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Topology optimization is a systemic design that requires simulation and optimization of
a system for a single or multiple physics coupling processes. However, it is limited in the en-
gineering sense regarding the absence of uncertainties and limitations on applied monophase
material.

The foundation of this dissertation is to combine homogenization and stochastic pro-
cessing into topology optimization to formulate a robust multiscale topology optimization
approach. Accordingly, this Ph.D. dissertation concerns (1) the multiscale and multiphysics
performance of heterogeneous materials/structures embedded with microstructured material,
taking into account the uncertainties, (2) for further optimizing the heterogeneous structure
at different scales to satisfy target performance.

These microstructures may arise from the processing of biological materials, or from
dedicated engineered materials, e.g., aerogels, foams, composites, acoustics metamaterials,
etc. We parametrize architectured material; study the performances of the microstructure
at the macroscopic scale by homogenization method. Then, the homogenization model can
be considered as a stochastic model with uncertainties exhibited in the unit cell. It can be
built from a polynomial chaos development. In addition, these parametrized micro geometry
features can be mapped into homogenized properties space, which can be utilized as design
variables to control the macrostructure performance.

Afterward, we combined the topology optimization, homogenization, and uncertainty
quantification to (1) design macro topology and micro material distribution to maximize
structure stiffness (2) reduce the structure sensitivity to presented uncertainties (e.g., load-
ing and material properties). This proposed general framework has the advantage and com-
patibility ability in solving optimization problems considering the (1) multiple parametrized
architectured cells, (2) complex loading problem, (3) hybrid uncertainty, etc., with an af-
fordable computation manner.

Key words: parametrized architectured material, homogenization, uncertainty quantific-
ation, multiscale topology optimization, robust opimitization
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L’optimisation de la topologie est une conception systémique qui nécessite la simula-
tion et l’optimisation d’un système pour un ou plusieurs processus de couplage physique.
Cependant, il manque de sens technique en ce qui concerne l’absence d’incertitudes et de
limitations sur le matériau monophasé appliqué. Le fondement de cette thèse est de com-
biner l’homogénéisation et le traitement stochastique dans l’optimisation de la topologie
pour formuler une approche robuste d’optimisation de la topologie à plusieurs échelles.
En conséquence, ce doctorat. La thèse porte sur (1) les performances multi-échelles et
multiphysiques de matériaux/structures hétérogènes noyés dans des matériaux à micro-
structures, en tenant compte des incertitudes, (2) pour optimiser davantage la structure
hétérogène à différentes échelles pour satisfaire les performances cibles. Ces microstruc-
tures peuvent provenir du traitement de matériaux biologiques ou de matériaux d’ingénierie
dédiés, par exemple des aérogels, des mousses, des composites, des métamatériaux acous-
tiques, etc. Nous paramétrons le matériau d’architecture ; étudier les performances de la
microstructure à l’échelle macroscopique par la méthode d’homogénéisation. Ensuite, le
modèle d’homogénéisation peut être considéré comme un modèle stochastique avec les incer-
titudes présentées dans la cellule unitaire. Il peut être construit à partir d’un développement
de chaos polynomial. De plus, ces caractéristiques de microgéométrie paramétrées peuvent
être mappées dans un espace de propriétés homogénéisé, qui peut être utilisé comme vari-
ables de conception pour contrôler les performances de la macrostructure. Par la suite, nous
avons combiné l’optimisation de la topologie, l’homogénéisation et la qualification des incer-
titudes pour (1) concevoir la macrotopologie et la distribution des micromatériaux pour une
rigidité maximale de la structure (2) réduire la sensibilité de la structure aux incertitudes
présentées (par exemple, le chargement et les propriétés des matériaux). Ce cadre général
proposé a la capacité d’avance et de compatibilité pour résoudre les problèmes d’optimisation
en considérant (1) les cellules d’architectures paramétrées multiples, (2) le problème de
chargement complexe, (3) les hybrides non certifiés, etc., avec un mode de calcul abordable.

Mots-clés : matériau d’architecture paramétré, homogénéisation, qualification d’incertitude,
optimisation de topologie multi-échelle, optimisation robuste
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Chapter 1

Introduction
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1.1 Motivation and research objective

Many natural materials such as wood, bones, shells, etc., synthesize spatially varying ma-
terial properties and structural hierarchy to achieve appealing functions. Inspired by this,
numerical hierarchical topology optimization provides a tool for optimizing the macro to-
pology and the microarchitecture of the material (shown in figure 1.1), which has more
advanced performance than a mono scale topology optimization. It is due to increasing the
design freedom in microarchitectured material. In addition, additive manufacturing (AM)
provides a possible tool to fabricate such a delicate multiscale structure.

While the power of the multiscale topology optimization is demonstrated, deterministic
conditions are assumed, meaning that the various uncertainties in real engineering problems
are disregarded. This will lead to that designs being usually less valuable in real applications.

To this end, we take into account the uncertainties into multiscale topology optimization
to formulate the robust optimized macro topology, and complex microarchitecture, leading
to more robust design with the presence of uncertainties.

1.2 Topology optimization

Topology optimization (TOP), first developed by Bendsose and Kikuchi [10], is a systemic
design that requires simulation and optimization of a system for single or multiple phys-
ics coupling processes. Within active engineering domains, the most common cases are:
mechanical, thermal, fluid flow [34], thermo-mechanical coupling [33], electrical-mechanical
coupling [20] (piezoelectric materials) heat-flow coupling [30], etc. The popularity of the
TOP is due to its ability to provide a novel, ’good’ optimum design without any geometry
constraints, compared to shape optimization or parametric optimization. It provides the
primary design that Additive Manufacturing can produce. The different approaches to TOP
relied on the description of the structure topology. They are the Density Description TOP
and the Boundary Description TOP (Level Set [117], Method Morphable Component/Void
[54]). Herein, we mainly focused on Density-based topology optimization; the TOP com-
munity complained that this method is a nightmare for large-scale topology optimization
since the number of design parameters is equivalent to the number of elements in the spatial
discretization. However, it is has been dramatically improved by, on the one hand, par-
allel computing. On the other hand, the development of multiscale topology optimization
providing plenty of microarchitecture details will enhance the performance of macro topo-
logy. Multiscale topology optimization is an alternative way to solve large and full-scale
topology optimization, which is one of the topics we are interested in.

1.3 Density based topology optimization

The basic idea of TOP is to seek the best material layout by deciding the density ρ of each
material point or the integration points on the design domain Ω to be either 0 (void) or 1
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(a) Functionally graded bamboo material, left bamboo culm,
right functionally-graded structure [91]
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(b) Solution by a multiscale topology optimization in section 4.6. Q and F are the heat
flux and mechanical force loading, respectively

Figure 1.1: Multiscale functionally graded structure (a) by nature observation (b) by
multiscale topology optimization design
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(solid) while satisfying the constraints. In this case, this problem can be written as

minρ∈{0,1} c(ρ) = UTF
s.t.
KU = F
V (ρ) < V ∗

(1.1)

where the compliance c is classically used as a cost function to test TOP algorithms, and will
be used herein. F and U are the loading condition and structural displacement response.
K is the structural stiffness matrix. V ∗ is the volume fraction of solid material ratio to the
global design space size Ω, it is classically used as constraints in TOP algorithms.

Directly solving such a problem is rather challenging, because firstly, the binary repres-
entation of macro topology is not well-posed and lacks optimum. Secondly, the objective
function is non-differential with respect to the design variable (the density ρ). A possible
solution is the gradient-free approaches (e.g., genetic algorithm, Particle Swarms [84]) that
only require the evaluation of the objective function and the constraints to search towards a
possible global optimum heuristically. The drawbacks of such optimization obviously are the
computation cost. Often, it requires high order of magnitude objective function realization.
It seems not a brilliant choice for large sale topology optimization, with millions of design
variables.

1.3.1 Material interpolation method

A gradient-based method requires the gradient descent or the sensitivity information of ob-
jective function to the design variables, enabling it to fast search towards a ’good’ but not
guaranteed global optimum. First, for obtaining a differentiable objective function, the ρ
is relaxed between 0 and 1. However, the existence of intermediate pseudo-density ρ lacks
physical interpretation; a critical aspect of the density-based topology optimization is to
steer the design to converge towards a binary well-connected macro topology representation.
To this end, a most popular and well-developed method called the Simple Interpolation Ma-
terial Penalized (SIMP) method [10], where the intermediate density can be mathematically
interpreted as a material, which the corresponding Young’s module Eρ can be expressed as:

Eρ = ρpE0 (1.2)

where, E0 is the solid material Young’s modulus, p is a penalty factor. Literature [11] shows
that, when p = 1, the classical minimization of the compliance problem is convex, it lose the
convexity when p > 1. It indicates that the global optimum is not easy to search for the
appearance of many local optimum. However, p = 3 is a common choice that can guarantee
the design converge binary (an 0/1 density represented structure) [10]. A common practice
to enhance the possibility to find the global optimum is the multiple starts from different
initial guesses. Another way is to continuously increase the p from 1 to a target value.

Other similar material interpolation methods are also proposed:

• Bendsøe and Kikuchi [10] proposed a homogenization method to model the intermedi-
ate density elements using periodically distributed microstructures, but the optimum
design is far from easy manufacturing.
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• Another power law-like model is nicknamed as Rational Approximation of Material
Properties (RAMP) [102]. The idea behind RAMP is to eliminate the zero gradients
in the low-density elements to speed up the optimization process. Comparison of the
performance of different RAMP, SIMP, and Homogenization interpolation methods in
topology optimization have been investigated in [39].

• With the development of peak function material interpolation scheme [128], multiple
materials can easily be incorporated into the topology optimization without increasing
the number of design variables.

• Another multiphase material (assumingm candidate materials) interpolation method is
called the Ordered multi-material SIMP interpolation [135]. However, it will introduce
m(m − 1)/2 design variables in a single element, leading the computational cost to a
heavy burden.

• For extension of SIMP to nonlinear material interpolation, reference [76] incorporated
von Mises plasticity model into SIMP, where three plasticity model parameters were
penalized by different factors.

1.3.2 Optimization algorithms

The Relaxation and Penalization density approach (R/P) approach will attempt to drive the
design variable (i.e. the density ρ) almost completely binary. The main advantage of this
approach is that, since it obtained a differentiable objective function and sensitivity inform-
ation, some gradient-based non-linear programming (NLP) [15, 45, 86] can be used to inter-
actively update the design variables until converge criteria are satisfied. (e.g. threshold the
change of two successive variables or objective function values, maximum iteration number,
and KKT condition). In TOP community, the most commonly used optimization schemes
are the Optimality Criteria (OC) method [112], the Method of Moving Asymptotes (MMA)
and the Globally converged MMA (GCMMA) [107]. However, the primary drawback of OC
method is that it cannot handle multiple constraints [55]; nevertheless, MMA can tackle this
problem. However, the gradient based optimization algorithm has a common issue with the
local optimum. This may be overcome by using the gradient-free global search algorithms,
i.e. genetic algorithm (GA), simulated annealing (SA) ant colony, etc.

1.3.3 Filter method

Gradient-based density topology optimization with SIMP material interpolation often suf-
fers from two common numerical instability problems: checkerboard pattern (figure 1.2(b))
and mesh dependency (figure 1.2(c)). The checkerboard pattern corresponds to a scattered
structure with too many small holes. Several techniques have been proposed to overcome
the checkerboard problem by high-order elements in FEM simulation and filtering restriction
[62].

Filtering has excellent advantages in restricting the R/P convergence towards a continu-
ously connected design structure and overcoming the mesh-dependency issue. In standard
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density based topology optimization, the ρj is the design variable associated with each ele-
ment j. When using filter method, ρ̃j is introduced as a filtered density, ρ̃ = F (ρ). Then
the filtering ρ̃j, is then used to interpolate material properties in equation 1.2. The chain
rule, therefore, solves all derivatives to the density, reads as following:

∂∗
∂ρ̃

=
∂∗
∂ρ

∂ρ

∂ρ̃
(1.3)

A linear density filter [18, 19] is common used:

ρ̃i =
∑
j

wijρj (1.4)

where ρ is the design variable sets, subscript i denote the central element, subscript j denotes
the j element within a certain distance to element i, wij are the weighting factors. Conic
weights wij is defined as:

wij =

{
R−d(i,j)∑

k∈Ni
(R−d(i,k))

j ∈ Ni

0 j /∈ Ni

(1.5)

where R is the prescribed filter radius.
Some alternative filters are existing, for example

• Sensitivity filter is the initially proposed method [94], widely used in early literature.
It is not a density filter in a sense indicated above. However, the objective funtion c is
filtered using:

∂c̃

∂ρi
=

∑
j
∂c
∂ρj
wijρj

ρi
(1.6)

• Heaviside filter [52] is proposed for obtaining 0/1 binary solutions, based on continuous
approximation of the Heaviside function.

1− ρ̂i = 1− e−β(1−
∑
j wij ρ̃j) + e−β

(
1−

∑
j

wij ρ̃j

)
(1.7)

where the β > 0 is the control parameter to approximate the continuous Heaviside
step, ρ̃ is the filtered density using equation 1.4. Then results should be mapped to
0/1 physical density. Whereas β = 0, it is the exact linear density filter.

• Helmholtz-type PDE [68] achieves a similar effect of mesh independence to sensitivity
and density filtering. The PDE filter method saves the need of storing the neighboring
information, therefore, has a significant improvement for parallel computation.
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(a) Boundary conditions (b) checkerboard pattern

(c) Mesh dependency (d) Filtered density

Figure 1.2: density-based topology optimization

1.3.4 Extensions of the Density TOP in Mechanics application

To summarize, the density-based TOP solved by gradient-based optimization algorithm con-
sists of three main parts, i.e. structural analysis, sensitivity analysis, design variables up-
dated, as shown in figure 1.3. Each primary step has several related sub-steps to improve
TOP performance and overcome the so-called checkerboard pattern and mesh-dependency
issues. This framework will be extended in the following section to solve a multiscale mul-
tiphase multiphysics robust topology optimization.

Density-based topology optimization is easy to implement and compatible with different
FEM softwares. Moreover, minimizing and/or constraint compliance problems have been
well investigated. The figure 1.4 shows the flowchart for development and application in
mechanical design. In minimizing compliance problems, a typical issue corresponding to
stress concentration may appear. However, minimizing the globally maximum quantity is a
challenge, relying on obtaining a differentiable objective function. Refs [29] adopted the p-
norm, p-mean, and the Kreisselmeier-Steinhauser (K-S) functions as aggregated measures of
the maximum stress. Consequently, the differential mini-max function (minimize the global
maximum quantity) can be mathematically formulated. Different quasi-static failure, fatigue
criteria [59] are embedded into the sensitivity analysis, preventing damage in structure within
loading conditions. References [42, 113] consider the material degradation, where stress
exceeds a given stress, in the density-based topology optimization. Consequently, fail-safe
design [59, 61, 65, 115] which incorporates the failure uncertainties e.g. unknown various
failure shapes, sizes, and locations into the topology optimization has been developed to
obtain still a good design while damage happens.
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Figure 1.3: The flowchart of density-based TOP method

Figure 1.4: Extension of density based topology optimization, red boxes are the tools and
black boxes are the solved problems
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1.4 Multiscale topology optimization

Most of the TOP is limited to designing single-phase material or multi-phase structure. How-
ever, the macrostructure embedded with complex architectured material has been attractive
recently because of a significant advance in engineering application. Such structural mater-
ials are commonly exhibited in nature. Such as wood, bones shells, which exhibit spatially
varying material properties on macro-scale due to the graded architecture in micro-scale.
Typically, the multiscale design structure has the desired performance compared to a single
material structure. For example, the reinforced composite materials, sandwich panels, and
foam structure are the engineered multi-scale systems used to enhance structural, mech-
anical performance. Therefore, multi-scale optimization is getting attractive recently and
significantly contributes to real engineering applications.

Many works have made outstanding contributions to this topic. We categorize the tech-
niques into three different categories: full-scale topology optimization, sequential multiscale
topology optimization, and concurrent multiscale topology optimization. They may exist
different sub-techniques for different methods.

Checkerboard indeed occurs when optimization is performed on an intermediate scale
design mesh problem (in figure 1.2 (b)), however, for full-scale approach optimization on a
fine fixed mesh and in the absence of regularization (filtering density), the design with local
architecture details appears naturally. In addition, the appearance of fine microstructure
can be stimulated by local constraints. It is used to control the maximum length of material,
avoiding one phase being accumulated to a large region. The local volume constraints have
been adopted in full-scale topology optimization to design wherein micro-scale, there are
continuous fiber structure [71], bone-like porous structure [120], and shell infilled uniform,
and non-uniform porous structure [121]. Note that it creates a large number of constraints
(number of elements) to the optimization problem.

To avoid intensive computation on a full-scale simulation, scale separation is adopted
herein; therefore, a multiscale topology optimization approach is proposed. An approach to
implement the multiscale topology is to consider the macro topology and micro topology
optimization sequentially [60, 90]. In that way, the macrostructure is designed using Free
Material Optimization. Once the macro problem is solved, then the inverse homogenization
[93] is used to decide the macro architecture.

An alternative approach is concurrent multi-scale topology optimization. Since many
works have different ways on optimizing microarchitectured materials, we categorize them
into the online optimized microstructure, the offline database, and the parametric cell.

• Online optimized microstructure.
Since the two-scale separation is adopted, the optimization formulation involves one
global macro problem at structure scale and many local problems at micro-scale. In
each optimization iteration, the global problem is used to optimize the macro topology
of density or the level set representations, the local problem designs the architecture
to meet the desired homogenized property [97, 123, 124]. The online optimized micro-
structure material has the most design freedom because it allows any number of unique
cell structures applied to the design problem.

• Parametric cell.
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Predefined cell structures are controlled by one or several geometric parameters, which
have been applied to design multi-scale structures efficiently [4, 73]. Such paramet-
ric cells, for example, as shown in figure 1.4, are the Triple Periodic Minimum Sur-
face(TPMS), the different types of the strut-based lattice structure and the optimized
architecture to achieve the maximum bulk module with respect to different volume
fractions. Moreover, one can refer to literature [77] for different 3D-printed scaffold
materials used in mechanobiological.

Due to the complexity of microarchitectures, FEM based homogenization is used to
evaluate offline effective material properties of the parametric cell; afterward, one can
construct semi-analytically surrogate models to FEM-based homogenization model by
Response Surface Methodologies [60]. It is convenient to construct a differential func-
tion that maps the geometry parameters to homogenized properties, leading the optim-
ization efficient, but with significant optimized space limitation to specific parametric
cells. In that way, the micro-scale optimization is no more extended topology optim-
ization but a kind of parametric optimization.

Hybrid types of parametric cells can be embedded in the same design system; however,
an important material transition approach [88] is used to smooth the adjacent but
different types of microarchitectures.

• Offline material database: a data-driven approach.
We think the offline material database is somehow an extension technology develop-
ment to the online optimizing microstructure approach and parametric cell approach
mentioned above, rather than a unique novel method for solving the multiscale topology
optimization problem. For example, [35] indeed apply the online optimizing approach,
however, in which the online optimized elastic tensor is mapped to a corresponding cel-
lular material in the database, which is preliminarily obtained by a sufficient number
of microscopic topology optimization.

[116, 133] are the parametric cell approach with multiple microscopic design para-
meters (5 and 3 parameters, respectively), to control either isotropic or anisotropic
material properties by a so-called data-driven surrogate homogenization model train-
ing by machine learning method. In the context of data-driven multiscale topology
optimization, the parametric microcell is not explicitly described, but the mixing of
both quantitative (geometry variables of a specific unit cell) and qualitative variables
(class of the unit cell). In addition, we think the data-driven approach is a new tool to
design architectured material by mixing; finally, we can achieve an extended continu-
ous material space and well-connected geometry, function graded micro architectured
material.

We summarize the multi-scale topology optimization methods in terms of scale separ-
ation and different kinds of microarchitecture optimization. Full-scale optimization is the
most straightforward way, and the local constraints consider the micro features (fiber or
porosity, etc.) and the micro characteristic length leading the number of constraints to the
problem equivalent to the number of elements. Multi-scale optimization is more efficient.
One optimizes the microarchitecture which provides more freedom to the multiscale scale
optimization, for one can design unique cell for every macro material point; however, it is less
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Figure 1.5: Macro and micro scale topology optimization technique maps, red box is our
approaches

efficient, and poses more restriction issues. Using the parametric cell will reduce the design
space, but it is the most efficient way, and this has been widely applied for bio-mechanic
design, such as human-bones [77].

However, the topic is not limited to this. Several critical review papers have categorized
the multiscale topology optimization into hybrid or non-hybrid micro architectures [46], and
the different restrictions (material distribution, shape, connectivity, or orientation of the unit
cell etc.) to microarchitecture [122].

(a) Triply periodic minimal sur-
face unit cells [73]

(b) Strut-based lattice structures [73]

(c) topology optimized microstructure [4]

Figure 1.6: Three types of 3D unit cells
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1.5 Topology optimization considering uncertainties

In the deterministic topology optimization, one seeks the design variables X to minimize
the structural performance f(X) (now denoted as f for a general purpose, not restricted
to compliance) subject to the environment loading and the constraints. However, the un-
certainties source ξ in material, geometry or excitation can be accounted for in topology
optimization; the design objective function f(X, ξ) has a probability description function.
Therefore, non-deterministic topology optimization is proposed to reduce the system per-
formance’s sensitivities to the uncertainties, while not scarifying a lot to the deterministic
TOP (DTO) objective function. The approach for taking into account the uncertainties is
categorized as either (1) worst-case orientated or (2) stochastic, [9, 109].

The worst case is the common practice technology to minimize the objective function
subjected to the worse condition among the uncertainty ξ. It has been wildly applied in the
mechanical loading uncertainties topology optimization problem. The key of the method is
how to define the worst-case condition, which optimization is subjected to. [80] considered
a two-player Nash game for finding the worse loading case to formulate robust optimization.
[108] applied the idea of the aggregation to contract the linear matrix composed of the local
uncertain load vector and the local displacement vector, then the worst load case is easily
established as the eigenvalue corresponding to the maximum eigenvalue of the matrix. Ref
[3] proposed the unified framework on worst-case in parametric and shape optimization un-
der the uncertainties of geometry, elastic modulus, applied body force. A fail-safe design is
proposed [115] where the damaged compliance for the worst failure case is set as the optimiz-
ation objective. However, it is not easy to define the worst-case within hybrid uncertainties,
and multi-physics loading.

Stochastic method is the alternative way, aims to describe a probability function of
f(X, ξ), or obtain the stochastic moments of f(X, ξ). The former one is the so-called the
reliability-based topology optimization, where the goal is to minimize the probability f(X, ξ)
of the structure response being greater than target value f ∗, subjected to uncertain loading
and constraints.

The latter one is nicknamed robust optimization (RTO), where the typical formulation
is to minimize the weighted sum of the mean and standard deviation of f(X, ξ), which
aims to simultaneously minimize the mean and standard deviation of the objective function
concerning random parameters ξ. The RTO formulation is in equation 1.8,

min
X

fR(X) = µ(f(X, ξ)) + λσ(f(X, ξ)) (1.8)

where λ is the weight factor and µ and σ are the mean and standard deviation. Typical
non-gradient (Genetic Algorithm is the most used method [74]) and gradient based solution
are both feasible to solve the problem. The gradient-based RTO solution is fascinating be-
cause the sensitivity information efficiently guides the optimization problem toward a ’good’
minimum. Although straightforward in concept, RTO poses several numerical challenges.
First is the mesh-dependency and checkerboard pattern to topology optimization, success-
fully solved using the filter method in section 1.3.3. The second is the many query problem
to qualify the uncertainty ξ propagation to the structure performance f(X, ξ) and the sens-
itivity information of the ∂µ(X, ξ)/∂X and ∂σ(X, ξ)/∂X.
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1.5.1 Robust Topology Optimization: RTO

We summarize the literature on RTO to solve the equation 1.8 in the table 1.1 with the
aspects to: (1) topology optimization method; (2) sources of uncertainties; (3) uncertainty
representation; (4) uncertainty quantification method.

The existing papers consider the loading amplitude, loading orientation, manufacturing
error, geometry shape, material properties, etc., either sole or hybrid uncertainties into robust
topology optimization. The uncertainties are either random variables or random fields, which
can be discretized by using different series expansion methods, i.e. Karhunen-Loeve (KL),
expansion optimal linear estimation (EOLE), orthogonal series expansion method (OSE),
and Polynomial Chaos Expansion (PCE) with truncation. One may refer to literature [104]
on details and the comparison of different series expansion methods.

Typically, two UQ methods were the non-intrusive and intrusive ones in the literat-
ure. The wildly applied non-intrusive UQ in RTO is the stochastic collocation points
method, Monte Carlo simulation(MC), quadrature points design. Besides, ref [49] proposed
a gradient-free genetic algorithm-based optimization method with Taguchi design ’samples’.
However, non-intrusive UQ turns computation unaffordable, while considering the hybrid
uncertainties problem; it will cause the dimension curse issue. Some papers relieve or solve
this problem through three aspects, (1) reduce the cost of the FEM simulation [64], (2) use
sparse grid collocation points [25, 63, 67] (3)uncertainty dimension reduction [132]. In ad-
dition, the intrusive approach, where analytically expressed mean and variance, is explored
by literature [66].

1.6 Research Objectives

The goal of this dissertation is to develop a density-based multiscale topology optimization,
that can consistently incorporate various multi-physics loading, microarchitectured mater-
ials, uncertainties, for solving the robust multiscale topology optimization. The specific
objectives are:

• To develop an asymptotic expansion homogenization method for scale separation (ho-
mogenization at the macro scale, heterogeneous at micro-scale). It allows evaluating
full structure performance by a computationally acceptable multiscale homogenization
method.

• To develop an uncertainty quantification method to qualify the uncertainty to propag-
ate to different scales. The computation cost requirement is the main issue of this
topic. Combination with the homogenization model (or multiscale homogenization
method) and the Polynomial Chaos Expansion method, allow the stochastic analysis
of the structural performance.

• To develop a density-based multiscale topology optimization. It enables one to em-
bed the homogenization model for optimizing the macro topology and micro material
distribution.
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Table 1.1: Literature of robust topology optimization
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• To develop a multiscale robust topology optimization. Once we have tackled scale sep-
aration, uncertainty quantification, and multiscale topology optimization, the robust
optimization is naturally solved.

1.7 Dissertation Outline

This dissertation consists of 4 Chapters. The following summary provides a brief overview
of each Chapter:

• Chapter 1: Introduction. This chapter provide the background and literature
survey and research objectives. It mainly introduces SIMP density-based topology’s
key ingredients, i.e., material interpolation, filtering technology. We will extend this
TOP framework for solving our problem in the following chapters.

• Chapter 2: Homogenization. We mathematically derive the classical homogenized
thermal capacity, thermal conductivity, and non-classical thermal memory function (in
context of large contrast of thermal conductivity of two phases) and numerically ob-
tain these effective material parameters with given microarchitecture. We validate the
FEM obtained homogenized variables by comparing the full-scale and macro (or homo-
genized, with and without thermal memory effect) transient thermal simulation. The
mechanical and thermo-mechanical developments are briefly recalled in the appendix.

• Chapter 3: Uncertainty propagation across scales. We take the transient
thermal problem as examples, uncertainties exhibited in the micro-scale, which are
the properties of the material micro gemology, to perform the stochastic analysis of
heterogeneous structure by a stochastic collocation points based PCE method. They
include: (1) Uncertainty propagates to the homogenized material properties: thermal
capacity, thermal conductivity, thermal memory function. (2) One saves the computa-
tion cost by applying dimensional analysis and the probability transform method. The
computation cost vs. precision is checked by the brute force Monte Carlo method. (3)
Proposed a PCE2 approach to perform uncertainty propagation to the full structure
with and without thermal memory effects by embedding the PCE surrogate homogen-
ized model.

• Chapter 4 Topology optimization: We contribute to extending density based topo-
logy optimization by embedding the homogenization model. We explore two different
optimization algorithms: gradient-free genetic algorithm and gradient-based optim-
ization: (1) In gradient-free GA, we proposed a two-resolution transition scheme to
reduce the design variables but maintain the FEM evaluation accuracy of the struc-
tural design performance. Moreover, we apply linear search to guarantee the volume
fraction design constraints. (2) In the gradient-based optimization method, we adap-
ted a semi-analytically PCE surrogate homogenized model to a complex architecture
material, letting one directly obtain derivation of the object to micro/macro design
variables. (3) Performance of the two adopted optimization algorithms has been com-
pared in optimized fiber-reinforced composites material structure. (4) The effect of
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mass and volume fraction constraints has been investigated. (5) In the context of
the thermo-mechanical topology optimization problem, adjoint sensitivity has been
derived. Thus, the gradient method has been used, diversity of local optimum designs
have been explored.

• Chapter 5: Robust optimization We applied stochastic collocation points based
PCE method into multi-scale topology optimization to reduce the sensitivity of design
targets (the deterministic one) to the presence of uncertainty. Thus, (1) The objective
of robust optimization is formulated, and the sensitivity derivation can be evaluated;
naturally, the gradient method is used to solve this problem. (2) It is used to solve
the mechanical design problem with the loading uncertainty presented. Then, the
accuracy of PCE approximated mean and standard deviation has been checked, and
the improvement of the design ’robustness’ has been observed. (3) It is further ap-
plied in the complex design systems, i.e., multiphysics loading, multi-scale structure,
multiple independent uncertainties (material properties, thermo-mechanical loading
uncertainty), where we proposed adaptive approach (a) progressively refined mesh and
(b) succeed in increasing penalty factor to improve the convergence to a feasible manu-
facturing design. (4) Robust optimization with hybrid uncertainties problem has been
analyzed.

Nomenclature

ρ = design variable density
c = structure compliance

V (ρ) = volume fraction as function of density ρ
Eρ = elastic modulus as function of density ρ
p = penalty factor to density
ρ̃ = filtered density

wij = conic weights
fR = robust objective function

f(X, ξ) = structure performance as function of design variable X and uncertainty ξ
µ = mean value
σ = standard deviation
λ = weight factor to standard deviation
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Chapter 2

Homogenization
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2.1 Introduction

Composite materials, which consist of multi-phases with different material properties (thermal,
mechanical, etc.) made with complex micro structure, often exhibit attractive properties
when compared to mono-phase material. They have a wild range applications in lightweight,
rigid, deployable structures.

The response of composites or heterogeneous material emerges from the physics of un-
derlying micro structure, in particular, it strongly depends on the architectures, spatial
distribution and material properties of component phases. Moreover, micro morphology and
material properties evolve when microstructure suffers from a macro loading.

Studying the relationship between the micro phenomenon and macro response not only
provides a tool to predict the effective material properties of heterogeneous structures, but
also allows one to design the material micro structure to fulfill the target performance.

However, modeling the macro heterogeneous media problem is computation costly. Ho-
mogenization is a well developed approach to extract the homogenized material properties
from the heterogeneous media; it is based on the scale separation assumption, as depicted
in Figure 2.1, the macro scale media 2.1 (a) consists of periodic micro structure (shown in
2.1 (b)), often the size the period is small compared to macro media, denoted with ε goes to
zero. A single period as in 2.1(c) is the so-called unit cell, which properties are equivalent
to macro scale one.

Basically, the homogenization approach can be divided into the following categories: ana-
lytical, numerical and experimental models. For simple microarchitectural material, analyt-
ical homogenization is efficient and accurate. Numerical homogenization is even universal,
implemented by solving Periodic Boundary Conditions on a unit cell, and has several advant-
ages, especially the ease of implementation and consideration of complex microarchitecture.

In this chapter, we start with solving a macro transient thermal problem where the
macro properties are derived from microarchitectured material. An Asymptotic Expansion
based Homogenization (AEH) is explored; further, the effective thermal conductivity and
thermal capacity are obtained by first-order homogenization. In addition, a non-classical
macro thermal memory physics, originating from the large contrast of thermal conductivity
of two phases in the unit cell, is homogenized by higher-order homogenization process, which
is used to correct the macro thermal problem to evaluate a so-called thermal delay effect.
The accuracy of the homogenized macro thermal memory function has been validated by
comparing it to direct heterogeneous numerical simulation.

2.2 Deterministic reference and homogenized problems

We consider herein a structure made with a micro-architectured material, i.e. that exhibits
a heterogeneous micro-structure. Moreover, we consider a periodic micro-structure, deduced
from a so-called unit cell. Modeling the overall problem at the length scale of the micro-
structure is computationally not affordable. Indeed, the scale length ratio, denoted ε, is
small. In such cases, a multiscale modeling is mandatory. The problem is then split into a
micro-scale problem defined on the unit cell only, and a macro-scale homogenized problem
defined on the full structure, but that is not intended to capture the micro-scale effects, and
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Figure 2.1: Illustration of scales separation

so does not require a fine mesh.
The periodic homogenization [7] is such a tool and is used herein. It also embeds a

modeling aspect since it derives explicitly the macroscopic model. We consider two different
cases for a linear transient thermal problem, with a micro-structure built with two material
phases. First, a case where the phases are indeed heterogeneous but with thermal capacities
and thermal conductivities of same order of magnitude. This is a classical situation, where
the homogenized thermal model involves the same classical form, with a homogenized thermal
capacity and a homogenized thermal conductivity. Second, a case with a large contrast of
conductivities (with a ratio of the order of ε2). In this last case, the macroscopic model
exhibits a memory function [7, 8] and involves a macroscopic function that captures this
effect. This is also a macroscopic characteristic emerging from the micro-structure.

In this section, we do not expose the methodology to find such models, but briefly recall
the results obtained in these two cases. The reader is therefore suggested to refer to the
literature for more developments of the homogenization approach, e.g. [12, 87], for thermal
conductivity, capacity, elastic modulus and thermal expansion.

The periodic homogenization relies on three main stages:

• the spatial fields are described as functions of two spatial coordinates: the slow vari-
able x, related to the variations at large scale (typically, the scale of the considered
structure), and the fast variable, y, dealing with variations at the size of the unit cell
(this last variable is zoomed out with a factor 1/ε). All quantities are periodic in every
direction with respect to the fast variable, they are said y-periodic;

• the primary variables are expanded with respect to parameter ε; for instance the
thermal field is obtained:

θ(x, y, t) = θ0(x, y, t) + εθ1(x, y, t) + ε2θ2(x, y, t) + . . . (2.1)

• all equations of the problem are consequently expanded in powers of ε and are split in
each power separately (hence assuming that they are verified for any value of ε);

• first order homogenization is considered herein.
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2.3 Homogenized thermal properties

2.3.1 Classical transient thermal problem

We consider the model problem of transient conductivity first in a heterogeneous medium
consisting of two components periodically distributed in the domain Ω. The transient thermal
problem reads:

q = −k∇θ in Ω, (2.2)

−∇ · q = ρcθ̇ in Ω× [0, T ], (2.3)

θ = θd on ∂Ω× [0, T ] (2.4)

θ(t = 0) = 0 in Ω (2.5)

where q is the heat flux vector, k is thermal conductivity, θ is the temperature scalar
field, ρ is the mass density, c is the thermal capacity. θd is the thermal boundary on ∂Ω.
∇· is the gradient operator with respect to the spatial domain. Note that here, properties
of components are in same order of magnitude, while in another case, a large contrast in
thermal conductivity will be analysed in the next section. To fix the idea of homogenization,
we define two coordinates, namely the slow one x, describing the phenomenon at macro
scale, and the fast coordinate y, evaluating the microscopic phenomenon i.e. the response in
periodic unit cell. The scale ratio ε is expressed as :

yε = x (2.6)

Equivalently, y is the microscopic variable and x is indeed the macroscopic variable. The
domain Ω is highly heterogeneous, therefore, modeling the full scale of c(x, y) and k(x, y) is
computationally expensive. Usually, with intrinsic periodicity of length scale ε, it is assumed
that Ω is homogeneous domain, finding the effective or averaged c(x), k(x) with considering
its high heterogeneity in scale y is the process of homogenization. As already stated, we
started homogenization by expanding the temperature filed θ(x, y, t):

θ(x, y, t) =
∞∑
i=0

εiθi(x, y, t) (2.7)

where each term θi(x, y, t) is function of both macro and micro variables x, y and time t.
Following the derivation rule of:

∇· = ∇x ·+
1

ε
∇y· (2.8)

where ∇x and ∇y are the derivative operators with respect to variables x and y, the transient
thermal problem becomes a series in term of ε:

1

ε2
∇y · (k∇yθ0)

+
1

ε
[∇x · (k∇yθ0) +∇y · (k∇xθ0) +∇y · (k∇yθ1)]

+ ε0 [∇x · (k∇xθ0) +∇x · (k∇yθ1) +∇y · (k∇xθ1) +∇y · (k∇yθ2)] + · · ·
= ρcθ̇0 + ερcθ̇1 + · · · .

(2.9)

31

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



Identifying each coefficient w.r.t. different orders of ε leads to different equations. ε−2

terms leading to:

0 = ∇y(k∇yθ0) (2.10)

It implies that θ0 is the macroscopic temperature, independent of y coordinate.
The ε−1 terms is:

0 = ∇x[k∇yθ0] +∇y[k∇xθ0 + k∇yθ1] (2.11)

This leads to a steady-state thermal problem on cell Y , allowing one to solve the y− periodic
unknown θ1. It is linear w.r.t. the ∇xθ0. Normally, it was solved by FEM with periodic
boundary conditions on unit cell. As detailed in following section. We obtain:

∇yθ1 = −Ly(∇xθ0) in Y (2.12)

where Ly is a linear operator. the ε0 0-order problem leads to the macroscopic transient
thermal problem on Ω:

ρcθ̇0 = ∇x[k∇xθ0 + k∇yθ1] +∇y[k∇xθ1 + k∇yθ2] inΩ

θ0 = θd on ∂Ω

θ0(t = 0) = 0

(2.13)

to get rid of the unknown θ2 in Y domain, since ∇yθ1 = −Ly(∇xθ0), one applies average
operator<>Y on Y domain, to transform the equation into:

〈ρc〉Y θ̇0 = ∇x[〈k(1− Ly)〉Y (∇xθ0)] in Ω× [0, T ] (2.14)

With the homogenization procedure, one may solve a macroscopic transient thermal
problem θ0 with effective propeties ρcM = 〈ρc〉Y and kM = 〈k(1 − Ly)〉Y . Full solution
temperature can be recovered approximately as θ ≈ θ0 + εθ1, namely with a first -order
multiscale homogenization method. The numerical homogenization cases are implemented
and validated in next section.

2.3.2 Non-classical thermal memory function

In the context of large contrast in thermal conductivity of components, a non-classical
thermal memory effect arises. We expect to directly solve the thermal memory delay prob-
lem by homogenization procedure. Recalling the same definition of x, y, ∇, Y , Ω and ε, one
may refer to the previous section, and subscript F and S are indicated as different material
phases. It is assumed that the repeated unit cell Y domain is composed of two phases S
and F , occupying the domains YS and YF ; YΓ = YF

⋂
YS is the interphase. Large contrast

in thermal conductivity arises when kF ≈ ε2kS [7], their capacities are of same order i.e.
ρF cF ≈ ρScS. Thermal memory effect is expected to be interpreted with the characteristic
time, since macro characteristic time is

τM = (cM/kM)(L/π)2 (2.15)
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where the cM and kM are the homogenized thermal capacity and conductivity, and L is
the characteristic length of macro scale. The characteristic times of S and F phases are
τS = (ρScS/kS)(lS/π)2 and

τF =
ρF cF l

2
f

kFπ2
≈ ρF cFL

2

kF/ε2π2
≈ τS/ε

2 ≈ τM (2.16)

Here introduces an intermediate thermal conductivity kF ′ = kF/ε, and characteristic length
corresponding to different scales are: lS ≈ lF ≈ l and LS = lS/ε ≈ LF = lf/ε ≈ L, where L
and l are associated to macro and micro length, respectively.

In such case, the transient thermal response of F phase may arise from the macro scale.
A phenomena of highly thermal heterogeneity on the unit cell appears, one can capture this
phenomena by relocalization, or a multiscale method. However, we expect to directly capture
the so-called thermal memory effect by a homogenization procedure. For this purpose, the
thermal equations then become:

ρF cF θ̇F = ∇(kF∇θF ) inYF × [0, T ], (2.17)

ρScS θ̇S = ∇(kS∇θS) inYS × [0, T ], (2.18)

θF = θS onYΓ, (2.19)

kS∇θSnS = −k′F ε2∇θFnF onYΓ. (2.20)

From the beginning, Equation 2.18 to solve the θS at order ε−2 implies that, θS0 is of
macroscopic temperature field, does not rely on fast coordinate y.

At order of ε−1 , it gives:

∇y(kS∇xθS0) = −∇y(kS∇yθS1) in YS (2.21)

kS∇ · θSnS = 0 on YΓ (2.22)

It is a steady state thermal problem on S, one can recall the first order solution θS1(or
characteristic of S-microstructure) using linear operator in Equation 2.12 by:

∇yθS1 = −LSy(∇xθS0) on YS (2.23)

The numerical determination of LSy requires: (1) as many resolutions of the previous linear
micro problem on YS as there are independant components in ∇xθS0 , i.e. 2 for 2D problem
3 for 3 D problem; (2) the storage of the same number of temperature gradient fields on YS
[38]. Indeed, It allows to recover the heat flux qS by:

qS = −kS(1− LSy)∇xθS0 (2.24)

Then the boundary condition of Equation 2.20 at ε−1 and ε0, respectively, are expressed
as:

kS∇yθS0nS = 0 on YΓ (2.25)

kS(∇yθS1 +∇xθS0)nS = 0 on YΓ (2.26)
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which indicates that θ0 on interphase YΓ is independent to either x or y. Then, the order of
ε0 for θF provides the following problem:

ρF cF θ̇F = ∇yk′F∇yθF0 in YF × [0, T ]

θF0 = θS0 on YΓ × [0, T ]
(2.27)

It implies that θF0 only y dependent, otherwise no admitted solution to θF0. Due to
the θS0(x, t) as a boundary condition on interphase, one introduces θF0(x, y, t) = θS0(x, t) +
w(x, y, t) into Equation 2.27, generates a new problem

ρF cF θ̇S0 + ρF cF ẇ = ∇y(k′F∇yw) in YΓ × [0, T ] (2.28)

where w is y periodic and null on YΓ.
The order ε0 of Equation 2.18, and order ε1 of Equation 2.20(boundary condition), yield

to the problem:

ρScS θ̇S0 = ∇x[kS∇xθS0 + kS∇yθS1] +∇y[kS∇xθS1 + kS∇yθS2] inΩ

kS(∇xθS1 +∇yθS2) = −k′F∇yθF0 onYΓ

(2.29)

One defines the partial averaging operators as: 〈•〉S = 1
vol(Y )

∫
YS
•dY and 〈•〉F = 1

vol(Y )

∫
YF
•dY ,

so that 〈•〉y = 1
vol(Y )

∫
YS
•dY = 〈•〉S + 〈•〉F Combining the Equations of 2.21, 2.27, 2.28, 2.29

and applying the average operators, the macroscopic thermal problem finally reads:

〈ρScS〉S θ̇S0 = ∇x(〈kS(1− LSy)〉S∇xθS0)− 〈ρF cF θ̇F0〉F (2.30)

where, the macro parameters of are 〈ρScS〉S = CMS and 〈kS (1− LSy)〉S = kMS, respectively.
Once discretized finite elmements, the problem involves macro thermal problem with an
additional term of θ̇F0 on a full micro cell, i.e. a FE2 procedure [43] can be used. For the
efficiency and storage saving purposes, memory effect model [7] is proposed to replace the
term of 〈ρF cF θ̇F0〉F , turning Equation 2.30 into:

cMS θ̇S0 = ∇x(kMS∇xθS0) +

∫ τ=t

τ=−∞
θ̈S0(τ)β(t− τ)dτ (2.31)

where β(t) is a macro memory function at the macro scale [7], vanishing in time t and inde-
pendent of microscale boundary value problem. Considering the practical intial conditions,
one defines θ̇S0(t ≤ 0) = 0, θ̇F0(t ≤ 0) = 0, θS0(t ≤ 0) = 0 and θF0(t ≤ 0) = 0.

To achieve the micro dependent θF0, a transient problem Equation 2.27 with a time
dependent thermal boundary θF0(t) = θSM(t) on inter phase between two phases requires
to be solved. Therein, Duhamel’s theorem is adopted, instead of solving 2.27, one can first
solve a auxiliary problem u(y, t) with constant boundary,

ρF cF u̇ = ∇yk′F∇yu inYF × (0, T )

u(t = 0) = θc1 inYF

u(t) = θc2 onYΓ × (0, T )

(2.32)
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where u(y, t) is the temperature disbribution inside the F phase, the θc1 is any non-zero
thermal field, and θc2 = 0 is null on interphase, then relates the solution of θF0(t) to auxiliary
one u by Duhamel intergral:

w =

∫ τ=t

τ=−∞
u(y, t− τ)θ̈S0(τ) d τ (2.33)

This memory function, obtained as:

βM(t) =< CF u̇(y, t) >F (2.34)

The accuracy of β achieve from asymptotic homogenization method is depended on the
resolution of spatial and temporal discretizations.

Physically, the macro thermal memory effect is due to the large contrast of thermal
conductivities on different phases material in unit cell. Mathematically, it originates from
kF/kS = ε2 but ρF ≈ ρS, can be interpreted by the characteristic time, that is τF ≈ τM ≈
τS/ε

2. Asymptotic expansion theory is applied, expanding the temperatures θF and θS
w.r.t. orders of ε. the memory function is derivative from the solution of globally thermal
equations(equation 2.17 - 2.20). Summarily, one can concluded:

• θS0 is the macro temperature.

• θS1 is the microscopic temperature, ∇yθS1 can be recalling from ∇xθS0 and liner oper-
ator LSy.

• θF0 is y-periodic. can be expressed as θF0 = θS0 + w.

• By averaging, the macro thermal problem is derivatived (equation 2.30), where the
difference compare to the classic thermal problem relies on: θS0 is the quantity of
interest; homogenized thermal capacity and conductivity are averaged on S phase; an
additional component 〈ρF cF θ̇F0〉 is introduced to correct such problem.

• To the end of storage saving, 〈ρF cF θ̇F0〉 is expressed by a memory effect model∫ τ=t

τ=−∞
θ̈S0(τ)β(t− τ)dτ

. β is indeed the macro thermal memory function.

• Submitting θF0 = θS0 +w into equation 2.25, using Duhamel principle (equation 2.32),
w =

∫ τ=t

τ=−∞ u(y, t− τ)θ̈S0(τ) d τ . Consequently, θF0 is solved.

• By averaging, finally βM =< CF u̇(y, t) >F .
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2.4 Numerical implementation

The thermal problem without memory effect is indeed the classical transient thermal problem
in heterogeneous periodic media as one discussed in equation 2.14. Instead of modeling the
full scale problem, we model a macro-scopic problem with homogenized thermal capacity and
conductivity on an underlying unit cell. The transient thermal problem with memory effect is
discussed in section 2.3.2, it is due to the large contrast in thermal conductivity of phases, and
will be solved by a macro approach, where an additional macro thermal memory βM(t) are
applied. Consequently, three homogenized CM kM βM(t) should be calculated offline, each
has its own features leading to different strategies. Details on numerical implementations of
homogenized c, k and β are illustrated. The proposed macro thermal memory solution is
validated by a reference full scale modeling.

2.4.1 Macro thermal capacity CM

Analytical homogenization of thermal capacity is made by averaging:

cM = 〈ρc〉y (2.35)

The computation cost is negligible, which resided in measuring the volume fraction of dif-
ferent phase on unit cell. On a structure consisting of S and F phases, cM = nF (ρF cF ) +
(1− nF )(ρScS), where nF is the volume fraction of F phase.

2.4.2 Macro thermal conductivity kM

The mathematically derived thermal conductivity based on AEH requires a localization,
which is a steady state solution on the unit cell with periodic boundary conditions (PBCs).
It indicates that kM is not only phases properties dependent, but also the micro architecture
dependent thermal property. Meanwhile, with applying FEM method, the main procedures
of homogenization technology are:
1. Determine the unit cell structure.
The macro structure is assumed to be sufficiently homogeneous, i.e., in mathematics view,
ε ≈ 0, at the same time, the length scale of unit cell should be smaller than the characteristic
length of the macroscopic sample. The assumption suggests that, the macro scale structure
consists of spatially repeated unit cells, thus periodicity at unit cell level is proposed.
2. FEM solution
Once determines the region of unit cell, one spatially discretizes the unit cell depicted in
figure 2.3, with inclusion F and matrix S. Given the periodic unit cell ΩY , the boundaries
are decoposited into two opposite groups ∂ΩY

+ and ∂ΩY
−, satisfying the constraints of

∂ωY = ∂ωY
+ ∪ ∂ωY − and 0 = ∂ωY

+ ∩ ∂ωY − Perodicity Boundary Conditions (PBCs) are
given as,

θk+ = θk− (2.36)

k+ and k+ are subscripts indicating the periodic boundaries on the unit cell ΩY . In practice,
PBCs are introduced to the pair multi-points on opposite surfaces. Thus, one of the pre-
requisites to categorise the pair nodes on opposite surface into 3 sets, i.e. vertex, inner-edge
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and inner face. We only categorise the nodes on one face as an example, as shown in figure
2.2.

Figure 2.2: The categorized sets for applied periodic boundary condition

• set-1 (vertex):

• set-2 (inner edges):

• set-3 (inner surfaces):

The pair-nodes in set-2 belong to edges but excluding the pair nodes on set-1. The pair-nodes
on set-3 are the points belonging to the surfaces excluding the ones on set-2 and set-3. Note
that there are no conjoint nodes of 3 sets to avoid over constrained finite element analysis
system. By solving the PBCs on unit cell, then take averaging operator, KM is calculated:

kZ1 = −kZ0 with PBCs (2.37)

Z1 = LZ0 (2.38)

where the Z0 is the given unity gradient with respect to macro scale, and Z1 is the calculated
gradient temperature with respect to unit cell level. Once solving the 2.37, one can construct
the so called linear operator L. To determine the different components of kij

M (ki1
M , ki2

M and
ki3
M) with i = 1, 2 and 3) it has been numerically simulated three times with applied different

unity gradient thermal fields of Zi
0, i = 1, 2and3, construct linear operators corresponding to

different components Lij. Then take the averaging operator:

kij
M =

∫

ΩY

k(1− Lij) dΩY (2.39)

A numerical case is proposed, a porous cell structure with two phases( in Figure 2.3), in
which, the inclusion F is surrounded by matrix S phase, their dimensionless thermal capacity
and conductivity are assumed to be (ρc)s = (ρc)f = 2.0× 106, ks = 20, kf = 10, respectively.
It is assumed a perfect inter phase of inclusion and matrix that heat flux can totally transfer,
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effective thermal conductivity of the composites homogenized in kM : Other types of PBCs
on unit cell are feasible, the only requirement for them are fulling the periodicity. Note that,
this homogenization assumption relies on the concept of scale separation (heterogenous in
micro scale, homogenous in macro scale) is not appropriate in highly heterogeneous macro
scale region.

kM =




16.001 1.77298E − 16 −3.73741E − 16
8.16923E − 16 16.002 −1.00898E − 15
2.66914E − 16 6.51880E − 16 15.862


 (2.40)

For validation of the periodicity, the continuity of the thermal flux fields on the boundaries
of the RVE for the composites is checked in figure 2.4.

(a) (b) (c)

Figure 2.3: Mesh of unit cell

2.4.3 Macro thermal memory function βM

βM is interpreted as a macroscopic homogenized material characteristic, it is determined
with transient thermal computation in micro scopic F phase (equation 2.32), where material

(a) left-right surfaces (b) front-rear surfaces (c) top-bottom surfaces

Figure 2.4: Thermal flux continnuty check
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thermal properties are cF and kF ′, then be computed by averaging during each iteration.
Key ingredients to solved βM by FEM are:

• One applies the same materials as used in homogenized thermal conductivity problem.

• It is implemented on micro level F phase. To simplify, only 1/8 of the cell can be
simulated, periodicity conditions that are automatically satisfied due to the planar
symmetries.

• Expand the size of physical unit cell by ratio of ε. The characteristic of micro unit cell
and macro structure are of the same order.

• Material properties cF and k′F are applied; note that kF ′ = kF/ε
2, is not a physical

thermal conductivity.

• Define initial and boundary conditions (in equation 2.32), θc2 is null on the interphases
between S and F materials. θc1 = 1, a unity initial temperature is adopted.

• Time steps nt and duration t ≈ 3τF , also with uniform time step t/nt. To satisfy
instabilities maximum discrete principle, a thumb rule [114] to determine the t/nt is
written:

t/nt = n× τF/nt ≥ (ρF cF e
2)/(6k′F ) (2.41)

where e is the element size.

• In each iteration, one obtained βM(t) by averaging operator in equation 2.34.

Figure 2.5 shows the homogenized time dependent βM with respect to different time resolu-
tions (nt = 15, 45, 75, respectively). With applied nt = 45, one achieves a good convergent
βM compared to coarse time discretization. Since the accuracy of this proposed numerical
solution to solve βM has been validated compared to a analytically solution [38]. In next
section, we will validate it from a different perspective: comparing the solution of equation
2.31 to the solution obtained by full-scale modeling.

2.4.4 Macro thermal memory problem, correlation θSM

In the context of large contrast in thermal conductivities, the homogenized model exhibits
a memory function βM(t), to estimate the temperature evolution in fast S phase θSM(x, t).

To assess the validity of this homogenized model, in this section we compare its prediction
to the results provided by the full scale model as a reference, and to the results of the
macroscopic model without memory function, for an affordable deterministic problem, with
the boundary conditions of Figure 2.6,

θd(t) = θa + θa sin

(
2π

t

Tc
− π

2

)
(2.42)

with θa and Tc being given amplitude and characteristic loading time.
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Figure 2.5: βM/τF w.r.t. different time steps nt

𝑥1

𝑥3

𝑥2

𝐿

(a)

(b)

(c)

𝜃𝑥1=0 = 𝜃𝑑(𝑡) 𝜃𝑥1=𝐿 = 0

𝜃𝑥1=0 = 𝜃𝑑(𝑡)
𝜃𝑥1=𝐿 = 0

𝜃𝑥3=0 − 𝜃𝑥3=𝑙 = 0𝜃𝑥2=0 − 𝜃𝑥2=𝑙 = 0

𝜃𝑥2=0 − 𝜃𝑥2=𝑙 = 0

𝑥1

𝑥2

𝑙

Figure 2.6: (a) details of unit cell (F phase in red, S phase/matrix in blue), (b) transient
thermal boundary-value problem in a 3D composite and finite element mesh, (c) same prob-
lem using effective media
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For this deterministic test case, the geometric parameter (volume fraction of F phase) is
n = 0.4, and material properties are CS = CF = 1, k′F = kS = 2 and kF = 10−4 × k′F , so
ε = 100 herein. The macro thermal characteristic CM , kM and βM(t) are computed offline
as described in the previous section. For this macroscopic model, the thermal characteristic
time is τM = CML

2/kM .
Figure 2.7 (a)-(c) reports the macroscopic temperature evolution θSM/θa with respect to

time scale t/Tc, for the macroscopic problems with and without memory function, at central
location x1 = L/2 as well as the reference temperature, obtained by averaging on the central
unit cell fast phase S of the full reference temperature obtained at microscale. Quasi-identical
results are obtained for the reference and the macroscopic problem with memory function,
while some discrepancies occur both in amplitude and time shift for the macroscopic problem
without memory function, hence emphasizing the interest of using the dedicated memory
function as a macroscopic property.

We play a little trick here by reversing the inclusion and matrix material properties in
the unit cell. In that situation, it requires to derive the homogenized βM on the matrix phase
with a different geometry (labeled as Geo1 in figure 2.7 (d)). In the figure 2.7 (d), the green
curve is exactly the case shown in figure 2.7 (b), the blue curve is the new case. It shows
that the geometry has a significant influence on the homogenized βM and the macro thermal
problem.

2.5 Conclusions

This chapter introduces applying the Asymptotic Expansion Homogenization to solve the
effective thermal properties of the underlying heterogenous unit cell, which is repeatedly dis-
tributed on the macro scale. A non-classical thermal characteristic, named thermal memory
function arising from larger contrast conductivities of two phases is demonstrated in this
chapter. We have mathematically derived the solutions of macro thermal capacity, conduct-
ivity, and memory function by AEH, proposed distinct numerical solutions to different macro
properties by FEM.

We implement three macro transient thermal cases, being the direct numerical case
on heterogeneous structure, the macro case with effective capacity and conductivity, the
macro case with thermal memory function, to validate the accuracy of our proposed thermal
memory function to describe the thermal lag phenomenon.

As benefits from the spatial homogenization technology, we are able to analyze the
complex heterogeneous structure performance using an affordable computational approach.
Moreover, it is the fundamental development for the further uncertainty qualification and
optimization problem.
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Figure 2.7: Comparison of the macroscopic part of the temperature for 3 loading cases: (a)
Tc/τM = 20, (b) Tc/τM = 2, (c) Tc/τM = 0.2, (d) Tc/τM = 2 while the classical macroscopic
thermal characteristic time is τM = CML

2/kM = 200.
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Nomenclature

θ = temperature
q = heat flux
ε = spatial scale ratio
x = slow variable
y = fast variable

θ(x, y, t) = temperature field as function of slow and fast variables (x, y) and time t
k = thermal conductivity
c = thermal capacity
∇ = gradient operator
〈·〉Y = average operator on Y domain
Ly = localization operator
τ = characteristic time
YF = F phase region in RVE
YS = S phase region in RVE
YΓ = interphase between S and F in RVE
cM = homogenized thermal capacity
kM = homogenized thermal conductivity

βM(t) = homogenized thermal memory function
l = length of microscale
L = length of macroscale

vol(Y ) = volume of RVE
Z0 = unity gradient temperature w.r.t. macro scale
Z1 = gradient temperature w.r.t. micro scale

θd(t) = temperature boundary condition
θa, Tc = magnitude and characteristic loading time to the temperature boundary θd(t)
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Chapter 3

Uncertainty propagation across scales
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3.1 Introduction

Materials with engineered micro-structures are still an emerging topic, since they can be
optimized for given functionalities, and therefore may exhibit higher performances when
compared to standard bulk materials, [6, 44]. Nevertheless, their manufacturing may also
be costly, and their recycle-ability an issue. They can therefore be targeted not for mass
production, but tuned for on-demand applications, and eventually for a dedicated structural
part, or a dedicated critical location in a mechanical part.

As a counterpart, there are some uncertainties involved, due to a not-so-well controlled
production flow, that should be taken into account for the overall design problem. For
optimization stage, this leads to robust optimization issue, [14]. For all design phases, this
leads to the uncertainty quantification issue, [119, 129].

In this chapter, we will focus on uncertainty propagation of virtual material prototyping,
issuing the question of scale propagation of uncertainties due to the micro-scale material
behavior, and geometry of the micro-structure. Two different cases built upon the previous
chapter are concerned: (i) a classical macro case of a limited contrast in thermal conductiv-
ities of the material phases, and (ii) the large contrast case, leading to different characteristic
transient thermal times, and a nonstandard macroscopic behavior that is also studied for
uncertainty propagation throughout scales.

Since we promote the non-intrusive approach, no stochastic finite element method is used
but a deterministic parametric FE analysis, together with a polynomial chaos expansion
(PCE) approach with collocation both at different spatial scale. Generally, PCE showed
better computational efficiency, when compared with standard and modified Monte Carlo
techniques.

3.2 Review of uncertainty propagation and quantifica-

tion

A deterministic model owns no capability of dealing with the engineering problem with
uncertainty variables. However, a stochastic model with analytical expression is a kind
of challenge in practical application. For this purpose, Uncertainty Quantification (UQ)
is proposed to obtain a relative approximation to original model. The general concept of
uncertainty propagation is to consider the code between random input and output variables,
read as:

Y =M(X) (3.1)

In this context, Equation 3.1 described random Y due to propagation of random inputs X
through a numerical modelM. With adequate realizations ofM(X), the probability density
function (pdf) of Y can be inferred, some quantities of interest (e.g. mean, variance) are
obtained.

The principle objectives of Uncertainty Quantification and Propagation are listed as
follow:

• Validation. Simulation model must be validated in context of real engineering applic-
ation, where exist multiple experimental and numerical uncertain ranges.
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• Variance analysis. The variance of the response around its mean value characterizes the
robustness of the numerical prediction and the system’s controllability. They (mean
and variance) provide essential information relevant to the design or the optimization
of the system, taking into consideration uncertainties.

• Risk analysis. Based on the probability laws of the input data, it is often desired to
get the probabilities of the system response within a threshold to guarantee the health
of the system. Such probability low described outputs that can be used to risk or
reliability assessment analysis .

• Optimization considering uncertainties. By providing mean and variance or probability
law of the outputs data, it is possible to manage the system to be less sensitive to
the uncertainty by optimization. A so-called Robust or Reliability optimization is
proposed.

To these purposes, some classical UQ methods are reviewed, including Monte Carlo,
spectral method.

3.2.1 Monte Carlo: a brute force non-intrusive method

The Monte Carlo (MC) [100] is a sampling method of realizing the model in equation 3.1 with
quite a large number of random sample points. The general procedure of MC is summarized
and can be easily implemented by:

• Design of experiment through sampling method: The MC is kind of non-intrusive
method that takes the M as a black box with inputs of n samples, i.e,

X = {xi, i = 1, 2, ..., n}

. Random or quasi-random sampling method (e.g. sobol sequence, latin hypercube
and Niederreiter sequence etc.) are adopted.

• Compute the system response yi =M(xi), (i = 1, 2, ..., n).

• Evaluate the mean µy and standard deviation σy by:

µy =
1

n

M∑
i=1

yi (3.2)

σy =

√√√√ 1

n2

n∑
i=1

y2
i − µ2

y (3.3)

• Fitting the Probability Density Function (PDF) fY (y). Since fY (y) is an unknown
distribution, non-parametric fitting method such as kernel density can be used to
estimate the PDF. Subsequently, Cumulative Distribution Function (CDF) of y is
obtained by integrating fY (y).
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The MC is a non-intrusive approach (no need to rewrite the original or deterministic
model), for building such a case is effortless. Unfortunately, the rate of convergence of MC
is 1/
√
n, which is relatively slow, however independent of the dimension of the uncertainty

vector. The computation cost mainly relies on the number of samples n; thus an appropriate
sampling method, exploring through the whole sampling space with fewer points, may help
relatively improve the efficiency of MC.

3.2.2 Spectral Methods

As outlined above, MC is the non-intrusive stochastic collocation method, the uncertainty
must be sampled with an adequately fine resolution to evaluate the variation of outputs. In
contrast, the spectral method is based on a completely different approach, namely recon-
struction of the equation 3.1 expanded such as:

Y =
+∞∑
j=0

yjΨj(X) (3.4)

in which X is the random vector defining the random space, Ψj are the orthogonal basis func-
tion, and yj are the deterministic unknown coefficients. Once the coefficients are determined,
the statistics of Y can be immediately exploited.

Without too much details, we explore a short list literature on the development and
application of the spectral method in the UQ. Reference [50] is wildly recognized as the
original work for spreading the spectral method in UQ. This early work starts from solving
the linear mechanical problem with spatial varying elastic material properties and loading
uncertainties [50, 51]. Afterwards, it is developed to deal with UQ in physical systems of
fluid dynamic [69], bio-mechanics [101], heat transfer problem [22] and topology optimization
[111]. However, the essential ingredients to the spectral method rely on the determination
of the coefficients yj to their corresponding basis function Ψj.

In the following, we introduce a polynomial chaos expansion base spectral method. The
selected orthogonal polynomials basis is used to construct the basis function according to
the PDF to the uncertainty inputs. Typically, two approaches, non-intrusive and intrusive
solutions, to obtain coefficients yj are briefly introduced.

3.3 Polynomial Chaos Expansion (PCE) based Spec-

tral Methods

The PCE is one of the spectral representation methods, the random output Y is expressed
as an infinite series expansion in equation 3.4, where, {Ψj}+∞

j=0 forms basis of Hilbertian
space H ⊃ Y , {yi}+∞

j=0 is the set of coordinates of Y with respect to this basis. Hilbertian
analysis guarantees the existence of such bases and representation, however many choices
are possible.

The equation 3.4 can be developed with different series expansion methods, such as,
Karhunen-Loève (K-L) expansion, Orthogonal Series Expansion (OSE), and Expansion Op-
timal Linear Estimation (EOLE) method, [104]. Herein, we consider Polynomial Chaos Ex-
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pansion [50, 110] as an effective tool for constructing Hilbertian basis, {Ψj}inf
j=0, in which the

basic terms are multivariable orthogonal polynomials in the inputs vector X, and yj are the
coefficients that can be determined accordingly. Such a tool is called PCE stochastic model
[13] which is qualifying the uncertainties on the Quantity of Interest (QoIs) and obtaining
surrogate model to original numerical model within acceptable accuracy.

3.3.1 Key ingredients of PCE-based spectral method

The key ingredients to develop such stochastic model in equation 3.4 rely on: (1) truncate
after a finite series term, (2) decide the orthogonal function Ψj, (3) determine the coefficients
yi

• Univariate orthogonal polynomials [103]

The multivariable orthogonal polynomials basis Ψj is built startung from a set of

univariate orthogonal polynomials ψ
(i)
k (xi). For the sake of simplicity, one assumes

the random input vector has independent components denoted as {Xi, i = 1, ...,M},
therefore the joint distribution is given by a simple product:

fX(x) =
M∏
i=1

fXi (xi) , xi ∈ DXi (3.5)

Where the DXi is the support of Xi, for each Xi and given two functions ψ1, ψ2 : x ∈
DXi , provided an exist function:

〈ψ1, ψ2〉i =

∫
DXi

ψ1(x)ψ2(x)fXi(x)dx (3.6)

The right hand side is the expectation E [ψ1 (Xi)ψ2 (Xi)] with respect to the fXi .
When evaluated to be 0, one determines that such two functions are orthogonal with
respect to the probability P(dx) = fXi(x)dx. Using this notion and applying the
Gram-Schmidt orthogonalization procedure, one allows to build a family of orthogonal
polynomials. For some parametric pdf distributions, table 3.1 reports the well-known
families of orthogonal polynomials. For example of uniform distribution, the Legendre
Polynomials up to 4th order are depicted in figure 3.1.

• multivariable orthogonal polynomials basis Ψα [103]:

One intends to construct the basis in equation 3.4 by the tensor product of univariate
orthogonal polynomials. From the start, one defines the multi-index α = (α1, α,...αM),
which are corresponding to multivariate polynomial Ψα:

Ψα(x)
def
=

M∏
i=1

ψ(i)
αi

(xi) (3.7)
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Figure 3.1: Univariate Legendre polynomials up to 4th order

where the univariate polynomial ψ
(i)
k are defined according to the i-th marginal distri-

bution. One admits Ψα, α = (α1, α,...αM) in the input vector X are orthonormal:

E [Ψα(X)Ψβ(X)]
def
=

∫
DX

Ψα(x)Ψβ(x)fX(x)dx (3.8)

if α = β, the right hand side is equal to 1, otherwise 0. For ease of implementation,
the equation is truncated to a certain term, let one defines the total degree of Ψα by:

|α| def
=

M∑
i=1

αi (3.9)

where theM is the truncation threshold. One standard truncation approach is selecting
all the polynomials that |α| is smaller than a provide value p, finally, the number of
terms is [58, 127]:

M =

(
N + p
p

)
=

(N + p)!

N !p!
(3.10)

where N is the uncertainty dimension.

In such context, one builds the PCE stochastic model upon the outline above, expressed
as:

Y =
M∑
α=0

yαΨα (3.11)

The calculation of the polynomial coefficients for uncertain parameters uses various pro-
cedures, e.g., Galerkin projection, collocation method, and moment method.

3.3.2 Intrusive solution: stochastic finite element method

We briefly described the intrusive solution to determine the coefficients exemplified by the
elastic mechanical problem with material uncertainties. The general details may refer to
[56]. In the case the deterministic linear equation system is described as:

KU = F (3.12)
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where K is the stiffness matrix, U is the displacement solution vector and the F is the
force loading vector. Assumed the force loading is deterministic and material properties are
random, it leads the two stochastic representations of K(X) and U(X), to be expanded by
equation 3.11:

K(X) ≈
∑M

j=0KjΨj(X)

U(X) ≈
∑M

i=0 UiΨi(X)
(3.13)

where the Kj and Ui are the corresponding coefficients of the selected basis function Ψj

and Ψi, respectively.
Submit them into the deterministic elastic mechanical equation 3.12, consequently leads

to:
M∑
i=0

M∑
j=0

KjUiΨiΨj ≈ F (3.14)

Next, one performs a Galerkin projection onto the orthogonal basis polynomials of the
Chaos space:

M∑
i=0

M∑
j=0

KjUi 〈ΨiΨjΨk〉 = 〈FΨk〉 = Fδ0k k = 0, 1, . . . ,M (3.15)

The stochastic linear system can be rewritten as:


∑M

j=0Kj 〈Ψ0ΨjΨ0〉 · · ·
∑M

j=0 Kj 〈ΨMΨjΨ0〉
...

...∑M
j=0 Kj 〈Ψ0ΨjΨM〉 · · ·

∑M
j=0 Kj 〈ΨMΨjΨM〉


︸ ︷︷ ︸

Kpc

 U0
...
UM


︸ ︷︷ ︸

Upc

=


F
0
...
0


︸ ︷︷ ︸
Fpc

(3.16)

Building the Kpc is also called the matrices second level of assembling. One may refer to
references [56, 104] for the detail on assembling the matrixKpc. The vector Upc is the obtained
PCE coefficient, in which the unknown dimension is N×M . The M is the size of polynomial
basis, and N is the degree of freedom of the structure (e.g. twice the node number for two-
dimension elastic-mechanics problem). It obviously shows the disadvantages of the intrusive
method in the perspectives of: (1) high memory usage; (2) require rewriting/adaptation of
source code to the deterministic model; (3) difficult to implement for some interesting values
(e.g. von Mises stress) [56]. However, the reduced-order computational model approach is
the alternative solution to overcome the high memory usage issue; it has been applied in
solving the stochastic linear dynamic problem [21].

3.3.3 Non-intrusive solution: stochastic collocation points

With the non-intrusive solution, we are not interested in a specific deterministic numerical
model, for we take the deterministic model as back box model. Different samplers, e.g. MC
LHS and QMC (using Halton’s sequence) can be applied. However, in the PCE stochastic
model context, we used stochastic collocation points strategy based on the root of polynomial
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basis [58, 92, 127], which significantly saves the computation requirement of the stochastic
process. The key procedures of PCE-based stochastic collocation points are described as
follows:

• Design of experiments X (stochastic points method):

The design of experiments is the key ingredient; it is fundamental that the experimental
points set pursue a good cubature rule; it is simple for a single parameter problem
(N = 1), an optimal choice is the Gaussian Quadratures [125]. In addition, the classical
rule-of-thumb for selecting 1D points is to consider the roots of the polynomial of order
p+ 1 [13]. However, it is challenging in higher dimension space (N >> 1), One choice
is to use the tensor product of the 1-D points, e.g., Gaussian Quadratures or roots of
the polynomial. The approach has been validated with an acceptable error. However,
if one uses q points in the 1D problem, it turns qN in N dimension problem. The
problem is that the number of collocation points increases rapidly in high dimension
space.

To overcome the dimension increase issue, sparse grids constructed by the Smolyak
algorithm were proposed in high order stochastic collocation points design [126]. Fig.
3.2 shows the 2D grids using a different strategy based on the same 1D nodes. It is
clear that full tensor grids consist of much more nodes than sparse grids; since then,
one can design higher dimension uncertainty space efficiently.

Figure 3.2: 2D nodes based on the same 1D grids. Left: Sparse grids. The total number of
points is 145. Right: Tensor product grids. The total number of nodes is 1,089 [126]

• Determine coefficients (or coordinates) of basis yα:

Once the truncated basis has been selected, the coefficients yα can be calculated. In-
troducing Ŷ = {y0, . . . , yP−1}� and Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}� Minimizing the
mean-square error of the residue εP leads to determine the unknown coefficients Y:

Ŷ = arg min
Y∈RP

E
[(
M(X)−Y�Ψ(X)

)2]
(3.17)

• Post-processing
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Due to the orthogonality of the PCE basis, one can explicitly gives the mean and
standard deviation without sampling, they read:

µPC
Y = y0 (3.18)

σPC
Y =

√√√√M−1∑
α=1

y2
α〈Ψα〉2 (3.19)

3.4 Comments

Similar to stochastic Galerkin methods (intrusive methods), the collocation methods(non-
intrusive methods) take advantage of an assumption of smoothness of the solution in random
space to achieve fast convergence. However, the numerical implementation of PCE based
stochastic collocation is trivial, as it requires only repetitive runs of an existing deterministic
solver, similar to Monte Carlo (MC) methods. However, when one introduces a large number
of uncertainties into a deterministic system, the problem called dimension disaster arises due
to the number of collocations points being exponential to the uncertainty dimension to the
power of PCE order.

The intrusive PCE-based stochastic Galerkin method is a memory storage-consuming
method; it requires to rewrite and adapt the original deterministic model. However, com-
pared to the non-intrusive method, it still has intense competition in some particular aspects:
(1) it achieves fast convergence compared to MC; (2) the size of a linear system of equations
grows linearly with the number of basis polynomials, can be competitive compared to expo-
nentially increasing the dimension system of the non-intrusive method (a dimension disaster
for the non-intrusive method); (3) better handling of the transient approach compared to
non-intrusive method (temporal discretization is necessary for a non-intrusive method before
PC expansion).

However for our multiscale problem (in chapter 2, a transient thermal problem via hetero-
geneous medium with and without thermal memory effect), we proposed a scale separation
approach to solve the macro problem at coarse mesh with applied homogenized thermal
capacity, conductivity, and thermal memory function (obtained offline at RVE refined mesh
mesh). Modifying these equations will lead to a complexity to our models. Therefore, we
will use non-intrusive method.

In the following sections (and chapters), the QoIs (effective material properties, structure
performance, optimization design targets) will vary in each presented numerical simulation
system. Therefore, developing the corresponding non-intrusive stochastic model is elabor-
ate. By using PCE-stochastic points method for its non-intrusive implementation way lead
computation acceptable, and it will be validated by MC approach.
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DX Distribution PDF fX ≡ w Family
[-1,1] Uniform 1/2 Legendre

R Gaussian e−x
2/2/
√

2π Hermite
R+ Exponential e−x Laguerre

[-1,1] Beta (1−x)α(1+x)β

B(α+1,β+1)
Jacobi

Table 3.1: Families of classical orthogonal polynomials

3.5 Numerical implementation: micro uncertainties propag-

ate through different scales

The deterministic homogenization model has been fully understood in chapter one; further,
the uncertainties of material properties and geometry at micro-scale propagation through
macro scale will be studied using stochastic method with PCE and also will be validated us-
ing brute force MC method. The section presents a computational framework for quantifying
the uncertainties in microscale propagation to a full-scale transient thermal problem with
and without thermal memory effects. The memory effect is derived from large contrast in
the thermal conductivity of two phases. We combine homogenization model and stochastic
collocation method to reduce the computation cost. First, 3 macro thermal properties,
thermal capacity, conductivity, and memory function, are evaluated via the simple analyt-
ical expression, FEM-based homogenization on unit cell, and transient thermal simulation
on low-conductivity phase, respectively. In section 2.4.4, we have proved the accuracy of
our macro model with memory function to capture the thermal delay phenomenon. It is the
deterministic model combined with three offline homogenized models (homogenized thermal
capacity, conductivity, and memory function) we consider here. Secondly, the uncertainties
of material properties and microarchitecture propagation through the macro thermal char-
acteristics and have been studied using Polynomial Chaos Expansion (PCE) method. We
apply a dimension reduction analysis and Probability Transform Method (PTM) to reduce
the number of uncertainties (overcoming the dimension disaster issue), efficiently construct
the PCE-surrogate model. Lastly, we proposed a PCE2 approach to provide a globally ef-
ficient predictive model to assess the micro uncertainties propagate to the full-macroscopic
transient thermal model with and without thermal memory effect.

3.5.1 Macroscopic thermal capacity

When the architectured material is made with two homogeneous phases, obtaining the mac-
roscopic thermal capacity as a quantity of interest (QoI) relies on a simple analytical expres-
sion of the microscopic input parameters as CM = f(CF , CS, n) = nCF + (1 − n)CS. As a
stochastic model of the input, we consider herein the material parameters and the geometric
parameter n as uniform independent random variables, whose characteristics are given in
Table 3.2.

To predict and quantify the macroscopic capacity, at least two approaches can be con-
sidered:

• obtain the stochastic model of the output, i.e. the QoI CM , as the sum of two products
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variables uniform distribution interval mean coefficient of variation
kS / (daW/m/K) [0.5, 2] 1.25 0.346
kF / (daW/m/K) [1, 3] 2 0.289
n [0.3539, 0.3981] 0.376 0.034
CF / (MJ/m3/K) [1, 2] 1.5 0.192
CS / (MJ/m3/K) [2.5, 2.8] 2.65 0.033
lF / m - 0.8× ε2 0
L / m - 1 0
CM / (MJ/m3/K) - 2.22 0.055
kM / (daW/m/K) - 1.49 0.236

Table 3.2: Uniform distribution of input micro parameters, and some characteristics of the
output macroscopic quantities. kS, kF , n, CF , CS are random inputs, lf , L are deterministic
inputs, CM , kM are outputs

of uniform random variables, for which some analytical expressions are available,

• derive the empirical cumulative density function (ecdf) numerically using a sampling
technique.

This last approach, as more general, is selected herein: from a sampling of the 3 concerned
inputs (with 400 samples obtained with a Sobol sequence [99]), the set of computed outputs
give a plot of the ecdf. Eventually, a resampling strategy, e.g. bootstrapping [40], can be
used to check the level of confidence in the obtained ecdf. Figure 3.3 plots the empirical cdf
associated with samples of CM as well as its 95% confidence level.
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Figure 3.3: Histogram and ecdf of the homogenized capacity CM

3.5.2 Macroscopic thermal conductivity

The case of the macroscopic thermal conductivity tensor is more challenging, since it requires
a steady-state thermal problem to be solved on a micro-structure to get one value of kM =

54

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



100 101 102 103 104
10-6

10-5

10-4

10-3

10-2

10-1

100

(a) MC

100 101 102 103
10-8

10-6

10-4

10-2

100

(b) Sobol

Figure 3.4: MC and Sobol convergence properties for the homogenized conductivity kM

f(kF , kS, n). With isotropic component material properties kF and kS, and a symmetric
geometry parametered with a single input n, the effective thermal conductivity tensor is
isotropic, and one value for kM is observed.

The polynomial chaos expansion (PCE) [50] is therefore herein selected as a tool for
obtaining a surrogate model suited for uncertainty propagation. Indeed, since 3 random
input parameters are involved, and since each evaluation of the model now relies on a FE
computation on a micro-structure, it is less costly than a Sobol sampling to get the ecdf as
done previously for the macroscopic thermal capacity.

The stochastic analysis of kM , taking consideration of the uncertainties of parameters
(kS, kF , n) given in Table 3.2, is performed with PCE, and also with Monte Carlo (MC) and
Sobol sampling [98, 99] for validation purpose, and evaluation of the surrogate modeling
error.

In the case of large contrast in conductivities, the situation is simplified since kF � kS,
so kM ≈ kSM = f(kS, n). In the following, we therefore test the case without a strong
conductivity contrast.

The precision of the different approaches in term of convergence for the mean and the
standard deviation values requires different numbers of resolutions of the deterministic prob-
lem. For MC and Sobol methods, Figure 3.4 shows the (non-smooth) evolutions of mean and
standard deviation errors when increasing the sample size (to compute an error, a reference
value has been obtained by the over-killing approach: a much higher number of runs is used,
8000 for MC and 1000 for Sobol). A convergence is decided for MC with 3000 samples,
and for Sobol with 400 samples. Asymptotic theoretical behaviors are known for these ap-
proaches, see e.g. [70]: for MC, the error evolves as O(N−0.5), where N is the number
of samples, while for Sobol, it evolves as O((logN)pN−1), where p is the number of input
parameters. The trends observed on Figure 3.4 show that Sobol sampling is more efficient.

Once an order p for the PCE is selected, r collocation points are considered, where ξ
denotes inputs in [−1, 1] by normalization of physical inputs X. The coefficients of the PCE
are then determined, to build the stochastic model MPCE
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Figure 3.5: (a) PCE (2D for non-dimensional problem, 3D for dimensional one) meta-models
cost-accuracy performance, (b) use of the PCE to derive the histogram and ecdf, for the
macroscopic conductivity kM

A relative true error eT can be built on a set of points ξj as

eT =
meanj|M(ξj)−MPCE(ξj)|

meanj|M(ξj)|
(3.20)

If the set of points is the previous collocation set, this is a fit error. A reference error is
nevertheless obtained with a larger (and possibly costly) set obtained for instance with MC
or Sobol samplings.

Once a reference solution has been obtained with the previous samplings, the precision
of the PCE can be settled, depending of the order p. Increasing p indeed increases precision,
but also the cost of building the surrogate model. The core of the cost leads in the FE non-
intrusive computations performed at each collocation point. Therefore, the cost-precision
curve of Figure 3.5a is depicted as reference error vs number of collocation points. The
results concern the ‘3D’ curves, where errors with respect to a reference obtained either with
MC or Sobol are almost identical. ‘3D’ is the size of the parametric space 3.

As for the capacity, using the PCE for generating a costless sample of conductivity allows
to derive its ecdf, which is depicted in Figure 3.5b.

Since the cost is strongly influenced by the number of input parameters, the effectiveness
of using dimensional analysis is also under concern. The dimensional analysis allows to
reduce the number of parameters but usually complexifies the stochastic answers of the non-
dimensional involved parameters, as well as for inputs and outputs. The non-dimensional
deterministic problem now reads: kM = g(a, n) (for the strong contrast case, it would be
kSM = g(n)), involving ratios of random variables: kM = kM/kS and a = kF/kS. Uncertain
inputs are a and n. Once an ecdf Fa of a is obtained at low cost by sampling, the Probability
Transform Method (PTM) [81] is used herein to transform the non-uniform distribution of
a into an uniform one ξ: a = F−1

a (ξ), useful as input for standard PCE stochastic model
using Legendre polynomial basis.
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The same approach as for the dimensional case is performed and compared on Figure
3.5a, as ‘2D’ curves. We can see the advantage of the dimensional analysis, the cost-precision
curve being below the previous one.

Concerning the uncertainty propagation, as for the thermal capacity, we can see its
influence at the macroscale as well, Table 3.2, that cannot be neglected and should be taken
into account even for the macroscopic answer.

3.5.3 Macroscopic memory function

Since we are concerned also with the case with a large contrast in conductivities, the memory
function has also to be dealt with. This case is the most challenging since it requires a full
transient thermal problem to be solved with finite elements on the F phase of the micro-
structure.

We consider a test case with the scale ratio ε = 0.1, with kF = ε2k′F . Now the stochastic
model for k′F is selected as the same as the previous one for kF in Table 3.2.

Now the quantity of interest is a function of time: βM(t) = f(t;CF , k
′
F , n). As this

will be justified with the dimensional analysis, the time scale along which the vanishing
function βM(t) is computed is set to t ∈ [0, 3τF ] and discretized in 75 time steps. τF =
CF l

2/k′F = CFL
2/kF is the characteristic time of the F phase; due to the strong contrast in

conductivities, it exhibits the same order of magnitude as τM .
Considering the uncertainties onto CF , k

′
F and n, the macro memory function is described

by a PCE such as

βM(t, ξ) ≈
M−1∑
i=0

βi(t)Ψi(ξ) (3.21)

in which βi(t) are functions of time.
Indeed, dimensional analysis can be used as well, and leads to: βM(t̄) = f(t̄;n). It boils

down the number of input random variables to 1, that is n, and with a rescaled time line
t̄ = t/τF for βM(t̄) = βM(t)/CF .

The same framework is used for the conductivity issue: the reference case is obtained for
validation using a Sobol sequence of 400 samples, conforming to the convergence results of
Figure 3.6.

Table 3.3 gives the PCE approximated mean and standard deviation of βM(t = 0) and
β̄0 = β̄M(t̄ = 0) with respect to different order p and different models (’1D’ and ’3D’). Figure
3.7 gives the accuracy of βM(t) obtained with PCE meta model (‘3D’ for the dimensional
model, and ‘1D’ for the non-dimensional one) with respect to Sobol simulation, with increas-
ing order p. For the dimensional case, the targeted precision is obtained with order p = 3
and 64 collocation points, for which the relative error is 0.017%. For the non-dimensional
case, this is drastically improved to order p = 1, 2 collocation points, and a relative error
0.099%.

The mean, standard deviation and envelop of βM plotted with respect to the rescaled
time line (t/τF ) are post-treated and depicted in Figures 3.8 and 3.9.

We can note that in ’3D’ case, with p = 1, convergence seems attained on the mean and
with p = 2 for the standard deviation, respectively though it is still not the case for the true
error with respect to the Sobol sequence (still 17.94 % error) so this last one is a valuable
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Figure 3.6: Convergence of Sobol sampling for βM function
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Figure 3.7: βM(t) PCE cost vs accuracy
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(but costly) tool for assessing the accuracy, especially for reliability analysis for which not
only the mean and the standard deviation are desired, but also the tails of the ecdf, see e.g.
[41]. Indeed, building costless reliable error indicators is a current field of interest to assess
the accuracy of such fitted models.

p=1 p=2 p=3

mean
PCE 1D 0.30405 0.30405 0.3045
PCE 3D 0.45608 0.45608 0.45608

std
PCE 1D 0.0188 0.0188 0.0188
PCE 3D 0.0895 0.0896 0.0896

Table 3.3: Mean and std of β0
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Figure 3.8: Mean and standard deviation (std) of βM
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Figure 3.9: βM envelope
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3.5.4 Full macro-scale problem

The aim being to be able to perform a stochastic analysis, and therefore a many query
problem, not only the macroscopic problem solving is required to be performed with a cost
reduction, but also the evaluation of the macroscopic parameters. We therefore wish to
rely on the PCE models of these macroscopic parameters previously built, together with a
reduced model of the macroscopic resolution, in a form embedding PCE sub-models within
the determination of a surrogate PCE of the macroscopic problem, leading to a kind of PCE2

approach (inspired with the name of the FE2 approach [43]), to cope with both multiscale
and stochastic analysis.

Taking into account the memory effects leads to an increase in the complexity of the
analysis, leading to a problem coupling 4 random inputs, when compared to a single random
input for a standard macroscopic problem without memory effect. The QoI is field θM(x, t; ζ)
in which ζ is the random vector representing the uncertain parameters (CF , CS, n, kF , kS)
(described in detail in Section 3.5.4).

Macro thermal problem without memory effect

The classical macro transient thermal problem has been illustrated in Figure 2.6(c) with an
assumed given (deterministic) thermal loading θd(t) with an amplitude θa and a characteristic
time Tc, as in (2.42). As previously, using dimensional analysis may be valuable. The
dimensional macroscopic temperature is the solution of a problem whose inputs are:

θM(x, t) = f(x, t;L, Tc, CM , kM) (3.22)

where an additional parameter T is the simulation time of transient thermal problem for
t ∈ [0, T ]. We nevertheless enforce here T = 3τM , where τM = CML

2/kM is the macroscopic
characteristic time. The simulation time is therefore no more an independent variable, and
is discarded from the dimensional analysis. Let us introduce dimensionless variables as

ĈM = CM/CM = 1, k̂M = kM/kM = 1, L̂ = L/L = 1, (3.23)

t̂ = t/τM , x̂ = x/L, θ̂M = θM/θa, T̂c = Tc/τM (3.24)

so that the non-dimensional problem reads:

θ̂M(x̂, t̂) = f(x̂, t̂; T̂c) (3.25)

yielding to a single random input parameter T̂c. One can then get back to θM(x, t) using
ratios of length, time and temperature: L, τM and θa respectively. Note also that the
initial input random variables CM and kM are neither uniform, as can be seen in Figures 3.3
and 3.5b, nor independent, but since a single random input arises in the non-dimensional
problem, all the stochastic aspects are concentrated into the parameter T̂c. In this case, a
stochastic analysis of the full problem can easily been performed as previously:

• a sampling of independent random microscopic inputs (CS, CF , kS, kF , n) allows to get
a dependent sampling of (CM , kM) with a low cost using the PCE model of Section
3.5.2;
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• this last sampling allows to get a sampling of the non-dimensional random macroscopic
input T̂c = Tc/τM , hence its ecdf FT̂c ;

• with this ecdf, a PTM allows to re-parameter this input with a uniform input single
parameter ξ, as T̂c = F−1

T̂c
(ξ);

• now the macroscopic black-box problem takes as input ξ and as output the field process
θ̂M(x̂, t̂);

• this black-box can be used to build a stochastic model with a non-intrusive PCE for
the full stochastic macroscopic problem:

θ̂M(x̂, t̂; ξ) ≈
M−1∑
i=0

θ̂i(x̂, t̂)Ψi(ξ) (3.26)

In order to compare this model with the other macroscopic model, the results are post-
poned to the next Section.

Macro thermal problem with memory effect

Carrying out a stochastic analysis of a macro problem with a memory effect (2.31) is more
challenging, since (i) CM , kM and βM(t) are cross-dependent inputs, and (ii) kM and βM(t)
are obtained from numerical simulations and therefore are not explicit functions of random
inputs; they will therefore be replaced with their respective PCE non-dimensional models.

An intermediate step leads in building a surrogate model to the non-dimensional problem
associated to (2.31), still with T = 3τSM . With a dimensional analysis, this problem leads
to

∂θ̃SM

∂t̃
=
∂2θ̃SM
∂x̃2

+

∫ τ=t̃

τ=−∞
β̃M(t̃− τ ;n)

∂2θ̃SM

∂t̃2
(τ)dτ (3.27)

with θ̃SM = θSM/θa, t̃ = t/τSM ∈ [0, 3], x̃ = x/L ∈ [0, 1], and β̃M(t̃;n) = 1
C
β̄M(t̄;n) is

obtained with a time line rescaling as t̄ = τSM
τF
t̃, and C = CM/CF . Additionally, the boundary

condition, here a prescribed deterministic temperature, also exhibits a characteristic time

Tc, whose non-dimensional equivalent is T̃c = Tc/τSM = k̄(n)

C
× kS

L2CF
Tc. Therefore, a possible

choice of random inputs are the non-dimensional quantities: ζ1 = kSTc
L2CF

, ζ2 = n and ζ4 =

CS/CF so that C = n+ (1−n)CS/CF = ζ2 + (1− ζ2)ζ4 , and ζ3 = k′F/kS so that τSM
τF

= ζ3ζ4.
ζ = (ζ1, ζ2, ζ3, ζ4) is needed to deal with the non-dimensional problem, but is not a set of
random uniform independent variables. A surrogate model based of these, though using
PCE approximation, is therefore not a stochastic model, but a simple surrogate polynomial
model used only for cost reduction, similarly to existing reduced modelings, as in [23, 89], as

θ̃SM(x̃, t̃; ζ) ≈
M−1∑
i=0

θ̃i(x̃, t̃)Ψi(ζ) (3.28)

To do so, the following steps are performed:
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• from uniform distribution of (CF , CS, n, kF , kS) evaluate the ranges of ζi, i = 1 . . . 4 for
a rescaling in [−1, 1];

• select the associated Legendre polynomial basis;

• using surrogate collocation points, solve the macroscopic FE black-box problems: for
each value of the set ζ,

– evaluate CM analytically, kM with its PCE sub-model, βM(t̄) with its PCE sub-
model

– rescale βM(t̄) to β̃M(t̃) by ratios of their true values and time scales (with inter-
polation due to the time line potentially different discretizations):

β̃M = β̄M/C,

t̃ = t̄× ζ3ζ4.

– with T̃c and β̃M(t̃) solve the full order macroscopic problem (3.27) to get the
solution field θ̃SM(x̃, t̃)

• fit macroscopic surrogate PCE model on the non-dimensional outputs at collocation
points to get: θ̃SM(x̃, t̃; ζ)

• rescale to obtain θSM(x, t; ζ)

Even using a dimensional analysis, the thermal problem with memory effects still leads to
a stochastic problem with 4 input random variables, but allows to embed as sub-models for
the homogenized parameters the previously built costless PCE models of kM and βM(t). To
assess the performance of the surrogate model, a comparison with the full order macroscopic
problem is also set with a Sobol sampling sequence, for different orders p of the macroscopic
PCE polynomials. Since embedding PCE sub-models, the comparison relies on the full
solution strategy for obtaining the evolution of the temperature field θSM(x, t; ζ) from the
micro random parameters (CF , CS, n, kF , kS).

Herein, the macroscopic QoI is the full evolution of the thermal field; if a micro tem-
perature at specific point, or time is the QoI, a relocalization is needed to go back to the
micro fields. The relocalization operators also could be provided with their respective PCE
sub-models; nevertheless, if they are only required at a post-processing step (as for linear
problems), this is not the computational bottleneck of the approach.

The accuracy of our proposed model in equation 2.31 to deal with the thermal memory
problem has been studied and proven in section 2.4. Nevertheless, we check this deterministic
model with inputs of mean variables in table 2, with applying the same boundary loading as
shown in case of Figure 2 (b). The Figure 3.10 reports the norm errors of |θSM − θS|/θa and
|θM − θS|/θa with respect to time evolution and intersections of adjacent cells. The accuracy
of surrogate model with PCE order p to the macroscopic thermal model is reported in Figure
3.13, and p = 6 is settle down to construct surrogate model. The maximum minimum and
mean, together with standard deviation of θM(x, t) are post-treated and depicted is Figure
3.11. In particular, the envelope and statistic characteristics of θ(x = L/2, t) are illustrated
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Figure 3.10: Absolute errors of temperature fields along x direction

(a) (b)

Figure 3.11: Mean, maximum, minimum and std of θM(x, t)
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Figure 3.12: Envelope, mean and std of θM(x = L
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Figure 3.13: Relative true error of the homogenized surrogate model
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(a) (b)

Figure 3.14: Mean and std of θSM(x, t)
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Figure 3.15: Envelope, mean and std of θSM(x = L
2
, t)
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in Figure 3.12. For the macro thermal memory problem, it is computationally unaffordable
to build reference case, due to the facts that thermal memory effect arises from thermal
conductivity large contrast, and from the micro structure parameter n. Thus the accuracy
of the surrogate model relies on the convergence of PCE mean and standard deviation.
The mean and standard deviation of θSM(x, t) are reported in Figure 3.14, together with
the concentration on central location that are reported in Figure 3.15. We observe more
uncertainty compared to the case without thermal memory effect.

These results exemplify the feasibility to use reduced order models for parametric determ-
inistic problems, such as those embedded into stochastic models where input parameters are
the random quantities especially for uncertainty propagation, but could be used also for
optimization problems. For the problem with memory function, the additional complexity
of the model induces a large dispersion of the quantity of interest, emphasizing the interest
in using the uncertainty propagation, for model validation and design issues.

3.6 Conclusion

This chapter carries out the PCE based stochastic analysis of the problem built upon determ-
inistic numerical models in chapter one, being the homogenization, macro transient thermal
problem, macro transient thermal problem with thermal memory effect, when considering
the uncertainties of the material properties and geometry of underlying unit cell.

The cost of the stochastic analysis on CM with three input uncertainties (CF , CS, n) is
negligible since the CM is analytically expressed.

The case of UQ analysis on kM exhibits more challenges, since it requires the steady-
state thermal problem to be solved on a micro-structure to evaluate the effective thermal
conductivity. Meanwhile, it involves three uncertain inputs kS, kF , n. We reduce the un-
certainty dimension to two by using the dimensional analysis. It reduced computation cost
compared to the 3-D problem ( original three uncertainties) while maintaining some accuracy
order.

The thermal memory function is the time dependent macro property, requires solving the
transient thermal problem on the micro scale, and three uncertainties CF , k

′
F , n are involved.

Before the PCE expansion, time discretization is necessary, the dimensional analysis is also
applied to reduce the uncertainty dimension.

Uncertainty Quantification of two full macro-scale problems, with and without memory
effects are performed. Due to five uncertainties (CS, CF , kS, kF ) existence, and their propaga-
tion to different scales, it is rather burden in computation requirement. We propose dimension-
reduction and PCE2 numerical strategies to release the cost. However, it is the random
variable we consider in stochastic processing, the random field can be represented based on
polynomial chaos decomposition [32].
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Nomenclature

M = numerical model
X = uncertain inputs
Y = uncertain outputs
µy = mean value
σy = standard deviation

fY (y) = probability density function
{Ψj}∞j=0 = orthogonal basis function
{yj}∞j=0 = coefficients to corresponding orthogonal basis function

E = mean operator
N = uncertainty dimension
M = truncation threshold
p = order of polynomial

µPCY = mean approximated with PCE-stochastic collocation method
σPCY = standard deviation approximated with PCE-stochastic collocation method
C = thermal capacity
k = thermal conductivity

CM = homogenized thermal capacity
kM = homogenized thermal conductivity
k̄M = non-dimensional homogenized thermal conductivity
n = micro volume fraction

MPCE = PCE surrogate model
τ = characteristic time

βM(t) = homogenized thermal memory function
β̄M(t̄) = non-dimensional homogenized thermal memory function
βi(t) = PCE coefficient to homogenized thermal memory function

p = PCE order
ζ = uncertainty vector

θM(x, t) = macro temperature field as function of space x and time t

θ̂M(x̂, t̂) = non-dimensional macro temperature field
θMS(x, t) = macro temperature field considering thermal delay effect as function of space x and time t

θ̃MS(x̃, t̃) = non-dimensional macro filed temperature field with considering thermal delay effect
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Chapter 4

Topology Optimization
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4.1 Introduction

The optimization has been broadly applied in all domains. One of the most significant
application is the topology optimization (TOP), to design the material layout to satisfy
design targets. Since pioneer work [10] introduced the concept of topology optimization, it
has taken time to develop in algorithms and computation hardware to be wildly adopted by
industry. By now, the concept has been developed into several directions, element ’density’
[96], nodal ’level set’ [117] and ’basic components movement’ [54]; the fundamental difference
relying on implicit/explicit representations of macro topology [53].

In this dissertation, we contribute to extending the classic TOP into systemic multiscale,
multi-physics topology optimization. The multiscale TOP often produces geocentrically com-
plex topology, even more, a design with complex micro architecture consisting of different
phases, which are hardly fabricated by traditional tailoring. However, additive manufactur-
ing (AM) is arising to overcome this recently. Thus, TOP is a key foundations of AM.

The extension of TOP to muli-scale cases is made possible by embedding homogenization
model (refer to chapter 2), which is used to optimize the macroscopic layout as well as the
micro configuration. One excellent use is for design of a structure consisting of periodically
(or quasi-periodically) distributed unit cells, mesostructures, meta materials, architectured
materials, lattice structures, or cellular structures. Designing optimized structure satisfy-
ing the objectives involving multiple physics inherits more challenges as: (1) multiphysics
coupled finite element modeling, (2) multiple constraints required for multiphysical system
modeling, (3) sensitivity analysis of objectivity to design parameters (when gradient based
update scheme is used).

In this chapter, we extend the density-based topology optimization (refer to chapter 1)
into multiscale, multiphysics, multiphase topology optimization (3M-Top), by embedding
homogenization model (refer to chapter 2)). The outline of this chapter is organized as
follows:

• Multi-scale. In section 4.2, we apply the non-gradient and gradient methods to solve
multiscale topology optimization, taking into consideration fiber-reinforced compos-
ite material, which effective properties are analytically expressed by mixture-law and
rotation matrix.

• Multi-scale, Multi-phases. In section 4.3, with considering two candidate composite
materials, one investigates the effects of global mass constraint and candidate material
property ratios of the elastic modulus to density on the phenomenon of two-phases
competition in designed topology space. Note that, standard macro mechanical loading
and a simple micro laminate-rank architecture are considered. For the purpose of
numerical efficiency and achieving a good optimum, gradient optimization is adopted.

• Multi-scale, Multi-phases, Multi-physics. The multi-physics design problem (in
section 4.4), involving thermo-mechanical coupled loadings, a global mass constraint,
and considering locally two candidates, is built upon the multi-phases optimization
mentioned above, it requires detailed derivation information for the gradient optimiz-
ation solution. We will prove that in particular for the multi-physics loading problem,
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the multi-scale multiphase topology optimization will improve designed structural per-
formance compared to monoscale topology optimization.

• 3M-Top complex architecture material. Finally, One embeds the complex micro
architecture material into the 3M-Top framework, in which FEM based homogenization
indeed provided an efficient numerical tool for obtaining effective thermal-mechanical
properties of complex architecture material, and PCE is adopted to achieve a cheap
semi-analytical surrogate model to the homogenized model.

4.2 Multiscale topology optimization

In this chapter, we employ a parametric microstructure, density-based macro topology rep-
resentation, gradient-based and/or non-gradient-based optimization algorithms to simultan-
eously optimize the global macro topology and the local parametric cell structure.

To mathematically formulate this problem, two sets of design parameters

P = {ρ1, ρ2, ..ρn, η1, η2, ..., ηn}

are employed, including the pseudo-density parameters ρ to represent the material layout on
the design space, and micro scale parameters η constructing the underlying multi-phases unit
cell at different locations. The choice of η depends on the geometry characteristics of micro
basic cell structure. For example, to fiber-reinforced composites material, η determines the
orientation of fiber. To a porous material, η relates the micro volume fraction of the solid
phase.

We apply both gradient and non-gradient optimization approaches to solve the optim-
ization problem. The gradient-based approach requires firstly modeling the problem to
calculate the objective function. Then, obtaining derivative/sensitivity information of ob-
jective function w.r.t. the design parameters is required to search the design variable along a
direction. Finally, the optimizer updates the design parameters iteratively until it converges
to a user-defined criterion.

In a non-gradient topology optimization approach, various heuristic optimizers are pro-
posed to address the problem by taking an objective function as a black-box model but
without sensitivity information. Therefore, the optimizer requires global search information
of the objective space and the design variable space, and additional constraints are applied
to drive the search towards a target design.

Another challenge relies on the cost of modeling the objective function. Therefore, in-
stead of modeling the full-scale problem of heterogeneous material/structure, we adopted
the homogenization surrogate model to assist multi-scale modeling and sensitivity analysis
(when gradient-optimizer is adopted).

For the example of a thermo-mechanical loading design system, the parametric configur-
ation at every macro point is associated with η. Given material properties of constituent and
micro architecture, one can apply the homogenization method to obtain the corresponding
effective elastic tensor DH , thermal stress tensor dH and thermal conductivity tensor CH .
Afterwards, one can construct the surrogate homogenization model using PCE we discussed
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in previous section. Therefore, it avoids carrying out numerical homogenization at each
optimization iteration to solve the effective thermal and mechanical properties.

Similar to standard density-based topology optimization, which use a most well-known
SIMP material interpolation scheme [94], we consider the same order of formulations to
calculate the DMA

i , dMA
i and CMA

i at ith macro element, which read:

DMA
i = ρpiD

H(ηi) (4.1)

dMA
i = ρpid

H(ηi) (4.2)

CMA
i = ρpiC

H(ηi) (4.3)

where ρ is strictly in range of zero and one, the p penalty factor of pseudo-density ρ, choosen
to be 5, attempt to drive ρ (almost) binary. Starting with a purely mechanical problem, the
general formulation of maximizing the stiffness of structural is expressed as:

min c(X) = FTU
s.t. :
KU = F
V (X) ≤ V ∗

(4.4)

where c is the structural compliance, the X is the set of the design variables, it consists
of macro and micro geometry information. V (X) is the constraint problem, it will be specific
in each case. We solve the problem with level set genetic algorithm and gradient method.

We first take the example of a simple but most commonly used micro architectured
material, the fiber reinforced composite material, that has the great advantages of high
strength ratio and light mass, applied to aerospace vehicle engineering. We are interested
in designing such composites, where the fiber is continuously distributed in a single pile. In
such context, micro design variable η, is the orientation in range of [0, π]. The homogenized
elastic module can be analytically expressed as:

DH(ηi) = T(ηi)D0T(ηi)
T (4.5)

D0 =
1

1− νxyνyx

 Ex νyxEx 0
νxyEy Ey 0

0 0 Gxy

 (4.6)

T =

 cos2 ηi sin2 ηi −2 cos ηi sin ηi
sin2 ηi cos2 ηi 2 cos ηi sin ηi

cos ηi sin ηi − cos ηi sin ηi cos2 ηi − sin2 ηi

 (4.7)

where the T(ηi) is the orientation matrix and, D0 is the original elastic matrix of fiber
reinforced composite material without orientation. E, ν and G are Young modulus, Poisson
ratio and shear modulus, with each of the subscripts x, y denoting different directions.

The 2d geometry of such material is depicted in figure 4.1, within back inclusion fiber and
surrounding white matrix material, assumed they are isotropic material of Young modulus
are Ef = 1, Em = 0.5, identical Poisson ratio νf = νm = 0.3, Gf =

Ef
2(1+νf )

, volume fraction

of fiber vf = 50%. For the first simple case, a mixture law can be used to predict the
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Figure 4.1: Fiber reinforced composites micro 2D structure

homogenized mechanical properties, as:

Ex = vfEf + (1− vf )Em

Ey = (EfEm)/(vfEm + (1− vf )Ef )
Gxy = (GfGm)/(vfGm + (1− vf )Gf )

(4.8)

It the following, we employ such a simple micro architectured material, exploring the
multiscale topology optimizaiton using non-gradient based genetic algorithm and gradient
based optimization algorithm.

4.2.1 Genetic Algorithm with multi-resolution transition scheme

Non-gradient based optimization (or derivative-free) requires no derivative information in
the classical sense to find the optimum, when the derivative of the objective function is
unavailable, unreliable or impractical to obtain.

Typically a non-gradient optimizer that uses global search techniques may have a high
potential to converge towards a global optimum. As a wild heuristic optimization approach,
an evolution Genetic Algorithm (GA) is common and wildly adopted [16, 82, 118]. The
general principle of GA to assess the potential global optimum among the starting random
of population of design variable X, is to keep the best populations (in terms of the objective
function), and cross and mutate to get new generation children. The limitation of GA is
evident because of the large population size, making the optimization a large query problem.
Thus, we propose a two-resultant transitional scheme. It requires less decision variables
in low resolution as inputs for GA optimization, afterwards obtained interpolated ones on
the high resolution scheme as inputs for FEM to evaluate the cost function. The following
one particularly demonstrates the framework of multi-resolution transition schemes, and
the tuning parameters in genetic algorithm. Note that, we only consider the multi-scale
optimization in the context of mechanical loading, in which the orientation of the unit cell
rules the micro material properties.

Decision variable transition Firstly, a level-set interpolation scheme is used to describe
the macro topology and micro orientation distributions. To reduce the number of decision
variables, we proposed a two scale level set function translation approach, which defines
the decision variables LSFc = {LSF1n1i , LSF2n1i } on coarse mesh (see in figure 4.2 (a)).
LSF1 ∈ [−3, 3] and LSF2 ∈ [−π/2, π/2] are used to represent the macro topology and
micro orientation distribution, respectively. Their superscript n1 denotes the mesh number
i.e. the size of their discretization space. Afterward, processing interpolation, (see in figure
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4.2 (b)), it allows one to determine the level set function LSFf = {LSF1n2
i , LSF2n2

i } on
the finer n2 dimension mesh grid . Herein, a radial basis function is employed to obtain a
smooth level set function on fine mesh grid, with given node position on coarse mesh {x}n1

i

and its corresponding LSF value {f}n1
i

LSFf =
N∑
i=1

λiϕi (‖x− xi‖) (4.9)

where the x is the fine mesh nodes location where we want to approximate the level set value.
xi is node locations on coarse resolution mesh grid. N is the mesh size at low resolution. λi
and ϕi are the weights and the corresponding basis function.

Different common basis functions ϕ can be used, a basic multiquadric is used:

ϕi (‖x− xi‖) =
√

1 + (ε ‖x− xi‖)2 (4.10)

where, ε = 1 in our case. Then the weighs λi can be estimated with linear least square
method.

After the interpolation process, the macro topology has to be selected for the following
objective function evaluation. The threshold Ts is given to truncate the LSFf , consequently,
an interaction is determined, which represent the boundary of solid and void material (see
figure 4.3a). In uniform mesh domains, a single mesh is completely in or out of the intersec-
tion is solid or void material, respectively (see figure 4.3b). However, an element crossover
in the intersection is regarded as intermediate density material; refining this element into
20× 20 sub mesh structure (shown in figure 4.4) allows to select a sub-mesh within or cross-
ing the level set as a solid material. The intermediate density of such element is measured
by volume fraction of solid material in sub-mesh.

For such macro topology optimization design problem, normally, a structural volume
fraction constraint V (LSF ) = V ∗ should be satisfied by a line-search method to decide a
threshold truncation Ts ∈ [−3, 3]. Therefore, at each iteration of GA optimization, evaluating
the objective function consists of:

• interpolate decision variable {LSF n1
1 , LSF n1

2 } from coarse mesh into fine mesh

{LSF n2
1 , LSF n2

2 }
.

• with a prescribed initial Ts, transform the level set function LSF n2
1 into density rep-

resentation ρ and decide the volume fraction V .

• use a line search method to find a Ts that guarantees the volume fraction constraint
V ∗.

• Formulate the FEM to calculate the objective function c, with the macro density ρn2

and micro orientation distribution LSF n2
2 . Note that, the density of the void material

is assigned to a small positive value for avoiding the singularity problem.

In the context of GA optimization, the advantage of level-set interpolation would make
it possible to construct the geometry with less design variables, meanwhile satisfying the
quasi-periodic condition. Moreover, it avoids material non-connectivity issues when using
0− 1 binary represented structure [118].
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GA parameters After the transition from decision variables to corresponding configura-
tion via two resolution schemes, the FEM is performed to evaluate the cost/objective func-
tion, subsequently updated decision variables is performed with a black-box GA optimizer
[27], where the solver only requires the objective value to proceed.

Figure 4.2: Multi-resolution transition scheme, (a) Decision variable at nodes of coarse
uniform grid LSF , (b) Interpolate on Finite element mesh grid LSFf

• Modeling the black box objective function with decision variables as inputs.

• Select np initial diversity populations i.e. np configurations.

• Evaluate objective function of each configuration.

• Use genetic operators to update next generation populations from previous parent
generations by: (1). elitism operation, keeping the best (in term of fitness) fe of total
np parents. (2). crossover operation, randomly crossing two parents among fc of the
best parents, other than the elite ones. (3). mutation operation, adding fm chosen
from a Gaussian distribution, to each entry of the parent vector.

• Stop if convergence or if the maximum generation number ng is reached.

(a) (b)

Figure 4.3: (a) level set function on finite element mesh grids, and a threshold boundary
with respect to a given Ts. (b) Level set function to density representation
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Figure 4.4: Measure the intermediate density

Elite operator guarantees the solution quality compared to previous generation. Crossover
and mutation are used to maintain the diversity of the population avoiding local optimum.
It is worth to tune parameters np, fe, fc and fm to find reasonable GA settings, and multiple
starting GA to find the ’optimum’ solution.

4.2.2 Gradient based optimization algorithm

For two scale topology optimization subjected to mechanical loading F, the formulation is
generally expressed as:

min c(X) = FTU
s.t. :
KU = F
V (ρ) =

∑ne
i=1 ρi ≤ V ∗

ηc1 ≤ ηi ≤ ηc2
0 ≤ ρi ≤ 1

(4.11)

where, c is the compliance U and F are the nodal displacement and mechanical loading,
X = {ρ, η} are the two scale design parameters. V is the volume constraint, ηc1 and ηc2 are
lower value and upper value design parameters describing the micro architecture, ne is the
total number of elements. K is the global stiffness matrix, assembled by elementary stiffness
Ki, that can be written as:

K =
ne∑
i

Ki =
ne∑
i

∫

Ωi

BTDMA
i BdΩi (4.12)

where B is the strain displacement matrix, DMA
i is defined in equation 4.1. The differenti-

ation of c(X) with respect to the design variable X is expressed as:

∂c

∂X
=

∂FT

∂X
U + FT ∂U

∂X
(4.13)
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Considering the governing equation 4.11, we have:

∂K

∂X
U + K

∂U

∂X
=
∂F

∂X
(4.14)

Then the derivative of the compliance c can be expressed as:

∂c

∂X
= −UT ∂K

∂X
U (4.15)

= −
ne∑
i=1

UT
i

∂Ki

∂Xi

Ui (4.16)

= −
ne∑
i=1

UT
i

(∫
Ωi

BT ∂DMA
i

∂Xi

BdΩi

)
Ui (4.17)

finally ,
∂c

∂Xi

= −UT
i

(∫
Ωi

BT ∂DMA
i

∂Xi

BdΩi

)
Ui (4.18)

With the offline solution of homogenized surrogate model, Di
H and

∂DH
i

∂ηi
can be obtained

with affordable computation cost.

Features control

The features control, as the filter approach discussed in introduction, is essential to gradient
based approach to address the checker-board, mesh dependency problem. Meanwhile, it
is employed to control features of the design structure. To obtain (almost) binary macro
topology and micro spatially continuous architecture, a filter method is used to help the
gradient-based optimizer to ensure global and local features control. In this study, a linear
density filter is used as discussed in the introduction:

X̃i =
∑
j

wijXj (4.19)

where X is the design variable set, subscript i denotes the central element, subscript j
denotes the j element within a certain distance to element i, wij is the weighting factor.
Conic weights wij are defined as:

wij =

{
R−d(i,j)∑

k∈Ni
(R−d(i,k))

j ∈ Ni

0 j /∈ Ni

(4.20)

where the R is the prescribed filter radius. However, in the context of multi-scale optimiz-
ation, the design structure expects binary density variables ρ, but continuous micro archi-
tecture variable η therefore ready for additive manufacturing. Thus we propose a two-scales
filter scheme, Rρ = 3 and Rη = 3 in the beginning iterations, when to the end of convergence,
turns Rρ = 1, driving a binary macro design structure.
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Embedding the two-scale filters and modifying the sensitivity ∂c̃/∂X i and ∂M̃/∂X i lead
to:

∂c̃

∂ρi
=

∑
j∈Ni

∂c
∂ρj
wρijρj

ρi
(4.21)

∂c̃

∂ηi
=

∑
j∈Ni

∂c
∂ηj
wηijηj

ηi
(4.22)

∂M̃

∂ρi
=

∑
j∈Ni

∂M
∂ρj
wρijρj

ρi
(4.23)

∂M̃

∂ηi
=

∑
j∈Ni

∂M
∂ρj
wηijρj

ρi
(4.24)

where the wρi,j and wηi,j are weight factors in Equation 4.20 with R = Rρ and R = Rη,
respectively.

4.2.3 Comparison of two approaches

Two approaches are used to solve the optimization of macro topology and micro fiber orient-
ation distribution subjected to a half Messerschmitt-Bolkow-Blohm (MMB) Beam working
condition (figure 4.5, where F = 1). The material properties of fiber f and polymer mat-
rix m and the micro volume fraction of fiber material are Ef = 1.8, Em = 0.2, νf = νm =
0.3, vf = 45%, respectively. The solution from gradient and non-gradient approaches will be
presented and discussed.

In level set based GA approach, we define two level set function values LSF1 ∈ [−3, 3]
and LSF2 ∈ [−π/2, π/2] on 11×6 on coarse mesh, use the proposed multi-resolution scheme
and linear search method to construct FEM model at fine resolution mesh with a guaranteed
global volume fraction constraint. GA parameter settings are population size, elite fraction,
crossover fraction and mutation fraction, as: np = 200, fe = 5%, fc = 80% and fm = 20%.
The maximum iteration number is ng = 600. In each GA iteration, the many query problem
requires to solve the FEM problem with different inputs of populations, consequently, the
cost of GA optimization is proportional to the np×ng. Figure 4.6 presents the cost function
of the best population in each iteration. The optimized macro topology and micro orientation
design structure with multiple restarts are illustrated in figure 4.7 as well.

In mutliscale gradient optimization scheme, the design space is 40×20 rectangular mesh,
the design variables are η ∈ [−π

2
, π

2
] and ρ ∈ [0, 1]. The filter approach is applied for the

purposes of: (1). avoid mesh-dependent issue, (2). obtain spatially continuously fiber ori-
entation, and their filter distance are given as Rη = 3, Rρ = 3. Derivatives of objective
w.r.t. design variables have been implemented in equation 4.18, to iteratively guide towards
an optimized design. We performed such design with different initial uniform orientations,
which are η = 0, and η = π/2, and the corresponding final designs are presented in figure
4.8. The topology is related to the initial guess, however, we can obtain similar target design
in terms of objective function, which are indeed local optimum. We perform designs on
100 × 40 fine mesh, have achieved a better design compared to low resolution designs in
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terms of smooth macro topology and design targets, because the intermediate density may
under-evaluate the structural stiffness (or over-evaluate the compliance).

We observe a truss-like structure in figure 4.8, where fiber orientation becomes parallel
to the direction of the dominant truss component. The smoothly varying fibers are present
on the connections of each truss members. We obtain a similar macro topology from GA
optimizer, and the figure 4.7 (b) is the best solution (but still not guaranteed as a global
solution) to this problem with 40× 20 mesh structures. GA may slightly win in achieving a
better solution; however, it is more computational costly than the gradient approach. That
is why in the future, we will use gradient-based optimization method. However, gradient-free
is the only optimization solution to cases, with non-differentiable objective function (discrete
bistable compliant structure) [79] or non-connected design space (optimization of photonic
or phononic band gap materials) [95].

Figure 4.5: MMB working condition

Figure 4.6: GA: iteration vs fitness value

4.3 Mass constraint in multi-scale multi-phases topo-

logy optimization

In this section, we study a multi-scale topology optimization, where there are parametric
cells spatially varying in design region. A unit cell equivalent to the original one in the
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(a) GA c = 242 (b) GA c = 102.22

Figure 4.7: GA generates different solutions by restarting

(a) 40 × 20 mesh, uniform initial
guess for ρ = 0.5, η = 0, c = 103.01

(b) 40 × 20 mesh, uniform initial
guess forρ = 0.5, η = π/2,c = 102.64

(c) 80 × 40 mesh, uniform initial
guess forρ = 0, η = π/2,c = 98.5124

Figure 4.8: Optimization solutions subjected to working condition shown in figure 4.5. Ef-
fects of different initial guesses and mesh sizes on the design targets are demonstrated.

79

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



fiber-reinforced composite optimization case is adopted. However, the micro design variable
η is no longer the orientation but the microvolume fraction.

Mass constraint plays an essential role in multi-phase topology optimization due to the
material difference densities and lightweight design topic. Thus the interpolation scheme
is not only for equivalent material properties (e.g., Young modulus, thermal conductivity,
and thermal expansion) involved in the objective function but also for the material density
involved in structural mass constraint. Finally, we apply a linear scheme to obtain the mass
function; the mass constraint M(ρ, η) is:

M =
ne∑
i

ρiρηi ≤M∗ (4.25)

where ρηi = ηiρS + (1− ηi)ρF is the density of i-th element. ρS and ρF are densities of S and
F phases. The optimization scheme has been illustrated in detail previously. The optimized
outputs ρ η and the parametric unit cell are able to reconstruct the optimized multi-scale
architecture.

It is the most basic case, where a micro parallel architecture is adopted here, thereby
homogenized properties can be analytically expressed by mixture rules [72]. This case works
on (show figure 4.9a with applied Q = 0), consisting of 80×40 elements and three candidate
materials (two non-zero f and m phases and a void phase) with a constant mass fraction
constraint 50%. The Young’s modulus of void material will be given by a small value
Ev = 1e−3, to avoid singularity problem as wildly applied in SIMP like material interpolation
scheme. Its corresponding density is set to be ρv = 1.e−3, leading to Ev/ρv = 1.

Effect of different ratios E/ρ of non-zero phases on design structure is presented in table
4.1, where the first column is the candidate material mechanical properties. The second and
third columns present the corresponding binary macro topology design and post-treatment of
local density representation. Its color bar shows that deep blue, light blue, and red represent
the void, lower density material, and higher density material, respectively. Continuous color
regions between light blue and red indicate, at micro-scale, the two candidates material
mixture with varying volume fraction. And the last column shows the results of objective
function c, volume fraction vf , mass fraction of f and m phases mff and mfm with respect
to the corresponding cases.

In case 1, where Ef > Em and
Ef
ρf
> Em

ρm
, the approach designs a structure composed of

only f material, which is indeed the benchmark result obtained by classical SIMP method. In
case 2, compared to case 1, one decreases the ρm, leading to increase the ratio Em

ρm
, however

still maintaining the relation
Ef
ρf
> Em

ρm
. Due to the mass constraint, the design is no longer

single phase structure (only the stiffer f phase), however, consisting of both materials. It
reduces the c but increases the volume fraction vf = 56.96%; the mass percentage of f and m
materials are 44.3% and 55.64%, respectively. In case 3, compared to case 2, one increases
ρf = 1.5, leading to

Ef
ρf

= Em
ρm

, the design increases c = 50.82, and reduces the consumption of

f material to mff = 25.14%. Last case considers
Ef
ρf

= 1 and Em
ρm

= 1.2,
Ef
ρf
< Em

ρm
. Compared

to last case, it gives a similar macro topology design, but quite different in microscopic
material consumption, c = 49.15, vf = 48.9% and mff .

From cases 2 to 4, in the context of the maximum structural stiffness problem, the f
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phase is no longer the only choice for design (even if it is stiffer compared to another one)
because of the mass constraint. An unexpected result was observed by comparing case 1
and case 4, indicating that the design structure mainly composed of material with stiffer and
higher ratio E/ρ exhibits worse compliance, due to the mass constraint. One demonstrates a
challenge of mechanical optimization of mass constraint problem, and even great a challenge
for multi-physics loading case, due to the hybrid influence of E, k, E/ρ and Eα, to the best
knowledge of the author, there is no previously case for such a result.

Materials Topology Local density Results

Ef = 1.5, ρf = 1;
Em = 0.8,ρm = 2

c = 50.44
vf = 50%
mf = 100%

Ef = 1.5, ρf = 1;
Em = 0.8,ρm = 0.5

c = 44.07
vf = 56.96%
mf = 44.36% ,

Ef = 1.5, ρf = 1.5;
Em = 0.8,ρm = 0.8

c = 50.82
vf = 55.17%
mf = 74.86%

Ef = 1.5, ρf = 1.5;
Em = 1.2,ρm = 1

c = 49.15
vf = 48.9%
mf = 93.42%

Table 4.1: Mechanical loading case with different materials properties

4.4 Topology optimization with thermo-mechanical coupled

loading

4.4.1 Compliance minimization

Multi-scale topology optimization subjected to thermo-mechanical loading under the mass
constraint is mathematically expressed as:

min c(X) = FTU
s.t. :
KtT = Q
Ft = A(T − Tref )
KmU = F = Fm + Ft

M(ρ, η) ≤M∗

ηc1 ≤ ηi ≤ ηc2
0 ≤ ρi ≤ 1

(4.26)

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



where, X is the design variables, Kt, Km and A are the elastic stiffness matrix, thermal
conductivity matrix, and ’thermal stress stiffness’, respectively. Fm is the design independent
mechanical loading, Ft temperature dependent thermal stress, it is design dependent. For
simplification, Tref = 0. we adopt efficient gradient based optimizer, thus requiring to
compute iteratively design sensitivities.

For efficiency of the optimization solution, it requires to explicitly express the derivatives
of the objective function w.r.t to the design variables X. Such derivatives are carried out by
adjoin sensitivity analysis; one express the objective function c in the Lagrangian form:

c∗ = (Fm + Ft)U − λm(KmU − Fm − Ft)− λt(KtT −Q)− λmt(A(T − Tref )− Ft) (4.27)

Applying the chain rules, the derivative of the objective function with respect to X is ex-
pressed as:

∂c∗

∂X
=

∂c

∂X
= (Fm + Ft − λmFm)

∂U

∂X
− (λmtA + λtF

t)
∂T

∂X
+ (λmt + λt)

∂Ft

∂X

− λm
∂Fm

∂X
U − λmt

∂A

∂X
T − λt

∂Ft

∂X
T

(4.28)

This adjoin solution yields auxiliary equations:

UT + λTm = λTmt (4.29)

λTmKm = Fm + Ft (4.30)

λTmtA = λTt Kt (4.31)

where λm
T is a pseudo displacement solution, and λmt

T is a pseudo temperature solution,
yielding from heat flux loading −Ktλmt

T . Substituing such adjoint solutions into Equation
4.28, the total sensitivity is reformulated into:

∂c∗

∂X
=

∂c

∂X
=− λm

∂Km

∂X
U + λmt

∂A

∂X
T − λt

∂Kt

∂X
T (4.32)

Finally, the derivative of global c with respect to Xi can be written as:

∂c

∂Xi

=
n∑
i=1

−λ(m,i)
∂Km

i

∂Xi

Ui + λ(mt,i)
∂Ai

∂Xi

Ti − λ(t,i)
∂Kt

i

∂Xi

Ti

= −λ(m,i)

∂(
∫

Ωi
[Bm]TDMA

i BmdΩi

∂Xi

)Ui+

λ(mt,i)

∂(
∫

Ωi
[Bmt]TdMA

i BmtdΩi)

∂Xi

Ti−

λ(t,i)

∂(
∫

Ωi
[Bt]TCMA

i BtdΩi)

∂Xi

Ti

(4.33)

where the DMA
i , dMA

i and CMA
i are the macro i−th element elastic tensor, thermal stress

tensor and thermal conductivity, respectively. Bm, Bmt and Bt are the strain-displacement
, strain-temperature and flux-temperature, respectively.
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For the homogenized properties estimation, it is low cost while using an analytical mixture
law expression. However, with complex micro architectures, the mixture law is no longer
precise, a numerical homogenization model is proposed. The details on homogenization and
surrogate modeling technologies has been discussed previously. We could adopt such a PCE
surrogate homogenized model to facilitate the sensitivity analysis in optimization. Method
of Moving Asymptotes (MMA) optimizer [106] is used to interactively update the design
parameters, until it is fulfilled with stopping criterions.

4.5 Numerical implementation

Numerical examples are implemented, firstly, a simple parallel two-phase microarchitecture is
adopted, but the proposed approach is not limited to a certain parametric micro architecture.

When using candidate material shown in table 4.2, we study this case under the working
condition sketched in figure 4.9a. The design domain is 80 × 40 mesh elements, the mass
constraint M∗ = 80 × 40 × 0.5. We start with uniform initial guess ρ = 0.5, η = 0.5. The
filter radius are Rρ = 2 and Rη = 2, when it converges, Rρ = 1 is assigned to drive a almost
binary macro density design.

Firstly, when appliedQ = 0 and F = 1, it is exactly the mechanical problem that has been
presented in the first row of the table 4.1, showing no phenomenon of material competition.
Secondly, heat flux Q = 1 and Q = 2 are applied, respectively. The corresponding designs
and temperature fields are represented in figures 4.11 and 4.12, respectively. Comparing the
two designs, we note that a ’tail-like’ component is sticking to the left side boundary where
the heat source is located, consisting mainly of the m-phase. This component increases in
size as Q increases. It is assumed to efficiently conduct the heat from the boundary through
the rigid body, meanwhile expecting a lower thermal deformation.

However, notice that temperature near the heat flux region is exceptionally high, leading
to the structure being non-working. Our proposed approach aims to minimize structural
compliance, ignoring the risk of extreme temperature. To address this problem, the literature
proposes temperature constraint topology optimization [134], or multi-objective formulation
(minimize the thermal and mechanical compliance) [31],

We herein propose a simple but practical approach to overcome this issue by adding a
non-design rigid domain material on the heat source boundary, as depicted in figure 4.9b, to
efficiently transform the heat to the design domain Ω. The non-design domain consisted of
f phase (material with higher thermal conductivity), which has same width and 1/80 length
to the design domain. Figure 4.13 presented the designs obtained from this proposed non-
design approach, compared to design in figure 4.12, the objective function value is increased,
meanwhile, the maximum temperature decreases dramatically, a smooth temperature field
has been observed.

E α k ν ρ E/ρ
m phase 0.8 2.e− 4 1 0.3 2 0.4
f phase 1.5 10.e− 4 2 0.3 1 1.5

Table 4.2: Thermal mechanical material properties of candidate materials
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(a) BC1: (b) BC2:

(c) BC3 (d) BC4

Figure 4.9: Different boundary conditions, (b) (c) (d) are cases with the grey non-design
region

(a) Q = 1 (b) Q = 2

Figure 4.10: Optimization convergence proof

(a) Local density (b) Temperature field, maximum
temperature 878.3

Figure 4.11: Q = 1, c = 70.13, vf = 48.89%, mff = 95.56%, mfm = 4.44%
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(a) Local density (b) Temperature fields, maximum tem-
perature 2541

Figure 4.12: Q = 2, c = 78.32, vf = 47.37%, mff = 89.46%, mfm = 10.54%, may not be a
feasible design if f bearing high temperature

(a) Local density (b) Temperature filed, maximum
temperature 261.1

Figure 4.13: Q = 2, c = 108.11, vf = 46.62%, mff = 90.22%, mfm = 9.78%

Local optimum is wildly an issue in gradient-like topology optimization, especially when
multiple candidate materials and mass constraint are introduced. Reference [48] reports a
uniform initial weighting in purely mechanical multiple-phase topology optimization prob-
lems with mass constraint. However, in thermo-mechanical coupling optimization problem,
it is challenging to decide an unbiased initial guess, because temperature field, thermal stress
are high related to the material distribution and macro topology.

Therefore, for each numerical design examples, one re-run it considering different ini-
tial guesses to demonstrate that the proposed optimization approach can achieve a ’good’
optimum. The sensitivity of the final solution to the initial guesses is one of the interest.

In the following, we implement the multiscale optimization subjected to different thermo-
mechanical cases shown in figure 4.9, the different initial guesses to the target designs will
be investigated. In addition, We show the corresponding monoscale optimization on f phase
(the stiffer candidate material ) for each case, to demonstrate the advantage of the multiscale
topology optimization.

Firstly, in working conditions shown in figure 4.9b, where the horizontal Fm = 1 and
Q = 2, test cases are implemented using candidate materials in Table 4.2 with fixed density
distribution ρ = 0.5 and different initial values η. Note that, it is not necessary to satisfy the
mass constraint at the beginning iteration. Table 4.3 reports their concerning designs and
quantity of interest compliance c, volume fraction vf and f phase mass fraction corresponding
to different uniform and non-uniform initial guesses.

In post-treatment of density representations, the deep blue, light green, and red colors
indicate the void, f, and m material, respectively. Among 5 cases with a different initial guess,
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one produces five completely different macro topologies, but similar objective function values
c, denoting that the design is highly related to the initial guess. However, it can always obtain
a feasible design structure. With η1 and η2, one achieves non-symmetric design structure,
while obtained symmetric design with η3 η4, and η5. In fact, one can explore the diversity
of such designs with different initial guesses. However, there is still no guarantee that the
global optimum has been found.

The last column shows the mono-scale topology design, when applying the same working
and mass constraint as to the multiscale case, the objective value is c = 69.10, higher than
any of the multiscale designs. Note that, if one executes the design with varying uniform
initial density, however, they converge to the same target macro topology .

Secondly, we consider the L-bracket structure shown in figure 4.9c discretized with 80×80
elements. Applied mechanical and thermal loadings are Fm = 1 Q = 2, respectively. A
micro parallel architecture material consisting of two distinct materials shown in table 4.2 is
considered here. The post-treated physical density is shown in figure 4.14, corresponding to
different initial uniform ones η = 0.3, η = 0.5 and non-uniform one. There is no significant
difference among the designed topologies, indicating that, in such working condition, the
effect of initial guess has negligible effect.

Thirdly, for the workings shown in table 4.9d, the approach designs macro topology
structure corresponding to different initial guesses are reported in table 4.4. There is no
clear guidance on how to design the initial material distribution to avoid a local optimum in
thermo-mechanical problem.

(a) η = 0,c = 94.45 (b) η = 0.5 ,c = 92.78 (c) η = 1, c = 91.12 (d) c = 152

Figure 4.14: F = 1, Q = 18. (a), (b) and (c) are local optimum designs w.r.t. different initial
η to working condition 4.9c. (d) is the mono-scale topology optimization.

4.6 3MTop with TPMS micro structure

We consider one of the Triply Periodic Minimum surface (TPMS) family, Schwarz Primitive
minimal surfaces [83], to produce the parametric micro architecture. It is one of the minimal
surfaces, where any points with a mean curvature of zero. They can be explicitly expressed
with level set function φ(x, y, z) + iso = 0, in which φ(x, y, z) describes a surface calculated
at the isovalue −iso that will produce a minimum surface-like topology. A Schwarz Primitive
is considered herein, it reads:

f = cos(X1) + cos(Y 1) + cos(Z1) + iso = 0 (4.34)
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initial guess η Design structure c vf mf

η1 = 0 37.19 43.38% 73.5%

η2 = 0.5 41.69 43.69% 74.75%

η3 = 1 41.2 45.25% 81%

η4

39.13 44.05% 76.22%

η5

31.268 42.06% 68.25%

Mono-scale design 69.10 50% 100%

Table 4.3: Multiscale designs. Red and green represent the m and f phase respectively.
c, vf ,mf are the compliance, volume fraction, mass fraction of m material, respectively. η1-
η3 are uniform initial guesses. η4 and η5 are non-uniform ones.
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initial guess η Design structure c mf

η1 = 0 13.6 89.38%

η1 = 0.1 11.34 91.78%

η1 = 0.5 10.96 91.82%

η1 = 0.6 9.3 85.54%

η1 = 1 9.3 84.39%

non uniform 13.36 83.39%

non uniform 14.56 87.5%

momo-scale design 18.2 100%

Table 4.4: Multiscale topology optimization subjected to working condition 4.9d. Different
designs w.r.t. different initial guesses. The last row is the corresponding mono-scale topology
optimization
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where X1 = 2απx, Y 1 = 2βπy and Z1 = 2γπz, α, β, γ are constant values, related to the
unit cell size in x, y, z coordinate, and we prescribed α = β = γ = 1 to consider an isotropic
material.

The mechanical and thermal properties of such structures with evolving iso ∈ [−2, 2]
have been reported in literature [1, 26, 75, 130], and the design spatially graded periodic
minimum surface structure has been investigated [2]. Also, [24] reported that composites
with the Schwartz primitive and diamond minimal surfaces as the phase interface have been
shown to have maximal bulk modulus and conductivity. With adopted homogenization and
PCE methods, the homogenized material properties with respect to cell geometry parameters
are reported in appendix. Accordingly, the established PCE meta homogenization model will
be applied to calculate the derivative information of targets to the design variables on both
macro and micro scales (shown in figure 4.17).

We normalized material properties shown in table 4.6, found some interesting clues when
solving design problem subjected to working condition in figure 4.15a:

• For optimization of the mechanical loading problem, the designed outputs are distin-
guished to applied different constraints, which are volume fraction, or mass fraction
constraints.

• Since EM2 > EM1, in volume fraction constraint context, one predicts that the design
consists of one unique cell with iso = −1 (where the maximum volume fraction of M2
phase in microscopic ).

• However, due to EM2/ρM2 ≈ EM1/ρM1, we find that the two materials are in the same
level of competition in context of mechanical loading and mass fraction constraints,
which increases the potential to explore the diversity of the design space. (the result
is shown in 4.15b)

• It is an engineering requirement to apply both volume and mass fraction constraints
for fabrication convenience and lightweight designs (the result is shown in figure 4.15c)

• It is challenging to predict the level of completion of two materials in thermo-mechanical
loading considering both constraints, for involving the heat loading may change the
macro topology and the microphase distribution. (result is shown in figure 4.15d).

• Finally the corresponding 3D geometries (shown in figure 4.16) assembled via graded
unit cells.

Material Phases M1(TC4) M2(18Mn2CrMoBA)
density (kg/m3) 4440 7850
Young’s Modulus (GPa) 105 190
Thermal conductivity (W/(m K)) 8.7 35.38
Poisson’s ratio 0.34 0.28
Thermal expansion coefficient (×10−6 /K ) 9.1 12.4

Table 4.5: Material properties provided in [47]
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(a) Boundary condition

(b) F th = 0, Fm = 2,Mf∗ = 50% (c) F th = 0, Fm = 2,Mf∗ =
50%, V f∗ = 60%

(d) F th = 40, Fm = 2,Mf∗ =
50%, V f∗ = 60%

(e) F th = 0, Fm = 2,Mf∗ =
50%, V f∗ = 60%

(f) F th = 40, Fm = 2,Mf∗ =
50%, V f∗ = 60%

Figure 4.15: Solutions to different parameter settings subjected to boundary condition (a).
Mf ∗, V f ∗, c are mass fraction, volume fraction, and objective value, respectively. (b) Pure
mechanical loading case with mass fraction constraint, c = 38.89. (c) Pure mechanical load-
ing case with mass and volume fraction constraint, c = 41.33. (d) Thermal mechanical
loading case with mass and volume fraction constraint c = 61.37. (e) convergence of V f,Mf
constraints corresponding to (c) solution. (f) convergence of V f,Mf constraints correspond-
ing to (d) solution.

‖E‖ ‖E
ρ
‖ ‖Eα‖ ‖Eα

ρ
‖

M1 1 1 1 1
M2 1.81 0.9950 2.4657 1.3946

Table 4.6: Normalized ratios
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(a)

(b)

(c)

(d)

Figure 4.16: (a), (b) and (c) are the corresponding full scale 3D geometries (only M2 phase)
to the solutions shown in figures 4.15b, 4.15c, 4.15d. (d) shows how to manage M1 and M2
phase in micro structure.
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(a) D (b) d

(c) k (d) vf

Figure 4.17: Thermo-mechanical properties evolving with respect to iso
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4.7 Conclusion

In this chapter, firstly, we explored the performance of different optimization algorithms, the
GA (non-gradient) and MMA (gradient), for solving the multiscale topology optimization.
While using GA, we proposed a two-resolution transition approach and linear search method
for reducing the dimension of design variables but maintaining the accuracy of the evaluated
objective value. Furthermore, the linear search method guarantees the constraints at each
iteration. In a multiscale topology optimization context, we are able to mathematically de-
rivate the sensitivity information in mechanical (and thermo-mechanical coupling) problems
as a result of the offline-built PCE surrogate model. The GA is a black box model for tackling
almost all the optimization problems. the gradient method is efficient but requires plenty of
offline works for having sensitivity information during the online optimization iteration.

Secondly, we analyze the multiscale multiphase topology optimization in mechanical load-
ing problem with considering the mass constraint, finding out that material competition can
be due to the different ratios of stiffness to density.

Thirdly, we explore the multiscale multiphase multiphysics topology optimization, where
we elaborately create two candidates material, one of them is stiffer with higher thermal
expansion coefficient but with lower density, to analyze the effect of the additional thermal
loading on the macro topology and micro material distribution.

Finally, we embedded the TPMS micro architecture consisting of real engineered material
in the 3M-Top framework. Moreover, we applied both volume fraction and mass constraint
to design a fabrication feasibility and lightweight structure.

However, uncertainty is always present in topology optimization for material properties,
manufacturing process, so its propagation across the scale will be investigated in following
charter.
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Nomenclature

P = design variable sets
ρ = density design variable
η = micro geometry features design variables

DH = homogenized elastic modulus
DMA
i = homogenized elastic modulus of ith element
dH = homogenized thermal expansion coefficient

dMA
i = homogenized thermal expansion coefficient of ith element
CH = homogenized thermal conductivity

CMA
i = homogenized thermal conductivity of ith element
F = mechanical loading
U = displacement field
K = global stiffness matrix

V (X) = volume fraction
T = rotation matrix

LSFc = level sets on coarse mesh
LSFf = level sets on fine mesh

N = mesh size at low resolution
ψ = basis function
λ = weight factor to basis function
Ts = truncate threshold
np = number of initial population for GA
fe = elitism fraction to initial population for GA
fc = crossover fraction to initial population for GA
fm = mutation fraction to initial population for GA
ng = number maximum generation for GA

ηc1, ηc2 = lower and upper bound for micro design variable
B = shape function

X̃ = filtered design variable
c̃ = filtered compliance

M̃ = filtered mass fraction
Q = heat flux vector

Tref = reference temperature
A = global thermal stress stiffness matrix
Ft = equivalent thermal force loading

Fm = mechanical force loading
Km = global stiffness matrix
c∗ = augmented Lagrangian compliance

{λm, λt, λmt} = adjoint vector
Rρ = filter radius of density ρ
Rη = filter radius of micro geometry η
Bm = strain-displacement shape function
Bmt = strain-temperature shape function
Bt = flux-temperature shape function
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Chapter 5

Robust Optimization
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5.1 Introduction

The power of topology optimization (TOP) has been discussed previously. The previ-
ous chapter has been developed to explore the width of TOP, including the multiphysics,
multiscale, multi-phases design system problem. In such context, deterministic conditions
are assumed, disregarding various uncertainties that may arise from loading conditions, ma-
terial properties, design variables. This leads the deterministic designs to be less robust (or
more sensitive) to the present uncertainties. Thus, the formulation of the uncertainties is of
tremendous significance under real-world engineering.

Both the uncertainty quantification and the optimization are many query problems; the
computation affordability is the concerning aspect. In this chapter, we applied the PCE and
gradient topology optimization to deal with the uncertainty propagation through the optim-
ization system. The key ingredients rely on the (1) robust formulation and (2) sensitivity
analysis.

5.2 Robust topology optimization: illustration case

In the deterministic TOP, we have a solution of design points X1 to minimize the design tar-
get c; however, a real engineering problem always exhibits uncertainties ξ that will propagate
to design system lead a varying c(X1, ξ). For demonstration purpose, figure 5.1 gives two
solution points of c with respect to different designs X1 and X2 with same range of uncertain-
ties ξ, It turns out that design X1 is more sensitive to the uncertainty, while X2 is the least
sensitive one but with a less target performance compared to X1 when absent uncertainties.

𝑿

𝑐

𝑿𝟏 𝑿𝟐

𝑐(𝑿𝟏, 𝝃)
𝑐(𝑿𝟐, 𝝃)

Deterministic Optimization  

Robust Optimization  

Figure 5.1: Deterministic optimization and robust optimization, c ,X and ξ are the objective
function, design variable and the uncertainty respectively.

It indicates that, in the context of uncertainties and topology optimization, one does not
select the design point that minimizes the design target performance but instead selects the
design points that reduce the fluctuation range of the target performance. However, it still
needs to maintain a good target performance. Therefore, there is a trade-off between the
best target performance and less sensitivity to uncertainty.
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Robust topology optimization (RTO) is proposed, the objective function is often given
as a weighted sum of the mean, and standard deviation of deterministic design target per-
formance, a robust objective function cR is expressed as:

min
X

cR(X) = µc(X) + λσc(X) (5.1)

where the X is the design variables, λ is the weight factor λ, µc and σc are the mean and
standard deviation of deterministic objective function with respect to uncertainties ξ. µc
and σc are expressed as:

µc(X) = E(c(X, ξ)) (5.2)

σc(X) =
√

Var(c(X, ξ)) (5.3)

where the E and Var are operators for obtaining the mean and variance. With a given
λ, applied constraint on design variables X, and the derivatives of µc(X) and σc(X) to the
design variable X, one can adopt the gradient-based optimizaotn approach to iteratively
drive to the design target. Note that, the probabilistic approach does not directly provide
standard deviation but the variance. The derivative of ∂cR/∂X is expressed as:

∂cR
∂X

=
∂µc
∂X

+
λ

2
√
σ2
c

∂σ2
c

∂X
(5.4)

There are alternative ways to formulate such robust optimization; one can minimize
the mean [36], or one may imagine the way of minimizing the mean while constraining the
variance. Many other statistical objectives do not include the statistics moments, but employ
the confidence interval [131] or reliability metric to minimize the probability of exceeding
some critical value [5].

Solving the RTO problem requires to iteratively express the derivations of ∂µc
∂X

and ∂σ2
c

∂X

along the optimization process. The simplest solution, a brute Monte Carlo sampling [100],
is employed to approximate the mean and variance, their derivations are expressed:

∂µc
∂X

=
1

nc

nc∑
i=1

∂ci
∂X

(5.5)

∂σ2
c

∂X
=

1

nc− 1

nc∑
i=1

2(ci − µc)(
∂ci
∂X
− ∂µc
∂X

) (5.6)

where nc is the number of samples, ci is a deterministic objective function corresponding to
sample i. Consequently, the solution cost of RTO is nc times the deterministic one, which is
unacceptable when increasing the dimension of design variable X and uncertainty dimension
ξ.

Herein, we employ stochastic response surface method , based on PCE and collocation
points approach, to explicitly express the mean and variance with a moderate number of
’samples’[28]. The PCE method and standard simulation have been discussed in the chapter
3, herein we recall some key ingredients from the previous chapters that will help us realize
the RTO.
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Given a random ξ obeying to a certain probability density function, one selects the
corresponding univariate polynomials. For example, with uniform ξ, Legendre Polynomials
are selected. The objective c(ξ) is assumed to be the weighted sum of finite polynomial basis
Ψi(ξ):

c(ξ) ≈
M∑
i=1

yiΨi(ξ) (5.7)

where M is the truncated threshold, and yi are the PCE coefficients. One may consider the
roots of the polynomial of order p + 1 for selecting 1D experiment points, further design a
higher dimension N experiments ξk by tensor product, leading to r = (p+ 1)N experiments.
Evaluate the unknown weight coefficients ŷ (or PCE coefficients) by linear square fit [89],
reads:

ŷ = Wĉ (5.8)

where ĉ being the vector of c(ξk), k = 1...r, W = (VTV)−1VT is a M × r matrix with
wj, j = 0, ...M − 1 being each row vector. V is calculated from the evaluation of the
polynomials basis onto each of the design experiments:

V =
{

Vij
def
= Ψj (ξi) , i = 1, . . . , r, j = 0, . . . ,M − 1

}
(5.9)

where V is M × r matrix, Due to orthogonality of the basis, one can explicitly give the
mean µc and variance σ2

c , they are given as:

µc = y0 = w0ĉ (5.10)

σ2
c =

M−1∑
j=1

ŷ2
j 〈Ψ2

j〉 =
M−1∑
j=1

〈Ψ2
j〉(wj ĉ)

2 (5.11)

Consequently, the gradients of the µc and σ2
c can be given as:

∂µc
∂X

= w0
∂ĉ

∂X
(5.12)

∂σ2
c

∂X
= 2σc

∂σc
∂X

=
M−1∑
j=1

2〈Ψ2
j〉wj ĉwj

∂ĉ

∂X
(5.13)

The ∂σc
∂X

is expressed:

∂σc
∂X

=
1

σc

M−1∑
j=1

〈Ψ2
j〉wj ĉwj

∂ĉ

∂X
(5.14)

Note that, the obtained expansion is only related to the PCE order p and polynomials
basis. It allows approximating the mean and variance with ξk collocation points. The
precision of such an approximation relies on PCE order p. The derivative of ∂ĉ/∂X on
collocation points is exactly the sensitivity in DTO problem, therefore, given a RTO problem
considering N uncertainty variables, the PCE-RTO computation cost is roughly r = (p+1)N

times DTO one.
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5.2.1 Numerical validation on mechanical topology optimization

To summarize, the critical ingredients of RTO are: first benefits from using PCE and
stochastic collocation method to approximate the mean and standard deviation with ac-
ceptable computation cost, second the gradient-based optimizer is used to update the design
variables. Moreover, since PCE with collocation points is a non-intrusive method, it allows
to express semi-analytically the stochastic moments, the derivation in robust optimization
is no longer a trouble compared to the intrusive stochastic finite element method.

For validation, we implemented a macro case based on working conditions of figure 5.3a
under a 40% volume fraction constraint. Material properties are E = 1, ν = 0.3, the 2D
design domain is discretized by 80 × 40 elements. With applied deterministic mechanical
loading Fθ, the DTO case can be solved firstly to minimize the structure compliance.

In RTO context, Fθ is mechanical loading with deterministic amplitude F = 1, however,
the orientation of the loading is random, obeys a uniform probability low within range of
θ = [−π

2
− π

6
,−π

2
+ π

6
]. With given different λ, one will obtain different macro topology

designs.
First, convergence of PCE approximated mean and standard deviation when increasing

p has been checked in figure 5.2 where the weight factor is λ = 0.1. Therefore, p = 2 is
the best choice for a good moment approximation and a computation cost reduction. Other
MMA optimizer parameters are the same as for a deterministic TOP case.

Two DTO cases are implemented where, θ1 = −π/2 and θ2 = −π/2 + π/6, finally
producing 2 designs Xd1 and Xd2 depicted in figure 5.3b and figure 5.3c, respectively. One
takes the θ1 = −π/2 case as a ’worst’ loading case, because the vertical loading to the
supported structure will produce the maximum bending moments [57]. With λ = 0.1,
RTO design Xr is produced (in figure 5.3d). In figure 5.4b, we perform the structural
analysis of designs by DTO and RTO with respect to varying θ to calculate the corresponding
compliance c. As one can observe, the RTO design and DTO design with θ = −π/2 are
less sensitive compared to the DTO when θ = −π/2 + π/6. It indicates that, in this simple
mechanical loading problem, the DTO to the worst loading condition and our proposed RTO
can both have a more robust design. We then created the 8000 θmc samples to measure the
c(X, θmc) with respect to the 3 designs of figure 5.3, their histograms are plotted in figure
5.4a. We find the RTO design exhibits better robust performance compared to DTO with
the worst loading condition, for the former one has the slight narrow data bar.

With λ varying, the RTO designs are reported in figure 5.5, and corresponding µc and
σc are reported in table 5.1. Figure 5.6 gives the structural performance with those designs
with respect to varying θ. It concludes that, increasing λ, improves the ’robust’ performance
of the structure, however reduces the structural performance in term of compliance. One
may choose a suitable λ value depending on engineering requirement.

λ = 0.1 λ = 0.2 λ = 1 λ = 3 λ = 5
Mean, µc 79.69 78.244 79.88 80.61 119.94

Standard deviation, σc 14.80 15.36 13.81 11.66 0.6089

Table 5.1: µc and σc w.r.t. different λ
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(a) Mean (b) standard deviation

Figure 5.2: µc and σc versus RTO iterations w.r.t. different PCE orders p, λ = 0.1

5.3 3M-Robust Topology Optimization

In this section, several numerical examples are presented to demonstrate the validity of the
proposed robust optimization in improving the ’robustness’ of the design structure in the
context of uncertainty, to the multiscale, multiphase, multiphysics optimization problem.
The boundary conditions are those sketched in figure 5.7.

We consider the different RTOs, where uncertainties being Young’s modulus of m phase
Em, loading orientations θF and heat flux magnitudes Q, respectively. Table 5.3 reports the
uncertain and the deterministic variables, where these uncertainties are independent and
varying within given bounds, obeying uniform probability distribution. Note that, Q = [0, 8]
is a severe changing environment, more than small uncertainties. We first consider individual
uncertainties and then study problems combining them.

In a multiscale RTO problem, the same concept as in DTO is used. One decides design
variables, macro pseudo-density x1, and micro-volume fraction of f phase x2 to minimize
a given target performance. The objective function is the weighted sum of the statistic
mean and standard deviation of compliance in our case. For simplification, a parallel micro-
architecture is adopted, therefore, homogenized material properties with varying x2 are ana-
lytically expressed by mixture law. However, considering more complex micro-architecture
in RTO may not bring too much difficulty; it causes no explosion of time cost compared to
adopting a simple-architecture-like material, since the PCE based response surface method
is adopted to map the micro geometry features (indeed the micro design variables in optim-
ization system) of unit cell into the material space. It is an offline technology to obtain a
semi-analytic surrogate homogenized model.

The objective/cost function cR is the weighted sum of µ and σ with a weighted factor λ
to the σ. An uncertain quantification technology, PCE with collocation points approach is
used to approximate the µ and σ. SIMP-like material interpolation is adopted and detailed
in section 4.2.
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(a) Loading condition

(b) DTO1 (c) DTO2

(d) RTO

Figure 5.3: Compared designs of DTO and RTO. (a) The loading condition. Fθ1 and Fθ2 refer
to two different DTO cases. The red lines show the range of uncertain loading orientation.
(b) The worst loading DTO case, θ1 = −π/2. (c)DTO case with θ2 = −π/2+π/6. (d) RTO
case with loading orientation uncertainty ranged in [θ2 = −π/2− π/6,−π/2 + π/6], weight
factor λ = 0.1, PCE order p = 2.
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(a) Histogram plot (b) c w.r.t loading angles

Figure 5.4: Visualize the ’robustness’ of designs. (a) x-axis indicates the range of compliance,
and y-axis represents the corresponding frequency distribution

(a) λ = 0.2 (b) λ = 1

(c) λ = 3 (d) λ = 5

Figure 5.5: Robust topology optimization designs w.r.t different λ
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Figure 5.6: c(X, Fθ). X are the RTO topology designs with different λ = 0.2, 1, 3, 5. Fθ is
the uncertainty loading.

Figure 5.7: Working conditions to the design problem
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5.3.1 Adaptive algorithms

One solves the RTO with a gradient optimizer, so with the possible drawback of getting
a local optimum design. Generally, a multi-start with different initial points will somehow
avoid this problem. Herein, we apply three different strategies to compare the performance
of the convergence, the capability of achieving a ’good’ optimum, etc.

The first algorithm is the common one, where applying uniform initial guess on design
mesh. The second one is more elaborate; the coarse mesh design problem generates the
design as an initial guess to the refined mesh design problem. Note that this generated
design on coarse mesh, as an input does not necessarily need to converge to a binary density
topology. The initial guess for the coarse mesh problem is still uniform but can be user-
defined. Unlike direct uniform starting, it has excellent advance in convergence speed to
a feasible design. This non-uniform starting approach is indeed a progressive refine-mesh
method (PRM). Specific in our case, one performs RTO on 20 × 10 mesh; constructs a
rough design, where intermediate pseudo-density (where design between 0 and 1) is not an
issue. Typically, it corresponds to a solid component structure on a finer mesh domain.
Afterward, one continually performed RTO in 40× 20, and 80× 40 mesh domain along with
inputs generated by the previous solutions. For the optimization period of 80 mesh, we
adopted p = 5, and r = 1, since the high penalty factor, and low density filter radius will
accelerate the convergence speed and eliminate intermediate density, respectively. Applying
higher p at the beginning stage of optimization will lead to a non-convex problem, making it
more difficult to find a good optimum. This PRM strategy is similar to the multiresolution
strategy proposed in [17]. Both of them reuse results coming from a ’coarse’ design process.

The last strategy is called a Continuation Penalty (CP) scheme, where the applied penalty
factor p = 1.5 at the beginning continuously increases to 3 during the optimization process.
The structure compliance objective function c shows convexity while the stiffness is linear
to the design variable (in our case, the macro density and micro volume fraction) [105]. It
indicates that the choice of smaller p leads to an undesirable situation, where intermediate
design material existing, however, achieves a good local optimum. So, our proposed CP
approach is presumably a good initial guess at primary stage with p = 1.5, and from there
to increase p gradually to achieve the solution without intermediate density. Finally, for an
obtained binary macro topology, we assign filter radius r = 1 at the last step.

In another aspect, both the CP and PRM are intended to provide a good initial guess (or
diverse initial guesses) to the final optimization stage; they are named adaptive strategies
used to progressively change parameters (mesh size to PRM and p to CP).

mesh size nelx× nely penalty p filter radius max. iter. nb.
UNI 80× 40 5 [2,1] [ 200,20]
PRM [20× 10, 40× 20, 80× 40, 80× 40] [3, 3, 3, 5] [2,2,2,1] [50,50,100,30]
CP 80× 40 [1.5,2,2.5,3,3] [2,2,2,2,1] [100,100,100,100,20]

Table 5.2: Optimization input parameters used (brackets indicate continuation )

The prescribed deterministic material properties and loading are reported in table 5.3.
Note that, they not real physical materials. For comparison, individual uncertainty is con-
sidered in RTO first. Then, combination of the 3 uncertainties on the RTO is trivial, but
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variables uniform distribution interval deterministic values
Ef - 1.5
Em [0.6, 1] 0.8
kf 1
km 2
αf 10.e−4

αm 2.e−4

ρf - 1
ρm - 2
θ [−π/12, π/12] 0
Q [0, 8] 4

Table 5.3: Uniform distribution of uncertainty sources

introduces more computation burden. We applied the 3 different strategies to explore the
diversity of generated designs. Table 5.2 lists the topology optimization input parameters
with respect to different strategies.

5.3.2 Uncertain heat flux magnitude

The DTO have been solved in preceeding section, we are now tackling the corresponding
RTO case taking into consideration the uncertainty of heat flux. Typically, an uncertain
range is twenty percent to its mean. In our RTO case, the heat flux is in the range of [0, 8]
for building an enormously varied heat flux case. On one hand, we are particular interested
in considering zero heat flux in the range of uncertainty. Since it is a pure mechanical
loading case, where we will achieve a monophase design structure consisting of a stiffer
material between two candidate materials. On the other hand, one can physically consider
it as a time-evolving thermal work condition (imagine longer machine works, the more heat
it generates). We implement RTO to reduce the sensitivity of compliance to the heat flux
loading changing.

Firstly, with λ = 1, using three different strategies with their concerning topology optim-
ization inputs listed in the table 5.2, RTO is performed with different initial guesses as shown
in the first line of table 5.4. It is noted that, we apply the same x1 (the macro density initial
guess, x1 = 0.3), but different x2 (micro design parameter in each element, two uniform, one
non-uniform) for different cases. Moreover, we play a trick here, the non-uniform case, where
x2 is a random field on the mesh domain, obeying uniform probability low. Indeed, the effect
of macro topology initial guess is interesting and well studied in topology optimization [11].
However, in our case, considering effects of different initial guesses at both macro and micro
scales is more complicated. The other lines in table 5.4 show the corresponding designs,
means, standard deviations. By observing the designs 5.4, we have several concluded points:

• All the proposed strategies perform well for the converging ability with the given λ = 1,
even with the random field initial guess x2.

• The RTO-UNI is highly biased by the initial guess, while different starting points guide
towards different macro topology designs.
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• RTO-PRM and RTO-CP are unbiased by the initial guess point. Even with a random
initial x2 guess, the design will converge to a topology similar to others achieved by
applying uniform initial guesses.

• These presented solutions show the feasibility to improve the structural robustness,
nevertheless, it may yield local optimum designs, which is a common issue of gradient-
like optimization approach

Tables 5.5- 5.7 report the effect of weight factor λ to the RTO-(PRM,UNI,CP), where
different cases start with same initial uniform guess x1 = 0.3, x2 = 0.3.

• Firstly, Table 5.7 reports RTO-UNI designs concerning λ = 1, 4, 8, 12. One admits that
the approach fails to converge with λ = 2 resulting in the missing displayable designs
between λ = 1 and λ = 4. The local optimum issues have been observed among these
discrete points. For instance, in the context of λ = 8, the design corresponding to
λ = 4, however, has a better performance in terms of objective function value (cR =
10.852). Nevertheless, increasing λ somewhat increases µ, while minimizing σ.

• Secondly, Table 5.5 reports RTO-PRM designs concerning λ = 0.01, 0.1, 0.5, 1. One
observes a similar macro topology pattern with increasing λ but decreasing mass frac-
tion of f phase (the stiffer phase of two candidate materials), and σ rises while µ drops.
One observes a similar macro topology pattern with increasing λ but decreasing mass
fraction of f phase (the stiffer phase of two candidate materials), and σ rises while
µ drops. When λ is over 1, converging to an exhibitable design is difficult, possibly
due to mf nearly reaching to 100%. Thus, this pattern macro topology is no longer
suitable, but RTO-PRM fails in jumping to a new macro topology pattern.

• Lastly, Table 5.6 reports RTO-CP designs concerning λ = 0.1, 1, 2, 4. This method is
unbiased by initial guess, it has good behaviors in convergence ability with different λ
compared to others methods.

5.3.3 Uncertain mechanical loading orientation

To demonstrate the performance of RTO with the mechanical loading uncertainty, the bound-
ary conditions in figure 4.9d, is employed, where the load fluctuated with an angle θ = µθ±σθ.
µθ is used for a deterministic case, and the variance σθ corresponds to a RTO case.

It is a remarkable result in our RTO for a pure mechanical uncertainty problem that a
worst-case DTO design corresponds to a solution that the structure sustained the most sig-
nificant bending moment, which improves the structural ’robustness’ performance subjected
to the uncertain environment. However, it is not easy to decide the worst case in thermo-
mechanical coupled loading problem, because the design-dependent thermal deformation
may counterbalance the mechanical one. This highlights the contributions of our proposed
method in Robust Topology Optimization with mechanical uncertainty problem.

Currently, RTO is employed to minimize the µc and σc considering µθ = 0 and σθ = π/12.
RTO-UNI and adaptive RTO-PRM and RTO-CP are employed. The effects of λ are reported
in tables 5.8 - 5.10
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Table 5.4: RTO solutions with three different strategies. λ = 1
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λ 0.01 0.1 0.5 1

Solutions

µ 10.86 10.46 9.148 6.687
σ 1.740 1.759 1.833 2.293
mf 72.22% 72.73% 77.24% 90%

Table 5.5: RTO-PRM-Q

λ 0.1 1 2 4

Solutions

µ 12.33 9.502 10.34 11.606
σ 0.836 0.773 0.019 0.014
mf 83.02% 91.83% 92.01% 88.77%

Table 5.6: RTO-CP-Q.

λ 1 4 8 12

Solutions
µ 9.2 10.34 12.61 14.99
σ 1.2 0.064 0.02 0.009

Table 5.7: RTO-UNI-Q
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• Table 5.8 reports different RTO-PRM designs w.r.t. varying λ = 1, 4, 5, 10. One has
achieved identical pattern of macro topologies. Nevertheless, referring to figure 5.8, the
different designs, show shape variation with different λ. It indicates that, in context
of mechanical uncertainty, RTO-PRM with λ increasing, in fact, performs a shape
optimization on a baseline macro topology, and allows to reduce the σ.

• Table 5.10 reports the different RTO-UNI designs w.r.t. varying λ = 1, 2, 4, 8. Fig-
ure 5.9 displays the outlines of different designs. We have a similar pattern macro
topology, however, in the same table, a RTO case with ∗ mark, where one increases
the uncertainty range σθ = [−π/9, π/9] shows a different topology. It indicates that
both the λ and the interval range of the uncertainties affect the RTO design in macro
topology, micro material distribution, mean, and standard deviation.

• Table 5.9 reports the different RTO-CP designs w.r.t. varying λ = 0.1, 1, 2, 8. This
method shows a significant advantage in exploring diverse macro topologies. To the
first three designs, as for the RTO-UNI and RTO-PRM, RTO-CP performs somewhat
shape optimization to a baseline topology to slightly adjust the σ and µ. However, in
the last case, one increases the λ a lot, it optimizes the macro topology to dramatically
reduce the σ.

λ 1 4 6 10

Solutions
µ 10.81 10.014 10.226 10.228
σ 0.232 0.11 0.076 0.052

Table 5.8: RTO-PRM-θ

5.3.4 Uncertain material properties

Taking into account the uncertain material properties is one of the interest in the RTO
problem. Apart from the thermo-mechanical properties reported in table 5.3, elastic modulus
is one of the most interesting uncertainties, because it is related to both the mechanical and
thermal stress. Besides, we do not have any knowledge of the nature of variation, one
considers first a uniform random material variable. Moreover, a random field is expanded
in several random variables using PCE, therefore, our proposed RTO solves the system of
equations of higher uncertain dimension.

Herein, we considered that the elastic modulus Em obeys to the uniform probability,
varying between [0.6, 1]. Tables 5.11 - 5.13 report mean µ and standard deviation σ to the
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Figure 5.8: RTO-PRM-θ, difference

λ 0.1 1 2 8

Solutions
µ 11.5 11.679 11.714 13.436
σ 0.1 0.07 0.039 0.001

Table 5.9: RTO-CP-θ

λ 1 2 4 8 8∗

Solutions
µ 11.195 10.713 10.572 10.72 13.93
σ 0.4308 0.388 0.303 0.2 0.0033

Table 5.10: RTO-UNI-θ. ∗ represents a RTO case with increasing uncertainty range of
σθ = [−π/9, π/9]
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Figure 5.9: RTO-UNI-θ

compliance c with different λ to RTO(UNI, CP, PRM); the standard deviation seems less
sensitive to the increase of weight factor λ. And with given λ = 6, RTO-PRM does not
manage to obtain a converged solution. Ref [25, 85, 131] have analyzed the effect of the
random material field to the robust optimization (however, they are only macro topology
optimization problem), which is still feasible to be introduced into our proposed RTO solution
framework. It is only required to discretize the random field by series expansion method
[104] (PCE and other methods), the remaining parts of stochastic process and optimization
in RTO are consistent with our current implementation.

λ 0.1 1 5

Solutions
µ 11.103 10.352 9.517
σ 1.272 1.165 1.04
mf 68.59% 76.69% 81.87%

Table 5.11: RTO-PRM-Em

5.3.5 Conclusion on individual uncertainties

We perform a robust multiscale topology optimization considering the independent individual
uncertainties of heat flux magnitude, mechanical loading orientation, and material elastic
modulus. The objective function defined as the weighted sum of mean µ and standard
deviation σ is our choice to formulate the robust optimization. Nevertheless, alternatives,
e.g., minimize µ while constraining σ and probability described µ and σ, are of interest.
Local optimum is a wildly known common issue. Thus we applied RTO-UNI, RTO-PRM,
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λ 0.1 1 2 4

Solutions
µ 11.554 11.16 10.937 11.180
σ 1.088 1.132 1.065 0.953
mf 85.37% 80.46% 81.09% 82.03%

Table 5.12: RTO-CP-Em

λ 2 4 6

Solutions
µ 11.554 11.16 10.937
σ 1.088 1.132 1.065
mf 81.73% 80.79% 77.15

Table 5.13: RTO-UNI-Em
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RTO-CP to explore the possible ’good’ local optimum. In addition, the effect of λ on the
RTO has been investigated. By combined all the solutions of different optimization search
algorithms (UNI, PRM, CP) and different weight factors λ, we give a pseudo-pareto-front of
RTO design with heat flux uncertainty ( Figure 5.10), and mechanical loading orientation
uncertainty (Figure 5.11). Performing RTO with applied different λ is a brute force way
to construct a completed pareto-front line. We could apply high and low values of λ first,
then refine the range progressively. However, it is still a heavy burden task, for (1) our
RTO is a costly computation problem (compared to classical macro topology optimization
problem), considering two-scale design variables and uncertainties; (2) we do not know how
the standard deviation is sensitive to the varying λ, it requires an adequate test to choose
a suitable range of λ to design the Pareto front; (3) with a given λ, a convergence solution
sometimes is not guarantee. One may refer to a Pareto Optimal Tracing (POT) approach
that has been applied to efficiently trace the Pareto front from a single solution already had
[78]. However, this method may help but not guarantee to reduce the cost in our problem,
for a solution obtained with a given λ as an input for a new RTO problem (different λ) may
have a convergence issue.

Figure 5.10: Pseudo-Pareto front plot for RTO heat flux uncertainty

5.3.6 Combined uncertainties problem

We have already designed the RTO corresponding to a single uncertainty. However, in this
section, in the context of the multi-physics loading problem, we will exemplify the robust
topology optimization taking into account the combination of loading uncertainties. As
discussed before, the weighted sum of the mean and standard deviation of thermo-mechanical
compliance is the chosen objective function to minimize.
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Figure 5.11: Pseudo-Pareto front plot for RTO mechanic orientation uncertainty

Combined uncertainties in RTO are none of challenging to implement. Nevertheless,
it is a dramatic computation cost since the cost of RTO is in proportion to the DTO to
the given number of experiments used to evaluate these statistical moments precisely. We
are not interested in validating the precision of the PCE approximated µ and σ for every
optimization iteration, due to the linearity of the deterministic objective function. Indeed,
one can decide an adequate PCE order p = 7 to enforce the accuracy of the estimated mean
and variance.

RTO-PRM has the faster convergence speed. However, even with different λ, it often
converges to a similar pattern macro topology. Note herein, when one evaluates the structural
compliance of each design subjected to the samples of uncertainties, the penalty factor p = 1
is applied because we have the binary (almost) topology.

RTO-UNI is the most direct way. For comparison purposes in this case, we only produce
two RTO-UNI-(Q, θ) designs shown in figures 5.13 (c) (d) with λ = 3 and λ = 5, respect-
ively, and then compared to RTO-UNI design considering sole uncertainty(either Q or θ, as
shown in 5.13 (a),(b)). Figure 5.13 (e)-(h) are the corresponding structures’ response surface
subjected to different loadings (samples of heat flux and orientation uncertainties). Figure
5.13 (e),(f) indicates that the RTO design shows stronger sensitivity to absent uncertainty
(not considerated in a RTO problem) compared to the presented one (considerated in a
RTO problem), illustrating an achievement of our proposed RTO design in improving the
robustness to considerated uncertainties. Figure 5.13(g) shows the sensitivity of RTO-UNI
design subjected to both uncertainties with applied λ = 3. The trend of c(X, Q, θ) is similar
to the 5.13(e), however, the former one has more minor variance (compared the range of
colorbar of two plots). When considering two uncertainties and applying a higher λ = 5, the
c(X, Q, θ) is a almost flat surface if one applies same level color bar as in figure 5.13(e).
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We implement RTO-CP-(Q, θ) cases, and table 5.14 depicts the several designs with a
given λ, and the corresponding µ and σ, and figure 5.12 plots the response of compliance to
the uncertainties concerning different designs.

Firstly, with applied smaller λ and considering either individual or combined uncertainties
(compared design cases of RTO-UNI with different uncertainties recourse), one obtains a
similar pattern of typologies, indicating the robustness of the RTO-CP strategy. Secondly,
with the figure 5.12, one can conclude how sensitive the design with respect to different
uncertainties.

Thirdly, we observe an intermediate density region (the lighter blue close to the green
region) by a RTO design with given λ = 1.88. Note herein, using SIMP-like material
interpolation, for example, the homogenized elastic property is expressed as xp1E

H(x2), where
x1 ∈ [0, 1]. With p > 1, one relaxes the material space to achieve a differentiable objective
function to the x1. Normally, for topology optimization problem p = 3. For a binary
solution (x1 = {0, 1}), different p have no influence on evaluating the c(x1, x2, Q, θ) (such
as cases in figure 5.12 (a),(b),(d),(e)). However, for a structure with intermediate density
region, applying xp1E

H(x2) (x1 ∈ [0, 1], p > 1) to evaluate c(x1, x2, Q, θ) lacks of physical
interpretation.

Therefore, we perform c(x1, x2, Q, θ) with p = 1 (the intermediate density material inter-
pretation), p = 3 (the material relaxation interpretation) and p = 5 (an experiment test),
shown in figure 5.12 (c), (f) and (g), respectively. They show difference in sensitivity to un-
certainties, however, have the almost same mean value (depicted with the color of surface).

We have several inspiration points by the RTO hybrid uncertainties case:

• The presented uncertainties, in fact, could be interpreted as range of use to the struc-
ture, therefore, we can manipulate the structural target performance (as same concept
for the sensitivity in context of robust optimization) by topology optimization.

• An intermediate density material can be interpreted as porous microstructure materi-
als in a particular case; indeed, xp1, x1 ∈ [0, 1] with varying p (p ≥ 1) can be physically
interpreted as different porosity density. Accordingly, microscopic material design may
provide a significant potentiality for optimization and a more feasible space for manip-
ulating material/structure performance.

We implement the RTO considering the complex architecture which corresponds to DTO
design considered in section 4.6. The results are shown in figure 5.14 It is not managed
to discuss details, for example effects of different λ, single or multiple uncertainties, or
the performance of the different RTO adaptive strategies, however, only for demonstration
purpose. Note that, volume fraction and mass fraction constraints are both guaranteed.

It denotes that, with our proposed multiscale topology optimization (and robust optimiza-
tion), we can consider arbitrary parametric cell (as shown in figure 1.6), and then reconstruct
the full-scale structure from optimized macro topology and micro geometry features.

5.4 Conclusions

This chapter extends the gradient 3M-Top framework in the previous chapter by considering
the uncertainties to deal with a robust topology optimization problem. In such context, the
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(a) λ = 0.5 (b) λ = 1

(c) λ = 1.88 (d) λ = 2 (e) λ = 3

(f) λ = 1.88 (g) λ = 1.88

Figure 5.12: Sensitivity of RTO-CP design w.r.t different λ subjected to combined uncer-
tainties (Q, θ). Applied unified colorbar. (a)-(e) with applied p = 1. (f) with applied p = 3.
(g) with applied p = 5
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(a) RTO-UNI-Q-λ = 12 (b) RTO-UNI-θ-λ = 8

(c) RTO-UNI-(Q, θ)-λ = 3 (d) RTO-UNI-(Q, θ)-λ = 5

(e) (f)

(g) (h)

Figure 5.13: Visualization of the sensitivity of structural performances of design by
RTO-UNI subjected to combined loading uncertainties Q = [0, 8] and θ = [−π/12, π/12].
(a),(b),(c),(d) are the RTO-UNI design considering different types of uncertainties; (a),(b)
individual uncertainty; (c),(d) combined uncertainties. (d),(e),(f),(g) are the corresponding
c(X, Q, θ) plots. Note that adaptive color bar is used for each case, and not a unified one.
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λ 0.5 1 1.88 2 3

Solutions
µ 10.279 8.205 9.2 10.069 10.97
σ 1.081 1.494 0.061 0.017 0.013

Table 5.14: RTO design with hybrid uncertainties and different λ, solved by RTO-CP

(a) λ = 1,µ = 22.026, σ = 3.293 (b) λ = 10,µ = 22.741, σ = 2.616

(c) (d)

Figure 5.14: (a) and (b) are RTO designs with different λ. (c) and (d) are the corresponding
full scale geometry.
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new design target is the weighted sum of the mean and standard deviation of the structure
compliance subjected to the uncertainties. We apply the non-intrusive PCE stochastic ana-
lysis (details are illustrated in chapter 3), to approximate the mean and standard deviation,
consequently, the sensitivities of the robust objective function to the design variables (mi-
cro and macro) are easily calculated. Gradient optimizer MMA is used to solve the RTO
problem.

For illustration purposes, we start with a macro topology optimization to consider the
loading orientation uncertainties. The accuracy of mean and standard deviation with dif-
ferent PCE orders p are validated. In addition, the effect of λ on the designed topology
and PCE obtained mean, and standard deviation have been analyzed. To the end, we find
that: (1) increase λ typically increases the mean and decreases the standard deviation (i.e.,
improve the robustness of design); (2) the deterministic optimization subjected to the worst
loading case (usually, the loading corresponding to the maximum bending moment) improves
the structure’s robustness. However, RTO can supply designs with varying mean and stand-
ard deviation by changing λ, which is not possible in a deterministic optimization (the worst
loading case). Furthermore, one may not be able to decide the worst case when suffering
from complex thermo-mechanical coupled loading.

We apply the proposed RTO solution for solving the independent uncertainty of heat
flux magnitude, mechanical orientation, and elastic modulus in 3M-Top cases, on a hybrid
uncertainty problem. One direct uniform initial guess (UNI), and two adaptive strategies,
the progressive refined mesh (PRM) and the continuously increase of the penalty factor (CP),
are proposed. We have validated that, RTO-PRM and RTO-CP approaches are less biased
to the initial guesses.

Our proposed PCE based RTO with adaptive strategies (UNI, PRM, and the CP) and
the PCE-surrogate homogenization model are appealing in solving the multi-scale topology
optimization problem with uncertainties in the following aspects: (1) non-intrusive imple-
mentation. (2) computation affordable: for using the gradient optimization, stochastic col-
location method, scale separation, PCE surrogate homogenization model to the FEM based
homogenization model. (3) Compatibility. It is ready for RTO design with different micro
parametric architecture materials and different uncertainty sources (random variable, field,
or described by an empirical probability density function).

119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



Nomenclature

X = design variable vector
ξ = uncertain variable vector
cR = robust objective function
µc = mean of compliance w.r.t. uncertainty ξ
σc = standard deviation of compliance w.r.t uncertainty ξ
E = mean operator

Var = variance operator
∂µc/∂X = derivative of mean to the design variable
∂σ2

c/∂X = derivative of standard deviation to the design variable
ξk = design experiments based on collocation points
p = penalty factor, PCE order1

N = numbers of uncertain dimension
Q = heat flux amplitude uncertainty
θ = mechanical loading orientation uncertainty

θmc = random samples on mechanical loading orientation uncertainty
r = filter radius

nelx× nely = mesh size
x1 = macro design variable
x2 = micro design variable

1 Note herein, p indicates two different variables, and it is the penalty factor in the
context of topology optimization, and the PCE order in which of PCE-based stochastic
collocation points method. They are the classical nomenclature in their contexts,
respectively. Thus the author wants to keep both, and the reader can tell the difference
dependent on the context.
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Chapter 6

Conclusion and outlook
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6.1 Conclusion

This thesis explores and contributes to several areas and topics, including multiscale mul-
tiphysics multiphases topology optimization, homogenization, stochastic analysis, gradient
and non-gradient optimization algorithm, robust optimization. Specifically, it mainly con-
tributes to developing a systemic robust topology optimization that takes into consideration
of (1) multiphysics loading, (2) multi-phase micro architectured material, (3) multiple inde-
pendent uncertainties, aims to reduce the design sensitivities to uncertainty. The target of
robust optimization is quite clear. However, the most challenging task is the computation
requirements, since it is a many query problem to evaluate the performance of structure
that embeds different macro topologies and micro material distribution and on uncertain-
ties. Therefore, some problems should be pre-solved: (1) heterogeneous structure perform-
ance analysis, (2) uncertainties propagation, (3) multiscale topology optimization algorithm
developments. They are concerned with several essential technologies: (1) homogeniza-
tion (chapter 2), (2) uncertainty quantification (chapter 3), (3) topology optimization and
multiscale topology optimization (chapter 4).

Chapter 1: Chapter 1 provides a primer of density-based topology optimization, which
consists of material interpolation, penalty, optimization algorithm, to satisfy some design
targets by the layout of the material. It is well-developed in overcoming common issues in
TOP, like mesh dependence and checkerboard pattern, leading to a manufacturing feasibility
design structure. Literature related to the trend of development on multiscale optimization
and robust optimization has been surveyed. To extend the width and depth of TOP, we are
interested in developing a systemic robust multiscale multiphysics multiphase (3M) topology
optimization in an affordable computation manner.

Chapter 2: In chapter 2, scale separation of heterogeneous structures is achieved by
homogenization. Instead of performing analysis on a full-scale structure, one applies the
multiscale-homogenization method based on the periodicity (or quasi-periodicity) assump-
tion to perform the analysis on a macro scale.

We take the transient thermal problem as an example, developing the FEM-based homo-
genization method on an underlying unit cell to obtain the homogenized macro properties. As
a result, two classical thermal conductivity, thermal capacity, and one non-classical thermal
memory effect in the context of large contrast of thermal conductivity of two phases are
obtained. Details of numerical developments i.e. applying boundary conditions, solutions
of each property component, to obtain these homogenized material properties have been
demonstrated. In addition, it is ready for other physics problems of heterogeneous material,
mechanical, and coupled thermo-mechanical (in Appendix), and can be extended to others
as acoustic, magnetism, etc.

For validation purposes, we perform three transient thermal cases on structure scale,
i.e., the full-scale, the macro scale with and without thermal memory effects, to validate
our obtained homogenized three thermal properties. As a result, the proposed thermal
memory function and homogenized thermal conductivity and capacity show good accuracy
and efficiency in predicting the thermal delay effect compared to the full-scale case.

Chapter 3: We start from a deterministic heterogeneous transient thermal problem, for
the physical quantities are both spatially and temporally related. As a result, the present
uncertainty analysis to this system is computationally costly. Thus it requires developing an
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easily implemented and affordable computational method for stochastic analysis.
For this purpose, the chapter 3 proposed a non-intrusive PCE-based stochastic method,

for analysis of the uncertainties in unit cell built upon deterministic numerical models in
chapter 2, being the homogenization, macro transient thermal problem, macro transient
thermal problem with thermal memory effect, and considering the uncertainties of material
properties and geometry of underlying unit cell. In stochastic analysis processing, one applied
dimensional analysis to reduce the number of uncertainty parameters. Consequently, three
stochastic models are formulated, i.e., the Monte Carlo simulation, PCE-based stochastic
model, PCE-based reduction model (with applied dimensional analysis), and compared in
terms of stochastic moments convergence and computational cost. Besides the full-scale
problem, we applied the dimension-reduction and PCE2 numerical strategies to release the
cost.

This chapter has a significant foundation on the robust multiscale optimization for: (1)
a non-intrusive stochastic method, and (2) a semi-analytically surrogate homogenization
model development (indeed the PCE2 method).

Chapter 4: The chapter 4 is the exploration of the width of density-based topology
optimization in the developments of:

• multiscale and multiphase topology optimization;

• non-gradient and gradient-based optimization algorithm;

• applied in multiphysics coupled loading problem.

Firstly, we applied parametric cells, as a formula of material, into the density-based topo-
logy to develop a multiscale topology representation. For each integration point of the FEM
model, the pseudo-density and micro parameters are the design variables for (1) evaluating
the full scale structure performance and (2) updating by an optimization algorithm to satisfy
design targets.

Secondly, we develop the non-gradient and gradient based optimization i.e., genetic al-
gorithm (GA) and Method of Moving Asymptotes (MMA), respectively, to solve the problem.
In GA, we develop a two-resolution and linear search scheme to reduce the design variable
and guarantee the constraints. In MMA, the sensitivity analysis is derived with respect to
the macro and micro design variables. It requires (1) the material interpolation scheme for a
relaxation density ∈ [0, 1] (2) offline homogenized material property by an analytical formula-
tion (in our case, either the mixture law and rotation matrix described simple ranked parallel
micro structure material with rotation angular, or the PCE surrogate homogenization model
for arbitrary parametrilized complex architecture material). We prove that both optimiza-
tion algorithms are feasible to solve the multiscale topology optimization problem through a
numerical case of a continuously oriented fiber-reinforced composite material. GA is an ideal
non-gradient processing applied to a non-differentiable objective function. Gradient-based
MMA is efficient compared to GA. However, it may be stuck into local optimum problems,
especially in a complex design system with multiple design variables.

In the following, we apply MMA to solve our different cases,

• two material competition under mass constraint and mechanical loading (applied simple
ranked parallel microarchitecture);
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• two material competition under thermo-mechanical coupled problem, (applied simple
ranked parallel micro architecture), we achieve a better design compared to the mono-
scale optimization;

• the multiscale optimization case considers a Triply Periodic Minimum Surface (TPMS)
micro architectured material.

Chapter 5: With the development of the previous method, the robust multiscale op-
timization is naturally solved. The stochastic moments (mean and standard deviation) are
approximated by PCE stochastic method, via a weighted sum of the collocation points on
the uncertainties. We apply MMA to solve the robust optimization. Nevertheless, the local
optima and the numerical convergence are still the main issues. Two adaptive strategies,
i.e., the progressively refined mesh (PRM) and continuously increasing penalty value (CP),
have been developed. Compared to the simple uniform initial guess (UNI), both the PRM
and CP show a better convergence ability. PRM is the most efficient. However, it converges
to a similar pattern of macro topology, reducing the possibility of exploring the global op-
timum. The CP is the most desired method, for its convergence ability, diversity of explored
topology, and unbias to initial guess. We have applied this method for dealing with indi-
vidual uncertainties of heat flux magnitude, mechanical orientation and material properties
variable, and dealing with combined uncertainties in the robust optimization process.

6.2 Outlooks and future direction

We have achieved our academic targets, however, some aspects remain for further improve-
ments to be applied to solve real engineering problems:

• A 3D multiscale optimization development. This is merely an extension to be tested
on problems of a larger scale.

• In a thermo-mechanical topology optimization problem, one chooses structural compli-
ance as design target performance. Mechanical and thermal compliance are interesting
aspects of achieving a stiff and efficient thermal transfer structure component in real
engineering problems. A weighted sum of the mechanical and thermal compliance is
one of interest. It is effortless to extent such design targets in our proposed multiscale
topology optimization and robust optimization.

• The uncertain variable is considered in robust optimization. However, in a real prob-
lem, the uncertainty features with the random field, for example, the uncertainty sur-
face loading, spatially uncertainty material properties. It may increase the uncertain
dimension dramatically, and need to consider further reduction development.

• Nonlinear material models have to be also tacked. In this case, the fully non-intrusive
GA is straightforward but not computationally efficient. Therefore, an advanced
gradient-like approach needs to be tested, as well as advanced homogenization and
multiscale technologies.
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We have implemented the robust multiscale optimization and robust optimization em-
bedded with TPMS micro architectured material and modeled the full-scale structure for
demonstration purposes. In such cases, the filter method smooths the spatially distributed
micro parameters at the macro scale. However, the microgeometry mismatching occurs be-
cause of the functionally graded isotropic architectured material. Therefore, it has significant
side effects on structure performance, i.e., stress and thermal concentration problems. Typ-
ically, damage happens on the geometry miss-match region. We can handle this problem by
either post-treatment modeling the full-scale structure or a fundamental approach by para-
metrically describing the functional graded anisotropic architectured material. In addition,
material space is extended by the latter method (isotropic and anisotropic material space).

Non-gradient is a potential solution to topology optimization, it is a black box mode
optimization approach but time exhausting. However, it is a hot point in design material
with applied machine learning. Where databases are lacking, unbiased data generation can
be achieved (for example, populations generated by GA ).

As we mentioned in robust optimization, the presented uncertainties could be interpreted
as varying evolving stimuli to structure. A topology optimization approach can program the
structural to a target performance subjected to given stimuli and apply it in designing unique
microarchitectured material.
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Chapter 7

Appendix

126

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



7.1 Thermo-mechanical homogenization

Thermal mechanical equilibrium equation is written as:

div σ + f = 0 (7.1)

σ = Dε− d(T − Tref ) (7.2)

where σ is the Cauchy stress tensor defined by the Duhamel–Neumann law for thermo-
elasticity, ε being the strain tensor. D is the elastic module tensor, and the d is the thermal
stress increment per unit temperature. T and Tref are the structural temperature and
reference temepearture while zero strain, for simplification, assumed Tref = 0. It is supposed
to be satisfied to the boundary condition, it is written as:

σ · n = tbc in Γt

u = ubc in Γu

where, ubc and tbc are displacement and traction tensor on boundary Γu and Γt, respectively.
Displacement u can be expressed by an asymptotic expansion series in:

u(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + . . . (7.3)

Submit it into govern equation and by applying the terms with expansion series ε−2, ε−1

and ε0 equal to 0, it allow to solve the elastic and thermal characteristic displacement w.r.t.
different orders.

First, given terms to expansion power of ε−2 to zero, one obtained:

∇y(D∇yu) = 0 (7.4)

lead to u0 is the macroscopic displacement, and the macro scopic strain can be expressed as
εM = ∇xu0.

Then, terms to ε−1 gives:

∇y(D∇xu0) +∇x(D∇yu0) +∇yD(∇yu1)−∇ydT0 = 0 (7.5)

Considering ∇yu0 = 0, we can have relationship of ∇yu1 to ∇xu0 and T0.

∇yu1 = −L̃y∇xu0 + L̂yT0 (7.6)

where the L̃y, L̂y are liner operator, for build relationship between macro displacement and
micro displacement and temperature filed, respectively.

Terms to expansion power of ε0 gives:

∇x(D∇xu0) +∇y(D∇xu1) +∇x(D∇yu1)−∇x(dT0)−∇y(dT1) = −f (7.7)

submit equation 7.6 into the equation above, and apply average operator 〈〉x,

∇x

[
〈D
(
1− L̃y

)
〉xεM + 〈DL̂y − d〉xT0

]
= −f (7.8)
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note that, 〈u1〉x = 0 and 〈T1〉x = 0

σM = DMεM − dMT (7.9)

This leading to homogenized elastic tensor DM and thermal stress tensor dM :

DM = 〈D
(
1− L̃y

)
〉x (7.10)

dM = 〈d−DL̂y〉x (7.11)

7.2 PCE stochastic analysis on homogenized thermo-

mechanical properties

The close approximation to the structure level surface consists of trigonometric functions F
at points of (x, y, z), and they are formulated as:

F (x, y, z) = cos(x) + cos(y) + cos(z)− t (7.12)

Parameter t is the variable that determines the interphase region, separating the unit cell
into two regions of different phase material. Moreover, if the parameter t is sufficiently pos-
itive and negative, the inclusion will be globally surrounded by the matrix, which turns an
unconnected inclusion into a full heterogeneous scale. As a result, one defines t ∈ [−0.9, 0.9]
to guarantee the connectivity of inclusion trough the macro scale, figure 7.1 depicted geo-
metry of inclusion with varying t. With given phases material proprietress in table 7.2, and
parametric cells with varying t (shown in fig 7.1), tables report the fit error of independent
elastic tensor components, E11 (table 7.1), E12 (7.2), E44 (7.3), and thermal expansion αH
(7.4) with respect to different PCE order p. With p = 7, the PCE can construct an accur-
ate thermo-mechanical surrogate model to the FEM-based one, suitable for the multiscale
thermo-mechanical coupled topology optimization.

Parameters mean uniform interval

Es (Pa) 2× 1011 [1.25, 2.75]× 1010

Ef (Pa) 5× 1010 [2, 8]× 1010

ρscs (Jm−3K−1) 4× 106 [2.5, 5.5]× 106

ρfcf (Jm−3K−1) 2× 106 [1, 3]× 106

Ks (Wm−1K−1) 80 [65,95]
Kf (Wm−1K−1) 10 [6,14]
αs (K−1) 1.5× 10−5 [1, 2]× 10−5

αf (K−1) 2× 10−5 [1, 3]× 10−5

t 0 [-0.9,0.9]

128

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI022/these.pdf 
© [C. Chu], [2022], INSA Lyon, tous droits réservés



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.1: Structure of inclusion phase with t ∈ [−0.9, 0.9]

PCE order p mean of E11/Ef std ofE11/Ef fit error %

1 1.9067 0.85101 11.613
2 1.8943 1.0095 5.191
3 1.898 1.0399 3.148
4 1.9054 1.0628 1.030
5 1.9004 1.0398 0.66

Table 7.1: QoI,E11/Ef
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PCE order p mean of E12/Ef std of E12/Ef fit error(%)

1 0.96501 0.41483 10.657
2 0.96459 0.49398 4.75
3 0.9685 0.50992 2.5846
4 0.97012 0.52105 0.9490
5 0.96932 0.51264 0.56576

Table 7.2: QoI,E12/Ef

PCE order p mean of E44/Ef std of E44/Ef fit error(%)

1 0.45169 0.23419 13.64
2 0.44517 0.27892 6.093
3 0.44554 0.28982 4.1552
4 0.44883 0.29609 1.4705
5 0.44591 0.28925 0.8552

Table 7.3: QoI,E44/Ef

PCE order p mean of αH/αf std of αH/αf fit error(%)

2 2.371 0.90229 30.429
3 2.3278 1.0936 15.526
4 2.3323 1.0821 7.5374
5 2.3328 1.0598 4.4332
6 2.3379 1.0681 2.6365

Table 7.4: QoI,αH/αf

7.2.1 Random field uncertainties

The main issue is an increase in cost when the number of parameters increases. Indeed using
a dedicated parametrization of the microarchitecture, and eventually of the materials of the
phases, the number of variables may be large, especially with the versatile manufacturing
process as for 3D printing. In any case, parametrization is a potentially useful approach
to ensure manufacturability (and as a second hand, be compatible with quasi-periodicity
assumption). Therefore, taking into account a random field material parameter is to be
taken into consideration concerning the computational cost.

With random parameter fields, p(M, ξ), we can approximate these as a Karhunen-Loeve
expansion with a single product: p(M, ξ) ≈ p0(M) ∗ (1 + f(ξ)). Indeed we mainly need
an estimate of the standard deviation of the cost function c, and this approximation will
probably lead to an overestimate of it. For instance, f(ξ) = αpξ when ξ ∈ [−1, 1] and
αp is a deterministic amplitude (so we got a mean and a uniform variation, PCE order
1). Nevertheless, we may consider different random variables ξ for the different parameters.
Note that p0(M) are deterministic fields, so the context is similar to the one when only the
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given load is random.
Obtaining a macro characteristic qM from p makes use of an hybrid between PCE and

ROM: we therefore now denote p(M, ξ) = g(Ξ), where Ξ is a parameter allowing to describe
both the nominal value range, and the variations around a nominal value. We now have
qM =

∑
iQIψ(Ξ) as previously, but with this different interpretation of variable Ξ. A

nominal value of qM is therefore obtained from a the corresponding nominal value of the
micro parameters, so the nominal value Ξ0 of Ξ.

The previous objective was c(p), now with p(Ξ). Since Ξ has both a deterministic part
and a stochastic one, we write Ξ0 its nominal (deterministic) value and ∆Ξ its interval of
variation so that Ξ = Ξ0 ±∆Ξ.

The new objective is µ+ λσ where µ(Ξ0) is the mean and σ(Ξ0) the standard deviation
of c(Ξ); λ is a weight.

We first make the following approximation: µ ≈ c(Ξ0) (mean and nominal value). For
gradient-like optimization, we need the gradient of µ, which is easy to obtain: ∂c/∂p or
∂c
∂Ξ

(Ξ0) = ∂c
∂Ξ0

(Ξ0), so it is the same as for the deterministic case. We now also need the

gradient of σ. With a first-order sensitivity analysis, we got ∆c = | ∂c
∂Ξ
|∆Ξ. To get rid of the

absolute value, let’s consider (∆c)2 =
(
∂c
∂Ξ

)2
(∆Ξ)2.

∂

∂Ξ0

(∆c)2 = 2∆c
∂∆c

∂Ξ0

(7.13)

= 2
∂c

∂Ξ0

∂2c

∂Ξ2
0

(∆Ξ)2 (7.14)

Therefore ∂∆c
∂Ξ0

= sgn( ∂c
∂Ξ0

)∆Ξ ∂2c
∂Ξ2

0

Since ∆Ξ is directly related to the standard deviation of Ξ, ∆c also allows to get σ. The
last step will be to express the gradient of σ.
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