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Abstract

Abstract

Epoxy networks are the most widely used thermoset materials. Nevertheless, these
highly crosslinked networks display a high brittleness, i.e. a low toughness, which
limits their applications in some specific occasions. Therefore, improving the toughness
to prevent crack propagation and healing damages which could occur in the epoxy
matrices for low strains is a key issue to extent life span of epoxy-based materials such
as fiber-based thermoset composites materials. lonic liquids (IL) have been considered
to design high performance epoxies because of the excellent intrinsic properties and a
very large number of combinations of cations and anions. Therefore, this works focus
on improvement of toughness and self-healing property in conventional epoxy-amine
networks via a microencapsulation-based strategy. In the first section, phosphonium
type ionic liquid was firstly encapsulated in silica shell-based microcapsules which
could contribute to the improvement of the toughness of epoxy-amine network. In the
second section, an epoxy monomer was encapsulated in poly(urea-formaldehyde) shell-
based microcapsule as an extrinsic healing agent and an ionic liquid was incorporated
in epoxy-amine-IL network. Self-healing was expected to be achieved at high
temperature by the releasing of the epoxy from the breakage of microcapsules and its
polymerization induced by the IL. In the last section, a ionic liquid functionalized epoxy
monomer was synthesized. This one was first encapsuled in poly(melamine-
formaldehyde) shell microcapsules and that were added into different epoxy-amine
matrices to design single microcapsule-based self-healing systems. Therefore, this work
focused on different strategies via different combinations of ionic liquids and
microcapsules designed for epoxy networks. Numerous research routes and

technological applications will be offered based on our results.

Key words : epoxy-amine network ; ionic liquids ; microencapsulation ; toughness ;
self-healing.
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Résumé

Résumé

La résine époxy est I'un des polymeres thermodurcissables les plus largement
utilisés pour les applications de haute valeur ajoutée. Leur utilisation est toutefois
confrontée au probléme de fragilité ¢levée et de faible ténacité de ce type de polymere
hautement réticulé, ce qui limite leurs applications a certains domaines. Par conséquent,
améliorer leur ténacité pour freiner la propagation des fissures et guérir les
microfissures qui pourraient se créer dans des matrices époxy pourrait conduire a une
prolongation de la durée de vie de matériaux polyépoxydes comme les matériaux
composites et/ou les adhésifs structuraux. Un liquide ionique (LI) a été adopté pour
concevoir un matériau €poxy a hautes performances en prenant en compte les
excellentes propriétés intrinséques des liquides ioniques notamment les combinaisons
multiples de cations et d'anions. Ces travaux se concentrent sur l'amélioration de la
ténacité et de la capacité d'auto-guérison des matrices époxy-amine via une
méthodologie déja largement maitrisée, celle faisant appel a la microencapsulation.

Dans une premiére partie, un liquide ionique de type phosphonium a été encapsulé
dans une coque de silice pour former des microcapsules capables d’améliorer la ténacité
du réseau époxy-amine via les mécanismes de plasticité mis en jeu. Dans la deuxieme
partie, le monomere époxy a été encapsulé dans une coque de poly(urée-formaldéhyde)
et des microcapsules résultantes ont été considérées comme agent cicatrisant
extrinseque combiné a un liquide ionique incorporé dans le réseau époxy-amine.
Dans la derniere partie, un monomere époxy liquide ionique, c’est-a-dire un liquide
ionique porteur de fonctions époxyde réactives, a été synthétisé. Celui-ci a d'abord été
encapsulé dans des microcapsules a coque poly(mélamine-formaldéhyde) qui ont été
ajoutées dans différentes matrices époxy-amine pour concevoir un systeme d'auto-
cicatrisation. En conclusion, ce travail s'est concentré¢ sur différentes stratégies

combinant liquides ioniques et composés designer des microcapsules pertinentes pour

vii
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Résumé

des systémes époxys. Bien entendu, les travaux exposés ouvrent vers de nombreuses

applications ou I’encapsulation de liquides ioniques fait sens (tribologie, corrosion, etc).

Mots clés : réseau époxy-amine ; liquides ioniques ; microencapsulation ; dureté ;

auto-guérison.
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General Introduction

General Introduction

Polymer matrix composite as well as structural material is a type of lightweight material
which displays high mechanical properties can be widely used in different fields. Epoxy
materials because of their good chemical stability, thermal properties and mechanical properties
can be used as structural adhesives or composite materials used in aerospace and daily life
applications. However, the main drawback that limits long term application of epoxy matrix is
the high brittleness, which means microcracks can be generated easily in the epoxy matrix when
the material is exposed to impact, mechanical or thermal sollicitations. Therefore, to prevent
the generation and propagation of microcracks is of great importance for prolonging the life
span of epoxy-based structures. With the emphasis on such issues, toughened and self-healing
materials are of interest to be integrated in real applications. Thus, this work focuses on
designing multifunctional epoxy matrices considering ionic liquids via microencapsulation
concept as one of the promising strategies. Therefore, to improve the toughness and to offer
self-healing ability to epoxy-based materials, microcapsules addition seems to be a promising
route. However, how to design the structure of microcapsules, how to choose the nature of shell
and core materials, and how to use relevant process were considered in this study.

Based on the literatures and our research objects, this PhD work is divided into following
five chapters.

The first chapter is dedicated to report the state of art concerning self-healing materials,
combination of ionic liquid and epoxy compounds as well as microencapsulation methods. The
first section reviewed the self-healing routes involving intrinsic and/or extrinsic self-healing
mechanisms and more precisely extrinsic self-healing mechanisms which are easily tuned for
thermoset systems. The second section focused on the combination of ionic liquid and epoxy
resin. lonic liquids were recently founded to be efficient initiators for epoxy polymerization to
design epoxy networks with high performances. Because of their nonflammability and liquid
nature, ionic liquid can act as flame retardants and self-lubricants. Our study brings new insights
for ionic liquids use. The third section describes the microencapsulation, including the physico-
chemical basic considerations, main strategies and applications, with a special focus on self-
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healing in polymers.

The second chapter is dedicated to the synthesis of the ionic liquid core and the silica shell
of the microcapsules. These ones are supposed to be considered as reinforcement in epoxy-
amine networks. In a first step, hydrophobic ionic liquid, i.e. tetradecyl(trihexyl)phosphonium
bis-(2,4,4trimethylpentyl)phosphinate, denoted as IL104, was encapsulated in silica-shell
microcapsules (IL@Si02) by performing a sol-gel reaction in ionic liquid-in-water emulsion.
The obtained IL@Si0, microcapsules have spherical shape as well as rough surface with a
diameter from 0.5 to 2 um. These microcapsules were added in the epoxy-4.,4-
methylenebis(cyclohexylamine) (epoxy-PACM) networks as fillers. The addition of that
IL@Si102 microcapsules to epoxy-amine networks improve the mechanical properties and
fracture toughness without damaging the thermal properties.

The third chapter focused on achieving self-healing of epoxy-amine networks.
Microcapsules with healing agent inside with large diameter are required to achieve self-healing.
The initially proposed latent initiator, i.e. Grubbs’ catalyst, suffers from a too low
decomposition temperature and impacts on the choice of amine hardener. Thus, ionic liquid
could be a good alternative and could be applied in high temperature cured polymer thermosets.
Therefore, epoxy containing microcapsules with poly(urea-formaldehyde) shell, denoted as
EP@PUF, were successfully synthesized and added in epoxy-PACM-IL ternary reactive system
as self-healing additive. Before investigating the self-healing performances, the optimal IL
content as well as their influence on epoxy matrix were studied. Finally, it was found that 10
wt% of IL in the matrix is the optimal value and self-healing can be achieved by adding more
than 10 wt% of EP@PUF microcapsules.

Third chapter related to self-healing in epoxy materials showed that the introduction of a
initiator was required for epoxy healing agent. The fourth chapter proposed to achieve self-
healing from a strategy considering single microcapsules system without initiator. For such a
purpose, a ionic liquid epoxy monomer (ILEM) was synthesized. Therefore, ILEM was
encapsulated in poly(melamine-formaldehyde) shell-based microcapsules (ILEM@PMF). The
influence of the morphology of the microcapsules and their self-healing performances in
different epoxy-amine networks were investigated. It was found that the ILEM cores can

polymerize under thermal stimulus. Nevertheless, this ILEM core material could polymerize
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when curing temperature is higher than 180 °C. Therefore, these new microcapsules are
appropriate for achieving self-healing purpose in low temperature or room temperature cured
epoxy-amine materials such as structural adhesives.

To summarize the work done in this study, different types of microcapsules were
synthesized for designing functional epoxy materials. The combination of these microcapsules
with an ionic liquid was proposed using different routes. Toughening and self-healing purposes
have been achieved. The first result of this work can be considered as the proof of concept and
more works could be proposed. For example, coaxial electrospinning could be applied to design
microvascular networks to achieve self-healing purposes. Epoxy monomer with reversible
groups can also be designed for obtaining intrinsic self-healing thermoset materials. Such an
approach can be achieved by using the molecular architecture of the ionic liquid epoxy

monomer.
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Résumé Etendu

Chapitre 1 : Etude bibliographique
e Matériaux autoréparants

Au cours des dernieres années, les composites a matrice polymere (PMC) ont été
largement utilisés dans l'industrie automobile et aérospatiale. Ces matériaux présentent de
nombreux avantages par rapport aux matériaux métalliques traditionnels, tels que de bonnes
propriétés électriques, une stabilité thermique et thermomécanique, de bonnes propriétés
mécaniques, une stabilité dimensionnelle, etc. [

Cependant, lors d’un impact, d’un cyclage mécanique ou de chargements thermiques, des
microfissures peuvent étre générées dans la matrice généralement fragile comme les matrices
époxy et polyesters [, Par conséquent, les chercheurs s'efforcent de concevoir des matériaux
autoréparants, visant a cicatriser ces microfissures avant leur propagation afin de prolonger la
durée de vie des matériaux PMC.

Selon les mécanismes d’autoréparation rapportés dans la littérature, les matériaux
autoréparants peuvent étre divisés en deux catégories : matériaux autoréparants intrinséques et
matériaux autoréparants extrinséques %, Dans le mécanisme intrinséque d'autoréparation, la
guérison se fait principalement par les matériaux eux-mémes par des interactions chimiques,
physiques ou supramoléculaires. La guérison extrinseque fait appel a des additifs. Le recours a
des microcapsules ou microcanaux sont les stratégies les plus largement proposées pour obtenir
l'autoréparation de matériaux PMC.

Les matériaux autoréparants doivent aussi pallier les inconvénients des polymeéres fragiles
et en raison de leur aptitude a allonger la durée de vie, présentent les performances requises
pour différents domaines applicatifs, tels que les expéditions aérospatiales, les revétements

anticorrosion, les dispositifs conducteurs ou certaines applications biologiques.
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e Lesliquides ioniques et époxy

Les liquides ioniques (LIs), également connus sous le nom de liquides ioniques a
température ambiante, sont des sels organiques liquides au voisinage de la température
ambiante. Le premier d’entre eux, le nitrate d'éthylammonium LI [EtNH3][NOs], a été
découvert par Paul Walden en 1914 7], Depuis cette date, les liquides ioniques sont largement
utilisés comme solvants propres, ¢lectrolytes ou additifs dans les matériaux polymeres en raison
de leurs excellentes caractéristiques, notamment une pression de vapeur nulle, une large plage
de fonctionnement, une stabilité thermique ¢€levée, une bonne conductivité ionique et une
inflammabilité (81,

Le prépolymeére époxy est un compos¢ organique avec une fonctionnalité époxy égale ou
supérieure a deux. Les groupes époxy peuvent étre ouverts par une variété d’espeéces chimiques
permettant de former des réseaux ). Par conséquent, divers mécanismes de polymérisation, y
compris par étapes ou par croissance de chaine, peuvent étre activés.

Aprés les recherches de Kowalczyk ['% selon lesquelles le tétrafluoroborate de I-butyl-3-
méthylimidazolium (BMITF) peut étre utilisé comme agent de réticulation de résines époxy, de
nombreux chercheurs proposent d’autres applications pour les liquides ioniques dans les
composites époxy. En raison de leurs propriétés uniques, les LIs sont désormais largement
utilisés comme durcisseurs, additifs pour aide a la dispersion, a la lubrification ou pour apporter

de nouvelles fonctionnalités dans les composites a matrice époxy.
*  Microencapsulation

La microencapsulation est une méthode efficace pour confiner des matériaux liquides ou
solides par des matériaux de paroi (organiques ou inorganiques) afin de préserver les propriétés
biologiques, fonctionnelles et physico-chimiques des matériaux du cceur des microcapsules
ULI2] 7] est nécessaire alors que le matériau de la coque ne réagisse pas avec le matériau du
cceur. Dépendant de 1’application visée des microcapsules, leur résistance mécanique, la
solubilité des matériaux d’écorce, leur biocompatibilité, leur caractere hydroscopique, leurs
propriétés diélectriques, leur dégradabilité ou d'autres propriétés spécifiques sont également

requises. Par conséquent, sur la base de ces diverses exigences, les matériaux de la coque

peuvent étre d’origine naturelle ou obtenus par synthése.
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De nombreuses stratégies différentes ont été proposées pour la fabrication de
microcapsules. Généralement, les procédés adoptés pour leur préparation peuvent étre divisés
en trois : (1) Procédés physiques : évaporation de solvant, séchage par pulvérisation, dépot
¢lectrostatique, etc. et (2) Procédés chimiques : polymérisation in-situ, polymérisation
interfaciale, etc. (3) Procédés physico-chimiques : coacervation (séparation de phases), etc. Ces

méthodes sont désormais largement appliquées en microencapsulation pour obtenir des
microcapsules adaptées aux différentes applications 13141,
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Chapitre 2 : Microcapsules a coquille de silice et noyau liquide ionique pour

matériaux polyépoxydes

¢ Introduction

Les résines époxy, en raison de leur propriétés physiques et chimiques exceptionnelles, ont
été largement appliquées dans le domaine de l'automobile, de 1'aérospatiale, etc, mais leur
grande fragilité reste leur principal inconvénient. [!). Par conséquent, leur modification par des
additifs externes tels que des caoutchoucs liquides, les thermoplastiques ou des nanoparticules
a été étudiée dans de nombreuses recherches. Néanmoins, 1'ajout de caoutchoucs ou de
thermoplastiques de basse température de transition vitreuse (Tg), faisant appel a la génération
d’une phase ductile, un mécanisme de séparation de phase induit par la polymérisation a une
influence négative sur leurs propriétés thermomécaniques. Les modifications par des
nanoparticules rencontrent la difficulté de dispersion ).

Jusqu'a présent, il existe peu de travaux sur l'encapsulation de liquides ioniques (LI) de
type phosphonium, en particulier pour leurs applications dans des matériaux polymeéres
thermodurcissables. Dans ce chapitre, des microcapsules de silice (LI@Si10;) contenant le LI
de type phosphonium ont été synthétisés avec succes pour la premicre fois et ont été€ ajoutés
dans les réseaux époxy-amine comme additif multifonctionnel. Ce chapitre est donc divisé en
deux parties : i) Syntheése et caractérisation des microcapsules LI@SiO; ; i) Préparation et
caractérisation des matériaux LI@SiO2/époxy-amine. La préparation et la nature des

microcapsules LI@Si10; sont alors analysées.
* Synthése et caractérisation de microcapsules IL@SiO2

Le concept de base est celui de considérer un procédé sol-gel au sein d’une émulsion IL
dans eau (O/W) stabilisée a 1'aide de tensioactifs. Le tetraethyl orthosilicate (TEOS) est alors
utilisé comme  précurseur de silice qui  constituera 1’écorce B4 Le
tétradécyl(trihexyl)phosphonium bis-(2,4,4triméthypentyl)phosphinate, not¢ LI 104, a été

s¢lectionné comme liquide ionique et le SDS et le CTAB ont été choisis comme co-tensioactifs

(5] pour stabiliser le LI 104 dans la solution aqueuse. Lorsque 1'émulsion a été bien stabilisée,
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TEOS a été ajouté dans des conditions basiques pour former I'enveloppe de silice a la surface

des gouttelettes de liquide ionique. La procédure de synthése est schématiquement donnée dans

la Figure 1.

I'agitation mécanique

Micelles
de tensioactifs

IL/H,0
gouttelette de I'émulsion

NH,H,0 "\{f: .
la solution aqueuse "?( ;i.soi
TEOS
b o Li@Sio,
LI 104 microcapsules

Figure 1 Procédure de synthése des microcapsules LI@Si02

Les microcapsules obtenues ont une forme sphérique, une structure ceeur-coquille désirée
et une surface rugueuse comme le montrent les micrographies MET et MEB de la Figure 2
(a)(b). La distribution des diametres des microcapsules LI@SiO» a également été caractérisée
par diffusion dynamique de la lumiere (DLS). Les microcapsules ont une distribution de taille

centrée a 10-15 pm comme le montre la Figure (c).
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Figure 2 Micrographies (a) MET et (b) MEB et (c) distributions des diameétres des

microcapsules LI@SiO>
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Figure 3 Spectres FTIR et ATG des microcapsules LI@SiO2
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Ces caractérisations montrent que les microcapsules a enveloppe de silice et noyau liquide
ionique ont été synthétisées avec succes ce qui leur permet dans une étape suivante d’étre
ajoutées dans les systémes époxy-amine afin d’étudier leurs performances en tant que

microcapsules de renforcement et d’autoréparation des réseaux époxy finaux.

* Préparation et caractérisation de microcapsules LI@SiO: dans des réseaux époxy-

amine

Des microcapsules IL@Si10, ont été ajoutées dans une matrice polymere issue de la
copolymérisation d’un monomere époxy (DGEBA, D.E.R. 332) et de 4,4-
méthylénebis(cyclohexylamine) (PACM). Différents rapports stoechiométriques époxy/amine
et différentes fractions massiques de microcapsules LI@SiO; ont été considérés pour étudier
les propriétés des matériaux époxy obtenus. Les propriétés thermiques et les propriétés
mécaniques des différents matériaux époxy ont été analysées et les résultats ont été présentés

dans le Tableau 1.

Tableau 1 Propriétés thermiques (Tg, Td onset, €t Td max) €t mécaniques (E, Kj., et G;.)de

différents matériaux époxy

. T, (2) T4 onset @ Td max ® E © K. © Gc (c,d)
Matériel

(°O) (°O) &(®) (GPa) (MPa'm'?) (kJ-m)
1.0-0 156 359 378 1.10£0.04 0.55 +£0.05 0.25
1.0-1 165 361 379 1.20 +0.05 0.69 +£0.07 0.35
1.0-2 170 352 378 1.26+ 0.06 0.76+ 0.04 0.41
1.0-5 171 353 377 1.30 £ 0.04 0.80 £+ 0.06 0.44
1.2-0 104 352 380 1.24+0.03 0.56 £ 0.06 0.23
1.2-1 116 359 381 1.30 £ 0.06 0.65+0.08 0.29
1.2-2 127 363 380 1.40 +0.03 0.76 = 0.07 0.36
1.2-5 142 359 380 1.50 £ 0.06 0.81 +£0.06 0.38
1.4-0 83 329 380 1.42 £0.05 0.60 = 0.05 0.22
1.4-1 109 363 382 1.64 +0.06 0.68 = 0.05 0.25
1.4-2 125 352 383 1.70 £ 0.04 0.77 £0.06 0.31
1.4-5 135 356 384 1.68 + 0.05 0.82 +0.05 0.35

@ analyses DSC (vitesse de chauffage :10 K-min™', atmosphére : N)
®) analyses ATG (vitesse de chauffage :20 K-min™!, atmosphére : Ny)
(© a4 température ambiante

@ calculé a partir de la valeur moyenne de E and K,

11

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LY SEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Résumé Etendu

* Principaux résultats

Des microcapsules a écorce de silice (LI@Si10,) obtenues par procédé sol-gel en émulsion
LI/H>0O a l'aide de tensioactifs et contenant un liquide ionique de type phosphonium ont été
synthétisées avec succes. La forme sphérique et la structure noyau-enveloppe avec une large
gamme de tailles de microcapsules LI@SiO; ont été caractérisées par MET, MEB et DLS. La
polydispersité des diameétres a été associée a équilibre dynamique du LI dans 1'émulsion aqueuse.
La spectroscopie IRTF, 1'analyse élémentaire et 'EDX ont prouvé que les liquides ioniques ont
¢été encapsulés avec succes par la coque de silice. La stabilité thermique €levée a été révélée par
analyses ATG, montrant ainsi que les microcapsules LI@SiO> peuvent étre des additifs idéaux
dans les réseaux époxy-amine polymérisés a haute température. Ainsi, les liquides ioniques
encapsulés offrent un véritable potentiel et une polyvalence pour les matrices
thermodurcissables en tant qu'additifs fonctionnels.

Dans la deuxiéme partie du Chapitre 2, les microcapsules LI@SiO> obtenues ont été
dispersées dans des réseaux époxy-amine. La morphologie, les propriétés thermiques et
mécaniques des matériaux époxy ont ¢€té caractérisées par différentes méthodes. Par
microscopie MET il a été confirmé que les microcapsules LI@SiO- restent intactes dans la
matrice réseau époxy-amine finale et que celles-ci sont bien dispersées. Les caractérisations
DSC et mécaniques ont montré que de petites quantités de microcapsules LI@SiO> peuvent
favoriser les propriétés thermiques et mécaniques des matériaux car celles-ci jouent le role de
charges renforcantes. Pour étre plus précis, en considérant un rapport r donné, avec une fraction
massique croissante de microcapsules LI@SiO», la température de transition vitreuse et le
module de Young des réseaux LI@SiOz-époxy-amine augmentent. De méme, en considérant
un méme rapport steechiométrique r, lorsque la fraction massique de microcapsules augmente,
la ténacité K;.et I'énergie de fracture des LI@Si102-époxy amine sont plus encore augmentées.
Avec une fraction massique fixe de microcapsules LI@Si0., les méme effets sont encore plus
significatifs pour un rapport r élevé. Des tests de sorption et des analyses mécaniques
dynamiques (AMD) ont montré également que les microcapsules LI@SiO> peuvent améliorer

la résistance aux solvants des matériaux époxy grace aux interactions crées aux interfaces
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microcapsule-époxy 9. Enfin, le mécanisme de cicatrisation via le remplissage des fissures a
été étudié et prouvé par microscopie MEB ["#], répondant ainsi a I’objectif d’autoréparation.
En conclusion, des microcapsules LI@SiO> ont été¢ synthétisées avec succes et se sont
avérées ¢tre des charges micrométriques renforgantes dans le réseau époxy-amine puisque elles
permettent d’augmenter la ténacité, puis généralement les propriétés mécaniques sans avoir

d'effet négatif sur les propriétés thermomécaniques de la matrice époxy.
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Chapitre 3 : Synthése des microcapsules contenant un composé époxy et
conception de nouveaux matériaux liquides ioniques époxy-amine
autoréparants

e Introduction

Le mécanisme d’autoréparation extrinséque est un mécanisme intéressant et générique
pour réaliser une auto-guérison dans des matériaux polymeres thermodurcissables en général.
Mais il peut toutefois tre limité par la température de réticulation de la matrice polymére ou le
colit élevé du systéme a double microcapsules 2], Par conséquent, ce chapitre propose une
solution basée sur un systéme de microcapsules de nature unique a cceur époxy avec un liquide
ionique ajouté dans le réseau époxy-amine et qui interviendra comme amorceur. Ce systéme
pourra alors étre appliqué pour les matériaux époxy polymeres a haute température. Ce chapitre
est divisé en trois parties : i) Syntheése et caractérisation de microcapsules de poly(urée-
formaldéhyde) a cceur prépolymere époxy ; i) Caractérisation des réseaux époxy-amine-LI et
formulation optimale, c’est-a-dire, optimisation de la fraction de LI; iii) Préparation et

caractérisation des composites époxy-amine-LI chargés microcapsules EP@PUF.
* Synthése et caractérisation des microcapsules EP@PUF

La synthése de microcapsules de poly(urée-formaldéhyde) contenant de I'époxy
(EP@PUF) par polymérisation in-situ *! implique principalement trois étapes, comme le
montre la Figure 4.

Etape 1: Etape 2:
préparation du prépolymére UF préparation de I'émulsion O/W

— C,H,0H - - - - .
N:C,H,OH v
C,H,0H SDBS
> »
70°C/1h ) emulsify

H,NCONH, (U)+ CH,0 (F) Prépolymere UF DGEBA+BGE émulsion O/W
L J

y H,60-65°C/3h
Etape 3:
formation de microcapsules EP@PUF
par polymeérisation in-situ

microcapsules EP@PUF

Figure 4 Etapes de synthése de microcapsules EP@PUF par polymérisation in-situ
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»  Préparation et caractérisation des réseaux époxy-amine-LI

Afin d'étudier la réactivité du LI tributyl(éthyl)phosphonium diéthyl phosphate (LI 169)
dans la matrice époxy et la fraction massique optimale de LI 169, la cinétique de polymérisation
de ces systémes réactifs et les propriétés finales des réseaux époxy-amine-LI ont été étudiées.
La Figure 6 montre les thermogrammes DSC permettant une sélection des différents réseaux
époxy-amine-LI et le Tableau 2 résume les propriétés finales des réseaux époxy-amine intégrant

5, 10 et 20 phr de liquide ionique LI 169.

Plage de tempé de durci de I'époxy
60°C=—"""""= 160°C

M+ EP+30 phr PACM

—@— EP+10 phr LI 169

—A&— EP+30 phr PACM+10 phr LI 169
6 —w— EP+20 phr PACM+10 phr LI 169

Plage de température de durcissement de I'époxy+IL

175°c—————=

Flux Thermique (W/g)

T T T T T
50 100 150 200 250 300

Température (°C)

Figure 5 Thermogrammes DSC de systemes réactifs époxy-amine et/ou LI 169

(vitesse de chauffage :10 K-min!, atmosphére : N»)

Comme le montre la Figure 5, LI 169 n'a pas influence dramatique sur la réticulation du
prépolymere époxy avec le comonomere diamine. Celui-ci est capable d'amorcer la
polymérisation de I'excés de monomere époxy dans le réseau apres le durcissement de la matrice
(41, Par conséquent, le LI 169 pourrait étre appliqué en tant qu'amorceur de polymérisation d'un
agent cicatrisant de matériaux époxy cicatrisants cuits a haute température.

Les propriétés thermiques et mécaniques des réseaux époxy-amine-LI ont été caractérisées
pour déterminer la fraction massique optimale de LI 169. Les résultats dans le Tableau 2 ont
montré que le LI 169 joue le rdle de plastifiant dans le réseau époxy-amine et est dispersé sous
forme de nanophases. Sa présence aura une influence négative sur les propriétés thermiques

mais avec un effet positif sur les propriétés mécaniques. En prenant en compte ces effets,10 phr
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sera retenu comme fraction massique optimale de LI 169 au sein du systeme réactif prépolymere

époxy-amine.

Tableau 2 Propriété thermique et propriété mécanique des composites époxy-amine-LI

Matériaux Ty/°C @ T onset/°C ® Td max/°C ® E/GPa © Kic/MPa-m'?®©
EP + 30 PACM+5 LI 169 151 333 370 1.3+0.02 0.60+0.05
EP+30 PACM+10 LI 169 135 328 365 1.6+0.03 0.63+0.04
EP+30 PACM+20 LI 169 118 313 364 1.6+0.02 0.68+0.04

@ analyses DSC (vitesse de chauffage :10 K-min!, atmosphére : N»)

®) analyses ATG (vitesse de chauffage :20 K-min™!, atmosphére : Ny)

© 3 température ambiante

e Préparation et caractérisation de matériaux époxy-amine-LI autoréparant avec

microcapsules EP@PUF

Des microcapsules EP@PUF ont été ajoutées a différentes fractions massiques dans une
matrice époxy-amine-LI (10 phr de LI 169 selon 1'é¢tude précédente). Les propriétés thermiques
et mécaniques ont été étudiées et les résultats sont résumés dans le Tableau 3. La capacité
d'autoréparation des matériaux a été caractérisée par microscopie MEB en observant la rayure

effectuée sur le film avant et apres le processus de guérison comme le montre la Figure 6.

Tableau 3 Propriétés thermiques et mécaniques des matériaux époxy-amine-LI/microcapsules

EP@PUF

. Ta onset/oc Td max/oc (b)
Matériaux Ty/°C @ E/GPa©  K;o/MPa-m!2©
®) Tdamaxt  Tdmax

EP+30PACM+10LI+5EP@PUF 130 324 -- 374 1.6=0.01 0.66+0.02
EP+30PACM+10LI+10EP@PUF 124 308 264 373 1.5+0.05 0.71+0.03
EP+30PACM+10LI+15EP@PUF 123 287 257 375 1.5+0.02 0.77+0.02
EP+30PACM+10LI+20EP@PUF 113 282 258 377 1.4+0.02 0.81+0.05

@ analyses DSC (vitesse de chauffage :10 K-min-!, atmosphére : N»)
®) analyses ATG (vitesse de chauffage :20 K-min™!, atmosphére : Ny)

(© 3 température ambiante
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e Principaux résultats

Le prépolymeére époxy a été encapsulé dans une coque de poly(urée-formaldéhyde) (PUF)
sous forme de microcapsules EP@PUF, qui ont été ajoutées dans les systemes époxy pour
permettre une auto-guérison des réseaux. Le phosphate de diéthyle de
tributyl(éthyl)phosphonium comme liquide ionique (LI 169) a été considéré comme amorceur
pour le prépolymeére époxy confiné pour avoir une plage de température de polymérisation
différente de «celle de la copolymérisation du réseau a Dbase de 4,4'-
méthylénebis(cyclohexylamine) (PACM) et DGEBA. Ainsi, le LI 169 permet une réaction de
l'agent cicatrisant époxy libéré par la rupture des microcapsules EP@PUF. Aprés avoir
considéré les effets positifs et négatifs liés a la présence de LI 169 dans les réseaux époxy-
amine, une fraction optimale de Li 169 dans le systéme réactif époxy-amine a été déterminée a
10 phr.

Par la suite, différentes fractions massiques de microcapsules EP@PUF ont été ajoutées
dans un réseau époxy-amine-LI en tant qu'additif d’auto-cicatrisation et les propriétés
thermiques, d’auto-cicatrisation et les propriétés mécaniques de ces derniers ont ét¢ étudiées.
Les résultats des analyses thermiques DSC et TGA ont montré que 1'ajout de microcapsules
EP@PUF affecte faiblement T, et la température de dégradation des matériaux finaux en raison
des faibles interactions entre microcapsules et matrice et de la faible température de
décomposition des microcapsules EP@PUF par rapport a celle de la matrice polymeére. La
microscopie MEB a été utilisée pour caractériser la capacité d'auto-guérison des matériaux en
observant une rayure sur le matériau avant et apres la cicatrisation. Il a ét€ montré qu’un nombre
suffisant de microcapsules EP@PUF (> 10 % en poids) dans la matrice polymeére peut garantir
la libération de 1’agent de cicatrisation et la capacité d'auto-guérison des matériaux.

Ainsi, si l'ajout de microcapsules EP@PUF dans une matrice époxy peut abaisser le
module de Young mais améliorer la résistance a la rupture de matériaux composites époxy-
amine-LI/ microcapsules EP@PUF, celui-ci peut offrir une solution d’autoréparation aux

matrices époxy 6],
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Chapitre 4 : Encapsulation de monomére époxy liquide ionique et application

a I’ auto-cicatrisation de réseaux époxy-amine

e Introduction

Dans le domaine des polymeéres thermodurcissables, les monomeres liquides ioniques
(MLI) représentent une réelle opportunité pour la conception de nouveaux matériaux polymeres
intelligents et (multi)fonctionnels avec des propriétés améliorées telles que la stabilité
thermique, les performances mécaniques, les propriétés barrieres aux gaz ou a l'eau, le caractere
antibactérien, et les propriétés d'auto-guérison [l Un monomeére époxy liquide ionique
(MELI), tel que celui synthétisé dans cette étude, peut étre polymérisé pour construire des
matériaux a hautes performances ! et peut étre appliqué comme agent de comblement en
I’intégrant dans un systeme de cicatrisation fait de microcapsules uniques. Il existe toutefois
peu de travaux sur l'encapsulation de tel type de LI réactif dans des microcapsules. Par
conséquent, ce chapitre se concentre sur: i) Synthése d'un nouveau monomeére époxy liquide
1onique avec deux groupes ¢époxy et leur encapsulation dans une coque PMF pour obtenir des
microcapsules (MELI@PMF); ii) Application a I’auto-cicatrisation de différents matériaux

époxy-amine.

» Synthése et caractérisation de monomére époxy liquide ionique (MELI) cceur des

microcapsules (MELI@PMF)

Le schéma de la synthése du monomere liquide ionique imidazolium (MELI) difonctionnel
est donné dans le Schéma 1 ™ et la synthése des microcapsules de poly(mélamine-
formaldéhyde) (MELI@PMF) par polymérisation in-sifu est décrite a la Figure 7. Différents
parametres de syntheése ont été étudiés pour sélectionner la morphologie optimale des
microcapsules MELI@PMF. 1l a été montré qu'un rapport noyau-enveloppe a 1.31 et une
agitation sous 300 tr/min permettent d’obtenir des microcapsules MELI@PMF avec la
morphologie souhaitée. Des micrographies de microscopie MEB et la distribution de leurs

diameétres sont données (Figure 8).
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Schéma 1 Synthése du monomere liquides ioniques difonctionnels (MELI)
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M polymeérisation in-situ
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monomeére époxy liquide ionique (MELI)

Figure 7 Préparation de microcapsules contenant le monomere époxy liquide ionique (MELI)

contenant des microcapsules

SEM HV: 10.0 kV WD: 10.45 mm | VEGA3 TESCAN SEM HV: 10.0 kV WD: 10.17 mm VEGA3 TESCAN
Det: SE SEM MAG: 1.41kx 50 ym Det: SE SEM MAG: 7.42kx 10 pm
81 10.00 HiVac INSA - Département SGM B1; 10.00 Hivac INSA - Département SGM
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Figure 8 Micrographies MEB (a-c) et distribution de diamétres (d) des microcapsules
MELI@PMF
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» Préparation et caractérisation des matériaux époxy avec microcapsules MELI@PMF

Des microcapsules MELI (@PMF ont été ajoutées dans différentes matrices époxy résultant
de la polymérisation d’un prépolymere époxy avec différentes amines nécessitant différentes
températures de cuisson, a savoir la 4,4'-méthylénebis(cyclohexylamine) (PACM), la
tri¢thyleénetétramine (TETA) et I'Epikure 3223 (diéthyleénetriamine, DETA). Le micrographies
MEB des matrices obtenues sont données Figure 9. Le monomeére MELI comme agent de
cicatrisation peut étre polymérisé avant qu’il ne proceéde a la cicatrisation (comme montré
Figure 9 (d)) en raison de la température nécessaire pour la cuisson du réseau et de la
température atteinte avec 1’exothermie de la réaction >, Par conséquent, pour atteindre un
objectif d'auto-guérison, la température en volume de la matrice époxy pendant le processus de
cuisson doit rester inférieure a la température de polymérisation du MELI. Par conséquent, les
comonomeres TETA et Epikure 3223 peuvent étre considérés les plus appropriés pour le design

de systéme époxy auto-réparables avec des microcapsules synthétisées dans ce travail.

i A -~ 1
SEM HV: 10.0 kV | SEM HV: 10.0 kV. WD: 9.64 mm I VEGA3 TESCAN| SEM HV: 10.0 kV WD: 10.27 mm VEGA3 TESCAN|
Det SE 00 pm Det: SE SEM MAG: 600 x Det: SE SEM MAG: 340x 200 pm
BI: 10.00 INSA - D B81:10.00 Hivac INSA - Département SGM BI: 10.00 HiVac INSA - Département SGM

SEM HV: 10.0 kV Vi SEM HV: 10.0 kV. WD: .51 mm | VEGA3 TESCAN| SEM HV: 10.0 kY WD: 10.43 mm I VEGA3 TESCAN|

Det SE o Det: SE SEM MAG: 10.5kx 5 ym Det: SE SEMMAG: 8.45kx 10 pm
BI: 10.00 iV GM BI: 10.00 HiVac INSA - Département SGM BI: 10.00 HiVac INSA - Département SGM

Figure 9 Micrographies MEB de matériaux époxy avec microcapsules MELI@PMF a base de
matrices époxy de différentes nature (a) (b) époxy-PACM; (¢) (d) époxy-TETA; (e) (f) époxy-
Epikure 3223;
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Les propriétés thermiques et mécaniques ainsi que la capacité d'auto-guérison des
matériaux époxy-TETA et époxy-Epikure 3223 avec des microcapsules MELI@PMF ont été

caractérisées et les résultats sont donnés Tableau 4.

Tableau 4 Propriétés thermiques, mécaniques et d’auto-guérison de matériaux époxy-

TETA et époxy-Epikure 3223 incluant des microcapsules MELI@PMF

Matériaux Auto-guérison
Caractéristiques
avant apres
Te/°C 150
Tq onset/ °C 330
époxy-TETA- Td ma/°C 368
MELI@PMF E/GPa 1.5+0.04
SEM:C‘:; ;:n - SE::“';A'G“’;.“I':R! 20 : e | SEMBH:; ;2“ - SEvl:inl:II;‘;"!":;ﬂﬁx 20 pm u;s“‘ Ly KIC/MP a ' m 1/2 O ' 72 i 0 : O 6
Te/°C 135
5 Td onset/°C 330
€poxy-
Epikure3223- Tamax/°C 364
+
MELI@PMF E/GPa 1.410.02

Kic/MPa-m'?  0.73£0.06

SEM HV: 10.0 kV WD: 11,06 mm
Det: SE SEM MAG: 1.99 kx 20 m
8 HiVac

SEM HV; 10.0 kV WD: 1191 mm
Det: SE SEM MAG: 2.68 kx 20 m
81 8.00 Hivac

. Principaux résultats

Un monomere époxyde difonctionnel de type liquide ionique, noté MELI, a été synthétisé
avec succes. Différentes méthodes de caractérisation ont montré que ces MELI ont une bonne
stabilité¢ thermique et peuvent homopolymériser a une température donnée. Ce nouveau
monomere €poxy de type liquide ionique a alors été encapsulé dans une coque de poly-
mélamine-formaldéhyde (PMF) par une méthode de polymérisation in-situ.

Les performances des microcapsules MELI@PMF dans différents réseaux époxy-amine
nécessitant différentes plages de température de cuisson compte-tenu de la nature des

comonomeres amines utilisées ont été ¢tudiées. Les amines PACM (80 °C - 160 °C), TETA
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(60 °C - 125 °C), Epikure 3223 (DETA, 20 °C - 120 °C) ont ainsi été choisies comme
durcisseurs. Parmi les trois systémes époxy-amine, les microcapsules MELI@PMF ont montré
une meilleure capacité d'auto-guérison dans le systéme époxy-Epikure 3223 a I’opposé du
systeme époxy-PACM. Cet effet peut étre aisément reli¢ a la température ‘vue’ par le liquide
ionique fonctionnel lors de la réaction exothermique des époxydes et des amines qui conduit
alors a la polymérisation. Dans ce dernier cas, le MELI n’est alors plus disponible pour parvenir
a une auto-cicatrisation. Par conséquent, une réticulation a température ambiante et/ou une
limitation de 1’exothermie semblent €tre les plus adaptées pour éviter ces problémes et

empécher d'initier la polymérisation de MELI dans les microcapsules MELI@PMF.
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Chapitre 5 : Conclusion et perspectives

¢ Conclusion

En résumé, ce travail a proposé différentes stratégies pour synthétiser différents types de

microcapsules comme additif fonctionnel dans les réseaux époxy-amine. Les principales

conclusions sont les suivantes :

La synthése de microcapsules de silice chargées d’un liquide ionique type
phosphonium (microcapsules LI@Si02) a été réussie. Les microcapsules ont été
ajoutées dans des réseaux époxy-amine de rapports stoechiométriques différents et il a
été montré que celles-ci pourraient jouer le role de renforcement ;

La capacité d’auto-guérison des matrices époxy-amine a été prouvée en introduisant
des microcapsules chargées en monomere époxy (EP@PUF) dans la matrice ternaire
des époxy-amine-LI. La fraction massique de microcapsule EP@PUF est
proportionnelle a I’effet d’auto-guérison, mais une fraction trop €élevée pourra affecter
les performances thermiques et/ou mécaniques des matériaux époxy finaux ;
L’encapsulation d’un nouveau monomere ¢€poxy liquide ionique dans des
microcapsules PMF (MELI@PMF) est également décrite. Différents paramétres de
synthese ont €té discutés et la morphologie des microcapsules préparées sous différents
parametres a également été étudiée. Les performances de ces microcapsules
MELI@PMF comme additif d’auto-cicatrisation dans différents composites époxy-
amine ont été étudiées. Il est montré que la température de cuisson de la matrice époxy
doit étre inférieure a la température de polymérisation du MELI afin que celui-ci puisse

jouer son rdle d’agent cicatrisant.

» Perspective

Ce travail propose un concept li¢ a I’introduction de différentes microcapsules dans

différents types de matrices époxy pour apporter une fonctionnalité, celle de

I’autoréparation. Pour mener plus loin ces premiers travaux, plusieurs autres études

pourraient étre envisagées :

L’¢lectrofilage ou ¢lectrofilage coaxial serait un procéd¢ adapté pour confiner des
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liquides ioniques dans le cceur des fibres a I’image de canaux microvasculaires pour
designer des membranes fonctionnelles ;

e La conception d’une bibliothéque de liquides ioniques époxy avec des anions ou des
cations de différentes natures pour les introduire dans les microcapsules ou au coeur

des fibres.
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Chapter 1 Literature Review

Chapter 1:

Literature Review

This literature review will start from a general introduction on the self-healing
following by the structure property relationships between ionic liquid and epoxy networks.
Finally, the microencapsulation and their applications including self-healing for polymer matrix
composites will be discussed. It is a general overview of related research background and a
specific introduction will be included in each chapter. The first part will introduce two main
categories of self-healing mechanisms that were widely used in material science, i.e. giving
basic concepts of self-healing. Examples considering different healing mechanisms, including
the epoxy composites, will be also reviewed to have a better understanding. The second part

will briefly introduce epoxy resins, ionic liquids and especially their combination, including

multifunctional roles of ionic liquids in \
epoxy networks. The third part will review \%jcroc{lcapsu]ation
v &

the methodology of microencapsulation,

self-healing

including basic concepts, classifications

and applications. Therefore, this literature

A
review will give a macro concept from ¢
purpose, material to method of this PhD ¢ ¢ *{?. L
work, which can help to have an overview »p,} ) \ 08 , :
© L epoxy ionic liquid

of the background and theoretical support.
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1.1 Self-healing materials
1.1.1 Introduction

Nowadays, polymer matrix composites (PMC) have been widely used in industry, such as
automotive, aerospace, wind turbine, etc. These materials have many advantages compared to
traditional metal materials, according to their light weight, good electrical properties, thermal

[1-4] However, under continuous

stability, good mechanical properties, dimensional stability, etc
impact or cyclic mechanical force or thermal loads, microcracks or other defects are prone to
be generated in brittle polymer matrices such as epoxy and polyesters as shown in Figure 1-1
51, Therefore, inspired by self-healing ability of living creatures in the nature, researchers are
making efforts to design self-healable polymer materials, aiming at healing the microcracks
before the cracks propagation to extend the lifetime of PMC materials. Self-healing materials
have overcome the drawbacks of brittle polymers and due to their flexibility, intelligence, and

long lifetime, it is an ideal and innovating choice for different fields, such as aerospace, coatings

for anticorrosion, conductive devices or some biological applications.

Fiber ruptur 5
@ Delamination Lt Deep cur @ Crazing
and pullout in coating
Impact/indentation Transverse and Scratch ® Microcracking

Surface cracking Shear cracking Corrosion in

@ Fiber debonding @ Puncture &r:::lcted ® Ablation @ Open crack

Figure 1-1 Damage modes in polymer composites ')

According to the need of external stimulus and/or extra healing agent, self-healing
materials can be divided into two main categories: intrinsic self-healing materials and extrinsic
self-healing materials [®!. In the intrinsic self-healing mechanism, the healing behavior occurs
from the materials themselves via chemical, physical, or supramolecular interactions [’ 8. By
contrast, extrinsic healing behavior takes place by using additional healing additives or healing

agents. Microcapsule and microvascular solutions are the most widely used strategies to achieve
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extrinsic self-healing purpose. In the following part, specific examples will be given for a better

explanation of intrinsic and extrinsic self-healing mechanisms in different types of materials.
1.1.2 Intrinsic self-healing
1.1.2.1 Self-healing from reversible covalent interactions

Cracks lead to structural breakages of molecular chains or structural changes of molecules.
Intrinsic self-healing mechanisms, are usually based on reversible reactions/bonds, physical or
supramolecular interactions between the molecular chains of polymer materials.

Intrinsic self-healing achieved from dynamic reactions/bonds allows breaking and
rebuilding chemical bonds in a chemical reaction repeatedly under certain conditions. For
example, Diels-Alder (DA) reactions which happen between a conjugated diene and a
substituted alkene to form a substituted cyclohexene derivative, was first proposed by Otto
Diels and Kurt Alder in 1928 P!, Scheme 1-1 presents the most common DA reaction between
a diene and a dienophile. It should be noticed that DA reaction is thermally reversible, the DA
adduct is so thermally instable under high temperature that the substituted cyclohexene
derivative will decompose to regenerate the original diene and dienophile ['%!. Such reaction

could be a good choice to achieve intrinsic self-healing involving breakages of molecular chains

( ( thermally reversible

diene dienophile DA adduct

by using DA adducts.

Scheme 1-1 Diels-Alder (DA) reaction

In the real practice, Bai et al " have designed a crosslinked system from the
copolymerization of new diamine crosslinker having two Diels—Alder (DA) adducts and
conventional diglycidyl ether of bisphenol A (DGEBA) epoxy prepolymer. (Figure 1-2 (a)).
This new crosslinked epoxy network with local DA adducts on the diamine can be thermally
cleaved and reformed, thereby allowing the crosslinked polymer to fill or heal cracks and
scratches. The thermally induced self-healing mechanism is described in Figure 1-2 (b). The
authors have pointed out that the cleavable/healable moiety is within the amine crosslinker,
rather than the epoxy monomer.
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(a) 0 (b)

o Fac!

0
i 5 NH, Heat ﬁ/
Diamine cross-linker with two DA adducts —
P R—
T T w G 3e,
o V/\(\ o X N0 Ly\ N

"/ (o) 0
| m
OH
m=011
DGEBA (DER 331)

Crosslinked epoxy Oligomer
Y

N If-heal I imi
lew self-healing epoxy polymer # Furan group oy Maleimide group

Figure 1-2 (a) Chemical structure of DGEBA and diamine with DA adducts; (b) thermal

induced self-healing mechanism [

To design self-healable epoxy network which is not limited by hardener, it is required to
introduce such reversible groups on the epoxy chains. For example, Amendola et al !?! have
synthesized epoxy monomer with bifunctional Diels-Alder adduct as shown in Scheme 1-2.
This DA adduct containing epoxy monomer possesses an intrinsic self-healing ability when it

is cured with ordinary hardener.

? ~
reflux overnlhgt

Scheme 1-2 Synthetic of epoxy monomer with bifunctional Diels-Alder adduct !

Reversible covalent bonds were also employed to design self-healable polymer materials.
For example, Deng et al ['*! reported a novel type of self-healing “dynamic” covalent system
by using acylhydrazones reversible bonds. The authors succeeded in condensation of
acylhydrazones at the end of a poly(ethylene oxide) (PEO) (A2) with aldehyde groups in tris[(4-
formylphenoxy)methyl]ethane (B3), which can form a crosslinked network. The obtained
polymer gel was able to undergo cleavage under mild acidic conditions and reshape the polymer

gel back to its original state by increasing the pH value, as shown in Figure 1-3.
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appmnt pH=>4 /
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0
k=Y - TR .
Figure 1-3 Construction of covalent cross-linked polymer gel based on reversible covalent

acylhydrazone bond [*]

A reversible reaction between a sterically hindered amine with an isocyanate-
functionalized polymer was also considered to prepare intrinsically self-healing polymers.
Zechel et al ' synthesized crosslinked methacrylates with dynamic urea bonds as reversible
crosslinking moieties with a sterically hindered amine, as shown in Scheme 1-3. Because of the
reversibility of the formed urea bonds in sterically hindered urea, the obtained polymer can be

converted into the starting compounds (isocyanate and amine) by a simple thermal treatment.

B e vmg o

o
Scheme 1-3 the reversible reaction of the sterically hindered amine with an isocyanate-
functionalized polymer 14!

1.1.2.2 Self-healing from reversible non-covalent interactions

Unlike chemical reactions for self-healing mentioned above, non-covalent interactions for
achieving self-healing are mainly related to the mobility of polymer chains and reversible non-
covalent interactions in the bulk materials, including chain interdiffusion and supramolecular

interactions.

Chain interdiffusion

A certain class of ionomers '/ and epoxy-amine networks 1'% are reported to have the

ability to self-heal instantaneously without external intervention after the damage, depending
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on mainly chain interdiffusion. This self-healing phenomenon can be explained by the physical
model put forward by Wool and O’Connor in 1981 '), This simple and universal mechanism
based on chain interdiffusion as shown in Figure 1-4, involves the following aspects: (1) surface
rearrangement; (2) surface approach; (3) wetting; (4) diffusion; and (5) randomization ('8,
However, this process is strongly related to molecular interdiffusion that takes place at (or above)
the glass transition temperature (Tg) at which polymer segments are mobile enough for efficient

self-repairing 1),

(e) randomization

’ damage event

( -

-

(a) surface rearrangement and
(b) surface approach

J (c) wetting

Figure 1-4 Stages of self-healing mechanism for polymeric segments of random walk

character '7- 18]

Supramolecular interactions

Supramolecular chemistry includes aspects of physics and biology and deals with
interactions between molecules, which concern non-covalent interactions between molecules
such as hydrogen bonding, metal coordination, hydrophobic forces, Van Der Waals forces, n—n

(201 These non-covalent interactions are involved for healing

interactions or electrostatic effects
damages within networks through reversibility and dynamics of networks. Self-healing
mechanisms for a supramolecular material are described in Figure 1-5 [*!, When the material
is damaged, the weak supramolecular bonds or clusters are broken preferentially. Even though
the supramolecular bonding stay unassociated on the fractured surface for a while, the

supramolecular bonds or clusters are reformed again when the broken parts are brought into

contact to heal the crack.
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dynamics of
association F.

dynamics of
clusters ™,

Figure 1-5 Self-healing mechanism for a supramolecular material [>!/

For example, a hydrogen-bonding brush polymer with high Young’s modulus and
extensibility that self-assembles into a hard/soft two-phase system with the self-healing ability
was reported by Chen [?2. As shown in Figure 1-6, they designed a polymer with a polystyrene
backbone as the hard phase with high T, and polyacrylate amide (PA-amide) brushes as the soft
phase with low T, and the polyvalent hydrogen-bonding sites ensure the self-assemble capacity
to form a hydrogel with two-phase nanostructure. It can spontaneously self-heal as a single-

component solid material without any external stimuli, healing agents, plasticizer or solvent.

a Two-phase nanostructure

/\A\ 5@ e Q°

Collapse into Supramolecular
core—shell assembly
nanostructure

Brush polymer with polystyrene //"
backbone and PA-amide //'/
brushes =

—_ Hard polystyrene
domain

—romeRy g
-
Damage

Figure 1-6 Proposal of design for the multiphase self-healing brush polymer system 2]

Dynamic soft brushes

Non-covalent interactions such as n-m stacking are also used to design self-healable
supramolecular polymer system. For example, Burattini et al **! designed a complexation of
chain-folding polyimide with the pyrenyl end-capped polyamide via -electronically-
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complementary n-w interaction (Figure 1-7). The finally polymer showed enhanced mechanical

properties and a thermally reversible self-healing ability.

(a) (b)
Bu O, o) O, (o] O, o)
[¢) O 0o ° 60 O ¢} o O 0 Bu
m n
1
‘O H\{\"/Q\n/r!l\h/\ hNH]\H/@WH
o o ° 6 n O o) ) ’O
2

Figure 1-7 (a) Chemical structures of polyimides 1 and polyamides 2 in Burattini’s work and

(b) intercalation of pyrenyl end-groups (red) into designed polyimide chain-folds (blue)

In summary, intrinsic self-healing mechanisms involving either reversible reactions,
dynamic bonds, physical rearrangements of polymer chains or supramolecular interactions are
based on the intrinsic properties of materials. Because of the reversible feature of such
interactions, multi healing times may be achieved for different materials [®). However,
limitations of intrinsic self-healing mechanisms were also noticed for different situations. The
material itself has to be designed with self-healable unit at molecular level and in some cases,
self-healing processes need specific stimulus or condition, such as temperature, pH or UV
irradiation, which may limit a wide range of applications. Differently, extrinsic self-healing
mechanism relies on external healing agent, which can be used in various types of materials

that don’t possess the above reversible interactions.
1.1.3 Extrinsic self-healing

As mentioned before, some polymer materials without any molecular modification do not
display the ability to healing itself because the intrinsic mechanism always requires specific
structure or reactive groups in the molecule chains. In order to achieve self-healing property,
external healing agents need to be introduced in materials. Such agents are usually introduced
as microcapsules or macrovascular system and contribute to heal the crack when needed. In
some cases, researchers combined various methods to achieve a better self-healing efficiency.
In the following sections, some examples will be given for both microcapsule and

macrovascular-based systems.
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1.1.3.1 Microvascular systems for self-healing

Like blood vessels in the human body, similar structures of micro-channels containing
healing agent are embedded in the polymer matrix. Such a route is known as microvascular
self-healing. Healing agent for polymer network is sequestered in capillaries or hollow channels,
which may be interconnected when the material is damaged 1. In this concept, removeable or
non-removable hollow tubes, wires or mandrels have been embedded in to polymer matrix to
form microvascular networks 1>, Figure 1-8 shows the basic concept of microvascular in
polymer composites given by Kathleen et al **). When microcracks are generated in PMC
matrix, microvascular channels are broken and release the healing agent. Usually, there are two
components to heal the cracks as the healing agent reacts in the presence of catalyst already
dispersed in the PMC matrix. Hollow fibers are the most common choice of microvascular in
PMC materials, i.e. hollow glass fiber ?*28 or core-shell fibers processed by coaxial

electrospinning 21,

Figure 1-8 Concept of microvascular self-healing system in PMC [2°]

R.S. Trask and I.P. Bond % reported the self-healing composites by using glass hollow
fiber, which can act both as storage of functional agents for composite self-repair and
reinforcement. The typical hollow fibers-based self-healing concerns three approaches: (1) one-
part resin system, (2) two-part resin and hardener system, or (3) a resin system with a catalyst

or hardener contained within the matrix *!1, as shown in Figure 1-9.
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One-part resin

Polymer matrix

Hollow fibre

Resin system

Hardener system

Hollow fibre

Resin system

Micro-encapsulated
hardener

Hollow fibre

Figure 1-9 Schematic illustration of different hollow fiber self-healing systems !

For example, Kim et a/ *? have developed a membrane with a methylene diphenyl
diisocyanate contained fluorinated ethylene propylene capillary tubes. The healing agent is
released from the tubes when damage occurred in the membrane. The released healing agent

undergoes a water-induced reaction to form an expanded polyurethane/polyurea matrix to heal

the crack. The self-healing mechanism was shown in Figure 1-10.

Pristine Damage Healed
Membrane Damage site Healed site

} (%3(’ ’ = D
i) Viscosity changeable healing agent
MDI prepolymer Healing agent Healing agent Precipitation
(High viscosity) (Low viscosity) with water (High viscosity)
Water Water
/acetonitrile
Mo v (P BB
g -,\_ & / '\:‘ , ot -i'(v;: fis 9

MDI prepolymer Acetonitrile MDI prepolymer

FEP capillary tube

ii) Polyurethane/polyurea formation
Healing agent 0
Step 1. R—N=C=0 + H0 — R—N—C—!

N—
Microvascular o
healing structure

OH —= RL—NH, + CO; (gas)

o
|

Step 2. —CI—N—R

RE—N=C=0 + RL—NH, — R:— B

N
| |
H H

Figure 1-10 Structure of a microvascular network-embedded self-healing membrane and

schematic illustration of the healing mechanism 3!
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Neisiany et al 1**) have prepared microfibers with polyacrylonitrile (PAN) shell and dual
components (epoxy or amine) core which are fabricated by coaxial electrospinning technique
to construct a two-parts resin healing system. Core-shell nanofibers with smooth and continuous
surface without beads were achieved. When these two types of fibers are broken by external
damage, the epoxy prepolymer and curing agent are released and react at room temperature.
Figure 1-11 shows the SEM image of broken nanofibers releasing epoxy and amine healing
agents cured to get a solid-state material. These dual components fiber fabricated by coaxial
electrospinning technique is a promising component in polymers and carbon fiber composites

to achieve self-healing.

Figure 1-11 Solidified resin (circled) providing from releasing curing agents from ruptured

PAN fibers 133!
1.1.3.2 Microcapsules for self-healing

Microencapsulation is a method for packaging different components as microparticles
having an organic or inorganic shell. The isolated microcapsules can release core compounds

e 3435 or pH %38, Compared with microvascular

under certain conditions, such as temperatur
network, the separated microcapsules are easy to process and to incorporate in the polymer
materials. In PMC materials, different core compounds used as healing agents could be
encapsulated in a shell material and the obtained microcapsules could be embedded in polymer
matrix. Single microcapsules healing system or dual microcapsule healing system, could be
considered (Figure 1-12). Both of them relate to the same principle: the wall of the

microcapsules provides protection and a controllable release of core compound which will heal

the damages when cracks are generated in the material.
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single microcapsule healing system dual microcapsule healing system

catalyst oo © ‘ healing agent 2
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healn agent 0 e 0
i g Q = O . ‘ a
) 0 ’ C
°
o O @

Figure 1-12 Basic healing concept using microcapsules in PMC

left: single microcapsules healing system; right: dual microcapsule healing system

For the single microcapsules system, only the main healing agent was encapsulated,
whereas the catalyst or the latent hardener/initiator, such as Grubbs’ catalyst **! was embedded
in the polymer matrix. When the healing agent released from the microcapsules rupture, it could
react with pre-embedded catalyst or latent hardener/initiator. For the dual microcapsule system,
self-healing also occurs from the released healing agent in the presence of catalyst/initiator in
the bulk of the material, but in the dual microcapsule system, both healing agent and the
corresponding hardener or initiator were encapsulated into two different types of microcapsules.
Compared with single microcapsule system, additional synthesis of microcapsules is required
and the healing efficiency is relied on the content of the two microcapsules. While the higher
stability of hardener in the microcapsules for dual microcapsule system compared to latent ones
provides more choices and variety. In the following part, specific examples and research status
of the literature on microcapsules for self-healing PMC will be introduced in detail.

For the single microcapsule system, the most common reaction is the Grubbs’ catalyzed
ring-opening polymerization of released dicyclopentadiene (DCPD), which is illustrated in
Scheme 1-4. The role of the crystal morphology and dissolution kinetics of Grubbs’ catalyst is
very important for self-healing capability and healing efficiency in the PMC materials. In fact,
Jones et al % has investigated the influence of two crystal polymorph of Grubbs’ catalyst on

the healing effect in epoxy composites. They have found that the crystal polymorph influences
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the catalyst’s thermal stability and the smallest crystals undergo the fastest dissolution kinetics,
leading to a high concentration of catalyst in the healing agent before any significant reaction
has started. Nevertheless, small size catalyst particles showed a reduced reactivity when
exposed to amines for certain periods of time. As a consequence, it may limit their self-healing

performances for epoxy-amine matrix-based composites.

PCy
Cly, ", | 3 \\\\\Ph
/ Ru— -
c | PCy \C'
PCy

DCPD
Grubbs' Catalyst fmonomer

Ring Opening PCy
— Ph < > | &\\\CI
| "Na

PCy,

Crosslinked polymer network
~ Crosslinking Site

Scheme 1-4 Ring opening polymerization of DCPD catalyzed by a Grubbs’ catalyst [4!]

Another choice of core compound for single microcapsule system is linseed oil which can
be considered as a healing agent due to its ability to form films from atmospheric oxidation.
For instance, Suryanarayana et al ** have prepared linseed oil filled microcapsules for healing
the cracks in coatings. Microcapsules were synthesized by in-situ polymerization in oil/water
(O/W) emulsion, with a poly(urea—formaldehyde) copolymer as shell material. It is proved that
obtained microcapsules have rough morphology and good thermal stability. Self-healing
performances of colored linseed oil-filled microcapsules were observed by optical microscopy
(OM) from the healing of a crack in a coating. Figure 1-13 shows the OM images of optical
microscopy of colored films formed by released linseed oil. It is shown that the initial open
length of the crack is gradually reduced and is filled after 90 s. The authors demonstrated that
linseed oil as healing component undergoes an oxidation from the atmospheric oxygen to form

continuous material filling the cracks.
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Figure 1-13 Microscope photos of self-healing coating films [*!

For dual microcapsule system, healing agents and hardener/initiator were encapsulated
into two different types of microcapsules which are embedded together in the matrix. The
conditions for self-healing require the break of both microcapsules and the release of core
compounds at the same time. For example, Jin et al ™ have prepared two types of
microcapsules containing modified aliphatic polyamine and a diluted epoxy monomer
respectively. When these two types of microcapsules were broken during cracks generation and
growth, the healing agents will react to fill the cracks under room temperature condition for 48
h. The authors found that the best amine-to-epoxy microcapsules mass ratio is 4:6. When 7 wt%
amine-containing and 10.5 wt% epoxy-containing microcapsules were in epoxy network, a
promising healing efficiency of 91% was achieved. Figure 1-14 shows the surface morphology
of cross section of a microcapsule-filled epoxy before and after the healing process. It is obvious
that the crack tails on the cross surface are disappeared after the cracks are healing be epoxy

and amine reaction product.

—
« 500 pum
J.

. —
500 ym

Crack propagation direction

Figure 1-14 Self-healing evidence from SEM images of fracture surfaces of an epoxy
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network containing 4 wt% amine-containing and 6 wt% epoxy-containing microcapsules: (a)

fracture surface after healing; (b) non-healed fracture surface rinsed with ethanol 3]

Indeed, microcapsule in self-healing application is not only limited to single separated
microcapsules prepared from conventional synthetic methods. Park et al *¥ reported a novel
self-healing coating produced by coaxial electrospinning with capsules as healing agent
container. Differing from the traditional uniform fiber morphology, they have obtained a bead-
on-string fiber morphology, as shown in Figure 1-15 (a). It can be seen that a large number of
special microcapsules containing healing agent were strung among the fibers. When the coating
was exposed to mechanical damage, these microcapsules were broken releasing the healing
agent as shown in Figure 1-15 (b). One major advantage of this process is that this unique bead-
on-string structure was obtained only by physical forces instead of using chemical reaction in

emulsion. Such a route avoids complex process or other unfavorable effects.

Figure 1-15 (a) SEM micrograph of core—shell bead-on-string morphology prepared by

coaxial electrospinning; (b) Release of healing agent in coating after mechanical damage %!

In this section, literature focus about self-healing routes, different healing mechanisms and
corresponding applications were introduced. It can be summarized that intrinsic healing
mechanism proceeds from different types of interactions between molecules or components
requiring specific chemical structures of the materials themselves. Such a route gives the higher
healing efficiency as no extra healing additives are required and become healing processes
could be repeat several times. On the other hand, the extrinsic healing route which involves
external healing agent whether as microcapsules or as microvascular network, provides a
greater universality in the choices of repair components. Nevertheless, for conventional
polymer, i.e. already defined in chemical nature, the self-healing mechanism cannot consider
the intrinsic healing mechanism.
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1.1.4 Conclusion

To conclude, inspired by the extensive self-healing behavior in living creatures,
development of self-healable materials such as self-healable polymers have been considered as
one of the most important requirements for durability, i.e. for the development of sustainable
materials. There are two main routes of self-healing mechanisms: intrinsic self-healing
mechanism vs. extrinsic self-healing mechanism. Intrinsic self-healing route relates to the
reversible interactions while extrinsic self-healing route needs additional self-healing agents
accompanied with different embedding technology of healing agents. While compared the way
of introducing healing agents, intrinsic self-healing mechanism provide a reliable healing effect
and avoid problems such as inadequate stability of extra healing agent and complex preparation
process 3. While extrinsic self-healing mechanism can be widely applied in different materials
without limitations by the chemical structure of the material itself and higher mobility and
compatibility of extrinsic self-healing mechanism allow it to be used in a wider range of

materials.

1.2 lonic liquids and epoxy networks
1.2.1 Ionic liquids

1.2.1.1 Introduction

Ionic liquids (IL), also known as room temperature ionic liquids (IL or RTIL), are organic
salts that are liquid at closed room temperature. The first RTIL, i.e. ethylammonium nitrate
[EtNH3][NOs], was discovered by Paul Walden in the year of 1914 4], Thirty years later, an
ionic liquid based on chloroaluminate was described in US patent as a new route for
solubilization of cellulose with ionic liquid ). Later, in 1967, C. Gardner et al have applied
tetrahexylammonium benzoate (THAB), which is a liquid salt at room temperature, as solvent
for numerous organic compounds. The intrinsic conductance and electrochemical inertness of

[ ¥ have firstly

ILs promote them as promising solvents for electrochemistry *!]. Edward et a
studied the electrochemistry of organometallics and an alkylaromatic in RTIL based on
tetraalkylammonium cation and chloroaluminate anion. Afterwards, Robinson et a/ % have

studied AICIz-n-butylpyridinium chloride system. The variability of anions and cations leads to
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numerous combinations and tunability of ionic liquid properties. Figure 1-16 shows some

commonly used cations and anions among RTIL 511,

/ \ g | O

4 5

Most commonly N " R
N @ : N

1 Ry R R
used cations: N | N \; / 1\; / !
v ™~ 7\ AN 7\
\2/ R R R R, R, R, R, R,
1-alkyl-3-methyl- N-alkyl N-alkyl- Tetraalkyl- Tetraalkyl-
imidazolium pyridinium N-methyl- ammonium phosphonium
piperidinium
N@ R
- K+ _R
£ R, \N / \ N\ s~ ’
/ N\ | N3 /
R
Rl R2 Rz \/ R3
N-alkyl- 1,2-dialkyl- N-alkyl- Trialkyl-
N-methyl- pyrazolium thiazolium sufonium

pyrrolinium

R|,34= CH3(CHy),, (n=1,3,5,7,9); aryl; etc

Some possible  water-immiscible »  water-miscible
anions: [PE ] (BF, ] [CHACO, ]
[NTE, [OT{] [CF3CO,]", [NO3]-
[BR;R,R;3R ] [N(CN),]" Br, CI', T’

[AL,Cl,]", [AICI,]" (decomp.)

Figure 1-16 Some commonly used cations and anions of RTILs [°!!
1.2.1.2 Applications of ionic liquids

Combinations of various anions and cations can tailor the properties of RTILs.
Nevertheless, some common characteristics °?! for RTILs could be listed including: negligible
vapor pressure, non-flammability, high ionic conductivity ¥, non-volatility and high thermal
stability °4, etc. As a consequence, RTILs are widely used in different research fields and the

main applications of RTILs are described in this section.

As clean solvents

One of the most attractive features of ILs is their negligible vapor pressure, i.e. no emission
of volatil organic compounds. As a consequence, ILs offer an excellent alternative of
conventional solvents for the green chemistry %], The great versatility (cation/anion) of ILs
opens new perspectives for numerous applications. Jeffery et al ** have firstly considered a the
mixture of 1-methyl-3-ethylimizazolium chloride and aluminum chloride as solvent which can
also act as catalyst of Friedel-Crafts reactions. The authors reported that Lewis acid species,
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such as Al,Cly, played the role of functional catalyst for Friedel-Crafts reactions. The reaction

mechanism can be described as follows:

RCO—Cl + ALCl;, —> RCO" + 2AICly
RCO* + Ar—H = H—Ar—CO—R

H—Ar—~COR + AICl;7 = Ar—CO—R + HCI + AICl,
AlCl;+ AlCl, —— ALCl,

RCO—Cl + Ar—H —— Ar— CO—R + HCI
Scheme 1-5 Mechanisms of Friedel-Crafts reactions

Most recently, researchers considered the use of RTIL for transition metal catalysis. Jairton

et al P

have reported for the first time the use of I-n-butyl-3-methylimidazolium
hexafluorophosphate ([BMI][PFs]) as a medium for stabilization of transition-metal in biphasic
hydrogenation systems, which leads to very good cyclic performance. The RTILs have replaced
conventional organic solvents according to their good solubility of hydrogen and many alkenes,

resulting in a multiphase reaction and recovery ability 58],

As electrolytes

Because of their high relative ion concentration, the fact that they do not have vapor
pressure and display low melting points, ILs are considered as relevant electrolytes in
electrochemical devices *). Solar radiation being one of the clean and renewable energies has
a great potential for construction of photovoltaic devices. However, despite of the sensitivity of
expensive dyes and the use of iodide/triiodide as redox couple that will limit the performance
of the dye-sensitized solar cells [ 11 volatile organic electrolytes make difficult design
packaging of dye-sensitized solar cells. Therefore, the non-volatile, chemically and thermally
stable RTILa could be considered as promising alternatives for electrolytes [**!. The challenges
of imidazolium ionic liquids for solar cells are related to their high viscosity that limit the mass-

transport, Dai et al [©

have investigated the performance of three different
ethylmethylimidazolium-based ILs with various types of anions (Figure 1-17):
tricyanomethanide (TCM), dicyanamide (DCA), and thiocyanate (SCN) for dye-sensitized
solar cells. The authors have found that the TCM IL displayed the lower viscosity, the lower
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hygroscopy and a sufficiently high conductivity, compared to DCA IL. The SCN IL is also a

very promising anion when a light intensity is less than 30% of sun light intensity.

CH,

|

N\ |
E?} W20,

|

~
CHZCHS N¢/C/ C%

Ethlmethyl-imidazolium (emIm)

Tricyanomethane
—
(TCM)
-«———  Dicyanomethanide
(DCA)
< Thiocanate
(SCN)

Figure 1-17 Ethylmethylimidazolium-based ILs [¢*!

Lithium metal batteries are burgeoning electrochemical devices that are widely used in
portable electronic devices, electric vehicles, grid energy storage systems, aerospace, etc (64661,
ILs, because of their high ion conductivity, non-volatile behavior and unique physicochemical
properties, have shown a great potential in lithium metal batteries and played tunable roles (7],
ILs can be applied as electrolyte solvents [®8], additives of composite electrolytes [*! or filler in
solid electrolytes (%! as well as wetting agents to interfaces between solid electrolytes and
electrodes ["!). Figure 1-18 schematically reports the properties of ionic liquids and applications

in lithium metal batteries on electrolytes, cathodes and lithium metal anode.

Electrolytes S 0 O
Oxidation .S SRR
and 0% ~g .- 0
decomposition o
) + ’ * ’ eo 3 oo .
AR 0/ 0 0 -
@ 20 s
Al QSRS o ) Low t,;-
& onkas’
'-,°°. B SEl layer
Li metal w Li metal
" 7
Li dendrite e Uneven SEI layer
-;\*‘ lonic liquids @ Lition o Anion

Figure 1-18 Properties of ionic liquids and applications in lithium metal-based batteries as

electrolytes, cathodes, and lithium metal anode 167
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Phosphonium-based room temperature ionic liquids contribute also to a broad and
promising range that possess non-concentional properties that can be applied in the field of
electrochemical applications [7? including high performance lithium metal batteries. For
example, Katsuhiko et a/ *! have built a lithium battery electrolyte based on triethyl(2-
methoxyethyl)phosphonium bis (trifluoromethylsulfonyl) imide (P222-201—TFSI, chemical
structure are shown in Figure 1-19), which exhibited high thermal stability with favorable

transport property compared to traditional ammonium electrolyte.

s P

+
P -
N F,C— S— N'—S—CF,
_/ O I I
O O
Pyrony” TFSI’

Figure 1-19 Chemical structure of IL P222201—TFSI

As self-lubricants for polymers

Besides being considered as green solvents and catalysts for chemical syntheses and
electrochemistry conduction, ionic liquid can also act as a self-lubricant for polymers according
to recently published papers, which can overcome some drawbacks of some traditional
lubricants. For example, ionic liquids can be applied at high temperature due to their high
thermal stability while some traditional mineral oil cannot be used at high temperature "4, Park
[73] showed that phosphonium-based ILs with different anions (decanoate, tetrafluoroborate)
can act as potential plasticizers and lubricants for polylactic acid (PLA). It was found that these
two ILs were well dispersed and partially miscible with PLA at 5 wt% content. While, tetradecyl
phosphonium tetrafluoroborate ((THTDP][BF4]) is a more relevant multifunctional additive
than trihexyl tetradecyl phosphonium decanoate ([THTDP][DE]) for PLA, because
[THTDP][BF4] offers a better balance between polymer degradation ability versus beneficial
contribution as lubricant.

ILs as versatile lubricants represents as a great importance in industry 7%, such as metal

contact [77-7°

I and polymer composites 3% 811 Sanes et al ¥ have reported IL 1-octyl-3-
methylimidazolium tetrafluoroborate ((OMIM]BF4) and ZnO nanoparticles could be added to

the epoxy system at the same time. According to their work, the residual depth of scratch can
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be reduced and the stiffness of epoxy resin can be increased due to the effect of [OMIM]BF4on
segmental chain mobility. As reported, ILs can reduce the wear coefficient by 50% and the wear
rate by two orders of magnitude compared to neat epoxy resin.

In addition to direct addition to a polymer medium, ILs could also be encapsulated in
microcapsules as “latent” lubricants when needed. Li ef al %3 have used a different strategy to
introduce ILs within the final epoxy network from the fabrication and use of IL filled
polysulfone microcapsules. The authors reported that when 20 wt% of IL containing
microcapsules were added in the epoxy material, the friction coefficient and specific ware rate
of composites were reduced by 66.7 % and 64.9 %, respectively. The effective boundary film
formed by released IL from broken microcapsules is the mechanism of self-lubricating (Figure

1-20).

IL lubricant is released from  IL adsorbed on the counterpart
microcapsule the broken microcapsules surface forms a boundary layer

[ v polymer Tamx during tribological test film
o 9O,
/ e

o ®— 20 |® —
composite ° ° )

Counterpart surface ounterpart surface

7
Wear debris are trapped in the
cavities of ruptured microcapsules

Figure 1-20 Boundary film formation process during sliding ware from IL-filled

microcapsules breakage 8]

Except the applications for green chemistry, electrochemical fields and lubricant
applications, ILs can also play various roles combined with thermoset polymer matrices,
including epoxy resins. These new combinations have led to additional opportunities for ILs to
design PMC materials. Foe these reasons, combination between epoxy networks and ILs will

be introduced in the following section.
1.2.2 Epoxy networks
1.2.2.1 Introduction

Epoxy resin is an organic polymer compound containing two or more epoxy groups, which

can lead to a thermosetting network according to the chemical reactivity of the epoxy groups to
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be opened by a variety of compounds containing active hydrogen leading to 3D-networks.
Because of their good mechanical properties 4], dimensional stability 33, dielectric properties
(8] and chemical stability 7], epoxy networks are considered for aerospace applications 38,
industrial areas °! and daily life applications ®?). According their chemical structure, epoxy
resin can be divided into several groups: (1) DGEBA: diglycidylether of bisphenol A, (2)
DGEBF: diglycidylether of bisphenol F, (3) DGEBiphenyl: diglycidylether of biphenyl, (4)

Phenol novolac type epoxy, (5) Phenoxy resin *!, and their chemical structures are illustrated

in Figure 1-21.

CH,
(1) CH,— CH— CH,— O— —é—< ~ )—O0—CH,—CH—CH
Xy 0 TN
0 CH;3 (0]
@ CH— CH— CH— O—@—CHZ— \y—Oo—cH—ci—ch,
o o
CH, CH,
N v
3) CH,— CH— CH,— 0—®—<\ )—O—CH,—CH—CH,
N/ / \ \O/
© CH;, CH;

CH,—CH—CH, [ CH,—CH—CH,| CH,—CH—CH,
| N/ | AN O/ I

0 o 0 0 0
I | |
“) 7 g “
1 CH, 1 CH,
n
CH, CH,
| |
(5) Rw O @—(ﬁ—@—o—cnz—w—cnz—o @—?—@—ONR
CH,4 l CH,4

OH
Figure 1-21 Chemical structures of the common epoxy resins: (1) DGEBA: diglycidylether of
bisphenol A, (2) DGEBEF: diglycidylether of bisphenol F, (3) DGEBiphenyl: diglycidylether

of biphenyl, (4) Phenol novolac type epoxy, (5) Phenoxy resin
1.2.2.2 Building epoxy networks

Epoxy combined with/without comonomers such as diamine or anhydride lead to polymer

network with reliable mechanical properties 4.

Step-growth polymerization

In step-growth polymerization, a bi-functional or multifunctional monomer will react to

form first dimers, trimers, oligomers including long chain polymer chains according to step-by-
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step succession reaction. Based on this protocol, amines, phenols, mercaptans, or acids could
be considered as curing agents. Let us consider amine as an example, reacting with epoxy
groups according to stoichiometric ratio, the reaction between epoxy prepolymer and amine
according to step-growth polymerization mechanism can be theoretically described in Scheme
1-6. When there are more epoxy groups or when the secondary amino groups are too inactive
to continue the opening of the epoxy rings, the side reaction also named etherification will take
place. Generally, using a curing agent with a high curing temperature leads to a cured epoxy
material with good heat resistance and thermal properties. For addition polymerization type,
curing temperature and heat resistance increase with the hardener nature in the following order:

aliphatic polyamine < alicyclic polyamine < aromatic polyamine = phenolic <acid anhydride.

k
R CH— /CH2 + R,NH, —» R1—|CH—CH2—N—R2
|
o OH H

k
|
O/ OH H OH n

ks
R CH—CH, + R;—CH—CH,—~N—R, —> R~ CH—CH,— O— CH—CH, —N—R,
\~/ | | | [ |
O OH H OH R, H

Scheme 1-6 Cure mechanism between epoxy and amine

Chain-growth polymerization

A step-growth reaction happened between two molecules with same or different degree of
polymerization and monomers will transfer into dimers, trimers and finally long chain polymers
which is based on their functional group. Differ from the step growth polymerization, in chain-
growth polymerization, the monomer is consumed steadily but the degree of polymerization
can increase very quickly after chain initiation. Chain-growth polymerization contains several
steps: chain initiation, chain propagation, chain termination and chain transfer, but the latter
two steps are not necessary in a chain-growth polymerization. There are different types of chain
growth polymerizations, such as radical polymerization, ionic polymerization, coordination
polymerization, etc. And for epoxy monomer, polymerization was usually initiated by anions
or cations.

Nucleophilic and electrophilic species can both react with epoxy group, which initiate
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chain polymerization of epoxy monomers. In fact, the curing agent based on this chain-growth
polymerization mechanism plays a catalytic role in the reaction. This kind of material mainly
triggers the epoxy ring open polymerization reaction among epoxy molecules to form the
crosslinked polymer, while the curing agent itself does not participate in the cross-linked
network. Lewis bases such as tertiary amines, imidazoles, ammonium salts are initiators of
anionic chain polymerization. For example, the epoxy polymerization induced by tertiary

amines can be roughly described in Scheme 1-7.

e @
Initiation R-CH—CH, + RN —> R3—N-— CHZ—?H—CHZ— R,
(0) oS
. C) ©)

Propogation = R;—N—CH,—CH—CH,—R; + R—~-CH—CH, — R;—N— CH2—$H— CH,—R;
I
0@ \O O—CH,— (le—R1

09
L ©]

Termination ~ Ry—N— CH,—CH—CH, W\ — CH,= ? —CH, ~\»2 + RyN

O—CH;—CH — CH, vw» O—CHy— ClH—Cszvv‘
00 OH

Scheme 1-7 Mechanism of epoxy polymerization induced by tertiary amines

Lewis acids such as diaryl iodonium, triarysuffonium or arene diazonium can initiate
cationic polymerization. Similar to the anionic chain polymerization, there are also three steps
in cationic polymerization: initiation, chain propagation and chain termination. By considering
boron trifluoride as an example, the cationic polymerization of epoxy prepolymer can be

described in Scheme 1-8.

I o
Initiation BF;+ R,NH —> BF;NR, + n®
R-CH,—CH—CH, + H® — > R—CH,—CH—CH, —» R — CH,—CH—CH®
\~/ N |
O | @ OH
H
Propogation  R—CH,—CH—CHY 4 R—CH,—CH—CH, — Rl—CHz—ClH—CHZ
(l)H \O/ O—CHZ—clH—CH2—R1
OH
@ o
Termination “CH,—CH—CH, vvw» + BF;NR, — BF;NR,CH,—CH—CH, vww\»
I
O—CH,—CH—CH, —R, O—CHZ—clH—CHZ—R1
|
OH OH

Scheme 1-8 Mechanism of cationic polymerization of epoxy prepolymer
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1.2.3 Ionic liquids combined with epoxy networks

After the research done by Kowalczyk [

on I-butyl-3-methylimidazolium
tetrafluoroborate (BMITF) which can be used as hardener of epoxy resin, numerous researchers
are trying to find more applications for ionic liquids in epoxy composites. It is because of its
unique properties that ionic liquids are widely used as hardener, dispersing agents, lubricant or
other functional additives in epoxy matrix composites. Some remarkable combinations of
epoxy chemistry and ionic liquids were generally introduced, leading to the reported overview

for the applications of ionic liquid in polymer matrix composites, especially in epoxy

composites.
1.2.3.1 As hardener or initiator for the curing of epoxy prepolymer

The ionic pair nature of ILs and the ionic polymerization mechanisms with epoxy
monomer provide the theoretical evidence that IL could act as hardener for epoxy monomers.
As reported by Kowalczyk [°*), I-butyl-methylimidazolium tetrafluoroborate (BMITF) can be
used as hardener for bisphenol A based epoxy resin (Epidian 6, E6, epoxy equivalent weight
185). As a consequence, researchers have paid more attention on IL hardeners to further
investigate the IL-epoxy networks and their resulting properties. Imidazolium IL is a broad
family that can be considered for hardeners of epoxy prepolymers. Reaction mechanisms of
imidazolium ILs (coupled with inert iodide anion)-initiated epoxy crosslinking reported in

several researches ! is demonstrated in Scheme 1-9.
-

PN heat

R‘N@N’R - 5 R\N@M* other compounds
\~/

R‘N@Ni + ﬁ\—> RY\N\/@\/Nzr\Vﬁ\R

R OH

O,

AN o
—> R N/\N R R R SN O\/\R
O — e Y

Scheme 1-9 Proposed mechanism for curing initiated by imidazolium IL of epoxy monomer [**!

Maka et al ' have chosen imidazolium-type ILs differing by the alkyl chain length of

imidazolium cation and different anions to form IL-epoxy networks before investigating the
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final properties of resulting IL-epoxy networks. The considered imidazolium-based ILs are
presented in Table 1-1. In s first step, basic anions such as N(CN), and CI undergo deuterium
exchange with imidazolium cation. In a second step, a pyridine-type of nitrogen involved in the
imidazole derivative reacts with the epoxy group to form a 1:1 adduct. Subsequently, the anionic
polymerization between epoxy prepolymers proceeds to form the final epoxy network. The
authors also found that different cation size, anion type and concentration of imidazolium-based
ILs have a huge influence on the curing kinetics and resulting properties of IL-epoxy networks.
For example, the curing temperature with epoxy of imidazolium-based IL combined with
N(CN)2 anion is lower than that associated with BF4™ anion and imidazolium IL having a decyl

substituent group has slightly higher onset curing temperature.

Table 1-1 Description of imidazolium-based ILs considered in Maka’s researches [1%%

Cations Anions Acronym
Cr [DMIM]CI
OC\N/\N( BF4 [DMIM]BF,4
\—/
N(CN) [DMIM]N(CN)>
AN BF4 [BMIM]BF,
N~/ N(CN)2 [BMIM]N(CN):

Apart from acting directly as initiator for epoxy prepolymers, the role as curing initiator
of imidazolium-based ionic liquids with long alkyl chains combined with diamines leading to
the epoxy amine networks was also reported. Soares et al ''°!! studied the role of imidazolium-
based ionic liquid for epoxy-amine curing. For example, N,N’-dioctadecylimidazolium iodide
was added to DGEBA and 4,4’-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA)
comonomers at various weight fractions. The presence of imidazolium-based ionic liquid led
to a decrease of the glass transition temperature of the resulting network. As the onset
temperature for curing such reactive system decrease with IL content, it could be concluded
that IL has a promoting effect on the epoxy-amine copolymerization. In addition, one can

deduce decomposition products of the imidazolium-based IL are responsible for this catalytic
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effect. The final homogeneous epoxy networks display very good dynamic mechanical

properties compared to conventional networks from a weight addition (1-5 phr) of

imidazolium-based ionic liquid.

Phosphonium-based ILs, as one of the main categories of ILs, are also used as curing

agents for epoxy compounds ['%?1. Small amount of phosphonium-based type IL could result in

IL-epoxy networks with improved properties, including thermal properties and high

hydrophobicity. For example, trihexyl(tetradecyl) phosphonium bis(2,4,4-

trimethylpentyl)phosphinate (IL104) was considered as model IL to explain the previously

proposed mechanism for bisphenol A-based epoxy prepolymer (DGEBA) polymerization !

103]
b

(Scheme 1-10). Nguyen 1% also mentioned that the nature of the anion has a huge influence

on the curing behavior of phosphonium-based IL/DGEBA systems because of their different

basicity among anions. For example, phosphate anion has a lower basicity than phosphinate

anion which possesses longer alkyl group. As a consequence, the phosphonium phosphate-

based IL will have a higher curing temperature than that of phosphonium phosphinate-based IL.

R; hexyl

DGEBA R, tetradecyl

R; 2,4,4-trimethy pentyl o}

Scheme 1-10 Proposed mechanism for the polymerization of epoxy resin (DGEBA) in the

presence of IL 104 [1%3]

/N o
Ri Rs 0 - - A A Ro-_ll 0 N
1 Rz\ll'-l*—o ? ? ﬁ 2\/P_O\-—J.mnfm/vm/\T/O Rz
— EEEEEE—
. Rg \——l/\/VV\/V]—\ /P\RR1 DGEBA R, 5

Because of the ion pairs nature for the various ILs, the dielectric properties could be

enhanced simultaneously due to the high ion conductivity of IL confined in the epoxy network

architecture. Lefort et al 1'%

I have used phosphonium-based IL to initiate the polymerization of

DGEBA. An increase of the segmental mobility was observed for the resulting networks. In

fact, a significant increase of the DC conductivity until 2 decades higher than a conventional

epoxy/anhydride system has achieved for such network. As IL could act also as a plasticizer,

decrease of the glass transition temperature was noticed (Figure 1-22).
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Figure 1-22 Epoxy network scheme. The network results from the homopolymerization in

presence of IL: (blue) IL anion, (red) IL cation, (black) pre-polymer; (green) crosslinks %%

1.2.3.2 As dispersing aids of nanomaterials/nano-objects within polymers

Ionic liquids can be considered as reactants, initiators as well as components being able to
participate to the curing process of epoxy networks. In addition, ILs can also be used as
processing aids of nanomaterials/nano-objects in polymer materials. As known, properties of
materials at nanoscale could differ from those of bulk matter 1%l As a consequence, emerging
nanomaterials have been developed for various application: environment applications %7,
biomedicine %, structure materials 1%, etc. Getting a high dispersion level of nano-particles
remains a very difficult task which limits a huge development of polymer nanocomposites 1%,
Conventional dispersion tools of such nano-particles in polymer matrices remain difficult due

[110

to agglomeration "%, Therefore, surface modification including tailoring the particles or nano-

objects surface using ILs is one of the most popular strategies '), Chabane et al %
successfully grafted imidazolium-based ionic liquid as tethered ligands to polyhedral
oligomeric silsesquioxane (POSS) cubes to obtain POSS-supported ILs whose chemical

structure is presented in Scheme 1-11.
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Scheme 1-11 Synthesis of imidazolium ILs-modified POSS 12!

Two kinds of obtained POSS-supported ILs, denoted IL-g-POSS™ and IL-g-POSS™"
respectively, were added into epoxy networks. It is shown in Figure 1-23, IL-functionalized
POSS (IL-g-POSS™ and IL-g-POSS™) were found to be well dispersed in epoxy networks
compared to the unmodified POSS (POSS™-triol, POSSF-triol, IL-g-POSS™, and IL-g-POSS™)
(Figure 1-23).

1 g‘nl

Figure 1-23 TEM micrographs of epoxy amine networks modified with: (a) POSS™-triol and
(b) IL-g-POSS™ at different magnification (bi; b2), (c) POSSP-triol and (d) IL-g-POSS™ at

different magnifications (di; dz) [''?!
1.2.3.3 As flame retardant agents

ILs were also used to lead an efficient flame-retardant behavior of epoxy network. For
example, Xiao et al ! have introduced a phosphonate-based IL named 1-vinyl-3-
(diethoxyphosphoryl)-propylimidazolium bromide into an epoxy resin. Because of the presence
of phosphonate-based IL which can promote the formation of a compact and stable phosphorus-

rich residual char inhibiting the heat transfer and degradation of epoxy resin, an enhanced fir
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141 synthesized ionic liquid

resistance was observed. Based on similar concept, Chabane ef al |
supported on oligomeric silsesquioxane nanoclusters (POSS) as flame retardant additives of
epoxy composites. In their study, imidazolium-based IL was combined to chloride (Cl") and
bistrifluoromethanesulfonimidate (NTf," ) anions which were grafted onto the POSS
nanoclusters as additives of epoxy-amine networks. Such resulting organic-inorganic

nanomaterials not only display an improved flame retardancy behavior, but also improve the

mechanical behavior.
1.2.4 Conclusions

This part has briefly introduced ionic liquid (IL), epoxy and combination of epoxy and IL
through different methods. The advantages of ILs related to their zero vapor pressure, thermal
stability, numerous combinations and approaches of anions and cations make possible to
consider them for green chemistry as solvents or catalysts. Epoxy resins are widely used as
thermoset materials due to their good mechanical properties and dielectric properties. The
combination of these two components could generate from a synergistic effect un expected
behavior. In fact, numerous researches have revealed the potential roles of ILs in epoxy-based
materials, including their role as curing initiator, processing aids, compatibilizers, lubricants, or

other functional additive contribution.
1.3 Microencapsulation
1.3.1 Introduction

Microencapsulation is an effective method to confine a liquid or a solid material using a
continuous organic or inorganic wall material to preserve the biological, functional, and
physico-chemical properties of core materials [!'> 1161 Materials in different states, i.e. liquids

1 0181201 aqueous solution 1211221 or solid %] can be considered as core

M7} such as oi
materials for microencapsulation. Meanwhile, for shell materials, there are several basic rules:
(1) shell material should be stable and not react with core material; (2) shell material should
have certain mechanical strength to prevent the microcapsule from damaging during processing;

(3) shell material should be non-toxic in food industry or biomedical applications; (4) solubility,

hygroscopicity, dielectric property, or degradability can also be acquired for specific
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applications. Based on these principles, considering natural or synthetic wall materials (Table

1-2), different applications of microcapsules are listed in Table 1-3.

Table 1-2 Natural and synthetic wall materials in microencapsulation and their main

characteristics
Classification Shell materials Main features
- Proteins: collagen, albumin and gelatin [!24] Non-toxic, good
- Carbohydrates: starch, agarose, chitosan, and  biocompatibility,
Natural )
) carrageenan [ low cost, poor mechanical
materials ] ] ) )
- Chemically modified carbohydrates: poly properties, poor resistance
dextran, poly starch to high temperature
- Biodegradable polymers:
lactides, glycolides, poly
anhydrides and poly(alkyl Good film formation,
. cyanoacrylates), etc. good mechanical strength,
Organic ) )
. - Non-biodegradable polymers:  easy to prepare, high
Synthetic materials _
poly methyl methacrylate price, poor
materials ) . ot
(PMMA), glycidyl biocompatibility
methacrylate, acrolein, epoxy
polymers
Inorganic Suitable for special
8 _ Silica 1261 glass [1?7] ceramics [1?8] o P
materials applications

Table 1-3 Functional properties of different microcapsules

Core Material Encapsulant

Functional properties

Drugs

Nutrients

Synthetic

components

Amphotericin B, doxorubicin, o
. . 129 Phospholipids
cytarabine, doxorubicin, etc. [?”]

o Chitosan or
Vitamins B/C, a-tocopherol,

essential oils [13% m().d1ﬁed
chitosan

Tonic liquids 31, epoxy [13%, Synthetic
DCPD '3 linseed oil *?! | etc. materials

Drug delivery

Protection and controlled
release of bioactive food
ingredients
Self-lubricant or self-
healing function in

polymer materials
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1.3.2 Synthesis strategies for microencapsulation

According to different routes for designing core-shell materials, various strategies have
been proposed for the fabrication of microcapsules. Usually, depending on the preparation
processes, these methods can be divided into three main routes: (1) Physical processes: such as
solvent evaporation, spray drying, electrostatic deposition, etc; (2) Chemical processes: such as
in-situ polymerization, interfacial polymerization, etc; (3) Physicochemical processes: such as
coacervation (phase separation), etc. 34!, Solvent evaporation, spray drying as physical process,
in-situ polymerization, and interfacial polymerization as chemical process are commonly used

methods in industry.
1.3.2.1 Solvent evaporation

Solvent evaporation for fabricating microcapsules is widely used in pharmaceutical
industries, which can facilitate a controllable drug release of a drug or other functional core
material 3%, Figure 1-24 has demonstrated the common procedure of solvent evaporation
method for microencapsulation.

Basically, the core material to be microencapsulated by solvent evaporation method is
dissolved in the shell material solution, which is immiscible in the third, i.e. the liquid phase
(solvent for shell material). Then, the mixture is stirred continuously and sometimes
accompanied with heating. The microcapsules are then obtained after completed evaporation

136

of the solvent [*®). While the choice of the solvent and the dispersing liquid phase are dependent

on the hydrophilicity and hydrophobicity of the core and shell components 7] different
systems may be considered such as oil-in-water (O/W) 1381 water-in-oil (W/O) 3] oil-in-oil
(0/0) U9 water-in-oil-in-water (W/O/W) 141 1921 or solid-in-oil-in-water (S/O/W) [143]
emulsions. In addition, the stirring speed, the solvent concentration, or the evaporation rate will

have an important effect on the morphology of the obtained microcapsules.
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Disperse phase
Emulsification Recovery and dry
Continuous phase _——

Solvent evaporation

Figure 1-24 Solvent evaporation method for fabricating microcapsules
1.3.2.2 Spray drying

Spray drying is one of the most popular methods for microencapsulation, such as for
conversion of liquid flavor compounds into easy-to-handle solid state microcapsules [1**]. Spray
drying is suitable for heat sensitive compounds as it can produce powder directly from a
solution or slurry with good quality, low water activity, and storage ability !'*’!. In the food
industry, spray drying is one of the oldest and most popular technologies for microencapsulation
of different ingredients because of its low cost, flexibility, and high quality of products [14¢]
while the most important drawback of spray drying is the limited number of suitable shell
materials 471, The Figure 1-25 illustrates the conventional spray drying process. In the spray
drying process, five steps are involved: i) liquid feed, ii) atomization, iii) droplet-air contact, iv)
droplet drying and v) separation ['*8]. For example, fish oil was microencapsulated in a sugar
beet pectin and glucose syrup shell by spray drying ['*!, In the latter example, the average oil
droplet size was significantly influenced by the composition of the emulsion and the
homogenization pressure. However, a high proportion of non-encapsulated components, i.e.
higher than 50%, was not introduced in the microcapsules.

X

Atomizer Drying gas

v ¥
TRL Exhaust gas
Liquid feed '

Drying Fines Filter
chamber

Powder product

Figure 1-25 Graphic illustration of typical spray drying system
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Shamaei et al ['*" have studied the influence of shell material and spray drying parameters
on the physico-chemical properties of walnut oil-filled microcapsules. Three different shell
materials including skim milk powder (SMP), SMP + Tween 80, and SMP + maltodextrin were
compared for emulsion. The inlet drying air temperature and feed atomization pressure were
also investigated. The authors found that increasing the inlet drying pressure and feed
atomization temperature led to an increase of the microencapsulation efficiency and contributed
to decrease the moisture content while decreasing the atomization pressure will increase the
particles size. Among the three shell materials, the highest microencapsulation efficiency was

obtained by using a mixture SMP and Tween 80.
1.3.2.3 In-situ polymerization

In-situ polymerization is one of the most widely used chemical process for fabricating
microcapsules with synthetic material (polymers in most cases). In fact, in-situ polymerization
has many advantages for microcapsules with core/shell structure control, such as size and shell
thickness tailoring. Thus, microcapsules with tailored mechanical properties and improved

thermal stability could be obtained [!*! 152, In addition, this method can lead to high yield rate

g [153

of encapsulation and inexpensive involved cost 1. As the prepolymer will form in the

154 [155-157]

continuous phase ['*¥, typical shell materials are considered such as urea-formaldehyde
and melamine-formaldehyde systems [1%% 18191 Conventional processing protocol is given in

Figure 1-26.

Water soluable
.
resm

»Oil phase

{\
L]

» Aqueous phase

» O/W emulsion microcapsule
Figure 1-26 Conventional synthesis of microcapsules considering in-situ polymerization in
the O/W emulsion state
For example, Hwang [ used such in-situ polymerization process to fabricate

microcapsules. The authors have prepared melamine-formaldehyde shell microcapsules

containing peppermint oil from such in-situ polymerization process involving Tween 20 as
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emulsifier. The microcapsules with melamine-formaldehyde shell have good durability and
reasonable heat-resistance characteristics. These ones are able to release their fragrance via the
destruction of the shell instead of a passive diffusion at room temperature. First, the peppermint
oil was emulsified by Tween 20 under mechanical stirring to form an oil-in-water (O/W)
emulsion. Then, the pre-prepared prepolymer was added in the O/W emulsion for encapsulation
reaction. For the in-situ polymerization process, the polymerization occurs mainly in the
continuous phase and the surface of dispersed oil droplets form the rigid polymer shell. The
microcapsules by in-situ polymerization could display a perfect sphere shape while sometimes
due to shear forces occurring for various dispersion methods could lead to a broad distribution

of particles sizes and shapes.
1.3.2.4 Interfacial polymerization

Interfacial polymerization is another common chemical method for polymer shell based
microencapsulation, which differs from in-sifu polymerization in which polymerization takes
place in the continuous phase. In the interfacial polymerization process, the monomer will be
directly introduced in the disperse phase or the continuous phase of the emulsion. The shell will
be polymerized directly at the interface of the disperse phase and continuous phase. There are
two possibilities during the particle/capsule formation process as shown in Figure 1-27: (1) the
oligomers formed at the early stage are highly soluble in the droplets; (2) the oligomers at the

early stage are highly insoluble in the droplets 6],

AT~
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Polymer soluble Polymer insoluble
In the droplet In the droplet
°
s 0o
o © o
o o
’ -] o
° o
Particulate microcapsule Capsular microcapsule
(Monolithic microcapsule) (Reservoir microcapsule)

Figure 1-27 Idealized mechanism of particle/capsule formation by interfacial

polymerization 16!l
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Microcapsules obtained via interfacial polymerization are considered for encapsulation of
various compounds such as adhesives, agrochemicals, live cells, enzymes, flavors, fragrances,
drugs, and dyes, in whether water-in-oil (W/O) or oil-in-water (O/W) emulsions interfaces. In
some researches, oil-in-oil (O/O) emulsion is also used for fabricating microcapsules [162-164],
For O/W emulsions, polymerization between polyfunctional isocyanates and diamines for

[ 18] have

synthesizing polyurea microcapsules is usually considered. For instance, Scarfato et a
synthesized polyurea microcapsules containing active essential oils for agricultural applications
by interfacial polymerization. The obtained microcapsules are suitable for realizing sustained
release systems. Wang et al 1% also prepared microcapsules by interfacial polymerization
between polyamines and a pyromellitic diester diacid chloride to obtain polyamide
microcapsules in which diacid chloride and dye were encapsulated. The obtained microcapsules
are stable in a dry or non-polar environment but undergo controlled release at pH 7.4 and
accelerated release at pH 5 and pH 10. The release rate of core component is dependent on the
by the crosslinking degree of the polymer shell. Phase changed emulsion, W/O emulsion, was
considered to encapsulate hydrophilic materials. Hayashi et al ['*” have encapsulated erythritol
as a phase change material into a polyurethane shell. They demonstrated that isocyanate species
are required to obtain microcapsules, such as toluene diisocyanate, diphenyl methane
diisocyanate, hexamethylenediisocyanate, among which toluene diisocyanate showed the
largest heat density and the highest microencapsulation efficiency.

Compared with interfacial polymerization in O/W and W/O emulsions, O/O emulsions are
hardly used for microencapsulation because of the difficulty during the stabilization process of

1681 have prepared

the emulsion and the polymerization control. For example, Kobaslija et a/ |
microcapsules with polyurea shell by interfacial polymerization in oil-in-oil emulsion,
including methanol-in-cyclohexane, formamide-in-cyclohexane, and N,N-dimethylformamide-
in-cyclohexane emulsions. Actually, the conventional interfacial polymerization is processed
mostly in O/W or W/O emulsion. The authors also suggested that oil-in-oil emulsions could be
an alternative to commonly used approaches. As shown in Figure 1-28, the authors used polar
protic or aprotic solvent-in-cyclohexane emulsions to template the formation of polyurea

microcapsules and set up a model for interfacial polymerization of oil-in-oil emulsions. The

changes of the observable characteristics, such as capsule sizes, are monitored as a function of
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the input parameters, such as monomer concentration or stirring speed.

thanol, Wmde. or .
(.N,NL_’TN\N N .

cyclohexane cyclohexane

Figure 1-28 (A) Emulsions are prepared by dispersing a polar phase containing
anhydrous polyethylenimine (PEI) into a nonpolar phase; (B) A cross-linked polyurea shell

forms upon addition of f 2,4-tolylene diisocyanate (TDI) to the continuous phase [1¢®!

In addition to the use of a separated polymerization process to produce a single shell for
microcapsules, these two strategies were combined to fabricate multi-shell microcapsules. For
example, Li et al "% have used both interfacial polymerization and in-situ polymerization to
obtain mono dispersed polyurea-urea formaldehyde double layered microcapsules. As shown
in Figure 1-29, polyurea microcapsules were synthesized during a first step by interfacial
polymerization as the inner layer. In a next step, urea-formaldehyde (UF) resin was deposited
to form the outer protective layer by in-situ polymerization. This combination of different
strategies leads to double layered shell microcapsules. This type of ultra-thick shell displays
presented an improved thermal stability compared to traditional microcapsules with a single

shell.

Water

(@ (b) (c) (d)
Figure 1-29 Schematic diagram of synthetic process of double layered microcapsules: (a)
O/W emulsion; (b) formation of the inner PU layer; (c) condensation of the UF resin; (d)

consolidation of the outer layer 1]
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Apart from the four methods that have been mentioned above, electrostatically self-
assembly [!7%1 and coacervation (phase separation) ['”! 172 are also used to fabricate various
kinds of microcapsule. Overall, the choice of synthesis method for preparing microcapsules
should be based on the nature of core and shell components, the encapsulation efficiency and

cost.
1.3.3 Applications of microcapsules
1.3.3.1 For biomedical uses

During the past few decades, increasing researches of microcapsules for biomedical
applications such as drug delivery, biosensors, and bioreactors have received a widespread
attention [’ because of high payloads of active substances [!7#l. In fact, one of the main
advantages of microcapsules is protection of sensitive drugs from drastic environment (such as
pH exposure) as well as reduction of the number of drug administrations for the patients [,
Kalaycioglu et al ['"8 prepared nano-in-micro ibuprofen (IBU)-filled microcapsules using a
layer-by-layer method having an increased efficiency, a high surface area, a tunable structure,
and a multi-functionality. Figure 1-30 presents the synthesis procedure of IBU microcapsules
and the related drug release model. As, shown in Figure 1-30, solid lipid nanoparticles (SLN)
were used to create a negatively charged shell and gold nanoparticles (AuNP) and chitosan

(CHI) were used as positively charged shell, in order to tune the ascorbic acid (AA) release

kinetics.

IBU Microcapsule Preparation and Dual Drug Release

J W
AuNP
SN
cH
YoM

Figure 1-30 Synthesis procedure of IBU microcapsules and the controllable drug release

model 176
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Apart from drug delivery, biosensors are also an important part for the use of
microcapsules for biomedical applications. Kreft et al ''7"! reported a new kind of mobile pH-
sensor for monitoring the pH inside the living cells by loading high molecular weight
seminaphtho-rhodafluor-1-dye (SNARF-1-dextran conjugate) in polyelectrolyte microcapsules.
They demonstrated that SNARF-1 shows a dramatical pH-dependent emission shift from green
to red under different pH environment as there is no change after the encapsulation process.
Figure 1-31 shows the structure of microcapsules and fluorescence effect of this pH-sensor at
acidic and alkaline circumstances. They have successfully followed the pH change of the local
environment of SNARF-1-filled microcapsules in human breast cancer cells and fibroblasts
when the pH changes.

polyelectrolyte
multilayer

magnetite
nanoparticles

Figure 1-31 Scheme of the capsule geometry and fluorescence microscopy images

of single capsules under acidic (pH 6.0, green) and alkaline (pH 9.0, red) pH 177}

1.3.3.2 In food industry

In the food industry, food quality could be improved by encapsulating flavors, leavening
agents, vitamins, and enzymes could in microcapsules ['®. For example, wall materials of
microcapsules can prevent the ingredients from oxidation or undesirable interactions and
stabilize some sensitive components such as vitamins and minerals. Several microencapsulated
strategies can be applied in the food industry, such as pray drying, fluidized bed coating, solvent
extraction, coacervation, co-crystallization and liposome formation. Contact materials in food
industry have basic requirements, including non-toxicity, compatibility with food content and
mechanical performances, etc. There are six main categories for contact materials for

microcapsules in food industry, which are summarized in Table 1-4.
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Table 1-4 Different contact materials for microcapsules for food industry

Classifications Specific types
Gums Gum arabic, agar, sodium alginate, carrageenan
Carbohydrates Starch, dextran, sucrose, corn syrup

Carboxymethylcellulose, methylcellulose, ethylcellulose,
nitrocellulose, acetylcellulose, cellulose acetate-phthalate,

Celluloses
cellulose acetate-butylate-pgthalate
. Wax, paraffin, tristearin, stearic acid, monoglycerides,
Lipids . ) . .
diglycerides, beeswax, oils, fats, hardened oils
Inorganic materials Calcium sulfate, silicates, clays
Proteins Gluten, casein, gelatin, albumin

1.3.3.3 In electronic devices

Xu et al "™ have fabricated microcapsules are used in constructing flexible
supercapacitors by encapsulating the phase change materials into a polymer. Then, this
microencapsulated phase change materials (MPCMs) are implanted into 3D porous reduced
graphene oxide/polyaniline (GP) frameworks on the surface of carbon nanotube film (CNF) to
create a new flexible supercapacitor. The structure of this new supercapacitor is shown in Figure
1-32. N-octadecane was encapsulated by melamine-formaldehyde resin by in-situ
polymerization, which is for assembling of the flexible supercapacitor. The n-octadecane will
undergo a phase change when the temperature changes, in which the endothermic effect will

suppress the temperature fluctuation in order to enhance the stability of supercapacitor.

GOJ/Aniline/MPCMs T
Co-deposition
CNT film CNF/GP/MPCMs "~ %) 7
Assembl; H |
Eb MPCMs E

Flexible supercapacitor PDMS  Gel electrolyte

Figure 1-32 Schematic structure of the supercapacitors containing microcapsules [!”!
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1.3.3.4 In polymer composites

Because of the processability, compatibility with polymer and polyfunctionality nature of
the core/shell structure, microcapsules were also widely used as functional components in the
polymer matrix composites. For instance, some of the polymer materials are facing the problem
of poor performance in fire. As a consequence, fire retardants are used to improve the flame
retardancy of polymer composites. Microcapsule is one of the efficient routes for introducing
these additives in the polymer matrix to suppress the smoke or toxic gases. There are several
advantages of microcapsules in flame retardant: (1) reducing the water solubility of flame
retardants; (2) increasing the compatibility of flame retardants with the polymer matrix; (3)
changing of the appearance and physical state of flame retardancy; (4) protection and increasing
of the pyrolysis temperature of flame retardants; (5) prevention of the release of toxic gas and
smoke 1% Magnesium hydroxide (Mg(OH),) 181 1821 red phosphorus 183 184 ammonium

185-187] are the conventionally used core materials in refractory materials.

dihydrogen phosphate [

Because of the core-shell structure and the controllable release feature, self-lubricating is
another major application of microcapsules in polymer matrix composites. Due to the mobility
of microcapsules, encapsulated-lubricant microcapsules can automatically lubricate the
material whenever and wherever friction occurs. So, they have drawn great attention of

researches for self-lubricate field applications '8, Figure 1-33 demonstrates the expected self-

lubricating mechanism induced by microcapsules.
direction of motion
v v

self-lubricating

/
v

olymer composites L .
poly P counterpart surface released lubricating film  broken microcapsules

filled with microcapsules

Figure 1-33 Schematic diagram of microcapsules based self-lubricating mechanism

Li et al "*) have prepared SiO» wrapped polystyrene microcapsules with a lubricant oil-
filled microcapsules. The microcapsules have excellent dispersibility in epoxy coatings which

display favorable antifriction effects. Despite of silica shell, polymer shell microcapsules are

(83

also studied for self-lubricating application, for example polysulfone shell 331 polyurethane
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shell or even double shell such as polysulfone/silica hybrid ['°”! or polyurethane/graphene oxide
hybrid 1! as shell material. Compared with the shell material, core materials for self-

[192] "etc can all be

lubricating microcapsules offers more choices. Wax, ionic liquids, tung oil
considered as lubricant oil for core components.

For the material working under harsh condition such as spacecraft or aircraft and materials
which need to avoid electromagnetic interference (EMI) caused by proliferation such as
electronic devices ['**, shielding property such as ultraviolet (UV) shielding, or electromagnetic
shielding properties are required. Microcapsules encapsulated with proper shielding
compounds can achieve these aims easily and universally. Specifically, metal-based and
magnetic materials are favorable for electromagnetic shielding applications. For example, Jiang

et al %4

encapsulated phase change materials (liquid paraffin containing magnetic
nanoparticles, Fe3Os) into silica shell via interfacial polycondensation in a reverse emulsion.
The obtained microcapsules showed a cup-like morphology core-shell structure, which has
been proved a promising electromagnetic shielding additive in polyimide film. The authors also
succeeded introducing magnetic particles as Fe304/Si0; hybrid shell to design new magnetic
microcapsules, which can also absorb the electromagnetic radiations of conventional radar
wavelength 1%, In the UV shielding field, nano-titanium dioxide (TiOz) is an ideal candidate
for their stability, photocatalytic properties and non-toxicity. Hong et a/ '°%! added anatase nano-
TiOz during polymerization process of polyurethane microcapsules to obtain a multifunctional
microcapsules. The obtained spherical microcapsules have rough surfaces and attached
particles. These ones can be applied for photocatalysis and UV resistance in polymer coatings.

Polymer matrix materials could undergo cyclic thermal or mechanical loads or other
damages during long-term use, resulting in micro-cracks in the matrix. As a consequence, self-
healing property is required to prolong the life time and prevent final damage. Microcapsules
which can encapsulate healing agents and release them as microcracks happen in the matrix.
Therefore, they can be considered as one of the convenient and universe methods based on
extrinsic self-healing mechanism to achieve self-healing in the polymer composites. Common
structure and examples will be given in details in the </.1.3.2 Microcapsules for self-healing >

section.
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1.3.4 Conclusion

To conclude, this part generally introduced the microencapsulation and summarized
different strategies and examples of microcapsules and their applications in different fields. For
microencapsulation, physical and chemical procedures consist of spray drying, solvent
evaporation, in-situ polymerization, interfacial polymerization, etc. were applied based on the
different features of core and shell materials. It is also found that the properties of emulsion or
suspension played a very important role on the morphology, size distribution as well as their
properties of final microcapsules. Therefore, choosing appropriate core and shell materials and

preparation methods will enable the preparation of microcapsules with different functions.
1.4 Conclusion of Chapter 1

Self-healing is one of the basic abilities of living organisms in the nature which can help
them repair damages and extend their lives. Similarly, the self-healing concept is also
introduced into numerous industrial materials to prolong their lifetime though different
strategies. Therefore, intrinsic self-healing mechanism based on reversible interaction of
molecular chains and extrinsic self-healing mechanism based on external healing agent are
developed and applied in the real practice. Compared with intrinsic self-healing, without
modifying material in the molecular level, only by introducing packed healing agent can
achieve self-healing ability is the reason for which extrinsic self-healing mechanism is widely
applied in polymer matrix materials, including epoxy composites.

Ionic liquids are salts in the liquid state with a melting temperature < 100 °C consisting in
numerous anions/cations combinations. Their low vapor pressure, inflammability and high ion
conductivity make them widely used in organic synthesis, electrochemical devices and
materials science. Epoxy resin is widely applied as structural parts, adhesives and coatings in
industry, aerospace field and marine areas because of its excellent physical and chemical
advantages, but microcracks are generated easily due to the inherent brittleness. According to
the latest researches, ionic liquids are used directly as initiators and dispersing aids of nano-
objects in epoxy composites to improve the toughness, but introduction of ionic liquids via
microencapsulation for epoxy composites as enhancement or self-healing agent are remained
vacant.
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Reviewing previous studies, dicyclopentadiene with Grubbs’ catalyst, linseed oil by
oxidation, epoxy and amine microcapsules as dual healing agents are existing strategies for self-
healing of epoxy composites but some limitations still exist. For example, high sensibility of
Grubbs’ catalyst of temperature or exposure to amine hardener, complex synthesis steps and
homogeneous dispersion in dual microcapsule system. Therefore, considering the role of
initiator of ionic liquids in the epoxy network construction and the multifunction of ionic liquids
in epoxy composites, these questions would be put forward: i) Is phosphonium-based ionic
liquid can be encapsulated by silica microcapsules and introduced in epoxy composites as
reinforcement? ii) Is ionic liquid can be used as for healing agents in high temperature cured
epoxy composites? iii) Is there a new single microcapsule system without initiator/hardener can
achieve self-healing purpose in different polymer composites with minimum limitations?

Overall, based on the general overview, this PhD work will aim at ionic liquid and epoxy
composites via encapsulation strategy to answer the three questions above. Therefore, Chapter
1 gave an overview of the three main subjects in this work: self-healing, ionic liquids and epoxy
composites, and microencapsulation. More details will be introduced again in the beginning of

each chapter.
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Chapter 2:

Ionic liquid-containing silica microcapsules
as functional additives for epoxy-amine
networks

Up to now, very few studies are reported on microcapsules containing phosphonium ionic
liquids for self-healing applications in thermoset polymer materials. In this chapter, silica
microcapsules containing phosphonium ionic liquid (IL@S102) were successfully designed for
the first time and added into the epoxy-amine

networks. Then, the thermal and mechanical

micelles of

properties were investigated for the IL@Si0O:
surfactants

microcapsules filled epoxy-amine

microcomposites. Therefore, this chapter is

composed of two parts: i) synthesis and ©

(4
TEOS
°C °Si‘He® O

characterization of IL@Si10, microcapsules; ii)
influence of IL@SiO2 microcapsules on the
physical properties of the epoxy-amine

l’nicrocomposites, IL@SiO, microcapsules
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2.1 Introduction

According to the literature dedicated to thermoset-based polymer composites (PMC), it is
well-known that when such structural materials are damaged, various strategies could be
deployed to extend their lifetime. Among these ones, the type of damage must also be taken
into consideration in order to propose relevant repair strategies. For example, if the damage is
accessible such as matrix cracks, the simplest approach consists into a direct injection of an
epoxy reactive system to fill the crack space but if fiber fractures, a recovery of the fiber
integrity remains impossible. Epoxy resins are one of the most widely used types of
thermosetting systems according to their good mechanical properties and chemical stability of
the resulting networks, leading to their intensive integration in automotive, aerospace, or marine
applications [!l. Nevertheless, the high crosslinking density of epoxy networks always results
in low fracture toughness and high brittleness [?, i.e. solutions are required to induce them a
better resistance to the microcrack propagation. Numerous strategies have been developed by

[3-51 thermoplastics [®!, block copolymers, or nanoparticles /) in order to

using reactive rubbers
improve the fracture toughness of epoxy networks. Nevertheless, the addition of rubber or low
T, thermoplastic has a negative influence on the mechanical properties of modified networks.
Dispersion of nanofillers is also proposed to enhance properties [¥!. Toughening mechanisms
strongly depend on different additives ). The role of the rubber in toughened epoxies is to
relieve stress concentration in the matrix by promoting cavitation mechanism, i.e. through the

[10

formation of shear yielding ['!. Similar mechanisms involving the role of the plastic zone can

(11 However, the toughening mechanism

be also applied for elastomers and thermoplastics
involving rigid particles with or without surface modification and functionalization still need
to be scrutinized and further discussed for each case [, e.g. the particle size, particle shape or
surface modification.

In the last decade, ionic liquid (IL) has emerged as new compound to be considered for
polymer-based materials broadening the applications ranges. Due to their unique set of
physicochemical properties as well as their numerous chemical structures, ILs offer promising

new pathways to design new (multi)functional objects and materials. Indeed, considering ionic

liquids in polymer science grow very rapidly in recent years by using them as solvents or as
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interfacial agents in multiphasic polymer-based materials such as polymer blends or organic-
inorganic hybrid materials as well as functional additives. More recently, ILs have generated a

growing interest in the field of thermosetting polymers such as epoxies or cyanate esters [1°!

or
new IL-epoxy networks ['*. Applied to epoxy networks, ILs offer new pathways for designing
novel networks by considering ILs as unreactive or reactive additives. Currently, numerous
works reported in the literature relate the key role of ionic liquids as functional components
within epoxy prepolymers. In fact, they could act as catalysts of epoxy-amine reactions or
initiators of anionic polymerizations !> 'l dispersing aids '”), or compatibilizers in epoxy-
thermoplastic blends. In addition to all of those studies dedicated to the addition of ILs into
epoxy reactive systems for conventional purposes, Sanes ef al ['® have recently investigated the
influence of ILs on the tribological performances of epoxy-amine network surfaces as these
ones are known to be of interest as lubricating agents [!). In their study, these authors prepared
reactive systems based on an epoxy prepolymer which are cured with a mixture of diamines
combined with different amounts (from 7 to 12 wt.%) of imidazolium-IL, i.e. 1-octyl-3-
methylimidazolium tetrafluoroborate, in order to evaluate the self-healing ability of the
resulting epoxy surfaces 2%,

Still in the field of tribological applications, encapsulation of ionic liquids in a silica or
thermoplastic shell has also caught the attention to prepare ionic liquid core/silica shell
microcapsules which can be applied as self-lubricant additives in a polymer matrix. A Chinese
team has developed an innovative in-situ self-lubrication route based on the preparation of
polymer microcapsules containing ionic liquids for epoxy-amine thermoset matrices. In fact, Li
et al'*! have designed polysulfone (PSU) microcapsules containing imidazolium-IL in order to
reduce the frictional coefficients between a metal surface and an epoxy matrix. For such a
purpose, encapsulated IL/PSU microcapsules of 128 pm-diameter were prepared. The influence
of the microcapsule content (from 0 to 30 wt.%) on the tribological performances was
investigated. Even if this approach may be difficult to apply due to the IL viscosity, the bipolar
nature and the existence of ionic interactions, such a route appears to be promising for the
design of self-healable polymer materials. Other authors such as Luo et al [?* have reported a
method to trap imidazole-IL in a polymer shell by microencapsulation in order to propose a

new solvent for extraction. Inorganic components can be good candidates for designing the
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shell of such IL containers. More specifically, silica was considered for preparing
nano/microcapsules for controlled release applications [**1 thanks to its good mechanical
properties 4 and biocompatibility > 261, Recently, Abu-Reziq et al [*” have used lignosulfonic
acid to stabilize ionic liquid in water in order to prepare a silica shell from an interfacial sol-gel
process. The obtained microcapsules showed good performances as heterogeneous catalysts.
Yang et al 1?%/ have used the same ionic liquid as core component and a natural emulsifier, i.e.
gelatin, to obtain microcapsules which can improve tribological behavior of polyurethane
composite materials.

According to the state-of-art on IL encapsulation, to our knowledge, there are no
publications reporting the encapsulation of phosphonium ionic liquids in a silica shell and only
few studies focused on encapsulation methods of ILs, and very few on the integration of ionic
liquids in an encapsulated form in PCM materials. Their applications in a thermosetting
polymer matrix such as epoxy-based ones remain vacant. Therefore, this work focuses on the
use of phosphonium-based type ionic liquids contained in silica microcapsules (IL@Si0.) as
fillers to design epoxy/amine-based microcomposites. In order to identify the role of the
interactions between the microcapsule surface and the polymer chains and how the
microcapsules may have a reinforcing effect on the epoxy-amine network, different
stoichiometric epoxy-to-amino hydrogen ratio were considered. Besides, different weight
fractions of IL@SiO2 microcapsules were added in the epoxy/amine network to optimize the
performances of epoxy composites. Thus, the thermal, thermomechanical, large strain
mechanical, and fracture behaviors were studied. The observed fracture improvement could be
explained according to the proposed toughening mechanisms. From these results, new routes
could be proposed to design high performance materials from the introduction of ionic liquids

contained in microcapsules.
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2.2 Experimental
2.2.1 Materials

Surfactants, i.e. sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide
(CTAB), tetraethyl orthosilicate (TEOS), and ammonium hydroxide solution (NH3-H20O) were
purchased from Sigma-Aldrich and used as received. An ionic liquid based on
tetradecyl(trihexyl)phosphonium cation and bis-(2,4,4-trimethylpentyl)phosphinate anion,
denoted Cyphos IL 104, was provided by Cytec Solvay, Inc. The well-known bisphenol A
diglycidyl ether (DGEBA, D.E.R. 332) was combined with the 4,4’-
methylenebis(cyclohexylamine) (PACM) as a comonomer to prepare epoxy-amine networks.
These compounds were purchased from Sigma-Aldrich and used as received without any
further purification. Acetone used as solvent was purchased form Carlo ERBA Reagent. All the

chemical structures of the products are summarized in Table 2-1.

Table 2-1 Chemical structures of the products used

Materials and abbreviations Chemical formula
I
Sodium dodecyl sulfate (SDS) CH3(CH2)10CH20—ﬁ—O' Na*
o)
CH,
I
Cetyltrimethylammonium bromide (CTAB) H3C(H2C)15_I\|I+_ CH; Br
CH,
H;C CH
3 \_ O\ /O—/ 3
g S'
tetraethyl orthosilicate (TEOS) —0- 1. 0—
H;C CH,
lonic liquid (IL 104) CeH13 ﬁ
) ) ) |+ p—0O"
tetradecyl(trihexyl)phosphonium bis-(2,4,4- CeH1z—P—C14Hzg /‘C
I (CH3); ¢y H/\(CHa)a
trimethylpentyl)phosphinate CeH1s CH;
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Epoxy resin HsC CHj
Bisphenol A diglycidyl ether (DEGBA D.E.R. 332, O O
0 0
epoxide equivalent weight, 171 — 175 gleq) <'3>/\ /\<CI>
4,4-methylene bis(cyclohexylamine) H,N NH,

(PACM) \O\/O/

2.2.2 Experimental

To obtain silica shell microcapsules, the first step refers to the dispersion of the
hydrophobic core compound in water to form an oil in water emulsion (O/W) and then a sol-
gel process is processed to form silica shell around the suspended droplets to form
microcapsules. In this work, phosphonium-based ionic liquid IL 104 was selected as core
material. To our knowledge, the hydrophilic emulsifiers with HLB values of 10-18 are suitable
for O/W emulsions ?°!. Thus, different kinds of surfactants are reported in the literature to
prepare the ionic liquid in water (IL/H20O) emulsion. For example, ionic surfactants (such as
CTAB, SDS % REAX 88A [31:321) 'non-ionic surfactants (such as Triton X-100 ), and natural
surfactants (such as gelatin [?!1) were taken into account. However, only by using a combination
of SDS and CTAB can we obtain the microcapsules with ideal morphology. To stabilize ionic
liquid in water, the surfactant should have good interactions with both aqueous phase and ionic
liquid phase. The combination of CTAB and SDS could form stable spherical vesicles in
aqueous solution to get a stabilization of the ionic liquid droplets in aqueous solution for given
between SDS:CTAB molar ratio [**3%], The combination of SDS (HLB = 20) and CTAB (HLB
= 8.8) 139 at a given molar ratio will provide an ideal HLB value for O/W emulsion 7, In the
second step, the siliceous precursor TEOS is hydrolyzed and condensed at the surface of oil
droplets due to the Coulombic forces [*8] to form the silica shell.

In the first step, the cationic surfactant, CTAB, and anionic surfactant, SDS, were added
at the same time in water until they were fully dissolved. In the aqueous solution, the
electrostatic interactions between the positively and negatively charged head groups of CTAB

and SDS will drive these molecules to assemble into vesicles in water. When the hydrophobic
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ionic liquid, IL 104, was added in the mixture, the long alkyl chains of IL 104 will help them to
migrate and turn to vesicles and stabilize to form IL in water emulsion (IL/H>O) under stirring.
In the next step, in order to obtain microcapsules with a silica shell, tetracthoxysilane (TEOS)
was chosen as the siliceous precursor and sol-gel process was catalyzed by ammonium
hydroxide. Specifically, TEOS will transfer to the IL - water interface to undergo the hydrolysis
and then condensation at the surface of IL/H,O emulsion droplets to form the silica shell. The
hydrolysis and condensation steps during the sol-gel process are presented in Scheme 2-1.

Finally, the white precipitate can be collected by centrifugation and dried.

Hydrolysis step: Si(OC,Hjs), E—ZIO> Si(OH), + C,Hs;OH
A
O o
Vv O —Si— O —Si—O0vw\n
Condensation step:  4n Si(OH);, —— o} e}
Vv O —Si— O —Si— 0w \n
- o o -

2

Scheme 2-1 Hydrolysis and condensation reactions occurring during the sol-gel process

Typically, 0.20 g of SDS and 0.40 g of CTAB were added in 54 mL deionized water
followed by the addition of 1.00 mL of NH3-H2O. Then, the mixture was stirred under magnetic
stirring and kept at 68 °C for 1.5 h in order to obtain a homogeneous solution. Next, 1.00 g of
IL 104 was added in the aqueous solution and vigorously stirred at 68 °C for an additional time
of 5 h until obtaining ionic liquid in water (IL/H20) emulsion, characterized by a milky
appearance. After that, 1.50 g TEOS was dripped slowly into the IL/H>O emulsion to perform
a sol-gel reaction to form the silica shell. The sol-gel process proceeded at the same temperature
for two hours and 80 °C for two extra hours. Finally, white precipitate was formed and collected
by centrifugation at 4,000 rpm for 10 min. The final product was washed three times with
deionized water and acetone then dried at 60 °C for 24 h. Figure 2-1 illustrates the synthetic

procedure of IL@Si0O2 microcapsules synthesis.
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mechanical stir

IL/H,0

N Hz' Hzo
aqueous solution

- IL@SIO,

IL 104 microcapsules

Figure 2-1 Schematic synthesis procedure of IL@SiO> microcapsules

In order to investigate the reinforcement effect of IL@SiO> microcapsules in epoxy
microcomposites, several reactive systems with different epoxy-to-amino hydrogen ratio (r)
were selected. The weights and molar ratios of DGEBA and PACM for each r value are listed
in Table 2-2. Moreover, various amounts of IL@Si02 microcapsules were introduced in the
epoxy-amine system to evaluate the thermal and mechanical properties of obtained IL@S102
microcapsules reinforced epoxy-amine microcomposites. Abbreviations of all different samples

with different r value and mass fraction of IL@S10> microcapsules are listed in Table 2-3.

Table 2-2 Weight and molar ratios of D.E.R. 332 and PACM for preparing epoxy—amine

networks
re DGEBA (phr) PACM (phr) Weight ratio of DGEBA/PACM
1.0 100 30.4 3.3
1.2 100 26.0 3.8
1.4 100 22.0 4.3
“r is the epoxy-to-amino hydrogen ratio
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Table 2-3 Microcomposites prepared with different r values and weight fractions of

IL@Si02 microcapsules
IL@SiO; wt. IL@SiO, wt. Materia IL@SiO;, wt.
Material Material 1 r

fraction (%) fraction (%) 1 fraction (%)
1.0-0 0 1.2-0 0 1.4-0 0
1.0-1 1 1.2-1 1 1.4-1 1

1.0 1.2 1.4

1.0-2 2 1.2-2 2 1.4-2 2
1.0-5 5 1.2-5 5 1.4-5 5

“r is epoxy-to-amino hydrogen ratio

The preparation procedure of IL@SiO2 microcapsule-filled epoxy-amine networks is
schematically illustrated in Figure 2-2. Usually, IL@S102 microcapsules were added in a given
amount of acetone and the mixture was sonicated for 1 h. Then, the given amount of epoxy
resin (DGEBA, D.E.R 332) was added and the mixture and was kept in ultrasonic bath for an
additional hour to get a better dispersion of IL@Si0O; microcapsules. After, the mixture was put
in the vacuum oven at 60 °C overnight to remove the solvent. After that, according to the epoxy-
to-amino hydrogen ratio (r), the related amount of PACM was added and the mixture was mixed
under mechanical stirring at 60 °C. Finally, the mixture was degassed using a vacuum bell jar

for 10 min and cured at 80 °C for 2 h and post-cured at 160 °C in an oven for 2 h.

@ Dispersion of IL@SiO, microcapsules @ Solvent removal
- - ) i 7 -
==V -occsn &
- -~ ]
- L
= .Af i kg, /
IL@SiC_)zlacetone mixture DGEBA/IL@SiOZIacetone mixture vacuum oven ové}night at60 °C
ultrasonic treatment for 1 h ultrasonic treatment for 1 h
(® Mix with hardener (@ Degas of the mixture ® Curing
\l =/ V
fully mix by mechanical stir vacuum bell jar 2h @80°C+2h @ 160 °C in oven

Figure 2-2 Preparation of IL@Si0O2 microcapsule-filled epoxy-amine microcomposites
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2.2.3 Characterization methods

The morphology of the IL@SiO> microcapsules was characterized by transmission
electron microscope (TEM). Phillips CM 120 TEM equipped with electron diffraction
spectroscopy (EDS) was operating at an accelerating voltage of 120 kV. IL@SiO:
microcapsules were dispersed in deionized water and then ultrasonic treatment was carried out
for 30 min to ensure a good dispersion. Then a small amount of the suspension was dropped on
the carbon-coated copper grid. After 10 min, a tissue paper was slightly approached to the grid
to remove the excess water for TEM observation. To characterize polymer microcomposites,
the samples were cut using ultramicrotomy and collected on a carbon film-coated cooper grid.

Scanning electron microscope (SEM) at low resolution was carried out using a TESCAN
VEGA3 microscope from TESCAN ANALYTICS operating at an accelerate voltage of 10 kV.
SEM microscopy at high resolution was carried out using a ZEISS MERLIN COMPACT
microscope operating at an accelerate voltage of 1 kV. To prepare the specimen, dried powder
of IL@Si10; microcapsules and cross sections of epoxy composites were pasted on the sample
holder using a carbon tape. The specimens were coated with gold using a sputter coater to
prevent charge accumulation on the surface. The sputter coating process was performed at a
current of 30 mA for 90 s.

Thermogravimetric analysis (TGA) was carried out using a Q500 thermogravimetric
analyzer from TA Instruments. The analysis was performed from 30 to 700 °C at a heating rate
of 20 K-min™' under nitrogen atmosphere.

Dynamic light scattering (DLS) performed using Nano Series instrument ZEN 3600
(Nano-Zeta Sizer) from Malvern Instruments was used to determine the size distribution of the
IL@S102 microcapsule. IL@S102 microcapsules were dispersed in large amount of deionized
water and then ultrasonic treatment was carried out for 30 min in order to obtain a good
dispersion.

The reagents and IL@Si0; microcapsules were characterized using Fourier transform
infrared (FTIR) spectroscopic analysis (Thermo Scientific Nicolet iS10 Spectrometer) in
transmission mode (64 scans, resolution 4 cm™).

Elemental analysis was carried out by CREALINS Co. using Inductively Coupled Plasma-
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Atomic Emission Spectrometry (ICP-AES) (Thermofisher Instrument).

Differential Scanning Calorimetry (DSC) measurements on epoxy microcomposites were
carried out by using Q10 (TA Instrument) from 20 to 250 °C at a heating rate of 10 K-min™!
under nitrogen flow of 50 mL-min™.

Compression tests were carried out using a MTS machine operating with a 5 kN load cell.
The samples geometry was based on ISO 604:2002 standard i.e. 5*5*16 mm?>. The Young's
modulus (E') was determined from o (stress) vs. € (strain) curves in the linear region.

Mode I stress intensity factor (K;.) of epoxy-amine networks and related microcomposites
were determined on compact tension specimens according to the ISO 13586:2018(E) standards
(Figure 2-2). The notch was formed using a milling cutter and the initial crack also known as
natural crack was made by tapping a fine razor blade into the notch. The length of initial crack
to width ratio (@/w) has to keep between 0.2 and 0.8. The fracture toughness test was carried
out using a MTS tensile machine equipped with a 1 kN load cell operating at tensile speed at

10 mm'min’. K;. was calculated according to equation 2-1:
— Fo :
K. = f(a/w) P~ (equation 2-1)

where a (m) is the length of initial crack, w (m) and h (m) are the width and
thickness of specimen, respectively. Fy (N) is the final load at the first crack. The f(a/w)

value is a geometrical factor which can be calculated using equation 2-2:

flajw) =

2+a)
(1—a)3/2

The critical energy release (G;.) can be calculated from equation 2-3 and the value of K,

X (0.886 + 4.64a — 13.32a2 + 14.72a% — 5.64a*) (equation 2-2)

Young’s modulus (E), and Poisson’s coefficient (v). 0.35 for v were considered according to

the values related in the literature for epoxy networks 3401,
1-v?) K}, ,
G = % (equation 2-3)
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Figure 2-3 Compact Tensile (CT) test specimen geometry

Dynamic mechanical analyses (DMA) were carried out using a ARES-G2 type rotational
rheometer from TA Instruments. The analyses were carried out for 0.01% dynamic strain at a
frequency of 1 Hz and a heating rate of 3 K-min™' from 35 to 250 °C.

Swelling tests were carried out at room temperature. Tetrahydrofuran (THF) was chosen

as good solvent for epoxy resin. Each specimen (1 X 5X 5 mm?® ) was immersed in THF at room

temperature until the equilibrium was reached. THF uptake (&) was determined by weighing

the swollen polymer (dried with paper after taken from the THF) and calculated according to

the following 2-4 equation.

T o (equation 2-4)
o

o=

where m, and m, were the weight of the sample before swelling and the weight after

swelling, respectively.

2.3 Characterization of the IL@SiO2 microcapsules

2.3.1 Morphology and size distribution of the IL@SiO2 microcapsules

The surface morphology and the size distribution of IL@SiO> microcapsules were
characterized by transmission electron (TEM) and scanning electron (SEM) microscopies.
Figure 2-4 shows TEM and SEM micrographs of IL@SiO2 microcapsules at different
magnifications. These ones reveal the core-shell structure and the roughness of obtained

IL@Si02 microcapsules. TEM micrographs (Figure 2-4 (a), (b)) confirm the synthesis of
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IL@Si0; microcapsules having sizes from 0.5 to 2 um. The resulting distribution of particle
sizes of the IL@S10, microcapsules can be explained by the synthesis protocol involving a sol-
gel process in O/W emulsion medium. The dispersed oil droplets in the emulsion, i.e. IL, are
always in constant motion. As a consequence, if the interfacial membrane of the IL droplets in
the emulsion breaks during the collision, two droplets could coalesce to form larger size droplets
(411 That’s why the presence of an emulsifier is required to keep the emulsion stable. However,
the droplets are subjected to different shear forces field leading to a broad droplet size
distribution %%}, The shell thickness of microcapsules could be estimated from image analysis
and was founded to be 100 nm. On the SEM micrograph in Figure 2-4 (d), it is also worth noting
the roughness of the silica microcapsules highlighting the formation of colloidal silica

nanoparticles onto their surface.

SEM HV: 10.0 kV WD; 9.96 mm VEGA3 TESCAN
Det: SE SEM MAG: 10.0 kx |5 pm
BI: 10.00 HiVac INSA - Département SGM

Figure 2-4 (a,b) TEM and SEM (c,d) micrographs of IL@Si02 microcapsules at different

magnifications
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Moreover, energy-dispersive X-ray spectroscopy (EDX) combined with TEM was used to
determine the location of phosphonium ionic liquid in the IL@Si10; microcapsules. The EDX
spectra were presented in Figure 2-5. Compared to the carbon film supported copper grids
(Figure 2-5 (b)) used as reference substrate, silicon and phosphorus-rich compounds can be
clearly distinguished in IL@SiO2 microcapsules (Figure 2-5 (a)) confirming that the

phosphonium IL was well encapsulated into a silica shell.

Si
2000—
1 @ | Y
Silicon and phosphorus
1500 § compound
410
1000—
Cu
Cu
keV
‘:I) 10
1 Cu
350 (b)
300

keV

Figure 2-5 EDX spectra of (a) IL@SiO2 microcapsules and (b) cooper grid

As mentioned, dynamic light scattering (DLS) was considered to quantify the
microcapsule size distribution which was already observed by electron microscopies. The DLS
spectrum presented in Figure 2-6 evidences a relatively narrow distribution of particle sizes in

agreement with the conclusions from TEM and SEM analyses. IL@Si10> microcapsules have
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size in the range from 0.5 um to 2 um. As mentioned previously, the polydispersity of

microcapsule size is associated to the dynamic character of IL/H,O emulsion droplets 4?1,

25+ [ Intensity

3

Intensity (%)
3

=
o
1

1 R

T T T T
0 200 400 600 800 1000
Size (d.nm)

Figure 2-6 Size distribution of IL@Si102 microcapsules

2.3.2 Chemical characterization of the IL@SiO2 microcapsules

Fourier-transform infrared spectroscopy (FTIR) was used to investigate the chemical
structure of IL@SiO> microcapsules. The spectra of IL@Si02 microcapsules, IL 104, and
CTAB and SDS surfactants are given in Figure 2-7. The absorption peak at 1,090 cm’!
corresponds to the anti-symmetric stretching vibrations of Si-O-Si bonds as well the absorption
peaks at 806 cm™! and 459 cm™ which are assigned to symmetric stretching vibration and
bending vibration of Si-O bonds. These bonds evidence for the existence of the SiO,-rich shell
for the IL@S102 microcapsules. Moreover, the stretching vibration of carbon-hydrogen bonds
(C-H, 2,853-2,860 cm™!) and bending vibration of methylene groups (-CH>—, 1,460 cm™') were
assigned to the alkyl chains of IL 104 and the hydrophobic moieties of the surfactants.
Compared to the strong absorption peaks of initial chemicals, these relatively weak absorption
peaks corresponding to aliphatic chains can be additional evidence to prove that IL 104 is well
encapsulated. In addition, the similar features spectra for IL 104 and IL@SiO> microcapsules
also confirmed the efficient encapsulation of IL 104. In order to know the weight fractions of

IL 104 and silica shell, further analytical characterizations should be carried out.

102

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LY SEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Chapter 2 Ionic liquid-containing silica microcapsules as functional additives for
epoxy-amine networks

(a) SDS

(b) CTAB
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Figure 2-7 FT-IR spectrum of (a) SDS, (b) CTAB, (c) IL 104, and (d) IL@Si0-
2.3.3 Determination of IL content of the IL@SiO2 microcapsules

Thermogravimetric analysis (TGA) was carried out to characterize the thermal stability as
well as the IL content in IL@Si0> microcapsules. In order to confirm the presence of IL 104
into IL@Si0y, silica nanospheres (nSi0»), i.e. without IL, were also prepared using the same
procedure. The synthetic procedure of nSiO> of and their corresponding TEM micrographs
(Figure S2-1) are described in the Supporting Information. TGA traces of IL@SiO2
microcapsules, IL 104, surfactants, and nSiO, (without IL) are presented in Figure 2-8. It can
be seen that the first degradation step occurs below 300 °C for IL@SiO2 microcapsules and
nSiO> due to the decomposition of surfactants, i.e. CTAB and SDS. In addition, the onset
decomposition temperature (T4 onset) Which is defined for 5 % wt. loss. for IL 104, SDS, and
CTAB were found to be 208, 209, and 229 °C, respectively. For IL@Si10> microcapsules, the
Td onset 18 216 °C that is slightly higher than the neat IL 104 one (208 °C). This can be explained
by the protection of the ionic liquid by the silica shell and the resistance of internal pressure.
Compared with nSiO, without IL, it is obvious that there is another degradation stage (320 °C
- 570 °C) taking place, which can be assigned to the degradation of IL 104 in the IL@SiO>

microcapsules. Regarding the complex degradation process, it was found that the total weight
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loss of IL@Si102 microcapsules was found to be closed to 51 wt%.

(a)—— IL@SiO,
(b)——1L104
(c)——sDs
(d)——CTAB

(e) —+ nSiO, without IL

100

80 +

60

40 4

Weight (%)

20 4

T T T T
400 600 800
Temperature (°C)

Figure 2-8 TGA traces of (a) IL@Si0; microcapsules, (b) IL 104,
(c) SDS, (d) CTAB, and (e) nSiO: (i.e. without IL) (N2 atmosphere, heating rate 20 K-min')

In order to quantify the IL 104 content in the silica microcapsules, elemental analysis was
carried on. Silicon (Si) and phosphorous (P) mainly concern the elements from the shell and
core material respectively. The elemental mass fractions of Si1 and P in IL@S102 microcapsules
were found to be 19.1 and 1.5 %, respectively. Therefore, according to the mass fraction of
these two elements in the starting materials, one can estimate the corresponding SiO> and IL
104 contents in the IL@Si02 microcapsules according to the following equations 2-5 and 2-6,
respectively.

__ Wsi/IL@Sio, .
Wsio, /IL@Si0, = m (equation 2-5)

__ Wp/IL@SIO, .
Wp/1L@SiI0; = 4y, T (equation 2-6)

where wg;/si0, and wp,y;, are the mass fractions of Si or P elements in SiO; or in IL 104
respectively,

Wsi/L@sio, and Wp/@sio, are the mass fractions of Si or P elements in IL@SiO:
microcapsules from the elemental analyses,

Wsio,/IL@sio, aNd Wi /@sio, are the calculated mass fractions of SiO; and IL 104 in

104
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IL@Si0; microcapsules. Therefore, after the calculation based on elemental analysis, it can be
estimated that about 41 wt.% of silica and 20 wt.% IL 104 are contained in the IL@SiO>
microcapsules. The calculated mass fraction of silica is in agreement with the residual weight
fraction measured by TGA after a complete degradation. Compared to the previous works about
encapsulation of imidazolium ionic liquid ((Bmim][PFs]), 66 wt.% IL loading for Weiss 2" and
31 wt.% for Zhang ?®!, we have reached a lower encapsulated mass fraction of IL. This result
could be explained as the phosphonium ionic liquid used in this work has a higher viscosity
because of its longer alkyl chain. As a consequence, its stabilization in aqueous solution is more
difficult. Therefore, higher amounts of surfactants were required lowering the mass fraction of
ionic liquid in the resulting IL@Si02 microcapsules.

To sum up, IL@SiO2 microcapsules with a silica shell containing phosphonium IL 104
core were successfully synthesized from one pot sol-gel process within an IL/H>0O emulsion
stabilized with surfactants. Several characterization techniques were employed to characterize
the obtained IL@SiO2 microcapsules. It has been proved that this new type of IL@SiO:
microcapsules have ideal sphere morphology, core-shell structure, and good thermal stability.
Up to now, there were not many researches on ionic liquids encapsulated in silica microcapsules
which has been applied as functional additives in thermoset polymer composites.

Therefore, the designed IL@SiO2 microcapsules were introduced as reinforcing fillers in
epoxy-amine networks in order to study their effect on the final properties of resulting
microcomposites. It can be speculated that the core-shell structure and other features of
IL@S102 microcapsules will influence the mechanical behavior of the epoxy matrix. Therefore,
in the following part, IL@Si02 microcapsules were incorporated in epoxy-amine networks and
different methods such as TEM, SEM, DMA, etc., were employed to characterize the
morphologies, dynamic mechanical properties and mechanical properties of the
microcomposites. Finally, the mechanisms involved in fracture of such microcomposites are

discussed according to the models reported in the literature.
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2.3 Characterization of IL@SiO2 microcapsule-filled epoxy-amine microcomposites

2.3.1 Morphology and size distributions of IL@SiO2 microcapsule-filled epoxy-amine

microcomposites

Dispersion and morphology of fillers in polymer matrix often have non-negligible
influence on the physical properties of polymer composites. So, the dispersion and morphology
of IL@SiO> microcapsules in the epoxy-amine microcomposites were characterized by
transmission electron microscope (TEM). Figure 2-9 shows TEM micrographs of epoxy
microcomposites for r equal to 1.0 and various weight fractions of IL@SiO2 microcapsules at
different magnifications (similar morphologies are observed for the different stoichiometry
ratios). As shown in Figure 2-9, spherical geometry, i.e. circular cross section on TEM
micrographs, of microcapsules can be seen which demonstrates that the microcapsules were not
broken during processing of the microcomposites, i.e. mixing step.

Silica-based fillers such as fumed silica without any surface modification are likely to
aggregate which limits their reinforcement effect or even leads to negative effects on the
properties of polymer composites [*4!. For example, Constantinescu [**! and Battistella ¢! have
reported that non-functionalized fumed silica nanoparticles have poor ability to be dispersed in
epoxy matrix. As a consequence, no improvement could be reached compared to the neat epoxy
due to the poor dispersion state issued from the weak chemical interactions between fumed
nanosilica surface and epoxy network chains. For example, for nanosilica/epoxy materials (47,
silica remains as large agglomerates and the addition of imidazolium IL as dispersing agent can
contribute to a better morphology and interfacial adhesion. Nevertheless, according to our study,
IL@S102 microcapsules synthesized by sol-gel in IL/H>O emulsion having a core-shell
structure and a rough surface *!] have good dispersibility, i.e. a good ability to be dispersed in
epoxy-amine reactive systems. The role of the roughness of the surface of the IL@Si0O;

microcapsules may enhance the interfacial strength between the silica surface and organic phase.
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Figure 2-9 TEM micrographs of IL@Si0O2 microcapsule-filled epoxy-amine microcomposites

(a) 1.0-1; (b) 1.0-2; (¢)1.0-5; (d) 1.2-1; (e) 1.2-2; (f) 1.2-5; (g) 1.4-1; (h) 1.4-2; (i) 1.4-5

2.3.2 Thermal and dynamic mechanical properties of IL@SiO2 microcapsule-filled epoxy-

amine microcomposites

Thermal properties, including glass transition temperature, Ty, of IL@Si02 microcapsule-
filled epoxy microcomposites were characterized by differential scanning calorimetry (DSC).
All the Ty values of different materials are summarized in Table 2-4 while all the DSC curves

are given in Figure S2-1 in the Supporting Information of Chapter 2.
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Table 2-4 Glass transition temperature (Tg) of epoxy-amine networks, i.e. their corresponding

IL@Si02 microcapsule-filled microcomposites with different epoxy-to-amino hydrogen ratios

Materials Tg (°C) Materials Tg (°C) Materials Te (°C)
1.0-0 156 1.2-0 104 1.4-0 83
1.0-1 165 1.2-1 116 1.4-1 109
1.0-2 170 1.2-2 127 1.4-2 125
1.0-5 171 1.2-5 142 1.4-5 135

As expected, the epoxy-to-aminohydrogen ratio has a significant influence on the T, value.
For the same weight fraction of IL@Si0, microcapsules, the epoxy-amine network prepared at
the stoichiometric ratio (r=1.0) has the highest T,. While for the non-stoichiometric epoxy-
amine system (r=1.2 or r =1.4), the lack of curing agents, i.e. amine comonomer, resulted in a
lower crosslink density, inducing more flexibility, as a consequence, a lower Tg [+,

For the same epoxy-to-amino hydrogen ratio, T increased with the increasing number of
IL@Si0; microcapsules in the epoxy-amine microcomposites. Compared with epoxy-amine
microcomposites cured at stoichiometric ratio (r=1), IL@Si102 microcapsules led to a more
dramatical improvement on Ty for non-stoichiometric (r=1.2 or r =1.4) matrix materials,
indicating that unreacted groups could interact at the IL@S10, microcapsules surface hindering
segmental motion of polymer chains. For IL@SiO2 microcapsule-filled epoxy networks, it can
be seen that these IL@S10> microcapsules have a positive effect on the thermal properties of
epoxy-amine microcomposites. Compared to the results of Rosso et al °% the addition of sol-
gel silica nanoparticles with surface modification at 5 vol % improved the stiffness and
toughness while promoting a plasticizing effect, i.e. a decrease of Te. Such an effect of
plasticizing induced by the surface treatment of silica surface also happened for other colloidal
silica filled epoxy composites °!1. In fact, the surface modification induced the formation of an
interface softer than the bulk matrix.

In order to confirm the existence of strong interactions between polymer chains and the

surface of IL@Si02 microcapsules, dynamic mechanical analysis (DMA) has been carried out.
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Figure 2-10 shows curves of loss factor (tan 9) as a function of temperature of different epoxy
networks and their corresponding microcomposites prepared with different r ratios. Storage
modulus (E’) and loss modulus (E”) curves are also shown in Figure S2-3 in supporting
information of Chapter 2. Considering the Young's modulus (E) can be related to the second
derivative with respect to strain (g) of the Helmholtz free energy (A4) %%, written as equation

2-7:

924 ,
E = (E)T (equation 2-7)

and the definition of Helmholtz free energy °#! in equation 2-8 involving internal energy (U)
and entropy (S):
A =U—TS (equation 2-8)

therefore, the Young’s modulus can be written as equation 2-9:

E = (ZZTZ)T —-T (g)T (equation 2-9)

Assuming homogeneous epoxy networks for which the internal energy will not change
with deformation at a given temperature, the change of entropy governs the value of their
modulus as one is affected by the structure and the crosslink density. Thus, according to the
rubber elasticity theory 1%, the elastic modulus is related to the molecular weight between

crosslinks (M,) and volume density (p) (2-10):

3RT

p .
7 (equation 2-10)

E =

Thus, the crosslink density of epoxy networks can be calculated by equation 2-11:

_ Er’ -
Ve = 3RTR (equation 2-11)

where the Ep (Pa) is storage modulus of epoxy networks at the rubbery plateau, R is ideal
gas constant (R = 8.314 ] -mol™* - K™1), and Ty =T, + 30(K).

From the values of the storage modulus in the rubbery state (ER’) of the neat epoxy
networks 281 and the theoretical features reported previously, the crosslink density (v,) of

different materials was calculated and summarized in Table 2-5.
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Figure 2-10 Loss factor (tan 0) as a function temperature of different epoxy-amine

microcomposites (a) =1.0; (b) r=1.2; (c) r=1.4 (at 1Hz, heating rate 3 K-min')

Table 2-5 Dynamic mechanical behavior of neat epoxy-amine networks and microcomposites

based on different weight fractions of IL@S102 microcapsules

Materials To (°C) Tr (°C) ™ E’r (MPa)™ max tan 0 Ve (mol-m™)
1.0-0 168 198 16.1 0.69 1371
1.0-1 175 205 323 0.63 /

1.0-2 176 206 383 0.58 /

1.0-5 173 203 36.5 0.51 /

1.2-0 116 146 10.4 0.75 997

1.2-1 128 158 16.0 0.74 /
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1.2-2 132 162 17.2 0.62 /
1.2-5 142 172 32.6 0.49 /
1.4-0 100 130 8.4 1.00 838
1.4-1 116 146 11.7 0.93 /
1.4-2 129 159 13.8 0.82 /
1.4-5 140 170 29.7 0.68 /

" a-relaxation temperature obtained (T,) from DMA at 1 Hz at the maximum tan &
** Temperature determined at which E'g is, i.e. Tr = To+30 (K) at rubbery state

*** Storage modulus in the rubbery state

Table 2-5 reports the temperature of the o-relaxation associated with the glass transition.
As expected, Tq, obtained from the value at the maximum tan 6, decreases as the epoxy-to-
amino hydrogen ratio increases (r>1.0) for the same weight fraction of IL@SiO> microcapsules.
As for Tg measured by DSC, this decrease is attributed to the reduction of the crosslink density
with increasing r value. In fact, as an excessive amount of epoxy monomer is used, the average
molar mass between crosslinks increases, i.e. decrease of the crosslink density, ve. As a
consequence, the storage modulus in the rubbery state, Ep’, decreases with the increasing
stoichiometric ratio, r. The enhanced segmental motion of the polymer network chains could be
also evidenced from the values of tan d at T,.

On the other hand, T, increases as the weight fraction of IL@SiO microcapsules increases
for a given r value, in agreement with DSC results. The increase of T, with the weight fraction
of microcapsules could be attributed to strong interactions created at the silica surface with the
polar groups in the epoxy network. In fact, hydrogen bonds could be generated between the
surface silanols and polar groups such as hydroxyls (hydroxy ethers formed from the addition
reactions), epoxies, or remaining primary or secondary amines. In addition, dehydration
reactions could occur between the generated hydroxyl groups and the silanols at the silica
surface [°%,

The existence of these interfacial physical interactions leads to the reduction of the

segmental motions. Thus, as the mass fraction of IL@Si0; increases, i.e. as the interfacial area
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increases, more and more interfacial interactions (acting as additional physical crosslinks) and
potential interfacial bonds (acting as additional chemical crosslinks) are generated leading to
an increase of the To. For microcomposites prepared from epoxy matrices having a
stoichiometric ratio higher than 1.0, more epoxy groups remain unreacted and could form
additional interactions with silanols.

These ones could explain the larger effect on the increase of T, with the increasing amount
of microcapsules. These interfacial interactions/reactions also contribute to increase the value
of the storage modulus in the rubbery state, Eg’, which is related both on the crosslinking
density and the reinforcement effect due to the presence of stiff silica particles since this
improvement depends on both polymer chain ends and IL@SiO, microcapsules content.
Nevertheless, as IL@SiO> microcapsules are added more than 5 wt%, a significant increase of
the viscosity of the mixture is observed leading to difficulties for the processing. These of
change of end groups in the molecular chains by the addition of IL@SiO> microcapsules
brought a very slight influence on the surface properties, which can be seen in the supporting

information.
2.3.3 Swelling

When the crosslinked polymer is put in a good solvent, two main factors are crucial: i) the
solubility of monomer units in the solvent, which is mainly revealed by Flory-Huggins
parameter y; ii) the molar mass between crosslinks, i.e. crosslink density 7). The relation
between M, and v, can be converted by the density of polymer (p) according to equation 2-
12:

M, = vﬁe (equation 2-12)

The swelling equilibrium defined by Flory-Rehner [ is based on the hypothesis that the

59]

changes of free energy on swelling of a network can be separated and are additive . M, can

be calculated according to the equation 2-13, which also showed how swelling is related to the

molar mass between crosslinks [6%- 611,

|4
W,*—=B

M, = —v; X
¢ 12 P2 In(1-Vp)+Vp+x12V2

(equation 2-13)
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where v; is the molar volume of the solvent, p, the density of polymer material, V, the
volume fraction of polymer in the swollen polymer, and y;, the Flory solvent-polymer
interaction parameter between polymer and solvent. In the practical experiment, the volume
fraction of polymer in the swollen polymer, V,, could be calculated from the swelling ratio

determined from swelling experiments according to the equation 2-14:

L1+ (@, — 1)& (equation 2-14)
2% P1

where ¢, is the swelling ratio (equation 2-15), p; and p, the density of solvent and
polymer, respectively.
_ Mgwell

@, = ———  (equation 2-15)

mo

where mg,,.;; 1s the mass of the swollen polymer while m, is the mass of the original
dry polymer. Nevertheless, this approach to determine M, remains limited for highly cross-
linked polymers as swelling is lower than expected. As a consequence, only quantitative
determination could be done from the swelling ratio [*?], i.e. swelling experiments are used to
estimate changes in the crosslink density (664,

Tetrahydrofuran (THF) is well-known as good solvent for epoxy prepolymers. As a
consequence, THF was chosen for the swelling experiments performed on epoxy-amine
networks and IL@SiO> microcapsule-filed epoxy microcomposites. Different samples were
immersed in the same amount of THF and left at the room temperature until the equilibrium
was reached (or the sample broke). All the samples were weighted after well wiped at set
intervals. The swelling ratios of different IL@SiO, microcapsule-filled epoxy-amine
microcomposites as a function a time are shown in Figure 2-11. As mentioned before, the
swelling by the solvent is mainly related to the Flory-Huggins parameters of the solvent and

polymer chains as well as the crosslink density. It is obvious that lowly crosslinked networks

will swell much more than highly crosslinked networks.
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Figure 2-11 Swelling ratio of different epoxy-amine networks and their corresponding

IL@S10; microcapsule-filled microcomposites in THF (at room temperature)

It can be seen from Figure 2-11 that epoxy-to-amino hydrogen ratio plays an important
role in the solvent. Without addition of IL@SiO2 microcapsules, epoxy-amine networks at
stoichiometric ratio (r=1.0) are the most stable ones in the solvent while epoxy-amine networks
with r=1.4 even break after being immersed in THF for 4 hours. With only 1 wt% of IL@SiO»
microcapsules added in the epoxy-amine matrix (r=1.4), the performance of microcomposites
in the solvent was greatly improved. Hence, the swelling experiments have showed that the
addition of IL@S10, microcapsules in the polymer matrix can improve the dimensional
stability of epoxy-amine microcomposites. For a better understanding, the graphical illustration
in 3D of swelling model of IL@S10, microcapsule-filled epoxy-amine composites is presented
in Figure 2-12. As drawn, the epoxy-amine network without IL@SiO2 microcapsules shows
swollen macromolecules. And solvent molecules can easily penetrate the network and decrease
crosslinking density. Therefore, the material may collapse from internal molecular chains as
shown in the Figure 2-12 (b). While with the addition of IL@S10, microcapsules (Figure 2-12

(d)), IL@Si102 microcapsules help the material to keep a dimensional stability in the solvent.
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- epoxy-amine network microcapSl-lle
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Figure 2-12 Graphical illustration of swelling model of neat epoxy-amine network:
(a) before and (b) after swelling; and IL@S10; microcapsule-filled epoxy-amine

microcomposites: (c¢) before and (d) after swelling

2.3.4 Thermal behavior of neat epoxy networks and IL@SiO2 microcapsule-filled epoxy

microcomposites

Thermostability and degradation behavior of IL@SiO2 microcapsule-filled epoxy
microcomposites were characterized by thermogravimetric analysis (TGA) under nitrogen (N2)
atmosphere. The temperature at 5 wt% weight loss, Tq 5%, was determined as the onset of weight
loss temperature and the temperature at the peak of DTG curve as the maximum decomposition
temperature (Tamax). Table 2-6 reports the decomposition temperatures of all the materials (TGA
and DTG curves are presented in Figure S2-5 in the Supporting Information of Chapter 2). It is
obvious that all the Tq 5o are above 350 °C except for the neat epoxy network prepared with a
large excess of epoxy (material denoted 1.4-0). All the materials, i.e. neat epoxy networks and
microcomposites, display similar Tq max. Because of the high thermal stability of IL@S10:
microcapsules ! and additional interactions generated in between microcapsules and epoxy
network in microcomposites, the microcapsules do not have negative influence on the thermal

stability of epoxy microcomposites.
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Table 2-6 Degradation temperatures of epoxy-based materials obtained using TGA analysis

Materials Td onset (°C) Td max (°C)
1.0-0 359 378
1.0-1 361 379
1.0-2 352 378
1.0-5 353 377
1.2-0 352 380
1.2-1 359 381
1.2-2 363 380
1.2-5 359 380
1.4-0 329 380
1.4-1 363 382
1.4-2 352 383
1.4-5 356 384

2.3.5 Mechanical performances of IL@SiO2 microcapsule-filled epoxy-amine

microcomposites

According to the results of thermomechanical analyses, the IL@SiO, microcapsules
generate interactions between polymer chains and silica surface. Thus, it is interesting to study
the effect of such additional physical and chemical interactions due to the presence of IL@S10>
microcapsules on the large strain mechanical properties and fracture toughness of
microcomposites. Therefore, compression and fracture toughness tests were performed to
determine the Young’s modulus, E, and the stress intensity factor, Kj., as well as critical
energy release rate, G;., of IL@SiO, microcapsules filled epoxy-amine microcomposites

compared to neat epoxy-amine networks (see Figure 2-13 and Figure 2-14). The values of E,
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K;. and G;. of different samples are summarized in the Figure 2-13 and Figure 2-14,
respectively. The corresponding values are summarized in Table S2-2. (see the supporting

information of Chapter 2).

1.2
1.6 14 § § §

1.4 §

E(GPa)

1.2
1.0
0.84
0.6 4
0.4+
0.24
0.0

s TR ARARRRTRRERRRAN

=TI

T T
1 2

Mass fraction of IL@SiO, microcapsules (wt%)

Figure 2-13 Young's modulus epoxy-amine microcomposite filled with different weight

fractions of IL@Si0O2 microcapsules
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Figure 2-14 (a) K;. and (b) G;. of epoxy-amine microcomposites filled with different

weight fractions of IL@Si10, microcapsules

First of all, the dependence of the Young’s modulus of the neat epoxy-amine networks
with the epoxy-amino hydrogen ratio (r) is in agreement with the ones reported in the literature
(6] In fact, the Young’s modulus is not maximum for the ‘closed’ network, i.e. for r equal to
1.0, due to the antiplasticization effect related to the amplitude of the secondary relaxation B in

67]

the glassy state 7l On another hand, the fracture energies of neat epoxy networks and

microcomposites (for a given weight fraction of IL@SiO2 microcapsules) decrease with
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increased r value.

For the materials prepared with a stoichiometric ratio equal to 1.0, the modulus and
fracture toughness increase with the increasing IL@SiO2 microcapsules content. Contrary to
some works such as those reported by Chen et al %81 who observed the expected increase of
Young's modulus but a decrease of the glass transition temperature, the microcomposites
prepared in our work display both an improvement of stiffness and toughness and no loss of
thermomechanical properties. Chemical modification of silica is generally considered for
improving the dispersion in the polymer matrix in order to avoid the formation of aggregates to
improve the interfacial strength [°). In our case, no surface modification of silica was applied
and the dispersion is rather fine, meanwhile no negative influence on thermal properties was
observed compared to previous studies on silica-based nanocomposites 1. Nevertheless, our
results are in agreement with those reported by Kausch’s group ["” for epoxies filled with
various types of microparticles such as silica or alumina. These authors observed that the stress
intensity factor, Kj., varies linearly with the volume fraction of silica microparticles and that
the surface treatment has no influence. Fracture mechanisms were proposed and will be
discussed for our microcomposites in the next section (see 3.4). For microcomposites prepared
with a non-stoichiometric epoxy system, i.e. r equal to 1.2 or 1.4, we found that microcapsules
have a similar reinforcing effect for microcomposites prepared with r equal to 1.0.

From these results, one can conclude that the introduction of low amounts of IL@Si10>
microcapsules can lead to an increase of the Young modulus as well as fracture energy without
counterpart in terms of loss of thermal properties (Tg increases even in the presence of
microcapsules). To develop a better understanding of the toughening mechanisms involved for
such microcomposites and the difference with silica filled epoxy nanocomposites, further

characterizations will be carried out from the observation of fracture surfaces.
2.3.6 Fracture mechanism of IL@SiO:2 microcapsule-filled epoxy-amine microcomposites

Analyzing the topography of the fracture surface of microcomposites, i.e. issued from the
fractured CT specimens, is helpful to understand the fracture and toughening mechanisms.
Thus, scanning electron microscopy (SEM) was employed to observe the fracture surfaces of

the IL@Si02 microcapsule-filled epoxy-amine microcomposites. Figure 2-15 shows SEM
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images of the neat epoxy-amine network and the corresponding microcomposites. A uniform
dispersion of IL@Si10; microcapsules in the epoxy matrix is observed, i.e. no widespread
agglomeration. Nevertheless, different morphologies of fractured surface were noticed for

various types of microcomposites.
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Det: SE SEM MAG: 1.50 kx 50 pm Det: SE SEM MAG: 1.50 kx | 50 pm
Bl 10.00 HIVac INSA - Département SGM Bl 10.00 Hivac INSA - Département SGM

119

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Chapter 2 Ionic liquid-containing silica microcapsules as functional additives for
epoxy-amine networks

¢

_ SEM ] VEGA3 TESCAN ADOKY W R VEGA3 TESCAN
Det: SE SEM MAG: 2.00 kx 20 pm SE SEM MAG: 3.00 kx 20 um
BI: 10.00 HiVac INSA - Département SGM BI: 10.00 HiVac INSA - Département SGM

1 VEGA3 TESCAN| 10.0 kV ) WD: 9.93 mm VEGA3 TESCAN
Det; SE SEM MAG: 1.50 kx50 ym Det: SE SEM MAG: 3.00 kx 20 pm
Bl: 10.00 HiVac INSA - Département SGM BI: 10.00 HiVac INSA - Département SGM

VEGA3 TESCAN

INSA - Département SGM

Figure 2-15 SEM micrographs of fracture surfaces of epoxy-amine composites filled with
different weight fractions of IL@SiO> microcapsules
(a) 1.0-0; (b) 1.0-1; (¢) 1.0-2; (d) 1.0-5;
(e) 1.2-0; (H1.2-1; (g)1.2-2; (h) 1.2-5;
(1) 1.4-0; §) 1.4-1; (k) 1.4-2; (1) 1.4-5

First of all, the neat epoxy-amine network displays a mirror-like fracture surface which is

usual for non-modified epoxy-amine networks (see Figure 2-15 (a), (e) and (i)). The fracture
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surface steps are related to the stick-slip propagation of the crack with successive arrests.
While for the IL@SiO> microcapsule-filled epoxy-amine composites, two different types
of fracture surface can be distinguished from the Figure 2-15. When microcapsules are added
at low content, i.e. 1 and 2 wt%, the distance between microcapsules is large, resulting in surface
steps associated with microcapsules encountered by the moving crack front (Figure 2-15 (b),
(c), (), (g), (j), and (k)). When microcapsules are present at high content (5 wt%, Figure 2-15
(d), (h), (1)), a much more larger fracture surface is generated with multiple cracks deviations
corresponding to the observed increase of G;.. These types of fracture surfaces are in

agreement with the description of Lange [!]

about filled epoxies.

Difference toughening mechanisms were proposed. For example, crack bifurcation or
microcracking could be identified as the toughening mechanism for rubber or thermoplastic-
modified epoxies "2, Crack deflection, crack pinning, plastic deformation, and plastic void
growth are universal toughening mechanisms for the nano/microparticles filled polymer
composites. The mechanism may differ according to the size and shape of the fillers. Crack
pinning mechanism involved for hard fillers will create the obstruction to the propagation of
the crack front and led to an increasing toughness by bowing out the crack front between the
particles ["3. This phenomenon was first put forward by Lange " and Zamanian et a/ I*! who
also pointed out in their publication that crack pinning could possibly happen when the size of
fillers is comparable to the crack tip opening displacement. Besides, Lange also gave the

76

relation between the increasing fracture energy and interparticle spacing 7%, which was

described in equation 2-16:
AG,, = % (equation 2-16)
where the T'is the line energy of the crack front and the 25 is the interparticle spacing. Therefore,
As the weight fraction of IL@Si10; microcapsules increases, the interparticle spacing decreases.
As a consequence, the fracture energy increases.
Crack deflection, crack front pinning, enhanced plastic deformation, and crack tip blunting
were proposed to explain the toughening mechanisms for the particle filled glassy polymer

9,71, 77

networks ! 1. For particle-reinforced epoxy composites, the fracture patterns identified on

the SEM images reveal that crack pinning would be the possible toughening mechanism. In fact,
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the propagation of cracks seems to be pinned by the microcapsules. As it is known that crack

pinning could occur as the size of fillers is comparable to the crack tip opening displacement

(COD, ¢,), it is necessary to see if such a fracture criteria plays a role. Figure 8 recalls the

theoretical definition of COD at the crack tip.

microcrack

plastic zone

hypothetical crack tip

\actual crack tip

Figure 2-16 Schematic diagram of the crack tip and crack opening displacement (COD) [77]

Under plane strain conditions, the corresponding COD value at the crack tip can be

78, 79].

calculated from equation 2-17 [

_ Kie o 2y _ Gic -
Otc = Eo, (1—-v?) = 5 (equation 2-17)

where the o), is the yield stress of the material and G, is the critical energy release rate
in Mode 1. All the values of yield stress and calculated theoretical COD values of different
materials are summarized in Table 2-7, in which all the &;. values are comparable with the
size of IL@S10, microcapsules. This fact demonstrates that crack growth can be prevented by
fillers such as IL@SiO2 microcapsules. In addition, it is obvious that with the increasing
microcapsule content, i.e. the number of obstacles in the epoxy matrix, such an increase of ;.
can also be considered as an evidence of enhanced fracture toughness. In addition, crack tip
blunting results from pulling out of the microcapsules as evidenced on SEM images. The
resulting increase of the crack tip radius leads to a reduction of the local stress concentration.
As a consequence, those toughening mechanisms lead to an increase of the volume of the
process zone, i.e. the volume ahead of the crack tip in which plastic deformation is located.
Thus, microcapsules could contribute to the fracture toughness of epoxy-microcapsules
microcomposites. To sum up, epoxy amine networks without microcapsules display brittle
behavior, ie. have low fracture toughness, whereas the microcapsules filled epoxy
microcomposites, crack pinning and crack tip blunting mechanisms contribute to a higher
fracture toughness.
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Table 2-7 Yield stress and theoretical crack opening displacement values of neat epoxy-amine

networks and microcomposites based on different weight fractions of IL@Si0O> microcapsules

Material o, (MPa) 8¢c (MM)*
1.0-0 9%5+14 2.63
1.0-1 103 +3 3.40
1.0-2 106 £7 3.87
1.0-5 1095 4.04
1.2-0 % +4 2.40
1.2-1 103 £2 2.82
1.2-2 115+7 3.13
1.2-5 114 £2 3.33
1.4-0 84+6 2.62
14-1 104 £6 2.40
1.4-2 1135 2.74
1.4-5 117 £ 4 2.99

* calculated from the average value of ay
2.4 Conclusion of Chapter 2

Ionic liquids (IL) core/silica shell microcapsules were successfully synthesized from the
one step sol-gel hydrolysis and condensation reactions of TEOS within an IL/H,O emulsion.
TEM and SEM microscopies clearly evidence the core-shell structure and spherical shape of
the synthesized SiO>@IL microcapsules, i.e. microcontainers having a SiO»-like shell and IL
trapped as the core. EDX (performed under TEM) and FTIR spectroscopies have proved that
the ionic liquids IL 104 are well encapsulated in the silica shell. Thermogravimetric and
elemental analyses also show that the weight fraction of ionic liquids IL and silica shell are
close to 20 wt.% and 41 wt.%, respectively. Moreover, microcapsules show very good thermal
stability which allow their use for being inserted in a curable system such as an epoxy-amine
reactive system to design microcomposites. Consequently, it paves the way for the

implementation of such ionic liquid core/silica shell microcapsules as promising additives in
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epoxy networks to promote improved mechanical properties.

The obtained IL@SiO> microcapsules were incorporated in epoxy amine networks as
microfillers. Even a small amount IL@Si0O, microcapsules can enhance simultaneously the
thermal and mechanical properties of epoxy microcomposites. For a given epoxy-to-
aminohydrogen stoichiometric ratio of the epoxy matrix, by increasing weight fraction of
IL@Si02 microcapsules, Young’s modulus and fracture toughness of microcomposites increase
as well as glass transition temperature. On another hand, for the same weight fraction of
IL@SiO> microcapsules, as the stoichiometric ratio of epoxy matrix increases, these
improvement effects are even more important. These enhanced thermal and thermomechanical
properties could be related to the improved interactions between polymer chains and
microcapsules silica surface. The increased fracture toughness could be associated to the crack
front pinning and crack tip blunting mechanisms for microcapsules filled epoxy
microcomposites. Thus, this work is the first to show that it is possible to introduce
microcapsules into high glass transition temperature epoxy-amine matrices without impairing
their thermal, thermomechanical, and fracture properties. Also, this study makes it possible to
envisage the use of these microcapsules to bring new functionalities to epoxy-based materials
used as matrices of composites or structural adhesives (self-repair, shape memory) and/or

protective coatings (anticorrosion).
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Supporting Information of Chapter 2

1. Synthesis of nSiO2 without IL

0.20 g SDS and 0.40 g CTAB were dissolved in 54 mL deionized water and then 1.00 mL
NH3-H>O was added to the mixture. The mixture was agitated by magnetic stirring and was
kept at 68 °C for 1.5 h in order to obtain a homogeneous solution. After that, 1.50 g TEOS was
dripped slowly into mixture to perform a sol-gel reaction at 68 °C for 2 h and then at 80 °C for
2 h to form the hollow silica nanoparticles. Finally, white precipitation was collected by
centrifugation and they were washed three times with deionized water and then dried at 60 °C

for 24 h.

Figure S2-1 TEM micrograph of hollow silica nanoparticles (nSiO2)
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2. DSC curves of IL@SiO2 microcapsule-filled epoxy-amine microcomposites

Heat Flow (w/g)

T T T
50 100 150 200

Temperature (°C)
(a)
= T = T
*1\"“* —A—12-2 i SN vy 1'4:1
¥y —eo—1.2-1 SNy }
5 5
H 3
8 g
L T
<] <]
T T
T T T T T
50 100 150 200 50 100 150
Temperature (°C) Temperature (°C)
(b) (©)

Figure S2-2 DSC traces of epoxy-amine networks and their corresponding IL@Si0>
microcapsule-filled microcomposites (N2 atmosphere, heating rate: 10 K-min'!)

(a) r=1.0; (b) r=1.2; (c) r=1.4
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3. Storage modulus and loss modulus as a function of temperature of different IL@SiO2
microcapsule-filled epoxy-amine microcomposites
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Figure S2-3 Storage modulus and loss modulus as a function of temperature of different
IL@Si10; microcapsule-filled epoxy-amine microcomposites,
Storage modulus (E’) : (a) =1.0; (¢) r=1.2; (e) r=1.4
Loss modulus (E”) : (b) r=1.0; (d) ~=1.2; (f) =1.4
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4. Surface property of IL@SiO:2 microcapsule-filled epoxy-amine composites

193 ° 189 © 86° 87°

Figure S2-4 Contact angle with H>O on the surfaces of IL@Si10> microcapsule-filled epoxy microcomposites
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Table S2-1 Contact angle and surface energy of IL@Si0O> microcapsule-filled epoxy-amine microcomposites measured by sessile drop method

system Owater (°) Ocr,r, (°) Yron-dispersive (MJ-M?) Yaispersive (MJ-M?) Yiotal (MJ-M?)
1.0-0 93 37 0.4 41.3 41.7
1.0-1 89 23 0.4 47.3 47.7
1.0-2 86 35 1.6 40.6 42.2
1.0-5 87 27 0.9 44.9 45.8
1.2-0 91 34 0.6 42.3 42.9
1.2-1 90 22 0.3 47.7 48.0
1.2-2 86 20 1.0 47.1 48.1
1.2-5 86 22 0.9 46.7 47.6
1.4-0 87 17 0.6 48.4 49.0
1.4-1 92 18 0.1 49.6 49.7
1.4-2 95 26 0.4 46.7 47.1
1.4-5 90 24 0.5 46.7 47.2
135

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LY SEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Chapter 2 Ionic liquid-containing silica microcapsules as functional additives for
epoxy-amine networks

5. TGA and DTG curves of IL@SiO2 microcapsule-filled epoxy-amine microcomposites

under N2 atmosphere
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Figure S2-5 TGA traces of different IL@Si10, microcapsule-filled epoxy-amine

microcomposites (N2 atmosphere, heating rate: 20 K-min'!)
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6. Fracture toughness and Young's modulus IL@SiO2 microcapsule-filled epoxy-amine microcomposites

Table S2-2 Fracture toughness and Young's modulus of epoxy-amine microcomposites filled with different weight fractions of IL@SiO>

microcapsules
r 1.0 1.2 14

mass fraction E K. Gre E K. Gre E K. Gre
of IL@SIO; (GPa) (MPa-m'?) (kJ-m?) (GPa) (MPa-m*?) (kJ-m?) (GPa) (MPa-m*?) (kJ-m?)
microcapsules

0 wt% 1.10+0.04 0.55+0.05 0.25 1.24 +0.03 0.56 £ 0.06 0.23 1.42 +0.05 0.60 £ 0.05 0.22

1 wt% 1.20 £ 0.05 0.69 + 0.07 0.35 1.30 £ 0.06 0.65 +0.08 0.29 1.64 + 0.06 0.68 + 0.05 0.25

2 Wt% 1.26+ 0.06 0.76x£ 0.04 0.41 1.40+£0.03 0.76 £ 0.07 0.36 1.70 £ 0.04 0.77 £ 0.06 0.31

5 wt% 1.30 £0.04 0.80 = 0.06 0.44 1.50 £ 0.06 0.81+0.06 0.38 1.68 + 0.05 0.82 +0.05 0.35

“calculated by the mean value of E and K,
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Chapter 3:

Synthesis of poly(urea-formaldehyde)
microcapsules containing epoxy monomer
to design self-healable epoxy-amine-IL
materials

These last decades, self-healing polymer materials represent a promising generation of
smart polymers having the ability to self-repair after external damage. Moreover, this self-
healing ability can be used in order to extend the lifetime of the resulting materials. Based on
the self-healing mechanism, two pathways have been widely reported to provide the self-
healing functionality, intrinsic and extrinsic self-healing. In this chapter, extrinsic self-healing
was described by using a single microcapsule-based system, i.e. epoxy containing poly(urea-
formaldehyde) microcapsules, with an ionic liquid (IL) added in the epoxy-amine network as
initiator. This chapter will introduce three parts: i) synthesis and characterization of EP@PUF
microcapsule, including the morphology, chemical structure, and thermal properties; ii) the
influence of IL on the curing behavior and final properties of epoxy networks and the
determination of the optimal weight fraction of IL; iij) the preparation of epoxy-amine-IL
composites including EP@PUF
microcapsules and the characterization of

epoxy composites, including their

morphology, thermal and mechanical I3
1() o EP@PUF microcapsule-filled
epoxy-amine-IL composites

properties and their self-healing behavior.
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to design self-healable epoxy-amine-IL materials

3.1 Introduction

The design of smart materials having the ability to heal the failure and to retrieve the
mechanical properties of the final material is a real challenge. Developing self-healable polymer
materials inspired by the living creatures in the nature could prolong the life time of the material.
Two main routes to achieve self-healing in polymer materials have been reported: i) intrinsic
self-healing based on introduction of reversible reaction and bonds and ii) extrinsic self-healing
based on microvascular networks or microcapsules [,

Intrinsic self-healing could be repeatable by introducing reversible interactions into the
material systems, however, the design of the molecular structure of materials is necessary and
complex. Extrinsic self-healing mechanism is widely used for developing self-healable polymer
material due to the minimum restrictions on the intrinsic properties of the materials, in which
microcapsules showed a real potential due to the shell stiffness as well as the restricted
movement of core materials as external self-healing agents. Moreover, microencapsulation has
been widely described in the literature for different types of applications, such as drug delivery
21 nanoreactors [*!, and construction of self-healable polymer materials [* %, etc.

In the field of epoxy thermosets, microcapsules composed of urea and/or melamine and
formaldehyde were widely used as shell forming materials due to their excellent features
including high mechanical strength !, good thermal stability 7}, chemical resistance ¥, long

(19 For the first generation, microencapsulated

term storage stability ) and low permeability
dicyclopentadiene (DCPD) and solid Grubbs’ catalyst by ring-opening metathesis
polymerization were applied for epoxy composites [!I13], the released DCPD react with Grubbs’
catalyst and re-bond the broken faces, while the bonding between the substrate and the
poly(DCPD) was not optimal for epoxy composites ['* 1], Later, linseed oil as self-healing agent
was also reported ['% 7] For example, linseed oil was encapsulated by poly(urea-formaldehyde)
microcapsules aiming at development self-healable epoxy coating. Reported by Suryanarayana
et al ' an exothermic peak at 155 °C in the DSC curve of such microcapsules corresponding
to the curing of linseed oil was measured, and a self-healing behavior was observed for the final

epoxy coating. In addition, linseed oil acts as an oxidative healing agent avoiding the use of

catalyst for the formation of a continuous film. Nevertheless, this continuous film with
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crosslinked structure essentially consists of the intermolecular coupling of radicals originated
by decomposition of the relatively unstable peroxide groups '8 In fact, the presence of
glycerides in linseed oil may also act as plasticizer which limits the hardening process of
encapsulated linseed oil 1),

Recently, epoxy monomer was also considered as self-healing agent via
microencapsulation. Yuan et al ! and Liao et al *” have studied the synthesis and the
properties of microcapsules containing epoxy. These authors proved that these microcapsules
have good mechanical properties and an excellent thermal stability, which leads to considering
them promising additives for self-healing. However, few studies report the properties of such
microcapsule-filled epoxy composites. Yin et al ['> encapsulated epoxy prepolymer (bisphenol-
A epoxy resin, type E-51) in poly(urea-formaldehyde) microcapsules and synthesized the
complex of CuBr; and 2-methylimidazole as a latent hardener for released healing agent. The
self-healing epoxy composites based on E-51 and tetracthylenepentamine system exhibited a
promising recovery while the complex would be dissociated at about 130 — 170 °C [21:22] As a
consequence, the curing of the epoxy matrix should be processed at a temperature lower than
the dissociation temperature of the hardener. Except such a latent hardener, some amines, i.e.
polyetheramine and tetraethylenepentamine were also encapsulated to design a dual

23241 Dual microcapsules

microcapsules healing system with epoxy containing microcapsules
system may avoid the above limitations related to latent hardener, but additional synthesis
procedure for encapsulating liquid amine was found to be complex as these ones are soluble in
water and in most organic solvents [23, The uniform dispersion of two types of microcapsules
was found to be important for healing [26].

For these different reasons, the use of microcapsules containing epoxy monomer as a
healing agent in epoxy composites has different peculiarities, including limitation of curing
temperature of epoxy matrix or the raising cost for extra synthesis process for the second type
of microcapsules. Therefore, a reactant for healing agent with higher thermal stability may
enlarge the application of epoxy loaded microcapsules in polymer composites. According to
previous research, ionic liquid (IL) can play the role of initiator for epoxy polymerization >,

leading to epoxy-IL networks having good mechanical and thermal properties 3%, The high

thermal stability of ILs allows to consider them as an initiator for the self-healing agent of high
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temperature matrices. Nevertheless, the influence of IL on the final properties of polymer
composites and self-healing ability for single microcapsule systems still remain vacant.
Therefore, this chapter focuses on the synthesis of poly(urea-formaldehyde) (PUF)
microcapsules containing an epoxy resin and their self-healing application in high temperature
cured epoxy composites. This chapter will include three parts: i) the synthesis and
characterization of epoxy containing PUF microcapsules, denoted EP@PUF; ii) In the second
part, the effect of the presence of the IL on the epoxy-amine network will be studied as well as
the reactivity of IL in the self-healing process. The optimized composition of the epoxy matrix
will be determined from the characterization of epoxy-amine networks containing different
weight fractions of IL. #ii) the preparation and characterization of EP@PUF microcapsule-filled
ternary epoxy-amine-IL system. Their thermal and mechanical properties as well as self-healing

ability will be investigated.
3.2 Experimental
3.2.1 Materials

Urea (U), formaldehyde solution (F, 37 wt.% in water, contains 10-15% methanol as
stabilizer), triethanolamine (TEA), epoxy resin, i.e. bisphenol A diglycidyl ether (DEGBA
D.E.R. 332), butyl 2,3-epoxypropyl ether (BGE), sulfuric acid (H2SO4, ACS reagent, 95.0-
98.0%), bisphenol A diglycidyl ether (DGEBA, D.E.R. 332), sodium dodecylbenzenesulfonate
(SDBS), 1-octanol, and 4,4’-methylenebis(cyclohexylamine) (PACM) were purchased from
Sigma-Aldrich. The phosphonium-based ionic liquid tributyl(ethyl)phosphonium diethyl
phosphate, denoted as IL 169, was provided by Cytec Solvay. Acetone was purchased from
Carlo ERBA Reagent. All the chemicals were used as received without any further purification

and their chemical structures were shown in Table 3-1.
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Table 3-1 Summarized chemical structures of the materials used

Chemicals and abbreviations

Chemical formula

Urea (U)

Formaldehyde solution (F, 37 wt. % in H2O, contains 10-

15% methanol as stabilizer)

Triethanolamine (TEA)
Butyl 2,3-epoxypropyl ether (BGE)

Sodium dodecylbenzenesulfonate (SDBS)

Epoxy resin

Bisphenol A diglycidyl ether (DGEBA, D.E.R. 332)

1- octanol

tributyl(ethyl)phosphonium diethyl phosphate
(IL 169)

4,4’-methylenebis(cyclohexylamine) (PACM)

-0 Na'

CH3(CH,),oCH,

HsC CHj

CH3(CH,)sCH.OH
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3.2.2 Characterization methods

Monitoring the in-situ polymerization by optical microscopy was carried out using an Axio
Imager A2M type optical microscope (OM) from Zeiss Co.

Scanning electron microscope (SEM) was carried out using a TESCAN VEGA3 from
TESCAN ANALYTICS proceeding with an accelerating voltage of 10 kV. To prepare the
specimen, dried powder of EP@PUF microcapsules and cross sections of epoxy composites
were pasted on the sample holder using a carbon tape. All the specimens were coated with gold
by a sputter coater to prevent charge accumulation on the surface. The sputter coating process
was performed at a current of 30 mA for 90 s.

Thermogravimetric analysis coupled with infrared spectrometry (TGA-IR) was performed
with test was carried out using a TGA 8000 from PerkinElmer. The evolved gas analysis was
performed by interfacing a Fourier transform infrared spectrometer (FTIR, Nicolet 6700) to the
exit port of the TGA furnace. 10 mg of the material was put in an alumina crucible and heated
from 35 to 700 °C at a heating rate of 10 K-min™! under N, atmosphere. Infrared spectra in the
optical range of 4,000-400 cm™ were recorded every 4 s.

Differential Scanning Calorimetry (DSC) measurement of EP@PUF microcapsules and
epoxy composites were performed using Q 10 from TA Instrument operating at a heating rate
of 10 K-min™! under nitrogen flow of 50 mL-min™.

Thermogravimetric analyses (TGA) of epoxy composites were carried out using a Q500
Thermogravimetric Analyzer from TA Instruments. The analyses were performed from 30 to
700 °C with a heating rate of 20 K-min™! under nitrogen atmosphere.

Transmission electron microscope (TEM) was performed using a JEM-1400 Flash electron
microscope operating at an accelerating voltage of 120 kV. The polymer samples were prepared
by ultramicrotome on carbon film coated copper grids.

Dynamic mechanical analysis (DMA) was carried out using an ARES-G2 from TA
Instruments. The analyses were carried out at 0.01% strain, at a frequency of 1 Hz and with a
heating rate of 3 K min™ from 35 to 250 °C. The characterization was performed twice for the
same sample in the same conditions.

Compression tests were carried out using a MTS machine operating with a 5 kN load cell.
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The samples geometry was based on ISO 604:2002 standard i.e. 5*5*16 mm?. The Young's
modulus (E') was determined from o (stress) vs. € (strain) curves in the linear region.

Mode I stress intensity factor (K;.) of epoxy-amine networks and related microcomposites
were determined on compact tension specimens according to the ISO 13586:2018(E) standards
(Figure 4-2). The notch was formed using a milling cutter and the initial crack also known as
natural crack was made by tapping a fine razor blade into the notch. The length of initial crack
to width ratio (a/w) has to keep between 0.2 and 0.8. The fracture toughness test was carried
out using a MTS tensile machine equipped with a 1 kN load cell operating at tensile speed at

10 mm'min. K;. was calculated according to equation 3-1:
— Fo -
K;. = f(a/w) "= (equation 3-1)

where a (m) is the length of initial crack, w (m) and h (m) are the width and
thickness of specimen, respectively. F,p (N) is the final load at the first crack. The f(a/w)

value is a geometrical factor which can be calculated using equation 3-2:

fla/w) =

(2+a)
(1-a)’/2

X (0.886 + 4.64a — 13.32a? + 14.72a3 — 5.64a*) (equation 3-2)

The critical energy release (G;.) can be calculated from equation 3-3 and the value of K;,

Young’s modulus (E), and Poisson’s coefficient (v). 0.35 for v were considered according to

the values related in the literature for epoxy networks 31321,

1-v2)K},
Gic = a-v)kic (equation 3-3)

E
&/
fan
o L2,

<t

O
< a > N h'
< W >

Figure 3-1 Compact Tensile (CT) test specimen geometry
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3.3 Synthesis and characterization of EP@PUF microcapsules

3.3.1 Synthesis procedure of EP@PUF microcapsules

The synthesis of epoxy containing poly(urea-formaldehyde) microcapsules (EP@PUF)
via in-situ polymerization mainly involved three steps: i) preparation of UF prepolymer, ii)

preparation of oil in water (O/W) emulsion and iii) in-situ polymerization (encapsulation),

(Figure 3-2).
Step 1: Step 2:
preparation of UF prepolymer preparation of O/W emulsion
— C,H,0H
NZ GH,OH \ s
C,H,0H SDBS
»
70°C/1h emulsify
H,NCONH, (U)+ CH,0 (F) UF prepolymer DGEBA+BGE O/W emulsion

y H',60-65°C/3h
Step 3:
formation of EP@PUF microcapsules
via in-situ polymerization

EP@PUF microcapsules

Figure 3-2 Synthesis steps for EP@PUF microcapsules via in-situ polymerization

In the first step, urea (U) and formaldehyde solution (F) were added in a flask with a molar
ratio of nwy:nr)=1:2. When urea is fully dissolved, a suitable amount of triethanolamine (TEA)
was added to the solution until the pH value of the mixture was close to 9, and the mixture was
kept at 70 °C under magnetic stirring for 1 h. After the reaction, a transparent prepolymer
solution was obtained. In the meanwhile, the O/W emulsion can be prepared as follows for the
second step: a mixture of DGEBA and BGE (m(pcesa)m@ece)=5:1, to guarantee a promising
viscosity for in-situ polymerization ) was added in a certain amount of 1 wt% SDBS aqueous
solution (8.3 times the mass of core material) which was mechanically stirred for 1 h at 60 °C.
One or two drops of 1- octanol were added to the mixture to prevent the generation of bubbles.
Then, the prepolymer and O/W solution were cooled down to room temperature, and they were
mixed to carry out the in-situ polymerization in order to obtain the EP@PUF microcapsules.

Once the mixture was mixed with UF prepolymer solution, pH was slowly adjusted close to 3-
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3.5 by adding 2 wt% sulfuric acid. At the same time, the temperature was slowly increased to
60-65 °C and the reaction was kept in an oil bath for 3 h. When the encapsulation process was
ended, the slurry was cooled down to room temperature. The white precipitate was filtrated and
washed three times by deionized water and acetone to remove the UF prepolymer and
unencapsulated core material. Finally, the EP@PUF microcapsules were dried at 60 °C ready

before use.
3.3.2 Characterization of EP@PUF microcapsules
3.3.2.1 Morphology of EP@PUF microcapsules

Several researches have reported the synthesis of microcapsules with amino resins shell
considering one-step method 3331, To avoid the competitive reaction between the addition and
condensation reactions, a two-step method for synthesis EP@PUF microcapsules was
considered (see section 3.3.1). Scheme 3-1 shows the chemical reaction of the PUF shell at
basic or acidic conditions. Specifically, under basic conditions, urea and formaldehyde react
to form monomethylol urea and dimethelol urea derivatives. Under acidic conditions, the urea
derivatives continue to react including the remaining urea in the solution. Thus, the prepolymer

polymerized to form a network and solidify under low pH value.

Basic conditions H,NCONH, + CH,0 NH,CONHCH,OH

monomethylol urea dericative

NH,CONHCH,0H  + CH,OH HOCH,NHCONHCH,OH

dimethylol urea dericative

Acidic conditions NH,CONHCH,OH + NH,CHONHCH,OH —>
NH,CONHCH,NHCONHCH,OH + H,0

HOCH,NHCONHCH,OH + HOCH,NHCONHCH,0H —

Scheme 3-1 Reaction mechanisms of poly(urea-formaldehyde)

The formation PUF of the shell during the polymerization process was monitored by
optical microscopy (OM) and the morphologies of final EP@PUF microcapsules were
characterized by scanning electron microscopy (SEM). Figure 3-3 shows the OM images of the
encapsulation process during the reaction at different times. Before the shell formation, Figure
3-3 (a) shows the morphology of O/W emulsion, separated epoxy droplets can be distinguished,
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and a shiny surface can be seen. Figure 3-3 (b) shows the beginning of the PUF shell formation
as well as EP@PUF microcapsules. At this stage, the mixture was characterized by a milky
white color, indicating that the polymerization still kept going in the aqueous phase. Because
of the positive charge of UF prepolymer, they are attracted toward the hydrophilic groups of
anionic surfactants and keep polymerizing ¢!, After the reduction of the pH by the addition of
H>S0O4, the continuous polymerization of the urea derivatives generated crosslinked polymer.
At this step, a thin shell can be distinguished on OM images as a black circle in the image. Due
to the weakness of the thin PUF shell, the newly formed PUF shell could be easily broken or
collapsed when other shells impact. As the reaction takes place, the molar mass of PUF is
growing which leads to an increase in PUF shell thickness. The extra PUF nanoparticles are
also formed in the continuous phase and some of them are deposited on the PUF shell at the
same time. The final morphology of EP@PUF microcapsules in transmission and reflection

mode are shown in Figure 3-3 (c) and (d), respectively.

Figure 3-3 OM images of synthetic procedure of EP@PUF microcapsules (a) O/W emulsion;
(b) formation of PUF nanoparticles; (c) formation and solidification of EP@PUF

microcapsules; (d) OM image of EP@PUF microcapsules in reflection mode;
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As shown in Figure 3-3 (a), the core material was dispersed by mechanical stirring in the
surfactant aqueous solution to form an oil in water (O/W) emulsion. Because of the continuous
stirring in the aqueous solution, various flow patterns were formed in the mixture, as evidenced
by the schematic representation of Figure 3-4. Therefore, the inhomogeneous flow inside an
aqueous solution and heterogeneous shear force at different locations led to a broad size

distribution of EP@PUF microcapsules.

Figure 3-4 Flow pattern (a) radial flow; (b) axial flow; (c) tangential flow

The size distribution of EP@PUF microcapsules was determined using the Image J
software from counting the EP@PUF microcapsules diameters randomly. Figure 3-5 represents
the size distribution of EP@PUF microcapsules. The diameter of EP@PUF microcapsules is
distributed in the range of 20-150 pm and around 80% of microcapsules have a diameter of
about 50-100 pm. Such broad size distribution corresponds to the initial size distribution of oil
droplets in the O/W emulsion resulting from the inhomogeneous flow and heterogeneous shear
forces. Nevertheless, this diameter range of EP@PUF microcapsules is relevant for self-healing

applications.

Gauss fit curve
]

154
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Figure 3-5 Diameter distribution of EP@PUF microcapsules
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The morphology of the EP@PUF microcapsules was characterized by SEM. Figure 3-6
(a)-(d) shows several microcapsules, individual ones, surface features, and a broken
microcapsule. First of all, it can be seen that EP@PUF microcapsules have a diameter range
from 50-100 pm in agreement with previously OM measurements. A rough surface and a
smooth interior surface can be distinguished on Figure 3-6 (¢) and (d), confirming the formation
scenario of PUF shell and deposition of PUF nanoparticles. The shell thickness of EP@PUF
microcapsules can also be measured from Figure 3-6 (d), which is closed to 2-3 um, The value
of this shell thickness is also in a relevant range and guarantees sufficient mechanical strength
required for sample processing, i.e. mixing in the reactive polymer matrix system, and

controlled release of core component P71,

- y S G
v = n £ v T
SEM HV: 10.0 kV WD: 10.64 mm l VEGA3 TESCAN SEM HV: 10.0 kV WD: 10.46 mm |_ VEGA3 TESCAN
Det: SE SEM MAG: §20 x 100 pm Det: SE SEM MAG: 914 x 50 pm
8l: 10.00 Hivac INSA - Département SGM BI: 10.00 Hivac INSA - Département SGM

SEM HV: 100 kV ; WO 10.22 mm IJ_ 111 | VEGA3 TESCAN| SEM HV: 10.0 kV WOD: 10.13 mm J VEGA3 TESCAN|
Det: SE SEM MAG: 3.00 kx | 20 pm Det SE SEM MAG: 3.00 kx 20 pm
Bi: 10.00 Hivac INSA - Departement SGM BI: 10.00 Hivac INSA - Département SGM

Figure 3-6 SEM micrographs of (a), (b) EP@PUF microcapsules; (c) surface morphology of
EP@PUF microcapsule; (d) broken EP@PUF microcapsule
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3.3.2.2 Determination of chemical nature of EP@PUF microcapsules

The chemical structure of EP@PUF microcapsules and their core and shell materials were
characterized by FTIR as shown in Figure 3-7. The characteristic chemical groups with their
corresponding wavenumbers of absorption peaks of core (DGEBA+BGE) and shell (PUF)
materials are listed in Figure 3-8. As presented in Figure 3-7 and Figure 3-8, the characteristic
peaks of core materials at 3,050 cm™ (C-H stretching in phenyl ring), 3,100-2,800 cm™ (C-H
stretching in methyl groups) %1, 1,610 cm™ (C-C stretching in phenyl ring), 1,450 cm™ (C-H
bending in methyl groups) and 910/830 cm™' (epoxy groups) were observed in the spectra for
both DGEBA+GBE mixture and EP@PUF microcapsules [°). Meanwhile, the characteristic
peaks at 3,350 cm™! (N-H stretching), 1,640 cm™ (C=0 stretching vibration) >, 1,540 cm™ (N-
H bending) 1,250 cm™ (C-O stretching of aliphatic ether) provided from PUF %! appeared in
both spectra of PUF and EP@PUF microcapsules. Therefore, the characteristic peaks from both
core and shell material were identified in the spectrum of EP@PUF microcapsules, indicating
that the DGEBA and BGE as core materials were successfully encapsulated in the PUF

microcapsules.

(@)

EP@PUF
neat PUF 1610
DGEBA+BGE 1640540 1250
3350 2030
2970 2870
3050 1450
@ 910

©

830

Absorbance (%)

(b)

£

T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm™)

Figure 3-7 FTIR spectra of (a) EP@PUF microcapsules and its (b) shell material: neat PUF,
and (c) core materials: DGEBA+BGE
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Figure 3-8 IR-characteristic peaks of core (DGEBA+BGE) and shell (PUF) materials in
EP@PUF microcapsules

3.3.2.3 Thermal properties of EP@PUF microcapsules

The thermal stability of EP@PUF microcapsules is a key parameter for achieving the self-
healing purpose in the epoxy networks. Therefore, in order to investigate the thermal behavior
and the stability of EP@PUF microcapsules during heating and self-healing, i.e. the further
polymerization availability of healing agent inside the EP@PUF microcapsules, DSC and TGA
were performed to investigate the thermal properties of the EP@PUF microcapsules.

Thermal behavior (DSC)

Figure 3-9 shows the DSC curves of EP@PUF microcapsules from room temperature to
350 °C under N> atmosphere. Core and shell materials were also characterized under the same
conditions. For the core material, i.e. the mixture of DGEBA and BGE, the high thermal
stability of the core material was observed. For a neat PUF shell, an endothermic peak was
observed at about 230 - 250 °C, corresponding to the decomposition. For EP@PUF
microcapsules, before 200 °C, these ones remained stable, i.e. no endothermic or exothermic
phenomena were observed. With increasing temperature, an exothermic peak occurred at about
230 - 260 °C, which could be assigned to the polymerization of DEGBA encapsulated inside
the PUF microcapsules. This polymerization could be initiated by the by-products

decomposition product of the PUF shell 41421,
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Figure 3-9 DSC traces of core and shell materials in EP@PUF microcapsules
(M) EP@PUF; (@) neat PUF; (A) DGEBA+BGE (N; atmosphere, heating rate: 10 K-min™')

Thermal stability of EP@PUF microcapsules (TGA)

For self-healing via microcapsules, the healing agent must maintain stable until the self-
healing is required and display high thermal stability. Therefore, TGA analyses were carried out
on the EP@PUF microcapsules in order to further check the chemical constitution of
microcapsules as well as the availability of core compounds for self-healing in polymer matrix
composites. Figure 3-10 shows the TGA and DTG traces of EP@PUF microcapsules as well as
their shell and core neat materials. The temperature at 5 wt% weight loss was defined as the
onset decomposition temperature (Tq onset) and the peak temperatures on the DTG traces were
defined as maximum decomposition temperature (see Table 3-2). The Tq onset for the EP@PUF
microcapsules, neat PUF, and DGEBA+BGE were found to be 238, 251, and 256 °C
respectively. Thus, it could be noticed that the EP@PUF microcapsules have a thermal stability
due to the protection brought by the PUF shell. Thus, the onset decomposition temperature over
230 °C ensures the integrity of EP@PUF microcapsules during the curing of epoxy amine

networks.
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Figure 3-10 (a) TGA (b) and DTG traces of (A) EP@PUF microcapsules and their shell

material (@, neat PUF) and core material (ll, DGEBA+BGE)

(N, atmosphere, heating rate 20 K-min™)

Table 3-2 Weight loss temperature of EP@PUF microcapsules and neat components

Material Td onset (°C) Tamax (°C)
DGEBA+BGE 256 332

neat PUF 251 287

EP@PUF 238 Tdmaxt = 283; Tdmaxe = 387

In order to confirm the thermal degradation process of EP@PUF microcapsules, infrared
spectroscopy analyses were also performed combined with TGA to determine the composition
of the overflowing gas. Figure 3-11 presents the spectra of degradation products during the
thermal degradation of EP@PUF microcapsules. The nature of the gases and their characteristic
wavenumbers of absorption peaks are listed in Table 3-3. The same analyses were carried out
for neat PUF and DGEBA+BGE. Their corresponding FTIR spectra of degradation products
during the thermal degradation are shown in the supporting information of Chapter 3.

As shown in Figure 3-10 (b), there was one main degradation step for core or shell
materials whereas there were two degradation steps for EP@PUF microcapsules. The first
weight loss of EP@PUF microcapsules happened from 230 to 310 °C, i.e. corresponding to the
degradation of PUF 7). Ammonia (3,536-3,504 cm™) and cyanamide (2,220 cm™ ) were
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identified to be related to products from PUF degradation [*!. During this step, the alkaline gas
could initiate the polymerization of the core component in such higher temperature conditions,
in agreement with the existence of an exothermic peak of EP@PUF microcapsules in Figure 3-
9. Then, the second weight loss occurred from 310 to 500 °C, which could be associated with
the degradation of the core material and further decomposition of shell material. At this step,
absorption peaks at 1,260 cm™ and 1,178 cm™ belong to the stretching vibrations of aromatic
ethers and the C—H hydrocarbons from the epoxy segment [*¥. These features indicate that the
decomposition of the core material is the main phenomenon. It is noteworthy that the second
weight loss shifted to a higher temperature range compared to DGEBA+BGE. This
phenomenon can be explained by: i) the protection of shell material and a delayed heat transfer;
ii) the emitted alkaline gas could also initiate the polymerization of DGEBA and the resulting
highly crosslinked product displays a higher degradation temperature. Therefore, the core
material content in the EP@PUF microcapsules can be estimated to be closed to 60 wt%, which

is in agreement with the results reported in the literature for similar studies %43,

0T 1 T 0.05880
0.05108
0.05 0.04336
0.03564
002792
0.02020
001248

0.004760

20ueqi0saY

-0.002960

-0.01068

-0.01840

Figure 3-11 FTIR spectra of emitted gas during degradation of EP@PUF microcapsules

under N, atmosphere (heating rate: 10 K-min ')

157

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LY SEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Chapter 3 Synthesis of poly(urea-formaldehyde) microcapsules containing epoxy monomer
to design self-healable epoxy-amine-IL materials

Table 3-3 Emitted gas and their characterization from FTIR absorption peaks of EP@PUF

microcapsules, shell (PUF), and core (DGEBA+BGE) materials during TGA analysis

PUF shell DGEBA+BGE core EP@PUF microcapsules
wavenumber Wavenumber Wavenumber
Temperature Gas Temperature Gas Temperature Gas
(cm™) (cm™) (cm™)
3,536 3,536
ammonia | ammonia |
3,504 3,504
C-H 2,975
2,260 240 °C . 2,220
) cyanamid
cyanamide | | |
230 °C e
| 2,220 310 °C 2,260
2,300
360 °C methyl
1,450 co |
2,300 250 °C group 2220
co | ’
| 3,536
2,220 .
500 °C ammonia |
1,500
benzene 1600 3,504
' C-H 2,975
310 °C
| b 1,500
° enzene
360 °C 500 °C 1,600
| CO, 2,350 :
CO, 2,350

To conclude, the EP@PUF microcapsules have been successfully synthesized from in-situ

polymerization in an O/W emulsion. The obtained EP@PUF microcapsules present smooth

inner and rough outer surfaces which could promote the adhesion between EP@PUF

microcapsules and the epoxy-amine matrix. DSC analyses have shown that the healing agent in

the EP@PUF microcapsules could polymerize and the TGA analyses have proved that the

obtained EP@PUF microcapsules have a good thermal stability. This later property will ensure

the integrity of the healing agent during high temperature curing processes of the polymer

matrix. In a next step, a phosphonium-based ionic liquid which will play the role of initiator of

epoxy healing agent will be added to epoxy-amine system. Such a route will allow investigating

the influence of IL on the final properties of epoxy matrix.
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3.4 Preparation and characterization of epoxy-amine-IL networks

3.4.1 Sample preparation

In order to investigate the reactivity of ionic liquid with a healing agent within the epoxy-
amine matrix and determine the optimized ionic liquid content, different epoxy-amine-IL
systems (see Table 3-4) were prepared and characterized by DSC.

Formulation 1 (epoxy-to-amino hydrogen ratio, r = 1, i.e. at the stoichiometric ratio,) and
formulation 2 (epoxy combined with IL 169) were used as a reference to determine the curing
behavior of epoxy prepolymer with either hardener (PACM) or catalytic curing agent (IL169).
Formulation 3-5, i.e. epoxy-amine networks (r = 1) containing different amounts of 1L169
addition were prepared to observe the influence of IL 169 on the curing behavior of the
DGEBA-PACM network. Finally, a comparative study between formulations 4 and 6 was made
to confirm the reactivity of IL 169 with the excess of epoxy prepolymer as a healing agent in
the cured DGEBA-PACM system.

The materials were prepared according to the following procedure: DGEBA and PACM
mixture with or without IL 169 were mixed at 60 °C and stirred by mechanical stirring until a
homogeneous mixture was formed. Then, the mixture was degassed in a vacuum bell jar to
remove the bubbles inside. Finally, the mixture was poured into a silicon mold and cured in an

oven during 2 h at 80 °C and 2 h at 160 °C.

Table 3-4 Formulations considered to design epoxy-amine-ionic liquids networks

Epoxy (D.E.R 332) Diamine (PACM) lonic liquid (IL 169)

Composition

(phr) (phr) (phr)
1

100 30 0

(r=1)
2 100 0 10
3 100 30 5
4 100 30 10
5 100 30 20
6 100 20 10
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3.4.2 Characterization of epoxy-amine-IL networks
3.4.2.1 Curing behavior of epoxy-amine-IL networks

Different ionic liquids (IL) can be used as initiators for epoxy polymerization 272" either

via cation or via anion. For a same cation, the reactivity of IL is strongly dependent on anions

[46 [47]

nature as they reacted with epoxy compounds 6. B.Soares et al *7 reported the large influence
of IL on the curing behavior of epoxy-amine or epoxy-anhydride networks. Soares and Livi et
al 7 have demonstrated that the use of imidazolium-based IL N,N’-dioctadecylimidazolium
iodide ([DiOImid][I]) catalyzed the curing process of epoxy and 4,4’-methylenebis(3-chloro-
2,6-diethylaniline) (MCDEA). The onset curing temperature of epoxy-MCDEA-[DiOImid][I]
mixture decreases of 50 K as only 5 phr of [DiOImid][I] is applied. In addition, a significant
shift of the exothermic peak temperature towards lower temperature indicated the reaction
between the imidazolium-based IL and DGEBA. In the epoxy-amine networks, imidazolium-
based IL could form hydrogen bonds with amine, combined with a N-heterocyclic carbene
mechanism leading to a reduction of the curing onset temperature and a decrease of temperature
at maximum curing rate [¢*¥! (see Scheme 3-2).

However, for phosphonium-based IL, the counter anion initiates the opening of epoxy
functionality depending on the chemical nature of the counter anions, and an influence on the
curing behavior between phosphonium-based IL and epoxy prepolymer exerted a marginal
effect on the curing process of epoxy and MCEDA for temperature higher than 200 °C 4],
Some phosphonium-based ILs have been studied as initiators of epoxy networks. Lower
reactivity was found for the phosphate anion in comparison with the phosphinate anion which
has a longer alkyl chain with inductive donor effect °°l. According to this phenomenon,
tributyl(ethyl)phosphonium diethyl phosphate, denoted as IL 169, which can initiate the

polymerization of epoxies at higher temperatures **) was studied to act as an initiator for the

encapsulated healing agent.

160

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LY SEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Chapter 3 Synthesis of poly(urea-formaldehyde) microcapsules containing epoxy monomer
to design self-healable epoxy-amine-IL materials

amine-imidazolium hydrogen bonds amine-imidazolium acid based reaction
NE N AV ~NE N AV
Y Y) _
© i : N N \/\/
R | 2 ) — T
LU\ NH, JYVNNH,
H
|
v\ NH,
C)
©
R

Scheme 3-2 Hydrogen bond between amine and imidazolium IL

To study the curing behavior of epoxy-amine with IL 169 and to verify the reactivity of IL
169 for the healing agent (an excess of epoxy), DSC was used to study the reaction between
epoxy resin and diamine (PACM) with different weight fractions of IL 169 (Table 3-4).

First of all, epoxy-amine mixtures at stoichiometric ratio (r = 1) with different weight
fractions of IL 169 were investigated to study the influence of IL 169 on the curing behavior of
epoxy-amine. The DSC traces are reported in Figure 3-12. It can be seen that there is no large
influence of IL 169 on the curing behavior of the epoxy-PACM network as the IL 169 content
is lower than 10 wt%. Nevertheless, as the addition of IL 169 is 20 wt%, a slight shift of the
curing temperature towards lower temperatures was observed. Taking into account the reaction
mechanism between epoxy and amine (Scheme 3-3), the pair of electrons on the very
electronegative nitrogen atom of the primary amine makes them nucleophilic and allows them
to attack the electrophilic carbon next to the epoxide oxygen. This phenomenon is the rate
determining step of the reaction between epoxy and amine. The PACM amine used in this work
has high reactivity, i.e. its copolymerization could occur at low temperatures. For IL 169, a
higher temperature is required to open epoxy ring because of its low basicity [**. Nevertheless,
the mobility of IL 169 may be limited as the viscosity of the reactive system increases after
gelation.

For the epoxy-amine with phosphonium-based IL systems, Leclére et al P! have
mentioned that there is a competition between the epoxy—amine addition reaction and the
anionic polymerization initiated by the phosphonium-based IL via the etherification reaction.
Therefore, in the epoxy-PACM-IL 169 formulation, epoxy-PACM reaction was prior to one of
epoxy with IL 169. As a consequence, a large part of the IL 169 remains unreacted in the epoxy-
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amine networks as shown in Figure 3-12 P,

—l— EP+30 phr PACM

—@— EP+30 phr PACM+5 phr IL 169
—&— EP+30 phr PACM+10 phr IL 169
—w— EP+30 phr PACM+20 phr IL 169

Heat Flow (W/g)

50 l(l)O léO 2(I)0 250
Temperature (°C)
Figure 3-12 DSC traces of curing process of epoxy-amine at stochiometric ratio with
different amount of ionic liquid () EP + 30 phr PACM; (@) EP + 30 phr PACM+ 5 phr
IL169; (A) EP + 30 phr PACM + 10 phr IL169; (V) EP + 30 phr PACM + 20 phr IL169

(N, atmosphere, heating rate: 10 K-min ™)

rate o) )
o determining Y 0 ~H* Of
+RONH —> g7 N — >j — >j
R/A NHR', R N*HR', R NR',

Scheme 3-3 General mechanism for epoxy-amine curing >}

D\_\vb O"P:O//:
f l>//> —< ptl° PP
o
b curing with PACM and IL 169 el

o

A4 - paEBA < - pACM P- Ao pt \l\pv
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Figure 3-13 The possible polymerization and structure of epoxy-amine-IL network [°!]

In order to verify the reactivity of free IL 169 with additional epoxy monomer, i.e.
encapsulated epoxy monomer as a healing agent, epoxy-amine network with r > 1 was used.
Thus, 10 phr of IL 169 was added in the mixture with epoxies in excess (EP + 20 phr PACM +
10 phr IL 169). The corresponding DSC traces, as well as the references, are shown in Figure

3-14.
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Curing temperature range of epoxy/PACM —#— EP+30 phr PACM
60°C=—""""> 160°C —@— EP+10 phr IL169
—&— EP+30 phr PACM+10 phr IL169
6 - —w— EP+20 phr PACM+10 phr IL169

Curing temperature range of epoxy/IL 169
175°C

Heat Flow (W/g)

T T T T T
50 100 150 200 250 300

Temperature (°C)

Figure 3-14 DSC traces of curing of different epoxy-amine-ionic liquid systems
(H) EP + 30 phr PACM; (@) EP + 10 phr IL169; (A) EP + 30 phr PACM + 10 phr IL169;
(V) EP + 20 phr PACM + 10 phr IL169 (N, atmosphere, heating rate: 10 K-min ™)

For EP + 30 phr PACM and EP + 30 phr PACM + 10 phr IL 169 system, epoxy was cured
with PACM at stoichiometric ratio (r = 1.0) and a single exothermic peak could be evidenced
from 60 to 160 °C. This feature indicates the rapid reaction between epoxy and PACM. 10 phr
of IL 169 does not influence the curing behavior of epoxy-PACM. For EP + 10 phr IL 169
system, an exothermic process above 175 °C highlighted the chain growth polymerization of
epoxy initiated by IL 169 with low basicity. For the EP+20 PACM+10 IL169 system, a second
exothermic behavior after 175 °C coinciding with the temperature range of EP + 10 phr IL169
system was highlighted after the main reaction of epoxy-PACM. Therefore, the reactivity of IL
169 with the excess of epoxies was confirmed by the comparison of the above four systems.

In summary, one can confirm that IL 169 could keep its reactivity, i.e. be able to initiate
the polymerization of epoxy excess in the cured epoxy-amine network. Epoxy and amine
(PACM) cured at stoichiometric ratio (r = 1) is necessary but the IL 169 content in the epoxy

networks needs to be optimized.
3.4.2.2 Morphology of epoxy-amine-IL networks

The distribution of IL 169 and the optimal weight fraction in the epoxy-amine matrix need
to be investigated. Therefore, epoxy-amine network cured at stoichiometric ratio (r = 1) with a

different mass fraction (from 5 to 20 phr) of IL 169 were prepared and characterized. First of
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all, their morphology was characterized by TEM. Figure 3-15 (a)-(c) shows the TEM images of
ultrathin sections of different epoxy-amine-IL networks at lower magnification and a
homogeneous morphology can be observed, indicating a good distribution of IL 169 in the
epoxy-amine network. Figure 3-15 (d)-(f) show the corresponding TEM micrographs at high
magnification, a difference in electronic densities between phases due to IL 169 3! is observed
and it is more obvious with an increasing percentage of IL 169. This can be explained by the
limited miscibility between phosphonium salt and the growing species during curing ?°!. As a
summary, the phosphonium-based ionic liquid (IL 169) is dispersed homogeneously in the
epoxy-amine network and a very fine nanosized phase was observed with the increasing amount
of IL 169. This homogeneous distribution of IL 169 within epoxy-amine network is beneficial

for further initiating the polymerization of the released healing agents.

Figure 3-15 TEM micrographs of cured epoxy-amine-IL networks, i.e. DGEBA combined

with 30 phr PACM with addition of (a,d) 5 phr IL 169; (b, €) 10 phr IL 169;
(c, £) 20 phr IL 169
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3.4.2.3 Thermal properties of epoxy-amine-IL networks

It is well known that the addition of low molar mass component in thermoset polymers
always influences the thermal properties of the resulting material. Thus, it is necessary to take
into consideration similarly the effect on the thermal properties brought by IL 169. Therefore,
the thermal properties of epoxy-amine networks with different IL contents were characterized.
This will help to determine the optimal IL 169 content. Figure 3-16 presents the DSC traces of
epoxy-amine networks (r = 1) with different IL 169 contents and the corresponding T, values.
It can be seen that with the addition of IL 169, the T, decreases compared to the neat epoxy-
amine network (T, = 156 °C, see Table 2-4 in Chapter 2). According to the literature, after the
polyaddition reaction of epoxies and amines, IL may open residual epoxy rings from anion to
form phosphonium alcoholates 27-3!1, DSC traces for curing epoxy-amine-IL 169 (Figure 3-14)
indicate that epoxy reacts with amine in the early stage of curing, and IL 169 remains ions pairs
within the epoxy-amine network. As a consequence, IL 169 plays a role of plasticizer and

decreases the T [°+ %,

—4A— EP+30PACM+20IL
—e— EP+30PACM+10IL
—a— EP+30PACM+5IL

_-T,=118°C

T, = 135°C

Heat Flow (W/g)

T,=151°C*

T T
50 100 150 200 250
Temperature (°C)

Figure 3-16 DSC traces of epoxy-amine-IL systems: (ll) EP + 30 phr PACM + 5 phr IL169;
(®) EP + 30 phr PACM + 10 phr IL169; (A) EP + 30 phr PACM + 20 phr IL169
(N, atmosphere, heating rate: 10 K-min ™)
The influence of IL 169 on the thermal degradation of epoxy-amine networks as well as
the one of neat IL 169 were characterized by TGA as shown in Figure 3-17. The onset

decomposition temperature (Tq onset, temperature at 5 wt% weight loss) and the maximum
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decomposition temperature (T4 max) Were summarized in Table 3-5. It can be seen that neat IL
169 has the lowest Tq onset (266 °C) and two steps of thermal degradation were evidenced.
Compared with EP + 10 phr IL 169 system (Td onset =341 °C) P free IL 169 in the epoxy-
amine network may decrease the Tq onset values of final materials with increasing mass fraction
of free IL 169 (see Table 3-5). Moreover, T4 max values of epoxy-amine-IL networks are shifted
to lower temperature as well and the shoulder (Figure 3-17 (b), pointed by arrows) on the DTG
curves corresponds obviously with the increasing amount of IL 169, to the second degradation
of IL 169. Therefore, free IL 169 in the epoxy-amine networks may decrease the T ¢ onset Of the

resulting epoxy-amine-IL system with increasing weight fraction.

25

—a&— EP+30PACM+5IL169

—e— EP+30PACM+10IL169
¥ —A— EP+30PACM+20IL169

—v¥—neat IL169

—&— EP+10IL169

100

—a— EP+30PACM+5IL169
—e— EP+30PACM+10IL169
2.0 —A— EP+30PACM+20IL169
—v— neat IL169

—&— EP+10IL169

©
=}
1

Weight (%)
3
1

N
S
1

Deriv. Weight (%/°C)

N
=}
1

o
1

T T T T T T
200 400 600 800 200 400 600 800
Temperatur (°C)

Temperatur (°C)
(@ (b)

Figure 3-17 (a) TGA and (b) DTG traces of epoxy-amine-IL networks
(H) EP + 30 phr PACM + 5 phr IL169; (@) EP + 30 phr PACM + 10 phr IL169; (A) EP + 30
phr PACM + 20 phr IL169; (V) neat IL169 ; () EP + 10 phr IL169 (N2 atmosphere, heating

rate: 20 K-min ')

Table 3-5 Weight loss temperatures of epoxy-amine-IL networks and neat IL 169

Material Td onset (°C) Tamax (°C)
EP + 30 PACM+5 IL 169 333 370
EP+30 PACM+10 IL 169 328 365
EP+30 PACM+20 IL 169 313 364
neat IL 169 260 Tdmaxt = 320; Tdmaxz = 420
EP + 10 phr IL169 341 388
EP + 30 PACM 359 378
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3.4.2.4 Mechanical properties of epoxy networks

The mechanical properties of epoxy-amine-IL networks were investigated to determine
the optimal weight fraction of IL 169. The Young’s modulus and fracture toughness were
characterized and the results are summarized in Table 3-6. The Young’s modulus and fracture
toughness increased simultaneously. This could be explained by the nanoscale dispersion of IL
169 within the epoxy-amine network. The uniform dispersion as nanophases of IL 169 in the
polymer matrix (see Figure 3-15) could also explain the increase of fracture toughness. In fact,
ionic liquid as nanophases could increase plastic deformation at the crack tip during crack

propagation leading to an increase of the fracture toughness [*°!,

Table 3-6 Mechanical properties of different epoxy-amine-IL networks

Materials E (GPa) Kic (MPa-m*?)
EP+30 PACM 1.1+0.04 0.554+0.05
EP+30 PACM +5 IL 1.3+0.02 0.60£0.05
EP+30 PACM +10 IL 1.6+0.03 0.63+0.04
EP+30 PACM +20 IL 1.6+0.02 0.68+0.04

To conclude, IL 169 could be considered as potential initiator for a released healing agent
from EP@PUF microcapsules for self-healing purposes. It is necessary to make sure that IL
169 is well dispersed and remains reactive. Therefore, the curing behavior, thermal and
mechanical properties of different epoxy-amine-IL 169 networks were studied. The results have
shown that IL 169 played a role of plasticizer and lower the decomposition temperature of
epoxy-amine networks. However, the homogeneous distribution of IL 169 as nanophases
helped to prevent the crack propagation by plastic deformation and improved the mechanical
properties. Therefore, after considering the disadvantages of thermal properties and advantages
of mechanical properties provided by IL 169 in the epoxy-amine network, the optimal addition

of IL 169 was determined to be 10 phr.
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3.5 Preparation and characterization of self-healing epoxy-amine-ionic liquids composites

filled with EP@PUF microcapsules
3.5.1 Material processing

After determining the optimal weight fraction of IL 169 in the epoxy-amine networks, to
provide the self-healing behavior, the EP@PUF microcapsules were added in the epoxy-amine-
IL formulation to prepare the epoxy composites. Different weight fractions of EP@PUF

microcapsules (5 to 20 wt%) were considered (Table 3-7).

Table 3-7 Weight fractions of each component of EP@PUF microcapsule-filled epoxy-amine-

IL composites

Material D.E.R. 332 (phr) PACM (phr) IL 169 (phr) EP@PUF (wt%)

1 100 30 10 0
2 100 30 10 5
3 100 30 10 10
4 100 30 10 15
5 100 30 10 20

Figure 3-18 describes the preparation protocol of EP@PUF microcapsule-filled epoxy-
amine-IL composites. In a first step, EP@PUF microcapsules were dispersed into epoxy
monomer under ultrasounds. Before adding diamine (PACM), 10 wt% of IL 169 of epoxy resin
were added to the initial mixture. This one was then stirred in an oil bath at 60 °C for 15 min.
Them, PACM diamine hardener was added considering a stoichiometric ratio equal to 1 (epoxy-
to-amino hydrogen ratio). The mixture was stirred for another 15 min at 60 °C. Finally, the
mixture was degassed, casted, and cured in an oven. The curing process was carried out as
follows: 2 h at 80 °C followed by 2 h at 160 °C. Finally, the materials were cooled down to

room temperature.

@ Dpispersion of EP@PUF @ Mix with IL 169 (® Mix with hardener PACM (@ Degas (® Mold and cure

microcapsules in DGEBA ‘
‘/

ultrasonic bath 2 h fully mix by mechanical stir at 60 °C vacuum bell jar 2 h@80 °C+2 h@160 °C in oven

Figure 3-18 Design of EP@PUF microcapsule-filled epoxy-amine-IL composites

168

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2022LY SEI026/these.pdf
© [T. Shi], [2022], INSA Lyon, tous droits réservés



Chapter 3 Synthesis of poly(urea-formaldehyde) microcapsules containing epoxy monomer
to design self-healable epoxy-amine-IL materials

3.5.2 Characterization of EP@PUF microcapsule-filled epoxy-amine-IL materials
3.5.2.1 Morphology of EP@PUF microcapsule-filled epoxy-amine-IL materials

The dispersion of state of EP@PUF microcapsule-filled epoxy-amine-IL composites was
characterized by SEM (Figure 3-19). Figure 3-19 (a)-(d) shows the SEM images of fractured
surfaces of EP@PUF microcapsule-filled epoxy-amine-IL composites with 5, 10, 15, and 20
wt% EP@PUF microcapsules contents. Figure 3-19 (e)-(h) show the intact or broken EP@PUF
microcapsule and the interfaces in the epoxy composites. As shown in Figure 3-19 (a) - (d), a
good dispersion of EP@PUF microcapsules and broken ones can be seen on the fracture
surfaces. Moreover, tails, i.e. the hackle markings were observed on the fractured surface and
these tails were formed by the rapid advancement of the crack front the path that required the

57381 The interfacial strength is also very important for self-healing ability

minimum energy [
for composites filled with microcapsules. A good interface can guarantee the rupture of
microcapsules during the crack propagation for further release of healing agent. Figure 3-19 (e)
- (f) shows the individual EP@PUF microcapsules and the good interface with the epoxy-
amine-IL network. In Figure 3-19 (g) and (h), the interface can be seen clearly. As a
consequence, on the fractured surfaces, tails were observed evidencing crack pinning leading
to advancement of fracture toughness. Therefore, the rapid crack propagation and the good
interfaces between the EP@PUF microcapsules and the epoxy-amine network could ensure the

breakage and the release of healing agent, and the good distribution of EP@PUF microcapsules

could be in favor of achieving self-healing.

e N A

SEM HV: 10_.0 kv WD: 16.?l_ml|| | VEGA3 TESCAN|
Det: SE SEM MAG: 321x | 200 ym

Bl: 10.00 HiVac : INSA - Département SGM

SEM HV: 10.0 kV ‘WD: 10.83 mm ! VEGA3 TESCAN
Det: SE SEMMAG: 433 x | 100 pm
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Figure 3-19 SEM micrographs of fractured surface of epoxy-amine-IL composites filled with
(a) 5 wt%; (b) 10 wt%; (c) 15 wt%; (d) 20 wt% of EP@PUF microcapsules; and (e)-(f)

intact/broken EP@PUF microcapsules and the interfaces
3.5.2.2 Thermal behavior of EP@PUF microcapsule-filled epoxy-amine-IL materials

The thermal behavior of EP@PUF microcapsule-filled epoxy composites was

characterized from DSC measurement (Figure 3-20). Glass transition temperature (Ty) was
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summarized in Table 3-8. First, a decrease of T, values EP@PUF microcapsule-filled epoxy
composites was observed compared with the neat epoxy-amine-IL network, which is mainly
due to the addition of EP@PUF microcapsules. In addition, it should be noticed that for all the
EP@PUF microcapsule-filled epoxy-amine-IL networks, an exothermic peak from 200 to
250 °C is evidenced on the DSC trace, indicating the polymerization of released epoxy healing
agent from the EP@PUF microcapsules occurs. On the opposite, the epoxy-amine-IL network
did not show such an exothermic peak as no polymerization reaction occurs. Therefore, the

reactivity of the EP@PUF microcapsules as potential self-healing agent is verified.

0.0
—a— EP+30PACM+10IL
—&— EP+30PACM+10IL+5PUF@EP
-0.54 —A— EP+30PACM+10IL+10PUF@EP
—w¥— EP+30PACM+10IL+15PUF@EP
—¢— EP+30PACM+10IL+20PUF@EP
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o
:
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i 24
4= . 4 Y
S YVvyvvyyrvY?Y
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-2.54
-3.0 T T

T
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Figure 3-20 DSC traces of EP@PUF microcapsule-filled epoxy-amine-IL composites (N2

atmosphere, heating rate: 10 K-min ™)

Table 3-8 T of different EP@PUF microcapsule-filled epoxy-amine-IL materials

Symbol in Figure 3-20 Material Tg (°C)
] EP+30PACM+10IL 135
o EP+30PACM+10IL+5EP@PUF 130
A EP+30PACM+10IL+10EP@PUF 124
v EP+30PACM+10IL+15EP@PUF 123
L 4 EP+30PACM+10IL+20EP@PUF 113
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3.5.2.3 Thermal stability of EP@PUF microcapsule-filled epoxy-amine-IL materials

Thermal stability of EP@PUF microcapsule-filled epoxy-amine-IL composites was
characterized by TGA, and the TGA and the corresponding DTG traces were shown in Figure
3-21. The onset decomposition temperature (Tq onset, temperature at 5 wt% weight loss) and
maximum decomposition temperature (Td max, temperature at the peak of DTG curve) are
summarized in Table 3-9.

It can be seen that when the weight fraction of EP@PUF microcapsules increases, Tq onset
decreases while Tamax does not change. The decrease of Tq onset can be attributed to the facts that
EP@PUF microcapsules have a Td onset around 238 °C (see Table 3-2), which is lower than the
one of epoxy-amine-IL network (328 °C). Therefore, increasing the EP@PUF microcapsules
content will lower the Tq onset of EP@PUF microcapsules filled epoxy-amine-IL composite.

For Tqmax, similar values and degradation behavior can be evidenced in Figure 3-21 for all
materials. Epoxy-amine-IL networks filled with 10, 15, and 20 wt% EP@PUF microcapsules
showed three steps of decomposition, i.e. two maxima on the DTG traces. However, epoxy
materials with only 5 wt% of EP@PUF microcapsules did not have the first peak. The first
decomposition close to 260 °C (Tamax1) evidenced with a low intensity peak on the DTG traces
corresponds to the decomposition of the PUF shell. Therefore, the more EP@PUF
microcapsules added in the epoxy matrix, the highest first degradation peak is on the DTG
traces. On the other hand, T4 max2 close to 370 °C for all the samples did not vary and is
associated with the degradation of the polymer matrix. The shoulder close to 420-470 °C on
DTG traces can be attributed to the further degradation of polymerized healing agent and IL
169. According to the TGA results, the EP@PUF microcapsule-filled epoxy-amine-IL materials
display a very good thermal stability. The addition of EP@PUF microcapsules slightly
decreases the Tq onset but the microcapsules do not have any influence on the degradation

behavior of the resulting materials.
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Figure 3-21 (a) TGA and (b) DTG traces of EP@PUF microcapsule-filled epoxy composites
under N, atmosphere () EP + 30PACM + 10IL + SEP@PUF; (@) EP + 30PACM + 10IL +
10EP@PUF; (A) EP + 30PACM + 10IL + 15EP@PUF; (V) EP + 30PACM + 10IL +
SEP@PUF (N, atmosphere, heating rate: 20 K-min ')

Table 3-9 Weight loss temperature of EP@PUF microcapsule-filled epoxy-amine-IL materials

Td max
Material Td onset (°C) Tomsa (°C)  Tamae (°C)
EP + 30 PACM+10 IL 328 365
EP + 30PACM + 10 IL + 5 EP@PUF 324 -- 374
EP + 30 PACM + 10 IL + 10 EP@PUF 308 264 373
EP + 30 PACM + 10 IL + 15 EP@PUF 287 257 375
EP + 30 PACM + 10 IL + 20 EP@PUF 282 258 377

3.5.2.4 Dynamic mechanical analysis of EP@PUF microcapsule-filled epoxy-amine-IL

materials

Dynamic mechanical analysis (DMA) was performed to characterize EP@PUF filled
epoxy-amine-IL materials. Two characterizations for the same sample in the same conditions

were performed to simulate the self-healing process. The loss factor (tan J), storage modulus
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(G”), and loss modulus (G ”) as a function of temperature of different materials are presented in
Figure 3-22.

As shown in Figure 3-22, the glass transition of epoxy matrix is evidenced on the tan o vs.
temperature (T) curves, corresponding to the main peak and relaxation (o). A second peak after
the main relaxation from 200 to 250 °C could be also evidenced on tan é - T and G” -T curves
in the first heating run. In the same temperature range, an increase of G can be seen as well.
This can be explained by the beginning of decomposition of the PUF shell and the
polymerization of the healing agent in the EP@PUF microcapsules. In fact, polymerization
started with the breakage of the PUF shell. Meanwhile, the released healing agent, i.e. epoxy,
polymerized from the initiation of IL 169 in the epoxy matrix explains the increase of G ”.

The Tq values of EP@PUF microcapsule-filled epoxy materials increase after the first
heating run, as shown in Table 3-10. To explain this, the graphical representation of possible
structures of healed materials with the healing agent is shown in Figure 3-23. In the EP@PUF
microcapsule-filled epoxy composites, the released healing agent polymerized from the
initiation of IL 169 heals the cracks of the polymer matrix by forming a cured network. As a
consequence, an increase of T, was observed. Furthermore, because of the polymerized healing
agent in the matrix, a strengthened material has been formed compared with the original
material. Thus, the self-healing ability of EP@PUF microcapsules filled epoxy-amine-IL

composites was verified and the mechanical performances of healed composites are improved.
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Figure 3-22 tan 6, G’, and G ”vs. temperature curves of EP@PUF microcapsule-filled

epoxies (at 1Hz, heating rate 3 K-min™')

Table 3-10 o transition temperatures of difterent EP@PUF microcapsule-filled epoxy-amine-

IL materials

Material T, (°C) before T, (°C) after
EP + 30 PACM + 10 IL + 5 EP@PUF 144

164
163
166
162

EP + 30 PACM + 10 IL + 10 EP@PUF 140
EP + 30 PACM + 10 IL + 15 EP@PUF 138
EP + 30 PACM + 10 IL + 20 EP@PUF 132
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Figure 3-23 Graphical representation of possible structure after the healing process
3.5.2.5 Self-healing property of EP@PUF microcapsule-filled epoxy-amine-IL materials

Finally, the self-healing ability of the prepared material was characterized by comparing a
scratch created on the material before and after self-healing using SEM microscopy. A scratch
was made by a razor blade on the materials and the scratched materials were placed in an oven
to carry out the self-healing process at 80 °C for 2h, 160 °C for 3h, and 200 °C for 3h. The SEM
images of scratches on the epoxy-amine-IL networks filled with different weight fractions of
EP@PUF microcapsules before (left) and after (right) the self-healing process were represented
in Figure 3-24. The width of the scratches made by the razor blade was controlled around 10 to
15 wm, which should be smaller than the diameter but bigger than the shell thickness of the
EP@PUF microcapsules, to ensure the breakage of the PUF shell and the release of the self-
healing agent.

As shown in Figure 3-24, the self-healing ability depends on the weight fraction of the
EP@PUF microcapsules in the epoxy composites. As shown in Figure 3-24 (b), the epoxy-
amine-IL composites filled with only 5 wt% of EP@PUF microcapsules did not show a release
for filling the crack and polymerization of the healing agent. Thus, no self-healing effect was
observed due to the too low number of EP@PUF microcapsules in the polymer matrix. As the
interspace among EP@PUF microcapsules is large, the scratch could pass through the polymer
matrix without damaging the EP@PUF microcapsules. Nevertheless, if the mass fraction of
EP@PUF microcapsules was increased up to 10 wt%, the healing effect of the scratch can be
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effective as shown in Figure 3-24 (d). The release of healing agent and its polymerization in the
scratch as well as the self-healing effect can also be evidenced when the weight fraction of

EP@PUF microcapsules is higher, i.e. 15 wt% (Figure 3-24 (f)) to 20 wt% (Figure 3-24 (h)).
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Figure 3-24 SEM micrographs of scratches on the EP@PUF microcapsule-filled epoxy-
amine-IL materials before (left) and after (after) healing: (a)(b) 5 wt%; (c)(d) 10 wt%; and
(e)() 15 wt% and (g)(h) 20 wt% of EP@PUF microcapsules addition

In addition, after the fracture toughness test, the samples were submitted to the same
healing process in the oven, and the fractured surfaces after the healing process were also
observed by SEM. As shown in Figure 3-25, the released polymerized healing agent could be
observed (pointed out by the arrows in Figure 3-25). It can be seen that the healing agent was
released by the broken EP@PUF microcapsules and polymerized at the fractured surface.
However, the healed material did not recover mechanical properties similar to the original ones.
In fact, a large quantity of the healing agent is needed to rebond the two large fractured surfaces
for a well cured material. Nevertheless, the polymerized film formed by the released healing
agent in Figure 3-25 evidences the self-healing ability of EP@PUF microcapsules introduced

epoxy-amine-IL networks.
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Figure 3-25 SEM micrographs of healing surface after fractured toughness test of EP@PUF
microcapsule-filled epoxy-amine-IL materials (arrow indicated the release and polymerized

healing agent at the fracture surface)
3.5.2.6 Mechanical properties of EP@PUF microcapsule-filled epoxy-amine-IL materials

According to the previous studies, more than 10 wt% of EP@PUF are enough to achieve
an efficient self-healing effect of the scratch into the epoxy-amine-IL materials, because
increasing the number of EP@PUF microcapsules will lead to a negative effect on the thermal
properties of the final epoxy materials. Let is consider the influence of EP@PUF microcapsules
on the mechanical properties of epoxy-amine-IL composites by characterizing their Young’s
modulus and fracture toughness.

Table 3-11 summarizes Young’s modulus and the fractures of epoxy-amine-IL networks
with and without EP@PUF microcapsules. It can be seen that more than 5 wt% of EP@PUF
microcapsules addition leads to a decrease of Young’s modulus of epoxy materials and this
decrease is even higher with increasing weight fraction of EP@PUF microcapsules. The
decrease of Young’s modulus is in agreement with the one observed for other amino-
microcapsule-filled polymers both for single or dual microcapsules systems. For example, Yan
et al ) and Li et al 3! have also reported that the reduced modulus is due to the addition of
single and dual microcapsules in polymers. There are two reasons that can explain the negative
influence of EP@PUF microcapsules on Young’s modulus : i) the EP@PUF microcapsules
filled with healing agent act as defects at the cross section of composites; the lack of chemical

bonds at the interface or stronger molecular interactions between EP@PUF microcapsule and
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the polymer matrix led to a weak or brittle interface; ii) soft segment of the molecular chains
slipping of EP@PUF microcapsule surface from its original position within the epoxy matrix
during the characterization led to a reduction in Young's modulus of epoxy composite 6],

An increase in the fracture toughness of EP@PUF microcapsule-filled epoxy materials
resulting from additional EP@PUF microcapsules can be evidenced. This one could be
attributed to the addition of microcapsules that can absorb the fracture energy and prevent the
propagation of cracks, corresponding to the tails in Figure 3-19. As described in Chapter 2, the
tails around the fillers explained the crack pinning toughen mechanism. Nevertheless,
additional mechanisms are present. Lee et al [°!) studied the micromechanical behavior of epoxy
loaded microcapsules by nanoindentation. These authors demonstrated that the epoxy loaded
microcapsules with a PUF shell behaved like a viscoelastic material. Therefore, the “Crack path
deflection” mechanism could also contribute to the increased fracture toughness [*> %31, The
viscoelastic character of polymer shell makes the crack deviate from its main plane and increase
the energy for crack propagation [** ¢l In addition, the fracture of microcapsules from the
microcracks propagation can undergo debonding from the matrix and increase the crack tip
radius (of the diameter of the fractured microcapsules) [, Therefore, increasing number of
EP@PUF microcapsules in the epoxy-amine matrix brings more defects in the matrix. The low
mechanical strength of EP@PUF microcapsules compared to highly crosslinked matrix
contributed to the decreased Young’s modulus. Nevertheless, increasing number of EP@PUF
microcapsules also improve the toughness from the increasing tortuosity of the cracks during

propagation.

Table 3-11 Mechanical properties of different EP@PUF microcapsule-filled epoxy-amine-IL

materials
Material E (GPa) Kic (MPa-m*?)
EP+30PACM+10IL 1.6+0.03 0.63+0.04
EP+30PACM+10IL+5EP@PUF 1.6+0.01 0.66+0.02
EP+30PACM+10IL+10EP@PUF 1.5+£0.05 0.71+0.03
EP+30PACM+10IL+15EP@PUF 1.5+0.02 0.77+0.02
EP+30PACM+10IL+20EP@PUF 1.4+0.02 0.81+0.05
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To conclude, EP@PUF microcapsules in the epoxy-amine-IL network can play a role of
additive self-healing according to the extrinsic self-healing mechanism, in which 10 phr of IL
169 was added in the matrix as initiator for the polymerization of released healing agent. Results
have shown that more than 10 wt% of EP@PUF microcapsules could bring a promising self-
healing effect of scratches and improve the fracture toughness at the same time for the final
material. However, an increasing number of EP@PUF microcapsules in the matrix will also

bring a negative effect on the thermal properties and on resulting stiffness.
3.6 Conclusion of Chapter 3

In this chapter, an epoxy monomer was encapsulated in a poly(urea-formaldehyde) (PUF)
shell material as EP@PUF microcapsules. The obtained EP@PUF microcapsules have a rough
surface and a size distribution of around 20 - 150 um. Good thermal stability and polymerization
ability of core material make the EP@PUF microcapsules behave as self-healing additives in
the polymer composites.

An ionic liquid tributyl(ethyl)phosphonium diethyl phosphate (IL 169) was considered as
the initiator of the polymerization of a healing agent, i.e. encapsulated epoxies, due to the
different cure temperature ranges required for the copolymerization with 4,4’-
methylenebis(cyclohexylamine) (PACM). Thus, Il 169 can react with the released epoxy
healing agent as EP@PUF microcapsules are broken. Different characterization methods
including DCS, TGA, and TEM have been employed to optimize the weight fraction of IL 169
in the epoxy-amine network. We showed that IL 169 added to the epoxy-networks acts as a
plasticizer and is able to initiate the polymerization of excess epoxies. Nevertheless, the
homogeneous distribution of IL 169 as nanophases promotes the initiation of the polymerization
after releasing healing agent and helps to improve the mechanical behavior. After balancing the
both advantages and disadvantages of IL 169 in the epoxy-amine network, the optimal addition
of IL 169 in epoxy-amine networks was 10 phr.

Finally, different weigh fractions of EP@PUF microcapsules were added in the epoxy-
amine-IL network as self-healing additives. Their thermal properties, self-healing ability, and
mechanical properties were investigated. DSC and TGA analyses showed that the addition of

EP@PUF microcapsules slightly affected T and degradation temperature of resulting material
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due to lack of chemical interactions and the lower decomposition temperature of EP@PUF
microcapsules compared to epoxy matrix. SEM observation of the scratch before and after the
self-healing process was used to characterize the self-healing ability of the resulting materials.
A threshold of the numbers of EP@PUF microcapsules (> 10 wt%) in the epoxy matrix was
found. Over this threshold, the healing agent is released sufficiently and the self-healing effect
is effective. However, the addition of EP@PUF microcapsules in the epoxy matrix lowers
Young’s modulus and thermal properties but improves the fracture toughness of the resulting

materials, which is mainly due to the viscoelastic characteristic of such EP@PUF microcapsules.
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Chapter 4:
Encapsulation of ionic liquid epoxy
monomer and their self-healing application

in epoxy-amine networks

Introduction of microcapsules for achieving self-healing is a convenient and promising
strategy for polymer materials as reported in Chapter 3. Nevertheless, the previously described
route requires the presence of an initiator for healing agent. Therefore, an ionic liquid epoxy
monomer (ILEM) with self-curing ability was encapsulated in poly(melamine-formaldehyde)
microcapsules as a healing agent. However, few studies have been done about the encapsulation
using this route and its application as a self-healing additive in polymer composites. Therefore,
this chapter focuses on the synthesis and characterization of ILEM containing poly(melamine-
formaldehyde) (PMF) microcapsules (ILEM@PMF) and the properties of final epoxy
composites cured with different amines. Three sections are included in this chapter: i) Synthesis
and characterization of ILEM and ILEM@PMF microcapsules; ii) Influence of synthesis
parameters on the morphology and
size distribution of ILEM@PMF
microcapsules; #ii) Investigation of

final properties of ILEM@PMF

OCCHO®OONOCS CF

ionic liquid epoxy monomer

microcapsules filled epoxy-amine (L)

~

-

composites cured with different
. poly{melamine-formaldehyde)
amines as the hardener. ’ (PMF)
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Chapter 4 Encapsulation of ionic liquid epoxy monomer and their self-healing application
in epoxy-amine networks

4.1 Introduction

Microcapsules can facilitate the delivery of encapsulated components which is the main
strategy of the extrinsic self-healing mechanism ). Self-healing happens as the healing agent
is released by breaking microcapsules and further polymerization under given stimuli including
initiator, reaction with a hardener and temperature [?!. These stimuli for polymerization of the
healing agent depend of course on the nature of the encapsulated healing agent.

Several reactive components were encapsulated as microcapsules for self-healing
applications, such as dicyclopentadiene (DCPD) [*!, methylmethacrylate acrylate (MMA), and

[4.5] etc. According to the nature of the healing agents, various strategies were

epoxy monomer
considered for the polymerization : Grubbs’ catalyst for DCPD [© triethylborane (TEB) for
MMA U1 heat oxidation for linseed oil ¥l etc. However, several problems remain when extra
hardeners or initiators were used. For example, the reactivity of Grubbs’ catalyst may be
influenced by the presence of reactants, such as amines ! and a poor dispersion of the catalyst

(19" A color change was observed in epoxy-amine

may lead to a poorer healing efficiency
network embedded with Grubbs’ catalyst indicating a partial or complete dissolution of Grubbs’
catalyst during curing processing, which may also affect self-healing efficiency ). Tonic liquid
is considered as initiator for the healing agent, i.e. epoxy monomer, but can behave as plasticizer
of the epoxy matrix as shown in Chapter 3. Besides, highly reactive compounds such as amines
[12] are considered to react with the healing agent, but the protection of reactive components
requires an additional synthesis step. Therefore, a more efficient healing agent and single type
microcapsule self-healing system may help to expand the field of self-healing materials and
avoid these limitations.

Recently, 1onic liquid monomers (ILM) have attracted the huge attention of researchers to
design new multifunctional polymer materials with promising properties 319, Such ILM can
be polymerized for designing new multifunctional polymers for various applications, such as

(16, 17

gas sorption 1 polymer electrolytes ['® %] antibacterial membranes [**2!! and self-healable

materials %2

1. Tonic liquid epoxy monomers (ILEM) can be polymerized to prepare high
performance materials. For example, Livi et al **! have designed a facile and robust way to
design polyfunctional imidazolium monomers bearing an aromatic ring and two epoxy
functions. These compounds can be cured with an amine to build epoxy networks with enhanced
thermal property, mechanical property and ionic conductivity. Similarly, Radchenko et al >4

have synthesized a bisimidazolium-based ILEM for development shape memory materials. The
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authors also reported that imidazolium-based ILEM was able to undergo self-curing from the
thermally latent cationic initiation of imidazolium fragments >3 or the extractable proton [/,
By changing the structure of cations and counteranions in the imidazolium-based ILEM,
thermal stability as well as their polymerization temperature can be tailored ['3l. Therefore,
ILEM could be applied for self-healing considering a single microcapsule system, i.e. without
any extra catalyst/initiator in the polymer matrix. To our knowledge, no work has been carried
out in this area.

For shell material of the microcapsules, different compounds can be considered : silica 7,
polymethyl methacrylate (PMMA) 281 polysaccharides >), polysulfone % 3! and amino
polymers including poly (urea-formaldehyde) (PUF) or poly (melamine-formaldehyde) (PMF).
However, PUF and PMF polymers are the most widely used as shell material for self-healing
applications because of the good mechanical strength required for processing and breakability
required at the self-healing step. Compared with urea in PUF, melamine in PMF displays a
higher functionality and shows a higher reactivity, leading to a shorter time for PMF shell
microcapsules synthesis *?). The higher stiffness and brittleness of PMF shell compared to PUF
331 can guarantee a higher healing efficiency.

Therefore, this chapter focuses on the synthesis of an epoxy-functionalized imidazolium
ionic liquid monomer, its encapsulation in a PMF shell to obtain ILEM containing
microcapsules (ILEM@PMF), and their application in epoxy-amine materials. The first attempt
was to encapsulate ILEM in polymer shell microcapsules via in-situ polymerization. Thus,
suitable surfactants for stabilizing ILEM droplets in aqueous emulsions were researched. The
influence of synthesis parameters on the morphology and size distribution of ILEM@PMF
microcapsules were investigated. The chemical structure and thermal properties of
ILEM@PMF microcapsules were also characterized. ILEM@PMF microcapsules were then
added in different epoxy-amine networks to study their self-healing performance in different
thermoset polymer composites. This work tried for the first time to design ILEM containing
microcapsules as a single microcapsule system, to achieve self-healing purposes epoxy
networks. Therefore, our study proposes a strategy for reaching self-healing and avoiding the

use of a hardener or an initiator in the matrix.
4.2 Experimental
4.2.1 Materials

Imidazole, sodium hydride (NaH, 60 % dispersion in mineral oil), 4-bromo-1-butene,

lithium  bis(trifluoromethanesulfonyl)imide (Li'NTf,), meta-chloroperoxybenzoic acid
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(mCPBA), melamine (M), formaldehyde solution (F, 37 wt. % in H>O, contains 10-15%
methanol as stabilizer), triethanolamine (TEA), sodium dodecylbenzenesulfonate (SDBS),
poly(vinyl alcohol) (PVA, My, 13,000-23,000, 87-89% hydrolyzed), epoxy resin, i.e. bisphenol
A diglycidyl ether (DEGBA, D.E.R. 332), 4,4’-methylenebis(cyclohexylamine) (PACM), and
triethylenetetramine (TETA) were purchased from Sigma-Aldrich and used as received.
Epikure 3223 curing agent, containing mainly diethylenetriamine (DETA) was purchased from
Silmid Co. Anhydrous solvents including acetonitrile (CH3CN), tetrahydrofuran (THF), and
acetone (CH3COCH;3) were obtained using a PURESOLV SPS400 apparatus developed by

InnovativeTechnology Inc. The chemical structures of all the materials are shown in Table 4-1.

Table 4-1 Chemical structures of the products used

Materials and abbreviations Chemical structures
AN
Imidazole HN
\—/
4-bromo-1-butene B >
. . . . . . O Ll
lithium bis(trifluoromethanesulfonyl)imide FaC \\é _ Ne/ é// CF,
(Li'NT£) J b
meta-chloroperoxybenzoic acid o
peroxy HO( o)g©/0|
(mCPBA)
NH,

Melamine (M) N

formaldehyde solution

(F, 7 wt. % in H20) H—C—H
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HO OH
triethanolamine TN
(TEA) OH
i
] S— Oe ©Na
sodium dodecylbenzenesulfonate (SDBS) /O/ g
H3C(H2C)1oH2C
OH
poly(vinyl alcohol)
(PVA, My, 13,000-23,000, 87-89% hydrolyzed) N
HsC CHs
bisphenol A diglycidyl ether
(DEGBA, D.E.R. 332) ‘ O
H,N NH,

4,4’-methylenebis(cyclohexylamine) (PACM) \O\/O/

H
N NH
Triethylenetetramine (TETA) HoN™ N N N N

H,N NH,
Epikure 3223 (diethylenetriamine, DETA) \/\H/\/

4.2.2 Characterization

'H and "”F NMR spectra were recorded using a Bruker Avance III 400 MHz at 298K.
Samples were dissolved in deuterated chloroform (CDCls), methanol (MeOD) or acetonitrile
(CD3CN). The chemical shifts (0) are expressed in ppm relative to the internal reference
tetramethylsilane for 'H and ""F nuclei, and coupling constants are indicated in Hz.

Abbreviations for signal coupling are as follows: s=singlet; d=doublet; dd=doublet of doublets;

t=triplet; m=multiplet.
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Thermogravimetric analysis coupled with infrared spectrometry (TGA-IR) was performed
using TGA 8000 machine from PerkinElmer and the evolved gas analysis was performed by
interfacing a Fourier transform infrared spectrometer (FTIR, Nicolet 6700 spectrophotometer)
to the exit part of the TGA furnace. Analyses were carried out under N> atmosphere at a heating
rate of 10 K-min™! to 800 °C. Over 10.0 mg of the sample was put in an alumina crucible and
heated from 35 to 700 °C at a heating rate of 10 K-min™! K under N, atmosphere. Infrared
spectra in the optical range of 400 - 4000 cm™ were recorded every 4.

Monitoring the in-situ polymerization by optical microscopy was carried out on an Axio
Imager A2M type optical microscope from Zeiss Co.

Differential Scanning Calorimetry (DSC) measurements were carried out by using Q10
TA instrument at a heating rate of 10 K-min™' under N flow of 50 mL-min"'.

Q500 Thermogravimetric analyzer from TA Instruments was used for thermogravimetric
analysis. The characterization was performed at a heating rate of 20 K-min! under a N,
atmosphere.

Morphology characterization was carried out by TESCAN VEGA3 type SEM from Tescan
Analytics. All the specimens were coated with gold by a sputter coater to prevent charge
accumulation on the surface. The sputter coating process was performed at a current of 30 mA
for 90 s.

Self-healing was characterized from the observation of the healing of a scratch notch on
the polymer surface. Cured epoxy film with a thickness about 100 - 150 pm was notched by a
razor blade. Then the notched film was placed in an oven to conduct self-healing protocol (4 h
at 100 °C followed by 4 h at 200 °C). The samples before and after the self-healing protocol
were observed by SEM.

The local temperature of samples during the curing process was measured by YC 747 UD
type data logger thermometer from TCSA company. Epoxy and hardener were mixed and
poured into an aluminum vessel and the thermocouple was placed and fixed inside the mixture.

The temperature was recorded during the curing process (Figure 4-1).

il

aluminism yvessel |

oven

thermocouple

data logger

Figure 4-1 Local temperature recording of the sample during curing
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Dynamic mechanical analysis (DMA) was carried out using an ARES-G2 from TA
Instruments. The analyses were carried out for 0.01% dynamic strain at a frequency of 1 Hz
and a heating rate of 3 K min! from 35 to 250 °C. The characterizations were performed twice
for the same material under the same conditions.

Compression tests were carried out using a MTS machine operating with a 5 kN load cell.
The samples geometry was based on ISO 604:2002 standard i.e. 5*5*16 mm®. The Young's
modulus (E) was determined from o (stress) vs. € (strain) curves in the linear region.

Mode I stress intensity factor (K;.) of epoxy-amine networks and related microcomposites
were determined on compact tension specimens according to the ISO 13586:2018(E) standards
(Figure 4-2). The notch was formed using a milling cutter and the initial crack also known as
natural crack was made by tapping a fine razor blade into the notch. The length of initial crack
to width ratio (a/w) has to keep between 0.2 and 0.8. The fracture toughness test was carried
out using a MTS tensile machine equipped with a 1 kN load cell operating at tensile speed at

10 mm'min’'. K;, was calculated according to equation 4-1:

K. = f(a/w) hFTQW (equation 4-1)

where a (m) is the length of initial crack, w (m) and h (m) are the width and thickness
of specimen, respectively. Fp (N) is the final load at the first crack. The f(a/w) value is a

geometrical factor which can be calculated using equation 4-2:

fla/w) =

(2+a)
(1—a)3/2

The critical energy release (G;.) can be calculated from equation 4-3 and the value of K,

X (0.886 + 4.64a — 13.32a2 + 14.72a® — 5.64a*) (equation 4-2)

Young’s modulus (E), and Poisson’s coefficient (v). 0.35 for v were considered according to

the values related in the literature for epoxy networks 3% 31,

1—v2)-K2
Gic = a-v2)Kic (equation 4-3)

o
o L
O

24

a h
W

A A

Figure 4-2 Compact Tensile (CT) test specimen geometry
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4.3 Synthesis and characterization of ILEM@PMF microcapsules

4.3.1 Synthesis of ILEM

The synthesis of imidazolium ionic liquid monomer (ILEM) with two epoxy groups was
described by Scheme 4-1. The imidazolium ionic liquid epoxy monomer 5 (ILEM) was
synthesized by four steps from imidazole. First, 1,4-dibromobutane (1.15 equiv) was added to
imidazole 1 to form compound 2. Then, 2.0 equivalent of 1,4-dibromobutane was reacted with
2 to obtain 3. After an anionic exchange of bromide with NTf,” by using Li"NTf," salt in order
to obtain the corresponding imidazolium salt 4 with 98% of yield. Finally, the diepoxide 5 was
obtained quantitatively by the Prilezhaev reaction with mCPBA (2 equiv) in CH3CN at 40 °C
for 18h.

ILEM was characterized by NMR (see Figure S4-1 — Figure S4-5 in the supporting
information of Chapter 4): 1H NMR (400 MHz, Chloroform-d) 6 8.93 (s, 1H), 7.36 (d, J = 0.8
Hz, 2H), 4.40 (t, J = 6.7 Hz, 4H), 3.01 (m, 2H), 2.79 (dd, 2H), 2.52 (dd, 2H), 2.47 — 2.34 (dd,
2H), 1.85 (dd, 2H). 19F NMR (376 MHz, Acetonitrile-d3) 6 -80.11.

AN (115 eq. NN (2 eq. N
/\N Br ( Cq) > N/\N/\/\ Br ( Q) . /\/\N/® N A
HN N =/ _©
\A THF, NaH, 60 °C, 18h — CH;CN, 80 °C, 18h

| 2
® f@
Li"NTt;  (2eq)) A NN 0 0
> /\/\NIQN \<9N _ \\\GN/”/CF3>

CH;COCH;, RT, 12h NTf,

o 4

H
O\o)‘\©/c' (mCPBA) (2 eq.) A~ /\/AO
/"N
> N @ o
o !>—/_ = VN,
CH,CN, 40 °C, 18h 5

Scheme 4-1 Synthesis of the imidazolium ionic liquid epoxy monomer (ILEM)

The thermal behavior of ILEM was characterized by DSC and TGA. The characteristic
temperatures were obtained and are summarized in Table 4-2. A homo-polymerization can be
evidenced from an onset temperature (T} onset) close to 227 °C (see Figure S4-6). Since the
imidazolium fragment can act as a thermally latent cationic initiator (!, ILEM may be a good
candidate as a self-healing agent as its curing temperature is higher than that of the reactive
systems used for matrices. As shown in Table 4-2, the Tq onset (temperature at 5 wt% weight loss)
of ILEM was close to 290 °C. Moreover, two steps degradation of ILEM was observed with

maxima on DTG curves (see Figure S4-7), corresponding to the two maximum degradation
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temperatures in Table 4-2 (Tq max1 = 320 °C and Tdmax2 = 456 °C). Thus, ILEM shows a good
thermal stability which is favorable for in-situ microencapsulation process and self-healing

application.

Table 4-2 Thermal properties of ILEM

Characterizations Characteristic Temperatures (°C)

DSC Tp onset = 227

T4 onset = 290

TGA
Td max]l — 320; Td max2 — 456

4.3.2 Synthesis of ILEM@PMF microcapsules

As described in Chapter 3, the synthesis of poly(melamine-formaldehyde) (PMF) shell
microcapsules (ILEM@PMF) containing ILEM via in-situ polymerization was similar to the
EP@PUF microcapsules. Thus, the procedure is summarized in Figure 4-3. The synthesis is
composed of three steps: i) preparation of melamine (M) and formaldehyde solution (F)
prepolymer, ii) preparation of ILEM in water solution (ILEM/H>O) solution, and iii) in-situ
polymerization and encapsulation.

First, 0.7 g of M and 2.1 g of F solution were added in a flask and with a mass ratio of
movy:m@E=1:3, and 2.1 g of water was also added in order to lower the concentration of MF
prepolymer in the aqueous solution. Then, 10 wt% of triethanolamine (TEA) aqueous solution
was added dropwise in the previous solution until the pH value was around 9. The mixture was
kept at 70 °C under magnetic stirring for 1 h. After reaction, a transparent MF prepolymer
solution was obtained. The ILEM/H>0O emulsion was prepared by adding different amounts of
ILEM in the aqueous solution with surfactants and mechanically stirred at a given speed
according to Table 4-3. Finally, transparent MF prepolymer was added in the ILEM/H>O
emulsion, 2 wt% of sulfuric acid aqueous solution was used to tune pH around 4 for starting
the in-situ polymerization. Once the reaction was completed, the mixture was cooled down to
room temperature and the white precipitate was filtrated and washed three times with deionized
water and acetone to remove the unencapsulated ILEM. In a last step, the microcapsules were

dried in an oven. The neat ILEM and ILEM@PMF microcapsules were shown in Figure 4-4.
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ILEM/H,0 emulsion \d‘ l é

MF prepolymer

|

) .

surfactants

W‘f‘; x in-situ polymerization
L TE0

( ® C“H®O®N®SCF ILEM@PMF microcapsule

ionic liquid epoxy monomer (ILEM)

Figure 4-3 Synthesis route of ILEM@PMF microcapsules via in-situ polymerization

ILEM@PMF
microcapsule

Figure 4-4 ILEM (left) and ILEM@PMF microcapsules (right)
4.3.3 Characterization of ILEM@PMF microcapsules
4.3.3.1 Selection of the best surfactant to obtain ILEM/H >0 emulsion

For in-situ polymerization, stable droplets and good dispersion of the core material are key
parameters %371 Thus, surfactants including ionic, polymeric, and a combination of both types
were tried to obtain stable ILEM droplets in water emulsion (ILEM/H;0). Thus, different
surfactants were first dissolved in deionized water (1 wt%) to form a transparent aqueous
solution. ILEM was added to each aqueous solution and stirred mechanically at 300 rpm. After
1h, a sample was taken from each emulsion and observed by optical microscope (OM). Figure
4-5 shows the OM images of ILEM/H>O emulsions stabilized by different types of surfactants.

As can be seen in Figure 4-5, a mixture of surfactants SDBS and PVA with weight ratio
9:1 is a good compromise to stabilize ILEM droplets in an aqueous solution. In fact, a stable
emulsion with spherical droplets having a diameter from 8 to 15 pm was observed. However,
demulsification and coacervation of ILEM can be observed over time (Figure 4-5 (a) (¢) and
(d)). These observations can be explained by the numerous adsorption sites of the PVA -
molecule chains at the oil-water interface. On the opposite, SDBS can increase the electrostatic
repulsions between ILEM oil droplets in water 8!, In addition, if only PVA is considered to

stabilize the ILEM droplets, at low concentrations, it is difficult to obtain a stable emulsion. In
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addition, at high concentration, the viscosity increases due to the high molar mass of the PVA.
Such a high viscosity is not favorable for the deposition of shell material on the surface of ILEM
droplets to obtain a spherical shape of microcapsules *°!. Consequently, a combination of SDBS

and PVA was considered to obtain a stable ILEM/H,0O emulsion.

Figure 4-5 Optical microscope images of ILEM/H>O emulsion stablized by (a) Tween 80; (b)
Reax 88A; (c) TX-100; (d) SDBS; (e) PVA; (f) SDBS:PVA=9:1

(surfactant concentration: 1wt%)
4.3.3.2 Monitoring ILEM@PMF microcapsules synthesis

The in-situ polymerization and the formation of ILEM@PMF microcapsules were also
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monitored by OM. A drop of liquid was taken from the reaction system at different times and
observed by OM (Figure 4-6). The reaction mechanism of PMF is described in Scheme 4-2.
First of all, Figure 4-6 (a) shows that the ILEM droplets are stabilized in the aqueous phase
by the combination of SDBS and PVA and form a stable and homogeneous emulsion. After
adding the MF prepolymer, acid was added to change the basic medium to acidic one to initiate
the condensation reaction of MF prepolymer, as described in Scheme 4-2 (b). The morphology
before adding MF prepolymer is the one reported in Figure 4-6 (a) (t = 0 min). As the pH was
tuned to 4-5, the MF nanoparticles started to form in the emulsion and to migrate to the surface
of the ILEM droplets. Therefore, the mixture (Figure 4-6 (b)) appeared cloudy at 120 min due
to the increase of MF polymer molar mass and the generation of PUF nanoparticles in the
suspension. Then, the reaction system was kept in acidic conditions for a given temperature.

Along reaction time, the PMF nanoparticles are deposited continuously on the surface of ILEM

droplets to form the PMF shell. ILEM@PMF microcapsules were observed at 180 min (Figure
4-6 (c), (d)).
@O0min TM S ABBSORE 1) 10 min, TM |

. .

Figure 4-6 Optical microscope images of the formation of ILEM@PMF microcapsules at
different times after mixing with prepolymer (TM= transmission mode, RM=reflection mode)

(a) 0 min, TM; (b) 120 min TM; (c) 180 min, TM; (d) 180 min, RM
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Scheme 4-2 Reaction mechanisms of poly(melamine-formaldehyde) (PMF)

4.3.3.3 Influence of synthesis parameters on the morphology and size distribution of
ILEM@PMF microcapsules

Several parameters influence the morphology of microcapsules prepared by in-situ
polymerization %21, First, pH and temperature during the in-situ polymerization have a huge
influence on the condensation rate of PMF. Compared to the reaction rate for the synthesis of
microcapsules in Chapter 3, the addition reaction of formaldehyde with melamine is easier
compared to formaldehyde and urea. Melamine has a higher amine functionality (presence of
three amino groups). Thus, hexa-hydroxymethyl melamine can be formed to facilitate the

further condensation reactions !, Kim et al **! also reported that PMF resin required lower
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activation energy than the PUF one, i.e. the condensation reactions proceed faster at a given
temperature.

To study the influence of two other important parameters, i.e. core/shell ratio and stirring
speed, on the morphology of ILEM@PMF microcapsules, an orthogonal experiment was
designed as shown in Table 4-3. All the microcapsules were prepared with the same
concentration of co-surfactants, heating rate, final pH, temperature, and weight content of ILEM
in the aqueous solution. The morphology of different resulting microcapsules and their size

distribution are presented in Figure 4-7.

Table 4-3 Different synthesis parameters considered for the preparation of ILEM@PMF

microcapsules and its serial number of corresponding SEM micrographs

Synthesis parameters Serial number of
Microcapsules  (Surfactants : SDBS:PVA=9:1, 1 wt%) SEM images (A-G) and
core/shell ratio stirring speed (rpm) size distribution (a-g)
1 0.95 300 (A)/(a)
2 1.08 300 (B)/(b)
3 1.22 300 (©)(c)
4 1.31 300 (D)/(d)
5 1.42 300 (E)/(e)
6 1.22 250 B ()
7 1.22 350 (G)(g)

First of all, microcapsules 1-5 were synthesized considering the same stirring speed and
different core/shell ratios. As shown in Figure 4-7 (a) to (e), the diameter of ILEM@PMF
microcapsules increases with a higher core/shell ratio while their size distribution is not
extended. As the microcapsules have the same weight fraction of ILEM in the aqueous solution,
an increase of diameter can be explained by the decreased number of MF prepolymer in the
aqueous solution. MF prepolymer behaves as UF prepolymer to decrease the interfacial tension
[45. 48] ‘Thus, a low MF concentration may help to form bigger ILEM droplets because a high
core/shell weight ratio results in a lower weight fraction of MF prepolymer in the aqueous
solution, i.e. weight fraction in aqueous solution remains always the same. Despite the influence
of the core/shell ratio on the diameter of ILEM@PMF microcapsules, the number of PMF
nanoparticles has also an impact. From microcapsules 1-5 (Figure 4-7 (A) to (E)), one can
conclude that the number of individual PMF nanoparticles or stuck on the ILEM@PMF

microcapsules surface decreased. The excessive MF polymer polymerized as nanoparticles and
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precipitated in the aqueous solution, and a proper core/shell ratio reduced the excessive PMF
nanoparticles. Therefore, ILEM@PMF microcapsules with a higher core/shell ratio display a
more regular shape.

Then, microcapsules 6, 3 and 7 have the same core/shell ratio but were prepared under
different stirring speeds. From Figure 4-7 (f), (c) and (g), one can conclude that the stirring
speed does not influence the maximum value of diameter of ILEM@PMF microcapsules.
However, it plays a key role in the size distribution of ILEM@PMF microcapsules and the
number of PMF nanoparticles. As mentioned before, the mechanical stirring contributed to the
stabilization of the ILEM/H>O emulsion while the anisotropic shear forces led to a size
distribution of the ILEM/H>O emulsion. Figure 4-7 (F), (C), and (G) reported the morphologies
of microcapsules for different stirring speed. The microcapsules prepared under the highest
stirring speed (350 rpm) (microcapsules 7, Figure 4-7 (G)) have the narrow size distribution but
more PMF nanoparticles. This can be explained by the strong shear force at high stirring speed,
which helps to disperse ILEM but breaks the soft PMF shell at the early stages of the synthesis
process. For the ILEM@PMF microcapsules prepared at 350 rpm with a core/shell ratio higher
than 1.22:1, the strong shear force destroyed the newly formed ILEM/H2>O microcapsules and
leading to a reduced yield.
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Figure 4-7 SEM micrographs ((A)-(G)) and size distributions ((a)-(g)) of ILEM@PMF

microcapsules prepared with different parameters

According to the SEM images (Figure 4-7), two type of microcapsules, i.e. 4 and 5 (Figure
4-7 (d) and (e)), display the suitable morphologies. Additional morphology characterizations
were performed. Apparently, a reduced amount of PMF nanoparticles could be observed for
microcapsules 5 (Figure 4-8 (d)) but their shell thickness (0.51 pm, Figure 4-8 (e)) is smaller
compared to microcapsules 4 (0.82 pm, Figure 4-8 (b)). It is worth noting that the shell thickness
will have a large influence on the integrity of ILEM@PMF microcapsules in the subsequent
processing steps required for epoxy composites.

Therefore, ILEM@PMF microcapsules 4 and 5 were added in the same epoxy-amine
network as ones considered in Chapter 3 (polymer matrix: D.E.R 332 cured with TETA, see
section 4.4.1). As shown in Figure 4-8 (f), ILEM@PMF microcapsules 5 could be easily broken
due to their thin and brittle PMF shell, during processing and curing processes [*!. By contrast,
ILEM@PMF microcapsules 4 remained intact after processing in the epoxy-amine matrix.
Therefore, a relatively low core/shell ratio allows to increase the shell thickness of ILEM@PMF
microcapsules providing good mechanical strength against the mechanical forces exerted
during the processing of epoxy materials.

To sum up, considering the morphology of ILEM@PMF microcapsules and their
mechanical strength, the optimized synthesis parameters of ILEM@PMF microcapsules for
self-healing application in epoxy-amine composites are the followings: core/shell ratio = 1.31,

stirring speed = 300 rpm.
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Figure 4-8 ILEM@PMF microcapsules 4 (a) (b) and 5 (d) (e) and morphologies of epoxy-

amine networks containing microcapsules 4 (¢) and 5 (f)
4.3.3.4 Chemical structure of ILEM@PMF microcapsules

The chemical structure of ILEM@PMF microcapsules, ie. core and shell were
characterized by FTIR as shown in Figure 4-9. These ones are schematically represented in
Figure 4-10. For the core, the characteristic peaks of counter anions (NTf2") could be evidenced
as the symbol for ILEM monomer in the FTIR spectrum. To be more specific, the characteristic
peak at 1,350 cm™and 1,056 cm™ are assigned to the stretching vibration of S=O bonds from
sulfoxide 8 while the peak at 1,195 cm™! was assigned to the stretching vibration of C-F bonds

s [49-39 Tn addition, the characteristic peaks for epoxy groups at 830 cm™and 910

in CF3 group
cm! Y can be also seen in the spectra of ILEM and ILEM@PMF microcapsules. For the PMF
shell, 1,3,5-triazine rings having C=N bonds display absorption peaks at 1,558 cm™ and 1,497
cm’!. Besides, the absorption peaks around 3,300 -2,800 cm™! are the stretching vibration of C-
H in alkane chains. Therefore, FT-IR analysis indicated that ILEM@PMF microcapsules have

been successfully synthesized.
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Figure 4-9 FTIR spectra of ILEM@PMF microcapsules, core, and shell materials
(a) ILEM@PMF microcapsules; (b) shell: neat PMF; (c) core: ILEM

S=0 1356 cm!
C-F 1200-1130 cm- T 1070-1030 cm

/ ‘\)\ o
) ~ e Il ~
NTf, = FiC~s 5 s —CFs
il 0
O (o]

w, o
y I 3300-2840 cr
s @ .
ILEM@PMF - A
microcapsule; | HOH:C ‘ N | A~ 40
) > > i Y, . NP .
shell l 1 » C=N 1558 cr
” N HORC—y™ N" —0C 1497 cm-

N-H- 3770-3050 cmr

Figure 4-10 Characteristic peaks in FTIR spectra of core and shell materials of ILEM@PMF

microcapsules
4.3.3.5 Thermal behavior and stability of ILEM@PMF microcapsules

The thermal behavior of ILEM@PMF microcapsules as well as their core (ILEM) and
shell (PMF) were characterized by DSC as shown in Figure 4-11. Exothermic peaks observed
on DSC traces for ILEM and ILEM@PMF during heating indicate the polymerization of ILEM.
Compared to neat ILEM, a shift to lower temperature was observed for ILEM@PMF
microcapsules. We speculate that this phenomenon is associated to the presence of remaining
amines in the PMF shell. This lower temperature reminded us the curing temperature of the
polymer matrix should be kept lower than the polymerization temperature of encapsulated
ILEM. At about 150°C, for PMF and ILEM@PMF microcapsules, the release of absorbed
moisture and free formaldehyde could also be observed °% >3], Therefore, the ability of ILEM
to polymerize has proved the potential for ILEM in the ILEM@PMF microcapsules for self-
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healing applications. Nevertheless, the decrease of the temperature of polymerization for ILEM

in the microcapsules will impose a limit curing temperature of the epoxy polymer matrix.

10

—a—|LEM
84 —=— neat PMF
—e— ILEM@PMF

Heat Flow (W/g)

T T T
100 200 300
Temperature (°C)

Figure 4-11 DSC traces of (A) ILEM (M) neat PMF, and (@) ILEM@PMF microcapsules

(N, atmosphere, heating rate 10 K-min™)

The thermal degradation of ILEM(@PMF microcapsules was characterized by TGA under
N> atmosphere. The TGA traces and DTG traces of ILEM@PMF microcapsules as well as the
ones of core and shell materials are presented in Figure 4-12. Four stages of weight loss for the
ILEM@PMF microcapsules can be evidenced in Figure 4-12. The first and second weight
losses occurring at low temperature (below 300 °C) could be associated to the evaporation of
absorbed water and free formaldehyde, as for neat PMF % Due to the high thermal stability
of ILEM and PMF [%3, the third and fourth steps of weight losses occurring at high temperature
(> 300 °C) correspond to the decomposition of polymerized ILEM and PMF shell.
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Figure 4-12 (a) TGA and (b) DTG traces of (A) core material ILEM and () shell material

neat PMF and (@) ILEM@PMF microcapsules (N> atmosphere, heating rate 20 K-min™)
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In order to investigate the degradation behavior of ILEM@PMF microcapsules, the
emitted gases during TGA were characterized by FTIR. The FTIR spectra as a function of the
temperature are given in Figure 4-13. The detected chemical components and their
characteristic wavenumbers are summarized in Table 4-4. The FTIR spectra and corresponding
absorption peaks of emitted gases for core and shell materials of ILEM@PMF microcapsules
are shown in the supporting information of Chapter 4.

According to the FITR spectra of emitted gases, the first weight loss corresponds to the
evaporation of absorbed water and free formaldehyde from the deformaldehyde reaction of
PMF prepolymer at elevated temperatures. The second weight loss of ILEM@PMF
microcapsules occurred from 300 to 380 °C. The presence of alkanes and amides evidenced
that the decomposition of the PMF shell occurs at this stage. The third weight loss took place
from 380 to 450 °C. At this stage, presence of trifluoromethane (CHF3) and sulfone in the
released gases is a proof of the decomposition of anions (NTf;") in ILEM. The final weight loss
occurred from 450 to 600 °C, related to the further decomposition of ILEM core and PMF shell.
The degradation of ILEM almost finished at 500 °C, but there was a temperature shift of about
40 K for ILEM compared to ILEM@PMF microcapsules. Therefore, the ILEM core is well

protected by the PMF shell and is not decomposed before PMF shell when heating.

Absorbance
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0.05460
0.04250
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Figure 4-13 FTIR spectra of emitted gas during thermal degradation of ILEM@PMF

microcapsules under N2 atmosphere
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Table 4-4 Emitted gas characterization from FTIR for ILEM@PMF microcapsules and their

corresponding shell (PMF) and core (ILEM) materials by TGA-IR analyses

PMF shell ILEM core ILEM@PMF microcapsules
Temperature wavenumber Temperature Wavenumber Temperature Wavenumber
Gas Gas Gas
range (em™) range (cm™) range (cm™)
130 °C 160 °C
formal- 1,730 . formal- 1,730
| imine 1,711 \
ehyde 2,830-2,695 chyde 2,830-2,695
260 °C 200 °C
310 °C
oxhydryl | 3,500-3,420 | alkane 1,450
380 °C Iphati 300°C
o alphatic
amide 1,600 P 1,150 |
ether o amide 1,600
260 °C 380 °C
| alkane 1,450
500 °C . 380 °C trifluoro- 1150
trifluoro- )
1.150 [ methane
methylen h ’
710 methane 450 °C
¢ amide 1,600
380°C cyanuric 1,600
i 1,600 | If 1380
cyanuric , . sulfone trifluoro-
500 °C S00°C 1,425 450 °C 1,150
| | methane
600 °C 600 °C sulfone 1,380
CO, 2,350 CO, 2,350 1,425
CO, 2,350

4.4 Preparation and characterization of ILEM@PMF microcapsule-filled epoxy-amine

materials

The previous study has demonstrated that the ionic liquid epoxy monomer (ILEM) could

be successfully encapsulated in the PMF shell as microcapsules. In addition, ILEM is able to

polymerize by thermal activation without any additional initiators or comonomers. These ILEM

can be a good candidate for self-healing additives of epoxy-amine networks. Nevertheless, the

potential reactivity of the ILEM trapped into ILEM@PMF microcapsules with the remaining

amino groups on the shell limit the curing temperature. Therefore, ILEM@PMF microcapsules

were added into epoxy-amine systems cured under different temperature conditions to

investigate their self-healing performances.
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4.4.1 Material Processing

ILEM@PMF microcapsules were added in different epoxy-amine networks. The
preparation method is described in Figure 4-14. First, ILEM@PMF microcapsules were added
in epoxy monomer and the mixture was placed in an ultrasound bath to disperse the
ILEM@PMF microcapsules. Then, different types of amine comonomers were added according
to epoxy-to-amino hydrogen ratio equal to 1.0. The reactive mixtures were put under
mechanical stirring for about 10 min. The mixtures were placed in a vacuum bell jar for 10 min
to remove the trapped bubbles. Then, different curing protocols were applied depending on the

chemical nature of the hardeners.

@ Dispersion of ILEM@PMF in DEGBA @ Addition of hardener (amine) @ Degassing the mixture @ Curing
3
_—
. . . Cured in oven
ultrasonic bath 1 h mechanical stir for 10 min ) )
(PACM at 60 °C the others at room temperatrue) vacuum bell jar (temperature based on amine)

Figure 4-14 Preparation of ILEM@PMF microcapsule-filled epoxy-amine materials
4.4.2 Results and discussion

As demonstrated before, the ILEM in the ILEM@PMF microcapsules is able to
polymerize. The curing temperature of polymer matrix may affect the self-healing
performances of ILEM@PMF microcapsules. Therefore, the ILEM@PMF microcapsules were
added by 10 wt% in the different epoxy-amine systems: i) epoxy-PACM; ii) epoxy-TETA; iii)
epoxy-Epikure 3223. These reactive matrices were cured at stoichiometric ratio and within
different temperature to see the performance of ILEM@PMF microcapsules as self-healing

additive in the epoxy-amine composites.
4.4.2.1 Local temperature of different epoxy-amine networks

PACM was considered firstly as hardener. The curing protocol of DGEBA-PACM reactive
system was the same as one considered before: 80 °C for 2 h and 160 °C for 2 h. The linear
aliphatic amine TETA which is much more reactive was copolymerized with DGEBA at : 60 °C
at 2h, 80 °C at 3h, 110 °C at 3h, and 120 °C at 1h. Finally, a commercial room temperature
curing agent Epikure 3223, mainly based on diethylenetriamine (DETA) which has an even

higher reactivity compared to TETA was considered. DETA-epoxy resin is able to undergo
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gelation and set hard at room temperature within a very short period. The curing was performed
at temperature for 48 h followed by 6 h at 120 °C.

As mentioned in 4.3.3.5 section, the curing temperature of epoxy-amine matrix should be
below the polymerization temperature of ILEM contained in the ILEM@PMF microcapsules.
Therefore, the temperature of epoxy-amine mixture was measured in the bulk (Figure 4-15). In
fact, as the condensation reaction between epoxy and amine is exothermic (100 kJ/mol) 13657,
the calculated maximum temperature caused by the exothermic reaction for an ideal adiabatic
process leading to a full conversion could reach 338 to 390 °C ¥l In real condition, heating
occurs due to poor heat dissipation of the cavity or mold in which the system reacts. For the
epoxy-PACM (Figure 4-15 (a)) and epoxy-TETA systems (Figure 4-15 (b)), the temperature
reached high values for a relatively short time of reaction (up to 20 min for the first system).
The temperature maximum at 187 °C reached by the epoxy-PACM system may cause the
polymerization of ILEM in the ILEM@PMF microcapsules.

—=— setting temperature
—e— |ocal temperature

T T T T T
0 100 200 300 400 500
Time (min)
(@)

—=— setting temperature

—=a— setting temperature
—e— |ocal temperature 180 4

—e— |ocal temperature
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®) ©
Figure 4-15 Settled and recorded temperature (in the bulk) vs. time during curing of

(a) epoxy-PACM; (b) epoxy-TETA; (c) epoxy-Epikure 3223 systems
4.4.2.2 Morphology of ILEM@PMF microcapsule-filled epoxy-amine materials

SEM was used to characterize the cross sections of ILEM@PMF microcapsules filled
epoxy-amine materials (Figure 4-16). As shown in Figure 4-16 (a) (d) and (g), ILEM@PMF
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microcapsules display a good distribution in different epoxy-amine matrices. Different
morphologies of individual ILEM@PMF microcapsules could be distinguished.

In the epoxy-PACM matrix, almost no intact ILEM@PMF microcapsules can be observed.
The broken microcapsules have solid-like core instead of cavities (Figure 4-16 (a), (b) and (c)).
These broken microcapsules with solid core indicate that the temperature is too high leading to
the polymerization of ILEM in agreement with the temperature recording (Figure 4-15 (a)).
However, in the epoxy-TETA and epoxy-Epikure 3223 matrices, intact/broken and pulled out
ILEM@PMF microcapsules can be evidenced (Figure 4-16 (d) and (g)). A good interface can
also be observed (Figure 4-16 (e) and (h)). At higher magnifications, a hollow structure can be
seen for broken ILEM@PMF microcapsules (Figure 4-16 (f) and (1)), indicating that ILEM did

not undergo polymerization.
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Figure 4-16 SEM micrographs of ILEM@PMF microcapsules filled (a)-(c) epoxy-PACM;
(d)-(f) epoxy-TETA; (g)-(1) epoxy-Epikure 3223 materials
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4.4.2.3 Thermal properties of ILEM@PMF microcapsule-filled epoxy-amine materials

The thermal properties of ILEM@PMF microcapsules filled epoxy-amine composites
were characterized by DSC (Figure 4-17). First, a decrease of Ty of the ILEM@PMF
microcapsules filled networks compared to the corresponding neat epoxy-amine networks can
be observed, which is more obvious for epoxy-TETA/epoxy-Epikure 3223-based materials
resulting from a lack of interfacial bonding between PMF shell and epoxy matrix. An
exothermic peak close to 200 °C could be evidenced for ILEM@PMF microcapsules filled
epoxy-TETA and epoxy-Epikure 3223 materials. This exotherm could be attributed to the
polymerization of ILEM. However, no exothermic peak was noticed for epoxy-PACM system,
indicating that ILEM had already polymerized during curing of the matrix due to the high local

temperature.
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Figure 4-17 DSC traces of (a) epoxy-PACM; (b) epoxy-TETA; (c) epoxy-Epikure 3223 based

materials (N> atmosphere, heating rate 10 K-min™)

Thermal stability of ILEM@PMF microcapsules filled epoxy-amine materials was
characterized by TGA (see Figure S4-14 to Figure S4-16 in the supporting information). The

corresponding onset decomposition (Tdq onset) and maximum decomposition (T 4 max)
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temperatures of each material are summarized in Table 4-5. A decrease of Td onset and T ¢ max of
ILEM@PMF filled epoxy composites compared to the corresponding neat epoxy-amine
networks was observed. Referring back to Figure 4-12 and Table 4-4, the decomposition of
ILEM@PMF microcapsules could start from the PMF shell which is lower than that of epoxy-
amine networks, i.e. the first decomposition step of ILEM@PMF microcapsules occurs close

to 300 °C.

Table 4-5 Degradation temperatures of ILEM@PMF microcapsule-filled epoxy-amine

composites (N2 atmosphere, heating rate 20 K-min™")

Materials Td onset (°C) Ta max (°C)
epoxy + PACM 359 378
epoxy + PACM + ILEM@PMF 330 368
epoxy + TETA 341 367
epoxy + TETA + ILEM@PMF 329 362
epoxy + Epikure 3223 350 371
epoxy + Epikure 3223 + ILEM@PMF 330 364

4.4.2.4 Dynamic mechanical properties of ILEM@PMF microcapsule-filled epoxy-amine

materials

Dynamic mechanical analyses were also performed for the ILEM@PMF microcapsules
filled epoxy-amine materials. tan 6 and G’/G” vs. temperature spectra are given in Figure 4-18.
First, a low relaxation peak above the main relaxation could be observed for epoxy-TETA and
epoxy-Epikure 3223 based materials corresponding to the polymerization of ILEM. Besides,
an increase of G’ for the epoxy-TETA and epoxy-Epikure 3223 based materials is evidenced
during a second heating which also is a proof of the ILEM polymerization. Whereas, those
features related to the polymerization of ILEM were not observed for the epoxy-PACM based

material, confirming for the consumption of ILEM, i.e. during curing.
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Figure 4-18 tan 8, G’/G " vs. temperature apectra of ILEM@PMF microcapsules filled (a), (b)

epoxy-PACM; (c), (d) epoxy-TETA; (e), (f) epoxy-Epikure 3223 materials
(at 1Hz, heating rate 3 K-min™)

4.4.2.5 Self-healing property of ILEM@PMF microcapsule-filled epoxy-amine materials

The self-healing property of ILEM@PMF microcapsules filled epoxy-amine material was
characterized by using the same method used in Chapter 3. The corresponding SEM images of

scratches before and after self-healing are shown in Figure 4-19. Nevertheless, a decrease of
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width for the scratch was considered according to the smaller diameter of ILEM@PMF
microcapsules, i.e. in order to guarantee the breakage of ILEM@PMF microcapsules and the
release of healing agent into the scratch.

Owing to the consumption of healing agent before the self-healing process, no healing of
scratch can be get for ILEM@PMF microcapsules filled epoxy-PACM material (Figure 4-19
(b)). Whereas ILEM@PMF microcapsules have good self-healing performances for low
temperature epoxy-amine networks. For epoxy-TETA (Figure 4-19 (d)) and epoxy-Epikure
3223 (Figure 4-19 (f))-based materials, a healing effect of the scratches due to the better
preservation of ILEM in the corresponding composites was observed. Unreacted ILEM could
diffuse and polymerize after mild curing temperatures of the epoxy-amine matrix. Therefore, a
curing temperature lower than the polymerization temperature of encapsulated ILEM is
necessary to achieve self-healing purpose for ILEM@PMF filled epoxy-amine materials. Even
though the temperature could be a limitation of ILEM@PMF as self-healing additive, this could
be the first attempt of encapsulated ILEM and their application in thermoset material. Various
choices of shell material and core material for self-healing can be proposed and development

of more materials can be expected.

SEM HV: 10.0 kV WD: 10.72 mm | VEGA3 TESCAN

Det: SE SEM MAG: 296 kx 20 ym
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Figure 4-19 SEM micrographs of scratches before (up) and after (down) self-healing for
ILEM@PMF microcapsule-filled (a), (b) epoxy-PACM; (c), (d) epoxy-TETA; (e), (f) epoxy-
Epikure 3223-based materials

4.4.2.6 Mechanical properties of ILEM@PMF microcapsule-filled epoxy-amine materials

The mechanical properties including Young’s modulus (E) and fracture toughness (Kic) of
ILEM@PMF microcapsules filled epoxy-amine materials were characterized (Table 4-6). The
addition of microcapsules with stiff polymer shell can be regarded as viscoelastic material %),
The weak interfaces due to lack of chemical interaction and the soft segments slipping on of
ILEM@PMF microcapsules during the characterization lead to a decrease the Young's modulus
of epoxy materials (09921, Besides, PMF as shell material for microcapsules displayed a high
strength and hardness 3% %1 As a consequence, ILEM@PMF microcapsule-filled epoxy
materials still display good mechanical properties compared to the corresponding neat epoxy-
amine networks. The tails generated by crack propagation and breakage of microcapsules
indicate the absorption of energy during fractures propagation, as shown in Figure 4-16. Thus,
the addition of ILEM@PMF microcapsules may improve the fracture toughness of the epoxy

materials.

Table 4-6 Mechanical properties of ILEM@PMF microcapsule-filled epoxy-amine material at

room temperature

Materials E (GPa) Kic (MPa-m'?)
EP+TETA 1.6£0.02 0.64+0.04
EP + TETA + ILEM@PMF 1.5+0.04 0.7240.06
EP + Epikure 3223 1.5£0.05 0.651+0.02
EP + Epikure 3223 + ILEM@PMF 1.4+0.02 0.73£0.06
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4.5 Conclusion

A difunctional ionic liquid-type epoxy monomer, denoted as ILEM, was successfully
synthesized. ILEM have good thermal stability and shows a self-curing behavior induced by
heat under a given temperature. Thus, ILEM could be considered as a potential self-healing
agent released from a single microcapsule.

The ILEM was encapsulated in the poly(melamine-formaldehyde) (PMF) shell by in-situ
polymerization method, to design ILEM@PMF microcapsules. The selection of surfactants and
the influence core/shell ratio and stirring speed on the morphology of the ILEM@PMF
microcapsules were investigated. It was found that SDBS and PVA co-surfactants can stabilize
the ILEM droplets in the aqueous solution due to the synergistic effect between the adsorption
sites provided by PVA and electrostatic repulsion interactions of SDBS. The optimized core/to
shell ratio and stirring speed were 1.31:1 and 300 rpm, respectively. The obtained ILEM@PMF
microcapsules showed a good thermal stability and ILEM as core was able to polymerize,
making ILEM@PMF microcapsules a good additive for achieving self-healing purpose in
epoxy-amine materials.

As encapsulated ILEM is able to polymerize above a given temperature, this one imposes
a limited range of the curing temperature of epoxy-amine systems. Therefore, the self-healing
performances of ILEM@PMF microcapsules were investigated in different epoxy-amine
systems cured under different temperature conditions. According to the curing temperature for
amines, PACM (80 °C- 160 °C), TETA (60 °C- 125 °C), and Epikure 3223 (DETA, 20 °C -
120 °C) were chosen as curing agents. Among the three epoxy-amine systems, ILEM@PMF
microcapsules exhibited good self-healing properties for epoxy-TETA and epoxy-Epikure
3223-based materials rather than in epoxy-PACM-based one. Due to the high temperature of
epoxy-PACM system, ILEM is consumed, i.e. ILEM polymerized, before the self-healing
process. Besides, the addition of such ILEM@PMF microcapsules slighted affected the thermal
and mechanical properties. However, based on this first attempt of encapsulation of ILEM, new

applications and new materials could be expected in the future.
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1. NMR spectra of ILEM and intermediate products

1H NMR (400 MHz, Chloroform-d) & 8.93 (s, 1H), 7.36 (d, J = 0.8
Hz, 2H), 4.40 (t, J = 6.7 Hz, 4H), 3.01 (m, 2H), 2.79 (dd, 2H), 2.52
(dd, 2H), 2.47 — 2.34 (dd, 2H), 1.85 (dd, 2H).
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2. DSC curve of ILEM
3. TGA and DTG curves of ILEM
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4. Thermal stability of ILEM@PMF microcapsules filled epoxy-amine composites
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Chapter 5

Conclusions and perspectives

This work aims at the improvement of fracture toughness and achieving self-healing of
epoxy composites combined with ionic liquids (ILs) through the microencapsulation strategy.
Based on this purpose, different microcapsules were synthesized as fillers in epoxy-amine
composites. Meanwhile, ILs played different roles in the epoxy-amine composites.

In the first chapter, a phosphonium-based IL named tetradecyl(trihexyl)phosphonium bis-
(2,4,4-trimethylpentyl) phosphinate was used as core material encapsulated in silica
microcapsules via ionic liquid-in-water emulsion combined with a sol-gel process. The IL
containing silica microcapsules (IL@SiOz) present a spherical morphology (2-3 pm) and an
expected core-shell structure in which shell was estimated at 100 nm. They have good thermal
stability and high mechanical strength. These features make them act as toughening particles in
epoxy-amine networks. This study highlighted that these IL@SiO2 microcapsules improved the
fracture toughness and the mechanical performances of the epoxy-amine networks while
keeping their thermal stability. Compared to the literature concerning the use of silica
nanoparticles into epoxy nanocomposites, IL@SiO> microcapsules are well-dispersed in epoxy-
amine networks preventing crack propagation. Compared to crack deflection toughening
mechanism reported for nanofillers, the crack pinning mechanism seems to be the main
contribution for preventing crack propagation. Non-stoichiometric epoxy systems were also
investigated to get even higher reinforcing effect of IL@SiO> microcapsules.

In the second part of this work, conventional epoxy prepolymer, i.e. DGEBA, was
encapsulated in a poly(urea-formaldehyde) shell in order to obtain epoxy containing
microcapsules (EP@PUF). Such microcapsules were designed for achieving self-healing
properties for epoxy-based materials. To obtain the self-healing capacity, another
phosphonium-based ionic liquid denoted tributyl(ethyl)phosphonium diethyl phosphate (IL169)
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was used as a co-initiator/curing agent in the bulk of epoxy-amine network. Due to the higher
thermal stability of IL 169, it can be used as initiator of the epoxy prepolymer contained into
PUF microcapsules. The strategy for self-healing proceeds from the reaction of the epoxy
released by breaking EP@PUF microcapsules with IL 169. Therefore, EP@PUF microcapsules
were synthesized and characterized in the first step. Then, a reactivity study was carried out to
investigate the influence of IL 169 on the formation of epoxy-amine network in order to
determine the optimized content of IL169. With 10 phr of IL 169, a negligible effect on the
curing behavior of epoxy-amine system was observed. Nevertheless, a plasticizing effect was
highlighted when an amount higher than 10 phr was introduced. Finally, different weight
fractions of EP@PUF microcapsules were added to the epoxy-amine-IL network to prepare a
self-healable epoxy material. The thermal and mechanical properties as well as the self-healing
properties were investigated. It was showed that more than 10 wt% of EP@PUF microcapsules
are required to get self-healing. Nevertheless, a balance was found to keep good mechanical
properties due to the weak interfacial interactions and the microcapsules surface. As a
consequence, this work has highlighted that the use of IL 169 as co-initiator and the epoxy
prepolymer containing microcapsules induced a self-healing ability for epoxy-based materials,
preventing the use of solid catalyst for high temperature cured epoxy composites.

In the third part of this work, to avoid the use of an additional initiator or encapsulated
hardener as healing agent, ionic liquid monomer based on epoxidized imidazolium ILs denoted
ILEM was synthesized and was encapsulated to prepare poly(melamine-formaldehyde) (PMF)
microcapsules (ILEM@PMF). First, the synthesis conditions of ILEM@PMF microcapsules
were carefully investigated. It was highlighted the good thermal properties and self-curing
behavior of ILEM leading to ILEM@PMF microcapsules as a promising self-healing additive
for epoxy-amine-based materials. Therefore, ILEM@PMF microcapsules were added in
different epoxy-amine networks to study their self-healing performances. Three different
epoxy-amine systems cured at different temperatures were selected. It was found that the
ILEM@PMF microcapsules have a better self-healing performance for intermediate and room
temperature-cured epoxy composites due to ILEM core polymerization during curing of the
epoxy material requiring high cure temperature.

This work has proposed different strategies to synthesize different microcapsules as
additives in epoxy-based materials. Commercial ionic liquid and synthesized ionic liquids were
involved to achieve different purposes for epoxy materials combined with the

microencapsulation techniques. Different solved issues were identified:
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« Phosphonium-based ionic liquid was firstly encapsulated into silica microcapsules
(IL@SIi0.), and their performance as reinforcement was investigated. The toughen
mechanism was also studied;

« A single microcapsule-based system was achieved from epoxy monomer containing
microcapsules (EP@PUF) in the epoxy-amine-ILs ternary network. The use of IL 169
avoids the influence of high curing temperature on the conventional latent hardener
and extra synthesis for a dual microcapsules system;

« lonic liquid epoxy monomer (ILEM) was firstly confined into poly(melamine-
formaldehyde) PMF microcapsules to play a role of self-healing additive in epoxy
materials. This strategy avoided using any extra initiator or hardener to achieve self-

healing purpose for epoxy-amine composites.

This work could be new tools for introducing different types of microcapsules into various
types of epoxy matrices to design new multifunctional thermosets. For the future researches

several studies could be considered:

« Electrospinning or coaxial electrospinning processing involving ILs for designing
microvascular networks for epoxy composites or functional membranes;
« ILEM having different types of anions or structures of cations could be also designed

for encapsulation in microcapsules or hollow fibers.

Actually, we have already done a few attempts for further studies. For example, we have
tried to dissolve Polyethersulfone (PES) and IL 169 in the same solvent for electrospinning,
aiming at obtaining fibers from phase separation. As shown in SEM micrographs (Figure 5-1)
of electrospun PES fibers with 20 wt% of IL 169, the ionic liquid migrated to the surface of
PES fibers. Further studies are required to design electrospun fibers having an IL core and PES
shell in order to use such microfibers as a microvascular self-healing system. Coaxial

electrospinning technique could be of interest.

Figure 5-1 SEM images of PES-IL fibers by electrospinning
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