
HAL Id: tel-03709095
https://theses.hal.science/tel-03709095v1

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Scalability and Inference in Probabilistic
Deep Models

Simone Rossi

To cite this version:
Simone Rossi. Improving Scalability and Inference in Probabilistic Deep Models. Computer Aided
Engineering. Sorbonne Université, 2022. English. �NNT : 2022SORUS042�. �tel-03709095�

https://theses.hal.science/tel-03709095v1
https://hal.archives-ouvertes.fr

Improving Scalability and
Inference in Probabilistic Deep

Models

Simone Rossi

This dissertation is submitted for the degree of Doctor of Philosophy in
the Doctoral School N. 130: Computer Science, Telecommunications and

Electronics of Paris of the Sorbonne University

Committee in charge:

Maurizio Filippone EURECOM Advisor
Dino Sejdinovic University of Oxford Reviewer
Philipp Hennig University of Tübingen Reviewer
Maria A. Zuluaga EURECOM Examiner
Amandine Marrel CEA-DES Examiner
Marco Lorenzi INRIA/Université Côte d’Azur Examiner

Simone Rossi: Improving Scalability and Inference in Probabilistic Deep Models, ©
21/02/2022

supervisor:
Maurizio Filippone

location:
Departement of Data Science, EURECOM (France)

time:
21/02/2022

To my family.

ABSTRACT

Throughout the last decade, deep learning has reached a sufficient level of maturity
to become the preferred choice to solve machine learning-related problems or to
aid decision making processes. At the same time, deep learning is generally not
equipped with the ability to accurately quantify the uncertainty of its predictions,
thus making these models less suitable for risk-critical applications. A possible
solution to address this problem is to employ a Bayesian formulation; however,
while this offers an elegant treatment, it is analytically intractable and it requires
approximations. Despite the huge advancements in the last few years, there is
still a long way to make these approaches widely applicable. In this thesis, we
address some of the challenges for modern Bayesian deep learning, by proposing
and studying solutions to improve scalability and inference of these models. The
first part of the thesis is dedicated to deep models where inference is carried out
using variational inference (VI). Specifically, we study the role of initialization
of the variational parameters and we show how careful initialization strategies
can make VI deliver good performance even in large scale models. In this part
of the thesis we also study the over-regularization effect of the variational objec-
tive on over-parametrized models. To tackle this problem, we propose an novel
parameterization based on the Walsh-Hadamard transform; not only this solves
the over-regularization effect of VI but it also allows us to model non-factorized
posteriors while keeping time and space complexity under control. The second part
of the thesis is dedicated to a study on the role of priors. While being an essential
building block of Bayes’ rule, picking good priors for deep learning models is
generally hard. For this reason, we propose two different strategies based (i) on
the functional interpretation of neural networks and (ii) on a scalable procedure
to perform model selection on the prior hyper-parameters, akin to maximization
of the marginal likelihood. To conclude this part, we analyze a different kind of
Bayesian model (Gaussian process) and we study the effect of placing a prior on all
the hyper-parameters of these models, including the additional variables required
by the inducing-point approximations. We also show how it is possible to infer
free-form posteriors on these variables, which conventionally would have been
otherwise point-estimated.

v

PRE FACE

This thesis collects in a cohesive discussion several works published during the
course of the PhD, which have been peer-reviewed by program committees in A*
and A conferences and journals. Specifically,

• Simone Rossi, Pietro Michiardi and Maurizio Filippone. Good Initializations of
Variational Bayes for Deep Models. In International Conference on Machine Learning
(2019).

• Simone Rossi, Sebastien Marmin and Maurizio Filippone. Walsh-Hadamard
Variational Inference for Bayesian Deep Learning. In Advances on Neural Information
Processing Systems (2020)

which extends the workshop paper:

Simone Rossi, Sebastien Marmin and Maurizio Filippone. Efficient Approximate
Inference with Walsh-Hadamard Variational Inference. In Workshop on Bayesian
Deep Learning during the International Conference on Neural Information
Processing Systems (2019).

• Simone Rossi, Markus Heinonen, Edwin V. Bonilla, Zheyang Shen, Maurizio
Filippone. Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-
Variable Approximations. In International Conference on Artificial Intelligence and
Statistics (2021)

In the last year of the PhD, I was involved in several collaborations with resulted in
a series of papers that I co-authored

• Ba-Hien Tran, Simone Rossi, Dimitrios Milios and Maurizio Filippone. All
You Need is a Good Functional Prior for Bayesian Deep Learning. Under review by
the Journal of Machine Learning Research.

which extends the workshop paper:

Ba-Hien Tran, Dimitrios Milios, Simone Rossi, Maurizio Filippone. Functional
Priors for Bayesian Neural Networks through Wasserstein Distance Minimization to
Gaussian Processes. In Symposium on Approximate Bayesian Inference (2021)

vii

• Ba-Hien Tran, Simone Rossi, Dimitrios Milios, Edwin V. Bonilla, Pietro
Michiard, Maurizio Filippone. Model selection for Bayesian Autoencoders In
Advances of Neural Information Processing Systems (2021)

Note that this thesis will contain only the parts of these works where my contribu-
tions are substantial. As a consequence, the chapter discussing these papers will
partially refers to the original articles for a wider discussion and a more meaningful
empirical evaluation.

Finally, for keeping the discussion coherent to the theme of this thesis, the manuscript
will not include the following contribution

• Simone Rossi, Cristian Rusu, Lorenzo Rosasco and Maurizio Filippone. Con-
tributed discussion on “A Bayesian Conjugate Gradient Method” by J. Cockayne et
al. In Bayesian Analysis 14(3)

ACKNOWLEDGMENTS

In the past years, many great people have been part of my life and inspired
and helped my work; I am pleased to finally have the opportunity to properly
thank all those who contributed towards making this PhD such a remarkable
experience.

First of all, I owe an immense gratitude to Maurizio Filippone for taking a huge
gamble in a student in Electronic Engineering who wanted to do machine learning.
While writing these acknowledgments, I went looking through the emails to find
our first interaction. I was just asking Maurizio suggestions for some courses to
take but we ended up discussing Gaussian processes and Bayesian statistics. From
that meeting I remember the passion he had while explaining the research his team
was doing (which I later found out it was just him and Kurt back then). A couple
of years later, he convinced me to start this PhD, and I could never regret that
decision. Thanks for being supportive and for guiding me in the immense literature
of Bayesian inference; I would have been lost without his invaluable guidance.
These were three years of many discussions, meetings and Skype calls and I will
be forever in debt for always being on board with all the crazy ideas, including
preparing a 4-hours tutorial on Bayesian deep learning in the middle of August!
Overall he has inspired me to grow both as a researcher and as a person and I feel
privileged to have worked under his supervision. Thanks also to the AXA Research
Fund that, through the Chair of Computational Statistics awarded to Maurizio, has
founded these three years.

Many thanks to Dino Sejdinovic and Philipp Hennig for accepting the invitation as
reviewers of this manuscript, and thanks to Amandine Marrel, Maria A. Zuluaga
and Marco Lorenzi for being in the examination committee.

Thanks to Pietro for the many inspiring chats we had in these years and for always
providing encouragement, support and advice. I also owe Pietro a personal thanks
for managing in his spare time a HPC cluster and for teaching me how to fully
exploit it. Without this infrastructure and his lessons, many results and experiments
would have not been possible.

ix

Many thanks to the various collaborators, with whom I had the pleasure to work
in these years. I am grateful to Sebastien Marmin and Dimitris Milios for dozen of
useful discussions, not only related on the matter of this thesis. Thanks to Markus
Heinonen for the discussion on point processes we had in Vancouver during
NeurIPS and to Edwin V. Bonilla for his rigorous analyses and always insightful
comments and questions. Finally, let me also acknowledge all the friends and fellow
PhD students with whom I had the pleasure to share this journey; thanks to Kurt,
Rosa, Gia-Lac, Jonas, Riccardo, Giulio, Ba-Hien, Bogdan, Davit, Graziano, for all
the discussions and the amazing time spent together.

On a personal note, thanks to my family, and particularly my parents; without their
constant love and support I would not be the person I am today. For your unwaver-
ing support and guidance, this thesis is dedicated to you.

CONTENTS

1 an introduction to bayesian deep learning 1

1 .1 A brief history of deep learning . 2

1 .2 Uncertainty quantification for decision making systems 4

1 .2 .1 Not all the uncertainties are the same 7

1 .3 Bayesian deep learning . 8

1 .3 .1 Modern inference for Bayesian neural networks 9

1 .4 Today’s challenges for Bayesian deep learning 11

1 .4 .1 Structure of this thesis . 12

2 probabilistic methods for machine learning 15

2 .1 An introduction to Bayesian machine learning 16

2 .1 .1 Bayesian model selection . 17

2 .2 Deep neural networks . 18

2 .2 .1 Bayesian Neural Networks: Parameterization, Prior and In-
ference . 20

2 .3 Bayesian inference as optimization problem: Variational Inference . . 22

2 .3 .1 Optimization of the evidence lower bound (elbo) 25

2 .4 Sampling with scalable Markov Chain Monte Carlo 29

3 initializations of variational inference for bayesian
neural networks 33

3 .1 Overview . 33

3 .1 .1 A review of the role of initialization in deep learning 36

3 .2 Initialization of variational parameters: a proposed method 37

3 .2 .1 Initialization of DNNs for Regression 37

3 .2 .2 From the Bayesian linear model posterior to the variational
approximation . 39

3 .2 .3 Initialization for classification and convolutional layers 40

3 .3 Experimental evaluation . 42

xi

xii contents

3 .3 .1 The effect of initialization in deep variational neural networks 44

3 .3 .2 Scaling up variational inference to deep convolutional neural
networks . 45

3 .3 .3 Comparison with variational inference beyond mean field
Gaussian . 47

3 .4 Final remarks . 50

4 efficient parameterizations for variational pos-
teriors 53

4 .1 The problem of overparameterization in variational inference 53

4 .1 .1 Contributions . 55

4 .2 Structured Approximations for Kernel Matrices 56

4 .3 From structured kernel approximations to Walsh-Hadamard Varia-
tional Inference . 57

4 .3 .1 Statistical properties of the structure induced by Walsh-
Hadamard variational inference (whvi) 58

4 .3 .2 Reparameterizations in whvi for stochastic optimization . . 62

4 .4 Alternative structures, tensor factorization and extensions 62

4 .4 .1 Extensions . 63

4 .5 Empirical evaluation . 66

4 .5 .1 Toy example . 67

4 .5 .2 Empirical comparison on the UCI benchmark 67

4 .5 .3 Bayesian convolutional neural networks for image classification 69

4 .5 .4 Comments on computational efficiency 71

4 .5 .5 Exploring the parameter efficiency of WHVI with Gaussian
processes . 73

4 .6 Related work . 75

4 .7 Final remarks . 76

5 the effect of selecting the prior for bayesian deep
learning 79

5 .1 The choice of the prior matters . 79

5 .1 .1 Pathologies of deep prior functions 81

5 .1 .2 Contributions . 82

5 .2 The problem of choosing priors in the literature of Bayesian deep
learning . 83

5 .3 Imposing Gaussian process priors in Bayesian neural networks 85

contents xiii

5 .3 .1 A quick introduction to the Wasserstein distance 85

5 .3 .2 Using the Wasserstein distance to impose the GP behaviour
in BNN . 87

5 .3 .3 Prior Parameterization for Neural Networks 88

5 .4 Empirical evaluation . 90

5 .4 .1 Visualization on a 1D regression synthetic dataset 92

5 .4 .2 Comparison for Bayesian convolutional neural networks . . . 93

5 .4 .3 Optimizing priors with data . 94

5 .5 Another route for Bayesian Occam’s razor 96

5 .5 .1 The distributionally-sliced Wasserstein distance 98

5 .5 .2 Matching the marginal distribution to the data distribution
via Wasserstein distance minimization 99

5 .6 Model selection for Bayesian Autoencoders 100

5 .6 .1 Formalization of Bayesian Autoencoders 101

5 .6 .2 The pathology of standard priors for Bayesian auto-encoders
(baes) and how to fix it . 103

5 .7 Concluding remarks . 104

6 revisiting the approximations for scalable (deep)
gaussian processes 107

6 .1 Sparse Gaussian processes . 107

6 .2 Bayesian Sparse Gaussian Processes . 110

6 .2 .1 On scalable inference frameworks for GP models 111

6 .2 .2 Sampling with VFE or FITC? . 113

6 .2 .3 Stochastic Updates Using the FITC Approximation 114

6 .2 .4 An heteroskedastic version of the Gaussian likelihood 116

6 .2 .5 Concluding Remarks . 116

6 .3 Practical considerations and extensions to deep GPs 117

6 .3 .1 Prior choices . 117

6 .3 .2 Extension to deep Gaussian processes 119

6 .4 Experiments . 121

6 .4 .1 Prior analysis and ablation study 122

6 .4 .2 Choosing the objective: VFE vs FITC 124

6 .4 .3 Deep Gaussian processes on UCI benchmarks 125

6 .4 .4 Large scale classification . 128

6 .5 Concluding discussion . 129

xiv contents

7 final considerations 131

7 .1 Summary of the contributions and open problems 131

7 .2 Is Bayesian deep learning solved? And now what? 134

bibliography 137

a additional derivations 163

a .1 Recent advances on Bayesian inference for Deep Models 163

a .2 A primer of Wasserstein distance . 164

b additional material for chapter 3 171

b .1 Experiments . 171

L I ST OF F I GURES

Figure 1.1 Evolution of accuracy and model complexity used for solv-
ing the ImageNet classification task 3

Figure 1.2 Autonomous driving agent learning to turn left while avoid-
ing collisions, being being fast and smooth (image taken
from the Tesla AI keynote 2021). 4

Figure 1.3 Visualization of point-estimated solutions and predictions
with a probabilistic model. 6

Figure 1.4 Uncertainty decomposition using an heteroskedastic model
of the aleatoric uncertainty and the epistemic uncertainty for
the Motorcycle dataset. 7

Figure 2.1 Graphical representation of the generalization interpretation
of the marginal likelihood . 19

Figure 2.2 Example of a generic deep feedforward neural networks
with L hidden layers. For visualization purposes the bias
term is included in the notation W(l). 19

Figure 2.3 Analysis of the distribution of samples from the prior for a
shallow neural network with tanh activation. 20

Figure 2.4 Pictorial representation of running Bayesian inference on
a simple architectures. The posterior and the predictive
distributions are computed with numerical integration . . . 22

Figure 2.5 Pictorial illustration of the variational inference (vi) proce-
dure, inspired by D. Blei et al. (2016). 23

Figure 2.6 Animation of a simple variational inference procedure, us-
ing analytical gradients and Monte Carlo estimation. 27

Figure 2.7 Graphical representation of the reparameterization trick. . . 29

Figure 3.1 Due to poor initialization vi fails to converge even after
1500+ epochs while with our iterative Bayesian linear mod-
eling (iblm) vi easily recovers the function after fewer
iterations. 34

xv

xvi list of figures

Figure 3.2 Visual representation of the proposed method for initializa-
tion. In (a) and (b), we learn two Bayesian linear models,
whose outputs are used in (c) to infer the following layer. . . 38

Figure 3.3 Illustration of the different initialization for the variational
parameters in a simple 1D regression task. 42

Figure 3.4 Progression of test mean negative loglikelihood (mnll)
with different initializations with shallow and deep archi-
tectures on Powerplant and Protein. Experiment repeated
five times, only the average is shown. 44

Figure 3.5 Comparison of test mnll after initialization of lenet for
MNIST averaged out of eight successive runs. On the left,
iblm with different batch sizes, on the right comparison
with Monte Carlo dropout (mcd). 46

Figure 3.6 On the left, comparison of initialization time versus test
mnll, averaged out of eight successive runs (on the right,
magnification of the small portion of the plot). Orange cor-
responds to the Pareto frontier. Before training, four out of
five optimal initializers are iblm. 46

Figure 3.7 Progression of test error and test mnll with different ini-
tializations on LeNet for MNIST and CIFAR10. Note that
the Uniformative, Heuristic and Xavier intializers did not
converge, and as such they are not included in the plots. . . 47

Figure 3.8 Progression of test error and mnll for two different con-
volutional neural networks on both MNIST and CIFAR10.
Variational inference is initialized with iblm. 48

Figure 3.9 Reliability diagram and the expected calibration error for
AlexNet trained on CIFAR10. 49

Figure 3.10 Progression of test error and mnll for a very deep convo-
lutional neural network trained on CIFAR10. 49

Figure 3.11 Test likelihood after initialization (on the left) and at the end
of the training procedure (on the right) for LeNet on MNIST. 51

Figure 4.1 Normalized covariance of g and vect(W). 57

Figure 4.2 Numerical verification of first and second moments for
Walsh-Hadamard variational inference (whvi) for one choice
of S1, S2 and q(g). The empirical quantities are obtained
with Monte Carlo samples. 60

Figure 4.3 Ablation study of different structures for the parameteriza-
tion of the weights distribution. 63

list of figures xvii

Figure 4.4 Comparison between Hadamard factorization in whvi and
tensor factorization. The number in the parenthesis is the
hidden dimension. Plot is w.r.t. iterations rather then time
to avoid implementation artifacts. The dataset used is Drive. 65

Figure 4.5 Regression example trained using whvi with Gaussian
vector (1541 param.) and with planar normalizing flow (10

flows for a total of 4141 param.), mean-field Gussian (35k
param.) and Monte Carlo dropout (mcd) (17k param.). . . . 67

Figure 4.6 Comparison of the test mnll as a function of the number
of hidden units. The dataset used is Powerplant. 69

Figure 4.7 Comparison of the test mnll as a function of the number
of hidden units and hidden layers. 70

Figure 4.8 Analysis of the training curve (on the left) and test curve
(on the right) for the Mocap dataset. 71

Figure 4.9 Reliability diagram and expected calibration error of vgg ,
alexnet and resnet with whvi. 72

Figure 4.10 Test curve of LeNet when trained with different combination
of variational inference parameterization. 73

Figure 4.11 Analysis of the timing efficiency of whvi. (a) Inference time
on the test set with 128 batch size and 64 Monte Carlo
samples. Experiment repeated 100 times on an gpu fully
dedicated to it. (b) Timing comparison of different imple-
mentations of the vectorized Fast Walsh-Hadamard trans-
form, with a batch size of 512 data points. 74

Figure 4.12 Comparison of the test mnll as a function of the memory
footprint for four datasets. 74

Figure 4.13 Power profiling during inference on the test set of CIFAR10

with alexnet The task is repeated 16 consecutive times
and profiling is carried out using the nvidia-smi tool. . . . 75

Figure 4.14 Analysis of the parameter efficiency of whvi for scalable
Gaussian process regression with variational inference. . . . 75

Figure 5.1 Test performance on CIFAR10 with different priors. Fig-
ure replicated from the arXiv version of A. G. Wilson and
Izmailov (2020a). 80

Figure 5.2 Grid search analysis on the prior variance for LeNet trained
via variational inference on CIFAR10. 81

xviii list of figures

Figure 5.3 Prior functions of a fully-connected Bayesian neural network
(bnn) with 2, 4 and 8 layers obtained by placing a Gaussian
prior on the weights and using a Gaussian process (gp)
with two different kernels. 83

Figure 5.4 Schematic representation of the process of imposing gp

priors on bnns via Wasserstein distance minimization. . . . 88

Figure 5.5 Visualization of one-dimensional regression example with
a three hidden-layer multilayer perceptron (mlp). The first
two rows illustrate the prior sample and distributions,
whereas the last two rows show the corresponding posterior
distributions. The means and the 95% credible intervals are
represented by red lines and shaded areas, respectively. The
middle row shows progressions of the prior optimization. . 92

Figure 5.6 A timing comparison between imposing functional prior
and cross-validation with grid-search and using Bayesian
optimization. 95

Figure 5.7 Different loss functions for model selection share the same
optimum, for linear models. 97

Figure 5.8 Realizations sampled from different priors given an input
image. ood stands for out-of-distribution. 102

Figure 6.1 Representation of the induced distribution on the covariance
function at location x when placing priors on different set
of parameters. 109

Figure 6.2 Illustration of a binary classification task on the banana

dataset. Left: the decision bounds of the average classifier.
Right: the posterior marginals of the inducing inputs. 118

Figure 6.3 Visual representation of a 2-layer deep Gaussian process
(dgp). 119

Figure 6.4 Analysis of different priors on inducing locations for Bayesian
Sparse Gaussian Process (bsgp) on the UCI benchmark
datasets for determinantal point process (dpp), Strauss pro-
cess, uniform and normal priors on Z. 121

list of figures xix

Figure 6.5 Ablation study on the effect of performing posterior infer-
ence on different sets of variables. From svgp, where the
posterior is constrained to be Gaussian and the remain-
ing parameters are point-estimated, to our proposal bsgp,
where we infer a free-form posterior for all Ψ = {u,θ,Z}.
We refer the reader to Table 6.1 for details on the methods
(colors are matched). 122

Figure 6.6 Analysis of different choices of objectives when used for
optimization and sampling. We refer the reader to Table 6.1
for a description of the methods. 123

Figure 6.7 p-values of the hypothesis test that bsgp with variational
free energy (vfe) objective is better than bsgp with fully
independent training conditional (fitc) objective; depth of
the dgp from 1 to 5. For models with p-values < 0.05, we
reject the hypothesis . 123

Figure 6.8 bsgp in with different depths of the DGP with two different
objective: fitc and vfe. The number of layers corresponds
to the depth of the dgp. 124

Figure 6.9 Test mnll on UCI regression benchmarks (the error bars
represent the 95%CI). The lower mnll (i.e. to the left), the
better. The number on the right of the method’s name refers
to the depth of the dgp. Bottom right: Rank summary of all
methods. 125

Figure 6.10 Comparison of test mnll as function of training time. The
dashed line on the right hand side plot corresponds to svgp

with M = 1000 inducing points. 126

Figure 6.11 Comparison of test mnll as a function of prediction time
on the largest dataset (Protein). 127

Figure 6.12 Comparison with structured inducing variables methods.
kiss -gp could only run on the Powerplant dataset (hence
the 7 on Protein and Kin8NM). 128

Figure 7.1 Number of unique new papers submitted on arxiv with title
or abstract containing different permutations of Bayesian
deep learning. Data crawled from the public API on December
8th 2021. 134

Figure b.1 Progression of test rmseand test mnll with different ini-
tializations on a shallow architecture. 172

xx list of figures

Figure b.2 Progression of test rmseand test mnll with different ini-
tializations on a deep architecture. 173

Figure b.3 Progression of test rmseand test mnll with different ini-
tializations on a deep architecture. 173

L I ST OF TABLES

Table 4.1 Time and space complexity of various approaches to varia-
tional inference (vi). 64

Table 4.2 Test root mean squared error (rmse) and test mean negative
loglikelihood (mnll) for regression datasets. Results in the
format “mean (std)” . 68

Table 4.3 Test performance of different Bayesian convolutional neural
networks (cnns). 72

Table 5.1 Glossary of methods used in the experimental campaign. . . 91

Table 5.2 Results for different convolutional neural networks on CI-
FAR10. Experimental comparison performed in B.-H. Tran
et al. (2020) by the first author (Ba-Hien Tran). 94

Table 6.1 A summary of previous works on inference methods for
Gaussian processs (gps). θ,u,Z refer to the gp hyper-
parameters, inducing variables and inducing inputs, re-
spectively. (7) indicates that variables are optimized. 108

Table 6.2 airline dataset predictive test performance. 129

Table 6.3 higgs dataset predictive test performance. 129

xxi

1
AN INTRODUCT ION TO BAYES I AN
DEEP LEARN ING

The Deep Learning revolution has arguably reshaped the way we do machine learning,
both from a methodological and from an application point of view (LeCun, Bengio,
et al., 2015). Throughout the last decade, the practical advancements and the
theoretical understanding of deep learning models and practices has arguably
reached a level of maturity such that it is the preferred choice for any practitioner
seeking simple yet powerful solutions to solve machine learning-related problems.
In few years the community made tremendous advances to develop better and more
efficient learning algorithms and architectures. Combined with massive availability
of data and implementations that can easily scale from small edge devises to
huge data-center of cloud-serviced clusters of graphic processing units (gpus),
deep learning quickly has gained a place in our society, from personal assistants
(Su et al., 2021; Muralidharan et al., 2019), autonomous driving cars (Kendall,
Hawke, et al., 2019; Kiran et al., 2021; Yurtsever et al., 2020; Grigorescu et al., 2020),
automated medical diagnostics (Dang et al., 2022; Chan et al., 2020; Wu, 2021) and
drug synthesis (Jumper et al., 2021; Jiménez-Luna et al., 2020). At the same time,
this level of dissemination raises questions on how much we blindly rely on these
model’s predictions, or how fair they are (Guo et al., 2017; Du et al., 2021). Taking
informed decisions is the key to build reliable and trustworthy systems and it is
only possible with a sound modeling of the uncertainty, both in the data and in the
model. This is even more critical for applications for which accuracy is not the only
important performance metric and for which having highly calibrated confidence
in the predictions is a strict system requirement.

1

2 an introduction to bayesian deep learning

1 .1 a brief history of deep learning

In an attempt at providing an historical review of neural networks, Schmidhuber
(2015) traces back their origins to early XIX century (Legendre, 1805; Gauss, 1809;
Gauss, 1821), arguing that deep neural networks are in practice variants of linear
regression methods. For what we consider nowadays neural networks we need
to wait the 1950’s, when early success stories involve an attempt at solving the
learning problem (Hebb, 1949) and the formalization of the perceptron (Rosenblatt,
1958; Rosenblatt, 1962). Arguably the first important milestone for deep learning
is backpropagation (also known as reverse mode differentation), an efficient procedure
for error minimization through the combination of (stochastic) gradient descent
(Hadamard, 1908; Robbins and Monro, 1951) and the chain rule of differentiation
(Leibniz, 1676). This was preliminarily discussed by Linnainmaa (1970) but applied
to learning of neural networks later by Rumelhart et al. (1986). This simple methodFor an up-to-date

discussion of
deep learning

optimizers, the
recent work by
Schmidt et al.

(2021)
benchmarks

fifteen popular
optimizers in

eight different
problems, for a

total of 53 760
experiments
(after hyper-
parameters

tuning).

was extended in the following years to speed-up convergence (Vogl et al., 1988;
Battiti, 1989), by e. g. using second order derivative information through the diago-
nalization of the Hessian (Becker and LeCun, 1989; P. Simard and LeCun, 1993),
by adapting the global step size (LeCun, P. Y. Simard, et al., 1993; X.-H. Yu et al.,
1995) or by computing individual learning rates for each parameter (Jacobs, 1988;
Silva and Almeida, 1990). In more recent years, these methods have become the
backbone of optimizers like adagrad (Duchi et al., 2011), adadelta (Zeiler,
2012), rmsprop (Schaul et al., 2013) and adam (Kingma and Ba, 2015). Having
now the tool for learning (i. e.optimization), research moved to study new archi-
tectures and exploit new computational devices, like gpus. Convolutional neural
networks (cnns), for example, were introduced for improving the performance
of deep networks on highly structured data (like images for classification tasks)
(LeCun, Boser, et al., 1989; LeCun, Boser, et al., 1990; LeCun, Bottou, et al., 1998)
while long short-term memory (lstm) networks (Hochreiter and Schmidhuber,
1997), a more powerful class of recurrent neural networks (rnns), were found to
learn long term dependences in the data, which was previously impossible to do
(Pérez-Ortiz et al., 2003). By early 2000’s after initial implementations of neural
networks on gpus were proved successful with speed-up factors up to 20 times
(Chellapilla et al., 2006; Oh and Jung, 2004), it was clear that the next milestone
would come by solving the computational issues of these models and by providing
open source implementations for heterogeneous computing devices. After effec-
tively solving the classification problem of handwritten digits on mnist (Ranzato
et al., 2006; Ciresan et al., 2012), Krizhevsky, Sutskever, et al. (2012) proposed to use
a multi-gpu implementation of a deep cnn (later known as alexnet) and with

1.1 a brief history of deep learning 3

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
50%

60%

70%

80%

90%

SIFT+FVs

AlexNet

VGG-19

Inception ResNet V2

PNASNet-5

FixE�cientNet
CoAtNet-7

Date

To
p
1A
cc
ur
ac
y

Evolution of accuracy on ImageNet

10M 100M 1B 10B
Number of Parameters

The race for bigger models

Figure 1.1: Evolution of accuracy and model complexity used for solving the ImageNet classi�ca-
tion task. Data extracted in September 2021 from https://paperswithcode.com/
sota/image-classification-on-imagenet

this architecture they achieved the best result on imagenet, a popular computer
vision benchmark. This was the first time that a deep learning approach was able
to outperform manual feature extraction and classic computer vision algorithms.
Since then, accuracy on this benchmark is continuously increasing, as well as the
size of the models implemented (see Figure 1.1). The availability of libraries with
automatic differentation (Baydin et al., 2017) and highly efficient implementations,
like Tensorflow (Abadi et al., 2015), PyTorch (Paszke et al., 2019) and JAX (Brad-
bury et al., 2018), made deep learning the preferred choice for any practitioner
seeking simple yet powerful solutions to solve machine learning related problems.
Examples of such wide adoption of deep learning come from cosmology (Dieleman
et al., 2015; Lanusse et al., 2019; Fussell and Moews, 2019), experimental physics
(Acciarri et al., 2017; Aurisano et al., 2016) and neuroscience (J. X. Wang et al., 2018;
Yamins and DiCarlo, 2016; Bellec et al., 2018; Zador, 2019), but it has cross-fertilized
other computer science fields, such as digital hardware design (Kwon and Carloni,
2020; F. Zhang et al., 2020; Y. C. Lu et al., 2020), data management systems (Kraska
et al., 2018; G. Li et al., 2019; H. Liu et al., 2015; Marcus and Papaemmanouil, 2019)
and materials science (Zhizhou Zhang, 2021; Kim et al., 2020; Z. Zhang and Gu,
2020; Wilt et al., 2020).

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet

4 an introduction to bayesian deep learning

Figure 1.2: Autonomous driving agent learning to turn left while avoiding collisions, being being
fast and smooth (image taken from the Tesla AI keynote 2021).

1 .2 uncertainty quantification for decision making
systems

Deep learning models, like any other machine learning tools, are generally only
a part of larger systems with agents interacting in complex environments. Take as a
simple example the problem of autonomous driving (Figure 1.2): the system collects
data from multiple sensors (video, Lidar, etc.), it controls the car by e.g. accelerating,
braking or turning the steering wheel and it interacts with a chaotic environment
made of other cars, obstacles and pedestrians. The output of a model can be used
for taking actions, like performing an emergency breaking if another car suddenly
changes lane. Generally, decision making systems combine beliefs and data to
optimize an utility function. For example, in Figure 1.2 the agent is learning to turn
left while minimizing jointly the risk of collision, the time required to complete the
manoeuvre and the lateral acceleration and jerk. Unfortunately, real systems are
hindered by uncertainty, whether due to partial observability, non-determinism,
or a combination of the two. This means that for example we may never know
for certain what state the system would be in after taking a sequence of actions,
as predicted by our model. As a consequence, utility theory needs to take into
account the unidentifiability of the problem by means of probability theory, which
can express the degree of belief an agent has of the model and the environment.

1.2 uncertainty quantification for decision making systems 5

Going back to the example above, it can happen that the other car is actually not
changing lane but a different shadow is casted on the road in such a way that it
looks like.

Quantification of the uncertainty becomes then essential for taking informed deci-
sions. Deep learning models, while being very flexible and powerful models, they
are usually not equipped with the ability to accurately estimate the uncertainty of
their predictions. Learning algorithms for these models were typically designed
through the lens of statistical learning theory by means of minimizing the expected
risk defined as

R(f) =

∫
e(f(x),y)p(x,y)dxdy (1.1)

where f(·) defines a neural network function in the space of hypothesis F and e(·, ·)
is a properly defined error function. Due to the intractability of this formulation, in
practice we rely on the empirical risk as proxy to the expected risk and it formulates
the learning problem as

min
f∈F

R̃(f) = min
f∈F

1
n

n∑
i=1

e(f(xi),yi) (1.2)

where xi and yi are the training data. Stability analysis of the learning algorithm
with respect to changes in the training data suggest that in order to build models
with good generalization properties, we need to impose regularization which con-
trols the tradeoff between data fitting and model variance. For example, a generic
regularization algorithm (e.g. Tikhonov regularizer) minimizes the empirical risk
plus a stabilizer on the model parameters,

fn = arg min
f∈F

(
R̃(f) + λ‖f‖F

)
(1.3)

By building a learning algorithm is this way we obtain a solution fn, which under
some conditions, exhibit a bounded generalization error:

P
(∣∣∣R̃(fn) −R(fn)

∣∣∣ > ε
)
6 P

(
sup
f

∣∣∣R̃(f) −R(f)
∣∣∣ > ε

)
(1.4)

Note that in practice this way of designing learning algorithms implicitly aims
at finding the best solution, which equivalently minimizes some expected general-
ization error. Regression models return a single vector of predictions, while for

6 an introduction to bayesian deep learning

−10 −5 0 5 10
−4

−2

0

2

4
Point estimate

−10 −5 0 5 10

Predictions with uncertainty

(a) Regression with noisy data.

−2 0 2

−2

0

2

Point estimate of class label

−2 0 2

Predictive variance

0.1

0.2

0.3

0.4

0.5

(b) Binary classi�cation in two dimensions.

Figure 1.3: Visualization of point-estimated solutions and predictions with a probabilistic model.

classification the output represents a probability vector for the associated set of
classes.

One way to reason about the confidence in the model’s predictions is by treating
the problem probabilistically. In practice, instead of having predictions which are
point-estimated, we can rely on proper probability distributions around the model
outputs. In this way, we can reason about the confidence in the predictions of the
model and quantify the risk associated for a down-stream decision making process.
Bayesian machine learning offers a powerful and intuitive way to propagate belief
using data. Figure 1.3 visually represents two machine learning tasks (regression
and binary classification) which are learned with regularized loss (on the left) and
probabilistically with Bayesian inference (on the right). Note how the additional
information about prediction confidence at a certain test point can be used in down-
stream tasks to build more reliable decision making systems.

1.2 uncertainty quantification for decision making systems 7

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−2

0

2

Aleatoric Uncertainty

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−2

0

2

Epistemic Uncertainty

Figure 1.4: Uncertainty decomposition using an heteroskedasticmodel of the aleatoric uncertainty
and the epistemic uncertainty for the Motorcycle dataset.

1.2.1 Not all the uncertainties are the same

Before diving into more details of Bayesian inference and how it can be imple-
mented in deep learning models, we need to briefly discuss the role of uncertainty
in practice. Broadly speaking, the sources of uncertainty we can distinguish are
twofold: we are either uncertain of the data or we are uncertain of the model and
its parameters. The former, also known as aleatoric uncertainty, can be due to several
factors, including for example noisy data acquisition systems. This uncertainty is
irreducible, in the sense that in general we have no controls over it and it’s indepen-
dent on the amount of data available. The second kind of uncertainty is related
to the model parameters and it is usually referred to as epistemic uncertainty. This
uncertainty is due to the fact that there are up to an infinite amount of possible
models that are able to explain a given dataset. As a consequence, we could be
unsure about which model parameters we need to choose to predict with. Dif-
ferently from the aleatoric uncertainty, the epistemic is in fact reducible: once we
collect enough data to estimate accurately the model’s parameters such uncertainty
decreases (even down to zero, in the infinite data limit). On the other hand, by

8 an introduction to bayesian deep learning

tautology for regions away from the data the model has no information and it will
exhibit higher uncertainty. Note that this could be useful to detect out of distribution
test data, i.e. situations for which the model is inferring on input points that are far
away from training data.

In Figure 1.4, we have a simple example where the aleatoric and the epistemic
uncertainties are decomposed and visualized. Note, for example, how the epis-
temic uncertainty behaves far away from the training data, where due to missing
information the variance is larger than in the region with data.

1 .3 bayesian deep learning

In this section, we briefly review some relevant literature for Bayesian neural
networks, from their inception to more recent developments. First examples of
Bayesian neural networks can be traces back to late ‘80s. Researchers at the AT&T
Bell Laboratories involved in the general problem of learning neural networks from
examples discussed the possibility of using Bayesian inference for achieving this
goal. J. Denker et al. (1987) proposes to place an uniform prior distribution on
the space of the weights and it also shows how this translates into the function
space, effectively by building a network for each configuration of the weights.
Few years later Tishby et al. (1989) derives a theoretical framework for applying
Bayes rule to layered models by assigning a likelihood, a nonsingular prior on
the “configuration space” (i.e. the weight space) and by deriving the posterior
as a Gibbs canonical distributions on the ensemble of networks. As Yarin Gal
pointed out in his thesis (Gal, 2016), this is possibly the first example of modern
Bayesian neural network (bnn) formalized by means of Bayes rule. The framework
of Tishby et al. (1989) was put in practice by J. S. Denker and LeCun (1990), who
propose to use the recently developed back-propagation algorithm for the Laplace
approximation of the posterior. D. J. C. MacKay (1991) discusses the problem
of Bayesian model selection and the effect of the Occam factor for the choosing
the parameters of a neural network. Using the Laplace approximation he also
shows how the model evidence correlates with the test error and generalization.
D. J. C. MacKay (1992) extends some of these results, showing how the model
evidence can be used to select the number of hidden units. Approximations for
Bayesian neural networks were not limited to the Laplace method only. In the same
period, Neal (1992a) and Neal (1992b) discuss how Markov chain Monte Carlo

1.3 bayesian deep learning 9

(mcmc) can be efficiently implemented in Bayesian neural networks, specifically by
using the Hamiltonian Monte Carlo (hmc) framework introduced by Duane et al.
(1987). In a follow-up work, Neal (1994b) analyzes the infinite limit behaviour of
Bayesian neural networks priors and he draws important connections with another
Bayesian model, the Gaussian process (gp). All these results are collected in his
thesis (Neal, 1996; Neal, 1994a). Variational inference (vi) has been also proposed
as a scalable approximation for these models. Barber and C. Bishop (1998) derives
an objective which forms a lower bound of the marginal likelihood. They proposes
to use full covariance matrices (differently from what previously done by G. E.
Hinton and Camp, 1993) and a Gamma hyper-prior on the model parameters
and they derive a procedure to perform tractable vi with free-form variational
posteriors.

1.3.1 Modern inference for Bayesian neural networks

More recently, Graves (2011) proposes a practical way to perform variational infer-
ence in a scalable way on neural networks. He discusses several important aspects
of the vi framework, like the role of the posterior approximation and how it relates
to regularized loss training, how the prior parameters can be adapted during
training and finally how Monte-Carlo sampling can be used to approximated the
intractable expectation of the log-likelihood. This work was later extended by Blun-
dell et al. (2015) with the so-called Bayes by backprop, which shows how it is possible
to use the reparameterization trick to generate unbiased estimates of the variational
parameters’ gradients. Alternatives can be found in the probabilistic backpropaga-
tion (Hernandez-Lobato and R. Adams, 2015), in Stein variational inference (Q. Liu
and D. Wang, 2016) and in the Monte Carlo dropout (Gal and Ghahramani, 2016b).
The latter found its fortune (Kendall and Gal, 2017) in the embarrassingly simple
implementation required to compute the output multiple times with different
dropout masks, with nonetheless drawing important theoretical connections with
variational inference (Y. Li and Gal, 2017).

Research in vi for bnn has been also driven by the necessity of moving away
from the simple fully factorized Gaussian assumption for the posterior. In this
line of works, we can find attempts at parametrizing efficiently matrix variate
posteriors (Louizos and Welling, 2016; Sun, C. Chen, et al., 2017; G. Zhang et al.,
2018; Rossi, Marmin, et al., 2020). Note that only around this time we start to see
more complex neural network architectures (e.g. cnns) being employed in the
variational setting. Osawa et al. (2019)—building on top of the work of M. E. Khan,

10 an introduction to bayesian deep learning

Nielsen, et al. (2018)—shows how variational inference with natural gradients can
scale to ResNet-18 trained on ImageNet. Changing the perspective of vi, Sun, G.
Zhang, et al. (2019) proposes to perform variational inference in function space,
by defining and optimizing the lower bound directly on the stochastic processes
(functional output). Due to the specific kind of priors used, Sun, G. Zhang, et al.
(2019) only limit their analysis to regression tasks, leaving classification and other
problems as a future work. In a recent work by Farquhar et al. (2020), the Authors
challenge the assumption that structured posteriors are better than the mean-field
approximation. In essence, among other things, they speculate that for a given
bnn with full covariance there exists a deeper bnn which can induce the same
functional posterior in function-space.

As an alternative to approximating the posterior with variational inference, it is also
possible to use other kind of approximations. With the Laplace approximation (la),
for example, one would choose to fit a Gaussian distribution around the (local)
maximum of the joint likelihood (D. J. C. MacKay, 1998; Ritter et al., 2018; Immer,
Bauer, et al., 2021). Recently this approximation has found new life also thanks to
efficient implementations for computing the Hessian of neural networks (Dangel
et al., 2020; E. A. Daxberger et al., 2021). Immer, Korzepa, et al. (2021), for example,
shows how we can build a locally linearized model starting from the Laplace
approximation, while Kristiadi et al. (2020) discusses how the la at the last layer is
enough to fix the issue of overconfidence in neural networks.

Instead of approximating the posterior, we could also generate samples from this
intractable distribution using some gradient-based mcmc. The main limitation
of such approaches reside in the expensive computations required to evaluate
the gradients of the logarithm of the unnormalized posterior density in big data
regimes (Neal, 2011). Unfortunately, as Betancourt (2015) discusses and quantifies,
mini-batching the data fundamentally breaks and compromises the scalability and
accuracy of näive hmc. To solve this problem, T. Chen et al. (2014) proposes to add
an additional friction term to counter-balance the effect of the noise introduced by
subsampling the data. Notably, T. Chen et al. (2014) draws significant connections
between the proposed Stochastic Gradient Hamiltonian Monte Carlo (sghmc)
and the classic stochastic gradient descent (sgd), which has been leveraged by
Springenberg et al. (2016) to estimate some of the hyper-parameters hmc requires.
To improve the performance and the exploration efficiency of sghmc, R. Zhang
et al. (2020) proposes to cycle through different values of step sizes while Franzese
et al. (2021a) relaxes the assumption of unisotropic gradient noise. With a careful
choices of the hyper-parameters, stochastic gradient hmc methods are shown

1.4 today’s challenges for bayesian deep learning 11

in theory to converge to the exact posterior (Franzese et al., 2021b) and in prac-
tice to deliver high quality samples compared with classic hmc (Izmailov et al.,
2021).

Finally, ensembles of models could be employed as Bayesian approximation (New-
ton and Raftery, 1994; Garipov et al., 2018). Lakshminarayanan et al. (2017) proposes
deep ensembles as a simple way to train a set of independent models and combine
their predictions to generate informative uncertainty estimation. In a more recent
work, B. He et al. (2020) generalize this setup to infinitely wide neural networks
using the neural tangent kernel (ntk). As an attempt to theoretically characterize
the learning behavior of these methods, Milios, Michiardi, et al. (2020) analyzes the
problem, finding that training these models is equivalent to a Kullback-Leibler (kl)
minimization akin to variational inference.

1 .4 today’s challenges for bayesian deep
learning

Despite the fact that we have witnessed huge advancements in the last few years,
arguably Bayesian deep learning is still in its infancy, especially from a practical
point of view. Broadly speaking, we can summarize the current challenges in two
categories, which are tightly entangled: inference and scalability. Bayesian inference,
while offering an elegant formulation, cannot be solved exactly. The approximations
required could decrease the quality of the predictions while certainly increasing
the complexity of the entire machine learning pipeline. Variational inference, for
example, increases the model parameters to be optimized by at least a factor of
two, while sampling methods typically require orders of magnitude more gradients
evaluations. Also, they require to store the samples of the parameters’ posterior,
which increases the memory footprint of these algorithms hundredfold. On top
of this, we are implicitly augmenting the challenges by adding the problem of
choosing the prior distribution. This fundamental building block of the Bayesian
theory is proved empirically to be quite critical and yet difficult to assess its quality
a-priori. On the other hand, we can fortunately find comfort from analyzing other
Bayesian models, like gps and deep Gaussian processs (dgps), which are closely
related to Bayesian neural networks.

12 an introduction to bayesian deep learning

1.4.1 Structure of this thesis

In this thesis, we will attempt at analyzing some of the aforementioned lim-
itations and proposing some solutions. The rest of the thesis is structured as
follows:

• Chapter 2 is dedicated to a quick review of Bayesian machine learning and
to an introduction to approximations to intractable inference for Bayesian
neural networks.

• Chapter 3 will discuss the challenges of initializing variational inference
for deep neural networks. We found that this problem is more severe for
complex architectures, such as deep convolutional neural networks, for which
vi systematically converges to trivial solutions (posterior equal to the prior).
We also propose a novel initialization strategy for vi, whose performance
will be assessed in various experiments.

• Chapter 4 proposes a new structured parameterization for variational in-
ference, inspired by the wide literature on scalable kernel machines. The
key operation within our proposal is the Walsh-Hadamard transform, and
this is why we name our proposal Walsh-Hadamard variational inference
(whvi). Unlike mean field vi, whvi induces a matrix-variate distribution to
approximate the posterior over the weights, thus increasing flexibility at a
log-linear cost in D. We derive expressions for the reparameterization and the
local reparameterization tricks, showing that, the computational complexity
is reduced from O(D2) to O(D logD).

• Chapter 5 shows how important is the role of the prior for improving the
performance of Bayesian deep learning models and it will address the chal-
lenges to accurately selecting them. In more details, we seek to tune the prior
distributions over bnns parameters so that the induced functional priors
exhibit interpretable properties, similar to shallow gps. While bnn priors
induce a regularization effect that penalizes large values for the network
weights, a gp-adjusted prior induces regularization directly on the space of
functions. We will show how we can use the Wasserstein distance between the
distribution of bnn functions induced by a prior over their parameters, and
a target gp prior.

• Chapter 6 will revisit model approximations and inference schemes for scal-
able Gaussian processes and deep Gaussian processes. We will discuss the

1.4 today’s challenges for bayesian deep learning 13

role of the inducing inputs in gp models and their treatment as variational pa-
rameters or even hyper-parameters. Given their potential high dimensionality
and that the typical number of inducing variables goes beyond hundreds/t-
housands, we argue that they should be treated simply as model variables
and, therefore, having priors and carrying out efficient posterior inference
over them is an important—although challenging—problem.

• Chapter 7 will finally present some concluding remarks and analyze some
possible future trends.

2
PROBAB I L I ST I C METHODS FOR
MACH INE L EARN ING

Starting in 1762, Richard Price collected and rewrote some of the notes of his friend
Reverend Thomas Bayes, who tragically pasted away the year before in 1761. In
1763, Price presented his friend’s work at the Royal Society and in 1764 he published
an edited version in the Philosophical Transactions of the Royal Society of London. In
“An Essay towards solving a Problem in the Doctrine of Chances” Bayes tries to
solve the following inferential problem:

Given the number of times in which an unknown event has happened
and failed. [It is required to calculate] the chance that the probability of
its happening in a single trial lies somewhere between any two degrees
of probability that can be named.

— Thomas Bayes (1763)

In his notes, Bayes derives several theorems that will constitute the backbone of
modern probability theory, with particular emphasis on conditional probabilities.
He then proposes an argument for using a uniform distribution for the binomial
parameter p(0 6 π 6 1) to represent absence of knowledge about it (Edwards,
1978). In practice, this is the formulation of what we refer to as Bayes’ rule or Bayes’
theorem, as a way to solve the inverse conditional probability problem. This new
change of prospective to modeling reality is arguably one of the most important
milestone in history of Science and Mathematics. Among others, Sir Harold Jeffreys
prizes the accomplishments of Bayes by recognizing Bayes’ theorem to be “to the
theory of probability what the Pythagorean theorem is to geometry” (Jeffreys,
1939).

This chapter builds the foundations upon which the rest of the thesis will lie.
Specifically, we start in § 2.1 with a review of basis concept of probability theory and

15

16 probabilistic methods for machine learning

the use of Bayes’ rule in machine learning. To this goal, we present some important
results of Bayesian inference approximations, notably variational inference (vi) and
Markov chain Monte Carlo (mcmc) sampling.

2 .1 an introduction to bayesian machine
learning

Bayes offers us a principled machinery to do probabilistic modeling: the way of
reasoning about uncertainty, a structured procedure to include prior knowledge of
the problem (or the lack of thereof) and a formal methodology to model selection
are only some of the characteristics that makes Bayes’ theorem and Bayesian
inference very well suited for machine learning (Ghahramani, 2013; Ghahramani,
2015).

Let’s dive a bit more on the theory of Bayesian inference. Assume a genericIn case of
supervised

learning, we
assume both X

and y to be
known. The

Bayesian
framework can

also be applied to
unsupervised

tasks and
generative
modeling.

parametric model f parameterized by some unknown parameters θ (i.e. f(·,θ))
and a collection of data y ∈ RN corresponding to some input points X = {xi | xi ∈
RDin}i=1,...,N. A generic formulation of the Bayes’ rule takes the following form,

Posterior︷ ︸︸ ︷
p(θ |y) =

Likelihood︷ ︸︸ ︷
p(y | f(X,θ))

Prior︷︸︸︷
p(θ)

p(y)︸︷︷︸
Model Evidence

. (2.1)

In order to keep the notation uncluttered, in the following chapters we might
avoid to explicitly write the dependency on X; nonetheless, f is always computed
at some input points x. Note also that everything remains valid even if the out-
put dimensionality is greater then one. Depending on the context, y could be a
vector or a matrix N×Dout. Each part of this equation has a specific role. The
prior p(θ) specifies our belief on the parameters before observing any data. This
should capture any relevant information on the problem (if any) or being totally
uninformative by letting “the data speak for itself”. Such kind of priors (a. k. a. un-
informative priors) are usually also improper as they don’t integrate to one over their
domain; examples are the Haldane prior (Zhu and A. Y. Lu, 2004) and the Jeffreys
prior (Jeffreys, 1946). Note something very important: the Bayesian philosophy of
reasoning about priors doesn’t explain how to choose them (i.e., any prior can work
with any model). In practice, some prior choices perform better than others, and we

2.1 an introduction to bayesian machine learning 17

will see several examples of this in the rest of this thesis. The quantity p(y | f(X;θ))
fixes our assumptions on the observed data (e.g. continuous and noisy, binary,
count, etc.) and it measures how likely it is for the model f with parameters θ to
have generated the observed values. This term—the likelihood—is the probability
density function of the model given the parameters computed at the observed
data. Examples of likelihoods are the Gaussian likelihood N(y | f(x,θ),σ2) useful for
regression tasks with i.i.d. noisy data, or the Bernoulli likelihood Bern (y | λ(f(x,θ))),
for binary classification (with λ : R→ [0, 1]).

2.1 .1 Bayesian model selection

The denominator of Bayes’ theorem is of particular interest. We refer to this as
the model evidence or marginal likelihood, and its role can be better understood
by explicitly conditioning the entire inference to a specific model hypothesis M,

p(θ |y,M) =
p(y | f(X,θ),M)p(θ |M)

p(y |M)
, (2.2)

where p(y |M) is the normalization constant
∫
p(y |θ,M)p(θ |M)dθ required to have

a proper definition of probability density function for the posterior. By comparing
this quantity with the definition of the likelihood above, it becomes clear how
p(y |M) measures how likely it is for the model M to have generated the observed
data. It doesn’t depend on the parameters θ of the model M, but solely on the model
hypothesis itself. Given this property, the marginal p(y |M) can be used for model
comparison and model selection. This property of the marginal is also known as
Bayesian Occam’ razor effect (D. J. C. MacKay, 1992; Murray and Ghahramani, 2005):
a principled way to model selection that doesn’t incur into overfitting. A way to
understand why the marginal likelihood follows the Occam’s razor principle (“one
should pick the simplest model that adequately explains the data”) is by following
the product rule of probabilities to rewrite this value,

p(y) =

N∏
i=1

p(yi |y1:i−1) = p(y1)p(y2 |y1)p(y3 |y1:2) . . .p(yN |y1:N−1) , (2.3)

This highlights how the prediction for the next point yi is conditioned to the
previous ones y1:i−1, similarly to the leave-one-out cross-validation estimate of the
likelihood (Murphy, 2012). Intuitively, if a model it too complex it will overfit with
few examples and will perform poorly with the next ones.

18 probabilistic methods for machine learning

We can further apply Bayes’ rule to condition models on the data,

p(M|y) =
p(y |M)p(M)∫
p(y,M)dM

(2.4)

where the right hand-side should be used in case of discrete model space. Solving
such inference problem with complex systems (e.g. climate models, biological cell
models, epidemiology, etc.) is challenging and it’s a topic of an active area of re-
search. The common and simple approach to this problem of model selection is the
maximization of the marginal likelihood (also known as Type-II maximum likelihood).
This can be further seen a maximum-a-posteriori (map) estimate of the posterior
in Equation (2.4), when we place an uniform prior on the models p(M) ∝ 1. In prac-
tice, this is what happens when we optimize the kernel parameters for Gaussian
processs (gps) by maximization of the marginal likelihood.

The marginal likelihood has also an interpretation as generalization metric. Looking
at the second axiom of probability theory, for a particular model hypothesis the
marginal will sum to one over all possible datasets, e. g.

∑
y′ p(y

′ |M). Figure 2.1
gives an illustration of this property. For sake of clarity, suppose the dataset y
to be a continuous random variable. Here, we plot the marginal likelihood as a
function of the dataset for three different models with increasing complexity and
we also indicate the observed data y′. M1 is a simple model that performs well
only on a very specific data that might not match the one that we observe. The
low marginal corresponds to the low probability that indeed M1 has generated
y′. On the contrary, M3 is a very complex model that can predict many datasets;
this means M3 assigns its probability thinly and widely across all possible data –
making also this one unlikely to have generated y′. Finally, M2 is just right as it
performs well on y′ with a reasonable confidence on its neighbor (Murphy, 2012;
C. M. Bishop, 2006).

2 .2 deep neural networks

In the previous discussion, we kept the form of the model f(·) generic. In this section,
we shall formalize the choice of neural networks, highlighting some important
characteristics of this class of models and remarking the challenges for a Bayesian
treatment.

2.2 deep neural networks 19

p(Y |M3)

p(Y |M2)

p(Y |M1)

Y

Figure 2.1: Graphical representation of the generalization interpretation of themarginal likelihood

x

f(1)

W(1) W(2) W(L). . .

f(2) f(L)

y

. . .

Figure 2.2: Example of a generic deep feedforward neural networks with L hidden layers. For
visualization purposes the bias term is included in the notationW(l).

The basic idea behind deep neural networks is to use composition of functions to learn
hierarchical features representation of data. The ability of learning and extracting use-
ful features can be exploited for down-stream tasks, like regression or classification.
Deep feedforward neural networks, also known as multilayer perceptrons (mlps), are
one of the most simple and popular architectures in deep learning. In feedforward
neural networks (see an example in § 2.2), the data is processed by a chain of
transformations, without the presence of any feedback loops. Convolutional neural
networks are another example of feedforward models, where, differently from mlps,
weights are usually shared among different spatial patches of the input images.
These architectures have proven to be very efficient in learning useful feature repre-
sentations for highly structured data, like images, videos and text. Alternatively,
architectures that implement loops are also known as deep recurrent neural networks
and, despite their popularity for tasks like natural language processing (nlp), will
not be discussed in this thesis.

20 probabilistic methods for machine learning

−2 0 2

−2

0

2

f1

f
2

1 hidden units

−2 0 2

f1

10 hidden units

−2 0 2

f1

100 hidden units

−2 0 2

f1

In�nite limit GP

Figure 2.3: Analysis of the distribution of samples from the prior for a shallow neural network
with tanh activation. Priors on the parameters are assumed to be Gaussian with zero
mean and standard deviations of 5 for the weights and biases of the �rst layer,D−0.5

and 0.1 for the weights and the bias on the second layer. The two random variables f1
and f2 are corresponding to inputs x1 = −0.2 and x2 = 0.4, respectively. The plots
show 500 samples, while the density in the background is estimated with KDE and
10 000 samples.

2.2.1 Bayesian Neural Networks: Parameterization, Prior and
Inference

Let’s start by considering a deep neural network (dnn) consisting of L layers,
where the output of the l-th layer fl(x) is a function of the previous layer outputs
fl−1(x), as follows:

fl(x) =
1√
Dl−1

(
Wla(fl−1(x))

)
+bl, l ∈ {1, ...,L}, (2.5)

where a(·) is a nonlinearity, bl ∈ RDl is a vector containing the bias parameters
for layer l, and Wl ∈ RDl×Dl−1 is the corresponding matrix of weights. In order to
keep the notation uncluttered, we refer to the set of weights and bias parameters
of a layer l as θl = {Wl,bl}, while the entirety of trainable network parameters
is θ = {θl}

L
l=1. In order to simplify the presentation, we focus on fully-connected

dnns; note that the weight and bias parameters of convolutional neural networks
(cnns) can be treated in a similar way. To ensure the asymptotic variance of
the output neither explodes nor vanishes, the output can be normalized with√
Dl−1. For fully-connected layers, Dl−1 is the dimension of the input, while for

convolutional layers Dl−1 is replaced with the filter size multiplied by the number
of input channels.

2.2 deep neural networks 21

The Bayesian treatment of neural networks dictates that a prior distribution p(θ)
is placed over the parameters. Chapter 5 will be completely dedicated to the
discussion on the role of prior distributions on Bayesian neural network (bnn).
Nonetheless, it is important to comment on the asymptotic behavior of neural
networks when we consider an infinite width limit. Neal (1996) observed that Recently this was

also proved
without the use
of the central
limit theory, by
analyzing the
effect of width in
the prior
marginal
covariance
(Pleiss and
Cunningham,
2021).

“priors over network parameters can be defined in such a way that the corresponding priors
over functions computed by the network reach reasonable limits as the number of hidden
units goes to infinity”. He then proves with the central limit theory that for shallow
neural networks (i. e.one hidden layer) “a Gaussian prior for hidden-to-output weights
results in a Gaussian process prior for functions”, meaning that for any set of input
points X, the random variables describing the functions computed at X have a joint
Gaussian distribution (Rasmussen and Williams, 2005). In Figure 2.3 we show a
pictorial representation of this phenomenon on a single hidden layer with tanh
activation function and increasing width. This behavior has been observed in other
deeper models (G. Matthews et al., 2018; Lee et al., 2018; M. E. E. Khan et al.,
2019), for convolutional neural networks (Garriga-Alonso et al., 2019) and recurrent
neural networks (G. Yang, 2019).

The learning problem is formulated as a transformation of a prior belief into a
posterior distribution by means of Bayes’ theorem. Given a dataset with N input-
target pairs D = {X,y} def

= {(xi,yi)}Ni=1, the posterior over θ is:

p(θ |y) =
p(y |θ)p(θ)

p(y)
, (2.6)

where the likelihood depends on the output of the neural network at input X and
can generally be defined as p(y | f(X;θ)). With the posterior inferred, we can make For keeping the

notation clean,
we will avoid to
explicit condition
on the input X.

prediction on new test points x?, which can be done my marginalizing out the
parameters from the posterior,

p(y? | x?,y) =
∫
p(y? |θ)p(θ |y)dθ (2.7)

While looking remarkably easy, Equations (2.6) and (2.7) hide several challenges: (i)
the non-conjugacy of the likelihood and the prior makes such that we don’t know
the form of the posterior; (ii) the normalization constant at the dominator requires
to compute the integral on the space of the parameters of the joint likelihood. As
a consequence, the posterior on the parameters of a bnn is always analytically
intractable and making predictions on new test points isnot possible, unless we
resort to approximations. In Figure 2.4 we visualize the challenges of Bayesian

22 probabilistic methods for machine learning

−1 −0.5 0 0.5 1 1.5

−1

0

1

w0

w
1

True Bayesian neural network posterior

−0.5 0 0.5

0

0.5

1

1.5

x

Predictive density

Figure 2.4: Pictorial representation of running Bayesian inference on a simple architecture y =

ReLu(w0 · x − 0.5) + ReLu(w1 · x − 0.3), where some parameters are �xed for
visualization purposes. On the left, the posterior on the two parametersw0 andw1;
on the right, the mean and the con�dence intervals (±2σ) of the predictive posterior
p(y? | x?,y). In both cases we approximate all required integrals with numerical
integration.

inference in neural networks with a simple case where we can run numerical
integration to solve the various integrals involved. The visualization of the density
highlights the non-trivial multimodal shape of the posterior; this gives some
intuition on the huge challenges that approximate inference techniques have to
deal with.

2 .3 bayesian inference as optimization problem:
variational inference

Variational inference (vi) is a classic tool to tackle intractable Bayesian inference
(Jordan et al., 1999; D. M. Blei, Kucukelbir, et al., 2017). vi casts the inference prob-
lem into an optimization-based procedure to compute a tractable approximation of
the true posterior. In our setting, we have a probabilistic model p(y | f(X;θ)) with
parameters θ, a prior distributions on them p(θ) and a set of observations {X,y}. In
a nutshell, the general recipe of vi consists of (i) introducing a set Q of distributions;
(ii) defining a tractable objective that “measure” the distance between any arbitrary
distribution q(θ) ∈ Q and the true posterior p(θ |y); and finally (iii) providing

2.3 bayesian inference as optimization problem: variational inference 23

Space of all possible solutions given a likelihood/prior combination

True posterior
after observing data

Family of variational approximation Q

q(θ)

KL [q(θ) ‖ p(θ |y
)]

p(θ |y)

Figure 2.5: Pictorial illustration of the variational inference (vi) procedure, inspired by D. Blei
et al. (2016).

a programmatic way to find the distribution q̃(θ) that minimizes such distance
(Figure 2.5 provides a simple diagram of this procedure). In practice, q(θ) has The KL

divergence
between two
distributions q
and p is
KL [q(z) ‖ p(z)] =∫
q(z) log q(z)

p(z)dz.

some free parameters ν (also known as variational parameters), which are optimized
such that the approximating distribution q(θ;ν) is as closer as possible to the true
posterior p(θ |y). The classical formulation of vi chooses the Kullback-Leibler (kl)
divergence as a metric of similarity between these two distribution, but extensions
to alternative divergences and distances are possible as well (Y. Li and Turner,
2016; Y. Li and Gal, 2017; Dieng et al., 2017; Wan et al., 2020). We can derive the
variational objective starting from the definition of the kl, The color red

highlights the
quantities that
we cannot
compute.

KL [q(θ;ν) ‖ p(θ |y)] = Eq(θ;ν) [logq(θ;ν) − logp(θ |y)] = (2.8)

= Eq(θ;ν) [logq(θ;ν) − logp(y |θ) − logp(θ)] + logp(y)

Rearranging we have that

logp(y) − KL [q(θ;ν) ‖ p(θ |y)] = Eq(θ;ν) [logq(θ;ν) − logp(y |θ) − logp(θ)]
(2.9)

The r.h.s. of the equation defines our variational objective, also known as evidence
lower bound (elbo), that can be arranged as follows,

Lelbo(ν) = Eq(θ;ν) logp(y |θ)︸ ︷︷ ︸
Model fitting term

−KL [q(θ;ν) ‖ p(θ)]︸ ︷︷ ︸
Regularization term

. (2.10)

This formulation highlights the property of this objective, which is made of two
components: the first one is the expected log-likelihood under the approximate
posterior q and measures how the model fits the data. The second term, on the
other hand, has the regularization effect of penalizing posteriors that are far from

24 probabilistic methods for machine learning

the prior as measured by the kl. We finally observe that minimizing the kl in
Equation (2.8) is equivalent to find the variational parameters ν such that the elbo

is maximized,

ν̃ = arg max
ν

Eq(θ;ν) logp(y |θ) − KL [q(θ;ν) ‖ p(θ)] (2.11)

Before diving into the challenges of Equation (2.11), we shall spend a brief moment
discussing the form of the approximating distribution q. One of the simplest and
easier choice is the mean field approximation (G. E. Hinton and Camp, 1993),
where each variable θi is taken to be independent with respect to the remaining
θ−i. Effectively, this imposes a factorization of the posterior,

q(θ;ν) =
K∏
i=1

q(θi;νi) (2.12)

where νi is the set of variational parameters for the parameter θi. On top of this
approximation, q(θi) is often chosen to be Gaussian,

q(θi) = N(µi,σ2i) (2.13)

Now, the collection of all means and variances {µi,σ2i}
K
i=1 defines the set of varia-

tional parameters to optimize. In the next chapters we will discuss the limitations
of simple approximations for Bayesian neural networks and how things can be
improved.

For bnns the analytic evaluation of the elbo (and its gradients) is always un-
tractable due the non-linear nature of the expectation of the log-likelihood under
the variational distribution. Nonetheless, this can be easily estimated via Monte
Carlo integration (Metropolis and Ulam, 1949), by sampling NMC times from
qν,

Eq(θ;ν) logp(y |θ) ≈ 1
NMC

NMC∑
j=1

logp(y | θ̃j) , with θ̃j ∼ q(θ;ν) (2.14)

In practice, this is as simple as re-sampling the weights and the biases for all the
layers NMC times and computing the output for each new sample. Despite its sim-
plicity, the estimation in Equation (2.14) is unbiased and its variance asymptotically
shrinks with 1

NMC
, independently of the dimensionality of θ.

2.3 bayesian inference as optimization problem: variational inference 25

goodness of the approximation. Equation (2.9) allows us to understand the
relationship between the marginal likelihood and the (negative) evidence lower
bound. In the ideal case of exact solution for the posterior, equivalent to having
KL [q(θ;ν) ‖ p(θ |y)] = 0, the minimization of the elbo is equivalent to the max-
imization of the marginal likelihood, with all the properties analyzed in § 2.1.1.
In the general case, the elbo is just a lower bound of the marginal and the gap
between these two quantities depends on the level of approximation of q. To nar-
row this gap and therefore obtain a tighter lower bound, we need to increase the
expressiveness of the variational posterior.

2.3.1 Optimization of the elbo

We now have a tractable objective that needs to be optimized with respect to the
variational parameters ν. Very often the kl term is known, making its differentation
trivial. On the other hand the expectation of the likelihood is not available, making
the computation of its gradients more challenging. This differentiation falls in
the category of taking gradients of a quadrature, i. e.∇νEq(θ;ν)f(θ). An unbiased
estimate of such gradient can be derived as follows,

∇νEqf(θ) = Eq [f(θ)∇ν logq(θ)] (2.15)

which can be estimated again by sampling from q. The full gradient of the elbo

can be computed starting from Equation (6.2) as follows,

∇νLelbo = Eq [pθ(y |θ)∇ν logqν(θ)] −∇νKL [qν(θ) ‖ p(θ)] . (2.16)

This estimator has a very general formulation that make it applicable to a wide
range of situations. In the literature, this is also refer as score function estimator or
black-box variational inference (D. M. Blei, Jordan, et al., 2012), due to the fact that it
doesn’t require to take the derivative of the model likelihood p(y |θ). As such, the
score function estimator can be used also for non-differentiable likelihoods. On the
other hand, this estimator shows huge variance and, unless remedies like control
variates (Ross, 2006) are taken, this estimator is impractical. Given that most of
bnns architectures (if not all) are easily differentiable, there are not practical uses
for this formulation in Bayesian deep learning.

Alternatively, this problem can be solved using the so-called reparameterization trick
(Salimans and Knowles, 2013; Kingma and Welling, 2014). The reparameterization

26 probabilistic methods for machine learning

trick aims at constructing θ as an invertible function T of the variational param-
eters ν and of another random variable ε, so that θ = T(ε;ν). ε is chosen suchGenerally, a T

that suits this
constraint might
not exists; Ruiz

et al. (2016)
discuss how to
build “weakly”

dependent
transformation T

for distributions
like Gamma, Beta
and Log-normal.

For discrete
distributions,

instead, one
could use a
continuous

relaxation, like
the Concrete

(Maddison et al.,
2017).

that its marginal p(ε) does not depend on the variational parameters. With this
parameterization, T separates the deterministic components of q from the stochastic
ones, making the computation of its gradient straightforward. For a Gaussian
distribution with mean µ and variance σ2, T corresponds to as simple scale-location
transformation of an isotropic Gaussian noise,

θ ∼ N(µ,σ2) ⇐⇒ θ = µ+ σε with ε ∼ N(0, 1) . (2.17)

This simple transformation ensures that p(ε) = N(0, 1) does not depends on the
variational parameters ν = {µ,σ2}. The gradients of the elbo can be therefore
computed as

∇νLelbo = Ep(ε)

[
∇θ logp(y |θ) |θ=T(ε;ν)∇νT(ε;ν)

]
−∇νKL [q(θ;ν) ‖ p(θ)] .

(2.18)

The gradient ∇θ logp(y |θ) depends on the model and it can be derived with auto-
matic differentation tools (Abadi et al., 2015; Paszke et al., 2019), while ∇νT(ε;ν)
doesn’t have any stochastic components and therefore can be known deterministi-
cally. Note that the reparameterization trick can be also used when the kl is not
analitically available. In that case, we would end up with,

∇νLelbo = Ep(ε) [∇θ logp(y |θ) + logq(θ;ν) − logp(θ)]θ=T(ε;ν)∇νT(ε;ν)

(2.19)

Roeder et al. (2017) argue that when we believe that q(θ;ν) ≈ p(y |θ), Equa-
tion (2.19) should be prefered over Equation (2.18) even if computing analitically
the kl is possible. Note that this case is very unlikely for bnn posteriors, and that
the additional randomness introduced by the Monte Carlo estimation of the kl

could be harmful.

In case of large datasets and complex models, the formulation summarized in
Equation (2.18) can be computationally challenging, due to the evaluation of the
likelihood and its gradients NMC times. Assuming factorization of the likelihood,

p(y |θ) = p(y | f(X;θ)) =
N∏
i=1

p(yi | f(xi;θ)) (2.20)

2.3 bayesian inference as optimization problem: variational inference 27

−5 0 5 10

1

2

µ

σ
2

Analytic gradients

−2 0 2 4 6 8 10 12 14
0

0.2

0.4

θ

True posterior p(y | θ)

Variational approx. at convergence
Variational approx. at t = 0

−5 0 5 10

1

2

µ

σ
2

Monte Carlo estimate of gradients (NMC = 1)

−5 0 5 10

1

2

µ

σ
2

Monte Carlo estimate of gradients (NMC = 10)

Figure 2.6: Animation of a simple variational inference procedure, using analytical gradients and
Monte Carlo estimation.

this quantity can be approximated using mini-batching (Graves, 2011; Hoffman
et al., 2013). Recalling y as the set of labels of our dataset with N examples, by
taking B ⊂ y as a random subset of y, the likelihood term can be estimated in an
unbiased way as

logpθ(y |θ) ≈ N

M

∑
yi∼B

logp(yi |θ) . (2.21)

where M is the number of points in the minibatch. At the cost of increase “ran-
domness”, we can use Equation (2.18) to compute the gradients of the elbo with
the minibatch formulation in Equation (2.21). Stochastic optimization, e.g. any
version of stochastic gradient descent (sgd), will converge to a local optimum
provided with a decreasing learning rate and sufficient gradient updates (Robbins
and Monro, 1951).

28 probabilistic methods for machine learning

This procedure can be further improved by analyzing the magnitude of the noise
for the stochastic gradients. Focusing on the likelihood in Equation (2.21), let’s
define `i the likelihood contribution logp(yi |θ) from the datapoint yi. From here,
we can derive the variance of this term by considering the minibatch to be drawn
randomly with replacement from y (Kingma and Ba, 2015),

Var
[
Eq(θ;ν) logp(y |θ)

]
=
N2

M2

M∑
i=0

Var [`i] + 2
M∑
i=0

M∑
j=i+1

Cov
[
`i, `j

]

≈ N2
(
1
M

Var [`i] +
M− 1
M

Cov
[
`i, `j

])
(2.22)

where the Var [·] and the Cov [·] are taken with respect to the empirical distribution
defined by the dataset and the distribution of θ. As we can see, the variance
term decreases linearly with M but the total contribution does not scale with
the number of points in the minibatch. This is due to the correlation term which
is asymptotically independent on the minibatch size. In practice, this term can
dominate the whole variance of the likelihood even for big minibatch. This can
be alleviated by imposing independence between cross-terms in the likelihood,
i.e. Cov

[
`i, `j

]
= 0. This is achieved by imposing independence between input

points and the samples from the distribution qν(θ); in practice, one would need to
resample θ exactly NMC times for each point yi. This is generally computationally
challenging but for bnns it becomes as easy as moving the randomness from the
weights to the pre-activations. Take as an example the setup of Figure 2.7 where
for conveniance we defined A as the pre-activation map for the first hidden layer
of a mini-batch of data X. Given our choice of factorized Gaussian on the weights
q(Wij) = N(µij,σ2ij), we can write down the expression for the distribution over A,
which has the following form,

q(A;ν) =
M∏
m=1

D1∏
j=1

N

(
D0∑
k=1

Xnkµkj,
D0∑
k=1

X2nkσ
2
kj

)
(2.23)

This new estimator is also known as the local reparameterization trick (Kingma and
Ba, 2015), if otherwise stated it will be the default choice for variational inference
on bnns.

2.4 sampling with scalable markov chain monte carlo 29

x y

f(1) f(2)

W

X F = a(

A︷︸︸︷
XW)

Figure 2.7: Graphical representation of the reparameterization trick.

2 .4 sampling with scalable markov chain monte
carlo

Hamiltonian Monte Carlo (hmc) methods provide an elegant and efficient way to
sample from intractable distributions by defining proposals with probability one
of being accepted in the classic Metropolis-Hastings framework. These proposals
are generated by simulating an Hamiltonian system where the potential energy
U is our intractable (log-)posterior density − logp(θ |y) and the kinetic energy is
parameterized with some auxilary momentum variables ρ. To propose samples,
hmc simulates the following dynamics, derived from the theory of Hamiltonian
systems (Hamilton-Jacobi equations):

dθ =M−1ρdt (2.24)

dρ = ∇U(θ)dt (2.25)

While the simulation of this continuous system is often intractable, the classic recipe
calls for discretization using e.g. the leapfrog scheme and correction step using the
classic MH acceptance/rejection framework. In this case, the MH works on the
Hamiltonian function, which is defined as

H(θ,ρ) = U(θ) +
1
2
ρ>M−1ρ (2.26)

Algorithm 1 sketches the hmc sampler, including the steps required for the
discretization of the dynamics.

30 probabilistic methods for machine learning

Algorithm 1: Hamiltonian Monte Carlo

Input: Starting position θ(1) and step size ε
for t = 1, 2 · · · do

Resample momentum:
ρ(t) ∼ N(0,M)

(θ0,ρ0) = (θ(t),ρ(t))
Leapfrog discretization of Hamiltonian dynamics in Equation (2.24):
ρ0 ← ρ0 −

ε
2∇U(θ0)

for i = 1 to m do
θi ← θi−1 + εM

−1ρi−1
ρi ← ρi−1 − ε∇U(θi)

ρm ← ρm − ε
2∇U(θm)

(θ̂, ρ̂) = (θm,ρm)

Metropolis-Hastings correction:
u ∼ Uniform(0, 1)
ρ = eH(θ̂,ρ̂)−H(θ(t),ρ(t))

if u < min(1, ρ), then θ(t+1) = θ̂

This way of proposing samples is very efficient but computationally challenging,
as it requires to compute the gradients of the unnormalized log-posterior. While
the prior component is usually not a problem, the evaluation of the gradient of
the likelihood is, especially for large datasets. If we suppose the likelihood to
factorize on the observations, we can approximate this quantity using mini-batches:

∇Ũ(θ) = −
N

M

M∑
i=1

∇ logp(yi |θ) −∇ logp(θ) (2.27)

Using mini-batches, we can write the gradients as unbiased estimates of the original
U(θ) as follows,

∇Ũ(θ) = ∇U(θ) +N(0,V(θ)) (2.28)

where V(θ) is the covariance of the stochastic gradient noise, which depends on
many factors including the parameters themselves.

A first solution to implement Stochastic Gradient Hamiltonian Monte Carlo (sghmc)
is to replace the computation of the gradients in Algorithm 1 with Equation (2.27).
Unfortunately, this is not enough: as T. Chen et al. (2014) proves, the simulation of
the resulting dynamics would make the stationary distribution no longer invariant
(i.e., sampling is performed on a distribution which is not the original p(θ |y)).

2.4 sampling with scalable markov chain monte carlo 31

To solve this problem, T. Chen et al. (2014) proposes to modify the dynamics by
introducing an additional friction term C. With this addition, the discretized system
of equation becomes,

∆θ = εM−1ρ (2.29)

∆ρ = ε∇Ũ(θ) − εCM−1ρ+N(0, 2(C− B̂)ε) (2.30)

where B̂ is an estimation of the stochastic gradient noise covariance.

From a practical point of view, this system of dynamics is still challenging to work
with. Namely, one should choose the friction term C, perform an estimation of
the noise gradient B̂ and choose the mass matrix M and the step-size ε. While
the friction term and the step-size are high model and dataset dependent, the
other two quantities can be estimated during the burn-in phase (Springenberg
et al., 2016). For the mass matrix, we can leverage the connection between sghmc

and sgd. Results in stochastic optimization literature (Duchi et al., 2011; Tieleman
and G. Hinton, 2012) discuss how the robustness of sgd can be improved by
normalizing the gradient by its magnitude. For sghmc this is equivalent to
choosing,

M−1 = diag
(
V̂

− 1
2

θ

)
(2.31)

where V̂θ is the estimation of the element-wise variance of the gradient and it can
be estimated by exponential moving average as follow,

∆V̂θ = −τ−1V̂θ + τ−1∇(U(θ))2 (2.32)

The averaging window is specified by the choice of τ, which–again–can be auto-
matically determined by using a procedure similar to adaptive learning rate for
sgd (Tieleman and G. Hinton, 2012),

∆τ = −g2θV̂
−1
θ τ+ 1 (2.33)

∆gθ = −τ−1gθ + τ−1∇Ũ(θ) (2.34)

32 probabilistic methods for machine learning

where gθ is a smoothed estimation of the gradients ∇U(θ). Finally, we can also
use V̂θ for B̂, specifically B̂ = 1

2V̂θε. By substituting these new quantities in the
original dynamics we obtain

∆θ = ν (2.35)

∆ν = −ε2V̂
− 1

2
θ ∇Ũ(θ) − εV̂

− 1
2

θ Cν+N

(
0, 2ε3V̂

− 1
2

θ CV̂
− 1

2
θ − ε4I

)
(2.36)

where ν is defined as ν = εM−1ρ = εV̂
− 1

2
θ ρ.

3
I N I T I A L I Z AT IONS OF VAR I AT IONAL
IN F ERENCE FOR BAYES I AN NEURAL
NETWORKS

Stochastic variational inference is an established way to carry out approximate
Bayesian inference for deep models flexibly and at scale. While there have been
effective proposals for good initializations for loss minimization in deep learn-
ing, far less attention has been devoted to the issue of initialization of stochastic
variational inference. In this chapter we analyze this problem for Bayesian deep
neural network and we propose a novel layer-wise initialization strategy based
on Bayesian linear models. The proposed method is extensively validated on re-
gression and classification tasks, including Bayesian deep neural networks and
Bayesian convolutional neural networks, showing faster and better convergence
compared to alternatives inspired by the literature on initializations for loss mini-
mization.

3 .1 overview

Deep neural networks (dnns) and convolutional neural networks (cnns) have
become the preferred choice to tackle various learning tasks, due to their ability to
model complex problems and the mature development of regularization techniques
to control overfitting (LeCun, Bengio, et al., 2015; Srivastava et al., 2014). There has
been a recent surge of interest in the issues associated with their over-confidence in
predictions, and proposals to mitigate these (Guo et al., 2017; Kendall and Gal, 2017;
Lakshminarayanan et al., 2017). Bayesian techniques offer a natural framework to

33

34 initializations of variational inference for bayesian neural networks

−10 −5 0 5 10

−2

−1

0

1

2

After Poor Initialization

−10 −5 0 5 10

−2

−1

0

1

2

After Our Initialization

Figure 3.1: Due to poor initialization (left) vi fails to converge even after 1500+ epochs (RMSE =
0.434, NLL = 257.38) while with our iterative Bayesian linear modeling (iblm) (right)
vi easily recovers the function after fewer epochs (RMSE = 0.219, NLL = -88.32). The
architecture has three hidden layers with 500 neurons each, and uses the tanh
activation function.

deal with such issues, but they are characterized by computational intractability
(C. M. Bishop, 2006; Ghahramani, 2015). A popular way to recover tractability is
to use variational inference (Jordan et al., 1999). In variational inference (vi), an
approximate posterior distribution is introduced and its parameters are adapted by
optimizing a variational objective, which is a lower bound to the marginal likeli-
hood. Stochastic variational inference offers a practical way to carry out stochastic
optimization of the variational objective. Here stochasticity is introduced with
a doubly stochastic approximation of the expectation term, which is unbiasedly
approximated using Monte Carlo and by selecting a subset of the training points
(Graves, 2011; Kingma and Welling, 2014). While vi is an attractive and practical
way to perform approximate inference for dnns, there are limitations. For exam-
ple, the form of the approximating distribution can be too simple to accurately
approximate complex posterior distributions (Ha et al., 2016; Ranganath et al.,
2015; D. Rezende and Mohamed, 2015). Furthermore, vi increases the number of
optimization parameters compared to optimizing model parameters through, e.g.,
loss minimization; for example, a fully factorized Gaussian posterior over model
parameters doubles the number of parameters in the optimization compared to
loss minimization. This has motivated research on other ways to perform approxi-
mate Bayesian inference for dnns by establishing connections between variational
inference and dropout (Gal and Ghahramani, 2016b; Gal and Ghahramani, 2016a;
Gal, Hron, et al., 2017).

3.1 overview 35

A theoretical understanding of the optimization landscape of dnns and cnns is
still in its early stages of development (Dziugaite and Roy, 2017; Garipov et al.,
2018), and most works have focused on the practical aspects characterizing the
optimization of their parameters (Duchi et al., 2011; Kingma and Ba, 2015; Srivastava
et al., 2014). If this lack of theory is apparent for optimization of model parameters,
this is even more so for the understanding of the optimization landscape of the
objective in variational inference, where variational parameters enter in a nontrivial
way in the objective (Graves, 2011; D. J. Rezende et al., 2014). Initialization plays a
huge role in the convergence of vi; the illustrative example in Figure 3.1 shows how
a poor initialization can prevent vi to converge to good solutions in short amount
of time. The problem is even more severe for complex architectures, such as the
ones that we discuss in the experiments; for example, vi systematically converges
to trivial solutions (posterior equal to the prior) when applied to cnns. In this
chapter, we focus on this issue affecting vi for dnns and cnns. While there is
an established literature on ways to initialize model parameters of dnns when
minimizing its loss (Glorot and Bengio, 2010; Saxe et al., 2013; Mishkin and Matas,
2016), to the best of our knowledge, there is no study that systematically tackles this
issue for vi for Bayesian dnns and cnns. Inspired by the literature on residual
networks (K. He et al., 2016) and greedy initialization of dnns (Bengio, Lamblin,
et al., 2006; Mishkin and Matas, 2016), we propose a novel initialization strategy
for vi grounded on Bayesian linear modeling, which we call iblm. Iterating
from the first layer, iblm initializes the posterior at layer (l) by learning Bayesian
linear models which regress from the input, propagated up to layer (l), to the
labels.

We show how iblm can be applied in a scalable way and without considerable
overhead to regression and classification problems, and how it can be applied to
initialize vi not only for dnns but also for cnns. Through a series of experiments,
we demonstrate that iblm leads to faster convergence compared to other initializa-
tions inspired by prior work on loss minimization for dnns. Furthermore, we show
that iblm makes it possible for vi with a Gaussian approximation applied to cnns
to compete with Monte Carlo dropout (mcd) (Gal and Ghahramani, 2016a) and
noisy natural gradients (noisy -kfac; G. Zhang et al. (2018)), which are state-of-art
methods to perform approximate inference for cnns.

In summary, in this chapter we make the following contributions:

• we propose a novel way to initialize vi for dnns based on Bayesian linear
models;

36 initializations of variational inference for bayesian neural networks

• we show how this can be done for regression and classification;

• we show how to apply our strategy to cnns;

• we empirically demonstrate that our proposal allows us to achieve perfor-
mance superior to other initializations of vi inspired by the literature on loss
minimization;

• for the first time, we are able to run Gaussian vi on large-scale cnns,
obtaining remarkable performances.

3.1 .1 A review of the role of initialization in deep learning

The problem of initialization of weights and biases in dnns for gradient-based
loss minimization has been extensively tackled in the literature since early break-
throughs in the field (Rumelhart et al., 1986; Baldi and Hornik, 1989). Rumelhart
et al. (1986) study the limitations of backpropagation-based gradient descend to
find good local minima in the parameter space, showing that this issue arises
even in small dnns; the authors address this issue by initalizing the optimization
using random weights. Few years later, Baldi and Hornik (1989) report that for
layered linear feed-forward neural networks trained using a quadratic loss function,
there exists a unique global minimum corresponding to a orthogonal projection
of the ordinary least square solution into a subspace spanned by eigenvalues of
the covariance matrix of training samples. Nevertheless, the restrictions required
to derive this closed-form solution (linear layers without bias on a single hidden
layer networks with equal number of input and output features) severely limit the
applicability of these results to a wider and more interesting class of dnns. To
overcome these limitations, LeCun, Bottou, et al. (1998) discusses practical tricks to
achieve an efficient loss minimization through back-propagation; choosing separate
learning rate for each weight and a Gaussian random initialization are some of the
proposed ways to obtain an effective optimization.

More recently, Bengio, Lamblin, et al. (2006) propose a greedy layer-wise unsu-
pervised pre-training, which proved to help optimization and generalization. A
justification can be found in Erhan et al. (2010), where the authors show that
pre-training can act as regularization; by initializing the parameters in a region
corresponding to a better basin of attraction for the optimization procedure, the
model can reach a better local minimum and increase its generalization capabilities.
Glorot and Bengio (2010) propose a simple way to estimate the variance for random

3.2 initialization of variational parameters: a proposed method 37

initialization of weights, which makes it possible to avoid saturation both in forward
and back-propagation steps. Another possible strategy can be found in the work
by Saxe et al. (2013), that investigates the dynamics of gradient descend optimiza-
tion, and proposes a random orthogonal initialization of the weights based on the
singular value decomposition of a Gaussian random matrix. This algorithm takes a
random weight matrix filled with Gaussian noise, decomposes it to orthonormal
basis using a singular value decomposition and replaces the weights with one
of the components. Building on this work, Mishkin and Matas (2016) propose a
data-driven weight initialization by scaling the orthonormal matrix of weights to
make the variance of the output as close to one as possible.

Variational inference addresses the problem of intractable Bayesian inference by
reinterpreting inference as an optimization problem. The reparameterization trick
(Kingma and Welling, 2014) allows for the stochastic optimization of the variational
lower bound through automatic differentiation (Duchi et al., 2011; Zeiler, 2012;
Sutskever et al., 2013; Kingma and Ba, 2015). Despite the tight connection between
loss minimization and evidence lower bound (elbo) maximization (Graves, 2011),
to the best of our knowledge there is no study that either empirically or theoretically
addresses the problem of initialization of parameters for vi; we could only find a
mention of this in Krishnan et al. (2018) for variational autoencoders. We aim to fill
this gap by proposing a novel way to initialize parameters in vi for probabilistic
deep models.

3 .2 initialization of variational parameters: a
proposed method

In this section, we introduce our proposed Iterative Bayesian Linear Model (iblm)
initialization for vi. We first introduce iblm for regression with dnns, and we then
show how this can be extended to classification and to cnns.

3.2.1 Initialization of DNNs for Regression

In order to initialize the weights of dnns, we proceed iteratively as follows.
Before applying the nonlinearity through the activation function, each layer in
a Bayesian dnn can be seen as multivariate Bayesian linear regression model.
We use this observation as an inspiration to initialize the variational parameters

38 initializations of variational inference for bayesian neural networks

X y

q(W
(0)
,0)

(a)

X y

q(W
(0)
,1)

(b)

X yq(W(1))

(c)

Figure 3.2: Visual representation of the proposed method for initialization. In (a) and (b), we learn
two Bayesian linear models, whose outputs are used in (c) to infer the following layer.

as follows. Starting from the first layer, we can set the parameters of q(W(0)) by
running Bayesian linear regression with inputs X and labels y. Let’s considering
for a moment a particular column j of the weights matrix, which we denote
with w = W

(0)
·j . By choosing a Gaussian prior and a Gaussian likelihood as

follows

p(w) = N(w | 0,Λ) (3.1)

p(y |w,X) = N(y |Xw,L) (3.2)

the posterior plm(w |y,X) as simple as apply the rule of Gaussian random variables
(C. M. Bishop, 2006),

plm(w |y,X) = N(w |m,S) = N(w |SX>L−1y,S) , (3.3)

where S−1 = Λ−1 +X>L−1X. This process is eventually repeating the process for
multiple hidden units (the posterior factorizes on the columns of W(0)). After this,
we initialize the approximate posterior over the weights at the second layer q(W(1))

by running Bayesian linear regression with inputs X = a(XW̃
(0)

) and labels y,

where W̃
(0)

is a sample from q(W(0)). We then proceed iteratively in the same wayRemember that
a(·) denotes for

us the
element-wise

application of the
activation

function to the
argument

up to the last layer. Figure 3.2 gives an illustration of the proposed method for a
simple architecture.

3.2 initialization of variational parameters: a proposed method 39

The intuition behind iblm is as follows. If one layer is enough to capture the
complexity of a regression task, we expect to be able to learn an effective mapping
right after the initialization of the first layer. In this case, we also expect that
the mapping at the next layers implements simple transformations, close to the
identity. Learning a set of weights with these characteristics starting from a random
initialization is far from trivial, which also motivated the work on residual networks
(K. He et al., 2016). Our iblm initialization takes this observation as an intuition to
initialize vi for general deep models.

From a complexity point of view, denoting by Dl the number of output neurons
at layer (l), this is equivalent to Dl univariate Bayesian linear models. Instead of
using the entire training set to learn the linear models, each one of these is inferred
based on a random mini-batch of data, whose inputs are propagated through the
previous layers. The complexity of iblm is linear in the batch size and cubic in the
number of neurons to be initialized. Later on, we will provide an evaluation of the
effect of batch size and a timing profiling of iblm.

3.2.2 From the Bayesian linear model posterior to the variational
approximation

The proposed iblm initialization of variational parameters can be used with any
choice for the form of the approximate posterior. The exact posterior of Bayesian
linear regression is not factorized, so one needs to match this with the form of
the chosen approximate posterior. For simplicity of notation, let w be one of the
parameters vector of interest. We can formulate this problem by minimizing the
Kullback-Leibler (kl) divergence from the variational approximation q(w;ν) to
the posterior obtained from the linear model plm(w |X,y). In the case of a fully
factorized approximate posterior over the weights q(w;ν) = N(w |µ, Iσ2), this
minimization can be done analytically.

Recall that the expression for the kl divergence between two multivariate Gaussians
p0 = N(w |µ0,Σ0) and p1 = N(w |µ1,Σ1) is

KL [p0 ‖ p1] =
1
2

Tr
(
Σ−1
1 Σ0

)
+
1
2
(µ1−µ0)

>Σ−1
1 (µ1−µ0) −

D

2
+
1
2

log
(

detΣ1
detΣ0

)
(3.4)

40 initializations of variational inference for bayesian neural networks

The kl divergence is not symmetric, so the order in which we take this matters. If
we consider KL [q(w) ‖ plm(w |X,y)], the expression becomes:

KL [q(w) ‖ p(w |X,y)] =
1
2

Tr
(
S−1diag(σ2)

)
+
1
2
(m−µ)>S−1(m−µ)−

D

2
+
1
2

log
(

detS∏
i σ

2
i

)

(3.5)

It is a simple matter to show that the optimal mean µ is m as µ appears only
in the quadratic form which is clearly minimized when µ = m. For the vari-
ances σ2, we need to take the derivative of the kl divergence and set it to zero:

∂KL [q(w) ‖ p(w |X,y)]
∂σ2i

=
1
2
∂Tr

(
S−1diag(σ2)

)

∂σ2i
−
1
2
∂
∑
i logσ2i
∂σ2i

= 0 (3.6)

Rewriting the trace term as the sum of the Hadamard product of the matrices in
the product

∑
ij(S

−1 � diag(σ2))ij =
∑
i σ

2
i(S

−1)ii, this yields

∂KL [q(w) ‖ p(w |X,y)]
∂σ2i

=
1
2
∂σ2i(S

−1)ii
∂σ2i

−
1
2
∂ logσ2i
∂σ2i

= 0 (3.7)

This results in (σ2i)
−1 = (S−1)ii. This approximation has the effect of under-

estimating the variance for each variable (Murphy, 2012). In case we consider
KL [p(w |X,y) ‖ q(w)], the expression for the mean would remain the same but the
variances would become σ2i = Sii, which is the simplest way to approximate the
correlated posterior over w but it is going to inflate the variance in case of strong
correlations. Similar results can be also obtained for different posterior distributions,
such as Gaussian posteriors with full or low-rank covariance, or matrix-variate
Gaussian posteriors (Louizos and Welling, 2016).

3.2.3 Initialization for classi�cation and convolutional
layers

In this section we show how our proposal can be extended to k-class classification
problems. We assume a one-hot encoding of the labels, so that Y is an n× k matrix
of zeros and ones (one for each row of Y). Recently, it has been shown that it is
possible to obtain an accurate modeling of the posterior over classification functions
by applying regression on a transformation of the labels (Milios, Camoriano,
et al., 2018). This is interesting because it allows us to apply Bayesian linear

3.2 initialization of variational parameters: a proposed method 41

regression as before in order to initialize vi for dnns. The transformation of the
labels is based on the formalization of a simple intuition, which is the inversion
of the softmax transformation. One-hot encoded labels are viewed as a set of
parameters of a degenerate Dirichlet distribution. We resolve the degeneracy of
the Dirichlet distribution by adding a small regularization, say α = 0.01, to the
parameters. At this point, we leverage the fact that Dirichlet distributed random
variables can be constructed as a ratio of Gamma random variables, that is, if
xi ∼ Gamma(ai,b), then xi∑

j xj
∼ Dir(a). We can then approximate the Gamma

random variables with log-Normals by moment matching, which become Gaussian
after a logarithm transformation. By doing so, we obtain a representation of the
labels which allows us to use standard regression with a Gaussian likelihood, and
which retrieves an approximate Dirichlet when mapping predictions back using
the softmax transformation. As a result, the latent functions obtained represent
probabilities of class labels. The only small complication is that the transformation
imposes a different noise level for labels that are 0 or 1, and this is due to the non-
symmetric nature of the transformation. Nevertheless, it is a simple matter to extend
Bayesian linear regression to handle heteroscedasticity; see the supplementary
material and Milios, Camoriano, et al. (2018) for more insights on the transformation
to apply regression on classification problems.

iblm can also be applied to cnns. Convolutional layers are commonly imple-
mented as matrix multiplication (e.g. as a linear model) between a batched matrix
of patches and a reshaped filter matrix (Jia, 2014). Rather than using the outputs of
the previous layer as they are, for convolutional layers each Bayesian linear model
learns the mapping from spatial patches to output features. In Algorithm 2 we sum-

42 initializations of variational inference for bayesian neural networks

−10 −5 0 5 10

−2
−1
0
1
2

IBLM

−10 −5 0 5 10

−2
−1
0
1
2

Uninformative

−10 −5 0 5 10

−2
−1
0
1
2

Heuristic

−10 −5 0 5 10

−2
−1
0
1
2

Xavier

−10 −5 0 5 10

−2
−1
0
1
2

Orthogonal

−10 −5 0 5 10

−2
−1
0
1
2

LSUV

Figure 3.3: Illustration of the di�erent initialization for the variational parameters in a simple 1D
regression task.

marize a sketch of the proposed method for regression as well as for classification
and convolutional layers.

Algorithm 2: Sketch of iblm

Inputs : Model M, Dataset D
Returns : Initialized model
foreach layer in M do

foreach outfeature in layer do
X, Y ← next batch in D;
propagate X;
XIBLM ← output of previous layer;
if layer is convolutional then

XIBLM ← patch extraction(XIBLM);
if likelihood is classification then

var(YIBLM)← log [(Y +α)−1 + 1];
mean(YIBLM)← log (Y +α) − var(YIBLM)/2;

else
YIBLM ← Y;

Compute plm(w |X, Y);
Initialize q(w) with the best approx. of plm(w |X, Y)

3 .3 experimental evaluation

In this section, we compare different initialization algorithms for variational infer-
ence to prove the effectiveness of iblm. At layer (l), we choose priors p(W(l)) =

3.3 experimental evaluation 43

∏
i,jN(w

(l)
i,j | 0, 1

D(l−1)), where D(l−1) denotes the number of input features at layer

(l), and focus on fully-factorized variational posteriors q(W(l)) =
∏
i,jN(w

(l)
i,j |µ

(l)
i,j , (σ2)(l)i,j);

We propose a number of competitors inspired from the literature developed for
loss minimization in dnns and cnns:

• Uninformative. The posteriors at each layer are initialized with zero mean
and unit variance.

• Random Heuristic. An extension to commonly used heuristics with µ(l)i,j = 0

and (σ2)
(l)
i,j = 1

D(l−1) . Because this is the same as for the prior, this yields an
initial kl divergence in the elbo equal to zero.

• Xavier Normal. Originally proposed by Glorot and Bengio (2010), it samples
all weights independently from a Gaussian distribution with zero mean and
(σ2)

(l)
i,j = 2

D(l−1)+D(l) . This variance-based scaling avoids issues with vanishing

or exploding gradients. We extend this to vi by directly setting µ(l)i,j = 0 and

(σ2)
(l)
i,j = 2

D(l−1)+D(l) , given that the sampling is performed during the Monte
Carlo estimate of the log-likelihood.

• Orthogonal. Starting from the analysis of learning dynamics of dnns with
linear activations, Saxe et al. (2013) propose an initialization scheme with
orthonormal weight matrices. The idea is to decompose a Gaussian random
matrix onto an orthonormal basis, and use the resulting orthogonal matrix
for initialization. We adapt this method to vi by initializing the mean matrix
with the orthogonal matrix and (σ2)

(l)
i,j = 1

D(l−1) . In the experiments, we make
use of the Pytorch QR-decomposition (Paszke et al., 2019).

• Layer-Sequential Unit-Variance (LSUV). Starting from the orthogonal ini-
tialization, Mishkin and Matas (2016) propose a data-driven greedy layer-wise
variance scaling of the weight matrices. We implement Layer-Sequential Unit-
Variance (lsuv) for the means, while the variances are set to (σ2)

(l)
i,j = 1

D(l−1) .

Figure 3.3 presents an illustration of the different initialization for the variational
parameters in a simple 1D regression task. iblm being data dependent already
shows some visible fitting behaviour. We report an extensive validation of our
proposal, with a series of experiments involving dnns and cnns for regression and
classification, comparing it against other initializations for vi. For bigger models,
like the cnns, we will benchmark mean-field Gaussian variational inference with
mcd (Gal and Ghahramani, 2016b) and Natural Noisy Gradients or noisy -kfac

44 initializations of variational inference for bayesian neural networks

102 103 104 105
−1

0

1
Te
st
M
NL
L

Powerplant (Shallow)

102 103 104 105

1

1.5

2

2.5

Protein (Shallow)

102 103 104 105
−1

0

1

Iteration

Te
st
M
NL
L

Powerplant (Deep)

102 103 104 105

1

2

3

Iteration

Protein (Deep)

iblm Uninformative Heuristic Xavier-Normal Orthogonal lsuv

Figure 3.4: Progression of test mean negative loglikelihood (mnll) with di�erent initializations
with shallow and deep architectures on Powerplant and Protein. Experiment repeated
�ve times, only the average is shown.

(G. Zhang et al., 2018), which represent the two important references for inference
of Bayesian cnns. Throughout the experiments, we use adam (Kingma and Ba,
2015) as optimizer with learning rate of 10−3, a batch-size of 64 examples and 16

Monte Carlo samples at training time and 128 at test time. All experiments are
run on a server equipped with two 16c/32t Intel Xeon CPU and four NVIDIA
Tesla P100, with a maximum time budget of 24 hours (never reached). To better
understand the effectiveness of different initializations, all learning curves are
plotted w.r.t. training iteration rather than wall-clock time.

3.3.1 The e�ect of initialization in deep variational neural
networks

In this experiment we compare initialization methods for a shallow dnn archi-
tecture on two regression datasets, Powerplant (N = 9568, D = 4) and Protein
(N = 45730, D = 9). The architecture used in these experiments has one single
hidden layer with 100 hidden neurons and rectified linear unit (ReLU) activations.
Figure 3.4 on the top row shows the learning curves repeated over five different

3.3 experimental evaluation 45

train/test splits. First of all we observe that initialization hugely impact the conver-
gence properties of variational inference. On Powerplant, for instance, the impact
is easily quantified: between the fastest and the slowest configurations to converge
there are differences as big as 30/40 times more training interations. This is an
expected result and a trivial conclusion, but the effects of poor choices of initial-
ization schemes in the convergence of variational inference were never discussed.
Furthermore, iblm allows for a better initialization compared to the competitors,
leading to lower mnll on the test set (curves for the root mean squared error
(rmse) are similar and available in the Appendix). Similar considerations hold
when increasing the depth of the model, keeping the same experimental setup. Fig-
ure 3.4 shows what happens we we switch to a deeper architecture with five hidden
layers and 100 hidden neurons per layer (ReLU activations).

3.3.2 Scaling up variational inference to deep convolutional neural
networks

For this experiment, we implemented a Bayesian version of the original LeNet
architecture proposed by LeCun, Bottou, et al. (1998) with two convolutional layers
of 6 and 16 filters, respectively and ReLU activations applied after all convolutional
layers and fully-connected layers. We tested our framework on MNIST and on
CIFAR10 .

Before showing and discussing the comparisons, this is a challenging setup to
validate two claims we made in the previous sections. Previously we claimed that
(i) small batches of data are sufficient to solve the Bayesian linear model and that
(ii) our initialization does not incur significant overheads. To justify such claims,
we initialize a LeNet on MNIST with an increasing number of samples per batch;
Figure 3.5 (on the left) shows how test mnll just after the initialization is affected
by this choice. Using the full training set leads to a better estimate of the posterior
but from 64/128 samples the improvement on the test mnll is only marginal. Note
also that the mini-batch size affects also the heterogeneity of the posteriors, which
vanishes when using the full training set. The same experiment is also repeated
comparing test mnll after initialization between vi with iblm and mcd with the
common Xavier initializer (Figure 3.5 on the right). Similar comments apply also
for this case: iblm allows the training to start from a marginally lower negative
log-likelihood.

46 initializations of variational inference for bayesian neural networks

4 8 16 32 64 128 256 512 1024

2.4

2.6

2.8

Mini-batch size

Te
st

M
NL

L

E�ect of mini-batching for initialization

IBLM + VI Xavier + MCD

2.3

2.32

2.34

2.36

2.38

Te
st
M
NL
L

Figure 3.5: Comparison of test mnll after initialization of lenet for MNIST averaged out of eight
successive runs. On the left, iblm with di�erent batch sizes, on the right comparison
with mcd.

10−2 10−1 100 101 102

100

101

IBLM 4

Heuristic

LSUV

Orthogonal

Xavier-Normal

Time [seconds]

Te
st
M
NL
L

af
te
ri
ni
tia
liz
at
io
n

55 60 65 70 75
2.30

2.32

2.34

2.36

2.38

IBLM 1024

IBLM 128

IBLM 256
IBLM 512

IBLM 64

Figure 3.6: On the left, comparison of initialization time versus test mnll, averaged out of eight
successive runs (on the right, magni�cation of the small portion of the plot). Orange
corresponds to the Pareto frontier. Before training, four out of �ve optimal initializers
are iblm.

Finally, Figure 3.6 reports the test mnll after initialization as a function of the time
required to initialize the model (orange points correspond to Pareto-optimal points).
The timings and likelihood values are obtained by repeating the experiment eight
time independently on a graphic processing unit (gpu) fully dedicated. The iblm

initializer takes roughly one minute to finish, which in the full timing budget of
training such models is negligible.

Now we can move to the comparisons, to which we include a further initialization
based on the maximum-a-posteriori (map). For this case we optimize the map loss
with the same prior and we use this solution to initialize the µ(l)i,j , while we set the

variances to a small value of log[(σ2)(l)i,j] = −5.5 (for a fair comparison, we allow the
map to train for the same amount of time required by iblm to complete). Even
for relatively small cnns, we observe somethig alarming: the only initialization
strategies that achieve convergence are the orthogonal and lsuv, along with iblm

and map, which are both data dependent; the other methods systematically make

3.3 experimental evaluation 47

102 103 104
0

0.05

0.1

0.15

Te
st
er
ro
r

MNIST

102 103 104
0

0.2

0.4

Iteration

Te
st
M
NL
L

102 103 104

0.4

0.6

0.8

Te
st
er
ro
r

CIFAR10

102 103 104
1

1.2

1.4

1.6

1.8

2

Iteration

Te
st
M
NL
L

iblm Orthogonal lsuv map

Figure 3.7: Progression of test error and test mnll with di�erent initializations on LeNet for
MNIST and CIFAR10. Note that the Uniformative, Heuristic and Xavier intializers did
not converge, and as such they are not included in the plots.

the optimization to not make progress, pushing the posterior back to the prior. ??
reports the progression of the error rate and mnll. For both MNIST and CIFAR10

, iblm places the parameters where the network can consistently deliver better
performance both in terms of error rate and mnll throughout the entire learning
procedure.

3.3.3 Comparison with variational inference beyond mean �eld
Gaussian

Monte Carlo Dropout (Gal and Ghahramani, 2016a) offers a simple and effective
way to perform approximate Bayesian cnn inference, thanks to the connection
between dropout (Simonyan and Zisserman, 2014) and variational inference. In this
experiment, we aim to compare and discuss benefits and disadvantages of using
a Gaussian posterior approximation with respect to the Bernoulli approximation
that characterizes mcds. For a fair comparison, we implemented the same lenet

architecture and the same learning procedure as in Gal and Ghahramani (2016a)1,
with the two convolutional layers having 20 and 50 filters, respectively. We also
use the same learning rate policy λ× (1+ τ× iter)−p with τ = 0.0001, p = 0.75,

1 https://github.com/yaringal/DropoutUncertaintyCaffeModels

https://github.com/yaringal/DropoutUncertaintyCaffeModels

48 initializations of variational inference for bayesian neural networks

0

0.2

0.4
Te
st
er
ro
rr
at
e

LeNet (MNIST)

1 101 102 103 104 105 106
0

0.2

0.4

Iteration

Te
st
mn
ll

0.4

0.6

0.8

AlexNet (CIFAR10)

101 102 103 104 105
1

1.2

1.4

1.6

1.8

2

Step

Mean-�eld Gaussian (with IBLM) MCD

Figure 3.8: Progression of test error and mnll for two di�erent convolutional neural networks
on both MNIST and CIFAR10. Variational inference is initialized with iblm.

λ = 0.01 and weight decay of 0.0005. Figure 3.8 on the left shows the learning
curves: mcd achieves lower error rate but its rough approximation imposed by
the Bernoulli-like posterior is reflected on an higher mnll compared to vi with a
Gaussian posterior. Provided with a good initialization, Gaussian vi can better fit
the model and deliver a better quantification of uncertainty.

Similar comments apply also for CIFAR10 on alexnet (Krizhevsky, Sutskever,
et al., 2012), a cnn composed by a stack of five convolutional layers and three
fully-connected layers for a total of more than 1M parameters (2M for vi) (results
in Figure 3.8 on the right). Note that in this case, the test error seems to favor mcd

but the mean-field Gaussian approximation deliver better test likelihood (1.15 vs
1.38 for mcd). Calibration of uncertainty is an important performance metric that
one should take into account for comparing classification models (Flach, 2016; Guo
et al., 2017). Reliability Diagrams and the Expected Calibration Error (ece) are
standard methods to empirically estimate the calibration uncertainty. Reliability
Diagrams are a visualization tool where sample accuracy is plotted as function of
confidence (DeGroot and Fienberg, 1983; Niculescu-Mizil and Caruana, 2005). For
a perfectly calibrated model, the diagram follows the identity function. Expected

3.3 experimental evaluation 49

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Con�dence

Ac
cu
ra
cy

Calibration on CIFAR10

Mean-�eld Gaussian (with IBLM)
ECE = 0.064
MCD
ECE = 0.210

Figure 3.9: Reliability diagram and the expected calibration error for AlexNet trained on CIFAR10.

0.2

0.4

0.6

0.8

Te
st
Er
ro
r

VGG16 (CIFAR10)

2000 4000 6000

1

1.5

2

Seconds

Te
st
M
NL
L

Test MNLL Test error
Gaussian VI with IBLM 0.637 0.167
Gaussian VI with MAP init. 0.750 0.201
MCD 0.821 0.215
NNG (Noisy-KFAC) 0.750∗ 0.164

Note: Due to high variance in the test mnll for the noisy
natural gradients, we report the minimum value of the last 5
epochs.

Figure 3.10: Progression of test error and mnll for a very deep convolutional neural network
trained on CIFAR10.

Calibration Error represents a summary statistic of the calibration (Naeini et al.,
2015) and it is defined as follows,

ECE =

M∑
m=1

|Bm|

n
|acc(Bm) − conf(Bm)| , (3.8)

where the test set is divided into M disjoint subsets {B1, . . . ,BM}, each of them corre-
sponding to a given interval of the predicted confidence. Figure 4.9 shows the relia-
bility diagrams and the ece for AlexNet trained on CIFAR10.

Finally, we demonstrate that – provided with a sensible initialization – even simple
factorized Gaussian posterior can achieve state-of-the-art performance on CIFAR10

with vgg
2, a large scale cnn (Simonyan and Zisserman, 2014). In this experiment,

2 We implemented the same architecture as in G. Zhang et al. (2018)

50 initializations of variational inference for bayesian neural networks

in addition to mcd, we also compare with noisy -kfac, an approximation of
matrix-variate Gaussian posterior using noisy natural gradients introduced by G.
Zhang et al. (2018). The four models are trained with a maximum time budget of 100
minutes for the entire end-to-end training (curves are shifted by the initialization
time). The Results are shown in Figure 3.10 and in the adjacent table. In this
experiment, we have experienced the situation in which, the elbo is completely
dominated by the kl divergence. The kl regularization term in the variational
objective severely penalizes training of over-parameterized model. With a sensible
initialization of this kind of model, the approximate posterior is drastically different
from a spherical Gaussian prior and the variational objective is majorly dominated
by the regularization term rather than the reconstruction likelihood. To deal with
such issue, we propose and implement a simple policy to gradually include the kl

term in the elbo. Given the generic expression for the elbo, we modify the lower
bound as follow:

Lelbo(ν) = Eq(θ;ν) logp(y |θ) − λKL [q(θ;ν) ‖ p(θ)]

with λ = γ (1+ exp(−α(iter −β)))−1. This way, we start the optimization of the
elbo with a low regularization, and progressively increase it throughout the
optimization. Effectively, this is equivalent to start with a prior with very weak
regularization strength and slowly moving towards a proper spherical Gaussian.
For the experiment on VGG16, we used α = 2 · 10−3, β = 2.5 · 104 and γ = 10−1.
The practice of down-playing the kl term was initially introduced for generative
models like variational autoencoders (vaes) (Bowman et al., 2016; Sønderby et al.,
2016), but now accepted by the Bayesian deep learning community as a quick
remedy for poor performance.

3 .4 final remarks

Before moving to some final remarks, let’s quick summarize the empirical evidence
up to this point. We prove that the role of initialization is severely under reported
in the literature of variational inference for Bayesian neural network. The reasons
for the failing of Bayesian neural networks (bnns) in practice might depends
heavily on poor scheme for the initialization of the variational parameters. The test
likelihood at the beginning of the optimization seems to be a good indication of a
possible failure in the training. See for example the situation in Figure 3.11 (LeNet

3.4 final remarks 51

IBLM + VI Xavier + MCD Xavier + VI

0

2

4

Te
st
M
NL
L

Initial test likelihood as indicator of convergence

Figure 3.11: Test likelihood after initialization (on the left) and at the end of the training procedure
(on the right) for LeNet on MNIST.

on MNIST): both variational inference with iblm and mcd with Xavier have
comparable initial test likelihood and both converge while variational inference
with Xavier starts with higher test likelihood and fails to progress. It’s unclear
whether this strong conjecture holds consistently, but this evidence shows that a
very high initial test likelihood might be a symptom of bad conditioning. This
figure also highlights a pathology which might be intrinsic with the nature of
mean-field Gaussian posterior: with the same initialized network, Gaussian vi fails
to make any progress during training, while mcd converges fairly easily. This
motivates further research on non-Gaussian posteriors or, at least, the departure
from factorized distributions.

This work fills an important gap in the literature of Bayesian deep learning, that is
how to effectively initialize variational parameters in vi. We proposed a novel way
to do so, iblm, which is based on an iterative layer-wise initialization based on
Bayesian linear models. Through a series of experiments, including regression and
classification with dnns and cnns, we demonstrated the ability of our approach
to consistently initialize the optimization in a way that makes convergence faster
than alternatives inspired from the state-of-the-art in loss minimization for deep
learning.

4
E F F I C I ENT PARAMETER I Z AT IONS FOR
VAR I AT IONAL
POSTER IORS

Over-parameterized models, such as deep neural networks and convolutional
neural networks, form a class of models that are routinely adopted in a wide
variety of applications, and for which Bayesian inference is desirable but extremely
challenging. Variational inference offers the tools to tackle this challenge in a
scalable way and with some degree of flexibility on the approximation, but for
over-parameterized models this is challenging due to the over-regularization prop-
erty of the variational objective. Inspired by the literature on kernel methods, and
in particular on structured approximations of distributions of random matrices,
this chapter will discuss Walsh-Hadamard variational inference (whvi), a new
parameterization for variational inference which leverages Walsh-Hadamard-based
factorization strategies to reduce the parameterization and accelerate computations.
Extensive theoretical and empirical analyses demonstrate that whvi yields con-
siderable speedups and model reductions compared to other techniques to carry
out approximate inference for over-parameterized models, and ultimately show
how advances in kernel methods can be translated into advances in approximate
Bayesian inference for Deep Learning.

4 .1 the problem of overparameterization in
variational inference

Since its inception, variational inference (vi) (Jordan et al., 1999) has continuously
gained popularity as a scalable and flexible approximate inference scheme for a

53

54 efficient parameterizations for variational posteriors

variety of models for which exact Bayesian inference is intractable. Bayesian neural
networks (Mackay, 1994; Neal, 1996) represent a good example of models for which
inference is intractable, and for which vi – and approximate inference in general
– is challenging due to the nontrivial form of the posterior distribution and the
large dimensionality of the parameter space (Graves, 2011; Gal and Ghahramani,
2016b). Recent advances in vi allow one to effectively deal with these issues
in various ways. For instance, a flexible class of posterior approximations can
be constructed using, e.g., normalizing flows (D. Rezende and Mohamed, 2015),
whereas the need to operate with large parameter spaces has pushed the research
in the direction of Bayesian compression (Louizos, Ullrich, et al., 2017; Molchanov
et al., 2017).

We saw in the previous chapters that employing vi is notoriously challenging
for Bayesian deep learning, and even more so for over-parameterized statistical
models. Let’s consider a supervised learning task with N input vectors and cor-
responding labels collected in X = {x1, . . . , xN} and y = {y1, . . . ,yN}, respectively;
furthermore, let’s consider deep neural networks (dnns) with weight matrices
θ =

{
W(1), . . . ,W(L)

}
, likelihood p(y |θ,X), and prior p(θ). Following standard

variational arguments, after introducing an approximation q(θ;ν) to the posterior
p(W |y,X) it is possible to obtain a lower bound to the log-marginal likelihood
logp(y |X) as follows:

logp(y |X) > Eq(θ;ν) logp(y |θ,X) − KL [q(θ;ν) ‖ p(θ)] . (4.1)

The first term acts as a model fitting term, whereas the second one acts as a
regularizer, penalizing solutions where the posterior is far away from the prior. It
is easy to verify that the Kullback-Leibler (kl) term can be the dominant one in
the objective for over-parameterized models. For example, a mean field posterior
approximation turns the kl term into a sum of as many kl terms as the number of
model parameters, say Q, which can dominate the overall objective when Q� N.
As a result, the optimization focuses on keeping the approximate posterior close to
the prior, disregarding the rather important model fitting term. This issue has been
observed in a variety of deep models (Bowman et al., 2016), where it was proposed
to gradually include the kl term throughout the optimization (Bowman et al., 2016;
Sønderby et al., 2016) to scale up the model fitting term (A. G. Wilson and Izmailov,
2020a; Wenzel et al., 2020) or to improve the initialization of variational parameters
(Rossi, Michiardi, et al., 2019). Alternatively, other approximate inference methods
for deep models with connections to vi have been proposed, notably Monte Carlo

4.1 the problem of overparameterization in variational inference 55

Dropout (Monte Carlo dropout (mcd); Gal and Ghahramani, 2016b) and Noisy
Natural Gradients (G. Zhang et al., 2018).

4.1.1 Contributions

In this chapter we make the several contributions. We propose a novel strategy to
cope with model over-parameterization when using variational inference, which is
inspired by the literature on kernel methods. Our proposal is to reparameterize the
variational posterior over model parameters by means of a structured decomposi-
tion based on random matrix theory (Tropp, 2011), which has inspired a number of
fundamental contributions in the literature on approximations for kernel methods,
such as Fastfood (Le et al., 2013) and Orthogonal Random Features (ortogonal
random features (orf), (F. X. Yu et al., 2016)). The key operation within our pro-
posal is the Walsh-Hadamard transform, and this is why we name our proposal
Walsh-Hadamard Variational Inference (whvi).

Without loss of generality, consider Bayesian dnns with weight matrices W(l)

of size D×D. Compared with mean field vi, whvi has a number of attractive
properties. The number of parameters is reduced from O(D2) to O(D), thus reducing
the over-regularization effect of the kl term in the variational objective. We derive
expressions for the reparameterization and the local reparameterization tricks,
showing that, the computational complexity is reduced from O(D2) to O(D logD).
Finally, unlike mean field vi, whvi induces a matrix-variate distribution to ap-
proximate the posterior over the weights, thus increasing flexibility at a log-linear
cost in D instead of linear.

We can think of our proposal as a specific factorization of the weight matrix, so
we can speculate that other tensor factorizations (Novikov et al., 2015) of the
weight matrix could equally yield such benefits. Our comparison against various
matrix factorization alternatives, however, shows that whvi is superior to other
parameterizations that have the same complexity. Furthermore, while matrix-variate
posterior approximations have been proposed in the literature of vi (Louizos and
Welling, 2016), this comes at the expense of increasing the complexity, while our
proposal keeps the complexity to log-linear in D.

Through a wide range of experiments on dnns and convolutional neural networks
(cnns), we demonstrate that our approach enables the possibility to run varia-
tional inference on complex over-parameterized models, while being competitive

56 efficient parameterizations for variational posteriors

with state-of-the-art alternatives. Ultimately, our proposal shows how advances
in kernel methods can be instrumental in improving vi, much like previous
works showed how kernel methods can improve, e.g., Markov chain Monte Carlo
sampling (Sejdinovic et al., 2014; Strathmann et al., 2015) and statistical testing
(Gretton, Fukumizu, et al., 2008; Gretton, Borgwardt, et al., 2012; Zaremba et al.,
2013).

4 .2 structured approximations for kernel
matrices

whvi is inspired by a line of works that developed from random feature expansions
for kernel machines (Rahimi and Recht, 2008), which we briefly review here. A
positive-definite kernel function κ(xi, xj) induces a mapping φ(x), which can be
infinite dimensional depending on the choice of κ(·, ·). Among the large literature of
scalable kernel machines, random feature expansion techniques aim at constructing
a finite approximation to φ(·). Denoting by K the matrix with elements κ(xi, xj)
and by Φ the matrix with rows φ(xi)

>, this approximation yields K ≈Φ>Φ and
this allows one to turn kernel machines into linear models in this kernel-induced
representation Φ. For many kernel functions (Rahimi and Recht, 2008; Cho and
Saul, 2009), this approximation is built by applying a nonlinear transformation to a
random projection XΩ, where Ω has entries N(ωij|0, 1). If the matrix of training
points X is N×D and we are aiming to construct D random features, that is Ω
is D×D, this requires N times O(D2) time, which can be prohibitive when D is
large.

Fastfood (Le et al., 2013) tackles the issue of large dimensional problems by re-
placing the matrix Ω with a random matrix for which the space complexity is
reduced from O(D2) to O(D) and time complexity of performing products with
input vectors is reduced from O(D2) to O(D logD). In Fastfood, the matrix Ω is
replaced by

Ω ≈ SHGΠHB, (4.2)

where Π is a permutation matrix, H is the Walsh-Hadamard matrix, whereas G
and B are diagonal random matrices with standard Normal and Rademacher ({±1})

4.3 from structured kernel approximations to walsh-hadamard variational inference 57

cov{g}

cov{vect(W)}

−1.0

−0.5

0.0

0.5

1.0
cov{g}

cov{vect(W)}

−1.0

−0.5

0.0

0.5

1.0

Figure 4.1: Normalized covariance of g and vect(W).

distributions, respectively. The Walsh-Hadamard matrix is defined recursively
starting from

H2 =

[
1 1
1 −1

]
, and then H2D =

[
HD HD

HD −HD

]
, (4.3)

which it could possibly be scaled by D−1/2 to make it orthonormal. The product Hx
can be computed in O(D logD) time and O(1) space using the in-place version of the
Fast Walsh-Hadamard Transform (fwht, Fino and Algazi, 1976). S is also diagonal
with i.i.d. entries, and it is chosen such that the elements of Ω obtained by this
series of operations are approximately independent and follow a standard Normal
(see (Tropp, 2011) for more details). Fastfood inspired a series of other works on
kernel approximations , whereby Gaussian random matrices are approximated by
a series of products between diagonal Rademacher and Walsh-Hadamard matrices
(F. X. Yu et al., 2016; Bojarski et al., 2017).

4 .3 from structured kernel approximations to
walsh-hadamard variational
inference

Fastfood and its variants yield cheap approximations to Gaussian random matrices
with pseudo-independent entries, and zero mean and unit variance. The question
we address here is whether we can use these types of approximations as cheap
approximating distributions for vi. Let’s start by considering a prior for the
elements of the diagonal matrix G = diag(g) and a variational posterior q(g) =
N(µ,Σ) of Equation (4.2). From here we can actually obtain a class of approximate

58 efficient parameterizations for variational posteriors

posterior with some desirable properties as discussed next. Let W =W(l) ∈ RD×D

be the weight matrix of a dnn at layer (l), and consider

W̃ ∼ q(W) s.t. W̃ = S1Hdiag(g̃)HS2 with g̃ ∼ q(g). (4.4)

4.3.1 Statistical properties of the structure induced by
whvi

The choice of a Gaussian q(g) and the linearity of the operations in Equation (4.4)
induce a parameterization of a matrix-variate Gaussian distribution for W, which
is controlled by S1 and S2 if we assume that we can optimize these diagonal matrices.
For a genericD1×D2 matrix-variate Gaussian distribution, we have

W ∼ MN(M,U,V) if and only if vect(W) ∼ N(vect(M),V ⊗U), (4.5)

where M ∈ RD1×D2 is the mean matrix and U ∈ RD1×D1 and V ∈ RD2×D2 are two
positive definite covariance matrices among rows and columns, and ⊗ denotes the
Kronecker product. Matrix-variate Gaussian posteriors for variational inference
have been introduced in Louizos and Welling (2016); however, assuming full
covariance matrices U and V is memory and computationally intensive (quadratic
and cubic in D, respectively). whvi captures covariances across weights (see
Figure 4.1), while keeping memory requirements linear in D and complexity log-
linear in D, and we shall now see why.

In whvi, as S2 is diagonal, HS2 = [v1, . . . , vD] with vi = (S2)i,i(H):,i, so W can be
rewritten in terms of A ∈ RD

2×D and g as follows

vect(W) = Ag where A =

SHdiag(v0)
...

SHdiag(vd−1)

 (4.6)

This rewriting, shows that the choice of q(g) yields q(vect(W)) = N(Aµ,AΣA>),
proving that whvi assumes a matrix-variate distribution q(W), see Figure 4.1 for
an illustration of this.

We now derive the parameters of the matrix-variate distribution q(W) = MN(M,U,V)
of the weight matrix W̃ ∈HD×D given by whvi,

W̃ = S1Hdiag(g̃)HS2 with g̃ ∼ N(µ,Σ). (4.7)

4.3 from structured kernel approximations to walsh-hadamard variational inference 59

The mean M = S1Hdiag(µ)HS2 derives from the linearity of the expectation. The
covariance matrices U and V are non-identifiable: for any scale factor s > 0, we have
MN(M,U,V) equals MN(M, sU, 1sV). Therefore, we constrain the parameters such
that Tr(V) = 1. The covariance matrices verify (see e.g. Section 1 in the supplement
of Ding and Cook, 2014)

U = Eq(W)

[
(W−M)(W−M)>

]

V =
1

Tr(U)
Eq(W)

[
(W−M)>(W−M)

]
.

Denoting by Σ1/2 a root of Σ and considering p(ε) = N(0, I), we have Note that the
Walsh-
Hadamard
matrix H is
symmetric, while
S1 and S2 are
diagonal.

U = Ep(ε)

[
S1Hdiag(Σ1/2ε)HS22Hdiag(Σ1/2ε)HS1

]
. (4.8)

Let’s define the matrix T 2 ∈HD×D2 where the ith row is the column-wise vector-
ization of the matrix (Σ

1/2
i,j (HS2)i,j ′)j,j ′6D,

T 1 =

vect
(
Σ1,: (HS2)

>
1,:

)>

...

vect
(
ΣD,: (HS2)

>
d,:

)>

 . (4.9)

We have that

(T 2T
>
2)i,i ′ =

D∑
j,j ′=1

Σ
1/2
i,j Σ

1/2
i ′,j(HS2)i,j ′(HS2)i ′,j ′

=

D∑
j,j ′,j ′′=1

Σ
1/2
i,j (HS2)i,j ′Ep(ε)[εjεj ′′]Σ

1/2
i ′,j ′′(HS2)i ′,j ′

=

D∑
j ′=1

Ep(ε)

D∑
j=1

εjΣ
1/2
i,j (HS2)i,j ′

D∑
j ′′=1

εj ′′Σ
1/2
i ′,j ′′(HS2)i ′,j ′

= Ep(ε)

[(
diag(Σ1/2ε)HS22Hdiag(Σ1/2ε)

)
i,i ′

]
.

Using Equation (4.8), a root of U = U1/2U1/2> can be found:

U1/2 = S1HT 2. (4.10)

60 efficient parameterizations for variational posteriors

Empirical mean M̃

−1

−0.5

0

0.5

1

·10−2 Analytic mean M

−0.5

0

0.5

1

·10−2 M − M̃

−4

−2

0

2

4

·10−3

Empirical row cov. Ũ

0

0.5

1

Analytic row cov. U

0

0.2

0.4

U−1Ũ − I

−1

−0.5

0

0.5

·10−2

Empirical column cov. Ṽ

0

0.5

Analytic column cov. V

−0.1

0

0.1

0.2

0.3
V−1Ṽ − I

−0.5

0

0.5

1
·10−2

Figure 4.2: Numerical veri�cation of �rst and second moments for whvi for one choice of S1, S2
and q(g). The empirical quantities are obtained with Monte Carlo samples.

Similarly for V, we have

V1/2 =
1√

Tr(U)
S2HT 1, with T 1 =

vect
(
Σ1,: (HS1)

>
1,:

)>

...

vect
(
ΣD,: (HS1)

>
d,:

)>

 . (4.11)

The form of the moments for the matrix variate Gaussian are non-trivial and
they can be confusing; to verify the correctness of these formulas we run a nu-
merical study: we compute the mean and the two covariances analitically and
empirically after sampling 15 000 times from Equation (4.4) and we report their

4.3 from structured kernel approximations to walsh-hadamard variational inference 61

deviations in Figure 4.2. For the three moments the errors are well within what
we can consider acceptable and, hence we can validate the expressions we derived
before.

geometrical interpretation of whvi. The matrix A in Equation (4.6) expresses the
linear relationship between the weights W = S1Hdiag(g)HS2 and the variational
random vector g, i.e. vect(W) = Ag. Recall the definition of

A =

S1Hdiag(v1)
...

S1Hdiag(vD)

 , with vi = (S2)i,i(H):,i. (4.12)

We show that a LQ-decomposition ofA can be explicitly formulated as.

vect(W) = [s
(2)
i S1Hdiag(hi)]i=1,...,D g

= LQg, (4.13)

where hi is the ith column ofH, L = diag((s(2)i s)i=1,...,D), diag(s(1)) = S1, diag(s(2)) =
S2, and Q = [Hdiag(hi)]i=1,...,D. Equation (4.13) derives directly from block matrix
and vector operations. As L is clearly lower triangular (even diagonal), let us proof
that Q has orthogonal columns. Defining the d× d matrix Q(i) = Hdiag(hi), we
have:

Q>Q =

D∑
i=1
Q(i)>Q(i) =

D∑
i=1

diag(hi)H>Hdiag(hi) =
D∑
i=1

diag(h2i) =
D∑
i=1

D−1I = I.

The mean of the structured matrix-variate posterior assumed by whvi can span a
D-dimensional linear subspace within the whole D2-dimensional parameter space,
and the orientation is controlled by the matrices S1 and S2. In more details, this
decomposition gives direct insight on the role of the Walsh-Hadamard transforms:
with complexity D log(D), they perform fast rotations Q of vectors living in a space
of dimension D into a space of dimension D2. Treated as parameters gathered in
L, S1 and S2 control the orientation of the subspace by distortion of the canonical
axes.

62 efficient parameterizations for variational posteriors

4.3.2 Reparameterizations in whvi for stochastic
optimization

The so-called reparameterization trick (Kingma and Welling, 2014) is a standard way
to make the variational lower bound in Equation (4.1) a deterministic function of
the variational parameters, so as to be able to carry out gradient-based optimization
despite the stochasticity of the objective. Considering input vectors hi to a given
layer, an improvement over this approach is to consider the distribution of the
product Whi. This is also known as the local reparameterization trick (Kingma and
Ba, 2015), and it reduces the variance of stochastic gradients in the optimization,
thus improving convergence. The productWhi follows the distribution N(m,AA>)
(A. K. Gupta and Nagar, 1999), with

m = S1Hdiag(µ)HS2hi, and A = S1Hdiag(HS2hi)Σ1/2. (4.14)

A sample from this distribution can be efficiently computed thanks to the Walsh-
Hadamard transform as: W(µ)hi +W(Σ1/2ε)hi, with W a linear matrix-valued
function W(u) = S1Hdiag(u)HS2.

4 .4 alternative structures, tensor factorization and
extensions

The choice of the parameterization of W in whvi leaves space to several possible
alternatives, which we compare in Figure 4.3. For all of them, G is learned vari-
ationally and the remaining diagonal Si (if any) are either optimized or treated
variationally (Gaussian mean-field). Figure 4.3 shows the behavior of these alterna-
tives when applied to a 2× 64 network with rectified linear unit (ReLU) activations.
With the exception of the simple and highly constrained alternative GH, all pa-
rameterizations are converging quite easily and the comparison with mcd shows
that indeed the proposed whvi performs better both in terms of error rate and
mnll. Furthermore, this result allows us to speculate that our proposal is the best.

whvi is effectively imposing a factorization of W, where parameters are either
optimized or treated variationally. Tensor decompositions for dnns and cnns have
been proposed in (Novikov et al., 2015); hereW is decomposed into k small matrices

4.4 alternative structures, tensor factorization and extensions 63

0 5000 10000 15000 20000 25000
0.00

0.05

0.10

0.15

0.20

0.25
Test Error

0 5000 10000 15000 20000 25000
0.0

0.2

0.4

0.6

0.8

1.0
Test MNLL

Test Error Test MNLL
Model

mcd 0.097 0.249
GH 0.226 0.773
SvarHGH 0.043 0.159
S1,varHGHS2,varH 0.061 0.190
SoptHGH 0.054 0.199
S1,optHGHS2,optH 0.031 0.146
S1,optHGHS2,opt (whvi) 0.026 0.094

Figure 4.3: Ablation study of di�erent structures for the parameterization of the weights dis-
tribution. Metric: test error rate and test mean negative loglikelihood (mnll) with
di�erent structures for the weights. Benchmark on Drive with a 2× 64 network. Colors
are coded to match the ones used in the Figure

(tensor cores), such that W = W1W2 · · ·Wk , where each Wi has dimensions
ri−1 × ri (with r1 = rk = D). We adapt this idea to make a comparison with
whvi. In order to match the space and time complexity of whvi, assuming
{ri = R|∀i = 2, . . . ,k− 1}, we set: R ∝ log2D and K ∝ D

(log2D)2 . Also, to match the
number of variational parameters, all internal cores (i = 2, . . . ,k− 1) are learned
with fully factorized Gaussian posterior, while the remaining are optimized (see
Table 4.1). Given the same asymptotic complexity, Figure 4.4 reports the results of
this comparison again on a 2 hidden layer network. Not only whvi can reach better
solutions in terms of test performance, but optimization is also faster. We speculate
that this is attributed to the redundant variational parameterization induced by
the tensor cores, which makes the optimization landscapes highly multi-modal,
leading to slow convergence.

4.4.1 Extensions

concatenating or reshaping parameters. For the sake of presentation, so far we
have assumed W ∈ RD×D with D = 2d, but we can easily extend whvi to handle
parameters of any shape W ∈ RDout×Din . One possibility is to use whvi with a
large D×D matrix with D = 2d, such that a subset of its elements represent W.
Alternatively, a suitable value of d can be chosen so that W is a concatenation by

64 efficient parameterizations for variational posteriors

Table 4.1: Time and space complexity of various approaches to vi. Note:D is the dimensionality
of the feature map, K is the number of tensor cores, R is the rank of tensor cores and
M is the number of pseudo-data used to sample from a matrix Gaussian distribution,
see Louizos and Welling (2016).

Complexity
Space Time

Mean field Gaussian O(D2) O(D2)

Gaussian matrix variate O(D2) O(D2 +M3)

Tensor factorization O(KR2) O(R2)

whvi O(D) O(D logD)

Algorithm 3: Setup dimensions for non-squared matrix
Function SetupDimensions(Din,Dout):

next power← 2ceillog2Din ;
if next power == 2Din then

padding← 0;
else

padding = next power −Din;
Din ← next power;

stack, remainder = divmod(Dout, Din);
if remainder != 0 then

stack← stack + 1;
Dout ← Din × stack;

return Din, Dout, padding, stack

4.4 alternative structures, tensor factorization and extensions 65

0 20000 40000
0.00

0.05

0.10

0.15

0.20

0.25
Test Error

0 20000 40000
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Test MNLL

Hadamard factorization (64) Tensor factorization (64)
Hadamard factorization (256) Tensor factorization (256)

Figure 4.4: Comparison between Hadamard factorization in whvi and tensor factorization. The
number in the parenthesis is the hidden dimension. Plot is w.r.t. iterations rather then
time to avoid implementation artifacts. The dataset used is Drive.

row/column of square matrices of size D = 2d, padding if necessary (Algorithm 3

shows this case). When one of the dimensions is equal to one so that the parameter
matrix is a vector (W = w ∈ RD), this latter approach is not ideal, as whvi would
fall back on mean-field vi. whvi can be extended to handle these cases efficiently
by reshaping the parameter vector into a matrix of size 2d with suitable d, again
by padding if necessary. Thanks to the reshaping, whvi uses

√
D parameters to

model a posterior over D, and allows for computations in O(
√
D logD) rather than

D. This is possible by reshaping the vector that multiplies the weights in a similar
way.

normalizing flows. Normalizing flows (D. Rezende and Mohamed, 2015) are a
family of parameterized distributions that allow for flexible approximations. In the
general setting, consider a set of invertible, continuous and differentiable functions
fk : RD → RD with parameters λk. Given θ0 ∼ q0(θ0), θ0 is transformed with a
chain of K flows to θK = (fK ◦ · · · ◦ f1)(θ0). The variational lower bound slightly dif-
fers from Equation (4.1) to take into account the determinant of the Jacobian of the
transformation, yielding a new variational objective as follows:

Eq logp(y |θ,X) − KL [q0(θ0) ‖ p(θK)] + Eq0(θ0)

[∑K

k=1
log

∣∣∣∣det
∂fk(θk−1;λk)

∂θk−1

∣∣∣∣
]

.

(4.15)

Setting the initial distribution q0 to a fully factorized Gaussian N(θ0 |µ,σI) and
assuming a Gaussian prior on the generated θK, the kl term is still tractable.
The tranformation f is generally chosen to allow for fast computation of the
determinant of the Jacobian. The parameters of the initial density q0 as well as
the flow parameters λ are optimized. In our case, we consider qK as a distribution

66 efficient parameterizations for variational posteriors

over the elements of g. This approach increases the flexibility of the form of the
variational posterior in whvi, which is no longer Gaussian, while still capturing
covariances across weights. This is obtained at the expense of losing the possibility
of employing the local reparameterization trick. In the remaining part of the chapter,
we will use planar flows (D. Rezende and Mohamed, 2015). Although this is a simple
flow parameterization, a planar flow requires only O(D) parameters and thus it
does not increase the time/space complexity of whvi. More complex alternatives
are proposed by (Van den Berg et al., 2018; Kingma, Salimans, et al., 2016; Louizos
and Welling, 2017).

4 .5 empirical evaluation

In this section we will provide experimental evaluations of our proposal, with
experiments ranging from regression on classic benchmark datasets to image
classification with large-scale convolutional neural networks. We will also com-
ment on the computational efficiency and some potential limitation of our pro-
posal.

setup. The experiments on Bayesian dnn are run with the following setup.
For whvi, we used a zero-mean prior over g with fully factorized covariance
λI; λ = 10−5 was chosen to obtain sensible variances in the output layer. It is
possible to design a prior over g such that the prior on W has constant marginal
variance and low correlations although empirical evaluations showed not to yield
a significant improvement compared to the previous (simpler) choice. In the final
implementation of whvi that we used in all experiments, S1 and S2 are optimized.
We used classic Gaussian likelihood with optimized noise variance for regression
and softmax likelihood for classification. Training is performed for 500 steps with
fixed noise variance and for other 50000 steps with optimized noise variance.
Batch size is fixed to 64 and for estimation of the stochastic gradients we use one
sample at train time and 64 samples at test time. We choose the Adam optimizer
(Kingma and Ba, 2015) with exponential learning rate decay λt+1 = λ0(1+ γt)−p,
with λ0 = 0.001, p = 0.3, γ = 0.0005 and t being the current iteration. Similar setup
was also used for the Bayesian cnn experiment. The only differences are the batch
size – increased to 256 – and the optimizer, which is run without learning rate
decay.

4.5 empirical evaluation 67

−2 0 2
−1

0

1

2

G-WHVI (This work)

−2 0 2

NF-WHVI (This work)

−2 0 2

SGHMC

−2 0 2
−1

0

1

2

MCD

−2 0 2

Mean-�eld Gaussian

Figure 4.5: Regression example trained using whvi with Gaussian vector (1541 param.) and with
planar normalizing �ow (10 �ows for a total of 4141 param.), mean-�eld Gussian (35k
param.) and Monte Carlo dropout (mcd) (17k param.). The two shaded areas represent
the 95th and the 75th percentile of the predictions. As “ground truth”, we also show
the predictive posterior obtained by running Stochastic Gradient Hamiltonian Monte
Carlo (sghmc) on the same model (R < 1.05, (Gelman et al., 2004)).

4.5.1 Toy example

We begin our experimental validation with a 1D-regression problem. We generated
a 1D toy regression problem with 128 inputs sampled from U[−1, 2], and removed
20% inputs on a predefined interval; targets are noisy realizations of a random
function (noise variance σ2 = exp(−3)). We model these data using a dnn with 2

hidden layers of 128 features and cosine activations. We test four models: varia-
tional inference with mean-field Gaussian, Monte Carlo dropout (mcd, Gal and
Ghahramani, 2016b) with dropout rate 0.4 and two variants of whvis – g -whvi

with Gaussian posterior and nf -whvi with planar flows (10 planar flows). We
also show the free form posterior obtained by running a Markov chain Monte Carlo
(mcmc) algorithm, sghmc in this case (T. Chen et al., 2014; Springenberg et al.,
2016), for several thousands steps. As Figure 4.5 shows, whvis offers a sensible
modeling of the uncertainty on the input domain, whereas mean-field and mcd

seem to be slightly over-confident.

4.5.2 Empirical comparison on the UCI benchmark

We conduct now a series of comparisons with state-of-the-art vi schemes for
Bayesian dnns; see the Supplement for the list of data sets used in the experiments.

68 efficient parameterizations for variational posteriors

Table 4.2: Test root mean squared error (rmse) and test mnll for regression datasets. Results
in the format “mean (std)”

Test error Test MNLL
Model MCD MFG NNG WHVI MCD MFG NNG WHVI
Dataset

Boston 3.91 (0.86) 4.47 (0.85) 3.56 (0.43) 3.14 (0.71) 6.90 (2.93) 2.99 (0.41) 2.72 (0.09) 4.33 (1.80)
Concrete 5.12 (0.79) 8.01 (0.41) 8.21 (0.55) 4.70 (0.72) 3.20 (0.36) 3.41 (0.05) 3.56 (0.08) 3.17 (0.37)
Energy 2.07 (0.11) 3.10 (0.14) 1.96 (0.28) 0.58 (0.07) 4.15 (0.15) 4.91 (0.09) 2.11 (0.12) 2.00 (0.60)
Kin8nm 0.09 (0.00) 0.12 (0.00) 0.07 (0.00) 0.08 (0.00) −0.87 (0.02) −0.83 (0.02) -1.19 (0.04) -1.19 (0.04)
Naval 0.30 (0.30) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) −1.00 (2.27) −6.23 (0.01) -6.52 (0.09) −6.25 (0.01)
Powerplant 3.97 (0.14) 4.52 (0.13) 4.23 (0.09) 4.00 (0.12) 2.74 (0.05) 2.83 (0.03) 2.86 (0.02) 2.71 (0.03)
Protein 4.23 (0.10) 4.93 (0.11) 4.57 (0.47) 4.36 (0.11) 2.76 (0.02) 2.92 (0.01) 2.95 (0.12) 2.79 (0.01)
Yacht 1.90 (0.54) 7.01 (1.22) 5.16 (1.48) 0.69 (0.16) 2.95 (1.27) 3.38 (0.29) 3.06 (0.27) 1.80 (1.01)

We compare whvi with mcd and nng (noisy -kfac, G. Zhang et al., 2018).
mcd draws on a formal connection between dropout and vi with Bernoulli-like
posteriors, while the more recent noisy -kfac yields a matrix-variate Gaussian
distribution using noisy natural gradients. To these baselines, we also add the
comparison with mean field Gaussian (mfg). In whvi, the last layer assumes a
fully factorized Gaussian posterior.

Data is randomly divided into 90%/10% splits for training and testing eight times.
We standardize the input features x while keeping the targets y unnormalized. Dif-
ferently from the experimental setup in Louizos and Welling (2016), G. Zhang et al.
(2018), and Hernandez-Lobato and R. Adams (2015), we use the same architecture
regardless of the size of the dataset. Futhermore, to test the efficiency of whvi in
case of over-parameterized models, we set the network to have two hidden layers
and 128 features with ReLU activations (as a reference, these models are ∼20 times
bigger than the usual setup, which uses a single hidden layer with 50/100 units).
We report the test rmse and the average predictive test negative log-likelihood

(mnll) in Table 4.2. On the majority of the datasets, whvi outperforms mcd and
noisy -kfac, while requiring less parameters to be optimized. Futhermore, we
study how the test mnll varies with the number of hidden units in a 2-layered
network. As Figure 4.6 shows, whvi and mcd both behave well while the other
competitive methods struggle. Empirically, these results demonstrate the value of
whvi, which offers a competitive parameterization of a matrix-variate Gaussian
posterior.

Being able to increase width and depth of a model without drastically increasing
the number of variational parameters is also one of the competitive advantages of

4.5 empirical evaluation 69

2.7 2.8 2.9 3 3.1

64

128

256

512 3.51

Test MNLL

Nu
m
.o
ff
ea
tu
re
s

E�ect of increased width (Powerplant)

WHVI
MCD
Mean-�eld Gaussian
NNG (Noisy-KFAC)

Figure 4.6: Comparison of the test mnll as a function of the number of hidden units. The dataset
used is Powerplant.

whvi. Using classification datasets, we now study the effect of changing depth
and width of the architecture. Figure 4.7 reports a summary of this comparison,
where we considere two and three hidden layer networks with width from 64 up
to 512. While reasoning about the role of overparameterization in deep and wide
neural networks for increasing generalization is beyond the scope of this work, we
observe that at test time increasing the number of hidden layers and the numbers
of hidden features whvi allows the model to deliver better performance, while
avoiding catastrofic overfitting. This is not always the case for e.g. mcd, which
with few exceptions has performance degradation the wider and deeper a model
is.

We report the training and test curves for Mocap in Figure 4.8. While the analysis
of the optimization problem is not a primary focus of this work, the behavior of the
training evidence lower bound (elbo) reported shows stable convergence. Thanks
to the structure of the weights matrices, widening and deepening the model is
beneficial performance-wise and doesn’t incur in convergence instability observed
for other methods. Furthermore, with a non-mean field assumption of the weights,
the elbo is tighter than before and, in principle, it could be used as a suitable
objective function for model selection.

4.5.3 Bayesian convolutional neural networks for image
classi�cation

We continue the experimental evaluation of whvi by analyzing its performance on
cnns. For this experiment, we replace all fully-connected layers in the cnn with
the whvi parameterization, while the convolutional filters are treated variationally

70 efficient parameterizations for variational posteriors

0.2 0.4 0.6 0.8 1

WHVI 2x64
2x128
2x256
2x512

MCD 2x64
2x128
2x256
2x512

WHVI 3x64
3x128
3x256
3x512

MCD 3x64
3x128
3x256
3x512

Test MNLL

Drive

0.2 0.4 0.6

Test MNLL

MoCap

0.2 0.25 0.3 0.35

Test MNLL

Miniboo

0.4 0.6 0.8 1

WHVI 2x64
2x128
2x256
2x512

MCD 2x64
2x128
2x256
2x512

WHVI 3x64
3x128
3x256
3x512

MCD 3x64
3x128
3x256
3x512

Test MNLL

Magic

0.4 0.6

Test MNLL

EEG

1 1.5

Test MNLL

Letter

Figure 4.7: Comparison of the test mnll as a function of the number of hidden units and hidden
layers.

using mcd. In this setup, we fit vgg (Simonyan and Zisserman, 2014), alexnet

(Krizhevsky, Sutskever, et al., 2012) and resnet -18 (K. He et al., 2016) on CIFAR10

. Using whvi, we can reduce the number of parameters in the linear layers without
affecting neither test performance nor calibration properties of the resulting model,
as shown in Figure 4.9 and Table 4.3. For alexnet and resnet we also try our
variant of whvi with normalizing flows. Even though we lose the benefits of the
local reparameterization, the higher flexibility of normalizing flows allows the
model to obtain better test performance with respect to the Gaussian posterior. This
can be improved even further using more complex families of normalizing flows
(D. Rezende and Mohamed, 2015; Van den Berg et al., 2018; Kingma, Salimans,
et al., 2016; Louizos and Welling, 2017). With whvi, alexnet and its original
∼23.3m parameters is reduced to just ∼2.3m (9.9%) when using g-whvi and to
∼2.4m (10.2%) with whvi and 3 planar flows.

4.5 empirical evaluation 71

10000 20000 30000 40000 50000
−0.6

−0.4

−0.2

Iteration

L
el
bo

Mocap

0 10000 20000 30000 40000 50000

0.1

0.2

0.3

Iteration

Te
st
M
NL
L

Mocap

Number of features Number of layers
64 128 256 512 2 3

Figure 4.8: Analysis of the training curve (on the left) and test curve (on the right) for the Mocap
dataset.

whvi for convolutional layers. Convolution layers are linear layers applied on a
series of patches extracted from the image and they can be implemented with matrix
multiplication, once filters are reshaped in 2D. Given this interpretation of the
convolutional layers, we also extended whvi for for this case. We observe though
that in this case resulting models had too few parameters to obtain any interesting
results. For alexnet , we obtained a model with just 189k parameters, which
corresponds to a sparsity of 99.2% with respect of the original model. As a reference,
Wen et al. (2016) was able to reach sparsity only up to 60% in the convolutional
layers without impacting performance. To study this behavior in details, we take a
simple cnn with two convolutional layers and one linear layer (Figure 4.10). We see
that the combination of mcd and whvi performs very well in terms of convergence
and test performance, while the use of whvi on the convolutional filters brings
an overall degradation of the performance. Interestingly, though, we also observe
that mcd with the same number of parameters as for whvi (referred to as low-
rank mcd) performs even worse than the baseline: this once again confirms the
parameterization of whvi as an efficient alternative.

4.5.4 Comments on computational e�ciency

whvi builds his computational efficiency on the Fast Walsh-Hadamard Transform
(fwht), which allows to cut the complexity of a D-dimensional matrix-vector
multiplication Hx from a naive O(D2) to O(D logD), without generating and storing
H. For our experimental evaluation, we implemented a batched version of the fwht

in PyTorch in C++ and CUDA to leverage the full computational capabilities of

72 efficient parameterizations for variational posteriors

Table 4.3: Test performance of di�erent
Bayesian cnns.

CIFAR10 Test error Test MNLL

VGG16 MFG 16.82% 0.6443
MCD 21.47% 0.8213
Noisy-KFAC 15.21% 0.6374
WHVI 12.85% 0.6995

AlexNet MFG – –
MCD 13.30% 0.9590
Noisy-KFAC 20.36% 1.1990
WHVI 13.56% 0.6164
NF-WHVI 12.72% 0.6596

ResNet18 MFG – –
MCD 10.71% 0.8468
Noisy-KFAC – –
WHVI 11.46% 0.5513
NF-WHVI 11.42% 0.4908

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Con�dence

Ac
cu
ra
cy

Calibration of the predictions on CIFAR10

0

2000

4000

6000

VGG16 (ECE = 0.0229) ResNet18 (ECE = 0.0088)
AlexNet (ECE = 0.0290) Perfect calibration

Figure 4.9: Reliability diagram and expected cal-
ibration error of vgg , alexnet and
resnet with whvi.

modern graphic processing units (gpus). Figure 4.11a presents a timing profiling
of our implementation versus the naive matmul (batch size of 512 samples and
profiling repeated 1000 times). The breakeven point for the cpu implementation
is in the neighborhood of 512/1024 features, while on gpu we see that fwht is
consistently faster. In Figure 4.11b we also compare the time required to sample and
compute the predictions on the test set on two regression datasets as a function of
the number of hidden units in a two-layer dnn. The workstation used is equipped
with two Intel Xeon cpus, four NVIDIA Tesla P100 and 512 GB of RAM. Each
experiment is carried out on a gpu fully dedicated to it. The nng algorithm is
implemented in Tensorflow 1 while the others are written in PyTorch. We made
sure to fully exploit all parallelization opportunities in the competiting methods
and ours; we believe that the timings are not severely affected by external factors
other than the actual implementation of the algorithms. We also report the storage
footprint (in Bytes) for several configuration of depth/width in Figure 4.12. To
put things into prospective, the test mnll is also reported. The Pareto analysis
shows that for most of the cases whvi shows good trade-off between number
of parameters and modeling performance. Indeed, there are configurations for
which mcd delivers better test mnll, but all of them are at the expeses of bigger
models.

Finally, in Figure 4.13, we analyze the energy consumption required to sample
from the converged model and predict on the test set of CIFAR10 with alexnet

1 github.com/gd-zhang/noisy-K-FAC — github.com/pomonam/NoisyNaturalGradient

https://github.com/gd-zhang/noisy-K-FAC
https://github.com/pomonam/NoisyNaturalGradient

4.5 empirical evaluation 73

0 1000 2000 3000 4000 5000

0.4

0.6

0.8

Te
st
Er
ro
r

LeNet - CIFAR10

0 1000 2000 3000 4000 5000

1

1.5

2

Iteration

Te
st
M
NL
L

Wconv with MCD – Wlin with WHVI
Error = 0.281, MNLL = 0.882

Wconv with WHVI – Wlin with WHVI
Error = 0.427, MNLL = 1.223

Wconv low-rank with MCD – Wlin with WHVI
Error = 0.469, MNLL = 1.434

Figure 4.10: Test curve of LeNet when trained with di�erent combination of variational inference
parameterization.

using whvi and mcd and noisy natural gradients. The regularity of the algorithm
for computing the fwht and its reduced memory footprint result on an overall
higher utilization of the gpu, 85% for whvi versus ∼ 70% for mcd. This translates
into an increase of energy efficiency up to 33% w.r.t mcd, despite being 51%
faster. We speculate that the poor performance of nng is due to the inversion of
the approximation to the Fisher matrix, which scales cubically in the number of
units.

4.5.5 Exploring the parameter e�ciency of WHVI with Gaussian
processes

We conclude this empirical evaluation with a discussion on a possible application
of whvi for scalable Gaussian processs (gps). gps represent the perfect controlled
environment where we can analyze the trade off between model approximation
and inference approximation, with a focus on parameter efficiency. To this extent,
we focus on gps with random feature expansions (Lázaro-Gredilla et al., 2010).
Given a random feature expansion of the kernel martix, say K ≈ΦΦ>, the latent
variables can be rewritten as f =Φw, with w ∼ N(0, I). The random features Φ are
constructed by randomly projecting the input matrix X using a Gaussian random
matrix Ω and applying a nonlinear transformation, which depends on the choice
of the kernel function. For a given set of random features, we can treat the weights
of the resulting model variationally, with e.g. a mean field Gaussian q(w). By
reshaping the vector of parameters w into a D×D matrix, whvi allows for the

74 efficient parameterizations for variational posteriors

64 128 256 512
10

100

1000

10000

Hidden units

In
fe
re
nc
e
tim

e
[m
s]

Powerplant

64 128 256 512
100

1000

10000

Hidden units

Protein

WHVI MCD Noisy-KFAC

(a)

6 7 8 9 10 11

0.1

1

10

100

Dimension [log2]

Ti
m
e
[m
s]

Timing e�ciency of the FWHT

FWHT Matmul CPU GPU

(b)

Figure 4.11: Analysis of the timing e�ciency of whvi. (a) Inference time on the test set with
128 batch size and 64 Monte Carlo samples. Experiment repeated 100 times on an
gpu fully dedicated to it. (b) Timing comparison of di�erent implementations of the
vectorized Fast Walsh-Hadamard transform, with a batch size of 512 data points.

10 KB 100 KB 1 MB

2.7

2.75

2.8

Model size

Te
st
M
NL
L

Protein

10 KB 100 KB 1 MB

0.2

0.4

0.6

Model size

MoCap

10 KB 100 KB 1 MB

0.2

0.25

0.3

Model size

Miniboo

10 KB 100 KB 1 MB

0.5

1

1.5

Model size

EEG

WHVI MCD

Figure 4.12: Comparison of the test mnll as a function of the memory footprint for four datasets.

linearized gp to reduce the number of parameters to optimize or, given the same
complexity, increase the number of random features (see ??). This latter case will be
also compared with another approximation of Gaussian process using variational
inference and inducing points (Titsias, 2009b; Hensman, A. G. Matthews, et al.,
2015). We report the results on four datasets in Figure 4.14. This variant of whvi

that reshapes w into a matrix largely outperforms the direct variational inference
with mean field Gaussian. However, it appears that this improvement of the random
feature inference for gps is not enough to reach the performance of inducing points.
Inducing point approximations are based on the Nyström approximation of kernel
matrices, which are known to lead to lower approximation error on the elements
on the kernel matrix compared to random features approximations. This is the

4.6 related work 75

0 1000 2000 3000
0

100

200
Energy = 20.24 Wh

Energy = 30.51 Wh

Energy = 191.09 Wh

Time elapsed [s]

Po
we
rd
ra
w
[W
]

WHVI
MCD
Noisy-KFAC

Figure 4.13: Power pro�ling during inference on the test set of CIFAR10 with alexnet The task
is repeated 16 consecutive times and pro�ling is carried out using the nvidia-smi
tool.

41 73 137 265

0.05

0.1

Parameters

Te
st
er
ro
r

Borehole

41 73 137 265

0.4

0.45

Parameters

Robot

39 71 135 263

0.15

0.2

0.25

0.3

Parameters

Hartman6

39 71 135 263

0.1

0.2

Parameters

OTLCircuit

GP with Fourier features and mean-�eld VI GP with Fourier features and WHVI SVGP

Figure 4.14: Analysis of the parameter e�ciency of whvi for scalable Gaussian process regression
with variational inference.

reason we attribute to the lower performance of whvi compared to inducing points
approximations in this experiment.

4 .6 related work

In the early sections of the chapter, we have already briefly reviewed some of the lit-
erature on vi and Bayesian dnns and cnns; here we complement the literature by
including other relevant works that have connections with whvi.

Our work takes inspiration from the works on random features for kernel ap-
proximation (Rahimi and Recht, 2008) and Fastfood (Le et al., 2013). Random
feature expansions have had a wide impact on the literature on kernel methods.
Such approximations have been successfully used to scale a variety of models,
such as Support Vector Machines (Rahimi and Recht, 2008), Gaussian processes

76 efficient parameterizations for variational posteriors

(Lázaro-Gredilla et al., 2010) and Deep Gaussian processes (Cutajar et al., 2017; Gal
and Ghahramani, 2016b). This has contributed to bridging the gap between Deep
gps and Bayesian dnns and cnns (Neal, 1996; Duvenaud et al., 2014; Cutajar
et al., 2017; Gal and Ghahramani, 2016a), which is an active area of research which
aims to gain a better understanding of deep learning models through the use of
kernel methods (G. Matthews et al., 2018; Dunlop et al., 2018; Garriga-Alonso et al.,
2019). Structured random features (Le et al., 2013; F. X. Yu et al., 2016; Bojarski
et al., 2017) have been also applied to the problem of handling large dimensional
convolutional features (Z. Yang et al., 2015) and Convolutional gps (G.-L. Tran
et al., 2019).

Bayesian inference on dnns and cnns has been research topic of several seminar
works (see e.g. Graves, 2011; Hernandez-Lobato and R. Adams, 2015; Blundell
et al., 2015; Gal and Ghahramani, 2016b; Gal and Ghahramani, 2016a). Recent
advances in dnns have investigated the effect of over-parameterization and how
model compression can be used during or after training (Hubara et al., 2016;
Louizos, Ullrich, et al., 2017; Zhu and S. Gupta, 2018). Our current understanding
shows that model performance is affected by the network size with bigger and
wider neural networks being more resilient to overfit (Neyshabur, Tomioka, et
al., 2015; Neyshabur, Z. Li, et al., 2019). For variational inference, and Bayesian
inference in general, over-parameterization is reflected on over-regularization of
the objective, leading the optimization to converge to trivial solutions (posterior
equal to prior). Several works have encountered and proposed solutions to such
issue (Higgins et al., 2017; Burgess et al., 2018; Bowman et al., 2016; Sønderby et al.,
2016; Rossi, Michiardi, et al., 2019). The problem of how to run accurate Bayesian
inference on over-parametrized models like Bayesian neural networks (bnns) is
still an ongoing open question (A. G. Wilson and Izmailov, 2020a; Wenzel et al.,
2020)

4 .7 final remarks

Inspired by the literature on scalable kernel methods, this chapter proposed Walsh-
Hadamard Variational Inference (whvi). whvi offers a novel parameterization
of the variational posterior, which is particularly attractive for over-parameterized
models, such as modern dnns and cnns. whvi assumes a matrix-variate posterior
distribution, which therefore captures covariances across weights. Crucially, unlike

4.7 final remarks 77

previous work on matrix-variate posteriors for vi, this is achieved with a light
parameterization and fast computations, bypassing the over-regularization issues of
vi for over-parameterized models. The large experimental campaign, demonstrates
that whvi is a strong competitor of other variational approaches for such models,
while offering considerable speedups. One limitation of the parameterization
induced by whvi is that its mean cannot span the whole D2-dimensional space. A
simple and cheap remedy could be to modify the parameterization from S1HGHS2

to S1HGHS2 +M with E[G] = 0 so that the mean can span the whole space thanks
to M, while the rest would allow to model covariances across weights. However,
though a preliminary numerical study on the rmse between the weights induced
by whvi and arbitrary weight matrices, we see constant behavior w.r.t. D. Possible
extensions include the possibility to capture the covariance between weights across
layers, by either sharing the matrix G across, or by concatenating all weights into a
single matrix which is then treated using whvi, with the necessary adaptations to
handle the sequential nature of computations.

5
THE E F F ECT OF SE L ECT ING THE
PR IOR FOR BAYES I AN DEEP
LEARN ING

The Bayesian treatment of neural networks dictates that a prior distribution is
specified over their weight and bias parameters. This poses a challenge because
modern neural networks are characterized by a large number of parameters, and
the choice of these priors has an uncontrolled effect on the induced functional prior,
which is the distribution of the functions obtained by sampling the parameters from
their prior distribution. We argue that this is a hugely limiting aspect of Bayesian
deep learning, and this chapter tackles this limitation in a practical and effective
way.

5 .1 the choice of the prior matters

The concept of prior distribution in Bayesian inference allows us to describe
the family of solutions that we consider acceptable, before having seen any data.
While in some cases selecting an appropriate prior is easy or intuitive given the
context (O’Hagan, 1991; Rasmussen and Ghahramani, 2002; Srinivas et al., 2010;
Cockayne et al., 2019; Briol et al., 2019), for nonlinear parametric models with
thousands (or millions) of parameters, like deep neural networks (dnns) and
convolutional neural networks (cnns), this choice is not straightforward. Despite
many advances in the field (Kendall and Gal, 2017; Rossi, Michiardi, et al., 2019;
Osawa et al., 2019; Rossi, Marmin, et al., 2020), it is reported that in some cases the
predictive posteriors are not competitive to non-Bayesian alternatives, making these

79

80 the effect of selecting the prior for bayesian deep learning

Te
st
NL
L

PreResNet-20
VGG-16

10−2

Prior std α
10−1 100

2 · 103

4 · 103

1 · 104

2 · 104

5%

10%

20%

90%

Te
st
Er
ro
r

PreResNet-20
VGG-16

10−2

Prior std α
10−1 100

Figure 5.1: Test performance on CIFAR10 with di�erent priors. Figure replicated from the arXiv
version of A. G. Wilson and Izmailov (2020a).

models—and Bayesian deep learning, in general—less than ideal solutions for a
number of applications. Wenzel et al. (2020), for example, raise concerns about the
quality and the usefulness of Bayesian neural network (bnn) posteriors, where
it is found that tempering the posterior distribution improves the performance
of some deep models. Observations of this kind should not be really surprising.
Bayesian inference is a recipe with exactly three ingredients: the prior distribution,
the likelihood and the Bayes’ rule. Regarding the Bayes’ rule, that is simply a
consequence of the axioms of probability. The fact that the posterior might not be
useful in some cases should never be attributed to the Bayesian method itself. In fact,
it is very easy to construct Bayesian models with poor priors and/or likelihoods,
which result in poor predictive posteriors. One should therefore turn to the other
two components, which encode model assumptions.

In this chapter we will discuss the role of the priors in the predictive performance
of bnns. The common practice in the literature is to define a prior distribution on
the network weights and biases, which is often chosen to be Gaussian. We argue
that this choice can be catastrophic if miss-placed; nonetheless even with a simple
Gaussian there are optimal configurations. In Figure 5.1, for example, A. G. Wilson
and Izmailov (2020a) show the effect of the prior variance for two deep cnns. Note
that all weights and biases in all the layers share the same parameter, which—as
we will see in a moment—might not be the best solution. From this analysis we can
draw two conclusions: (i) priors have huge effect in the modeling task, (ii) there are
configurations which are much better than the simple N(0, 1) priors but for which
we don’t grasp the intuition.

While these argument seams only logical, in practice they are not. One might
expect, for instance, that provided with a sufficiently large amount of data, the

5.1 the choice of the prior matters 81

0.001 0.01 0.1 1 10

0.
00
1

0.
01

0.1
1

10

0.409 0.377 0.370 0.400 0.718

0.344 0.313 0.329 0.364 0.513

0.359 0.319 0.333 0.378 0.619

0.438 0.353 0.382 0.421 0.688

0.481 0.403 0.431 0.523 0.559

Prior variance for linear layers

Pr
io
rv
ar
ia
nc
e
fo
rc
on
v.
la
ye
rs

Test error (LeNet - CIFAR10)

0.001 0.01 0.1 1 10

0.
00
1

0.
01

0.1
1

10

1.218 1.164 1.151 1.250 2.391

1.098 1.041 1.089 1.315 1.874

1.166 1.089 1.224 1.490 2.099

1.359 1.223 1.401 1.631 2.315

1.464 1.399 1.577 1.910 2.339

Prior variance for linear layers

Pr
io
rv
ar
ia
nc
e
fo
rc
on
v.
la
ye
rs

Test MNLL (LeNet - CIFAR10)

Figure 5.2: Grid search analysis on the prior variance for LeNet trained via variational inference
on CIFAR10.

effect of the prior distribution will decrease. While this is true, the problem with
Bayesian deep learning stands with the huge parameters dimensionality of the
models considered, which pushes this limit further away. We show a simple case to
exemplify this behaviour. In Figure 5.2 we consider a very simple LeNet classifier
which is trained with variational inference and mean-field Gaussian posteriors.
For different combination of prior variance for linear and convolutional layers we
report the “converged” test error and test likelihood. As can be seen, it appears
that the effect of the prior is more critical for linear layers rather then convolutional
ones, which reflect the allocation of trainable parameters. This justify a careful
analysis of the effect of the priors in deep convolutional and feedforward neural
networks.

5.1 .1 Pathologies of deep prior functions

A prior over the parameters induces a prior on the functions generated by the
model, which also depends on the network architecture. However, due to the
nonlinear nature of the model, the effect of this prior on the functional output is not
obvious to characterize and control. Consider the example in Figure 5.3, where we
show the functions generated by sampling the weights of bnns with tanh activation
from their Gaussian prior N(0, 1). We see that as depth is increased, the samples
tend to form straight horizontal lines, which is a well-known pathology stemming
from increasing model’s depth (Neal, 1996; Duvenaud et al., 2014; G. Matthews
et al., 2018). We stress that a fixed Gaussian prior on the parameters is not always
problematic, but it can be, especially for deeper architectures. More recently, issues

82 the effect of selecting the prior for bayesian deep learning

of these kind of bnn priors have been recently exposed by Wenzel et al., 2020,
who suggest to consider a temperate version of the posterior—effectively reducing
the strength of the prior—to increase performance. Other recent works (T. Chen
et al., 2014; Springenberg et al., 2016) consider a hierarchical structure for the prior,
where the variance of the normally-distributed bnn weights is governed by a
Gamma distribution. This setting introduces additional flexibility on the space of
functions, but it still does not provide much intuition regarding the properties of
the prior.

Bayesian model selection constitutes a principled approach to select an appropriate
prior distribution. Model selection is based on the marginal likelihood – the nor-
malizing constant of the posterior distribution – which may be estimated from the
training data. This practice is usually used to select hyperparameters of a Gaussian
process (gp) as its marginal likelihood is available in closed form (Rasmussen and
Williams, 2005). However, the marginal likelihood of bnns is generally intractable,
and lower bounds are difficult to obtain. Graves (2011) first and Blundell et al., 2015

later used the variational lower bound of the marginal likelihood for optimizing the
parameters of a prior, yielding in some cases worse results. The Laplace’s method
is another alternative to approximate the marginal likelihood (Immer, Bauer, et al.,
2021; D. J. MacKay, 1995) which is scalable and differentiable with respect to the
prior hyperparameters.

Nonetheless, this kind of generative priors on the functions is very different from
shallow Bayesian models, such as gps, where the selection of an appropriate prior
typically reflects certain attributes that we expect from the generated functions. A
gp defines a distribution of functions that is characterized by a mean and a kernel
function κ. The gp prior specification can be more interpretable than the one induced
by the prior over the weights of a bnn, in the sense that the kernel effectively gov-
erns the properties of possible functions, such as shape, variability and smoothness.
For example, shift-invariant kernels may impose a certain characteristic length-scale
on the prior distribution over functions.

5.1 .2 Contributions

The main research question that we investigate now is how to impose functional
priors on bnns. We seek to tune the prior distributions over bnns parameters
so that the induced functional priors exhibit interpretable properties, similar to
shallow gps. While bnn priors induce a regularization effect that penalizes large

5.2 the problem of choosing priors in the literature of bayesian deep learning 83

−10 0 10

−4

−2
0

2

4

BNN prior with 2 layers

−10 0 10

−4

−2
0

2

4

BNN prior with 4 layers

−10 0 10

−4

−2
0

2

4

BNN prior with 8 layers

−10 0 10

−2

0

2

GP prior with RBF kernel

−10 0 10

−2

0

2

GP prior with Matern32 kernel

Figure 5.3: (Top) Sample functions of a fully-connected bnn with 2, 4 and 8 layers obtained by
placing a Gaussian prior on the weights. (Bottom) Samples from a gp prior with two
di�erent kernels.

values for the network weights, a gp-adjusted prior induces regularization directly
on the space of functions.

We consider the Wasserstein distance between the distribution of bnn functions
induced by a prior over their parameters, and a target gp prior. We propose an
algorithm that optimizes such a distance with respect to the bnn prior parameters
and hyper-parameters. An attractive property of our proposal is that estimating
the Wasserstein distance relies exclusively on samples from both distributions,
which are easy to generate. We explore the effect of gp-induced priors on the
predictive posterior distribution of bnns by carrying out fully Bayesian inference of
neural network models with these priors through the use of scalable Markov chain
Monte Carlo (mcmc) sampling (T. Chen et al., 2014). We demonstrate systematic
performance improvements over alternative choices of priors and state-of-the-art
approximate Bayesian deep learning approaches, including convolutional neural
networks.

5 .2 the problem of choosing priors in the literature
of bayesian deep learning

Many recent attempts in the literature have turned their attention towards defining
priors in the space of functions, rather than the space of weights. For example,

84 the effect of selecting the prior for bayesian deep learning

Nalisnick et al. (2021) consider a family of priors that penalize the complexity of
predictive functions. Hafner et al. (2019) propose a prior that is imposed on training
inputs, as well as out-of-distribution inputs. This is achieved by creating pseudo-
data by means of perturbing the training inputs; the posterior is approximated by
a variational scheme. W. Yang et al. (2019) present a methodology to induce prior
knowledge by specifying certain constraints on the network output. Pearce et al.
(2019) explore dnn architectures that recreate the effect of certain kernel combina-
tions for gps. This result in an expressive family of network priors that converge to
gps in the infinite-width limit. A different approach is proposed by Karaletsos and
T. Bui (2019) and Karaletsos and T. Bui (2020), who consider a gp model for the
network parameters that can capture weight correlations.

A similar direction of research focuses not only on priors but also inference in the
space of functions for bnns. For example, Ma et al. (2019) consider a bnn as an
implicit prior in function space and then use gp for inference. Conversely, Sun, G.
Zhang, et al. (2019) propose a functional variational inference which employs a gp

prior to regularize bnns directly in the function space by estimating the Kullback-
Leibler (kl) divergence between these two stochastic processes. However, this
method relies on a gradient estimator which can be inaccurate in high dimensions.
In another route, M. E. E. Khan et al. (2019) derive a gp posterior approximation
for neural networks by means of the Laplace and generalized Gauss-Newton (ggn)
approximations, leading to an implicit linearization. Immer, Korzepa, et al. (2021)
make this linearization explicit and apply it to improve the performance of bnn

predictions. In general, these approaches either rely heavily on non-standard infer-
ence methods or are constrained to use a certain approximate inference algorithm
such as variational inference or Laplace approximation.

A different line of work focuses on meta-learning by adjusting priors based on
the performance of previous tasks (Amit and Meir, 2018). In contrast to these
approaches, we aim to define a suitable prior distribution entirely a priori. We
acknowledge that our choice to impose gp (or hierarchical gp) priors on neural
networks is essentially heuristic: there is no particular theory that necessarily claims
superiority for this kind of prior distributions. In some applications, it could be
preferable to use priors that are tailored to certain kinds of data or architectures,
such the deep weight prior (Atanov et al., 2019). However, we are encouraged by the
empirical success and the interpretability of gp models, and we seek to investigate
their suitability as bnn priors on a wide range of regression and classification
problems.

5.3 imposing gaussian process priors in bayesian neural networks 85

Our work is most closely related to a family of works that attempt to map gp

priors to bnns. Flam-Shepherd et al., 2017 propose to minimize the kl between
the bnn prior and some desired gp. As there is no analytical form for this kl, the
authors rely on approximations based on moment matching and projections on
the observation space. This limitation was later addressed (Flam-Shepherd et al.,
2018) by means of a hypernetwork (Ha et al., 2017), which generates the weight
parameters of the original bnn; the hypernetwork parameters were trained so
that bnn fit the samples of a gp. In our work, we also pursue to minimize a
sample-based distance between the bnn prior and some desired gp, but we avoid
the difficulties in working with the kl divergence, as its evaluation is challenging
due to the empirical entropy term. To the best of our knowledge, the Wasserstein
distance scheme we propose is novel, and it demonstrates satisfactory convergence
for compatible classes of gps and bnns.

5 .3 imposing gaussian process priors in bayesian
neural networks

The equivalence between function-space view and weight-space view of linear
models, like Bayesian linear regression and gps (Rasmussen and Williams, 2005), is
a straightforward application of Gaussian identities, but it allows us to seamlessly
switch point of view accordingly to which characteristics of the model we are
willing to observe or impose. We would like to leverage this equivalence also for
bnns but the nonlinear nature of such models makes it analytically intractable (or
impossible, for non-invertible activation functions). We argue that for bnns—and
Bayesian deep learning models, in general—starting from a prior over the weights is
not ideal, given the impossibility of interpreting its effect on the family of functions
that the model can represent. We therefore rely on an optimization-based procedure
to impose functional priors on bnns using the Wasserstein distance as a similarity
metric between such distributions, as described next.

5.3.1 A quick introduction to the Wasserstein distance

The concept of distance between probability measures is central to this work, as
we frame the problem of imposing a gp prior on a bnn as a distance minimiza-
tion problem. We present some known results on the Wasserstein distance that

86 the effect of selecting the prior for bayesian deep learning

will be used in the sections that follow. Given two Borel’s probability measures
π(x) and ν(y) defined on the Polish space X and Y (i.e. any complete separable
metric space), the generic formulation of the p-Wasserstein distance is defined as
follows:

Wp(π,ν) =
(

inf
γ∈Γ(π,ν)

∫
X×Y

D(x,y)pγ(x,y)dxdy
)1/p

, (5.1)

where D(x,y) is a proper distance metric between two points x and y in the space
X× Y and Γ(π,ν) is the set of functionals of all possible joint densities γ whose
marginals are π and ν.

When the spaces of x and y coincide (i.e. x,y ∈ X ⊆ Rd), with D(x,y) being the
Euclidian norm distance, the Wasserstein-1 distance (also known in the literature
as Earth-Mover distance) takes the following shape,

W1(π,ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x−y‖γ(x,y)dxdy . (5.2)

With the exception of few cases where the solution is available analytically (e.g.
π and ν being Gaussians), solving Equation (5.2) directly or via optimization is
intractable. On the other hand, the Wasserstein distance defined in Equation (5.2) ad-
mits the following dual form (Kantorovich, 1942; Kantorovich, 1948),

W1(π,ν) = sup
‖φ‖L61

[∫
φ(x)π(x)dx−

∫
φ(y)ν(y)dy

]

= sup
‖φ‖L61

Eπφ(x) − Eνφ(x) , (5.3)

where φ is a 1-Lipschitz continuous function defined on X→ R. This is effectively
a functional maximization over φ on the difference two expectations of φ under
π and ν. A revised proof of this dual form by Villani (2003) is available in the
Appendix.

Following recent literature (Goodfellow et al., 2014; Arjovsky et al., 2017), we
parameterize the Lipschitz function by a neural network with parameters θ. In
this setup, the supremum is replaced with a maximization problem with respect
to the parameters θ. In order to enforce the Lipschitz constraint on φθ, Arjovsky
et al. (2017) propose to clip the weights θ to lie within a compact space [−c, c] such
that all function φθ(·) will be K-Lipschitz, with K usually unknown. This approach
usually biases the resulting φθ(·) towards simple functions. Based on the fact that
a differentiable function is 1-Lipschitz if and only if the norm of its gradient is

5.3 imposing gaussian process priors in bayesian neural networks 87

at most one everywhere, Gulrajani et al. (2017) propose to constrain the gradient
norm of the output of the Lipschitz function φθ(·) with respect to its input. More
specifically, the loss of the Lipschitz function is augmented by a regularization
term

max
θ

[
Eπ(x)φ(x;θ) − Eν(x)φ(x;θ) + λEp(x̂)

[(
‖∇x̂φ(x̂)‖2 − 1

)2]]
(5.4)

Here p(x̂) is the distribution of x̂ = εx̃π + (1− ε)x̃ν for ε ∼ U[0, 1] and x̃π ∼ π(x),
x̃ν ∼ ν(x) being the sample functions from the two marginals and λ the penalty
coefficient.

5.3.2 Using the Wasserstein distance to impose the GP behaviour in
BNN

Let now go back to our original problem of optimizing priors for bnns. Assume a
prior distribution p(w;ψ) on the weights of a bnn, where ψ is a set of parameters
that determine the prior (e.g. for a Gaussian prior, ψ = {µ,σ}; we discuss more
options on the parametrization of bnn priors in the section that follows). This
prior over weights induces a prior distribution over functions:

pnn(f;ψ) =
∫
p(f |w)p(w;ψ)dw, (5.5)

where p(f |w) is deterministically defined by the network architecture.

We consider as our target distribution a gp defined as pgp(f | 0,K), where K is the
covariance matrix obtained by computing the kernel function κ for each pair of data-
points {xi, xj}. We aim at matching these two stochastic processes at a finite number
of measurement points XM

def
= [x1, ..., xM]>. To achieve this, we propose a sample-

based approach using the 1-Wasserstein distance as objective:

min
ψ

max
θ

[
Epgp [φθ(fM)] − Epnn [φθ(fM)] + λEp

f̂

[(∥∥∥∇f̂φ(f̂)
∥∥∥
2
− 1
)2]]

. (5.6)

where fM denotes the set of random variables associated with the inputs at XM,
and φθ is 1-Lipschitz function.

Regarding the optimization of the θ and ψ parameters we alternate between
nLipschitz steps of maximizing L with respect to the Lipschitz function’s parameters
θ and one step of minimizing the Wasserstein distance with respect to the prior’s

88 the effect of selecting the prior for bayesian deep learning

(Bayesian) Neural Network

Gaussian Process

(Bayesian) Neural Network
with Optimized Priors

Figure 5.4: Schematic representation of the process of imposing gp priors on bnns via Wasser-
stein distance minimization.

parameters ψ. We therefore use two independent optimizers for θ and ψ. Figure 5.4
offers a high-level schematic representation of the proposed procedure. Given
samples from two stochastic processes, the Wasserstein distance is estimated by
considering the inner maximization of Equation (5.6), resulting in an optimal φ∗.
This inner optimization step is repeated for every step of the outer optimization
loop. Notice that the objective is fully sample-based. As a result, it is not necessary
to know the closed-form of the marginal density pnn(f;ψ). One may consider any
stochastic process as a target prior over functions, as long as we can draw samples
from it.

5.3.3 Prior Parameterization for Neural Networks

In the previous section, we have treated the parameters of a bnn prior pnn(f;ψ)
in a rather abstract manner. Now we explore three different parametrizations
of increasing complexity. The only two requirements needed to design a new
parametrization are (1) to be able to generate samples and (2) to compute the
log-density at any point; the latter is required to be able to draw samples from the
posterior over model parameters using most mcmc sampling methods, such as
Stochastic Gradient Hamiltonian Monte Carlo (sghmc).

5.3 imposing gaussian process priors in bayesian neural networks 89

gaussian prior. We consider a layer-wise factorization with two independent
zero-mean Gaussian distributions for weights and biases. The parameters to adjust
are ψ = {σ2lw ,σ2lb}

L
l=1, where σ2lw is the prior variance shared across all weights in

layer l, and σ2lb is the respective variance for the bias parameters. For any weight
and bias entries wl,bl ∈ wl of the l-th layer, the prior is:

p(wl) = N
(
wl; 0,σ2lw

)
and p(bl) = N

(
bl; 0,σ2lb

)

We refer to this case as the gp-induced bnn prior with Gaussian weights (gpi-
g). Although this simple approach assumes a Gaussian prior on the parame-
ters, in many cases it is sufficient to capture the target gp-based functional pri-
ors.

hierarchical prior. A more flexible family of priors for bnns considers a
hierarchical structure where the network parameters follow a conditionally Gaus-
sian distribution, and the prior variance for each layer follows an Inverse-Gamma
distribution. For the weight and bias variances we have:

σ2lw ∼ Γ−1(αlw ,βlw) and σ2lb ∼ Γ−1(αlb ,βlb)

In this case, we have ψ = {αlw ,βlw ,αlb ,βlb}
L
l=1, where αlw ,βlw ,αlb ,βlb denote

the shape and rate parameters of the Inverse-Gamma distribution for the weight
and biases correspondingly for layer l. The conditionally Gaussian prior over
the network parameters is given as in the previous section. We refer to this
parametrization as the gp-induced bnn prior with Hierarchically-distributed weights
(gpi-h).

beyond gaussians with normalizing flows. Finally, we also consider normalizing
flows (nfs) as a family of much more flexible distributions. By considering an
invertible, continuous and differentiable function t : RDl → RDl , where Dl is
the number of parameters for l-th layer, a nf is constructed as a sequence of
K of such transformations TK = {t1, . . . , tK} of a simple known distribution (e.g.
Gaussian). Sampling from such distribution is as simple as sampling from the
initial distribution and then apply the set of transformation TK. Given an initial
distribution p0(wl), by denoting p(TK(wl)) the final distribution, its log-density can

90 the effect of selecting the prior for bayesian deep learning

be analytically computed by taking into account to Jacobian of the transformations
as follows,

logp(TK(wl)) = logp0(wl) −
K∑
k=1

log
∣∣∣∣det

∂tk(wlk−1)

∂wlk−1

∣∣∣∣ , (5.7)

where wlk−1 = (tk−1 ◦ ... ◦ t2 ◦ t1)(wl) for k > 1, and wl0 = wl.

We shall refer to this class of bnn priors as the gp-induced bnn prior, parametrized
by normalizing flows (gpi-nf). We note that nfs are typically used differently in the
literature; while previous works showed how to use this distributions for better
approximation of the posterior in variational inference (D. Rezende and Mohamed,
2015; Kingma, Salimans, et al., 2016; Louizos and Welling, 2017) or for parametric
density estimation (e.g. Grover et al., 2018), or for enlarging the flexibility of a
prior for variational autoencoders (vaes) (e.g. X. Chen et al., 2017), as far as we are
aware this is the first time that nfs are used to characterize a prior distribution for
bnns.

A simple setup consists in setting the initial distribution p0(wl) to a fully-factorized
Gaussian N(wl | 0,σ2lI) and then employing a sequence of planar flows (D. Rezende
and Mohamed, 2015), each defined as

tk(wlk−1) = wlk−1 +ulkh(θ
>
lk
wlk−1 + blk), (5.8)

where ulk ∈ RDl ,θlk ∈ RDl ,blk ∈ R are trainable parameters, and h(·) = tanh(·).
The log-determinant of the Jacobian of tk is

log
∣∣∣∣det

∂tk(wlk−1)

∂wlk−1

∣∣∣∣ = log
∣∣∣1+u>lkθlkh

′(θ>lkwlk−1 + blk)
∣∣∣ . (5.9)

Thus for the l-th bnn layer, the parameters to optimize areψl = {σ2l}
⋃
{ulk ,θlk ,blk}

K
k=1.

5 .4 empirical evaluation

In the following experiments, we consider two fixed priors: (1) fixed Gaussian
(fg) prior, N(0, 1); (2) fixed hierarchical (fh) prior where the prior variance for
each layer is sampled from an Inverse-Gamma distribution, Γ−1(1, 1) (Springenberg
et al., 2016); and two gp-induced neural network (nn) priors, namely: (3) gp-
induced Gaussian (gpi-g) prior, (4) gp-induced hierarchical (gpi-h) prior. Since

5.4 empirical evaluation 91

Table 5.1: Glossary of methods used in the experimental campaign. Here, p(f) =∫
p(f |w)dp(w) denotes the induced prior over functions; Γ−1(α,β) denotes the

Inverse-Gamma distribution with shape α, and rate β; NF(TK) indicates a normal-
izing �ow distribution constructed from a sequence of K invertible transformations
T; σ̂2, and (α̂, β̂) denote the optimized parameters for the gpi-g and gpi-h priors,
respectively. κ̂ corresponds to optimized kernel parameters, while σ̂2LA shows that the
parameters are optimized on the Laplace approximation of the marginal likelihood.
References are [a] for Wenzel et al. (2020), [b] for Springenberg et al. (2016), [c] for
Lakshminarayanan et al. (2017).

Priors Inference

Name p(σ2) p(w |σ2) p(f) Reference

Fixed Gaussian (fg) prior – N(0,σ2I) → ? sghmc
Fixed hierarchical (fh) prior Γ−1(α,β) → N(0,σ2I) → ? sghmc + Gibbs [b]

Fixed Gaussian prior and TS (fg+ts) – N(0,σ2I) → ? Tempered sghmc [a]
Deep ensemble – ? ? Ensemble [c]

GP-induced Gaussian (gpi-g) prior – N(0, σ̂2I) ← GP(0, κ) sghmc
GP-induced hierarchical (gpi-h) prior Γ−1(α̂, β̂) ← N(0,σ2I) ← GP(0, κ) sghmc + Gibbs
GP-induced norm. �ow (gpi-nf) prior – NF(TK) ← GP(0, κ) sghmc

the computational cost of the gpi-nf prior is high, we don’t consider this prior for
large scale models.

We additionally compare bnns against Deep Ensemble (Lakshminarayanan et al.,
2017), arguably one of the state-of-the-art approaches for uncertainty estimation
in deep learning (Ashukha et al., 2020; Ovadia et al., 2019). This non-Bayesian
method combines solutions that maximize the predictive log-likelihood for multiple
neural networks trained with different initializations. We employ an ensemble of
5 neural networks in all experiments. Following Lakshminarayanan et al. (2017),
we use Adam optimizer (Kingma and Ba, 2015) to train the individual networks.
Furthermore, we compare the results obtained by sampling from the posterior
obtained with gp-induced priors against “tempered” posterior (Wenzel et al.,
2020) that uses the fg prior and temperature scaling; we refer to this approach as
fg+ts.

Finally, Table 6.1 summaries an overview of methods considered in the experiments.

92 the effect of selecting the prior for bayesian deep learning

−10 0 10

−4
−2
0
2
4

GP prior

−10 0 10

−4
−2
0
2
4

BNN - FG prior

−10 0 10

−4
−2
0
2
4

BNN - FH prior

−10 0 10

−4
−2
0
2
4

BNN - Fixed NF prior

−10 0 10

−4
−2
0
2
4

BNN - GPi-G prior

−10 0 10

−4
−2
0
2
4

BNN - GPi-H prior

−10 0 10

−4
−2
0
2
4

BNN - GPi-NF prior

0 200 400 600 800
0

10

20

30

Iteration

W1 optimization
(BNN - GPi-G prior)

0 200 400 600 800
0

20

40

Iteration

W1 optimization
(BNN - GPi-H prior)

0 200 400 600 800
0

10

20

Iteration

W1 optimization
(BNN - GPi-NF prior)

−10 0 10
−4

−2

0

2

4
GP posterior

−10 0 10
−4

−2

0

2

4

BNN posterior
(FG prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(FH prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(Fixed NF prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(GPi-G prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(GPi-H prior)

−10 0 10
−4

−2

0

2

4

BNN posterior
(GPi-NF prior)

Figure 5.5: Visualization of one-dimensional regression example with a three hidden-layer multi-
layer perceptron (mlp). The �rst two rows illustrate the prior sample and distributions,
whereas the last two rows show the corresponding posterior distributions. The means
and the 95% credible intervals are represented by red lines and shaded areas, respec-
tively. The middle row shows progressions of the prior optimization.

5.4.1 Visualization on a 1D regression synthetic dataset

The dataset used is built as follows: (1) we uniformly sample 64 input locations
x in the interval [−10, 10]; (2) we rearrange the locations on a defined interval

5.4 empirical evaluation 93

to generate a gap in the dataset; (3) we sample a function f from the gp prior
(l = 0.6,α = 1) computed at locations x; (4) we corrupt the targets with i.i.d.
Gaussian noise (σ2ε = 0.1). In this example, we consider a three hidden-layer mlp.
Figure 5.5 shows all the results. The first two rows illustrate the different choice of
priors. For the Wasserstein-based functional priors (gpi-g, gpi-h, gpi-nf), the third
row shows the convergence of the optimization procedure. Finally, the last two
rows represent the posterior collected by running sghmc with the corresponding
priors.

From the analysis of these plots, we clearly see the benefit of placing a prior on
the functions rather than on the parameters. First, the Wasserstein distance plots
show satisfactory convergence, with the normalizing flow prior closely matching
the gp prior. Second, as expected, the posteriors exhibit similar behavior according
to the possible solutions realizable from the prior: classic priors tend to yield
degenerate functions resulting in overconfidence in regions without data, while our
gp-based priors (gpi-g, gpi-h, gpi-nf) retain information regarding lengthscale
and amplitude.

5.4.2 Comparison for Bayesian convolutional neural
networks

We proceed with the experimental campaign on the CIFAR10 benchmark (Krizhevsky
and G. Hinton, 2009) with a number of popular cnn architectures: LeNet (LeCun,
Bottou, et al., 1998), VGG (Simonyan and Zisserman, 2014) and PreResNet (K. He
et al., 2016).

Regarding posterior inference, we implement sghmc which, after a burn-in phase
of 10,000 iterations, collects 200 samples with 10,000 simulation steps in between.
For a fair comparison, we do not use techniques such as data augmentation or
adversarial examples in any of the experiments. Regarding the target gp prior,
we place a hyper-prior LogNormal(log 8, 0.3) for variance; whereas the hyper-prior
for length-scale is LogNormal(log 512, 0.3). We use a mini-batch size of Ns = 128
and NM = 32 measurement points sampled from the empirical distribution of the
training data regarding prior optimization.

Table 5.2 summarizes the results on the CIFAR10 test set with respect to accuracy
and mean negative loglikelihood (mnll). These results demonstrate the effective-
ness of the gp-induced priors, as evidenced by the improvements in predictive

94 the effect of selecting the prior for bayesian deep learning

Table 5.2: Results for di�erent convolutional neural networks on CIFAR10. Experimental compari-
son performed in B.-H. Tran et al. (2020) by the �rst author (Ba-Hien Tran).

Architecture Method Accuracy - % (↑) NLL (↓)

LeNet Deep Ensemble 71.13 ± 0.10 0.8548 ± 0.0010

fg prior 74.65 ± 0.25 0.7482 ± 0.0025

fg+ts 74.08 ± 0.24 0.7558 ± 0.0024

gpi-g prior (ours) 75.15 ± 0.24 0.7360 ± 0.0024

fh prior 75.22 ± 0.40 0.7209 ± 0.0040

gpi-h prior (ours) 76.51 ± 0.21 0.6952 ± 0.0021

PreResNet Deep Ensemble 87.77 ± 0.03 0.3927 ± 0.0003

fg prior 85.34 ± 0.13 0.4975 ± 0.0013

fg+ts 87.70 ± 0.11 0.3956 ± 0.0011

gpi-g prior (ours) 86.86 ± 0.27 0.4286 ± 0.0027

fh prior 87.26 ± 0.09 0.4086 ± 0.0009

gpi-h prior (ours) 88.20 ± 0.07 0.3808 ± 0.0007

VGG Deep Ensemble 81.96 ± 0.33 0.7759 ± 0.0033

fg prior 81.47 ± 0.33 0.5808 ± 0.0033

fg+ts 82.25 ± 0.15 0.5398 ± 0.0015

gpi-g prior (ours) 83.34 ± 0.53 0.5176 ± 0.0053

fh prior 86.03 ± 0.20 0.4345 ± 0.0020

gpi-h prior (ours) 87.03 ± 0.07 0.4127 ± 0.0007

performance when using gpi-g and gpi-h priors compared to using fg and fh

priors, respectively. Noticeably, the gpi-h prior offers the best performance with
76.51%, 87.03%, and 88.20% predictive accuracy on LeNet, VGG, and PreResNet,
respectively. We observe that, for complex models (e.g., PreResNet and VGG), fg

prior’s results are improved by a large margin by tempering the posterior. This is in
line with the results showed by Wenzel et al., 2020. By contrast, in the case of LeNet,
the predictive performance dramatically degraded when using temperature scaling.
This is clear evidence supporting the hypothesis that a “tempered” posterior is
only useful for over-parameterized models. Instead, by using gp induced priors,
we consistently obtain the best results in most cases.

5.4.3 Optimizing priors with data

Although we advocate for functional priors over bnns, we acknowledge that a
prior of this kind is essentially heuristic. A potentially more useful prior might be
discovered by traditional means such as cross-validation (cv) or by running an
empirical Bayes procedure (a.k.a. type-II maximum likelihood), which maximizes
the marginal likelihood p(D;ψ) =

∫
p(D |w)p(w;ψ)dw w.r.t. the prior parameters.

5.4 empirical evaluation 95

−1 0 1
2.85

2.9

2.95

3

Time [log10 hours]

Test MNLL (Powerplant)

−1 0 1

4.2

4.4

4.6

Time [log10 hours]

Test RMSE (Powerplant)

Figure 5.6: A timing comparison between imposing functional prior and cross-validation with grid-
search () and using Bayesian optimization (). In the plots, each corresponds
to a run of a single con�guration, while highlights the Pareto front of the cross
validation procedure. The �gure also reports the N(0, 1) prior as , while is our
proposal of using functional prior (gpi-g).

These methods impose however significant challenges: (i) for cv, the number
of hyperparameters that needs to be optimized becomes exponentially large as
the complexity of the neural network grows and the more fine-grained grids are
considered the higher the number of the combinations of parameters to explore
becomes; (ii) for empirical Bayes, we need to compute the exact marginal likelihood,
which is always intractable for bnns, thus requiring additional approximations
like variational inference (vi) or the Laplace approximation.

We consider a simple case of a bnn with one hidden layer only; by adopting
the simple parameterization of § 5.3.3, we shall have four parameters to optimize
in total (i.e. the weight and bias variances of the hidden and the output layer).
In Figure 5.6, we demonstrate how our scheme behaves on a simple regression
task (dataset is Powerplant) in comparison with a cv strategy featuring a grid
size of 9 (for a total of 6561 configurations). To get results for the cross-validation
procedure and to massively exploit all possible parallelization opportunities, we
allocated a cloud platform with 16 workstations, for a total of 512 computing
cores and 64 maximum parallel jobs. This required a bit more than one day,
although the total CPU time approached 3 months. While grid-based routines are
widely adopted by practitioners for cross-validation, we acknowledge that there
are more efficient alternatives. To this extent, we also include Bayesian optimization
(Močkus, 1975; Snoek et al., 2012; Nogueira, 2014), a classical method for black-
box optimization which uses a Gaussian process as the surrogate function to
be maximized (or minimized). As expected, cv indeed found marginally better
configurations, but the amount of resources and time needed, even for such a small
model, is orders of magnitude larger than what required by our scheme, making

96 the effect of selecting the prior for bayesian deep learning

this procedure computationally infeasible for larger models, like cnns. To reiterate
and to put things into perspective, the Wasserstein-based functional prior could be
run on a 4-cores laptop in a reasonable time, while cv required an entire rack of
servers.

5 .5 another route for bayesian occam’s
razor

A common way to estimate hyper-parameters (i.e., prior parameters ψ) is to rely on
the Bayesian Occam’s razor (a.k.a. empirical Bayes), which dictates that the marginal
likelihood pψ(y) should be optimized with respect to ψ. There are countless
examples where such simple procedure succeeds in practice (see, e.g., Rasmussen
and Williams, 2005; Immer, Bauer, et al., 2021). We note however that marginal
likelihood maximization for a large number of hyper-parameters can suffer from
overfitting (Rasmussen and Williams, 2005; Ober et al., 2021). Nevertheless, we
do not expect significant overfitting issues in our setting, as we focus on data
that are characterized by a high level of structure (i.e. images). As we have seen,
regular choices for the prior completely fail to capture the properties of such
highly-structured outputs.

The marginal likelihood is obtained by marginalizing out the outputs f and the
model parameters w,

pψ(y) =

∫
p(y | f)pψ(f)df , (5.10)

where p(y | f) and pψ(f) are the likelihood and the prior on functions, respectively.
Unfortunately, in our context it is impossible to carry out this optimization due to
the intractability of Equation (5.10).

Classic results in the statistics literature draw parallels between maximum likeli-
hood estimation (mle) and kl minimization (Akaike, 1973),

arg max
ψ

∫
π(y) logpψ(y)dy = arg min

ψ

∫
π(y) log

π(y)

pψ(y)
dy︸ ︷︷ ︸

KL[π(y) ‖ pψ(y)]

, (5.11)

where π(y) is the true data distribution. This equivalence provides us with an
interesting insight on an alternative view of marginal likelihood optimization as

5.5 another route for bayesian occam’s razor 97

ψ 0

1.0
0.5

0.0
−0.5

−1.0
1 2 3 4 5

−800

−600

−400

−200

−0.10 −0.05 0.00 0.05 0.10
ψ0

0.6

0.8

1.0

1.2

1.4

ψ
1

−3.6

−3.3

−3.0

−2.7

−2.4

−2.1

−1.8

−1.5

−1.2

Marginal likelihood for model selection

ψ1

max logpψ(y)

−1.0

ψ 0

5
10
15
20

−0.5 0.0 0.5 1.0
ψ0

1

2

3

4

5

ψ
1

minW2(π,pψ)

0

3

6

9

12

15

18

21

24
Wasserstein distance for model selection

1.0
0.5

0.0
−0.5

−1.0
1 2 3 4 5ψ1

Figure 5.7: Di�erent loss functions formodel selection share the same optimum, for linearmodels.

minimization of the divergence between the true data distribution and the marginal
pψ(y).

This alternative view allows one to obtain a viable optimization strategy that relies
on an empirical estimate of the data distribution π̃(y). This presents additional
challenges however, as the empirical evaluation and optimization of kl divergences
remains a well-known challenging problem (Flam-Shepherd et al., 2017). Although
it is possible to evaluate kl (or any other f-divergence) empirically by leveraging
results from convex analysis (Nguyen et al., 2010), we have opted to substitute kl

with an alternative metric that is more convenient from a computational perspective.
We thus employ the Wasserstein distance as a surrogate for kl divergence, so that
we avoid the challenges of empirical kl estimation.

To summarize: (1) we would like to do prior selection by carrying out type-II
mle; (2) the mle objective is analytically intractable but the connection with kl

98 the effect of selecting the prior for bayesian deep learning

minimization allows us to (3) swap the divergence with the Wasserstein distance,
yielding a practical framework for choosing priors.

5.5.1 The distributionally-sliced Wasserstein distance

Given the two probability measures π and pψ, both defined on RD for simplicity,
the p-Wasserstein distance between π and pψ is given by

Wpp(π,pψ) = inf
γ∈Γ(π,pψ)

∫
‖y−y′‖pγ(y,y′)dydy′ , (5.12)

where Γ(π,pψ) is the set of all possible distributions γ(y,y′) such that the marginals
are π(y) and pψ(y′) (Villani, 2008). While usually analytically unavailable or compu-
tationally intractable, for D = 1 the distance has a simple closed form solution, that
can be easily estimated using samples only (Kolouri et al., 2019).

The distributionally-sliced Wasserstein distance (dswd) takes advantage of this re-
sult by projecting the estimation of distances for high-dimensional distributions into
simpler estimation of multiple distances in one dimension. The projection is done
using the Radon transform R, an operator that maps a generic density function ϕ de-
fined in RD to the set of its integrals over hyperplanes in RD,

Rϕ(t,θ) :=
∫
ϕ(r)δ(t− r>θ)dr , ∀t ∈ R , ∀θ ∈ SD−1 , (5.13)

where SD−1 is the unit sphere in RD and δ(·) is the Dirac delta (Helgason, 2010).
Using the Radon transform, for a given direction (or slice) θ we can project the
two densities π and pψ into one dimension and we can solve the optimal transport
problem in this projected space. Furthermore, to avoid unnecessary computations,
instead of considering all possible directions in SD−1, distributionally-sliced Wasser-
stein distance (dswd) proposes to find the optimal probability measure of slices
σ(θ) on the unit sphere SD−1,

DSWp(π,pψ) := sup
σ∈MC

(
Eσ(θ)W

p
p

(
Rπ(t,θ),Rpψ(t,θ)

))1/p
, (5.14)

where, for C > 0, MC is the set of probability measures σ such that Eθ,θ′∼σ
[
θ>θ′

]
6

C (a constraint that aims to avoid directions to lie in only one small area). The

5.5 another route for bayesian occam’s razor 99

direct computation of DSWp in Equation (5.14) is still challenging but admits an
equivalent dual form,

sup
h∈H

{(
Eσ̄(θ)

[
Wpp

(
Rπ(t,h(θ)),Rpψ(t,h(θ))

)])1/p
− λCEθ,θ′∼σ̄

[∣∣h(θ)>h(θ′)
∣∣
]}

+ λCC ,

(5.15)

where σ̄ is a uniform distribution in SD−1, H is the set of functions h : SD−1 → SD−1

and λC is a regularization hyper-parameter. The formulation in Equation (5.15) is
obtained by employing the Lagrangian duality theorem and by reparameterizing
σ(θ) as push-forward transformation of a uniform measure in SD−1 via h. Now,
by parameterizing h using a deep neural network with parameters φ, defined as
hφ, Equation (5.15) becomes an optimization problem with respect to the network
parameters. The final step is to approximate the analytically intractable expectations
with Monte Carlo integration,

max
φ

{[
1
K

K∑
i=1

[
Wpp

(
Rπ(t,hφ(θi)),Rpψ(t,hφ(θi))

)]
]1/p
−
λC
K2

K∑
i,j=1

|hφ(θi)
>hφ(θj)|

}
+ λCC ,

with θi ∼ σ̄(θ). Finally, we can use stochastic gradient methods to update φ and
then use the resulting optima for the estimation of the original distance.

5.5.2 Matching the marginal distribution to the data distribution via
Wasserstein distance minimization

We aim at learning the prior parameters by optimizing the marginal pψ(y) obtained
after integrating out the weights from the joint pψ(y,w). The connection with
empirical Bayes and kl minimization suggests that we can find the optimal ψ?

by minimizing the kl between the true data distribution π(y) and the marginal
pψ(y) . However, matching these two distributions is non-trivial due to their high
dimensionality and the unavailability of their densities. To overcome this problem,
we propose a sample-based approach using the distributional sliced 2-Wasserstein
distance (Equation (5.15)) as objective:

ψ? = arg min
ψ

[
DSW2

(
pψ(y),π(y)

)]
. (5.16)

This objective function is flexible and does not require the closed-form of either
pψ(y) or π(y). The only requirement is that we can draw samples from these two

100 the effect of selecting the prior for bayesian deep learning

distributions. Note that we can sample from pψ(y), by first computing f after
sampling from pψ(w) and then perturbing the generated f by sampling from
the likelihood p(y | f). In the next section, we will take a challenging application
(unsupervised learning with an auto-encoding architecture) where this formulation
of the prior learning problem will be implemented.

5 .6 model selection for bayesian
autoencoders

The problem of learning useful representations of data that facilitate the solution
of downstream tasks such as clustering, generative modeling and classification,
is at the crux of the success of many machine learning applications (see, e.g.,
Bengio, Courville, et al., 2013, and references therein). From a plethora of poten-
tial solutions to this problem, unsupervised approaches based on autoencoders
(Cottrell et al., 1989) are particularly appealing as, by definition, they do not
require label information and have proved effective in tasks such as dimension-
ality reduction and information retrieval (G. E. Hinton and R. R. Salakhutdinov,
2006).

Autoencoders are neural network models composed of two parts, usually referred
to as the encoder and the decoder. The encoder maps each input yi to a set of lower-
dimensional latent variables zi. The decoder maps the latent variables zi back to
the observations yi. The bottleneck introduced by the low-dimensional latent space
is what characterizes the compression and representation learning capabilities of
autoencoders. It is not surprising that these models have connections with principal
component analysis, factor analysis and density networks (D. J. MacKay and Gibbs,
1999), and latent variable models (Lawrence, 2005).

In applications where quantification of uncertainty is a primary requirement or
where data is scarce, it is important to carry out a Bayesian treatment of these
models by specifying a prior distribution over their parameters, i.e., the weights
of the encoder/decoder. However, estimating the posterior distribution over the
parameters of these models, which we refer to as Bayesian auto-encoders (baes), is
generally intractable and requires approximations. Furthermore, the need to specify
priors for a large number of parameters, coupled with the fact that autoencoders
are not generative models, has motivated the development of vaes as an alternative
that can overcome these limitations (Kingma and Welling, 2014). Indeed, vaes

5.6 model selection for bayesian autoencoders 101

have found tremendous success and have become one of the preferred methods in
modern machine-learning applications (see, e.g., Kingma and Welling, 2019, and
references therein).

To recap, three potential limitations of baes hinder their widespread applicability
in order to achieve a similar or superior adoption to their variational counterpart:
(i) lack of generative modeling capabilities; (ii) intractability of inference and
(iii) difficulty of setting sensible priors over their parameters. In this work we
revisit baes and deal with these limitations in a principled way. In particular, we
address the first limitation in (i) by employing density estimation in the latent
space. Furthermore, we deal with the second limitation in (ii) by exploiting recent
advances in mcmc and, in particular, sghmc (T. Chen et al., 2014). Finally, we
believe that the third limitation (iii), which we refer to as the difficulty of carrying
out model selection, requires a more detailed treatment because choosing sensible
priors for Bayesian neural networks is an extremely difficult problem, and this is
the main focus of this work.

5.6.1 Formalization of Bayesian Autoencoders

An auto-encoder (ae) is a neural network parameterized by a set of parameters w,
which transforms an unlabelled dataset, y def

= {yn}
N
n=1, into a set of reconstructions

ŷ
def
= {fn}

N
n=1, with yn, fn ∈ RD. An ae is composed of two components: (1) an

encoder fenc which maps an input sample yn to a latent code zn ∈ RK,K� D; and
(2) a decoder fdec which maps the latent code to a reconstructed datapoint fn. In
short, f = f(x;w) = (fdec ◦ fenc)(x), where we denote w := {wenc,wdec} the union of
parameters of the encoder and decoder. The Bayesian treatment of aes dictates
that a prior distribution p(w) is placed over all parameters of fenc and fdec, and
that this prior knowledge is transformed into a posterior distribution by means of
Bayes’ theorem,

p(w |y) =
p(y |w)p(w)

p(y)
, (5.17)

where p(y |w) is the conditional likelihood that factorizes as p(y |w) =
∏N
n=1 p(yn |w).

Note that each conditional likelihood term is determined by the model architecture,
the choice of w, and the input xn, but in order to keep the notation uncluttered,
we write them simply as p(yn |w).

102 the effect of selecting the prior for bayesian deep learning

Ouput with Output with
Input N(0, 1) Prior Optimized Prior

MNIST

OOD

CELEBA

OOD

Figure 5.8: Realizations sampled from di�erent priors given an input image. ood stands for
out-of-distribution.

likelihood model. In the Bayesian scheme, the prior and likelihood are both
modeling choices. Before giving an in-depth treatment on priors for baes in the
next section, we briefly discuss the likelihood, which can be chosen according to
the type of data. In our experiments, we mainly investigate image datasets, where
pixel values are normalized in the [0, 1] range. Therefore, we rely on the continuous
Bernoulli distribution (Loaiza-Ganem and Cunningham, 2019):

p(yn |w) =

D∏
i=1

K(λi)λ
yn,i
i (1− λi)1−yn,i := p(yn | fn), (5.18)

where K(λi) is a properly defined normalization constant (Loaiza-Ganem and
Cunningham, 2019) and λi = fi(xn;w) = fn,i ∈ [0, 1] is the i-th output from the bae

given the input xn. We note that, as fn depends deterministically on w, we will
use the above expression to refer to both p(yn |w) and p(yn | fn), where the latter
term will be of crucial importance when we define the functional prior induced
over the reconstruction.

5.6 model selection for bayesian autoencoders 103

5.6.2 The pathology of standard priors for baes and how to �x
it

The choice of the prior is important for the Bayesian treatment of any model as it
characterizes the hypothesis space (D. J. C. MacKay, 1992; Murray and Ghahramani,
2005). Specifically for baes, one should note that placing a prior on the parameters
of the encoder and decoder has an implicit effect on the prior over the network
output (i.e. the reconstruction). In addition, the highly nonlinear nature of these
models implies that interpreting the effect of the architecture is theoretically in-
tractable and practically challenging. Several works argue that a vague prior such
as N(0, 1) is good enough for some tasks and models, like classification with cnns
(A. G. Wilson and Izmailov, 2020b).

However, for baes this is not enough, as illustrated in Figure 5.8. The realizations
obtained by sampling weights/biases from a N(0, 1) prior indicate that this choice
provides poor inductive bias. Meanwhile, by encoding better beliefs via an opti-
mized prior, the samples can capture main characteristics intrinsic to the data, even
when the model is fed with out-of-distribution inputs.

To overcome this problem, we propose a sample-based approach using the distribu-
tional sliced 2-Wasserstein distance in Equation (5.15) as objective:

ψ? = arg min
ψ

[
DSW2

(
pψ(y),π(y)

)]
. (5.19)

We will refer to the original paper (B. Tran et al., 2021) for the experimental
evaluations, as mainly perfomed by the first author. As a summary, the experiments
include a demonstration of the effect of our model selection strategy, by considering
scenarios in the small-data regime where the prior might not be necessarily tuned
on the training set. In this way we are able to impose inductive bias beyond what is
available in the training data. The bae with optimized priors performs better than
the competing methods (vaes and the bae with standard prior) in the inference
task for all training sizes, with slightly diminishing effect for larger sets, as expected.
Also, this pattern is true for different latent dimensions, where regardless of the
dimensionality of the latent space, baes with optimized priors deliver higher
performances.

104 the effect of selecting the prior for bayesian deep learning

5 .7 concluding remarks

Being able to perform Bayesian inference of neural networks represents a much
sought-after objective to equip extremely flexible models with the capability of
expressing uncertainty in a sound way (Neal, 1996). Recent advances in mcmc

sampling enabling for efficient parameter space exploration, combined with mini-
batching (T. Chen et al., 2014), have turned this long-standing challenge into
a concrete possibility. However despite these advances, there have been only
few success stories involving the use of Bayesian inference techniques for neural
networks (Osawa et al., 2019; R. Zhang et al., 2020; Izmailov et al., 2021). We attribute
this to the difficulties in specifying sensible priors for thousands/millions of
parameters, while being able to understand and control the effect of these choices in
the behavior of their output functions (Duvenaud et al., 2014).

In this chapter we analyzed the problem of selection good priors from two dif-
ferent perspectives: functional priors with target stochastic processes and em-
pirical Bayes with the Wasserstein distance as a proxy to the marginal likeli-
hood.

The difficulty in reasoning about functional priors for neural networks made us
consider, for the first work, the possibility to enforce these by minimizing their
distance to tractable functional priors, effectively optimizing the priors over model
parameters so as to reflect these functional specifications. We chose to consider
Gaussian processes, as they are a natural and popular choice to construct functional
priors, whereby the characteristics of prior functions are determined by the form
and parameters of Gaussian process kernel/covariance functions. While previous
works attempted this by using the kl divergence between the functional priors
(Flam-Shepherd et al., 2017; Flam-Shepherd et al., 2018), the objective proves difficult
to work with due to the need to estimate an entropy term based on samples, which
is notoriously difficult. We proposed a novel objective based on the Wasserstein
distance, and we showed that this objective offers a tractable and stable way to
optimize the priors over model parameters. The attractive property of this objective
is that it does not require a closed form for the target functional prior, as long as it
is possible to obtain samples from it.

For the second work, we have reconsidered as a challenging benchmark the Bayesian
treatment of autoencoders (ae) in light of recent advances in Bayesian neural net-
works. We have found that the main limitation of baes lies in the difficulty of

5.7 concluding remarks 105

specifying meaningful priors in the context of highly-structured data, which is ubiq-
uitous in modern machine learning applications. Consequently, we have proposed
to specify priors over the autoencoder weights by means of a novel optimization
of prior hyper-parameters. Inspired by connections with marginal likelihood op-
timization, we derived a practical and efficient optimization framework, based
on the minimization of the distributional sliced-Wasserstein distance between the
distribution induced by the bae and the data generating distribution. The resulting
hyper-parameter optimization strategy leads to a novel way to perform model
selection for baes. Note that, even if theoretically justified and empirically verified
with extensive experimentation, our proposal for model selection still remains a
proxy to the true marginal likelihood maximization. The dswd formulation has
nice properties of asymptotic convergence and computational tractability, but it
may represent only one of the possible solutions. At the same time, we stress that
the current literature does not cover this problem of baes at all, and we believe
our approach is a considerable step towards the development of practical Bayesian
methods for representation learning in modern applications characterized by large-
scale structured data (including tabular and graph data, which are currently not
covered).

6
REV I S I T I NG THE APPROX IMAT IONS
FOR SCALABLE (DEEP) GAUSS I AN
PROCESSES

Variational inference techniques based on inducing variables provide an elegant
framework for scalable posterior estimation in Gaussian process (gp) models. Be-
sides enabling scalability, one of their main advantages over sparse approximations
using direct marginal likelihood maximization is that they provide a robust alter-
native for point estimation of the inducing inputs, i.e. the location of the inducing
variables. In this work we challenge the common wisdom that optimizing the induc-
ing inputs in the variational framework yields optimal performance. We show that,
by revisiting old model approximations such as the fully-independent training con-
ditionals endowed with powerful sampling-based inference methods, treating both
inducing locations and gp hyper-parameters in a Bayesian way can improve per-
formance significantly. Based on stochastic gradient Hamiltonian Monte Carlo, we
develop a fully Bayesian approach to scalable gp and deep gp models, and demon-
strate its state-of-the-art performance through an extensive experimental campaign
across several regression and classification problems.

6 .1 sparse gaussian processes

Bayesian kernel machines based on gps combine the modeling flexibility of kernel
methods with the ability to carry out sound quantification of uncertainty (Ras-
mussen and Williams, 2005). Modeling and inference in gp models have evolved

107

108 revisiting the approximations for scalable (deep) gaussian processes

Table 6.1: A summary of previous works on inference methods for gps. θ,u,Z refer to the gp
hyper-parameters, inducing variables and inducing inputs, respectively. (7) indicates
that variables are optimized.

Inference

Model θ u Z Reference

mcmc-gp mcmc - - Neal (1997) and Barber and Williams (1997)
() svgp 7 vb 7 Hensman, A. Matthews, et al. (2015)
() fitc-svgp 7 vb (heterosk.) 7 Titsias (2009b)
() sghmc-dgp 7 mcmc 7 Havasi et al. (2018)
() ipvi-dgp 7 ip 7 H. Yu et al. (2019)
() mcmc-svgp mcmc mcmc 7 Hensman, A. G. Matthews, et al. (2015)

() bsgp mcmc mcmc mcmc This work

considerably over the last few years with key contributions in the direction of scala-
bility to virtually any number of datapoints and generality within automatic differ-
entiation frameworks (A. G. Matthews et al., 2017; Krauth et al., 2017). This has been
possible thanks to the combination of stochastic variational inference techniques
with representations based on inducing variables (Titsias, 2009b; Lazaro-Gredilla
and Figueiras-Vidal, 2009; Hensman, Fusi, et al., 2013), random features (Rahimi
and Recht, 2008; Cutajar et al., 2017; Gal and Ghahramani, 2016b), and structured
approximations (A. Wilson and Nickisch, 2015; A. G. Wilson, Hu, R. R. Salakhutdi-
nov, et al., 2016). These advancements have now made gps attractive to a variety of
applications and likelihoods (A. G. Matthews et al., 2017; Wilk et al., 2017; Bonilla
et al., 2019).

In this work, we focus on the variationally sparse gp framework originally formu-
lated by Titsias (2009b) and later developed by Hensman, Fusi, et al. (2013) and
Hensman, A. Matthews, et al. (2015) to scale up to large datasets via stochastic
optimization. In these formulations, the gp prior is augmented with inducing vari-
ables (drawn from the same prior) and their posterior is estimated via variational
inference. In contrast, the location of the inducing variables, which we refer to as
the inducing inputs, are simply optimized along with covariance hyper-parameters.
In line with earlier evidence that Bayesian treatments of gps are beneficial (Neal,
1997; Barber and Williams, 1997; Murray and R. P. Adams, 2010; Filippone and
Girolami, 2014), posterior inference of the inducing variables jointly with covari-
ance hyper-parameters has been shown to improve performance (Hensman, A. G.
Matthews, et al., 2015).

Despite these significant insights with regards to the benefits of full Bayesian
inference over latent variables in gp models, the common practice is to optimize
the inducing inputs, even in very recent gp developments (Havasi et al., 2018; Shi

6.1 sparse gaussian processes 109

zi

RBF kernel k(x, zi)
with �xed λ,σ

zi

Distribution on k(x, zi)
when sampling {λ,σ}

zi

Distribution on k(x, zi)
when sampling {Z}

zi

Distribution on k(x, zi)
when sampling {Z, λ,σ}

Figure 6.1: Representation of the induced distribution on the covariance function at location x
when placing priors on di�erent set of parameters.

et al., 2020; Giraldo and Álvarez, 2019). In fact, the original work of Titsias (2009b)
advocates for a treatment of the inducing inputs as variational parameters to avoid
overfitting. Furthermore, later work concludes that point estimation of the inducing
inputs through optimization of the variational objective is an ‘optimal’ treatment
(Hensman, A. G. Matthews, et al., 2015, §3). As we will see in § 6.2.1, the justification
for inducing-input optimization in Hensman, A. G. Matthews, et al. (2015) relies on
being able to optimize both the prior and the posterior, and therefore, contradicts
the fundamental principles of Bayesian inference. We summarize previous works
on inference methods for gps in Table 6.1, which we will use for comparison in our
experiments.

Thus, we revisit the role of the inducing inputs in gp models and their treatment
as variational parameters or even hyper-parameters. Given their potential high
dimensionality and that the typical number of inducing variables goes beyond
hundreds/thousands (Shi et al., 2020), we argue that they should be treated simply
as model variables and, therefore, having priors and carrying out efficient posterior
inference over them is an important—although challenging—problem. An illus-
tration of the richer modeling capabilities offered by treating inducing inputs in a
Bayesian fashion is given in Figure 6.1.

110 revisiting the approximations for scalable (deep) gaussian processes

contributions. Firstly, we challenge the common wisdom that optimizing the
inducing inputs in the variational framework yields optimal performance. We
show that, by revisiting old model approximations such as the fully independent
training conditionals (fitc; see, e.g., Quiñonero-Candela and Rasmussen, 2005)
endowed with powerful sampling-based inference methods, treating both inducing
locations and gp hyper-parameters in a Bayesian way can improve performance
significantly. We describe the conceptual justification and the mathematical details
of our general formulation in § 6.2 and § 6.3. We then demonstrate that our
approach yields state-of-the-art performance across a wide range of competitive
benchmark methods, large-scale datasets and a variety of gp and deep gp models
in § 6.4.

6 .2 bayesian sparse gaussian processes

We are interested in supervised learning problems with N input-label training
pairs {X,y} def

= {(xi,yi)}Ni=1 , where we consider a conditional likelihood p(y | f) and
f is drawn from a zero-mean gp prior with covariance function k(x, x′;θ) with
hyper-parameters θ. Thus, we have that p(f) = N(0,Kxx|θ), where Kxx|θ is the
N×N covariance matrix obtained by evaluating k(xi, xj;θ) over all input pairs
{xi, xj}. Inference in these types of models generally involves the costly O(N3)

operations to compute the inverse and log-determinant of the covariance matrix
Kxx|θ.

full joint distribution of sparse approximations. Sparse gps are a family of
approximate models that address the scalability issue by introducing a set of
M inducing variables u = (u1, . . . ,uM) at corresponding inducing inputs Z =

{z1, . . . , zM} such that ui = f(zi) (see, e.g., Quiñonero-Candela and Rasmussen,
2005). These inducing variables are assumed to be drawn from the same gp as the
original process, yielding the joint prior p(f,u) = p(u)p(f|u). We consider a general
formulation where we place priors pψ(θ) over covariance hyper-parameters and
pξ(Z) over inducing inputs with hyper-parameters ψ,ξ,

p(θ,Z,u, f,y |X) = pψ(θ)pξ(Z)p(u |Z,θ)p(f |u,X,Z,θ)p(y | f), (6.1)

where p(u |Z,θ) = N(0,Kzz|θ), p(f |u,X,Z,θ) = N(Kxz|θK
−1
zz|θu,Kxx|θ−Kxz|θK

−1
zz|θK

>
xz|θ).

The matrices Kzz|θ,Kxz|θ denote the covariance matrices computed between points

6.2 bayesian sparse gaussian processes 111

in Z and {X,Z}, respectively. We assume a factorized likelihood p(y | f) =
∏N
n=1 p(yn | fn)

and make no assumptions about the other distributions. In our formulation, ap-
proaches that do not consider priors over covariance hyper-parameters or inducing
inputs correspond to improper uniform priors in Equation (6.1).

6.2.1 On scalable inference frameworks for GP models

Let Ψ def
= {u,Z,θ} be the variables whose posterior we wish to infer. Our main

object of interest is the log joint marginal obtained by integrating out the latent
variables f in Equation (6.1), i.e., logp(y,Ψ |X) = log

∫
f p(y | f)p(f |Ψ,X)df+ logp(Ψ).

In particular, we are interested in discussing approximations to this that decompose
over observations, allowing the use of stochastic optimization techniques to scale
up to large datasets. In the literature of sparse gps (see, e.g., Bauer et al., 2016;
T. D. Bui et al., 2017), two of the most influential methods for carrying out inference
on such models are based on the variational free energy (vfe) framework (Titsias,
2009b) and the fully independent training conditional (fitc) framework (E. Snelson
and Ghahramani, 2006).

vfe approximations. The key innovation in Titsias (2009b) is the definition of
the approximate posterior q(f,u) def

= q(u)p(f |Ψ,X), where q(u) is the variational
posterior, which yields the evidence lower bound (elbo)

p(y |X,Z,θ) > −KL [q(u) ‖ p(u |Z,θ)] + Eq(f,u) logp(y | f)
def
= Lelbo . (6.2)

We note that this approach does not incorporate priors over inducing inputs or
hyper-parameters. Inference involves constraining q(u) to a parametric form and
finding its parameters to optimize the elbo. Titsias (2009b) correctly argues that in
the regression setting the variational approach to inducing variable approximations
should be more robust to overfitting than a direct marginal likelihood maximization
approach of traditional approximate models such as those described in Quiñonero-
Candela and Rasmussen (2005). Indeed, if inducing inputs Z are optimized then
the resulting elbo provides an additional regularization term (see Titsias, 2009b,
§3 for details). However, as we shall see later, the benefits of being Bayesian about
the inducing inputs and estimating their posterior distribution can be superior to
those obtained by this regularization.

Restricting the form of q(u) is suboptimal, and Hensman, A. G. Matthews, et al.
(2015) proposes to sample from the optimal posterior approximation instead. By

112 revisiting the approximations for scalable (deep) gaussian processes

applying Jensen’s inequality to bound the log joint marginal we obtain the following
formulation,

logp(y,Ψ |X) > Ep(f |Ψ,X) logp(y | f) + logp(Ψ) def
= log p̃vfe(y,Ψ |X). (6.3)

This is the same expression derived in Hensman, A. G. Matthews, et al. (2015),
although following a different derivation showing that p̃vfe indeed yields the opti-
mal distribution under the vfe framework of Equation (6.2). However, Hensman,
A. G. Matthews, et al., 2015 argues that a Bayesian treatment of inducing inputs is
unnecessary and concludes that the optimal prior is p(Z) = q(Z) = δ(Z− Ẑ), where
δ(·) is Dirac’s delta function and Ẑ is the set of inducing inputs that maximizes
the elbo (Hensman, A. G. Matthews, et al., 2015, §3). We find such a justification
flawed as it contradicts the fundamental principles of Bayesian inference. Indeed,
the derivation in (Hensman, A. G. Matthews, et al., 2015) relies on minimizing both
sides of the KL term in Equation (6.2), allowing for a ‘free-form’ optimization of
the prior, which ultimately negates the necessity of all prior choices and defeats
the purpose of a Bayesian treatment.

fitc approximations. As an alternative, we can approximate the log joint of
Equation (6.1) by imposing independence in the conditional distribution (see
Quiñonero-Candela and Rasmussen, 2005, for details),

p(f |Ψ,X) = N
(
Kxz|θK

−1
zz|θu, diag

[
Kxx|θ −Kxz|θK

−1
zz|θK

>
xz|θ

])
(6.4)

which implies,

logp(y,Ψ |X) ≈
∑N

n=1
log Ep(fn |Ψ,X) [p(yn | fn)] + logp(Ψ)︸ ︷︷ ︸

def
=log p̃fitc(y,Ψ |X)

. (6.5)

This same formulation of the fitc objective can be also been obtain by modifying
the likelihood or the prior rather then the conditional distribution (E. Snelson and
Ghahramani, 2006; Titsias, 2009b; Bauer et al., 2016).

We now see that, when considering i.i.d. conditional likelihoods, both approxima-
tions, log p̃VFE and log p̃FITC , yield objectives that decompose on the observations,
enabling scalable inference methods. In particular, we aim to sample from the
posterior over all the latent variables using scalable approaches such as Stochastic
Gradient Hamiltonian Monte Carlo (sghmc) (T. Chen et al., 2014). The main ques-

6.2 bayesian sparse gaussian processes 113

tion is what approach should be preferred and how they relate to their optimization
counterparts.

6.2.2 Sampling with VFE or FITC?

We will show in § 6.4 that our proposal that samples from the posterior according
to Equation (6.5) consistently outperforms that in Equation (6.3). To understand
why the fitc objective makes sense we need to go back to the original work of
Titsias (2009b) and Titsias (2009a) and the seminal work of Quiñonero-Candela and
Rasmussen (2005). For this, we will consider the regression case but it can be easily
generalized to classification. Indeed, Titsias, 2009a shows that, in the standard
regression case with homoskedastic observation noise, vfe yields exactly the same
predictive posterior as the projected process (pp) approximation (Seeger et al., 2003),
which is referred to as the deterministic training conditional (dtc) approximation.
The optimal variational posterior distribution is given by:

q∗(u |θ) = N(u;m,S), (6.6)

m = σ−2Kzz
(
Kzz + σ

−2KzxKxz
)−1
Kzxy

S = Kzz
(
Kzz + σ

−2KzxKxz
)−1
Kzz

where σ2 is the observation-noise variance. It is easy to show that, given a Gaussian
posterior over the inducing variables with mean and covariance m and S, the
posterior predictive distribution at test point x? is a Gaussian with mean and
variance

µy(x?) = κ(x?,Z)K−1
zzm (6.7)

σ2y(x?) = κ(x?, x?) − κ(x?,Z)K−1
zz κ(Z, x?) + κ(x?,Z)K−1

zz SK
−1
zz κ(Z, x?).

Thus, replacing Equation (6.6) in Equation (6.7) we obtain:

µy(x?) = σ
−2κ(x?,Z)ΣKzxy (6.8)

σ2y(x?) = κ(x?, x?) − κ(x?,Z)K−1
zz κ(Z, x?) + κ(x?,Z)

(
Kzz + σ

−2KzxKxz
)−1

κ(Z, x?),

which indeed corresponds to the predictive distribution of the dtc/pp approxima-
tion. Despite this equivalence, as highlighted in Titsias, 2009b, the main difference
is that the vfe framework provides a more robust approach to hyper-parameter
estimation as the resulting elbo corresponds to a regularized marginal likelihood

114 revisiting the approximations for scalable (deep) gaussian processes

of the dtc approach and hence should be more robust to overfitting. Nevertheless,
the dtc/pp, and consequently the vfe, predictive distribution has been shown to
be less accurate than the fitc approximation (Titsias, 2009b; Quiñonero-Candela
and Rasmussen, 2005; E. L. Snelson, 2007). Effectively, as described in Quiñonero-
Candela and Rasmussen, 2005, the vfe’s solution (which is the same as dtc’s)
can be understood as considering a deterministic conditional prior p(f |u), i.e. a
conditional prior with zero variance.

The fitc approximation considers the following approximate conditional prior:

p(f |u) ≈ N
(
f;KxzK

−1
zz u, diag

(
Kxx −KxzK

−1
zzKzx

))

=

N∏
n=1

p(fn |u) =

N∏
n=1

N(fn; µ̃n, σ̃2n), with

µ̃n = κ(xn,Z)K−1
zz u (6.9)

σ̃2n = κ(xn, xn) − κ(xn,Z)K−1
zz κ(Z, xn). (6.10)

As we shall see later, is this factorization assumption in the conditional prior that
will yield a decomposable objective amenable to stochastic gradient techniques. For
now, consider the posterior predictive distribution under the fitc approximation1

µfitc(x?) = κ(x?,Z)ΣfitcKzxΛ
−1y

σ2
fitc

(x?) = κ(x?, x?) − κ(x?,Z)K−1
zz κ(Z, x?) + κ(x?,Z)Σfitcκ(Z, x?), where

Λ = diag(Kxx −KxzK
−1
zzKzx + σ

2I) and

Σfitc = (Kzz +KzxΛ
−1Kxz)

−1.

(6.11)

We now see why fitc’s predictive distribution above is more accurate than vfe’s
in Equation (6.8), as we can obtain fitc’s by replacing σ2I in vfe’s solution
with diag(Kxx −KxzK

−1
zzKzx) + σ

2I. Effectively, as described in Quiñonero-Candela
and Rasmussen, 2005, vfe’s solution (which is the same as dtc’s) can be un-
derstood as considering a deterministic conditional prior p(f |u), i.e. with zero
variance.

6.2.3 Stochastic Updates Using the FITC Approximation

Now we can understand why the log of the expectation can provide more accurate
results than the expectation of the log. Basically in the former we are using the fitc

1 Which is, in fact, the same as in the sparse Gaussian process (spgp) framework of E. L. Snelson
(2007).

6.2 bayesian sparse gaussian processes 115

approximation while in the later we are using the vfe/dtc/pp approximation.
It is easy to show that when using the fitc approximation, one can obtain a
decomposable objective function that can be implemented at large scale using
stochastic gradient techniques. Here we focus only on the expectation of the
conditional likelihood (which is the crucial term) and in the regression setting for
simplicity but the extension to the classification case (e.g. using quadrature) is
straightforward.

logp(y |u,θ,Z) = log
∫
f
p(f |u,θ,Z)p(y | f)df

= log
∫
f1,...,fN

N∏
n=1

p(yn | fn)p(fn |u,θ,Z)df

= log
N∏
n=1

∫
fn

N(yn | fn,σ2)N(fn | µ̃n, σ̃2n)dfn

= log
N∏
n=1

p(yn |u,θ,Z)

=

N∑
n=1

logN(yn | µ̃n, σ̃2n + σ2), (6.12)

where µ̃n, σ̃2n are given by Equation (6.9) and Equation (6.10). Similar results can
be derived for binary classification with Bernoulli likelihood and response function
λ(f):

logp(y |uθ) = log Ep(f |u,θ) [p(y | f)] = log
N∏
n=1

∫
fn

N(fn; µ̃n, σ̃2n)Bern(yn; λ(fn))dfn.

(6.13)

When the response function is the cdf of a standard Normal distribution, i.e.,
λ(fn) = Φ(fn)

def
=
∫fn
−∞N(fn; 0, 1)dfn, which is also known as the probit regression

model, the expectation above can be computed analytically to obtain:

logp(y,u |θ) =

N∑
n=1

log Bern(yn;Φ(µ̃n/
√
1+ σ̃2n)). (6.14)

For other response functions the expectation in Equation (6.13) can be estimated
using quadrature.

116 revisiting the approximations for scalable (deep) gaussian processes

6.2.4 An heteroskedastic version of the Gaussian
likelihood

As Titsias (2009a) discussed in Appendix C, the fitc approximation corresponds
to a gp regression with heteroskedastic noise variance

p(y|f) = N(y|f,σ2I+ diag[Kxx −KxzKzzKzx]). (6.15)

If we apply this augmented likelihood to the variational expectations term, we
get

Eq(f) logp(y|f,σ2,θ) = −
1
2

n∑
j=1

(
log 2π(σ2 + σ̃2j) +

(yj − µ̃j)
2 + σ̃2j

σ2 + σ̃2j

)
. (6.16)

Since Titsias, 2009a considers this vfe formulation, we also compare with it.

6.2.5 Concluding Remarks

We conclude this section by placing our analysis in the context of ‘exact’ Bayesian
inference techniques that consider priors over the inducing inputs. As mentioned
above, the main reason for the superior performance of vfe, despite providing a
less accurate predictive posterior than fitc’s, was that inducing input estimation
was more robust due to the use of the variational objective, which provided an
extra regularization term. However, by placing priors over the inducing inputs as
well as over covariance hyper-parameters, the problem of regularization over these
parameters becomes irrelevant. It is important to highlight that a variational formu-
lation equivalent to fitc has also been proposed (see Titsias, 2009a, App. C). In
our experiments in § 6.4 we show that, nonetheless, our fully Bayesian formulation
still yields superior performance to such an approach, confirming the benefits of
carrying out full posterior estimation over the inducing inputs.

A final remark is that, in the spirit of Bayesian modeling, any uncertainty in the
covariance should be accounted for. Thinking of gp hyper-parameters and inducing
inputs as parameters of the covariance function, a distribution over these induces a
distribution over the covariance function, which enriches the modeling capabilities
of these models (see, e.g., (Jang et al., 2017) or Figure 6.1).

6.3 practical considerations and extensions to deep gps 117

6 .3 practical considerations and extensions to deep
gps

In this section we describe practical considerations in our Bayesian Sparse Gaus-
sian Process (bsgp) framework, including inference techniques, prior choices and
extensions to deep Gaussian processes. Recalling that Ψ = {θ,u,Z} represents the
set of variables to infer and, using Equation (6.5), their posterior can be obtained
as

logp(Ψ |y,X) = log Ep(f |Ψ,X)p(y | f) + logp(u |θ,Z)+

logpξ(Z) + logpψ(θ) − logC. (6.17)

We use Markov chain Monte Carlo (mcmc) techniques, in particular sghmc

(T. Chen et al., 2014; Havasi et al., 2018), to obtain samples from the intractable
p(Ψ |y,X). Unlike Hamiltonian Monte Carlo (hmc), which requires computing the
exact gradient ∇ logp(Ψ |y,X) and the exact unnormalized posterior to evaluate the
acceptance (Neal, 2011), sghmc obtains samples from the posterior with stochastic
gradients and without evaluating the Metropolis ratio (see supplement for details).
With a factorized likelihood p(y|f) and an energy function U(Ψ) = − logp(Ψ |y,X)+
logC, we sample Equation (6.17) over minibatches of data.

6.3.1 Prior choices

Next, we discuss prior choices for the inducing inputs and covariance hyper-
parameters. The inducing inputs Z support the sparse Gaussian process interpola-
tion, which motivates matching the inducing prior to the data distribution p(X).
We begin by proposing a simple Normal (N) prior

pN(Z) =

M∏
j=1

N(zj|0, I), (6.18)

which matches the mean and variance of the normalized data distribution, and
favors inducing inputs toward the baricenter of the data inputs.

We also explore two priors based on point processes, which consider distributions
over point sets (Gonzalez et al., 2016). Point processes can induce repulsive ef-

118 revisiting the approximations for scalable (deep) gaussian processes

0.200

0.2000.200
0.
50
0

0.5000.800

Determinantal prior

0.200

0.200

0.200

0.
50
0

0.500

0.800

Strauss prior

0.200
0.200

0.2
00

0.
50
0

0.500

0.500

0.800

0.800

Normal prior

0.200

0.2000.200

0.500

0.500

0.8
00

Uniform prior

Figure 6.2: Illustration of a binary classi�cation task on the banana dataset. Left: the decision
bounds of the average classi�er. Right: the posterior marginals of the inducing inputs.

fects penalizing configurations where inducing points are clumped together. The
determinantal point process (dpp), defined through

pD(Z) ∝ detKzz|θ , (6.19)

relates the probability of inducing inputs to the volume of space spanned by the
covariance (Lavancier et al., 2015). dpp is a repulsive point process, which gives
higher probabilities to input diversity, controlled by the hyper-parameters ξ ≡ θ.
We then consider the Strauss process (see e.g. Daley and Vere-Jones, 2003; Strauss,
1975),

pS(Z) ∝ λMγ
∑
z,z ′∈Z δ(|z−z

′|<r), (6.20)

where λ > 0 is the intensity, and 0 < γ 6 1 is the repulsion coefficient which decays
the prior as a function of the number of input pairs that are within distance r.
The Strauss prior (S) tends to maintain the minimum distance between inducing
inputs, parameterized by ξ = (λ,γ, r). We finally consider an uninformative uni-
form prior (U), logpU(Z) = 0, which effectively provides no contribution to the
evaluation of the posterior.

To gain insights on the choice of these priors, we set up a comparative analysis
on the banana dataset (Figure 6.2). We observe that the posterior densities on
the inducing inputs are multimodal and highly non-Gaussian, further confirming

6.3 practical considerations and extensions to deep gps 119

x

f1

f2
y

Figure 6.3: Visual representation of a 2-layer deep Gaussian process (dgp).

the necessity of free-form inference. Both Strauss and dpp-based priors encourage
configurations where the inducing inputs are evenly spread. The Normal and
Uniform priors, instead, focus exclusively on aligning the inducing inputs in a way
that is sensible to accurately model the intricate classification boundary between
the classes. This insight is confirmed by our the extensive experimental validation
in § 6.4.

prior on covariance hyper-parameters. Choosing priors on the hyper-parameters
has been discussed in previous works on Bayesian inference for gps (see e.g. Filip-
pone and Girolami, 2014). Throughout this chapter, we use the RBF covariance with
automatic relevance determination (ard), marginal variance σ and independent
lengthscales λi per feature (Mackay, 1994). On these two hyper-parameters we
place a lognormal prior with unit variance and means equal to 1 and 0.05 for λ and
σ, respectively.

6.3.2 Extension to deep Gaussian processes

bsgp can be easily extended to dgp models (Damianou and Lawrence, 2013). Deep
Gaussian processes are hierarchical compositions of L sparse gps generally defined
as

DGP(x) = (fL ◦ . . . ◦ f1) (x)

Each layer fl is a vector-valued gp:

fi(·) =
[
f
(1)
i (·), . . . , f (Hi)i (·)

]>
with f

(j)
i (·) i.i.d

∼ GP(0, κi(·, · |θi)).

where Hi is the width of the i th
gp which are taken to be independent. Each

layer is associated with a set of inducing inputs Z(l), inducing variables u(l)

120 revisiting the approximations for scalable (deep) gaussian processes

and hyper-parameters θ(l) (Salimbeni and Deisenroth, 2017). In our notation

Ψ =
{
Ψ(l)
}L
`=1

=
{
Z(l),u(l),θ(l)

}L
l=1

.

In this section, we derive the mathematical basis for a Bayesian treatment of
inducing inputs in a dgp setting (Damianou and Lawrence, 2013). We assume
a deep Gaussian process prior f(L) ◦ f(L−1) ◦ · · · f(1), where each f(l) is a gp. For
notational brevity, we use f(0) as the input vector x. Then we can write down the
joint distribution over visible and latent variables (omitting the dependency on X
for clarity) as

p

(
y,
{
f(l),Ψ(l)

}L
l=1

)
= p

(
y | f(L)

) L∏
l=1

p
(
f(l) | Ψ(l), f(l−1)

)
p
(
Ψ(l)

)
. (6.21)

Our goal is to estimate the posterior after marginalizing out f(l),

logp
({
ψ(l)
}L
l=1

| y

)
∝

= log
∫
p
(
y | f(L)

)
p
(
f(L) |ψ(L), f(L−1)

)
. . .p

(
f(1) |ψ(1),f(0)

)
df(L)df(L−1) . . . df(1)

+

L∑
l=1

logp(Ψ(l)). (6.22)

While the distribution in Equation (6.22) is not immediately computable owing to
the intractable expectation term, we have obtained the form of its (un-normalized)
log posterior, from which we can sample using hmc methods. More calculations
reveal that we can, nevertheless, obtain estimates of this expectation term with
Monte Carlo sampling

log
∫
p
(
y | f(L)

)
p
(
f(L) |ψ(L), f(L−1)

)
. . .p

(
f(1) |ψ(1)

)
df(L)df(L−1) . . . df(1) ≈

log
∫
p
(
y | f(L)

)
p

(
f(L) |ψ(L), f̃(L−1)

)
df(L) (6.23)

6.4 experiments 121

2.4 2.5 2.6 2.7

DPP

Normal

Strauss

Uniform

Boston

3.2 3.3 3.4

Concrete

1 1.2 1.4

Energy

−1.12 −1.1 −1.08

Kin8NM

−8.2 −8.1

DPP

Normal

Strauss

Uniform

Test MNLL

Naval

2.7 2.72 2.74 2.76

Test MNLL

Powerplant

2.78 2.79

Test MNLL

Protein

0 0.5 1

Test MNLL

Yacht

BSGP with Determinantal Point Process prior (dpp), Strauss process prior, Uniform prior
BSGP with Normal prior

Figure 6.4: Analysis of di�erent priors on inducing locations for bsgp on the UCI benchmark
datasets for determinantal point process (dpp), Strauss process, uniform and normal
priors on Z.

where,

f̃(1) ∼ p
(
f(1) |ψ(1), f(0)

)

f̃(2) ∼ p

(
f(2) |ψ(2), f̃(1)

)

· · ·

f̃(L−1) ∼ p

(
f(L−1) |ψ(L−1), f̃(L−2)

)

Because of the layer-wise factorization of the joint likelihood (Equation (6.21)), each
step of the approximation is unbiased. While it is possible to approximate the last-
layer expectation with a Monte Carlo sample, the expectation is tractable when the
likelihood is a Gaussian or a Bernoulli distribution with a probit regression model,
or is computable with one-dimensional quadrature (Hensman, A. G. Matthews,
et al., 2015).

6 .4 experiments

In this section, we provide empirical evidence that our bsgp outperforms previous
inference/optimization approaches on shallow and deep gps. We use eight of the

122 revisiting the approximations for scalable (deep) gaussian processes

10 50 100

1

1.5

2

Num. Inducing

Te
st
M
NL
L

Energy

10 50 100

−8

−6

−4

Num. Inducing

Naval

10 50 100
2.7

2.75

2.8

2.85

Num. Inducing

Powerplant

10 50 100

2.8

2.9

3

Num. Inducing

Protein

Gaussian q(u) Free form p(u |y) Free form p(u,θ |y) Free form p(u,θ,Z |y)

Figure 6.5: Ablation study on the e�ect of performing posterior inference on di�erent sets of
variables. From svgp, where the posterior is constrained to be Gaussian and the
remaining parameters are point-estimated, to our proposal bsgp, where we infer a
free-form posterior for all Ψ = {u,θ,Z}. We refer the reader to Table 6.1 for details
on the methods (colors are matched).

classic UCI benchmark datasets with standardized features and split into eight folds
with 0.8/0.2 train/test ratio. We train the competing models for 10,000 iterations
with adam (Kingma and Ba, 2015), step size of 0.01 and a minibatch of 1,000

samples. The sampling methods are evaluated based on 256 samples collected
after optimization. Following previous works (e.g. Rasmussen and Williams, 2005;
Havasi et al., 2018; H. Yu et al., 2019), in order to evaluate and compare the full
predictive posteriors we compute the mean negative loglikelihood (mnll) on the
test set (rmses are reported in the supplement for reference).

6.4.1 Prior analysis and ablation study

We start our empirical analysis with a comparative evaluation of the priors on
inducing inputs described in § 6.3.1: dpp, Normal, Strauss and Uniform. We
run our inference procedure on a shallow gp with 100 inducing points and we
report the results in ?? (left). The results show that the Normal prior consistently
outperforms the others. The uniform and Strauss priors behave similarly, while the
dpp prior is consistently among the worst. We argue that the repulsive nature of
the point process priors (dpp, particularly), although grounded on the intuition of
covering the input space more evenly, constrains the smoothness of the functions
up to the point that they become too simple to accurately model the data. With this,
we select the Gaussian prior for the remaining experiments.

We now study the benefits of a Bayesian treatment of the inducing variables,
inducing inputs, and hyper-parameters with an ablation study. Using the same
setup as before, we start with the baseline of svgp (Hensman, Fusi, et al., 2013;

6.4 experiments 123

2.4

2.6

Te
st
M
NL
L

Boston

3.05

3.1

3.15

3.2
Concrete

1

1.2

1.4

1.6

1.8
Energy

−1.1

−1.05

Kin8NM

−8

−7.5

−7

Naval

2.7

2.75

2.8

Powerplant

2.8

2.85

2.9

Protein

0

0.5

1

Yacht

Inference of u on the variational objective (SVGP – Hensman, A. Matthews, et al., 2015)
Inference of u with heteroskedastic likelihood (equivalent to FITC) (FITC-SVGP – Titsias, 2009b)
MCMC inference of u,θ on the variational objective (MCMC-SVGP – Hensman, A. G. Matthews, et al., 2015)
MCMC inference of u,θ on the marginal likelihood (log of expectation)
MCMC inference of u,θ,Z on the marginal likelihood [This work]

Figure 6.6: Analysis of di�erent choices of objectives when used for optimization and sampling.
We refer the reader to Table 6.1 for a description of the methods.

Hensman, A. Matthews, et al., 2015), where the posterior on u is approximated
using a Gaussian and Z,θ are optimized. We then incrementally add parameters to
the list of variables that are sampled rather than optimized: only u (equivalent to
sghmc -dgp, (Havasi et al., 2018)), then {u,θ} and finally, our proposal, {u,θ,Z}.
This experiment is repeated for different number of inducing points (10, 50 and 100).
?? (right) reports a summary of these results (full comparison in the supplement).
This plot shows that each time we carry out free-form posterior inference on a
bigger set of parameters rather than optimization, performance is enhanced, and
our proposal outperforms previous approaches.

Boston Concrete Energy Kin8NM Naval Power. Protein Yacht

0.01

0.1

1

Reject hypothesis

p-value of the Wilcoxon test

Depth of the DGP
DGP-1
DGP-2
DGP-3
DGP-4
DGP-5

Figure 6.7: p-values of the hypothesis test that bsgp with vfe objective is better than bsgp with
fitc objective; depth of the dgp from 1 to 5. For models with p-values < 0.05, we
reject the hypothesis

124 revisiting the approximations for scalable (deep) gaussian processes

2.4

2.6

2.8
Te
st
M
NL
L

Boston

3

3.2

Concrete

0.6
0.8
1

1.2
1.4

Energy

−1.4
−1.3
−1.2
−1.1

Kin8NM

1 2 3 4 5

−8.3
−8.2
−8.1
−8

Depth DGP

Naval

1 2 3 4 5

2.65
2.7
2.75
2.8

Depth DGP

Powerplant

1 2 3 4 5
2.4

2.6

2.8

Depth DGP

Protein

1 2 3 4 5

−0.5
0

0.5

Depth DGP

Yacht

BSGP with VFE objective BSGP with FITC objective

Figure 6.8: bsgp in with di�erent depths of the DGP with two di�erent objective: fitc and vfe.
The number of layers corresponds to the depth of the dgp.

6.4.2 Choosing the objective: VFE vs FITC

In § 6.2 we discussed the role of the marginal and the variational free energy
(vfe) objective when used for optimization and for sampling. In Figure 6.6 we
support the discussion with empirical results. The baseline is svgp, for which the
inference is approximate (Gaussian) and performed on the variational objective.
Titsias (2009a, App. C) also considers a vfe formulation of fitc which corresponds
to a gp regression with heteroskedastic noise variance. The likelihood needs to be
augmented to handle heteroskedasticity, but inference can be carried out exactly
on the variational objective. For these two methods, {θ,Z} are optimized. We also
test mcmc -svgp, the model proposed by Hensman, A. G. Matthews, et al. (2015),
implemented in GPflow (A. G. Matthews et al., 2017) with the same suggested
experimental setup. This experiment indicates that having a free-form posterior on
u,θ sampled from the variational objective does not dramatically improve on the
exact Gaussian approximation of the fitc model, with both of them delivering
superior performance with respect to svgp. In the same setup of Hensman, A. G.
Matthews, et al. (2015) (u,θ sampled and Z optimized), we look at the effect of
swapping the expectation of log with the log of expectation (which effectively
means moving from the vfe objective to fitc); on the contrary, here we observe
a significant increase in performance when using the latter, further confirming
the discussion of the objectives in § 6.2.2. We finally conclude this section with an
experiment where we try both objectives on our proposed bsgp and also different
depths of the dgp (Figure 6.8). Using the Wilcoxon signed-rank test (Wilcoxon,

6.4 experiments 125

2.5 3 3.5 4

DGP 1
2
3
4
5

DGP 1
2
3
4
5

DGP 1
2
3
4
5

SVGP

Boston

2.9 3 3.1 3.2

Concrete

1 1.5

Energy

−1.4−1.3−1.2−1.1

Kin8NM

−8 −7 −6 −5

DGP 1
2
3
4
5

DGP 1
2
3
4
5

DGP 1
2
3
4
5

SVGP

Test MNLL

Naval

2.65 2.7 2.75 2.8

Test MNLL

Powerplant

2.6 2.8

Test MNLL

Protein

0 2

Test MNLL

Yacht

BSGP (This work) IPVI-DGP SGHMC-DGP SVGP

Figure 6.9: Test mnll on UCI regression benchmarks (the error bars represent the 95%CI). The
lower mnll (i.e. to the left), the better. The number on the right of the method’s name
refers to the depth of the dgp. Bottom right: Rank summary of all methods.

1945), we test the null hypothesis of vfe objective being better than the proposed
fitc. Figure 6.7 shows that, for the majority of the cases, this can be rejected
(p < 0.05).

6.4.3 Deep Gaussian processes on UCI benchmarks

We now report results on dgps. We compare against two current state-of-the-art
deep gp methods, sghmc -dgp (Havasi et al., 2018) and ipvi -dgp (H. Yu et al.,
2019), and against the shallow svgp baseline (Hensman, A. Matthews, et al., 2015).
For a faithful comparison with ipvi -dgp we follow the recommended parameter
configurations2. Using a standard setup, all models share M = 100 inducing points,
the same RBF covariance with ard and, for dgp, the same hidden dimensions
(equal to the input dimension D). Figure 6.9 shows the predictive test mnll mean

2 We use the ipvi -dgp implementation available at https://github.com/HeroKillerEver/ipvi-dgp

https://github.com/HeroKillerEver/ipvi-dgp

126 revisiting the approximations for scalable (deep) gaussian processes

10 100 1000

−8

−6

−4

Training time [sec]

Te
st
M
NL
L

Shallow GP on Naval

10 100 1000
−1.5

−1

−0.5

Training time [sec]

DGP on Kin8NM

BSGP IPVI-DGP SGHMC-DGP SVGP

Figure 6.10: Comparison of test mnll as function of training time. The dashed line on the right
hand side plot corresponds to svgp withM = 1000 inducing points.

and 95% CI over the different folds over the UCI datasets, and also includes rank
summaries. The proposed method clearly outperforms competing deep and shallow
gps. The improvements are particularly evident on naval, a dataset known to be
challenging to improve upon. Furthermore, the deeper models perform consistently
better or on par with the shallow version, without incurring in any measurable
overfitting even on small or medium sized datasets (see boston and yacht, for
example).

computational efficiency. Similarly to the baseline algorithms, each training iter-
ation of bsgp involves the computation of the inverse covariance with complexity
O(M3). In Figure 6.10 we compare the three main competitors with bsgp trained
for a fixed training time budget of one hour for a shallow gp and a 2-layer dgp.
The experiment is repeated four times on the same fold and the results are then
averaged. Each run is performed on an isolated instance in a cloud computing plat-
form with 8 CPU cores and 8 GB of reserved memory (Pace et al., 2017). Inference
on the test set is performed every 250 iterations. This shows that bsgp converges
considerably faster in wall-clock time, even though a single gradient step requires
slightly more time.

Computing the predictive distribution, on the other hand, is more challenging
as it requires recomputing the covariance matrices Kxz, Kzz for each posterior
sample {Z,θ}, for an overall complexity linear in the number of posterior samples.
This operation can be easily parallelized and implemented on gpus but it could
question the practicality of using a more involved inference method. In particular,
it is relevant to study whether svgp could deliver superior performance with a
higher number of inducing points for less computational overhead. In Figure 6.11

6.4 experiments 127

0 500 1000 1500 2000 2500 3000 3500

2.8

2.9

3
SVGP, M = 10

SVGP, M = 50
SVGP, M = 100

SVGP, M = 500
SVGP, M = 1000

SVGP, M = 2000BSGP, M = 100

Prediction time on the test set [ms]

Te
st
M
NL
L

Can SVGP with more inducing points match BSGP?

Figure 6.11: Comparison of test mnll as a function of prediction time on the largest dataset
(Protein).

we study this trade-off on the biggest dataset considered (Protein): while it is
evident that predictions with bsgp take more time (assuming a serial computation
of the covariance matrices), it is also clear that the number of inducing points svgp

requires to (even marginally) improve upon bsgp is significantly larger (up to 20

times).

structured inducing points. Finally, we run one last comparison with methods
which exploit structure in the inputs. These models allow one to scale the number of
inducing variables while maintaining computational tractability. Kernel Interpola-
tion for Scalable Structured Gaussian Processes (kiss -gp) (A. Wilson and Nickisch,
2015) proposes to place the inducing inputs on a fixed and equally-spaced grid
and to exploit Toeplitz/Kronecker structures with an iterative conjugate gradient
method to further enhance scalability. Despite these benefits, kiss -gp is known to
fall short with high-dimensional data (D > 4). This shortcoming was later addressed
with Deep Kernel Learning (dkl) (A. G. Wilson, Hu, R. Salakhutdinov, et al., 2016):
using a deep neural network dkl projects the data in a lower dimensional mani-
fold by learning an useful feature representation, which is then used as input to a
kiss -gp. In Figure 6.12 we have the comparison of bsgp with these two methods.
kiss -gp could only run on Powerplant, with a 4-dimensional grid of size 10 (for a
total of 10,000 inducing points). Here, bsgp delivers better performance despite
having less inducing points. For dkl we followed the suggestion of A. G. Wilson,
Hu, R. Salakhutdinov, et al. (2016) to use a fully-connected neural network with a
[d− 1000− 1000− 500− 50− 2] architecture as feature extractor and a grid size of 100

(for again a total of 10,000 inducing points). Training is performed by alternating
optimization of the neural network weights and the kiss -gp parameters. Thanks

128 revisiting the approximations for scalable (deep) gaussian processes

BSGP
(L=2)

BSGP
(L=1)

KISS DKL

2.7

2.8

2.9
Te
st
M
NL
L

Powerplant

BSGP
(L=2)

BSGP
(L=1)

KISS
(7)

DKL
2.6

2.65

2.7

2.75

2.8
Protein

BSGP
(L=2)

BSGP
(L=1)

KISS
(7)

DKL

−1.4

−1.3

−1.2

−1.1
Kin8NM

Figure 6.12: Comparison with structured inducing variables methods. kiss-gp could only run on
the Powerplant dataset (hence the 7 on Protein and Kin8NM).

to the flexibility of the feature extractor, this configuration is very competitive
with our shallow bsgp, but it yields lower performance compared to a 2-layer
dgp.

6.4.4 Large scale classi�cation

The airline dataset is a classic benchmark for large scale classification. It collects
delay information of all commercial flights in USA during 2008, counting more
than 5 millions data points. The goal is to predict if a flight will be delayed based on
8 features, namely month, day of month, day of week, airtime, distance, arrival
time, departure time and age of the plane. We pre-process the dataset following
the guidelines provided in (Hensman, A. G. Matthews, et al., 2015; A. G. Wilson,
Hu, R. Salakhutdinov, et al., 2016).

After a burn-in phase of 10,000 iterations, we draw 200 samples with 1000 sim-
ulation steps in between. We test on 100,000 randomly selected held-out points.
We fit three models with M = 100 inducing points. Table 6.2 shows the predictive
performance of three shallow GP models. The bsgp yields the best test error,
mnll, and test area under the curve (auc). We assess the convergence of the
predictive posterior by evaluating the R̂-statistics (Gelman et al., 2004) over four
independent sghmc chains. This diagnostic yielded a R̂ = 1.02± 0.045, which indi-
cates good convergence. We report further convergence analysis in the supplement.

As a further large scale example, we use the higgs dataset (Baldi, Sadowski,
et al., 2014), which has 11 millions data points with 28 features. This dataset
was created by Monte Carlo simulations of particle dynamics in accelerators to
detect the Higgs boson. We select 90% of the these points for training, while the

6.5 concluding discussion 129

Table 6.2: airline dataset predictive test performance.
Model Error (↓) mnll (↓) auc (↑)

sghmc-gp 35.85% 0.646 0.671
svgp 31.26% 0.595 0.730
bsgp 30.46% 0.580 0.749

Table 6.3: higgs dataset predictive test performance.
Model Error (↓) mnll (↓) auc (↑)

sghmc-gp 35.39% 0.628 0.698
svgp 27.79% 0.544 0.796
bsgp 26.97% 0.530 0.808

rest is kept for testing. Table 6.3 reports the final test performance, showing that
bsgp outperforms the competing methods. Interestingly, in both these large scale
experiments, sghmc -gp always falls back considerably w.r.t. bsgp and even
svgp. We argue that, with these large sized datasets, the continuous alternation
of optimization of Z and θ and sampling of u used by the authors (called Moving
Window mcem, see Havasi et al. (2018) for details) might have led to suboptimal
solutions.

6 .5 concluding discussion

We have developed a fully Bayesian treatment of sparse Gaussian process models
that considers the inducing inputs, along with the inducing variables and covari-
ance hyper-parameters, as random variables, places suitable priors and carries
out approximate inference over them. Our approach, based on sghmc, investi-
gated two conventional priors (Gaussian and uniform) for the inducing inputs
as well as two point process based priors (the Determinantal and the Strauss
processes).

By challenging the standard belief of most previous work on sparse gp inference
that assumes the inducing inputs can be estimated point-wisely, we have devel-
oped a state-of-the-art inference method and have demonstrated its outstanding
performance on both accuracy and running time on regression and classification
problems. We hope this work can have an impact similar (or better) to other
works in machine learning that have adopted more elaborate Bayesian machinery

130 revisiting the approximations for scalable (deep) gaussian processes

(e.g. Wallach et al., 2009) for long-standing inference problems in commonly used
probabilistic models.

Finally, we believe it is worth investigating further more structured priors similar to
those presented here (e.g. exploring different hyper-parameter settings), including a
full joint treatment of inducing inputs and their number, i.e. p(Z,M).

7
F INA L CONS IDERAT IONS

In this thesis, we discussed several challenges of using approximate Bayesian in-
ference for deep learning models. Broadly speaking, Bayesian deep learning is
hindered by problems related to scalability and quality of the approximation infer-
ence. In summary, we analyzed several issues that arises from applying variational
inference (vi) to deep neural networks, we studied the role of the prior for improv-
ing modeling flexibility and we exploited the connections between neural networks
and Gaussian processs (gps) to refine the model and inference approximations of
sparse gps with inducing points.

7 .1 summary of the contributions and open
problems

This thesis makes contributions which follow four different themes:

• Initialization of variational inference [Chapter 3]

In this chapter we discussed how the role of initialization is severely under
reported in the literature of variational inference for Bayesian neural net-
works (bnns). The reasons for the failing of variational inference for bnns
in practice might depends heavily on the initialization of the variational
parameters. We therefore proposed a novel way to initialize variational pa-
rameters, called iterative Bayesian linear modeling (iblm), which is based
on an iterative layer-wise initialization carried out through on Bayesian lin-
ear models. Empirical evidence is shown through a series of experiments,
including regression and classification with deep neural networks (dnns)

131

132 final considerations

and convolutional neural networks (cnns) which demonstrated the ability of
our approach to consistently initialize the optimization in a way that makes
convergence faster than alternatives.

Open questions: recent works have exploited loss-landscape analysis and the
model-connectivity of deep networks to—among other things—understand
how and why simple Bayesian approximations like deep ensembles work in
practice. This methodology could be similarly used for studying the loss land-
scape of the variational objective, and possibly deriving new initializations.

• Structured parameterizations of variational posteriors [Chapter 4]

Inspired by the literature on scalable kernel methods, this chapter proposed
Walsh-Hadamard variational inference (whvi). whvi offers a novel pa-
rameterization of the variational posterior, which is particularly attractive
for over-parameterized models, such as modern dnns and cnns. whvi

assumes a matrix-variate posterior distribution, which therefore captures co-
variances across weights. Crucially, unlike previous works on matrix-variate
posteriors for vi, this is achieved with a parsimonious parameterization
and fast computations, bypassing the over-regularization issues of vi for
over-parameterized models. The large experimental campaign demonstrates
that whvi is a strong competitor with other variational approaches for such
models, while offering considerable speedups.

Open questions: over-parameterization is tightly connected with generaliza-
tion capabilities of deep models; in fact model performance is affected by the
network size with bigger and wider neural networks being more resilient to
overfit. At the same time, how this analysis carries over to bnn trained with
variational inference is still open to debate.

• Priors in Bayesian deep learning [Chapter 5]

In this chapter we analyzed the problem of selection good priors using two
different perspectives: functional priors and empirical Bayes using the Wasser-
stein distance as a proxy to the marginal likelihood. For the first case, we
proposed a novel objective based on the Wasserstein distance, and we showed
that this objective offers a tractable and stable way to optimize the priors
over model parameters. Starting from samples of the neural networks prior,
this is done by minimizing their distances to tractable functional priors (e.g.

7.1 summary of the contributions and open problems 133

a Gaussian process), effectively optimizing the priors over model param-
eters so as to reflect these functional specifications. Alternatively, we can
optimize the prior parameters akin to model selection for Gaussian process
via marginal likelihood maximization. For this, we derived a practical and
efficient optimization framework, based on the minimization of the distribu-
tional sliced-Wasserstein distance between the distribution induced by the
model and the data generating distribution.

Open questions: the main open question is how we can choose the target
stochastic process to map bnn priors to. In principle, this can be general-
ized, for example, to match deep Gaussian processs (dgps) or we could use
a different prior parameterization to also enforce other behaviors, like e.g.
sparsity. On the other hand, we can also debate whether there could be better
alternatives to empirical Bayes with marginal likelihood maximization for
model selection.

• Scalable approximations for (deep) Gaussian processes [Chapter 6]

In this chapter we proposed a fully Bayesian treatment of sparse Gaussian
process models by Stochastic Gradient Hamiltonian Monte Carlo (sghmc)
sampling of the Gaussian process posterior with respect to all hyperparame-
ters, inducing inputs and also inducing locations. In fact, despite significant
insights with regards to the benefits of full Bayesian inference over latent
variables in gp models, the common practice is to optimize the inducing
inputs. The Bayesian treatment considers a wider family of data supporting
hypotheses, especially in terms of inducing locations whose marginal support
we can represent more accurately. In essence, we showed that, by revisiting
old model approximations such as the fully independent training conditional
(fitc) endowed with powerful sampling-based inference methods, treating
both inducing locations and gp hyper-parameters in a Bayesian way can
improve performance significantly.

Open questions: it is possible to investigate further more structured priors
on the inducing locations (e.g. exploring different hyper-parameter settings),
including a full joint treatment of inducing inputs and their number. Al-
ternatively, this framework could be in principle extended to inter-domain
Gaussian processes with inducing variables, which include—among others—
the (deep) convolutional Gaussian process.

134 final considerations

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0

100

200

Ne
w
pa
pe
rs
on

ar
xi
v

The growth of Bayesian deep learning is slowing

Figure 7.1: Number of unique new papers submitted on arxiv with title or abstract containing
di�erent permutations of Bayesian deep learning. Data crawled from the public API on
December 8th 2021.

7 .2 is bayesian deep learning solved? and now
what?

We conclude the thesis with a digression and speculations on the future of Bayesian
deep learning in general. Looking back four years at the beginning of this thesis,
we can better appreciate the rapid and prolific evolution of Bayesian deep learn-
ing (Figure 7.1). By late 2017 when this thesis started (at least as a preliminary
discussion with Prof. Filippone), not many works were showing practical infer-
ence of Bayesian neural networks to succeed beyond one hidden layer and few
hidden units, let alone for more complex architectures like large scale cnns. In the
span of a couple of years this changed, thanks to an increased interest in scalable
probabilistic deep models as well as to the democratization of flexible libraries
(like Tensorflow and PyTorch) and powerful computational devices (like GPUs and
TPUs). This growth is even more amazing, considering that it originated concur-
rently for different Bayesian approximations, whether it is variational, sampling or
ensembles.

We have reached a point now which makes us wonder if we can consider Bayesian
deep learning methodologically solved. While this sounds very provocative, it is
important to remember that the field as a whole evolved so quickly that what
could not have been done four years ago is today possible. Whether it is variational
inference, or Laplace approximation, or ensembles or scalable Markov-Chain Monte
Carlo sampling, we have significant empirical evidence and knowledge supporting
whichever method. Practitioners have today a tool-set of countless probabilistic
methods to choose from, with different models being more suitable than others
for different application scenarios. Yet, with only few exceptions, Bayesian deep

7.2 is bayesian deep learning solved? and now what? 135

learning is still rarely employed for end-to-end applications, despite clear benefits
for uncertainty quantification and calibration. Arguably, much of the deep learning
success can be attributed to simple prototyping and simple deployment and moni-
toring of the models. While new trends are emerging in this direction (Novak et al.,
2020; E. Daxberger et al., 2021), this is generally still out of reach for Bayesian deep
learning. With this thesis, we have given the practitioners a series of new tools and
suggestions to make Bayesian deep learning work in practice, with the hope that
applied research could benefit from it.

From a different point of view, we can also question how much (Bayesian) deep
learning is sustainable and truly scalable in the long term. In a recent survey on the
future role of deep learning for discovery of new fundamental physics (Karagiorgi
et al., 2021), the Authors project that in order to guarantee statistical significance for
new discoveries, the model and the overall data-processing system should be able
to keep up with data streams of at least 40 Tbit/s. This is already embarrassingly
problematic for deep learning (for comparison, it is equivalent to roughly 30

ImageNet every second), let alone for Bayesian inference, to the point that we might
need to rethink the entire computational pipeline. Uncertainty is omnipresent in
nature (Heisenberg, 1927; Kennard, 1927) and yet our computational devices are for
the most part deterministic. On a long term horizon, quantum devices could ease
the burden of probabilistic inference (Zhao et al., 2019; Schuld and Petruccione,
2021; Huang et al., 2021). Also, while until now Bayesian deep learning has been
chasing deep learning in the race for bigger models and new architectures, with
quantum computing Bayesian inference could lead deep learning—and machine
learning in general—to novel and exciting research directions. This also includes the
possibility to redefine our objectives. This thesis, among countless of other examples
in the literature, praised the elegance of Bayes’ rule for updating beliefs with
evidence, but Bayesian statistics should not be considered as an immovable dogma
(Popper, 1934). For example, even without entering in the philosophical debate of
“frequestist” versus “Bayesian”, it is possible to generalize Bayes’ theorem in such
a way that inference is carried out on bounds of probability measures (Dempster,
1966; Dempster, 1968) or to unify and derive new methods from a common root of
learning algorithms (M. E. Khan and Rue, 2021).

B I B L IOGRAPHY

Abadi, M. et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org (cit. on pp. 3, 26).

Acciarri, R. et al. (2017). “Convolutional neural networks applied to neutrino events in a
liquid argon time projection chamber.” In: Journal of Instrumentation 12.3 (cit. on p. 3).

Akaike, H. (1973). “Information Theory and an Extension of the Maximum Likelihood
Principle.” In: 2nd International Symposium on Information Theory, 1973. Publishing House
of the Hungarian Academy of Sciences, pp. 268–281 (cit. on p. 96).

Amit, R. and R. Meir (2018). “Meta-Learning by Adjusting Priors Based on Extended
PAC-Bayes Theory.” In: Proceedings of the 35th International Conference on Machine Learning,
ICML 2018. Vol. 80. PMLR, pp. 205–214 (cit. on p. 84).

Arjovsky, M., S. Chintala, and L. Bottou (2017). “Wasserstein Generative Adversarial
Networks.” In: Proceedings of the 34th International Conference on Machine Learning. Vol. 70.
PMLR, pp. 214–223 (cit. on p. 86).

Ashukha, A., A. Lyzhov, D. Molchanov, and D. Vetrov (2020). “Pitfalls of In-Domain
Uncertainty Estimation and Ensembling in Deep Learning.” In: International Conference
on Learning Representations (cit. on p. 91).

Atanov, A., A. Ashukha, K. Struminsky, D. Vetrov, and M. Welling (2019). “The Deep
Weight Prior.” In: International Conference on Learning Representations (cit. on p. 84).

Aurisano, A. et al. (2016). “A convolutional neural network neutrino event classifier.” In:
Journal of Instrumentation 11.9 (cit. on p. 3).

Baldi, P., P. Sadowski, and D. Whiteson (2014). “Searching for Exotic Particles in High-
Energy Physics with Deep Learning.” In: Nature Communications 5.1, p. 4308 (cit. on
p. 128).

Baldi, P. and K. Hornik (1989). “Neural Networks and Principal Component Analysis:
Learning from Examples without Local Minima.” In: Neural Networks 2.1, pp. 53–58

(cit. on p. 36).

137

138 bibliography

Barber, D. and C. Bishop (1998). “Ensemble learning in Bayesian neural networks.” In:
Generalization in Neural Networks and Machine Learning. Springer Verlag, pp. 215–237

(cit. on p. 9).

Barber, D. and C. K. I. Williams (1997). “Gaussian Processes for Bayesian Classification via
Hybrid Monte Carlo.” In: Advances in Neural Information Processing Systems 9. MIT Press,
pp. 340–346 (cit. on p. 108).

Battiti, R. (1989). “Accelerated Backpropagation Learning: Two Optimization Methods.” In:
Complex Systems 3.4, pp. 331–342 (cit. on p. 2).

Bauer, M., M. van der Wilk, and C. E. Rasmussen (2016). “Understanding Probabilistic
Sparse Gaussian Process Approximations.” In: Advances in Neural Information Processing
Systems 29. Curran Associates, Inc., pp. 1533–1541 (cit. on pp. 111, 112).

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2017). “Automatic
Differentiation in Machine Learning: A Survey.” In: The Journal of Machine Learning
Research 18, pp. 5595–5637 (cit. on p. 3).

Becker, S. and Y. LeCun (1989). “Improving the Convergence of Back-Propagation Learning
with Second-Order Methods.” In: Proc. of the 1988 Connectionist Models Summer School.
Morgan Kaufman, pp. 29–37 (cit. on p. 2).

Bellec, G., D. Salaj, A. Subramoney, R. Legenstein, and W. Maass (2018). “Long short-term
memory and learning-to-learn in networks of spiking neurons.” In: Advances in Neural
Information Processing Systems, pp. 787–797 (cit. on p. 3).

Bengio, Y., A. Courville, and P. Vincent (2013). “Representation Learning: A Review and
New Perspectives.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8,
pp. 1798–1828 (cit. on p. 100).

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2006). “Greedy Layer-Wise Training
of Deep Networks.” In: Advances in Neural Information Processing Systems 19. MIT Press,
pp. 153–160 (cit. on pp. 35, 36).

Betancourt, M. (2015). “The Fundamental Incompatibility of Scalable Hamiltonian Monte
Carlo and Naive Data Subsampling.” In: Proceedings of the 32nd International Conference
on Machine Learning. Vol. 37. JMLR.org, pp. 533–540 (cit. on p. 10).

Bishop, C. M. (2006). Pattern recognition and machine learning. 1st ed. 2006. Corr. 2nd printing
2011. Springer (cit. on pp. 18, 34, 38).

Blei, D. M., M. I. Jordan, and J. W. Paisley (2012). “Variational Bayesian Inference with
Stochastic Search.” In: Proceedings of the 29th International Conference on Machine Learning.
ACM, pp. 1367–1374 (cit. on p. 25).

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). “Variational Inference: A Review for
Statisticians.” In: 112.518, pp. 859–877 (cit. on p. 22).

bibliography 139

Blei, D., S. Mohamed, and R. Ranganath (2016). “Variational Inference: Foundations and
Modern Methods.” In: Neural Information Processing Systems (Tutorial) (cit. on p. 23).

Blundell, C., J. Cornebise, K. Kavukcuoglu, and D. Wierstra (2015). “Weight Uncertainty in
Neural Network.” In: Proceedings of the 32nd International Conference on Machine Learning.
Vol. 37. PMLR, pp. 1613–1622 (cit. on pp. 9, 76, 82).

Bojarski, M. et al. (2017). “Structured Adaptive and Random Spinners for Fast Machine
Learning Computations.” In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. Vol. 54. PMLR, pp. 1020–1029 (cit. on pp. 57, 76).

Bonilla, E. V., K. Krauth, and A. Dezfouli (2019). “Generic Inference in Latent Gaussian
Process Models.” In: Journal of Machine Learning Research 20.117, pp. 1–63 (cit. on p. 108).

Bowman, S. R., L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio (2016). “Generating
Sentences from a Continuous Space.” In: Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning. Association for Computational Linguistics,
pp. 10–21 (cit. on pp. 50, 54, 76).

Bradbury, J. et al. (2018). JAX: Composable Transformations of Python+NumPy Programs.
Version 0.2.5 (cit. on p. 3).

Briol, F.-X., C. J. Oates, M. Girolami, M. A. Osborne, and D. Sejdinovic (2019). “Probabilistic
Integration: A Role in Statistical Computation?” In: Statistical Science 34.1, pp. 1–22

(cit. on p. 79).

Bui, T. D., J. Yan, and R. E. Turner (2017). “A Unifying Framework for Gaussian Process
Pseudo-Point Approximations using Power Expectation Propagation.” In: Journal of
Machine Learning Research 18.1, pp. 3649–3720 (cit. on p. 111).

Burgess, C. P., I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner
(2018). “Understanding disentangling in β-VAE.” In: CoRR abs/1804.03599 (cit. on p. 76).

Chan, J., A. C. Miller, and E. B. Fox (2020). “Representing and Denoising Wearable ECG
Recordings.” In: CoRR abs/2012.00110 (cit. on p. 1).

Chellapilla, K., S. Puri, and P. Simard (2006). “High Performance Convolutional Neural
Networks for Document Processing.” In: International Workshop on Frontiers in Handwriting
Recognition (cit. on p. 2).

Chen, T., E. Fox, and C. Guestrin (2014). “Stochastic Gradient Hamiltonian Monte Carlo.” In:
Proceedings of the 31st International Conference on Machine Learning. PMLR, pp. 1683–1691

(cit. on pp. 10, 30, 31, 67, 82, 83, 101, 104, 112, 117).

Chen, X., D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and
P. Abbeel (2017). “Variational Lossy Autoencoder.” In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net (cit. on p. 90).

140 bibliography

Cho, Y. and L. K. Saul (2009). “Kernel Methods for Deep Learning.” In: Advances in Neural
Information Processing Systems 22. Curran Associates, Inc., pp. 342–350 (cit. on p. 56).

Ciresan, D. C., U. Meier, and J. Schmidhuber (2012). “Multi-column deep neural networks
for image classification.” In: Proceedings of the 2012 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE Computer Society, pp. 3642–3649 (cit. on p. 2).

Cockayne, J., C. J. Oates, I. C. Ipsen, and M. Girolami (2019). “A Bayesian Conjugate
Gradient Method (with Discussion).” In: Bayesian Analysis 14.3, pp. 937–1012 (cit. on
p. 79).

Cottrell, G. W., P. Munro, and D. Zipser (1989). “Image Compression by Back Propagation:
A Demonstration of Extensional Programming.” In: Models of Cognition, pp. 208–240

(cit. on p. 100).

Cutajar, K., E. V. Bonilla, P. Michiardi, and M. Filippone (2017). “Random Feature Expan-
sions for Deep Gaussian Processes.” In: Proceedings of the 34th International Conference on
Machine Learning. Vol. 70. PMLR, pp. 884–893 (cit. on pp. 76, 108).

Daley, D. J. and D. Vere-Jones (2003). An introduction to the theory of point processes. Vol. I.
Second. Elementary theory and methods. Springer-Verlag (cit. on p. 118).

Damianou, A. C. and N. D. Lawrence (2013). “Deep Gaussian Processes.” In: Proceedings of
the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2013.
Vol. 31. JMLR.org, pp. 207–215 (cit. on pp. 119, 120).

Dang, V. N. et al. (2022). “Vessel-CAPTCHA: An efficient learning framework for vessel
annotation and segmentation.” In: Medical Image Analysis 75 (cit. on p. 1).

Dangel, F., F. Kunstner, and P. Hennig (2020). “BackPACK: Packing more into Backprop.” In:
Proceedings of the 8th International Conference on Learning Representations. OpenReview.net
(cit. on p. 10).

Daxberger, E. A., E. T. Nalisnick, J. U. Allingham, J. Antorán, and J. M. Hernández-Lobato
(2021). “Bayesian Deep Learning via Subnetwork Inference.” In: Proceedings of the 38th
International Conference on Machine Learning. Vol. 139. PMLR, pp. 2510–2521 (cit. on p. 10).

Daxberger, E., A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig (2021).
“Laplace Redux - Effortless Bayesian Deep Learning.” In: CoRR abs/2106.14806 (cit. on
p. 135).

DeGroot, M. H. and S. E. Fienberg (1983). “The Comparison and Evaluation of Forecasters.”
In: Journal of the Royal Statistical Society. Series D (The Statistician) 32.1/2, pp. 12–22 (cit. on
p. 48).

Dempster, A. P. (1966). “New Methods for Reasoning Towards Posterior Distributions
Based on Sample Data.” In: The Annals of Mathematical Statistics 37.2, pp. 355–374 (cit. on
p. 135).

bibliography 141

Dempster, A. P. (1968). “A Generalization of Bayesian Inference.” In: Journal of the Royal
Statistical Society: Series B (Methodological) 30.2, pp. 205–232 (cit. on p. 135).

Denker, J. S. and Y. LeCun (1990). “Transforming Neural-Net Output Levels to Probability
Distributions.” In: Advances in Neural Information Processing Systems 3. Morgan Kaufmann,
pp. 853–859 (cit. on p. 8).

Denker, J., D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and J. Hopfield (1987).
“Large automatic learning, rule extraction, and generalization.” English. In: Complex
Systems 1.5, pp. 877–922 (cit. on p. 8).

Dieleman, S., K. W. Willett, and J. Dambre (2015). “Rotation-invariant convolutional neural
networks for galaxy morphology prediction.” In: Monthly Notices of the Royal Astronomical
Society 450.2, pp. 1441–1459 (cit. on p. 3).

Dieng, A. B., D. Tran, R. Ranganath, J. W. Paisley, and D. M. Blei (2017). “Variational
Inference via \chi Upper Bound Minimization.” In: Advances in Neural Information
Processing Systems 30, pp. 2732–2741 (cit. on p. 23).

Ding, S. and D. Cook (2014). “Dimension folding PCA and PFC for matrix-valued predic-
tors.” In: Statistica Sinica 24.1, pp. 463–492 (cit. on p. 59).

Du, M., F. Yang, N. Zou, and X. Hu (2021). “Fairness in Deep Learning: A Computational
Perspective.” In: IEEE Intelligent Systems 36.4, pp. 25–34 (cit. on p. 1).

Duane, S., A. Kennedy, B. J. Pendleton, and D. Roweth (1987). “Hybrid Monte Carlo.” In:
Physics Letters B 195.2, pp. 216–222 (cit. on p. 9).

Duchi, J., E. Hazan, and Y. Singer (2011). “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization.” In: Journal of Machine Learning Research 12,
pp. 2121–2159 (cit. on pp. 2, 31, 35, 37).

Dunlop, M. M., M. A. Girolami, A. M. Stuart, and A. L. Teckentrup (2018). “How Deep Are
Deep Gaussian Processes?” In: Journal of Machine Learning Research 19.1, pp. 2100–2145

(cit. on p. 76).

Duvenaud, D. K., O. Rippel, R. P. Adams, and Z. Ghahramani (2014). “Avoiding pathologies
in very deep networks.” In: Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014.
Vol. 33. JMLR.org, pp. 202–210 (cit. on pp. 76, 81, 104).

Dziugaite, G. K. and D. M. Roy (2017). “Computing Nonvacuous Generalization Bounds for
Deep (Stochastic) Neural Networks with Many More Parameters than Training Data.”
In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI
2017, Sydney, Australia, August 11-15, 2017 (cit. on p. 35).

Edwards, A. W. F. (1978). “Commentary on the Arguments of Thomas Bayes.” In: Scandina-
vian Journal of Statistics 5.2, pp. 116–118 (cit. on p. 15).

142 bibliography

Erhan, D., A. Courville, and P. Vincent (2010). “Why Does Unsupervised Pre-training Help
Deep Learning?” In: Journal of Machine Learning Research 11, pp. 625–660 (cit. on p. 36).

Farquhar, S., L. Smith, and Y. Gal (2020). “Liberty or Depth: Deep Bayesian Neural Nets Do
Not Need Complex Weight Posterior Approximations.” In: Advances in Neural Information
Processing Systems 33 (cit. on p. 10).

Filippone, M. and M. Girolami (2014). “Pseudo-Marginal Bayesian Inference for Gaus-
sian Processes.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36.11,
pp. 2214–2226 (cit. on pp. 108, 119).

Fino and Algazi (1976). “Unified Matrix Treatment of the Fast Walsh-Hadamard Transform.”
In: IEEE Transactions on Computers C-25.11, pp. 1142–1146 (cit. on p. 57).

Flach, P. A. (2016). “Classifier Calibration.” In: Encyclopedia of Machine Learning and Data
Mining. Springer US, pp. 1–8 (cit. on p. 48).

Flam-Shepherd, D., J. Requeima, and D. Duvenaud (2017). “Mapping Gaussian Process
Priors to Bayesian Neural Networks.” In: NeurIPS workshop on Bayesian Deep Learning
(cit. on pp. 85, 97, 104).

Flam-Shepherd, D., J. Requeima, and D. Duvenaud (2018). “Characterizing and Warping
the Function space of Bayesian Neural Networks.” In: NeurIPS workshop on Bayesian Deep
Learning (cit. on pp. 85, 104).

Franzese, G., D. Milios, M. Filippone, and P. Michiardi (2021a). “A Scalable Bayesian
Sampling Method Based on Stochastic Gradient Descent Isotropization.” In: Entropy
23.11 (cit. on p. 10).

Franzese, G., D. Milios, M. Filippone, and P. Michiardi (2021b). “Revisiting the effects of
stochasticity for Hamiltonian samplers.” In: CoRR abs/2106.16200 (cit. on p. 11).

Fussell, L. and B. Moews (2019). “Forging new worlds: High-resolution synthetic galaxies
with chained generative adversarial networks.” In: Monthly Notices of the Royal Astronomi-
cal Society 485.3, pp. 3215–3223 (cit. on p. 3).

G. Matthews, A. G. de, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani (2018).
“Gaussian Process Behaviour in Wide Deep Neural Networks.” In: Proceedings of the 6th
International Conference on Learning Representations (cit. on pp. 21, 76, 81).

Gal, Y. (2016). “Uncertainty in Deep Learning.” Doctoral dissertation. University of Cam-
bridge (cit. on p. 8).

Gal, Y. and Z. Ghahramani (2016a). Bayesian Convolutional Neural Networks with Bernoulli
Approximate Variational Inference. arXiv:1506.02158 (cit. on pp. 34, 35, 47, 76).

Gal, Y. and Z. Ghahramani (2016b). “Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning.” In: Proceedings of The 33rd International Conference

bibliography 143

on Machine Learning. Vol. 48. PMLR, pp. 1050–1059 (cit. on pp. 9, 34, 43, 54, 55, 67, 76,
108).

Gal, Y., J. Hron, and A. Kendall (2017). “Concrete Dropout.” In: Advances in Neural Informa-
tion Processing Systems 30. Curran Associates, Inc., pp. 3581–3590 (cit. on p. 34).

Garipov, T., P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson (2018). “Loss
Surfaces, Mode Connectivity, and Fast Ensembling of DNNs.” In: Advances in Neural
Information Processing Systems 31. Curran Associates, Inc., pp. 8789–8798 (cit. on pp. 11,
35).

Garriga-Alonso, A., C. E. Rasmussen, and L. Aitchison (2019). “Deep Convolutional Net-
works as shallow Gaussian Processes.” In: International Conference on Learning Representa-
tions (cit. on pp. 21, 76).

Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium
(cit. on p. 2).

Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimis obnoxiae (Theory of
the combination of observations least subject to error) (cit. on p. 2).

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian Data Analysis. 2nd ed.
Chapman and Hall/CRC (cit. on pp. 67, 128).

Ghahramani, Z. (2013). “Bayesian non-parametrics and the probabilistic approach to mod-
elling.” In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 371.1984 (cit. on p. 16).

Ghahramani, Z. (2015). “Probabilistic Machine Learning and Artificial Intelligence.” In:
Nature 521.7553, pp. 452–459 (cit. on pp. 16, 34).

Giraldo, J.-J. and M. A. Álvarez (2019). “A Fully Natural Gradient Scheme for Improving
Inference of the Heterogeneous Multi-Output Gaussian Process Model.” In: arXiv preprint
arXiv:1911.10225 (cit. on p. 109).

Glorot, X. and Y. Bengio (2010). “Understanding the Difficulty of Training Deep Feedforward
Neural Networks.” In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. Vol. 9. PMLR, pp. 249–256 (cit. on pp. 35, 36, 43).

Gonzalez, J. A., F. J. Rodriguez-Cortes, O. Cronie, and J. Mateu (2016). “Spatio-temporal
Point Process Statistics: A Review.” In: Spatial Statistics 18, pp. 505–544 (cit. on p. 117).

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio (2014). “Generative Adversarial Nets.” In: Advances in Neural Information
Processing Systems. Vol. 27. Curran Associates, Inc. (cit. on p. 86).

Graves, A. (2011). “Practical Variational Inference for Neural Networks.” In: Advances in
Neural Information Processing Systems 24. Curran Associates, Inc., pp. 2348–2356 (cit. on
pp. 9, 27, 34, 35, 37, 54, 76, 82).

144 bibliography

Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola (2012). “A Kernel
Two-sample Test.” In: Journal of Machine Learning Research 13, pp. 723–773 (cit. on p. 56).

Gretton, A., K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola (2008). “A
Kernel Statistical Test of Independence.” In: Advances in Neural Information Processing
Systems 20. Curran Associates, Inc., pp. 585–592 (cit. on p. 56).

Grigorescu, S. M., B. Trasnea, T. T. Cocias, and G. Macesanu (2020). “A survey of deep
learning techniques for autonomous driving.” In: Journal of Field Robotics 37.3, pp. 362–386

(cit. on p. 1).

Grover, A., M. Dhar, and S. Ermon (2018). “Flow-GAN: Combining Maximum Likelihood
and Adversarial Learning in Generative Models.” In: Proceedings of the 32nd Conference on
Artificial Intelligence, AAAI 2018. AAAI Press, pp. 3069–3076 (cit. on p. 90).

Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville (2017). “Improved
Training of Wasserstein GANs.” In: Advances in Neural Information Processing Systems.
Vol. 30. Curran Associates, Inc., pp. 5767–5777 (cit. on p. 87).

Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger (2017). “On Calibration of Modern Neural
Networks.” In: Proceedings of the 34th International Conference on Machine Learning. Vol. 70.
PMLR, pp. 1321–1330 (cit. on pp. 1, 33, 48).

Gupta, A. K. and D. K. Nagar (1999). Matrix variate distributions. Chapman and Hall/CRC
(cit. on p. 62).

Ha, D., A. M. Dai, and Q. V. Le (2016). HyperNetworks. arXiv:1609.09106 (cit. on p. 34).

Ha, D., A. M. Dai, and Q. V. Le (2017). “HyperNetworks.” In: International Conference on
Learning Representations (cit. on p. 85).

Hadamard, J. (1908). Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques
encastrées. Imprimerie nationale (cit. on p. 2).

Hafner, D., D. Tran, T. P. Lillicrap, A. Irpan, and J. Davidson (2019). “Noise Contrastive
Priors for Functional Uncertainty.” In: Proceedings of the 35h Conference on Uncertainty in
Artificial Intelligence, UAI 2019. AUAI Press, p. 332 (cit. on p. 84).

Havasi, M., J. M. Hernández-Lobato, and J. J. Murillo-Fuentes (2018). “Inference in Deep
Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo.” In: Advances
in Neural Information Processing Systems 31. Curran Associates, Inc., pp. 7506–7516 (cit. on
pp. 108, 117, 122, 123, 125, 129).

He, B., B. Lakshminarayanan, and Y. W. Teh (2020). “Bayesian Deep Ensembles via the
Neural Tangent Kernel.” In: Advances in Neural Information Processing Systems 33 (cit. on
p. 11).

bibliography 145

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep Residual Learning for Image Recogni-
tion.” In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pp. 770–778 (cit. on pp. 35, 39, 70, 93).

Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York (cit. on p. 2).

Heisenberg, W. (1927). “Uber den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik.” In: Zeitschrift fur Physik 43.3-4, pp. 172–198 (cit. on p. 135).

Helgason, S. (2010). Integral Geometry and Radon Transforms. Springer Science & Business
Media (cit. on p. 98).

Hensman, J., N. Fusi, and N. D. Lawrence (2013). “Gaussian Processes for Big Data.” In:
Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence. AUAI
Press, pp. 282–290 (cit. on pp. 108, 122).

Hensman, J., A. G. Matthews, M. Filippone, and Z. Ghahramani (2015). “MCMC for
Variationally Sparse Gaussian Processes.” In: Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., pp. 1648–1656 (cit. on pp. 74, 108, 109, 111, 112, 121,
123, 124, 128).

Hensman, J., A. Matthews, and Z. Ghahramani (2015). “Scalable Variational Gaussian
Process Classification.” In: Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2015. Vol. 38. PMLR, pp. 351–360 (cit. on pp. 108, 123,
125).

Hernandez-Lobato, J. M. and R. Adams (2015). “Probabilistic Backpropagation for Scalable
Learning of Bayesian Neural Networks.” In: Proceedings of the 32nd International Conference
on Machine Learning. Vol. 37. PMLR, pp. 1861–1869 (cit. on pp. 9, 68, 76).

Higgins, I., L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner (2017). “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework.” In: International Conference on Learning Representations (cit. on
p. 76).

Hinton, G. E. and D. van Camp (1993). “Keeping the Neural Networks Simple by Minimiz-
ing the Description Length of the Weights.” In: Proceedings of the Sixth Annual Conference
on Computational Learning Theory (cit. on pp. 9, 24).

Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the Dimensionality of Data with
Neural Networks.” In: Science 313.5786, pp. 504–507 (cit. on p. 100).

Hochreiter, S. and J. Schmidhuber (1997). “Long Short-Term Memory.” In: Neural Computa-
tion 9.8, pp. 1735–1780 (cit. on p. 2).

Hoffman, M. D., D. M. Blei, C. Wang, and J. W. Paisley (2013). “Stochastic Variational
Inference.” In: Journal of Machine Learning Research 14.1, pp. 1303–1347 (cit. on p. 27).

146 bibliography

Huang, H.-Y., M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean
(2021). “Power of data in quantum machine learning.” In: Nature Communications 12.1,
pp. 1–9 (cit. on p. 135).

Hubara, I., M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio (2016). “Binarized Neural
Networks.” In: Advances in Neural Information Processing Systems 29. Curran Associates,
Inc., pp. 4107–4115 (cit. on p. 76).

Immer, A., M. Bauer, V. Fortuin, G. Rätsch, and M. E. Khan (2021). “Scalable Marginal
Likelihood Estimation for Model Selection in Deep Learning.” In: Proceedings of the 38th
International Conference on Machine Learning. Vol. 139. PMLR, pp. 4563–4573 (cit. on pp. 10,
82, 96).

Immer, A., M. Korzepa, and M. Bauer (2021). “Improving predictions of Bayesian neural
nets via local linearization.” In: Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics. Vol. 130. PMLR, pp. 703–711 (cit. on pp. 10, 84).

Izmailov, P., S. Vikram, M. D. Hoffman, and A. G. Wilson (2021). “What Are Bayesian
Neural Network Posteriors Really Like?” In: Proceedings of the 38th International Conference
on Machine Learning. Vol. 139. PMLR, pp. 4629–4640 (cit. on pp. 11, 104).

Jacobs, R. A. (1988). “Increased rates of convergence through learning rate adaptation.” In:
Neural Networks 1.4, pp. 295–307 (cit. on p. 2).

Jang, P. A., A. Loeb, M. Davidow, and A. G. Wilson (2017). “Scalable Lévy Process Priors
for Spectral Kernel Learning.” In: Advances in Neural Information Processing Systems 30,
pp. 3940–3949 (cit. on p. 116).

Jeffreys, H. (1939). Theory of Probability. Oxford (cit. on p. 15).

Jeffreys, H. (1946). “An invariant form for the prior probability in estimation problems.”
In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
186.1007, pp. 453–461 (cit. on p. 16).

Jia, Y. (2014). “Learning Semantic Image Representations at a Large Scale.” Doctoral
dissertation. EECS Department, University of California, Berkeley (cit. on p. 41).

Jiménez-Luna, J., F. Grisoni, and G. Schneider (1, 2020). “Drug discovery with explainable
artificial intelligence.” In: Nature Machine Intelligence, pp. 573–584 (cit. on p. 1).

Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and L. K. Saul (1, 1999). “An Introduction
to Variational Methods for Graphical Models.” In: Machine Learning 37.2, pp. 183–233

(cit. on pp. 22, 34, 53).

Jumper, J. et al. (2021). “Highly accurate protein structure prediction with AlphaFold.” In:
Nature 596.7873, pp. 583–589 (cit. on p. 1).

Kantorovich, L. V. (1942). “On the transfer of masses.” In: Doklady Akademii Nauk SSSR 37,
pp. 227–229 (cit. on p. 86).

bibliography 147

Kantorovich, L. V. (1948). “On a problem of Monge.” In: Uspekhi Matematicheskikh Nauk 3,
pp. 225–226 (cit. on p. 86).

Karagiorgi, G., G. Kasieczka, S. Kravitz, B. Nachman, and D. Shih (2021). “Machine Learning
in the Search for New Fundamental Physics.” In: (cit. on p. 135).

Karaletsos, T. and T. Bui (2019). “Gaussian Process Meta-Representations For Hierarchical
Neural Network Weight Priors.” In: 2nd Symposium on Advances in Approximate Bayesian
Inference (cit. on p. 84).

Karaletsos, T. and T. Bui (2020). “Hierarchical Gaussian Process Priors for Bayesian Neural
Network Weights.” In: Advances in Neural Information Processing Systems. Vol. 33 (to
appear) (cit. on p. 84).

Kendall, A. and Y. Gal (2017). “What Uncertainties Do We Need in Bayesian Deep Learning
for Computer Vision?” In: Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., pp. 5574–5584 (cit. on pp. 9, 33, 79).

Kendall, A., J. Hawke, et al. (2019). “Learning to Drive in a Day.” In: Proceedings of the
International Conference on Robotics and Automation. IEEE, pp. 8248–8254 (cit. on p. 1).

Kennard, E. H. (1927). “Zur Quantenmechanik einfacher Bewegungstypen.” In: Zeitschrift
fur Physik 44.4-5, pp. 326–352 (cit. on p. 135).

Khan, M. E. E., A. Immer, E. Abedi, and M. Korzepa (2019). “Approximate Inference Turns
Deep Networks into Gaussian Processes.” In: Advances in Neural Information Processing
Systems. Vol. 32. Curran Associates, Inc. (cit. on pp. 21, 84).

Khan, M. E., D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal, and A. Srivastava (2018). “Fast and
Scalable Bayesian Deep Learning by Weight-Perturbation in Adam.” In: Proceedings of the
35th International Conference on Machine Learning. Vol. 80. PMLR, pp. 2616–2625 (cit. on
p. 9).

Khan, M. E. and H. Rue (2021). “The Bayesian Learning Rule.” In: CoRR abs/2107.04562

(cit. on p. 135).

Kim, Y., C. Yang, Y. Kim, G. X. Gu, and S. Ryu (2020). “Designing an Adhesive Pillar Shape
with Deep Learning-Based Optimization.” In: ACS Applied Materials and Interfaces 12.21,
pp. 24458–24465 (cit. on p. 3).

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization.” In: Proceed-
ings of the 3rd International Conference on Learning Representations (cit. on pp. 2, 28, 35, 37,
44, 62, 66, 91, 122).

Kingma, D. P. and M. Welling (2014). “Auto-Encoding Variational Bayes.” In: Proceedings of
the 2nd International Conference on Learning Representations (cit. on pp. 25, 34, 37, 62, 100).

Kingma, D. P. and M. Welling (2019). “An Introduction to Variational Autoencoders.” In:
Foundations and Trends in Machine Learning 12.4, pp. 307–392 (cit. on p. 101).

148 bibliography

Kingma, D. P., T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling (2016).
“Improved Variational Inference with Inverse Autoregressive Flow.” In: Advances in
Neural Information Processing Systems 29. Curran Associates, Inc., pp. 4743–4751 (cit. on
pp. 66, 70, 90, 164).

Kiran, B. R., I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yogamani, and P. Pérez
(2021). “Deep Reinforcement Learning for Autonomous Driving: A Survey.” In: IEEE
Transactions on Intelligent Transportation Systems, pp. 1–18 (cit. on p. 1).

Kolouri, S., K. Nadjahi, U. Simsekli, R. Badeau, and G. K. Rohde (2019). “Generalized
Sliced Wasserstein Distances.” In: Advances in Neural Information Processing Systems 32,
pp. 261–272 (cit. on p. 98).

Kraska, T., A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis (2018). “The Case for Learned
Index Structures.” In: Proceedings of the 2018 International Conference on Management of
Data. Association for Computing Machinery, pp. 489–504 (cit. on p. 3).

Krauth, K., E. V. Bonilla, K. Cutajar, and M. Filippone (2017). “AutoGP: Exploring the
Capabilities and Limitations of Gaussian Process Models.” In: Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence, UAI 2017. AUAI Press (cit. on
p. 108).

Krishnan, R., D. Liang, and M. Hoffman (2018). “On the Challenges of Learning with
Inference Networks on Sparse, High-Dimensional Data.” In: Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics. Vol. 84. PMLR, pp. 143–
151 (cit. on p. 37).

Kristiadi, A., M. Hein, and P. Hennig (2020). “Being Bayesian, Even Just a Bit, Fixes
Overconfidence in ReLU Networks.” In: Proceedings of the 37th International Conference on
Machine Learning. Vol. 119. PMLR, pp. 5436–5446 (cit. on p. 10).

Krizhevsky, A. and G. Hinton (2009). “Learning multiple layers of features from tiny
images.” In: Master’s thesis, Department of Computer Science, University of Toronto (cit. on
p. 93).

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “ImageNet Classification with Deep
Convolutional Neural Networks.” In: Advances in Neural Information Processing Systems.
Vol. 25. Curran Associates, Inc. (cit. on pp. 2, 48, 70).

Kwon, J. and L. P. Carloni (2020). “Transfer learning for design-space exploration with
high-level synthesis.” In: Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning
for CAD (cit. on p. 3).

Lakshminarayanan, B., A. Pritzel, and C. Blundell (2017). “Simple and Scalable Predic-
tive Uncertainty Estimation using Deep Ensembles.” In: Advances in Neural Information
Processing Systems 30. Curran Associates, Inc., pp. 6402–6413 (cit. on pp. 11, 33, 91).

bibliography 149

Lanusse, F., P. Melchior, and F. Moolekamp (2019). “Hybrid physical-deep learning model
for astronomical inverse problems.” In: arXiv (cit. on p. 3).

Lavancier, F., J. Møller, and E. Rubak (2015). “Determinantal Point Process Models and
Statistical Inference.” In: Royal Statistical Society B 77, pp. 853–877 (cit. on p. 118).

Lawrence, N. D. (2005). “Probabilistic Non-linear Principal Component Analysis with
Gaussian Process Latent Variable Models.” In: Journal of Machine Learning Research 6,
pp. 1783–1816 (cit. on p. 100).

Lázaro-Gredilla, M., J. Quinonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal
(2010). “Sparse Spectrum Gaussian Process Regression.” In: Journal of Machine Learning
Research 11, pp. 1865–1881 (cit. on pp. 73, 76).

Lazaro-Gredilla, M. and A. Figueiras-Vidal (2009). “Inter-domain Gaussian Processes for
Sparse Inference using Inducing Features.” In: Advances in Neural Information Processing
Systems 22. Curran Associates, Inc., pp. 1087–1095 (cit. on p. 108).

Le, Q., T. Sarlos, and A. Smola (2013). “Fastfood - Approximating Kernel Expansions in
Loglinear Time.” In: Proceedings of the 30th International Conference on Machine Learning
(cit. on pp. 55, 56, 75, 76).

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel
(1989). “Backpropagation Applied to Handwritten Zip Code Recognition.” In: Neural
Computation 1.4, pp. 541–551 (cit. on p. 2).

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel
(1990). “Handwritten digit recognition with a back-propagation network.” In: Advances
in Neural Information Processing Systems 2. Morgan Kaufman (cit. on p. 2).

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-Based Learning Applied
to Document Recognition.” In: Proceedings of the IEEE 86.11, pp. 2278–2324 (cit. on pp. 2,
36, 45, 93).

LeCun, Y., P. Y. Simard, and B. A. Pearlmutter (1993). “Automatic Learning Rate Maxi-
mization by On-Line Estimation of the Hessian’s Eigenvectors.” In: Advances in Neural
Information Processing Systems 5. Morgan Kaufmann, pp. 156–163 (cit. on p. 2).

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning.” In: Nature 521.7553, pp. 436–
444 (cit. on pp. 1, 33).

Lee, J., J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz, and Y. Bahri (2018).
“Deep Neural Networks as Gaussian Processes.” In: International Conference on Learning
Representations (cit. on p. 21).

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des cometes. F.
Didot (cit. on p. 2).

150 bibliography

Leibniz, G. W. (1676). “Memoir using the chain rule (Cited in TMME 7:2&3 p 321-332,
2010).” In: (cit. on p. 2).

Li, G., X. Zhou, S. Li, and B. Gao (2019). “QTune: A Query-Aware Database Tuning
System with Deep Reinforcement Learning.” In: Proceedings of the VLDB Endowment 12.12,
pp. 2118–2130 (cit. on p. 3).

Li, Y. and Y. Gal (2017). “Dropout Inference in Bayesian Neural Networks with Alpha-
divergences.” In: Proceedings of the 34th International Conference on Machine Learning. Vol. 70.
PMLR, pp. 2052–2061 (cit. on pp. 9, 23).

Li, Y. and R. E. Turner (2016). “Rényi Divergence Variational Inference.” In: Advances in
Neural Information Processing Systems 29, pp. 1073–1081 (cit. on p. 23).

Linnainmaa, S. (1970). “The representation of the cumulative rounding error of an algorithm
as a Taylor expansion of the local rounding errors.” Master’s thesis. Univ. Helsinki (cit. on
p. 2).

Liu, H., M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte (2015). “Cardinality Estimation Using
Neural Networks.” In: Proceedings of the 25th Annual International Conference on Computer
Science and Software Engineering. IBM Corp., pp. 53–59 (cit. on p. 3).

Liu, Q. and D. Wang (2016). “Stein Variational Gradient Descent: A General Purpose
Bayesian Inference Algorithm.” In: Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., pp. 2378–2386 (cit. on p. 9).

Loaiza-Ganem, G. and J. P. Cunningham (2019). “The Continuous Bernoulli: Fixing a
Pervasive Error in Variational Autoencoders.” In: Advances in Neural Information Processing
Systems 32, pp. 13266–13276 (cit. on p. 102).

Louizos, C., K. Ullrich, and M. Welling (2017). “Bayesian Compression for Deep Learning.”
In: Advances in Neural Information Processing Systems 30. Curran Associates, Inc., pp. 3288–
3298 (cit. on pp. 54, 76).

Louizos, C. and M. Welling (2016). “Structured and Efficient Variational Deep Learning
with Matrix Gaussian Posteriors.” In: Proceedings of The 33rd International Conference on
Machine Learning. Vol. 48. PMLR, pp. 1708–1716 (cit. on pp. 9, 40, 55, 58, 64, 68).

Louizos, C. and M. Welling (2017). “Multiplicative Normalizing Flows for Variational
Bayesian Neural Networks.” In: Proceedings of the 34th International Conference on Machine
Learning. Vol. 70. PMLR, pp. 2218–2227 (cit. on pp. 66, 70, 90, 164).

Lu, Y. C., S. S. Kiran Pentapati, L. Zhu, K. Samadi, and S. K. Lim (2020). “TP-GNN: A graph
neural network framework for tier partitioning in monolithic 3D ICs.” In: Proceedings -
Design Automation Conference (cit. on p. 3).

bibliography 151

Ma, C., Y. Li, and J. M. Hernández-Lobato (2019). “Variational Implicit Processes.” In:
Proceedings of the 36th International Conference on Machine Learning. Vol. 97. PMLR, pp. 4222–
4233 (cit. on p. 84).

Mackay, D. J. C. (1994). “Bayesian methods for backpropagation networks.” In: Models of
Neural Networks III. Springer. Chap. 6, pp. 211–254 (cit. on pp. 54, 119).

MacKay, D. J. C. (1991). “Bayesian Model Comparison and Backprop Nets.” In: Advances in
Neural Information Processing Systems 4. Morgan Kaufmann, pp. 839–846 (cit. on p. 8).

MacKay, D. J. C. (1992). “A Practical Bayesian Framework for Backpropagation Networks.”
In: Neural Computation 4.3, pp. 448–472 (cit. on pp. 8, 17, 103).

MacKay, D. J. C. (1998). “Choice of Basis for Laplace Approximation.” In: Machine Learning
33.1, pp. 77–86 (cit. on p. 10).

MacKay, D. J. (1995). “Probable Networks and Plausible Predictions - a Review of Practical
Bayesian Methods for Supervised Neural Networks.” In: Network: computation in neural
systems 6.3, p. 469 (cit. on p. 82).

MacKay, D. J. and M. N. Gibbs (1999). “Density Networks.” In: Statistics and Neural Networks:
Advances at the Interface, pp. 129–144 (cit. on p. 100).

Maddison, C. J., A. Mnih, and Y. W. Teh (2017). “The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables.” In: Proceedings of the 5th International Conference
on Learning Representations. OpenReview.net (cit. on p. 26).

Marcus, R. and O. Papaemmanouil (2019). “Plan-Structured Deep Neural Network Models
for Query Performance Prediction.” In: Proceedings of the VLDB Endowment. Vol. 12. 11,
pp. 1733–1746 (cit. on p. 3).

Matthews, A. G., M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,
Z. Ghahramani, and J. Hensman (2017). “GPflow: A Gaussian Process Library using
TensorFlow.” In: Journal of Machine Learning Research 18.40, pp. 1–6 (cit. on pp. 108, 124).

Metropolis, N. and S. Ulam (1949). “The Monte Carlo Method.” In: Journal of the American
Statistical Association 44.247. PMID: 18139350, pp. 335–341 (cit. on p. 24).

Milios, D., R. Camoriano, P. Michiardi, L. Rosasco, and M. Filippone (2018). “Dirichlet-
based Gaussian Processes for Large-scale Calibrated Classification.” In: Advances in
Neural Information Processing Systems 31. Curran Associates, Inc., pp. 6008–6018 (cit. on
pp. 40, 41).

Milios, D., P. Michiardi, and M. Filippone (2020). “A Variational View on Bootstrap Ensem-
bles as Bayesian Inference.” In: CoRR abs/2006.04548 (cit. on p. 11).

Mishkin, D. and J. Matas (2016). “All You Need is a Good Init.” In: CoRR abs/1511.06422

(cit. on pp. 35, 37, 43).

152 bibliography

Močkus, J. (1975). “On Bayesian Methods for Seeking the Extremum.” In: Optimization
Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974. Springer Berlin Heidelberg,
pp. 400–404 (cit. on p. 95).

Molchanov, D., A. Ashukha, and D. Vetrov (2017). “Variational Dropout Sparsifies Deep
Neural Networks.” In: Proceedings of the 34th International Conference on Machine Learning.
Vol. 70. PMLR, pp. 2498–2507 (cit. on p. 54).

Muralidharan, D. et al. (18, 2019). “Leveraging User Engagement Signals For Entity Labeling
in a Virtual Assistant.” In: (cit. on p. 1).

Murphy, K. P. (2012). Machine learning - A Probabilistic Perspective. MIT Press (cit. on pp. 17,
18, 40).

Murray, I. and R. P. Adams (2010). “Slice Sampling Covariance Hyperparameters of Latent
Gaussian Models.” In: Advances in Neural Information Processing Systems 23. Curran
Associates, Inc., pp. 1732–1740 (cit. on p. 108).

Murray, I. and Z. Ghahramani (2005). A Note on the Evidence and Bayesian Occam’s Razor.
Tech. rep. GCNU-TR 2005-003. Gatsby Computational Neuroscience Unit, University
College London (cit. on pp. 17, 103).

Naeini, M. P., G. F. Cooper, and M. Hauskrecht (2015). “Obtaining Well Calibrated Proba-
bilities Using Bayesian Binning.” In: AAAI. AAAI Press, pp. 2901–2907 (cit. on p. 49).

Nalisnick, E. T., J. Gordon, and J. M. Hernández-Lobato (2021). “Predictive Complexity
Priors.” In: 130, pp. 694–702 (cit. on p. 84).

Neal, R. M. (1997). “Monte Carlo Implementation of Gaussian Process Models for Bayesian
Regression and Classification.” In: Technical Report (cit. on p. 108).

Neal, R. M. (1992a). “Bayesian Learning via Stochastic Dynamics.” In: Advances in Neural
Information Processing Systems 5. Morgan Kaufmann, pp. 475–482 (cit. on p. 8).

Neal, R. M. (1992b). Bayesian training of backpropagation networks by the hybrid Monte Carlo
method. Technical Report CRG-TR-92-1. University of Toronto (cit. on p. 8).

Neal, R. M. (1994a). “Bayesian Learning for Neural Networks.” Doctoral dissertation.
University of Toronto (cit. on p. 9).

Neal, R. M. (1994b). Priors for infinite networks. Technical Report CRG-TR-94-1. University of
Toronto (cit. on p. 9).

Neal, R. M. (1996). Bayesian Learning for Neural Networks (Lecture Notes in Statistics). 1st ed.
Springer (cit. on pp. 9, 21, 54, 76, 81, 104).

Neal, R. M. (2011). “MCMC Using Hamiltonian Dynamics.” In: Handbook of Markov Chain
Monte Carlo. CRC Press. Chap. 5 (cit. on pp. 10, 117).

bibliography 153

Newton, M. A. and A. E. Raftery (1994). “Approximate Bayesian inference with the weighted
likelihood bootstrap.” English. In: Journal of the Royal Statistical Society. Series B 56.1, pp. 3–
48 (cit. on p. 11).

Neyshabur, B., Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro (2019). “The role of over-
parametrization in generalization of neural networks.” In: International Conference on
Learning Representations (cit. on p. 76).

Neyshabur, B., R. Tomioka, and N. Srebro (2015). “In Search of the Real Inductive Bias: On
the Role of Implicit Regularization in Deep Learning.” In: ICLR (Workshop) (cit. on p. 76).

Nguyen, X., M. J. Wainwright, and M. I. Jordan (2010). “Estimating Divergence Function-
als and the Likelihood Ratio by Convex Risk Minimization.” In: IEEE Transactions on
Information Theory 56.11, pp. 5847–5861 (cit. on p. 97).

Niculescu-Mizil, A. and R. Caruana (2005). “Predicting Good Probabilities with Supervised
Learning.” In: Proceedings of the 22nd International Conference on Machine Learning. ACM,
pp. 625–632 (cit. on p. 48).

Nogueira, F. (2014). Bayesian Optimization: Open source constrained global optimization tool for
Python (cit. on p. 95).

Novak, R., L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz (2020).
“Neural Tangents: Fast and Easy Infinite Neural Networks in Python.” In: Proceedings of
the International Conference on Learning Representations (cit. on p. 135).

Novikov, A., D. Podoprikhin, A. Osokin, and D. P. Vetrov (2015). “Tensorizing Neural
Networks.” In: Advances in Neural Information Processing Systems 28. Curran Associates,
Inc., pp. 442–450 (cit. on pp. 55, 62).

O’Hagan, A. (1991). “Bayes–Hermite quadrature.” In: Journal of Statistical Planning and
Inference 29.3, pp. 245–260 (cit. on p. 79).

Ober, S. W., C. E. Rasmussen, and M. van der Wilk (2021). “The Promises and Pitfalls of
Deep Kernel Learning.” In: Proceedings of the 37th Conference on Uncertainty in Artificial
Intelligence, UAI 2021, July 27-30, 2021, Virtual Event (cit. on p. 96).

Oh, K.-S. and K. Jung (2004). “GPU implementation of neural networks.” In: Pattern
Recognition 37.6, pp. 1311–1314 (cit. on p. 2).

Osawa, K., S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner, and R.
Yokota (2019). “Practical Deep Learning with Bayesian Principles.” In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc., pp. 4287–4299 (cit. on
pp. 9, 79, 104).

Ovadia, Y. et al. (2019). “Can you trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift.” In: Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc., pp. 13991–14002 (cit. on p. 91).

154 bibliography

Pace, F., D. Venzano, D. Carra, and P. Michiardi (2017). “Flexible Scheduling of Distributed
Analytic Applications.” In: Proceedings of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID ’17), pp. 100–109 (cit. on p. 126).

Paszke, A. et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning
Library.” In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
pp. 8024–8035 (cit. on pp. 3, 26, 43).

Pearce, T., R. Tsuchida, M. Zaki, A. Brintrup, and A. Neely (2019). “Expressive Priors in
Bayesian Neural Networks: Kernel Combinations and Periodic Functions.” In: Proceedings
of the 35th Conference on Uncertainty in Artificial Intelligence, UAI 2019. AUAI Press, p. 25

(cit. on p. 84).

Pérez-Ortiz, J. A., F. A. Gers, D. Eck, and J. Schmidhuber (2003). “Kalman filters improve
LSTM network performance in problems unsolvable by traditional recurrent nets.” In:
Neural Networks 16, pp. 241–250 (cit. on p. 2).

Pleiss, G. and J. P. Cunningham (2021). “The Limitations of Large Width in Neural Networks:
A Deep Gaussian Process Perspective.” In: CoRR abs/2106.06529 (cit. on p. 21).

Popper, K. R. (1934). The Logic of Scientific Discovery. Hutchinson (cit. on p. 135).

Quiñonero-Candela, J. and C. E. Rasmussen (2005). “A Unifying View of Sparse Ap-
proximate Gaussian Process Regression.” In: Journal of Machine Learning Research 6.Dec,
pp. 1939–1959 (cit. on pp. 110–114).

Rahimi, A. and B. Recht (2008). “Random Features for Large-Scale Kernel Machines.” In:
Advances in Neural Information Processing Systems 20. Curran Associates, Inc., pp. 1177–
1184 (cit. on pp. 56, 75, 108).

Ranganath, R., L. Tang, L. Charlin, and D. Blei (2015). “Deep Exponential Families.” In:
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics.
Vol. 38. PMLR, pp. 762–771 (cit. on p. 34).

Ranzato, M., C. Poultney, S. Chopra, and Y. Leun (2006). “Efficient Learning of Sparse Rep-
resentations with an Energy-Based Model.” In: Advances in Neural Information Processing
Systems, pp. 1137–1144 (cit. on p. 2).

Rasmussen, C. E. and Z. Ghahramani (2002). “Bayesian Monte Carlo.” In: Advances in Neural
Information Processing Systems. Vol. 15. MIT Press, pp. 489–496 (cit. on p. 79).

Rasmussen, C. E. and C. K. I. Williams (2005). Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (cit. on pp. 21, 82, 85, 96, 107,
122).

Rezende, D. J., S. Mohamed, and D. Wierstra (2014). “Stochastic Backpropagation and
Approximate Inference in Deep Generative Models.” In: Proceedings of the 31st International
Conference on Machine Learning. Vol. 32. 2. PMLR, pp. 1278–1286 (cit. on p. 35).

bibliography 155

Rezende, D. and S. Mohamed (2015). “Variational Inference with Normalizing Flows.”
In: Proceedings of the 32nd International Conference on Machine Learning. Vol. 37. PMLR,
pp. 1530–1538 (cit. on pp. 34, 54, 65, 66, 70, 90, 164).

Ritter, H., A. Botev, and D. Barber (2018). “A Scalable Laplace Approximation for Neural
Networks.” In: Proceedings of the 6th International Conference on Learning Representations.
OpenReview.net (cit. on p. 10).

Robbins, H. and S. Monro (1951). “A Stochastic Approximation Method.” In: The Annals of
Mathematical Statistics 22.3, pp. 400–407 (cit. on pp. 2, 27).

Roeder, G., Y. Wu, and D. Duvenaud (2017). “Sticking the Landing: Simple, Lower-Variance
Gradient Estimators for Variational Inference.” In: Advances in Neural Information Process-
ing Systems 30, pp. 6925–6934 (cit. on p. 26).

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York (cit. on p. 2).

Rosenblatt, F. (1958). “The perceptron: a probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6, p. 386 (cit. on p. 2).

Ross, S. M. (2006). Simulation, Fourth Edition. Academic Press, Inc. (cit. on p. 25).

Rossi, S., S. Marmin, and M. Filippone (2020). “Walsh-Hadamard Variational Inference for
Bayesian Deep Learning.” In: Advances in Neural Information Processing Systems 33 (cit. on
pp. 9, 79).

Rossi, S., P. Michiardi, and M. Filippone (2019). “Good Initializations of Variational Bayes
for Deep Models.” In: Proceedings of the 36th International Conference on Machine Learning.
Vol. 97. PMLR, pp. 5487–5497 (cit. on pp. 54, 76, 79).

Ruiz, F. R., M. Titsias, and D. Blei (2016). “The Generalized Reparameterization Gradient.”
In: Advances in Neural Information Processing Systems. Vol. 29. Curran Associates, Inc.
(cit. on p. 26).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning Internal Representations
by Error Propagation.” In: Parallel Distributed Processing. Vol. 1. MIT Press, pp. 318–362

(cit. on pp. 2, 36).

Salimans, T. and D. A. Knowles (2013). “Fixed-Form Variational Posterior Approximation
through Stochastic Linear Regression.” In: Bayesian Analysis 8.4, pp. 837–882 (cit. on
p. 25).

Salimbeni, H. and M. Deisenroth (2017). “Doubly Stochastic Variational Inference for Deep
Gaussian Processes.” In: Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., pp. 4588–4599 (cit. on p. 120).

Saxe, A. M., J. L. McClelland, and S. Ganguli (2013). “Exact Solutions to the Nonlinear
Dynamics of Learning in Deep Linear Neural Networks.” In: CoRR abs/1312.6, pp. 1–22

(cit. on pp. 35, 37, 43).

156 bibliography

Schaul, T., S. Zhang, and Y. LeCun (2013). “No more pesky learning rates.” In: Proceedings
of the 30th International Conference on Machine Learning. Vol. 28. 3. PMLR, pp. 343–351

(cit. on p. 2).

Schmidhuber, J. (2015). “Deep learning in neural networks: An overview.” In: Neural
Networks 61, pp. 85–117 (cit. on p. 2).

Schmidt, R. M., F. Schneider, and P. Hennig (2021). “Descending through a Crowded
Valley - Benchmarking Deep Learning Optimizers.” In: Proceedings of the 38th International
Conference on Machine Learning. Vol. 139. PMLR, pp. 9367–9376 (cit. on p. 2).

Schuld, M. and F. Petruccione (2021). Machine learning with quantum computers. English.
Springer, pp. xiv + 312 (cit. on p. 135).

Seeger, M., C. K. Williams, and N. D. Lawrence (2003). “Fast Forward Selection to Speed
Up Sparse Gaussian Process Regression.” In: Artificial Intelligence and Statistics (cit. on
p. 113).

Sejdinovic, D., H. Strathmann, M. L. Garcia, C. Andrieu, and A. Gretton (2014). “Kernel
Adaptive Metropolis-Hastings.” In: Proceedings of the 31st International Conference on
Machine Learning. Vol. 32. 2. PMLR, pp. 1665–1673 (cit. on p. 56).

Shi, J., M. K. Titsias, and A. Mnih (2020). “Sparse Orthogonal Variational Inference for
Gaussian Processes.” In: The 23rd International Conference on Artificial Intelligence and
Statistics, AISTATS 2020. Vol. 108. PMLR, pp. 1932–1942 (cit. on pp. 108, 109).

Silva, F. M. and L. B. Almeida (1990). “Speeding Up Back-Propagation.” In: Advanced Neural
Computers. Elsevier, pp. 151–158 (cit. on p. 2).

Simard, P. and Y. LeCun (1993). “Local Computation of the Second Derivative Information
in a Multi-Layer Network.” In: Advances in Neural Information Processing Systems 5. CA:
Morgan Kaufmann (cit. on p. 2).

Simonyan, K. and A. Zisserman (2014). “Very Deep Convolutional Networks for Large-Scale
Image Recognition.” In: CoRR abs/1409.1556 (cit. on pp. 47, 49, 70, 93).

Snelson, E. L. (2007). “Flexible and efficient Gaussian process models for machine learning.”
Doctoral dissertation. UCL (University College London) (cit. on p. 114).

Snelson, E. and Z. Ghahramani (2006). “Sparse Gaussian Processes using Pseudo-Inputs.”
In: Advances in Neural Information Processing Systems 18. MIT Press, pp. 1257–1264 (cit. on
pp. 111, 112).

Snoek, J., H. Larochelle, and R. P. Adams (2012). “Practical Bayesian Optimization of
Machine Learning Algorithms.” In: Advances in Neural Information Processing Systems.
Vol. 25. Curran Associates, Inc. (cit. on p. 95).

bibliography 157

Sønderby, C. K., T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther (2016). “Ladder
Variational Autoencoders.” In: Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., pp. 3738–3746 (cit. on pp. 50, 54, 76).

Springenberg, J. T., A. Klein, S. Falkner, and F. Hutter (2016). “Bayesian Optimization with
Robust Bayesian Neural Networks.” In: Advances in Neural Information Processing Systems
29. Curran Associates, Inc., pp. 4134–4142 (cit. on pp. 10, 31, 67, 82, 90, 91).

Srinivas, N., A. Krause, S. M. Kakade, and M. W. Seeger (2010). “Gaussian Process Opti-
mization in the Bandit Setting: No Regret and Experimental Design.” In: Proceedings of
the 27th International Conference on Machine Learning. Omnipress, pp. 1015–1022 (cit. on
p. 79).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” In: Journal
of Machine Learning Research 15.1, pp. 1929–1958 (cit. on pp. 33, 35).

Strathmann, H., D. Sejdinovic, S. Livingstone, Z. Szabo, and A. Gretton (2015). “Gradient-
free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families.” In: Advances
in Neural Information Processing Systems 28. Curran Associates, Inc., pp. 955–963 (cit. on
p. 56).

Strauss, D. J. (1975). “A Model for Clustering.” In: Biometrika 62.2, pp. 467–475 (cit. on
p. 118).

Su, Y., D. Vandyke, S. Wang, Y. Fang, and N. Collier (2021). “Plan-then-Generate: Controlled
Data-to-Text Generation via Planning.” In: Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing. Association for Computational Linguistics,
pp. 895–909 (cit. on p. 1).

Sun, S., C. Chen, and L. Carin (2017). “Learning Structured Weight Uncertainty in Bayesian
Neural Networks.” In: Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics. Vol. 54. PMLR, pp. 1283–1292 (cit. on p. 9).

Sun, S., G. Zhang, J. Shi, and R. B. Grosse (2019). “Functional Variational Bayesian Neural
Networks.” In: Proceedings of the 7th International Conference on Learning Representations.
OpenReview.net (cit. on pp. 10, 84).

Sutskever, I., J. Martens, G. Dahl, and G. Hinton (2013). “On the importance of initialization
and momentum in deep learning.” In: Proceedings of the 30th International Conference on
Machine Learning. Vol. 28. 3. PMLR, pp. 1139–1147 (cit. on p. 37).

Thomas Bayes (1763). “An essay towards solving a problem in the doctrine of chances.” In:
Philosophical Transactions of the Royal Society of London 53, pp. 370–418 (cit. on p. 15).

Tieleman, T. and G. Hinton (2012). RMSProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning (cit. on p. 31).

158 bibliography

Tishby, Levin, and Solla (1989). “Consistent inference of probabilities in layered networks:
predictions and generalizations.” In: International 1989 Joint Conference on Neural Networks,
403–409 vol.2 (cit. on p. 8).

Titsias, M. K. (2009a). “Variational Model Selection for Sparse Gaussian Process Regression.”
In: Report, University of Manchester, UK (cit. on pp. 113, 116, 124).

Titsias, M. K. (2009b). “Variational Learning of Inducing Variables in Sparse Gaussian
Processes.” In: Proceedings of the Twelfth International Conference on Artificial Intelligence and
Statistics, AISTATS 2009. Vol. 5. JMLR.org, pp. 567–574 (cit. on pp. 74, 108, 109, 111–114,
123).

Tran, B., S. Rossi, D. Milios, P. Michiardi, E. V. Bonilla, and M. Filippone (2021). “Model
Selection for Bayesian Autoencoders.” In: CoRR abs/2106.06245 (cit. on p. 103).

Tran, G.-L., E. V. Bonilla, J. Cunningham, P. Michiardi, and M. Filippone (2019). “Calibrating
Deep Convolutional Gaussian Processes.” In: Proceedings of Machine Learning Research.
Vol. 89. PMLR, pp. 1554–1563 (cit. on p. 76).

Tran, B.-H., S. Rossi, D. Milios, and M. Filippone (2020). All You Need is a Good Functional
Prior for Bayesian Deep Learning (cit. on p. 94).

Tropp, J. A. (2011). “Improved Analysis of the subsampled Randomized Hadamard Trans-
form.” In: Advances in Adaptive Data Analysis 3.1-2, pp. 115–126 (cit. on pp. 55, 57).

Van den Berg, R., L. Hasenclever, J. M. Tomczak, and M. Welling (2018). “Sylvester Nor-
malizing Flows for Variational Inference.” In: UAI ’18: Proceedings of the Thirty-Fourth
Conference on Uncertainty in Artificial Intelligence (cit. on pp. 66, 70, 164).

Villani, C. (2003). Topics in Optimal Transportation. American Mathematical Society (cit. on
pp. 86, 167).

Villani, C. (2008). Optimal Transport: Old and New. Vol. 338. Springer Science & Business
Media (cit. on p. 98).

Vogl, T., J. Mangis, A. Rigler, W. Zink, and D. Alkon (1988). “Accelerating the Convergence
of the Back-Propagation Method.” In: Biological Cybernetics 59, pp. 257–263 (cit. on p. 2).

Wallach, H. M., D. M. Mimno, and A. McCallum (2009). “Rethinking LDA: Why Priors
Matter.” In: Advances in Neural Information Processing Systems 22. Curran Associates, Inc.,
pp. 1973–1981 (cit. on p. 130).

Wan, N., D. Li, and N. Hovakimyan (2020). “f-Divergence Variational Inference.” In:
Advances in Neural Information Processing Systems 33 (cit. on p. 23).

Wang, J. X., Z. Kurth-Nelson, D. Kumaran, D. Tirumala, H. Soyer, J. Z. Leibo, D. Hassabis,
and M. Botvinick (2018). “Prefrontal cortex as a meta-reinforcement learning system.” In:
Nature Neuroscience 21.6, pp. 860–868 (cit. on p. 3).

bibliography 159

Wen, W., C. Wu, Y. Wang, Y. Chen, and H. Li (2016). “Learning Structured Sparsity in
Deep Neural Networks.” In: Advances in Neural Information Processing Systems 29. Curran
Associates, Inc., pp. 2074–2082 (cit. on p. 71).

Wenzel, F. et al. (2020). “How Good is the Bayes Posterior in Deep Neural Networks
Really?” In: Proceeding of the 37th International Conference on Machine Learning (cit. on
pp. 54, 76, 80, 82, 91, 94).

Wilcoxon, F. (1945). “Individual Comparisons by Ranking Methods.” In: Biometrics Bulletin
1.6, pp. 80–83 (cit. on p. 124).

Wilk, M. van der, C. E. Rasmussen, and J. Hensman (2017). “Convolutional Gaussian
Processes.” In: Advances in Neural Information Processing Systems 30. Curran Associates,
Inc., pp. 2849–2858 (cit. on p. 108).

Wilson, A. G., Z. Hu, R. R. Salakhutdinov, and E. P. Xing (2016). “Stochastic Variational
Deep Kernel Learning.” In: Advances in Neural Information Processing Systems 29. Curran
Associates, Inc., pp. 2586–2594 (cit. on p. 108).

Wilson, A. G., Z. Hu, R. Salakhutdinov, and E. P. Xing (2016). “Deep Kernel Learning.”
In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
AISTATS 2016. Vol. 51. PMLR, pp. 370–378 (cit. on pp. 127, 128).

Wilson, A. G. and P. Izmailov (2020a). Bayesian Deep Learning and a Probabilistic Perspective of
Generalization (cit. on pp. 54, 76, 80).

Wilson, A. G. and P. Izmailov (2020b). “Bayesian Deep Learning and a Probabilistic Perspec-
tive of Generalization.” In: Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual (cit. on p. 103).

Wilson, A. and H. Nickisch (2015). “Kernel Interpolation for Scalable Structured Gaussian
Processes (KISS-GP).” In: Proceedings of the 32nd International Conference on Machine
Learning, pp. 1775–1784 (cit. on pp. 108, 127).

Wilt, J. K., C. Yang, and G. X. Gu (2020). “Accelerating Auxetic Metamaterial Design with
Deep Learning.” In: Advanced Engineering Materials 22.5, p. 1901266 (cit. on p. 3).

Wu, L. (2021). “How to leverage the multimodal EHR data for better medical prediction?”
In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
Microsoft (cit. on p. 1).

Yamins, D. L. and J. J. DiCarlo (2016). “Using goal-driven deep learning models to under-
stand sensory cortex.” In: Nature Neuroscience. Vol. 19. 3, pp. 356–365 (cit. on p. 3).

Yang, G. (2019). “Wide Feedforward or Recurrent Neural Networks of Any Architecture
are Gaussian Processes.” In: Advances in Neural Information Processing Systems. Vol. 32.
Curran Associates, Inc. (cit. on p. 21).

160 bibliography

Yang, W., L. Lorch, M. A. Graule, S. Srinivasan, A. Suresh, J. Yao, M. F. Pradier, and F.
Doshi-velez (2019). “Output-Constrained Bayesian Neural Networks.” In: ICML workshop
on Uncertainty & Robustness in Deep Learning (cit. on p. 84).

Yang, Z., M. Moczulski, M. Denil, N. d. Freitas, A. Smola, L. Song, and Z. Wang (2015).
“Deep Fried Convnets.” In: 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 1476–1483 (cit. on p. 76).

Yu, F. X., A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice, and S. Kumar (2016).
“Orthogonal Random Features.” In: Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., pp. 1975–1983 (cit. on pp. 55, 57, 76).

Yu, H., Y. Chen, B. K. H. Low, P. Jaillet, and Z. Dai (2019). “Implicit Posterior Variational
Inference for Deep Gaussian Processes.” In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., pp. 14475–14486 (cit. on pp. 108, 122, 125).

Yu, X.-H., G.-A. Chen, and S.-X. Cheng (1995). “Dynamic Learning Rate Optimization of the
Backpropagation Algorithm.” In: IEEE Transactions on Neural Networks 6.3, pp. 669–677

(cit. on p. 2).

Yurtsever, E., J. Lambert, A. Carballo, and K. Takeda (2020). “A Survey of Autonomous
Driving: Common Practices and Emerging Technologies.” In: IEEE Access 8, pp. 58443–
58469 (cit. on p. 1).

Zador, A. M. (2019). “A critique of pure learning and what artificial neural networks can
learn from animal brains.” In: Nature Communications. Vol. 10. 1 (cit. on p. 3).

Zaremba, W., A. Gretton, and M. Blaschko (2013). “B-test: A Non-parametric, Low Variance
Kernel Two-sample Test.” In: Advances in Neural Information Processing Systems 26. Curran
Associates, Inc., pp. 755–763 (cit. on p. 56).

Zeiler, M. D. (2012). “ADADELTA: An Adaptive Learning Rate Method.” In: CoRR abs/1212.5701

(cit. on pp. 2, 37).

Zhang, F., B. Shao, G. Xu, B. Yang, Z. Yang, Z. Qin, K. Ren, and Z. Yang (2020). “From
homogeneous to heterogeneous: Leveraging deep learning based power analysis across
devices.” In: Proceedings - Design Automation Conference (cit. on p. 3).

Zhang, G., S. Sun, D. Duvenaud, and R. Grosse (2018). “Noisy Natural Gradient as Varia-
tional Inference.” In: Proceedings of the 35th International Conference on Machine Learning.
Vol. 80. PMLR, pp. 5852–5861 (cit. on pp. 9, 35, 44, 49, 50, 55, 68).

Zhang, R., C. Li, J. Zhang, C. Chen, and A. G. Wilson (2020). “Cyclical Stochastic Gradient
MCMC for Bayesian Deep Learning.” In: Proceedings of the 8th International Conference on
Learning Representations. OpenReview.net (cit. on pp. 10, 104).

bibliography 161

Zhang, Z. and G. X. Gu (2020). “Finite-Element-Based Deep-Learning Model for Deforma-
tion Behavior of Digital Materials.” In: Advanced Theory and Simulations 3.7, p. 2000031

(cit. on p. 3).

Zhao, Z., J. K. Fitzsimons, and J. F. Fitzsimons (2019). “Quantum-assisted Gaussian process
regression.” In: Physical Review A 99 (5), p. 052331 (cit. on p. 135).

Zhizhou Zhang, G. X. G. (2021). “Physics-informed deep learning for digital materials.” In:
Theoretical & Applied Mechanics Letters 11, p. 1 (cit. on p. 3).

Zhu, M. and S. Gupta (2018). “To Prune, or Not to Prune: Exploring the Efficacy of Pruning
for Model Compression.” In: ICLR (Workshop). OpenReview.net (cit. on p. 76).

Zhu, M. and A. Y. Lu (2004). “The Counter-intuitive Non-informative Prior for the Bernoulli
Family.” In: Journal of Statistics Education 12.2 (cit. on p. 16).

a
ADD I T IONAL
DER I VAT IONS

a .1 recent advances on bayesian inference for deep
models

Consider an invertible, continuous and differentiable function f : RD → RD. Given
z̃0 ∼ q(z0), then z̃1 = f(z̃0) follows q(z1) defined as

q(z1) = q(z0)

∣∣∣∣det
∂f

∂z0

∣∣∣∣
−1

. (a.1)

As a consequence, after K transformations the log-density of the final distribution
is

logq(zK) = logq(z0) −
K∑
k=1

log
∣∣∣∣det

∂fk−1
∂zk−1

∣∣∣∣ . (a.2)

We shall define fk(zk−1;λk) the kth transformation which takes input from the previ-
ous flow zk−1 and has parameters λk. The final variational objective is

L(θ,φ) = −Eqφ(z)[logpθ(x | z)] + KL
[
qφ(z) ‖ p(z)

]
=

= Eqφ(z)[− logpθ(x | z) − logp(z) + logqφ(z)] =

= Eq0(z0)[− logpθ(x | zK) − logp(zK) + logqK(zK)] =

= Eq0(z0)

[
− logpθ(x | zK) − logp(zK) + logq0(z0) −

K∑
k=1

log
∣∣∣∣det

∂fk(zk−1;λk)
∂zk−1

∣∣∣∣

]
=

= −Eq0(z0) logpθ(x | z) + KL [q0(z0) ‖ p(zK)] − Eq0(z0)

K∑
k=1

log
∣∣∣∣det

∂fk(zk−1;λk)
∂zk−1

∣∣∣∣ .

(a.3)

163

164 additional derivations

Setting the initial distribution q0 to a fully factorized Gaussian N(z0 |µ,σI) and as-
suming a Gaussian prior on the generated zK, the Kullback-Leibler (kl) term is ana-
lytically tractable. A possible family of transformation is the planar flow (D. Rezende
and Mohamed, 2015). For the planar flow, f is defined as

f(z) = z+uh(w>z+ b) , (a.4)

where λ = [u ∈ RD, w ∈ RD, b ∈ R] and h(·) = tanh(·). This is equivalent to a
residual layer with single neuron mlp – as argued by Kingma, Salimans, et al.
(2016). The log-determinant of the Jacobian of f is

log
∣∣∣∣det

∂f

∂z

∣∣∣∣ =
∣∣∣det

(
I+u[h′(w>z+ b)w]>

)∣∣∣

=
∣∣∣1+u>wh′(w>z+ b)

∣∣∣ . (a.5)

Alternatives can be found in recent works by D. Rezende and Mohamed (2015),
Van den Berg et al. (2018), Kingma, Salimans, et al. (2016), and Louizos and Welling
(2017).

a .2 a primer of wasserstein distance

Given two Borel’s probability measures π(x) and ν(y) defined on the Polish space
X and Y (i.e. any complete separable metric space such as a subset of Rd), the
p-Wasserstein distance is defined as follows

Wp(π,ν) =
(

inf
γ∈Γ(π,ν)

∫
X×Y

D(x,y)pγ(x,y)dxdy
)1/p

, (a.6)

where D(x,y) is a proper distance metric between two points x and y in the space
X × Y and Γ(π,ν) is the set of functionals of all possible joint densities whose
marginals are indeed π and ν.

When the space of x and y coincides (i.e. x,y ∈ X ⊆ Rd), the most used formulation
is the 1-Wasserstein distance with Euclidian norm as distance,

W(π,ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x−y‖γ(x,y)dxdy , (a.7)

This is also known in the literature as the Earth-Mover distance. Intuitively, here γ
measures how much mass must be transported from x to y in order to transform

a.2 a primer of wasserstein distance 165

the distributions π into the distribution ν. Solving the Wasserstein distance means
computing the minimum mass that needs to be moved. The question “How?”
is answered by looking at the optimal transport plan (not the focus of these
notes).

The remaining part of these notes will be dedicated to the proof of the dual for-
mulation for Equation (a.7). It is well known in the literature of optimization
that linear programming problem with convex constrains admits a dual formula-
tion. Kantorovich introduced the dual formulation of the Wasserstein distance in
1942.

Theorem 1 On the same setup as before, the Wasserstein distance defined as

W(π,ν) = inf
γ∈Γ(π,ν)

∫
X×X

‖x−y‖γ(x,y)dxdy , (a.8)

admits the following dual form

W(π,ν) = sup
‖f‖L61

∫
X

f(x)π(x)dx−

∫
X

f(y)ν(y)dy (a.9)

where f is a 1-Lipschitz continuous function defined on X→ R.

Step 1: Kantorovich duality

First of all we start with the Kantorovich duality, which defines a dual form for
the generic 1-Wasserstein.

Theorem 2 Given a nonnegative measurable function D : X×X→ R, the 1-Wasserstein
is computed as follows,

W(π,ν) = inf
γ∈Γ(π,ν)

∫
D(x,y)γ(x,y)dxdy , (a.10)

The Kantorovich duality proves that this is equal to the following constrained optimization
problem,

W(π,ν) = sup
f,g

f(x)+g(y)6D(x,y)

∫
f(x)π(x)dx+

∫
g(y)ν(y)dy . (a.11)

166 additional derivations

We define ιΓ (γ) the following quantity

ιΓ (γ) = sup
f,g

[∫
f(x)π(x)dx+

∫
g(y)ν(y)dy−

∫∫
[f(x) + g(y)]γ(x,y)dxdy

]

(a.12)

and we observe that

ιΓ (γ) =

 0 if γ ∈ Γ(π,ν) ,

+∞ otherwise .
(a.13)

This is true because given the definition of Γ , if γ ∈ Γ(π,ν) then π(x) =
∫
γ(x,y)dy

and ν(y) =
∫
γ(x,y)dx. By substituiting these quantities, it follows that∫

f(x)π(x)dx+
∫
g(y)ν(y)dy =

∫
f(x)

∫
γ(x,y)dydx+

∫
g(y)

∫
γ(x,y)dxdy

=

∫∫
[f(x) + g(y)]γ(x,y)dxdy . (a.14)

In other cases, f and g can be chosen such that the supremum becomes +∞. Given
this property and the constrain on γ, we can add ιΓ (γ) to the formulation of the
Wasserstein distance in Equation (a.8),

W(π,ν) = inf
γ∈Γ(π,ν)

[∫
D(x,y)γ(x,y)dxdy

]
+ ιΓ (γ) =

= inf
γ

[∫
D(x,y)γ(x,y)dxdy+ sup

f,g

[∫
f(x)π(x)dx+

∫
g(y)ν(y)dy−∫∫

[f(x) + g(y)]γ(x,y)dxdy
]]

, (a.15)

Now, the original integral of the Wasserstein distance does not depend on f and g;
therefore the supremum can be moved in front,

W(π,ν) = inf
γ

sup
f,g

Υ(γ, (f,g))

Υ(γ, (f,g)) def
=

∫
D(x,y)γ(x,y)dxdy+

∫
f(x)π(x)dx+

∫
g(y)ν(y)dy−∫∫

[f(x) + g(y)]γ(x,y)dxdy (a.16)

a.2 a primer of wasserstein distance 167

Under certain conditions stated by the minimax theorem, i.e. Υ(γ, (f,g)) is convex-
concave function (Υ is concave for fixed (f,g) while convex for fixed γ), we can swap
the infinum and the supremum and rewrite the definition as follows,

W(π,ν) = sup
f,g

inf
γ

∫
[D(x,y) − f(x) − g(y)]γ(x,y)dxdy+

∫
f(x)π(x)dx+

∫
g(y)ν(y)dy

(a.17)

Proofs that the hypothesis used for the minimax theorem hold for this case are
presented in Theorem 1.9 of “Topics in Optimal Transport” (Villani, 2003). Focusing
on the infimum part, we can write

inf
γ

∫
[D(x,y) − f(x) − g(y)]γ(x,y)dxdy =

 0 if f(x) + g(y) 6 D(x,y) ,

−∞ otherwise .

(a.18)

If the function ζ(x,y) = D(x,y) − (f(x) + g(y)) takes a negative value at some
point (x0,y0), then by choosing γ = λδ(x0,y0) with λ → +∞ (i.e. a Dirac delta
in (x0,y0)), we see that the infimum is infinite. On the other hand, is ζ(x,y) is
nonnegative, then the infimum is obtained for γ = 0. Finally, this constrains can
be added to the previous conditions making thus recovering the formulation in
Equation (a.9).

Step 2: D-Transforms

The next challenge is to find f and g such that we can easily recover the constrain
optimization above. We approach this problem by supposing to have chosen some
f(x). This means that the objective is to find a good g(y) that for all x,y satisfy the
condition

f(x) + g(y) 6 D(x,y) . (a.19)

The trivial solution is g(y) 6 D(x,y) − f(x). This must be true for all x, also in the
worst case (when we take the infimum),

g(y) 6 inf
x

[D(x,y) − f(x)] . (a.20)

168 additional derivations

At this point, we observe that for a given f, if we want the supremum in Eq. 5 we
cannot get a better g then taking the equality,

f̄(y) := inf
x

[D(x,y) − f(x)] . (a.21)

We therefore have the following formulation of the Wasserstein distance,

W(π,ν) = sup
f

[∫
f(x)π(x)dx+

∫
f̄(y)ν(y)dy

]
(a.22)

If now we suppose to choose g, by following the same reasoning the best f that we
can get is defined

¯̄f(x) = ḡ(x) := inf
y

[D(x,y) − g(y)] . (a.23)

If we replace g(y) with Eq. 17 we have yet another recursive definition of the
Wasserstein distance,

W(π,ν) = sup
f

[∫
¯̄f(x)π(x)dx+

∫
f̄(y)ν(y)dy

]
(a.24)

If we constrain f to be D-concave, then ¯̄f = f.

Step 2.1: Euclidean distance

It’s worth mentioning that this formulation is valid for any nonnegative measurable
functionD. For the Euclidian distance this simplify even further.

Theorem 3 When D(x,y) = ‖x−y‖ and f is 1-Lipschitz, f is D-concave if and only if
f̄ = −f

We prove the necessity condition of such result. First of all, we observe that
if f is 1-Lipschitz then f̄ is 1-Lipschitz too. This is true because for any given
x

f̄x(y) = ‖x−y‖− f(x) (a.25)

is 1-Lipschitz and therefore the infimum of f̄(y) = infx ‖x−y‖− f(x) is 1-Lipschitz.
Since f̄ is 1-Lipschitz, for all x and y we have

∣∣f̄(y) − f̄(x)
∣∣ 6 ‖y− x‖ =⇒ −f̄(x) 6 ‖x−y‖− f̄(y) (a.26)

a.2 a primer of wasserstein distance 169

Since this is true for all y,

− f̄(x) 6 inf
y
‖x−y‖− f̄(y)

− f̄(x) 6 inf
y
‖x−y‖− f̄(y)︸ ︷︷ ︸

¯̄f≡f

6 −f̄(x) (a.27)

where the right inequality follows by choosing y = x in the infimum. We know
that ¯̄f ≡ f. This means that −f̄(x) must be equal to f(x) for the last equation to
hold.

Step 3. Putting everything together

We started our discussion by proving the Kantovich duality, which states that

inf
γ∈Γ(π,ν)

∫
D(x,y)γ(x,y)dxdy = sup

f,g
f(x)+g(y)6D(x,y)

∫
f(x)π(x)dx+

∫
g(y)ν(y)dy ,

(a.28)

We then proved that

sup
f,g

f(x)+g(y)6D(x,y)

[∫
f(x)π(x)dx+

∫
g(y)ν(y)dy

]
=

= sup
f

f̄=infxD−f

[∫
f(x)π(x)dx+

∫
f̄(y)ν(y)dy

]
,

Finally, given D(x,y) to be the Euclidean distance, we discussed the shape of f̄when
we restrict f to be 1-Lipschitz, showing that f̄ = −f. Putting everything together, we
obtain the dual 1-Wasserstein distance in Equation (a.9),

W(π,ν) = sup
‖f‖L61

∫
f(x)π(x)dx−

∫
f(y)ν(y)dy (a.29)

b
ADD I T IONAL MATER I A L FOR
CHAPTER 3

b .1 experiments

regression on shallow networks In this experiment we compare initialization
methods for a shallow deep neural network (dnn) architecture on two datasets.
The architecture used in these experiments has one single hidden layer with 100
hidden neurons and rectified linear unit (ReLU) activations. We impose that the
approximate posterior has fully factorized covariance. Figure b.1 shows the learning
curves on the Powerplant (n = 9568, d = 4) and Protein (n = 45730, d = 9) datasets,
repeated over five different train/test splits. iterative Bayesian linear modeling
(iblm) allows for a better initialization compared to the competitors, leading to
a lower root mean square error (rmse) and lower mean negative log-likelihood
(mean negative loglikelihood (mnll)) on the test for a given computational budget.
We refer the reader to the supplementary material for a more detailed analysis of
the results.

classification with a deep architecture Using the same deep dnn architecture
as in the last experiment (five hidden layers with 100 neurons), we tested iblm

with classification problems on MNIST (n = 70000, d = 784), EEG (n = 14980,
d = 14), Credit (n = 1000, d = 24) and Spam (n = 4601, d = 57). Interestingly,
with this architecture, some initialization strategies struggled to converge, e.g.,
uninformative on MNIST and lsuv on EEG . The gains offered by iblm achieves
are most apparent on MNIST . After less than 1000 training steps (less than an
epoch), iblm makes variational inference (vi) reach a test accuracy greater than
95%; other initializations reach such performance much later during training. Even

171

172 additional material for chapter 3

0.2

0.4

0.6

0.8

1.0

Te
st
rm
se

powerplant

101 102 103 104 105
−1.0

−0.5

0.0

0.5

1.0

1.5

Step

Te
st
mn
ll

0.7

0.8

0.9

protein

101 102 103 104 105

1.0

1.5

2.0

2.5

Step

iblm Uninformative Heuristic Xavier-Normal Orthogonal Layer-Sequential Unit-Variance (lsuv)

Figure b.1: Progression of test rmseand test mnll with di�erent initializations on a shallow
architecture.

after 100 epochs, vi inference initialized with iblm provides on average an increase
up to 14% of accuracy at test time. Full results are reported in the supplementary
material.

b.1 experiments 173

0.2

0.4

0.6

0.8

1
Te
st
rm
se

powerplant

102 103 104 105
−1.0

−0.5

0.0

0.5

1.0

1.5

Step

Te
st
mn
ll

0.6

0.7

0.8

0.9

protein

102 103 104 105
0.5

1.0

1.5

2.0

2.5

3.0

Step

iblm Uninformative Heuristic Xavier-Normal Orthogonal lsuv

Figure b.2: Progression of test rmseand test mnll with di�erent initializations on a deep archi-
tecture.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Te
st
er
ro
r
ra
te

mnist

102 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Step

Te
st
mn
ll

0.0

0.1

0.2

0.3
spam

102 103 104 105
0

2

4

Step

iblm Uninformative Heuristic Xavier-Normal Orthogonal lsuv

Figure b.3: Progression of test rmseand test mnll with di�erent initializations on a deep archi-
tecture.

colophon

This document was typeset with LATEX using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić.

Final Version as of December 17, 2021 (1).

	Dedication
	Abstract
	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 An introduction to Bayesian deep learning
	1.1 A brief history of deep learning
	1.2 Uncertainty quantification for decision making systems
	1.2.1 Not all the uncertainties are the same

	1.3 Bayesian deep learning
	1.3.1 Modern inference for Bayesian neural networks

	1.4 Today's challenges for Bayesian deep learning
	1.4.1 Structure of this thesis

	2 Probabilistic Methods for Machine Learning
	2.1 An introduction to Bayesian machine learning
	2.1.1 Bayesian model selection

	2.2 Deep neural networks
	2.2.1 Bayesian Neural Networks: Parameterization, Prior and Inference

	2.3 Bayesian inference as optimization problem: Variational Inference
	2.3.1 Optimization of the ELBO

	2.4 Sampling with scalable Markov Chain Monte Carlo

	3 Initializations of Variational Inference for Bayesian Neural Networks
	3.1 Overview
	3.1.1 A review of the role of initialization in deep learning

	3.2 Initialization of variational parameters: a proposed method
	3.2.1 Initialization of DNNs for Regression
	3.2.2 From the Bayesian linear model posterior to the variational approximation
	3.2.3 Initialization for classification and convolutional layers

	3.3 Experimental evaluation
	3.3.1 The effect of initialization in deep variational neural networks
	3.3.2 Scaling up variational inference to deep convolutional neural networks
	3.3.3 Comparison with variational inference beyond mean field Gaussian

	3.4 Final remarks

	4 Efficient parameterizations for variational posteriors
	4.1 The problem of overparameterization in variational inference
	4.1.1 Contributions

	4.2 Structured Approximations for Kernel Matrices
	4.3 From structured kernel approximations to Walsh-Hadamard Variational Inference
	4.3.1 Statistical properties of the structure induced by WHVI
	4.3.2 Reparameterizations in WHVI for stochastic optimization

	4.4 Alternative structures, tensor factorization and extensions
	4.4.1 Extensions

	4.5 Empirical evaluation
	4.5.1 Toy example
	4.5.2 Empirical comparison on the UCI benchmark
	4.5.3 Bayesian convolutional neural networks for image classification
	4.5.4 Comments on computational efficiency
	4.5.5 Exploring the parameter efficiency of WHVI with Gaussian processes

	4.6 Related work
	4.7 Final remarks

	5 The effect of selecting the prior for Bayesian deep learning
	5.1 The choice of the prior matters
	5.1.1 Pathologies of deep prior functions
	5.1.2 Contributions

	5.2 The problem of choosing priors in the literature of Bayesian deep learning
	5.3 Imposing Gaussian process priors in Bayesian neural networks
	5.3.1 A quick introduction to the Wasserstein distance
	5.3.2 Using the Wasserstein distance to impose the GP behaviour in BNN
	5.3.3 Prior Parameterization for Neural Networks

	5.4 Empirical evaluation
	5.4.1 Visualization on a 1D regression synthetic dataset
	5.4.2 Comparison for Bayesian convolutional neural networks
	5.4.3 Optimizing priors with data

	5.5 Another route for Bayesian Occam's razor
	5.5.1 The distributionally-sliced Wasserstein distance
	5.5.2 Matching the marginal distribution to the data distribution via Wasserstein distance minimization

	5.6 Model selection for Bayesian Autoencoders
	5.6.1 Formalization of Bayesian Autoencoders
	5.6.2 The pathology of standard priors for BAE and how to fix it

	5.7 Concluding remarks

	6 Revisiting the approximations for scalable (deep) Gaussian processes
	6.1 Sparse Gaussian processes
	6.2 Bayesian Sparse Gaussian Processes
	6.2.1 On scalable inference frameworks for GP models
	6.2.2 Sampling with VFE or FITC?
	6.2.3 Stochastic Updates Using the FITC Approximation
	6.2.4 An heteroskedastic version of the Gaussian likelihood
	6.2.5 Concluding Remarks

	6.3 Practical considerations and extensions to deep GPs
	6.3.1 Prior choices
	6.3.2 Extension to deep Gaussian processes

	6.4 Experiments
	6.4.1 Prior analysis and ablation study
	6.4.2 Choosing the objective: VFE vs FITC
	6.4.3 Deep Gaussian processes on UCI benchmarks
	6.4.4 Large scale classification

	6.5 Concluding discussion

	7 Final considerations
	7.1 Summary of the contributions and open problems
	7.2 Is Bayesian deep learning solved? And now what?

	 Bibliography
	a Additional derivations
	a.1 Recent advances on Bayesian inference for Deep Models
	a.2 A primer of Wasserstein distance

	b Additional material for Chapter 3
	b.1 Experiments

	Colophon

