To exploit the mapping, we first rewrite the joint PDF of tmax and tmin for a BB as

PBB(tmax, tmin|T ) = PBB(tmax − tmin|tmin, T )PBB(tmin|T ) . (2.40)

Using Eq. (2.38), we get

PBB(tmax, tmin|T ) = PBE(tmax − tmin|T )PBB(tmin|T ) . (2.41)

The time tmin of the minimum of a BB is uniformly distributed in the time interval
[0, T ] [24]. Thus, substituting the expressions for PBE(tmin− tmax|T ), given in Eq. (2.39),
into Eq. (2.41), we obtain

PBB(tmax, tmin|T ) = 3
√
T

∞∑
m,n=1

(−1)m+nm2n2

[m2(tmin − tmax) + n2(T − tmin + tmax)]5/2
. (2.42)
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Finally, integrating over tmax and tmin, with τ = tmin− tmax fixed, we find that the PDF
of the time τ between the maximum and the minimum for a BB is given by

P (τ |T ) = 1
T
fBB( τ

T
) (2.43)

where

fBB(y) = 3(1− |y|)
∞∑

m,n=1

(−1)m+nm2n2

[m2 |y|+ n2(1− |y|)]5/2
. (2.44)

We observe that the distribution P (τ |T ) of τ is symmetric around τ = 0. This is again
a consequence of the x→ −x symmetry of the process.

This exact distribution in Eq. (2.44) is shown in Fig. 2.3b) and is in perfect agreement
with numerical simulations. To evaluate numerically the double sum in Eq. (2.44) we
have used the Python package mpmath. The validity of this numerical scheme is
confirmed by the excellent agremment with numerical simulations. We observe that,
for y > 0, the scaling function fBB(y) is non-monotonic as a function of y and that
it attains its maximual value at y = 0.3749 . . . which we compute by maximizing the
function fBB(y) with Mathematica. Note that to perform numerical simulations of
BB trajectories, we used the sampling technique described in [125]. These methods
have been recently generalized to discrete-time RWs and more complicated processes
[123,126–128].

Moreover, the asympototic behaviors of fBB(y) can be obtained from those of PBE(τ |T ),
which were computed in [43]. We get

fBB(y) ≈



√
2π2

(1−|y|)
5
4
e−π/
√

1−|y| as y → ±1

√
2π2

|y|
9
4
e−π/
√
|y| as y → 0 .

(2.45)

Thus, in this case, as a consequence of the Bridge constraint, an essential singularity
appears also for τ → ±1.

Moments of τ for BB

As in the case of BM, explicitly computing the moments of τ from the exact scaling
function in Eq. (2.44) turns out to be rather cumbersome. Luckily, an integral identity
as the one in Eq. (2.26) can be derived also for BB (see Appendix D in Article 2 for the
derivation) and reads

∫ 1

0
dy

fBB(y)√
1 + uy

=
∫ ∞

0
dz

z√
1+u coth

(
z√
1+u

)
− 1

sinh(z) sinh
(

z√
1+u

) . (2.46)
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Expanding in powers of u, we find

〈|τ |〉 = π2 − 6
9 T = (0.4299 . . .)T , (2.47)

〈τ 2〉 = π2 − 6
18 T 2 = (0.2149 . . .)T 2 ,

〈|τ |3〉 = 375π2 − 14π4 − 1530
6750 T 3 = (0.1196 . . .)T 3 ,

〈τ 4〉 = 125π2 − 7π4 − 390
2250 T 4 = (0.0719 . . .)T 4 .

These moments are in perfect agreement with numerical simulations.

Covariance of tmin and tmax

As before, the covariance between tmin and tmax can be computed using the exact relation
in Eq. (2.30). The first two moments of tmax and tmin can be simply computed using the
fact that these random variables are uniformly distributed in [0, T ] and read

〈tmin〉 = 〈tmax〉 = T

2 , (2.48)

〈t2min〉 = 〈t2max〉 = 1
3T

2 . (2.49)

Plugging these results and the expression for 〈τ 2〉, given in Eq. (2.47), into Eq. (2.30)
we get

covBB(tmin, tmax) = −π
2 − 9
36 T 2 = −(0.0241 . . .)T 2 . (2.50)

We observe that tmax and tmin are less negatively correlated in the BB case than in the
BM case (compare with Eq. (2.35)).

2.1.3 Discrete-time random walks
We next consider the distribution of the time between the maximum and the minimum
of a discrete-time RW. We consider an n-step random walker xk moving on the real line
according to the evolution rule

xk = xk−1 + ηk , (2.51)
where ηk are i.i.d. random variables from some symmetric distribution p(η). We denote
by nmax (nmin) the discrete step at which the process reaches the global maximum
(minimum). In the eventuality of degenerate extrema, we take nmax (nmin) as the time
at which the maximum (minimum) is reached for the first time. In this case, the time
τ = nmax − nmin is an integer number, with −n ≤ τ ≤ n.

In general, one can consider both continuous and discrete step distributions. In the
continuous case, as discussed in detail in Chapter 1, the marginal distribution of nmax
is completely universal (as a consequence of the Sparre Andersen theorem [38]) and is
given for any n by the expression

P (nmax|n) =
(

2nmax

nmax

)(
2(n− nmax)
n− nmax

)
2−2n . (2.52)
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By symmetry, nmin has the same distribution. We recall that this exact result is valid
even for fat-tailed distributions, for which the mean value and/or the variance are not
defined). Note however that this result is not valid in the case of discrete jump distribu-
tions (e.g., lattice walks), which we discuss separately below. Expanding the expression
in Eq. (2.52) for large n, one obtains the Arcsine law in Eq. (2.32), valid for a continuous-
time BM. It is thus natural to ask whether or not the distribution of τ converges to the
one that we have computed for BM in the limit of large n.

In the case where the jump variance

σ2 =
∫ ∞
−∞

dη η2 p(η) (2.53)

is finite, the CLT guarantees that the random walk xk converges to a BM at late times.
As a consequence, it is natural to expect that the distribution of any observable of
the trajectory xk converges to its Brownian counterpart. From what stated above, we
know this fact to be true in the case of the step nmax of the maximum. However,
verifying directly the convergence of the distribution of τ for an RW to the exact result
in Eq. (2.20) and (2.21), valid for Brownian motion, is in general rather complicated.
We will verify analytically this convergence in two exactly solvable cases. Moreover, we
will perform numerical simulations for several choices of p(η). When the step variance
σ2 diverges, e.g., in the case where p(η) ∼ 1/|η|µ+1 for large |η| with µ < 2, the CLT
does not apply. Thus, it is relevant to ask whether the distribution of τ still converges
to the Brownian result, as in the case of the distribution of nmax.

In the case of discrete-time RW, a path-decomposition approach similar to the one
described in Section 2.1.1 can be used. The only difference is that in this case no cutoff ε
is required, since the process is discrete in time. In the case nmax < nmin, we decompose
the interval [0, n] into the three subintervals [0, nmax], [nmax, nmin], and [nmin, n], with
corresponding probabilities PI, PII, and PIII. As before the probabilities can be expressed
in terms of the constrained propagator GM(x, t|x0, t0), which is defined as the probability
to go from position x0 at step t0 to position x at step t, while always remaining inside
the interval [0,M ]. Thus, denoting by xmax and xmin the maximum and the minimum
of the process and by M = xmax + xmin the span, we find

PI = GM(xmax, nmax|0, 0) , (2.54)

PII = GM(xmin, nmin|xmax, nmax) , (2.55)

and
PIII =

∫ M

0
dxf GM(xf , n|xmin, nmin) , (2.56)

where the integral over the final position xf has to be replaced with a sum if the steps
are discrete. Thus, the grand joint distribution of xmax, xmin, tmax, and tmin reads

P (xmax, xmin, nmax, nmin|n) = PIPIIPIII = GM(xmax, nmax|0, 0)GM(xmin, nmin|xmax, nmax)

×
∫ M

0
dxf GM(xf , n|xmin, nmin) . (2.57)

From this exact relation, integrating over xmax and xmin and summing over nmax and
nmin with τ = nmin − nmax fixed, one can obtain the probability distribution of τ .
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The constrained propagator GM(x, t|x0, t0) satisfies the following recursion relation

GM(x, t|x0, t0) =
∫ M

0
dx′ GM(x′, t− 1|x0, t0)p(η = x− x′) , (2.58)

for t ≥ 1 and with the initial condition GM(x, t0|x0, t0) = δ(x− x0). This equation can
be understood as follows. At time t−1, the walker arrives at position x′ with probability
GM(x′, t − 1|x0, t0) and then it takes a jump to position x with probability p(x − x′).
However, this simple equation cannot be solved in general for any jump distribution
p(η) 2.

Finite jump variance

In the case of finite jump variance, i.e., σ2 <∞, we expect the distribution of τ to con-
verge to the BM result. Fist, we check this numerically for different jump distributions
(see Fig. 2.6). Moreover, we verify it analytically with two exactly solvable models: RWs
with a double-exponential jump distribution and lattice walks.
Random walks with double-exponential jumps: We first consider the case of the double-
exponential jump distribution

p(η) = 1
2e
−|η| . (2.59)

This distribution has the special property that it satisfies the simple differential equation

p′′(x) = p(x)− δ(x) . (2.60)

It is useful to consider the generating function in Eq. (2.58), yielding

G̃M(x, s|x0) = s
∫ M

0
dx′ G̃M(x′, s|x0)p(x− x′) + sp(x) , (2.61)

where we have defined

G̃M(x, s|x0) =
∞∑
t=t0

GM(x, t|x0, t0)st−t0 . (2.62)

Differentiating Eq. (2.61) twice with respect to x and using the relation in Eq. (2.60),
we obtain

∂xxG̃M(x, s|x0) = (1− s)G̃M(x, s|x0)− sδ(x− x0) . (2.63)
This is a much simpler differential equation, which can be exactly solved, yielding (see
Article 2 for the details)

G̃M(x, s|x0) = 1−
√

1− s
1−

(
1−
√

1−s
1+
√

1−s

)2
e−2
√

1−sM

[
e−
√

1−s (x−x0) − 1−
√

1− s
1 +
√

1− s
e−
√

1−s (2M−x+x0)
]
.

(2.64)
It is worth mentioning that the nice property in Eq. (2.60) allows to solve exactly

many RW problems. Indeed, one can often easily write an integral recursion relation
2Note that in the limit M → ∞, the recursion relation in Eq. (2.58) reduces to the Wiener-Hopf

equation, which can be solved for any symmetric and continuous jump distribution p(η) using Ivanov
formula [129,130].
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Figure 2.6: The scaled distribution nP (τ |n) as a function of τ/n for discrete-time ran-
dom walks (RWs). The continuous green line corresponds to the exact scaling function
fBM(y), given in Eq. (2.21). The symbols correspond to numerical simulations performed
with RWs with different jump distributions and n = 105 steps. When the variance of
the jumps is finite (lattice walks, Gaussian, uniform, double-exponential and Pareto)
the numerical curves collapse onto the scaling function fBM(y), as a consequence of
the Central Limit Theorem. When the jump variance is divergent, i.e. Lévy flights
with index µ = 3/2 and µ = 1 (Cauchy distribution), the scaling function fµ(y) de-
pends continuously on µ. At the endpoints τ = ±n, we recover the universal result
P (τ = n|n) = 1/(2n), valid even for fat tailed distributions.

similar to the one in Eq. (2.58) for the probability distribution of a given quantity.
However, solving this kind of integral relation is in general highly nontrivial. In the case
of the double exponential distribution, Eq. (2.60) can be used to obtain a differential
equation, which is typically much easier to solve.

Using the relation in Eq. (2.57) together with the expression for the constrained
propagator in Eq. (2.64), one can compute the joint distribution of xmax, xmin, tmax, and
tmin. From that, one can obtain the probability distribution of τ . In particular, one
obtains that in the limit of large-n

P (τ |n) ≈ 1
n
fBM

(
τ

n

)
, (2.65)

where fBM(y) is the scaling function that we have derived in the case of BM, which is
given in Eq. (2.21). The derivation of this result is technically quite complicated and
is given in Article 2. Interestingly, from this computation one also obtains the integral

– 42 –



2.1. Time between the maximum and the minimum

relation for fBM(y) given in Eq. (2.26), which we have used to compute the moments of
τ .
Lattice walks: We next consider the case of a one-dimensional random walk on a discrete
lattice, corresponding to the jump distribution

p(η) = 1
2δ(η − 1) + 1

2δ(η + 1) . (2.66)

In other words, at each timestep, the walker takes a unit step either to the right or
to the left with the same probability. As a consequence, the constrained propagator
GM(x, t|x0, t0) satisfies the recursion relation

GM(x, t|x0, t0) = 1
2GM(x− 1, t− 1|x0, t0) + 1

2GM(x− 1, t− 1|x0, t0) . (2.67)

The boundary conditions are

GM(−1, t|x0, t0) = GM(M + 1, t|x0, t0) = 0 , (2.68)

while the initial condition reads

GM(x, t0|x0, t0) = δx,x0 . (2.69)

This simple recursion relation can be solved by standard generating-function tech-
niques and one obtains

G̃M(x, s|x0) = 2
s

(
w(s)x+1

1− w(s)2(M+2) + w(s)−(x+1)

1− w(s)−2(M+2)

)
, (2.70)

where G̃M(x, s|x0) is the generating function of GM(x, t|x0, t0), defined in Eq. (2.62),
and

w(s) = 1
s

(
1−
√

1− s2
)
. (2.71)

Using this result for the constrained propagator and applying again the path-decomposition
method described above, it is possible to show that also in this case

P (τ |n) ≈ 1
n
fBM

(
τ

n

)
, (2.72)

for large n.

Divergent jump variance

In the case where the variance σ2 of the jumps is divergent, it is hard to make analytical
progress. Thus, we performed extensive numerical simulations to investigate this case.
In particular, we considered the case of Lévy walks, corresponding to the jump PDF

p(η) ∼ 1
|η|µ+1 , (2.73)
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xk

k

Figure 2.7: Typical realization of an n-step random walk xk with τ = n as a function
of the step k. The global maximum xmax = 0 is reached at time zero (tmax = 0), while
the global minimum is reached at the final step (tmin = n).

for large |η|, with 0 < µ < 2. Note that when 1 < µ < 2 the variance of η is divergent,
while when 0 < µ < 1 both the mean and the variance are divergent.

We show numerically (see Fig. 2.6) that in the limit of large n the PDF of τ assumes
the scaling form

P (τ |n) ≈ 1
n
fµ

(
τ

n

)
, (2.74)

where the scaling function fµ(y) appears to be continuously dependent on the Lévy index
µ. For µ = 2, we have f2(y) = fBM(y). Thus, our result is somewhat less universal than
the Arcsine law, which describes the asymptotic distribution of nmax in the limit of large
number n of steps.

It is interesting to investigate the value fµ(0) different values of 0 < µ ≤ 2. This
value fµ(0) describes the probability that the maximum and the minimum occur very
close in time. Indeed, from Eq. (2.74) we have, for large n,

P (τ = 1|n) ≈ fµ(0)
n

. (2.75)

For µ = 2 the random walk converges for large times to Brownian motion and we find
f2(0) = fBM(0) = 0. This is in agreement with the fact that Brownian motion has a
continuous path. Indeed, for the maximum and the minimum to occur at successive time-
steps one needs the presence of very large jumps, which are not present for Brownian
motion. These jumps, which make the trajectory discontinuous, can instead occur for
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Figure 2.8: Mapping between an n-step random walk with τ = n (here n = 4) to a
bridge configuration with 2n steps.

µ < 2 and indeed we observe that fµ(0) > 0 for µ < 2 (see Fig. 2.6). Moreover, we find
that fµ(0) increases for decreasing µ.

Interestingly, our numerical simulations suggest that, for any µ, fµ(±1) = 1/2,
indicating that the probabilities of the events “τ = n” and “τ = −n” are completely
universal. Remarkably, this universality turns out to be exactly valid even when the
number of steps is finite, as long as the distribution is continuous and symmetric. In
other words, if p(η) is continuous and p(η) = p(−η), then

P (τ = n|n) = 1/(2n) . (2.76)

Note that the event τ = n can only occur if tmax = 0 and tmin = n. This corresponds
to trajectories that always remain below their starting position and reach their global
minimum at the final step (see Fig. 2.7). The universal result in Eq. (2.76) is shown in
Fig. 2.9 and is in perfect agreement with numerical simulations. Note that in the case
of lattice walks, which have a discrete jump distribution, the result in Eq. (2.76) applies
only for large n.

We will next sketch the proof of this result3 based on a combinatorial theorem by
Spitzer [131]. We start by reproducing the statement of Theorem 2.1 in [131]:

Let y = (y1 , . . . , ym) be a vector such that y1 +y2 + . . .+ym = 0, but no other partial
sum of distinct components vanishes. Let yk+m = yk, and y(k) = (yk , yk+1 , . . . , yk+m),
for k = 1 , . . .m. Then, for each r = 0 , 1 , . . . ,m − 1, exactly one of the cyclic permu-
tations y(k) of y is such that exactly r of its successive sums are positive.

3We warmly thank Mark Holmes for his suggestions on how to prove this result.
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Figure 2.9: The probability pn = P (τ = n|n) as a function of n for discrete-time random
walks with n steps. Symbols correspond to the results of numerical simulations of RW
with different jump distributions. The continuous blue line represents the universal exact
result pn = 1/(2n), valid for continuous and symmetric jump distributions. Numerical
results for different jump distributions (except lattice walks that are discrete in space)
collapse onto the analytical curve for any n.

To apply this theorem to our problem, we consider an n-step RW

xk =
k∑
i=1

ηi , (2.77)

for 1 ≤ k ≤ n. The increments η1 , . . . , ηn are i.i.d. random variables with distribu-
tion p(η), which we assume to be continuous and symmetric. Consider the vector of
increments

y = (η1 , η2 , . . . , ηn−1 , ηn ,−η1 ,−η2 , . . . ,−ηn−1 ,−ηn) (2.78)

of length m = 2n. This corresponds to mapping the random walk into a bridge config-
uration as shown in Fig. 2.8. Note that by definition

yi =

ηi , for 1 ≤ i ≤ n ,

−ηi−n , for n+ 1 ≤ i ≤ 2n .
(2.79)

By construction we have y1 + y2 + . . . + ym = 0. Moreover, since the steps are
continuous, the vector satisfies almost surely the hypothesis that no other partial sum
of distinct components vanishes. Thus, using the theorem above, exactly one of the 2n
cyclic permutations of y is such that none of its successive sum are positive (r = 0).
This means that there exists only one cyclic permutation y(k) for which ∑l

i=1 y(k)i ≤ 0
for any l. Moreover, using the fact that the distribution of the steps is symmetric
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(meaning that η and −η have the same distribution) it is easy to show that the 2n
cyclic permutations are equiprobable, implying

Prob.
(

l∑
i=1

yi ≤ 0 for any 1 ≤ l ≤ 2n
)

= 1
2n . (2.80)

We would now like to show that this event “∑l
i=1 yi ≤ 0 for any 1 ≤ l ≤ 2n” is

equivalent to the event “τ = n”. Thus, we need to show that ∑l
i=1 yi ≤ 0 for any

1 ≤ l ≤ 2n if and only if i) the global maximum of the random walk xk is reached at the
first step (tmax = 0) and ii) the global minimum is reached at the last step (tmin = n).

Let us start with the first condition i). Since by definition yi = ηi for i ≤ n (see
Eq. (2.79)), the condition ∑l

i=1 yi ≤ 0 can be rewritten as, for 1 ≤ l ≤ n ,

l∑
i=1

ηi ≤ 0 . (2.81)

This is equivalent to
xl ≤ 0 (2.82)

for all 1 ≤ l ≤ n. Meaning that the maximum is reached at the first step.
To obtain the second condition ii), i.e., that the global minimum of the random

walk xk is reached at the final step n, we consider the condition ∑l
i=1 yi ≤ 0 with

n+ 1 ≤ l ≤ 2n. This condition can be written as

n∑
i=1

yi +
l∑

i=n+1
yi ≤ 0 . (2.83)

Using the fact that yi = ηi for 1 ≤ i ≤ n and that yi = −ηi−n for n + 1 ≤ i ≤ 2n (see
Eq. (2.79)), we get

n∑
i=1

ηi −
l∑

i=n+1
ηi−n ≤ 0 . (2.84)

Shifting the index in the second sum, we find

n∑
i=1

ηi −
l−n∑
i=1

ηi ≤ 0 . (2.85)

This can be rewritten in terms of the random walk variables xk as

xn ≤ xl−n , (2.86)

with n+ 1 ≤ l ≤ 2n. Defining j = l − n, this condition can be rewritten as

xn ≤ xj , (2.87)

with 1 ≤ j ≤ n. Finally, this implies that the global minimum is reached at the final
step n, which was condition ii).

Thus, we have shown that the events “∑l
i=1 yi ≤ 0 for any 1 ≤ l ≤ 2n” and “τ = n”

are actually the same event, since they correspond to the same conditions on the random
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0 xminxmax L 0 xminxmaxx xa) b)
0

H(x,t) H(x,t)

0

Figure 2.10: Kardar-Parisi-Zhang interfaces in (1 + 1) dimensions, growing on a finite
substrate of size L with free boundary conditions (a) and periodic boundary conditions
(b). The interface profile H(x, t) is displayed as a function of x and for t fixed. The
distance between the position x̃max of maximal height and the position x̃min of minimal
height is denoted by τ and indicated by red double arrows.

walk xk. This means that they occur with the same probability. Thus, using the result
in Eq. (2.80), we find that

P (τ = n|n) = Prob.
(

l∑
i=1

yi ≤ 0 for any 1 ≤ l ≤ 2n
)

= 1
2n . (2.88)

This result can also be explicitly verified for any finite n in the case of RWs with double-
exponential distribution (see Article 2). Note that this result was only conjectured in
Article 2 and that this demonstration, to the best of our knowledge, was not published
before.

2.1.4 Fluctuating interfaces
Our results of the previous sections turn out to be directly applicable to the study
of extremal properties of Kardar-Parisi-Zhang (KPZ) and Edwards-Wilkinson (EW)
interfaces. We consider a (1 + 1)−dimensional interface evolving over a substrate of
finite size L. We denote by H(x, t) the height of the interface at position x and at time
t, where 0 ≤ x ≤ L (see Fig. 2.10 for a typical realization) [132–136]. The interface
height evolves according to the celebrated KPZ equation [133]

∂H(x, t)
∂t

= ∂2H(x, t)
∂x2 + λ

(
∂H(x, t)
∂x

)2

+ η (x, t) , (2.89)

where λ ≥ 0 and η(x, t) is a Gaussian white noise with zero mean and correlator
〈η (x, t) η (x′, t′)〉 = 2δ(x − x′)δ(t − t′). Note that for λ > 0 the KPZ equation is non-
linear. Setting λ = 0, one obtains the EW equation [132], which is instead linear. For
the Eq. (2.89) one can either consider free boundary conditions (FBC), with the height
values H(0, t) and H(L, t) at the ends of the substrate let free to evolve, or periodic
boundary conditions (PBC), with the constraint H(0, t) = H(L, t).
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Figure 2.11: The scaled distribution L P (τ |L) for Edwards-Wilkinson interfaces as a
function of the scaled distance τ/L between the points of maximal and minimal height
with free boundary conditions (a) and periodic boundary conditions (b). The solid blue
lines show the exact scaling functions fBM(y) (in panel a), given in Eq. (2.21) and fBB(y)
(in panel b), given in Eq. (2.44). The filled blue dots represent the results of numerical
simulations with L = 512.

We will be interested in investigating the extremal properties of the steady state
of these systems. Note however that the space-averaged height (which is a random
variable)

H(t) = 1
L

∫ L

0
H(x, t) dx , (2.90)

never reaches a steady state. As a consequence, a more appropriate observable that does
reach a steady state is the displacement from the space-averaged height, also known as
relative height, which is defined as

h(x, t) = H(x, t)−H(t) . (2.91)

Note that, by construction, the space average of h(x, t) is zero, i.e., that
1
L

∫ L

0
dx h(x, t) = 0 . (2.92)

It can be shown that the relative height reaches a steady state for t→∞.
To make a connection with the problems studied in the previous sections, we intro-

duce the position x̃max (x̃min) at which the steady-state relative height h(x) is maximal
(minimal):

x̃max = argmax0≤x≤L (h(x)) , (2.93)

and

x̃min = argmin0≤x≤L (h(x)) . (2.94)

These two quantities are analogous to the time tmax of the maximum and the time tmin of
the minimum of a stochastic process. We also denote by hmax = h(x̃max) and hmin(x̃min)
the values of the maximal and minimal relative height (see Fig. 2.10).
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Edwards-Wilkinson case

We first study the linear case λ = 0, corresponding to EW interfaces. In the case of
FBC, the steady-state relative height distribution reads [15,16,137]

Pst ({h}) =
√

2πL3/2 e−
1
2

∫ L
0 dx(∂xh)2

δ

[∫ L

0
h(x)dx

]
, (2.95)

where the δ function imposes the zero-area constraint in Eq. (2.92). In the case of PBC,
the steady state instead is given by

Pst ({h}) = Le−
1
2

∫ L
0 dx(∂xh)2

δ

[∫ L

0
h(x)dx

]
δ (h(0)− h(L)) , (2.96)

where the term δ (h(0)− h(L)) enforces the periodicity constraint.
Interestingly, for FBC (PBC), the relative height h(x) behaves in the steady state

as a BM (BB) with a global constrain on the area. To connect this problem to the
discussion of the previous sections, we identify: space with time, i.e. x⇔ t, the length
L of the substrate with the total duration T of the process, i.e. L ⇔ T , and the
stationary relative height h(x) in the case of FBC (or PBC) with the position x(t) of a
BM (or BB), i.e. h(x)⇔ x(t).

In addition to the usual BM/BB dynamics, the process x(t) obtained with this
mapping has to also satisfy the zero-area constraint∫ T

0
dt x(t) = 0 , (2.97)

which derives from the condition in Eq. (2.92). This additional condition will in general
affect the statistical properties of the process, e.g., the distribution of the maximal height
hmax is known to differ from that of a BM [15,16]. However, the zero-area constraint does
not affect the joint distribution of x̃max and x̃min. Indeed, this constraint corresponds to
a vertical shift of the interface profile which does not affect the positions at which the
extrema are attained. As a consequence, the steady-state distribution of the distance
τ between the points of maximal and minimal height coincides with the distribution of
the time τ between the maximum and the minimum of a BM or a BB (depending on
the boundary conditions).

Thus, in the case of FBC, we obtain

P (τ = x̃min − x̃max|L) = 1
L
fBM( τ

L
) , (2.98)

where the scaling function fBM(y) is given in Eq. (2.21). On the other hand, for PBC,
we get

P (τ = x̃min − x̃max|L) = 1
L
fBB( τ

L
) , (2.99)

where fBB(y) is given in Eq. (2.44). These results are shown in Fig. 2.11 and are in
good agreement with numerical simulations (for the details of how the simulations were
performed, see Article 2).
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Figure 2.12: The scaled distribution L P (τ |L) for Kardar-Parisi-Zhang interfaces as a
function of the scaled distance τ/L between the points of maximal and minimal height
with periodic boundary conditions. The continuous orange line is the exact scaling
function, given in Eq. (2.44), while the filled blue circles represent the results of numerical
simulations with L = 512.

Kardar-Parisi-Zhang case

When λ > 0 in Eq. (2.89), corresponding to KPZ interfaces, the stationary measure in
(2.95), valid for FBC, is only valid in the limit L → ∞. Thus, the result for P (τ |L)
in Eq. (2.98) is expected to hold for the KPZ equation only for large L. However, due
to nonlinear term in Eq. (2.89), numerical integration of the KPZ equation is known to
be challenging [138, 139]. On the other hand, the steady state in Eq. (2.96) for PBC is
valid even for finite L. Using the discretization scheme proposed in [139], we were able
to confirm our theoretical prediction in the case of PBC (see Fig. 2.12). However, for
FBC such discretization scheme does not work and verifying numerically the result in
Eq. (2.95) appears to be computationally challenging.

2.2 Time of the maximum of stationary processes
The time tmax of the maximum of a one-dimensional stochastic process x(t), with
t ∈ [0, T ], has been investigated for a wide range of models. However, to the best
of our knowledge, before our Article 3, it was never studied in the case of stationary
processes, i.e., processes that are invariant under a time shift. Stationary processes can
be observed at different scales in nature, from Brownian engines [140] to climate sys-
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tems [141]. They appear in two main categories: equilibrium and out-of-equilibrium.
At equilibrium, all currents (of energy, matter, or even probability) vanish, while by
definition nonequilibrium stationary processes display a nonzero current in the steady
state. Equivalently, a stochastic process is said to be at equilibrium if it satisfies the
detailed balance condition. Many classical results from statistical physics apply to equi-
librium systems and thus their physical properties are generally well understood. In
contrast, much less is known about nonequilibrium systems and only few exact results
have recently become available [27,28,142–145].

We will be interested in the case where the autocorrelation function of the process
decays exponentially fast in time

〈x(t)x(t′)〉 − 〈x(t)〉〈x(t′)〉 ∼ e−|t−t
′|/ξ , (2.100)

where ξ is the autocorrelation time. Then, depending on the observation time T , the
system can be described either as strongly or weakly correlated. Indeed, when T � ξ,
the random variables x(t) at different times t are strongly correlated. On the other hand
for T � ξ, as discussed in detail in Chapter 1, one can apply a “block renormalization”
argument, which maps the process into a collection of i.i.d. random variables, where
many exact results are known for the statistics of the extremes. In particular, one
would expect the universal results on the distribution of the maximum M (valid for
i.i.d. variables) to be valid for T � ξ.

It is therefore relevant to ask if one can identify models for which the extremal prop-
erties (e.g., the value M or the time tmax of the maximum) can be exactly computed for
any T > 0. Indeed, an exact result valid for any T would interpolate between a strongly-
correlated system (for small T ) and a weakly correlated one (for large T ). Interestingly,
the distribution of the maximum M has been studied for different stationary processes,
both at equilibrium, e.g., the Ornstein-Uhlenbeck process [8], and out-of-equilibrium,
e.g. BM with stochastic resetting [36, 146]. In both cases, for T � ξ, it was explicitly
shown that the distribution of M approaches the universal Gumbel form. However, it
is not clear a priori whether or not this universality also extends to the distribution of
the time tmax of the maximum.

At any time T , since by definition the stochastic process is invariant under a time
translation, one could naively expect the distribution of tmax to be uniform in the interval
[0, T ], i.e.,

P (tmax|T ) = 1
T
. (2.101)

Interestingly, we show that, as a consequence of the correlations of the process, this is
not the case in general.

Moreover, even though the uniform distribution in Eq. (2.101) does not exactly
describe the distribution of tmax, applying the block argument discussed in Chapter 1
one obtains, for T � ξ,

P (tmax|T ) ≈ 1
T
. (2.102)

As we will show, this result is only valid in the “bulk” of the distribution of tmax, i.e.,
for ξ � tmax � (T − ξ). We will observe that the i.i.d. approximation breaks down in
the “edge” regions where tmax ∼ ξ (left edge) and T − tmax ∼ ξ (right edge).
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To be precise, in this section, we consider a one-dimensional process x(t) with t ∈
[0, T ] and we assume that at time t = 0 the system starts from the steady state. This
is equivalent to assuming that we prepare the system in some initial condition at time
t = −∞ and that we start to observe it at time t = 0. We denote by Pst(x) the
stationary distribution of the process. The initial position x0 = x(0) is thus a random
variable independently drawn from Pst(x).

In the following, we will present the main steps leading to our results. These results
were recently announced in our letter 3. The precise details of the computations will be
published in an article in preparation [147].

2.2.1 Equilibrium processes
We start with the case of equilibrium systems. The process that we consider is a one-
dimensional BM with diffusion coefficient D subject to an external confining potential
V (x). We assume that this potential grows as V (x) ≈ α|x|p for large x, with α > 0 and
p > 0. The Langevin equation describing the evolution of the system reads

dx(t)
dt

= −V ′(x) + η(t) , (2.103)

where V ′(x) = dV/dx and η(t) is Gaussian white noise with zero mean and correlator
〈η(t)η(t′)〉 = 2Dδ(t − t′). For this system, the stationary equilibrium distribution is
given by the Gibbs-Boltzmann measure

Pst(x) = 1
Z
e−V (x)/D , (2.104)

where Z is a normalization constant.
To compute the distribution of tmax, one can use the path-decomposition strategy

presented in Chapter 1. Indeed, the result in Eq. (1.49) still applies in the case of
stationary processes, with the only difference that one has to average over the initial
position x0, yielding

P (tmax|T ) = lim
ε→0

[
N (ε)

∫ ∞
−∞

dx0Pst(x0)

×
∫ ∞
x0

dMGM(M − ε, tmax|x0)QM(M − ε, T − tmax)
]
, (2.105)

where Pst(x0) is given in Eq. (2.104). We recall that GM(x, t|x0) is the constrained
propagator, defined as the probability density of going from position x0 to position x
in time t, while always remaining below position M . We also recall that the survival
probability QM(x, t) is defined as the probability of remaining below position M up to
time t, having started from position x at the initial time.

For the Langevin equation in Eq. (2.103), the propagator satisfies the forward Fokker-
Plank equation [24]

∂tG
M(x, t|x0) = D∂2

xG
M(x, t|x0) + ∂x

[
V ′(x) GM(x, t|x0)

]
, (2.106)

with initial condition
GM(x, 0|x0) = δ(x− x0) . (2.107)
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The boundary conditions are
GM(M, t|x0) = 0 , (2.108)

corresponding to an absorbing wall at x = M , and

lim
x→−∞

GM(x, t|x0) = 0 . (2.109)

This condition in Eq. (2.109) follows from the observation that if the particle starts from
position x0 at the initial time, it cannot be infinitely far from this initial position at the
finite time t.

On the other hand, the survival probability evolves according to the backward
Fokker-Plank equation [24]

∂tQ
M(x, t) = ∂2

xQ
M(x, t)− V ′(x)∂xQM(x, t) , (2.110)

with initial condition
QM(x, 0) = 1 . (2.111)

The boundary conditions are
QM(M, t) = 0 , (2.112)

meaning that a particle starting from the boundary is immediately absorbed and

lim
x→−∞

QM(x, t) = 1 , (2.113)

since a particle starting infinitely far away from the absorbing wall will never be absorbed
in a finite time.

The Fokker-Planck equations (2.106) and (2.110) are usually easier to solve in Laplace
space, i.e., taking a Laplace transform with respect to t. Thus, we rewrite the relation
in Eq. (2.105) in Laplace space. It is useful to introduce the variables t1 = tmax, corre-
sponding to the time of the maximum, and t2 = T−tmax, corresponding to the remaining
time after the maximum. Considering the double Laplace transform of Eq. (2.105) with
Laplace variables s1 and s2, corresponding to t1 and t2 respectively, we obtain∫ ∞

0
dt1 e

−s1t1
∫ ∞

0
dt2 e

−s2t2 P (tmax = t1|T = t1 + t2) (2.114)

= lim
ε→0

[
N (ε)

∫ ∞
−∞

dx0

∫ ∞
x0

dM Pst(x0)G̃M(M − ε, s1|x0)Q̃M(M − ε, s2)
]
,

where we have defined

G̃M(x, s|x0) =
∫ ∞

0
dt e−stGM(x, t|x0) . (2.115)

and
Q̃M(x, s) =

∫ ∞
0

dt e−stQM(x, t) . (2.116)

Solving the differential equations (2.106) and (2.110), we will derive an exact expres-
sion for the distribution of P (tmax|T ) for the potentials V (x) = α|x| (corresponding to
p = 1) and V (x) = αx2 (corresponding to p = 2). Moreover, in the limit T � 1, we
will improve the simple blocking argument presented in Chapter 1, showing that the full
distribution P (tmax|T ) becomes universal at late times for any p > 0.
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The case p = 1

We start by investigating the case p = 1, corresponding to V (x) = α|x|. The equilibrium
distribution of the process reads

Pst(x) = D

2αe
−α|x|/D . (2.117)

The forward Fokker-Plank equation (2.106) can be exactly solved in this case and, at
leading order in ε, we find

G̃M(M− ε, s|x0) ≈



ε
D
e(α−k)(M−x0)/(2D) if x0 < M < 0 ,

ε
D

(k−α)ekx0/D+α
(k−α)ekM/D+α e

(−α+k)(M−x0)/(2D) if 0 < x0 < M ,

kε
D
e(k−α)x0/(2D)e(−k−α)M/(2D)

k−α+αe−kM/D if x0 < 0 and M > 0 ,

(2.118)

where k =
√
α2 + 4sD. Similarly, solving the backward equation (2.110), we obtain

Q̃M(M − ε, s) ≈


ε
s
k−α
2D

(k+α)ekM/D−α
(k−α)ekM/D+α if M > 0 ,

ε
s
k−α
2D if M < 0 ,

(2.119)

where we have expanded at leading order in ε.
Substituting the expressions for Pst(x), G̃M(M − ε, s|x0), and Q̃M(M − ε, s), into

Eq. (2.105), we get∫ ∞
0

dt1 e
−s1t1

∫ ∞
0

dt2 e
−s2t2 P (tmax = t1|T = t1 + t2) = lim

ε→0

[
N (ε)ε2

] k2 − α
4Dαs2

×
{∫ 0

−∞
dM

∫ M

−∞
dx0 e

αx0/De(α−k1)(M−x0)/(2D) +
∫ ∞

0
dM

∫ M

0
dx0 e

−αx0/D (2.120)

× (k1 − α)ek1x0/D + α

(k1 − α)ek1M/D + α
e(−α+k1)(M−x0)/(2D) (k2 + α)ek2M/D − α

(k2 − α)ek2M/D + α

+
∫ ∞

0
dM

∫ 0

−∞
dx0 e

αx0/Dk1
e(k1−α)x0/(2D)e(−k1−α)M/(2D)

k1 − α + αe−k1M/D

(k2 + α)ek2M/D − α
(k2 − α)ek2M/D + α

}
,

where we have defined k1 =
√
α2 + 4Ds1 and k2 =

√
α2 + 4Ds2.

The constantN (ε) can be determined using the normalization condition of P (tmax|T )
by setting s1 = s2 = s on both sides of Eq. (2.120). Indeed, the left-hand side becomes∫ ∞

0
dt1

∫ ∞
0

dt2 e
−s(t1+t2) P (tmax = t1|T = t1 + t2) =

∫ ∞
0

dT e−sT
∫ T

0
dtmax P (tmax|T )

=
∫ ∞

0
dT e−sT = 1

s
. (2.121)

Setting s1 = s2 = s and computing the integrals over x0 and M , we find that the
right-hand side of Eq. (2.120) becomes

lim
ε→0

[
N (ε)ε2

] D

α2s
. (2.122)
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Thus, equating the left and the right-hand side, we find

lim
ε→0

[
N (ε)ε2

]
= α2

D
. (2.123)

Using this expression for the normalization constant and computing the integrals over
x0, we obtain, after few steps of algebra∫ ∞

0
dt1 e

−s1t1
∫ ∞

0
dt2 e

−s2t2 P (tmax = t1|T = t1 + t2) (2.124)

= 2α
(k1 + α)(k2 + α)

[
D

α
+
∫ ∞

0
e−αM/D (k1 + α− αe−k1M/D)(k2 + α− αe−k2M/D)

(k1 − α + αe−k1M/D)(k1 − α + αe−k2M/D)

]
.

Interestingly, the PDF P (tmax|T ) can be rewritten in the scaling form

P (tmax|T ) = α2

4DF1

(
α2

4Dtmax,
α2

4D (T − tmax)
)
. (2.125)

Plugging this expression into Eq. (2.125), we find that the double Laplace transform of
F1(T1, T2) is given by

F̃1(s1, s2) = 1
2(1 +

√
1 + s1)(1 +

√
1 + s2) (2.126)

×

1 +
∫ ∞

0
dz e−z

(√
1 + s1 + 1− e−

√
1+s1z

) (√
1 + s2 + 1− e−

√
1+s2z

)
(√

1 + s1 − 1 + e−
√

1+s1z
) (√

1 + s2 − 1 + e−
√

1+s2z
)
 .

where we have defined

F̃1(s1, s2) =
∫ ∞

0
dT1e

−s1T1
∫ ∞

0
dT2e

−s2T2F (T1, T2) . (2.127)

The variables T1 = α2tmax/(4D) and T2 = α2(T − tmax)/(4D) represent the rescaled
versions of the time of the maximum tmax and of the time T − tmax after the maximum.
We will use this notation in the coming sections as well.

Since the Laplace transform in Eq. (2.126) is invariant under exchange of s1 and
s2, we find that F1(T1, T2) = F1(T2, T1). This in turn implies that the PDF P (tmax|T )
is symmetric around the midpoint tmax = T/2, i.e., that P (tmax|T ) = P (T − tmax|T ).
This is a consequence of the time-reversal symmetry of equilibrium processes. From this
observation it is easy to show that the first moment of tmax is given by

〈tmax〉 = T

2 . (2.128)

The exact expression in Eq. (2.126) interpolates between the limit of strongly cor-
related variables at short times (T � D/α2) and the weakly-correlated regime at late
times (T � D/α2). Indeed, for this process, the autocorrelation function decays over a
typical timescale ξ ∼ D/α2. Even if it is hard to exactly invert the double Laplace trans-
form in Eq. (2.126) at all times T , this expression can be used to extract the asymptotic
behavior in the two regimes.
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In particular, the short-time limit T � 4D/α2 can be obtained by first expanding
the expression in Eq. (2.126) for large s1 and s2, and then inverting the double Laplace
transform, yielding

P (tmax|T ) ≈ 1
π
√
tmax(T − tmax)

, (2.129)

corresponding to the Arcsine law, describing the distribution of the time of the maximum
for free BM (see Eq. (1.53)). Thus, when observed during a short time window, the
process locally behaves like a BM and the states of the process at different times are
strongly correlated.

On the other hand, when we observe the system for a very long time T � D/α2,
one expects the process to roughly behave like a set of i.i.d. random variables and
the distribution of tmax to be uniform (see Eq. (2.102)). Interestingly, this argument
correctly predicts the shape of the PDF P (tmax|T ) only in the bulk of the distribution,
i.e., for ξ � tmax � (T − ξ) (where the correlation time is ξ ∼ D/α2 in this case). The
bulk regime corresponds, in Laplace space, to the limit s1 , s2 → 0 with s1/s2 fixed (recall
that the Laplace variables s1 and s2 are respectively conjugate to tmax and T − tmax).
Taking this limit on the right-hand side of Eq. (2.126) and inverting the double Laplace
transform one indeed obtains

P (tmax|T ) ≈ 1
T
. (2.130)

However, this result in Eq. (2.130) is not valid in the edge regimes tmax ∼ ξ (left
edge) and T − tmax ∼ ξ (right edge). We will just focus on the left edge, the right
edge can be obtained using the symmetry P (tmax|T ) = P (T − tmax). To study this edge
behavior, we have to take the limit s2 → 0 (corresponding to T → ∞) in Eq. (2.126),
while keeping s1 ∼ O(1), i.e., tmax ∼ O(1). Taking this limit in Eq. (2.126) and then
inverting the double Laplace transform, we obtain [147]

P (tmax|T ) ≈ 1
T
G

(
α2

4Dtmax

)
(2.131)

where
G(z) = 1

2

[
1 + erf(

√
z) + 1√

πz
e−z

]
. (2.132)

This function G(z) has asymptotic behaviors

G(z) ≈


1/(2
√
πz) for z → 0 ,

1 + e−z/(4
√
πz3/2) for z →∞ .

(2.133)

Thus, for tmax � D/α2, we find that P (tmax|T ) diverges as 1/
√
tmax. On the other hand,

for tmax � D/α2 we find P (tmax|T ) ≈ 1/T , smoothly connecting to the bulk regime.
Similarly, using the symmetry of P (tmax|T ), we find that in the right-edge regime where
T − tmax ∼ D/α2 and T � D/α2

P (tmax|T ) ≈ 1
T
G

(
α2

4D (T − tmax)
)
. (2.134)
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Figure 2.13: Schematic representation of the distribution P (tmax|T ) at late times. In
the “bulk” regime where tmax/T ∼ O(1) the distribution is flat, while it diverges for
tmax → 0 and tmax → T , in the “edge” regime. The crossover between the two regimes
is described by the function G(z), given in Eq. (2.132).

To summarize, the function G(z) describes the crossover between the edge and the
bulk regime (see Fig. 2.13). Interestingly, we will show that this behavior of the PDF
P (tmax|T ) is very general.

The case p = 2 (the Ornstein-Uhlenbeck process)

We now investigate the case p = 2, i.e., the case of BM in a harmonic confining poten-
tial V (x) = α|x|2, corresponding to the Ornstein-Uhlenbeck process. In this case, the
equilibrium state reads

Pst(x0) =
√

α

πD
exp

(
− α
D
x2

0

)
. (2.135)

As before, in order to compute the distribution of P (tmax|T ), we need to compute
the constrained propagator GM(x, t|x0) and the survival probability QM(x, t|x0). The
procedure is similar to the one presented in the previous section.

Solving the forward Fokker-Planck equation (2.106) with V (x) = αx2, we obtain, at
leading order in ε,

G̃M(M − ε, s|x0, 0) ≈ ε

D
e−(M2−x2

0)α/(2D)D−s/(2α)
(
−
√

2α/Dx0
)

D−s/(2α)
(
−
√

2α/DM
) , (2.136)

where Dp(z) is the parabolic cylinder function. Similarly, solving the backward Fokker-
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Plank equation (2.110), we find

Q̃M(M − ε, s) ≈ ε

s

M2α
D

+
√

2α
D

D1−s/(2α)
(
−
√

2α
D
M
)

D−s/(2α)
(
−
√

2α
D
M
)
 , (2.137)

where we have expanded to leading order in ε.
Plugging these expressions in Eqs. (2.135), (2.136), and (2.137), into the expression

for the double Laplace transform of P (tmax|T ) in Eq. (2.115), we find∫ ∞
0

dt1

∫ ∞
0

dt2 e
−s1t1−s2t2 P (tmax = t1|T = t1 + t2) (2.138)

= 1√
8πα

∫ ∞
−∞

dz e−z
2/2D−1−s1/(2α) (−z)

D−s1/(2α) (−z)
D−1−s2/(2α)(−z)
D−s2/(2α)(−z) , (2.139)

where, as before, we have determined the constant N (ε) by using the normalization
condition of P (tmax|T ). Note that the distribution P (tmax|T ) is symmetric around the
midpoint tmax = T/2, as a consequence of the time-reversal symmetry of equilibrium
processes. This symmetry is confirmed by numerical simulations (see Fig. 2.17a). Using
this symmetry it is easy to show that the first moment is simply given by

〈tmax〉 = T

2 . (2.140)

We can rewrite the PDF of tmax in the following scaling form

P (tmax|T ) = αFOU(αtmax, α(T − tmax)) . (2.141)

where the scaling function FOU(T1, T2) satisfies
∫ ∞

0
dT1

∫ ∞
0

dT2 e
−s1T1−s2T2FOU(T1, T2) =

∫ ∞
−∞

dz
e−z

2/2
√

8π
D−1−s1/2 (−z)
D−s1/2 (−z)

D−1−s2/2(−z)
D−s2/2(−z) .

(2.142)
Note that this result in Eqs. (2.141) and (2.142) was presented without derivation in
[148]. Here we have presented an intuitive derivation of this result, based on a path-
decomposition approach. Note that the asymptotic analysis of the distribution of tmax
is, to the best of our knowledge, completely new.

As in the case p = 1, we can investigate the distribution of tmax in two opposite
regimes: the regime of strong correlations (T � ξ) and the regime of weak correlations
(T � ξ), where the correlation timescale is ξ ∼ 1/α.

To investigate the regime T � ξ, we take the limit s1 , s2 → ∞ in Eq. (2.142) and
then we invert the double Laplace transform, yielding

P (tmax|T ) ≈ 1
π
√
tmax(T − tmax)

. (2.143)

Thus, on short timescales, the process is strongly correlated and behaves like a BM.
On the other hand, in the opposite limit T � ξ, a detailed analysis is required. As

in the case p = 1, three distinct regimes are present, depending on the value of tmax:
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the bulk regime for ξ � tmax � (T − ξ) and the two edge regimes for tmax � ξ and
tmax � (T − ξ).

The bulk regime corresponds in Laplace space to the limit s1 , s2 → 0 with s1/s2
fixed. Taking this limit in Eq. (2.142) and then inverting the Laplace transform, we get

P (tmax|T ) ≈ 1
T
. (2.144)

Thus, in the bulk of the distribution P (tmax|T ), we obtain the flat distribution that one
would expect from i.i.d. random variables, as we did for the case p = 1. The analysis of
the edge regimes instead shows the signatures of the correlations of the process. Let us
consider the left-edge regime, where tmax � 1/α, (the right-edge regime can be obtained
by symmetry). A detailed analysis of the expression in Eq. (2.142) shows that the edge
regime corresponds in this case to the limit s1 → ∞ and s2 → 0. Taking this limit in
Eq. (2.142) and inverting the Laplace transform yields [147]

P (tmax|T ) ≈ 1
T
G [(log T )αtmax] , (2.145)

where G(z), given in Eq. (2.132), is the same function as in the case p = 1. Interestingly,
the shape of the edge regime is the same in the cases p = 1 and p = 2. The only difference
between the two cases is the width of the edge: in the case p = 1, the width of the edge
regime is O(1) at late times (see Eq. (2.134)), while the edge shrinks as O(1/ log(T ))
for p = 2 (see Eq. (2.145)).

Thus, once appropriately rescaled near the edges, the distribution of tmax turns out
to be the same for p = 1 and p = 2 at late times. This universality is rather unexpected
and led us to investigate whether or not this result can be generalized to any p > 0.
Interestingly, in the next section, we will show that this universality indeed applies to
any potential with p > 0.

Universality at late times

To show that the distribution of tmax becomes universal at late times for any p > 0, we
will use a “blocking” argument similar to the one presented in Chapter 1. This argument
requires that the autocorrelation function of the process decays in time as

〈x(t)x(t′)〉 ∼ e−|t−t
′|/ξ . (2.146)

This turns out to be true for p ≥ 1 [149]. For 0 < p < 1, we have verified numerically that
the autocorrelation function has a stretched-exponential decay in time. For instance,
for p = 1, we verified numerically that (see Fig. 2.14)

〈x(t)x(t′)〉 ∼ e−
√
|t−t′|/ξ , (2.147)

for some timescale ξ > 0. Thus, also for 0 < p < 1 one has a typical timescale over
which correlations decay and one can still apply the blocking argument4.

4Note that in Article 3 we had shown that the universality was valid for p ≥ 1. Here we show that
this result can also be extended to 0 < p < 1.
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Figure 2.14: Semi-logarithmic plot of the correlation function 〈x(t)x(0)〉 as a function
of
√
t for Brownian motion with diffusion constant D = 1 in the potential V (x) =√

|x|. The initial position x(0) is drawn from the equilibrium state of the system. The
continuous red line shows a stretched-exponential decay of the type 〈x(t)x(0)〉 ∼ e−

√
t/ξ.

To proceed, we consider a long trajectory x(t) of the system, with 0 < t < T
and T � ξ. We divide the trajectory into N = T/ξ blocks of size ξ. Since ξ is the
correlation time, variables in different blocks are uncorrelated. Thus, denoting by mi

the maximum of the i-th block, we can approximate the local maxima m1 , . . . ,mN to
be i.i.d. variables. As a consequence, the probability that global maximum

M = max
1≤i≤N

(mi) , (2.148)

is reached in a given block is just 1/N , implying that the distribution of the time tmax
of the maximum is flat, i.e.,

P (tmax|T ) ≈ 1
T
. (2.149)

As shown in the previous sections, this argument is only correct in the bulk of the
distribution P (tmax|T ), i.e., for ξ � tmax � (T − ξ). A more detailed analysis is
required for the edges.

We first consider the left edge of the distribution P (tmax|T ), for tmax � ξ. This
corresponds to the case in which the global maximum is reached in the first block.
Thus, we condition on the event tmax < ξ, which happens with probability 1/N = ξ/T .
If the maximum is reached within the first block, the position of the process x(t) for
0 < t < ξ will be close to the value M of the maximum, since the process is strongly
correlated within each box. Thus, we can linearize the Langevin equation (2.103) around
the value M of the global maximum, yielding

dx(t)
dt

= −V ′(M) + η(t) . (2.150)

Thus, the particle is subject to a constant drift µ = V ′(x).
Moreover, using the results on the universality of the maximum of many i.i.d. vari-

ables, it is possible to show that at late times the maximum behaves deterministically
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at leading order as (see for instance Article 3)

M ∼
(
D

α
log(T )

)1/p
. (2.151)

In particular, this late-time behavior of M only depends on the large-x behavior of the
potential V (x), which we assume to be V (x) ≈ αxp. Thus, for large T , the constant
drift µ is given by

µ = V ′(M) ≈ α p
(
D

α
log(T )

)(p−1)/p
. (2.152)

The distribution of the time at which a BM with drift reaches its global maximum
has been exactly computed in [112] and reads

P (tmax|ξ) = hµ(tmax)h−µ(ξ − tmax)
π
√
tmax(ξ − tmax)

, (2.153)

where
hµ(τ) = e−µ

2τ/(4D) + µ

√
πτ

4D erfc
(
−µ

√
τ

4D

)
. (2.154)

Thus, for 0 ≤ tmax ≤ ξ and T � 1, the distribution of tmax can be written as

P (tmax|T ) = P (tmax < ξ|T )P (tmax|ξ) ≈
ξ

T

hµ(tmax)h−µ(ξ − tmax)
π
√
tmax(ξ − tmax)

, (2.155)

where the drift µ is given in Eq. (2.152). Note that, since we do not know the pre-
cise value of ξ, the result in Eq. (2.155) gives us the expression of P (tmax|t) up to a
multiplicative constant. This prefactor can be computed by imposing that the edge
expression in Eq. (2.155) matches with the bulk expression in Eq. (2.149), yielding

P (tmax|T ) ≈ 1
T
G

(
tmax

λ(T )

)
, (2.156)

where G(z) is given in Eq. (2.132) and the width of the edge region is

λ(T ) = 4D
α2p2

(
D

α
log(T )

)−2(p−1)/p
. (2.157)

Remarkably, the shape of the edge region of P (tmax|T ) is completely universal for any
p > 01 and is described by the function G(z). All the details about the potential
V (x) are contained in the width λ(T ) of the edge region. This quantity is increasing
as log(T )2(1−p)/p for 0 < p < 1, it is of order one for p = 1, while it shrinks extremely
slowly as log(T )−2(p−1)/p. Quite remarkably this simple argument reproduces the correct
asymptotic behavior that we have obtained from the exact solutions in the cases p = 1
and p = 2 (see Eqs. (2.134) and (2.145)). We have verified the validity of the argument
above by performing numerical simulations for different values of p (see Figs. 2.15 and
2.16). Note that the behavior in the right edge (i.e., for tmax → T ) can be obtained
from Eq. (2.156) using the symmetry P (tmax|T ) = P (T − tmax|T ).
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Figure 2.15: Left edge of the scaled distribution TP (tmax|T ) as a function of the scaled
time of the maximum tmax/λ(T ) for p = 1 (panel a), p = 2 (panel b), and p = 3
(panel c). The continuous blue lines display the universal result in Eq. (2.156), which
is the same for all values of p. The symbols are the results of numerical simulations of
Brownian motion in the potential V (x) = |x|p with different total times T . We observe
that for large T the numerical results approach the analytical prediction.
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Figure 2.16: Left edge of the scaled distribution TP (tmax|T ) as a function of the
scaled time of the maximum tmax/λ(T ) for p = 1/2. Note that here the width
λ(T ) = (16D/α2)(D log(T )/α)2 is increasing with T . The continuous blue line cor-
responds to the universal result in Eq. (2.156). The symbols are the results of nu-
merical simulations of Brownian motion in the potential V (x) = 4x2 for |x| < 1 and
V (x) = 4

√
|x| for |x| > 1 with different total times T . We chose the quadratic part for

small x to avoid the divergence in the first derivative V ′(x). We observe that already
at T = 5 the numerical results are in excellent agreement the analytical prediction.

To summarize, we have shown that at late times and for any p > 0, the distribution
of the time tmax of the maximum approaches the universal form

P (tmax|T ) ≈



1
T
G
(
tmax
λ(T )

)
for tmax . λ(T )

1
T

for λ(T )� tmax � T − λ(T )

1
T
G
(
T−tmax
λ(t)

)
for tmax & T − λ(T ) ,

(2.158)

where the width λ(T ) of the edge regime is given in Eq. (2.157) and depends on the
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Figure 2.17: Empirical probability density function for the Ornstein-Uhlenbeck process
with α = D = T = 1 (panel a) and for resetting Brownian motion with D = T = 1
and r = 10 (panel b). In the equilibrium case in panel a the distribution is symmetric
around the midpoint tmax = T/2 (vertical dashed line), while this is not the case for the
nonequilibrium process in panel b.

details of the model.

2.2.2 Out-of-equilibrium processes
We now turn our attention to the case of nonequilibrium stationary processes. We
will consider two models for which the distribution P (tmax|T ) of the time tmax of the
maximum can be computed exactly. In this case, the distribution P (tmax|T ) turns out
to be asymmetric around the midpoint tmax = T/2, i.e., P (tmax|T ) 6= P (T − tmax|T ).
This observation will lead us to formulate a simple criterion to detect nonequilibrium
dynamics in stationary systems.

Resetting Brownian motion

In this section, we consider the case of a Brownian particle subject to stochastic resetting
with constant rate r [36]. In a small time interval [t, t+ dt] the position of the particle
evolves according to

x(t+ dt) =


x(t) +

√
2Dη(t)dt with probabiltiy 1− rdt ,

0 with probabiltiy rdt ,
(2.159)

where D > 0 is the diffusion constant and η(t) is Gaussian white noise. For a typical
realization of the process, see Fig. 2.18. At late times, one can show that the system
reaches the stationary state [36]

Pst(x0) = 1
2

√
r

D
exp

(
−
√
r

D
|x0|

)
. (2.160)

Interestingly, the resetting dynamics are completely irreversible, inducing a net proba-
bility current toward the origin and driving the system out of equilibrium.
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Figure 2.18: Typical trajectory x(t) of a Brownian motion with stochastic resetting in
the interval [0, T ]. The red segments indicate the resetting events. The particle starts
from position x0, drawn from the steady state (2.160) and reaches the global maximum
M at time tmax.

We assume that at time t = 0 the initial position of the system x0 is drawn from the
nonequilibrium steady state in Eq. (2.160). Then, we let the system evolve according to
the evolution equation (2.159) and we investigate the time tmax of the maximum. Note
that the distribution of tmax in the case of BM with stochastic resetting was previously
studied in [116] in the case where the starting position is fixed x0 = 0. Here instead we
let the starting position x0 fluctuate according to the stationary distribution Pst(x0).

To compute the distribution of tmax, we will employ again a path-decomposition
technique as in the previous sections. The relation in Eq. (2.105) can be written as

P (tmax|T ) = lim
ε→0

[
N (ε)

∫ ∞
−∞

dx0Pst(x0)

×
∫ ∞
x0

dM GM
r (M − ε, tmax|x0)QM

r (M − ε, T − tmax)
]
, (2.161)

where the subscript “r” highlights the dependence of the constrained propagator and of
the survival probability on the resetting rate.

We first compute the survival probability QM
r (x, t), defined as the probability that

the process remains below positionM up to time t, having started from position x < M .
In the caseM < 0, no resetting event can occur (otherwise the system would jump above
position M) and hence

QM
r (x, t) = e−rtQM

0 (x, t) , (2.162)
where the term e−rt is the probability that no resetting event occurs up to time t. The
term QM

0 (x, t) is the survival probability of BM without resetting, which is given by [32]

QM
0 (x, t) = erf

(
M − x√

4Dt

)
. (2.163)
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Taking a Laplace transform with respect to t and setting x = M − ε, we find that

Q̃M
r (M − ε, s) ≈ ε√

D(s+ r)
, (2.164)

at leading order in ε.
On the other hand, in the case M > 0, the survival probability satisfies the renewal

equation [36]

QM
r (x, t) = e−rtQM

0 (x, t) + r
∫ t

0
dτ e−rτQM

0 (x, τ)QM
r (0, t− τ) . (2.165)

The first term on the right-hand side corresponds to the case where no resetting occurs,
while the second term corresponds to the case where the first resetting event occurs at
time τ . By taking a Laplace transform of both sides of Eq. (2.165) one can find the
following exact expression for the survival probability

Q̃M
r (x, s) = 1− e−

√
(s+r)/D(M−x)

s+ re−
√

(s+r)/DM
, . (2.166)

Setting x = M − ε and expanding to leading order in ε, we obtain

Q̃M
r (M − ε, s) ≈ ε√

D

√
s+ r

s+ re−
√

(s+r)/DM
. (2.167)

We next focus on the constrained propagator GM
r (x, t|x0), defined as the probability

that the process goes from position x0 to position x in time t, while always remaining
below position M . In the case M < 0, as before, no resetting can occur and hence

GM
r (x, t|x0, 0) = e−rtGM

0 (x, t|x0, 0) , (2.168)

The propagator without resetting GM
0 (x, t|x0, 0) can be computed using the method of

images [32] and reads

GM
0 (x, t|x0, 0) = 1√

4πDt

(
e−(x−x0)2/(4Dt) − e−(2M−x+x0)2/(4Dt)

)
. (2.169)

Taking a Laplace transform with respect to t and setting x = M − ε, we get

G̃M
0 (M − ε, s|x0, 0) ' ε

D
e−
√
s/D(M−x0) , (2.170)

where we have expanded to leading order in ε. Considering the Laplace transform of
Eq. (2.168) with respect to t and using Eq. (2.170), we get

G̃M
r (M − ε, s|x0, 0) ' ε

D
e−
√

(s+r)/D(M−x0) . (2.171)

On the other hand, in the case M > 0, the constrained propagator satisfies the
renewal equation [36]

GM
r (x, t|x0, 0) = e−rtGM

0 (x, t|x0, 0) + r
∫ t

0
dτ e−rτQM

r (x0, t− τ)GM
0 (x, τ |0, 0) . (2.172)
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The first term on the right-hand side corresponds to the case where no resetting occurs
while the second term corresponds to the case where the last resetting event occurs at
time t− τ . The factor QM

r (x0, t− τ) is the probability that the particle remains below
position M up to time t− τ . This relation can be solved by taking a Laplace transform
with respect to t and by using the expressions in Eqs. (2.166) and (2.169), yielding

G̃r(M − ε, s|x0, 0) ' ε

D

r + s e
√

(s+r)/Dx0

r + s e
√

(s+r)/DM
, (2.173)

where we have set x = M − ε and we have expanded to leading order in ε.
We now have all the ingredients required to compute the distribution of tmax us-

ing Eq. (2.161). Indeed, substituting the expressions in Eqs. (2.160), (2.164), (2.167),
(2.171), and (2.173) into Eq. (2.161), we find that the distribution of tmax can be written
in the scaling form

P (tmax|T ) = rFR(rtmax, r(T − tmax)) , (2.174)

where ∫ ∞
0

dT1 e
−s1T1

∫ ∞
0

dT2 e
−s2T2 FR(T1, T2) = 1

2
1

(1 +
√

1 + s1)
√

1 + s2
(2.175)

+ 1
2

√
1 + s2√

1 + s1 − 1

∫ ∞
0

dz e−(1+
√

1+s1)z ez
√

1+s1s1 −
√

1 + s1 + 1(
s1 + e−z

√
1+s1

) (
s2 + e−z

√
1+s2

) .
Interestingly, we observe that the distribution of tmax is not symmetric, i.e., that P (tmax|T ) 6=
P (T − tmax|T ). This is a signature of the nonequilibrium nature of the process. This
asymmetry is confirmed by numerical simulations (see Fig. 2.17b).

Using Eqs. (2.174) and (2.176), we can investigate the asymptotic behaviors of
P (tmax|T ) in the limits of small and large T . In particular, for T � 1/r we obtain

P (tmax|T ) ≈ 1
π
√
tmax(T − tmax)

, (2.176)

which corresponds to the distribution of tmax for BM without resetting (see Eq. (1.53)).
Indeed, since 1/r is the typical time between two subsequent resetting events, for T �
1/r typically no resetting event has occurred yet.

On the other hand, for T � 1/r we obtain [147]

P (tmax|T ) ≈



1
T
G(rtmax) for tmax � 1/r

1
T

for 1/r � tmax � (T − 1/r)

1
T

[2G(rT − rtmax)− 1] for tmax � 1/r ,

(2.177)

where G(z) is given in Eq. (2.132). Interestingly, the late-time shape of the distribution
P (tmax|T ) for BM with resetting is qualitatively similar to the universal result obtained
for equilibrium processes (see Eq. (2.158)). Indeed, in the bulk regime (1/r)� tmax �
(T −1/r), the distribution is flat (as one would expect from a collection of i.i.d. random
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Figure 2.19: The scaled average 〈tmax〉/T as a function of the scaled total time rT
for Brownian motion with stochastic resetting. The continuous blue line corresponds to
the exact result in Eq. (2.178), while the symbols correspond to numerical simulations.
Note that for any equilibrium process one expects 〈tmax〉 = T/2.

variables). On the other hand, in the edge regimes tmax → 0 and tmax → T , the
distribution is described once again by the function G(z). Note, however, that in this
case the distribution is not symmetric.

Since in this case the distribution is asymmetric, i.e., P (tmax|T ) 6= P (T − tmax|T ),
the first moment of tmax is nontrivial. This quantity can be obtained from the expression
in Eq. (2.176) by (i) differentiating with respect to s1, (ii) setting s1 = s2 = s, and (III)
inverting the Laplace transform (this last step turns out to be rather nontrivial in this
case). This yields [147]

〈tmax(T )〉 = rf(rT ) . (2.178)

where the scaling function f(t) is given by

f(t) = 1
96

[
− 4t(2t2 + 3t− 18) + 2√

π

√
t(3 + 16t+ 4t2)e−t (2.179)

+ (−3− 30t+ 36t2 + 8t3) erf(
√
t)
]

+ 1
2

[
e−t − 2√

π
Γ
(3

2 , t
)]

+
∞∑
k=1

gk(t) ,

where Γ(a, t) =
∫∞
t xa−1e−x is the upper incomplete Gamma function. The function

gk(t) reads

gk(t) = (−1)k 1
2(k + 1)(k + 2)

∫ t

0
dτ hk(t− τ)τ k+1

(
1

(k + 1)! + τ

(k + 2)!

)
, (2.180)
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where

hk(t) = 1
k2

{
−e−t+t/k2

k(1− k)2 + e−t
k [k(1 + k)3 − 2k3t]√

πt(1 + k)3

}
(2.181)

+ 1
k2

[
erf

(√
t

k

)
e−t+t/k

2(1− k)2
]

1
(1 + k)4 e

−t+t/(1+k)2 [(1 + k)2(k2 − 2) + 2kt
]

×
[
1− erf

( √
t

(k + 1)

)]
.

Evaluating the integral over τ and the sum over k above numerically, we obtain the
analytical curve in Fig. 2.19, which is in good agreement with numerical simulations.

Run-and-tumble particle in a confining potential

In this section, we investigate the time tmax of the maximum for a run-and-tumble
particle (RTP) moving in a confining potential V (x) = µ|x|. The position x of the
particle evolves according to

dx

dt
= f(x) + v0 σ(t) , (2.182)

where v0 > 0 is the velocity of the particle, f(x) = −V ′(x) is the external force. The term
σ(t) = ±1 is telegraphic noise, flipping its sign at a constant rate γ. Thus, for timescales
of the order of 1/γ the motion of the particle is ballistic, breaking the detailed balance
condition. Thus, this system is out of equilibrium. To understand this it is sufficient
to observe that in a small time interval dt the system can go from the state (x,+), i.e.,
from position x with positive direction, to the state (x+(v0 +f(x))dt,+). However, the
reversed transition is not possible, inducing a probability current in the phase space.

We will consider the case v0 > µ, for which the stationary distribution reads [54]

Pst(x0) = γ µ

v2
0 − µ2 exp

(
− 2γµ
v2

0 − µ2 |x0|
)
. (2.183)

It is useful to consider also the joint distribution P σ
st(x0) of the position x0 and of the

direction σ = ± of the particle in the steady state, which is given by [54]

P±st (x0) = 1
2

(
1± µ

v0
sign(x)

)
γ µ

v2
0 − µ2 exp

(
− 2γµ
v2

0 − µ2 |x0|
)
. (2.184)

We consider a single RTP starting from position x0 and direction σ, jointly drawn
from the stationary state in Eq. (2.184). We want to compute the distribution P (tmax|T )
of the time tmax at which the maximum of the position is reached. To do this, we will
use a path-decomposition strategy similar to the one used in previous sections. Note
that as a consequence of the persistent motion of the particle, the events tmax = 0 and
tmax = T happen with a finite probability and have to be considered separately.

We start by considering the case 0 < tmax < T . In this case, the time of the
maximum necessarily coincides with a tumbling event (the particle necessarily arrives
at the global maximum with positive velocity and then it immediately tumbles). We
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thus split the time interval [0, T ] into the three subintervals [0, tmax] (I), [tmax, tmax + dt]
(II), where dt is assumed to be small, and [tmax + dt, T ] (III). In the interval (I), the
particle starts from position x0 with direction σ, it stays below the maximal value M
and reaches M for the first time at time tmax. Thus, the probability weight of the first
interval is G+

M(M, tmax|x0, σ), where the constrained propagator G±M(x, t|x0, σ) is defined
as the probability that the particle reaches position x with direction ± at time t while
always remaining below position M , having started from position x0 with direction σ.
In the small time interval (II), the particle has to tumble, i.e., to change its direction
from positive to negative. This will happen with probability γdt. In the last interval
[tmax + dt, T ] the particle starts from position M with negative velocity and remains
below position M up to time T , with probability weight Q−M(M,T − tmax). Here, the
survival probability Qσ

M(x, t) is defined as the probability that the particle remains
below position M up to time t, starting from position x with direction σ. Since the
joint process (x, σ) is Markov, the distribution of tmax can be written as the product of
the three probability weights. Thus, integrating over both the initial position x0 and
the maximal value M > x0 and summing over the initial direction σ, we get

P (tmax|T ) = A γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G+
M(M, tmax|x0, σ) Q−M(M,T − tmax) ,

(2.185)
where A is a normalization constant. This expression is valid for 0 < tmax < T . Note
that no cutoff is required in this case.

Let us now focus on the events tmax = 0 and tmax = T . In particular, tmax = 0
corresponds to trajectories where the particle starts from position x0 with negative
velocity and remains below its starting position x0 up to time T . Thus, since the
starting position and direction are drawn from the stationary distribution P σ

st(x0), we
obtain

Prob.(tmax = 0|T ) =
∫ ∞
−∞

dx0 P
−
st (x0)Q−x0(x0, T ) . (2.186)

With a similar argument, we obtain

Prob.(tmax = T |T ) =
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0) G+

M(M,T |x0, σ) . (2.187)

Thus, using the Eqs. (2.185), (2.186), and (2.187), we find that for 0 ≤ tmax ≤ T

P (tmax|T ) = δ (tmax)
∫ ∞
−∞

dx0 P
−
st (x0)Q−x0(x0, T )

+ A γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G+
M(M, tmax|x0, σ) Q−M(M,T − tmax)

+ δ (tmax − T )
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0) G+

M(M,T |x0, σ) , (2.188)

where the constant A can be computed from the normalization condition∫ T

0
dtmax P (tmax|T ) = 1 . (2.189)

We now need to compute the constrained propagator G±M(x, t|x0, σ) and the survival
probability Q±M(x, t). These quantities can be obtained by solving the Fokker-Planck
equation associated with the process.
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The propagator G±M(x, t|x0, σ) satisfies [54]



∂t G
+
M(x, t|x0, σ) = −∂x

[
(−µ sign(x) + v0)G+

M(x, t|x0, σ)
]
− γ G+

M(x, t|x0, σ)
+γ G−M(x, t|x0, σ) ,

∂t G
−
M(x, t|x0, σ) = −∂x

[
(−µ sign(x)− v0)G−M(x, t|x0, σ)

]
− γ G−M(x, t|x0, σ)

+γ G+
M(x, t|x0, σ) ,

(2.190)
with initial condition

G±M(x, t = 0|x0, σ) = δ (x− x0) δσ,± , (2.191)

and boundary conditions 
G±M(−∞, t|x0, σ) = 0

G−M(M, t|x0, σ) = 0 .
(2.192)

The boundary condition on the second line of Eq. (2.192) can be derived with the
following argument. If a particle arrives at position M with a negative velocity, it must
have visited the region x > M . However, we are constraining the particle to remain
below position M and thus G−M(M, t|x0, σ) has to vanish. Note that G+

M(M, t|x0, σ)
remains instead unspecified.

This differential equation can be solved by taking a Laplace transform with respect
to t and defining

G̃±M(x, s|x0, σ) =
∫ ∞

0
dt e−stG±M(x, t|x0, σ) . (2.193)

In particular, for x = M , we obtain [147]

G̃+
M(M, s|x0,+) (2.194)

=



1
v0 + µ

e−(k−(s+γ)µ)(M−x0)/(v2
0−µ

2) for x0 < 0 ,M < 0 ,

k
e−(µ(s+γ)+k)M/(v2

0−µ
2) e(−µ(s+γ)+k)x0/(v2

0−µ
2)

v0(k − µ(γ + s)) + µ(v0(γ + s)− k)e−2kM/(v2
0−µ2) for x0 < 0 ,M > 0 ,

1
v0 − µ

(k − v0(s+ γ))µ+ e2kx0/(v2
0−µ

2)v0((s+ γ)µ− k)
(k − v0(s+ γ))µ+ e2kM/(v2

0−µ2)v0((s+ γ)µ− k)
×e(k−µ(s+γ))(M−x0)/(v2

0−µ
2) for x0 > 0 ,M > 0 ,

where
k =

√
s2v2

0 + 2sv2
0γ + γ2µ2 . (2.195)
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Similarly, in the case σ = −, we obtain

G̃+
M(M, s|x0,−) (2.196)

=



v0(γ+s)−k
γ(v2

0−µ2) e
−(k−(s+γ)µ)(M−x0)/(v2

0−µ
2) for x0 < 0 ,M < 0 ,

k(v0(γ+s)−k)
γ(v0−µ)

e−(µ(s+γ)+k)M/(v2
0−µ

2) e(−µ(s+γ)+k)x0/(v2
0−µ

2)

v0(k−µ(γ+s))+µ(v0(γ+s)−k)e−2kM/(v2
0−µ

2) for x0 < 0 ,M > 0 ,

v0(s+γ)−k
γ(v2

0−µ2)
(k−v0(s+γ))µ+e2kx0/(v2

0−µ
2)v0((s+γ)µ−k)

(k−v0(s+γ))µ+e2kM/(v2
0−µ

2)
v0((s+γ)µ−k)

×e(k−µ(s+γ))(M−x0)/(v2
0−µ

2) for x0 > 0 ,M > 0 ,

Similarly, the survival probability satisfies the following backward Fokker-Planck
equations [54]

∂t Q

+
M(x, t) = (−µ sign(x) + v0) ∂xQ+

M(x, t) + γ Q+
M(x, t)− γ Q−M(x, t) ,

∂t Q
−
M(x, t) = (−µ sign(x)− v0) ∂xQ−M(x, t) + γ Q−M(x, t)− γ Q+

M(x, t)
(2.197)

with initial condition
Q±M(x, t = 0) = 1 , (2.198)

for any x < M . The boundary conditions in this case are given byQ
±
M(−∞, t) = 1 ,

Q+
M(M, t) = 0 .

(2.199)

The second boundary condition encodes the fact that if the particle starts at M with a
positive velocity, it will immediately go above M . Note that in this case the boundary
condition for Q−M(M, t) remains unspecified.

This coupled equations can be solved by considering the Laplace transform with
respect to t and defining

Q̃±M(x, s) =
∫ ∞

0
dt e−stQ±M(x, t) . (2.200)

In particular, for x = M , we get

Q̃−M(M, s) =



1
s

k + v0s− γµ
k + v0(s+ γ) for M < 0 ,

1
s

1
k + v0(s+ γ)
×
[
k + v0s+ µγ − 2kγµ(v0−µ)

(v0(s+γ)−k)µ+v0(k−(s+γ)µ)e2kM/(v2
0−µ

2)

]
for M > 0 .

(2.201)
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Figure 2.20: Probability density function Pbulk(tmax|T ) as a function of the time tmax
of the maximum for a run-and-tumble particle in a confining potential V (x) = |x|, for
0 < tmax < T . Note that since the events “tmax = 0” and “tmax = T” occur with finite
probability, the distribution is not normalized to unity for 0 < tmax < T . The curve is
obtained by numerical simulations with T = 5 and v0 = 2. The distribution Pbulk(tmax|T )
appears to be symmetric around the midpoint tmax = T/2. We find numerically that
P0(T ) = Prob.(tmax = 0) ≈ 0.087 and P1(T ) = Prob.(tmax = T ) ≈ 0.165.

We now have all the ingredients to use the formula for P (tmax|T ) in Eq. (2.188).
To proceed, we first consider a double Laplace transform of Eq. (2.188) with respect to
t1 = tmax and t2 = T − tmax, yielding∫ ∞

0
dt1

∫ ∞
0

dt2 e
−s1t1−s2t2P (tmax = t1|T = t1 + t2) =

∫ ∞
−∞

dx0 P
−
st (x0)Q̃−x0(x0, s2)

+ A γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G̃+
M(M, s1|x0, σ) Q̃−M(M, s2)

+
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0) G̃+

M(M, s1|x0, σ) . (2.202)

First of all, using the expressions above for P σ
st, G̃+

M , and Q̃−M and imposing normaliza-
tion, we find that A = 1. It is useful to rewrite P (tmax|T ) as

P (tmax|T ) = P0(T )δ(tmax) + Pbulk(tmax|T ) + P1(T )δ(tmax − T ) , (2.203)

where ∫ ∞
0

dt1

∫ ∞
0

dt2 e
−s1t1−s2t2Pbulk(tmax = t1|T = t1 + t2) (2.204)

= γ
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0)

∫ ∞
x0

dM G̃+
M(M, s1|x0, σ) Q̃−M(M, s2) ,
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∫ ∞
0

dT e−sTP0(T ) =
∫ ∞
−∞

dx0 P
−
st (x0)Q̃−x0(x0, s) , (2.205)

and ∫ ∞
0

dT e−sTP1(T ) =
∑
σ=±

∫ ∞
−∞

dx0 P
σ
st(x0) G̃+

M(M, s|x0, σ) . (2.206)

Interestingly, for 0 < tmax < T one can check that Pbulk(tmax|T ) = Pbulk(T − tmax|T ),
i.e., that the central part of the distribution of tmax is symmetric around the midpoint
tmax = T/2. However, it is easy to show that the amplitudes P0(T ) and P1(T ) of
the delta functions in tmax = 0 and tmax = T are in general different. Thus, the full
distribution P (tmax|T ), for 0 ≤ tmax ≤ T is not symmetric around tmax = T/2. This is
a consequence of the nonequilibrium nature of the process.

Criterion to detect nonequilibrium fluctuations in steady states

As we have shown in the previous sections, at equilibrium the PDF P (tmax|T ) is usually
symmetric around its midpoint tmax = T/2, i.e., P (tmax|T ) = P (T − tmax|T ). On the
other hand, we have also observed that in general this is not the case for nonequilibrium
processes. In this section, we will first show that the distribution of tmax is symmetric for
any equilibrium process, as a consequence of the time-reversal symmetry. This will lead
us to formulate a simple criterion to detect nonequilibrium fluctuations in stationary
time series.

To keep the notation simple, we consider a discrete-time process xi, with 1 ≤ i ≤ T
(here i and T are integer numbers). It is immediate to generalize the derivation to
processes in continuous time. Denoting by P ({xi}) the probability of observing the
trajectory {xi} = {x1, . . . , xT}, the distribution of the time tmax of the maximum can
be written as

P (tmax|T ) =
∫ ∞
−∞

dx1 . . .
∫ ∞
−∞

dxT Θtmax({xi})P ({xi}) , (2.207)

where
Θk ({xi}) =

∏
i 6=k

θ (xk − xi) (2.208)

and θ(z) is the Heaviside step function, i.e., θ(z) = 1 for z > 0 and θ(z) = 0 otherwise.
In other words, Θk ({xi}) is one if the maximum of the trajectory {xi} is reached at step
k and zero otherwise. Thus, in Eq. (2.207), we sum over all trajectories for which the
time of the maximum is tmax. We next define {x̄i} = {xT−i} the time-reversed version
of {xi}. For an equilibrium process, it is immediate to show that, as a consequence
of the detailed balance condition, P ({xi}) = P ({x̄i}) (in other words, the process is
symmetric under time reversal). Using this result in Eq. (2.207) and changing variables
xi → x̄i = xT−i, we obtain

P (tmax|T ) =
∫ ∞
−∞

dx̄1 . . .
∫ ∞
−∞

dx̄T Θtmax({x̄T−k})P ({x̄k}) . (2.209)

Using the relation Θtmax({x̄T−i}) = ΘT−tmax({x̄i}), we find

P (tmax|T ) =
∫ ∞
−∞

dx̄1 . . .
∫ ∞
−∞

dx̄T ΘT−tmax({x̄i})P ({x̄i}) . (2.210)
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The expression on the right-hand side is precisely P (T−tmax|T ) (compare with Eq. (2.207)),
yielding P (tmax|T ) = P (T − tmax|T ), which is thus a necessary, but not a sufficient, con-
dition for a stationary process to be at equilibrium. As a consequence, if for a stationary
process the distribution of tmax is not symmetric, then the process is necessarily out of
equilibrium.

Interestingly, this observation can be used to detect nonequilibrium fluctuations in
stationary time series. Imagine that you have access to a long time series x(t) but
you do not know the precise details of the dynamics. This trajectory could represent
the position of a molecular motor or a diffusive particle. This situation is particularly
relevant in light of the recent developments in single-particle tracking [150]. Then, a
very natural question is whether or not the underlying system is at equilibrium. This
kind of question is quite common in the context of living systems, where nonequilibrium
dynamics signal active consumption of energy.

In recent years, many different techniques have been developed to both detect
nonequilibrium fluctuations and estimate the associated dissipation (for a recent re-
view, see [151]). One of the most popular methods is based on the verification of the
fluctuation-dissipation theorem, which relates correlation and response functions at equi-
librium [152–155]. In the presence of a violation of this theorem, one can immediately
conclude that the process is out of equilibrium. For instance, this technique has been
applied to show the nonequilibrium nature of the motion of red blood cells.

Note however that to verify the validity of the fluctuation-dissipation theorem one has
to measure the response function. This requires perturbing the system, which is usually
quite nontrivial in practice. More recently, several other methods have been developed
based for instance on the detection of violations of the detailed balance condition [156–
159] or on the analysis of waiting-time distributions [160,161]. Some of these techniques
also provide a quantitative measure of the nonequilibrium fluctuations of the system,
usually as a bound on the entropy production [162–166].

Exploiting the symmetry of P (tmax|T ) at equilibrium, we propose a new method
to decide whether the stationary process x(t) is nonequilibrium. First, (i) divide the
time series into N blocks of duration T , (ii) for each block, compute the time timax
at which the maximum is reached (where the index i identifies the block, (iii) from
these N values t1max , . . . t

N
max, build the empirical PDF P (tmax|T ). If P (tmax|T ) is not

symmetric around tmax = T/2, then the process is necessarily out of equilibrium. On
the other hand, if P (tmax|T ) is symmetric, our test is inconclusive (since there can be
nonequilibrium processes for which P (tmax|T ) is symmetric). Note that in the case of
a multidimensional system, one can apply our criterion to any of its one-dimensional
components. If P (tmax|T ) is not symmetric in at least one of these components, then
the full system is nonequilibrium.

Note that there are nonequilibrium processes for which the distribution of tmax is
symmetric. A large class of examples is provided by Gaussian stationary processes.
Indeed, it is possible to show that any one-dimensional Gaussian stationary process is
invariant under time-reversal symmetry (this is a consequence of the fact that Gaussian
processes only depend on the first two moments of the process distribution). As a
particular example, we can consider a single one-dimensional active Ornstein-Uhlenbeck
process (AOUP) in a harmonic potential V (x) = αx2 [51]. The position x(t) of the
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AOUP evolves according to the Langevin equation

dx(t)
dt

= −αx(t) + v(t) +
√

2Dξ(t) , (2.211)

where ξ(t) is a Gaussian white noise with zero mean and correlator 〈ξ(t)ξ(t′)〉 = δ(t− t′)
and v(t) evolves as the Ornstein-Uhlenbeck process

dv(t)
dt

= − v
τa

+
√

2Da

τa
ζ(t) , (2.212)

where Da > 0, τa > 0, and ζ(t) is Gaussian white noise. We also assume that ξ(t)
and ζ(t) are uncorrelated. Note that for τa > 0 the motion of the particle is persistent.
Note also that even though x(t) depends on the evolution of v(t), there is no feedback
from v(t) to x(t). One can show that this creates probability currents in the phase
space (x, v) and thus the system is out of equilibrium. Interestingly, since the equations
of motion for x and v are linear, the process is Gaussian. Thus, it follows that the
distribution P (tmax|T ) of the time tmax at which the position x is maximal is always
symmetric around tmax = T/2.

– 76 –



Article 1

Time between the maximum and the minimum of a stochastic
process
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+ https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.200201
+ https://arxiv.org/abs/1909.05594

Abstract

We present an exact solution for the probability density function P (τ = tmin−
tmax|T ) of the time-difference between the minimum and the maximum of a one-
dimensional Brownian motion of duration T . We then generalise our results to a
Brownian bridge, i.e. a periodic Brownian motion of period T . We demonstrate
that these results can be directly applied to study the position-difference between
the minimal and the maximal height of a fluctuating (1 + 1)-dimensional Kardar-
Parisi-Zhang interface on a substrate of size L, in its stationary state. We show
that the Brownian motion result is universal and, asymptotically, holds for any
discrete-time random walk with a finite jump variance. We also compute this
distribution numerically for Lévy flights and find that it differs from the Brownian
motion result.
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+ https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.052111
+ https://arxiv.org/abs/2002.12352

Abstract

We consider a one-dimensional Brownian motion of fixed duration T . Using
a path-integral technique, we compute exactly the probability distribution of the
difference τ = tmin − tmax between the time tmin of the global minimum and the
time tmax of the global maximum. We extend this result to a Brownian bridge, i.e.
a periodic Brownian motion of period T . In both cases, we compute analytically
the first few moments of τ , as well as the covariance of tmax and tmin, showing
that these times are anti-correlated. We demonstrate that the distribution of τ for
Brownian motion is valid for discrete-time random walks with n steps and with
a finite jump variance, in the limit n → ∞. In the case of Lévy flights, which
have a divergent jump variance, we numerically verify that the distribution of τ
differs from the Brownian case. For random walks with continuous and symmetric
jumps we numerically verify that the probability of the event “τ = n” is exactly
1/(2n) for any finite n, independently of the jump distribution. Our results can be
also applied to describe the distance between the maximal and minimal height of
(1 + 1)-dimensional stationary-state Kardar-Parisi-Zhang interfaces growing over
a substrate of finite size L. Our findings are confirmed by numerical simulations.
Some of these results have been announced in a recent Letter [Phys. Rev. Lett.
123, 200201 (2019)].
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Distribution of the time of the maximum for stationary
processes
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+ https://iopscience.iop.org/article/10.1209/0295-5075/ac19ee
+ https://arxiv.org/abs/2104.07346

Abstract

We consider a one-dimensional stationary stochastic process x(τ) of duration
T . We study the probability density function (PDF) P (tm|T ) of the time tm at
which x(τ) reaches its global maximum. By using a path integral method, we
compute P (tm|T ) for a number of equilibrium and nonequilibrium stationary pro-
cesses, including the Ornstein-Uhlenbeck process, Brownian motion with stochas-
tic resetting and a single confined run-and-tumble particle. For a large class of
equilibrium stationary processes that correspond to diffusion in a confining po-
tential, we show that the scaled distribution P (tm|T ), for large T , has a universal
form (independent of the details of the potential). This universal distribution is
uniform in the “bulk”, i.e., for 0 � tm � T and has a nontrivial edge scaling
behavior for tm → 0 (and when tm → T ), that we compute exactly. Moreover,
we show that for any equilibrium process the PDF P (tm|T ) is symmetric around
tm = T/2, i.e., P (tm|T ) = P (T − tm|T ). This symmetry provides a simple method
to decide whether a given stationary time series x(τ) is at equilibrium or not.

– 81 –

https://iopscience.iop.org/article/10.1209/0295-5075/ac19ee
https://arxiv.org/abs/2104.07346




Chapter 3

Universal properties of run-and-tumble
particles

This and the next chapters are dedicated to the study of the statistical properties of
run-and-tumble particles (RTPs). This model belongs to a larger class of nonequilib-
rium processes known as active matter [45, 48]. The common feature of active matter
systems is that they are composed of individual elements, able to locally absorb en-
ergy and convert it into some form of work (for instance, intracellular cargo transport
for kinesin motors). This differentiates active systems from their passive counterpart
(e.g. Brownian motion), whose motion is governed by the thermal fluctuations of the
environment. Active matter systems can be observed in several artificial and natural
situations, e.g., vibrated granular matter [167], active gels [168], and bacteria [44,45].

The RTP model was first known in the stochastic processes literature as persistent
random walk [169–174]. In recent years, it has been applied to describe the persistent
motion of a class of bacteria, including E. coli [44], which move along a fixed direc-
tion with constant velocity (they “run”), randomizing their direction (they “tumble”)
at random times. Interestingly, this simple model displays several nontrivial features,
including clustering at the boundaries of a confining domain [49], non-Boltzmann dis-
tribution in the steady state [53–56], and jamming [97, 98]. Moreover, the RTP model
has also been applied to investigate the dynamics of active particles in the presence of
obstacles [175].

In this chapter, we consider a single RTP in d dimensions and with speed distribution
W (v). We assume that at the initial time the particle is at the origin and that it starts
moving in a direction (chosen isotropically) with speed v1 > 0, drawn from the distri-
bution W (v). After some random time τ1, exponentially distributed with average 1/γ,
the particle tumbles, i.e., it chooses a new direction and a new speed v2, independently
drawn from W (v), and starts moving in the new direction with the new velocity. This
run-and-tumble motion continues up to the fixed time t. For a schematic trajectory of
the process, see Fig. 3.1. The model is therefore parametrized by three quantities: (i)
the tumbling rate γ, which sets the timescale of the RTP process, (ii) the dimensionality
d of the system, and (iii) the speed distribution W (v). We assume that the PDF W (v)
is normalized to unity for v > 0, i.e.,

∫∞
0 dv W (v) = 1. Note that the standard RTP

model with constant speed v0 > 0 corresponds to the choice W (v) = δ(v − v0). The
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Figure 3.1: Typical trajectory of a run-and-tumble particle in d = 2. The particle is
initially at the origin O and it starts moving in a random direction (chosen isotropi-
cally) for a distance l1 = v1τ1, where v1 is a random speed, drawn from the probability
distribution W (v) and τ1 is a random time, exponential with rate γ. After that, the
particle tumbles, i.e., it chooses a new orientation and starts moving in that direction
with velocity v2, independently drawn form W (v). After a time τ2, exponential with
rate γ, it tumbles again and so on. This process continues up to the total fixed time t.
The number n of tumblings is also a random variable. Note that by definition n ≥ 1,
since the starting point is considered as a tumbling event.

goal of this chapter is to present our recent results on the extremal properties of this
model. Interestingly, many of these features turn out to be completely universal, i.e.,
independent of d and W (v).

3.1 Survival probability in arbitrary dimension
The first time tf at which a process reaches a given state, also known as first-passage
time, is a central quantity in several contexts, from chemistry, in which the first en-
counter time between two molecules plays a crucial role [74], to finance, in which agents
use limit orders to buy an asset only below a given price. Due to the generality of
first-passage problems, several new applications are often found. For a pedagogical in-
troduction to first-passage processes see [32]. As explained in the introduction of this
thesis, questions on first-passage times are intimately related to the statistics of the
extremes of the process.

To characterize the statistical properties of the first-passage time tf one is usually
interested in computing its PDF, known as first-passage probability. Equivalently, one
can also investigate its cumulative distribution S(t) = Prob.(tf > t), which is usually
called survival probability. For a single RTP, the survival probability has been computed
in one dimension and with constant velocity v0 > 0, both with and without an external
potential [57, 58, 172, 176, 177]. The main analytical simplification in the case d = 1 is
that the particle velocity can only take two values ±v0. As a consequence, it is easy
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to track the velocity degree of freedom and to write a Fokker-Plank equation for the
survival probability. However, the survival probability is much harder to compute in
d > 1 and only a few analytical results have been obtained in that case [178]. In this
section, we investigate the first-passage properties of the RTP model for arbitrary d and
W (v).

First of all, let us define precisely the survival probability. We define S(t) as the
probability that the x-component of the particle remains positive up to time t. This in-
deed corresponds to the survival probability in the presence of an absorbing hyperplane
passing through the origin and perpendicular to the x-axis. Note that in the case of a
passive Brownian motion the different components of the process are completely inde-
pendent. Thus, computing the survival probability of one component simply reduces to
a one-dimensional problem. However, for the RTP process, the different components are
correlated and thus the first-passage properties of the x component do not immediately
reduce to the one-dimensional case. In the following, we present a mapping from the
RTP trajectory in d dimensions and continuous time to a one-dimensional discrete-time
random walk. This mapping allows us to compute several first-passage properties of the
RTP model that cannot be derived with the standard approach, based on solving the
Fokker-Planck equation associated with the process.

We denote by τi the duration of the i-th running phase, i.e., the time between the
i-th and the (i+ 1)-th tumbling. For the first (n− 1) time intervals, these variables are
simply exponentially distributed with average value 1/γ, i.e.,

p(τ) = γe−γτ . (3.1)

However, the last running phase is yet to be completed (since we are fixing the total
time to be t). As a consequence, the probability weight of the last time τn is∫ ∞

τn
dτ γe−γτ = e−γτ . (3.2)

Therefore, the joint probability distribution of the running times {τi} = {τ1, τ2, . . . , τn}
and of the number of tumblings n reads

P ({τi}, n|t) =
[
n−1∏
i=1

γ e−γ τi
]
e−γ τn δ

(
n∑
i=1

τi − t
)
, (3.3)

where the delta function constrains the total time to be t.
We next consider the d-dimensional vectors {~li} = {~l1,~l2, . . .~ln} describing the dis-

placement of the particle during each running phase (see Fig. 3.1). The orientation of
these vectors is random and isotropically distributed. Their norms {li} = {l1, l2, . . . , ln}
are given by li = vi τi, where the random speeds vi are independently drawn from W (v).
Thus, from Eq. (3.3), we find that the joint distribution of {li} and the number of
tumblings n reads

P ({li}, n|t) = 1
γ

n∏
i=1

∫ ∞
0

dviW (vi)
γ

vi
e−γ li/vi δ

(
n∑
i=1

li
vi
− t

)
. (3.4)

From this expression, we now compute the distribution of the displacements {xi} =
{x1 , . . . , xn} of the particle in the x direction. Note that the variable xi is the first
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entry of the random vector ~li. If we fix the norm li of the vector ~li, then one can show
that the distribution of xi is given by (see Article 4)

P (xi|li) = 1
li
fd

(
xi
li

)
, (3.5)

where
fd(z) = Γ(d/2)√

π Γ((d− 1)/2) (1− z2)(d−3)/2 θ(1− |z|) . (3.6)

Here Γ(y) is the Gamma function and θ(y) is the Heaviside step function: θ(y) = 1 if
y ≥ 0 and θ(y) = 0 if y < 0. Note that this function fd(z) is symmetric around z = 0,
i.e., fd(z) = fd(−z).

The joint distribution of the x-component displacements {xi} conditioned on the
variables {li} simply reads

P ({xi}|{li}) =
n∏
i=1

1
li
fd

(
xi
li

)
, (3.7)

where we have used the independence of the variables {xi}. Using Bayes theorem, we
get

P ({xi}, {li}, n|t) = P ({xi}|{li}) P ({li}, n|t)

= 1
γ

n∏
i=1

∫ ∞
0

dviW (vi)
1
li
fd

(
xi
li

)
γ

vi
e−γ li/viδ

(
n∑
i=1

li
vi
− t

)
, (3.8)

where we have used the results in Eqs. (3.4) and (3.7). Integrating over the variables
{li}, we find that the joint distribution of {xi} and n reads

P ({xi} , n|t) = 1
γ

n∏
i=1

∫ ∞
0

dviW (vi)
∫ ∞

0
dli

1
li
fd

(
xi
li

)
γ

vi
e−γ li/vi δ

(
n∑
i=1

li
vi
− t

)
. (3.9)

This result describes the effective process obtained by projecting the RTP motion onto
the x-axis. Note that the resulting process still explicitly depends on d.

The formula in Eq. (3.9) is not very handy due to the delta function, which constrains
the sum of the xi variables. To solve this problem and decouple the variables, it is
convenient to take a Laplace transform with respect to t, yielding∫ ∞

0
dt e−stP ({xi} , n|t) = 1

γ

n∏
i=1

∫ ∞
0

dviW (vi)
∫ ∞

0
dli

1
li
fd

(
xi
li

)
γ

vi
e−(γ+s)li/vi

= 1
γ

(
γ

γ + s

)n n∏
i=1

p̃s(xi) , (3.10)

where we have defined

p̃s(x) =
∫ ∞

0
dl

1
l
fd

(
x

l

) ∫ ∞
0

dvW (v) γ + s

v
e(γ+s)l/v . (3.11)

In going from the first to the second line in Eq. (3.10), we have divided and multiplied
by a constant factor (γ+s)n. In this way, the function p̃s(x) is now correctly normalized
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to unity. Moreover, since p̃s(x) is always positive, this quantity can be interpreted as a
probability density function. Note that due to the symmetry fd(z) = fd(−z), p̃s(x) is
symmetric around x = 0. Thus, p̃s(x) is continuous and symmetric.

Inverting the Laplace transform in Eq. (3.10) formally, we finally obtain

P ({xi}, n|t) =
∫ ds

2π ie
s t 1
γ

(
γ

γ + s

)n n∏
i=1

p̃s(xi) , (3.12)

where the integral is over the Bromwich contour (imaginary axis in this case) in the
complex s plane. Interestingly, this relation in Eq. (3.12) can be used to map the
x-component projection of the RTP motion to a one-dimensional RW process.

The survival probability S(t) of the RTP process can be expressed in terms of the
variables {xi} as follows. It is useful to define the partial sums

Xk = x1 + x2 + . . .+ xk (3.13)

with 1 ≤ k ≤ n. Then, since the RTP moves ballistically between tumblings, S(t) is
simply the probability that all the sums Xk, for 1 ≤ k ≤ n are positive. Thus, summing
over the number n of tumblings, we get

S(t) =
∞∑
n=1

∫ ∞
−∞

dx1 . . .
∫ ∞
−∞

dxn θ(X1) . . . θ(Xn)P ({xi}, n|t) , (3.14)

where the theta functions constrain the partial sums to be positive. Substituting the
expression for P ({xi}, n|t) given in Eq. (3.12) into Eq. (3.14), we get

S(t) =
∫ ds es t

2π iγ

∞∑
n=1

(
γ

γ + s

)n ∫ ∞
−∞

dx1 . . .
∫ ∞
−∞

dxn
n∏
i=1

θ(Xi)p̃s(xi) (3.15)

=
∫ ds

2π i
es t

γ

∞∑
n=1

(
γ

γ + s

)n
qn ,

where we have defined

qn =
∫ ∞
−∞

dx1 . . .
∫ ∞
−∞

dxn
n∏
i=1

θ(Xi)p̃s(xi) . (3.16)

Notably, this quantity qn is precisely the survival probability of a discrete-time ran-
dom walk of n steps. Indeed, the partial sum Xk describes the position of the walker at
step k and the variable xk represent the k-th step. Indeed, we have

Xk = Xk−1 + xk , (3.17)

with X0 = 0. The PDF p̃s(xk) can be then interpreted as the jump distribution of the
RW and the variables xk are i.i.d. with distribution p̃s(xk). As explained in Chapter 1,
since p̃s(x) is continuous and symmetric, the Sparre Andersen theorem [38] guarantees
that qn is completely universal, i.e., independent of the specific form of p̃s(x), and given
by

qn =
(

2n
n

)
2−2n . (3.18)
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Figure 3.2: Survival probability S(t) as a function of t (for γ = 1). The continuous
line corresponds to the exact universal result in Eq. (3.21). The symbols correspond to
numerical simulations performed for systems with different dimensions d = 1, 2, 3 and
constant velocity and in d = 2 with W (v) = 2/(π(1 + v2)) (half-Cauchy). The symbols
obtained from simulations with different model parameters collapse into the same curve.

Crucially, this result is exact and valid for any n. The generating function of qn thus
reads

∞∑
n=0

qn z
n =

∞∑
n=0

(
2n
n

) (
z

4

)n
= 1√

1− z
. (3.19)

Using this result (3.19) in Eq. (3.16) we get

S(t) =
∫ ds

2π ie
s t 1
γ

√γ + s

s
− 1

 . (3.20)

Remarkably, this result is universal: it does not depend on the dimension d of the
system nor on the speed distribution W (v). Indeed, the details of the model enter in
the formula in Eq. (3.16) only through the PDF p̃s(x). Inverting the Laplace trasform,
we get [179]

S(t) = 1
2 e
−γt/2

(
I0

(
γ

2 t
)

+ I1

(
γ

2 t
))

, (3.21)

where I0(z) and I1(z) are modified Bessel functions. This universal result is exact and
valid for any t (and not only asymptotically for late times). In the case d = 1, we recover,
using a completely different method, the result obtained in previous works [58,172,176].

The function S(t) is shown in Fig. 3.2 and it is in excellent agreement with numerical
simulations performed in dimensions d = 1, 2, 3 with fixed velocity v0, i.e., choosing
W (v) = δ(v − v0) and in d = 2 with speed distribution W (v) = 2/(π(1 + v2)) (half-
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Cauchy). From Eq. (3.21), we obtain the following asymptotic behaviors

S(t) ≈


1
2 −

γ
8 t for t→ 0 ,

1√
πγt
− 1

4
√
πγ3t3

for t→∞ .

(3.22)

In the short-time limit the survival probability converges to the limit value 1/2 because,
by symmetry, half of the trajectory will immediately go in the negative-x direction.

Note that this universal result is only valid if the tumbling events occur with a
constant rate γ, i.e., if the distribution of the running time is exponential p(τ) = γe−γτ .
Nevertheless, one can show that if p(τ) has a well-defined first moment, then the survival
probability still decays for late times as S(t) ∼ t−1/2. On the other hand, when p(τ) ∼
τ−µ−1 for large τ with 0 < µ < 1, the first moment is not defined and one can show that
S(t) ∼ t−µ/2 for late times (see Article 5).

The main results of this section are: (i) the technique to map the continuous-time
process to an effective discrete-time RW in Laplace space and (ii) the unexpected univer-
sality of the survival probability. The mapping that we have introduced is very general
and can be used to investigate several different observables of the RTP model. The uni-
versal result of the survival probability can be generalized to several other observables
and models, as discussed in detail in the following sections.

3.2 Generalizations to other observables
The result obtained in the previous section for the survival probability can be used as a
building block to compute the distribution of other observables of the RTP trajectory.
This derivation is somewhat similar to the one presented in Chapter 1 for discrete-time
RWs, in which we have used the universal expression of the survival probability to show
that the distribution of the time of the maximum and the record statistics are also
universal.

3.2.1 Time of the maximum
We first consider the time tmax at which the x-component of the RTP reaches the global
maximum before time t. The derivation of the distribution of this quantity is based on
a path-decomposition technique, very similar to the one presented in Chapter 1. The
central idea is to divide the time interval [0, t] into the two subintervals [0, tmax] (I) and
[tmax, t] (II). In the first time interval, the RTP starts from the origin and reaches the
global maximum at time tmax, while in the second interval the particle has to stay below
the maximum up to time t. It is possible to show that the probability weights of both
intervals can be expressed in terms of the survival probability S(t). This is clear for
the interval (II), since the particle in [tmax, t] has to remain below its starting position,
which happens with probability S(t − tmax). The derivation for the first interval is
slightly less obvious, one has to consider the RTP trajectory in the time interval [0, tmax]
after inverting the direction of time. Then, once again the particle has to remain below
its starting position for a total time tmax and the probability weight of the first interval
is S(tmax). For a more precise formulation of this argument, see Article 5. Thus, we
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obtain that the PDF of tmax is given by the product of the probability weights of two
time intervals, yielding

P (tmax|t) = γS(tmax)S(t− tmax) , (3.23)

where the factor γ comes from the fact that the particle tumbles right after reaching
the maximum (the probability of tumbling in a small time interval dt is γdt).

It is easy to check that this expression is not correctly normalized to unity over tmax.
This is because the construction above is only valid for 0 < tmax < t. It turns out that
with finite probability the events “tmax = 0” and “tmax = T” can also occur (both with
probability S(t)). Including also these events, we get

P (tmax|t) = S(t)δ(tmax) + γS(tmax)S(t− tmax) + S(t)δ(t− tmax) , (3.24)

where S(t) is given in Eq. (3.21). One can check that this result is correctly normalized
to unity. Quite remarkably the universality of the survival probability extends also to
the distribution of the time tmax of the maximum. The result in Eq. (3.24) is valid for
any t and is completely independent of the dimension d of the system and of the speed
distribution W (v). Note that in the special case d = 1 and W (v) = δ(v− v0), the result
in Eq. (3.24) can be derived by solving the Fokker-Plank equation associated to the
system [99].

3.2.2 Record statistics
In general, it is quite nontrivial to compute the statistics of records for a sequence of
correlated random variables [67]. Here, we show that the universality of the survival
probability can be also generalized to the statistics of records. In particular, we consider
lower records (upper records can be studied analogously). We consider a single RTP in
d dimensions starting at the origin. The x−component Xk of the positions of the RTP
at the end of the k-th running phase can be written as

Xk = x1 + x2 + . . .+ xk . (3.25)

Even though the process happens in continuous time, we can define records in the
following way. We say that a lower record happens at step k if Xk is lower than all
the previous values, i.e., Xk < min{X0 = 0, X1, · · · , Xk−1}. By convention, we consider
X0 = 0 as a lower record. Note that the final position Xn can also be a record.

We denote by SN(t) the probability that there are exactly N lower records up to time
t. Clearly, when N = 1 this corresponds to the event that the position has never gone
below 0 up to time t and thus S1(t) = S(t) (this is the reason why we have considered
lower records). In this sense, SN(t) can be considered as a generalization of the survival
probability S(t).

Moreover, as explained in Chapter 1, for a discrete-time RW with continuous and
symmetric jumps, the distribution of the number NR(n) of records up to step n is
universal, i.e., independent of the jump distribution. Indeed, it can be shown that [23]

Prob.(NR(n) = N) =
(

2n−N + 1
n

)
2−2n+N−1 , (3.26)
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Figure 3.3: Cumulative distribution P (tmax ≤ t′|t) of the time tmax of the maximum
for the RTP model as a function of t′, with γ = 1 and t = 10. The continuous blue
line corresponds to the exact result in Eq. (3.24). The symbols correspond to numerical
simulations with d = 1, 2, 3 (W (v) = δ(v − 1)) and d = 2 with W (v) = 2/(π (1 + v2))
(half-Cauchy). We observe that the numerical curves collapse on the corresponding
analytical blue line.

with generating function
∞∑

n=N−1
Prob.(NR(n) = N)zn = (1−

√
1− z)N−1
√

1− z
. (3.27)

Using the mapping in Eq. (3.12) between the RTP and a discrete-time RW, we can
apply directly the result for the record statistics of RWs to our problem. Using the
result in Eq. (3.27), we get

SN(t) =
∫ ds

2π ie
s t 1
γ

√
γ + s

s

(
1−

√
s

γ + s

)N−1

, (3.28)

which is exact and valid for any N and t. For N = 1, as expected, we find S1(t) = S(t).
Setting N = 2 and inverting the Laplace transform, we get

S2(t) = 1
2e
−γt/2 (I0 (γt/2) + I1 (γt/2)) . (3.29)

Finally, from the result in Eq. (3.28), one can also obtain the average number 〈N(t)〉 of
records up to time t, which reads

〈N(t)〉 = e−
γt
2

2

(
(2γt+ 3)I0

(
γt

2

)
+ (2γt+ 1)I1

(
γt

2

))
. (3.30)

This quantity is shown in Fig. 3.4 and is in perfect agreement with numerical simulations.
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Figure 3.4: Average number of records 〈N(t)〉 vs the time t for the RTP model. The
solid line is given by the exact formula (3.30) while the symbols represent numerical
simulations in d = 1, 2, 3, 4 with γ = 1 and v0 = 1.

3.3 Generalizations to other models
Interestingly, both the mapping to a discrete RW problem and the universality of the
survival probability can be generalized to more complicated RTP models. The purpose
of this section is to provide a concise presentation of these generalizations. For the
details of the models and the computations, see Articles 5 and 6.

3.3.1 Run-and-tumble particles with instantaneous runs
The first model that we consider is a simplified version of the standard RTP model.
We assume that the particle waits a random time during a tumbling and then jumps
instantaneously to its new position. We refer to this model as the instantaneous-run
(IR) model. To be precise, consider a particle that starts from the origin and evolves
in d dimensions up to time t. In the beginning, the particle remains at the origin for
a random time T1, distributed according to the PDF PW (T ), then it chooses a new
direction uniformly at random and takes an instantaneous jump of length v1T1 in that
direction, where v1 ≥ 0 is drawn from W (v). Then, it waits a random time T2, drawn
from the distribution PW (T ), then it jumps, and so on. For an example of a typical
trajectory, see Fig. 3.5b. Note that a discrete-time version of this model was recently
investigated in [180].

We investigate the survival probability SIR(t), defined as the probability that the x-
component of the particle remains positive up to time t. Using a construction analogous
to the one presented for the standard RTP model, we are able to show that the survival

– 92 –



3.3. Generalizations to other models

t

T1 τ1 T2 T3 T4τ2 τ3 τ4

x=0tx=0

T1 T2 T3 T4

tx=0

τ1

TIME

τ2 τ3 τ4a) b) c)

X
COMPONENT

TIME TIME
x1

x2

x3

x4

x1

x1

x2

x2

x3

x3

x4

Figure 3.5: Projection of the RTP trajectory onto the x axis for the standard RTP
model in panel a, the RTP model with instantaneous runs (IR model) in panel b, and
the RTP model with non-instantaneous tumblings (mixed model) in panel c. In the
standard RTP model (panel a), the particle tumbles instantaneously and the durations
of the running phases are indicated by τ1 , . . . , τn, where n is the number of tumblings
(here n = 4). In the IR model (panel b), the particle jumps instantaneously after each
waiting phase. The durations of the waiting phases are indicated by T1 , . . . , Tn. In the
mixed model (panel c), both the running and the waiting phases have finite duration.

probability for the IR model is given by

SIR(t) =
∫ ds

2πie
st

√
1− P̃W (s)

s
, (3.31)

where
P̃W (s) =

∫ ∞
0

dt e−stPW (t) . (3.32)

This result is again completely independent of the dimension d of the system and the
speed distribution W (v). Quite interestingly, the expression in Eq. (3.31) is valid for
any waiting-time distribution PW (t) and not only for exponential times. Using the
exact relation in Eq. (3.31) one can also infer the late-time behavior of the survival
probability of the standard RTP model with non-exponential running times. Note that
a very similar result was also obtained in [57] by combinatorial techniques.

In particular, in the case PW (t) = ae−at, we find P̃W (s) = a/(a+ s) and thus [179]

SIR(t) =
∫ ds

2πie
st 1√

s(a+ s)
,= e−at/2I0

(
at

2

)
. (3.33)

This exact result is shown in Fig. 3.6 and is in excellent agreement with numerical
simulations. Using the survival probability as a building block, one can also compute
the distribution of the time of the maximum and the record statistics, which are also
universal.

3.3.2 Run-and-tumble particles with non-instantaneous
tumblings

One of the main assumptions of the standard RTP model is that the tumbling events
happen instantaneously. However, in many cases, this is not realistic. For instance,

– 93 –



Chapter 3. Universal properties of run-and-tumble particles

0 2 4 6 8 10
t

0

0.2

0.4

0.6

0.8

1

SIR
(t

)
d=1
d=2
d=3
half-Cauchy (d=2)
Theory

Figure 3.6: Survival probability SIR(t) as a function of t for the IR model with
PW (t) = e−t. The continuous line corresponds to the exact universal result in Eq. (3.33).
The symbols correspond to numerical simulations performed for systems with different
dimensions d = 1, 2, 3 and constant velocity and in d = 2 with W (v) = 2/(π(1 + v2))
(half-Cauchy). The symbols obtained from simulations with different model parameters
collapse into the same curve.

from experiments on the motion of E. coli bacteria, it was observed that the ratio of
the typical tumbling time (i.e., the time required for the bacterium to change direction)
to the typical running time is approximately 0.1 [44]. Thus, it is relevant to ask how a
finite tumbling time would affect the properties of the model.

We assume that the particle is initially at the origin in d dimensions and chooses
a direction uniformly at random. Orienting itself in the new direction requires a time
T1, which is random and distributed according to the PDF PW (T ). Then, the particle
starts to move in the chosen direction with velocity v1, drawn from W (v). After some
random time τ1, exponentially distributed with rate γ, the particle tumbles again, i.e.,
it does not move for a time T2, independently drawn from the same PDF PW (T ). Then,
it starts moving in a new direction with a new velocity v2, and so on up to time t. Since
this model is a combination of the standard RTP model and the IR model, we call it
“mixed model”. For a typical trajectory of this process, see Fig. 3.5c.

The survival probability for this model can be computed for any waiting-time dis-
tribution PW (T ) and is given by

SMixed(t) =
∫ ds

2πie
st


(
1− P̃W (s)

)
s h(s) + 1

γ

(
1

h(s) − 1
) , (3.34)
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Figure 3.7: Survival probability SMixed(t) as a function of t for the mixed model with
PW (t) = ae−at. The continuous line corresponds to the exact universal result in
Eq. (3.36) for γ = 1 and a = 0.1, 1, 10. The symbols correspond to numerical simu-
lations performed for systems with different dimensions d = 1, 2, 3 and constant velocity
and in d = 2 with W (v) = 2/(π(1 + v2)) (half-Cauchy). The symbols obtained from
simulations with different model parameters collapse into the same curve.

where
h(s) =

√
1− P̃W (s) γ

γ + s
. (3.35)

We recall that P̃W (s) is the Laplace transform of the waiting-time distribution PW (T ).
In particular, when the waiting times are exponentially distributed with rate a, i.e.,

PW (t) = a−at, we obtain

SMixed(t) = γ

4 e
−γt/2

∫ t

0
dt′ e−at

′
(
I0

(
γ

2 t
′
)

+ I1

(
γ

2 t
′
))

(3.36)

×
(
I0

(
γ

2 (t− t′)
)

+ I1

(
γ

2 (t− t′)
))

+ 1
2
(
1 + e−at

)
e−γt/2

(
I0

(
γ

2 t
)

+ I1

(
γ

2 t
))

,

Where the integral over t′ can be computed numerically for given values of a and γ. In
Fig. 3.7 we compare this theoretical result in Eq. (3.36) with numerical simulations for
γ = 1 and different values of a, finding an excellent agreement. Interestingly, also for
the mixed model, the survival probability can be used as a building block to compute
the distribution of the time of the maximum and the record statistics.

3.3.3 Discrete-time persistent random walk
The derivation presented in the previous sections can be adapted also to discrete-time
persistent RWs, which are defined as follows. We consider a one-dimensional RW

xn+1 = xn + σnηn , (3.37)
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Figure 3.8: Survival probability Sn as a function of n for the persistent random walk
with persistence probability q. The continuous lines correspond to the exact universal
result in Eq. (3.39) for different values of q and different jump distributions p(η). For a
given value of q, the symbols obtained from simulations with different jump distributions
p(η) collapse into the same curve.

where σn = ±1 are binary variables evolving according to

σn =

σn−1 , with probability q ,
−σn−1 , with probability 1− q .

(3.38)

The step η1 , η2 , . . . are positive i.i.d. random variables drawn from the continuous PDF
p(η), with η > 0. We assume that the RW starts at position x = 0 in state σ0 = +1.

Note that the steps σiηi of the random walker are correlated for this model (one can
easily show that the correlation decay exponentially in time). Interestingly, in the limit
n → ∞, q → 1, with n(1 − q) = γt fixed, one recovers the standard RTP model. On
the other hand, for q = 1/2, one finds the standard RW model without persistence.

We want to investigate the survival probability Sn, i.e., the probability that the
walker stays above x = 0 up to step n. It turns out that the mapping to the standard
RW with symmetric jumps presented in Section 3.1 can be generalized to this model.
Using this mapping, we show that the survival probability is completely universal, i.e.,
independent of p(η), and is given by

Sn = 2−2n

1− q

(
2n
n

)
2F1

(
−1

2 ,−n,
1
2 − n ; 2q − 1

)
, (3.39)

where 2F1 (a, b, c ;x) is the hypergeometric function defined as

2F1 [a, b, c ;x] =
∑
n≥0

(a)n(b)n
n!(c)n

xn , (3.40)
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and (a)n = Γ(a+n)/Γ(a) the rising factorial. For the details of the derivation, see Article
6. This exact result is shown in Fig. 3.8 and is in perfect agreement with numerical
simulations, performed for different values of q and with different jump distributions.
One can show that in the limits q → 1/2 and q → 1, one respectively obtains the
known results for the survival probability of a RW and an RTP. Moreover, the survival
probability can be used to show that the distribution of the time of the maximum and
the statistics of records are completely universal for this model.
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Article 4

Universal survival probability for a d-dimensional
run-and-tumble particle

F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr,
Phys. Rev. Lett. 124, 090603 (2020).

+ https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.090603
+ https://arxiv.org/abs/2001.01492

Abstract

We consider an active run-and-tumble particle (RTP) in d dimensions and
compute exactly the probability S(t) that the x-component of the position of the
RTP does not change sign up to time t. When the tumblings occur at a constant
rate, we show that S(t) is independent of d for any finite time t (and not just for
large t), as a consequence of the celebrated Sparre Andersen theorem for discrete-
time random walks in one dimension. Moreover, we show that this universal result
holds for a much wider class of RTP models in which the speed v of the particle
after each tumbling is random, drawn from an arbitrary probability distribution.
We further demonstrate, as a consequence, the universality of the record statistics
in the RTP problem.
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Article 5

Universal properties of a run-and-tumble particle in arbitrary
dimension

F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr,
Phys. Rev. E 102, 042133 (2020).

+ https://journals.aps.org/pre/abstract/10.1103/PhysRevE.102.042133
+ https://arxiv.org/abs/2006.06989

Abstract

We consider an active run-and-tumble particle (RTP) in d dimensions, starting
from the origin and evolving over a time interval [0, t]. We examine three different
models for the dynamics of the RTP: the standard RTP model with instantaneous
tumblings, a variant with instantaneous runs and a general model in which both
the tumblings and the runs are non-instantaneous. For each of these models,
we use the Sparre Andersen theorem for discrete-time random walks to compute
exactly the probability that the x−component does not change sign up to time t,
showing that it does not depend on d. As a consequence of this result, we compute
exactly other x−component properties, namely the distribution of the time of the
maximum and the record statistics, showing that they are universal, i.e. they
do not depend on d. Moreover, we show that these universal results hold also if
the speed v of the particle after each tumbling is random, drawn from a generic
probability distribution. Our findings are confirmed by numerical simulations.
Some of these results have been announced in a recent Letter [Phys. Rev. Lett.
124, 090603 (2020)].
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Article 6

Universal survival probability for a correlated random walk
and applications to records

B. Lacroix-A-Chez-Toine, and F. Mori,
J. Phys. A: Math. Theor. 53, 495002 (2020).

+ https://iopscience.iop.org/article/10.1088/1751-8121/abc129
+ https://arxiv.org/abs/2007.10969

Abstract

We consider a model of space-continuous one-dimensional random walk with
simple correlation between the steps: the probability that two consecutive steps
have same sign is q with 0 ≤ q ≤ 1. The parameter q allows thus to control the
persistence of the random walk. We compute analytically the survival probability
of a walk of n steps, showing that it is independent of the jump distribution for
any finite n. This universality is a consequence of the Sparre-Andersen theorem
for random walks with uncorrelated and symmetric steps. We then apply this
result to derive the distribution of the step at which the random walk reaches its
maximum and the record statistics of the walk, which show the same universality.
In particular, we show that the distribution of the number of records for a walk
of n � 1 steps is the same as for a random walk with neff(q) = n/(2(1 − q))
uncorrelated and symmetrically distributed steps. We also show that in the regime
where n → ∞ and q → 1 with y = n(1 − q), this model converges to the run-
and-tumble particle, a persistent random walk often used to model the motion of
bacteria. Our theoretical results are confirmed by numerical simulations.
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Chapter 4

Large deviations and condensation

In this chapter, we investigate the position distribution of a single run-and-tumble par-
ticle (RTP) in d dimensions and with speed distribution W (v). We will either observe
an RTP trajectory for a total fixed time T (fixed-T ensemble) or for exactly N complete
running phases (fixed-N ensemble). Note that the fixed-N ensemble is a discrete-time
RW in d-dimensions. Even though for short times the two ensembles correspond to
different stochastic processes (when N is fixed, T is free to fluctuate, and vice versa),
one expects that the late-time behavior (large N or large T ) is qualitatively similar.
This equivalence was explicitly verified in Article 7 in the case W (v) = δ(v − v0) and
arbitrary d, but we expect it to be valid for arbitrary W (v). Thus, we will mostly focus
on the fixed-N case, which is easier to study analytically.

One of the most natural quantities that one can investigate for the RTP model is
the position distribution P (~R, T ), i.e., the probability density of finding the particle at
position ~R at time T 1. For short times, this distribution will depend on the specific
details of the model, i.e., the tumbling rate γ, the dimension d of the system, and
the speed distribution W (v). On the other hand, at late times, one expects the PDF
P (~R, T ) to converge to a Gaussian distribution, as a consequence of the central limit
theorem (CLT),

P (~R, T ) ≈ 1√
4πDT

e−R
2/(4DT ) , (4.1)

where R = ||~R|| and the parameters of the model enter the distribution only through
the diffusion constant D. Thus, for late times, the distribution of the position of an
active particle converges to that of a passive Brownian motion.

It is thus natural to ask whether or not any signatures of the “activity” of the
particle remain at late times. Interestingly, it turns out that the large-deviation tails of
the distribution P (~R, T ) carry these signatures of the activity (note that the CLT is only
valid around the peak of the distribution P (~R, T )). Thus, it is relevant to investigate
the rare events where the RTP is very far from its starting position at time T . Typically,
one expects the total displacement of the particle to grow as R ∼

√
T , while the large

deviation regime corresponds to R ∼ Tα, where α > 1/2 depends on the model (for
most models, we will find α = 1). In this regime, the distribution P (~R, T ) assumes the

1Here T stands for either the total elapsed time or the number N of running phases.
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following large-deviation form

P (~R, T ) ∼ exp
[
−T 2α−1ψ

(
R

Tα

)]
, (4.2)

where the rate function ψ(z) describes the probability of the large deviations. For small
z, one has ψ(z) ≈ z2/(4D), describing the universal Gaussian fluctuations in Eq. (4.1).

The position distribution of an RTP with constant velocity was first computed in
[170] for d = 2. Later, in Ref. [181], this result was extended to arbitrary dimension
d. However, these authors did not investigate the large deviations, which were first
studied in [182], where the rate function ψ(z) was computed for W (v) = δ(v − v0)
and arbitrary d > 0. In this case, one finds that the large deviation regime occurs for
R ∼ T , corresponding to α = 1 in Eq. (4.2). Interestingly, the authors of [182] noticed
that for d > 5 the rate function ψ(z) has a singularity at some critical point z = zc,
corresponding to the critical value of the displacement Rc = zcN . This singularity
signals the presence of a dynamical phase transition. This turns out to be a condensation
transition: for R < Rc (fluid phase) the displacements of the particle during different
runs contribute to the total displacement roughly by the same amount, while for R > Rc

the total displacement is dominated by a single long jump (condensed phase). Thus,
the total displacement R plays the role of the control parameter for this transition. For
a schematic representation of the transition, see Fig. 4.1. Moreover, in [183], a similar
condensation transition was observed for a one-dimensional RTP with a half-Gaussian
speed distribution W (v) =

√
2/π e−v2/2 θ(v) (where θ(v) is the Heaviside step function)

and in the presence of a constant drift.
These two examples suggest that condensation could be a general feature of the RTP

model. However, in the canonical RTP model with fixed speed v0, this condensation
occurs only in d > 5, which is not accessible physically. In this chapter, we will first
provide a general criterion for the condensation transition. Then, we will investigate
specific models for the speed distribution W (v) for which the transition can be observed
in the physical dimensions d = 1, 2, 3. Note also that the large deviations of the position
have been also investigated for several generalizations of the RTP model, including an
RTP on a lattice [184,185], an RTP model with space-dependent velocities [186] and an
RTP model with generalized telegraphic noise [187].

Condensation transitions in physics are traditionally observed in momentum space,
the most famous example being the Bose-Einstein condensation. This transition occurs
for an ideal Bose gas in d > 2: below a critical temperature, a macroscopic number
of particles condense in the single-particle ground state. Interestingly, condensation
transitions have been observed in real space as well [188]. This typically arises in sit-
uations where a conserved quantity (e.g., the total mass) is shared between different
sites or units. Above a critical value of this quantity, a condensate appears in real
space, meaning that a single site absorbs a macroscopic fraction of the mass. Examples
of real-space condensation can be observed in a variety of situations, including traffic
models [189–191], models of mass transport [192–200], macroeconomic models [201,202],
discrete nonlinear Schrödinger equation [203], financial models [204,205]. For example,
in the case of traffic models, condensation describes the formation of traffic jams, while
in wealth models, a condensate is an extremely rich individual. In the case of the RTP
model, the condensate is a single long run that dominates the particle trajectory.
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Figure 4.1: Left panel: Typical trajectory of a run-and-tumble particle (RTP) in
two dimensions in the fluid phase. The different runs contribute to the displacement by
roughly the same amount. Right panel: Typical trajectory of an RTP in the condensed
phase. One single run (red arrow) dominates the trajectory.

The condensation transition that we investigate in this chapter has also applications
in a broader context. Indeed, the position of the RTP can be simply written as the sum of
many i.i.d. random variables. Let us consider for simplicity the fixed-N ensemble. First
of all, since the direction is chosen uniformly in space after each run, the distribution
of the position ~R is isotropic, i.e., P (~R,N) = P (R,N)2. Moreover, let X be the x-
component of the position ~R and P (X,N) its associated PDF. Then, it is easy to show
that P (~R,N) and P (X,N) have the same rate function ψ(z) that describes the large-
deviation regime where R ∼ Nα and X ∼ Nα (see Article 7). Thus, to investigate the
large deviations, it is sufficient to consider the distribution of X. We denote by xi the
displacement of the particle during the i-th running phase, such that

X =
N∑
i=1

xi . (4.3)

Then, the distribution of X can be written as

P (X,N) =
∫ ∞
−∞

dx1 . . .
∫ ∞
−∞

dxN
N∏
i=1

p(xi) δ
(

N∑
i=1

xi −X
)
, (4.4)

where p(x) is the PDF of the variables x1 , . . . , xN . Large deviations of the sum of many
i.i.d. random variables have been widely investigated in the mathematical literature
[24,206–208] and have recently been investigated in the case of correlated variables [209].
In the case of the RTP model, in Chapter 3 we have shown that

p(x) =
∫ ∞

0
dv

1
v
W (v)

∫ ∞
0

d`
1
`
fd

(
x

`

)
γe−γ`/v , (4.5)

2Note that for simplicity we will use the same notation for the fixed-N (P (R,N)) and the fixed-T
(P (R, T )) ensembles.
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where
fd(z) = Γ (d/2)√

πΓ ((d− 1)/2)(1− z2)(d−3)/2θ(1− |z|) , (4.6)

and Γ(y) is the Gamma function. Due to the isotropy of the RTP dynamics we observe
that p(x) = p(−x) and P (X,N) = P (−X,N). Thus, it is sufficient to investigate the
case X > 0.

Assuming that the variance of p(x) is finite, the distribution of X approaches a
Gaussian shape for |X| ∼

√
N . On the other hand, when |X| � N we expect P (X,N) ∼

Np(X), corresponding to a single variable that completely dominates the sum. Then,
for a given expression of p(x), it is worth investigating whether between the two regimes
there is a smooth crossover or a sharp transition (as in Fig. 4.2).

4.1 Criterion for condensation
In this section, we present a simple criterion, based on a grand-canonical argument, to
determine whether or not condensation occurs for a given jump distribution p(x) (see
Article 7, for the derivation). Note however that this criterion does allow to determine
the order of the transition, which we will discuss in the next sections. A similar criterion
was previously derived in the context of mass-transport models [192,193]. However, the
criterion in [192,193] is only valid in the case where the variables x1 , . . . , xN are positive
and it does not directly apply to our case. To proceed, it is useful to define the limit
value

c = − lim
x→∞

log(p(x))
x

. (4.7)

We consider three cases, depending on c.
The first case is c = ∞. This corresponds to distributions p(x) that decay faster

than any exponential, i.e.,
p(x)� e−bx , (4.8)

for x � 1 and for any b > 0. For instance, this is the case when p(x) is Gaussian. In
this case, no condensation transition occurs.

The case 0 < c <∞ corresponds to distributions that can be written as

p(x) = p̃(x)e−c|x| , (4.9)

where the function p̃(x) decays slower than any exponential. In this case, a condensation
transition occurs only if p̃(x) decays faster than 1/x2, i.e., if

p̃(x)� 1/x2 , (4.10)

for large x. For instance, if p(x) = e−xx−β, a condensation transition occurs only for
β > 2.

Finally, in the case c = 0, we expect condensation to occur if

p(x)� 1/|x|3 , (4.11)

for large x. This is for instance the case where p(x) has a stretched-exponential tail
p(x) ∼ e−x

β with 0 < β < 1.
Going back to the RTP model, let us provide a few examples of speed distributions

W (v) for which condensation occurs:
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• W (v) = α(v0 − v)α−1 with 0 < v < v0. The constant v0 > 0 represents the
maximal speed that the particle can reach. Note that this family includes the
standard RTP model where the speed is fixed. Indeed, in the limit α→ 0, we get

W (v) = δ(v − v0). (4.12)

Moreover, other relevant distributions belong to this class. For instance, for α = 1,
one obtains the uniform distribution. Given α and d, one can show that for large
|x|

p(x) ∼ e−|x|
1
|x|ν

, (4.13)

where
ν = (d+ 2α− 1)

2 . (4.14)

In this case we get c = 1 from Eq. (4.7) and, applying the criterion described
above, we find that the transition is possible only for ν > 2, i.e., for d + 2α > 5.
Thus, for α = 0, i.e., for the standard RTP model, we find that condensation only
occurs for d > 5, as already observed in [182].

• W (v) =
√

2
π
e−v

2/2 with v > 0. Considering d = 1, one can show that, for |x| � 1,

p(x) ∼ |x|−1/3e−3|x|2/3/2 . (4.15)

In this case p(x) decays slower than any exponential, thus c = 0. Moreover, p(x)
decays faster than 1/|x|3 and thus we expect a condensation transition to occur.

In the next sections, we will analyze in detail the two examples above.

4.2 Arbitrary dimension and random speed:
second-order phase transition

In this section, we investigate the case where the particle moves in d dimensions with
the speed distribution

W (v) = α(v0 − v)α−1 , (4.16)

where α > 0 and v0 > 0. For simplicity in the following we will take γ = v0 = 1. Our
goal is to compute the large-deviation function ψd,α(z), where we now use the subscripts
α and d to stress the dependence on these parameters. The results of this section are
presented in detail in Article 7.

4.2.1 Position distribution
To proceed, we recall the integral representation of the δ function

δ(X) = 1
2πi

∫
Γ
dq e−qX , (4.17)
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Figure 4.2: Schematic representation of the probability density function P (X,N) of the
RTP position in the presence of condensation. For X ∼

√
N , the fluctuations of X

are Gaussian, as predicted by the central limit theorem. In the large deviation regime
where X ∼ N , the distribution assumes the scaling form P (X,N) ∼ e−Nψ(X/N). The
rate function ψ(z) is singular at the critical value zc = Xc/N . For X < Xc, the system
is in the fluid phase and the different runs are roughly of the same order. For X > Xc, a
condensate appears, i.e., a single run contributes to a macroscopic fraction of the total
displacement.

where the integral runs over the imaginary-axis Bromwich contour Γ in the complex q
plane. Substituting this representation in Eq. (4.4), we find

P (X,N) = 1
2πi

∫
Γ
dq eqX [p̂(q)]N , (4.18)

where
p̂(q) =

∫ ∞
−∞

dx e−qxp(x) . (4.19)

PluggingW (v) = α (1−v)α−1 in Eq. (4.5), we first evaluate p(x) and then compute p̂(q)
using Eq. (4.19), yielding

p̂(q) = 4F3

(
1
2 ,

1
2 , 1, 1; d2 ,

1 + α

2 ,
2 + α

2 ; q2
)
, (4.20)

where pFq(α1 , . . . αp; β1 . . . βq; q) denotes the generalized hypergeometric function, de-
fined as

pFq(α1 , . . . αp; β1 . . . βq; z) =
∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n! , (4.21)

where (a)n = Γ(a+ n)/Γ(a) is the rising factorial. Thus, we find

P (X,N) = 1
2πi

∫
Γ
dq exp [qX +NSd,α(q)] , (4.22)
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Figure 4.3: Rate function ψd,α(z) as a function of z for d = 2, α = 0 (panel a) and d = 6,
α = 0 (panel b). The continuous blue lines correspond to the exact results in Eqs. (4.30)
and (4.33). The dashed lines are obtained from importance sampling simulations for
different system sizes N . In the case d = 6 (panel b), the rate function is singular at
z = 2 (dashed vertical line), signaling a condensation transition. For the details of the
numerical simulations, see Section 4.4.

where
Sd,α(q) = log

[
4F3

(
1
2 ,

1
2 , 1, 1; d2 ,

1 + α

2 ,
2 + α

2 ; q2
)]

. (4.23)

Note that this result is exact for any X and N . We are now interested in extracting the
behavior of P (X,N) in the limit of large N .

We first investigate the typical regime where |X| ∼
√
N . Rescaling X =

√
Ny,

where y ∼ O(1) and changing variable q → q
√
N in Eq. (4.22) yields

P (X = y
√
N,N) = 1

2πi
√
N

∫
Γ
dq eqy+NSd,α(q/

√
N) ≈ 1

2πi
√
N

∫
Γ
dq eqy+2q2/(d(α+1)(α+2)) ,

(4.24)
where we have used the small-argument expansion of Sd,α(q). Computing the Gaussian
integral, we get

P (X,N) ≈ 1√
4πDN

e−X
2/(4DN) , (4.25)

where D = 2/(d(α + 1)(α + 2)). Thus, in the typical regime where |X| ∼
√
N the

fluctuations of X are Gaussian, in agreement with the CLT.
We next investigate the large-deviation regime where |X| ∼ N . We define the

variable z = X/N ∼ O(1). We will focus on the case z > 0. From (4.22), we get

P (X = zN,N) = 1
2πi

∫
Γ
dq exp [N (qz + Sd,α(q))] . (4.26)

We first try to compute this integral by saddle-point approximation. The saddle-point
condition d

dq
[qz + Sd,α(q)] = 0 gives the equation

z = − 4q
d(α + 1)(α + 2)

4F3
(

3
2 ,

3
2 , 2, 2; 2+d

2 , 3+α
2 , 4+α

2 ; q2
)

4F3
(

1
2 ,

1
2 , 1, 1; d2 ,

1+α
2 , 2+α

2 ; q2
) , (4.27)

– 111 –



Chapter 4. Large deviations and condensation

where we have used the expression of Sd,α(q) in Eq. (4.23).
A detailed analysis of the function on the right-hand side shows that for ν < 2,

where ν = (d+ 2α− 1)/2, the saddle-point equation admits a solution q∗(z) for any z.
This yields

P (X,N) ∼ exp
[
−Nψd,α

(
X

N

)]
, (4.28)

where the rate function reads

ψd,α(z) = −zq∗(z)− Sd,α(q∗(z)) . (4.29)

Thus, for ν < 2, ψd,α(z) does not display any singularities as a function of z, as predicted
by the criterion presented in the previous section. For instance, for d = 2 and α = 0,
we find

ψ2,0(z) = 1
2

[√
1 + 4z2 − 1 + log

(√
1 + 4z2 − 1

2z2

)]
. (4.30)

This function is shown in Fig. 4.3 and is in good agreement with numerical simulations,
performed with importance-sampling techniques.

Interestingly, for ν > 2, the saddle-point equation admits a solution only for z < zc,
where

zc = 4
d(α + 1)(α + 2)

4F3
(

3
2 ,

3
2 , 2, 2; 2+d

2 , 3+α
2 , 4+α

2 ; 1
)

4F3
(

1
2 ,

1
2 , 1, 1; d2 ,

1+α
2 , 2+α

2 ; 1
) . (4.31)

Thus, for z < zc, the integral is dominated by the solution q∗(z) of the saddle point
equation and thus the rate function ψd,α(z) is still given by Eq. (4.29). On the other
hand, for z > zc the saddle-point equation does not admit a solution. Nevertheless, the
integral is dominated by the value corresponding to q∗(zc) = −1, yielding

ψd,α(z) = z − Sd,α(−1) . (4.32)

To summarize, we have obtained, for ν > 2

ψd,α(z) =


−z q∗(z)− Sd,α(q∗(z)) for z < zc

z − Sd,α(−1) for z > zc .

(4.33)

Interestingly, in this case, the rate function displays a singularity at z = zc. This signals
the presence of the condensation transition. This exact result is shown in Fig. 4.3 for
d = 6 and α = 0 and is in good agreement with numerical simulations performed with
a constrained Markov chain Monte Carlo technique (see Section 4.4 for the details).

Note that for simplicity we have presented this result for the fixed-N ensemble, i.e.,
in the case where the total number of running phases is fixed. One can compute exactly
the rate function also for the fixed-T ensemble (see Article 7). Although the precise
expression of the rate function is different for the fixed-T ensemble, the qualitative
features (e.g., the presence of the phase transition) are the same.

It is also interesting to investigate the order of the phase transition. We say that the
system undergoes a transition of order n if the n-th derivative of the rate function ψ(z)
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is discontinuous at the critical point z = zc. From the result in Eq. (4.33) it is possible
to show that the order of the transition is

n =


⌈
ν−1
ν−2

⌉
for 2 < ν < 3,

2 for ν > 3 ,
(4.34)

where dye indicates the smallest integer larger than or equal to y. Note that, for 2 <
ν < 3, the order of the transition can be arbitrarily large and n diverges for ν → 2
(n =∞ corresponds to a smooth rate function with no transition).

Investigating the rate function, we have identified the presence of a phase transition
and we have computed its order. We have also anticipated that this is a condensation
transition. We are now interested in characterizing precisely the mechanism of the
transition.

4.2.2 Single-run marginal distribution
To understand how the phase transition takes place we need to investigate what a typical
configuration of the system looks like in the two phases, for z < zc and z > zc. To do
so, we consider the probability distribution p(x|X) of a single-run displacement x of the
RTP in the x-direction, conditioned on the total displacement X. Note that since the
N single-run displacements x1 , . . . , xN are i.i.d. random variables, we can choose x to
be any of them, for instance x = x1. In the fluid phase X < Xc we expect that the
different single-run displacements are roughly of the same order, and hence we expect
p(x|X) to be peaked around values x ∼ O(1). On the other hand, for X > Xc, we
have anticipated that one of these variables x1 , . . . , xN (randomly chosen) will absorb
a finite fraction of the total displacement X. This would correspond to a “bump” in
the large-x tail of p(x|X) (see Fig. 4.4). The location of the bump is the typical size of
the condensate, while its width describes the fluctuations of the condensate size. The
area under the condensate bump is the probability that one particular running phase,
say x1, becomes the condensate. By symmetry, in the presence of a single condensate,
we expect this area to be 1/N .

The marginal PDF P (x|X) can be simply related to the position distribution P (X,N).
Indeed, by definition, we have

p(x|X) =
p(x)

∫∞
−∞ dx2 . . .

∫∞
−∞ dxN

[∏N
i=2 p(xi)

]
δ
(
X − x−∑N

i=2 xi
)

∫∞
−∞ dx1 . . .

∫∞
−∞ dxN

[∏N
i=1 p(xi)

]
δ
(
X −∑N

i=1 xi
) . (4.35)

Using the definition of P (X,N) in Eq. (4.4), this expression can be rewritten as

p(x|X) = p(x)P (X − x,N − 1)
P (X,N) . (4.36)

Thus, we can use the results of the previous section for P (X,N) and the large-x asymp-
totic behavior of p(x), given in Eq. (4.13) to compute p(x|X).

In particular, for X < Xc, we obtain

p(x|X) ∼ x−νe−x/ξ , (4.37)
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Figure 4.4: Schematic representation of the single-run marginal distribution p(x|X) as
a function of the single-run size x in the condensed phase X > Xc. A bump appears in
the tail of the distribution for x ∼ O(N).

where ν = (d+ 2α− 1)/2 and
ξ = 1

1 + q∗(z) . (4.38)

We recall that q∗(z) is the unique solution of the saddle-point equation (4.27). Thus,
below the transition, the marginal PDF p(x|X) decays exponentially over the typical
distance ξ. As a consequence, the N running phases are typically of the same order,
with x ∼ ξ. As z → zc from below, the solution q∗(z) tends to the limit value −1 and
hence the typical length ξ diverges.

For X > Xc, and for large x, we obtain

p(x|X) ∼ 1
xν(1− x/Xex)ν , (4.39)

where Xex = X−Xc is the excess displacement above the critical value Xc. Thus, above
the transition, the marginal distribution p(x|X) has a power-law tail. Note however
that the expression in Eq. (4.39) breaks down for x→ Xex. Indeed, at x ≈ Xex a bump
appears in the tail of p(x|X), with

p(x|X) ≈ 1
N
pcond(x−Xex, N) , (4.40)

where the function pcond(x−Xex, N) is normalized to unity and describes the shape of
the bump (i.e., the probability of the fluctuations of the condensate size around the value
Xex). Moreover, the width of the bump vanishes relative to its location Xex for large
N . See Fig. 4.4 for a schematic representation of p(x|X) in the condensed phase. Since
pcond(y,N) is normalized to unity, the area under the bump is precisely 1/N , indicating
the presence of a single condensate.

The precise expression of pcond(y,N) depends on ν. For ν > 3, the fluctuations of
the condensate size scale as

√
N and pcond(y,N) is Gaussian around its peak

pcond(y,N) ≈ 1√
4ad,απN

e−y
2/(4ad,αN) , (4.41)
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where ad,α is a positive constant. On the other hand, for 2 < ν < 3, the condensate size
has anomalous fluctuations of order N1/(ν−1) and

pcons(y,N) ≈ 1
N1/(ν−1)Vν

(
y

N1/(ν−1)

)
, (4.42)

where
Vν(y) = 1

π

∫ ∞
0

dr ebd,α sin(πν/2)rν−1 cos
[
bd,α cos(πν/2)rν−1 + yr

]
, (4.43)

and bd,α is a positive constant. This function Vν(y) has asymptotic behaviors

Vν(y) ∼


|y|−ν for y → −∞

y(3−ν)/(2(ν−2))e−c y
(ν−1)/(ν−2) for y →∞ ,

(4.44)

where c is a positive constant. One can check that Vν(y) is correctly normalized to unity.
Thus, for ν > 3 and z > zc, the system is in a normal condensate phase, where the

condensate fluctuations are Gaussian and scale as
√
N . On the other-hand for 2 < ν < 3

and z > zc, the system is in an anomalous condensate phase, where the condensate
fluctuations scale as N1/(ν−1) and are described by the function Vν(y). These different
phases are shown in Fig. 4.5 in the (α, z) phase space for d = 3 (left panel) and d = 7
(right panel). The presence of two different condensate phases (normal and anomalous)
was already observed in the context of mass-transport models [193].

Finally, we identify the order parameter that characterizes the transition: the par-
ticipation ratio Y2(z), defined as

Y2(z) =
〈 ∑N

i=1 x
2
i(∑N

i=1 xi
)2

〉
z

, (4.45)

where the symbol 〈. . .〉z indicates the average over trajectories of the system with z =
X/N fixed. In the fluid phase, the variables xi are of order one and hence the numerator
is of order N . Since the denominator is X2 ∼ O(N2), the participation ratio vanishes
as 1/N . Thus, for z < zc, we obtain (in the thermodynamic limit)

Y2(z) = 0 . (4.46)

On the other hand, for z > zc, the numerator is dominated by the condensate, corre-
sponding to a single-run displacement of length Xex = X − Xc ∼ O(N). Thus, in the
condensed phase, the numerator and the denominator are of the same order and we
obtain

Y2(z) = (z − zc)2

z2 , (4.47)

valid for z > zc. The participation ratio is thus zero in the fluid phase and non-zero in
the condensed phase. Note that in this case Y2(z) is a continuous function of z.

To summarize, for the speed distribution in Eq. (4.16) a condensation transition
occurs for ν > 2 at a critical value zc of the control parameter z = X/N . For z < zc, the
system is in the fluid phase and all runs are of order one. For z > zc, a single running
phase absorbs the whole excess displacement Xex = X − Xc ∼ O(N) with Gaussian

– 115 –



Chapter 4. Large deviations and condensation

0 1 2 3

1

3

α

z

F
L
U
ID
P
H
A
S
E

A
N
O
M
A
L
O
U
S
C
O
N
D
E
N
S
A
T
E

N
O
R
M
A
L
C
O
N
D
E
N
S
A
T
E

d = 3

0 1 2 3

1

α
z

FLUID PHASE

NORMAL CONDENSATE

d = 7

Figure 4.5: Phase diagram in the (α, z) plane for d = 3 (left panel) and d = 7 (right
panel). For d = 3 there are three possible phases. In the fluid phase the different
running phases contribute to the total displacement by roughly the same amount. In
the condensate phase, a condensate appears and absorbs a macroscopic fraction of the
total displacement X. The fluctuations of the condensate can either be of order

√
N and

Gaussian (normal condensate phase) or of order N1/(ν−1) and described by the function
Vν(y) in Eq. (4.43) (anomalous condensate phase).

fluctuations of order
√
N for ν > 3 and anomalous fluctuations of order N1/(ν−1) for

2 < ν < 3. Interestingly, in the anomalous condensate phase, the order n of the
transition depends continuously on ν (with n ≥ 3), while in the normal condensate
phase we find n = 2. We also identify the order parameter Y2(z) associated with
the transition. In the next section, we will investigate an RTP model for which the
condensation transition is of order one.

4.3 One dimension and Gaussian speed: first-order
phase transition

In the previous section, we have shown that for a large class of RTP models, a second
(or higher) order transition appears in the large deviation regime of the position of the
particle, for X ∼ O(N), where N is the number of running phases. In this section, we
present a model for which a first-order transition appears for X ∼ O(N3/4). The results
presented in this section are derived in detail in Article 8.

We consider a single RTP in one dimension with constant tumbling rate γ. We
assume that the speed of the particle is independently drawn, after each tumbling event,
from the half-Gaussian distribution

W (v) =
√

2
πσ2 exp

[
−v2/(2σ2)

]
θ(v) . (4.48)
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To simplify the notation, we consider γ = σ2 = 1. Then, using the expression in
Eq. (4.5), we find that the distribution of the displacement of the particle during a
single run is

p(x) = 1√
2π

∫ ∞
0

dτ
1
τ
e−τ−x

2/(2τ2) , (4.49)

for x > 0. From this expression, we obtain the first two moments of the displacement x,
which are 〈x〉 = 0 and 〈x2〉 = 2. Note that since the distribution p(x) is an even function
of x, also the PDF P (X,N) of the final position of the particle will be symmetric around
X = 0. Thus, we will just consider the case X > 0, as the complementary case can be
obtained by symmetry. Moreover, in the limit of large x, the integral in Eq. (4.49) can
be evaluated by saddle-point approximation and one obtains

p(x) ≈ 1√
3|x|1/3

e−3|x|2/3/2 , (4.50)

valid for large |x|. Thus, the jump distribution p(x) has a stretched-exponential (also
known as semiexponential) tail for large |x|, with exponent 2/3. This satisfies the
criterion for condensation presented in Section 4.1 and thus we expect a condensation
transition to occur.

Computing the distribution of the position X of the RTP consists in finding the
distribution of the sum of N i.i.d. stretched-exponential random variables. Interestingly,
the general case where p(x) ∼ e−a|x|

b , with a > 0 and 0 < b < 1 was first studied by
Nagaev [206, 207], who found that the distribution of X admits a nontrivial large-
deviation regime for X ∼ O(N1/(2−β)) (where a = 3/2 and β = 2/3 in our case).
Moreover, in a recent mathematical paper, the rate function associated with this large-
deviation regime was derived [208]. In this section, we present an alternative derivation
of this result. Moreover, we analyze in detail the mechanism of the phase transition, by
studying the marginal probability of a single variable and identifying the order parameter
associated with the transition. These aspects were not investigated in [208].

To identify the scale at which the transition occurs, let us consider different regimes,
depending on the final position X of the particle. In the typical regime X ∼ O(

√
N),

by applying the CLT, we have
P (X,N) ∼ e−X

2/(4N) . (4.51)
On the other hand, in the large-deviation regime where the position scales linearly
with N , we find that the total displacement is completely dominated by a single run.
Correspondingly, we get

P (X,N) ≈ Np(X) , (4.52)
where p(X) is the single-displacement distribution, given in Eq. (4.49), and the factor
N comes from the fact that any of the N i.i.d. displacements can be the dominant one.
Using the asymptotic expression of p(X), given in Eq. (4.50), we obtain

P (X,N) ∼ e−(3/2)X2/3
. (4.53)

In order to identify the correct scale at which the transition occurs, we match the
Gaussian distribution in Eq. (4.50) with the stretched-exponential tail in Eq. (4.53)

e−X
2/(4N) ∼ e−(3/2)X2/3

, (4.54)
yielding X ∼ O(N3/4).
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4.3.1 Position distribution
Let us recall the relation in Eq. (4.18), which reads in this case

P (X,N) = 1
2πi

∫
Γ
dq eqX+N log(p̂(q)) , (4.55)

where, using the expression for p(x) in Eq. (4.49),

p̂(q) =
√
π
e−1/(2q2)
√
−2q2 erfc

[
1√
−2q2

]
. (4.56)

It is useful to give the asymptotic behaviors of this function p̂(q) in the limit of small q,
which read

p̂(q) ≈


1 + q2 if Im(q) < 0 ,

1 + q2 +
√

2π√
−q2

e−1/(2q2) if Im(q) > 0 .
(4.57)

The additional non-analytic term for Im(q) > 0 turns out to play a central role in the
computation of the rate function.

By analyzing this expression in Eq. (4.55) for X ∼ O(
√
N) (typical regime) and

X ∼ O(N) (extreme large deviation regime), one obtains the two asymptotic results
in Eqs. (4.51) and (4.52) (see Article 8 for the details). Here, we would like to investi-
gate the intermediate matching regime, which we call anomalous large-deviation regime,
corresponding to X ∼ O(N3/4).

To proceed, it is useful to define the variable z = X/N3/4 > 0, which we assume to
be of order one. This variable z is the control parameter of the transition. Eq. (4.55)
can then be written as

P (X = zN3/4, N) = 1
2πi

∫
Γ
dq eqzN

3/4+N log[p̂(q)] , (4.58)

where the contour of integration Γ is shown in Fig. 4.6. By using the small-q expansion
in Eq. (4.57), we obtain

P (X = zN3/4, N) ' 1
2πi

∫
Γ−
dq eqzN

3/4+Nq2 + 1
2πi

∫
Γ+
dq eqzN

3/4+Nq2+N
√

2πe−1/(2q2)/
√
−q2

,

(4.59)

where we have split the contour Γ into the two parts Γ+ (for Im(q) > 0) and Γ− (for
Im(q) < 0). We then use the expansion

exp
[
N
√

2π e−1/(2q2)
√
−q2

]
' 1 +N

√
2π e−1/(2q2)
√
−q2 , (4.60)

to rewrite the PDF P (X,N) as the sum of a Gaussian term PG(X,N) and an “anoma-
lous” term PA(X,N)

P (X,N) ' PG(X,N) + PA(X,N) . (4.61)
The Gaussian term reads

PG(X,N) = 1
2πi

∫ i∞

−i∞
dq eqzN

3/4+Nq2 = 1
2
√
πN

e−
√
Nz2/4 , (4.62)
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Figure 4.6: Analytic structure of p̂(q), given in Eq. (4.56), in the complex-q plane. The
function p̂(q) has two branch cuts (wiggled lines), in the intervals ] −∞, 0[ and ]0,∞[
in the real axis. The red oriented line represents the Bromwich contour Γ that we use
to compute the integral in Eq. (4.55).

while the anomalous term is given by

PA(X,N) = N

i

∫
Γ+
dq

1√
−q2 e

qzN3/4+Nq2−1/(2q2). (4.63)

To compute the complex integral in Eq. (4.63), we perform the change of variable
q → s = qN1/4, yielding

PA(X,N) = N

i

∫
Γ+
ds

1√
−s2

e
√
NGz(s) , (4.64)

where
Gz(s) = zs+ s2 − 1

2s2 . (4.65)

Interestingly, the integral in Eq. (4.64) can be computed via saddle point if z > z` =
4(2/3)3/4 ≈ 2.95115. Indeed, the saddle point equation

G′z(s) = z + 2s+ 1
s3 = 0 (4.66)

admits a real solution s∗ only for z > z`. Hence, for z > z`, we obtain

PA(X = zN3/4, N) ∼ e−
√
Nχ(z) , (4.67)

where
χ(z) = Gz(s∗(z)) = zs∗(z) + [s∗(z)]2 − 1

2 [s∗(z)]2
. (4.68)
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Here s∗(z) is the largest negative root of the saddle point equation in (4.66). An ex-
pression for s∗(z) can be obtained by simply solving the cubic equation, yielding

s∗(z) = −z8 −
1
8

√√√√64(2/3)1/3

a(z) + 4(2/3)1/3a(z) + z2 (4.69)

+
√

2
8

√√√√z2 + z3

(
64(2/3)1/3

a(z) + 4(2/3)1/3a(z) + z2

)−1/2

−
(2

3

)1/3 (
2a(z) + 32

a(z)

)
,

where
a(z) =

(
9z2 +

√
81z4 − 6144

)1/3
. (4.70)

Thus, we find that the distribution of X can be written as the sum of the following
two terms

P (X = zN3/4, N) ∼ e−
√
Nz2/4 + e−

√
Nχ(z) . (4.71)

The competition between these two terms in the large-N regime is at the origin of the
first-order condensation transition of this model. Indeed, only the term with the smallest
exponent dominates for large N , yielding

P (X = zN3/4, N) ∼ e−
√
NF (z) , (4.72)

where
F (z) = min

[
z2

4 , χ(z)
]
. (4.73)

We recall that we have an explicit expression for χ(z) (given in Eq. (4.68)) only for
z > z`. By analyzing this function χ(z), we find that χ(z) < z2/4 only for z > zc =
27/4 ≈ 3.36358 (note that zc > z`). Thus, we know the expression of χ(z) in the relevant
region z > zc. As a consequence, we obtain

F (z) =


z2/4 for z < zc,

χ(z) for z > zc.

(4.74)

This rate function F (z) is shown in Fig. 4.7 and is in good agreement with numerical
simulations. Interestingly, the PDF P (X,N) remains Gaussian in the large deviation
regime, up to Xc = zcN

3/4, well outside the range of validity of the CLT. Moreover, the
rate function F (z) has a first-order singularity at z = zc, meaning that its derivative
F ′(z) is discontinuous at the critical point.

The expression of P (X,N) in Eq. (4.71) provides a nice interpretation of the mech-
anism of the transition. In analogy with first-order transition in classical thermodynam-
ics, the transition arises from the competition between two different phases: the fluid
phase (described by the Gaussian weight) and the condensed phase (associated with the
anomalous term). Each phase is also associated with a rate function (z2/4 for the fluid
phase and χ(z) for the condensed phase), which plays the role of the free energy for
nonequilibrium systems. At a given value of the control parameter z, the system will
be in the phase with a lower rate function. Thus, the critical point zc is by definition
the value for which the two rate functions are equal.
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Figure 4.7: Rate function F (z) ≈ − log[P (X,N)]/
√
N of the position distribution as a

function of the rescaled position z = X/N3/4. The continuous blue line indicates the
exact result in Eq. (4.74), which has a first-order singularity for z = zc = 27/4 (vertical
dashed line). The dashed curves indicate the results of numerical simulations at different
system sizes.

The asymptotic behaviors of the function χ(z) are given by

χ(z) ≈


√

6 for z → z`

3
2z

2/3 − z−2/3 for z →∞
(4.75)

Thus, in the limit z →∞, we find

P (X = zN3/4, N) ∼ e−
√
N(3/2)z2/3

, (4.76)

smoothly connecting to the expression for P (X,N) in the regime X ∼ O(N) (see
Eq. (4.52)).

Since we have observed that the rate function F (z) has a first-order singularity at
z = zc, it is relevant to ask what is the precise mechanism of the transition. Moreover,
it is worth investigating whether or not the transition is associated with a discontinuity
of the order parameter, in analogy with thermodynamic first-order transitions.

4.3.2 Single-run marginal distribution
As done in the previous section, it is relevant to investigate the marginal PDF p(x|X) of
the displacement of the RTP during a single run, conditioned on the total displacement
X. The relation between p(x|X) and P (X,N) in Eq. (4.36) remains valid in this case,
yielding

p(x|X) = p(x)P (X − x,N − 1)
P (X,N) . (4.77)
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Figure 4.8: Single-run marginal distribution p(x|X) as a function of x, obtained from
numerical simulations of RTP trajectories with N = 104 running phases and for different
values of z = X/N3/4. When z < zc (dashed red line) the distribution is concentrated
around values of x of order one (fluid phase). For z > zc (continuous blue line) a bump
appears in the tail of the distribution at Xcond ∼ O(N3/4), indicating the presence of a
condensate (condensed phase). For the details on how the numerical simulations have
been performed, see Section 4.4.

Note that since the total displacement X is fixed and the N displacements are i.i.d., the
mean value of p(x|X) is simply given by

∫ ∞
−∞

dx x p(x|X) = X

N
. (4.78)

Thus, in the intermediate regime X ∼ O(N3/4), this first moment vanishes for large N
as N−1/4.

As in the previous section, we expect that below the transition, in the fluid phase,
the marginal distribution p(x|X) is centered around values of x of order one. This
corresponds to the fact that the different running phases are roughly of the same order
of magnitude. On the other hand, for X > Xc = zcN

3/4, we expect a condensate, i.e.,
a single displacement of length Xcond of order N3/4 to emerge. This would appear in
the tail of the distribution p(x|X) as a “bump” located at x ∼ Xcond. The results of
numerical simulations, shown in Fig. 4.8, confirm our expectation. We next investigate
analytically the behavior of the marginal distribution p(x|X) in the large-deviation
regime where X ∼ O(N3/4).

We will investigate two different regimes, depending on the value of x. If x ∼ O(1),
it is easy to show from Eq. (4.77) that, at leading order in N ,

p(x|X) ≈ p(x) , (4.79)
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where p(x) is the unconstrained marginal distribution, given in Eq. (4.49). This result
is valid both in the fluid and in the condensed phases. This can be observed in Fig. 4.8,
where the curves for z < zc and z > zc collapse into the same curve when x ∼ O(1).

Since the behavior of p(x|X) is always the same when x ∼ O(1), one needs to
investigate the large-x tail to unveil the phase transition. Since we expect a condensate
to appear for z > zc with typical size Xcond ∼ O(N3/4), we consider the large-deviation
tail of p(x|X) where x ∼ O(N3/4). By substituting the expressions for p(x) and P (X,N),
respectively given in Eqs. (4.50) and (4.72), into the expression for p(x|X) in Eq. (4.77)
we are able to rewrite p(x|X) in the large deviation form

p(x|X) ∼ exp
[
−
√
Nψz

(
x

N3/4

)]
, (4.80)

where z = X/N3/4 and

ψz(y) = 3
2y

2/3 + F (z − y)− F (z) . (4.81)

We recall that F (z) is the rate function of P (X,N) given in Eq. (4.73). Note that
the variable y = x/N3/4 is the rescaled single-run displacement, while the variable
z = X/N3/4 is the rescaled total displacement.

We thus need to investigate the behavior of the rate function ψz(y) as a function of y
and for different values of z. Indeed, if ψz(y) > 0 for some value of y, the corresponding
single-run displacement x = yN3/4 will be observed with exponentially small probability,
i.e., with probability which decays as e−c

√
N with c > 0. Instead, if for some value y > 0

we find ψz(y) = 0, the corresponding displacement can be observed in a typical RTP
configuration as a condensate.

The behavior of ψz(y) is shown in detail in Fig. 4.9. Below the transition, i.e., for
z < zc, we observe that ψz(y) > 0 for all y and thus no condensate can appear. On
the other hand for z > zc there exist a unique point y∗(z) > 0 for which ψz(y∗(z)) = 0.
Correspondingly, for z > zc a bump appears at x ≈ y∗(z)N3/4, indicating the presence
of a condensate of size

Xcond = y∗(z)N3/4 . (4.82)
One can show that the variable y∗(z) satisfies

ψ′z(y∗) = (y∗)−1/3 − F ′(z − y∗) = 0 , (4.83)

where F ′(z) = dF (z)/dz and F (z) is given in Eq. (4.73). This equation can be solved
analytically, for instance by using Mathematica. We find

y∗(z) = z

z4/3

8 + 1
8

64 (2/3)1/3

a(z) + 4 (2/3)2/3 a(z) z4/3 + z8/3

1/2

(4.84)

+1
2

4 (2/3)1/3

a(z) + a(z)z4/3

24/332/3 −
z8/3

8 −
z4

8
√

64(2/3)1/3

a(z) + 4
(

2
3

)2/3
a(z) z4/3 + z8/3


1/2

−3

,

where a(z) is given in Eq. (4.70). From this expression we find y ∗ (zc) = zc/2. Thus,
at the critical value z = zc the size of the condensate jumps to the value Xcond = X/2,
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Figure 4.9: The rate function ψz(y) as a function of y/z, for different values of z. The
different curves correspond to the exact result in Eq. (4.81). For z < z`, ψz(y) is positive
and monotonic for y > 0. At z = z` a minimum appears at some value y∗ > 0, with
corresponding rate function value ψz(y∗) > 0. Increasing z further, the value ψz(y∗)
decreases until at the critical point z = zc, one finds ψz(y∗) = 0. For z > zc, there
always exists a unique value y∗ > 0 for which ψz(y∗) = 0.

meaning that just above the transition the condensate is responsible for half of the total
displacement X. This is quite different from what was observed in the previous section,
where Xcond = X −Xc (and thus Xcond = 0 at the critical point).

It is also interesting to observe that a local minimum of the rate function appears
for z > z` at y = y∗(z), where y∗(z) is given in Eq. (4.84). However, for z` < z < zc,
one has ψz(y∗(z)) > 0 and thus no condensate is observed. We can interpret this result
as follows. For z < z` the only stable phase is the fluid one. For z` < z < zc, both the
fluid and the condensate phases are in principle possible, but the condensate phase is
metastable since its associated rate function ψz(y∗(z)) is positive. Increasing z, the value
of the rate function ψz(y∗(z)) decreases, until at z = zc one has ψz(y∗(z)) = 0 and the
whole system jumps to the condensate phase. This mechanism of the phase transition
resembles that of thermodynamic first-order transitions, with the rate function ψz(y)
playing the role of the free energy.

Finally, we also investigate the behavior of the participation ratio Y2(z), introduced
in the previous section, which is one of the possible order parameters for this transition3.
This is defined as

Y2(z) =
〈 ∑N

i=1 x
2
i(∑N

i=1 xi
)2

〉
z

. (4.85)

In the fluid phase, the numerator in Eq. (4.85) scales as N , since x2
i ∼ O(1) for all i,

3Another equivalent order parameter is the condensate fraction mc = Xcond/X, defined as the
fraction of the total displacement X which is carried by the condensate.
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while the denominator is X2 ∼ O(N3/2). Thus, for z < zc, we expect the participation
ratio to vanish as 1/

√
N . On the other hand, in the condensed phase, the numerator is

dominated by the condensate Xcond = y∗(z)N3/4 and thus

Y2(z) ≈ X2
cond
X2 =

(
y∗(z)
z

)2

. (4.86)

To summarize, in the thermodynamic limit, we have

Y2(z) =


0 for z < zc ,

(y∗(z)/z)2 for z > zc ,

(4.87)

where y∗(z) is the unique solution of Eq. (4.83). This exact result is shown in Fig. 4.10
and is in good agreement with numerical simulations. Interestingly, we observe that the
order parameter Y2(z) is discontinuous at the critical value z = zc. One can also show
that, in the region z > zc, the participation ratio has asymptotic behaviors

Y2(z) '


1/4 + 2−7/4(z − zc) for z → z+

c ,

1− 4z−4/3 for z →∞ .

(4.88)

Just above the transition, the participation ratio approaches the limit value 1/4, cor-
responding to configurations in which the condensate contains half of the total dis-
placement X (i.e., Xcond ≈ X/2). On the other hand, for large z, Y2(z) tends to the
limit value one, meaning that the condensate absorbs the whole displacement X (i.e.,
Xcond ≈ X).

To summarize, we have shown that, for a simple one-dimensional RTP model with
Gaussian speed, a first-order condensation transition can be observed in the large devi-
ations of the position of the particle. This transition is signaled by a first-order discon-
tinuity in the rate function of the position. We have characterized the mechanism of the
transition and we have identified the corresponding order parameter, showing that it is
discontinuous at the critical point. The results of these sections apply to the general
problem of computing the distribution of the sum of several i.i.d. stretched exponential
random variables.

4.4 Sampling rare events
In this last section, we present the details of the numerical simulations that we have
performed to check the analytical results of the previous sections. To study the large-
deviation regime, we employ a constrained Markov chain Monte Carlo (MCMC) algo-
rithm, similar to the ones used in [183,210,211].

An RTP configuration C of N steps is described by the 3N random variables C =
{(τi, vi, ui)} = {(τ1, v1, u1) , . . . (τN , vN , uN)}, where τi is the time of the i-th running
phase, vi is the running speed, and ui is the x-component of the d-dimensional unit
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Figure 4.10: The participation ratio Y2(z) as a function of z = X/N3/4. The continuous
blue line corresponds to the exact result in Eq. (4.87), while the symbols are obtained
from numerical simulations at different values of the system size N .

vector that represents the direction of the RTP (with −1 ≤ ui ≤ 1). The probability
weight associated with each configuration is

P (C) =
N∏
i=1

p(τi)W (vi)fd(ui) , (4.89)

where p(τ) = γe−γτ is the distribution of the running times, W (v) is the speed distri-
bution, and fd(u) is given in Eq. (4.6). The position X of the particle for an N -steps
configuration C is given by

X(C) =
N∑
i=1

τiviui . (4.90)

Thus, by standard sampling techniques one can directly sample theN couples {(τi, vi, ui)}
and from this obtain a realization of the position X. Repeating this procedure several
times, one can build a histogram that approximates the PDF P (X,N) of X. However,
with this direct-sampling approach one is usually only able to probe the typical regime
of the PDF P (X,N), i.e., one can only estimate this distribution for X ∼ O(

√
N).

For instance, considering 106 samples, with this method one can only observe events
that occur with probability of order 10−6 or higher. However, if one is interested in the
rare events corresponding to the large-deviation tails of the distribution (for instance
for X ∼ O(N)) this naive approach cannot be used anymore as it would be extremely
expensive. For instance, if one wants to sample events that occur with probabilities of
order 10−100, a more sophisticated approach is required.

For this reason, we employ a constrained MCMC algorithm, which allows us to
sample rare configurations with atypically large displacements X. We start by im-
plementing an MCMC dynamics in the space of configurations C = {(τi, vi, ui)}, us-
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ing the Metropolis-Hastings algorithm. Starting from any initial configuration, we
choose at random one of the N running phases, say the i-th, and we propose a move
(τi, vi, ui)→ (τnew

i , vnew
i , unew

i ), where

τnew
i = τi + δτi , vnew

i = vi + δvi , unew
i = ui + δui . (4.91)

Here the variables δτi, δvi, δui are random and uniformly distributed in the intervals
(−a, a), (−b, b) and (−c, c), respectively. The positive constants a, b and c are parame-
ters of the algorithm. The proposed new configuration is thus

Cnew = {(v1, τ1, u1) , . . . , (vi−1, τi−1, ui−1) , (vinew, τi
new, unew

i ) , (vi+1, τi+1, ui+1) , . . .}
(4.92)

The move is accepted with probability

pacc = min
[
1, p(τ

new
i )W (vnew

i )fd(unew
i )

p(τ i)W (vi)fd(ui)

]
, (4.93)

and it is rejected otherwise. Initially, we let the system evolve for 107 sweeps, i.e., 107N
moves. In this way the MCMC reaches its equilibrium state. Then, we measure the
position X of the RTP every 102 sweeps, to avoid correlations between samples. Using
these samples, we build a histogram that approximates the PDF P (X,N). Up to this
point, the MCMC algorithm is completely equivalent to the direct-sampling strategy and
it only allows to probe typical trajectories. To estimate numerically the large-deviations
tails of P (X,N), we need to bias the MCMC dynamics towards large values of X.

We start by choosing some large value X∗, depending on which regime we would
like to probe. For instance, for the model discussed in Section 4.2, the large-deviation
regime that we have discussed is found at a scale X ∼ O(N) and thus one would choose
X∗ ∼ O(N). On the other hand, for the one-dimensional RTP with Gaussian speed
discussed in Section 4.3, we take X∗ ∼ O(N3/4). In the following, we will discuss the
latter case. We initialize the MCMC from some initial condition with X > X∗. Then,
we evolve the system according to the MCMC dynamics described above, adding the
hard constraint X > X∗, meaning that any attempted update corresponding to X < X∗

is always rejected.
The histogram that we obtain from this biased algorithm will approximate the PDF

P (X,N |X > X∗), conditioned on the event X > X∗. This quantity is then simply
related to the PDF P (X,N) by

P (X,N |X > X∗) = P (X,N)
P (X > X∗) . (4.94)

Taking the natural logarithm of both sides, we obtain

log [P (X,N |X > X∗)] = log [P (X,N)]− log [P (X > X∗)] . (4.95)

Diving both sides by
√
N and recalling the definition of the rate function (for large N)

F
(
X

N3/4

)
= − log [P (X,N)]√

N
, (4.96)
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Figure 4.11: Numerical curve of the probability density function P (X,N) as a function
of X, for d = 2, speed distribution W (v) in Eq. (4.16) with α = 2, and N = 1000,
obtained with a constrained Markov chain Monte Carlo algorithm.

we find
F
(
X

N3/4

)
= − log [P (X,N |X > X∗)]√

N
+ CX∗ . (4.97)

Note that CX∗ is constant with respect to X.
Thus, to estimate numerically F (z) we need to compute the value of CX∗ . This can

be achieved by the following strategy. First, we perform an unbiased simulation, which
will allow us to estimate F (z) in a small interval around the origin. Then, we choose a
value of X∗ such that z∗ = X∗/N3/4 falls within the range of values for which F (z) is
known. The biased simulation will give us an estimate of F (z) in a small region with
z > z∗, up to the constant CX∗ . Since the two estimates of F (z), the one obtained
without the constraint and the one with the constraint, overlap for some values of z,
one can compute the constant CX∗ by matching the two curves. This allows us to
know F (z) in a slightly larger interval. Then, we continue by performing a new MCMC
simulation with a larger value of X∗ and so on until F (z) is known for the desired range
of values. Note that to speed up the algorithm the procedure above can be parallelized
by choosing a fine enough grid of values X∗ in order to ensure the overlap between the
different histograms. For instance, to obtain the numerical curves in Fig. 4.7 we have
used 90 equispaced values of X∗. Using this procedure, one can probe events with very
small probabilities, even smaller than 10−100.

Interestingly, with the technique described above one can also obtain the marginal
PDF p(x|X) (see Fig. 4.8). Indeed, from the MCMC dynamics, one has access to the
values of the single-run displacements x1 , . . . xN . By measuring a randomly chosen
displacement at every step one can build a histogram that will approximate the PDF
p(x|X > X∗). However, it turns out that when X∗ is large, the system will typically
stay in a small region to the right of X∗. In other words, even if X is free to fluctuate
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during the simulation, it will typically remain close to X∗. Thus, one can approximate

p(x|X > X∗) ' p(x|X∗) . (4.98)

Alternatively, one can avoid this approximation by performing an MCMC dynamics at
fixed X (e.g., by proposing moves that conserve the total displacement X). However,
the convergence of the algorithm turns out to be slower in this case. With the same
technique one can also estimate the participation Y2(z) as functions of z (see Fig. 4.10).
The results of our numerical simulations are in good agreement with the theory.

– 129 –





Article 7

Condensation transition in the late-time position of a
Run-and-Tumble particle

F. Mori, P. Le Doussal, S. N. Majumdar, and G. Schehr,
Phys. Rev. E 103, 062134 (2021).

+ https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.062134
+ https://arxiv.org/abs/2103.04637

Abstract

We study the position distribution P (~R,N) of a run-and-tumble particle (RTP)
in arbitrary dimension d, afterN runs. We assume that the constant speed v > 0 of
the particle during each running phase is independently drawn from a probability
distributionW (v) and that the direction of the particle is chosen isotropically after
each tumbling. The position distribution is clearly isotropic, P (~R,N)→ P (R,N)
where R = |~R|. We show that, under certain conditions on d and W (v) and for
large N , a condensation transition occurs at some critical value of R = Rc ∼ O(N)
located in the large deviation regime of P (R,N). For R < Rc (subcritical fluid
phase), all runs are roughly of the same size in a typical trajectory. In con-
trast, an RTP trajectory with R > Rc is typically dominated by a ‘condensate’,
i.e., a large single run that subsumes a finite fraction of the total displacement
(supercritical condensed phase). Focusing on the family of speed distributions
W (v) = α(1 − v/v0)α−1/v0, parametrized by α > 0, we show that, for large N ,
P (R,N) ∼ exp [−Nψd,α(R/N)] and we compute exactly the rate function ψd,α(z)
for any d and α. We show that the transition manifests itself as a singularity of
this rate function at R = Rc and that its order depends continuously on d and
α. We also compute the distribution of the condensate size for R > Rc. Finally,
we study the model when the total duration T of the RTP, instead of the total
number of runs, is fixed. Our analytical predictions are confirmed by numerical
simulations, performed using a constrained Markov chain Monte Carlo technique,
with precision ∼ 10−100.
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First-order condensation transition in the position distribution
of a run-and-tumble particle in one dimension

F. Mori, G. Gradenigo, and S. N. Majumdar,
J. Stat. Mech. 103208 (2021).

+ https://iopscience.iop.org/article/10.1088/1742-5468/ac2899/meta
+ https://arxiv.org/abs/2107.00338

Abstract

We consider a single run-and-tumble particle (RTP) moving in one dimen-
sion. We assume that the velocity of the particle is drawn independently at each
tumbling from a zero-mean Gaussian distribution and that the run times are expo-
nentially distributed. We investigate the probability distribution P (X,N) of the
position X of the particle after N runs, with N � 1. We show that in the regime
X ∼ N3/4 the distribution P (X,N) has a large deviation form with a rate func-
tion characterized by a discontinuous derivative at the critical value X = Xc > 0.
The same is true for X = −Xc due to the symmetry of P (X,N). We show that
this singularity corresponds to a first-order condensation transition: for X > Xc

a single large jump dominates the RTP trajectory. We consider the participation
ratio of the single-run displacements as the order parameter of the system, show-
ing that this quantity is discontinuous at X = Xc. Our results are supported by
numerical simulations performed with a constrained Markov chain Monte Carlo
algorithm.
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Chapter 5

Optimal control with stochastic
resetting

In this last chapter, we present some recent developments in the application of stochastic
resetting to the context of optimal control theory. Stochastic processes with random
restarts have recently become a very active area of research (for a recent review see [83]).
This class of stochastic processes includes systems that are restarted at random times
from a fixed configuration.

One of the simplest and most investigated models of resetting is that of a Brownian
particle in one dimension with constant resetting rate r, which was first introduced
in [36]. In a small time interval dt, the position of the particle evolves according to the
stochastic rule

x(t+ dt) =


x(t) +

√
2Dη(t)dt with probability 1− rdt ,

0 with probability rdt ,
(5.1)

where η(t) is Gaussian white noise. This simple stochastic rule leads to several interest-
ing features.

First of all, for r > 0, at late times the system reaches the steady state [83]

pst(x) = 1
2

√
r

D
exp

(
−
√
r

D
|x|
)
. (5.2)

Moreover, since the resetting dynamics induce a net probability flux towards the origin,
the system is out of equilibrium. As a consequence, resetting is often used as a toy model
for nonequilibrium stationary processes (see for instance Chapter 2). Besides the case of
one-dimensional diffusive particles, stochastic resetting has been investigated for a wide
range of processes, including random walks [88,89], active particles [91–93], fluctuating
interfaces [81,212,213], Ising model [95], and predator prey models [214].

Another relevant aspect of stochastic resetting is related to search processes [215].
As an example, let us consider a Brownian particle in one dimension with position x(t),
initially at the origin x(0) = 0. We denote by TF the first time at which the process
reaches a target located at x = L. This first-passage time TF has been studied for a wide
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Figure 5.1: Mean first-passage time 〈TF 〉 to a target at position x = L as a function of
the resetting rate r for Brownian motion. The curve corresponds to the exact result in
Eq. (5.3) with L = D = 1.

range of processes, with several applications [32, 75]. In the case of BM, the average
value of TF , known as mean first-passage time (MFPT) is infinite, meaning that on
average it will take an infinite amount of time to find the target1. On the other hand,
in the presence of resetting with constant rate r, it can be shown that [36]

〈TF 〉 = 1
r

[
exp

(√
r

D
L
)
− 1

]
. (5.3)

Thus, once we turn on the resetting rate r the MFPT becomes finite. Interestingly, as
a function of r, the MFPT turns out to be non-monotonic and shows a global minimum
for r = r∗, where r∗ = (2.53964 . . .)D/L2 (see Fig. 5.1). Thus, one can optimally choose
the resetting rate r∗ to minimize the MFPT to a given target.

Starting from this observation, it is natural to ask whether one could find a more
general framework that allows driving stochastic systems through restarts. In particular,
considering the more complicated case where the resetting rate depends on the state
of the system and on time, i.e., r = r(x, t), can we find the optimal resetting rate
r∗(x, t), as a function of x and t, to achieve a given goal? This question is best posed
within the framework of optimal control theory. In this chapter, we will first introduce
some classical ideas in the context of optimal control. Then, we will introduce a new
framework that allows finding the optimal resetting policy in a wide range of situations.

1Note however that the probability of eventually finding the target is one.
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5.1 Optimal control theory and the
Hamilton-Jacobi-Bellman equation

Since the seminal works of Pontryagin [216] and Bellman [101], optimal control theory
has found applications in a plethora of contexts, including artificial intelligence [217]
and finance [218]. In the typical setting, one considers a dynamical (stochastic or de-
terministic) system, whose state ~x(t), expressed as a d-dimensional vector, evolves as
a function of time t. In many situations, the dynamical equation that determines the
evolution of the state of the system can be written as

d~x(t)
dt

= ~f(x, t) +
√

2D~η(t) + ~u(x, t) , (5.4)

where ~f(x, t) is the deterministic component of the dynamics of the system, ~η(t) is
Gaussian white noise with zero mean and correlator 〈ηi(t)ηj(t′)〉 = δi,jδ(t − t′), and
D > 0 is the diffusion constant. The extra term ~u(x, t) represents the external control,
that we can tune to achieve a given goal.

The goal is expressed in terms of the reward function R(~x, t) that quantifies the
reward received if the system is in state ~x at time t. Moreover, one has to take into
account the operating costs associated with controlling the system. For simplicity, we
assume a quadratic cost in ~u(x, t). Thus, considering the evolution of the system in the
time interval [t, tf ], the payoff can be expresses as the difference between the reward and
the cost ∫ tf

t
dτ R(~x(τ), τ)−

∫ tf

t
dτ

1
2~u

2(~x(τ) τ) . (5.5)

The final time tf is often called time horizon. Note that the payoff in Eq. (5.5) depends
on the full trajectory of the system and is therefore a random variable. For this reason,
it is useful to consider the expected payoff

F~x0,t [~u] =
〈∫ tf

t
dτ R(~x(τ), τ)−

∫ tf

t
dτ

1
2~u

2(~x, (τ) τ)
〉
~x0

, (5.6)

where the average 〈. . .〉~x0 is taken over all stochastic trajectories starting from ~x0 at time
t, i.e., with ~x(t) = ~x0. Note that the expected payoff in Eq. (5.6) is a functional of the
control policy ~u(~x, τ), for τ ∈ [t, tf ].

Then, two questions naturally arise: (i) What is the optimal control strategy

~u ∗(~x, τ) = argmax~uF~x0,t [u] (5.7)

that maximizes the expected payoff? Note that one has to determine the optimal control
as a function of ~x ∈ Rd and τ ∈ [t, tf ]. (ii) What is the optimal payoff

J(~x0, t) = max
~u
F~x0,t [~u] = F~x0,t [~u ∗] , (5.8)

i.e., the payoff associated with the optimal cost? Note that, by definition, J(~x, t) is the
expected payoff starting from position ~x0 at time t and optimally controlling the system
up to time tf . Answering these questions requires solving a quite complicated functional
optimization problem.

– 137 –



Chapter 5. Optimal control with stochastic resetting

Remarkably, Bellman and his collaborators introduced a general framework to solve
this class of problems, known as dynamic programming. The main idea is to break down
the optimization problem into several simpler subproblems that one can solve iteratively.
This approach leads to the celebrated Hamilton-Jacobi-Bellman equation, which allows
computing both J(~x0, t) and ~u ∗(~x, t) by solving a differential equation. We now sketch
a simple derivation of this equation.

To proceed, it is useful to split the integrals in Eq. (5.6) as

F~x0,t [~u] = dtR(~x0, t)− dt
1
2~u

2(~x0, t) (5.9)

+
∫

d~x1P (~x1|~x0)
〈∫ tf

t+dt
dτ R(~x(τ), τ)−

∫ tf

t+dt
dτ

1
2~u

2(~x(τ) τ)
〉
~x1

,

where dt is a small time increment and we have averaged over all possible values of
~x1 = ~x(t+dt), multiplying by its conditioned PDF P (~x1|~x0). This distribution P (~x1|~x0)
depends on ~x0 and on the details of the dynamics. We recall that the symbol 〈. . .〉~x1

indicates the average over all trajectories starting from the fixed state ~x1 at time t+ dt.
We now perform the maximization over ~u(~x, τ) (for t ≤ τ ≤ tf ) on both sides, yielding

J(~x0, t) = max
~u

[
dtR(~x0, t)− dt

1
2~u

2(~x0, t) (5.10)

+
∫

d~x1P (~x1|~x0)
〈∫ tf

t+dt
dτ R(~x(τ), τ)−

∫ tf

t+dt
dτ

1
2~u

2(~x(τ) τ)
〉
~x1

]
.

We perform the optimization over ~u(~x, τ) in two steps, first we maximize over ~u(~x, τ)
for t+ dt ≤ τ ≤ tf , which gives

J(~x0, t) = max
~u(~x0,t)

[
dtR(~x0, t)− dt

1
2~u

2(~x0, t) + 〈J(~x1, t+ dt)〉
]
, (5.11)

where we have used the definition of J(~x, t) in Eq. (5.8) and 〈. . .〉 now indicates averaging
over the random variable ~x1. Note that one only needs to maximize over the variable
~u(~x0, t) (with ~x0 and t fixed).

Using the equations of motion in (5.4), we next express the variable ~x1 as

~x1 = ~x(t+ dt) = ~x0 + ~f(~x0, t)dt+
√

2Ddt~η(t) + ~u(~x0, t)dt , (5.12)

yielding

J(~x0, t) = max
~u(~x0,t)

[
dtR(~x0, t)− dt

1
2~u

2(~x0, t) (5.13)

+ 〈J(~x0 + ~f(~x0, t)dt+
√

2Ddt~η(t) + ~u(~x0, t)dt, t+ dt)〉
]
,

where the average 〈. . .〉 is now performed over the Gaussian white noise ~η(t). Expanding
the right-hand side to leading order in dt, we get

0 = max
~u(~x0,t)

[
dtR(~x0, t)− dt

1
2~u

2(~x0, t) +
[
~f(~x0, t) + ~u(~x0, t)

]
· ∇~x0J(~x0, t)dt

+ D∆~x0J(~x0, t)dt+ ∂tJ(~x0, t)dt
]
. (5.14)
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Renaming ~x0 = ~x to ease the notation, we find that optimal control is given by

~u ∗(~x, t) = ∇~xJ(~x, t) . (5.15)

Plugging this expression back into Eq. (5.14), we obtain the differential equation

−∂tJ(~x, t) = R(~x, t) + 1
2 [∇~xJ(~x, t)]2 + ~f(~x, t) · ∇~xJ(~x, t) +D∆~xJ(~x, t) , (5.16)

which is the celebrated stochastic Hamilton-Jacobi-Bellman equation [100].
The HJB equation must be solved backward in time, starting from the final condition

J(~x, tf ) = 0. Once the full solution J(~x, t) for t ∈ [0, tf ] is found, one can compute the
optimal control by using Eq. (5.15). Note that the optimal control ~u ∗ always drives
the system in the direction in which the expected payoff J(~x, t) increases the most. The
quadratic term in ∇~xJ makes the equation nonlinear and, as a consequence, one has
often to rely on numerical simulations to solve it.

Although analytical solutions of the HJB equation are usually hard to obtain, there
exist few exactly solvable cases. For instance, let us consider the case d = 1, with
f(x, t) = 0 and R(x, t) = −(α/2)(x − xf )2δ(t − tf ). In this case, since the reward
function contains a δ function centered at t = tf , the reward will only depend on the
final state x(tf ) of the system. In particular, the reward is higher the closer x(tf ) is to
the target state xf . In this case it is possible to show that the optimal control is given
by

u∗(x, t) = −α x− xf
1 + α(tf − t)

. (5.17)

This optimal control continuously pushes the system in the direction of the target loca-
tion xf . Interestingly, in the limit α→∞, one obtains the effective force to generate a
Brownian bridge [125].

Stochastic optimal control has been used in a variety of systems, including pandemic
management [219], supply-chain planning [220], and fluctuating interfaces [221]. The
formalism described above requires the control to be local and continuous in time.
However, a wide range of systems cannot be controlled by a sequence of infinitesimal
local changes but require global changes. This can happen either because implementing
continuous changes would be too complicated or because there are structural limitations
that do not allow continuous control. A recent example of such a situation is the COVID-
19 crisis, during which the main policies chosen by governments were global measures
such as lockdowns.

Other examples can be found in the context of search processes, both in computer
science [84] and in search-and-rescue missions [222]. A commonly observed strategy
in search processes is to combine phases of local motion during which the searcher is
actively looking for the target and phases of global motion, during which the target
cannot be detected. These intermittent search strategies have been widely investigated
and are typically quite efficient [75, 223]. However, the HJB equation (5.16) cannot be
directly applied to investigate such global policies. One of the simplest global policies
that one can implement is to restart the system from some known state.
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5.2 Resetting optimal control
In order to model restarting policies we replace the control drift ~u(~x, t) in Eq. (5.4) with
a space-dependent resetting rate r(~x, t). In a small time interval dt, the system evolves
according to

~x(t+ dt) =


~xres with probability r(~x, t)dt ,

~x(t) + ~f(~x, t)dt+
√

2Ddt~η(t) with probability 1− r(~x, t)dt .
(5.18)

In other words, with probability r(~x, t)dt the system is reset to the fixed resetting
location ~xres. With the complementary probability 1 − r(~x, t)dt, the system evolves
freely.

We would like to find the optimal resetting policy r∗(~x, t) that maximizes an expected
payoff. As before, we consider a generic reward function R(~x, t). Moreover, we introduce
a cost c(~x, t) associated with each resetting event. Thus, the expected payoff can be
written as

F~x0,t [r] =
〈∫ tf

t
dτ R(~x(τ), τ)−

∫ tf

t
dτ c(~x, (τ) τ)r(~x, (τ) τ)

〉
~x0

, (5.19)

where we recall that the average is performed over all trajectories ~x(τ) (for t ≤ τ ≤ tf )
with ~x(t) = ~x0. The optimal payoff and the optimal policy are respectively defined as

J(~x0, t) = max
r
F~x0,t [r] , (5.20)

and
r∗(~x, τ) = argmaxr F~x0,t [r] , (5.21)

where the maximization is performed over all resetting functions r(~x, τ). Note that
also in this case the expected payoff F~x0,t [r] is a functional of the resetting strategy
r(~x, t), which is a function of ~x and t. Thus, this is again a quite complicated functional
optimization problem. Using ideas from dynamic programming, as done in the previous
section, we derive a framework that allows solving this optimization problem in a very
general setting.

We start by rewriting the expected payoff in Eq. (5.19) as

F~x0,t [r] = dtR(~x0, t)− dtc(~x0, t)r(~x0, t) (5.22)

+
∫

d~x1P (~x1|~x0)
〈∫ tf

t+dt
dτ R(~x(τ), τ)−

∫ tf

t+dt
dτ c(~x0, t)r(~x0, t)

〉
~x1

,

where, as before, ~x1 = ~x(t+dt) and P (~x1|~x0) indicates the distribution of ~x1 conditioned
on the previous state ~x0. We next maximize both sides over r(~x, τ), for t ≤ τ ≤ tf ,
yielding

J(~x0, t) = max
r

[
dtR(~x0, t)− dtc(~x0, t)r(~x0, t) (5.23)

+
∫

d~x1P (~x1|~x0)
〈∫ tf

t+dt
dτ R(~x(τ), τ)−

∫ tf

t+dt
dτ c(~x0, t)r(~x0, t)

〉
~x1

]
,
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Maximizing over r(~x, τ) for t+ dt ≤ τ ≤ tf , we get

J(~x0, t) = max
r(~x0,t)

[
dtR(~x0, t)− dtc(~x0, t)r(~x0, t) + 〈J(~x1, t+ dt)〉

]
, (5.24)

where the average 〈. . .〉 is now taken over the variable ~x1 = ~x(t + dt). From Eq. (5.18)
we have

~x1 =


~xres with probability r(~x0, t)dt ,

~x0 + ~f(~x0, t)dt+
√

2Ddt~η(t) with probability 1− r(~x0, t)dt .
(5.25)

Thus, we obtain

J(~x0, t) = max
r(~x0,t)

[
dtR(~x0, t)− dtc(~x0, t)r(~x0, t) + r(~x0, t)dtJ(~xres, t+ dt) (5.26)

+ (1− r(~x0, t)dt)
〈
J(~x0 + ~f(~x0, t)dt+

√
2Ddt~η(t), t+ dt)

〉 ]
,

where the average is now performed over the Gaussian noise ~η(t). Expanding to leading
order in dt, we find

0 = max
r(~x0,t)

[r(~x0, t)dt [J(~xres, t+ dt)− J(~x0, t)− c(~x0, t)]]

+ dtR(~x0, t) + ~f(~x0, t) · ∇~x0J(~x0, t)dt+D∆~x0J(~x0, t)dt+ ∂tJ(~x0, t)dt , (5.27)

Note that since r(~x0, t)dt is a probability one has to perform the maximization with
the constraint 0 ≤ r(~x0, t) ≤ 1/dt. Thus, since the function that we are maximizing is
linear, we find that the optimal resetting policy is

r∗(~x0, t)dt =


0 if J(~x0, t) ≥ J(~xres, t) + c(~x0, t) ,

1 if J(~x0, t) < J(~xres, t) + c(~x0, t) .
(5.28)

Renaming ~x0 → ~x, this policy can be rewritten as

r∗(~x, t)dt =


0 if ~x ∈ Ω(t) ,

1 if ~x /∈ Ω(t) ,
(5.29)

where we have defined the domain

Ω(t) = {~x : J(~x, t) ≥ J(~xres, t)− c(~x, t)} . (5.30)

Remarkably, we find that the optimal resetting policy r∗ is bang-bang [224], meaning
that the control switches between two possible states. The meaning of Eq. (5.29) is quite
clear. The optimal strategy is to reset if the expected payoff at the resetting location
~xres is larger than the one at the current location ~x, taking into account the cost c(~x, t)
of resetting.
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Moreover, from Eq. (5.27) we find that the optimal payoff J(~x, t) satisfies the differ-
ential equation

−∂tJ(~x0, t) = ~f(~x0, t) · ∇~x0J(~x0, t) +D∆~x0J(~x0, t)dt+R(~x, t) , (5.31)

with final condition J(~x, tf ) = 0. Note that the domain of definition of the differential
equation (5.31) is the domain Ω(t) itself. One has to therefore solve the equation back-
wards in time, with a time-dependent domain of definition and with Neumann boundary
conditions in space

∇~xJ(~x, t) · ~n(~x) = 0 , (5.32)

where ~n(~x) is the normal unit vector to the boundary. For the derivation of the boundary
condition, see Article 9. Outside of the domain Ω(t), the solution is given by J(~x, t) =
J(~xres, t)− c(~x, t).

We would like to stress the fact that the differential equation in Eq. (5.31) is of a
special kind, since the domain of definition, given in Eq. (5.30), depends on the solution
J(~x, t) of the differential equation. This kind of differential equation belongs to a class
known as moving boundary problems or Stefan problems [225]. These problems often
arise in the description of heat transfer between different phases of matter. A simple
example is the motion of the interface between ice and water on a freezing lake. To obtain
the temperature profile as a function of the distance from the lake surface, one must solve
the heat equation with an interface that moves according to the temperature gradient.
The interface typically moves with time and has to be treated as an additional variable,
which must be computed jointly with the solution of the differential equation. In analogy
with the freezing-lake example, in our case, the optimal payoff J(~x, t) corresponds to
the temperature profile, while the boundary of the domain Ω(t) plays the role of the
ice-water interface2. In general, the domain Ω(t) and the optimal payoff J(~x, t) have to
be obtained numerically from Eqs. (5.30) and (5.31).

The framework derived above turns out to be very general and provides the optimal
restart policy for a wide range of dynamical systems and several control problems. In
the rest of this section, we present two cases in which one can make analytical progress.

5.2.1 Dirac delta final reward
One of the simplest control problems that one can consider is that of driving a one-
dimensional system towards a desired location xf at the final time tf . This can be
expressed with the δ function reward

R(x, t) = αδ(x− xf )δ(t− tf ) . (5.33)

Thus, the reward is α if the system is at position xf at the final time tf and it is zero
otherwise 3. For simplicity, we also consider a constant resetting cost c(x, t) = c > 0 and
we set the deterministic component of the dynamics to zero, i.e., we assume f(x, t) = 0.
Thus, the process is a Brownian motion with restarts.

2Note however that the two problems have different boundary conditions at the interface.
3In some sense, this is like a rendez-vous, where one has to be at the right place at the right time.
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Figure 5.2: Optimal restarting strategy for the reward R(x, t) = αδ(x− 1)δ(t− 1), with
α = 10 and with unit resetting cost c = 1. The goal is to drive the process to the target
location xf = 1 (red dot) at the final time tf = 1. Getting to the target location is
associated with a constant reward α while a cost c is paid for each resetting event (red
dashed arrows). The optimal strategy is to let the system free to evolve (continuous
green line) when it is in Ω(t) (white region) and to reset it to xres = 0 (horizontal dashed
line) upon touching the blue region, which is the complementary of Ω(t). The optimal
domain Ω(t) is obtained from the numerical integration of Eqs. (5.30) and (5.31), with
D = 1.

Before presenting the solution to this control problem, it is useful to consider two
limiting cases. In the case where α < c, even one resetting event would cost more than
the potential reward for reaching the target location. Thus, in such a case, the optimal
strategy is to never reset, corresponding to the domain Ω(t) = R. In the opposite
situation where α � c, the cost of resetting can be neglected. Thus, it is convenient
to reset as soon as the distance |x− xf | of the current location x from the target xf is
larger than the distance of the resetting location xres from the target. Thus, assuming
xf > xres, one expects Ω(t) ≈ [xres, 2xf − xres]. However, when α/c ∼ 1 it is quite
nontrivial to identify the optimal resetting protocol.

From Eqs. (5.30) and (5.31), we derive the optimal resetting strategy for any α and
c. For α < αc, where αc = xfc

√
2πe ≈ 4.13273 xfc, we find that the optimal strategy is

to never reset, corresponding to Ω(t) = R for all 0 ≤ t ≤ tf . The result is more complex
for α > αc, where resetting is only favorable in a specific time window, for t < tf .
In this case, the domain Ω(t) is quite nontrivial and has to be obtained by numerical
integration (see Fig. 5.2).

To describe the case α > αc, it is convenient to introduce the backward time τ = tf−t
and the backward payoff, defined as I(x, τ) = J(x, tf − τ). Using Eq. (5.31), it is easy
to show that I(x, τ) satisfies the diffusion equation

∂τI(x, τ) = D∂xxI(x, τ) , (5.34)
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with initial condition I(x, τ = 0) = αδ(x − xf ). Assuming that no boundary appears
for small τ , i.e., that Ω(t) = R (to be verified a posteriori), the optimal payoff function
is the Gaussian weight

I(x, τ) = α
1√

4πDt
e−(x−xf )2/(4πDτ) . (5.35)

A boundary only appears when the condition I(x, τ) < I(0, τ) + c is verified for the
first time for some value of x. Using Eq. (5.35), this condition can be rewritten, for
|x− xf | > xf , as

α >
c
√

4πDτ
e−x

2
f
/(4Dτ) − e−(x−xf )2/(4Dτ)

. (5.36)

Minimizing the right-hand side of Eq. (5.36) over x and τ , we obtain

α > cxf
√

2eπ (5.37)

Thus, for α < αc = cxf
√

2eπ, no boundary appears and the cost function is given by
Eq. (5.35) for any τ . On the other hand, for α > αc, two boundaries appear at time τ ∗,
which is the smallest solution of the transcendental equation

α = c
√

4πDτ ex2
f/(4Dτ) . (5.38)

This solution τ ∗ is shown in Fig. 5.3 as a function of the reward intensity α. Thus,
for τ < τ ∗ (i.e., for t > tf − τ ∗), the cost function is given by Eq. (5.35), while it is
hard to determine it analytically for τ > τ ∗. We obtain numerically the boundary for
τ > τ ∗ (see Fig. 5.2). Note that at τ = τ ∗ the condition in Eq. (5.36) is only verified
for x → ±∞, meaning that the two boundaries start from infinity at the critical time.
The asymptotic behaviors of τ ∗ as a function of α are given by

τ ∗ =

x2
f/(2D) , for α→ αc ,

[x2
f/(4D)]/ log(α) , for α→∞ .

(5.39)

We observe that the optimal boundary in Fig. (5.2) evolves non-monotonically over
time. This can be understood as follows. For very early times, it is not yet convenient
to reset because after a resetting event the system would drift away from the target,
requiring a second resetting. On the other hand, at late times, i.e., at t ∼ tf , it is
not useful to reset either, since the probability to reach the target from the resetting
location would be too small.

5.2.2 Infinite time horizon with discounted reward
Interestingly, one can also obtain a time-independent version of the problem in Eq. (5.31)
by considering an infinite time horizon tf →∞ and by assuming the discounted reward
and cost

R(~x, t) = R(~x)e−βt , (5.40)

and
c(~x, t) = C(~x)e−βt , (5.41)
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Figure 5.3: Scaled time Dτ ∗/x2
f at which the barrier first appears as a function of

α/(cxf ). The continuous blue line corresponds to the smallest positive solution in
Eq. (5.38), while the dashed red line corresponds to the critical value αc =

√
2πecxf .

For α < αc, no barrier is present.

where β > 0 is the discount factor. Moreover, we also assume that the deterministic
term does not change in time ~f(~x, t) = ~f(~x). These type of discounted payoffs are
quite common in the control theory literature [226] and describe situations in which the
strength of the reward decays over a typical timescale 1/β. This is for instance relevant
in finance, where the discount rate β is used to model the fact that future benefits are
considered less valuable than present benefits4.

Using the ansatz J(~x, t) = J (~x)e−βt, Eq. (5.31) takes the time-independent form

βJ (~x) = D∆~xJ (~x) + ~f(~x) · ∇~xJ (~x) +R(~x) , (5.42)

where the domain of definition Ω = {~x : J (~x) ≥ J (~xres)−C(~x)} is also independent of
time.

This differential equation can be analytically solved in the case of a one-dimensional
system, with a quadratic reward R(x) = −αx2, no external force f(x) = 0. For simplic-
ity we also set xres = 0. Note that the system has to remain close to the resetting state
to maximize the reward. Thus, the resetting strategy is quite clear: one should reset
when the system goes too far from the resetting location, corresponding to Ω = [−u, u],
where u depends on the problem parameters.

This statement can be made more precise by solving the differential equation (5.42).
Setting β = D = 1, we obtain the exact expression

J (x) = α
[
−2− x2 + 2u(v) coth(x)

]
, (5.43)

for x ∈ Ω. The variable u(v) is the boundary of the symmetric domain Ω, i.e.,

Ω = [−u(v), u(v)] . (5.44)
4As an old Latin proverb says “Ad praesens ova cras pullis sunt meliora”, which can be translated

as “Better an egg today than a chick tomorrow”.
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Figure 5.4: The optimal discounted payoff J (x) for a one-dimensional Brownian motion
as a function of x for the discounted reward R(x) = −αx2 and cost C(x) = c. The
continuous curves correspond to the exact result in Eq. (5.43) for different values of
the cost-to-reward ratio v = c/α. The symbols correspond to numerical simulations
performed with β = D = 1.

Figure 5.5: The optimal boundary u(v) as a function of the cost-to-reward ration c/α
(obtained for β = D = 1). The continuous blue line indicates the exact expression,
obtained by numerically solving Eq. (5.45). The dashed lines indicate the asymptotic
expressions for small and large v, which are given in the text.
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This boundary u(v) is a function of the cost-to-reward ratio v = c/α and is the unique
positive solution of the transcendental equation

v − u2(v) + 2u(v) tanh
(
u(v)

2

)
= 0 . (5.45)

The exact result for the optimal payoff J (x) in Eq. (5.43) is shown in Fig. 5.4 and is in
excellent agreement with numerical simulations.

In particular, when v � 1 (meaning that the cost is very small), one can position
the boundary very close to the resetting location, allowing the system to remain close
to the optimal location x = 0. Indeed, from Eq. (5.45), we obtain that for small v the
optimal boundary goes as u(v) ≈

√
2(3v)1/4. In the opposite case v � 1, resetting is

expensive and one has to play a more conservative strategy by putting the boundary
far from the resetting location. From Eq. (5.45), we find that for large v the optimal
boundary grows as u(v) ≈

√
v + 1. The exact optimal boundary u(v) is shown as a

function of v in Eq. (5.3). Interestingly, the results obtained in this special case can also
be recovered within the framework of first-passage resetting [227,228] (see Article 9).

To conclude, we have derived a framework, analogous to the Hamilton-Jacobi-Bellman
equation that provides the optimal restarting strategy in a wide range of control prob-
lems. Even if we have focused on two main illustrative examples, the technique is quite
general and can be used, for instance, for systems in higher dimensions. It can be
also generalized to other (non-linear) resetting costs and to discrete-time dynamics (see
Article 9).

– 147 –





Article 9

Resetting in Stochastic Optimal Control

B. De Bruyne and F. Mori,
preprint arXiv:2112.11416 (2021).

+ https://arxiv.org/abs/2112.11416

Abstract

“When in a difficult situation, it is sometimes better to give up and start all
over again”. While this empirical truth has been regularly observed in a wide
range of circumstances, quantifying the effectiveness of such a heuristic strategy
remains an open challenge. In this report, we combine the notions of optimal
control and stochastic resetting to address this problem. The emerging analytical
framework allows not only to measure the performance of a given restarting policy
but also to obtain the optimal strategy for a wide class of dynamical systems. We
apply our technique to a system with a final reward and show that the reward
value must be larger than a critical threshold for resetting to be effective. Our ap-
proach, analogous to the celebrated Hamilton-Jacobi-Bellman paradigm, provides
the basis for the investigation of realistic restarting strategies across disciplines.
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Article 10

Mean perimeter and area of the convex hull of a planar
Brownian motion in the presence of resetting

S. N. Majumdar, F. Mori, H. Schawe, and G. Schehr,
Phys. Rev. E 103, 022135 (2021).

+ https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.022135
+ https://arxiv.org/abs/2011.06668

Abstract

We compute exactly the mean perimeter and the mean area of the convex
hull of a two-dimensional isotropic Brownian motion of duration t and diffusion
constant D, in the presence of resetting to the origin at a constant rate r. We
show that for any t, the mean perimeter is given by 〈L(t)〉 = 2π

√
D
r f1(rt) and

the mean area is given by 〈A(t)〉 = 2πDr f2(rt) where the scaling functions f1(z)
and f2(z) are computed explicitly. For large t � 1/r, the mean perimeter grows
extremely slowly as 〈L(t)〉 ∝ ln(rt) with time. Likewise, the mean area also grows
slowly as 〈A(t)〉 ∝ ln2(rt) for t� 1/r. Our exact results indicate that the convex
hull, in the presence of resetting, approaches a circular shape at late times, due
to the isotropy of the Brownian motion. Numerical simulations are in perfect
agreement with our analytical predictions.
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Number of distinct sites visited by a resetting random walker
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+ https://arxiv.org/abs/2202.04906
+ https://iopscience.iop.org/article/10.1088/1751-8121/ac6b69/meta

Abstract

We investigate the number Vp(n) of distinct sites visited by an n-step resetting
random walker on a d-dimensional hypercubic lattice with resetting probability p.
In the case p = 0, we recover the well-known result that the average number of
distinct sites grows for large n as 〈V0(n)〉 ∼ nd/2 for d < 2 and as 〈V0(n)〉 ∼ n for
d > 2. For p > 0, we show that 〈Vp(n)〉 grows extremely slowly as ∼ [log(n)]d. We
observe that the recurrence-transience transition at d = 2 for standard random
walks (without resetting) disappears in the presence of resetting. In the limit
p→ 0, we compute the exact crossover scaling function between the two regimes.
In the one-dimensional case, we derive analytically the full distribution of Vp(n) in
the limit of large n. Moreover, for a one-dimensional random walker, we introduce
a new observable, which we call imbalance, that measures how much the visited
region is symmetric around the starting position. We analytically compute the
full distribution of the imbalance both for p = 0 and for p > 0. Our theoretical
results are verified by extensive numerical simulations.
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Conclusion

Extreme events play a central role in several fields, from finance to climate science. Their
statistical features can be systematically studied with tools from probability theory only
in the case when the entries of a given time series are either uncorrelated or weakly
correlated. However, for strongly correlated variables, examples of which are abundant
in nature (such as a simple Brownian motion), there is no standard tool or method
available. In the absence of a general theory, it is necessary to study simple solvable
models to gain insights onto the extreme statistics of strongly correlated variables. In
this thesis, we have achieved significant progress in that direction by computing several
extreme observables in three different types of stochastic processes: (i) Brownian motion,
(ii) the run-and-tumble particle model, and (iii) resetting Brownian motion. These are
among the few exactly solvable systems with strong correlations. To study the extremal
properties of these models, we have considered a wide range of observables, including
the time of the maximum and the record statistics.

The common feature of the different works presented in this thesis is that of con-
sidering models for which the extremal properties can be studied exactly, i.e., without
any approximations. These exact solutions allowed us to uncover several unexpected
phenomena, including universal properties and nonequilibrium phase transitions. More-
over, since the models that we have considered are very general, we believe that our
results could be useful in the description of a variety of systems across disciplines.

In Section 2.1 of Chapter 2, we have presented the exact computation of the distribu-
tion of time τ = tmin−tmax between the maximum and the minimum of a one-dimensional
Brownian motion of fixed duration T . We have shown that this distribution assumes the
scaling form P (τ |T ) = (1/T )fBM(τ/T ), where we have computed the scaling function
fBM(y) exactly. We have generalized this result to other processes, including Brownian
bridges, discrete-time random walks, and fluctuating interfaces.

Moreover, we have considered discrete-time random walks of n-step with continuous
and symmetric jump distribution. We have studied the probability pn = P (τ = n|n)
that the time τ between the maximum and the minimum is exactly n. This corresponds
to configurations in which the maximum is reached at the first step tmax = 0 and the
minimum is attained at the final step tmin = n. We have shown that pn = 1/(2n) for any
finite n, independently of the jump distribution, even if the distribution is fat-tailed.
This result is a consequence of a combinatorial theorem by Spitzer [131].

For future works, it would be interesting to study the distribution of τ in the case of
Lévy flights. Indeed, the scaling form obtained for BM is not valid for Lévy flights with
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Lévy index µ, with 0 < µ < 2. From numerical simulations, we expect that in the limit
of large n, where n is the number of steps, the distribution of τ can still be written in
the scaling form

P (τ |n) ≈ 1
n
fµ

(
τ

n

)
, (5.46)

where the scaling function fµ(y) depends explicitly on the index µ. It would be relevant
to derive this scaling function fµ(y) for general µ (note that fµ(1) = 1/2 as a consequence
of our result on the probability of the event “τ = n′′). Moreover, it would be also relevant
to study the distribution of τ in the case of Brownian motion with drift. This could be
useful in the context of finance, where the price of a stock can be modeled as a drifted
Brownian motion. Another interesting generalization of this result would be to compute
the distribution of τ for a single run-and-tumble particle.

In Section 2.2 of Chapter 2, we have investigated the distribution P (tmax|T ) of the
time tmax of the maximum for stationary processes of fixed duration T . Using a path-
decomposition method, we have found the exact expression for P (tmax|T ) for several
processes, both at equilibrium (including the Ornstein-Uhlenbeck process) and out-of-
equilibrium (including Brownian motion with resetting). Moreover, in the case of an
overdamped Brownian particle in a confining potential, we have shown that, at late
times, the probability density function P (tmax|T ), properly rescaled, becomes universal,
i.e., independent of the details of the potential. Furthermore, we have shown that for any
equilibrium process, the distribution P (tmax|T ) is always symmetric around its midpoint
tmax = T/2, i.e., P (tmax|T ) = P (T−tmax|T ). This property is a consequence of the time-
reversal symmetry of the process and provides a simple test to detect nonequilibrium
fluctuations in steady states. For future works, it would be relevant to test this criterion
in real nonequilibrium systems.

In Chapter 3, we have investigated the first-passage properties of the RTP process
in d dimensions. In a passive Brownian motion in d dimensions, the different com-
ponents of the process are uncorrelated, hence the first-passage probability of a single
component in d-dimensions reduces trivially to a one-dimensional problem. However,
for the RTP process, the different components are strongly correlated and hence the
first-passage probability of the x-component of an RTP does not immediately reduce to
a one-dimensional problem, unlike in the Brownian case. One of the major achievements
of this thesis was to discover a rather nontrivial mapping between the RTP in continu-
ous time and a one-dimensional random walk problem in discrete time. This mapping
helped us to derive several universal first-passage properties that are almost impossi-
ble to derive from the standard Fokker-Planck approach. This method allows one to
directly apply numerous results from the theory of discrete-time random walks to inves-
tigate the statistical properties of the RTP model. In particular, using this technique,
we have shown that several quantities, i.e., the survival probability, the distribution
of the time of the maximum, and the record statistics, are completely universal, i.e.,
independent of d and the speed distribution of the particle. This is a consequence of
the Sparre Andersen theorem [38], valid for discrete-time random walks. We have also
shown that this universality also extends to several generalizations of the RTP model,
including a model with non-instantaneous tumblings. Moreover, we have applied this
method to compute the survival probability and the record statistics of a discrete-time
persistent random walk.
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Interestingly, in a recent work [229], the mapping to a random walk has been used
to compute the survival probability of an RTP in the presence of a constant drift. For
future works, it would be relevant to investigate whether the universality also extends
to other observables of the x component of the RTP process. For instance, we expect
the distribution of the occupation time of the x-component, i.e., the time spent by the
x component on the positive side, to be also universal. This distribution was computed
for d = 1 in [99] by a generalization of the Feynman-Kac method. We have verified this
universality for d ≥ 1 with numerical simulation but we have not been able so far to
employ our mapping in this case. Thus, showing analytically the universality of this
observable is an interesting open problem.

In Chapter 4, we have investigated the distribution of the position of a single RTP
moving in a d-dimensional space with arbitrary speed distribution W (v). We have
considered the position X of the particle after N running phases. We have shown that
the typical events are described by the central limit theorem: the probability density
function P (X,N) is approximately Gaussian for X ∼

√
N . However, the rare events

where X �
√
N are not described by the central limit theorem.

To estimate the probability of these events, we have computed exactly the rate
function associated with the large-deviation regime X ∼ N (or X ∼ N3/4 in one case).
We have considered several variations of the RTP model, for different d and W (v).
Interestingly, we have shown that, for several choices of the parameters of the model,
the rate function becomes singular at some critical value Xc of the displacement of the
particle. We characterize this phenomenon, showing that it consists in a condensation
transition. Indeed, by increasing the total displacement X the system goes from a
fluid phase (for X < Xc) in which the displacements associated with the different
running phases are roughly of the same order, to a condensed phase, in which a single
running phase dominates the trajectory. We have found that the order of the transition
can be arbitrarily tuned upon changing the model parameters. In particular, we have
shown that for an RTP moving in a line (d = 1) and with Gaussian speed fluctuations,
the system undergoes a first-order transition. We have identified an order parameter
associated with the transition, the participation ratio. We have shown that, in the case
of a first-order transition, this order parameter is discontinuous as a function of the total
displacement X, which plays the role of the control parameter.

Although we have mostly focused on RTP models in the fixed-N ensemble, i.e., fixing
the number N of completed running phases, we expect our results to be qualitatively
valid also in the fixed-T ensemble, i.e., when the total time T is fixed. It would be
relevant to investigate explicitly the large deviation in the fixed-T ensemble, in particular
in the case where we expect to observe a first-order transition (which has not been
considered before).

Finally, in Chapter 5 we have combined optimal control theory and stochastic reset-
ting into a new framework that allows finding the optimal restarting policy to drive a
complex system. This technique is very general and works for a wide class of dynamical
stochastic systems and several different control problems. As a result, we have obtained
a moving boundary problem for the optimal payoff function, which we have solved in
two illustrative examples.

There are several possible extensions of this work. First of all, it would be relevant
to apply this technique to more complex and realistic systems, composed of several
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interacting degrees of freedom. Moreover, it would be interesting to study cost functions
which are first-passage functionals (meaning that the process stops when a given target is
found for the first time). This could have applications in the context of search processes.
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Titre : Statistique d’extrêmes des processus : du mouvement brownien aux particules actives
Mots clés : Statistiques d’extrêmes, mouvement brownien, physique hors équilibre, particules actives

Résumé : Bien que rares, les événements extrêmes
peuvent jouer un rôle majeur dans un large éven-
tail de situations, de la finance au climat. Dans
cette thèse, nous étudions les propriétés extrêmes
de plusieurs processus stochastiques, dont le mou-
vement brownien (MB), les particules actives et le
MB avec réinitialisation.

Dans la première partie, nous étudions les ins-
tants auxquels les extrema des processus stochas-
tiques unidimensionnels se produisent. En particu-
lier, dans le cas d’un MB de durée fixée, nous cal-
culons la distribution de probabilité du temps entre
le maximum global et le minimum global. De plus,
nous dérivons la distribution du temps du maxi-
mum pour une classe de processus stochastiques
stationnaires, à la fois à l’équilibre et hors d’équi-
libre. Cette analyse conduit à la formulation d’un
critère simple pour détecter des fluctuations hors
d’équilibre dans les états stationnaires.

Dans la deuxième partie, nous nous concen-
trons sur le modèle de particules dit « run-and-
tumble particle » (RTP). Nous calculons exacte-
ment la probabilité de survie pour une RTP dans
un espace à d dimensions, montrant que cette
quantité est complètement universelle, c’est-à-dire
indépendante de d et des fluctuations de vitesse
de la particule. Nous étendons cette universalité
à d’autres observables et à certains modèles RTP
généralisés. De plus, nous étudions également les
grandes déviations de la position d’une RTP. Nous
montrons que, sous certaines conditions, une tran-
sition de condensation est observée dans le régime
de grandes déviations où la particule est éloignée
de sa position de départ.

Enfin, nous introduisons une nouvelle tech-
nique, analogue à l’équation de Hamilton-Jacobi-
Bellman, pour contrôler de manière optimale un
système dynamique à travers des redémarrages.

Title : Extreme value statistics of stochastic processes : from Brownian motion to active particles
Keywords : Extreme value statistics, Brownian motion, nonequilibrium physics, active particles

Abstract : Rare extreme events tend to play a ma-
jor role in a wide range of contexts, from finance
to climate. Hence, understanding their statistical
properties is a relevant task, which opens the way
to many applications. In this thesis, we investigate
the extremal properties of several stochastic pro-
cesses, including Brownian motion (BM), active
particles, and BM with resetting.

In the first part, we investigate the times at
which extrema of one-dimensional stochastic pro-
cesses occur. In particular, in the case of a BM of
fixed duration, we compute the probability distri-
bution of the time between the global maximum
and the global minimum. Moreover, we derive the
distribution of the time of the maximum for sta-
tionary stochastic processes, both at equilibrium
and out-of-equilibrium. This analysis leads to the
formulation of a simple criterion to detect none-

quilibrium fluctuations in steady states.
In the second part, we focus on the run-and-

tumble particle (RTP) model. We compute exactly
the survival probability for a single RTP in d di-
mensions, showing that this quantity is comple-
tely universal, i.e., independent of d and the speed
fluctuations of the particle. We extend this univer-
sality to other observables (time of the maximum
and records) and generalized RTP models. Moreo-
ver, we also investigate the position distribution of
a single RTP at late times. We show that, under
certain conditions, a condensation transition can
be observed in the large-deviation regime where
the particle is far from its starting position.

Finally, we introduce a new technique, analog
to the Hamilton-Jacobi-Bellman equation, to opti-
mally control a dynamical system through stochas-
tic resetting.
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