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Résumé

Contexte de la these

Le streaming vidéo a faible latence est une application clé dans la diffusion
d’événements sportifs, la visioconférence ou encore le contréle et la conduite
a distance. Selon le rapport annuel sur Internet de Cisco, le trafic de la vidéo
en direct a augmenté de 93% en 2020 et représentera 17% du trafic vidéo sur
Internet en 2022 [1]. Le streaming en direct deviendra encore plus populaire
grace aux progres des réseaux de télécommunication et des codecs vidéo.

De nombreuses méthodes de streaming exploitent le protocole HTTP pour
Diffuser la vidéo. Ces méthodes sont connues par "HTTP Adaptive Streaming"
(HAS) [2]. Avec HAS, les clips vidéo sont découpés en segments de quelques
secondes, encodés a plusieurs débits, et stockés sur des serveurs média HTTP.
En utilisant HAS, un client peut demander les segments vidéo avec les débits
d'encodage appropriés selon la condition de son réseau. Néanmoins, les
méthodes HAS ne précisent pas de logique d’adaptation. Dans les applica-
tions de streaming en liaison descendante, des algorithmes d'adaptation sont
généralement mis en ceuvre chez le client pour sélectionner le débit optimal
de chaque segment demandé.

Ces algorithmes exploitent des mesures instantanées ou moyennées du
canal de transmission et/ou du niveau de tampon client. lls visent a max-
imiser la Qualité d'Expérience (QoE) du client. Ceci est généralement obtenu
en maximisant la qualité de la vidéo recue tout en minimisant le nombre de
gels et de changements de qualité vidéo.

Dans le streaming vidéo en direct, I'acquisition, 'encodage et la transmis-
sion vidéo sont effectués en temps réel. Minimiser le délai entre l'acquisition
d'une image et son affichage chez le client est une exigence QoE supplémen-
taire. Le streaming en direct est nettement plus difficile que le streaming
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vidéo a la demande (VOD) classique. Tout d'abord, de grands tampons sont
généralement implémentés au niveau du client pour atténuer les variations
de bande passante. Ces tampons induisent un délai important dans le con-
texte du streaming en direct, leur taille doit donc étre minimisée. De plus, les
algorithmes de contréle de débit au niveau du client basés sur HAS peuvent
entrainer des retards importants car les décisions de contréle sont prises a
la méme période que la durée du segment vidéo. Lorsque la bande passante
varie avec une échelle de temps plus petite, de mauvaises décisions peuvent
induire des retards de téléchargement importants.

Enfin, dans plusieurs applications telles que le streaming vidéo en direct a
I'intérieure d'une voiture pendant une course ou le contréle a distance d'un
drone, le transmetteur transmet le flux vidéo compressé sur un réseau d’'acces
sans fil 4G/5G au client. La mobilité du transmetteur induit des variations
importantes et rapides des caractéristiques du canal sans fil. Dans un tel
contexte, les approches de contrdle coté émetteur apparaissent mieux adap-
tées pour sélectionner les parameétres de codage vidéo. Cela évite également
d'attendre des rapports sur les états du réseau et de la mémoire tampon
fournis par le client.

En outre, la nouvelle génération de codecs vidéo présente un avantage sig-
nificatif dans le contexte du streaming a faible latence. Le Versatile Video Cod-
ing (VVC) atteint un gain de compression de 50% par rapport a son prédécesseur,
le High-Efficiency Video Coding (HEVC), pour la méme qualité PSNR. Cepen-
dant, VVC se concentre principalement sur le contenu vidéo Ultra-Haute Déf-
inition (UHD). Une variété d'outils de codage a été utilisée pour atteindre une
efficacité de codage élevée. Ces nouveaux outils impliquent une quantité
importante de complexité de calcul. La version actuelle de 'encodeur VVC
(VTMs.0) a 10 fois le temps d'exécution de I'encodeur HEVC (HM16) [3]. Par
conséquent, le codeur VVC n'est pas adapté aux applications en temps réel,
méme pour I'encodage a faible débit et les contenus a faible résolution qui
sont encore utilisés pour le streaming vidéo aujourd’hui (e.g., 480p et 360p).
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Objectifs de la thése

Dans cette thése, nous abordons la problématique du streaming vidéo a faible
latence a partir d'un transmetteur mobile dans des conditions de réseau vari-
ables.

e Nous proposons un algorithme d’'adaptation du débit vidéo piloté par
le transmetteur pour le streaming vidéo a faible latence a partir d'un
émetteur mobile. L'algorithme proposé ajuste le débit vidéo au niveau
de I'image et en fonction de I'état de la liaison montante du canal et du
niveau de tampon de I'émetteur.

e Le débit de I'image est ajusté au moyen d’'un modele de débit qui déter-
mine le parameétre de quantification pour avoir un bitstream de taille au
plus égale au budget bits alloué a limage. Par conséquent, nous pro-
posons un nouveau modeéle Rate-QP pour ajuster le débit vidéo image
par image.

e Enfin, nous proposons une méthode pour réduire le temps d'encodage
du codeur VVCdans le cas d'un encodage a faible débit et pour séquences
vidéo de résolution inférieure a HD sans trop sacrifier I'efficacité de com-
pression. Cet objectif est atteint en désactivant les outils de codage non
efficaces pour ces cas d'usages.

Structure de la thése
Les contributions et la structure de cette thése sont les suivantes :

e Chapter 2 présente au lecteur les notions de base sur le codage vidéo et
le streaming adaptatif HTTP.

e Chapter 3 présente un nouveau modele de débit, noté R- (QP, D), de re-
lation entre la taille de I'image aprés codage R,, le paramétre de quan-
tification QF,, et la distorsion de I'erreur quadratique moyenne (MSE)
D,,_1 de I'image de référence n — 1. Notre modeéle proposé est utilisé
pour déterminer les QP optimaux pour coder les images. Une partie du
matériel du Chapitre 3 a été présenté dans
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« Mourad Aklouf, Marc Leny, Michel Kieffer, and Frédéric Dufaux. "Interframe-
Dependent Rate-QP-Distortion Model for Video Coding and Trans-
mission." In 2021 IEEE International Conference on Image Processing
(ICIP), pp. 2019-2023. IEEE, 2021.

e Chapter 4 présente un algorithme d'adaptation de débit d’encodage, mis
en ceuvre du coté de I'émetteur et adapté aux applications de stream-
ing a faible latence. Il vise a contréler la marge de lecture du client (i.e.,
le nombre d'images dans la mémoire tampon du client). L'algorithme
proposé utilise des mesures du débit de transmission et du niveau du
tampon de I'émetteur.

e Chapter 5 présente une méthode d'optimisation de type branch-and-
prune pour réduire la complexité de 'encodeur VVC. Notre méthode vise
a identifier un ensemble d'outils de codage a désactiver tout en satis-
faisant une contrainte sur l'efficacité du codage. Le matériel du chapitre
5 a été présenté dans

« Mourad Aklouf, Marc Leny, Frederic Dufaux, and Michel Kieffer. "Low
complexity versatile video coding (VVC) for low bitrate applications."
In 2019 8th European Workshop on Visual Information Processing
(EUVIP), pp. 22-27. IEEE, 20109.

e Chapter 6 résume les résultats de nos recherches et suggere plusieurs
sujets possibles pour de futures recherches.

Etat de I'art

Le chapitre 2 fournit les notions de bases du codage vidéo et du streaming
adaptatif HTTP. Nous discutons également des principaux composants de la
latence de bout en bout dans les systémes de diffusion vidéo. Nous four-
nissons une revue de la littérature sur les algorithmes d’'adaptation de débit
de pointe et leurs classifications selon 'emplacement de la logique d’adaptation
de débit (pilotée par le serveur ou pilotée par le client) et 'entrée utilisée pour
I'adaptation (approches basées sur la bande passante, approches basées sur
le niveau de remplissage des tampons ou approches hybrides).
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Nous avons indiqué que dans le contexte du streaming a faible latence
a partir d'un émetteur mobile, les approches pilotées par I'émetteur sont
mieux adaptées pour sélectionner le débit d'encodage de la vidéo en fonc-
tion de I'état du réseau et du niveau de mémoire tampon de I'émetteur. En
effet, 'émetteur mobile peut facilement estimer 'état du canal et n'a pas a
attendre les rapports retardés sur I'état du réseau et de la mémoire tampon
fournis par le client. De plus, une adaptation de débit au niveau de I'image
est nécessaire pour obtenir une transmission a faible latence.

L'adaptation au niveau image est réalisée a l'aide d'un modéle de la relation
entre la taille du flux binaire résultant du codage de I'image et le parametre de
quantification sélectionné. Par conséquent, nous rappelons plusieurs mod-
eles de débit paramétriques de pointe utilisés pour le contrdle du débit.

Enfin, certaines caractéristiques techniques de la nouvelle norme Versatile
Video Coding (VVC) et les méthodes d'optimisation de pointe du codeur VWC
ont été revues.

Modeéle Rate-QP-Distortion pour le streaming et la compres-
sion vidéo

Le contréle du débit de codage vidéo repose sur un modéle de la relation en-
tre la taille du flux binaire résultant du processus de codage et les parametres
de codage vidéo. Le modele de débit permet de déterminer le paramétre de
codage optimal pour avoir un flux binaire de taille au plus égale au budget
bits alloué dans les contraintes de faible latence. Le parameétre de quantifi-
cation QP est généralement considéré pour le contréle du débit vidéo car il a
un impact direct sur la taille du flux binaire résultant.

Des modeéles paramétriques entre le débit de I'image et son QP ont été
proposés dans lalittérature. Cependant, la précision de ces modeles n'est pas
fiable pour la transmission dans des canaux a bande limitée. Ces modeles ne
tiennent pas compte de la dépendance temporelle entre les images.

Nous proposons le modele suivant de la relation entre le débit d'encodage
R, delatramen et son parametre de quantification Q P, en fonction de la dis-
torsion de l'erreur quadratique moyenne (MSE) D,, | de Iimage référentielle
n—1:

17



Rn (QPTM Dn—l) =a (Qpn)

+ g2 (Qpn) (tanh (93 (Qpn) 1Og(Dn—1) — 94 (Qpn)) + 1) ) (1)
Avec,
91 (QF,) = prexp (—p2QFy) (2)
92 (QP,) = p3 (—palog (QP,) + 1), (3)
93 (QF,) = psQF, (4)
91 (QPy) = (peQPo — p7)°, (5)
Notre modeéle proposé, noté R- (QP, D), implique un vecteur de 7 parameétres
p = (p1,...,pr), dontlavaleur dépend de I'image et doit &tre déterminée pour

prédire avec précision R,, en fonctionde QFP, et D,,_;.

La performance du modéle proposé pour prédire R, en fonction de QF,
est comparée aux modeles de référence dans [4], [5] et [6]. Nous évaluons
les performances des modeéles dans deux scénarios de codage : codage a
QP constant et codage avec QP variable dans le temps. Dans le deuxieme
scénario, la variation de QP est choisie pour simuler le cas d'un codage vidéo
pour une transmission sur un canal de transmission instable, ou le QP change
toutes les quelques trames suite a une chute ou une augmentation du débit
de transmission.

Dans les deux scénarios de codage, le modele proposé surpasse les autres
modeles de la littérature. Par exemple, dans la séquence vidéo Tango, 90%
de toutes les erreurs de prédiction sont inférieures a 8,6% lors de l'utilisation
de I'encodage QP constant, et 90% de toutes les erreurs de prédiction sont
inférieures a 12% lors de l'utilisation de la variable Encodage QP.

Les gains sont particulierement significatifs a des débits faibles, cet at-
tribut montre que notre modele est exceptionnellement fiable dans le cas du
codage pour transmission dans un canal a faible débit ou lorsque des chutes
soudaines se produisent.
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Modéle d’adaptation prédictive du débit vidéo pour le stream-
ing en direct a faible latence

Le chapitre propose un algorithme de contréle du débit d'encodage adapté
aux applications de streaming en direct pour des délais de 100 a 200 ms. Le
contrdle est effectué au niveau de l'image, ce qui nécessite l'utilisation du
modeéle R- (QP, D). A I'aide de mesures du débit de transmission et du niveau
de remplissage du tampon de transmetteur, une approche de type Model
Predictive Control (MPC) est utilisée pour déduire le budget bits de I'image
a coder pour une marge cible de lecture (target playback margin), le con-
tréleur peut alors sélectionner la valeur appropriée de QP pour cette image.
La marge de lecture est la différence entre l'instant de fin de décodage et
I'affichage de lIimage chez le client.

La figure 1illustre les composants de 'architecture proposée pour le stream-
ing en direct. Le transmetteur se compose d’'une caméra, un encodeur vidéo,
un contrdleur de débit d'encodage et un tampon de transmission. Le client
dispose d'un décodeur, d'un tampon de réception et d'un player.

Emission
Buffer

m—
[ ] - ] Encoder
i J
anhRnfl QP,L
A\ 4
~
Rate Emission buffer level
Control

Receiver

Frame Type

<
<

" Channel state (possibly delayed)

Figure 1: L'architecture proposé pour le streaming en direct pilotée par le transmetteur.

Une fois Iimage n est acquise, elle est transmise a I'encodeur et com-
pressée. Le flux résultant du codage est segmenté en paquets RTP et placé
dans le tampon de transmission. Les paquets sont transmis via le réseau
4G/5G jusqu'au récepteur. Au coté client, une fois que tous les paquets liés
a limage n ont été recus, le décodage démarre et introduit un délai de dé-
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codage Ty. L'image est ensuite mise en mémoire tampon avant d'étre af-
fichées au temps t,, + Ay, ou A, est le délai d'acquisition a la lecture.

Le contrble est effectué de maniere a empécher le tampon contenant les
images décodées au niveau du client de se vider. Cela garantit que les images
sont affichées a temps. Le contrdleur de débit prend en entrée la quantité de
bits B,, stockés dans le tampon de transmission ainsi que I'état du canal et
utilise l'algorithme I'adaptation du débit pour estimer le débit de codage cible
R} delimage n. Le contrbleur gére aussi le modéle R-(QP, D) pour déterminer
la valeur Q P, a partir de la distorsion D,,_; de image précédente et R;.

Puisque les caractéristiques temporelles et spatiales des images évoluant
avec le temps, une mise a jour en ligne des parameétres du modele R-(QP, D)
est effectuée en utilisant des essais de codage supplémentaires. Des infor-
mations complémentaires liées aux caractéristiques de lI'image (type, com-
plexité), qui peuvent impacter les parameétres du modele R-(QP, D) peuvent
également étre prises en compte.

Le débit de codage cible R; ., de image n + 1 est détermine en définis-
sant une marge de lecture cible 7" qui est une petite marge temporelle dans
laquelle tous les paquets du I'image doiventt étre recue avant le début du
décodage :

Tn — T Bn Cn—i—l Bn + (Rn - Cn) Tf Cn—H
T T TR, Ty T,
T, — TF Chit B,
— n —1 e n ) 6
T C+1+(Cn )(Tf+R>+O (6)

avec Tt est la durée de I'image, C,, et C,.1 sont les débits de transmission
aux instants n et n 4 1 respectivement, B, est lle niveau de remplissage de la
memoire tampon de I'émetteur, et R, est le débits réel de image n.

L'évaluation de R}, a l'aide de (6) est effectuée cOté transmetteur. La
marge de lecture 7,, pour I'image n est estimée coté émetteur. On utilise
également les estimations de débit de transmission 6n et 6n+1. Alors, (6)
devient:

~

%\n/ - T* -~ Cn+1 Bn -~
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Nous considérons une configuration de simulation composée d’'un serveur
(transmetteur) et d’'un client comme décrit ci-dessus. Le serveur recoit les
images vidéo a encoder, exécute I'encodeur x265 [7] et alimente le tampon
de transmission avec les paquets des images compressées. le serveur com-
prend également le modele R-(QP, D) et l'algorithme d’'adaptation du débit.
Le client contient un tampon de réception et un décodeur HEVC [8]. La trans-
mission de paquets est simulé a l'aide de traces 4G extraites de [9].

L'algorithme de contréle du débit proposé est comparé a quatre algorithmes
d’'adaptation de pointe Festive [10], Panda [11], BOLA [12] et BBA [13]. Pour
garantir une comparaison équitable des performances, tous ces algorithmes
ont été adaptés pour fonctionner coté transmetteur et pour ajuster le débite
codage vidéo au niveau de I'image. Tous les algorithmes partagent le méme
modele R-(QP, D). L'approche proposée surpasse ces algorithmes a la fois en
termes de PSNR moyen et de pertes d'images.

Réduction de la complexité du codeur VVC

La nouvelle norme de codage vidéo VVC présente un grand avantage lorsqu’elle
est utilisée dans des contraintes de faible latence. Néanmoins, la conception
actuelle du codeur VVC est principalement axée sur le contenu haute résolu-
tion, et il n'est malheureusement pas adapté a I'encodage a faible résolution
et a faible débit. Les nouveaux outils ajoutés entrainent une charge impor-
tante en termes de complexité de calcul.

Nous proposons une méthode d'optimisation pour les scénarios de codage
a faible résolution et a faible débit. Plus précisément, nous étudions l'utilité
de certains des nouveaux outils de codage. Nous montrons expérimentale-
ment qu'une réduction significative de la complexité peut étre obtenue en
désactivant certains de ces outils tout en préservant l'efficacité du codage.
Notre objectif est d'identifier le sous-ensemble d’outils de codage de VTMs5.0
qui peuvent étre désactivés avec les séquence vidéo de basse résolution et en
encodage a faible débit. Dans ce but, nous présentons une méthode de type
branch-and-prune pour déterminer I'ensemble d'outils de codage qui four-
nissent la meilleure réduction de complexité, tout en satisfaisant une con-
trainte sur la dégradation de BD;te.
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Les résultats expérimentaux montrent qu'une réduction significative de la
complexité de 'encodage peut étre obtenue, avec une perte négligeable de
BDyste. Par exemple, une réduction de complexité de 56% a été obtenue pour
la séquence vidéo Johnny a une résolution de 384 x 216 en appliquant notre
méthode, avec une perte de 1.88% en BD¢,ux-

De plus, nous avons pu proposer une combinaison commune d'outils a
désactiver pour chaque résolution. Nos résultats expérimentaux montrent
que ces outils engendrent moins de 2% BD, .t de perte avec 35% de réduc-
tion de complexité d'encodage en moyenne. Ce résultat est particulierement
bénéfique car nous pouvons construire des profils de codage pour chaque
résolution en supprimant les outils inutiles. Par conséquent, les désactiver
automatiquement et réduire la complexité du traitement pour 'encodage en
temps réel.

Conclusion

Dans cette thése, nous abordons le probleme de 'adaptation du débit vidéo
pour le streaming vidéo a faible latence. Notre objectif est la conception d'un
algorithme d’'adaptation du débit pour le streaming vidéo a faible latence a
partir dun émetteur mobile avec des délais de bout a bout entre 100 et 200
ms.

Nous présentons d’'abord un nouveau modele Rate-QP-Distortion, i.e. R-
(QP, D). Notre modele décrit la relation entre la taille du flux binaire R,, de
I'image n, son parametre de quantification QFP, et la distorsion MSE D,, ;
de I'image de référence n — 1. Le modele proposé est avantageux lors de
I'ajustement du QP de I'image en fonction d'un budget de débit cible en cas
de transmission vidéo en direct a faible latence. Ce budget de débit cible est
déterminé via un algorithme d’adaptation de débit vidéo.

Notre deuxieme contribution est un nouvel algorithme d'adaptation du
débit pour le streaming vidéo a faible latence a partir d'un émetteur mobile.
L'approche proposée exploite le niveau de tampon de transmission et une es-
timation du débit de transmission sans fil pour déterminer le débit de codage
cible de chaque image. Le choix du parameétre de quantification pour chaque
image est effectué via le modéle R- (QP, D) proposé. Nous comparons les
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performances de I'approche proposée avec quatre algorithmes d'adaptation
de référence, a savoir Festive [10], Panda [11], BOLA [12] et BBA [13], en con-
sidérant des scénarios de streaming de latences inférieures a 200 ms. Les ré-
sultats de simulation impliquant de vraies traces de bande passante 4G ont
montré que notre approche proposée surpasse les algorithmes de la littéra-
ture a la fois en termes de PSNR moyen et de nombre des images perdues.

Enfin, la diffusion en direct est sensible au délai et nécessite un encodeur
capable de compresser le flux vidéo en temps réel. Par conséquent, nous
proposons une méthode pour réduire la complexité du codeur VVC. Notre
méthode consiste a identifier un ensemble d'outils de codage qui peuvent
étre désactivés tout en satisfaisant certaines contraintes sur la dégradation
BDrate. Une réduction de complexité allant jusqu'a 56% a été obtenue pour
des séquences vidéo de résolution 384 x 216, 512 x 288 et 640 x 360 en ap-
pliquant notre méthode, avec une perte inférieure a 2% en B D,ux. De plus,
nous avons pu identifier un ensemble commun d’outils de codage a désac-
tiver dans chaque résolution. Ces outils communs peuvent étre utilisés pour
créer des profils de codage pour chaque résolution, réduisant ainsi la com-
plexité du codage lors du codage a la volée.

Perspectives futures

Le travail présenté dans ce document peut étre étendu dans de nombreuses
directions. Voici quelques-uns d’entre eux:

e Amélioration du modéle R-(QP, D) : Le modéle R- (QP, D) peut étre
ameélioré pour étre compatible avec le mode de codage tres faible la-
tence ou l'image n utilise deux images références déja codées, e.g., les
images n—1 etn—3. Une amélioration possible pourrait étre l'utilisation
d'une combinaison des distorsions des images références. On doit aussi
étudier les performances de l'estimation itérative des parameétres du
modéle avec l'intra-refresh activé.

e Estimation du débit de transmission : Une direction de recherche im-
portante est de savoir comment estimer efficacement la bande passante
du canal et du réseau. L'estimation de la bande passante peut se faire
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on construisant une carte de bande passante pour estimer le débit de
transmission dans une position géolocalisée de 'émetteur mobile. Dans
cette approche, une base de données des débits de transmission avec
les positions GPS est d'abord construite hors ligne [14]. Les informations
collectées sont utilisées pour estimer les conditions futures du réseau,
puis le débit vidéo est ajusté en conséquence. La position de I'émetteur
peut étre calculée a l'aide d'une prédiction basée sur Kalman.

N-steps MPC Algorithm : S'il est possible d'estimer le débit de transmis-
sion N pas a l'avenir, il serait possible d’effectuer un contréle du débit
de codage N pas a l'aide de l'algorithme MPC. Le débit cible des futures
trames N peut étre déterminé a l'avance. N-step MPC permet une adap-
tation du débit et un contréle plus efficaces en anticipant la baisse future
du débit de transmission. Il permet également de limiter les oscillations
en lissant les débits cibles des images dans une fenétre de taille V.
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Chapter 1

Introduction

1.1 Context

Video streaming has become the dominant type of traffic over the internet,
with more than 80% in 2021 [1], while 57% of it was attributable to the top six
Over-The-Top (OTT) brands: Google, Netflix, Facebook, Apple, Amazon, and
Microsoft [15]. Live streaming represents an important part of video traffic.

Low-latency video streaming has emerged as a key application in the broad-
casting of sports events, video-conferencing, telepresence, or remote driving.
According to the Cisco Annual Internet Report, live video grew by 93% in 2020
and will account for 17% of internet video traffic in 2022 [1]. Live streaming
will become even more popular thanks to the advances in telecommunica-
tion networks and video codecs. The new generation of video codecs like the
Versatile Video Coding (VVC) saves half of the bandwidth used by the High
Efficiency Video Coding (HEVC) for the same quality, and the fifth-generation
(5G) of mobile networks enables a new type of latency-sensitive applications
that was not possible with the 4G.

The consumption of Ultra-High Definition (UHD) videos is also increasing
over time. According to [16], 17% of the content in the Netflix catalog is in 4K,
and 30% of Netflix subscribers have the UHD package, making it the largest
4K OTT platform in the market.

Moreover, UHD live streaming is expected to grow significantly in the next
few years, especially for sports events and entertainment. Many companies
have performed 4K and 8K live trials using the exiting telecommunication in-
frastructures and Scalable HEVC encoder. The Korean Broadcasting System
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(KBS) has carried out live 4K terrestrial broadcasting of major sports events
such as the 2014 FIFA World Cup [17]. BT Sport and Samsung recently pre-
sented the first live 8K sports broadcast for the Tokyo Olympic Games [1&].

Many streaming methods leverage HTTP Adaptive Streaming (HAS) [2]. With
HAS, video clips are divided into segments of a few seconds, encoded at sev-
eral bitrates, and stored on HTTP media servers. Using HAS, a client can re-
guest video segments with suitable encoding rates. Nevertheless, HAS does
not specify a rate adaptation logic. In downlink streaming applications, adap-
tation algorithms are usually implemented at the client to select the optimal
bitrate of the requested segments. These algorithms exploitinstantaneous or
averaged measurements of the network and channel characteristics and/or
of the client buffer level. They aim to maximize the Quality of Experience
(QoE) of the client. This is usually obtained by maximizing the quality of the
received video while minimizing the number of freezes and switches of the
video quality.

The efficiency of the bitrate adaptation algorithm has a direct impact on
the client QoE. If the segment bitrate is incorrectly selected or not optimal fol-
lowing a change in network state, the downloading of the concerned segment
may take an additional delay, affecting the end-to-end latency of the session.
Hence, the proper functioning of the bitrate adaptation algorithm depends
on the accuracy of the available bandwidth and the client buffer level estima-
tion.

In live video streaming, video acquisition, encoding, and transmission are
performed in real-time. Minimizing the delay between the acquisition of a
frame and its display at the client (glass-to-glass delay [19]) is an additional
QoE requirement. Live streaming is significantly more challenging than classi-
cal Video-On-Demand (VOD) streaming. To mitigate bandwidth variations be-
tween the server and the client, large buffers are usually implemented at the
client. These buffers induce a significant delay in the live streaming context,
and their size has thus to be minimized. Client-level rate control algorithms
based on HAS may entail large delays as control decisions are taken at the
same period as the video segment duration. When the bandwidth between
the server and the client varies with a smaller time scale, wrong decisions
may induce significant segment download delays when the bandwidth is less
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than expected. Traditional streaming protocols such as Real-time Messag-
ing Protocols (RTMP) [20] or Real-time Streaming Protocols (RTSP) [21] associ-
ated with Real-time Transport Protocol (RTP) [22] store and process a few mil-
liseconds of video in each packet, making it possible to achieve a low-latency
transmission of order 300 milliseconds [23].

HTTP-based streaming protocols have been designed to be scalable and
fault-tolerant through pull-based bitrate adaption schemes. In case of a failed
downloading of the video segment, the client can request it again from the
same or different media server. The segment bitrate is selected according to
client network conditions. This approach is based on the assumption that the
client network conditions are unstable or continuously varying while the me-
dia server is located in a safe location with guaranteed access to the network.
Whereas this assumption is valid for VOD streaming, where the client usually
requests video content already encoded and saved on Content delivery net-
work (CDN) servers, the client-driven approach is not always optimal for low
latency live streaming.

In several applications such as live video streaming from a car during a
race or remote control of a drone, the camera acquiring the scene transmits
its compressed stream over a 4G/5G wireless access network to the client via
the wired part of the network. Mobility induces significant and fast variations
of the wireless channel characteristics. In such a context, transmitter-side
control approaches appear better suited for selecting the video encoding pa-
rameters adapted to the wireless channel and network characteristics. This
also prevents waiting for delayed reports of the network and buffer states
provided by the client using, e.g., the RTCP protocol. transmitter-side control
allows a much finer adaptation granularity, which is necessary to reduce the
size of reception buffers at the client and achieve low delay.

As previously stated, the new generation of video codecs has a significant
advantage in variable network conditions, particularly in low latency stream-
ing. For instance, the Versatile Video Coding (VVC) achieves 50% compression
gain compared to its predecessor, The High-Efficiency Video Coding (HEVC),
at the same PSNR quality.

VVC is mainly focused on Ultra-High Definition (UHD) video content. A va-
riety of encoding tools were used to achieve high coding efficiency. However,
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these new coding tools entail a significant amount of computational com-
plexity. The current version of the VWC encoder (VTMs5.0) has 10x the run-
time execution of the HEVC encoder (HM16) [3]. Therefore, The VVC encoder
is unsuited for real-time application, even for low-bitrate encoding and low-
resolution contents that are still used for video streaming today (e.g., 480p
and 360p).

In low latency applications, the video stream is encoded on the fly from a
source that captures the video in real-time. The compressed video is sent im-
mediately to the packetizer, where a streaming protocol such as MPEG-DASH
divides the compressed video into segments before transmitting it. Hence,
the video encoder must finish encoding the video frame before the next avail-
able frame at the source.

1.2 Objectives

In summary, the objectives of this dissertation are:

e Addressthe challenges of low latency video streaming from mobile trans-
mitter in variable network conditions.

e Propose aserver-driven bitrate adaptation algorithm for low latency video
streaming from a mobile transmitter. The proposed algorithm must achieve
a small bitrate control granularity and adjusts the video bitrate according
to the up-link channel state and transmitter buffer level.

e Improve the overall QoE of the client by maximizing the average PSNR
quality of the received video while minimizing the frame loss and the
variations of the video quality, and decreasing the initial playback delay
of the session, which is the time difference between capturing the video
frame and displaying it at the client-side.

e Propose Rate-QP model to adjust the video bitrate at the frame level.
The bitrate of the frame is adjusted by the mean of a rate model that
determines the quantization parameter for having a bitstream of size at
most equal to the allocated bits budget of the frame. The accuracy and
the well-tuning of the model parameters for each frame are critical to
satisfying the bit budget constraint of the frame.
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e Optimize the VVCencoder by reducing the run time execution in the case
of low bitrate encoding and for video resolutions lower than HD without
sacrificing much of its compression efficiency. This goal is accomplished
by removing less efficient coding tools for these use cases; therefore,
significant gains in computational complexity can be achieved for a slight
decrease in coding gain.

1.3 Contributions and structure of the thesis

Contributions and the structure of this thesis are as follows:

e Chapter 2 introduces the reader to the necessary background on video
coding and HTTP adaptive streaming. It reviews the state of the art bi-
trate adaptation algorithms, the parametric models used for video rate
control, and lastly, some optimization methods for VVC encoder.

e Chapter 3 presents a new rate model denoted R-(QP, D), of the relation
between the bitstream size R, of frame n, the quantization parameter
QP,, and the Mean Square Error (MSE) distortion D,,_,of the reference
frame n — 1. Our proposed model is used to determine the optimal QPs
for encoding the frames. We also present a real-time iterative estimation
approach of the model parameters. Part of the material in Chapter 3 has
been presented in

+ Mourad Aklouf, Marc Leny, Michel Kieffer, and Frédéric Dufaux. "Interframe-
Dependent Rate-QP-Distortion Model for Video Coding and Trans-
mission." In 2021 IEEE International Conference on Image Processing
(ICIP), pp. 2019-2023. |IEEE, 2021.

e Chapter 4 presents a transmitter-side encoding bitrate adaptation algo-
rithm adapted for low-latency streaming applications. It aims to control
the client playback margin (i.e., the number of frames in the client buffer).
The control is performed at the frame level. Using measurements of the
up-link channel and transmitter buffer level, a Model Predictive Control
(MPC) framework is employed to infer the bits budget (encoding bitrate)
of the frame to be transmitted.
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e Chapter 5 presents a branch-and-prune optimization method for VVC
encoder that aims to identify a set of coding tools which may be disabled
while satisfying a constraint on the coding efficiency. The material in
Chapter 5 has been presented in

« Mourad Aklouf, Marc Leny, Frederic Dufaux, and Michel Kieffer. "Low
complexity versatile video coding (VVC) for low bitrate applications."
In 2019 8th European Workshop on Visual Information Processing
(EUVIP), pp. 22-27. IEEE, 2019.

e Chapter 6 summarizes the results of our research and suggests several
possible topics for future research.
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Chapter 2

Background and State-of-the-art

This chapter overviews several concepts and technical tools used through-
out this dissertation. Section 2.1.1 reviews the technical features of the new
Versatile Video Coding standard (VVC), then we run through the state of the
art techniques proposed to reduce the complexity of VVC encoder. In Sec-
tion 2.1.4, we recall several parametric models used for video bitrate control,
as well as the difference between regular rate models and inter-frame de-
pendent rate models.

Section 2.2.1the HTTP Adaptive Streaming (HAS) and MPEG-Dynamic Adap-
tive Streaming over HTTP (DASH). We also identify the primary delay compo-
nents of HAS architecture and explain why it is not well suited for low latency
video transmission. Section 2.2.2 presents a point-to-point video communica-
tion model proposed by Bachhuber et al. [19] and discusses the different de-
lay components in point-to-point video streaming. Finally, Section 2.2.3 sur-
veys the different adaptation bitrate algorithms presented in the literature,
their different classes and granularity of adaptation.

2.1 Background on video coding

The HEVC video coding standard [24] achieves 50% compression gain at the
same quality compared to its predecessor H.264/AVC. Yet, HEVC compression
efficiency is no longer sufficient to address the growing demands on ultra-
high definition (UHD). A new video coding standard, Versatile Video Coding
(VQ) [25], has been developed to bring further compression gain over HEVC.
VVC reference encoder (VTM) achieves nearly 50% of compression gain at the
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same quality as HEVC reference software (HM) [26]. However, this comes with
a cost of an increase in encoder runtime which is ten times that of the HM [3].

The VVC encoder has a significant advantage when used in variable net-
work conditions and low latency constraints, as it saves half of the channel
capacity used by the HEVC encoder. However, the VVC encoder is not opti-
mized and thus not well-suited for real-time applications where the encoding
of each frame should take no longer than the frame acquisition time.

Video encoder optimization is challenging because the standards do not
describe how to build the VVC encoder as a final optimized product. Itis up to
developers to use different tools to achieve this goal and find a compromise
between execution time and compression efficiency. VVC test models are
developed only to show the performance in terms of compression gain and
do not take into account the complexity constraint.

The following section provides a background VVC encoding process and
the state-of-the-art optimization methods proposed for the VVC encoder af-
ter finalizing the standard in July 2020 [26].

2.1.1 The Versatile Video Coding (VVC) standard

The Versatile Video Coding (VVC) standard is the most recent video coding
standard developed by the Joint Video Experts Team (JVET) of the Moving Pic-
ture Experts Group (MPEG/ISO) and the Video Coding Experts Group (VCEG/ITU-
T). The project started in 2015 when JVET issued a Call for Proposals (CfP), aim-
ing to achieve 50% encoding efficiency in bitrate for the same quality picture
of the HEVC standard [27]. Strong emphasis has been placed on Ultra-High
Definition (UHD) video content, including 3840x2160 (4K) and 7680x4320 (8K)
formats [28], that became mainstream nowadays. More than 30 companies
and institutions from all around the globe have contributed to the design of
the new video standard. Initial proposals were grouped in a software known
as JVET Exploration Model (JEM) but it was quickly replaced by the enhanced
software VVC Test Model (VTM). The final draft of VVC was issued in July 2020
after more than three years of development.

VVC uses the same block-based hybrid video coding scheme of its prede-
cessors, the High-Efficiency Video Coding (HEVC) [24] and the Advanced Video
Coding (AVC) [29] standards. VVC was designed starting from the HEVC by
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Figure 2.1: Block diagram of a hybrid video encoder, including the modeling of the decoder
within the encoder. This image is reused from [26].

enhancing its different coding modules and inserting new coding tools to in-
crease the coding efficiency. The new codec is not destined only for Standard
Dynamic Range (SDR) video content, but also includes state-of-the-art coding
tools for different video contents, such as High Dynamic Range (HDR), 360°
video, and computer-generated content. VVC is thus a versatile video coding
codec that can address a variety of use cases.

The high-level functionalities, and a detailed description of the new fea-
tures can be found in [30]. In what follows, we give a brief overview of the
coding process and we focus on the essential coding tools integrated into
the VWC.

Figure 2.1 shows the diagram of the classical hybrid (i.e., inter/intra-coding)
scheme of the VVC codec. The represented video content consists of either
one color plane (i.e.,, lumaY) or three-color planes (i.e.,, one luma Y, and two
chroma components Cb and Cr ) of sample values with represented bit depth.
VVC can handle a video bit depth of 8 bits and 10 bits. The chroma sampling
of the input video sequences can be 4:2:0, 4:2:2, or 4:4:4 in which the chroma
planes have the same width and height as the luma plane.
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Video frames are subsequently coded in a specific order according to the
initial coding configuration, e.g., Low Delay (LD), Random Access (RA), or All-
Intra (Al) [31]. Each frame is first split into large Coding Tree Units (CTUs) of
size 128 x 128 luma samples. These CTUs are considered as the primary pro-
cessing unit and are iteratively fragmented into Coding Units (CUs). A CU is
then used for prediction and transform coding. The new partitioning tool
in VVC extends the regular quadtree partitioning of HEVC by enabling a bi-
nary and ternary splitting of the CUs. Accordingly, CUs can be of non-square
shapes. The new binary and ternary splitting types enable more flexible par-
titioning and allow a better adaptation to the spatial properties of the frame.
The new partitioning module provides the highest coding efficiency among
the newly added tools by up to 12% in UHD sequence [32].

The encoder performs an exhaustive search process, known as Rate-Distortion
Optimization (RDO), testing all possible combinations of CTU splitting struc-
tures, intra-prediction modes, and transforms. The RDO process minimizes
the cost J, defined as J = D + A\ x R, where D is the distortion of the CU,

R is its bitrate, and X the Lagrangian weighting factor that depends on the
guantization parameter (QP). At the end of the partitioning process, a CU is
either inter or intra-predicted.

In addition to DC, planar, and the 33 angular modes of the HEVC, advanced
intra-picture prediction techniques have been adopted in VVC. First, the angu-
lar modes are increased to 65 for finer and more accurate spatial prediction,
and 28 wide angles are used for non-square blocks. Furthermore, new cod-
ing modes have been included to increase the intra-coding efficiency. For
instance, the matrix-based prediction is a low-complexity neural-network-
based intra-prediction. The cross-component prediction predicts chroma sam-
ples from luma samples, and the Position-Dependent Prediction Combina-
tion refines the samples of specific prediction modes.

Motion compensation in VVC is enhanced beyond that of the HEVC thanks
to various new inter-coding tools. Like HEVC, inter-coded CUs may have one
or two Motion Vectors (MVs). Still, VVC introduces advanced methods to code
the MVs. e.g., History-Based MV Prediction and Symmetric MV Difference.
Besides, both motion compensation and refinement processes can be per-
formed on the subblock level. A detailed review of the adopted techniques
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can be found in [26] and [30].

VVC conducts a transform and quantization step to the prediction residu-
als of the inter/intra-predicted CU. The energy compaction of VWC is further
enhanced using large transform blocks of 64 x 64 samples and new transform
methods and matrices are introduced. The Context Adaptive Binary Arith-
metic Coding (CABAC) algorithm encodes these samples and inserts them
into the output bitstream. For more information about The CABAC engine
of the VVC and the binarization process of the transform coefficients, refer to
[33].

Finally, many filters are applied to the reconstructed blocks before using
them as an output signal (decoded frame) and as references for the subse-
guent motion-compensated blocks. This step is known as In-loop filtering.
VVC uses a new luma mapping tool with chroma scaling, applied before the
other filters of the In-loop filtering module. Then, the reconstructed blocks
are enhanced, and blocking artifacts are reduced by applying the deblocking
filter and the new Adaptive Loop Filter, respectively. Like HEVC, the Sam-
ple Adaptive Offset filter is the last filter to use before outputting the recon-
structed frame.

2.1.2 Video encoder evaluation metrics

To compare the coding gain of two video encoders or two coding configu-
rations of the same video encoder, the Bjontegaard Delta Rate (BD4) oOr the
Bjontegaard Delta PSNR (BDpsnr) are commonly adopted. A coding configura-
tion is usually defined by a set of enabled coding tools. To properly evalu-
ate the performance of a set of coding tool, several target values of the rate
(in Kbps) have to be evaluated, which lead to associated values of distortion
D (typically measured using the weighted average PSNR of the three com-
ponents Y, U, and V [34]) and complexity C' (approximated by the run-time,
measured in seconds).

In our work, we use the Bjontegaard Delta Rate (BD,4te) [35] to evaluate the
coding gain of a set P, compared to another set P, . Assume that a video
v € Vis encoded considering the set of tools P; and P,, and with npg distinct
QP values QPW, i = 1,... npr, With npr > 4. This leads to as many values
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(R(i) D4 (J@),@' =1,...,npr j = 1,2 of the triple (R, D, C). To evaluate the

J g 0y
BD\ate between decoded videos when the coding tools are are taken from P,
and P, one first fits two polynomial models

Tj(D) = aj’3D3 + CLJ'QDQ + CLjJD + Clj,(),j = 1, 2, (2.1)
using r§i) = log(Rﬁi)) and D]@, i=1,...,npr. Then, using these models,
D
BDyate (v, P1, o) = 107507 Jo/ (D) =n(D)dD 4 (2.2)
where Dh = minj:m max;=1..... npr Djl) and Dg = max;=1.2 minizl 77777 NDR D;Z)

The relative coding complexity of a set P, compared to another set P, is
evaluated as follows:

1 JoR C(i) . C(i)
AC (0,P,Py) = — > (g : (2.3)

TOR 5 02(2)

2.1.3 VVC Encoder Optimization

A few optimization proposals for the VVC encoder have been already pro-
posed before finalizing the standardization process in the third quarter of
2020. The firstinitiatives were released in 2019 and are implemented on non-
final versions of the VTM. In the literature, we often find methods that target
the image partitioning process and the intra-prediction. In this section, we
review some propositions to optimize the VVC encoder.

Tissier et al. [36] demonstrated that the encoding complexity of VTIM3.0 is
proportional to video resolution and QP, i.e., encoding high-resolution frames
with small QPs, generates the most significant complexity. In addition, they
showed that the partitioning tool generates 97% of the complexity in Al con-
figuration mode. The respective complexity contribution for Intra-mode pre-
diction and Transform coding in VTM3.0 are 65% and 55%. However, the
transform module of VTM3.0 contains only one tool (the Enhanced Multiple
Transform (EMT)). Most intra-coding tools were not added yet in this version.

Pakdaman et al. [37] conducted an extensive complexity analysis of the
VVC Test Model 6.0 (VTM6.0). The complexity of both the encoder and de-
coder, as well as their bandwidth consumption, was reported for six video
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sequences and tree resolutions including 720p, 1080p, and 2160p. The re-
sults are compared with the latest HEVC software (HM16). The complexity of
the VVC encoder is 1.5 times that of HEVC in Low Delay (LD), and 31 times
in All-Intra (Al) profile. The decoder complexity is 5 times that of HEVC in LD
and 1.8 times in Al. The authors observed that a significant portion of the
complexity is generated by three coding modules: Intra-coding tools, Motion
Estimation tools, and the Transform tools. Decoder complexity is mainly due
to Motion Compensation, In-loop Filtering, and Inverse-Transform / Inverse-
Quantization. Finally, the analysis reported that VVC encoding and decoding
use 30 times and 3 times more memory bandwidth than that of the HEVC,
which means VVC needs huge memory access optimization.

An in-depth complexity analysis of the intra-coding tools in the VTM7.0 was
conducted by Saldanha et al. [38]. The complexity of each intra-tool was re-
ported in the case of Al configuration. The authors found that the Multi-Type
Tree (MTT), i.e., the binary and ternary splitting of the CUs, is responsible for
about 90% of the complexity. In addition, the luma component generates
about 85% of the complexity. It is also reported that the Rough Mode Dictio-
nary, i.e., the process of speeding up the selection of intra-mode in a CU, and
the Transform/Quantization represent 70 to 80% of coding complexity.

Tianyi Li et al. [39] proposed a deep learning approach to predict CUs par-
tition using a Convolutional Neural Network (CNN) instead of the brute-force
search of the RDO process. The proposed multi-stage CNN reduces the VVC
encoding time in intra-coded slices by up to 67%, with BD 4t loss of less than
3.2%. The proposed CNN was trained with a large-scale database of CU par-
titions of 8ooo frames coded in intra-mode using VTM7.0.

Similar to [39], Tissier et al. [40] presented a deep learning approach to
reduce the complexity of Quadtree Multi-Type-tree (QTMT) search in VTM®6.1.
The proposed CNN is used to analyze the texture of 64 x 64 luma CUs and out-
puts a probabilities vector for all 4 x 4 blocks inside the CUs. The probabilities
vector contains the splitting probabilities of the right and bottom boundaries
in 4 x 4 blocks. A probability of the binary, ternary, and Quadtree splitting is
calculated using the output vector, and a decision is made accordingly. The
advantage of this method is the small execution time compared to the ap-
proach in [39]. The proposed CNN is tested with multiple video sequences
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of high resolutions. The proposed solution reduced the complexity of the
encoder in IA configuration by 42.2%, with a slight BD,4te increase of 0.75%.

Finally, Brandenburg et al. [411] established a new optimized VVC software,
the VVC Optimized Encoder (VOE), by enabling only a subset of the VVC cod-
ding tools and adding some algorithmic optimizations to it. For instance, in
the partitioning module of VTM7.0, the authors redesigned some of the par-
titioning rules to reduce redundancy of the QTMT search, thus speeding up
the RDO process. The other optimized tools are Affine Motion Compensa-
tion, Adaptive Motion Vector Resolution (AMVR), Merge with Motion Vector
Differences (MMVD), Symmetric Motion Vector Difference (SMVD), and the
Motion Estimation. The subset of the enabled tools is chosen after analyz-
ing their complexity and coding efficiency similarly to our proposed method
in Chapter 5. Additionally, VOE has a Single Instruction Multiple Data (SIMD)
implementation of some coding modules such as forward and inverse trans-
form, in-loop filtering, and block interpolation filtering. The overall optimiza-
tions provide a complexity reduction of 39% with a compression efficiency of
30.35% compared to HEVC encoder.

All the previous approaches make algorithmic modifications to the non-
normative part of the encoding process of the VVC. Our proposed method,
presented in Chapter 5, aims to identify coding tools which can be ignored
in low-bitrate use cases, with a greatly reduced complexity and a preserved
coding efficiency. This could lead to the definition of application-oriented pro-
files, where some tools are automatically disabled in the high-level syntax.

2.1.4 Rate model for video coding and transmission

The control of the encoding rate is crucial in low latency streaming. The bit-
stream size resulting from the encoding process must be regulated accord-
ing to the channel transmission rate, encoder/decoder buffer sizes, and the
constant end-to-end delay. Video rate control can be performed at the mac-
roblock level, the frame level, or on a group of pictures (GOP). It relies on a
model of the relation between the size of the bitstream resulting from the
encoding process, i.e, frame encoding rate, and the video encoding param-
eters. Nevertheless, the characteristics of the video and the inter-frame de-
pendencies increase the difficulty of constructing the model and decrease it

38



precision.

Rate models can be classified into two categories. The first category as-
sumes that the coding units (frame or CUs) are independent of each others,
whereas the second category considers the temporal dependencies among
the coding units.

Ding et al. [42] suggest that the rate R of a frame and the quantization step
size () curves may be modeled by the R-Q " model

Ry =p1 + =5 (2.4)

QP:N
nwhere py, p» and p3 are model parameters, and () is the quantization step
size. The relation between @, and the quantization parameter Q) P, is defined
by
PL—4
Q=277 (2.5)
The modelin [42] has been refined in [4] to predict the encoding rate of the
H.265/HEVC frames and CTUs, accounting for the Mean Absolute Difference
(MAD) between the original py (7, 7) and the reconstructed k-th coding unit
pr (1,7) of size M x N,

P1 P2
R,=M-N-MAD; - | = + ) (2.6)
’ ' (Qk Qs
with
MADy, = ZZka i, 3) — o (i, 5)]- (2.7)
i=1 j=1
The MAD of CTU £ is predicted using that of the CTU £k — 1 :
MAD), = psMADj,_1 + py. (2.8)

In the same spirit, [43] and [5] present a model involving the Sum of Absolute
Difference (SAD) to describe the rate of the k-th frame

SAD
Qr

"This notation covers both R-Q and R-QP models, as there is a direct relationship between the quantization
step size Q and QP

Ry =p + D2, (2.9)
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where

SAD, =M -N-MAD,. (2.10)
Additionally, the SADj is inferred as
SAD; = SADzrf_l + p3sv/Di—1 + pa, (2.11)

where SAD,"? | denotes the SAD between the original frame k and the orig-
inal reference frame k — 1. D;._; is the MSE distortion of the reference frame
after encoding,

N

1 M
—NZ (Dr-1 ( — Pr—1 (iuj))2'

i=1 j=1

Both models 2.6 in[4] and 2.9 in [5] involve thus 4 parameters, py, p2, p3 and
p4. These rate models only account for the quality of the reference CTU £ — 1
via its SAD or its MAD. This bring us to the second category of R-Q models
[6], where the temporal dependency between the H.264/AVC macroblocks is
more explicitly taken into account to get the model

2
Ry=p1 - M- NQ2’ (2.12)
where oy, is the standard deviation of the motion-compensated residual of the
k-th macroblock. This model has a single parameter. All above models have
been designed to adjust the QP on the block level, but they may be extended
at the whole frame level.

The precision of these models are not very accurate when considering
transmission in band-limited channels. First, the models 2.6 in [4] and 2.9
n [5] do not consider the temporal dependency between the frames. Our
preliminary tests have shown that, for a given Q P, the bitstream size of the
encoded frame n is much more significant when its reference frame is en-
coded at a low bit rate compared to a reference frame encoded at a high bit
rate. Moreover, these two models and particularly model 2.12, have a small
number of parameters that are not sufficient to describe the frame bitrate
variation adequately.
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Lin and Ortega [44] have proposed a piecewise cubic model of the relation
between R, of frame k, QP and the QP of the reference frame.

Rk (xla Qk) Q| S T
Re(@u) — | B D@Dy 2o,
Ry (22, Q) Q) > 9,

where @, is the quantization scale of the current P-frame, Q; and D; are
respectively the quantization scale and the MSE distortion of the last coded
I-frame. The two pairs (z9, Ry, (72, Qk)) and (z1, Ri (21, Qk)), must be deter-
mined for each P frame and for given Q). Zhang et al. [45] experimentally
show that the piecewise cubic model is inaccurate in layered coded video se-
guences.

Two other types of rate models have been proposed in the literature: the
R-p model [46] and the R-A model [27]. These rate models use encoding pa-
rameters that are evaluated within the encoder during the encoding process.

The R-p model [46] predicts the rate R of the H.264/AVC macroblocks using
the percentage p;. of zero-valued transformed coefficients

Ry =p1-(1—pz), (2.13)

where p; is the model parameter. The R-p model accurate enough for H.264/AVC.
However, the introduction of the skip-transform mode in the H.265/HEVC
standard and the new entropy coding techniques at the level of the CABAC
make the relation between p and the rate of the coding block nonlinear. Ac-
cordingly, this kind of model is unsuited for the HEVC encoder.

Finally, the R-A model [47] predicts the rate R of the H.265/HEVC coding
units using the Lagrangian multiplier A for the HEVC rate-distortion optimiza-
tion (RDO). The relation between the rate R and )\ is defined as

A = R \" (2.14)
k= D1 N ; 14

with
QP: = p3-In(\g) + pa. (2.15)
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Consequently, p1, p2, p3, and p, are model parameters that need to be esti-
mated for each coding block. The Lagrangian multiplier A\, defines the follow-
ing RDO cost function

J = min (Dk + A - Rk) . (2.16)

A is determined from 2.15 using Q) P, the quantization parameter of the k-th
CU. Then, the splitting type and the prediction mode that minimize 2.16 are
determined for the k-th CU. The R-\A model improves the coding efficiency
of the HEVC reference software HM10 by 15.9 in Low Delay configuration and
24.6 in Random Access [48]. The efficiency of the R-A model decreases when it
is applied at the frame level as the temporal dependence between the frames
is not considered.

Since R-p and R-A models describe the rate using low-level encoding pa-
rameters, and they do not provide a straightforward mean to control the en-
coder behavior as the R-Q models do, when using quantization parameters
Q P, of the frame, and D,,_; the distortion of the reference image. The R-Q
models allow easy control of the encoder without putting an additional delay
to the transmission chain.

In Chapter 3, we propose a model of the relation between R, and QFP,
depending on the Mean Square Error (MSE) distortion D,,_; for the reference
frame n — 1. Our model, denoted R-(QP, D), is used to determine the optimal
QP for encoding a frame considering some target bit budget.

2.2 Background on video streaming

Adaptive video streaming over HTTP is a widely adopted mechanism for video
delivery. It offers significant advantages in variable network conditions and
a bitrate adaptation that maximize the client QoE. The problem of video bi-
trate adaptation with HAS has been well-discussed in the literature. Many
algorithms have been proposed with different adaptation logics. However,
most of the work focused on the Video On Demand (VOD) service, which has
less stringent latency constraints compare to live streaming. In the latter case,
minimizing the end-to-end delay is an additional QoE requirement.

As a first step towards understanding and designing a reliable low latency
video delivery mechanism, we recall the general scheme of the HTTP Adaptive
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Streaming (HAS), and we identify the primary delay causes that make HAS
unsuited for low latency video transmission. Section 2.2.2 discusses the point-
to-point (P2P) video communication model proposed by Bachhuber et al. [19]
and its delay components. Identifying the various transmission modules and
their contribution to the glass-to-glass delay allows the formulation of our
proposed bitrate adaptation method in Chapter 4 and so as to minimize the
glass-to-glass latency.

Lastly, Section 2.1.4 surveys the different adaptation bitrate algorithms pre-
sented in the literature, including throughput-based, buffer-based, and hy-
brid schemes. We also explain the advantage of the server-based approach
and reducing the adaptation granularity for live streaming.

2.2.1 HTTP Adaptive Streaming overview

HTTP Adaptive Streaming (HAS) [2] is a set of protocols that enables the trans-
mission of multimedia content over the Internet. Unlike in traditional trans-
mission protocols, e.g.,, RTP and RTSP, multimedia content is retrieved via
HTTP protocol from conventional HTTP servers. Hence, HTTP Adaptive Stream-
ing is more efficient in large-scale networks as HTTP protocol is largely de-
ployed over the Internet.

Apple HTTP Live Streaming (HLS) and MPEG Dynamic Adaptive Streaming
over HTTP (DASH) are the most popular HAS protocols. Despite the stan-
dardization and application differences of the two protocols, their operating
scheme remains similar [2]. In what follows, we only review MPEG-DASH as
an example of HAS scheme.

Figure 2.2 shows the typical HTTP adaptive streaming architecture. The
media content is generally generated offline [49] and divided into multiple
segments of 2 to 10s; each contains one or more media components, i.e., au-
dio, video, subtitles. The media segments are available in various represen-
tations, which are defined by a bitrate, a frame rate and/or resolution. The
segments are then stored in HTTP media servers or caches servers along with
the Media Presentation Description files (MPD).

HTTP-based Content Distribution Networks (CDNs) are usually deployed
to handle the large number of connections from the HTTP clients. Thus, re-
ducing the load on the origin media server and reducing the downloading
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Figure 2.2: HTTP adaptive streaming architecture [51].

latency [50, 2].

The MDP is an XML file that contains the URLs and the timing information
used by the client to request a media segments of particular media content
[51, 50]. The MPD file is subdivided into three components :

1. Periods are large sequential pieces of the media content.

2. Inside each Period, there are representations, which are different encod-
ing and/or sub-sampling of the same media period.

3. The representations, in their turn, contain a series of segments that can
be requested by a unique HTTP URLs.

A representation consists of one initialization segment and one or more me-
dia segments. The initialization segment provides the necessary metadata to
decode and play the media content.
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Figure 2.3: Connection establishment and media segments retrieval in HTTP adaptive
streaming [52].

Figure 2.3 illustrates the segment retrieval procedure in a given HAS in-
stance [53]. The client sends an HTTP GET to request a media segment us-
ing the information from the MDP file. The appropriate representation is se-
lected based on the available network resources of the client using a rate
adaptation algorithm. This procedure takes place before requesting a new
media segment. Section 2.2.3 reviews the various bitrate adaptation algo-
rithms presented in the literature.

HAS can also be used to stream live contents, e.g.,, when broadcasting live
sports events. In that case, the media segments are generated on the fly from
a continuous video stream. Unlike in Video on demand (VOD), minimizing the
end-to-end latency is crucial in live streaming. Yet, a few seconds of delay is
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unavoidable in HAS due to the media segments preparation and transmis-
sion.

Lohmar et al. [52] introduce the main components contributing in the end-

to-end delay of a DASH session:

1.

Content acquisition delay T,¢q is usually constant and depends on the
acquisition device.

Segmentation delay Tseg: ONnce the acquisition device generates enough
media data, the server builds the segments by putting the media into
packets and adding the metadata that describes the segment. Hence,
the server must buffer an amount of data equivalent to at least one seg-
ment, which leads to a minimal delay of the segment duration A.

. Asynchronous fetch of media segments Ty the server does not notify

the client when a new media segment is ready to be transmitted. Thus,
the client asynchronously makes an HTTP GET request when itis needed.
However, to avoid unsuccessful fetch of the segment, the client needs to
request it Ty after the availability time of the segment. This leads to a
delay of one segment duration A in the worst case.

Download Time T,: the download time of the segment initially depends
on the channel state and the available downloading rate. In the worse
case, the download time may be higher than the segment duration Ti, =
A + Tiink, With Tjink is the propagation time of the packets in the wireless
and the physical links.

. Buffering at client-side T},: the client uses a reception buffer to mitigate

the bandwidth fluctuations. The reception buffer holds a few seconds
of the video to provide a smooth video playout. However, small receiv-
ing buffers must be used in live streaming to minimize the latency. The
size of the client buffer must not exceed a duration of two segments A
according to [52].

. Decoding time of the segment Ty also depends on the used codec and

the computational power of the device
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Figure 2.4: Point-to-point video transmission model proposed by Bachhuber et al.
This image is reused from [19]

Accordingly, the total delay for HTTP streaming is
Tiot = Tacq + Tseg + Tar + Ten + T + 14y, (2.17)
in the worst case, the total end- to-end delay is
Tiot = Tacq + SA + Tiink + Ty. (2.18)

Given (2.18), the total latency of the DASH session can be minimized by setting
the segment duration A to the smallest possible value, e.g., 15s.

2.2.2 Delay components of point-to-point video transmission systems

Bachhuber et al. [19] present a model for point-to-point video communica-
tion, as well as the main components of the end-to-end latency, including the
camera, coding/decoding, network, and display delays. The authors also in-
troduce the definitions of the Glass-to-Algorithm (G2A) and the Glass-to-Glass
(G2G) delays.

The G2A delay characterizes the time difference between a visible event
and the reception of the first image of this event by the image processing
algorithm in the client side. Hence, the minimization of G2A is critical in delay-
sensitive control applications. The Glass-to-Glass (G2G) delay is considered in
applications such as live streaming where the video sequence is presented to
a human observer. G2A is computed for machine vision systems that employ
image processing algorithms to produce autonomous actions. If the video is
then displayed to a human observer, the G2A is determined by omitting the
display procedure delay from the G2G delay.
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Figure 2.4 represents the video transmission model presented in [19]. The
main components of the G2G latency they identified are as follows:

1. Camera Frame Refresh delay t¢orgr : The frame is completely captured
after a period tcqm, in which the camera sensor is exposed to light.

2. Camera Circuitry delay top: tep is the time necessary for the camera pro-
cessing unit to read the pixel values then apply elementary processing
operations, such as offset, white balance, and analog to digital conver-
sion. As these operations are usually hardware-implemented, the re-
sulting delay t¢p is typically in the order of a few milliseconds, e.g., tcp =
710 pus £ 62.5 us in Guppy Pro1 cameras [19].

3. Frame Selection delay trg: The captured frames are usually all forwarded
to the encoder in standard video transmission applications. Occasion-
ally, some video frames can be skipped and forward fewer frames to
reduce the average bitrate of the encoded video sequence and thus the
G2G delay. Bachhuber et al. [19] propose a frame selection algorithm of
trs = 246 us to 810 us for frames at resolution 640 x 480 pixels.

4. Color conversion to¢c and Encoding time tg,. : tg,. delay depends on
the computational power of the device, the video compression standard
(e.g., VWC, HEVC, AVQ), and the used software (e.g., HM [8] and x265 [7]
are both HEVC encoders). In addition, color space conversion with a de-
lay tcc can be applied before encoding when the camera captures the
framesin RGB format, and encoders compress the framesin YUV format.
According to the authors, the segmentation of the compressed frame
and data packetization in RTP packets takes a negligible amount of time.

5. Encoder Buffering delay ¢tz and Decoder Buffering delay tpp : Large en-
coder buffering delay ¢z and decoder buffering delay tpp are observed
when channel transmission rate is low compared to the video encod-
ing bitrate. In general, the video bitrate must be quickly and accurately
adapted to the channel transmission rate, and the buffers load must be
kept small to minimize the buffering delays. The match between video
encoding rate and the available transmission rate is ensured using bi-
trate adaptation algorithms. Section 2.2.3 reviews some of them.
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6. Network delay t et tyenw includes the processing, queuing, and prop-

10.

agation time of the packets in the wireless links and the intermediate
routers of the IP network.The frame transmission time is R,,/C,, with R,
is the size of frame n (in bits) and C,, is the estimated transmission rate
(in bps). Additionally, the signal propagation delay on a wireless channel
and the physical links are calculated relative to the speed of light and the
refractive index of the optical fiber, and the speed of electrical signals in
the physical cables respectively.

. Decoding time tp.. and Color Conversion tc¢ : Like t g, tpe. depends on

the used hardware, the video compression standard, and the software
decoder. The authors used the libavcodec/h.264 decoder with an aver-
age decoding delay of tp.. = 272 us. Color space conversion can also be
applied with an additional delay of t¢¢.

. Display Refresh tp;s : tp;s is the time difference between reading out of

the frame data from the graphics buffer and forwarding it to the display
electronics. Itis a constant duration of 1/ fp;s, with fp;s being the rate at
which the display panel is refreshed.

. Display Processing tpp: tpp is the time difference between the instant

when the new pixel values are sent to the display and when the display
electronics are ready to change the corresponding pixel values. This pro-
cessing delay varies widely for different monitors. The authors recorded
a delay of 1 ms in a Samsung 2233BW monitor and 23 ms in a DELL
U2412M.

Display Pixel Response tppp : Itis the time for the pixels in LCD monitors
torespondto a change in voltage. For example, the Acer XB270H monitor
has a tppg response time of less than 1 ms.

2.2.3 Bitrate Adaptation schemes

The video rate adaptation algorithms available in the literature can be classi-
fied according to the inputinformation used for their decision into bandwidth-
based, buffer-based, or mixed approaches. Depending on the location the
control algorithm is implemented, one may also identify server-based and
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client-based approaches. Rate control algorithms adopt also different con-
trol granularity, ranging from segment-level to frame-level control. Finally, in
push-based approaches, the client does not have to regularly request video
segments from the server, while in pull-based methods, the client must re-
qguest each video segment from the server.

Paper Control at Based on Startup Buffer  Granularity
Reference Method client server buffer bandwidth delay size of control
[11] PANDA X X NA 305s Segments
[10] Festive X X NA 305S Segments
[13] BBA X X NA 240S Segments
[12] BOLA X X NA 5-100Ss Segments
[54] BOLA-E X X 3-50S 10-25S Segments
[54] DYNAMIC X X X 3-50S 10-25S Segments
[55] Pl controller X X X NA 30S Segments
[56] MPC X X X 1-10S 255S Segments
[571[58] MDP X X X NA 30S Segments
[59] Q-learning X X X NA 20s Segments
[60] Deep Learning X X NA NA Segments
[61] K-Push HTTP/2 streaming X X 6s 12s Segments
[62] Frame Discarding X X 1S NA Segments
[63] Deep RL X X X 0.5s NA Frames

Table 2.1: Comparison of some streaming methods (NA indicates absence of available infor-
mation)

Bandwidth-based schemes, such as Festive [10] and PANDA [11], select,
for each video segment, a video bitrate inferior or at most equivalent to the
observed or inferred capacity of the network. These relatively conservative
schemes may lead to a suboptimal exploitation of the available resources.

Buffer-based schemes, such as BBA [13] and BOLA [12], evaluate the tar-
get video rate as a function of the playback buffer level of the client.These
schemes aim at stabilizing the level of the client buffer to ensure continuous
video playback and avoid freezes when the buffer is empty. Such control may
result in frequent bitrate switching which may affect the QoE. A comparative
study of these different schemes has been proposed in [64] considering mo-
bile network traces. Buffer-based schemes have been observed to outper-
form the other schemes in terms of adaptability. Nevertheless, they lack in
stability, especially when small buffers are considered.

BOLA works best in permanent regime rather than during transients, e.g.,
during startup when the client buffer is empty. In such situations, many low-
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bitrate segments are transmitted before the client buffer reaches a sufficient
level to download higher bitrate segments. In addition, since the selected
coding bitrates are directly proportional to the client buffer level and the
buffer size in the case of live streaming is small, the thresholds between dif-
ferent bitrate choices may be too close in live streaming. Thus, small vari-
ations of the size of video segments due to variable bitrate (VBR) coding of
the video sequences may cause oscillation between the encoding bitrates.
Spiteri et al. [54] improve the responsiveness of BOLA to these issues us-
ing a placeholder algorithm that changes the client buffer level using virtual
video segments containing no data. The proposed algorithm inserts enough
virtual segments in the client buffer to obtain the optimal bitrate that maxi-
mizes the client QoE. DYNAMIC, introduced in [54], is another improvement
to BOLA that selects the target bitrate based on the available bandwidth at
the startup phase or when the buffer level is low. DYNAMIC then switches to
baseline BOLA when the buffer level is high enough. This approach provides
better performance than regular BOLA because bandwidth-based algorithms
perform better at low buffer levels.

Buffer-based and bandwidth based approaches have been combined to
address their respective drawbacks, aiming at fully exploiting the available
bandwidth and stabilizing the buffer level. In [56, 55], control theory is em-
ployed to design a predictive control algorithm that combines throughput
and buffer occupancy information. De Cicco et al. [55] propose a proportional-
integral (P1) controller to maximize the client QoE by selecting the optimal
bitrate of the video segments given the available bandwidth and the client
buffer level. Yin et al. [56] propose an MPC algorithm for video rate adapta-
tion at segment level combined with HAS. The algorithm chooses the bitrate
of the segments by solving a specific QoE maximization problem at each time
step. Moreover, it uses N steps ahead throughput predictions, implying the
need to use an efficient throughput predictor. The work does not discuss the
design of effective throughput predictors and assumes that predictors are
given. This MPC algorithm has a significant computational complexity, which
is problematic for real-time video transmission. Thus, the authors simplify
the algorithm to a lookup table, built offline and indexed by the client buffer
and channel states. The output of the lookup table is the optimal bitrate of
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the video segments. Yet, this MPC algorithm is not suitable for low-latency,
as it operates at the segment level, assuming that the rate of each segment
can be chosen independently of the rate of previous segments.

Rate adaptation for streaming over mobile networks is cast in the frame-
work of Markov Decision Processes (MDP) by Bao and Valentin [57]. Buffer
and channel states are employed and the use of a channel state predictor is
shown to further improve performance. In the same spirit, Zhou et al. [58]
propose an MDP-based adaptation scheme for Dynamic Adaptive Streaming
over HTTP (DASH) aiming at maximizing the QoE. Their method takes into ac-
count additional key factors that impact directly the client QoE, including rate
switching frequency and amplitude, buffer overflow/underflow, and the num-
ber of stalls. A Q-learning-based adaptation scheme is proposed in [59]. This
scheme dynamically learns the optimal policy corresponding to the channel
and client buffer states. In addition, the reward function used in the learning
process can be tuned to emphasize different aspects of the QoE of the client.

The previous approaches are pull-based schemes: video rate adaptation
is performed at the client. This type of approaches is well suited to stream-
ing of video contents to mobile devices through a wireless access network.
The available transmission rate mainly depends on the position of the client
and of the number of clients sharing the same wireless resource. Moreover,
the client has a delay-free access to the level of its reception buffer, and is
able to estimate the capacity of its wireless channel, which facilitates control.
Conversely, in live transmission of sports events such as car races or sail-
ing contests with on-board video cameras, or in remote car driving or drone
operation, the acquisition device (camera and encoder) becomes the server
delivering content to remote clients. The server is moving and this motion
may lead to fast and significant fluctuations of the wireless channel charac-
teristics between the acquisition device and the eNodeB (4G) or gNodeB (5G)
[65] to which it is connected. Figure 2.5 shows the difference between the
pull-based and the push-based streaming method.

In addition, the segmentation of the video content in HAS streaming intro-
duces at least one segment duration into the total latency of the streaming
session. In live streaming, the video bitrate must be adapted to the available
instantaneous transmission rate to avoid accumulation of encoded video frames

52



(a)

) (( )) _ Display
3 R Qo= &

Channel state
Buffer state

Bitrate Control

Channel state

Figure 2.5: (a) Pull-based streaming architecture, (b) push-based streaming architecture.

at the server. Accordingly, the period at which the rate control has to be per-
formed has to be significantly smaller than what is considered in classical
segment-based streaming applications, where segments may last from 2 to
10 seconds.

Ben Yahia et al. [62], propose an approach to deal with network varia-
tions occurring at timescales smaller then the video segment duration. They
propose a bitrate adaptation scheme in which the client can discard a set of
video frames from the downloaded segment when the available bandwidth
is not sufficient to transmit the whole video segment. The proposed scheme
is client-based and uses both HTTP/2 and DASH standards, which makes it
compliant with the general architecture of HAS.

Feng et al. [63] present Vabis, a server-side bitrate adaptation for low-
latency applications based on Reinforcement Learning (RL). Vabis adjusts the
video bitrate and minimizes the latency between a mobile client player and
the HTTP media server located in the core network. It selects the encoding
bitrate of a small piece of the video segment. Vabis is based on the HTTP
adaptive streaming framework and MPEG Common Media Application For-
mat (CMAF) [66] standard for video delivery. Contrary to HAS, in which the
video segment can not be transmitted before it is encoded entirely. CMAF
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allows the video encoder to gradually output small pieces of the video seg-
ment chunk for delivery immediately after encoding it. This allows to achieve
small control granularity and minimize the latency between the client player
and the streaming media server. The server receives the measurement of
the channel and the client buffer state every 0.5s and selects the optimal en-
coding bitrate accordingly.

In [61], a push-based method using the HTTP/2 protocol has been pro-
posed. The client sends one request to the server, to push K segments of
bitrate V. These K segments are sent in a batch. A probabilistic buffer model
is used to optimize the two parameters K and V' atthe clientside. The HTTP/2
based approach significantly reduces the latency of segment delivery in high-
RTT networks, and it decreases significantly the startup delay because of us-
ing shorter segments.

Du et al. [60] propose a Deep Neural Network-Driven Streaming method.
The encoder sends the video segment encoded in low quality to the server.
The server runs a Deep Neural Network (DNN) to determine the regions of
the frames that need to be re-encoded at higher bitrates, and request it back.
To determine the bitrates of the low- and high-bitrate regions, a feedback
control system isimplemented at the server side. The control system uses the
total bandwidth of the previous encoded segment, in addition to the currently
estimated bandwidth, to tune the resolution and quantization parameters of
both the low- and high-bitrate regions.

Table 2.1 compares the above streaming methods. This thesis addresses
the bitrate adaptation problem in low latency video streaming and presents a
novel method for adjusting the video bitrate at the frame level. The proposed
algorithm is based on Model Predictive Control and, unlike most state-of-the-
art techniques, operates at the server-side (transmitter). These properties
make it suitable for low latency streaming from mobile terminals and over
variable channel characteristics.
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Chapter 3

Rate-QP-Distortion model
for video streaming and compression

3.1 Introduction

Rate control plays a vital role in ultra-low latency streaming. The bitstream
size resulting from the encoding process must not violate the constraints im-
posed by the channel transmission rate, encoder/decoder buffer sizes, and
the constant glass-to-glass delay.

In applications such as remote driving [67] or remote surgery [68], only
small buffers are allowed at the transmitter and the receiver to limit the la-
tency to a minimum. Accordingly, any mismatch between the encoding rate
and available transmission rate may lead to an unacceptable delay increase.
The small buffers at the transmitter and the receiver cannot mitigate trans-
mission jitter.

Video encoding rate control can be performed at the macroblock level, the
frame level, or on a group of pictures (GOP). It relies on a model of the relation
between the size of the bitstream resulting from the encoding process and
the video encoding parameters. The rate model is used to determine the op-
timal encoding parameter for having a bitstream of size at most equal to the
allocated bits budget in the constraints mentioned above. The quantization
parameter QP is usually considered used in rate control as it directly impacts
the size of the resulting bitstream.

Our goal is to adjust the video bitrate at the frame level for low latency
streaming. We must use a rate model to determine the optimal QP to encode
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the frames in a given bit budget. The bit budget is determined by the bitrate
adaptation algorithm that will be introduced in Chapter 4.

Parametric models between the rate of the frame and its QP have been
proposed in the literature. However, the precision of these models cannot
be reliable for transmission in band-limited channels as they do not consider
the temporal dependency between the frames.

We propose a new model of the relation between the encoding bitrate
R,, of the frame n and its quantization parameter (QF, depending on the
Mean Square Error (MSE) distortion D,,_; for the reference frame n — 1. Our
proposed model, denoted as R-(QP, D), is part of our low-latency streaming
scheme proposed in chapter 2. We use this model to determine the QP for
encoding the frame and having a bitstream size at most equal to its allocated
bit budget.

In this chapter, we compare the performance of the proposed approach
with state-of-the-art models in terms of accuracy of the encoding rate predic-
tion, especially when the encoding parameters change significantly in time,
as required by ultra low-latency streaming applications.

The contributions of this chapter are the following :

e In Section 3.2, we propose a novel Inter-dependent R-(QP, D) model. We
give insights into how the proposed model structure has been obtained,
and we give detailed instructions for estimating its parameters.

e In Section 3.4, we evaluate the performance of our proposed model in
two coding scenarios: encoding at constant QP and encoding with time-
variant QP. The performance of our model is compared to those of mod-
els in Egs. (2.6) [4], (2.9) [5] and (2.12) [6].

e In Section 3.3, we present a method that allows finding the model pa-
rameters iteratively using the parameters of the first frame and a small
number of encoding trails.

The results show that our proposed model outperforms the models in the
literature, especially in a low-bitrates encoding which demonstrates the ben-
efits of accounting for the distortion of the reference frame.
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3.2 Inter-dependent R-(QP, D) model

This section introduces the proposed R-(QP, D) model for rate control at the
frame level. The proposed model has been derived based on experiments
with H.265/HEVC [69] (using the x265 encoder [7]). Nevertheless, the method-
ology is generic and can be extended to VVC [70] or AV1 [71].

In order to motivate our model, we show experiments considering two typ-
ical frames, with indexes n = 79 and n = 131 of the video sequence ParkScene
encoded with x265 encoder. Figure 3.1 shows the rate R,, of frame n as a
function of the distortion of the reference frame D,,_;, for different values of
@ P,. These results have been obtained by encoding frame n with six different
QP, € {QPY =20,QP? =24,...,QP® = 40}.

All previous frames, including frame n — 1 have been encoded with seven
QP,_1 = QP, + AQP, where AQP € {AQPY = —7,... AQP") = 5}. The
resulting rates are denoted as R, ;, where QP, = QP% i = 1,...,6 and
AQP = AQPY) j=1,...,7.

x10% ‘ ‘ ‘ o a
——QP,=20,n="179
—QP,=24,n=T9

3.5

3. | —QP,=28n="T9 A
QP, =32,n =179 P
QP, = 36,n =79 ) //
2.5 ——QP, =40,n =179 //7 8
-+-QP, =20,n =131
~+-QP, = 24,n =131
v 2 |«-QP,=28n=131

E\: QP, = 32,n =131 i
= QP, = 36,n =131 e
—«-QP, = 40,n = 131

Figure 3.1: The bitrate R, for the frames n = 79 and n = 131 of ParkScene as a function of
the distortion D,,_; of the reference frame for different values of QP,.
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Figure 3.2: RC for frame n = 79 of ParkScene as a function of D,,_, for different values of

QP,.

Each curve for a given value of Q) P, consists of two almost linear parts as
a function of log (D,,_1). Conversely, for small values of D,_;, R, increases
slowly with D,, ;. For larger values of D,,_4, the increase is steeper. We ob-
serve that the dependance of R, ; ; can be described by a family of sigmoids
depending on log (D,,—1) and QP,.

We propose the following R-(QP, D) model

R, (QP,,D,_1) = g1 (QF,)
+ g2 (QF,) (tanh (g3 (QP,) log(Dy—1) — 92 (QF,)) +1), (3.1

where ¢g; (QP,) describes the bitrate R,, for small values of D,,_4, and

R) (QP,, Dy_1) = Ry (QP,, Dy_1) — g1 (QP,)
= 92 (QF,) (tanh (g5 (QF)log(Dy-1) — g4 (QF,)) + 1), (3.2)

describes the bitrate R, for large values of D,,_;.
Figure 3.3-a represents R,, as function of QP, for the smallest values of
D, 1 obtained for frame n = 79. In this regime, R,, decreases exponentially
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with Q) P,, according to

g1 (QP,) = prexp (—p;2QF,) . (3.3)

Figure 3.2 represents R, ; = Ry ;—1(QP") as a function of D,,_; for dif-
ferent values of QP, = QP'. For each value of QP, = QP% i =1,...,6, a
least-squares estimation of g», g3, and g, is performed using R%Z.,j,j =1,...,7
to get g»(QP™), g3(QPY), and g, (QPW). Figure 3.3-b shows that g, as a func-
tion of log(QP") is adequately described by an affine model with two param-

eters p3 and py

92 (QP,) = p3 (—pslog (QP,) +1). (3.4)

Figure 3.3-c illustrates g3 as function of QP%, which is adequately repre-
sented by the linear model depending on p;

g3 (Qpn) - p5QPn- (35)

Finally, Figure 3.3-d illustrates the relation between the square root of g,
and Q P, which justifies the following quadratic model for the dependency
of g4 in QF,, depending on the parameters ps and p;

91 (QP,) = (psQP, — p1)° . (3.6)

Consolidating the previous results, the proposed model (3.1) involves a vec-
tor of 7 parameters p = (p1,...,p7), which value is frame-dependent and
needs to be determined to accurately predict R, as a function of QFP, and
D, .

59



x10* 3 | x10* b

1t
1t
— 08l . 0.8+
S 06! | 086
0.2 ] 0.2+t |
3
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
20 25 30 35 40 3 3.2 3.4 3.6
QF, log(QF,)
C d
4 47 ‘
Qs 37
e
(S
2 L
L
15 ‘ ‘ ‘ 1 ‘ ‘ ‘
20 25 30 35 40 20 25 30 35 40
QP, QP,

Figure 3.3: 91, 92, 3, and g, as a function of QP or log (QP") for frame 79 of ParkScene

3.3 Recursive estimation of the R-(QP, D ) model parame-
ters

In the considered low-latency streaming scheme, the control is performed at
the frame level and not at the GOP or chunk level, as in most of the streaming
solutions [2]. Consequently, the value of p,, has to be estimated online and
for each encoded frame to accurately predict R,, of frame n as a function of
Q P, and D,_;. Coding the frame with different Q P, and QP,_; to build the
model is not possible in this case because a large number of coding trails
generates significant delay.

Our aim in what follows is to evaluate p,, from p,,_; in an iterative way. The
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vector p,, can be expressed as

Pn = Pn-1+ 5717 (37)

where §,, represents the difference between p,, and p,,_;. Assuming that the
rate-distortion characteristics of consecutive video frames of the same type
change smoothly when there is no scene change, 4,, is usually small.

To estimate p,, from p,,_1, consider M video encoders running in parallel.
Each of the M — 1 first encoders processes frame n with a different QF, ;.
m=1,...,M—1. The M-th encoder uses the value @T’n for frame n provided
by the encoding rate controller. Let D,,_y ,,, m = 1,..., M —1, be the distortion
obtained for frame n — 1 when encoded by the m-th encoder and R, ,,, be the
rate of frame n at the output of the m-th encoder.

Assume that an estimate p,_; of p,_; is available. Using D,_1 ., QPm,
and R, ,,, one considers the estimate Sn of §,, that minimize the following
regularized weighted least-squares cost function

M
b, = arg min > " wom (Rogn — R(QPam: Dutm Pt +8))° + 06”8, (3.8)

m=1

where w,,,, > 0, m = 1,..., M are some weights and a > 0 is a regularizing
coefficient, which aim is to favor small values of 4.

Considering the first-order Taylor expansion of R, (Q Py, Dy—1.m, Pn—1 + 6),
one gets

(QpnmyDn 1m7pn 1)

0.
apn 1

E (Qpn,ma Dn—l,m; ﬁn—l + 5) — R (mem; Dn—l,m; ﬁn—1)+

(3.9)
Introducing

Yo = (le - R (Qpn,la Dn—l,laﬁn—l) PIIICIE) Rn,M - R (QPn,M7 Dn—l,]V[;ﬁn—1>)T )

W,, =diag (w1, ..., wnr),

aR(Qn 1; n—1 17pn71)
apn 1
Xn — H Y
(Qn ]V[a n— 1M7pn 1)
apn 1

61



and using (3.9), one may rewrite (3.8) as

~

8, = argmin W, (y, — X,.8)" (yn — X,0) + ad’é.

Consequently,
8, = (W, XIX,, +al) " W, X"y, (3.10)

Then, p,, is determined from p,,_; and Sn as
ﬁn - ﬁn—l + 571

The choice of W,, and of the different Q,,,,, » = 1,..., M — 1is discussed in
Section 3.4.1.

3.4 Evaluation of the proposed model

The performance of the proposed model to predict R, as a function of QP,
is compared to the reference models in Egs. (2.6) [4], (2.9) [5], and (2.12) [€],
used at a frame level.

3.4.1 Experimental setup

Three JCT-VC test sequences, namely Tango, Racehorses, and ParkScene [72],
are selected for the experiments, as well as a recording from the inside of a
racing car (Magnycours [73]). The encoding is performed with the x265 soft-
ware [7], configured in low delay mode and with an intra-refresh cycle of one
second.

The parameters for the three reference models and the proposed models
are only estimated for every four frames of the video sequences. The param-
eters are then assumed to remain constant for the successive three frames.
For that purpose, 42 coding trials are done with QP, € {QPY, ..., QP©)}
and QP, 1 = QP, + AQP with AQP € {AQPW,...,AQP"} to get R, ,
1=1,...,6,andj =1,...,7. Aweighted least-square estimation of the model
parameters is then performed considering the following cost function

Cot0) =3 7 (Fus = RAQPO.DPD) . )
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Figure 3.4: Histogram of prediction errors for Tango at high bitrates, (a) proposed model
(3.1), (b) (2.6) from [4], (c) (2.9) from [5] and (d) (2.12) from [6].

where R, (QP%, DY ) is given by the proposed model in (3.1), or by the mod-

els (2.6), (2.9) or (2.12), and Dﬁﬁl is the distortion for frame n — 1.

To compare the performance of the four models, in a first set of exper-
iments all frames of the video sequences are encoded at constant QP ¢
{QPW ..., QP®}. In a second set of experiments, QP may vary from frame
to frame as the realization of a first-order Markov process such that with a
probability P = 0.6, QF, = QFP,_1, and with a probability 1 — P, Q P, is uni-
formly distributed in the set Q, = {QP,.1 —5,...,QP, 1+ 5} N{20,...,40}.

The ability to predict the actual encoding rate is evaluated using the rela-
tive rate error

E, =100 (Rpred - Ractual) /Ractualp (3.12)

where Racal is the actual size of the encoded frame n and Ryeq is the pre-
dicted one obtained from the rate model.

3.4.2 Results when coding with constant QP

We first compare the performance of the four models in a set of experiments
when encoding with constant QP.
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Figure 3.5: Histogram of prediction errors for Tango at low bitrates, (a) proposed model
(3.1), (b) (2.6) from [4], (¢) (2.9) from [5] and (d) (2.12) from [6].

Figure 3.4 shows the histogram of the prediction errors obtained with the
proposed model in Eg. (3.1), and by the models in Egs. (2.6), (2.9) and (2.12),
used on the Tango sequence coded at high bitrates, i.e., QF, = 20,24. We
notice that our proposed model provides the best performance in this case.
The errors of model in Eq. (3.1) are mainly between -13.6% to 14%, with a peak
at 3.4%. The prediction errors with the models in Egs. (2.6) and (2.9) are be-
tween -11% and 19%, with a peak near 11% and -6.5% respectively. Model in Eq.
(2.12) has the worst performance, with prediction errors spreading between
-50% and 64%.

Figure 3.5 shows the error histograms of the four models on the Tango
sequence coded at low bitrates, i.e., QF, = 36,40. The performance of our
proposed model slightly decreases but significantly outperforms the three
other ones. Prediction errors are between -28.6% and 18.3%, with a peak
around 4.9%. Both modelsin Eq. (2.6) and Eq. (2.9) lead to errors between 0%
and 81% with a peak near 48% and 27.5% respectively. The model in Eq. (2.12)
largely underestimates the rate, with prediction errors distributed between
-90% and -58%.
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Figure 3.6: CDF of prediction errors for Magnycours sequence.
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Figure 3.7: CDF of prediction errors for RaceHorses sequence.

Figure 3.6 shows the error cumulative distribution functions (CDF) when
using the four QFP, = 20,24,36 and 40 for the Magnycours sequence. The
proposed model achieves the lowest prediction error compared to the other
models. For instance, with Q P, = 20, 90% of the prediction errors are less
than 12.2% with the proposed model, compared to 16.7%, 22.6%, and 51.8%
for the models in Egs. (2.6), (2.9), and (2.12), respectively.

Figure 3.7 shows the error CDF for RaceHorses sequence. Here, we see
close performance of models in Egs. (3.1), (2.6), and (2.9) with QP,, = 20 and
24, and close performance between model in Eq. (3.1) and model in Eq. (2.6)
with QP, = 40. The proposed model shows a significant advantage in the
other cases.

Figures 3.6 and 3.7 both show that the gains with our model tend to be
more significant at low bitrates (i.e., high QPs). This can be explained by the
fact that we incorporate the distortion of the reference frame in our model,
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which is especially important at low bitrates.
Figure 3.8 illustrates the average error CDF when coding the four sequences

with a constant QP. Our proposed model achieves the best performance for
all test sequences.
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Figure 3.8: Average error CDF with constant QP for each sequence.

3.4.3 Results when coding with time-varying QP

We present results of the second set of experiments using time-varying QPs
based on a first-order Markov process.

Figures 3.9 shows the histogram of the prediction errors obtained with
the proposed model in Eq. (3.1), and by the models in Egs. (2.6), (2.9) and
(2.12), used on the Tango sequence coded with QP that variate as a first-order
Markov process realization with a probability P = 0.6 . Our proposed model
provides the best performances with prediction error between -32% and 19.1%.
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Figure 3.9: Histogram of errors for Tango sequences with first-order Markov process
variations of QP, (a) proposed model (3.1), (b) (2.6) from [4], (c) (2.9) from [5], and (d) (2.12)
from [6]

The prediction errors with the model in Eq. (2.6) leads to prediction errors
between -30% and 69%, and the errors with Eq. (2.9) are between -40% and
90%. Model in EqQ. (2.12) underestimate the frame sizes. Its prediction errors
are between -90% and 36%.

Figure 3.10 shows the average error CDF with time-varying QPs for the four
test sequences. The proposed model outperforms the other ones for all se-
quences. For Magnycours, ParkScene, and Tango, the improvements are sig-
nificant, whereas for RaceHorses, the models in Egs. (3.1), (2.6), and (2.9) reach
close performances. This difference in performance is due to the spatial and
temporal properties of the video sequence that make it difficult to determine
the model parameters. Thus, the prediction error increases in some frames.
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Figure 3.10: Error CDF with first-order Markov process variations of QP for each sequences,
(a) proposed model (3.1), (b) (2.6) from [4], (¢) (2.9) from [5], and (d) (2.12) from [6]

Figures 3.11-(a) illustrate the temporal variations of the frames bitstream
size in Magnycours video sequence, as well as the predictions obtained by
our proposed model in Eq. (3.1) and model in Eq. (2.9) [5]. We note that our
proposed model manages to predict the size of the images after the encoding
process with relatively low errors. In contrast, the model in Eq. (2.9) overesti-
mates the size of the resulting bitstream.

Figures 3.11-(b) shows the difference between the perdition of the two mod-
els, in Eq. (3.1) and Eqg. (2.9) [5], and the sizes of the frames of Magnycours
video sequence in bytes. We see that our proposed model has an error of 21
bytes on average, while the model in Eq. (2.9) has an error of average of 447
bytes.
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Figure 3.11: (a) The temporal variation of the sizes of the frames, predictions of the model in
Eq. (3.1) and predictions of the model in Eq. (2.9) [5] with Magnycours sequence, (b) The
temporal variation of the error between predictions of the model in Egs. (3.1) and .(2.9) [5],
and the sizes of the frames in bytes, with Magnycours sequence.

3.5 Evaluation of the proposed model when its parameters
are iteratively estimated

In this section, we evaluate the performance of the proposed model to predict
R, whenits parameters are estimated iteratively using the method presented
in section 3.3.

3.5.1 Experimental setup

We consider ten transmission episodes of the video sequence Magnycours at
resolutions 640 x 360 and frame rate 25 fps, in a simple network consisting
of a server and a client. The server encodes the video frames using the x265
encoder [7] configured in low delay and transmits the encoded packets to the
client that contains a video player. The server manages the rate control al-
gorithm BBA [13], which selects the target encoding bitrate of the frames and
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the R-(QP, D) model to determine the frames QP based on its target encoding
bitrate.

The access and core networks are simulated using 4G bandwidth traces
taken from [9]. More details about simulation setup and the rate control al-
gorithm can be found in chapter 4.

The value of vector of parameters p,, for frame n of the R-(QP, D) model
is estimated iteratively as described in Section 3.3. Apart from the encoder
generating the transmitted packets, three additional encoders are used to
provide data to the estimator. Accurate estimates require these encoders
operate with time-varying QPs. The choice of QP for frame n and for encoder
i =1,...,3is performed as follows

QP()’Z' ifn=20
QP.i=1{ QP,_1,+AQP,  ifn%4=1,2 (3.13)
Qpnfli — AQPL if n%4 = 3, O,

where n%4 is the remainder of the division of n by 4. The vector QF, =
(24, 36,40) contains the QPs of the first frame, and AQP = (4,4, —4) is the
variation of QP. This choice of QF, provides a better model accuracy at low
rate (large values of QP). An optimization of the values of QF, ; fori =1,...,3
to get the best parameter estimate is an important direction for future re-
search. In (3.8), we have chosen w,,, = 1/R, ,, to better balance the impor-
tance of measurements obtained at low and high rates. This provides a fit
where the relative rate error is approximately constant, whatever the encod-
ing rate. Moreover, we set a = A\ (W, X1X,,)/100, where \;(W,X1X,) is the
largest eigenvalue of W, XZX,,. This ensures that W, XX, + ol is invert-
ible and is sufficient to smooth out the variations of p,, with n. The ability to
predict the actual encoding rate is evaluated using the same metricin Eq.3.12.

3.5.2 Results of the proposed model built with the recursive estimation

Figure 3.12 shows the variations of the QP in three out of ten transmission
episodes conducted in this experiment. The QP variations here are more sta-
ble than the variations used in the second experiment of section 3.4.1.

The QPs of the frames are determined using the R-(QP, D) model. Each
QP generates a bitrate R,, close to the target bitrate R selected by the algo-
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Figure 3.12: The variation of quantification parameter QP in the 4th (a), 6th (b) and 8th (c)
transmission episode of the video sequence Magnycours at resolution 640 x 360 and 25 fps
using the BBA [13] algorithm.

rithm BBA. To evaluate the prediction performance of the R-(QP, D) model,
we compute the error between the predicted bitrate of the model and the
actual bitrate of the frame R,,.

Figure 3.13 - a shows the Error Cumulative distribution function (CDF) of
the R-(QP, D) model in the ten transmission episodes. We notice that our rate
model R-(QP, D) provides a good performance when estimating its parame-
ters iteratively. 99% of all prediction errors in absolute value are less than

35%.

Figure 3.13 - b illustrates the histogram of prediction errors of the same
video sequence. Most prediction errors are between -40% and +40%. Our
model performance is still very reliable when its parameters are recursively
estimated, with the advantage of reducing the computational complexity of
the estimation.
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Figure 3.13: (a) Error Cumulative distribution function (CDF) and (b) Histogram of model
R-(QP, D) prediction errors when p,, is determined iteratively, in ten transmission tests of
the video sequence Magnycours at resolution 640 x 360 and 25 fps using the BBA [13]
algorithm.

3.6 Conclusion

In this chapter, we present a novel inter-dependent Rate-QP model. Our
model describes the relation between the quantization parameter P, used
to encode the frame n, its bitstream size R,,, and the MSE distortion D,,_;
of the reference frame. The R-(QP, D) is beneficial when adjusting the QP of
the frame according to the allocated bitrate budget in case of low latency live
streaming. The optimal quantification parameters @ P, for encoding the n-
th frames can be determined based on the distortion D,,_; of the reference
frame and the target size of the frame n to be encoded.

We evaluate the performance of the proposed model in two coding scenar-
ios: encoding at constant QP and encoding with time-varying QP. In the sec-
ond scenario, the QP variation is chosen to simulate the case of video coding
for transmission on an unstable transmission channel, where the QP changes
after every few frames following a drop or increase in transmission rate.

In both coding scenarios, the proposed model outperforms other models
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from the literature. For instance, in the video sequence Tango, up to 90% of
all prediction errors are inferior to 8.6% when using constant QP encoding,
and 90% of all prediction errors are inferior to 12% when using variable QP
encoding.

The gains are especially significant at low bitrates (i.e., high QPs), showing
the benefits of accounting for the distortion of the reference frame in our
proposed model. Besides, this attribute shows that our model is exception-
ally reliable in the case of coding for live steaming at low transmission rates
or when sudden drops occur.

The next chapter will focus on integrating the proposed model in a bitrate
adaptation scheme for low-latency video streaming. We will first propose a
bitrate adaptation algorithm that determines the maximum rate budget for
the frame to be transmitted, according to the available network resources.
Then, using our model, we determine the optimal QP to encode the frame
such that the resulting bitstream size will not surpass the allocated bitrate
budget of the frame.
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Chapter 4

Model Predictive Video Bitrate Control
for Low-Delay Live Streaming

4.1 Introduction

In applications such as low latency live streaming, such as remote control of
a drone or broadcasting sports events, the camera acquiring the scene trans-
mits its compressed stream over a wireless network to the client, e.g., a pro-
cessing unit. Mobility induces significant and fast variations of the wireless
channel characteristics. In such a context, encoder-side control approaches
appear better suited for adapting the video encoding bitrate to the wireless
channel and network characteristics. In addition, a finer adaptation granular-
ity and a small reception buffer size at the client is necessary to achieve low
delay.

This chapter proposes an encoding rate control algorithm adapted for low-
latency live streaming applications with glass-to-glass delay targets of 100 to
200 ms. The control is performed at the frame level, which requires the use
of the R-(QP, D) model introduced in Chapter 3, to describe the size of the
encoded frame R, as a function of its quantization parameter )P, and of
the distortion of the previous frame D,,_;. Using measurements of the chan-
nel and network characteristics, a Model Predictive Control (MPC) approach
is employed to infer the future client playback margin for different choices
of target encoding rates for the next frame to compress and transmit. The
controller can then select the appropriate value of QP for that frame.

The contributions of this chapter are the following:
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e In Section 4.2 we present a server-driven live streaming architecture for
ultra-low latency video delivery.

e In Section 4.3 we propose a Model Predictive Control (MPC) approach to
determine the encoding rate of each video frame to be transmitted using
information related to the server (transmitter) buffer level and the wire-
less channel characteristics. The R-(QP, D) model presented in Chapter 3
is used to determine the best QP once the target encoding rate of the
frame is determined.

e In Section 4.4 the proposed algorithm is compared to four reference al-
gorithms, namely Festive [10], Panda [11], BOLA [12], and BBA [13]. The
reference algorithms have been adapted to operate on the server side
and at the frame level.

Simulation results, involving real 4G bandwidth traces show that the pro-
posed algorithm outperforms the other algorithms in terms of average PSNR
and number of lost frames, and itis able to provide video with a glass-to-glass
latency of 120 ms.

4.2 Overview of the proposed low-latency adaptive stream-
ing approach

Figure 4.1illustrates the components of the proposed server-driven live stream-
ing architecture. The server consists of the following main components: a
camera, a video encoder, an encoding rate controller, a transmission buffer,
and a transmitter.
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Figure 4.1: Model of the server-driven live streaming architecture.

Rate Emission buffer level
Control

a

Frame Type

" Channel state (possibly delayed)

We assume that video frames are acquired with a period 7f and that the
acquisition by the video camera of frame n starts at time ¢,, = nI5. The frame
acquisition delay depends of the camera aperture and scene illumination.
Here, it is assumed constant and equal to 7,. Once frame n is acquired, it is
transmitted to the encoder and compressed. For frame n, the trade-off be-
tween encoding rate and quality is controlled by the quantization parameter
Q@ P, provided by the rate control module. The encoding delay 7% is assumed
constant. The resulting bitstream is segmented into RTP or MPEG2 TS pack-
ets and put into the transmission buffer. The packets are drained from the
buffer and transmitted via Wifi, 4G, or 5G to some router, eNodeB, or gN-
odeB [65]. Packets are then carried out through the access and core network
to the receiver. This introduces a delay 7t ,, which depends on the congestion
of routers along the path between the eNodeB or gNodeB and the receiver,
as well as on the length of this path. At the client side, once all packets re-
lated to frame n have been received, decoding starts and introduces a de-
coding delay Ty. The resulting frames are then temporarily buffered before
being displayed at time ¢, +- Ay, where A, is the acquisition-to-playback delay
(glass-to-glass delay) [19].

The control is performed so as to prevent the buffer containing decoded
frames at receiver from starving. This ensures that frames are displayed on
time. If a frame is not decodable, e.g., due to corruption or loss of one of its
packets, a frame concealment process is performed [74]. Outdated packets
in the transmission buffer, i.e., packets which have no chance to reach the
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Figure 4.2: The components of the rate control block.

receiver on time are purged, as suggested in [12].

To determine the value Q P, of the quantization parameter for frame n, the
rate control module takes as input the amount of bits B,, stored in the trans-
mission buffer as well as some (possibly delayed) channel quality indicator
(CQI) provided by the wireless transmitter, see Figure 4.2. The CQl is useful to
infer the rate C' (¢) at which the packets will be transmitted over the wireless
channel in the time interval [t,,t, + Ap]. In the proposed approach, the rate
control block manages an R-(QP, D) model to estimate the encoding rate R,, of
the frame n as a function of the distortion D,,_; of the previous frame and of
QPF,. Since the temporal and spatial characteristics of the frames evolve with
time, an online update of the parameters of the R-(QP, D) model is performed
using the encoding rates R,,_; and distortion D,,_; obtained from previously
encoded frames, as well as additional encoding trials. Additional information
related to frame characteristics (frame type, complexity), which may impact
the parameters of the R-(QP, D) model may also be taken into account. Feed-
back from the client, e.g., in RTCP packets [75], may also be used by the rate
controller.
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Tt frame period

t, = nls start of acquisition of frame n
T, frame acquisition duration

B, buffer level in bits at transmitter
T. < Tt frame encoding duration

Ty < Tt frame decoding duration

R, encoding rate of frame n

C(t) channel rate at time ¢

Ap acquisition-to-playback delay

T receiver playback time margin for frame n

Table 4.1: Notations used in Section 4.3.

4.3 Model-predictive encoding rate control

c(t)

tn thtTy t1’1'|'T|:b, n ) > " tn"'Ap

Figure 4.3: The key time instants related to the transmission of frame n.

Figure 4.3 illustrates the different time instants related to the acquisition, pro-
cessing, transmission, and display of frame n. Frame n starts to be acquired at
time t,,. We consider that its encoding starts at ¢,,+7; and ends at ¢, + 15+ Te.
Assume that the encoding rate R, of frame n has been chosen in the time in-
terval [t,_1 + T4, t, + Ta[. Our aim in what follows is to determine the encod-
ing rate R, 1, of frame n 4 1 before encoding starts at time ¢,,,, + T5. For that
purpose, we consider an MPC approach in which a model of the evolution of
the channel capacity is used to predict the evolution of the playback margins
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T, and 7,1 of frames n and n + 1. The rate R,,.; will be chosen so as to meet
a target playback margin 7.

4.3.1 Playback margin of frame n

At time ¢, the transmission buffer contains B, bits from packets related to
previously encoded frames. Assuming that the wireless link capacity is C' (¢)
at time ¢, the time T}, ,, required to flush these B, bits satisfies

tn+Thn
B, = / - C(t)dt. (4.1)
tn

With an encoding rate R,, for frame n, R, Tt bits are generated during the
encoding process. We assume that the transmission buffer starts to be fed
at the beginning of the encoding process at time ¢, + T; instead of being
fed once encoding is finished. Moreover, we assume that the transmission
buffer is fed at a rate larger than the channel capacity over the encoding time
interval [t, + Ty, t, + T + T¢l, i.e., that R, T;/Te > C(t). Consequently, the
transmission buffer does not get empty over the encoding time interval. Con-
sequently, the time T}, required to drain the R, Tt bits of the encoded frame
n from the transmission buffer is such that

tn +Tb n+Trn H
R,T; = {fnwbn C(t)dt i Ton > T,

(4.2)
ot T Oty dt i Ty, < T

The first case corresponds to a transmission buffer still containing bits when
the video encoder starts to feed bits from frame n, contrary to the second
case where all bits from previous frames have been drained before time ¢,, +
T,. The first case better exploits the available channel capacity.

The time 71¢,, spent by packets in the core network is assumed to evolve
slowly with time compared to the evolution of C (t). Consequently, Tt is
assumed constant and known in what follows. When frame n is decoded, it is
ready to be displayed by the receiver attime ¢,,+max {715, Tb , } + 11+ T n+14y-
Consequently, the playback margin for the n-th frame is

Ty =ty + Dp — (tn + max {15, Ton} + Trp + Ten + T4)
= Ap — (max {75, T} + Trp + Ten + Ty) - (4.3)
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4.3.2 Prediction of the playback margin of frame n + 1

At time t,, + T,, we know that the rate RR,, has been chosen to encode frame
n. We also know that the acquisition of frame n + 1 starts at time ¢,,.;. The
transmission buffer level B, ., at time ¢, .1 will satisfy

max {0, B, + R, Tt — [ C (¢) dt} if Th,, > T,

(4.4)
max {0, R, Ty — [/"}7C (t) dt} if T, < To.

Bn—|—1 -

At time t,,.1 + T;, encoding of frame n + 1 starts. Assuming that a rate R,
has been chosen for frame n + 1, one obtains equations satisfied by 7} ,,+1
and Tt 41 from (4.1) and (4.2) as

tn+1 +Tb7n+1
By = / C(t)dt (4.5)
tn—O—l

and

tn+1 +Tb,n+1

tnr1tTa+ Tt nt1 H (4'6)
tn:l O () dt if 7o > Thi1

The playback margin for frame n + 1 has the same expression as (4.3) and is

et oot o ooy at - if Ty < T4
a X {b,n+l
Rn—!—le - {

Tn+1 — tn_|_1 + Ap — (tn_;’_l + max {Ta, Tb’n+1} + Tr,n+1 -+ TC,TH—I + Td)
= Ap — (max {75, To i1} + Trnt1 + Tensr + Ta) - (4.7)

We evaluate now 7,1 — 7, the evolution of the playback margin for frames
nand n + 1, assuming that Tc 11 = Te

Tn+1l — Tp — Ap - (maX {Taa Tb,n+1} + Tr,n+1 + Td) - Ap - (maX {TéU Tb,n} + Tr,n + Td)
= Inax {Tay Tb,n} — Inax {Ta> Tb,n—H} + Tr,n - Tr,n+1- (48)

4.3.3 Evaluation of therate R,

To determine the value R; ., of R, allowing the receiver to observe a play-
back margin 7,,.; equal to 7%, some additional hypotheses are considered re-
lated to the channel capacity C (¢). In what follows, we assume that C' (¢) is
piecewise constant over time intervals of the form [¢,, ¢, + T¢| and equal to
Ch.
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With this hypothesis, (4.1) and (4.5) become

B,
T n — — .
b, c (4.9)
and
Bn+1
Tons1 = ) .10
b+l Co (4.10)

The expression (4.4) of the buffer level at time ¢,,,1 boils down to

Bn n - nT an>T7
B — {max{(), + (R, —C) T}y if T, > Th )

max {0, C,/ Ty + (R, — C,,) Tt} if T, < Tj.

Moreover, assuming that even if T, ,, > 15 in (4.2), t, + Tb € [tn, tn + 15,

(4.2) becomes
Ry
T, = =1 12
r,n Cn/ f (4 )
This expression is clearly an approximation since the transmission of the bits
of encoded frame n may last over several time interval of duration 7;. Assum-

ing similarly that ¢,,.1 + Th 41 € [tn+1, tn1 + 1), One gets

Rn—|—1
C1n+1

Trn1 = Tt. (4.13)
The evaluation of R, starts at ¢, +75. At that time instant, the server is able
to determine whether 1, > T, or T, < T by observing the level of the
transmission buffer. In what follows, we assume that T, ,, > T3, which corre-
sponds to the case of a non-empty transmission buffer at ¢,, + T3, a situation
where the channel capacity is fully exploited. Introducing (4.9-4.13) in (4.8),
one gets

B,
Tnil = Tn + — — max < 15,

b max {0, B, + (R, — C,) Tf}} 4 (& R”“) T:.

Cn+1 On a Cn—i—l

(4.14)

Imposing a target playback margin 7 for frame n + 1, from 4.14, we get
after some simple derivations the target encoding rate R; ., of frame n + 1
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as follows

Ty — TF B, C,1 Ty max {0, B, + (R, — C,) Tt} |  Chia
; - —Cn — - _On ) 7
n+1 Tf 41t 7} Cn max { Tf +1 /Tf =+ Cn

R,.

(4.15)
Assuming further that the transmission buffer will not be empty over the time

interval
[tn + Ta,thi1 + Tal, (4.15) boils down to

N N —n _ R,
n+l T At T: O, T + C,
— C, 1) (2 4R, )+, 16
T *”L(Cn )(Tf+ >+ (4.16)

The evaluation of R} ., using (4.16) is performed at the server side. The
playback margin 7,, for frame n is observed at client side at time ¢, + Ap — 7,.
Evenif R, has been chosen to get a playback margin 7* for frame n, due to the
discrepancies between R; and the obtained encoding rate R, and between
the channel capacity estimate (j“n used at time t,,_; + 75 to evaluate R’ and
that experienced over the time interval [¢,, ¢, + 7%, the actual playback mar-
gin 7, is likely to differ from 7*. Consequently, the server needs an estimate
7, of 7, to be able to calculate R} _ . It also use estimates én and @nﬂ of the
channel rates C,, and C,,,1. Designing an effective channel rate estimator is
essential, but we focus only on the bitrate adaptation algorithm in this work
and assume that estimators are given to us, e.g., using tools such as those
described in [14, 76]. Then, (4.16) becomes

~

Th — T5 ~ @,H B, ~
n+t1 T 1+ ( G ) <Tf + ) + (4.17)

with 7,, obtained introducing (4.9) and (4.12) in (4.3) to get

. R.Ti + B,
T = Dp — (% + Te + Td) . (4.18)

Some insights on (4.17) may be obtained considering the target number of
bits

R N ~ -~ é\n 6’/1/
By T = (7 = 7) G+ (CTy = RTr) + ( LAR . 1) Bt =R T (419

n n
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allocated to frame n+ 1 to reach a playback margin equal to 7*. If 7, > 7%, the
estimated playback margin for frame n is larger than the target, and the first
term in (4.19) shows that more bits may be used to represent frame n + 1.
The second terms of (4.19) indicates that more bits may be used to represent
frame n + 1 when aan > RT3, i.e., when more bits are drained from the
transmission buffer than those fed by the encoding of frame n. The third
term of (4.19) translates the allowed rate increase or decrease due to a more
or less efficient drain of the bits present in the transmission buffer at time ¢,,.
The last term of (4.19) corresponds to the number of bits to be transmitted
in steady-state. If 6n+1 > @L, the target rate can increase and else has to
decrease.

4.4 Performance Evaluation

This section compares the proposed model predictive encoding rate control
algorithm with reference rate-based and buffer-based schemes.

4.4.1 Simulation setup

We consider a simulation setup consisting of a server and a client as de-
scribed in Section 4.2. The server receives the video frames to encode, runs
the x265 encoder [7], and feeds the transmission buffer with encoded pack-
ets. It also manages the R-(QP, D) model introduced in Chapter 3 and the
rate control algorithm, described in Section 4.3. The client contains a recep-
tion buffer, an HEVCdecoder (the HEVC Test Model HM16 [8]), and a decoded
frame buffer. The access and core networks are simulated using 4G band-
width traces taken from [9].

Six video sequences are used. Five of them belong to the JVET test se-
quences: CrowdRun, Parkjoy, TouchDownPass, DaylightRoad2, and Kristenand-
Sara [72], An additional sequence, Magnycours [73], acquired from a camera
on arace car is also considered. The video sequences are sub-sampled using
FFmpeg [77] to two spatial resolutions 640 x 360 and 1280 x 720, and to one
temporal resolution of 25 fps, i.e., Ts = 40 ms. The acquisition delay is taken
as1; =2 ms.

The x265 encoder [7] is configured in low delay mode and with an intra-
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refresh cycle of one second. Encoded data packets are embedded in RTP/UDP/IP
packets and temporarily stored in the transmission buffer. Wireless trans-
mission of packets is simulated with a period of one millisecond. For that
purpose, the 4G trace A_2018.01.27_10.58.49.csv, taken from the set of traces
described in [9], has been considered. This 15 mn long trace has been ac-
quired using GNetTrack Pro [78] around Cork within a moving car. Downlink
(DL) transmission rates are available with a measurement period of one sec-
ond. We assume that similar rates are available in the Uplink (UL) direction,
even if the allocation between UL and DL is not symmetric. Moreover, the
transmission rates have been spline interpolated to one millisecond for the
transmission simulation. Transmission is assumed to be loss-free thanks to
HARQ mechanisms between the transmitter and the base station. The time
Tt spent by packets in the core network is neglected.

Received packets are temporarily stored in the client reception buffer. De-
coding starts upon reception of the last packet related to the considered
frame. The decoding time is taken as Ty = 20 ms. Decoded frames are stored
in a decoded frame buffer before their display, at time ¢, + A, for frame n,
where A, is the playback delay. When a frame is not available in the display
buffer, a simple concealment process is realized. Lost frames are replaced
by the last correctly decoded frame, which leads however to a significant loss
in PSNR. More sophisticated concealment mechanisms could be considered
with a larger complexity, see, e.g., [74].

For each sequence, the value of vector of parameters p, for frame n of
the R-(QP, D) model is estimated iteratively using the method in Section 3.3 of
Chapter 3. We use three encoders operating with time-varying QPs to provide
data to the estimator. The choice of QP for frame n and for encoder i =
1,...,3is performed as follows

QF, ifn=20
QPi=14 QP,_1,+AQP  ifn%4=1,2 (4.20)
Qpn—l,i — AQPZ if n%4 = 3, 0,
where n%4 is the remainder of the division of n by 4. The vector QF, =

(24, 36,40) contains the QPs of the first frame, and AQP = (4,4,—4) is the
variation of QP. We also set w,,,, = 1/R,,,, and a = X\ (W, XIX,,)/100 in Eq.
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3.10.

The interpolated bandwidth trace is used to simulate the transmission of
video packets in the network with a time period of 1 millisecond, and by the
rate adaptation algorithms to get a measurement of the current transmission
rate before selecting the encoding trate of each frame. All five rate adaptation
algorithms use the same bandwidth estimator for their decisions.

4.4.2 Reference Algorithms

The proposed encoding rate control algorithm is compared to four rate adap-
tation algorithms from the literature: Festive [10], Panda [11], BOLA [12], and
BBA [13]. To ensure fair performance comparison, all these algorithms have
been adapted to operate at the server side and to adjust the target encoding
rate at a frame level. All algorithms share the same R-(QP, D) model.

Festive and Panda, in their client-side implementation use a bandwidth
estimator to predict the transmission rate from past downloads and adjust
the target encoding rate of the frame/chunk accordingly. Festive decreases
the target encoding rate as soon as a reduction of the transmission rate is
detected, and increases the encoding rate slowly when the transmission rate
improves. Contrarily, Panda increases the encoding rate more aggressively
when an improvement in the transmission rate is detected. Panda and Fes-
tive have been implemented as specified in [10] and [11] respectively. Both al-
gorithms have been implemented on the server side. The bitrate of the video
is adjusted at the frame level by selecting the target frame encoding rate con-
sidering the last available measurement of the transmission rate from the
bandwidth trace.

BOLA, in its client-side implementation [12], selects the target encoding
rate of each frame according to the level of the client reception buffer. As
the throughput of the network varies, BOLA uses Lyapunov optimization to
maximize video quality and minimize rebuffering events at the client-side. In
the proposed server-side variant of BOLA, the server estimates the level of
the reception buffer of the client. For that purpose, the playback delay A is
assumed constant during the streaming session. Neglecting packets in the
access and core networks, the number of frames @), in the client buffer is
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estimated from the number of frames @), in the transmission buffer as

Qen = 72— Qo 1Ty > Ay o
C2C,n = n_Qt,n otherwise.

@c,n is then used by BOLA to adjust the encoding rate of each frame at server
side. The same logarithmic utility and cost functions proposed in [12] are used
for the considered implementation of BOLA.

Festive, Panda, and BOLA were originally designed to select a target en-
coding rate in a discrete set of rates. Since the proposed algorithm selects
a target rate from a continuous interval, a large number of target bitrates
has been considered for the other algorithms to mimic a continuous target
bitrate selection. Consequently, 30 target bitrates uniformly spaced in a log-
arithmic scale between 145 kbps and 75 Mbps have been considered. These
rates have been chosen considering typical minimum and maximum avail-
able transmission rates observed in the rate traces. Figure 4.4-a summarizes
the target encoding rates as a function of @c,n obtained for BOLA.

a 4 b
30 ‘ ; ‘ . g 10 ; ‘

Target Rates Index
Bl

| | | | | | |
0 1 2 3 4 5 0 1 2 3 4 5
Client Buffer level Q.,, [frames] Emission Buffer lavel @, [Frames|

Figure 4.4: (a) Encoding rate index provided by BOLA as a function of @c,n, the estimated
number of frames in the client buffer; index 1 corresponds to 145 kbps, while index 30
corresponds to 75 Mbps. (b) Encoding rate provided by BBA as a function of number of
frames @y, of the transmission buffer, when Ay /T; = 5, Quin = 1, Qmax = 4,

Ry = 145 kbps and Ry, = 75 Mbps.

The encoding rate provided by BBA is selected based on the level ()¢, of the
transmission buffer. A maximum encoding rate R,,., is chosen by BBA when
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Qtn € [0, Qumin] (i.e. the client buffer contains many frames) and a minimum
encoding rate R, is chosen when @, € [Qmax, Ap/Tf] (i.e. the client buffer
is almost empty). In the interval [Qum, @max), the encoding rate decreases
linearly with Q) ,, see Figure 4.4-b. The choice of the values of Qi Qmaxs
R, and Ry, depends on the application and impact directly the QoE. In
our experiments, we set Quin = 0.2Ap/Tf and Quax = 0.8Ap/Tf. Ryin and
Ruax are chosen as 145 kbps and 75 Mbps, respectively. For instance, with
Ap = 200 ms and Tt = 40 ms, Quin = 1 frame, Qunax = 4 frames and BBA
selects a conservative encoding rate when the client buffer contains less than
one frame.

The R-(QP, D) model is used by all rate adaptation algorithms to obtain the
target QP of each frame from the selected target encoding rates.

4.4.3 Evaluation Metrics

All encoding rate control algorithms have been compared based on the fol-
lowing metrics, also used in [56].
One considers the average PSNR over all frames

1 N-1
P=— z% P, (4.22)

where N is the number of frames in the sequence, and P, is the PSNR in dB
of the displayed frame n compared to the original frame n. The average PSNR
variation is evaluated using the mean absolute value of the PSNR difference
between two consecutive frames

N-1
_— 1
|AP] _ﬁ;|Pn_Pn—l|- (4.23)

Finally, one also considers the number of lost frames L during the streaming
session.

4.4.4 Performance analysis of the proposed MPC algorithm

First, the performance of the proposed model predictive rate control algo-
rithm is evaluated for different values of the initial playback delay A, ranging
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from 120 ms to 240 ms, and different target playback margins 7*. Results are
described for the Park Joy sequence. Similar results are obtained for the other
sequences.

Tables 4.2 and 4.3 summarize the obtained results at resolutions 640 x 360
and 1280 x 720 respectively.

First, as expected, a larger playback delay (A, = 200 ms or A, = 240 ms)
leads to fewer losses, since transmission rate variations are better handled.
Similarly, large values of 7 provide also better performance. For example,
when A, = 200 ms and 7 = 160 ms, the control is performed so as to pro-
vide four frames in the client buffer. In such a regime, the MPC algorithm
manages to adjust the bitrate of the frames without causing any frame loss.
Nevertheless, large values of 7* lead to conservative encoding rate selections,
which decreases the average PSNR of the decoded video.

When 7* is too small, frames may be lost. The MPC algorithm becomes
less conservative and tries to better exploit the available transmission rate by
encoding frames with a higher bitrate. Nevertheless, due to the inaccuracy of
the R-(QP, D) model, the bitrate of the encoded frame may be higher than the
target bitrate. Similarly, the transmission rate considered for the encoding
rate selection may be larger than the actual transmission rate, which induces
a larger transmission delay than expected. The playback margin 7* aims at
compensating these discrepancies. For a video at 1280 x 720, 7* = 80 ms
provides good results even with a very small end-to-end playback delay of
Ap =120 ms.

Ap (ms) | 120 120 120 160 160 160 160 160 200 200 200 200 200 | 240 240 240
7*(mMSs) 20 40 80 10 20 40 60 80 20 40 80 120 160 20 40 80
P 33.39 | 33.01 | 29.89 | 25.21 | 34.26 | 34.25 | 34.15 | 33.37 | 34.17 | 34.27 | 34.25 | 33.37 | 29.92 | 31.32 | 34.29 | 34.27
|AP] 0.95 | 1.25 120 | 1.05 | 0.92 | 0.92 | 0.95 | 124 | 0.93 | 0.92 | 093 | 124 1.23 | 0.93 | 0.92 | 0.91
L 3 2 0 63 1 0 0 0 1 o] 0 o] 0 16 o] 0

Table 4.2: Performance of the MPC algorithm for Parkjoy at resolution 640 x 360 considering
P, the average PSNR in dB, |AP|, the average of the absolute value of the PSNR variation of
consecutive frames in dB, and L the number of lost frames.
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Ap (ms) | 120 120 120 160 160 160 160 160 200 200 200 200 200 240 240 240
7 (mMs) 20 40 80 10 20 40 60 80 20 40 80 120 160 20 40 80
P 22.32 | 25.37 | 24.06 | 20.77 | 23.11 | 25.18 | 26.85 | 26.29 | 24.56 | 26.83 | 27.02 | 26.29 | 24.07 | 23.43 | 26.69 | 27.15
|AP] 0.88 | 0.82 | 0.53 | 0.85 | 0.73 | 0.69 | 0.73 | 0.77 | 0.70 | 0.63 | 0.66 | 0.77 | 0.54 | 0.73 | 0.64 | 0.61
L 65 20 0 98 44 14 3 0 38 6 1 0 0 54 8 0

Table 4.3: Performance of the MPC algorithm for Park Joy at resolution 1280 x 720 considering
P, the average PSNR in dB, |AP]|, the average of the absolute value of the PSNR variation of
consecutive frames in dB, and L the number of lost frames.

Figures 4.5-a, 4.5-b, show the evolution of the target and actual encoding
rates for the Parkjoy sequence at resolution 640 x 360 when 7* = 40 ms. Fig-
ures 4.6-a and 4.6-b show similar results for the same video sequence when
7 = 160 ms.

Imposing a large 7* implies a conservative use of the channel capacity:
When 7% = 160 ms, the selected target rate is always less than the transmis-
sion rate. Conversely, when 7" = 40 ms, see Figure 4.5, the target encoding
rates selected by the MPC approach are close to the available transmission
rates. Smaller values of 7% lead to a better exploitation of the available chan-
nel capacity.

Figure 4.6-d shows that the client buffer contains about 4 frames all the
time when 7* = 160 ms, thus setting large 7* provides large margin to react
to sudden drops of the transmission rate. Conversely, as shown in Figure 4.5-
d, the client buffer contains only 1.5 frames when 7" = 40 ms. Accordingly,
7% should be chosen as a trade-off between bandwidth exploitation and a
protection against sudden drops of the transmission rate.

Figure 4.5-e shows the evolution of the estimated and actual values of 7,
as well as the estimated and actual values of the flushing delay of the trans-
mission buffer Ty ,, , when Ap = 200 ms and 7* = 40 ms. Figure 4.6-e shows
similar results when 7* = 160 ms. The estimates of 7 and T}, are quite ac-
curate when using the last measure of the transmission rate as described in
4.5-f and 4.6-f. The proposed algorithm has difficulties to maintain the actual
value of 7 at the level of the target playback margin 7* when 7* is too small
or too close to A, due to coded packets stored at the transmission buffer
and packets passing through the network. The time required to transmit the
packets varies due to the estimation error of C,, used in the determination of
the target frame encoding rate R;.
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Figure 4.5: Proposed approach: Evolution of the target rates and transmission rates (a),
actual frame encoding rates (b), transmission buffer level (c), client buffer level (d), actual
and estimated value of 7 (e), actual and estimated values of 7, ,, () for the Park Joy
sequence at 640 x 360 when Ay = 200 ms and 7* = 40 ms.
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4.4.5 Performance comparison with state-of-the-art reference algorithms

The proposed rate control algorithm is compared to Festive [10], Panda [11],
BOLA [12], and BBA [13]. Results are average over ten transmission episodes
for each video sequence. Each episode considers a different initial time in-
stant in the considered bandwidth trace. The initial playback delay is set to
Ap = 200 ms for all algorithms. For the proposed algorithm, the target play-
back margin is set to 7* = 50 ms when the frame resolution is 640 x 360 and
to 7 = 80 ms when it is 1280 x 720.

Table 4.4 summarizes the results obtained with each rate control algo-
rithm and when the frame size is 640 x 360 and 1280 x 720.

The proposed algorithm provides the best performance in terms of aver-
age PSNR and lost frames for all tested video sequences in both resolutions.
The largest frame loss for the proposed algorithm is obtained with the Park
Joy sequence at resolution 1280 x 720, where 5 frames are lost among 3000
transmitted frames. The cause of a larger number of lost frames is due to a
reduced accuracy of the R-(QP, D) model for some frames. The model accu-
racy decreases when time variations in the video sequence are high. Due to
the large activity in the video sequence, it is challenging to iteratively estimate
the parameters of the R-(QP, D) model.

The price to be paid is a relatively large variability with time of the PSNR
of encoded frames. The smallest variability in PSNR is obtained by Panda
and Festive, which are both bandwidth-based algorithms. They select the
encoding rate based on available transmission rate only. On the contrary, the
other algorithms try to stabilize buffer levels. This creates oscillations of the
encoding rates and then of the PSNR. The proposed algorithm has an average
PSNR variation less than that of BOLA. This variation is for most sequences
less than 1 dB, which is usually unnoticeable by observers.

Compared to the proposed algorithm, BOLA achieves a slightly lower aver-
age PSNR quality and more lost frames. When BOLA achieves 0 lost frames,
it comes at the cost of a lower average PSNR and larger PSNR variations.

The BBA algorithm has the worst performance as it tends to be too aggres-
sive by selecting a high encoding rate when the buffer level allows it. This
causes a large number of frame losses, especially when the R-(QP, D) model
is less accurate. The variations of the PSNR when using BBA is usually smaller
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640 x 360 1280 x 720
Sequence Method | L | P ||AP|| L P | |AP|
CrowdRun MPC 0 [33.35| 0.55 | 0 | 28.26 | 0.30
BBA 1 /3325|035 | 0o | 28.25 | 0.18
Festive 6 | 20.92 | 0.17 0 | 26.90 | 0.13
Panda 0 [3080] 0.16 | 0 | 26.86 | 0.13
BOLA 0 | 32.99 | 1.25 o 28.15 | 0.46
Parkjoy MPC 0 | 34.27 | 092 | 5 |27.03| 0.65
BBA 5 | 3297 | 0.59 | 20 | 26.81 | 0.62
Festive 0 | 31.86 | 0.27 | 7 | 24.93 | 0.42
Panda 0 [ 3174 | 0.27 | 5 | 24.90 | 0.42
BOLA 0 | 33.84 | 1.27 1 | 26.28 | 0.71
Magnycours MPC 0 | 46.42 | 0.35 1 | 40.26 | 0.42
BBA 131 | 34.77 | 0.26 | 232 | 24.54 | 0.18
Festive 0 | 45.96 | 0.12 | 70 | 36.50 | 0.27
Panda 0 | 46.02 | 0.12 | 69 | 35.20 | 0.25
BOLA 0 | 46.13 | 0.85 9 | 33.00 | 0.34
TouchDownPass | MPC 1 | 44.58 | 0.61 0 | 40.14 | 0.46
BBA 95 | 27.98 | 0.64 | 34 | 37.26 | 0.40
Festive | 36 | 37.99 | 0.32 6 | 38.73 | 0.33
Panda 24 | 4020 | 0.27 | 0 | 38.74 | 0.32
BOLA 0 | 44.38 | 0.92 0 | 39.74 | 0.50
DaylightRoad2 MPC 0 [44.32| 0.33 | 0 |40.10 | 0.26
BBA 0 | 44.31 | 0.19 0 | 40.09 | 0.14
Festive 0 | 42.87 | 0.11 o | 38.87 | 0.08
Panda 0 [ 4272 ] 011 | 0 | 38.79 | 0.08
BOLA 0 | 44.170 | 0.88 0 | 39.93 | 0.55
KristenandSara MPC 0 | 48.28 | 0.08 0 | 44.18 | 0.24
BBA 0 | 4827 | 0.07 | O | 44.17 | 0.13
Festive 0 | 47.64| 0.09 | 0 | 43.43 | 0.09
Panda 0 [ 4758 | 0.09 | 0 | 43.38 | 0.09
BOLA 0 | 48.20 | 0.10 0 | 44.05 | 0.30

Table 4.4: Average performance of the proposed algorithm compared to Festive [10], Panda
[11], BOLA [12], and BBA [13] when the videos have a resolution of 640 x 360 and 1280 x 720;
L is the number of lost frames, P is the average PSNR in dB, and |AP| is the average of the
absolute value of the PSNR variation of consecutive frames in dB
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than those of observed with BOLA and the proposed approach.

Table 4.5 summarizes the performances of the tested bitrate adaptation
algorithms in terms of the average SSIM of the received sequences, the SSIM
variations, and the VMAF score for the tested video sequences. We notice that
our proposed algorithm provides the best performance in terms of average
SSIM and VMAF scores for the most of the tested video sequences in both
resolutions. The proposed MPC algorithm has an SSIM variance with time
slightly larger than Panda and Festive. The buffer-based algorithms Bola and
BBA have the highest SSIM variance in most of the cases. This large variability
of the SSIM is due to frequent oscillation of the selected frame target encod-
ing rate to stabilize buffer levels. Finally, our algorithm provides the highest
VMAF score, indicating the best video quality compared to that provided by
the other tested bitrate adaptation algorithms. BBA algorithm has the worst
recorded VMAF scores. This is because of the frequent oscillations in the tar-
get encoding rate and a large number of frame losses.

Figure 4.7 illustrates the evolution with time of the transmission rate, the
target encoding rate, and the actual encoding rate for the considered en-
coding rate adaptation algorithms in the second transmission episode of the
DaylightRoad2 video sequence. Festive and Panda have close behavior in the
selection of the target encoding rate. These two rate-based approaches are
conservative and select a target encoding rate lower than channel transmis-
sion rate. BOLA leads to large rate oscillations. This explains the fact that
BOLA has the largest average PSNR variations. The proposed approach and
BBA have an overall similar behavior, even if the proposed approach follows
better the variations of the channel capacity compared to BBA. In addition,
BBA leads to slightly larger oscillations of the PSNR. This has been verified
with the other transmission episodes and the other video sequences.

Figure 4.7 illustrates also the accuracy of the R-(QP, D) model: in most of
the cases, the actual encoding rate is relatively close to the target encoding
rate. This shows that the value of QP determined from the model provides
an actual encoding rate close to the encoding rate predicted by the model.

Figure 4.8 shows the evolution of the transmission and client buffer lev-
els for the considered rate adaptation algorithms in the same transmission
episodes. Festive and Panda, the two rate-based algorithms, keep the client
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640 x 360 1280 x 720
Sequence Method | L | "G | oltion | score | | St | variation | score
CrowdRun MPC 0 | 0.9276 | 0.0040 | 96.85 | © 0.8213 | 0.0057 | 79.08
BBA 1 | 0.9276 | 0.0029 | 96.80 | 0 | 0.8209 | 0.0038 | 79.04
Festive 6 | 0.8931 | 0.0019 | 91.83 | 0 | 0.7806 | 0.0031 | 69.97
Panda 0 | 0.8911 | 0.0020 | 91.45 0 | 0.7799 | 0.0032 | 69.74
BOLA 0 | 0.9264 | 0.0091 | 9587 | O 0.8195 | 0.0087 | 78.24
Parkjoy MPC 0 | 0.9311 | 0.0053 | 96.54 | 5 | 0.8061 | 0.0113 | 76.25
BBA 5 | 0.8913 | 0.0119 | 88.62 | 20 | 0.7995 | 0.0114 | 74.19
Festive 0 | 0.9002 | 0.0026 | 92.58 | 7 | 0.7366 | 0.0111 | 60.10
Panda 0 | 0.8983 | 0.0026 | 9149 | 5 | 0.7351 | 0.0112 | 60.08
BOLA 0 | 0.9296 | 0.0075 | 95.97 | 1 0.7873 | 0.0141 | 71.49
Magnycours MPC 0 | 0.9881 | 0.0007 | 99.26 1 0.9658 | 0.0017 | 95.80
BBA 131 | 0.8522 | 0.0034 | 31.68 | 232 | 0.7800 | 0.0070 | 61.59
Festive 0 | 0.9870 | 0.0004 | 99.12 | 70 | 0.9229 | 0.0028 | 91.20
Panda 0 | 0.9874 | 0.0004 | 99.16 | 69 | 0.9183 | 0.0027 | 91.05
BOLA 0 | 0.9876 | 0.0016 | 99.11 9 | 0.9234 | 0.0023 | 95.19
TouchDownPass | MPC 1 | 09834 | 0.00177 | 99.40 | O | 0.9528 | 0.0036 | 95.33
BBA 95 | 0.7821 | 0.0192 | 23.60 | 34 | 0.9152 | 0.0047 | 16.45
Festive | 36 | 0.9029 | 0.0049 | 69.72 | 6 | 0.9364 | 0.0038 | 77.34
Panda 24 | 0.9286 | 0.0028 | 79.08 | 0 | 0.9368 | 0.0037 | 67.69
BOLA 0 | 0.9822 | 0.0026 | 99.27 | 0 | 0.9491 | 0.0040 | 64.55
DaylightRoad2 MPC 0 | 0.9859 | 0.0007 | 99.75 | O | 0.9671 | 0.0011 | 76.25
BBA 0 | 0.9859 | 0.0005 | 99.74 | 0 | 0.9671 | 0.0007 | 74.19
Festive 0 | 0.9824 | 0.0003 | 99.70 | 0 | 0.9605 | 0.0005 | 60.10
Panda 0 | 0.9819 | 0.0003 | 99.67 | O | 0.9602 | 0.0006 | 60.08
BOLA 0 | 0.9856 | 0.0017 | 99.69 | 0 | 0.9635 | 0.0025 | 71.49
KristenandSara MPC 0 | 0.9918 | 0.0001 | 98.38 | 0 | 0.9806 | 0.0007 | 97.75
BBA 0 | 0.9918 | 0.0001 | 98.38 | 0 | 0.9806 | 0.0004 | 97.75
Festive 0 | 0.9911 | 0.0001 | 98.30 | 0 | 0.9787 | 0.0003 | 97.42
Panda 0 | 0.9911 | 0.0001 | 98.30 | 0 | 0.9786 | 0.0003 | 97.39
BOLA 0 | 0.9917 | 0.0001 | 98.36 | 0 | 0.9802 | 0.0008 | 97.64

Table 4.5: Average performance of the proposed algorithm compared to Festive [10], Panda
[11], BOLA[12], and BBA [13] in terms of the average SSIM of the received sequences, the SSIM
variability with time, and the VMAF score.
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Figure 4.7: Evolution of the transmission rate, the selected target rate, and the actual
encoding rate for the proposed algorithm, Festive [10], Panda [11], BOLA [12], and BBA [13] in
the second transmission episode of the DaylightRoad2 sequence at resolution 640 x 360,
when A, = 200 ms and 7* = 50 ms.

buffer level high. This is due to their conservative behavior, where the en-
coding rate is selected to avoid an empty client reception buffer. Conversely,
the buffer level with BOLA oscillates as the selected target rate is continu-
ously changing. In addition, as BOLA is less conservative, the buffer level has
a lower value than with Festive or Panda. The buffer level of BBA oscillates
around the same value than that obtained by the proposed approach, but
the latter is much more stable.

4.5 Conclusions

This chapter presents a new rate adaptation algorithm for low-latency video
streaming applications. The proposed approach employs the MPC frame-
work. It exploits the transmission buffer level and an estimate of the wire-
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Figure 4.8: Temporal variations of the client buffer level and the transmission buffer level
for the the proposed MPC algorithm, Festive [10], Panda [11], BOLA [12], and BBA [13] in the
2nd transmission episode of DaylightRoad2 sequence at resolution 640 x 360, when
Ap =200 ms and 7* = 50 ms.
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less transmission rate to determine the target encoding rate of each frame.
The choice of the quantization parameter for each frame is performed via
an R-(QP, D) model, able to predict the size of the current encoded frame as
a function of its quantization parameter and the distortion of the previous
frame.

The performance of the proposed rate adaptation approach is compared
to four reference algorithms considering a streaming application with an end-
to-end latency less than 200 ms. The proposed approach outperforms these
algorithms in both average PSNR and frame losses. The price to be paid is a
slightly larger variability with time of the PSNR of each frame.

The performance of the proposed model depends on the estimation qual-
ity of the transmitter buffer level and of the transmission rate. Using mea-
surements acquired using tools such as GNetTrack Pro, this information is
only available with a period of about one second. Tools such as QXDM [79]
or Mobilelnsight [80], give access to messages excahnged at the PHY and MAC
layer of the proptocol stack and are able to provides such information with a
higher frequency.

In the next chapter, we approach another component of the transmission
chain that significantly affects the transmission latency. The video encoder
used in live streaming must be able to encode the video frames on thefly. i.e.,
the encoding time of the frame must not exceed the frame acquisition time.
However, the newly Versatile Video Coding (VVC) encoder entails significant
computational complexity as it contains various encoding tools designed for
high-resolution content. Hence, we propose an optimization framework to
tune the VVC encoder for low-resolution and low-bitrate scenarios by identi-
fying a set of coding tools which may be disabled without harming the coding
efficiency.
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Chapters

Reducing the complexity of VVC for low
bitrate applications

5.1 Introduction

The new Versatile Video Coding (VVC) standard [27] further reduces the size
of the video files beyond the capabilities of the High Efficiency Video Coding
(HEVC) standard [24] without compromising their quality after compression.
Compared to HEVC, VVC generates half the amount of data for the same PSNR
quality of the video. This feature is decisive, especially for low-latency stream-
ing, as it can reduce the transmission delay of a video coded in the same HEVC
quality.

Nevertheless, while VVCis mainly focused on high resolution content, effi-
cientvideo compression solutions are also requested for streaming videos of
lower resolutions (less than HD) over unstable bandwidth-limited networks.
Indeed, whereas HD video is now the standard on the Internet, low-resolution
contents are still used in both live and Video on demand (VOD) streaming, es-
pecially 480p and 360p.

We specifically consider use cases such as the acquisition and live stream-
ing of low-resolution (less than HD) sport events (e.g., car races and sailing
races) over unstable wireless networks including LTE and satellite transmis-
sions. For such use cases, transmission bandwidth is typically in the range of
50Kbps to 1Mbps. Moreover, low computational complexity and low power
consumption solutions are highly desired for acquisition devices and embed-
ded systems used to capture video content in sports events.
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In the low latency streaming scheme introduced in Chapter 4, the acqui-
sition device includes a camera and a computer that hosts both the encoder
and the bitrate control algorithm. The acquisition device is generally onboard
a vehicle or carried by a moving agent. It is usually equipped with an external
battery of limited capacity. Thus, we have to minimize energy consumption.
In addition, the encoder must code the frame in real-time and add a limited
delay to the transmission chain. This is ensured by software or/and hardware
optimization as it is present in x265. We also assume that the onboard com-
puter is backed with sufficient calculation capacity to run the rate adaptation
algorithm in real-time.

The current design of the VVC encoder is unfortunately unsuited with our
use case. More precisely, a variety of encoding tools designed for HD and
UHD contents are not optimal for lower resolutions and low bitrates, and
they may entail a significant burden in terms of computational complexity.

In this chapter, we propose an optimization framework to tune VVC for
low-resolution and low-bitrate scenarios. More specifically, we investigate
the usefulness of some of the new coding tools in VVC. We experimentally
show that significant complexity reduction can be achieved by disabling some
of these tools while preserving coding efficiency.

To the best of our knowledge, this was the first study to investigate com-
plexity reduction of the VVC at low resolutions and low-bitrates before the
end of standardization work by the end of 2020. The experimental part of
this work was performed using the VVC test model 5 (VTMs5.0) as it was the
latest VVC coding software available at the time of thiswork. VTMs5.0 has been
superseded by VTM10.0, which kept most of the coding tools investigated in
this work. Accordingly, similar results may be observed considering VTM1o.

The contributions of this chapter are the following:

e In Section (5.2), we provide a brief overview of the technical features and
the coding tools of VVC Test model 5 (VTMs5.0).

e In Section (5.4.2) we present a methodology used to identify the subset of
coding tools that may be disabled in low-resolution and low-bitrate use
cases. Our method provides a significant reduction in terms of coding
complexity, while preserving compression efficiency
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e In Section (5.5) we use our method to identify the best coding tools to
disable in 7 video sequence and three resolutions. Then, we identify a
subset of the common tools to disable in each resolution.

The experiments show that significant complexity reduction can be achieved
by disabling some coding tools, while preserving coding efficiency, e.g., up to
56.06% reduction for Johnny sequence at 384 x 216 resolution with less than
1.88% increase in BDy4te. In addition, a set of coding tools that can be disable
in each resolution for all video sequences was identified. These tools achieves
35% of complexity reduction in general with less than 2% increase in BDyte.

5.2 Overview of Versatile Video Coding Test Model 5 (VTM 5.0)

The new video coding standard VVC [25] provides significant improvement in
compression performance over the existing HEVC standard, with a up to 40%
bitrate saving for High Definition (HD) and Ultra-High Definition (UHD) video
content. The requirements for VVC include capabilities of encoding 4K and
8K sequences at up to 120 fps [28]. In what follows, the main coding tools of
VTMs.0 in each module are overviewed [81].

5.2.1 Partitioning

Each frame is divided into a sequence of coding tree units (CTUs) just as in
the HEVC standard, although the maximum size of the Luma CTU is up to
128 x 128. For each CTU, a Quad-Tree with nested Multi-Type Tree (MTT) us-
ing Binary and Ternary splitting structures is used (QTBT-TT). The CTU is first
partitioned recursively using a quad-tree structure into square shapes. Then,
the quad-tree leaf nodes can be further partitioned horizontally or vertically
by a binary or ternary splitting structure. The final nodes are called Coding
Units (CUs). They have either a square or rectangular shape and are used
directly for prediction and residual coding without any further partitioning
unless the CU is too large for the maximum transform length. Lastly, I-slices
can have separate block tree structures for Luma and Chroma (DualTree).
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5.2.2 Intra-Picture Prediction

VTMs5.0 supports 65 angular intra-prediction modes, in addition to the planar
and DC modes. Some conventional angular modes are replaced with wide-
angle intra-prediction modes for the non-square blocks. A Multiple Reference
Line (MRL) intra prediction is also proposed to use two additional lines (ref-
erence line 1and reference line 3) in angular prediction. VTMs5.0 also extends
the Most Probable Modes (MPM) list to 6 candidates. For interpolating the
luma samples, two sets of 4-tap filters are used. The first set of filters cor-
responds to the DCT-based filters applied in chroma motion compensation,
while the others are reference smoothing filters. For chroma components,
VVC uses only 2-tap linear interpolation.

VTM 5.0 introduces three new ways of Intra predicting a block:

1. The Cross-Component Linear Model (CCLM) prediction mode, in which
the Chroma samples are predicted based on the reconstructed Luma
samples of the same CU, using a linear model,

2. The Intra Sub-Partitions (ISP) where the Luma coding block is vertically
or horizontally divided into 2 or 4 sub-partitions. All sub-partitions share
the same intra mode, however the processing is performed gradually
sub-partition by sub-partition downwards (horizontal split) or rightwards
(vertical split), so each sub-partitions uses the previous reconstructed
samples to generate the prediction of the current sub-partition,

3. The Matrix-based Intra Prediction (MIP) takes one line of reconstructed
neighboring samples, from the left and above blocks as input vectors,
and performs a matrix-vector multiplication between this vector con-
structed from the reference samples and a matrix selected from a set
of pre-defined matrices. Finally, a linear interpolation in the vertical and
horizontal directions is executed to get the predicted samples. MIP is
applied only for luma blocks, but it can also be applied to chroma blocks
in the case of 4:4:4 chroma sampling frames.
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5.2.3 Inter-Picture Prediction

Motion prediction is performed at a sub-CU level to improve the precision.
VTM 5.0 supports currently a Sub-Prediction Unit Temporal Motion Vector
Prediction (SbTMVP) that includes a subblock merge mode applied to CUs
with both width and height larger or equal to 8 luma samples. The MVs in
this case are determined from a particular reference picture called the collo-
cated picture. Furthermore, an AFFine motion compensation prediction (AFF)
can be applied to cope with irregular motions like zoom in/out and rotation,
where a sub-block is described by two or three motion vectors.

The bi-prediction mode is extended beyond simple weighted averaging,
by using up to five predefined weights (Generalized Bi-prediction (GBI)). A
pixel level motion refinement (Bi-Directional Optical Flow (BDOF)) may be per-
formed on top of the merge mode or AMVP mode to improve bi-prediction
at the decoder side. In order to increase the accuracy of the MVs of the
merge mode, a refined operation may be performed around the initial MVs
in both reference picture lists Lo and L1 using the Decoder side Motion Vector
Refinement (DMVR). Motion vectors are stored at 1/16th-Luma-sample preci-
sion for Luma. In addition, the Adaptive Motion Vector Resolution (AMVR)
allows the Motion Vector Difference (MVD) of the CU to be coded in one of
the three resolutions: Quarter-luma-sample, Integer-luma-sample, and Four-
luma-sample (or 1/16 luma-sample in AFF).

Finally, the VTM 5.0 inter coder introduces these new concepts:

1. The Triangular prediction (Triang) in which a CU may be further split
into two triangular units, in either diagonal or inverse diagonal direction.
Each of the two units is predicted using its own Uni-directional MV,

2. Combined Inter and Intra Prediction (CIIP) is proposed to improve the
Intra mode in inter pictures, by combining the decided Intra mode with
an extra merge indexed prediction,

3. Merge with MVD scheme (MMVD) is used for skip and merge modes with
a new motion vector expression method with simplified signaling: The
expression method includes starting point, motion magnitude, and mo-
tion direction,
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4. Symmetric MVD (SMVD), which derives the MVD of reference list 1 from
referencelist o, based on the assumption of linear motion in bi-prediction
mode.

5.2.4 Quantization

The maximum Quantization Parameter (QP) is extended from 51 to 63, and
a new concept of quantization is introduced: The Dependent Quantization
(DepQuant), in which the reconstruction value for a transform coefficient de-
pends on the value of the transform coefficient that precedes it in the recon-
struction order.

5.2.5 Transform

Large block-size transforms of up to 64x64 pixels are used. High-frequency
transform coefficients are zeroed out, so that only the lower-frequency coef-
ficients (top-left 32 x 32 block) are retained. VTM 5.0 uses Enhanced Multiple
Transform (EMT), where two new transform matrices are added in addition
to DCT-II, namely the DST-VII and the DCT-VIII. Moreover, to reduce the size
of the matrices of transformed coefficients, a Low-Frequency Non-Separable
Transform (LFNST) is applied between transform and quantization at encoder
and between de-quantization and inverse transform at decoder side. For an
inter-predicted CU, the Sub-Block Transform for inter blocks (SBT) may be
used instead of EMT to code only a part of the residual block with inferred
adaptive transform and the other part of the residual block is zeroed out.

5.2.6 In-loop Filtering

Besides deblocking filter and Sample Adaptive Offset (SAO) used in HEVC, the
Adaptive Loop Filter (ALF) is applied at the decoder side directly on the re-
constructed samples of the SAO process, where one filter among 25 filters is
selected for each 4 x 4 luma block and another filter among 8 filters for each
4 x 4 chroma block, based on the direction and activity of local gradients.
ALF also enhances the reconstructed video at the encoder side using 7 x 7
diamond-shaped filters for luma and a similar 5 x 5 filter for chroma.
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Finally, Luma Mapping with Chroma Scaling (LMCS) is performed before
the in-loop filtering. This tool adjusts the input luma signal by redistribut-
ing it across the dynamic range using a piecewise linear mapping function
and scales the chroma residuals according to the average value of the corre-
sponding luma samples.

5.2.7 Entropy Coder

VVCstill uses the same entropy coding method used in HEVC (Context-adaptive
binary arithmetic coding (CABAC)), but with some changes: The CABAC engine
uses a 2-state model with variable probability updating window sizes, instead
of the pre-computed LUT of the HEVC. The transform coefficients within a Co-
efficient Group (CG) are coded according to pre-defined scan orders in five
passes. And finally, the selected probability model and binarization models
depend on the local neighborhood, where the template used to specify the
local neighborhood is defined by the 5 nearby samples in the left-bottom of
the current coefficient. For more information about VVC CABAC, refer to [31].

DualTree | Separate Partitioning for Luma & Chroma in I-slice
CCLM Chroma prediction based on linear model
MRL Multiple Reference Line intra prediction

MIP Matrix-based Intra prediction
ISP Intra Sub-Partitions
CliP Combined Inter and Intra prediction
SbTMVP Sub-Pu Temporal Motion Vector Prediction
AFF AFFine inter motion compensation
MMVD Merge with MVD
SMVD Symmetric MVD
Triang inter predictions for Triangular Units
GBI Generalized Bi-prediction
BDOF Bi-Directional Optical Flow
DMVR Decoder Side Motion Vector Refinement
AMVR Adaptive MV Resolution
EMT Enhanced Multiple Transform
LFNST Low-Frequency Non-Separable Transform
SBT Sub-Block Transform for inter blocks
LMCS Luma Mapping with Chroma Scaling
ALF Adaptive Loop Filter

Table 5.1: Tools of VTM 5.0 considered in this work
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5.3 Main updates in VTM 10.0

Most of the coding tools reviewed in Section 5.2 have been kept for the final
version of the VWC encoder, i.e., VTM10. In this section, we summarize the
upgrades and new tools added to VTM1o.

5.3.1 Partitioning

Specific binary and ternary splits are disallowed to enable blocks of size smaller
or at least equal to 64 x 64. These block regions of a CTU are called Virtual
Pipeline Data Units (VPDUs) and are used in hardware video decoders for VVC
to parallelize the decoding process and increase the throughput. The VPDU
size must not exceed 64 x 64 luma samples because the size of the memory
buffer in the pipeline stages is proportional to it.

5.3.2 Intra-Picture Prediction

In the intra-prediction module, The Position-Dependent Prediction Combina-
tion (PDPCQ) is included in VTM10 while it was initially removed from version
5.0 of VTM. This tool combines boundary reference samples with specific in-
tra modes like planar, DC, and predefined angular modes. PDPC combination
weights depend on the prediction mode and sample locations. In addition,
minor changes have been made to the Multiple Reference Line (MRL). This
tool may use one or two non-adjacent samples lines as the reference line for
intra-prediction. The non-adjacent reference line can be two or three lines
away from the current block. However, MRL can not be used with the planar
mode and the PDPC.

5.3.3 Inter-Picture Prediction

The Motion Vector Difference (MVD) can also be coded in a half-luma-sample.
in this case, an alternative luma interpolation filter is used, in operation known
as switchable interpolation filter (SIF). VTM10 adds a new type of MV predic-
tion in the merge mode and an AMVP candidate list called History-Based MV
Prediction (HMVP), in addition to spatial and temporal neighbor MVs. HMVP
allows VTM 10 to re-use the MVs of previously coded non-adjacent CUs to
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the list. Moreover, the first two existing candidates in the merge candidate
list can be combined to form a Pairwise Average MV Merge Candidate. The
MVD in Merge With MVD (MMVD) of VTM 10 can only be horizontal or verti-
cal. Triang is replaced by Geometric Partitioning Mode (GPM), in which the
CU is split into two parts by a straight line parameterized by an angle and
an offset. Each partition inherits one MV from the merge candidate list, and
the final predicted block is generated by combining the two split blocks using
a predefined weighting matrix. Finally, Prediction Refinement With Optical
Flow (PROF) is used to adjust the prediction samples of 4 x 4 Luma subblocks
resulting from the Affine prediction. It adds an offset derived based on the
gradient around the prediction samples.

5.3.4 Quantization and Transform Coding

In addition to the transform tools of VTM 5.0, VTM 10 may use a Subblock
Transform (SBT) Mode on residuals of inter-predicted CUs. SBT is applied only
on a sub-partition of the CU and skips the remaining partition. This residual
subpartition can have half or one-quarter of the size of the CU. For intra-
predicted CUs, 1D transforms are used with the ISP mode. Joint Coding of
Chroma Residuals (JCCR) is a tool that derives residual blocks of both chroma
components from only one residual chroma block. It exploits the quantized
chroma residual correlations to signal only one chroma component . Finally,
QP values of the chroma components are derived from the QP of the corre-
sponding luma block via look-up tables.

5.3.5 In-loop Filtering

VTM 10 applies a 3 x 4 diamond-shaped high-pass filter to luma samples for
each chroma component. After performing ALF, each chroma component
uses the filtered corresponding luma sample as a corrective offset. This tool
is known as Cross-Component ALF (CC-ALF).

5.3.6 Screen Content Coding Tools

Screen Content Coding Tools is another set of coding tools that were not
tested in this work but included in the VVC standard version. These tools
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are inspired by the HEVC RExt coding tools and used in VTM 10 to increase
the coding efficiency of the screen-captured content (e.g., in screen sharing
applications) and the computer-generated content (e.g., gaming applications
and animation movies). In this category of tools, we find:

1. Intra-Picture Block Copy (IBC) is an old tool from HEVC that exploits re-
peated block patternsinside the frame of a screen-captured or computer-
generated video. It simply copies a spatially neighboring block as the
prediction of another block.

2. Block-Based Differential Pulse-Code Modulation (BDPCM) which is sim-
ilar to Differential PCM used in the HEVC. BDPCM applies a Differential
Pulse-Code Modulation instead of transform coding on the samples re-
sulting from horizontal or vertical intra-prediction.

3. In 4:4:4 chroma sampling, a sample may be represented by an index into
a predefined palette table, and its quantized value is directly coded. This
type of coding is known as Palette Mode. In addition, a switchable decor-
relation to the YCgCo-R color space can be applied on CUs with 4:4:4
chroma sampling in RGB color spaces using the Adaptive Color Trans-
form (ACT) tool.

4. Finally, Transform Skip Residual Coding (TSRC) is used to skip the trans-
form coding of the residuals as it was proved to be more efficientin some
computer-generated content.

5.4 Proposed methodology

Our aim in what follows is to identify the subset of coding tools of VTM 5.0
that may be disabled in low-resolution and low-bitrate use cases, to provide
a significant reduction in terms of coding complexity, while preserving com-
pression efficiency. This can be formulated as a constrained optimization
problem, which is solved using a branch-and-prune approach. This technique
identifies the individual tools and their combinations that may be safely dis-
abled, and those that have to be kept activated.
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5.4.1 Problem Formulation

Consider a set of video sequences V = {vy,...,vn}. The performance of a
video encoder can be measured by the rate R (in Kbps) required to store the
compressed videos, the resulting distortion D of the decoded videos (typically
measured using the weighted average PSNR of the three components VY, U,
and V [34]), and the complexity C' of the encoding process (approximated
by the run-time, measured in seconds). The values of the triple (R, D,C)
depend on the input video sequence v,, and on the encoding parameter vector
p = (p1,---,py,) of the video coder as follows

(R,D,C) = f (v, p), (5.1)

where f is some (unknown) nonlinear function describing the behavior of
the considered video coder. The components of p represent the coder input
parameters, which may be adjusted to get different trade-offs between R, D,
and C. The parameter vector p may be partitioned into subvectors. One may
identify:

- pr representing binary-valued parameters indicating whether some tools
are activated or remain unused;

- pc representing a finite-valued of configuration inputs for the preceding
tools, e.g., the TargetBitrate and Initial QP must be specified for the Rate Con-
trol, both are integer values;

- po corresponding to other parameters which do not belong to any tool,
e.g., GOP size and GOP type configurations.

To properly evaluate the performance of a coding tool, several target val-
ues of the rate R have to be considered, which lead to associated values of
D and C.

In our work, we use the Bjontegaard Delta Rate (BD,4te) [35] to evaluate the
lossofasetP; = {pgl), L pﬁ”DR)} compared to another set P, = {pgl), o p;”DR)}

of values of the parameter vector.
The vectors py) cP;j=12 share the same components pr ;, pc;, and
po,;, but take distinct QP values QPY, i = 1,... npg, with npg > 4. Sets
of parameter vectors P; are called parameter configuration sets (PCS) in what

follows.
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Consider some reference PCS P, corresponding, e.g., to the best rate-distortion
compromise for a set of video sequences. Our aim is to find a PCS P such that

P = arg rr%)inC (P) (5.2)
SUCh that BDrate(’U,ﬁ, P) < Arate, (5-3)
(Ru)’D(i)’C(i)) .y (pru)) pep

where A > 0 is the largest tolerated loss in terms of BDyae and C' (P) =
Smr ), P is a PCS minimizing the complexity, while keeping good com-
pression performance compared to the optimal parameter set.

5.4.2 Search for a good Parameter Configuration Set

In what follows, we propose a method to solve the optimization problem (5.2)
in an approximate way. Our approach concentrates on finding the subvector
pr ; indicating the activated and disabled tools.

Consider 5@ c P, the parameter vectors indicating the set of tools acti-
vated in the reference PCS. First, one builds all candidate PCSP; ; = {p§1), e pg.”DR)},

j =1,...,ny with subvectors p% obtained by disabling a single tool activated
in ﬁ@, i.e., dH(p%)j,_g)) = 1, where dy is the Hamming distance.

Only the candidate PCS such that (5.3) is satisfied are further considered,
the others are pruned.

Second, assuming that n} < n; PCS satisfy (5.3). These PCS are sorted:

PCS with gains in terms of BD,, are sorted first, and then PCS with a good
complexity reduction and a small BD, loss. Let P, = {7?{71, o ,P{m,l} be
the ordered set of these PCS. The PCS providing a gain in terms of BD,ate
(negative BD,te) are ordered first in IP; by decreasing BD,ate gain. Then, the
PCS providing a BDy4te l0ss (positive BD,4te) are ordered by decreasing value
of

_(e(P)-C(Py) /C(P)

I BDrate(U,ﬁ, ’Pl’j)
where the numerator of ); is the relative complexity decrease provided by
the PCS Pl,j.

)
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Third, the set P is split into two parts P, containing the ny, < n/ first ele-
ments of P; and IP; containing the remaining elements. The set P, contains
the most promising candidates PCS with a single tool disabled compared to
P. The greedy approach presented in Algorithm 1 is then used to combine
candidate PCS, i.e., disable more tools, while satisfying (5.3). In Algorithm 1,
assuming that P; = {pgl), o ,pﬁ"’DR)} and Py = {pél), o ,pé”DR)}, the notation
P1 A Ps corresponds to the PCS P3 = Py APy = {pél), . ,pé”DR)} such that
p%’)g = p%z)l A p% with A is the AND function.

)

Algorithm 1 Evaluating the best PCS

Input: P,

Output: P,

Initialization: extract P;, the first element of P,

while P, +# () do
Extract P,, the next element of P,
If C (Pl VAN 7)2) < C (,P1> and BDTate(U,ﬁ, Pl A PQ) < Arate
P =P, APy

end while

PN VT A WN =2

Algorithm 1 progressively disable tools corresponding to the PCS in Py,
starting with the most promising PCS. When disabling a tool results in a com-
plexity reduction while satisfying (5.3), the PCS is updated. Tools, when dis-
abled, do not reduce the complexity or lead to a large loss in BD,4te are kept
activated.

Finally, a branch-and-prune approach presented in Algorithm 2 is consid-
ered, starting from the PCS P, provided by Algorithm 1 to select additional
tools to disable corresponding to PCS in P;. One tries first to disable a sin-
gle additional tool from P; corresponding to the various PCS in P3. All PCS
P € P3 such that P; A P leading to a performance decrease compared to
P, are discarded from P3. Then pairs, triples, etc. of PCS remaining in P3 are
considered.

Let P, the PCS (or combination of PCS) in P5 leading to the smallest value
of C (P A Ps) while BDyate(v, P, P1 A Ps) < Avrate. Then the PCS P = Py A Py
is an approximate solution of (5.2).
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Algorithm 2 Branch-and-prune method

1. Input: P, and Ps

2. Output: P

3: Initialization: i = 1

4: While number of PCSsinP; > 1 do

5: Build IP, all combinations of i tools from P5

6 while P £ () do

7: Extract P,, first PCSs in P

8 If C (P, APy) >C(Py)and BD,ge(v, P, PL APs) > Apare
9 Discard P, from P

10: EndIf

1 end while

12: Put all PCSs of P in P4

13: 1=1+1

14: end while

15: Extract Py, the only PCS in Py
16: P =P A Ps

5.5 Performance evaluation

5.5.1 Experimental setup

We selected 14 JVET test sequences defined in the Common Test Conditions
(CTC) [82], each of the sequences has at most 300 images. In a first phase, 7
sequences were considered to apply our approach and identify the best PCSs.
Then, in a second phase, tests are conducted on all sequences to evaluate the
performance obtained with the previously identified best PCSs.

All sequences have been temporally sub-sampled at 30 fps and spatially
sub-sampled using FFmpeg [83] resulting in frames of 384 x 216, 512 x 288, and
640 x 360 pixels. A Random Access (RA) configuration is selected according to
JVET CTC [82] and QP values are chosen in {27,32,37,42}. VTM 5.0 is used in
the experiments and run on a PC with 2 Intel Xeon CPU E5-2670 v3 24 cores @
2.30 GHz running under Linux. The threshold A,z is fixed to 2% as we have
noticed that this loss is subjectively unnoticeable. The value of ny helps to
get a trade-off between complexity and accuracy in the search for P. Here,
we take ny = n}/2. The tools of VTM 5.0 considered in this work are listed in
Table 5.1.
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Dleabled | BDre % AC% A Dlsabed | BDre % AC% A Disabled | BDue % AC% A
LMCS -0.42 10.77 - LMCS -0.40 13.28 - BDOF -0.29 13.20

SMVD -0.01 8.30 - SMVD 0.02 8.98 422.56 | SMVD -0.08 9.67

AMVR -0.01 8.46 - MMVD 0.15 15.56  104.76 | LMCS -0.07 9.85

GBI 0.01 8.74 1544.07 | BDOF 0.14 10.83 77.86 | MMVD 0.10 15.67 161.51
ClIP 0.03 7.98 271.58 ISP 0.37 20.55 55.37 | ClIP 0.06 7.65 121.65
MMVD 0.20 14.21 72.12 clip 0.14 7.46 52.16 AMVR 0.15 10.06 66.67
AFF 0.29 16.59 57.98 AFF 0.58 19.87 34.48 | AFF 0.58 18.72  32.06
MIP 0.14 8.30 57.41 AMVR 0.26 8.60 33.43 | Triang 0.41 11.39  28.00
Triang 0.28 10.04 36.47 Triang 0.39 11.69 29.77 | MIP 0.45 9.30 20.75
MRL 0.20 7.23 36.01 SBT 0.31 6.72 21.92 SbTMVP | 0.28 4.54 16.50
SbTMVP | 0.14 4.81 34.35 MIP 0.45 7.81 17.32 SBT 0.24 3.80 15.60
SBT 0.07 1.64 24.45 MRL 0.39 6.38 16.27 EMT 0.42 6.05 14.49
EMT 0.34 7.01 20.77 SbTMVP | 0.32 5.08 16.04 | GBI 0.69 9.71 14.04
ALF 1.60 28.15 17.55 GBI 0.78 9.72 12.45 ISP 0.49 5.88 11.94
LFNST 0.87 12.30 14.12 LFNST 1.07 12.89  12.03 LFNST 1.36 12.69 9.33
BDOF 0.76 9.56 12.65 EMT 0.51 5.89 11.45 ALF 2.1 18.04 8.56
ISP 0.55 6.35 11.59 ALF 1.98 20.55 10.38 MRL 0.74 5.81 7.87
DMVR 0.59 5.30 8.95 CCLM 0.82 6.28 7.70 CCLM 0.88 5.46 6.18
CCLM 0.79 5.94 7.50 DMVR 0.91 4.35 4.76 DMVR 0.78 4.48 5.72
DualTree | 0.29 -2.29  -7.94 DualTree | 0.32 -1.71 -5.37 DualTree | 0.70 -3.00 -4.32

Table 5.2: BD,,e and complexity reduction AC' in Johnny test sequence when disabling one
tool at time

5.5.2 Analysis

In this section, we present experimental results in order to illustrate the pro-
posed approach. Table 5.2 presents the detailed BD e and complexity re-
duction AC when disabling one tool at a time for the Johnny sequence of
resolutions 384 x 216, 512 x 288 and 640 x 360. These percentages are calcu-
lated relative to VTM 5.0 with all tools activated (a negative BD4 indicates a
gain with respect to VTM 5.0).

From Table 5.2, one observes that disabling tools related to interframe
coding (e.g., AFF, MMVD, and Triang in resolutions 384 x 216) and inloop filter-
ing (ALF, LMCS) leads to significant gains in complexity. Other tools related to
transform operations such as LFNST and EMT also lead to a significant com-
plexity decrease. Disabling a tool can sometimes lead to an improved BD,4e
when operating at low resolutions and low bitrates, such as LMCS, SMVD and
AMVR.

Table 5.3 shows the BD,4t. and complexity reduction AC for the best com-
bination of disabled tools obtained applying the method described in Sec-
tion 5.4.2 for seven test sequences and three resolutions. When several tools
are disabled, the complexity gains accumulate in most of the cases. Never-
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Resolution | Video R Kbps | BDrate % | AC % | Disabled Tools
Johnny 18-72 1.88 56.06 | LMCS GBI LFNST MMVD MIP CIIP
SMVD MRL SBT Triang AFF AMVR SbTMVP
Basketball 48-368 | 1.97 37.07 | LMCS GBI LFNST EMT MIP CIIP SMVD
384 x 216 | DaylightRoad2 | 48-367 | 2.00 48.91 | LMCS GBI LFNST MMVD EMT MIP CIIP MRL SBT Triang
BQMall 50-331 | 1.98 44.93 | LMCS GBI MMVD EMT MIP CIIP SMVD AFF CCLM
Drums 89-538 | 1.74 43.27 | LMCS GBI LFNST EMT MIP CIIP SMVD MRL AFF SbTMVP
RaceHorses 50-403 | 2.00 38.82 | LMCS GBI LFNST MMVD EMT MRL SBT
Kimono 27-271 1.91 51.21 LMCS GBI LFNST MMVD EMT SMVD MRL AFF ISP
Average - - 1.93 45.75 | -
Johnny 23-102 | 1.97 57.01 | LMCS CIIP MMVD AFF Triang SBT ISP BIO AMVR
Basketball 75-576 | .81 35.25 | LMCS CIIP EMT LFNST SMVD MRL MIP SBT
DaylightRoad2 | 75-575 | 1.88 48.37 | LMCS CIIP EMT LFNST MMVD MRL MIP GBI Triang SBT
512 x 288 | BQMall 71-477 | 1.82 34.92 | LMCS CIIP EMT MMVD SMVD MRL GBI CCLM
Drums 125-661 | 2.00 35.25 | CIIP EMT LFNST SMVD AFF CCLM SbTMVP
RaceHorses 78-763 | 1.79 34.34 | LMCS CIIP EMT LFNST SMVD AFF CCLM SbTMVP
Kimono 41-427 | 1.84 47.78 | LMCS CIIP EMT LFNST MMVD SMVD MRL ISP AFF IMV
Average - - 1.87 41.85 | -
Johnny 30-148 | 1.92 55.24 | LMCS MIP SMVD CIIP MMVD AFF Triang AMVR BIO
Basketball 99-700 | 1.89 32.45 | LMCS MIP SMVD EMT LFNST SbTMVP
DaylightRoad2 | 100-702 | 1.89 41.68 | LMCS MIP SMVD MRL GBI EMT MMVD LFNST SBT
640 x 360 | BQMall 95-639 | 2.00 36.99 | LMCS MIP SMVD MRL GBI EMT MMVD CCLM
Drums 164-789 | 1.83 41.26 | LMCS MIP SMVD MRL GBI CIIP AFF SbTMVP
RaceHorses 109-631 | 1.30 40.17 | LMCS MIP SMVD MRL GBI EMT CIIP MMVD SBT ISP
Kimono 54-531 | 1.80 45.77 | LMCS SMVD MRL GBI CIIP LFNST AFF Triang
Average - - 1.80 41.94

Table 5.3: BD,e and complexity reduction AC of best PCS for tested resolutions and
sequences; Selected common tools are in bold
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384 x 216 512 x 288 640 x 360
Common Tools LMCS GBI LFNST LMCS CIIP MMVD LMCS MIP CIIP EMT
MMVD EMT MIP CIIP | SMVD EMT LFNST | SMVD MRL GBI MMVD
Video BDyae% AC% BDiate% AC% | BDyate% AC%
Johnny 2.34 38.76 2.13 39.13 0.99 42.01
Basketball 2.00 37.95 1.83 24.57 157 26.03
DaylightRoad2 0.68 38.96 0.94 35.26 0.98 35.44
BQMall 1.24 37.81 1.59 35.73 1.33 35.31
Drums 1.87 37.94 1.63 34.12 1.21 35.12
RaceHorses 1.87 35.65 1.56 33.96 0.33 26.45
Kimono 0.94 41.60 1.83 38.24 2.39 35.47
ParkScene 0.90 42.25 0.77 41.26 0.85 42.71
KristenAndSara 1.99 38.62 1.87 38.93 0.96 39.32
CatRobot 1.42 42.58 1.41 37.39 1.27 23.79
Tango 1.20 38.55 1.58 36.06 0.95 35.18
ToddlerFountain 1.20 38.55 1.58 36.06 143 39.89
SlideShow 1.52 27.20 1.44 23.61 2.88 23.03
SlideEditing 1.09 41.68 0.63 39.72 1.64 40.25
Average 1.45 38.44 1.49 35.29 1.34 34.29
SlideEditing 1.09 41.68 0.63 39.72 1.64 40.25
Average 145 | 38.44 149 | 35.29 134 | 3429

Table 5.4: BD,4te and complexity reduction AC when disabling the common combinations
of tools. Cells in bold do not satisfy (5.3).

theless, this observation does not hold for BD,4te, due to the complex depen-
dency among tools and their influence on the coding efficiency. Considering
Johnny at the resolution of 384 x 216, jointly disabling the tools: {LMCS GBI
LENST MMVD MIP CIIP SMVD MRL SBT Triang AFF AMVR SbTMVP}, leads to a
complexity reduction of 56.06%, with a BD 4e loss of 1.88%. For resolutions
of 512 x 288 and 640 x 360, a complexity reduction of 57.01% and 55.24% is
achieved with a BDy4te l0ss of 1.97% and 1.92% respectively. Similar results are
obtained when applying the same methodology on other sequences such as,
BasketballDrive, DaylightRoad2, BQMall, Drums, RaceHorses, and Kimono. The
weakest reduction in complexity is observed with he BasketballDrive video se-
quence characterized by a large temporal variance, 37.07% is recorded for
resolutions of 384 x 216 and 32.45% for resolutions 640 x 360.

These results are obtained by merely disabling tools and without algorith-
mic optimization. Nevertheless, the combination of tools that provide the op-
timal complexity reduction is different from one sequence to the other and
even from one resolution to the other. The amount of complexity reduction is
also varying. This is due to the spatial and temporal properties of sequences.
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Yet, for each resolution, using the results of Table 5.3, it is possible to iden-
tify one common combination of tools satisfying constraint (5.3) for all se-
qguences. Accordingly, these PCSs are: {LMCS GBI LFNST MMVD EMT MIP CIIP}
for resolution 384 x 216, {LMCS CIIP MMVD SMVD EMT LFNST} for 512 x 288,
and {LMCS MIP CIIP EMT SMVD MRL GBI MMVD} for 640 x 360. Table 5.4
shows the BD,4te and complexity reduction for the previously identified PCSs
considering the 14 test sequences. We observe that the constraint (5.3) is sat-
isfied in most cases. Thus, putting these PCSs in separate profiles for each
resolution will be beneficial for use cases with real-time and low-bitrate con-
straints. We conclude that the PCS identification approach presented in this
paper provides results that are likely to be generalized to a larger set of video
sequences.

5.6 Conclusions

In this chapter, we present an optimization method of VVC encoder targeting
low-resolution video sequences encoded at low bitrates (less than 1 Mbps).
Our aim is to identify a set of coding tools which may be disabled while pre-
serving coding efficiency. For that purpose, a branch-and-prune approach is
proposed to determine the set of coding tools which provide the best com-
plexity reduction, while satisfying a constraint on the BD, . degradation.

Experimental results show that significant reduction of encoding complex-
ity can be achieved, with negligible BD, 4 l0ss. For instance, a complexity re-
duction of 56% was achieved for Johnny at a 384 x 216 resolution by applying
our method, with a loss of 1.88% in BD,ate. Moreover, due to the spatial and
temporal properties of sequences, The best set of coding tools to disable is
different across the video sequence and even the tested resolutions.

Nevertheless, we were able to propose a common combination of tools to
disable for each resolution. Our experimental results show that these com-
mon tools most likely cause less than 2% BDy e loss with up to 35% reduction
in terms of encoding complexity. This result is particularly beneficial as we
can build coding profiles for each resolution removing the non-useful tools.
Therefore, automatically disabling them and reducing the processing com-
plexity for real-time encoding.
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We also observe that disabling tools related to interframe coding (e.g., AFF,
MMVD) and transform operations (e.g., LFNST, EMT) always leads to a signifi-
cant complexity decrease without causing a massive drop in coding efficiency.
In addition, disabling some tools, such as LMCS, SMVD, may sometimes lead
to an improved BD,,te When operating at low resolutions and low bitrates
which further illustrates that some coding tools are not optimal of high reso-
lutions videos.

Finally, our results are promising but represent the first step toward a real-
time VVC encoder. Algorithmic optimization can be applied to partitioning,
intra prediction, or transform module to reduce the computational time. Fur-
thermore, hardware optimization is necessary to minimize memory access,
favor parallelism and execute repetitive tasks. All of these optimization pos-
sibilities are an essential direction for future work.

The Fraunhofer Heinrich Hertz Institute (HHI) released a fast and efficient
VVC encoder software known as VWenC [34]. The VVenC software is based on
VTM, with optimizations including some algorithmic optimizations, extensive
SIMD optimizations, and multi-threading support to exploit parallelization.
Additionally, VVenC uses a similar approach to ours by supporting five pre-
defined presets. In each preset, a subset of coding tools is disabled to achieve
a given tradeoff between encoder complexity and video quality. In the slow-
est preset, the encoder reaches the highest compression gain with the most
considerable runtime, while in the fastest preset, the runtime is less signif-
icant, but VWenC is only 10% more efficient than HEVC. More details about
VWWenC is available in [85][84].
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we address the problem of video bitrate adaptation for low-
latency video streaming. Chapter 1stated our objective: the design of a bitrate
adaptation algorithm for low-latency video streaming from a mobile transmit-
ter with 100 to 200 ms glass-to-glass delay targets. In low-latency live stream-
ing, the transmitter (server) has to send the compressed video in an uplink
direction through a wireless access and a wired core network to the client.
The high variability of the wireless channel characteristics due to the mobility
of the transmitter and to the variable number of users sharing the channel
combined with the low latency constraint makes this uplink transmission sce-
nario more challenging than classical downlink HTTP adaptive streaming.
Chapter 2 provides some background on the basics of video coding and
HTTP adaptive streaming. We also discuss the main end-to-end delay com-
ponentsin video delivery systems. We provide a literature review of the state-
of-the-art bitrate adaptation algorithms and their classifications according to
the location of the bitrate adaptation logic (server-driven or client-driven) and
the input used for the adaptation (bandwidth-based, buffer-based, or hybrid
approaches). We stated that in the context of low-latency streaming from
a mobile transmitter. Transmitter-driven approaches are better suited for
selecting the video bitrate according to the network state and transmitter
buffer level. This is because the moving transmitter has a better view of the
variations of the channel and network state, and does not have to wait for
delayed reports of the network and buffer states provided by the client. In
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addition, an adaptation at the frame level is necessary to achieve low delay
transmission. The adaptation at the frame level is performed using a model
of the relation between the size of the bitstream resulting from the encod-
ing of a video frame and the selected quantization parameter. Accordingly,
we recall several state-of-the-art the parametric rate models used for bitrate
control. Finally, some technical features of the new Versatile Video Coding
(VWC) standard and the state-of-the-art encoder optimization methods has
been reviewed.

We present our first contribution in Chapter 3: a novel inter-dependent
Rate-QP model, i.e., R-(QP, D). Our model describes the relationship between
the bitstream size R,, of frame n, its quantization parameter QF,, and the
MSE distortion D,,_; of the reference frame n — 1. The R-(QP, D) is beneficial
when adjusting the QP of the frame according to some target bitrate budget
of a frame in case of low latency live streaming. This target bitrate budget is
determined via some bitrate adaptation algorithm. Our proposed model out-
performs other Rate-QP models when encoding is performed with constant
or variable QP. In addition, we have proposed an procedure to estimate it-
eratively the parameters of the R-(QP, D) model. This procedure allows one
to estimate these parameters with a limited number of encoding trials for
each frame which is useful in low latency streaming. Part of the material in
Chapter 3 has been presented in

e Mourad Aklouf, Marc Leny, Michel Kieffer, and Frédéric Dufaux. "Interframe-
Dependent Rate-QP-Distortion Model for Video Coding and Transmis-
sion." In 2021 IEEE International Conference on Image Processing (ICIP),
pp. 2019-2023. |EEE, 2021.

Chapter 4 proposes a new model predictive bitrate adaptation algorithm for
low latency video streaming from a mobile terminal. The proposed approach
exploits the transmission buffer level and an estimate of the wireless trans-
mission rate to determine the target encoding bitrate of each frame. The
choice of the quantization parameter for each frame is performed via the R-
(QP, D) model proposed in Chapter 3. We compare the performance of the
proposed approach with four reference rate adaptation algorithms, namely
Festive [10], Panda [11], BOLA[12], and BBA [13], considering streaming scenar-
ios with a glass-to-glass latency of less than 200 ms. Some of these algorithms
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have been adapted to the transmitter-driven framework. Simulation results
involving real 4G bandwidth traces showed that our proposed MPC approach
outperforms the algorithms from the literature in both average PSNR and
number of lost frames.

Finally, live streaming is delay-sensitive, and it requires an encoder that is
capable of compressing the video stream in real-time. Therefore, we present
in Chapter 5 an optimization method for VVC encoder targeting low-resolution
video sequences encoded at low bitrates. We propose a branch-and-prune
approach to identify in a systematic way a set of coding tools which may be
disabled while satisfying some constraint on the BD,4t degradation, thus pre-
serving coding efficiency. A complexity reduction of up to 56% was achieved
for video sequences of resolution 384 x 216, 512 x 288, and 640 x 360 by ap-
plying our method, with a loss of less than 2% in BD;ate. Moreover, we were
able to identify a common set of coding tools to disable in each resolution.
These common tools can be used to create coding profiles for each resolution
thus reducing the coding complexity while encoding on the fly. The material
in Chapter 5 has been presented in

e Mourad Aklouf, Marc Leny, Frederic Dufaux, and Michel Kieffer. "Low
complexity versatile video coding (VVC) for low bitrate applications." In
2019 8th European Workshop on Visual Information Processing (EUVIP),
pp. 22-27. IEEE, 2019.

6.2 Future work and perspectives

The work presented in this document can be extended in the following direc-
tions.

6.2.1 Improvement for the R-(QP, D) model

The R-(QP, D) model is proposed assuming that encoding is performed with
a low-latency configuration. The frame n is coded as a P-frame and uses only
the previous coded frame n — 1 as a reference frame. Nevertheless, the x265
encoder enables another type of low delay encoding configuration with bet-
ter coding efficiency, i.e., smaller bitstream size, with a cost of a slight increase
in coding time. The frame n may use two coded frames as references, e.g.,
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framen—1andn—3. In this case, the coded blocks in frame n use two motion
vectors, and the samples are reconstructed based on a weighted combination
of the blocks from the reference frames. An improvement would be to inves-
tigate the possibility of using a combination of the distorsions of reference
frames in the R-(QP, D) model. e.g., D = a Dy + B D», with D; and D, being the
MSE distortions of the reference frames 1 and 2, « and § are weights of the
two reference frames 1 and 2, respectively. Authors in [86, 87] addressed a
similar problem for bitrate control in the HEVC encoder with the Random Ac-
cess configuration.The difficulty comes from the evaluation of « and 3 prior
to encoding. One has to evaluate whether this proportion is stable or not.

Intra-refresh can be enabled to reduce the peaks of video bitrate caused
by I-frames. Several images may contain a column of CTUs coded in intra-
prediction mode. This increases the size of the bitstream associated to each
frame. Our proposed model remains valid for this type of frames. Neverthe-
less, the iterative estimation of the model parameters is not tested with intra-
refresh enabled, and more experimental verification has to be performed.

When a change of scene occurs, the parameters of the R-(QP, D) model
may change significantly. The recursive estimation of the model parameters
may have to be reset, which may require the first frame to be coded with
a large number of trials, and the model parameters to be determined us-
ing the Least Squares Estimator presented in Section 3.4.1. Nevertheless, we
have noticed that the reset is not necessary for some tests where the scene
change does not change the properties of the video, e.g., a shift in camera for
shooting in a new angle but in the same environment. A potential solution
could be to calculate the spatial and temporal properties of the frame before
and after the scene change to determine whether the reset is necessary.

In the iterative parameter estimation process, an initial vector Q) F, of quan-
tization parameters has been considered to initialize the estimate of the R-
(QP, D) model for the first frame. Several encoders are then run in parallel
with variations AQ P of the quantization parameters. These variations were
adjusted experimentally so as to get the best model accuracy in our experi-
ments. These two vectors must be optimized in the future according to the
video properties and the available transmission rate. () F, must be chosen so
that the bitrate of the video is in the range of the transmission rate. AQP
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should provide sufficient bitrate diversity to enable a satisfying prediction ac-
curacy, even in case of significant variation of the quantization parameter.

6.2.2 Transmission rate estimator

Animportant research direction is how to efficiently estimate the channel and
network bandwidth. We did not discuss the type of estimator to use in our
work. The transmission rate C,, at time step n when coding frame n is taken
from the set of bandwidth traces described in [9]. Estimating the bandwidth
can be done in two ways.

The first option is to probe the channel multiple times then smooth the
transmission rate in a given temporal window to denoise the measures. The
available transmission rate at instant n can be determined by measuring the
quantity of transmitted data in a time interval or using tracing tools such as
QXDM [79] or Mobilelnsight [80]. These tools are used to capture 4G/5G con-
trol messages between the terminal and the base station and understand the
behavior of the resource blocks allocation to the users in downlink and uplink
direction. Accordingly, the throughput can be estimated using this traced in-
formation in a frequency much higher than tools working at application layer,
such as G-NetTrack Pro, see [38].

Another option is to build a bandwidth map and estimate the transmission
rate in a given geolocated position of the mobile transmitter. In this approach,
a database of transmission rates with GPS positions is first built offline [14].
Then, the information collected is used to estimate the future network condi-
tions of the mobile transmitter, and the video bitrate is adjusted accordingly.
The transmitter position can be calculated using Kalman-based prediction.

6.2.3 N-steps MPC Algorithm

If the transmission rate can be estimated N steps in the future, It would be
possible to perform N-step bitrate control using the MPC algorithm. The tar-
get bitrate of the N future frames may be determined at once. N-step MPC
allows more efficient bitrate adaptation and client-buffer control: When the
controller anticipates a future drop in the transmission rate, for instance, at
time n+ 3, it can encode some frames before the drop event (e.g., frame n+1
and n+2) at a lower bitrate, which allows transmitting the frames in a shorter
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time and therefore provide an increased playback margin for frame n+3. This
could slightly reduce the PSNR quality of the coded frames but avoid freez-
ing events and reduce the latency. In addition, N-step MPC makes it possible
to limit the oscillations by smoothing the target bitrates of the frames in a
window of size N.

An other direction is a dynamic adjustment of the margin 7* and the end-
to-end playback delay A, by small variations of the frame rate at receiver
[89] based on estimated future transmission rate to minimize playout inter-
ruptions.

6.2.4 Ensuring fairness

The techniques described in this document enable low-latency live streaming
from one mobile acquisition device to one client. The client could be a pro-
cessing unit that may realize additional treatments on the encoded video or
broadcast it to the final consumers. Sometimes, we want to transmit multi-
ple video streams on the same channel, for example in the case of videos ac-
quired by different closely-located cars sharing the same 4G/5G base station.
The transmitters are then in competition for the wireless resource. When the
wireless channel is saturated, the rate adaptation techniques of each encoder
does not allow a fair share of the channel capacity and QoE fairness cannot be
guaranteed. One way to solve this problem is to use an in-network coordina-
tion proxy in charge of facilitating fair resource sharing among transmitters
[90].

With HTTP adaptive streaming in downlink direction, the root of the lack of
fairness between clients sharing some wireless channel and of the oscillation
of the rate and PSNR among clients is their ON-OFF activity pattern. A client
typically operates in two states: the buffering state, in which the client re-
guests a new video segment when the previous segment is fully downloaded,
and the steady state, in which the client requests one new segment periodi-
cally every A seconds, with A is the duration of the segment. This creates an
activity pattern where the client is either ON when downloading a segment
or OFF. During the ON period, the client usually measures the instantaneous
downloading rate. The client may overestimate the available bandwidth due
to the temporal overlap between the players ON-OFF periods. The players
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could also switch back to a lower bitrate when the segment is not success-
fully downloaded, causing oscillations. Authorsin [91] propose a server-based
traffic shaping method to avoid the OFF periods during the steady-state. The
shaping limits the encoding rate of the segment, so the download duration
will be roughly equal to the segment duration A . Khan et al. [92] clarify the
fairness problem and evaluate some bitrate adaption algorithms when com-
peting in bottleneck links.

The fairness problem in our case is quite different from the fairness prob-
lem in HTTP streaming because of the uplink streaming and the granularity of
adaptation. In our case, the transmitter is in ON period most of the time, so
the used bandwidth is less likely to be overestimated. Nevertheless, a proper
way to share channel capacity to achieve fair QoE between the served clients
must be investigated.

6.2.5 Q-learning bitrate adaptation approach

The problem of bitrate adaptation can be addressed using reinforcement
learning (RL) approaches. This technique allows the transmitter to dynam-
ically learn the best actions, i.e., encoding bitrate corresponding to the actual
network environment. The bitrate adaptation is performed by an RL agent
that interacts with its environment through actions (i.e., the set of possible
encoding bitrates) and evaluates them based on some assigned numerical re-
ward. The reward, in this case, can be the PSNR of the received video frames,
or a function of the playback marging at the client. The agent goal is to maxi-
mize the user QOE and learn the optimal action to take (encoding bitrate) for
each state of the environment. The state of the environment is defined by
the transmission buffer level and the available transmission rate. When the
agent has limited knowledge about the environment dynamics, a commonly
used RL algorithm is Q-Learning [93]. In Q-learning, a table of Q values is used
to measure the quality of taking specific actions in a particular state, based on
the perceived cumulative rewards. These Q-values are updated every time an
action is taken. The optimal encoding bitrate is then determined from this ta-
ble. Another approach is to use a neural network to approximate the Q-value
function, i.e., deep Q-learning. The state is given as the continuous input and
the Q value is generated as the output for all possible actions.
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Several methods based on Q-learning have been proposed [59, 58, 94]. All
of them are implemented in client-driven HTTP adaptive streaming architec-
tures and adapt the bitrate at the segment level. In our situation, the target
bitrate of the frames could be determined using similar methods, then the
optimal QPs to encode the frames are determined with the proposed R-(QP,
D) model.

Another approach of using Q-learning is to consider the frames QPs as
the output instead of the target bitrates. This allows to remove the R-(QP,
D) model of the streaming architecture and integrate it into the learning pro-
cess. However, the temporal dependency between the frames can decrease
the accuracy of the QP prediction. Hence, an additional state that represents
the distortion of the reference frame (or its QP) must be added. More exper-
iments are required to determine which approach is more efficient.

6.2.6 Bitrate adaptation in the context of E-sports

Major tech companies including Microsoft, Google, and Amazon compete
with video gaming industries such as Xbox and Ubisoft in new game stream-
ing services known as cloud gaming. Cloud gaming is a relatively new concept
in which users without powerful gaming devices get access to a large library
of online games at the cost of a monthly subscription. Cloud gaming oper-
ates by hosting and running the games on powerful servers. The user (client)
sends the game input to the server that processes it then streams back the
game environment in a compressed video sequence through the internet.
The video must be streamed at very low latency. Cloud gaming allows users
to enjoy high-level video games on regular portable devices such as smart-
phones and tablets.

E-sports such as "Fortnite World Cup" and "League of Legends" are increas-
ing in popularity. Individual players or teams can now compete against each
other in organized video gaming tournaments for a cash prize. The gaming
culture is not just about playing but also about watching other people play.
A massive part of the gaming audience is heading towards large streaming
platforms such as Youtube and Twitch to watch international gaming cham-
pionships or video game commentators such as PewDiePie and AboFlah. Ac-
cordingly, low latency adaptive video streaming will have a central role in en-
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abling these services.

Our MPC-based rate adaptation method for low latency video delivery can
be used for such use cases. Nevertheless, some changes must be made. First,
the transmitted videos are computer-generated, with different video charac-
teristics from the videos tested in Chapter 4. Hence, we need to check the
efficiency of the R-(QP, D) model for this type of video then make changes
in the model if necessary. In addition, a transmitter-driven scheme is not
necessarily appropriate. The transmitter (server) is located in a fixed posi-
tion at the edge of the network, while the users could be moving when using
portable devices such as smartphones. Hence, the bitrate adaptation should
be performed according to the client (reception) buffer level and the available
download rate.

6.3 Industrial perspectives

The choice of a reliable live streaming product is an essential aspect of the
success of a cultural, political or sports event. Live streaming has become the
primary method to reach a new audience and maintain relationships with old
customers. It is thus crucial to satisfy the user QoE.

The work presented in this thesis offers an interesting industrial perspec-
tive for low latency event streaming. The bitrate adaptation technique de-
scribed in this thesis can be implemented on products such as:

e Nomad cars [95], an application used to capture video on-board a rac-
ing car, transmit the compressed video via 3G/4G network to a remote
coach, teams in the pitlane, partner TV channels, or post it on social net-
works.

e Nomad sails [96] in which the capture video on-board of a boat in the
middle of the ocean is uploaded via satellite link and made available
anywhere in the world with the lowest possible latency, mostly for TV
interviews.

In addition, exclusive broadcasting of cultural events such as music fes-
tivals or openings of exhibitions will also be possible in very low latency. A
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virtual event platform can be created to provide a new interactive digital en-
vironment where people can connect, discover and exchange information.

Lately, the work of this thesis will enable a new type the remote control
application: piloting a railway train remotely. This application is an essential
part of the autonomous train project, in which the drivers located kilometers
away in an operating center may have to manually operate a train stopped by
hazardous situation (malfunction, accident, object on rails...). This project is
carried out by EKTACOM with several partners, including the french company
Société Nationale des Chemins de Fer (SNCF).

A prototype of a train remote control system already exists. The train is
equipped with a camera to film the train track and a transmitter that trans-
mits the frames to a remote control station. The driver visualizes the jour-
ney of the train from his position in the remote control center and pilots the
train according to the received video sequence (i.e., acceleration, decelera-
tion, stopping, railway signals reading). However, the captured video is usu-
ally transmitted via a very limited or highly variable channel. Field tests under-
lined bandwidth variation from 20kb/s to 3 Mb/s, with variations in packets
loss and error rate. Therefore, the quality of the received frames is some-
times insufficient for the driver to make safe decisions (mostly because of
the difficulty in identifying the lights and their color). Our algorithm can be
implemented in this case to fully exploit the channel capacity and maximize
the driver QoE.
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Résumé: L'acquisition et la diffusion de contenus
avec une latence minimale sont devenus essentiel
dans plusieurs domaines d'activités tels que la dif-
fusion d'événements sportifs, la vidéoconférence,
la télé-opération de véhicules ou le contréle a dis-
tance. L'industrie de la diffusion en direct a connu
en 2020 une forte croissance et va encore croitre au
cours des prochaines années grace a |'émergence de
nouveaux codecs vidéo a haute efficacité tel que
Versatile Video Coding (VVC), et a la cinquiéme
génération de réseaux mobiles (5G).

Les méthodes de streaming de type HTTP
Adaptive Streaming (HAS) telles que MPEG-
DASH, grace aux algorithmes d'adaptation du
débit, se sont révélées trés efficaces pour améliorer
la qualité d’expérience (QoE) dans un contexte
de vidéo a la demande (VOD). Ces algorithmes
d'adaptation sont mis au niveau du client. lls ex-
ploitent les mesures du débit du réseau et/ou du
niveau de remplissage du tampon de réception afin
d'optimiser la QoE du client.

Dans les applications ot la latence est critique,
minimiser le délai entre I'acquisition de |'image et
son affichage au récepteur est essentiel. La plu-
part des algorithmes d'adaptation de débit sont
développés pour optimiser la transmission vidéo
d'un serveur situé dans le coeur de réseau vers des
clients mobiles. Dans les applications nécessitant
un streaming a faible latence, telles que le con-
tréle a distance de drones, le réle du serveur est
joué par un terminal mobile qui va acquérir, com-
presser et transmettre les images via une liaison
montante comportant un canal radio vers un ou
plusieurs clients. Les approches d'adaptation de
débit pilotées par le client sont par conséquent in-
adaptées dans ce contexte 3 cause de la variabilité
des caractéristiques du canal. De plus, les HAS,
pour lesquelles la prise de décision se fait avec une
périodicité de |'ordre de la seconde ne sont pas suff-
isamment réactives lors d'une mobilité importante
du serveur et peuvent engendrer des délais impor-
tants. Il est donc essentiel d'utiliser une granularité
d'adaptation trés fine.

L'objet de cette thése est d'apporter des élé-
ments de réponse a la problématique de la trans-
mission vidéo a faible latence depuis des émet-
teurs mobiles. Nous présentons d'abord un al-
gorithme d'adaptation de débit image-par-image
pour la diffusion a faible latence. Une approche de
type Model Predictive Control (MPC) est proposée
pour déterminer le débit de codage de chaque
image a transmettre. Cette approche utilise des
informations relatives au niveau de tampon de
I'émetteur et aux caractéristiques du canal de
transmission. Les images étant codées en direct,
un modéle reliant le paramétre de quantification
(QP) au débit de sortie du codeur vidéo est néces-
saire. Nous avons donc proposé un nouveau mod-
éle reliant le débit au paramétre de quantification
et a la distorsion de I'image précédente. Ce modéle
fournit de bien meilleurs résultats dans le contexte
d'une décision prise image par image du débit de
codage que les modéle de référence de la littéra-
ture.

En complément des techniques précédentes,
nous avons également proposé des outils permet-
tant de réduire la complexité de codeurs vidéo tels
que VVC. Par rapport a son prédécesseur, le High-
Efficiency Video Coding (HEVC), ce codeur vidéo
permet de réduire de moitié la quantité de bits a
transmettre & qualité équivalent. Cependant, les
nouveaux outils introduits dans le standard VVC
conduisent a une explosion de la complexité. La
version actuelle du codeur VVC (VTM10) a un
temps d'exécution dix fois supérieur 3 celui du
codeur HEVC. Par conséquent, le codeur VVC
n'est pas adapté aux applications de codage et dif-
fusion en temps réel sur les plateformes actuelle-
ment disponibles. Dans ce contexte, nous présen-
tons une méthode systématique, de type branch-
and-prune, permettant d'identifier un ensemble
d'outils de codage pouvant étre désactivés tout
en satisfaisant une contrainte sur ['efficacité de
codage. Ce travail contribue a la réalisation d'un
codeur VVC temps réel.




Title: Video for events : Compression and transport of the next generation video codec

Keywords:
compression

Abstract: The acquisition and delivery of video
content with minimal latency has become essential
in several business areas such as sports broadcast-
ing, video conferencing, remote vehicle operation,
or remote system control. The live streaming in-
dustry has grown in 2020 and will expand further
in the next few years with the emergence of new
high-efficiency video codecs such as the Versatile
Video Coding (VVC) standard, and the fifth gen-
eration of mobile networks (5G).

HTTP Adaptive Streaming (HAS) methods
such as MPEG-DASH, using algorithms to adapt
the transmission rate of compressed video, have
proven to be very effective in improving the quality
of experience (QoE) in a video-on-demand (VOD)
context. Most of these adaptation algorithms are
implemented at the client level. They exploit mea-
surements of network throughput and/or receive
buffer level to optimize the client's QoE.

Nevertheless, minimizing the delay between
image acquisition and display at the receiver is
essential in applications where latency is critical.
Most rate adaptation algorithms are developed to
optimize video transmission from a server situated
in the core network to mobile clients. In appli-
cations requiring low-latency streaming, such as
remote control of drones, the role of the server is
played by a mobile terminal. The latter will ac-
quire, compress, and transmit the video and trans-
mit the compressed stream via a radio access chan-
nel to one or more clients. Therefore, client-driven
rate adaptation approaches are unsuitable in this
context because of the variability of the channel
characteristics. In addition, HAS, for which the
decision-making is done with a periodicity of the
order of a second, are not sufficiently reactive when
the server is moving, which may generate signifi-
cant delays. It is therefore important to use a very

low latency transmission, video streaming, adaptive video coding, rate control, video

fine adaptation granularity.

The aim of this thesis is to provide some an-
swers to the problem of low-latency delivery of
video acquired, compressed, and transmitted by
mobile transmitters. We first present a frame-by-
frame rate adaptation algorithm for low latency
broadcasting. A Model Predictive Control (MPC)
approach is proposed to determine the coding rate
of each frame to be transmitted. This approach
uses information about the buffer level of the trans-
mitter and about the characteristics of the trans-
mission channel. Since the frames are coded live,
a model relating the quantization parameter (QP)
to the output rate of the video encoder is required.
We have proposed a new model linking the rate to
the QP of the current frame and to the distor-
tion of the previous frame. This model provides
much better results in the context of a frame-by-
frame decision on the coding rate than the refer-
ence models in the literature.

In addition to the above techniques, we have
also proposed tools to reduce the complexity of
video encoders such as VVC. Compared to its pre-
decessor, High-Efficiency Video Coding (HEVC),
this video encoder can reduce the number of bits
to be transmitted by half at equivalent quality.
Nevertheless, the new tools introduced in the VVC
standard lead to an explosion of complexity. The
current version of the VVC encoder (VTM10) has
an execution time ten times higher than that of
the HEVC encoder. Therefore, the VVC encoder
is not suitable for real-time encoding and stream-
ing applications on currently available platforms.
In this context, we present a systematic branch-
and-prune method to identify a set of coding tools
that can be disabled while satisfying a constraint
on coding efficiency. This work contributes to the
realization of a real-time VVC coder.
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