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Résumé

Contexte de la thèse

Le streaming vidéo à faible latence est une application clé dans la diffusiond’événements sportifs, la visioconférence ou encore le contrôle et la conduiteà distance. Selon le rapport annuel sur Internet de Cisco, le trafic de la vidéoen direct a augmenté de 93% en 2020 et représentera 17% du trafic vidéo surInternet en 2022 [1]. Le streaming en direct deviendra encore plus populairegrâce aux progrès des réseaux de télécommunication et des codecs vidéo.De nombreusesméthodes de streaming exploitent le protocole HTTP pourDiffuser la vidéo. Cesméthodes sont connues par "HTTP Adaptive Streaming"(HAS) [2]. Avec HAS, les clips vidéo sont découpés en segments de quelquessecondes, encodés àplusieurs débits, et stockés sur des serveursmédiaHTTP.En utilisant HAS, un client peut demander les segments vidéo avec les débitsd’encodage appropriés selon la condition de son réseau. Néanmoins, lesméthodes HAS ne précisent pas de logique d’adaptation. Dans les applica-tions de streaming en liaison descendante, des algorithmes d’adaptation sontgénéralement mis en œuvre chez le client pour sélectionner le débit optimalde chaque segment demandé.Ces algorithmes exploitent des mesures instantanées ou moyennées ducanal de transmission et/ou du niveau de tampon client. Ils visent à max-imiser la Qualité d’Expérience (QoE) du client. Ceci est généralement obtenuen maximisant la qualité de la vidéo reçue tout en minimisant le nombre degels et de changements de qualité vidéo.Dans le streaming vidéo en direct, l’acquisition, l’encodage et la transmis-sion vidéo sont effectués en temps réel. Minimiser le délai entre l’acquisitiond’une image et son affichage chez le client est une exigence QoE supplémen-taire. Le streaming en direct est nettement plus difficile que le streaming
13



vidéo à la demande (VOD) classique. Tout d’abord, de grands tampons sontgénéralement implémentés au niveau du client pour atténuer les variationsde bande passante. Ces tampons induisent un délai important dans le con-texte du streaming en direct, leur taille doit donc être minimisée. De plus, lesalgorithmes de contrôle de débit au niveau du client basés sur HAS peuvententraîner des retards importants car les décisions de contrôle sont prises àla même période que la durée du segment vidéo. Lorsque la bande passantevarie avec une échelle de temps plus petite, de mauvaises décisions peuventinduire des retards de téléchargement importants.

Enfin, dans plusieurs applications telles que le streaming vidéo en direct àl’intérieure d’une voiture pendant une course ou le contrôle à distance d’undrone, le transmetteur transmet le flux vidéo compressé sur un réseaud’accèssans fil 4G/5G au client. La mobilité du transmetteur induit des variationsimportantes et rapides des caractéristiques du canal sans fil. Dans un telcontexte, les approches de contrôle côté émetteur apparaissent mieux adap-tées pour sélectionner les paramètres de codage vidéo. Cela évite égalementd’attendre des rapports sur les états du réseau et de la mémoire tamponfournis par le client.

En outre, la nouvelle génération de codecs vidéo présente un avantage sig-nificatif dans le contexte du streaming à faible latence. Le Versatile VideoCod-ing (VVC) atteint un gain de compressionde 50%par rapport à sonprédécesseur,le High-Efficiency Video Coding (HEVC), pour la même qualité PSNR. Cepen-dant, VVC se concentre principalement sur le contenu vidéo Ultra-Haute Déf-inition (UHD). Une variété d’outils de codage a été utilisée pour atteindre uneefficacité de codage élevée. Ces nouveaux outils impliquent une quantitéimportante de complexité de calcul. La version actuelle de l’encodeur VVC(VTM5.0) a 10 fois le temps d’exécution de l’encodeur HEVC (HM16) [3]. Parconséquent, le codeur VVC n’est pas adapté aux applications en temps réel,même pour l’encodage à faible débit et les contenus à faible résolution quisont encore utilisés pour le streaming vidéo aujourd’hui (e.g., 480p et 360p).
14



Objectifs de la thèse

Dans cette thèse, nous abordons la problématiquedu streaming vidéo à faiblelatence à partir d’un transmetteurmobile dans des conditions de réseau vari-ables.
• Nous proposons un algorithme d’adaptation du débit vidéo piloté parle transmetteur pour le streaming vidéo à faible latence à partir d’unémetteur mobile. L’algorithme proposé ajuste le débit vidéo au niveaude l’image et en fonction de l’état de la liaison montante du canal et duniveau de tampon de l’émetteur.
• Le débit de l’image est ajusté au moyen d’un modèle de débit qui déter-mine le paramètre de quantification pour avoir un bitstream de taille auplus égale au budget bits alloué à l’image. Par conséquent, nous pro-posons un nouveau modèle Rate-QP pour ajuster le débit vidéo imagepar image.
• Enfin, nous proposons une méthode pour réduire le temps d’encodagedu codeur VVCdans le cas d’un encodage à faible débit et pour séquencesvidéo de résolution inférieure à HD sans trop sacrifier l’efficacité de com-pression. Cet objectif est atteint en désactivant les outils de codage nonefficaces pour ces cas d’usages.

Structure de la thèse

Les contributions et la structure de cette thèse sont les suivantes :
• Chapter 2 présente au lecteur les notions de base sur le codage vidéo etle streaming adaptatif HTTP.
• Chapter 3 présente un nouveau modèle de débit, noté R- (QP, D), de re-lation entre la taille de l’image après codage Rn, le paramètre de quan-tification QPn, et la distorsion de l’erreur quadratique moyenne (MSE)
Dn−1 de l’image de référence n − 1. Notre modèle proposé est utilisépour déterminer les QP optimaux pour coder les images. Une partie dumatériel du Chapitre 3 a été présenté dans
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• MouradAklouf, Marc Leny,Michel Kieffer, and Frédéric Dufaux. "Interframe-Dependent Rate-QP-Distortion Model for Video Coding and Trans-mission." In 2021 IEEE International Conference on Image Processing(ICIP), pp. 2019-2023. IEEE, 2021.
• Chapter 4 présente un algorithme d’adaptation de débit d’encodage, misen œuvre du côté de l’émetteur et adapté aux applications de stream-ing à faible latence. Il vise à contrôler la marge de lecture du client (i.e.,le nombre d’images dans la mémoire tampon du client). L’algorithmeproposé utilise des mesures du débit de transmission et du niveau dutampon de l’émetteur.
• Chapter 5 présente une méthode d’optimisation de type branch-and-prune pour réduire la complexité de l’encodeur VVC. Notreméthode viseà identifier un ensemble d’outils de codage à désactiver tout en satis-faisant une contrainte sur l’efficacité du codage. Le matériel du chapitre5 a été présenté dans

• MouradAklouf, Marc Leny, Frederic Dufaux, andMichel Kieffer. "Lowcomplexity versatile video coding (VVC) for low bitrate applications."In 2019 8th European Workshop on Visual Information Processing(EUVIP), pp. 22-27. IEEE, 2019.
• Chapter 6 résume les résultats de nos recherches et suggère plusieurssujets possibles pour de futures recherches.

État de l’art

Le chapitre 2 fournit les notions de bases du codage vidéo et du streamingadaptatif HTTP. Nous discutons également des principaux composants de lalatence de bout en bout dans les systèmes de diffusion vidéo. Nous four-nissons une revue de la littérature sur les algorithmes d’adaptation de débitde pointe et leurs classifications selon l’emplacement de la logiqued’adaptationde débit (pilotée par le serveur ou pilotée par le client) et l’entrée utilisée pourl’adaptation (approches basées sur la bande passante, approches basées surle niveau de remplissage des tampons ou approches hybrides).
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Nous avons indiqué que dans le contexte du streaming à faible latenceà partir d’un émetteur mobile, les approches pilotées par l’émetteur sontmieux adaptées pour sélectionner le débit d’encodage de la vidéo en fonc-tion de l’état du réseau et du niveau de mémoire tampon de l’émetteur. Eneffet, l’émetteur mobile peut facilement estimer l’état du canal et n’a pas àattendre les rapports retardés sur l’état du réseau et de la mémoire tamponfournis par le client. De plus, une adaptation de débit au niveau de l’imageest nécessaire pour obtenir une transmission à faible latence.
L’adaptation auniveau image est réalisée à l’aide d’unmodèle de la relationentre la taille du flux binaire résultant du codage de l’image et le paramètre dequantification sélectionné. Par conséquent, nous rappelons plusieurs mod-èles de débit paramétriques de pointe utilisés pour le contrôle du débit.
Enfin, certaines caractéristiques techniques de la nouvelle norme VersatileVideo Coding (VVC) et les méthodes d’optimisation de pointe du codeur VVCont été revues.

Modèle Rate-QP-Distortion pour le streaming et la compres-
sion vidéo

Le contrôle du débit de codage vidéo repose sur unmodèle de la relation en-tre la taille du flux binaire résultant du processus de codage et les paramètresde codage vidéo. Le modèle de débit permet de déterminer le paramètre decodage optimal pour avoir un flux binaire de taille au plus égale au budgetbits alloué dans les contraintes de faible latence. Le paramètre de quantifi-cation QP est généralement considéré pour le contrôle du débit vidéo car il aun impact direct sur la taille du flux binaire résultant.
Des modèles paramétriques entre le débit de l’image et son QP ont étéproposés dans la littérature. Cependant, la précision de cesmodèles n’est pasfiable pour la transmission dans des canaux à bande limitée. Ces modèles netiennent pas compte de la dépendance temporelle entre les images.
Nous proposons lemodèle suivant de la relation entre le débit d’encodage

Rn de la trame n et son paramètre de quantificationQPn en fonction de la dis-torsion de l’erreur quadratique moyenne (MSE) Dn−1 de l’image référentielle
n− 1 :
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Rn (QPn, Dn−1) = g1 (QPn)

+ g2 (QPn) (tanh (g3 (QPn) log(Dn−1)− g4 (QPn)) + 1) , (1)
Avec,

g1 (QPn) = p1 exp (−p2QPn) , (2)
g2 (QPn) = p3 (−p4 log (QPn) + 1) , (3)

g3 (QPn) = p5QPn, (4)
g4 (QPn) = (p6QPn − p7)

2 , (5)
Notremodèle proposé, noté R- (QP, D), impliqueun vecteur de 7paramètres

p = (p1, . . . , p7), dont la valeur dépendde l’image et doit être déterminéepourprédire avec précision Rn en fonction de QPn et Dn−1.La performance du modèle proposé pour prédire Rn en fonction de QPnest comparée aux modèles de référence dans [4], [5] et [6]. Nous évaluonsles performances des modèles dans deux scénarios de codage : codage àQP constant et codage avec QP variable dans le temps. Dans le deuxièmescénario, la variation de QP est choisie pour simuler le cas d’un codage vidéopour une transmission sur un canal de transmission instable, où leQP changetoutes les quelques trames suite à une chute ou une augmentation du débitde transmission.Dans les deux scénarios de codage, lemodèle proposé surpasse les autresmodèles de la littérature. Par exemple, dans la séquence vidéo Tango, 90%de toutes les erreurs de prédiction sont inférieures à 8,6% lors de l’utilisationde l’encodage QP constant, et 90% de toutes les erreurs de prédiction sontinférieures à 12% lors de l’utilisation de la variable Encodage QP.Les gains sont particulièrement significatifs à des débits faibles, cet at-tribut montre que notre modèle est exceptionnellement fiable dans le cas ducodage pour transmission dans un canal à faible débit ou lorsque des chutessoudaines se produisent.
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Modèled’adaptationprédictivedudébit vidéopour le stream-
ing en direct à faible latence

Le chapitre propose un algorithme de contrôle du débit d’encodage adaptéaux applications de streaming en direct pour des délais de 100 à 200 ms. Lecontrôle est effectué au niveau de l’image, ce qui nécessite l’utilisation dumodèle R- (QP, D). À l’aide de mesures du débit de transmission et du niveaude remplissage du tampon de transmetteur, une approche de type ModelPredictive Control (MPC) est utilisée pour déduire le budget bits de l’imageà coder pour une marge cible de lecture (target playback margin), le con-trôleur peut alors sélectionner la valeur appropriée de QP pour cette image.La marge de lecture est la différence entre l’instant de fin de décodage etl’affichage de l’image chez le client.
La figure 1 illustre les composants de l’architecture proposéepour le stream-ing en direct. Le transmetteur se compose d’une caméra, un encodeur vidéo,un contrôleur de débit d’encodage et un tampon de transmission. Le clientdispose d’un décodeur, d’un tampon de réception et d’un player.

Figure 1: L’architecture proposé pour le streaming en direct pilotée par le transmetteur.

Une fois l’image n est acquise, elle est transmise à l’encodeur et com-pressée. Le flux résultant du codage est segmenté en paquets RTP et placédans le tampon de transmission. Les paquets sont transmis via le réseau4G/5G jusqu’au récepteur. Au côté client, une fois que tous les paquets liésà l’image n ont été reçus, le décodage démarre et introduit un délai de dé-
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codage Td. L’image est ensuite mise en mémoire tampon avant d’être af-fichées au temps tn +∆p, où ∆p est le délai d’acquisition à la lecture.Le contrôle est effectué de manière à empêcher le tampon contenant lesimages décodées au niveau du client de se vider. Cela garantit que les imagessont affichées à temps. Le contrôleur de débit prend en entrée la quantité debits Bn stockés dans le tampon de transmission ainsi que l’état du canal etutilise l’algorithme l’adaptation du débit pour estimer le débit de codage cible
R∗

n de l’image n. Le contrôleur gère aussi lemodèle R-(QP, D) pour déterminerla valeur QPn à partir de la distorsion Dn−1 de l’image précédente et R∗
n.Puisque les caractéristiques temporelles et spatiales des images évoluantavec le temps, une mise à jour en ligne des paramètres du modèle R-(QP, D)est effectuée en utilisant des essais de codage supplémentaires. Des infor-mations complémentaires liées aux caractéristiques de l’image (type, com-plexité), qui peuvent impacter les paramètres du modèle R-(QP, D) peuventégalement être prises en compte.Le débit de codage cible R∗

n+1 de l’image n + 1 est déterminé en définis-sant une marge de lecture cible τ ∗ qui est une petite marge temporelle danslaquelle tous les paquets du l’image doiventt être reçue avant le début dudécodage :

R∗
n+1 =

τn − τ ∗

Tf Cn+1 +
Bn

Tf
Cn+1

Cn
− Bn + (Rn − Cn)Tf

Tf +
Cn+1

Cn
Rn

=
τn − τ ∗

Tf Cn+1 +

(
Cn+1

Cn
− 1

)(
Bn

Tf +Rn

)
+ Cn, (6)

avec Tf est la durée de l’image, Cn et Cn+1 sont les débits de transmissionaux instants n et n+1 respectivement, Bn est lle niveau de remplissage de lamemoire tampon de l’émetteur, et Rn est le débits réel de l’image n.L’évaluation de R∗
n+1 à l’aide de (6) est effectuée côté transmetteur. Lamarge de lecture τn pour l’image n est estimée côté émetteur. On utiliseégalement les estimations de débit de transmission Ĉn et Ĉn+1. Alors, (6)devient :

R∗
n+1 =

τ̂n − τ ∗

Tf Ĉn+1 +

(
Ĉn+1

Ĉn

− 1

)(
Bn

Tf +Rn

)
+ Ĉn. (7)
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Nous considérons une configuration de simulation composée d’un serveur(transmetteur) et d’un client comme décrit ci-dessus. Le serveur reçoit lesimages vidéo à encoder, exécute l’encodeur x265 [7] et alimente le tamponde transmission avec les paquets des images compressées. le serveur com-prend également le modèle R-(QP, D) et l’algorithme d’adaptation du débit.Le client contient un tampon de réception et un décodeur HEVC [8]. La trans-mission de paquets est simulé à l’aide de traces 4G extraites de [9].
L’algorithmede contrôle dudébit proposé est comparé àquatre algorithmesd’adaptation de pointe Festive [10], Panda [11], BOLA [12] et BBA [13]. Pourgarantir une comparaison équitable des performances, tous ces algorithmesont été adaptés pour fonctionner côté transmetteur et pour ajuster le débitecodage vidéo au niveau de l’image. Tous les algorithmes partagent le mêmemodèle R-(QP, D). L’approche proposée surpasse ces algorithmes à la fois entermes de PSNR moyen et de pertes d’images.

Réduction de la complexité du codeur VVC

La nouvelle normede codage vidéoVVCprésente un grand avantage lorsqu’elleest utilisée dans des contraintes de faible latence. Néanmoins, la conceptionactuelle du codeur VVC est principalement axée sur le contenu haute résolu-tion, et il n’est malheureusement pas adapté à l’encodage à faible résolutionet à faible débit. Les nouveaux outils ajoutés entraînent une charge impor-tante en termes de complexité de calcul.
Nous proposons uneméthoded’optimisationpour les scénarios de codageà faible résolution et à faible débit. Plus précisément, nous étudions l’utilitéde certains des nouveaux outils de codage. Nous montrons expérimentale-ment qu’une réduction significative de la complexité peut être obtenue endésactivant certains de ces outils tout en préservant l’efficacité du codage.Notre objectif est d’identifier le sous-ensemble d’outils de codage de VTM5.0qui peuvent être désactivés avec les séquence vidéo de basse résolution et enencodage à faible débit. Dans ce but, nous présentons une méthode de typebranch-and-prune pour déterminer l’ensemble d’outils de codage qui four-nissent la meilleure réduction de complexité, tout en satisfaisant une con-trainte sur la dégradation de BDrate.

21



Les résultats expérimentaux montrent qu’une réduction significative de lacomplexité de l’encodage peut être obtenue, avec une perte négligeable deBDrate. Par exemple, une réduction de complexité de 56% a été obtenue pourla séquence vidéo Johnny à une résolution de 384 × 216 en appliquant notreméthode, avec une perte de 1.88% en BDtaux.De plus, nous avons pu proposer une combinaison commune d’outils àdésactiver pour chaque résolution. Nos résultats expérimentaux montrentque ces outils engendrent moins de 2% BDrate de perte avec 35% de réduc-tion de complexité d’encodage en moyenne. Ce résultat est particulièrementbénéfique car nous pouvons construire des profils de codage pour chaquerésolution en supprimant les outils inutiles. Par conséquent, les désactiverautomatiquement et réduire la complexité du traitement pour l’encodage entemps réel.

Conclusion

Dans cette thèse, nous abordons le problème de l’adaptation du débit vidéopour le streaming vidéo à faible latence. Notre objectif est la conception d’unalgorithme d’adaptation du débit pour le streaming vidéo à faible latence àpartir d’un émetteur mobile avec des délais de bout à bout entre 100 et 200ms.
Nous présentons d’abord un nouveau modèle Rate-QP-Distortion, i.e. R-(QP, D). Notre modèle décrit la relation entre la taille du flux binaire Rn del’image n, son paramètre de quantification QPn et la distorsion MSE Dn−1de l’image de référence n − 1. Le modèle proposé est avantageux lors del’ajustement du QP de l’image en fonction d’un budget de débit cible en casde transmission vidéo en direct à faible latence. Ce budget de débit cible estdéterminé via un algorithme d’adaptation de débit vidéo.
Notre deuxième contribution est un nouvel algorithme d’adaptation dudébit pour le streaming vidéo à faible latence à partir d’un émetteur mobile.L’approche proposée exploite le niveau de tampon de transmission et une es-timation du débit de transmission sans fil pour déterminer le débit de codagecible de chaque image. Le choix du paramètre de quantification pour chaqueimage est effectué via le modèle R- (QP, D) proposé. Nous comparons les
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performances de l’approche proposée avec quatre algorithmes d’adaptationde référence, à savoir Festive [10], Panda [11], BOLA [12] et BBA [13], en con-sidérant des scénarios de streaming de latences inférieures à 200 ms. Les ré-sultats de simulation impliquant de vraies traces de bande passante 4G ontmontré que notre approche proposée surpasse les algorithmes de la littéra-ture à la fois en termes de PSNR moyen et de nombre des images perdues.Enfin, la diffusion en direct est sensible au délai et nécessite un encodeurcapable de compresser le flux vidéo en temps réel. Par conséquent, nousproposons une méthode pour réduire la complexité du codeur VVC. Notreméthode consiste à identifier un ensemble d’outils de codage qui peuventêtre désactivés tout en satisfaisant certaines contraintes sur la dégradationBDrate. Une réduction de complexité allant jusqu’à 56% a été obtenue pourdes séquences vidéo de résolution 384 × 216, 512 × 288 et 640 × 360 en ap-pliquant notre méthode, avec une perte inférieure à 2% en BDtaux. De plus,nous avons pu identifier un ensemble commun d’outils de codage à désac-tiver dans chaque résolution. Ces outils communs peuvent être utilisés pourcréer des profils de codage pour chaque résolution, réduisant ainsi la com-plexité du codage lors du codage à la volée.
Perspectives futures

Le travail présenté dans ce document peut être étendu dans de nombreusesdirections. Voici quelques-uns d’entre eux:
• Amélioration du modèle R-(QP, D) : Le modèle R- (QP, D) peut êtreamélioré pour être compatible avec le mode de codage très faible la-tence où l’image n utilise deux images références déjà codées, e.g., lesimages n−1 et n−3. Une amélioration possible pourrait être l’utilisationd’une combinaison des distorsions des images références. On doit aussiétudier les performances de l’estimation itérative des paramètres dumodèle avec l’intra-refresh activé.
• Estimation du débit de transmission : Une direction de recherche im-portante est de savoir comment estimer efficacement la bande passantedu canal et du réseau. L’estimation de la bande passante peut se faire
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on construisant une carte de bande passante pour estimer le débit detransmission dans une position géolocalisée de l’émetteur mobile. Danscette approche, une base de données des débits de transmission avecles positions GPS est d’abord construite hors ligne [14]. Les informationscollectées sont utilisées pour estimer les conditions futures du réseau,puis le débit vidéo est ajusté en conséquence. La position de l’émetteurpeut être calculée à l’aide d’une prédiction basée sur Kalman.
• N -stepsMPCAlgorithm : S’il est possible d’estimer le débit de transmis-sion N pas à l’avenir, il serait possible d’effectuer un contrôle du débitde codage N pas à l’aide de l’algorithme MPC. Le débit cible des futurestramesN peut être déterminé à l’avance. N -stepMPC permet une adap-tation du débit et un contrôle plus efficaces en anticipant la baisse futuredu débit de transmission. Il permet également de limiter les oscillationsen lissant les débits cibles des images dans une fenêtre de taille N .
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Chapter 1

Introduction

1.1 Context

Video streaming has become the dominant type of traffic over the internet,with more than 80% in 2021 [1], while 57% of it was attributable to the top sixOver-The-Top (OTT) brands: Google, Netflix, Facebook, Apple, Amazon, andMicrosoft [15]. Live streaming represents an important part of video traffic.
Low-latency video streaminghas emerged as a key application in thebroad-casting of sports events, video-conferencing, telepresence, or remote driving.According to the Cisco Annual Internet Report, live video grew by 93% in 2020and will account for 17% of internet video traffic in 2022 [1]. Live streamingwill become even more popular thanks to the advances in telecommunica-tion networks and video codecs. The new generation of video codecs like theVersatile Video Coding (VVC) saves half of the bandwidth used by the HighEfficiency Video Coding (HEVC) for the same quality, and the fifth-generation(5G) of mobile networks enables a new type of latency-sensitive applicationsthat was not possible with the 4G.
The consumption of Ultra-High Definition (UHD) videos is also increasingover time. According to [16], 17% of the content in the Netflix catalog is in 4K,and 30% of Netflix subscribers have the UHD package, making it the largest4K OTT platform in the market.
Moreover, UHD live streaming is expected to grow significantly in the nextfew years, especially for sports events and entertainment. Many companieshave performed 4K and 8K live trials using the exiting telecommunication in-frastructures and Scalable HEVC encoder. The Korean Broadcasting System
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(KBS) has carried out live 4K terrestrial broadcasting of major sports eventssuch as the 2014 FIFA World Cup [17]. BT Sport and Samsung recently pre-sented the first live 8K sports broadcast for the Tokyo Olympic Games [18].
Many streamingmethods leverageHTTPAdaptive Streaming (HAS) [2]. WithHAS, video clips are divided into segments of a few seconds, encoded at sev-eral bitrates, and stored on HTTP media servers. Using HAS, a client can re-quest video segments with suitable encoding rates. Nevertheless, HAS doesnot specify a rate adaptation logic. In downlink streaming applications, adap-tation algorithms are usually implemented at the client to select the optimalbitrate of the requested segments. These algorithms exploit instantaneous oraveraged measurements of the network and channel characteristics and/orof the client buffer level. They aim to maximize the Quality of Experience(QoE) of the client. This is usually obtained by maximizing the quality of thereceived video while minimizing the number of freezes and switches of thevideo quality.
The efficiency of the bitrate adaptation algorithm has a direct impact onthe client QoE. If the segment bitrate is incorrectly selected or not optimal fol-lowing a change in network state, the downloading of the concerned segmentmay take an additional delay, affecting the end-to-end latency of the session.Hence, the proper functioning of the bitrate adaptation algorithm dependson the accuracy of the available bandwidth and the client buffer level estima-tion.
In live video streaming, video acquisition, encoding, and transmission areperformed in real-time. Minimizing the delay between the acquisition of aframe and its display at the client (glass-to-glass delay [19]) is an additionalQoE requirement. Live streaming is significantlymore challenging than classi-cal Video-On-Demand (VOD) streaming. Tomitigate bandwidth variations be-tween the server and the client, large buffers are usually implemented at theclient. These buffers induce a significant delay in the live streaming context,and their size has thus to be minimized. Client-level rate control algorithmsbased on HAS may entail large delays as control decisions are taken at thesame period as the video segment duration. When the bandwidth betweenthe server and the client varies with a smaller time scale, wrong decisionsmay induce significant segment download delays when the bandwidth is less
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than expected. Traditional streaming protocols such as Real-time Messag-ing Protocols (RTMP) [20] or Real-time Streaming Protocols (RTSP) [21] associ-ated with Real-time Transport Protocol (RTP) [22] store and process a fewmil-liseconds of video in each packet, making it possible to achieve a low-latencytransmission of order 300 milliseconds [23].
HTTP-based streaming protocols have been designed to be scalable andfault-tolerant through pull-based bitrate adaption schemes. In case of a faileddownloading of the video segment, the client can request it again from thesame or different media server. The segment bitrate is selected according toclient network conditions. This approach is based on the assumption that theclient network conditions are unstable or continuously varying while the me-dia server is located in a safe location with guaranteed access to the network.Whereas this assumption is valid for VOD streaming, where the client usuallyrequests video content already encoded and saved on Content delivery net-work (CDN) servers, the client-driven approach is not always optimal for lowlatency live streaming.
In several applications such as live video streaming from a car during arace or remote control of a drone, the camera acquiring the scene transmitsits compressed stream over a 4G/5G wireless access network to the client viathe wired part of the network. Mobility induces significant and fast variationsof the wireless channel characteristics. In such a context, transmitter-sidecontrol approaches appear better suited for selecting the video encoding pa-rameters adapted to the wireless channel and network characteristics. Thisalso prevents waiting for delayed reports of the network and buffer statesprovided by the client using, e.g., the RTCP protocol. transmitter-side controlallows a much finer adaptation granularity, which is necessary to reduce thesize of reception buffers at the client and achieve low delay.
As previously stated, the new generation of video codecs has a significantadvantage in variable network conditions, particularly in low latency stream-ing. For instance, the Versatile Video Coding (VVC) achieves 50% compressiongain compared to its predecessor, The High-Efficiency Video Coding (HEVC),at the same PSNR quality.
VVC is mainly focused on Ultra-High Definition (UHD) video content. A va-riety of encoding tools were used to achieve high coding efficiency. However,
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these new coding tools entail a significant amount of computational com-plexity. The current version of the VVC encoder (VTM5.0) has 10x the run-time execution of the HEVC encoder (HM16) [3]. Therefore, The VVC encoderis unsuited for real-time application, even for low-bitrate encoding and low-resolution contents that are still used for video streaming today (e.g., 480pand 360p).In low latency applications, the video stream is encoded on the fly from asource that captures the video in real-time. The compressed video is sent im-mediately to the packetizer, where a streaming protocol such as MPEG-DASHdivides the compressed video into segments before transmitting it. Hence,the video encodermust finish encoding the video frame before the next avail-able frame at the source.
1.2 Objectives

In summary, the objectives of this dissertation are:
• Address the challenges of low latency video streaming frommobile trans-mitter in variable network conditions.
• Propose a server-drivenbitrate adaptation algorithm for low latency videostreaming fromamobile transmitter. Theproposed algorithmmust achievea small bitrate control granularity and adjusts the video bitrate accordingto the up-link channel state and transmitter buffer level.
• Improve the overall QoE of the client by maximizing the average PSNRquality of the received video while minimizing the frame loss and thevariations of the video quality, and decreasing the initial playback delayof the session, which is the time difference between capturing the videoframe and displaying it at the client-side.
• Propose Rate-QP model to adjust the video bitrate at the frame level.The bitrate of the frame is adjusted by the mean of a rate model thatdetermines the quantization parameter for having a bitstream of size atmost equal to the allocated bits budget of the frame. The accuracy andthe well-tuning of the model parameters for each frame are critical tosatisfying the bit budget constraint of the frame.
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• Optimize the VVC encoder by reducing the run time execution in the caseof low bitrate encoding and for video resolutions lower than HD withoutsacrificing much of its compression efficiency. This goal is accomplishedby removing less efficient coding tools for these use cases; therefore,significant gains in computational complexity can be achieved for a slightdecrease in coding gain.
1.3 Contributions and structure of the thesis

Contributions and the structure of this thesis are as follows:
• Chapter 2 introduces the reader to the necessary background on videocoding and HTTP adaptive streaming. It reviews the state of the art bi-trate adaptation algorithms, the parametric models used for video ratecontrol, and lastly, some optimization methods for VVC encoder.
• Chapter 3 presents a new rate model denoted R-(QP, D), of the relationbetween the bitstream size Rn of frame n, the quantization parameter
QPn, and the Mean Square Error (MSE) distortion Dn−1of the referenceframe n− 1. Our proposed model is used to determine the optimal QPsfor encoding the frames. We also present a real-time iterative estimationapproach of themodel parameters. Part of thematerial in Chapter 3 hasbeen presented in
• MouradAklouf, Marc Leny,Michel Kieffer, and Frédéric Dufaux. "Interframe-Dependent Rate-QP-Distortion Model for Video Coding and Trans-mission." In 2021 IEEE International Conference on Image Processing(ICIP), pp. 2019-2023. IEEE, 2021.

• Chapter 4 presents a transmitter-side encoding bitrate adaptation algo-rithm adapted for low-latency streaming applications. It aims to controlthe client playbackmargin (i.e., the number of frames in the client buffer).The control is performed at the frame level. Using measurements of theup-link channel and transmitter buffer level, a Model Predictive Control(MPC) framework is employed to infer the bits budget (encoding bitrate)of the frame to be transmitted.
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• Chapter 5 presents a branch-and-prune optimization method for VVCencoder that aims to identify a set of coding tools whichmay be disabledwhile satisfying a constraint on the coding efficiency. The material inChapter 5 has been presented in
• MouradAklouf, Marc Leny, Frederic Dufaux, andMichel Kieffer. "Lowcomplexity versatile video coding (VVC) for low bitrate applications."In 2019 8th European Workshop on Visual Information Processing(EUVIP), pp. 22-27. IEEE, 2019.

• Chapter 6 summarizes the results of our research and suggests severalpossible topics for future research.
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Chapter 2

Background and State-of-the-art

This chapter overviews several concepts and technical tools used through-out this dissertation. Section 2.1.1 reviews the technical features of the newVersatile Video Coding standard (VVC), then we run through the state of theart techniques proposed to reduce the complexity of VVC encoder. In Sec-tion 2.1.4, we recall several parametric models used for video bitrate control,as well as the difference between regular rate models and inter-frame de-pendent rate models.Section 2.2.1 the HTTP Adaptive Streaming (HAS) andMPEG-Dynamic Adap-tive Streaming over HTTP (DASH). We also identify the primary delay compo-nents of HAS architecture and explain why it is not well suited for low latencyvideo transmission. Section 2.2.2 presents a point-to-point video communica-tion model proposed by Bachhuber et al. [19] and discusses the different de-lay components in point-to-point video streaming. Finally, Section 2.2.3 sur-veys the different adaptation bitrate algorithms presented in the literature,their different classes and granularity of adaptation.
2.1 Background on video coding

The HEVC video coding standard [24] achieves 50% compression gain at thesame quality compared to its predecessor H.264/AVC. Yet, HEVC compressionefficiency is no longer sufficient to address the growing demands on ultra-high definition (UHD). A new video coding standard, Versatile Video Coding(VVC) [25], has been developed to bring further compression gain over HEVC.VVC reference encoder (VTM) achieves nearly 50% of compression gain at the
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same quality as HEVC reference software (HM) [26]. However, this comeswitha cost of an increase in encoder runtime which is ten times that of the HM [3].The VVC encoder has a significant advantage when used in variable net-work conditions and low latency constraints, as it saves half of the channelcapacity used by the HEVC encoder. However, the VVC encoder is not opti-mized and thus not well-suited for real-time applications where the encodingof each frame should take no longer than the frame acquisition time.Video encoder optimization is challenging because the standards do notdescribe how to build the VVC encoder as a final optimized product. It is up todevelopers to use different tools to achieve this goal and find a compromisebetween execution time and compression efficiency. VVC test models aredeveloped only to show the performance in terms of compression gain anddo not take into account the complexity constraint.The following section provides a background VVC encoding process andthe state-of-the-art optimization methods proposed for the VVC encoder af-ter finalizing the standard in July 2020 [26].
2.1.1 The Versatile Video Coding (VVC) standard

The Versatile Video Coding (VVC) standard is the most recent video codingstandard developed by the Joint Video Experts Team (JVET) of the Moving Pic-ture ExpertsGroup (MPEG/ISO) and the VideoCoding ExpertsGroup (VCEG/ITU-T). The project started in 2015 when JVET issued a Call for Proposals (CfP), aim-ing to achieve 50% encoding efficiency in bitrate for the same quality pictureof the HEVC standard [27]. Strong emphasis has been placed on Ultra-HighDefinition (UHD) video content, including 3840x2160 (4K) and 7680x4320 (8K)formats [28], that became mainstream nowadays. More than 30 companiesand institutions from all around the globe have contributed to the design ofthe new video standard. Initial proposals were grouped in a software knownas JVET Exploration Model (JEM) but it was quickly replaced by the enhancedsoftware VVC Test Model (VTM). The final draft of VVC was issued in July 2020after more than three years of development.VVC uses the same block-based hybrid video coding scheme of its prede-cessors, the High-Efficiency Video Coding (HEVC) [24] and the Advanced VideoCoding (AVC) [29] standards. VVC was designed starting from the HEVC by
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Figure 2.1: Block diagram of a hybrid video encoder, including the modeling of the decoderwithin the encoder. This image is reused from [26].
enhancing its different coding modules and inserting new coding tools to in-crease the coding efficiency. The new codec is not destined only for StandardDynamic Range (SDR) video content, but also includes state-of-the-art codingtools for different video contents, such as High Dynamic Range (HDR), 360°video, and computer-generated content. VVC is thus a versatile video codingcodec that can address a variety of use cases.

The high-level functionalities, and a detailed description of the new fea-tures can be found in [30]. In what follows, we give a brief overview of thecoding process and we focus on the essential coding tools integrated intothe VVC.
Figure 2.1 shows the diagram of the classical hybrid (i.e., inter/intra-coding)scheme of the VVC codec. The represented video content consists of eitherone color plane (i.e., luma Y) or three-color planes (i.e., one luma Y, and twochroma components Cb and Cr ) of sample valueswith represented bit depth.VVC can handle a video bit depth of 8 bits and 10 bits. The chroma samplingof the input video sequences can be 4:2:0, 4:2:2, or 4:4:4 in which the chromaplanes have the same width and height as the luma plane.
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Video frames are subsequently coded in a specific order according to theinitial coding configuration, e.g., Low Delay (LD), Random Access (RA), or All-Intra (AI) [31]. Each frame is first split into large Coding Tree Units (CTUs) ofsize 128× 128 luma samples. These CTUs are considered as the primary pro-cessing unit and are iteratively fragmented into Coding Units (CUs). A CU isthen used for prediction and transform coding. The new partitioning toolin VVC extends the regular quadtree partitioning of HEVC by enabling a bi-nary and ternary splitting of the CUs. Accordingly, CUs can be of non-squareshapes. The new binary and ternary splitting types enable more flexible par-titioning and allow a better adaptation to the spatial properties of the frame.The new partitioning module provides the highest coding efficiency amongthe newly added tools by up to 12% in UHD sequence [32].
The encoder performs anexhaustive searchprocess, knownasRate-DistortionOptimization (RDO), testing all possible combinations of CTU splitting struc-tures, intra-prediction modes, and transforms. The RDO process minimizesthe cost J , defined as J = D + λ × R, where D is the distortion of the CU,

R is its bitrate, and λ the Lagrangian weighting factor that depends on thequantization parameter (QP). At the end of the partitioning process, a CU iseither inter or intra-predicted.
In addition to DC, planar, and the 33 angularmodes of the HEVC, advancedintra-picture prediction techniques have been adopted in VVC. First, the angu-lar modes are increased to 65 for finer and more accurate spatial prediction,and 28 wide angles are used for non-square blocks. Furthermore, new cod-ing modes have been included to increase the intra-coding efficiency. Forinstance, the matrix-based prediction is a low-complexity neural-network-based intra-prediction. The cross-component prediction predicts chroma sam-ples from luma samples, and the Position-Dependent Prediction Combina-tion refines the samples of specific prediction modes.
Motion compensation in VVC is enhanced beyond that of the HEVC thanksto various new inter-coding tools. Like HEVC, inter-coded CUs may have oneor twoMotion Vectors (MVs). Still, VVC introduces advancedmethods to codethe MVs. e.g., History-Based MV Prediction and Symmetric MV Difference.Besides, both motion compensation and refinement processes can be per-formed on the subblock level. A detailed review of the adopted techniques
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can be found in [26] and [30].
VVC conducts a transform and quantization step to the prediction residu-als of the inter/intra-predicted CU. The energy compaction of VVC is furtherenhanced using large transform blocks of 64×64 samples and new transformmethods and matrices are introduced. The Context Adaptive Binary Arith-metic Coding (CABAC) algorithm encodes these samples and inserts theminto the output bitstream. For more information about The CABAC engineof the VVC and the binarization process of the transform coefficients, refer to[33].
Finally, many filters are applied to the reconstructed blocks before usingthem as an output signal (decoded frame) and as references for the subse-quent motion-compensated blocks. This step is known as In-loop filtering.VVC uses a new luma mapping tool with chroma scaling, applied before theother filters of the In-loop filtering module. Then, the reconstructed blocksare enhanced, and blocking artifacts are reduced by applying the deblockingfilter and the new Adaptive Loop Filter, respectively. Like HEVC, the Sam-ple Adaptive Offset filter is the last filter to use before outputting the recon-structed frame.

2.1.2 Video encoder evaluation metrics

To compare the coding gain of two video encoders or two coding configu-rations of the same video encoder, the Bjontegaard Delta Rate (BDrate) or the
Bjontegaard Delta PSNR (BDPSNR) are commonly adopted. A coding configura-tion is usually defined by a set of enabled coding tools. To properly evalu-ate the performance of a set of coding tool, several target values of the rate(in Kbps) have to be evaluated, which lead to associated values of distortion
D (typically measured using the weighted average PSNR of the three com-ponents Y, U, and V [34]) and complexity C (approximated by the run-time,measured in seconds).

In our work, we use the Bjontegaard Delta Rate (BDrate) [35] to evaluate thecoding gain of a set P1 compared to another set P2 . Assume that a video
v ∈ V is encoded considering the set of tools P1 and P2, and with nDR distinctQP values QP(i), i = 1, . . . , nDR, with nDR ≥ 4. This leads to as many values
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2.1.3 VVC Encoder Optimization

A few optimization proposals for the VVC encoder have been already pro-posed before finalizing the standardization process in the third quarter of2020. The first initiatives were released in 2019 and are implemented on non-final versions of the VTM. In the literature, we often find methods that targetthe image partitioning process and the intra-prediction. In this section, wereview some propositions to optimize the VVC encoder.Tissier et al. [36] demonstrated that the encoding complexity of VTM3.0 isproportional to video resolution andQP, i.e., encoding high-resolution frameswith small QPs, generates the most significant complexity. In addition, theyshowed that the partitioning tool generates 97% of the complexity in AI con-figuration mode. The respective complexity contribution for Intra-mode pre-diction and Transform coding in VTM3.0 are 65% and 55%. However, thetransform module of VTM3.0 contains only one tool (the Enhanced MultipleTransform (EMT)). Most intra-coding tools were not added yet in this version.Pakdaman et al. [37] conducted an extensive complexity analysis of theVVC Test Model 6.0 (VTM6.0). The complexity of both the encoder and de-coder, as well as their bandwidth consumption, was reported for six video
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sequences and tree resolutions including 720p, 1080p, and 2160p. The re-sults are compared with the latest HEVC software (HM16). The complexity ofthe VVC encoder is 1.5 times that of HEVC in Low Delay (LD), and 31 timesin All-Intra (AI) profile. The decoder complexity is 5 times that of HEVC in LDand 1.8 times in AI. The authors observed that a significant portion of thecomplexity is generated by three coding modules: Intra-coding tools, MotionEstimation tools, and the Transform tools. Decoder complexity is mainly dueto Motion Compensation, In-loop Filtering, and Inverse-Transform / Inverse-Quantization. Finally, the analysis reported that VVC encoding and decodinguse 30 times and 3 times more memory bandwidth than that of the HEVC,which means VVC needs huge memory access optimization.
An in-depth complexity analysis of the intra-coding tools in the VTM7.0wasconducted by Saldanha et al. [38]. The complexity of each intra-tool was re-ported in the case of AI configuration. The authors found that the Multi-TypeTree (MTT), i.e., the binary and ternary splitting of the CUs, is responsible forabout 90% of the complexity. In addition, the luma component generatesabout 85% of the complexity. It is also reported that the Rough Mode Dictio-nary, i.e., the process of speeding up the selection of intra-mode in a CU, andthe Transform/Quantization represent 70 to 80% of coding complexity.
Tianyi Li et al. [39] proposed a deep learning approach to predict CUs par-tition using a Convolutional Neural Network (CNN) instead of the brute-forcesearch of the RDO process. The proposed multi-stage CNN reduces the VVCencoding time in intra-coded slices by up to 67%, with BDrate loss of less than

3.2%. The proposed CNN was trained with a large-scale database of CU par-titions of 8000 frames coded in intra-mode using VTM7.0.
Similar to [39], Tissier et al. [40] presented a deep learning approach toreduce the complexity of Quadtree Multi-Type-tree (QTMT) search in VTM6.1.The proposed CNN is used to analyze the texture of 64×64 luma CUs and out-puts a probabilities vector for all 4×4 blocks inside the CUs. The probabilitiesvector contains the splitting probabilities of the right and bottom boundariesin 4× 4 blocks. A probability of the binary, ternary, and Quadtree splitting iscalculated using the output vector, and a decision is made accordingly. Theadvantage of this method is the small execution time compared to the ap-proach in [39]. The proposed CNN is tested with multiple video sequences
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of high resolutions. The proposed solution reduced the complexity of theencoder in IA configuration by 42.2%, with a slight BDrate increase of 0.75%.Finally, Brandenburg et al. [41] established a new optimized VVC software,the VVC Optimized Encoder (VOE), by enabling only a subset of the VVC cod-ding tools and adding some algorithmic optimizations to it. For instance, inthe partitioning module of VTM7.0, the authors redesigned some of the par-titioning rules to reduce redundancy of the QTMT search, thus speeding upthe RDO process. The other optimized tools are Affine Motion Compensa-tion, Adaptive Motion Vector Resolution (AMVR), Merge with Motion VectorDifferences (MMVD), Symmetric Motion Vector Difference (SMVD), and theMotion Estimation. The subset of the enabled tools is chosen after analyz-ing their complexity and coding efficiency similarly to our proposed methodin Chapter 5. Additionally, VOE has a Single Instruction Multiple Data (SIMD)implementation of some coding modules such as forward and inverse trans-form, in-loop filtering, and block interpolation filtering. The overall optimiza-tions provide a complexity reduction of 39% with a compression efficiency of
30.35% compared to HEVC encoder.

All the previous approaches make algorithmic modifications to the non-normative part of the encoding process of the VVC. Our proposed method,presented in Chapter 5, aims to identify coding tools which can be ignoredin low-bitrate use cases, with a greatly reduced complexity and a preservedcoding efficiency. This could lead to the definition of application-oriented pro-files, where some tools are automatically disabled in the high-level syntax.
2.1.4 Rate model for video coding and transmission

The control of the encoding rate is crucial in low latency streaming. The bit-stream size resulting from the encoding process must be regulated accord-ing to the channel transmission rate, encoder/decoder buffer sizes, and theconstant end-to-end delay. Video rate control can be performed at the mac-roblock level, the frame level, or on a group of pictures (GOP). It relies on amodel of the relation between the size of the bitstream resulting from theencoding process, i.e, frame encoding rate, and the video encoding param-eters. Nevertheless, the characteristics of the video and the inter-frame de-pendencies increase the difficulty of constructing the model and decrease it
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precision.Rate models can be classified into two categories. The first category as-sumes that the coding units (frame or CUs) are independent of each others,whereas the second category considers the temporal dependencies amongthe coding units.Ding et al. [42] suggest that the rateR of a frame and the quantization stepsize Q curves may be modeled by the R-Q 1 model
Rk = p1 +

p2
Qp3

k

, (2.4)
nwhere p1, p2 and p3 are model parameters, and Q is the quantization stepsize. The relation betweenQk and the quantization parameterQPk is definedby

Qk = 2
QPk−4

6 . (2.5)
Themodel in [42] has been refined in [4] to predict the encoding rate of theH.265/HEVC frames and CTUs, accounting for the Mean Absolute Difference(MAD) between the original pk (i, j) and the reconstructed k-th coding unit

p̂k (i, j) of sizeM ×N ,
Rk = M ·N ·MADk ·

(
p1
Q2

k

+
p2
Qk

)
, (2.6)

with
MADk =

M∑
i=1

N∑
j=1

|p̂k (i, j)− pk (i, j)|. (2.7)
The MAD of CTU k is predicted using that of the CTU k − 1 :

MADk = p3MADk−1 + p4. (2.8)
In the same spirit, [43] and [5] present a model involving the Sum of AbsoluteDifference (SAD) to describe the rate of the k-th frame

Rk = p1
SADk

Qk
+ p2, (2.9)

1This notation covers both R-Q and R-QP models, as there is a direct relationship between the quantizationstep size Q and QP
39



where
SADk = M ·N ·MADk. (2.10)

Additionally, the SADk is inferred as
SADk = SAD

org
k,k−1 + p3

√
Dk−1 + p4, (2.11)

where SAD
org
k,k−1 denotes the SAD between the original frame k and the orig-inal reference frame k− 1. Dk−1 is the MSE distortion of the reference frameafter encoding,

Dk−1 =
1

M ·N

M∑
i=1

N∑
j=1

(p̂k−1 (i, j)− pk−1 (i, j))
2 .

Bothmodels 2.6 in [4] and 2.9 in [5] involve thus 4 parameters, p1, p2, p3 and
p4. These rate models only account for the quality of the reference CTU k− 1via its SAD or its MAD. This bring us to the second category of R-Q models[6], where the temporal dependency between the H.264/AVC macroblocks ismore explicitly taken into account to get the model

Rk = p1 ·M ·N σ2
k

Q2
k

, (2.12)
where σk is the standard deviation of themotion-compensated residual of the
k-th macroblock. This model has a single parameter. All above models havebeen designed to adjust the QP on the block level, but they may be extendedat the whole frame level.

The precision of these models are not very accurate when consideringtransmission in band-limited channels. First, the models 2.6 in [4] and 2.9in [5] do not consider the temporal dependency between the frames. Ourpreliminary tests have shown that, for a given QPn, the bitstream size of theencoded frame n is much more significant when its reference frame is en-coded at a low bit rate compared to a reference frame encoded at a high bitrate. Moreover, these two models and particularly model 2.12, have a smallnumber of parameters that are not sufficient to describe the frame bitratevariation adequately.
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Lin and Ortega [44] have proposed a piecewise cubic model of the relationbetween Rk of frame k, QPk and the QP of the reference frame.

Rk (QI, Qk) =


Rk (x1, Qk)

Rk(x1,Qk)×(DI(x2)−DI(QI))+Rk(x2,Qk)×(DI(QI)−DI(x1))
DI(x1)−DI(x2)

Rk (x2, Qk)

QI ≤ x1

x1 < QI ≤ x2

QI > x2,

where Qk is the quantization scale of the current P-frame, QI and DI arerespectively the quantization scale and the MSE distortion of the last codedI-frame. The two pairs (x2, Rk (x2, Qk)) and (x1, Rk (x1, Qk)), must be deter-mined for each P frame and for given QI. Zhang et al. [45] experimentallyshow that the piecewise cubic model is inaccurate in layered coded video se-quences.
Two other types of rate models have been proposed in the literature: theR-ρ model [46] and the R-λ model [47]. These rate models use encoding pa-rameters that are evaluated within the encoder during the encoding process.
The R-ρmodel [46] predicts the rateR of the H.264/AVCmacroblocks usingthe percentage ρk of zero-valued transformed coefficients

Rk = p1 · (1− ρk) , (2.13)
where p1 is themodel parameter. TheR-ρmodel accurate enough forH.264/AVC.However, the introduction of the skip-transform mode in the H.265/HEVCstandard and the new entropy coding techniques at the level of the CABACmake the relation between ρ and the rate of the coding block nonlinear. Ac-cordingly, this kind of model is unsuited for the HEVC encoder.

Finally, the R-λ model [47] predicts the rate R of the H.265/HEVC codingunits using the Lagrangian multiplier λ for the HEVC rate-distortion optimiza-tion (RDO). The relation between the rate R and λ is defined as
λk = p1 ·

(
Rk

M ·N

)p2

, (2.14)
with

QPk = p3 · ln (λk) + p4. (2.15)
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Consequently, p1, p2, p3, and p4 are model parameters that need to be esti-mated for each coding block. The Lagrangianmultiplier λk defines the follow-ing RDO cost function
J = min (Dk + λk ·Rk) . (2.16)

λ is determined from 2.15 using QPk the quantization parameter of the k-thCU. Then, the splitting type and the prediction mode that minimize 2.16 aredetermined for the k-th CU. The R-λ model improves the coding efficiencyof the HEVC reference software HM10 by 15.9 in Low Delay configuration and
24.6 in RandomAccess [48]. The efficiency of the R-λmodel decreases when itis applied at the frame level as the temporal dependence between the framesis not considered.Since R-ρ and R-λ models describe the rate using low-level encoding pa-rameters, and they do not provide a straightforward mean to control the en-coder behavior as the R-Q models do, when using quantization parameters
QPn of the frame, and Dn−1 the distortion of the reference image. The R-Qmodels allow easy control of the encoder without putting an additional delayto the transmission chain.In Chapter 3, we propose a model of the relation between Rn and QPndepending on the Mean Square Error (MSE) distortionDn−1 for the referenceframe n− 1. Our model, denoted R-(QP, D), is used to determine the optimalQP for encoding a frame considering some target bit budget.
2.2 Background on video streaming

Adaptive video streaming over HTTP is awidely adoptedmechanism for videodelivery. It offers significant advantages in variable network conditions anda bitrate adaptation that maximize the client QoE. The problem of video bi-trate adaptation with HAS has been well-discussed in the literature. Manyalgorithms have been proposed with different adaptation logics. However,most of the work focused on the Video On Demand (VOD) service, which hasless stringent latency constraints compare to live streaming. In the latter case,minimizing the end-to-end delay is an additional QoE requirement.As a first step towards understanding and designing a reliable low latencyvideo deliverymechanism, we recall the general schemeof theHTTPAdaptive
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Streaming (HAS), and we identify the primary delay causes that make HASunsuited for low latency video transmission. Section 2.2.2 discusses the point-to-point (P2P) video communication model proposed by Bachhuber et al. [19]and its delay components. Identifying the various transmission modules andtheir contribution to the glass-to-glass delay allows the formulation of ourproposed bitrate adaptation method in Chapter 4 and so as to minimize theglass-to-glass latency.Lastly, Section 2.1.4 surveys the different adaptation bitrate algorithmspre-sented in the literature, including throughput-based, buffer-based, and hy-brid schemes. We also explain the advantage of the server-based approachand reducing the adaptation granularity for live streaming.
2.2.1 HTTP Adaptive Streaming overview

HTTP Adaptive Streaming (HAS) [2] is a set of protocols that enables the trans-mission of multimedia content over the Internet. Unlike in traditional trans-mission protocols, e.g., RTP and RTSP, multimedia content is retrieved viaHTTPprotocol fromconventional HTTP servers. Hence, HTTPAdaptive Stream-ing is more efficient in large-scale networks as HTTP protocol is largely de-ployed over the Internet.Apple HTTP Live Streaming (HLS) and MPEG Dynamic Adaptive Streamingover HTTP (DASH) are the most popular HAS protocols. Despite the stan-dardization and application differences of the two protocols, their operatingscheme remains similar [2]. In what follows, we only review MPEG-DASH asan example of HAS scheme.Figure 2.2 shows the typical HTTP adaptive streaming architecture. Themedia content is generally generated offline [49] and divided into multiplesegments of 2 to 10s; each contains one or more media components, i.e., au-dio, video, subtitles. The media segments are available in various represen-tations, which are defined by a bitrate, a frame rate and/or resolution. Thesegments are then stored in HTTPmedia servers or caches servers along withthe Media Presentation Description files (MPD).HTTP-based Content Distribution Networks (CDNs) are usually deployedto handle the large number of connections from the HTTP clients. Thus, re-ducing the load on the origin media server and reducing the downloading
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Figure 2.2: HTTP adaptive streaming architecture [51].

latency [50, 2].
The MDP is an XML file that contains the URLs and the timing informationused by the client to request a media segments of particular media content[51, 50]. The MPD file is subdivided into three components :
1. Periods are large sequential pieces of the media content.
2. Inside each Period, there are representations, which are different encod-ing and/or sub-sampling of the same media period.
3. The representations, in their turn, contain a series of segments that canbe requested by a unique HTTP URLs.

A representation consists of one initialization segment and one or more me-dia segments. The initialization segment provides the necessary metadata todecode and play the media content.
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Figure 2.3: Connection establishment and media segments retrieval in HTTP adaptivestreaming [52].

Figure 2.3 illustrates the segment retrieval procedure in a given HAS in-stance [53]. The client sends an HTTP GET to request a media segment us-ing the information from the MDP file. The appropriate representation is se-lected based on the available network resources of the client using a rateadaptation algorithm. This procedure takes place before requesting a newmedia segment. Section 2.2.3 reviews the various bitrate adaptation algo-rithms presented in the literature.
HAS can also be used to stream live contents, e.g., when broadcasting livesports events. In that case, themedia segments are generated on the fly froma continuous video stream. Unlike in Video on demand (VOD), minimizing theend-to-end latency is crucial in live streaming. Yet, a few seconds of delay is
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unavoidable in HAS due to the media segments preparation and transmis-sion.
Lohmar et al. [52] introduce themain components contributing in the end-to-end delay of a DASH session:
1. Content acquisition delay Tacq is usually constant and depends on theacquisition device.
2. Segmentation delay Tseg: once the acquisition device generates enoughmedia data, the server builds the segments by putting the media intopackets and adding the metadata that describes the segment. Hence,the server must buffer an amount of data equivalent to at least one seg-ment, which leads to a minimal delay of the segment duration ∆.
3. Asynchronous fetch of media segments Taf: the server does not notifythe client when a new media segment is ready to be transmitted. Thus,the client asynchronouslymakes anHTTPGET request when it is needed.However, to avoid unsuccessful fetch of the segment, the client needs torequest it Taf after the availability time of the segment. This leads to adelay of one segment duration ∆ in the worst case.
4. Download Time Tch: the download time of the segment initially dependson the channel state and the available downloading rate. In the worsecase, the download timemay be higher than the segment duration Tch =

∆+ Tlink, with Tlink is the propagation time of the packets in the wirelessand the physical links.
5. Buffering at client-side Tb: the client uses a reception buffer to mitigatethe bandwidth fluctuations. The reception buffer holds a few secondsof the video to provide a smooth video playout. However, small receiv-ing buffers must be used in live streaming to minimize the latency. Thesize of the client buffer must not exceed a duration of two segments ∆according to [52].
6. Decoding time of the segment Td also depends on the used codec andthe computational power of the device
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Figure 2.4: Point-to-point video transmission model proposed by Bachhuber et al.This image is reused from [19]
Accordingly, the total delay for HTTP streaming is

Ttot = Tacq + Tseg + Taf + Tch + Tb + Td, (2.17)
in the worst case, the total end- to-end delay is

Ttot = Tacq + 5∆+ Tlink + Td. (2.18)
Given (2.18), the total latency of the DASH session can beminimized by settingthe segment duration ∆ to the smallest possible value, e.g., 1 s.
2.2.2 Delay components of point-to-point video transmission systems

Bachhuber et al. [19] present a model for point-to-point video communica-tion, as well as the main components of the end-to-end latency, including thecamera, coding/decoding, network, and display delays. The authors also in-troduce the definitions of the Glass-to-Algorithm (G2A) and the Glass-to-Glass(G2G) delays.The G2A delay characterizes the time difference between a visible eventand the reception of the first image of this event by the image processingalgorithm in the client side. Hence, theminimization of G2A is critical in delay-sensitive control applications. The Glass-to-Glass (G2G) delay is considered inapplications such as live streaming where the video sequence is presented toa human observer. G2A is computed for machine vision systems that employimage processing algorithms to produce autonomous actions. If the video isthen displayed to a human observer, the G2A is determined by omitting thedisplay procedure delay from the G2G delay.
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Figure 2.4 represents the video transmission model presented in [19]. Themain components of the G2G latency they identified are as follows:
1. Camera Frame Refresh delay tCFR : The frame is completely capturedafter a period tCam, in which the camera sensor is exposed to light.
2. Camera Circuitry delay tCP : tCP is the time necessary for the camera pro-cessing unit to read the pixel values then apply elementary processingoperations, such as offset, white balance, and analog to digital conver-sion. As these operations are usually hardware-implemented, the re-sulting delay tCP is typically in the order of a few milliseconds, e.g., tCP =

710 µs ± 62.5 µs in Guppy Pro1 cameras [19].
3. FrameSelectiondelay tFS : The captured frames are usually all forwardedto the encoder in standard video transmission applications. Occasion-ally, some video frames can be skipped and forward fewer frames toreduce the average bitrate of the encoded video sequence and thus theG2G delay. Bachhuber et al. [19] propose a frame selection algorithm of

tFS = 246 µs to 810 µs for frames at resolution 640× 480 pixels.
4. Color conversion tCC and Encoding time tEnc : tEnc delay depends onthe computational power of the device, the video compression standard(e.g., VVC, HEVC, AVC), and the used software (e.g., HM [8] and x265 [7]are both HEVC encoders). In addition, color space conversion with a de-lay tCC can be applied before encoding when the camera captures theframes in RGB format, and encoders compress the frames in YUV format.According to the authors, the segmentation of the compressed frameand data packetization in RTP packets takes a negligible amount of time.
5. Encoder Buffering delay tEB and Decoder Buffering delay tDB : Large en-coder buffering delay tEB and decoder buffering delay tDB are observedwhen channel transmission rate is low compared to the video encod-ing bitrate. In general, the video bitrate must be quickly and accuratelyadapted to the channel transmission rate, and the buffers load must bekept small to minimize the buffering delays. The match between videoencoding rate and the available transmission rate is ensured using bi-trate adaptation algorithms. Section 2.2.3 reviews some of them.
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6. Network delay tNetw: tNetw includes the processing, queuing, and prop-agation time of the packets in the wireless links and the intermediaterouters of the IP network.The frame transmission time is Rn/Cn with Rnis the size of frame n (in bits) and Cn is the estimated transmission rate(in bps). Additionally, the signal propagation delay on a wireless channeland the physical links are calculated relative to the speed of light and therefractive index of the optical fiber, and the speed of electrical signals inthe physical cables respectively.
7. Decoding time tDec and Color Conversion tCC : Like tEnc , tDec depends onthe used hardware, the video compression standard, and the softwaredecoder. The authors used the libavcodec/h.264 decoder with an aver-age decoding delay of tDec = 272µs. Color space conversion can also beapplied with an additional delay of tCC .
8. Display Refresh tDis : tDis is the time difference between reading out ofthe frame data from the graphics buffer and forwarding it to the displayelectronics. It is a constant duration of 1/fDis, with fDis being the rate atwhich the display panel is refreshed.
9. Display Processing tDP : tDP is the time difference between the instantwhen the new pixel values are sent to the display and when the displayelectronics are ready to change the corresponding pixel values. This pro-cessing delay varies widely for different monitors. The authors recordeda delay of 1 ms in a Samsung 2233BW monitor and 23 ms in a DELLU2412M.
10. Display Pixel Response tDPR : It is the time for the pixels in LCDmonitorsto respond to a change in voltage. For example, the Acer XB270Hmonitorhas a tDPR response time of less than 1ms.
2.2.3 Bitrate Adaptation schemes

The video rate adaptation algorithms available in the literature can be classi-fied according to the input informationused for their decision into bandwidth-based, buffer-based, or mixed approaches. Depending on the location thecontrol algorithm is implemented, one may also identify server-based and
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client-based approaches. Rate control algorithms adopt also different con-trol granularity, ranging from segment-level to frame-level control. Finally, inpush-based approaches, the client does not have to regularly request videosegments from the server, while in pull-based methods, the client must re-quest each video segment from the server.
Paper Control at Based on Startup Buffer GranularityReference Method client server buffer bandwidth delay size of control[11] PANDA X X NA 30 s Segments[10] Festive X X NA 30 s Segments[13] BBA X X NA 240 s Segments[12] BOLA X X NA 5 - 100 s Segments[54] BOLA-E X X 3-50s 10-25s Segments[54] DYNAMIC X X X 3-50s 10-25s Segments[55] PI controller X X X NA 30 s Segments[56] MPC X X X 1-10s 25 s Segments[57][58] MDP X X X NA 30 s Segments[59] Q-learning X X X NA 20 s Segments[60] Deep Learning X X NA NA Segments[61] K-Push HTTP/2 streaming X X 6 s 12 s Segments[62] Frame Discarding X X 1s NA Segments[63] Deep RL X X X 0.5 s NA Frames

Table 2.1: Comparison of some streaming methods (NA indicates absence of available infor-mation)

Bandwidth-based schemes, such as Festive [10] and PANDA [11], select,for each video segment, a video bitrate inferior or at most equivalent to theobserved or inferred capacity of the network. These relatively conservativeschemes may lead to a suboptimal exploitation of the available resources.
Buffer-based schemes, such as BBA [13] and BOLA [12], evaluate the tar-get video rate as a function of the playback buffer level of the client.Theseschemes aim at stabilizing the level of the client buffer to ensure continuousvideo playback and avoid freezes when the buffer is empty. Such control mayresult in frequent bitrate switching which may affect the QoE. A comparativestudy of these different schemes has been proposed in [64] considering mo-bile network traces. Buffer-based schemes have been observed to outper-form the other schemes in terms of adaptability. Nevertheless, they lack instability, especially when small buffers are considered.
BOLA works best in permanent regime rather than during transients, e.g.,during startup when the client buffer is empty. In such situations, many low-
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bitrate segments are transmitted before the client buffer reaches a sufficientlevel to download higher bitrate segments. In addition, since the selectedcoding bitrates are directly proportional to the client buffer level and thebuffer size in the case of live streaming is small, the thresholds between dif-ferent bitrate choices may be too close in live streaming. Thus, small vari-ations of the size of video segments due to variable bitrate (VBR) coding ofthe video sequences may cause oscillation between the encoding bitrates.Spiteri et al. [54] improve the responsiveness of BOLA to these issues us-ing a placeholder algorithm that changes the client buffer level using virtualvideo segments containing no data. The proposed algorithm inserts enoughvirtual segments in the client buffer to obtain the optimal bitrate that maxi-mizes the client QoE. DYNAMIC, introduced in [54], is another improvementto BOLA that selects the target bitrate based on the available bandwidth atthe startup phase or when the buffer level is low. DYNAMIC then switches tobaseline BOLA when the buffer level is high enough. This approach providesbetter performance than regular BOLA because bandwidth-based algorithmsperform better at low buffer levels.
Buffer-based and bandwidth based approaches have been combined toaddress their respective drawbacks, aiming at fully exploiting the availablebandwidth and stabilizing the buffer level. In [56, 55], control theory is em-ployed to design a predictive control algorithm that combines throughputandbuffer occupancy information. DeCicco et al. [55] propose aproportional-integral (PI) controller to maximize the client QoE by selecting the optimalbitrate of the video segments given the available bandwidth and the clientbuffer level. Yin et al. [56] propose an MPC algorithm for video rate adapta-tion at segment level combined with HAS. The algorithm chooses the bitrateof the segments by solving a specific QoEmaximization problem at each timestep. Moreover, it uses N steps ahead throughput predictions, implying theneed to use an efficient throughput predictor. The work does not discuss thedesign of effective throughput predictors and assumes that predictors aregiven. This MPC algorithm has a significant computational complexity, whichis problematic for real-time video transmission. Thus, the authors simplifythe algorithm to a lookup table, built offline and indexed by the client bufferand channel states. The output of the lookup table is the optimal bitrate of
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the video segments. Yet, this MPC algorithm is not suitable for low-latency,as it operates at the segment level, assuming that the rate of each segmentcan be chosen independently of the rate of previous segments.
Rate adaptation for streaming over mobile networks is cast in the frame-work of Markov Decision Processes (MDP) by Bao and Valentin [57]. Bufferand channel states are employed and the use of a channel state predictor isshown to further improve performance. In the same spirit, Zhou et al. [58]propose an MDP-based adaptation scheme for Dynamic Adaptive Streamingover HTTP (DASH) aiming at maximizing the QoE. Their method takes into ac-count additional key factors that impact directly the client QoE, including rateswitching frequency and amplitude, buffer overflow/underflow, and thenum-ber of stalls. A Q-learning-based adaptation scheme is proposed in [59]. Thisscheme dynamically learns the optimal policy corresponding to the channeland client buffer states. In addition, the reward function used in the learningprocess can be tuned to emphasize different aspects of the QoE of the client.
The previous approaches are pull-based schemes: video rate adaptationis performed at the client. This type of approaches is well suited to stream-ing of video contents to mobile devices through a wireless access network.The available transmission rate mainly depends on the position of the clientand of the number of clients sharing the same wireless resource. Moreover,the client has a delay-free access to the level of its reception buffer, and isable to estimate the capacity of its wireless channel, which facilitates control.Conversely, in live transmission of sports events such as car races or sail-ing contests with on-board video cameras, or in remote car driving or droneoperation, the acquisition device (camera and encoder) becomes the serverdelivering content to remote clients. The server is moving and this motionmay lead to fast and significant fluctuations of the wireless channel charac-teristics between the acquisition device and the eNodeB (4G) or gNodeB (5G)[65] to which it is connected. Figure 2.5 shows the difference between thepull-based and the push-based streaming method.
In addition, the segmentation of the video content in HAS streaming intro-duces at least one segment duration into the total latency of the streamingsession. In live streaming, the video bitrate must be adapted to the availableinstantaneous transmission rate to avoid accumulation of encoded video frames
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Figure 2.5: (a) Pull-based streaming architecture, (b) push-based streaming architecture.

at the server. Accordingly, the period at which the rate control has to be per-formed has to be significantly smaller than what is considered in classicalsegment-based streaming applications, where segments may last from 2 to10 seconds.
Ben Yahia et al. [62], propose an approach to deal with network varia-tions occurring at timescales smaller then the video segment duration. Theypropose a bitrate adaptation scheme in which the client can discard a set ofvideo frames from the downloaded segment when the available bandwidthis not sufficient to transmit the whole video segment. The proposed schemeis client-based and uses both HTTP/2 and DASH standards, which makes itcompliant with the general architecture of HAS.
Feng et al. [63] present Vabis, a server-side bitrate adaptation for low-latency applications based on Reinforcement Learning (RL). Vabis adjusts thevideo bitrate and minimizes the latency between a mobile client player andthe HTTP media server located in the core network. It selects the encodingbitrate of a small piece of the video segment. Vabis is based on the HTTPadaptive streaming framework and MPEG Common Media Application For-mat (CMAF) [66] standard for video delivery. Contrary to HAS, in which thevideo segment can not be transmitted before it is encoded entirely. CMAF
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allows the video encoder to gradually output small pieces of the video seg-ment chunk for delivery immediately after encoding it. This allows to achievesmall control granularity and minimize the latency between the client playerand the streaming media server. The server receives the measurement ofthe channel and the client buffer state every 0.5s and selects the optimal en-coding bitrate accordingly.In [61], a push-based method using the HTTP/2 protocol has been pro-posed. The client sends one request to the server, to push K segments ofbitrate V . TheseK segments are sent in a batch. A probabilistic buffermodelis used to optimize the two parametersK and V at the client side. TheHTTP/2based approach significantly reduces the latency of segment delivery in high-RTT networks, and it decreases significantly the startup delay because of us-ing shorter segments.Du et al. [60] propose a Deep Neural Network-Driven Streaming method.The encoder sends the video segment encoded in low quality to the server.The server runs a Deep Neural Network (DNN) to determine the regions ofthe frames that need to be re-encoded at higher bitrates, and request it back.To determine the bitrates of the low- and high-bitrate regions, a feedbackcontrol system is implemented at the server side. The control systemuses thetotal bandwidth of the previous encoded segment, in addition to the currentlyestimated bandwidth, to tune the resolution and quantization parameters ofboth the low- and high-bitrate regions.Table 2.1 compares the above streaming methods. This thesis addressesthe bitrate adaptation problem in low latency video streaming and presents anovel method for adjusting the video bitrate at the frame level. The proposedalgorithm is based onModel Predictive Control and, unlikemost state-of-the-art techniques, operates at the server-side (transmitter). These propertiesmake it suitable for low latency streaming from mobile terminals and overvariable channel characteristics.
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Chapter 3

Rate-QP-Distortion model
for video streaming and compression

3.1 Introduction

Rate control plays a vital role in ultra-low latency streaming. The bitstreamsize resulting from the encoding process must not violate the constraints im-posed by the channel transmission rate, encoder/decoder buffer sizes, andthe constant glass-to-glass delay.
In applications such as remote driving [67] or remote surgery [68], onlysmall buffers are allowed at the transmitter and the receiver to limit the la-tency to a minimum. Accordingly, any mismatch between the encoding rateand available transmission rate may lead to an unacceptable delay increase.The small buffers at the transmitter and the receiver cannot mitigate trans-mission jitter.
Video encoding rate control can be performed at themacroblock level, theframe level, or on a group of pictures (GOP). It relies on amodel of the relationbetween the size of the bitstream resulting from the encoding process andthe video encoding parameters. The rate model is used to determine the op-timal encoding parameter for having a bitstream of size at most equal to theallocated bits budget in the constraints mentioned above. The quantizationparameter QP is usually considered used in rate control as it directly impactsthe size of the resulting bitstream.
Our goal is to adjust the video bitrate at the frame level for low latencystreaming. Wemust use a ratemodel to determine the optimal QP to encode
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the frames in a given bit budget. The bit budget is determined by the bitrateadaptation algorithm that will be introduced in Chapter 4.
Parametric models between the rate of the frame and its QP have beenproposed in the literature. However, the precision of these models cannotbe reliable for transmission in band-limited channels as they do not considerthe temporal dependency between the frames.
We propose a new model of the relation between the encoding bitrate

Rn of the frame n and its quantization parameter QPn depending on theMean Square Error (MSE) distortion Dn−1 for the reference frame n− 1. Ourproposed model, denoted as R-(QP, D), is part of our low-latency streamingscheme proposed in chapter 2. We use this model to determine the QP forencoding the frame and having a bitstream size at most equal to its allocatedbit budget.
In this chapter, we compare the performance of the proposed approachwith state-of-the-art models in terms of accuracy of the encoding rate predic-tion, especially when the encoding parameters change significantly in time,as required by ultra low-latency streaming applications.
The contributions of this chapter are the following :
• In Section 3.2, we propose a novel Inter-dependent R-(QP, D) model. Wegive insights into how the proposed model structure has been obtained,and we give detailed instructions for estimating its parameters.
• In Section 3.4, we evaluate the performance of our proposed model intwo coding scenarios: encoding at constant QP and encoding with time-variant QP. The performance of ourmodel is compared to those of mod-els in Eqs. (2.6) [4], (2.9) [5] and (2.12) [6].
• In Section 3.3, we present a method that allows finding the model pa-rameters iteratively using the parameters of the first frame and a smallnumber of encoding trails.

The results show that our proposed model outperforms the models in theliterature, especially in a low-bitrates encoding which demonstrates the ben-efits of accounting for the distortion of the reference frame.
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3.2 Inter-dependent R-(QP, D) model

This section introduces the proposed R-(QP, D) model for rate control at theframe level. The proposed model has been derived based on experimentswith H.265/HEVC [69] (using the x265 encoder [7]). Nevertheless, themethod-ology is generic and can be extended to VVC [70] or AV1 [71].
In order tomotivate ourmodel, we show experiments considering two typ-ical frames, with indexes n = 79 and n = 131 of the video sequence ParkSceneencoded with x265 encoder. Figure 3.1 shows the rate Rn of frame n as afunction of the distortion of the reference frameDn−1, for different values of

QPn. These results have been obtained by encoding frame nwith six different
QPn ∈ {QP (1) = 20, QP (2) = 24, . . . , QP (6) = 40}.

All previous frames, including frame n− 1 have been encoded with seven
QPn−1 = QPn + ∆QP , where ∆QP ∈ {∆QP (1) = −7, . . . ,∆QP (7) = 5}. Theresulting rates are denoted as Rn,i,j , where QPn = QP (i), i = 1, . . . , 6 and
∆QP = ∆QP (j), j = 1, . . . , 7.
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Figure 3.1: The bitrate Rn for the frames n = 79 and n = 131 of ParkScene as a function ofthe distortion Dn−1 of the reference frame for different values of QPn.
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Figure 3.2: R0
n for frame n = 79 of ParkScene as a function of Dn−1 for different values of

QPn.

Each curve for a given value of QPn consists of two almost linear parts asa function of log (Dn−1). Conversely, for small values of Dn−1, Rn increasesslowly with Dn−1. For larger values of Dn−1, the increase is steeper. We ob-serve that the dependance of Rn,i,j can be described by a family of sigmoidsdepending on log (Dn−1) and QPn.We propose the following R-(QP, D) model
Rn (QPn, Dn−1) = g1 (QPn)

+ g2 (QPn) (tanh (g3 (QPn) log(Dn−1)− g4 (QPn)) + 1) , (3.1)
where g1 (QPn) describes the bitrate Rn for small values of Dn−1, and

R0
n (QPn, Dn−1) = Rn (QPn, Dn−1)− g1 (QPn)

= g2 (QPn) (tanh (g3 (QPn) log(Dn−1)− g4 (QPn)) + 1) , (3.2)
describes the bitrate Rn for large values of Dn−1.Figure 3.3-a represents Rn as function of QPn for the smallest values of
Dn−1 obtained for frame n = 79. In this regime, Rn decreases exponentially
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with QPn according to

g1 (QPn) = p1 exp (−p2QPn) . (3.3)

Figure 3.2 representsR0
n,i,j = Rn,i,j−g1(QP (i)) as a function ofDn−1 for dif-ferent values of QPn = QP (i). For each value of QPn = QP (i), i = 1, . . . , 6, aleast-squares estimation of g2, g3, and g4 is performed usingR0

n,i,j , j = 1, . . . , 7

to get ĝ2(QP (i)), ĝ3(QP (i)), and ĝ4(QP (i)). Figure 3.3-b shows that ĝ2 as a func-tion of log(QP (i)) is adequately described by an affinemodel with two param-eters p3 and p4

g2 (QPn) = p3 (−p4 log (QPn) + 1) . (3.4)

Figure 3.3-c illustrates ĝ3 as function of QP (i), which is adequately repre-sented by the linear model depending on p5

g3 (QPn) = p5QPn. (3.5)

Finally, Figure 3.3-d illustrates the relation between the square root of ĝ4and QP (i), which justifies the following quadratic model for the dependencyof g4 in QPn, depending on the parameters p6 and p7

g4 (QPn) = (p6QPn − p7)
2 . (3.6)

Consolidating the previous results, the proposedmodel (3.1) involves a vec-tor of 7 parameters p = (p1, . . . , p7) , which value is frame-dependent andneeds to be determined to accurately predict Rn as a function of QPn and
Dn−1.
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Figure 3.3: ĝ1, ĝ2, ĝ3, and ĝ4 as a function of QP (i) or log (QP (i)
) for frame 79 of ParkScene

3.3 Recursive estimation of the R-(QP, D ) model parame-
ters

In the considered low-latency streaming scheme, the control is performed atthe frame level and not at the GOP or chunk level, as inmost of the streamingsolutions [2]. Consequently, the value of pn has to be estimated online andfor each encoded frame to accurately predict Rn of frame n as a function of
QPn and Dn−1. Coding the frame with different QPn and QPn−1 to build themodel is not possible in this case because a large number of coding trailsgenerates significant delay.

Our aim in what follows is to evaluate pn from pn−1 in an iterative way. The
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vector pn can be expressed as
pn = pn−1 + δn, (3.7)

where δn represents the difference between pn and pn−1. Assuming that therate-distortion characteristics of consecutive video frames of the same typechange smoothly when there is no scene change, δn is usually small.To estimate pn from pn−1, considerM video encoders running in parallel.Each of the M − 1 first encoders processes frame n with a different QPn,m,
m = 1, . . . ,M−1. TheM -th encoder uses the value Q̂P n for frame n providedby the encoding rate controller. LetDn−1,m,m = 1, . . . ,M−1, be the distortionobtained for frame n−1when encoded by them-th encoder andRn,m be therate of frame n at the output of them-th encoder.Assume that an estimate p̂n−1 of pn−1 is available. Using Dn−1,m, QPn,m,and Rn,m, one considers the estimate δ̂n of δn that minimize the followingregularized weighted least-squares cost function

δ̂n = argmin
δ

M∑
m=1

wn,m (Rn,m −R (QPn,m, Dn−1,m, p̂n−1 + δ))2 + αδTδ, (3.8)
where wn,m ⩾ 0, m = 1, . . . ,M are some weights and α ⩾ 0 is a regularizingcoefficient, which aim is to favor small values of δ.Considering the first-order Taylor expansionofRn (QPn,m, Dn−1,m, p̂n−1 + δ),one gets
R̃ (QPn,m, Dn−1,m, p̂n−1 + δ) = R (QPn,m, Dn−1,m, p̂n−1)+

∂R (QPn,m, Dn−1,m, p̂n−1)

∂p̂T
n−1

δ.

(3.9)Introducing
yn = (Rn,1 −R (QPn,1, Dn−1,1, p̂n−1) , . . . , Rn,M −R (QPn,M , Dn−1,M , p̂n−1))

T ,

Wn = diag (wn,1, . . . , wn,M) ,

Xn =


∂R(Qn,1,Dn−1,1,p̂n−1)

∂p̂T
n−1...

∂R(Qn,M ,Dn−1,M ,p̂n−1)

∂p̂T
n−1

 ,
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and using (3.9), one may rewrite (3.8) as
δ̂n = argmin

δ
Wn (yn −Xnδ)

T (yn −Xnδ) + αδTδ.

Consequently,
δ̂n =

(
WnX

T
nXn + αI

)−1
WnX

T
nyn. (3.10)

Then, p̂n is determined from p̂n−1 and δ̂n as
p̂n = p̂n−1 + δ̂n.

The choice ofWn and of the different Qn,m,m = 1, . . . ,M − 1 is discussed inSection 3.4.1.
3.4 Evaluation of the proposed model

The performance of the proposed model to predict Rn as a function of QPnis compared to the reference models in Eqs. (2.6) [4], (2.9) [5], and (2.12) [6],used at a frame level.
3.4.1 Experimental setup

Three JCT-VC test sequences, namely Tango, Racehorses, and ParkScene [72],are selected for the experiments, as well as a recording from the inside of aracing car (Magnycours [73]). The encoding is performed with the x265 soft-ware [7], configured in low delay mode and with an intra-refresh cycle of onesecond.The parameters for the three reference models and the proposed modelsare only estimated for every four frames of the video sequences. The param-eters are then assumed to remain constant for the successive three frames.For that purpose, 42 coding trials are done with QPn ∈ {QP (1), . . . , QP (6)}and QPn−1 = QPn + ∆QP with ∆QP ∈ {∆QP (1), . . . ,∆QP (7)} to get Rn,i,j ,
i = 1, . . . , 6, and j = 1, . . . , 7.Aweighted least-square estimation of themodelparameters is then performed considering the following cost function

Cn (p) =
6∑

i=1

7∑
j=1

1

Rn,i,j

(
Rn,i,j −Rn(QP (i), D

(j)
n−1)

)2
, (3.11)
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Figure 3.4: Histogram of prediction errors for Tango at high bitrates, (a) proposed model(3.1), (b) (2.6) from [4], (c) (2.9) from [5] and (d) (2.12) from [6].

whereRn(QP (i), D
(j)
n−1) is given by the proposedmodel in (3.1), or by themod-

els (2.6), (2.9) or (2.12), and D
(j)
n−1 is the distortion for frame n− 1.To compare the performance of the four models, in a first set of exper-iments all frames of the video sequences are encoded at constant QP ∈

{QP (1), . . . , QP (6)}. In a second set of experiments, QP may vary from frameto frame as the realization of a first-order Markov process such that with aprobability P = 0.6, QPn = QPn−1, and with a probability 1 − P , QPn is uni-formly distributed in the setQn = {QPn−1 − 5, . . . , QPn−1 + 5} ∩ {20, . . . , 40}.The ability to predict the actual encoding rate is evaluated using the rela-tive rate error
En = 100

(
Rpred −Ractual

)
/Ractual, (3.12)

where Ractual is the actual size of the encoded frame n and Rpred is the pre-dicted one obtained from the rate model.
3.4.2 Results when coding with constant QP

We first compare the performance of the four models in a set of experimentswhen encoding with constant QP.
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Figure 3.5: Histogram of prediction errors for Tango at low bitrates, (a) proposed model(3.1), (b) (2.6) from [4], (c) (2.9) from [5] and (d) (2.12) from [6].

Figure 3.4 shows the histogram of the prediction errors obtained with theproposed model in Eq. (3.1), and by the models in Eqs. (2.6), (2.9) and (2.12),used on the Tango sequence coded at high bitrates, i.e., QPn = 20, 24. Wenotice that our proposed model provides the best performance in this case.The errors of model in Eq. (3.1) are mainly between -13.6% to 14%, with a peakat 3.4%. The prediction errors with the models in Eqs. (2.6) and (2.9) are be-tween -11% and 19%, with a peak near 11% and -6.5% respectively. Model in Eq.(2.12) has the worst performance, with prediction errors spreading between-50% and 64%.
Figure 3.5 shows the error histograms of the four models on the Tangosequence coded at low bitrates, i.e., QPn = 36, 40. The performance of ourproposed model slightly decreases but significantly outperforms the threeother ones. Prediction errors are between -28.6% and 18.3%, with a peakaround 4.9%. Bothmodels in Eq. (2.6) and Eq. (2.9) lead to errors between 0%and 81% with a peak near 48% and 27.5% respectively. The model in Eq. (2.12)largely underestimates the rate, with prediction errors distributed between-90% and -58%.
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Figure 3.6: CDF of prediction errors for Magnycours sequence.
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Figure 3.7: CDF of prediction errors for RaceHorses sequence.
Figure 3.6 shows the error cumulative distribution functions (CDF) whenusing the four QPn = 20, 24, 36 and 40 for the Magnycours sequence. Theproposed model achieves the lowest prediction error compared to the othermodels. For instance, with QPn = 20, 90% of the prediction errors are lessthan 12.2% with the proposed model, compared to 16.7%, 22.6%, and 51.8%for the models in Eqs. (2.6), (2.9), and (2.12), respectively.Figure 3.7 shows the error CDF for RaceHorses sequence. Here, we seeclose performance of models in Eqs. (3.1), (2.6), and (2.9) with QPn = 20 and

24, and close performance between model in Eq. (3.1) and model in Eq. (2.6)with QPn = 40. The proposed model shows a significant advantage in theother cases.Figures 3.6 and 3.7 both show that the gains with our model tend to bemore significant at low bitrates (i.e., high QPs). This can be explained by thefact that we incorporate the distortion of the reference frame in our model,
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which is especially important at low bitrates.Figure 3.8 illustrates the average error CDFwhen coding the four sequenceswith a constant QP. Our proposed model achieves the best performance forall test sequences.
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Figure 3.8: Average error CDF with constant QP for each sequence.

3.4.3 Results when coding with time-varying QP

We present results of the second set of experiments using time-varying QPsbased on a first-order Markov process.Figures 3.9 shows the histogram of the prediction errors obtained withthe proposed model in Eq. (3.1), and by the models in Eqs. (2.6), (2.9) and(2.12), used on the Tango sequence coded with QP that variate as a first-orderMarkov process realization with a probability P = 0.6 . Our proposed modelprovides thebest performanceswith prediction error between -32%and 19.1%.
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Figure 3.9: Histogram of errors for Tango sequences with first-order Markov processvariations of QP, (a) proposed model (3.1), (b) (2.6) from [4], (c) (2.9) from [5], and (d) (2.12)from [6]

The prediction errors with the model in Eq. (2.6) leads to prediction errorsbetween -30% and 69%, and the errors with Eq. (2.9) are between -40% and90%. Model in Eq. (2.12) underestimate the frame sizes. Its prediction errorsare between -90% and 36%.
Figure 3.10 shows the average error CDF with time-varying QPs for the fourtest sequences. The proposed model outperforms the other ones for all se-quences. For Magnycours, ParkScene, and Tango, the improvements are sig-nificant, whereas for RaceHorses, the models in Eqs. (3.1), (2.6), and (2.9) reachclose performances. This difference in performance is due to the spatial andtemporal properties of the video sequence that make it difficult to determinethe model parameters. Thus, the prediction error increases in some frames.
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Figure 3.10: Error CDF with first-order Markov process variations of QP for each sequences,(a) proposed model (3.1), (b) (2.6) from [4], (c) (2.9) from [5], and (d) (2.12) from [6]

Figures 3.11-(a) illustrate the temporal variations of the frames bitstreamsize in Magnycours video sequence, as well as the predictions obtained byour proposed model in Eq. (3.1) and model in Eq. (2.9) [5]. We note that ourproposedmodelmanages to predict the size of the images after the encodingprocess with relatively low errors. In contrast, the model in Eq. (2.9) overesti-mates the size of the resulting bitstream.
Figures 3.11-(b) shows thedifferencebetween theperdition of the twomod-els, in Eq. (3.1) and Eq. (2.9) [5], and the sizes of the frames of Magnycoursvideo sequence in bytes. We see that our proposed model has an error of 21bytes on average, while the model in Eq. (2.9) has an error of average of 447bytes.

69



0 50 100 150 200 250

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

-1000

-500

0

500

1000

1500

2000

Figure 3.11: (a) The temporal variation of the sizes of the frames, predictions of the model inEq. (3.1) and predictions of the model in Eq. (2.9) [5] with Magnycours sequence, (b) Thetemporal variation of the error between predictions of the model in Eqs. (3.1) and .(2.9) [5],and the sizes of the frames in bytes, with Magnycours sequence.

3.5 Evaluation of the proposedmodelwhen its parameters
are iteratively estimated

In this section, we evaluate the performance of the proposedmodel to predict
Rnwhen its parameters are estimated iteratively using themethod presentedin section 3.3.
3.5.1 Experimental setup

We consider ten transmission episodes of the video sequenceMagnycours atresolutions 640 × 360 and frame rate 25 fps, in a simple network consistingof a server and a client. The server encodes the video frames using the x265encoder [7] configured in low delay and transmits the encoded packets to theclient that contains a video player. The server manages the rate control al-gorithm BBA [13], which selects the target encoding bitrate of the frames and
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the R-(QP, D) model to determine the frames QP based on its target encodingbitrate.The access and core networks are simulated using 4G bandwidth tracestaken from [9]. More details about simulation setup and the rate control al-gorithm can be found in chapter 4.The value of vector of parameters pn for frame n of the R-(QP, D) modelis estimated iteratively as described in Section 3.3. Apart from the encodergenerating the transmitted packets, three additional encoders are used toprovide data to the estimator. Accurate estimates require these encodersoperate with time-varying QPs. The choice of QP for frame n and for encoder
i = 1, . . . , 3 is performed as follows

QPn,i =


QP0,i

QPn−1,i +∆QPi

QPn−1,i −∆QPi

if n = 0

if n%4 = 1, 2

if n%4 = 3, 0,

(3.13)

where n%4 is the remainder of the division of n by 4. The vector QP0 =
(24, 36, 40) contains the QPs of the first frame, and ∆QP = (4, 4,−4) is thevariation of QP. This choice of QP0 provides a better model accuracy at lowrate (large values of QP). An optimization of the values ofQPn,i for i = 1, . . . , 3to get the best parameter estimate is an important direction for future re-search. In (3.8), we have chosen wn,m = 1/Rn,m to better balance the impor-tance of measurements obtained at low and high rates. This provides a fitwhere the relative rate error is approximately constant, whatever the encod-ing rate. Moreover, we set α = λ1(WnX

T
nXn)/100, where λ1(WnX

T
nXn) is thelargest eigenvalue of WnX

T
nXn. This ensures that WnX

T
nXn + αI is invert-ible and is sufficient to smooth out the variations of p̂n with n. The ability topredict the actual encoding rate is evaluated using the samemetric in Eq.3.12.

3.5.2 Results of theproposedmodel builtwith the recursive estimation

Figure 3.12 shows the variations of the QP in three out of ten transmissionepisodes conducted in this experiment. The QP variations here are more sta-ble than the variations used in the second experiment of section 3.4.1.The QPs of the frames are determined using the R-(QP, D) model. EachQP generates a bitrate Rn close to the target bitrate R∗
n selected by the algo-
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Figure 3.12: The variation of quantification parameter QP in the 4th (a), 6th (b) and 8th (c)transmission episode of the video sequence Magnycours at resolution 640× 360 and 25 fpsusing the BBA [13] algorithm.

rithm BBA. To evaluate the prediction performance of the R-(QP, D) model,we compute the error between the predicted bitrate of the model and theactual bitrate of the frame Rn.
Figure 3.13 - a shows the Error Cumulative distribution function (CDF) ofthe R-(QP, D) model in the ten transmission episodes. We notice that our ratemodel R-(QP, D) provides a good performance when estimating its parame-ters iteratively. 99% of all prediction errors in absolute value are less than35%.
Figure 3.13 - b illustrates the histogram of prediction errors of the samevideo sequence. Most prediction errors are between -40% and +40%. Ourmodel performance is still very reliable when its parameters are recursivelyestimated, with the advantage of reducing the computational complexity ofthe estimation.
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Figure 3.13: (a) Error Cumulative distribution function (CDF) and (b) Histogram of modelR-(QP, D) prediction errors when pn is determined iteratively, in ten transmission tests ofthe video sequence Magnycours at resolution 640× 360 and 25 fps using the BBA [13]algorithm.

3.6 Conclusion

In this chapter, we present a novel inter-dependent Rate-QP model. Ourmodel describes the relation between the quantization parameter QPn usedto encode the frame n, its bitstream size Rn, and the MSE distortion Dn−1of the reference frame. The R-(QP, D) is beneficial when adjusting the QP ofthe frame according to the allocated bitrate budget in case of low latency livestreaming. The optimal quantification parameters QPn for encoding the n-th frames can be determined based on the distortion Dn−1 of the referenceframe and the target size of the frame n to be encoded.We evaluate the performance of the proposedmodel in two coding scenar-ios: encoding at constant QP and encoding with time-varying QP. In the sec-ond scenario, the QP variation is chosen to simulate the case of video codingfor transmission on an unstable transmission channel, where theQP changesafter every few frames following a drop or increase in transmission rate.In both coding scenarios, the proposed model outperforms other models
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from the literature. For instance, in the video sequence Tango, up to 90% ofall prediction errors are inferior to 8.6% when using constant QP encoding,and 90% of all prediction errors are inferior to 12% when using variable QPencoding.The gains are especially significant at low bitrates (i.e., high QPs), showingthe benefits of accounting for the distortion of the reference frame in ourproposed model. Besides, this attribute shows that our model is exception-ally reliable in the case of coding for live steaming at low transmission ratesor when sudden drops occur.The next chapter will focus on integrating the proposed model in a bitrateadaptation scheme for low-latency video streaming. We will first propose abitrate adaptation algorithm that determines the maximum rate budget forthe frame to be transmitted, according to the available network resources.Then, using our model, we determine the optimal QP to encode the framesuch that the resulting bitstream size will not surpass the allocated bitratebudget of the frame.
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Chapter 4

Model Predictive Video Bitrate Control
for Low-Delay Live Streaming

4.1 Introduction

In applications such as low latency live streaming, such as remote control ofa drone or broadcasting sports events, the camera acquiring the scene trans-mits its compressed stream over a wireless network to the client, e.g., a pro-cessing unit. Mobility induces significant and fast variations of the wirelesschannel characteristics. In such a context, encoder-side control approachesappear better suited for adapting the video encoding bitrate to the wirelesschannel and network characteristics. In addition, a finer adaptation granular-ity and a small reception buffer size at the client is necessary to achieve lowdelay.
This chapter proposes an encoding rate control algorithm adapted for low-latency live streaming applications with glass-to-glass delay targets of 100 to200 ms. The control is performed at the frame level, which requires the useof the R-(QP, D) model introduced in Chapter 3, to describe the size of theencoded frame Rn as a function of its quantization parameter QPn and ofthe distortion of the previous frameDn−1. Using measurements of the chan-nel and network characteristics, a Model Predictive Control (MPC) approachis employed to infer the future client playback margin for different choicesof target encoding rates for the next frame to compress and transmit. Thecontroller can then select the appropriate value of QP for that frame.
The contributions of this chapter are the following:
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• In Section 4.2 we present a server-driven live streaming architecture forultra-low latency video delivery.

• In Section 4.3 we propose a Model Predictive Control (MPC) approach todetermine the encoding rate of each video frame to be transmitted usinginformation related to the server (transmitter) buffer level and the wire-less channel characteristics. The R-(QP, D) model presented in Chapter 3is used to determine the best QP once the target encoding rate of theframe is determined.

• In Section 4.4 the proposed algorithm is compared to four reference al-gorithms, namely Festive [10], Panda [11], BOLA [12], and BBA [13]. Thereference algorithms have been adapted to operate on the server sideand at the frame level.

Simulation results, involving real 4G bandwidth traces show that the pro-posed algorithm outperforms the other algorithms in terms of average PSNRand number of lost frames, and it is able to provide videowith a glass-to-glasslatency of 120 ms.

4.2 Overviewof theproposed low-latencyadaptive stream-
ing approach

Figure 4.1 illustrates the components of the proposed server-driven live stream-ing architecture. The server consists of the following main components: acamera, a video encoder, an encoding rate controller, a transmission buffer,and a transmitter.
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Figure 4.1: Model of the server-driven live streaming architecture.

We assume that video frames are acquired with a period Tf and that theacquisition by the video camera of frame n starts at time tn = nTf. The frameacquisition delay depends of the camera aperture and scene illumination.Here, it is assumed constant and equal to Ta. Once frame n is acquired, it istransmitted to the encoder and compressed. For frame n, the trade-off be-tween encoding rate and quality is controlled by the quantization parameter
QPn provided by the rate control module. The encoding delay Te is assumedconstant. The resulting bitstream is segmented into RTP or MPEG2 TS pack-ets and put into the transmission buffer. The packets are drained from thebuffer and transmitted via Wifi, 4G, or 5G to some router, eNodeB, or gN-odeB [65]. Packets are then carried out through the access and core networkto the receiver. This introduces a delay Tc,n which depends on the congestionof routers along the path between the eNodeB or gNodeB and the receiver,as well as on the length of this path. At the client side, once all packets re-lated to frame n have been received, decoding starts and introduces a de-coding delay Td. The resulting frames are then temporarily buffered beforebeing displayed at time tn+∆p, where∆p is the acquisition-to-playback delay(glass-to-glass delay) [19].

The control is performed so as to prevent the buffer containing decodedframes at receiver from starving. This ensures that frames are displayed ontime. If a frame is not decodable, e.g., due to corruption or loss of one of itspackets, a frame concealment process is performed [74]. Outdated packetsin the transmission buffer, i.e., packets which have no chance to reach the
77



Figure 4.2: The components of the rate control block.

receiver on time are purged, as suggested in [12].

To determine the valueQPn of the quantization parameter for frame n, therate control module takes as input the amount of bits Bn stored in the trans-mission buffer as well as some (possibly delayed) channel quality indicator(CQI) provided by the wireless transmitter, see Figure 4.2. The CQI is useful toinfer the rate C (t) at which the packets will be transmitted over the wirelesschannel in the time interval [tn, tn +∆p
]. In the proposed approach, the ratecontrol blockmanages an R-(QP, D)model to estimate the encoding rateRn ofthe frame n as a function of the distortionDn−1 of the previous frame and of

QPn. Since the temporal and spatial characteristics of the frames evolve withtime, an online update of the parameters of the R-(QP, D)model is performedusing the encoding rates Rn−i and distortion Dn−i obtained from previouslyencoded frames, as well as additional encoding trials. Additional informationrelated to frame characteristics (frame type, complexity), which may impactthe parameters of the R-(QP, D) model may also be taken into account. Feed-back from the client, e.g., in RTCP packets [75], may also be used by the ratecontroller.
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Tf frame period
tn = nTf start of acquisition of frame n
Ta frame acquisition duration
Bn buffer level in bits at transmitter
Te < Tf frame encoding duration
Td < Tf frame decoding duration
Rn encoding rate of frame n
C (t) channel rate at time t
∆p acquisition-to-playback delay
τn receiver playback time margin for frame n

Table 4.1: Notations used in Section 4.3.

4.3 Model-predictive encoding rate control

Figure 4.3: The key time instants related to the transmission of frame n.
Figure 4.3 illustrates the different time instants related to the acquisition, pro-cessing, transmission, anddisplay of framen. Framen starts to be acquired attime tn. We consider that its encoding starts at tn+Ta and ends at tn+Ta+Te.Assume that the encoding rateRn of frame n has been chosen in the time in-terval [tn−1 + Ta, tn + Ta[. Our aim in what follows is to determine the encod-ing rate Rn+1 of frame n+1 before encoding starts at time tn+1+ Ta. For thatpurpose, we consider an MPC approach in which a model of the evolution ofthe channel capacity is used to predict the evolution of the playback margins
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τn and τn+1 of frames n and n+ 1. The rate Rn+1 will be chosen so as to meeta target playback margin τ ∗.
4.3.1 Playback margin of frame n

At time tn, the transmission buffer contains Bn bits from packets related topreviously encoded frames. Assuming that the wireless link capacity is C (t)at time t, the time Tb,n required to flush these Bn bits satisfies
Bn =

∫ tn+Tb,n

tn

C (t) dt. (4.1)
With an encoding rate Rn for frame n, RnTf bits are generated during theencoding process. We assume that the transmission buffer starts to be fedat the beginning of the encoding process at time tn + Ta instead of beingfed once encoding is finished. Moreover, we assume that the transmissionbuffer is fed at a rate larger than the channel capacity over the encoding timeinterval [tn + Ta, tn + Ta + Te], i.e., that RnTf/Te > C (t). Consequently, thetransmission buffer does not get empty over the encoding time interval. Con-sequently, the time Tr,n required to drain the RnTf bits of the encoded frame

n from the transmission buffer is such that
RnTf =

{∫ tn+Tb,n+Tr,n
tn+Tb,n C (t) dt if Tb,n ⩾ Ta,∫ tn+Ta+Tr,n
tn+Ta C (t) dt if Tb,n < Ta.

(4.2)
The first case corresponds to a transmission buffer still containing bits whenthe video encoder starts to feed bits from frame n, contrary to the secondcase where all bits from previous frames have been drained before time tn+
Ta. The first case better exploits the available channel capacity.The time Tc,n spent by packets in the core network is assumed to evolveslowly with time compared to the evolution of C (t). Consequently, Tc,n isassumed constant and known in what follows. When frame n is decoded, it isready to be displayed by the receiver at time tn+max {Ta, Tb,n}+Tr,n+Tc,n+Td.Consequently, the playback margin for the n-th frame is

τn = tn +∆p − (tn +max {Ta, Tb,n}+ Tr,n + Tc,n + Td)
= ∆p − (max {Ta, Tb,n}+ Tr,n + Tc,n + Td) . (4.3)
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4.3.2 Prediction of the playback margin of frame n+ 1

At time tn + Ta, we know that the rate Rn has been chosen to encode frame
n. We also know that the acquisition of frame n + 1 starts at time tn+1. Thetransmission buffer level Bn+1 at time tn+1 will satisfy

Bn+1 =

max
{
0, Bn +RnTf −

∫ tn+Tf
tn

C (t) dt
} if Tb,n ⩾ Ta,

max
{
0, RnTf −

∫ tn+Tf
tn+Ta C (t) dt

} if Tb,n < Ta.
(4.4)

At time tn+1 + Ta, encoding of frame n + 1 starts. Assuming that a rate Rn+1has been chosen for frame n + 1, one obtains equations satisfied by Tb,n+1and Tr,n+1 from (4.1) and (4.2) as
Bn+1 =

∫ tn+1+Tb,n+1

tn+1

C (t) dt (4.5)
and

Rn+1Tf =
{∫ tn+1+Tb,n+1+Tr,n+1

tn+1+Tb,n+1
C (t) dt if Ta ⩽ Tb,n+1,∫ tn+1+Ta+Tr,n+1

tn+1+Ta C (t) dt if Ta > Tb,n+1.
(4.6)

The playback margin for frame n+ 1 has the same expression as (4.3) and is
τn+1 = tn+1 +∆p − (tn+1 +max {Ta, Tb,n+1}+ Tr,n+1 + Tc,n+1 + Td)

= ∆p − (max {Ta, Tb,n+1}+ Tr,n+1 + Tc,n+1 + Td) . (4.7)
We evaluate now τn+1−τn, the evolution of the playbackmargin for frames

n and n+ 1, assuming that Tc,n+1 = Tc,n
τn+1 − τn = ∆p − (max {Ta, Tb,n+1}+ Tr,n+1 + Td)−∆p − (max {Ta, Tb,n}+ Tr,n + Td)

= max {Ta, Tb,n} −max {Ta, Tb,n+1}+ Tr,n − Tr,n+1. (4.8)
4.3.3 Evaluation of the rate Rn+1

To determine the value R∗
n+1 of Rn+1 allowing the receiver to observe a play-back margin τn+1 equal to τ ∗, some additional hypotheses are considered re-lated to the channel capacity C (t). In what follows, we assume that C (t) ispiecewise constant over time intervals of the form [tn, tn + Tf[ and equal to

Cn.
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With this hypothesis, (4.1) and (4.5) become
Tb,n =

Bn

Cn
(4.9)

and
Tb,n+1 =

Bn+1

Cn+1
. (4.10)

The expression (4.4) of the buffer level at time tn+1 boils down to
Bn+1 =

{
max {0, Bn + (Rn − Cn)Tf} if Tb,n ⩾ Ta,
max {0, CnTa + (Rn − Cn)Tf} if Tb,n < Ta.

(4.11)
Moreover, assuming that even if Tb,n ⩾ Ta in (4.2), tn + Tb,n ∈ [tn, tn + Tf],(4.2) becomes

Tr,n =
Rn

Cn
Tf. (4.12)

This expression is clearly an approximation since the transmission of the bitsof encoded frame nmay last over several time interval of duration Tf. Assum-ing similarly that tn+1 + Tb,n+1 ∈ [tn+1, tn+1 + Tf], one gets
Tr,n+1 =

Rn+1

Cn+1
Tf. (4.13)

The evaluation ofRn+1 starts at tn+Ta. At that time instant, the server is ableto determine whether Tb,n ⩾ Ta or Tb,n < Ta by observing the level of thetransmission buffer. In what follows, we assume that Tb,n ⩾ Ta, which corre-sponds to the case of a non-empty transmission buffer at tn + Ta, a situationwhere the channel capacity is fully exploited. Introducing (4.9-4.13) in (4.8),one gets
τn+1 = τn +

Bn

Cn
−max

{
Ta, max {0, Bn + (Rn − Cn)Tf}

Cn+1

}
+

(
Rn

Cn
− Rn+1

Cn+1

)
Tf.

(4.14)
Imposing a target playback margin τ ∗ for frame n + 1, from 4.14, we getafter some simple derivations the target encoding rate R∗

n+1 of frame n + 1
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as follows
R∗

n+1 =
τn − τ ∗

Tf Cn+1+
Bn

Tf
Cn+1

Cn
−max

{
Ta
TfCn+1,

max {0, Bn + (Rn − Cn)Tf}
Tf

}
+
Cn+1

Cn
Rn.

(4.15)Assuming further that the transmission bufferwill not be empty over the timeinterval
[tn + Ta, tn+1 + Ta], (4.15) boils down to

R∗
n+1 =

τn − τ ∗

Tf Cn+1 +
Bn

Tf
Cn+1

Cn
− Bn + (Rn − Cn)Tf

Tf +
Cn+1

Cn
Rn

=
τn − τ ∗

Tf Cn+1 +

(
Cn+1

Cn
− 1

)(
Bn

Tf +Rn

)
+ Cn. (4.16)

The evaluation of R∗
n+1 using (4.16) is performed at the server side. Theplayback margin τn for frame n is observed at client side at time tn +∆p− τn.Even ifRn has been chosen to get a playbackmargin τ ∗ for frame n, due to thediscrepancies between R∗

n and the obtained encoding rate Rn and betweenthe channel capacity estimate Ĉn used at time tn−1 + Ta to evaluate R∗
n andthat experienced over the time interval [tn, tn + Tf], the actual playback mar-gin τn is likely to differ from τ ∗. Consequently, the server needs an estimate

τ̂n of τn to be able to calculate R∗
n+1. It also use estimates Ĉn and Ĉn+1 of thechannel rates Cn and Cn+1. Designing an effective channel rate estimator isessential, but we focus only on the bitrate adaptation algorithm in this workand assume that estimators are given to us, e.g., using tools such as thosedescribed in [14, 76]. Then, (4.16) becomes

R∗
n+1 =

τ̂n − τ ∗

Tf Ĉn+1 +

(
Ĉn+1

Ĉn

− 1

)(
Bn

Tf +Rn

)
+ Ĉn (4.17)

with τ̂n obtained introducing (4.9) and (4.12) in (4.3) to get
τ̂n = ∆p −

(
RnTf +Bn

Ĉn

+ Tc,n + Td
)
. (4.18)

Some insights on (4.17) may be obtained considering the target number ofbits
R∗

n+1Tf = (τ̂n − τ ∗) Ĉn+1+
(
ĈnTf −RnTf

)
+

(
Ĉn+1

Ĉn

− 1

)
Bn+

Ĉn+1

Ĉn

RnTf (4.19)
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allocated to frame n+1 to reach a playback margin equal to τ ∗. If τ̂n > τ ∗, theestimated playback margin for frame n is larger than the target, and the firstterm in (4.19) shows that more bits may be used to represent frame n + 1.The second terms of (4.19) indicates that more bits may be used to representframe n + 1 when ĈnTf > RnTf, i.e., when more bits are drained from thetransmission buffer than those fed by the encoding of frame n. The thirdterm of (4.19) translates the allowed rate increase or decrease due to a moreor less efficient drain of the bits present in the transmission buffer at time tn.The last term of (4.19) corresponds to the number of bits to be transmittedin steady-state. If Ĉn+1 > Ĉn, the target rate can increase and else has todecrease.
4.4 Performance Evaluation

This section compares the proposed model predictive encoding rate controlalgorithm with reference rate-based and buffer-based schemes.
4.4.1 Simulation setup

We consider a simulation setup consisting of a server and a client as de-scribed in Section 4.2. The server receives the video frames to encode, runsthe x265 encoder [7], and feeds the transmission buffer with encoded pack-ets. It also manages the R-(QP, D) model introduced in Chapter 3 and therate control algorithm, described in Section 4.3. The client contains a recep-tion buffer, an HEVCdecoder (the HEVC Test Model HM16 [8]), and a decodedframe buffer. The access and core networks are simulated using 4G band-width traces taken from [9].Six video sequences are used. Five of them belong to the JVET test se-quences: CrowdRun, ParkJoy, TouchDownPass, DaylightRoad2, and Kristenand-
Sara [72], An additional sequence, Magnycours [73], acquired from a cameraon a race car is also considered. The video sequences are sub-sampled usingFFmpeg [77] to two spatial resolutions 640 × 360 and 1280 × 720, and to onetemporal resolution of 25 fps, i.e., Tf = 40 ms. The acquisition delay is takenas Ta = 2ms.The x265 encoder [7] is configured in low delay mode and with an intra-
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refresh cycle of one second. Encodeddata packets are embedded in RTP/UDP/IPpackets and temporarily stored in the transmission buffer. Wireless trans-mission of packets is simulated with a period of one millisecond. For thatpurpose, the 4G trace A_2018.01.27_10.58.49.csv, taken from the set of tracesdescribed in [9], has been considered. This 15 mn long trace has been ac-quired using GNetTrack Pro [78] around Cork within a moving car. Downlink(DL) transmission rates are available with a measurement period of one sec-ond. We assume that similar rates are available in the Uplink (UL) direction,even if the allocation between UL and DL is not symmetric. Moreover, thetransmission rates have been spline interpolated to one millisecond for thetransmission simulation. Transmission is assumed to be loss-free thanks toHARQ mechanisms between the transmitter and the base station. The time
Tc,n spent by packets in the core network is neglected.Received packets are temporarily stored in the client reception buffer. De-coding starts upon reception of the last packet related to the consideredframe. The decoding time is taken as Td = 20ms. Decoded frames are storedin a decoded frame buffer before their display, at time tn + ∆p for frame n,where ∆p is the playback delay. When a frame is not available in the displaybuffer, a simple concealment process is realized. Lost frames are replacedby the last correctly decoded frame, which leads however to a significant lossin PSNR. More sophisticated concealment mechanisms could be consideredwith a larger complexity, see, e.g., [74].For each sequence, the value of vector of parameters pn for frame n ofthe R-(QP, D) model is estimated iteratively using themethod in Section 3.3 ofChapter 3. We use three encoders operatingwith time-varyingQPs to providedata to the estimator. The choice of QP for frame n and for encoder i =
1, . . . , 3 is performed as follows

QPn,i =


QP0,i

QPn−1,i +∆QPi

QPn−1,i −∆QPi

if n = 0

if n%4 = 1, 2

if n%4 = 3, 0,

(4.20)

where n%4 is the remainder of the division of n by 4. The vector QP0 =
(24, 36, 40) contains the QPs of the first frame, and ∆QP = (4, 4,−4) is thevariation of QP. We also set wn,m = 1/Rn,m and α = λ1(WnX

T
nXn)/100 in Eq.
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3.10.
The interpolated bandwidth trace is used to simulate the transmission ofvideo packets in the network with a time period of 1millisecond, and by therate adaptation algorithms to get ameasurement of the current transmissionrate before selecting the encoding trate of each frame. All five rate adaptationalgorithms use the same bandwidth estimator for their decisions.

4.4.2 Reference Algorithms

The proposed encoding rate control algorithm is compared to four rate adap-tation algorithms from the literature: Festive [10], Panda [11], BOLA [12], andBBA [13]. To ensure fair performance comparison, all these algorithms havebeen adapted to operate at the server side and to adjust the target encodingrate at a frame level. All algorithms share the same R-(QP, D) model.
Festive and Panda, in their client-side implementation use a bandwidthestimator to predict the transmission rate from past downloads and adjustthe target encoding rate of the frame/chunk accordingly. Festive decreasesthe target encoding rate as soon as a reduction of the transmission rate isdetected, and increases the encoding rate slowly when the transmission rateimproves. Contrarily, Panda increases the encoding rate more aggressivelywhen an improvement in the transmission rate is detected. Panda and Fes-tive have been implemented as specified in [10] and [11] respectively. Both al-gorithms have been implemented on the server side. The bitrate of the videois adjusted at the frame level by selecting the target frame encoding rate con-sidering the last available measurement of the transmission rate from thebandwidth trace.
BOLA, in its client-side implementation [12], selects the target encodingrate of each frame according to the level of the client reception buffer. Asthe throughput of the network varies, BOLA uses Lyapunov optimization tomaximize video quality and minimize rebuffering events at the client-side. Inthe proposed server-side variant of BOLA, the server estimates the level ofthe reception buffer of the client. For that purpose, the playback delay ∆p isassumed constant during the streaming session. Neglecting packets in theaccess and core networks, the number of frames Qc,n in the client buffer is
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estimated from the number of frames Qt,n in the transmission buffer as{
Q̂c,n =

∆p
Tf −Qt,n if nTf > ∆p

Q̂c,n = n–Qt,n otherwise. (4.21)
Q̂c,n is then used by BOLA to adjust the encoding rate of each frame at serverside. The same logarithmic utility and cost functions proposed in [12] are usedfor the considered implementation of BOLA.Festive, Panda, and BOLA were originally designed to select a target en-coding rate in a discrete set of rates. Since the proposed algorithm selectsa target rate from a continuous interval, a large number of target bitrateshas been considered for the other algorithms to mimic a continuous targetbitrate selection. Consequently, 30 target bitrates uniformly spaced in a log-arithmic scale between 145 kbps and 75 Mbps have been considered. Theserates have been chosen considering typical minimum and maximum avail-able transmission rates observed in the rate traces. Figure 4.4-a summarizesthe target encoding rates as a function of Q̂c,n obtained for BOLA.
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Figure 4.4: (a) Encoding rate index provided by BOLA as a function of Q̂c,n, the estimatednumber of frames in the client buffer; index 1 corresponds to 145 kbps, while index 30corresponds to 75 Mbps. (b) Encoding rate provided by BBA as a function of number offrames Qt,n of the transmission buffer, when ∆p/Tf = 5, Qmin = 1, Qmax = 4,
Rmin = 145 kbps and Rmax = 75 Mbps.

The encoding rate provided by BBA is selected based on the levelQt,n of thetransmission buffer. A maximum encoding rate Rmax is chosen by BBA when
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Qt,n ∈ [0, Qmin] (i.e. the client buffer contains many frames) and a minimumencoding rate Rmin is chosen when Qt,n ∈
[
Qmax,∆p/Tf

] (i.e. the client bufferis almost empty). In the interval [Qmin, Qmax], the encoding rate decreaseslinearly with Qt,n, see Figure 4.4-b. The choice of the values of Qmin, Qmax,
Rmin, and Rmax depends on the application and impact directly the QoE. Inour experiments, we set Qmin = 0.2∆p/Tf and Qmax = 0.8∆p/Tf. Rmin and
Rmax are chosen as 145 kbps and 75 Mbps, respectively. For instance, with
∆p = 200 ms and Tf = 40 ms, Qmin = 1 frame, Qmax = 4 frames and BBAselects a conservative encoding rate when the client buffer contains less thanone frame.The R-(QP, D) model is used by all rate adaptation algorithms to obtain thetarget QP of each frame from the selected target encoding rates.
4.4.3 Evaluation Metrics

All encoding rate control algorithms have been compared based on the fol-lowing metrics, also used in [56].One considers the average PSNR over all frames
P =

1

N

N−1∑
n=0

Pn, (4.22)
where N is the number of frames in the sequence, and Pn is the PSNR in dBof the displayed frame n compared to the original frame n. The average PSNRvariation is evaluated using the mean absolute value of the PSNR differencebetween two consecutive frames

|∆P | = 1

N − 1

N−1∑
n=1

|Pn − Pn−1| . (4.23)
Finally, one also considers the number of lost frames L during the streamingsession.
4.4.4 Performance analysis of the proposed MPC algorithm

First, the performance of the proposed model predictive rate control algo-rithm is evaluated for different values of the initial playback delay∆p ranging
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from 120ms to 240ms, and different target playback margins τ ∗. Results aredescribed for the Park Joy sequence. Similar results are obtained for the othersequences.
Tables 4.2 and 4.3 summarize the obtained results at resolutions 640×360and 1280× 720 respectively.
First, as expected, a larger playback delay (∆p = 200 ms or ∆p = 240 ms)leads to fewer losses, since transmission rate variations are better handled.Similarly, large values of τ ∗ provide also better performance. For example,when ∆p = 200 ms and τ ∗ = 160 ms, the control is performed so as to pro-vide four frames in the client buffer. In such a regime, the MPC algorithmmanages to adjust the bitrate of the frames without causing any frame loss.Nevertheless, large values of τ ∗ lead to conservative encoding rate selections,which decreases the average PSNR of the decoded video.
When τ ∗ is too small, frames may be lost. The MPC algorithm becomesless conservative and tries to better exploit the available transmission rate byencoding frames with a higher bitrate. Nevertheless, due to the inaccuracy ofthe R-(QP, D) model, the bitrate of the encoded framemay be higher than thetarget bitrate. Similarly, the transmission rate considered for the encodingrate selection may be larger than the actual transmission rate, which inducesa larger transmission delay than expected. The playback margin τ ∗ aims atcompensating these discrepancies. For a video at 1280 × 720, τ ∗ = 80 msprovides good results even with a very small end-to-end playback delay of

∆p = 120ms.

∆p (ms) 120 120 120 160 160 160 160 160 200 200 200 200 200 240 240 240
τ ∗ (ms) 20 40 80 10 20 40 60 80 20 40 80 120 160 20 40 80
P 33.39 33.01 29.89 25.21 34.26 34.25 34.15 33.37 34.17 34.27 34.25 33.37 29.92 31.32 34.29 34.27
|∆P | 0.95 1.25 1.20 1.05 0.92 0.92 0.95 1.24 0.93 0.92 0.93 1.24 1.23 0.93 0.92 0.91
L 3 2 0 63 1 0 0 0 1 0 0 0 0 16 0 0
Table 4.2: Performance of the MPC algorithm for Parkjoy at resolution 640× 360 considering
P , the average PSNR in dB, |∆P |, the average of the absolute value of the PSNR variation ofconsecutive frames in dB, and L the number of lost frames.
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∆p (ms) 120 120 120 160 160 160 160 160 200 200 200 200 200 240 240 240
τ ∗ (ms) 20 40 80 10 20 40 60 80 20 40 80 120 160 20 40 80
P 22.32 25.37 24.06 20.77 23.11 25.18 26.85 26.29 24.56 26.83 27.02 26.29 24.07 23.43 26.69 27.15
|∆P | 0.88 0.82 0.53 0.85 0.73 0.69 0.73 0.77 0.70 0.63 0.66 0.77 0.54 0.73 0.64 0.61
L 65 20 0 98 44 14 3 0 38 6 1 0 0 54 8 0
Table 4.3: Performance of theMPC algorithm for Park Joy at resolution 1280×720 considering
P , the average PSNR in dB, |∆P |, the average of the absolute value of the PSNR variation ofconsecutive frames in dB, and L the number of lost frames.

Figures 4.5-a , 4.5-b, show the evolution of the target and actual encodingrates for the Parkjoy sequence at resolution 640× 360 when τ ∗ = 40ms. Fig-ures 4.6-a and 4.6-b show similar results for the same video sequence when
τ ∗ = 160ms.

Imposing a large τ ∗ implies a conservative use of the channel capacity:When τ ∗ = 160ms, the selected target rate is always less than the transmis-sion rate. Conversely, when τ ∗ = 40 ms, see Figure 4.5, the target encodingrates selected by the MPC approach are close to the available transmissionrates. Smaller values of τ ∗ lead to a better exploitation of the available chan-nel capacity.
Figure 4.6-d shows that the client buffer contains about 4 frames all thetime when τ ∗ = 160 ms, thus setting large τ ∗ provides large margin to reactto sudden drops of the transmission rate. Conversely, as shown in Figure 4.5-d, the client buffer contains only 1.5 frames when τ ∗ = 40 ms. Accordingly,

τ ∗ should be chosen as a trade-off between bandwidth exploitation and aprotection against sudden drops of the transmission rate.
Figure 4.5-e shows the evolution of the estimated and actual values of τ ,as well as the estimated and actual values of the flushing delay of the trans-mission buffer Tb,n , when ∆p = 200 ms and τ ∗ = 40 ms. Figure 4.6-e showssimilar results when τ ∗ = 160 ms. The estimates of τ and Tb,n are quite ac-curate when using the last measure of the transmission rate as described in4.5-f and 4.6-f. The proposed algorithm has difficulties to maintain the actualvalue of τ at the level of the target playback margin τ ∗ when τ ∗ is too smallor too close to ∆p due to coded packets stored at the transmission bufferand packets passing through the network. The time required to transmit thepackets varies due to the estimation error of Ĉn used in the determination ofthe target frame encoding rate R∗

n.
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Figure 4.5: Proposed approach: Evolution of the target rates and transmission rates (a),actual frame encoding rates (b), transmission buffer level (c), client buffer level (d), actualand estimated value of τ (e), actual and estimated values of Tb,n (f) for the Park Joysequence at 640× 360 when ∆p = 200ms and τ ∗ = 40ms.
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Figure 4.6: Proposed approach : Evolution of : the target rates and transmission rates (a),actual frame encoding rates (b), transmission buffer level (c), client buffer level (d), actualand estimated value of τ (e), actual and estimated values of Tb,n (f) for the Park Joysequence at 640× 360 when ∆p = 200ms and τ ∗ = 160ms.

92



4.4.5 Performance comparisonwith state-of-the-art referencealgorithms

The proposed rate control algorithm is compared to Festive [10], Panda [11],BOLA [12], and BBA [13]. Results are average over ten transmission episodesfor each video sequence. Each episode considers a different initial time in-stant in the considered bandwidth trace. The initial playback delay is set to
∆p = 200ms for all algorithms. For the proposed algorithm, the target play-back margin is set to τ ∗ = 50ms when the frame resolution is 640× 360 andto τ ∗ = 80ms when it is 1280× 720.Table 4.4 summarizes the results obtained with each rate control algo-rithm and when the frame size is 640× 360 and 1280× 720.The proposed algorithm provides the best performance in terms of aver-age PSNR and lost frames for all tested video sequences in both resolutions.The largest frame loss for the proposed algorithm is obtained with the Park
Joy sequence at resolution 1280 × 720, where 5 frames are lost among 3000transmitted frames. The cause of a larger number of lost frames is due to areduced accuracy of the R-(QP, D) model for some frames. The model accu-racy decreases when time variations in the video sequence are high. Due tothe large activity in the video sequence, it is challenging to iteratively estimatethe parameters of the R-(QP, D) model.The price to be paid is a relatively large variability with time of the PSNRof encoded frames. The smallest variability in PSNR is obtained by Pandaand Festive, which are both bandwidth-based algorithms. They select theencoding rate based on available transmission rate only. On the contrary, theother algorithms try to stabilize buffer levels. This creates oscillations of theencoding rates and then of the PSNR. The proposed algorithmhas an averagePSNR variation less than that of BOLA. This variation is for most sequencesless than 1 dB, which is usually unnoticeable by observers.Compared to the proposed algorithm, BOLA achieves a slightly lower aver-age PSNR quality and more lost frames. When BOLA achieves 0 lost frames,it comes at the cost of a lower average PSNR and larger PSNR variations.The BBA algorithm has the worst performance as it tends to be too aggres-sive by selecting a high encoding rate when the buffer level allows it. Thiscauses a large number of frame losses, especially when the R-(QP, D) modelis less accurate. The variations of the PSNR when using BBA is usually smaller
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640× 360 1280× 720

Sequence Method L P |∆P | L P |∆P |CrowdRun MPC 0 33.35 0.55 0 28.26 0.30BBA 1 33.25 0.35 0 28.25 0.18Festive 6 29.92 0.17 0 26.90 0.13Panda 0 30.80 0.16 0 26.86 0.13BOLA 0 32.99 1.25 0 28.15 0.46ParkJoy MPC 0 34.27 0.92 5 27.03 0.65BBA 5 32.97 0.59 20 26.81 0.62Festive 0 31.86 0.27 7 24.93 0.42Panda 0 31.74 0.27 5 24.90 0.42BOLA 0 33.84 1.27 1 26.28 0.71Magnycours MPC 0 46.42 0.35 1 40.26 0.42BBA 131 34.77 0.26 232 24.54 0.18Festive 0 45.96 0.12 70 36.50 0.27Panda 0 46.02 0.12 69 35.20 0.25BOLA 0 46.13 0.85 9 33.00 0.34TouchDownPass MPC 1 44.58 0.61 0 40.14 0.46BBA 95 27.98 0.64 34 37.26 0.40Festive 36 37.99 0.32 6 38.73 0.33Panda 24 40.20 0.27 0 38.74 0.32BOLA 0 44.38 0.92 0 39.74 0.50DaylightRoad2 MPC 0 44.32 0.33 0 40.10 0.26BBA 0 44.31 0.19 0 40.09 0.14Festive 0 42.87 0.11 0 38.87 0.08Panda 0 42.72 0.11 0 38.79 0.08BOLA 0 44.10 0.88 0 39.93 0.55KristenandSara MPC 0 48.28 0.08 0 44.18 0.24BBA 0 48.27 0.07 0 44.17 0.13Festive 0 47.64 0.09 0 43.43 0.09Panda 0 47.58 0.09 0 43.38 0.09BOLA 0 48.20 0.10 0 44.05 0.30
Table 4.4: Average performance of the proposed algorithm compared to Festive [10], Panda[11], BOLA [12], and BBA [13] when the videos have a resolution of 640 × 360 and 1280 × 720;
L is the number of lost frames, P is the average PSNR in dB, and |∆P | is the average of theabsolute value of the PSNR variation of consecutive frames in dB
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than those of observed with BOLA and the proposed approach.
Table 4.5 summarizes the performances of the tested bitrate adaptationalgorithms in terms of the average SSIM of the received sequences, the SSIMvariations, and the VMAF score for the tested video sequences. Wenotice thatour proposed algorithm provides the best performance in terms of averageSSIM and VMAF scores for the most of the tested video sequences in bothresolutions. The proposed MPC algorithm has an SSIM variance with timeslightly larger than Panda and Festive. The buffer-based algorithms Bola andBBA have the highest SSIM variance inmost of the cases. This large variabilityof the SSIM is due to frequent oscillation of the selected frame target encod-ing rate to stabilize buffer levels. Finally, our algorithm provides the highestVMAF score, indicating the best video quality compared to that provided bythe other tested bitrate adaptation algorithms. BBA algorithm has the worstrecorded VMAF scores. This is because of the frequent oscillations in the tar-get encoding rate and a large number of frame losses.
Figure 4.7 illustrates the evolution with time of the transmission rate, thetarget encoding rate, and the actual encoding rate for the considered en-coding rate adaptation algorithms in the second transmission episode of the

DaylightRoad2 video sequence. Festive and Panda have close behavior in theselection of the target encoding rate. These two rate-based approaches areconservative and select a target encoding rate lower than channel transmis-sion rate. BOLA leads to large rate oscillations. This explains the fact thatBOLA has the largest average PSNR variations. The proposed approach andBBA have an overall similar behavior, even if the proposed approach followsbetter the variations of the channel capacity compared to BBA. In addition,BBA leads to slightly larger oscillations of the PSNR. This has been verifiedwith the other transmission episodes and the other video sequences.
Figure 4.7 illustrates also the accuracy of the R-(QP, D) model: in most ofthe cases, the actual encoding rate is relatively close to the target encodingrate. This shows that the value of QP determined from the model providesan actual encoding rate close to the encoding rate predicted by the model.
Figure 4.8 shows the evolution of the transmission and client buffer lev-els for the considered rate adaptation algorithms in the same transmissionepisodes. Festive and Panda, the two rate-based algorithms, keep the client
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640× 360 1280× 720

Sequence Method L
averageSSIM SSIMvariation VMAFscore L

averageSSIM SSIMvariation VMAFscore
CrowdRun MPC 0 0.9276 0.0040 96.85 0 0.8213 0.0057 79.08BBA 1 0.9276 0.0029 96.80 0 0.8209 0.0038 79.04Festive 6 0.8931 0.0019 91.83 0 0.7806 0.0031 69.97Panda 0 0.8911 0.0020 91.45 0 0.7799 0.0032 69.74BOLA 0 0.9264 0.0091 95.87 0 0.8195 0.0087 78.24ParkJoy MPC 0 0.9311 0.0053 96.54 5 0.8061 0.0113 76.25BBA 5 0.8913 0.0119 88.62 20 0.7995 0.0114 74.19Festive 0 0.9002 0.0026 92.58 7 0.7366 0.0111 60.10Panda 0 0.8983 0.0026 91.49 5 0.7351 0.0112 60.08BOLA 0 0.9296 0.0075 95.97 1 0.7873 0.0141 71.49Magnycours MPC 0 0.9881 0.0007 99.26 1 0.9658 0.0017 95.80BBA 131 0.8522 0.0034 31.68 232 0.7800 0.0070 61.59Festive 0 0.9870 0.0004 99.12 70 0.9229 0.0028 91.20Panda 0 0.9874 0.0004 99.16 69 0.9183 0.0027 91.05BOLA 0 0.9876 0.0016 99.11 9 0.9234 0.0023 95.19TouchDownPass MPC 1 0.9834 0.0017 99.40 0 0.9528 0.0036 95.33BBA 95 0.7821 0.0192 23.60 34 0.9152 0.0047 16.45Festive 36 0.9029 0.0049 69.72 6 0.9364 0.0038 77.34Panda 24 0.9286 0.0028 79.08 0 0.9368 0.0037 67.69BOLA 0 0.9822 0.0026 99.27 0 0.9491 0.0040 64.55DaylightRoad2 MPC 0 0.9859 0.0007 99.75 0 0.9671 0.0011 76.25BBA 0 0.9859 0.0005 99.74 0 0.9671 0.0007 74.19Festive 0 0.9824 0.0003 99.70 0 0.9605 0.0005 60.10Panda 0 0.9819 0.0003 99.67 0 0.9602 0.0006 60.08BOLA 0 0.9856 0.0017 99.69 0 0.9635 0.0025 71.49KristenandSara MPC 0 0.9918 0.0001 98.38 0 0.9806 0.0007 97.75BBA 0 0.9918 0.0001 98.38 0 0.9806 0.0004 97.75Festive 0 0.9911 0.0001 98.30 0 0.9787 0.0003 97.42Panda 0 0.9911 0.0001 98.30 0 0.9786 0.0003 97.39BOLA 0 0.9917 0.0001 98.36 0 0.9802 0.0008 97.64
Table 4.5: Average performance of the proposed algorithm compared to Festive [10], Panda[11], BOLA [12], and BBA [13] in terms of the average SSIM of the received sequences, the SSIMvariability with time, and the VMAF score.
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Figure 4.7: Evolution of the transmission rate, the selected target rate, and the actualencoding rate for the proposed algorithm, Festive [10], Panda [11], BOLA [12], and BBA [13] inthe second transmission episode of the DaylightRoad2 sequence at resolution 640× 360,when ∆p = 200ms and τ ∗ = 50ms.
buffer level high. This is due to their conservative behavior, where the en-coding rate is selected to avoid an empty client reception buffer. Conversely,the buffer level with BOLA oscillates as the selected target rate is continu-ously changing. In addition, as BOLA is less conservative, the buffer level hasa lower value than with Festive or Panda. The buffer level of BBA oscillatesaround the same value than that obtained by the proposed approach, butthe latter is much more stable.

4.5 Conclusions

This chapter presents a new rate adaptation algorithm for low-latency videostreaming applications. The proposed approach employs the MPC frame-work. It exploits the transmission buffer level and an estimate of the wire-
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Figure 4.8: Temporal variations of the client buffer level and the transmission buffer levelfor the the proposed MPC algorithm, Festive [10], Panda [11], BOLA [12], and BBA [13] in the2nd transmission episode of DaylightRoad2 sequence at resolution 640× 360, when
∆p = 200ms and τ ∗ = 50ms.
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less transmission rate to determine the target encoding rate of each frame.The choice of the quantization parameter for each frame is performed viaan R-(QP, D) model, able to predict the size of the current encoded frame asa function of its quantization parameter and the distortion of the previousframe.The performance of the proposed rate adaptation approach is comparedto four reference algorithms considering a streaming applicationwith an end-to-end latency less than 200 ms. The proposed approach outperforms thesealgorithms in both average PSNR and frame losses. The price to be paid is aslightly larger variability with time of the PSNR of each frame.The performance of the proposedmodel depends on the estimation qual-ity of the transmitter buffer level and of the transmission rate. Using mea-surements acquired using tools such as GNetTrack Pro, this information isonly available with a period of about one second. Tools such as QXDM [79]orMobileInsight [80], give access tomessages excahnged at the PHY andMAClayer of the proptocol stack and are able to provides such information with ahigher frequency.In the next chapter, we approach another component of the transmissionchain that significantly affects the transmission latency. The video encoderused in live streamingmust be able to encode the video frames on the fly. i.e.,the encoding time of the frame must not exceed the frame acquisition time.However, the newly Versatile Video Coding (VVC) encoder entails significantcomputational complexity as it contains various encoding tools designed forhigh-resolution content. Hence, we propose an optimization framework totune the VVC encoder for low-resolution and low-bitrate scenarios by identi-fying a set of coding tools whichmay be disabled without harming the codingefficiency.
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Chapter 5

Reducing the complexity of VVC for low
bitrate applications

5.1 Introduction

The new Versatile Video Coding (VVC) standard [27] further reduces the sizeof the video files beyond the capabilities of the High Efficiency Video Coding(HEVC) standard [24] without compromising their quality after compression.Compared toHEVC, VVC generates half the amount of data for the samePSNRquality of the video. This feature is decisive, especially for low-latency stream-ing, as it can reduce the transmission delay of a video coded in the sameHEVCquality.
Nevertheless, while VVC is mainly focused on high resolution content, effi-cient video compression solutions are also requested for streaming videos oflower resolutions (less than HD) over unstable bandwidth-limited networks.Indeed, whereasHD video is now the standard on the Internet, low-resolutioncontents are still used in both live and Video on demand (VOD) streaming, es-pecially 480p and 360p.
We specifically consider use cases such as the acquisition and live stream-ing of low-resolution (less than HD) sport events (e.g., car races and sailingraces) over unstable wireless networks including LTE and satellite transmis-sions. For such use cases, transmission bandwidth is typically in the range of50Kbps to 1Mbps. Moreover, low computational complexity and low powerconsumption solutions are highly desired for acquisition devices and embed-ded systems used to capture video content in sports events.
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In the low latency streaming scheme introduced in Chapter 4, the acqui-sition device includes a camera and a computer that hosts both the encoderand the bitrate control algorithm. The acquisition device is generally onboarda vehicle or carried by a moving agent. It is usually equipped with an externalbattery of limited capacity. Thus, we have to minimize energy consumption.In addition, the encoder must code the frame in real-time and add a limiteddelay to the transmission chain. This is ensured by software or/and hardwareoptimization as it is present in x265. We also assume that the onboard com-puter is backed with sufficient calculation capacity to run the rate adaptationalgorithm in real-time.
The current design of the VVC encoder is unfortunately unsuited with ouruse case. More precisely, a variety of encoding tools designed for HD andUHD contents are not optimal for lower resolutions and low bitrates, andthey may entail a significant burden in terms of computational complexity.
In this chapter, we propose an optimization framework to tune VVC forlow-resolution and low-bitrate scenarios. More specifically, we investigatethe usefulness of some of the new coding tools in VVC. We experimentallyshow that significant complexity reduction can be achieved by disabling someof these tools while preserving coding efficiency.
To the best of our knowledge, this was the first study to investigate com-plexity reduction of the VVC at low resolutions and low-bitrates before theend of standardization work by the end of 2020. The experimental part ofthis work was performed using the VVC test model 5 (VTM5.0) as it was thelatest VVC coding software available at the time of this work. VTM5.0 has beensuperseded by VTM10.0, which kept most of the coding tools investigated inthis work. Accordingly, similar results may be observed considering VTM10.
The contributions of this chapter are the following:
• In Section (5.2), we provide a brief overview of the technical features andthe coding tools of VVC Test model 5 (VTM5.0).
• In Section (5.4.2) we present amethodology used to identify the subset ofcoding tools that may be disabled in low-resolution and low-bitrate usecases. Our method provides a significant reduction in terms of codingcomplexity, while preserving compression efficiency
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• In Section (5.5) we use our method to identify the best coding tools todisable in 7 video sequence and three resolutions. Then, we identify asubset of the common tools to disable in each resolution.
The experiments show that significant complexity reduction can be achievedby disabling some coding tools, while preserving coding efficiency, e.g., up to
56.06% reduction for Johnny sequence at 384 × 216 resolution with less than
1.88% increase in BDrate. In addition, a set of coding tools that can be disablein each resolution for all video sequenceswas identified. These tools achieves
35% of complexity reduction in general with less than 2% increase in BDrate.

5.2 OverviewofVersatile VideoCoding TestModel 5 (VTM5.0)

The new video coding standard VVC [25] provides significant improvement incompression performance over the existing HEVC standard, with a up to 40%bitrate saving for High Definition (HD) and Ultra-High Definition (UHD) videocontent. The requirements for VVC include capabilities of encoding 4K and8K sequences at up to 120 fps [28]. In what follows, the main coding tools ofVTM5.0 in each module are overviewed [81].

5.2.1 Partitioning

Each frame is divided into a sequence of coding tree units (CTUs) just as inthe HEVC standard, although the maximum size of the Luma CTU is up to
128 × 128. For each CTU, a Quad-Tree with nested Multi-Type Tree (MTT) us-ing Binary and Ternary splitting structures is used (QTBT-TT). The CTU is firstpartitioned recursively using a quad-tree structure into square shapes. Then,the quad-tree leaf nodes can be further partitioned horizontally or verticallyby a binary or ternary splitting structure. The final nodes are called CodingUnits (CUs). They have either a square or rectangular shape and are useddirectly for prediction and residual coding without any further partitioningunless the CU is too large for the maximum transform length. Lastly, I-slicescan have separate block tree structures for Luma and Chroma (DualTree).
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5.2.2 Intra-Picture Prediction

VTM5.0 supports 65 angular intra-predictionmodes, in addition to the planarand DC modes. Some conventional angular modes are replaced with wide-angle intra-predictionmodes for the non-square blocks. AMultiple ReferenceLine (MRL) intra prediction is also proposed to use two additional lines (ref-erence line 1 and reference line 3) in angular prediction. VTM5.0 also extendsthe Most Probable Modes (MPM) list to 6 candidates. For interpolating theluma samples, two sets of 4-tap filters are used. The first set of filters cor-responds to the DCT-based filters applied in chroma motion compensation,while the others are reference smoothing filters. For chroma components,VVC uses only 2-tap linear interpolation.
VTM 5.0 introduces three new ways of Intra predicting a block:
1. The Cross-Component Linear Model (CCLM) prediction mode, in whichthe Chroma samples are predicted based on the reconstructed Lumasamples of the same CU, using a linear model,
2. The Intra Sub-Partitions (ISP) where the Luma coding block is verticallyor horizontally divided into 2 or 4 sub-partitions. All sub-partitions sharethe same intra mode, however the processing is performed graduallysub-partition by sub-partition downwards (horizontal split) or rightwards(vertical split), so each sub-partitions uses the previous reconstructedsamples to generate the prediction of the current sub-partition,
3. The Matrix-based Intra Prediction (MIP) takes one line of reconstructedneighboring samples, from the left and above blocks as input vectors,and performs a matrix-vector multiplication between this vector con-structed from the reference samples and a matrix selected from a setof pre-defined matrices. Finally, a linear interpolation in the vertical andhorizontal directions is executed to get the predicted samples. MIP isapplied only for luma blocks, but it can also be applied to chroma blocksin the case of 4:4:4 chroma sampling frames.
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5.2.3 Inter-Picture Prediction

Motion prediction is performed at a sub-CU level to improve the precision.VTM 5.0 supports currently a Sub-Prediction Unit Temporal Motion VectorPrediction (SbTMVP) that includes a subblock merge mode applied to CUswith both width and height larger or equal to 8 luma samples. The MVs inthis case are determined from a particular reference picture called the collo-cated picture. Furthermore, an AFFinemotion compensation prediction (AFF)can be applied to cope with irregular motions like zoom in/out and rotation,where a sub-block is described by two or three motion vectors.
The bi-prediction mode is extended beyond simple weighted averaging,by using up to five predefined weights (Generalized Bi-prediction (GBI)). Apixel levelmotion refinement (Bi-Directional Optical Flow (BDOF))may be per-formed on top of the merge mode or AMVP mode to improve bi-predictionat the decoder side. In order to increase the accuracy of the MVs of themerge mode, a refined operation may be performed around the initial MVsin both reference picture lists L0 and L1 using the Decoder sideMotion VectorRefinement (DMVR). Motion vectors are stored at 1/16th-Luma-sample preci-sion for Luma. In addition, the Adaptive Motion Vector Resolution (AMVR)allows the Motion Vector Difference (MVD) of the CU to be coded in one ofthe three resolutions: Quarter-luma-sample, Integer-luma-sample, and Four-luma-sample (or 1/16 luma-sample in AFF).
Finally, the VTM 5.0 inter coder introduces these new concepts:
1. The Triangular prediction (Triang) in which a CU may be further splitinto two triangular units, in either diagonal or inverse diagonal direction.Each of the two units is predicted using its own Uni-directional MV,
2. Combined Inter and Intra Prediction (CIIP) is proposed to improve theIntra mode in inter pictures, by combining the decided Intra mode withan extra merge indexed prediction,
3. Merge withMVD scheme (MMVD) is used for skip andmergemodes witha new motion vector expression method with simplified signaling: Theexpression method includes starting point, motion magnitude, and mo-tion direction,
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4. Symmetric MVD (SMVD), which derives the MVD of reference list 1 fromreference list 0, basedon the assumptionof linearmotion in bi-predictionmode.
5.2.4 Quantization

The maximum Quantization Parameter (QP) is extended from 51 to 63, anda new concept of quantization is introduced: The Dependent Quantization(DepQuant), in which the reconstruction value for a transform coefficient de-pends on the value of the transform coefficient that precedes it in the recon-struction order.
5.2.5 Transform

Large block-size transforms of up to 64x64 pixels are used. High-frequencytransform coefficients are zeroed out, so that only the lower-frequency coef-ficients (top-left 32× 32 block) are retained. VTM 5.0 uses Enhanced MultipleTransform (EMT), where two new transform matrices are added in additionto DCT-II, namely the DST-VII and the DCT-VIII. Moreover, to reduce the sizeof the matrices of transformed coefficients, a Low-Frequency Non-SeparableTransform (LFNST) is applied between transformand quantization at encoderand between de-quantization and inverse transform at decoder side. For aninter-predicted CU, the Sub-Block Transform for inter blocks (SBT) may beused instead of EMT to code only a part of the residual block with inferredadaptive transform and the other part of the residual block is zeroed out.
5.2.6 In-loop Filtering

Besides deblocking filter and Sample Adaptive Offset (SAO) used in HEVC, theAdaptive Loop Filter (ALF) is applied at the decoder side directly on the re-constructed samples of the SAO process, where one filter among 25 filters isselected for each 4× 4 luma block and another filter among 8 filters for each
4 × 4 chroma block, based on the direction and activity of local gradients.ALF also enhances the reconstructed video at the encoder side using 7 × 7diamond-shaped filters for luma and a similar 5× 5 filter for chroma.
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Finally, Luma Mapping with Chroma Scaling (LMCS) is performed beforethe in-loop filtering. This tool adjusts the input luma signal by redistribut-ing it across the dynamic range using a piecewise linear mapping functionand scales the chroma residuals according to the average value of the corre-sponding luma samples.
5.2.7 Entropy Coder

VVC still uses the sameentropy codingmethodused inHEVC (Context-adaptivebinary arithmetic coding (CABAC)), but with some changes: The CABAC engineuses a 2-state model with variable probability updating window sizes, insteadof the pre-computed LUT of the HEVC. The transform coefficients within a Co-efficient Group (CG) are coded according to pre-defined scan orders in fivepasses. And finally, the selected probability model and binarization modelsdepend on the local neighborhood, where the template used to specify thelocal neighborhood is defined by the 5 nearby samples in the left-bottom ofthe current coefficient. For more information about VVC CABAC, refer to [81].
DualTree Separate Partitioning for Luma & Chroma in I-sliceCCLM Chroma prediction based on linear modelMRL Multiple Reference Line intra predictionMIP Matrix-based Intra predictionISP Intra Sub-PartitionsCIIP Combined Inter and Intra predictionSbTMVP Sub-Pu Temporal Motion Vector PredictionAFF AFFine inter motion compensationMMVD Merge with MVDSMVD Symmetric MVDTriang inter predictions for Triangular UnitsGBI Generalized Bi-predictionBDOF Bi-Directional Optical FlowDMVR Decoder Side Motion Vector RefinementAMVR Adaptive MV ResolutionEMT Enhanced Multiple TransformLFNST Low-Frequency Non-Separable TransformSBT Sub-Block Transform for inter blocksLMCS Luma Mapping with Chroma ScalingALF Adaptive Loop Filter

Table 5.1: Tools of VTM 5.0 considered in this work
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5.3 Main updates in VTM 10.0

Most of the coding tools reviewed in Section 5.2 have been kept for the finalversion of the VVC encoder, i.e., VTM10. In this section, we summarize theupgrades and new tools added to VTM10.
5.3.1 Partitioning

Specific binary and ternary splits are disallowed to enable blocks of size smalleror at least equal to 64 × 64. These block regions of a CTU are called VirtualPipeline Data Units (VPDUs) and are used in hardware video decoders for VVCto parallelize the decoding process and increase the throughput. The VPDUsize must not exceed 64 x 64 luma samples because the size of the memorybuffer in the pipeline stages is proportional to it.
5.3.2 Intra-Picture Prediction

In the intra-prediction module, The Position-Dependent Prediction Combina-tion (PDPC) is included in VTM10 while it was initially removed from version5.0 of VTM. This tool combines boundary reference samples with specific in-tramodes like planar, DC, and predefined angularmodes. PDPC combinationweights depend on the prediction mode and sample locations. In addition,minor changes have been made to the Multiple Reference Line (MRL). Thistool may use one or two non-adjacent samples lines as the reference line forintra-prediction. The non-adjacent reference line can be two or three linesaway from the current block. However, MRL can not be used with the planarmode and the PDPC.
5.3.3 Inter-Picture Prediction

TheMotion Vector Difference (MVD) can also be coded in a half-luma-sample.in this case, an alternative luma interpolation filter is used, in operation knownas switchable interpolation filter (SIF). VTM10 adds a new type of MV predic-tion in the merge mode and an AMVP candidate list called History-Based MVPrediction (HMVP), in addition to spatial and temporal neighbor MVs. HMVPallows VTM 10 to re-use the MVs of previously coded non-adjacent CUs to
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the list. Moreover, the first two existing candidates in the merge candidatelist can be combined to form a Pairwise Average MV Merge Candidate. TheMVD in Merge With MVD (MMVD) of VTM 10 can only be horizontal or verti-cal. Triang is replaced by Geometric Partitioning Mode (GPM), in which theCU is split into two parts by a straight line parameterized by an angle andan offset. Each partition inherits one MV from the merge candidate list, andthe final predicted block is generated by combining the two split blocks usinga predefined weighting matrix. Finally, Prediction Refinement With OpticalFlow (PROF) is used to adjust the prediction samples of 4 × 4 Luma subblocksresulting from the Affine prediction. It adds an offset derived based on thegradient around the prediction samples.
5.3.4 Quantization and Transform Coding

In addition to the transform tools of VTM 5.0, VTM 10 may use a SubblockTransform (SBT)Mode on residuals of inter-predicted CUs. SBT is applied onlyon a sub-partition of the CU and skips the remaining partition. This residualsubpartition can have half or one-quarter of the size of the CU. For intra-predicted CUs, 1D transforms are used with the ISP mode. Joint Coding ofChroma Residuals (JCCR) is a tool that derives residual blocks of both chromacomponents from only one residual chroma block. It exploits the quantizedchroma residual correlations to signal only one chroma component . Finally,QP values of the chroma components are derived from the QP of the corre-sponding luma block via look-up tables.
5.3.5 In-loop Filtering

VTM 10 applies a 3 × 4 diamond-shaped high-pass filter to luma samples foreach chroma component. After performing ALF, each chroma componentuses the filtered corresponding luma sample as a corrective offset. This toolis known as Cross-Component ALF (CC-ALF).
5.3.6 Screen Content Coding Tools

Screen Content Coding Tools is another set of coding tools that were nottested in this work but included in the VVC standard version. These tools
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are inspired by the HEVC RExt coding tools and used in VTM 10 to increasethe coding efficiency of the screen-captured content (e.g., in screen sharingapplications) and the computer-generated content (e.g., gaming applicationsand animation movies). In this category of tools, we find:
1. Intra-Picture Block Copy (IBC) is an old tool from HEVC that exploits re-peatedblock patterns inside the frameof a screen-capturedor computer-generated video. It simply copies a spatially neighboring block as theprediction of another block.
2. Block-Based Differential Pulse-Code Modulation (BDPCM) which is sim-ilar to Differential PCM used in the HEVC. BDPCM applies a DifferentialPulse-Code Modulation instead of transform coding on the samples re-sulting from horizontal or vertical intra-prediction.
3. In 4:4:4 chroma sampling, a samplemay be represented by an index intoa predefined palette table, and its quantized value is directly coded. Thistype of coding is known as Palette Mode. In addition, a switchable decor-relation to the YCgCo-R color space can be applied on CUs with 4:4:4chroma sampling in RGB color spaces using the Adaptive Color Trans-form (ACT) tool.
4. Finally, Transform Skip Residual Coding (TSRC) is used to skip the trans-form coding of the residuals as it was proved to bemore efficient in somecomputer-generated content.

5.4 Proposed methodology

Our aim in what follows is to identify the subset of coding tools of VTM 5.0that may be disabled in low-resolution and low-bitrate use cases, to providea significant reduction in terms of coding complexity, while preserving com-pression efficiency. This can be formulated as a constrained optimizationproblem, which is solved using a branch-and-prune approach. This techniqueidentifies the individual tools and their combinations that may be safely dis-abled, and those that have to be kept activated.
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5.4.1 Problem Formulation

Consider a set of video sequences V = {v1, . . . , vN}. The performance of avideo encoder can be measured by the rate R (in Kbps) required to store thecompressed videos, the resulting distortionD of the decoded videos (typicallymeasured using the weighted average PSNR of the three components Y, U,and V [34]), and the complexity C of the encoding process (approximatedby the run-time, measured in seconds). The values of the triple (R,D,C)depend on the input video sequence vn and on the encoding parameter vector
p =

(
p1, . . . , pnp

) of the video coder as follows
(R,D,C) = f (vn,p) , (5.1)

where f is some (unknown) nonlinear function describing the behavior ofthe considered video coder. The components of p represent the coder inputparameters, which may be adjusted to get different trade-offs betweenR,D,and C. The parameter vector pmay be partitioned into subvectors. Onemayidentify:
- pT representing binary-valued parameters indicating whether some toolsare activated or remain unused;
- pC representing a finite-valued of configuration inputs for the precedingtools, e.g., the TargetBitrate and InitialQP must be specified for the Rate Con-trol, both are integer values;
- pO corresponding to other parameters which do not belong to any tool,

e.g., GOP size and GOP type configurations.
To properly evaluate the performance of a coding tool, several target val-ues of the rate R have to be considered, which lead to associated values of

D and C.
In our work, we use the Bjontegaard Delta Rate (BDrate) [35] to evaluate theloss of a setP1 = {p(1)

1 , . . . ,p
(nDR)
1 } compared to another setP2 = {p(1)

2 , . . . ,p
(nDR)
2 }of values of the parameter vector.

The vectors p(i)
j ∈ Pj , j = 1, 2 share the same components pT,j,pC,j , and

pO,j , but take distinct QP values QP(i), i = 1, . . . , nDR, with nDR ≥ 4. Setsof parameter vectors Pj are called parameter configuration sets (PCS) in whatfollows.
111



Consider some reference PCSP , corresponding, e.g., to the best rate-distortioncompromise for a set of video sequences. Our aim is to find a PCSP such that
P = argmin

P
C (P) (5.2)

such that BDrate(v,P ,P) ⩽ ∆rate, (5.3)(
R(i), D(i), C(i)

)
= f

(
v,p(i)

)
,p(i) ∈ P

where ∆rate > 0 is the largest tolerated loss in terms of BDrate and C (P) =∑nDR
i=1C

(i). P is a PCS minimizing the complexity, while keeping good com-pression performance compared to the optimal parameter set.
5.4.2 Search for a good Parameter Configuration Set

In what follows, we propose amethod to solve the optimization problem (5.2)in an approximate way. Our approach concentrates on finding the subvector
pT,j indicating the activated and disabled tools.Consider p(i)T ∈ P , the parameter vectors indicating the set of tools acti-
vated in the reference PCS. First, onebuilds all candidate PCSP1,j = {p(1)

j , . . . ,p
(nDR)
j },

j = 1, . . . , n1 with subvectors p(i)T,j obtained by disabling a single tool activatedin p
(i)T , i.e., dH(p(i)T,j,p(i)T ) = 1, where dH is the Hamming distance.Only the candidate PCS such that (5.3) is satisfied are further considered,the others are pruned.Second, assuming that n′

1 ⩽ n1 PCS satisfy (5.3). These PCS are sorted:PCS with gains in terms of BDrate are sorted first, and then PCS with a good
complexity reduction and a small BDrate loss. Let P1 =

{
P ′

1,1, . . . ,P ′
1,n′

1

} be
the ordered set of these PCS. The PCS providing a gain in terms of BDrate(negative BDrate) are ordered first in P1 by decreasing BDrate gain. Then, thePCS providing a BDrate loss (positive BDrate) are ordered by decreasing valueof

λj =

(
C
(
P
)
− C (P1,j)

)
/C
(
P
)

BDrate(v,P ,P1,j)
,

where the numerator of λj is the relative complexity decrease provided bythe PCS P1,j.
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Third, the set P1 is split into two parts P2, containing the n2 ⩽ n′
1 first ele-ments of P1 and P3 containing the remaining elements. The set P2 containsthe most promising candidates PCS with a single tool disabled compared to

P . The greedy approach presented in Algorithm 1 is then used to combinecandidate PCS, i.e., disable more tools, while satisfying (5.3). In Algorithm 1,
assuming that P1 = {p(1)

1 , . . . ,p
(nDR)
1 } and P2 = {p(1)

2 , . . . ,p
(nDR)
2 }, the notation

P1 ∧ P2 corresponds to the PCS P3 = P1 ∧ P2 = {p(1)
3 , . . . ,p

(nDR)
3 } such that

p
(i)T,3 = p

(i)T,1 ∧ p
(i)T,2, with ∧ is the AND function.

Algorithm 1 Evaluating the best PCS
1: Input: P22: Output: P13: Initialization: extract P1, the first element of P24: while P2 ̸= ∅ do
5: Extract P2, the next element of P26: If C (P1 ∧ P2) ≤ C (P1) and BDrate(v,P ,P1 ∧ P2) ≤ ∆rate7: P1 = P1 ∧ P28: end while

Algorithm 1 progressively disable tools corresponding to the PCS in P2,starting with the most promising PCS. When disabling a tool results in a com-plexity reduction while satisfying (5.3), the PCS is updated. Tools, when dis-abled, do not reduce the complexity or lead to a large loss in BDrate are keptactivated.
Finally, a branch-and-prune approach presented in Algorithm 2 is consid-ered, starting from the PCS P1 provided by Algorithm 1 to select additionaltools to disable corresponding to PCS in P3. One tries first to disable a sin-gle additional tool from P1 corresponding to the various PCS in P3. All PCS

P ∈ P3 such that P1 ∧ P leading to a performance decrease compared to
P1 are discarded from P3. Then pairs, triples, etc. of PCS remaining in P3 areconsidered.

Let P2 the PCS (or combination of PCS) in P3 leading to the smallest valueof C (P1 ∧ P2) while BDrate(v,P ,P1 ∧ P2) ⩽ ∆rate. Then the PCS P = P1 ∧ P2is an approximate solution of (5.2).
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Algorithm 2 Branch-and-prune method
1: Input: P1 and P32: Output: P
3: Initialization: i = 1
4: while number of PCSs in P3 > 1 do
5: Build P, all combinations of i tools from P36: while P ̸= ∅ do
7: Extract P2, first PCSs in P
8: If C (P1 ∧ P2) ≥ C (P1) and BDrate(v,P ,P1 ∧ P2) ≥ ∆rate9: Discard P2 from P
10: EndIf
11: end while
12: Put all PCSs of P in P313: i = i+ 1
14: end while
15: Extract P2, the only PCS in P316: P = P1 ∧ P2

5.5 Performance evaluation

5.5.1 Experimental setup

We selected 14 JVET test sequences defined in the Common Test Conditions(CTC) [82], each of the sequences has at most 300 images. In a first phase, 7sequenceswere considered to apply our approach and identify the best PCSs.Then, in a second phase, tests are conducted on all sequences to evaluate theperformance obtained with the previously identified best PCSs.
All sequences have been temporally sub-sampled at 30 fps and spatiallysub-sampled using FFmpeg [83] resulting in frames of 384×216, 512×288, and

640×360 pixels. A Random Access (RA) configuration is selected according toJVET CTC [82] and QP values are chosen in {27, 32, 37, 42}. VTM 5.0 is used inthe experiments and run on a PC with 2 Intel Xeon CPU E5-2670 v3 24 cores @2.30 GHz running under Linux. The threshold ∆rate is fixed to 2% as we havenoticed that this loss is subjectively unnoticeable. The value of n2 helps toget a trade-off between complexity and accuracy in the search for P . Here,we take n2 = n′
1/2. The tools of VTM 5.0 considered in this work are listed inTable 5.1.
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DisabledTools BDrate % ∆C % λ
DisabledTools BDrate % ∆C % λ

DisabledTools BDrate % ∆C % λ

LMCS -0.42 10.77 - LMCS -0.40 13.28 - BDOF -0.29 13.20 -SMVD -0.01 8.30 - SMVD 0.02 8.98 422.56 SMVD -0.08 9.67 -AMVR -0.01 8.46 - MMVD 0.15 15.56 104.76 LMCS -0.07 9.85 -GBI 0.01 8.74 1544.07 BDOF 0.14 10.83 77.86 MMVD 0.10 15.67 161.51CIIP 0.03 7.98 271.58 ISP 0.37 20.55 55.37 CIIP 0.06 7.65 121.65MMVD 0.20 14.21 72.12 CIIP 0.14 7.46 52.16 AMVR 0.15 10.06 66.67AFF 0.29 16.59 57.98 AFF 0.58 19.87 34.48 AFF 0.58 18.72 32.06MIP 0.14 8.30 57.41 AMVR 0.26 8.60 33.43 Triang 0.41 11.39 28.00Triang 0.28 10.04 36.47 Triang 0.39 11.69 29.77 MIP 0.45 9.30 20.75MRL 0.20 7.23 36.01 SBT 0.31 6.72 21.92 SbTMVP 0.28 4.54 16.50SbTMVP 0.14 4.81 34.35 MIP 0.45 7.81 17.32 SBT 0.24 3.80 15.60SBT 0.07 1.64 24.45 MRL 0.39 6.38 16.27 EMT 0.42 6.05 14.49EMT 0.34 7.01 20.77 SbTMVP 0.32 5.08 16.04 GBI 0.69 9.71 14.04ALF 1.60 28.15 17.55 GBI 0.78 9.72 12.45 ISP 0.49 5.88 11.94LFNST 0.87 12.30 14.12 LFNST 1.07 12.89 12.03 LFNST 1.36 12.69 9.33BDOF 0.76 9.56 12.65 EMT 0.51 5.89 11.45 ALF 2.11 18.04 8.56ISP 0.55 6.35 11.59 ALF 1.98 20.55 10.38 MRL 0.74 5.81 7.87DMVR 0.59 5.30 8.95 CCLM 0.82 6.28 7.70 CCLM 0.88 5.46 6.18CCLM 0.79 5.94 7.50 DMVR 0.91 4.35 4.76 DMVR 0.78 4.48 5.72DualTree 0.29 -2.29 -7.94 DualTree 0.32 -1.71 -5.37 DualTree 0.70 -3.00 -4.32
Table 5.2: BDrate and complexity reduction ∆C in Johnny test sequence when disabling onetool at time

5.5.2 Analysis

In this section, we present experimental results in order to illustrate the pro-posed approach. Table 5.2 presents the detailed BDrate and complexity re-duction ∆C when disabling one tool at a time for the Johnny sequence ofresolutions 384× 216, 512× 288 and 640× 360. These percentages are calcu-lated relative to VTM 5.0 with all tools activated (a negative BDrate indicates again with respect to VTM 5.0).
From Table 5.2, one observes that disabling tools related to interframecoding (e.g., AFF, MMVD, and Triang in resolutions 384×216) and inloop filter-ing (ALF, LMCS) leads to significant gains in complexity. Other tools related totransform operations such as LFNST and EMT also lead to a significant com-plexity decrease. Disabling a tool can sometimes lead to an improved BDratewhen operating at low resolutions and low bitrates, such as LMCS, SMVD andAMVR.
Table 5.3 shows the BDrate and complexity reduction∆C for the best com-bination of disabled tools obtained applying the method described in Sec-tion 5.4.2 for seven test sequences and three resolutions. When several toolsare disabled, the complexity gains accumulate in most of the cases. Never-
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Resolution Video R Kbps BDrate % ∆C % Disabled Tools

384× 216

Johnny 18-72 1.88 56.06 LMCS GBI LFNST MMVD MIP CIIPSMVD MRL SBT Triang AFF AMVR SbTMVPBasketball 48-368 1.97 37.07 LMCS GBI LFNST EMT MIP CIIP SMVDDaylightRoad2 48-367 2.00 48.91 LMCS GBI LFNST MMVD EMT MIP CIIPMRL SBT TriangBQMall 50-331 1.98 44.93 LMCS GBI MMVD EMT MIP CIIP SMVD AFF CCLMDrums 89-538 1.74 43.27 LMCS GBI LFNST EMT MIP CIIP SMVD MRL AFF SbTMVPRaceHorses 50-403 2.00 38.82 LMCS GBI LFNST MMVD EMTMRL SBTKimono 27-271 1.91 51.21 LMCS GBI LFNST MMVD EMT SMVD MRL AFF ISPAverage - - 1.93 45.75 -

512× 288

Johnny 23-102 1.97 57.01 LMCS CIIP MMVD AFF Triang SBT ISP BIO AMVRBasketball 75-576 1.81 35.25 LMCS CIIP EMT LFNST SMVD MRL MIP SBTDaylightRoad2 75-575 1.88 48.37 LMCS CIIP EMT LFNSTMMVD MRL MIP GBI Triang SBTBQMall 71-477 1.82 34.92 LMCS CIIP EMT MMVD SMVD MRL GBI CCLMDrums 125-661 2.00 35.25 CIIP EMT LFNST SMVD AFF CCLM SbTMVPRaceHorses 78-763 1.79 34.34 LMCS CIIP EMT LFNST SMVD AFF CCLM SbTMVPKimono 41-427 1.84 47.78 LMCS CIIP EMT LFNST MMVD SMVDMRL ISP AFF IMVAverage - - 1.87 41.85 -

640× 360

Johnny 30-148 1.92 55.24 LMCS MIP SMVD CIIP MMVD AFF Triang AMVR BIOBasketball 99-700 1.89 32.45 LMCS MIP SMVD EMT LFNST SbTMVPDaylightRoad2 100-702 1.89 41.68 LMCS MIP SMVD MRL GBI EMT MMVD LFNST SBTBQMall 95-639 2.00 36.99 LMCS MIP SMVD MRL GBI EMT MMVD CCLMDrums 164-789 1.83 41.26 LMCS MIP SMVD MRL GBI CIIP AFF SbTMVPRaceHorses 109-631 1.30 40.17 LMCS MIP SMVD MRL GBI EMT CIIP MMVD SBT ISPKimono 54-531 1.80 45.77 LMCS SMVD MRL GBI CIIP LFNST AFF TriangAverage - - 1.80 41.94
Table 5.3: BDrate and complexity reduction ∆C of best PCS for tested resolutions andsequences; Selected common tools are in bold
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384× 216 512× 288 640× 360Common Tools LMCS GBI LFNST LMCS CIIP MMVD LMCS MIP CIIP EMTMMVD EMT MIP CIIP SMVD EMT LFNST SMVD MRL GBI MMVDVideo BDrate% ∆C% BDrate% ∆C% BDrate% ∆C%Johnny 2.34 38.76 2.13 39.13 0.99 42.01Basketball 2.00 37.95 1.83 24.57 1.57 26.03DaylightRoad2 0.68 38.96 0.94 35.26 0.98 35.44BQMall 1.24 37.81 1.59 35.73 1.33 35.31Drums 1.87 37.94 1.63 34.12 1.21 35.12RaceHorses 1.87 35.65 1.56 33.96 0.33 26.45Kimono 0.94 41.60 1.83 38.24 2.39 35.47ParkScene 0.90 42.25 0.77 41.26 0.85 42.71KristenAndSara 1.99 38.62 1.87 38.93 0.96 39.32CatRobot 1.42 42.58 1.41 37.39 1.27 23.79Tango 1.20 38.55 1.58 36.06 0.95 35.18ToddlerFountain 1.20 38.55 1.58 36.06 1.43 39.89SlideShow 1.52 27.20 1.44 23.61 2.88 23.03SlideEditing 1.09 41.68 0.63 39.72 1.64 40.25Average 1.45 38.44 1.49 35.29 1.34 34.29SlideEditing 1.09 41.68 0.63 39.72 1.64 40.25Average 1.45 38.44 1.49 35.29 1.34 34.29
Table 5.4: BDrate and complexity reduction ∆C when disabling the common combinationsof tools. Cells in bold do not satisfy (5.3).

theless, this observation does not hold for BDrate, due to the complex depen-dency among tools and their influence on the coding efficiency. Considering
Johnny at the resolution of 384 × 216, jointly disabling the tools: {LMCS GBILFNST MMVD MIP CIIP SMVD MRL SBT Triang AFF AMVR SbTMVP}, leads to acomplexity reduction of 56.06%, with a BDrate loss of 1.88%. For resolutionsof 512 × 288 and 640 × 360, a complexity reduction of 57.01% and 55.24% isachievedwith a BDrate loss of 1.97% and 1.92% respectively. Similar results areobtained when applying the samemethodology on other sequences such as,
BasketballDrive, DaylightRoad2, BQMall, Drums, RaceHorses, and Kimono. Theweakest reduction in complexity is observed with he BasketballDrive video se-quence characterized by a large temporal variance, 37.07% is recorded forresolutions of 384× 216 and 32.45% for resolutions 640× 360.

These results are obtained by merely disabling tools and without algorith-mic optimization. Nevertheless, the combination of tools that provide the op-timal complexity reduction is different from one sequence to the other andeven fromone resolution to the other. The amount of complexity reduction isalso varying. This is due to the spatial and temporal properties of sequences.
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Yet, for each resolution, using the results of Table 5.3, it is possible to iden-tify one common combination of tools satisfying constraint (5.3) for all se-quences. Accordingly, these PCSs are: {LMCSGBI LFNSTMMVD EMTMIP CIIP}for resolution 384× 216, {LMCS CIIP MMVD SMVD EMT LFNST} for 512× 288,and {LMCS MIP CIIP EMT SMVD MRL GBI MMVD} for 640 × 360. Table 5.4shows the BDrate and complexity reduction for the previously identified PCSsconsidering the 14 test sequences. We observe that the constraint (5.3) is sat-isfied in most cases. Thus, putting these PCSs in separate profiles for eachresolution will be beneficial for use cases with real-time and low-bitrate con-straints. We conclude that the PCS identification approach presented in thispaper provides results that are likely to be generalized to a larger set of videosequences.

5.6 Conclusions

In this chapter, we present an optimization method of VVC encoder targetinglow-resolution video sequences encoded at low bitrates (less than 1 Mbps).Our aim is to identify a set of coding tools which may be disabled while pre-serving coding efficiency. For that purpose, a branch-and-prune approach isproposed to determine the set of coding tools which provide the best com-plexity reduction, while satisfying a constraint on the BDrate degradation.Experimental results show that significant reduction of encoding complex-ity can be achieved, with negligible BDrate loss. For instance, a complexity re-duction of 56% was achieved for Johnny at a 384× 216 resolution by applyingour method, with a loss of 1.88% in BDrate. Moreover, due to the spatial andtemporal properties of sequences, The best set of coding tools to disable isdifferent across the video sequence and even the tested resolutions.
Nevertheless, we were able to propose a common combination of tools todisable for each resolution. Our experimental results show that these com-mon tools most likely cause less than 2% BDrate loss with up to 35% reductionin terms of encoding complexity. This result is particularly beneficial as wecan build coding profiles for each resolution removing the non-useful tools.Therefore, automatically disabling them and reducing the processing com-plexity for real-time encoding.
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We also observe that disabling tools related to interframe coding (e.g., AFF,MMVD) and transform operations (e.g., LFNST, EMT) always leads to a signifi-cant complexity decreasewithout causing amassive drop in coding efficiency.In addition, disabling some tools, such as LMCS, SMVD, may sometimes leadto an improved BDrate when operating at low resolutions and low bitrateswhich further illustrates that some coding tools are not optimal of high reso-lutions videos.Finally, our results are promising but represent the first step toward a real-time VVC encoder. Algorithmic optimization can be applied to partitioning,intra prediction, or transformmodule to reduce the computational time. Fur-thermore, hardware optimization is necessary to minimize memory access,favor parallelism and execute repetitive tasks. All of these optimization pos-sibilities are an essential direction for future work.The Fraunhofer Heinrich Hertz Institute (HHI) released a fast and efficientVVC encoder software known as VVenC [84]. The VVenC software is based onVTM, with optimizations including some algorithmic optimizations, extensiveSIMD optimizations, and multi-threading support to exploit parallelization.Additionally, VVenC uses a similar approach to ours by supporting five pre-defined presets. In each preset, a subset of coding tools is disabled to achievea given tradeoff between encoder complexity and video quality. In the slow-est preset, the encoder reaches the highest compression gain with the mostconsiderable runtime, while in the fastest preset, the runtime is less signif-icant, but VVenC is only 10% more efficient than HEVC. More details aboutVVenC is available in [85][84].
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we address the problem of video bitrate adaptation for low-latency video streaming. Chapter 1 stated our objective: the design of a bitrateadaptation algorithm for low-latency video streaming fromamobile transmit-ter with 100 to 200ms glass-to-glass delay targets. In low-latency live stream-ing, the transmitter (server) has to send the compressed video in an uplinkdirection through a wireless access and a wired core network to the client.The high variability of the wireless channel characteristics due to the mobilityof the transmitter and to the variable number of users sharing the channelcombined with the low latency constraint makes this uplink transmission sce-nario more challenging than classical downlink HTTP adaptive streaming.
Chapter 2 provides some background on the basics of video coding andHTTP adaptive streaming. We also discuss the main end-to-end delay com-ponents in video delivery systems. We provide a literature review of the state-of-the-art bitrate adaptation algorithms and their classifications according tothe location of the bitrate adaptation logic (server-driven or client-driven) andthe input used for the adaptation (bandwidth-based, buffer-based, or hybridapproaches). We stated that in the context of low-latency streaming froma mobile transmitter. Transmitter-driven approaches are better suited forselecting the video bitrate according to the network state and transmitterbuffer level. This is because the moving transmitter has a better view of thevariations of the channel and network state, and does not have to wait fordelayed reports of the network and buffer states provided by the client. In
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addition, an adaptation at the frame level is necessary to achieve low delaytransmission. The adaptation at the frame level is performed using a modelof the relation between the size of the bitstream resulting from the encod-ing of a video frame and the selected quantization parameter. Accordingly,we recall several state-of-the-art the parametric rate models used for bitratecontrol. Finally, some technical features of the new Versatile Video Coding(VVC) standard and the state-of-the-art encoder optimization methods hasbeen reviewed.We present our first contribution in Chapter 3: a novel inter-dependentRate-QP model, i.e., R-(QP, D). Our model describes the relationship betweenthe bitstream size Rn of frame n, its quantization parameter QPn, and theMSE distortion Dn−1 of the reference frame n− 1. The R-(QP, D) is beneficialwhen adjusting the QP of the frame according to some target bitrate budgetof a frame in case of low latency live streaming. This target bitrate budget isdetermined via some bitrate adaptation algorithm. Our proposedmodel out-performs other Rate-QP models when encoding is performed with constantor variable QP. In addition, we have proposed an procedure to estimate it-eratively the parameters of the R-(QP, D) model. This procedure allows oneto estimate these parameters with a limited number of encoding trials foreach frame which is useful in low latency streaming. Part of the material inChapter 3 has been presented in
• MouradAklouf, Marc Leny,Michel Kieffer, and Frédéric Dufaux. "Interframe-Dependent Rate-QP-Distortion Model for Video Coding and Transmis-sion." In 2021 IEEE International Conference on Image Processing (ICIP),pp. 2019-2023. IEEE, 2021.

Chapter 4 proposes a new model predictive bitrate adaptation algorithm forlow latency video streaming from amobile terminal. The proposed approachexploits the transmission buffer level and an estimate of the wireless trans-mission rate to determine the target encoding bitrate of each frame. Thechoice of the quantization parameter for each frame is performed via the R-(QP, D) model proposed in Chapter 3. We compare the performance of theproposed approach with four reference rate adaptation algorithms, namelyFestive [10], Panda [11], BOLA [12], and BBA [13], considering streaming scenar-ios with a glass-to-glass latency of less than 200ms. Some of these algorithms
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have been adapted to the transmitter-driven framework. Simulation resultsinvolving real 4G bandwidth traces showed that our proposedMPC approachoutperforms the algorithms from the literature in both average PSNR andnumber of lost frames.Finally, live streaming is delay-sensitive, and it requires an encoder that iscapable of compressing the video stream in real-time. Therefore, we presentin Chapter 5 anoptimizationmethod for VVC encoder targeting low-resolutionvideo sequences encoded at low bitrates. We propose a branch-and-pruneapproach to identify in a systematic way a set of coding tools which may bedisabledwhile satisfying some constraint on the BDrate degradation, thus pre-serving coding efficiency. A complexity reduction of up to 56% was achievedfor video sequences of resolution 384 × 216, 512 × 288, and 640 × 360 by ap-plying our method, with a loss of less than 2% in BDrate. Moreover, we wereable to identify a common set of coding tools to disable in each resolution.These common tools can be used to create coding profiles for each resolutionthus reducing the coding complexity while encoding on the fly. The materialin Chapter 5 has been presented in
• Mourad Aklouf, Marc Leny, Frederic Dufaux, and Michel Kieffer. "Lowcomplexity versatile video coding (VVC) for low bitrate applications." In2019 8th European Workshop on Visual Information Processing (EUVIP),pp. 22-27. IEEE, 2019.

6.2 Future work and perspectives

The work presented in this document can be extended in the following direc-tions.
6.2.1 Improvement for the R-(QP, D) model

The R-(QP, D) model is proposed assuming that encoding is performed witha low-latency configuration. The frame n is coded as a P-frame and uses onlythe previous coded frame n− 1 as a reference frame. Nevertheless, the x265encoder enables another type of low delay encoding configuration with bet-ter coding efficiency, i.e., smaller bitstream size, with a cost of a slight increasein coding time. The frame n may use two coded frames as references, e.g.,
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frame n−1 and n−3. In this case, the coded blocks in frame n use twomotionvectors, and the samples are reconstructed basedon aweighted combinationof the blocks from the reference frames. An improvement would be to inves-tigate the possibility of using a combination of the distorsions of referenceframes in the R-(QP, D) model. e.g.,D = αD1+βD2, withD1 andD2 being theMSE distortions of the reference frames 1 and 2, α and β are weights of thetwo reference frames 1 and 2, respectively. Authors in [86, 87] addressed asimilar problem for bitrate control in the HEVC encoder with the Random Ac-cess configuration.The difficulty comes from the evaluation of α and β priorto encoding. One has to evaluate whether this proportion is stable or not.
Intra-refresh can be enabled to reduce the peaks of video bitrate causedby I-frames. Several images may contain a column of CTUs coded in intra-prediction mode. This increases the size of the bitstream associated to eachframe. Our proposed model remains valid for this type of frames. Neverthe-less, the iterative estimation of themodel parameters is not tested with intra-refresh enabled, and more experimental verification has to be performed.
When a change of scene occurs, the parameters of the R-(QP, D) modelmay change significantly. The recursive estimation of the model parametersmay have to be reset, which may require the first frame to be coded witha large number of trials, and the model parameters to be determined us-ing the Least Squares Estimator presented in Section 3.4.1. Nevertheless, wehave noticed that the reset is not necessary for some tests where the scenechange does not change the properties of the video, e.g., a shift in camera forshooting in a new angle but in the same environment. A potential solutioncould be to calculate the spatial and temporal properties of the frame beforeand after the scene change to determine whether the reset is necessary.
In the iterative parameter estimationprocess, an initial vectorQP0 of quan-tization parameters has been considered to initialize the estimate of the R-(QP, D) model for the first frame. Several encoders are then run in parallelwith variations ∆QP of the quantization parameters. These variations wereadjusted experimentally so as to get the best model accuracy in our experi-ments. These two vectors must be optimized in the future according to thevideo properties and the available transmission rate. QP0 must be chosen sothat the bitrate of the video is in the range of the transmission rate. ∆QP
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should provide sufficient bitrate diversity to enable a satisfying prediction ac-curacy, even in case of significant variation of the quantization parameter.
6.2.2 Transmission rate estimator

An important research direction is how to efficiently estimate the channel andnetwork bandwidth. We did not discuss the type of estimator to use in ourwork. The transmission rate Cn at time step n when coding frame n is takenfrom the set of bandwidth traces described in [9]. Estimating the bandwidthcan be done in two ways.The first option is to probe the channel multiple times then smooth thetransmission rate in a given temporal window to denoise the measures. Theavailable transmission rate at instant n can be determined by measuring thequantity of transmitted data in a time interval or using tracing tools such asQXDM [79] or MobileInsight [80]. These tools are used to capture 4G/5G con-trol messages between the terminal and the base station and understand thebehavior of the resource blocks allocation to the users in downlink and uplinkdirection. Accordingly, the throughput can be estimated using this traced in-formation in a frequencymuch higher than tools working at application layer,such as G-NetTrack Pro, see [88].Another option is to build a bandwidthmap and estimate the transmissionrate in a given geolocatedposition of themobile transmitter. In this approach,a database of transmission rates with GPS positions is first built offline [14].Then, the information collected is used to estimate the future network condi-tions of the mobile transmitter, and the video bitrate is adjusted accordingly.The transmitter position can be calculated using Kalman-based prediction.
6.2.3 N -steps MPC Algorithm

If the transmission rate can be estimated N steps in the future, It would bepossible to performN -step bitrate control using the MPC algorithm. The tar-get bitrate of the N future frames may be determined at once. N -step MPCallows more efficient bitrate adaptation and client-buffer control: When thecontroller anticipates a future drop in the transmission rate, for instance, attime n+3, it can encode some frames before the drop event (e.g., frame n+1and n+2) at a lower bitrate, which allows transmitting the frames in a shorter
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time and therefore provide an increased playbackmargin for framen+3. Thiscould slightly reduce the PSNR quality of the coded frames but avoid freez-ing events and reduce the latency. In addition,N -step MPCmakes it possibleto limit the oscillations by smoothing the target bitrates of the frames in awindow of size N .
An other direction is a dynamic adjustment of the margin τ ∗ and the end-to-end playback delay ∆p by small variations of the frame rate at receiver[89] based on estimated future transmission rate to minimize playout inter-ruptions.

6.2.4 Ensuring fairness

The techniques described in this document enable low-latency live streamingfrom one mobile acquisition device to one client. The client could be a pro-cessing unit that may realize additional treatments on the encoded video orbroadcast it to the final consumers. Sometimes, we want to transmit multi-ple video streams on the same channel, for example in the case of videos ac-quired by different closely-located cars sharing the same 4G/5G base station.The transmitters are then in competition for the wireless resource. When thewireless channel is saturated, the rate adaptation techniques of each encoderdoes not allow a fair share of the channel capacity andQoE fairness cannot beguaranteed. One way to solve this problem is to use an in-network coordina-tion proxy in charge of facilitating fair resource sharing among transmitters[90].
With HTTP adaptive streaming in downlink direction, the root of the lack offairness between clients sharing some wireless channel and of the oscillationof the rate and PSNR among clients is their ON-OFF activity pattern. A clienttypically operates in two states: the buffering state, in which the client re-quests a new video segment when the previous segment is fully downloaded,and the steady state, in which the client requests one new segment periodi-cally every∆ seconds, with∆ is the duration of the segment. This creates anactivity pattern where the client is either ON when downloading a segmentor OFF. During the ON period, the client usually measures the instantaneousdownloading rate. The client may overestimate the available bandwidth dueto the temporal overlap between the players ON-OFF periods. The players
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could also switch back to a lower bitrate when the segment is not success-fully downloaded, causing oscillations. Authors in [91] propose a server-basedtraffic shaping method to avoid the OFF periods during the steady-state. Theshaping limits the encoding rate of the segment, so the download durationwill be roughly equal to the segment duration ∆ . Khan et al. [92] clarify thefairness problem and evaluate some bitrate adaption algorithms when com-peting in bottleneck links.
The fairness problem in our case is quite different from the fairness prob-lem in HTTP streaming because of the uplink streaming and the granularity ofadaptation. In our case, the transmitter is in ON period most of the time, sothe used bandwidth is less likely to be overestimated. Nevertheless, a properway to share channel capacity to achieve fair QoE between the served clientsmust be investigated.

6.2.5 Q-learning bitrate adaptation approach

The problem of bitrate adaptation can be addressed using reinforcementlearning (RL) approaches. This technique allows the transmitter to dynam-ically learn the best actions, i.e., encoding bitrate corresponding to the actualnetwork environment. The bitrate adaptation is performed by an RL agentthat interacts with its environment through actions (i.e., the set of possibleencoding bitrates) and evaluates thembased on some assigned numerical re-ward. The reward, in this case, can be the PSNR of the received video frames,or a function of the playback marging at the client. The agent goal is to maxi-mize the user QoE and learn the optimal action to take (encoding bitrate) foreach state of the environment. The state of the environment is defined bythe transmission buffer level and the available transmission rate. When theagent has limited knowledge about the environment dynamics, a commonlyused RL algorithm is Q-Learning [93]. In Q-learning, a table of Q values is usedtomeasure the quality of taking specific actions in a particular state, based onthe perceived cumulative rewards. TheseQ-values are updated every time anaction is taken. The optimal encoding bitrate is then determined from this ta-ble. Another approach is to use a neural network to approximate the Q-valuefunction, i.e., deep Q-learning. The state is given as the continuous input andthe Q value is generated as the output for all possible actions.
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Several methods based on Q-learning have been proposed [59, 58, 94]. Allof them are implemented in client-driven HTTP adaptive streaming architec-tures and adapt the bitrate at the segment level. In our situation, the targetbitrate of the frames could be determined using similar methods, then theoptimal QPs to encode the frames are determined with the proposed R-(QP,D) model.
Another approach of using Q-learning is to consider the frames QPs asthe output instead of the target bitrates. This allows to remove the R-(QP,D) model of the streaming architecture and integrate it into the learning pro-cess. However, the temporal dependency between the frames can decreasethe accuracy of the QP prediction. Hence, an additional state that representsthe distortion of the reference frame (or its QP) must be added. More exper-iments are required to determine which approach is more efficient.

6.2.6 Bitrate adaptation in the context of E-sports

Major tech companies including Microsoft, Google, and Amazon competewith video gaming industries such as Xbox and Ubisoft in new game stream-ing services known as cloud gaming. Cloud gaming is a relatively new conceptin which users without powerful gaming devices get access to a large libraryof online games at the cost of a monthly subscription. Cloud gaming oper-ates by hosting and running the games on powerful servers. The user (client)sends the game input to the server that processes it then streams back thegame environment in a compressed video sequence through the internet.The video must be streamed at very low latency. Cloud gaming allows usersto enjoy high-level video games on regular portable devices such as smart-phones and tablets.
E-sports such as "FortniteWorld Cup" and "League of Legends" are increas-ing in popularity. Individual players or teams can now compete against eachother in organized video gaming tournaments for a cash prize. The gamingculture is not just about playing but also about watching other people play.A massive part of the gaming audience is heading towards large streamingplatforms such as Youtube and Twitch to watch international gaming cham-pionships or video game commentators such as PewDiePie and AboFlah. Ac-cordingly, low latency adaptive video streaming will have a central role in en-
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abling these services.
Our MPC-based rate adaptation method for low latency video delivery canbe used for such use cases. Nevertheless, some changesmust bemade. First,the transmitted videos are computer-generated, with different video charac-teristics from the videos tested in Chapter 4. Hence, we need to check theefficiency of the R-(QP, D) model for this type of video then make changesin the model if necessary. In addition, a transmitter-driven scheme is notnecessarily appropriate. The transmitter (server) is located in a fixed posi-tion at the edge of the network, while the users could be moving when usingportable devices such as smartphones. Hence, the bitrate adaptation shouldbe performed according to the client (reception) buffer level and the availabledownload rate.

6.3 Industrial perspectives

The choice of a reliable live streaming product is an essential aspect of thesuccess of a cultural, political or sports event. Live streaming has become theprimarymethod to reach a new audience andmaintain relationships with oldcustomers. It is thus crucial to satisfy the user QoE.
The work presented in this thesis offers an interesting industrial perspec-tive for low latency event streaming. The bitrate adaptation technique de-scribed in this thesis can be implemented on products such as:
• Nomad cars [95], an application used to capture video on-board a rac-ing car, transmit the compressed video via 3G/4G network to a remotecoach, teams in the pitlane, partner TV channels, or post it on social net-works.
• Nomad sails [96] in which the capture video on-board of a boat in themiddle of the ocean is uploaded via satellite link and made availableanywhere in the world with the lowest possible latency, mostly for TVinterviews.
In addition, exclusive broadcasting of cultural events such as music fes-tivals or openings of exhibitions will also be possible in very low latency. A
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virtual event platform can be created to provide a new interactive digital en-vironment where people can connect, discover and exchange information.Lately, the work of this thesis will enable a new type the remote controlapplication: piloting a railway train remotely. This application is an essentialpart of the autonomous train project, in which the drivers located kilometersaway in an operating centermay have tomanually operate a train stopped byhazardous situation (malfunction, accident, object on rails. . . ). This project iscarried out by EKTACOMwith several partners, including the french companySociété Nationale des Chemins de Fer (SNCF).A prototype of a train remote control system already exists. The train isequipped with a camera to film the train track and a transmitter that trans-mits the frames to a remote control station. The driver visualizes the jour-ney of the train from his position in the remote control center and pilots thetrain according to the received video sequence (i.e., acceleration, decelera-tion, stopping, railway signals reading). However, the captured video is usu-ally transmitted via a very limited or highly variable channel. Field tests under-lined bandwidth variation from 20kb/s to 3 Mb/s, with variations in packetsloss and error rate. Therefore, the quality of the received frames is some-times insufficient for the driver to make safe decisions (mostly because ofthe difficulty in identifying the lights and their color). Our algorithm can beimplemented in this case to fully exploit the channel capacity and maximizethe driver QoE.
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Titre: Vidéo pour l’événementiel : Compression et transport de la nouvelle génération de codec vidéo
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débit, Versatile Video Coding, compression video

Résumé: L’acquisition et la diffusion de contenus
avec une latence minimale sont devenus essentiel
dans plusieurs domaines d’activités tels que la dif-
fusion d’évènements sportifs, la vidéoconférence,
la télé-opération de véhicules ou le contrôle à dis-
tance. L’industrie de la diffusion en direct a connu
en 2020 une forte croissance et va encore croitre au
cours des prochaines années grâce à l’émergence de
nouveaux codecs vidéo à haute efficacité tel que
Versatile Video Coding (VVC), et à la cinquième
génération de réseaux mobiles (5G).

Les méthodes de streaming de type HTTP
Adaptive Streaming (HAS) telles que MPEG-
DASH, grâce aux algorithmes d’adaptation du
débit, se sont révélées très efficaces pour améliorer
la qualité d’expérience (QoE) dans un contexte
de vidéo à la demande (VOD). Ces algorithmes
d’adaptation sont mis au niveau du client. Ils ex-
ploitent les mesures du débit du réseau et/ou du
niveau de remplissage du tampon de réception afin
d’optimiser la QoE du client.

Dans les applications où la latence est critique,
minimiser le délai entre l’acquisition de l’image et
son affichage au récepteur est essentiel. La plu-
part des algorithmes d’adaptation de débit sont
développés pour optimiser la transmission vidéo
d’un serveur situé dans le cœur de réseau vers des
clients mobiles. Dans les applications nécessitant
un streaming à faible latence, telles que le con-
trôle à distance de drones, le rôle du serveur est
joué par un terminal mobile qui va acquérir, com-
presser et transmettre les images via une liaison
montante comportant un canal radio vers un ou
plusieurs clients. Les approches d’adaptation de
débit pilotées par le client sont par conséquent in-
adaptées dans ce contexte à cause de la variabilité
des caractéristiques du canal. De plus, les HAS,
pour lesquelles la prise de décision se fait avec une
périodicité de l’ordre de la seconde ne sont pas suff-
isamment réactives lors d’une mobilité importante
du serveur et peuvent engendrer des délais impor-
tants. Il est donc essentiel d’utiliser une granularité
d’adaptation très fine.

L’objet de cette thèse est d’apporter des élé-
ments de réponse à la problématique de la trans-
mission vidéo à faible latence depuis des émet-
teurs mobiles. Nous présentons d’abord un al-
gorithme d’adaptation de débit image-par-image
pour la diffusion à faible latence. Une approche de
type Model Predictive Control (MPC) est proposée
pour déterminer le débit de codage de chaque
image à transmettre. Cette approche utilise des
informations relatives au niveau de tampon de
l’émetteur et aux caractéristiques du canal de
transmission. Les images étant codées en direct,
un modèle reliant le paramètre de quantification
(QP) au débit de sortie du codeur vidéo est néces-
saire. Nous avons donc proposé un nouveau mod-
èle reliant le débit au paramètre de quantification
et à la distorsion de l’image précédente. Ce modèle
fournit de bien meilleurs résultats dans le contexte
d’une décision prise image par image du débit de
codage que les modèle de référence de la littéra-
ture.

En complément des techniques précédentes,
nous avons également proposé des outils permet-
tant de réduire la complexité de codeurs vidéo tels
que VVC. Par rapport à son prédécesseur, le High-
Efficiency Video Coding (HEVC), ce codeur vidéo
permet de réduire de moitié la quantité de bits à
transmettre à qualité équivalent. Cependant, les
nouveaux outils introduits dans le standard VVC
conduisent à une explosion de la complexité. La
version actuelle du codeur VVC (VTM10) a un
temps d’exécution dix fois supérieur à celui du
codeur HEVC. Par conséquent, le codeur VVC
n’est pas adapté aux applications de codage et dif-
fusion en temps réel sur les plateformes actuelle-
ment disponibles. Dans ce contexte, nous présen-
tons une méthode systématique, de type branch-
and-prune, permettant d’identifier un ensemble
d’outils de codage pouvant être désactivés tout
en satisfaisant une contrainte sur l’efficacité de
codage. Ce travail contribue à la réalisation d’un
codeur VVC temps réel.



Title: Video for events : Compression and transport of the next generation video codec
Keywords: low latency transmission, video streaming, adaptive video coding, rate control, video
compression

Abstract: The acquisition and delivery of video
content with minimal latency has become essential
in several business areas such as sports broadcast-
ing, video conferencing, remote vehicle operation,
or remote system control. The live streaming in-
dustry has grown in 2020 and will expand further
in the next few years with the emergence of new
high-efficiency video codecs such as the Versatile
Video Coding (VVC) standard, and the fifth gen-
eration of mobile networks (5G).

HTTP Adaptive Streaming (HAS) methods
such as MPEG-DASH, using algorithms to adapt
the transmission rate of compressed video, have
proven to be very effective in improving the quality
of experience (QoE) in a video-on-demand (VOD)
context. Most of these adaptation algorithms are
implemented at the client level. They exploit mea-
surements of network throughput and/or receive
buffer level to optimize the client’s QoE.

Nevertheless, minimizing the delay between
image acquisition and display at the receiver is
essential in applications where latency is critical.
Most rate adaptation algorithms are developed to
optimize video transmission from a server situated
in the core network to mobile clients. In appli-
cations requiring low-latency streaming, such as
remote control of drones, the role of the server is
played by a mobile terminal. The latter will ac-
quire, compress, and transmit the video and trans-
mit the compressed stream via a radio access chan-
nel to one or more clients. Therefore, client-driven
rate adaptation approaches are unsuitable in this
context because of the variability of the channel
characteristics. In addition, HAS, for which the
decision-making is done with a periodicity of the
order of a second, are not sufficiently reactive when
the server is moving, which may generate signifi-
cant delays. It is therefore important to use a very

fine adaptation granularity.
The aim of this thesis is to provide some an-

swers to the problem of low-latency delivery of
video acquired, compressed, and transmitted by
mobile transmitters. We first present a frame-by-
frame rate adaptation algorithm for low latency
broadcasting. A Model Predictive Control (MPC)
approach is proposed to determine the coding rate
of each frame to be transmitted. This approach
uses information about the buffer level of the trans-
mitter and about the characteristics of the trans-
mission channel. Since the frames are coded live,
a model relating the quantization parameter (QP)
to the output rate of the video encoder is required.
We have proposed a new model linking the rate to
the QP of the current frame and to the distor-
tion of the previous frame. This model provides
much better results in the context of a frame-by-
frame decision on the coding rate than the refer-
ence models in the literature.

In addition to the above techniques, we have
also proposed tools to reduce the complexity of
video encoders such as VVC. Compared to its pre-
decessor, High-Efficiency Video Coding (HEVC),
this video encoder can reduce the number of bits
to be transmitted by half at equivalent quality.
Nevertheless, the new tools introduced in the VVC
standard lead to an explosion of complexity. The
current version of the VVC encoder (VTM10) has
an execution time ten times higher than that of
the HEVC encoder. Therefore, the VVC encoder
is not suitable for real-time encoding and stream-
ing applications on currently available platforms.
In this context, we present a systematic branch-
and-prune method to identify a set of coding tools
that can be disabled while satisfying a constraint
on coding efficiency. This work contributes to the
realization of a real-time VVC coder.
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