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Abstract

Mobile crowdsensing is an emerging and promising paradigm that has attracted much
attention in recent years, especially for environmental monitoring. Coupled with the
power of low-cost wireless sensor networks (WSN), it leverages population density to
collect extensive data in many applications, such as air pollution and urban heat is-
lands (UHI) monitoring. In fact, air pollution and UHI are one of the main problems
that still suffer from a lack of characterization due to the limitations of traditional
assessment methods employed in terms of cost, network size, and flexibility. Mobile
crowdsensing and WSN aim at filling this gap by enabling large-scale deployments to
improve the local knowledge of these phenomena on the one hand, while simultane-
ously involving the citizens in the process on the other hand.

In this thesis, we mainly consider the air quality monitoring application with a
mobile crowdsensing approach, while focusing on three main parts: 1) the design
of low-cost participatory air quality monitoring systems; 2) the analysis of dense
data from low-cost WSNs and their contribution to the fine-grained mapping of air
quality; 3) the selection of the participants’ paths in order to improve the knowledge
of the phenomenon while taking into account the constraints of travel distance and
sensor errors. Through this work, we aim to show the potential of using low-cost
WSN coupled with participatory sensing for air quality monitoring. In this vein, we
carry out substantial experimental work on the design of a participatory air quality
monitoring system from scratch. We provide engineering guidelines regarding the
design of low-cost participatory environmental monitoring platforms. Moreover, we
conduct extensive validation tests to evaluate the performance of our sensor nodes. In
addition, we perform analysis on our sensors’ data and propose a general framework
that allows the comparison of different regression and data assimilation strategies,
based on numerical simulations and an adequate estimation of simulation and sensing
error covariances. We also explore the impact of the sensing rate on the energy
consumption and the mapping error. Furthermore, we tackle the problem of route
selection in participatory sensing and propose two new approaches that take into
account the participants’ constraints and the characteristics of air quality monitoring
using low-cost WSN.
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Résumé

La mesure mobile par la foule (aussi appelé mobile crowdsensing) est un paradigme
émergent et prometteur qui a attiré beaucoup d’attention ces dernières années, notam-
ment dans le domaine de la surveillance de l’environnement. Couplé à la puissance
des réseaux de capteurs sans fil (RCSF) à bas coût, il permet de tirer parti de la
densité de la population pour collecter de nombreuses données dans de nombreuses
applications, telles que la surveillance de la pollution de l’air et des îlots de chaleur
urbains (ICU). En effet, la pollution de l’air et les ICUs sont parmi les principaux
problèmes qui souffrent encore d’un manque de caractérisation en raison des limites
des méthodes d’évaluation traditionnelles en termes de coût, de taille de réseau et
de flexibilité. Le mobile crowdsensing et les RCSFs visent à combler cette lacune en
permettant des déploiements à grande échelle afin d’améliorer la connaissance locale
du phénomène, tout en impliquant les citoyens dans le processus de suivi de celui-ci.

Dans cette thèse, nous considérons l’application de surveillance de la qualité de
l’air avec une approche de crowdsensing mobile, tout en nous concentrant sur trois
axes principaux : 1) la conception de systèmes de surveillance de la qualité de l’air
participatifs et à faible coût ; 2) l’analyse de données denses issues de micro-capteurs
à bas coût et leur apport à la cartographie fine de la qualité de l’air ; 3) la sélection
des chemins des participants afin d’améliorer la connaissance du phénomène tout en
prenant en compte différentes contraintes. À travers ce travail, nous souhaitons mon-
trer le potentiel de l’utilisation de RCSF à faible coût couplé à la mesure participative
dans la surveillance de la qualité de l’air. Dans cette optique, nous réalisons un tra-
vail expérimental poussé sur la conception d’un système participatif de surveillance
de la qualité de l’air. Nous fournissons des recommandations d’ingénierie concernant
la conception de plateformes de surveillance environnementale participative à faible
coût. En outre, nous effectuons des tests de validation approfondis pour évaluer les
performances de nos nœuds de capteurs. De plus, nous analysons les données col-
lectées par nos capteurs et proposons un framework général qui permet de comparer
différentes stratégies de régression et d’assimilation de données, à l’aide de simulations
numériques et d’une estimation adéquate des covariances des erreurs de simulation
et de mesure. Nous explorons également l’impact de la fréquence de mesure sur la
consommation d’énergie et l’erreur de cartographie. Enfin, nous nous intéressons au
problème de sélection de routes dans le cadre de la mesure participative et proposons
deux nouvelles approches qui prennent en compte les contraintes des participants et
les caractéristiques de la surveillance de la qualité de l’air à l’aide de RCSF à faible
coût.
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Résumé Long

La pollution de l’air représente une préoccupation majeure dans plusieurs villes du
monde. En effet, les concentrations de polluants dépassent les limites sanitaires stan-
dards dans de nombreuses villes plusieurs fois par an. La pollution de l’air est formée
de produits chimiques et de particules rejetés dans l’atmosphère qui constituent de
graves menaces pour la santé et l’environnement. Les effets néfastes de ce phénomène
ont été largement rapportés dans de nombreuses études. Les polluants sont suffisam-
ment petits pour franchir facilement les barrières protectrices du corps humain. Par
conséquent, l’exposition à de fortes concentrations de polluants pendant une péri-
ode prolongée peut entraîner des maladies cardiaques, une réduction de la fonction
pulmonaire, des infections respiratoires, ainsi que des diabètes, ce qui se traduit par
une augmentation de la mortalité dans les villes polluées. Selon les estimations de
l’Organisation Mondiale de la Santé (OMS), des millions de décès par an sont causés
par la pollution de l’air intérieure et extérieure. En outre, les conséquences nocives
de la pollution de l’air ne se limitent pas à la santé humaine, mais affectent également
l’environnement. Des niveaux excessifs d’oxydes d’azote, par exemple, contribuent à
l’acidification des sols, modifient le taux de croissance des plantes et, par conséquent,
affectent la biodiversité.

De plus, l’urbanisation continue des villes à travers le monde contribue à la sup-
pression des surfaces de végétation au profit des bâtiments et des routes pavées. Par
conséquent, la chaleur reste piégée entre les bâtiments et entraîne une différence de
température significative entre les zones urbaines et les zones rurales environnantes,
créant un phénomène connu sous le nom d’îlot de chaleur urbain (ICU). Les îlots de
chaleur urbains sont influencés par plusieurs facteurs, tels que la taille et la structure
des bâtiments d’une ville. Ils peuvent poser de graves problèmes de santé, car ils
augmentent considérablement le risque d’allergies, de problèmes respiratoires et car-
diovasculaires et peuvent entraîner une surmortalité chez les personnes vulnérables
pendant les vagues de chaleur intense.

Afin d’atténuer l’impact de la pollution de l’air et des îlots de chaleur urbains,
les autorités régionales et gouvernementales ont fait des efforts considérables pour
mettre en place des méthodes de surveillance de la qualité de l’air. Des stations de
surveillance de la qualité de l’air ont été installées dans plusieurs villes dans le but
de mesurer et suivre avec une grande précision de nombreux polluants tels que le
monoxyde de carbone (CO), le dioxyde d’azote (NO2), l’ozone (O3) et les particules
fines (PM1, PM2.5, PM10), ainsi que les paramètres météorologiques tels que la tem-
pérature, l’humidité, la vitesse du vent, etc. Bien qu’elles soient très précises, ces
stations traditionnelles sont déployées en nombre très réduit en raison de leur grande
taille, de leur manque de flexibilité et de leur coût d’entretien très élevé. Outre ces
stations, d’autres méthodes de suivi de la qualité de l’air ont été envisagées, comme
les modèles physicochimiques qui modélisent la propagation de la pollution de l’air au
moyen de simulations numériques afin de générer une carte de la pollution. Cepen-
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dant, il est difficile de parvenir à une connaissance fine en utilisant uniquement ces
modèles, car les données d’entrée sont généralement moyennées dans l’espace et dans
le temps.

Les limitations des méthodes traditionnelles de suivi en termes de coût, de taille,
de flexibilité et de granularité spatiale ont conduit à l’émergence de petits capteurs
environnementaux à faible coût. La connexion sans fil de ces capteurs, formant un
réseau de capteurs sans fil (RCSF) à faible coût, présente de nombreux avantages
par rapport aux solutions traditionnelles de surveillance de la qualité de l’air. En
effet, leur rapport coût-efficacité permet des déploiements denses et améliore donc
la granularité spatiale et temporelle. De plus, les considérations de taille et de coût
offrent une plus grande flexibilité de déploiement. Cependant, les RCSFs à faible
coût présentent certains obstacles et défis à relever. Le plus important d’entre eux
est la faible précision des sondes de mesure. Par exemple, la plupart des sondes
sont très sensibles à la température et à l’humidité. De plus, certains types de sondes
présentent une réactivité croisée avec des molécules similaires. Les sondes optiques de
comptage de particules, généralement utilisées comme capteurs de particules à faible
coût, sont également moins précises que les stations au sol. En effet, le nombre de
particules donné est sensible à de nombreux paramètres tels que la forme, la couleur,
la densité, l’humidité et l’indice de réfraction des particules. Par ailleurs, la conversion
du nombre de particules en masse est basée sur des modèles théoriques.

Mesure participative de la qualité de l’air

Dans cette thèse, nous considérons trois éléments clés concernant la mesure participa-
tive tout en nous focalisant sur la surveillance de la qualité de l’air : 1) la conception
d’un système de surveillance participative de la qualité de l’air basé sur des capteurs à
faible coût et une communication sans fil à longue portée ; 2) l’évaluation du potentiel
des données des capteurs à faible coût dans l’interpolation spatiale et l’assimilation
des données ; 3) la sélection de chemins pour les participants aux campagnes de
mesures afin d’améliorer la connaissance du phénomène étudié.

Systèmes de surveillance de la qualité de l’air à faible coût
La conception d’un système efficace de surveillance de la qualité de l’air à l’aide de
capteurs alimentés par batterie et peu coûteux est un défi majeur dans le domaine
de la mesure mobile. Elle nécessite la prise en compte de multiples aspects liés à la
plateforme, à son utilisation, à son coût et à sa maintenance.

Dans le cadre de la mesure mobile de la qualité de l’air, les nœuds de mesure sont
en général portés par des participants, ce qui implique de placer différents composants
électroniques dans un espace réduit sans affecter la qualité des mesures. Le système
doit offrir la possibilité de collecter des données sur un ou plusieurs polluants avec une
résolution acceptable, tout en tenant compte de la mobilité du nœud. Les données
doivent être horodatées et géolocalisées afin de relier la mesure à l’heure et au lieu
correspondants. Les relevés des capteurs sont envoyés à des serveurs distants pour
être traités et reconstruits en vue de leur visualisation. Cela nécessite une technologie
de communication adaptée qui permet d’atteindre de longues distances tout en étant
économe en énergie afin d’assurer la connectivité du réseau. En outre, les participants
peuvent ne pas avoir de connaissances techniques spécifiques, ce qui pourrait les em-
pêcher d’utiliser la plateforme, d’où l’importance de prêter attention à la conception
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des nœuds et à la manière dont les participants les utilisent en cachant la complexité
derrière leur conception.

Un autre aspect important est la relation entre la fréquence de mesure et sa
qualité. L’objectif d’un système d’évaluation de la qualité de l’air est de construire des
cartes à haute résolution spatio-temporelle qui décrivent les phénomènes étudiés. Cela
implique un réseau dense de nœuds avec un taux d’échantillonnage significativement
élevé. Cependant, une telle configuration n’est pas pratique pour les projets à petit
budget, les petits capteurs alimentés par batterie ou les protocoles de communication
à faible consommation. En effet, l’une des principales limites rencontrées avec ce type
de capteurs est leur autonomie. Un taux d’échantillonnage élevé consomme beaucoup
d’énergie et réduit considérablement l’autonomie des nœuds de capteurs.

Exploitation de données denses et peu précises
En mesure participative, les capteurs collectent et envoient généralement une quantité
importante de données de manière périodique, ce qui nécessite des algorithmes adaptés
pour traiter de grands volumes de données, afin d’en extraire des informations utiles.
Dans le cas de la surveillance participative de la qualité de l’air, l’élaboration de
cartes de pollution repose généralement sur des techniques d’interpolation spatiale
ou d’assimilation de données, qui utilisent des mesures collectées à l’aide de capteurs
sujets à des erreurs. De plus, les capteurs peuvent être hétérogènes, ce qui peut
impliquer des niveaux de précision différents. Par conséquent, l’analyse, le nettoyage
et la prédiction des données manquantes pour générer des cartes de concentration de
polluants peuvent être très difficiles. Dans ce contexte, il est courant de combiner
les données de ces capteurs avec des informations supplémentaires relativement plus
précises. Ces données peuvent améliorer remarquablement la qualité de la prédiction
finale en fournissant des détails sur d’autres paramètres (par exemple, des détails
sur les conditions de mesure) qui influencent le phénomène étudié. En outre, la
caractérisation de l’incertitude des mesures recueillies peut être très utile pour décider
quelle source d’information est la plus fiable.

Le routage des participants dans la mesure participative mobile
La qualité des cartes de pollution générées à l’aide de la mesure participative est forte-
ment liée au déplacement et à la distribution des citoyens impliqués. Les informations
fournies par les itinéraires des participants sont en effet importantes, car les partici-
pants qui passent par les mêmes itinéraires ou des itinéraires similaires apporteront
peu d’informations supplémentaires à la cartographie globale. Ne pas tenir compte
de cet aspect peut donner lieu à des zones très échantillonnées d’un côté, et d’autres
beaucoup moins de l’autre côté. Il y a ainsi toujours un compromis à trouver entre
l’étendue de la zone d’intérêt et la granularité des informations collectées.

La planification d’itinéraire ou la sélection d’itinéraire sont d’excellents outils qui
peuvent être mis en œuvre afin d’influencer le déplacement des participants sans trop
impacter leur distance parcourue. La planification d’itinéraire consiste à construire
le chemin d’un participant sur la base d’un ensemble de points d’intérêt, tout en
tenant compte de ses contraintes en termes de distance et de durée du voyage. Dans
la sélection d’itinéraire, le participant dispose d’un ensemble de chemins préférés et
le rôle du système est de choisir celui qui répond le mieux aux besoins de la tâche.
Bien que le fait d’avoir des itinéraires candidats qui satisfont déjà les contraintes de
temps et de distance réduise l’espace de recherche, cette approche est cependant plus
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limitée que la planification d’itinéraire. En effet, la sélection d’itinéraire n’offre pas
un contrôle total sur les chemins et peut rencontrer un ensemble d’itinéraires qui ont
peu ou aucune valeur ajoutée.

En plus de la distance et de la durée du trajet, les solutions susmentionnées doivent
prendre en compte les erreurs de mesure, ce qui constitue un défi puisque les capteurs
à faible coût peuvent présenter des erreurs différentes même s’ils sont du même type
ou proviennent du même fabricant. La redondance des données doit également être
prise en compte, car les itinéraires des participants peuvent se chevaucher sur une
certaine distance.

Contributions de la thèse

Dans cette thèse, nous abordons le problème de la mesure participative mobile pour
l’évaluation de la qualité de l’air avec des RCSFs à faible coût, tout en adoptant
une approche scientifique à la fois expérimentale et théorique. Nous avons conçu,
testé et validé un système participatif mobile de surveillance de la qualité de l’air
à base de capteurs à faible coût. Nous étudions également l’impact de la fréquence
de mesure sur la consommation d’énergie des capteurs et sur la performance des
modèles d’estimation. De plus, nous évaluons les performances des modèles de ré-
gression et d’assimilation de données pour la cartographie de la qualité de l’air dans
un déploiement à grande échelle. Enfin, nous explorons le problème de la sélection
de chemins dans le contexte de la mesure participative tout en tenant compte de la
faible précision des capteurs. Il convient de mentionner que, bien que les contribu-
tions suivantes soient principalement axées sur la surveillance de la pollution de l’air,
elles peuvent viser d’autres applications environnementales telles que le suivi des îlots
de chaleur urbains.

Conception d’une plateforme participative de surveillance de la qualité

de l’air : Au cours de cette thèse et dans le cadre du projet 3M’Air, nous avons
conçu un système de mesure participatif mobile à faible coût à base de petits nœuds
portables. Les nœuds capteurs présentés sont alimentés par des batteries et équipés
de trois sondes de mesure environnementale qui mesurent la température, l’humidité
relative, le dioxyde d’azote (NO2) et les particules fines (PM1, PM2.5 et PM10). En
outre, chaque nœud est équipé d’un abri anti-radiation solaire qui protège les son-
des tout en permettant une ventilation naturelle. Les mesures sont effectuées péri-
odiquement, et sont horodatées et géolocalisées grâce au récepteur GPS intégré. Les
données collectées sont téléchargées vers un serveur distant pour un stockage et un
traitement centralisés. En outre, les nœuds sont équipés d’une carte microSD pour
le stockage local, afin d’augmenter la robustesse en cas de perte de communication.
La transmission des données repose sur LoRaWAN, une technologie LPWAN (low-
power wide-area network) qui permet des communications à longues distances avec
une faible consommation d’énergie. Afin de visualiser les données collectées, nous
avons conçu une interface graphique accessible à l’aide d’un navigateur web.

Le travail expérimental a abouti à 16 nœuds capteurs qui ont été testés et comparés
à des capteurs de référence pour validation. Sur la base de ces comparaisons, nous
montrons qu’à l’aide d’une formule de calibration simple, les mesures de nos capteurs
peuvent être corrigées. Les nœuds ont été impliqués dans de multiples campagnes de
mesure que nous avons coorganisées à Lyon, de juin à octobre 2019.
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Évaluation des performances et du potentiel des capteurs à faible coût

pour la cartographie de la qualité de l’air : Dans cette partie, nous avons
analysé les données collectées lors des campagnes de mesure de 3M’Air. L’objectif
était d’explorer l’impact de la fréquence de mesure sur la consommation d’énergie
et la qualité de la cartographie de la pollution. Nous avons évalué la consommation
d’énergie des nœuds avec différentes configurations et identifié les éléments à forte
consommation d’énergie. Par la suite, nous avons considéré une métrique de cycle de
mesure et défini un modèle énergétique qui prend en compte ce cycle pour évaluer
l’impact de la fréquence de mesure sur la consommation d’énergie. Afin d’évaluer la
performance de la cartographie de la pollution avec différentes fréquences de mesure,
nous avons combiné les concentrations de PM2.5 collectées avec un ensemble de vari-
ables explicatives qui fournissent des informations sur la zone étudiée. Ensuite, nous
avons appliqué des modèles d’interpolation spatiale pour construire des cartes de pol-
lution et comparer les erreurs d’estimation en utilisant chaque fréquence de mesure.
Il est intéressant de noter que les résultats révèlent qu’une légère réduction de la
fréquence de mesure ne diminue pas de manière significative la qualité de la car-
tographie, mais qu’en revanche, elle peut considérablement prolonger le temps de
fonctionnement du nœud.

Régression Vs assimilation de données pour la cartographie de la qualité

de l’air à l’aide de données de capteurs à faible coût : Dans la cartographie
de la qualité de l’air à l’aide de RCSFs à faible coût, la qualité de la carte dépend de
multiples facteurs, tels que la précision des capteurs, la densité du réseau et le modèle
d’estimation sélectionné. Dans cette étude, notre objectif était d’examiner l’impact
des caractéristiques intrinsèques du déploiement dense de RCSF à faible coût pour
la surveillance de la qualité de l’air (taille du réseau, erreurs de modèle numérique et
erreurs de mesure) sur la performance des modèles de régression et de l’assimilation
de données qui combine des simulations numériques et des mesures collectées à par-
tir de capteurs déployés. À cet égard, nous avons modélisé les erreurs de mesure et
caractérisé l’erreur de simulation d’un modèle numérique largement utilisé à l’aide
de mesures provenant d’un réseau de stations de surveillance dans la région de Lyon.
Nous avons proposé un framework général qui permet la comparaison de différentes
stratégies basées sur des simulations numériques et une estimation adéquate des co-
variances des erreurs de simulation ainsi que des covariances des erreurs de mesure.
Les résultats indiquent que l’assimilation de données surpasse toutes les méthodes de
régression considérées dans tous les scénarios envisagés.

Sélection de routes dans la mesure participative de la qualité de l’air :

Dans cette partie, nous avons abordé le problème de la sélection de routes dans un
contexte de mesure participative de la qualité de l’air. L’objectif était de suggérer
pour chaque participant un itinéraire qui contribue le plus à la réduction de l’erreur
d’estimation, tout en tenant compte des contraintes du participant en termes de
distance parcourue et de la relation entre les itinéraires. Nous avons proposé deux al-
gorithmes de sélection de route qui prennent en compte la faible précision des capteurs
à faible coût afin de trouver les itinéraires les plus informatifs. Le premier algorithme
est basé sur une métrique de similarité et vise à maximiser la couverture spatiale en
réduisant les chevauchements entre les itinéraires des participants. Le deuxième algo-
rithme tire avantage du clustering hiérarchique pour construire des groupes de points
similaires sur la carte en fonction des variables explicatives, afin de maximiser la di-
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versité de l’information collectée. Nous avons comparé les performances des solutions
proposées aux algorithmes de sélection d’itinéraire de base, en termes de distance
parcourue et d’erreur d’estimation globale. Nos solutions ont mieux réussi à réduire
l’erreur globale de cartographie par rapport aux autres algorithmes, tout en étant
efficaces en ce qui concerne la distance du trajet.
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Chapter 1

Introduction

In this introductory chapter, we first present an overview of the air pollution and ur-
ban heat islands (UHI) phenomena, mentioning their effects on human health and the
environment. We will provide an overview on conventional methods and approaches
used for air quality monitoring. The advantages and disadvantages of low-cost sensors
will be pointed. Moreover, we will highlight the benefits of mobile crowdsensing and
its added value in air quality monitoring.

1.1 Context of the thesis

1.1.1 Air pollution and urban heat islands: a major threat
Air pollution represents a major concern in many cities worldwide. Indeed, pollutant
concentrations exceed standard health limits in many cities several times a year.
Air pollution consists of chemicals and particles released into the atmosphere that
pose serious threats to health and the environment. According to the World Health
Organization (WHO), both indoor and outdoor air pollution caused 7 million deaths
in 2016 [1] of which nearly 600,000 were children. The sources of air pollution can be
natural, such as volcanic eruptions or wildfires. However, these sources are responsible
for a small amount of pollution, as most air pollution is caused by human activities
mainly related to massive industrialization and high traffic density [2]. Air pollutants
are classified into primary and secondary pollutants. Primary pollutants are released
directly into the air, such as nitrogen oxides from car exhausts. Secondary pollutants
are a result of chemical reactions between other pollutants such as ground-level ozone
(O3) which is created when nitrogen oxides (NOx) and volatile organic compounds
(VOC) react in the presence of sunlight [2, 3]. In Europe, air pollution remains high
despite European Union (EU) policies. According to the European Environment
Agency (EEA), air quality standards are exceeded in 130 cities in Europe, leading to
about 400,000 premature deaths each year [4].

The adverse effects of air pollution have been widely reported in numerous studies.
In fact, air pollutants are small enough to easily break through the human body’s
protective barriers. Therefore, exposure to high concentrations of pollutants over an
extended period of time can lead to heart disease, reduced lung function and respi-
ratory infections which results in increased mortality in polluted cities [4, 3]. The
nefarious impact of air pollution is not limited to human health, but also affects the
environment. Excessive levels of nitrogen oxides, for instance, contribute to the acidi-
fication of soil, modify the growth rate of plants, and consequently affect biodiversity
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[2, 4]. In addition, the economy in turn is negatively impacted by air pollution.
Studies established the relationship between high concentrations of PM2.5 (particu-
late matter with an aerodynamic diameter of 2.5 µm or less), increased health care
costs, and reduced gross domestic product (GDP) [5, 6].

Furthermore, continuous urbanization of cities across the world contributes to the
suppression of vegetated surfaces for buildings and paved roads. Therefore, heat gets
trapped between building and leads to a significant temperature difference between
urban areas and their surrounding rural ones, creating a phenomenon known as an
urban heat island (UHI) [7]. Urban heat islands are impacted by several factors, such
as the size and building patterns of a city. They can have serious health problems
as they greatly increase the risk of allergies, respiratory and cardiovascular problems,
and can lead to excess mortality among vulnerable people during harsh heatwaves
[8].

Air pollution and urban heat islands are strongly linked. Indeed, heatwaves sig-
nificantly increase energy demand, which leads to burning more fossil fuels. This
releases greenhouse gases that trap sun heat in the atmosphere, resulting in higher
global temperatures, which in turn contributes to the degradation of air quality by
increasing the concentration of certain pollutants [8, 9].

All these harmful consequences of both air pollution and urban heat islands have
motivated remarkable research efforts to help cut these effects. The first step in this
endeavor is to have a fine-grained knowledge of air quality and urban heat islands.
To this end, multiple assessment methods have been put in place, in particular for
air quality.

1.1.2 Air quality conventional monitoring methods
In order to better characterize and then mitigate the impact of air pollution, regional
and governmental authorities have made considerable efforts in the implementation of
air quality monitoring methods. In France, multiple air quality monitoring stations
(See Figure 1.1a) have been installed by government-certified regional associations
such as Atmo-AURA 1 which is responsible for air quality monitoring in the region
of “Auvergne-Rhône-Alpes”. These monitoring stations measure with high accuracy
numerous pollutants such as monoxide carbon (CO), nitrogen dioxide (NO2), Ozone
(O3), and particulate matters (PM1, PM2.5, PM10) in addition to meteorological
conditions (e.g., temperature, relative humidity, wind speed, etc.). Although being
highly accurate, these stations are deployed in small numbers due to their large size,
inflexibility, and high maintenance cost. Therefore, it is impractical to achieve high
spatial resolution using only monitoring stations.

To cope with the aforementioned limitations, other air quality assessment methods
have been considered to assist traditional monitoring stations. For instance, physical
models are often adopted in air quality estimation [10, 11]. They calculate the spread
of air pollution by means of numerical simulations in order to generate pollution
maps (see Figure 1.1b). To achieve such result, physical models are supplied with
meteorological conditions, geographical characteristics of the zone of interest, and
the locations of pollution emission sources. However, it is challenging to achieve fine-
grained knowledge using only these models, as the input data are usually averaged in
both space and time.

Satellite remote sensing is another approach that can be used in air quality and
1
https://www.atmo-auvergnerhonealpes.fr/
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urban heat islands monitoring (see Figure 1.1c). In fact, advanced instruments can
be mounted on board satellites, allowing them to measure reflected sunlight and
map various trace gases such as nitrogen dioxide, ozone, and carbon monoxide [12].
Although this method provide a spatial resolution of around 10 meters, it is expensive
and not easily accessible. In addition, it is highly dependent on climatic conditions
(e.g., measurements can be obstructed by dense clouds) and the temporal resolution
of its measurements is low due to the time it takes for such low earth orbit satellites
to cover the earth.

(a) (b) (c) (d)

Figure 1.1: Air quality assessment methods (a) ENVEA’s air quality monitoring sta-
tion in “Rhône-Alpes”, France, (b) output of a physical model, (c) surface temperature
image taken from a satellite, (d) low-cost environmental sensors

1.1.3 Low-cost environmental sensors
All the accumulated limitations from traditional air pollution assessment methods,
along with recent developments in environmental sensing instruments, have led to
the emergence of small and low-cost environmental sensing probes (see Figure 1.1d).
These probes offer a lower sensing quality compared to official monitoring stations.
Nonetheless, their cost-effectiveness and flexibility allow for large-scale deployments
and access to a wider audience.

Today, there is a plethora of environmental sensors available on the market. Their
manufacturing processes differ from one manufacturer to another, but they can be
grouped in categories based on their sensing technology. For example, electrochem-
ical sensors measure the amount of current generated from the chemical reaction
between the target gas and the electrode of the sensor. This type of sensors have a
good sensitivity, however, they present cross-reactivity problems (confusing similar
molecule types to the target ones) and high sensitivity to meteorological changes such
as temperature and humidity [13, 14].

Another widely used type in air pollution monitoring is the optical particle coun-
ters, which calculates the number of particulate matter using a light scattering tech-
nique. When a particle sample enters the detection chamber of the sensor, a powerful
light source illuminates the particles, and the scattered light data is captured to give
an estimation of the particles number. These sensors can achieve a good estima-
tion of particle counts, but their quality may depend on the density of the particles,
their shape, or their refraction index [13, 14]. These sensing probes are usually inte-
grated into communicating sensor nodes to enable data storage and transfer to remote
servers. However, in order to achieve long-term and large-scale deployment with a
relatively low budget, the hosting sensor nodes are often limited in terms of energy,
size, computation, and memory resources.
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1.1.4 Wireless Sensor Networks
The recent advances in the field of low-power wireless communication technologies
allow the interconnection of the abovementioned sensor nodes while offering more
flexibility, autonomy, and data accessibility. As a result, an appealing type of net-
work has emerged, known as wireless sensor networks (WSNs). WSNs are a deploy-
ment of numerous nodes equipped with sensors, communicating and performing a
collaborative sensing task. These devices are often battery-powered and arranged in
a variety of topological network configurations (e.g., star, mesh, etc.). WSNs offer
a great advantage over traditional wired networks, whether in terms of deployment
costs, maintenance complexity, or mobility [15].

WSNs enable smart city projects and large spatial coverage with budget con-
straints and little to no human assistance. Indeed, numerous applications are nowa-
days powered by WSNs in different fields. In fact, they are used in various applications
such as agriculture [16], traffic light control [17], air pollution monitoring [18], smart
parking [19], health care [20], structural health monitoring [21], etc. The main compo-
nents of WSNs are the sensing nodes which perform the measurements and send them
to a gathering device known as the gateway (also called sink or base station) using gen-
erally a low-power communication technology. The gateway often has more resources
than the sensing nodes and can be either battery-powered or power-plugged. In terms
of communication, it is usually equipped with an internet connection, through which
the data are sent to a remote server for storage and processing (see Figure 1.2).

Figure 1.2: Architecture of a wireless sensor network

Numerous WSN-based solutions have been powered by wireless communication
technologies, such as Bluetooth Low Energy (BLE), Wi-Fi, and ZigBee, which offer
different features and capabilities. BLE (IEEE 802.15.1) is a short-range communi-
cation technology that has been designed to fit the low-power constraints in WSN. It
offers a theoretical communication range of up to 240 meters and a maximum data
rate of up to 2Mbps [22]. ZigBee is another short-range and low-power communication
technology that is based on the IEEE 802.15.4 standard, and that has been widely
adopted in WSN projects [23]. It enables wireless communication between devices at
a maximum distance of 100 meters and a data rate up to 250 kbps [22]. Wi-Fi (IEEE
802.11) allows devices to access local networks with a larger communication range
and much higher data rates (e.g., up to 600Mbps in 802.11n [22]) compared to BLE
and Zigbee. However, Wi-Fi has a relatively higher power consumption than BLE
and ZigBee, which limits its adoption in applications with strict power limitations
[23].
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Although BLE, ZigBee, and Wi-Fi have been powering a significant number of
WSN-based solutions, they are not suitable for applications with dense WSN (e.g., a
maximum of 255 devices for ZigBee [22]), long-range communication requirements, or
ultra low-power constraints [22, 24]. This led to the rise of a new solution known as
LPWAN (low-power wide-area network) communication technologies. LPWAN solu-
tions such as SigFox, NB-IoT, and LoRa/LoRaWAN are designed to take into consid-
eration the characteristics of highly demanding WSN applications, such as large-scale
deployments, low cost, small data packets, low data rates, limited resources, and
low-power consumption. For instance, SigFox is a popular low-power communication
technology that uses the unlicensed industrial, scientific, and medical (ISM) band
[22, 24]. It allows sending packets at up to 100bps while achieving wide commu-
nication ranges (between 10 km in urban areas and 50 km outside) [22, 24], which
is remarkably larger than what BLE, ZigBee, or even Wi-Fi can offer. LoRaWAN
is another promising ISM-based LPWAN technology available on the market. It is
built upon LoRa’s physical layer and supports data transmission over up to 15 km
[25] with a data rate between 0.3 and 50 kbps [22, 24]. Besides the low data rates
compared to short-range communications, SigFox and LoRaWAN technologies have
other limitations that translate into a low duty cycle, limited data packets (e.g., 12
bytes in UpLink for SigFox), etc. [22, 24]. These aspects are to be considered in
the design of a new solution using LPWAN technologies in addition to the intrinsic
challenges of WSNs, including limited resources, energy constraints, data recovery,
security, etc. [26].

1.1.5 Mobile crowdsensing
Mobile crowdsensing (MCS) is an emerging paradigm that has attracted great at-
tention in the recent years, owing to the result of the rapid evolution of WSNs.
MCS leverages population density in a world full of connected devices and involves
citizens in the collection of large volumes of data in multiple fields. In MCS-based
applications, participants use sensors embedded on their smart devices (smartphones,
smartwatches, etc.) or autonomous nodes equipped with more or less accurate sen-
sors to accomplish sensing tasks [27]. The mobile nature of the population allows
MCS-based applications to achieve high spatio-temporal coverage with relatively less
budget. The large amount of data collected is transmitted to the cloud for storage
and analysis.

Mobile crowdsensing comes in two forms, “opportunistic sensing” in which sensing
tasks are performed with less to no user involvement. In this type, the devices are
autonomous and able to decide whether to perform measurements or not. The second
type is known as “participatory sensing” in which participants have more freedom on
when/where to start sensing and also which data to share [28]. It is to be noted
that the difference between these terms remains unclear due to the absence of a clear
definition of “opportunistic sensing”. In fact, a significant number of research work
is referred to as mobile crowdsensing [27]. Therefore, we will use the terms “mobile
crowdsensing” and “participatory sensing” interchangeably in this manuscript.

Besides its very promising potential, participatory sensing comes with multiple
challenges related to device heterogeneity, connectivity, power consumption, etc. In-
deed, several surveys have identified multiple challenges and issues regarding the MCS
framework [27, 28, 29].
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Limited resources

Devices involved in mobile crowdsensing application are generally small and battery-
powered in order to meet different requirements related to size, budget, and usability.
This design translates into devices with limited resources in terms of computing power,
connectivity, and storage. Therefore, equipping the sensors with the right components
in order to achieve the expected performance with a reasonable power consumption
represents a challenge for solution creators.

Connectivity

Connectivity is of a great importance since MCS enables large-scale deployment,
which involves dense networks of communicating sensing devices. Due to their limita-
tions, devices can not use communication technologies with high-power consumption.
In most cases, MCS devices are equipped with BLE to send their data to the user’s
smartphone, which will use its internet connection to transfer the data to the cloud
via Wi-Fi or cellular connection.

Data integrity and accessibility

Data quality is an important aspect of MCS, considering that data are collected by
non-experts and with no particular supervision in general. Besides the low accuracy
of the sensing probes, the quality of their readings also depends on the sampling
conditions. In air quality monitoring, for instance, the mobility pattern and speed can
change the air flow, which influences the sensing probe and its readings. In addition,
some individuals could have bad intentions and use their devices to send erroneous
data, which could negatively affect the performance of the system [28]. On the other
hand, because data are generally transmitted to the cloud for analysis, a user might
need to wait for the data he collected to be processed before being able to access it
[29]. Thus, it is essential to find the right trade-off to ensure data accessibility for
users without waiting, while still not giving them full control to ensure the integrity
of the data.

Privacy

Ensuring privacy is always challenging when it comes to collecting massive data with
the help of the population, especially in mobile sensing. In fact, mobile devices are
generally equipped with a GPS receiver to geotag the data, and hence create a link
between an information and its corresponding place or zone. These GPS readings
could be used by malicious individuals to collect private information about the users,
such as their home address, work address, and habits [28, 29].

1.1.6 Participatory air quality and UHI monitoring using low-
cost WSNs

To achieve fine-grained knowledge of air quality and urban heat islands, there is a need
for extensive data on multiple pollutants and meteorological parameters with high
spatial and temporal resolutions. This implies deploying a dense network of sensors
over the area of interest. However, investing in a large number of sensing nodes can
be extremely costly and impractical, especially for low-budget and small projects. To
cope with that, multiple assessment projects have relied on public transport lines as
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a mobile platform on which sensors are mounted [30, 31, 32]. Though, this solution
highly depends on the size of the public transport network (number of lines, vehicles,
etc.) and its configuration. In addition, air quality monitoring applications cannot
have any control over the path a bus or tramway will follow.

Participatory sensing is an excellent tool in many areas, including air quality
assessment. It provides a broad deployment platform for air quality monitoring ap-
plications, thanks to the large number of volunteers involved in the process, that
collectively perform measurements using portable sensor nodes. Moreover, citizens
are more flexible than vehicles and can therefore access small zones and narrow roads,
hence delivering better coverage. In addition, involving citizens in air quality assess-
ment raises their awareness of climate issues, helps them to understand phenomena
such as urban heat islands, and consequently contributes to changing poor practices
that can worsen air quality and amplify the UHI effect.

In several use cases, the focus is solely on data collected by the participants at
specific locations, although it is often interesting to have a broader spatial estimation
of the monitored phenomenon. However, offering a complete coverage of the study
zone is challenging, regardless of which sensing paradigm or technology to use. This
is due to multiple factors that can be associated with the deployment, such as harsh
deployment conditions, inaccessible zones (even for pedestrians), or with the sensing
nodes being used (e.g., faulty sensing probes, communication loss, etc.). To cope with
that, one of the solutions that has been widely and commonly used is the exploitation
of these data with spatial interpolation models to achieve the expected coverage of
the area of interest. These methods are considered to estimate pollutant concentra-
tions at a given point where no sensing data has been collected, using the available
measurements from other sensors [33].

1.2 Thesis challenges

In this thesis, we consider three key components regarding participatory sensing, while
focusing on air quality monitoring: 1) the design of a participatory air quality and
UHI monitoring system using low-cost sensors and long-range wireless communication
2; 2) the assessment of the potential of low-cost sensors’ air quality data for spatial
interpolation and data assimilation; 3) the selection of paths for participants in mobile
participatory sensing to improve the knowledge on atmospheric pollution.

1.2.1 Low-cost environmental monitoring systems
Designing an effective air quality and urban heat islands monitoring system using
battery-powered, low-cost sensors is a major challenge in mobile sensing. It requires
taking into consideration multiple aspects related to the platform, its usage, cost, and
maintenance.

In mobile crowdsensing, the nodes are in general carried by participants, this
means fitting different electronic components in a small space without impacting the
quality of the measurements. The system has to offer the possibility of collecting
data on one or more pollutants, temperature, and humidity, with an acceptable res-
olution, while taking into consideration the mobility of the node. Data should be

2
for the sake of multidisciplinarity, our system has been designed to also collect temperature and

relative humidity, in addition to pollutant concentrations. However, the assessment of UHI has been

conducted by another team of the 3M’Air project
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time-stamped and geotagged to link the measurements to their corresponding time
and locations. Sensor readings are sent to remote servers to be processed and re-
constructed for visualization. This requires an adapted communication technology
that allows reaching long distances while being power-efficient, in order to ensure
network connectivity. In addition, participants may have no specific technical knowl-
edge, which could prevent them from using the platform, hence the importance to
give attention to the design of the nodes and the way the participants interact with
them, by hiding the complexity behind their design.

Another important aspect is the relationship between the sensing rate and the
sensing quality. The goal behind an air quality assessment system is to build high
spatio-temporal resolution maps that describe the studied phenomena. This implies
a dense network of nodes with a significantly high sampling rate. However, such con-
figuration is not practical for small budget projects, small battery-powered sensors,
or low-power communication protocols. Indeed, one of the main limitations encoun-
tered with this type of sensors is their battery life. A high sampling rate is power
consuming and considerably reduces the autonomy of the sensor nodes.

1.2.2 Exploiting dense and inaccurate data on air quality
Devices in MCS are generally collecting and sending a significant amount of data
periodically, which requires adapted algorithms for processing large volumes of data,
in order to extract useful information.

In low-cost air quality monitoring with MCS, building pollution maps usually
relies on spatial interpolation or data assimilation techniques. Moreover, sensors can
be heterogeneous, and hence, have different accuracy levels. Therefore, analyzing,
cleaning, and predicting missing data to generate pollutant concentration maps can be
very challenging. In air quality assessment, it is a common practice to combine MCS
data with relatively more accurate additional information. These data can remarkably
improve the quality of the final prediction by providing details on other parameters
(e.g., details about the sampling conditions) that influence the studied phenomenon.
In addition, characterizing the uncertainty in the collected measurements can be very
helpful to decide which source of information is more trustworthy.

1.2.3 Citizens routing in mobile participatory sensing
The quality of pollution maps generated using participatory sensing is strongly related
to the movement and distribution of the citizens involved in the sensing task. The
information provided by the routes is in fact important because participants who
pass by the same or similar routes will bring little additional information to the
overall mapping. Not taking this into account may result in highly sampled zones on
the one hand, and poorly sampled ones on the other hand. Thus, there is always a
compromise to be found between the extent of the area of interest and the granularity
of the collected information.

Route planning or route selection are great tools that can be implemented in
order to influence the movement of the participants without impacting their traveled
distance too much. Route planning consists of building a participant’s path based
on a set of points of interest, while considering his constraints in terms of travelling
distance and duration. In route selection, the participant has a pool of preferred
paths, and the role of the system is to choose the one that satisfies the best the needs
of the task. Although having candidate routes that already satisfy time and distance
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constraints reduces the search space, this approach is in fact more limited compared
to route planning. Indeed, route selection does not offer full control over the paths
and may encounter a set of routes that have little or no added value.

In addition to travelling distance and duration, the aforementioned solutions have
to consider sensing errors, which is challenging given that low-cost sensors can have
different errors, even if they are of the same type or share the same manufacturer.
Data redundancy is also to be considered, as participants’ routes may overlap along
a certain distance.

1.3 Contributions

In this thesis, we tackle the problem of mobile participatory sensing for air quality
assessment with low-cost WSNs, while adopting both an experimental and theoreti-
cal scientific approach. We designed, tested, and validated a mobile participatory air
quality and urban heat islands monitoring system using low-cost sensors. We also
study the impact of the sensing frequency on the energy consumption of low-cost
sensors and on the performance of estimation models. Moreover, we evaluate the
performance of regression models and data assimilation for air quality mapping in a
large-scale deployment. Furthermore, we explore the route selection problem in the
context of participatory sensing while taking into account the low accuracy property
of low-cost sensors. It is worth mentioning that although the following contribu-
tions mainly focus on air pollution monitoring, they can target other environmental
applications such as assessment of urban heat islands.

Contribution 1: Design of an end-to-end participatory air qual-
ity monitoring platform featuring low-cost sensors
During this thesis and as a part of the 3M’Air project, we designed a low-cost mo-
bile participatory sensing system that is powered by small and portable nodes. The
featured sensing nodes are battery-powered and equipped with three environmental
sensing probes that measure temperature, relative humidity, nitrogen dioxide (NO2),
and particulate matters (PM1, PM2.5, and PM10). In addition, each node is equipped
with a front shield to protect the environmental sensing probes from solar radiations
and supply them with natural ventilation. Measurements are performed periodically,
and are time-stamped and geotagged, thanks to the embedded GPS receiver. The
collected are data uploaded to a remote server for centralized storage and processing.
In addition, the nodes are equipped with a microSD card for local storage, in order
to increase robustness in case of communication loss. Data transmission relies on
LoRaWAN which is a LPWAN technology that allows reaching long distances with
low-power consumption. In order to visualize the collected data, we designed a graph-
ical user interface that is accessible using any web browser. The experimental work
resulted in 16 sensor nodes that have been tested and compared to reference sensors
for validation. Based on these comparisons, we show that using a simple calibration
formula, the measurements of our sensors can be corrected. The nodes powered mul-
tiple sensing campaigns we co-organized in the Lyon metropolitan area, from June to
October 2019.
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Contribution 2: Performance evaluation and assessment of the
potential of low-cost sensors for air quality mapping
In this part, we carried out analysis of the data collected during the 3M’Air sensing
campaigns. The objective was to explore the impact of the sensing rate on the energy
consumption and the quality of the pollution mapping. We evaluated the power
consumption of the nodes with different configurations and identified the elements
with high-power consumption. Subsequently, we considered a sensing duty cycle
metric and defined an energy model that takes into account the duty cycle, to assess
the impact of the sensing rate on the energy consumption. In order to evaluate the
performance of the pollution mapping with different sensing rates, we combined the
collected PM2.5 concentrations with a dataset of explanatory variables that provide
information on the studied area (e.g., number of routes, vegetation, and population
density). Then, we applied regression models to build pollution maps and compare
the estimation errors using each sensing rate. Interestingly, results reveal that a
slight reduction of the sensing rate does not significantly decrease the quality of the
mapping, but on the other hand, it can extend the operating time of the sensor node.

Contribution 3: Regression Vs data assimilation for air quality
mapping using low-cost sensors’ data
In air quality mapping using low-cost WSN, the quality of the map depends on mul-
tiple factors, such as the accuracy of the sensors, the density of the network, and the
selected estimation model. Through this study, our goal was to investigate the impact
of the intrinsic characteristics of dense deployment of low-cost WSN for air quality
monitoring (network size, numerical model errors and sensing errors) on the perfor-
mance of regression models and data assimilation. In this vein, we modeled sensing
errors and characterized the simulation error of a widely used numerical model with
the help of measurements from a network of monitoring stations within the region
of Lyon. We proposed a general framework that allows the comparison of different
strategies based on numerical simulations and an adequate estimation of the simula-
tion error covariances as well as the sensing errors covariances. The results indicate
that data assimilation outperforms all considered regression methods in all the studied
scenarios.

Contribution 4: Route selection in participatory sensing for air
quality assessment
In this part, we addressed the problem of route selection in a participatory air quality
sensing context. The objective was to suggest for each participant a route that con-
tributes the most to the reduction of the estimation error, while taking into consider-
ation the participant’s constraints in terms of travelling distance and the relationship
between routes. We proposed two route selection algorithms that take into consid-
eration the low accuracy characteristic of low-cost sensors, in order to find the most
informative routes. The similarity-based route selection algorithm aims to maximize
spatial coverage by reducing overlaps between participant routes. The cluster-based
route selection takes advantage of hierarchical clustering to build groups of similar
points of the map according to the explanatory variables, in order to increase the
diversity of the collected information. We compared the performance of the proposed
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solutions to baseline route selection algorithms in terms of travelling distance and
overall estimation error. Our solutions performed better in reducing the overall map-
ping error compared to the other algorithms, while being efficient regarding the travel
distance.

1.4 Organization of the following chapters

Following this general introduction, we explore in Chapter 2 the assessment of air
quality, from measurements to spatial mapping. We first review and compare some of
the main WSN-based platforms for air quality sensing using low-cost sensors. In the
second part, we provide a background on spatial analysis for air quality. We explain
spatial interpolation and data assimilation and their respective most commonly used
methods, while providing a review of the most related research work to our subject.
In Chapter 3, we introduce our lab-designed participatory air quality platform and
provide details on its different elements and their design. The first part of Chapter
4 investigates the impact of the sensing rate on the energy consumption and the
mapping quality. The second part compares the performance of regression models
and data assimilation in a dense network of low-cost WSN. Subsequently, we discuss
in Chapter 5 the problem of route selection and propose two algorithms that take
into consideration the relationship between routes and the sensing errors. Finally, we
conclude this manuscript and provide some future directions in Chapter 6
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Chapter 2

Air quality assessment: from
measurements to spatial mapping

A fine-grained knowledge of air quality is closely related to the source of data, its
accuracy, and availability. Background stations provide high-quality data, which
makes them a very reliable source of information. However, their limited number
significantly reduces their contribution to the assessment of the local exposure to pol-
lutants. Other sources of information, such as remote sensing or physical models also
have their own limitations in terms of accessibility, and spatio-temporal resolution.
As seen in the previous chapter, the use of low-cost WSNs for air quality monitoring
is a promising solution that can fill the gap left by traditional approaches.

Another important aspect of air quality assessment is the processing of the col-
lected data, in order to extract meaningful information and generate concentration
maps that can be easily interpreted. This task often involves combining multiple
sources of information, dealing with inaccurate measurements, and predicting miss-
ing data, using a set of computational techniques.

In this chapter, we first provide a literature review of a selection of air quality
and urban heat islands monitoring systems using low-cost sensors. We present their
main features, architecture, and the main results of their deployment. In addition, we
present a comparison of these monitoring platforms. Subsequently, we overview some
of the most commonly used spatial interpolation techniques for air quality assessment,
with a focus on the methods used during this thesis. Furthermore, we present the
data assimilation approach while highlighting the main differences with the spatial
interpolation. Finally, we review some existing research work in air quality assessment
using either spatial interpolation or data assimilation.

2.1 Emergence of low-cost sensors for air quality and

urban heat islands assessment

The effectiveness of the actions carried out by public spatial planning policies to mit-
igate the adverse effects of air pollution and urban heat islands is strongly linked to
the fine knowledge of temperature gradients and air quality at local scales. Hence,
the first step in producing high-resolution maps, is to establish an effective monitor-
ing system with the primary objective of measuring temperature and air pollution
concentrations.

During the recent years, low-cost sensors have acquired an important place in air
quality monitoring and environmental applications in general. They are often consid-
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ered as a good alternative source of information, owing to their cheap cost, small size,
flexibility, and the fact that many of them do not require advanced knowledge to be
utilized. Moreover, their large-scale deployments and the high spatio-temporal reso-
lution of their data represent a great advantage over traditional approaches, despite
their low accuracy. In addition, online or offline calibration techniques can also be
used to correct their readings [37, 38]. These characteristics have not only motivated
the raising of numerous individual projects, but have also attracted many certified
associations, academics and industrials. [39, 40].

2.2 Related low-cost WSN-based platforms

Multiple environmental monitoring projects based on low-cost sensors have emerged
over the past decade. In this section, we present a selection of related low-cost WSN-
based research projects for air quality and urban heat islands assessment.

2.2.1 OpenSense
The OpenSense project [31] studies the performance of low-cost sensing probes by
designing and deploying mobile sensor nodes on trams and buses. The nodes measure
several environmental parameters such as temperature, humidity, O3, CO, NO2 and
PM. In addition, they are equipped with a GPS and an accelerometer to geolocate
the measurements. Each node incorporates a Linux-based core component which
stores pollution data locally and streams it to a cloud server using either Wi-Fi or
cellular connections. The platform offers a visualization tool that displays pollution
concentrations on top of the map of the region. The project was deployed in Zurich
and Lausanne in Switzerland, and mounted on top of 10 trams and 10 buses. Through
this work, the researchers point out the challenge of calibrating low-cost sensors and
propose techniques to reduce the calibration error [41].

2.2.2 UrPolSens

The UrPolSens project [42] proposes a low-cost energy-efficient air quality monitor-
ing platform that uses fixed sensor nodes powered by solar panels and batteries. The
nodes measure temperature, relative humidity, NO2 and can be adapted to measure
PM or VOC. Measurements are sampled at one second time intervals, and then aver-
aged per minute and stored on a short-term EEPROM. After every 10 minutes, the
average measurements are aggregated into one record, stored on a local SD card, and
sent using LoRa communication to a gateway that forwards the packets via cellular
network to a central cloud server for storage, filtering and processing. A web inter-
face was developed to visualize real-time air pollution concentrations and weather
conditions. The solution was deployed and tested for 3 months in Lyon, France in an
urban street surrounded by two reference stations. The results show that the system
is energy-efficient while keeping an acceptable degree of accuracy.

2.2.3 City Scanner

City Scanner [32] is a general-purpose mobile sensing platform that offers multiple
configurations in terms of sensing probes. The solution does not require a specific
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power supply and therefore can be mounted on top of any urban vehicle without
impacting its operations. Each deployed node consists of a group of sensing modules
sending their measurements via a short-range Wi-Fi network to a core unit which
ensures power management, data storage and streaming to the cloud using open Wi-
Fi hotspots. The proposed solution was deployed in the city of Cambridge, USA.
Environmental probes measuring temperature, humidity and particulate matter were
mounted on trash trucks along with other sensors like thermal cameras and Wi-
Fi scanners. The main challenges encountered with the deployment were the data
transfer reliability, power consumption and data fidelity.

2.2.4 Zigbee-based network for temperature and humidity as-
sessment

A generic environmental monitoring platform based on fixed indoor sensors is pre-
sented in [43]. It uses open-source hardware platforms as Arduino and Raspberry Pi,
and ZigBee as a communication protocol. The system is composed of sensor nodes
measuring temperature and relative humidity, a web interface, and a base station
that hosts a gateway node and a backend server. Sampling is performed each 35
min and measurements are sent using ZigBee to the base station that gathers and
stores the data for future visualization on a web browser using the internet or a local
network. The solution was tested indoor by deploying a base station and 3 sensor
nodes measuring both temperature and relative humidity. The researcher identified
the need for an important number of ZigBee routers for large-scale deployments.

2.2.5 BLE-based monitoring platform

An implementation of a flexible environmental monitoring system is described in [44].
The solution is based on a set of small sensor nodes and transceivers communicating in
Bluetooth Low Energy (BLE) and a cloud-based backend. The sensors are equipped
with a microcontroller, a low-power 2.4-GHz transceiver, a Real-Time-Clock (RTC),
a temperature and relative humidity sensor, and a local storage that can store up to
125 000 measurements. These components are soldered along with a lithium battery
on a small Printed Circuit Board (PCB). Measurements are logged at intervals of 15
minutes on the local memory and sent to a Raspberry Pi board that pushes data
to the cloud. Two possible ways of visualizing data are offered, on a smartphone by
connecting it to the node using BLE or on a web interface using a web browser. This
solution was evaluated indoor in a heritage building in the north Italy for more than
two months. The results point out the challenge of environmental condition variations
from a position to another, even at small distances.

2.2.6 ZigBee-based VOCs monitoring system

Another cloud-based monitoring system is proposed in [45]. The system is composed
of a network of sensors, a cloud system and an end-user layer. Sensor nodes incor-
porate a microcontroller, up to four gas sensors measuring a set of volatile organic
compounds (VOCs) (benzene, toluene, ethylbenzene, and xylene). The nodes are also
equipped with a ZigBee module for communicating with the gateway, and a power
management controller that can switch between a battery and a solar panel to power
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the node. The gateway used in this solution integrates a ZigBee module that receives
measurement data at the end of each sampling cycle (10 minutes) and forwards them
to the cloud system, where data are stored and processed for delivery to the end-user
represented by a web application. The researchers evaluated the performance of the
solution in the laboratory by generating different compounds at different concentra-
tions. They also propose pattern recognition techniques to efficiently detect VOCs
and show that they achieve good results in their quantification.

2.2.7 ESP-NOW-based air pollution sensing platform

The sensing platform presented in [46] is based on co-located fixed sensing units.
In order to increase the availability, reliability and autonomy of the network, the
project relies on a redundant configuration. Each sensing unit comprises four identical
and independent sensing nodes that communicates using the ESP-NOW protocol,
which allows low-power peer-to-peer 2.4GHz wireless communication. Each sensor
node has its own microcontroller and is powered by two battery cells and a solar
panel. Regarding the sensing capabilities, each node is equipped with a four sensing
probes measuring PM2.5, PM10, air pressure, temperature, relative humidity, and
soil moisture. At each 15-minute interval, all four nodes on a sensing unit perform
sampling, but only one of them transmits its data to the gateway, which transfers
the data to a processing server using a Wi-Fi connection. A node selection algorithm
is proposed to switch between the nodes of a sensing unit based on their energy
state. According to the authors, this configuration was chosen to limit data loss and
allows the system to operate for an extended period. A total of 15 sensing units were
deployed between November 2019 and May 2020 to monitor air particulate matter
emissions of a construction site in a suburban area of Sidney, Australia. The deployed
sensors were validated through a comparison to official monitoring stations, which
showed good agreement between both systems.

2.2.8 Citi-Sense-MOB

The Citi-Sense-MOB project [47] aims to support green growth and sustainable devel-
opment through a mobile environmental monitoring system formed by sensor nodes
based on electrochemical sensors measuring NO2, NO, CO, SO2, O3, CO2, temper-
ature, and relative humidity. Two sensing platforms are proposed, one mounted on
buses and the other mounted on electrical bicycles. The first platform performs
measurements by pumping the air inside a chamber in contact with the sensors and
collects position, speed and use of brakes directly from the bus computer and sends
the data to a central database. The other platform is powered by the bicycle battery
and has no need for a pump as it is in direct contact with the air. Measurements
gathering begins as a person starts riding the bicycle and turns off shortly after the
bicycle stops. Collected measurements from both platforms are sent to the same
database. Citizens can visualize nodes’ measurements and positions gathered from
the sensor nodes on a map using a web interface or a mobile app. Through this work,
the authors aim at increasing the awareness of citizens and involving them in the
adoption of new habits that contribute to the reduction of air pollution.
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2.2.9 Comparison and discussion
Table 2.1 summarizes the main characteristics of the aforementioned low-cost envi-
ronmental monitoring platforms: type of deployment (i.e., fixed or mobile), measured
environmental parameters, sampling rate, capacity to store data locally, communica-
tion technology, and energy consumption when mentioned.

Temperature and humidity monitoring is present in most of the platforms, proving
the importance and the impact of heat islands on other pollutants and air quality in
general. Besides, most of the presented platforms use ZigBee, Wi-Fi or BLE, which
are quite adapted to indoor or small-scale outdoor monitoring, because of their short
or medium communication ranges. In the context of crowdsensing, BLE could be use-
ful to send measurement data to users’ smartphones, while transmitting data from
the smartphones to the cloud requires a cellular connection or Wi-Fi. However, this
operation, whether it requires a human intervention or not, may consume a signifi-
cant amount of the smartphone’s energy and mobile data plans. As an alternative,
low-power long-range communication technologies could cover the whole network of
sensors with a few gateways.

2.3 Measurement-based air quality spatial mapping

In practice, it is impossible to collect measurements at every single point of the study
area, but only at certain observation locations. Therefore, the area of interest is often
spatially divided into a grid of cells of equal size. It is then assumed that all points
within the same cell have the same properties, hence the same level of pollutant
concentration. As in an image, the number and size of these cells indicate the spatial
resolution of the resulting map. However, even with such spatial discretization, it is
still complicated to have measurements at each cell while keeping a decent spatial
resolution. To cope with that, sensor measurements are in general combined with
some techniques in order to estimate missing data.

Estimating air pollution concentrations at an unmeasured cell is often a difficult
task due to the complexity of the phenomena and the influence of multiple parame-
ters on pollutant dispersion and concentrations. To cope with that, some solutions
use the available observations to predict the pollutant concentrations within the tar-
get cell. These techniques fall under the name of spatial interpolation, which is a
mathematical technique that can be used to study a phenomenon that spreads over a
region. Another solution that can be considered is known as data assimilation, which
consists of combining sensor measurements with prior estimations (usually resulting
from a physicochemical model), in order to provide a better prediction.

Spatial interpolation

The logic behind interpolation methods is to estimate the value of the target variable
at an unmeasured point as a weighted combination of the available data [33]. In the
example depicted in Figure 2.1, the black dots represent deployed sensors, while no
sensor is deployed at the red point. Spatial interpolation uses the available knowledge
on the black dots to predict the value of the red dot. Additionally, spatial interpolation
methods often rely on extra information regarding the black and red dots. These extra
parameters are referred to as explanatory (or independent) variables, and they could
be any source of information that has an influence over the studied variable. In the

31
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI007/these.pdf 
© [M. Fekih], [2022], INSA Lyon, tous droits réservés



context of air quality assessment, explanatory variables could include concentrations
of other pollutants, meteorological conditions, emission source locations, etc.

Spatial interpolation methods can differ in various aspects, such as the relationship
between observations of the studied variable or between the studied variable and the
explanatory ones, the nature of their prediction, spatial operating range, etc. Hence,
spatial interpolation methods are usually classified in the literature according to their
natures and assumptions.

• Deterministic versus stochastic: Deterministic approaches do not involve
any randomness in the process, i.e., they assume certainty regarding the data
and will always provide the same output given the same initial conditions. Con-
versely, stochastic methods consider that the target signal includes uncertainty
due to random variations. The input data is then considered as a realization of
a stochastic process. Thus, running the model with the same input is likely to
get to a different result [48].

• Global versus local: Global techniques use all the available data in order to
make predictions. On the other hand, local approaches use local information
from either neighbors within a certain range around the unsampled point or
simply k closest neighbors. The distance between data points can be spatial or
computed on the basis of similarity between data points in terms of explanatory
variables [49].

• Univariate versus multivariate: Univariate spatial interpolation methods
do not involve secondary features and uses only the available samples of the
dependent variable. On the other hand, in multivariate methods, the prediction
is performed in function of a number of explanatory variables [50]. Note that
in what follows, the focus will be on multivariate methods, since air pollution
is a complex phenomenon that requires a significant number of variables to be
explained.

• Linear versus non-linear: Linear methods assume a linear relationship be-
tween the target variable and the explanatory ones, while non-linear methods
model the phenomenon using a more complex combination of the function pa-
rameters [50].

Figure 2.1: Illustration of spatial interpolation

In practice, adopting the suitable spatial interpolation technique for predicting
values at unsampled points can be a difficult task, given the complexity of the phe-
nomenon under study, its relationship with explanatory variables, the large size of
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the datasets, their accuracy, and their spatial distribution [50]. Spatial interpolation
methods are usually classified into two main categories, namely geostatistical tech-
niques and non-geostatistical ones. Other methods can fall under a third category
referred to as combined methods, which are combinations of spatial interpolation and
other statistical methods [50, 51]. Geostatistical approaches assume that the data
are spatially dependent. Hence, they take into consideration the spatial structure
and variation of the data in order to make predictions [51, 52]. Geostatistical meth-
ods include multiple types of kriging [51, 52, 53]. In contrast, the non-geostatistical
category does not account for the spatial dependency structure of the data.

Data assimilation

In contrast to measurement-driven spatial interpolation methods, other approaches
combine a priori estimations (e.g., estimations from physicochemical models) with
on-field measurement data in order to provide better prediction. In other words,
the measured data are used to correct the a priori estimations usually provided by
physicochemical models. These approaches fall under the category of data assimila-
tion (DA). Data assimilation is a branch of mathematics that aims to capitalize on
a theoretical model (e.g., dispersion model) and on-field observations to predict the
estimated state of the studied system. DA originally came from the field of weather
prediction and was used for meteorology until the 90s [54]. After that, it has been
applied in many other fields, such as atmospheric chemistry and agronomy. The idea
behind data assimilation is to use a theoretical model to predict the outcome of the
system, then use measurements to correct the prediction. It is therefore important in
data assimilation to find the right balance between the model and the collected data.
In other words, find which one is more trustworthy.

In what follows, we give a brief theoretical background on kriging in Section 2.4,
followed by a background on some interpolation methods using machine learning in
Section 2.5. Subsequently, we present in Section 2.6, a selection of research work that
used spatial interpolation (kriging and ML-based solutions) for air quality mapping.
Thereafter, we provide more details on data assimilation in Section 2.7 along with
some of its implementations in related studies in Section 2.8.

2.4 Background on Kriging

Kriging is a widely used geostatistical interpolation model for predicting the outcome
of a function at an unsampled point using the available observations and the spatial
relationship between them. Multiple types of kriging exist in the literature, such
as simple kriging, ordinary kriging, and universal kriging [55]. We consider in the
following ordinary kriging [56], which is one of the most common kriging models
available. For a given point x0 where no observations were collected, the predicted
value ŷ0 is given by a weighted average of the known observations as follows:

ŷ0 =
mX

i=1

�iyi (2.1)

where yi is the observed value at xi, m the number of points taken into consider-
ation to estimate the value at x0, and �i the weights attributed to the observations
at xi [53]. The basic kriging model is hence very similar to a regression one, but
the errors are assumed to be spatially dependent. Here, the observed values yi are
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interpreted as realizations of random variables correlated between themselves. ŷ0 is
also interpreted as a realization of the unknown random variable at the point x0.
Let’s note the error committed while estimating ŷ0 at point x0 as ✏(x0) = ŷ0 � y0

where y0 is the unknown ground truth at point x0. The ordinary kriging assumes
that ✏(x0) is unbiased (i.e., E(✏(x0)) = 0) which means that the weights sum up to
one. i.e.,

Pm
i=1 �i = 1 [56].

It is proved that the optimal estimator of the vector of weights �, while minimizing
the variance of the error at point x0 V ar(✏(x0)), is given as follows:

� = A
�1 · B (2.2)

where � = (�1,�2, ...,�m, µ)T , B = (�(x1, x0), �(x2, x0), ..., �(xm, x0), 1)T , and A

the (m+ 1)⇥ (m+ 1) covariance matrix defined as:

A =

2

6664

�(x1, x1) · · · �(x1, xm) 1
... . . . ...

...
�(xm, x1) . . . �(xm, xm) 1

1 · · · 1 0

3

7775
(2.3)

with µ a Lagrangian multiplier that forces the constraint
Pm

i=1 �i = 1 i.e., guar-
antees the unbiasedness condition [56].

As can be seen from Equations 2.2 and 2.3, the estimation of the weights �i requires
the definition of the � function. In kriging the � is given by a so called variogram,
which estimates the covariance between any two data points according to a certain
distance metric. In other words, it is intended to show how data points become more
similar as they get close to each other. The actual variogram has a cloud shape and
is hard to calculate since we usually have only one realization of the studied random
process. Therefore, a theoretical variogram is fitted to data. There are multiple
variogram models (e.g., Gaussian, spherical, etc.) that can be used depending on the
data. Figure 2.2 shows one example of a theoretical variogram which reaches a limit
(know as the sill) after a certain distance d (known as the range), indicating that
observation points that are more than d away will have a similar effect on the target
point.

Figure 2.2: A spherical variogram model

In order to apply the kriging, the studied system is assumed to be stationary.
This means the mean, the variance, and the variogram should be similar, regardless
of the of chunk of data that is being considered. Moreover, the fact that kriging
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estimates the weights at each target point separately is very useful to get an insight
on where the interpolation is better over the region of interest. However, this leads
to a high computational cost because for each target point, kriging needs to calculate
the inverse of the matrix A which is large in general. To overcome this, one possible
solution is to perform local kriging by limiting the number of observation points xi

to consider for each unsampled point x0. This is also helpful when the stationarity
is not assumed over the whole region of interest. More details on the kriging can be
found in [55].

2.5 Background on machine learning-based spatial

interpolation

Machine learning (ML) is a branch of artificial intelligence that combines both com-
puter science and statistics in order to build systems capable of automatic learning
from data and improving themselves through experience, without being explicitly
programmed [57]. The goal of machine learning is to identify patterns in data in
order to make decisions in the future. ML has made great progress in the recent
years, thanks to the remarkable increase of memory handling for computers and the
humongous amount of data generated every day. Machine learning approaches can
be categorized into three families:

• Supervised learning: Supervised learning models require “labeled” data (input-
output pairs) to train on, i.e., they require prior knowledge of what the output
of the training data should be [58].

• Unsupervised learning: When an ML model is trained without any “labeled”
data, it is called unsupervised. The model in this case tries to identify a pattern
and classifies the data into groups. These methods are well suited for clustering
data and finding anomalies [58].

• Reinforcement learning: Reward-based techniques that work on the prin-
ciple of feedback. They learn which actions to take by combining both the
predictions previously made and the feedback they got regarding these predic-
tions, in order to maximize a numerical reward [59].

In this thesis, we mainly focus on supervised learning for two principal reasons.
First, we are interested in the most common application in air quality monitoring, that
is making spatial predictions. Second, we often have prior knowledge on the studied
phenomenon, usually coming from deployed networks of fixed or mobile sensors, or
historical predictions performed in the past.

Supervised learning techniques fall under two categories, depending on the type of
prediction they are asked to perform. In fact, methods that predict a discrete output
(e.g., nominal or binary) are called classification methods. As their name implies,
these methods are given a set of predefined output classes, and their mission is to
learn how to classify each input into its correct category [60]. One possible application
is classifying zones of the map into “highly polluted” and “moderately polluted” zones,
based on their pollutant concentrations, vegetation density, distance to highways,
factories, etc. On the other hand, when the output value is continuous, the model is
performing a regression, and hence, is called a regression model [60]. Regression is a
statistical method that has been widely used in several fields, including air pollution
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prediction [61, 41]. It is performed to predict the outcome of a continuous dependent
variable (e.g., pollutant concentrations), based on collected measurements and/or the
available knowledge on the explanatory variables. Regression can also be used to find
which of the explanatory variables has the biggest impact on the target variable [33].

Training and validating a Machine Learning model

Different machine learning algorithms have been designed over the years, some are
simple while others are quite complex. However, they all share the same key element,
which is data. The quality and diversity of the available data highly impact the
quality of the learning, and hence, the quality of the prediction an ML system is
supposed to make. Indeed, training a ML model with few or redundant data leads
to poor performance when the system encounters a new input. Therefore, the more
and varied data, the better the model and therefore the greater the accuracy.

The training phase is of great importance in ML. It determines the quality of the
prediction of a model, which can be measured by the error the model makes when
dealing with a new data, i.e., prediction error (also called the generalization error).
Since the prediction error is related to new data, it cannot be measured a priori during
the model building phase. Therefore, it has to be approximated using a validation
technique in order to evaluate the performance of the model. The foundation of
validation techniques is to split the initial data into two groups, namely a training set
and a testing set. The training set, as explained above, is the group of input-output
pairs used to teach an ML algorithm. The testing set, on the other side, is used to
assess and validate the performance of the model. These two sets are generally not
the same size, with the training set having usually the largest amount of data. In the
following, we give a brief overview of some ML validation methods:

• Train/test split: usually consists of randomly splitting the data into 70 to
80% for training, and 30 to 20% for testing, respectively. It is the simplest and
easiest way to train and validate the model. However, it can lead to sampling
bias if one of the training set has only similar data.

• k-Fold Cross-Validation: in order to minimize the sampling bias, this tech-
nique randomly splits the data into k folds. Then, it picks at each step k � 1
folds for training, and tests the model on the remaining fold. This is done for all
fold combinations, and the output prediction error is the average of the errors
for each step. Thus, each sample will be used in both training and testing.

• Leave-one-out Cross-Validation: This is a variant of the k-Fold cross-
Validation, in which only a single observation is left for testing while all the
remaining data are used to train the model. In other words, this is a k-fold
cross validation where k = m, and m being the number of observations in the
dataset. It is clear that this method can be quite costly when the dataset is
large, as the model needs to train m times.

In order to assess the prediction error of an ML model, plenty of metrics exist, and
the choice of which one to use depends on the type of the model and the performed
prediction. Indeed, some metrics are designed for classification models, such as confu-
sion matrices. In regression, evaluation metrics are based on the residuals, which are
a measure of how far data points (i.e., real observations) are from the regression line
(i.e., predictions). Below, we present two most commonly used metrics for validating
regression ML models:
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• Mean Absolute Error (MAE): is a well-known and commonly used metric
in validation. It is the average of absolute differences between the real and
predicted values. In other words, it tells how concentrated the data is around
the line of best-fit. Thanks to the absolute value, MAE does not consider the
direction of the residuals. In MAE, all residuals have equal weight. Its formula
is given by:

MAE =
1

m

mX

i=1

|yi � ŷi| (2.4)

• Root Mean Squared Error (RMSE): is one of the most commonly-used
metrics, along with MAE. It measures the average of squared residuals. Similar
to the MAE, the “squared” nature of RMSE prevents positive and negative
residuals from cancelling each other. However, squaring residuals before they are
averaged gives higher weight to large residuals. This also means that the RMSE
is significantly more affected by outliers than MAE, hence the importance of
removing them at a prior stage. RMSE is given by:

RMSE =

vuut 1

m

mX

i=1

(yi � ŷi)2 (2.5)

MAE and RMSE are negatively oriented scores, meaning that the lower they are,
the better the model is performing.

In what follows, we mainly focus on ML spatial interpolation methods that we
have used as a part of this thesis. We present the main logic behind each method,
while referring to relevant publications for further details, when necessary.

2.5.1 K-Nearest Neighbors
K-Nearest Neighbors (KNN) is one of the simplest supervised learning algorithms. It
can be used for both classification and regression problems [62]. KNN is based on the
logic of “similar things tend to be close to each other”, or simply similar inputs should
have similar outputs. KNN for regression uses ‘feature similarity’ to predict values of
any data points. Similarity between the point to be predicted, and the observation
points is defined according to a distance metric applied to independent variables. At
the beginning of the algorithm, a number of neighbors k is fixed. Then, for a given
point x0 to be predicted, KNN considers the most k similar data points to x0 using
a distance similarity metric. The predicted value ŷ0 is generally the average of the k

observations and is given by:

ŷ0 =
1

K

KX

i=1

yi (2.6)

where yi is the observed value at point xi. The value of k is of great importance
and has to be set wisely. A large value means including more points in the estimation,
causing high sensibility to noise. In contrast, fixing a small K reduces the number of
points used in the regression, leading to overfitting problems [63].
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2.5.2 Multiple Linear Legression
Multiple linear regression (MLR) is an extended version of the linear regression, that
seeks to establish a linear relationship between the studied variable, called the depen-
dent variable and the variables likely to explain it, called independent or explanatory
variables [64, 65]. In air pollution mapping, MLR assumes that pollutant concentra-
tions at a given location depend on multiple factors, including meteorological condi-
tions (e.g., temperature, humidity, wind speed, etc.) and the surrounding land-use
information (e.g., number of routes, distance to highways, population density, number
of buildings and their patterns, etc.) [33]. It has a formula of the form:

Y = �0 + �1X1 + �2X2 + ...+ �pXp (2.7)

where Y is the dependent variable, X1, ..., Xp the explanatory variables, p the
number of explanatory variables, and �0, ..., �p the function’s coefficient to be esti-
mated. It is clear that these coefficients are the main key to the formula, as poor
estimation of these parameters will result in a poor regression model.

In machine learning, a commonly used algorithm to estimate the coefficients of
the formula is the gradient descent. The goal of gradient descent is to estimate the
coefficients of the function that, when plotted, passes through or near the available
observations while minimizing an objective function. To achieve that, gradient de-
scent uses the derivative of the objective function with respect to each parameter. It
first starts from an initial guess of the coefficients, and then optimizes them at each
step, until reaching an acceptable value. Its logic consists of taking big optimization
steps at the beginning and smaller ones when close to the best solution. In order
to control the size of the steps, gradient descent uses a parameter called the learn-
ing rate, which is related to the slope of the derivative of the objective function to
minimize [66].

Generally, objective functions that are minimized are called loss functions. The
role of the loss function is to evaluate the performance of the prediction model. It
is a scalar value which indicates how good does the curve in terms of predicting the
target signal [60]. In general, multiple loss functions exist, and their use depends on a
number of factors, such as the type of both the algorithm and the problem itself. The
most commonly used loss function in regression is the “Sum of Squared Errors” which
is the sum of the squared residuals, i.e., the differences between the real observations
and the predicted ones. Its formula is given as follows:

L(yi, F (x)) =
mX

i=1

(yi � ŷi)
2 (2.8)

where F (x) the function that gives the predicted values, yi is the real value ob-
served at a point i, ŷi the predicted value at the same point, and m the total number
of observations [64].

2.5.3 Random Forest
The random forest (RF) algorithm, as the name implies, is a machine learning algo-
rithm made out of multiple decision trees, that can be applied for both classification
and regression [67]. Decision trees basically make a series of sequential questions in
order to take a decision. They are a simple and easy to interpret tool, especially
when fitting a straight line to the data is not useful, due to the non-linear nature
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of the studied variable. Decision trees are built from the top down, where the top
node is called “the root” while the nodes at the very bottom are called “leaves”. In
regression, each leaf of a decision tree (also called regression tree) is a numeric value
that corresponds to the average of the observations within the leaf. To build the tree,
we must decide how to split the observations. For that, we try to find the threshold
that minimizes the sum of squared residuals. This threshold becomes the split point
and results in two groups. Then we move to the next level, and repeat the splitting
process with the resulting two groups. We usually stop splitting observations if the
size of the group is less than a predefined value. Although being easy to interpret,
decision trees lack stability and struggle to generalize their learning when dealing
with new samples (i.e., have high variance) [68]. Indeed, because of their hierarchical
nature, the error made in a split at one level affects all the next splits. Random forest
takes advantage of the simplicity of decision trees and fills the gap in flexibility by
combining multiple randomly-created decisions trees for making a prediction.

Given a dataset D, for each decision tree to create, RF builds a bootstrap dataset
B of the same size as D by randomly selecting samples from D, with the possibility
of selecting the same sample more than once. The samples that are left out form the
“out-of-bag dataset”. Then, at each step (or level) of the decision tree creation, it
only considers some explanatory variables to figure out how to split samples at each
node. Therefore, considering a new bootstrap sample for each decision tree with a
new subset of independent variables at each step results in a wide variety of decision
trees, hence, making RF more effective than an individual predictor. Finally, to make
a prediction for a new sample, RF runs the latter through all of its decision trees and
outputs the average value of their predictions. This process of bootstrapping the data
and aggregating decisions is called “Bagging” [67].

Usually, multiple random forests are created, with each one using a fixed number
of explanatory variables to be considered at each level of a decision tree creation.
Subsequently, each random forest will run every sample of the “out-of-bag dataset”
through the trees that were not built using that sample. The prediction residual
(also called the “out-of-bag error”) is then calculated for each sample. Ultimately, the
average prediction error is then calculated for each random forest, and then the most
accurate model is chosen [67]. For more details, the reader can refer to [68].

2.5.4 Gradient Boost
Gradient Boost is an algorithm that combines predictions from multiple regression
trees, similar to random forests [69]. However, each new tree is built based on the
error made by the previous one, hence, building the model iteratively. Gradient
boost assumes that taking lots of small steps in the right direction, results in better
predictions. Thus, it scales the trees by a learning rate (a numeric value between 0
and 1). The role of the learning rate is to reduce the effect of each tree on the final
decision in order to improve accuracy on the long-term [69].

Given a dataset, gradient boost, unlike random forests, starts by building a tree
composed of one single leaf that represents the average value for all samples as an
initial prediction. Then, it computes the residuals of all samples. Following that,
it builds a regression tree to predict the residuals instead of the target variable and
scales the tree using the learning rate. Therefore, the second tree is built based on
the errors made by the previous one, and the new residuals are computed. gradient
boost continues building trees using this logic until the maximum number of trees is
reached, or no significant improvements are achieved with new trees [70].
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2.5.5 eXtreme Gradient Boosting
eXtreme Gradient Boost (XGBoost) is a powerful ensemble learning algorithm that
is based on gradient boost and was designed for large, complicated datasets [70]. It
first starts with a single leaf representing an initial prediction. Then, it calculates the
residuals and fits a regression tree to those residuals. However, the first difference with
gradient boost, lies in the construction of the regression trees. For the second tree,
XGBoost starts with a single leaf that contains all the residuals. Following that, it
calculates for that leaf its output value and similarity score (also called quality score).
The latter measures the resemblance between samples within the same leaf. XGBoost
does a lot of optimization and approximation to solve for the optimal output value
and the similarity score [71], hence the name “extreme”. The simplified equations for
the output value and the similarity score are respectively given by:

outputjg =

Pm
i=1(yi � ŷi)

m+ r
(2.9)

Simjg =
(
Pm

i=1(yi � ŷi))2

m+ r
(2.10)

where m is the number of samples within the leaf j of the tree g, and r a regular-
ization that prevents overfitting. The next step is to find the best threshold to split
residuals into two leaves (i.e., moving from a tree with a single leaf to a tree with
a root and two leaves). XGBoost tests multiple thresholds and creates a candidate
tree for each configuration, while calculating the similarity score of each leaf. Then,
it compares the gains of all candidate trees and keeps the one with the largest gain.
The equation of the gain is as follows:

Gain = Simleft + Simright � Simroot (2.11)

with Simroot the similarity score of the root, Simleft and Simright are the similarity
scores of the left and right leaves, respectively. XGBoost continues clustering similar
residuals (i.e., turning leaves with more than one residual into internal nodes) until it
reaches the maximum depth. Another, optimization feature of XGBoost is pruning,
which consists of visiting the tree from bottom to top and comparing the gain of
each node to a fixed value. If the gain of a branch is less than this value, then the
branch is removed (i.e., the node is turned to a single leaf containing the residuals of
its previous leaves), and the algorithm continues to the next branch until no pruning
is possible, or the tree has been completely removed [71].

2.5.6 Multilayer perceptron
Multilayer perceptron (MLP) is a feed-forward artificial neural network that is mainly
designed to solve supervised learning. It consists of a system of fully interconnected
layers, each having one or more nodes (or neurons). The first layer is called the
input layer, whose only mission is to pass the input vector to the network without
modifying it, hence it has as many nodes as there are input variables. The last
layer is the output layer that represents the final output of the model, with as many
neurons as the dimension of the output vector. In an MLP, each node is connected
through weights to every node of the next layer. Between the input and output layers,
a multilayer perceptron has one or more internal layers known as hidden layers, in
which the output of each neuron is a function of the sum of the weighted inputs to
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the neuron, modified by a linear or non-linear differentiable activation function [72].
An example of the architecture of an MLP is illustrated in Figure 2.3.

(a)

(b)

Figure 2.3: (a) A multilayer perceptron network with one hidden layer. (b) architec-
ture of one neuron

Similarly to other supervised learning methods, MLP trains and learns with la-
beled data. Training the model consists of estimating the values of the weights con-
necting the neurons, such that the overall error of the model is minimal. The sum of
squared residuals given by Equation 2.8 is one of the most commonly used loss func-
tions for training artificial neural networks. A commonly-used algorithm for training
an MLP is the back-propagation algorithm combined with gradient descent.

Considering an MLP network with only one node in each layer, let wL be the
weight connecting the last layer L to the previous layer L�1, and C the loss function
defined by the following expression:

C = (a(L) � y)2 (2.12)

where y is the desired output value, and a
(L) is the predicted value i.e., the output

of the activation function of the last layer, which is defined as:

a
(L) = f(z(L)) (2.13)

and z
(L) the input of the neuron at layer L and is given by:

z
(L) = w

L
a
(L�1) (2.14)

with f an activation function. From Figure 2.4, we can see that the cost function
C is directly influenced by the activation function of a(L) which in turn depends on
the weight w

L
and the activation function a

(L�1) of the previous layer (the reader can
refer to [73] for details).

The back-propagation algorithm consists of computing, for a single input-output
pair, the gradient of the loss function with respect to the weights, starting from the
last to the first layer. In other words, it evaluates how sensitive the loss function
C is to the weight w

L
, by calculating the derivative @C

@wL

. Similarly, the influence
of the activation function a

(L�1) of the previous layer on the error C (i.e., @C
@a(L�1) )

is calculated. The algorithm keeps iterating backwards to evaluate the influence of
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Figure 2.4: Illustration of the influence of weights and activation functions on the
error of an MLP

previous weights on the cost function, hence, the name back-propagation. Gradient
descent uses the computed gradients for all input-output pairs of the training set to
update the weights and minimize the loss function [74, 60].

Other complex and more capable architectures of artificial neural networks, such
as convolutional neural networks and recurrent neural networks, have been introduced
in the literature for handling complex relationships with a temporal dimension [75, 76]

2.6 Air quality mapping using spatial interpolation

Spatial interpolation methods have been largely used in the literature, and several
studies applied machine learning techniques to predict air pollutant concentrations.

Kerckhoffs et al. [61] proposed a multiple linear regression model for estimating
ozone O3 concentrations in the Netherlands, with a spatial resolution of 50m⇥ 50m.
Ozone concentrations were measured using passive samplers deployed at 90 differ-
ent sites. All sites were measured simultaneously during four two-week campaigns,
spread over the year. Explanatory variables used to build the model included, among
others, traffic density, vegetation space, and the background of the sampled site. The
measurements collected during the summer, fall, and spring campaigns showed good
correlation with the existing continuous sampling network. In contrast, the correla-
tion was poor for the winter campaign due to lower temperatures, according to the
authors’. The developed model allowed to reach a determination coefficient of 0.77
for the annual average concentrations. Furthermore, O3 concentrations showed a high
negative correlation with NO2 and particulate matters. However, the authors point
out the need for developing a specific O3 model, as the existing NO2 model could only
explain 46% of the variability in annual averages of O3 concentrations.

An ordinary kriging model was employed in [77] for estimating PM2.5 concentra-
tions in Taiwan Main Island. PM2.5 data were collected between July and October
2018 using remote sensing satellite, 75 monitoring stations, and a network of more
than 2,000 deployed low-cost PM sensors. In order to create a single dataset, the three
data sources were given a priority level (Monitoring stations, then low-cost sensors,
then remote sensing) based on multiple factors, such as their reliability and spatial
resolution. Therefore, the most reliable measurement was kept wherever readings
from more than one source overlapped at the same location. The remote sensing had
the lowest priority because its measurements are highly dependent on weather con-
ditions, topography, etc. This resulted in a large amount of it data to be considered
invalid. Cross-validation and RMSE were used to compare the performance of the
spatial interpolation using the new dataset to those performed with each data source
separately. The results highlight the benefit of combining multiple data sources, as
the new dataset helped to capture local variations that were undetected by monitor-
ing stations, thus, achieving a better mapping while maintaining an acceptable overall
error.
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Marjovi et al. [78], proposed two approaches for estimating the pollution level of
UFPs (ultra fine particles) at desired time-location pairs in Lausanne, Switzerland.
The first is a log-linear regression built over a virtual dependency graph based on land-
use data. The second is a deep learning framework which can capture automatically
the relationships between data, based on autoencoders. Different land use, meteoro-
logical and traffic data were used to build these models, among them, altitude, density
of population, buildings, industries, etc. The two approaches were evaluated against
three modeling techniques, namely Basic Log-Linear regression model, Network-based
Log-Linear regression, and Basic Log-Linear regression with Land-Use. The results
demonstrated the superiority of the proposed approaches and specifically the deep
learning model over the other techniques.

A modified version of the Inverse Distance Weighting (IDW) spatial interpolation
was employed in [79] for estimating monthly PM2.5 concentrations between January
2019 and December 2020 in Taiwan, using a network of 74 background stations. IDW
predicts the concentration at an unsampled location as a weighted sum of concen-
trations at sampled points. The weights are the inverse of the squared distances
between the unsampled point and the sampled ones. However, considering all ob-
servations may include outliers which negatively impact the prediction. In order to
improve the performance of the interpolation, a clustering-based IDW (CIDW) was
implemented. In this vein, measurements from a network of more than 11,000 de-
ployed low-cost sensors were utilized to create clusters of similar zones. Subsequently,
each monitoring station was affected to its corresponding cluster. Therefore, for each
unsampled point, the algorithm selects the cluster to which belong the nearest sta-
tion. All stations within the selected cluster are then considered by the IDW. The
performance of the proposed approach was compared to the original IDW and simple
kriging for each of the 24 months. Using the leave-one-out cross-validation, the results
revealed that CIDW considerably outperformed both the kriging and IDW for almost
all 24 months, with an average RMSE that ranged between 1.17 and 3.86.

A mobile air quality sensing campaign was carried out in [80] across five predefined
routes in Seoul, South Korea, using seven AirBeams, a low-cost and smartphone-based
PM2.5 sensor. A total of 10,177 collected data were combined with land-use informa-
tion and used to compare the performance of three statistical models: multiple linear
regression, random forest, and stacked ensemble. Stacked ensemble is a machine learn-
ing approach that combines predictions of an ensemble of multiple ML algorithms.
Each ML algorithm of the ensemble is trained individually using the available data,
then another ML algorithm (called meta-model) is trained using predictions of the
previous ML algorithms in order to make the final prediction of the ensemble. In this
work, the ML ensemble comprised 5 algorithms, including random forest, KNN, and
recursive partitioning and regression trees. The random forest algorithm was selected
again to serve as the meta-model. The results of the 10-fold cross-validation showed
good performance across all models, with stacked ensemble achieving the lowest error
(RMSE = 5.22), outperforming both random forest (RMSE = 6.2) and multiple
linear regression (RMSE = 7.01).

Data collected from a series of four mobile sensing campaigns between 2016 and
2019 were involved in the prediction of temperature over the city of Lyon, France
[81]. The primary source of data was two types of low-cost sensors, one measuring
temperature and relative humidity, and the other measuring temperature. Remote
sensing, meteorological stations, and other sources provided additional information
about the influencing parameters, which resulted in a total of 38 explanatory variables.
Spatial interpolation was performed by three different models, namely multiple linear
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regression, partial least squares regression, and random forest. The outcome of the
study revealed the superiority of random forest with a RMSE = 0.17 and a coefficient
of determination equal to 0.95, compared to the multiple linear regression and partial
least squares regression, which had a significantly lower coefficients of determination.

Hasenfratz et al. [41] utilized mobile sensor nodes to collect UFP data. Sensors
were installed on top of public transport vehicles in the city of Zurich, Switzerland.
Based on the collected measurements and land-use data, a land-use regression model
was developed to create pollution maps with a spatial resolution of 100m ⇥ 100m.
Twelve explanatory variables representing the traffic, the population and the city’s
characteristics were examined to build the air quality model for UFP. The accuracy
of the land-use regression model across various time scales was compared. Results
showed that low temporal resolution mapping achieves good results, while high tem-
poral resolution estimation presents higher errors. To increase the accuracy of the
developped model, past measurements were used in the modeling process, which per-
mitted to reduce the root mean squared error by 26%.

2.7 Background on data assimilation

Given a dynamic system represented by a vector x
t (t stands for ground truth) of

dimension n, the model takes into consideration multiple physics of the system (i.e.,
variables) in order to provide an a priori estimation vector x

b (b stands for back-
ground) of dimension n. However, the complexity of the studied system prevents
the model from being perfect. Indeed, the constructed model is often incapable of
capturing all the physics of the system, and is just an approximation to its true state.
Moreover, we have a vector of observations y

m of dimension m about the state of
the system, constructed from measurements of deployed sensors, for instance. The
number of observations is in practice much smaller than the number of points of the
model. Taking into consideration the background state and the collected measure-
ments, the goal of data assimilation is to provide a new output that will be as close
as possible to the ground truth. This output is called the analysis state x

a and is
given by:

x
a = x

b +�x (2.15)
where �x is the correction of the background state x

b. However, since the obser-
vations are often not perfect either and present errors, it is difficult to decide which
of the model or the observations should be trusted more. To cope with that, data
assimilation aims at minimizing the average difference (xa�x

t) between the analysis
state and the ground truth state, hence, the need to characterize the errors of the
background state and the observations state.

Without loss of generality, let the error vector ✏
b = x

b � x
t be the error of the

theoretical model (i.e., the background state), ✏m = y
m�Hx

t the error vector of the
observations, and ✏

a = x
a � x

t the error of the analysis state. The mean values of
these error vectors are called the bias and are noted ✏b, ✏m, and ✏a, respectively.

Given the aforementioned vectors, we can build the error covariance matrices:

• B = E((✏b)(✏b)T ): the covariance matrix of the background state error, of di-
mension n⇥ n

• R = E((✏m)(✏m)T ): the covariance matrix of the observation state error, of
dimension m⇥m with m < n
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• A = E((✏a)(✏a)T ): the covariance matrix of the analysis state error, of dimension
n⇥ n

where the variances of each vector are represented by the diagonal of its corre-
sponding covariance matrix.

Best Linear Unbiased Estimator

One of the commonly used data assimilation methods is the Best Linear Unbiased
Estimator (BLUE), that aims at providing an unbiased analysis vector xa as a linear
combination of xb and y

m, which are assumed to be unbiased too, i.e., ✏b = ✏m =
0 and decorrelated, i.e., E((✏b)(✏m)T ) = 0 [82, 83]. Based on these elements and
assumptions, the analysis vector x

a is given by:

x
a = x

b +K(ym �Hx
b) (2.16)

where K is the gain, the term (ym�Hx
b) is called the innovation, and H a m⇥n

matrix that allows mapping the model space to the space of observations.
The mission of BLUE is to find the optimal gain K

⇤ that minimizes the trace of
the covariance matrix of the analysis error vector. Accordingly, K⇤ is then given by:

K
⇤ = BH

T (HBH
T +R)�1 (2.17)

It is then possible to estimate the analysis vector xa using the optimal gain. Hence,
the name “Best Linear Unbiased Estimator” [84].

Several other data assimilation methods exist in the literature, such as Kalman
filters which propagate the error variance of the analysis state in time, and extended
Kalman filters, which are designed for non-linear models [83, 84].

2.8 Air quality mapping using data assimilation

In the field of air quality, several data assimilation approaches have been implemented
in the literature. Observations from either highly accurate monitoring stations or
dense low-cost sensor networks were assimilated to assist simulation models and pro-
vide a better estimation of pollutant concentrations.

Tilloy et al. [85] applied the BLUE method to assimilate observations from 9 fixed
monitoring stations into simulations of NO2 concentrations at urban scale, across the
city of Clermont-Ferrand, France. Monitoring stations provided hourly NO2 concen-
trations while the simulated concentration were generated every three hours for the
whole year of 2008, using a dispersion model called ADAMS Urban. BLUE was ap-
plied every three hours, when a new simulation was available, and the performance
of the model before and after assimilation was evaluated using the leave-one-out
cross-validation. The results showed that data assimilation solved the problem of
concentrations overestimation that occurred when using the model alone. The cross-
validation revealed that BLUE helped to increase the correlation (up to 0.95) between
the monitoring stations and the prediction. Moreover, the RMSE of the prediction
was lower for each monitoring station, with an improvement of up to 46%. However,
the improvement was considerably low (down to 5%) for monitoring stations that
were far from the rest of the network, which might be related to the modeling of the
error covariances.
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Nguyen et al. [86] compared three data assimilation approaches for correcting
daily NO2 simulated concentrations of the year 2008, using a network of 16 fixed
monitoring stations in the city of Lyon, France. The three considered DA meth-
ods were BLUE, the Bias Adjustment Technique (BAT) which seeks to eliminate
the bias from the background state vector, and the Source Apportionment Least
Square (SALS) which assumes that correcting the prediction of the numerical model
is mainly related to the correction of the estimation of emission sources. The quality
of prediction of the considered DA at locations where no measures are available was
evaluated using leave-one-out cross-validation. For each monitoring station S, the
three DA approaches used the observations from the other 15 stations to correct the
simulated data of the numerical model (SIRANE). The predicted concentrations were
then compared against the actual observed data. The evaluation metrics included the
bias and the RMSE, and showed similar results for all considered DA methods, with
a slight advantage for BLUE. Moreover, the impact of the number of the considered
monitoring stations was assessed, and the results of the research suggested that the
quality of the prediction is not only influenced by the number of considered stations
but also the spatial configuration of the chosen combination.

Measurements from a network of 73 fixed background monitoring stations were
merged with a dispersion model’s simulations for predicting O3 and NO2 concentra-
tions in [87]. Simulation data were generated by the means of an air quality model
(AURORA) across Belgium, for a summer and a winter month (June and December,
respectively). Contrary to BLUE, the model was considered to be biased. Therefore,
a bias-aware optimal interpolation algorithm was implemented for data assimilation.
A leave-ten-out cross-validation was adopted for evaluating the performance of data
assimilation by keeping observations of 10 background stations out of the assimilation
process at each run (70 stations were used for validation over 7 runs). The valida-
tion results demonstrated that the data assimilation substantially outperformed the
AURORA model in predicting O3 and NO2 concentrations for both selected periods,
at almost all validation stations. The average RMSE decreased from 27.9 to 12.6 for
O3 and from 17.4 to 11 for NO2, while the correlation increased from 0.4 to 0.8 and
from 0.3 to 0.6, respectively.

An Ensemble Kalman filter data assimilation was performed in [88] for improving
PM2.5 concentration predictions generated by a chemical transport model. The simu-
lations and observations datasets comprised PM2.5 concentrations between February
and March 2019 in Aburrá Valley, Colombia. Simulations were obtained from the
chemical transport model (LOTOS-EUROS), and observations were collected using
a network of 21 monitoring stations and a network of 255 low-cost fixed sensors.
The Ensemble Kalman filter consists of generating an ensemble of n forecast states
(equivalent to background states for BLUE) given a set of initial conditions. When
observations are available, the forecast ensemble is updated into an analysis ensemble,
which in turn, will be used as a forecast ensemble at the next time step. The final
prediction of the DA is the mean of the forecast of the last ensemble. In this study,
the initial forecast ensemble was generated from perturbations to the pollutant emis-
sions. The study compared the performance of data assimilation using either data
from the monitoring stations or from the low-cost sensors network, while keeping
seven of the 21 monitoring stations for validation. Although both assimilated fore-
casts improved the forecast over the model alone, the low-cost sensors improved the
model forecast further (RMSE = 18.39) over the assimilation using the 14 monitor-
ing stations (RMSE = 20.69), owing to their high spatial density. Furthermore, a
third assimilation experiment was conducted using only a subset of low-cost sensors
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(155 sensors) that showed a degree of correlation greater than 0.8 when compared
to monitoring stations. The result showed that selecting only high-quality sensors
provided better correction of the model with a RMSE = 17.46.

In [46], a modified version of the extended Kalman filter (EKF) was utilized for
data assimilation of measurements of particulate matter from 15 low-cost sensors,
deployed in Sidney, Australia. The modified EKF assimilation method was adopted
in order to take into consideration missing data from the deployed sensors in case of
a communication failure, for instance. At each instant t, the state vector (equivalent
to the background state) is first estimated based on the previous sequences of sensors
data and the available information regarding the emissions of the pollutant. Then
the analyzed state vector is estimated using the new sequence of observations and the
estimated background state. The performance of the modified version of EKF was
compared to the standard EKF by removing one sensor and predicting its data using
the remaining nodes. The study dataset included PM2.5 and PM10 concentrations
between November 2019 and May 2020. The results obtained indicated that the
proposed data assimilation method produces a more accurate estimation with an
average MAE = 1.42 and Pearson’s correlation coefficient equal to 0.99, compared
to an average MAE = 3.88 and a correlation of 0.97 for the standard EKF.

2.9 Conclusion

In this chapter, we provided a literature review of some air quality monitoring sys-
tems that are related to our research. The projects evolved around the use of low-cost
sensors and wireless communication to collect extensive data on different parameters.
Afterward, we presented an overview of some commonly used techniques for spatial
interpolation that we relied on during this thesis, while explaining their fundamen-
tals and logic. We also explained what is data assimilation approach and why it is
beneficial in air quality monitoring. Moreover, we presented the main existing re-
search studies that used spatial interpolation methods or data assimilation for air
quality assessment. This chapter provides a foundation and helps to understand the
contributions that will be presented in the following chapters.

In the next chapter, we present the design, evaluation, and deployment of our air
quality monitoring system, which is powered by small and mobile low-cost sensors
equipped with a long-range communication technology.
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Chapter 3

Design of low-cost sensor-based air
quality monitoring systems

In order to bridge the gap between individual exposure and regional measurements,
a fine characterization of air quality at local scales is needed. This has motivated
the launch of 3M’Air (“Mobile Citizen Measurements and Modeling: Air Quality and
Urban Heat Islands”), a three-year multidisciplinary project that aims to explore the
potential of participatory sensing to improve the local knowledge of air quality and ur-
ban heat islands. The project aims to evaluate the added value of moderately accurate
pollution data generated by a non-scientific community, in the fine-grained charac-
terization of air quality and urban heat islands. 3M’Air seeks to present adapted and
optimized approaches for participatory data analysis in order to generate fine-grained
pollution maps, while taking into account the continuity in space and time of mea-
surements. It also aims to involve the citizens in the scientific process of air quality
monitoring. We believe that the interest of these participatory data will be stronger
when combined with physical models and accurate reference monitoring stations.

3M’Air leverages several scientific expertises going from electrical engineering,
computer science, fluid mechanics, urban climatology and sociology. With this re-
spect, we designed as a part of this thesis a low-cost participatory monitoring plat-
form, featuring lab-designed, modular, portable, and optimized sensor nodes. The
designed platform mainly serves the air quality application while remaining generic
for other applications such as urban heat islands.

In the first part of this chapter, we introduce our lab-designed participatory sys-
tem, as part of the 3M’Air project. We first present the main objective along with the
design guidelines that we adopted throughout this work. Subsequently, we describe
the architecture of our system and provide details on its main components.

The second part is dedicated to the validation of our platform. We evaluate the
measurement quality of our platform through a comparison with reference stations
and sensors. Furthermore, we evaluate the impact of different configurations on the
energy consumption of our nodes.

3.1 Objective and design guidelines

Based on the study and the results of the conducted survey presented in Section 2.2,
our first motivation was to design a platform of ergonomic sensors that will be carried
by citizens in the context of collective or individual measurement campaigns. The
designed system mainly serves participatory air quality monitoring but is expected
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to be easily adapted to other environmental applications. To achieve this goal, a
number of recommendations had to be respected. Our main design guidelines can be
summarized as follows:

Required parameters: In order to serve the application of air quality monitoring
while remaining generic for other applications such as urban heat islands assessment
(which are also addressed in the 3M’air project), the designed nodes had to mea-
sure the main parameters related to the studied phenomena. Therefore, we chose to
monitor air temperature, relative humidity, NO2, PM1, PM2.5 and PM10.

Note that an extra step is sometimes needed to extract meaningful data from
sensors, such as conversion from voltage to pollutant concentration for electrochemical
sensors, or conversion from particle counts to mass for optical particle counters.

Data gathering: To enable remote monitoring, it was required that the deployed
system enables sampling all the identified air and weather parameters, and gathering
the collected data on a remote server. In addition, the system was supposed to offer
more than one level of storage to cope with communication failures and increase
robustness.

Sampling rate: In order to provide a decent spatio-temporal coverage of the area
of interest, the developed sensor nodes had to perform measurements at an acceptable
sampling rate. This parameter is of great importance and has to be easily configurable
to suit the movement modes of the participants (e.g., bicycles, or vehicles, etc.). In
our case, the priority was the use by pedestrians, meaning an average speed between
and 0.83 and 1.57 m/s [89, 90, 91]. Therefore, by setting the default sampling rate
to one every 20 sec, consecutive readings are less than 30 m apart, which gives an
acceptable spatio-temporal resolution.

Autonomy and network lifetime: The sensor nodes were intended to be car-
ried by people and without an external power source. With this respect, our goal was
to deliver no less than 12 hours of autonomy. This does not just mean integrating
a bigger battery, but also optimizing all the system components to offer better effi-
ciency. It was also preferable to equip the sensor with an indicator light to reveal the
status of its battery.

Modular design: One of the main guidelines in this work was to build a modular
system, in which components can be replaced or extended without highly impacting
each other. This can be achieved by opting for a component-based design, where the
whole system is composed of multiple hardware and software components that can
be removed or extended when needed.

Ease of use: Internet of things projects usually involve a large number of smart
and connected devices that are supposed to simplify our life. Thus, their design should
be adapted to the target users and the context of use. In this respect, it was essential
to build small and lightweight sensor nodes. Furthermore, despite the complexity of
these new equipments and the remarkable engineering work behind, they should not
require technical or scientific knowledge to be used. It should be relatively simple
and as intuitive as possible to turn on the node, to use it and to charge it.

Reliable measurements: One of the main performance indicators in such sys-
tems, is the reliability of the information they provide. Consequently, the systems
should be adapted to real environmental conditions. Solar radiations have a signifi-
cant impact on temperature and humidity measurements, but also on other pollutant
measurements. Therefore, to protect the sensing probes from the effect of solar ra-
diation, we decided to paint the nodes white and equip them with a solar radiation
shield.
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3.2 System architecture

The architecture of our monitoring platform is composed of four layers, namely the
sensing layer, the transmission layer, the storage layer, and the end-user layer (see
Figure 3.1). The motivation behind this architecture is to decouple the system com-
ponents in order to increase interoperability and scalability. Below, we first give a
brief overview of the different layers before providing more details and explanations.

Figure 3.1: System architecture overview

The sensing layer: features low-cost, small-size, battery-powered, and portable
wireless nodes equipped with three environmental sensors measuring PM1, PM2.5,
PM10, NO2, temperature, and relative humidity. The nodes also include a power
manager, a GPS receiver to geolocate measurements, a LoRa module for data trans-
mission, a microSD card module to ensure data availability in case a node is outside
the wireless network coverage, and an analog-to-digital converter (ADC) to enable
compatibility with analog sensors. All the peripheral components are managed and
orchestrated by a microcontroller.

The communication layer: relies on the LoRaWAN infrastructure and is re-
sponsible for data transport and nodes’ authentication. LoRaWAN [92] is a com-
munication protocol defined by the LoRa Alliance, which is an organization of more
than 500 companies collaborating to promote the LoRaWAN open standard. This
standard is one of the most promising LPWAN technologies for the Internet of Things
[22, 93].

The storage and processing layer: is implemented on a cloud server. It
receives data from the transmission layer and stores them into a NoSQL database for
cleaning (i.e., correcting or removing inaccurate or redundant data from the database)
and future processing. It offers a REST API through which measurement data can
be queried using a web browser, a mobile application, or a third-party service.

The end-user layer: offers the possibility to visualize air pollution concentra-
tions and weather parameters using either a mobile application, a third-party service,
or a web interface.

In what follows, we cover each layer of our system, while detailing its functioning
and motivating our main choices:

50
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI007/these.pdf 
© [M. Fekih], [2022], INSA Lyon, tous droits réservés



3.2.1 Sensor nodes
Our aim in this project was to design small and portable nodes based on low-cost
sensors. Given the fact that these nodes are designed to be mobile and carried by
people, it is important to have a suitable design to 1) ensure the node’s functioning
in mobility, 2) protect the node from solar effects while guaranteeing air flow, 3)
maintain a reliable communication, and 4) make the nodes the lightest possible for
users. We designed a casing with an integrated solar radiation shield and three
separated chambers, as depicted in Figure 3.2. The casing was 3D-printed using a
selective laser sintering process with Nylon 12 plastic. This material provides good
strength and enough flexibility to withstand a fall without damaging the node. The
16 µm print resolution allows precise placement of the components as well as their
attachment directly to the casing.

The first chamber regroups the environmental sensors and was designed to provide
natural ventilation while protecting the sensing probes from solar radiations. For the
sensors, we employ the AlphaSense B-43F sensor, which measures NO2 concentra-
tions. This low-cost electrochemical probe produces a current from the interaction
of the target gas with an electrode [94] and has a sensitivity between �200 to �650
nA/ppm, as per the datas heet [95]. The Grove HM3301 low-power laser dust sensor
measures three sizes of particulate matters (PM1, PM2.5 and PM10). This sensor is
equipped with a fan driving the airflow inside a detection chamber, and is based on
laser light scattering technology. It has an effective detection range between 1 and
500 µg/m

3 and a resolution of 1 µg/m
3 [96]. The last sensor is the DHT-22, a small

low-power sensor based on a polymer capacitor for measuring temperature and rel-
ative humidity with an operating range of -40 to 80 °C and 0 to 100%, respectively,
and a resolution of 0.1 °C and 0.1%, respectively [97].

The second chamber holds a two-layer printed circuit board (PCB) that we de-
signed to integrate all necessary components. Our PCB incorporates an Arduino
MKR WAN 1300 built on the Atmel SAMD21 low-power ARM microcontroller [98],
the Murata CMWX1ZZABZ LoRa module [99], 8 digital pins, and 7 Analog input
pins as depicted in Figure 3.3. An MKR MEM ASX00008 shield was used to add a
microSD card port and 2 MB extra flash memory. For managing analog sensors, a
16-bits ADS1115 analog digital converter (ADC) [100] was added to have a better
precision than the embedded MKR 12-bits ADC. Data geo-referencing is achieved by
a low-power GPS receiver based on the MTK3339 chipset. This high-sensitivity mod-
ule has 66 channels and can track up to 22 simultaneous channels [101]. In addition,
the GPS module has a small battery, allowing it to save the current date and time
without having to perform a data acquisition from the satellites. This is very helpful
in situations where no satellite coverage is available (e.g., passing into a building or
entering a metro station). The last component on the PCB is the PowerBoost 1000C
[102], a small power manager based on a DC/DC boost converter chip that powers the
system and is connected to the 5100 mAh LiPo battery placed in the third chamber.
It is possible to charge the node by plugging it to an external 2A power source using
an easily accessible micro USB port located at the bottom of the node. An additional
micro USB port is also available for node programming and debugging purposes.

When the node is turned on, the microcontroller initializes the different modules
and establishes an Over The Air Activation connection with the LoRaWAN server.
Data are gathered from all environmental sensors and the GPS at 20-second intervals.
In order to reduce the energy consumption of data transmission and storage while
respecting the maximum payload of LoRaWAN packets, each node accomplishes three

51
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI007/these.pdf 
© [M. Fekih], [2022], INSA Lyon, tous droits réservés



Figure 3.2: Design of the 3M’Air sensor node (a) side view of the designed sensor
node; (b) Internal side view (sensor chamber); (c) Internal top view (second and third
chambers)

Figure 3.3: The node PCB with the different modules embedded

measuring cycles before storing the data on the micro-SD card and sending them to
LoRaWAN gateways. The data record contains the ID of the sensor, the timestamp
of the measurement, temperature, relative humidity, NO2 PM1, PM2.5, PM10 values
and the corresponding GPS coordinates. In case there is no GPS signal, the GPS
coordinates will have the value 0, but we still can get the exact date and time from
the GPS.

3.2.2 Transmission layer
The choice of communication technology must take into account the characteristics of
our targeted use case, such as communication range, density of the network, transmis-
sion rate, energy consumption, etc. Therefore, we have chosen to adopt an LPWAN
technology, such as NB-IoT, LoRaWAN, and SigFox which are the most notable tech-
nologies in this category. NB-IoT employs licensed spectrum in contrast to SigFox
and LoRaWAN which use unlicensed spectrum over the industrial, scientific, and
medical (ISM) band [22, 24]. However, the use of ISM bands restricts devices to a
duty cycle limitation. In coherence with the choice of open technologies, we opted for
LoRaWAN, especially since it respects our design guidelines more than NB-IoT and
SigFox.

LoRaWAN relies on LoRa’s physical layer, which uses Chirp Spread Spectrum
(CSS) as modulation and offers the possibility to use eight configurations (data rates)
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on the EU863-870MHz ISM Band, with six possible spreading factor values (SF7 to
SF12) [103]. LoRaWAN defines the MAC layer, the architecture of the network,
as well as the upper networking layers [22, 24]. The six possible spreading factor
configurations use a 125 kHz bandwidth and offer a bit rate varying from 250 bps
for SF12 to 5.47 Kbps for SF7. Two more configurations use respectively a 250
kHz bandwidth with SF7 achieving a bit rate of 11 Kbps, and FSK modulation
offering 50 Kbps [103]. LoRaWAN specifies three classes of end-devices, related to
the downlink (transmission from the server down to the end-device). Class-A must be
implemented by all end-devices and consists of opening two receiving windows after
each uplink (transmission from the end-device up to the server). Class-B and class-C
are extensions of class-A and consist of either opening receiving windows periodically
in the case of class-B, or keeping the receiving window open all the time (unless the
end-device is transmitting), in the case of class-C [92].

In the proposed architecture by LoRaWAN, the gateways forward the packets sent
by sensor nodes to the network server, which does the filtering of the data and makes
sure that only one copy of the packet is sent to our application server to avoid data
redundancy. The maximum payload size ranges from 51 to 222 bytes, depending on
the selected SF value (51 bytes for SF12) [103]. Regarding the duty cycle limitation
in Europe, most of the 868 MHz sub-bands have a duty cycle of 1%, thus, each node
must not exceed 1% of spectrum occupancy .

On top of that, LoRaWAN offers two security modes: 1) Over The Air Activation
mode (OTTA) where a join procedure is performed at the beginning in order to
generate dynamic addresses and security keys, and 2) Activation By Personalization
mode (ABP) where addresses and security keys are preloaded prior to deployment.
In both modes, a Message Integrity Code (MIC) is added to each message to ensure
that data has not been changed and is used by the nodes and the network server
to ensure data integrity. Thanks to the payload encryption, confidentiality is also
ensured between the nodes and the application server in both modes. We choose to
use OTTA as it is based on dynamic keys, and handles the initial nodes’ authentication
in addition to the confidentiality and data integrity.

LoRaWAN can be implemented through operated, collaborative, or private net-
works. In operated networks, the user only manages the end-devices while the gate-
ways, network servers and application servers are operated by telecommunication
companies (e.g., “Orange” and “Bouygues Telecom” in France). It is also possible
to implement a private LoRaWAN network by deploying private gateways and im-
plementing the network and application servers. Collaborative networks are more
open to the public by building a community-based solution, to which anyone can
contribute, by registering a new gateway to the network.

The most prevailing collaborative and open-source LoRaWAN implementation is
“The Things Network” (TTN), which is a contributor member of the LoRa Alliance
and offers a free-to-use LoRaWAN network, with over 20,000 deployed gateways [104].
TTN manages the cloud infrastructure, while the gateways are mainly deployed by
volunteers (including our lab) [105]. We selected this solution for mainly three reasons:
1) the participatory aspect of our platform that meets the collaborative nature of
TTN; 2) its robustness and security through a large number of gateways and an end-
to-end encryption; 3) its growing adoption in many fields all over the world with an
increasing number of deployed gateways [106, 107, 108].

We formatted our packets to contain 51 bytes (3 ⇥ 17 bytes) which satisfies the
duty cycle constraint using SF7, SF8 and SF9 with a 20-second sensing period and
one-minute transmission intervals. We note that the value (3) is the number of cycles
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and is also configurable. We also note that higher values of SF can be used by
increasing the transmissions period and/or reducing the amount of data to send (e.g.,
compressing data, reducing the measurement precision, or sending averaged data).

In all our tests, we send confirmed packets (i.e., the application server has to
acknowledge the reception of the packet). However, we do not implement retrans-
missions since data are stored locally on the nodes and the loss rate was very low.
Indeed, thanks to the duty cycle, the collision probability is low when the number of
nodes in proximity is not large [109].

When packets are received by TTN, they are forwarded to a router/broker service
in the TTN infrastructure that will decode the message. The latter is then published
to the right application handler, which is our cloud server. For further details on how
the transmission layer works, please refer to the TTN documentation [104].

3.2.3 Storage and processing
In addition to the local storage, the large data volume generated by the sensor nodes
needs to be stored on a remote server to ensure the data availability and enable
remote access to the data. In order to catch the data sent by the transmission layer,
we developed a Node.js script based on the integration solution provided by TTN,
which offers a set of open tools to facilitate the development of IoT applications.
Whenever a new measurement is received from the gateway, it is parsed and then
stored on a NoSQL database (MongoDB) using Mongoose, an object modeling tool
that provides a schema-based solution to model application data.

The cloud server is composed of two main components; the database component
and the end-user services component. The latter is responsible for answering user
requests from the end-used layer, through a REST API. In addition to that, multiple
data processing techniques can be added such as detection of outliers, measurements
correction, concentrations prediction, missing data reconstruction, etc.

3.2.4 Visualization
In order to visualize the sensor nodes measurements, we developed a web application
that offers a simple and intuitive interface for visualizing pollutant concentrations
and weather parameters. The front-end of the web application is built using HTML,
CSS and Angular, which is an open-source component-based front-end framework for
building large-scale single-page applications. It is built on TypeScript which relies on
JavaScript ECMAScript6 and offers a lot of features that simplify web development
such as dependency injection and component independence. The interface is based
on Bootstrap 4 and Angular Material 7 for high-quality UI components that work
across the desktop and mobile.

For experimentation purposes, we designed two front-end components, namely
“Dashboard” and “visualization map”, as depicted in Figure 3.4 and Figure 3.5. Through
the first component, it is possible to display useful information such as the list of
nodes with their IDs, end-device identifier (DevEUI) and last seen online time, etc.
The dashboard also presents statistics about the contribution of each node to the
application, as well as the total number of measurements or the number of mea-
surements performed per month. All the information presented in the dashboard is
actively updated in real-time to keep the user informed about the last changes. The
Maps component allows the user to visualize air quality and meteorological conditions
within the city by choosing the wanted date and parameter to visualize. All requests
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generated from the web application are sent to the web server asynchronously to
improve the user experience with non-blocking data loading and waiting times.

Figure 3.4: The web dashboard of the platform

Figure 3.5: The web interface showing the measurements of the nodes on a map

3.3 Platform validation

Following the aforementioned guidelines and architecture, we built 16 mobile sensor
nodes. The number of nodes was limited by our project budget. Prior to conducting
measurement campaigns, we tested the proper functioning of the designed sensor
nodes by: 1) comparing the sensor nodes to reference stations; 2) comparing the sensor
nodes to each other; 3) evaluating their performance in terms of energy consumption.
For this, we performed multiple tests, which we summarize in what follows.
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3.3.1 Comparison to reference sensors
To assess the accuracy of our nodes’ measurements and the effect of environmental
conditions, we tested them next to two reference devices: the first one was the “Météo
France” monitoring station for temperature and relative humidity, and the second one
was an approved fine dust measurement device (Fidas 200©) for particulate matters
measurements.

Temperature and relative humidity

A metrological test was carried out with the help of our colleagues from the “Lyon 3”
university in order to validate the measurements of the DHT22 sensor. Temperature
and relative humidity were measured from June 27th, 2019 at 11am to June 28th,
2019 at 10am (local time), during the heat wave period of June, with a temperature
that reached 38.10 °C at 5pm. The 3M’Air sensor node was suspended at a height of
1 meter in the instrumentation field of “Météo-France”, Lyon (see on Figure 3.6), next
to the monitoring station of “Météo-France”. The reference sensors of the station were
the PT100 for temperature and Vaisala HMP110 for relative humidity. The impact of
direct solar radiation on the capabilities of the 3M’Air sensor was evaluated using two
samples collected during two different periods. The first sample involved measure-
ments taken from 11am to 9:30pm (sunset at 9:34pm) and from 6am to 10am (sunrise
at 5:53am), with direct solar radiation. The second sample included measurements
performed from 10pm to 5:30am without direct solar radiation [34]. Measurements
from the 3M’Air node were then compared to those of the reference sensors. Since
the data do not follow a normal distribution, the non-parametric Mann-Whitney
test (also known as Wilcoxon-Mann-Whitney or Wilcoxon Rank-Sum test) was used
[110, 111]. The coefficient of determination, the RMSE, and the bias were also cal-
culated to compare the performance of the two sensors. Temperature and relative
humidity measurements recorded during the whole period of sensing are plotted in
Figure 3.7 for both the 3M’Air node and the monitoring station.

Figure 3.6: Our deployed node on the field of “Météo-France” in Lyon, France
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(a) (b)

Figure 3.7: 3M’Air node vs reference station (a) temperature; (b) relative humidity

We can clearly distinguish two periods from Figure 3.7a, demonstrating the im-
pact of solar radiations on the measurements. Indeed, the Wilcoxon-Mann-Whitney
test indicated a significant difference (p-value = 0.021) in daytime temperatures,
with 3M’Air recorded values (average temperature of 34.8°C) higher than the refer-
ence sensors measurements (average of 32.7°C). Significant differences were recorded
punctually, with for example a difference of 4.30°C at 11am and 5°C at 8am. The
correlation coefficient was 0.93, the RMSE = 1.7°C and the bias was equal to
�1.9°C. On the other hand, no difference was recorded for nocturnal tempera-
tures (p � value = 0.451, R = 0.99, RMSE = 0.4, bias = �0.5). Regarding relative
humidity, no differences were detected, neither for the daytime data (p � value =
0.720, R = 0.97, RMSE = 4.3, bias = 1.4), nor for the night data (p�value = 1, R =
0.99, RMSE = 1.4, bias = 0.1).

The differences obtained for the daytime air temperatures were expected because
of the overheating of the shelter under direct exposure to solar radiation. The cor-
relation coefficient for the temperature difference between the two sensors and the
global radiation measured at the weather station was equal to 0.53. Indeed, although
our node has an anti-radiation shelter, it is only open on 180° for design reasons (to
keep the node small, the different chambers of the node were placed one behind the
other as depicted in Figure 3.2). In addition, the small size of the sensor node may
play a role in this observation. Nevertheless, the measurements of humidity and night
temperature are, for their part, totally satisfactory. It is worth mentioning that the
3M’Air sensor nodes were not designed to perform static, but mobile measurements.

To evaluate the node’s performance in mobility, six tests in four days during the
period of July-September were performed with the 3M’Air sensor node next to two
sensor nodes incorporating the Log32 sensor [112] inside two types of anti-solar ra-
diation shelters (TFA [113] and DAVIS [114]). In two tests, all sensors were carried
by participants walking on foot using straps, and in the last ones, the sensors were
placed in a bicycle basket. All tests took place in the “Presqu’île” peninsula of Lyon
city and measurements were taken every 20 seconds. Three non-parametric statis-
tical tests were used on the data gathered by the sensors, namely Mann-Whitney,
Komogorov-Smirnoff [115], Kruskal-Wallis [116].

The results showed divergence between the tests outputs. Indeed, this difference
was due to the fact that unlike the 3M’Air anti-solar radiation shield, the TFA and
DAVIS shelters are opened on 360 ° allowing air flow in all directions. In addition,

57
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI007/these.pdf 
© [M. Fekih], [2022], INSA Lyon, tous droits réservés



both sensor nodes with the TFA and DAVIS shelters are much bigger than our sensor
node and do not include a circuit with a considerable number of components.

We also calculated the classical linear regression parameters (R, RMSE, and bias).
For temperature measurement, the highest coefficient of determination we got was
equal to 0.95 and the lowest was equal to 0.61 with an average of 0.82. The root
mean squared error was between 0.4193 and 0.1631 °C and the measurement bias
was equal to 0.37 °C. For relative humidity, The RMSE belonged to the interval [0.70
and 1.46]% while the coefficient of determination varied between 0.58 and 0.94. The
measurement bias was around 0.93%. These results showed clearly that we were
within the error ranges indicated for the DHT22 sensor [97], which made the use of
3M’Air nodes very satisfactory in mobile measurements of temperature and relative
humidity.

Particulate matters

We evaluated the performance of the Grove HM3301 PM sensor embedded in our sen-
sor node by testing it next to an approved fine dust measurement device called FIDAS
200© which is TUV Rheinland certified, and recognized by the LCSQA (“Laboratoire
Central de Surveillance de la Qualité de l’Air”) for monitoring particulate matter con-
centrations. The two sensor nodes were placed indoor, one next to the other, from
October 4th, 2019 to October 9th, 2019. The series of measurements are highly corre-
lated, with a low RMSE for PM1 and PM2.5, while performances degrades for PM10,
as reported in Table 3.1. This may indicate that the composition of the largest PM
in our region is different from that assumed when the sensor was calibrated. An-
other interesting observation is that the 3M’Air sensor slightly over-estimates the
measurements in comparison to the reference device, as shown for PM2.5 in Figure
3.8a. Considering the high correlation, the over-estimation can be compensated by
an offline correction on the calibration function.

Metric PM1 PM2.5 PM10

RMSE 3.86(µg/m3) 5.784(µg/m3) 7.92(µg/m3)
Pearson Correlation

coefficient 0.98 0.92 0.63

Table 3.1: RMSE and correlation coefficient of PM1, PM2.5 and PM10 measurements
taken by the designed node next to a reference device

Sensor calibration is needed to cope with the low accuracy and signal drifting
of low-cost sensors. Indeed, calibration techniques for low-cost sensors have been
extensively discussed in the literature. They are generally classified according to the
availability of reference stations (reference-based, blind, or partially blind calibration),
the mobility of the sensors (static, mobile, or hybrid), the calibration relationship
(univariate or multivariate), and the used calibration model (e.g., ordinary Least
Squares, multiple Least Squares etc.). [38, 37]

As a proof of concept, we implemented a univariate linear regression to calibrate
our PM sensor’s raw data based on the concentrations observed by the FIDAS sen-
sor. In this process, we varied the learning duration and the temporal resolution
to evaluate their impact on the calibration performance. Results show that with 6
hours of training on data with 1-minute temporal resolution, the RMSE significantly
decreased (from 5.785 to 0.835 µg/m

3), which can be seen in Figure 3.8b. A train-
ing duration of 12 hours with the same temporal resolution allows achieving a even
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lower error of 0.734 µg/m
3. Moreover, when decreasing the temporal resolution to

1-hour averages instead of 1 minute, the calibration achieves better performance with
a RMSE decreasing from 5.735 to 0.558 µg/m

3 using 6 hours of data for training and
0.465 µg/m

3 when training on 12 hours data. Interested readers can refer to [38, 37]
for more details on low-cost sensor calibration techniques.

Figure 3.8: 3M’Air node vs reference station (a) raw measurements; (b) calibrated
measurements

3.3.2 Cross comparison
We also conducted other tests to compare the designed sensor nodes to each other. For
this purpose, we deployed six nodes on the rooftop of a three-story building, forming
three groups (two nodes per group). Each group of sensors was placed differently.

The reason behind this was to evaluate the impact of nodes’ positions and orien-
tations. The test was performed from January 21st, 2020 at 12pm to January 22nd,
2020 at 8am (local time). After aggregating data into one-minute averages, we cal-
culated the RMSE and the correlation coefficient of Pearson within each group and
also between in-averages of the three groups. Results are presented in Table 3.2

Temperature and relative humidity

We compared temperature and relative humidity measurements of every two sensors
of each group. Figure 3.9a presents temperature measurements from all six sensors.
The first observation that can be drawn from this figure is that each group recorded
different temperature and relative humidity values. This was expected since the
groups were placed in different positions and orientations, resulting in different sun
exposure and wind direction. Nevertheless, there was a good correlation between
the nodes of the same group, especially with temperature measurements. We also
noticed that the difference in measurements between the groups still existed despite
the absence of sun rays. This indicates that measurements can be impacted not only
by the sun exposure, but also by the wind direction. Another observation that can be
noted from Table 3.2 is that the RMSE of temperature and relative humidity values
inside the same group sometimes exceeds the error margins claimed by the data sheets
of the sensor. This is possible as these sensors are low-cost and may present in some
cases larger errors. However, these values can be corrected, and the sensors can be
calibrated regularly. On the other hand, the RMSE between groups stays high due to
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the fact that each group had a different placement and orientation. All these results
show that our nodes perform well and confirm again the impact of wind direction and
angle of sun exposure on the sensors.

(a) (b)

Figure 3.9: Measurements from our designed nodes for (a) temperature (b) PM2.5

concentrations

Particulate matter

In the case of particulate matter, Figure 3.9b presents PM2.5 concentrations from the
six nodes. For readability reasons, measurements have been aggregated into 30 min
averages in this plot. However, all calculations were based on 1 min averages. We can
observe that PM concentration values from all six nodes present the same trend and a
good correlation during the whole period of the test, except for node 6 which recorded
significantly lower concentrations than the others. Another interesting observation is
that as the temperature decreases, the PM concentration tend to increase, which was
also noticed in multiple studies [117, 118]

In addition, the results presented in Table 3.2 reveal that unlike temperature and
relative humidity, the RMSE and the coefficient of correlation for PM2.5 and PM10

concentrations have reasonable values regardless of the sun exposure of the nodes or
their placement. Indeed, the correlation coefficient is identical between PM2.5 and
PM10 across all comparisons. It has to be noted that the distance separating the
groups of sensor nodes was just few meters as they were deployed on the rooftop of
the same building.

3.3.3 Energy consumption
Energy consumption is of great importance in low-cost WSNs as energy requirements
differ from one application to another. For our case, we conducted multiple tests
with different configurations to evaluate the power consumption and also to deter-
mine which configuration or sensor is power consuming. The first configuration was
the default one, with all sensors performing sampling every 20 seconds and data trans-
mission after 1 minute. In the second configuration, the sampling rate was divided
by three, i.e., sampling and transmission every 1 and 3 minutes, respectively. The
third configuration was the same as the default one, except that the PM sensor was
unplugged. In the last configuration, the PM sensor was plugged back, but its fan was
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turned off. Table 3.3 reports the results of the test. As can be expected, the higher
the sampling rate, the higher the energy consumption. The interesting observation is
that dividing the sampling rate by 3, from one sample every 20 sec (config 1) to one
every minute (config 2), hardly reduces the consumption by 8 mA, around 3.5%. It
is worth mentioning that the sensors are not completely turned off between measur-
ing cycles because the convergence time of some sensors is larger than the selected
sampling rate. Indeed, the convergence time of the DHT22 is about 2 seconds [97],
while the PM sensor needs at least 30 seconds after power-on to start giving reliable
results [96]. On the other hand, the required convergence time is larger for the NO2

sensor (t90 < 80 seconds, stated by the manufacturer [95]) and might reach around
ten minutes, according to previous tests conducted by our team. One additional ele-
ment is the energy consumption of the PM sensor. According to our results, turning
it off (config 3) reduces the energy consumption by almost a half (from 231 mA to
115 mA). This is mainly due to its integrated fan used to aspire the airflow. This is
confirmed by the last test (config 4) where only the fan of the PM sensor was kept
off. The energy consumption in this configuration dropped to 154 mA compared to
the default configuration, meaning that the fan consumes 77 mA while the electronics
of the PM sensor uses 39 mA. Nevertheless, in order to obtain reliable measurement
data, it is recommended to use the fan of the sensor.

Config NO2

sensor
Temp and
RH sensor

PM
sensor

Sampling
rate

Transmission
rate

Average
Power

Consumption
Config 1 X X X 20 sec 1 min 231 mA
Config 2 X X X 1 min 3 min 224 mA
Config 3 X X - 20 sec 1 min 115 mA
Config 4 X X no fan 20 sec 1 min 154 mA

Table 3.3: Comparison of different operating configurations

Based on these tests, we decided to keep the first configuration as the default
configuration in our sensing campaigns, i.e., maintaining the sampling rate at 20
seconds and sending data every minute. This will guarantee a good temporal and
spatial resolutions with an estimated lifetime of 22 hours using a 5100 mAh battery.
We believe that this is an acceptable autonomy, since our participatory measurement
campaigns lasted about two hours on average.

3.4 Conclusion

In this chapter, we highlighted the main motivation behind our air quality monitoring
platform, based on the review of the related systems presented in Chapter 2. Next, we
presented the four-layer architecture of our platform, while providing technical details
for each layer. Although the primary use case is the use by pedestrians, our sensor
nodes can be easily mounted on vehicles or bikes. In addition, the component-based
logic we followed throughout this work allows the system to be extended to other
applications. Furthermore, we performed various tests to validate the performance
of our proposed solution prior to deployment. Our sensor readings were compared to
each other and to other reference sensors. The results showed satisfactory performance
in terms of correlation and measurement error. Finally, we evaluated the energy
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consumption of our nodes using four different configurations, which revealed that the
PM sensor is the most demanding because of its integrated fan.

The design of the 3M’Air monitoring system helped us understand the different
aspects of air pollution sensors, such as the energy consumption and the impact of
sensing rate and solar radiations on the sensing probes. In the following chapter,
we first present a data analysis of the collected data during the sensing campaigns,
and emphasize on the great potential of low-cost sensors in estimating air pollution
and correcting numerical models. We also investigate the possibility of putting a
sensing probe into sleep mode during time intervals and evaluate its impact on the
sensing quality. Subsequently, we consider a large-scale deployment scenario and
compare the performance of different spatial interpolation and assimilation techniques
in estimating pollutant concentrations using low-cost sensors’ data.
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Chapter 4

Data analysis of WSN-based air
quality monitoring systems

The design and validation of our air quality monitoring solution allowed the collection
of extensive data through several mobile sensing campaigns that we co-organized with
the help of the partners of the 3M’Air project. Thus, the goal of this chapter is to
explore the benefit of using low-cost air quality sensors in air quality monitoring, by
analyzing the collected data and drawing insights both on the mapping of the studied
phenomenon and on the eventual optimization of the platform.

In addition to the collected data, air quality mapping often involves explanatory
variables or physicochemical models as part of the data assimilation, as discussed in
Chapter 2. In the first part of this chapter, we present the region of interest and the
datasets that were considered during this thesis. These datasets include simulated
data from numerical models, data collected using the 3M’Air platform presented in
the previous chapter, and explanatory variables from various sources.

The second part of this chapter highlights the potential of low-cost sensors through
a data analysis of pollutant concentrations collected during multiple sensing cam-
paigns using the 3M’Air monitoring platform. We first compare the estimation quality
of four statistical models and investigate the impact of sampling rate on the quality
of estimation and energy consumption of the nodes using an energy model based on
the sensing duty cycle. In addition, we evaluate the capacity of regression models to
recover missing data of one sensor based on measurements from other sensors.

In the last part, we break the budget limit and consider a scenario with a larger
number of sensors. In this vein, we reconsider and compare different regression ap-
proaches to data assimilation, while taking into account the intrinsic characteristics
of dense deployment of low-cost WSN for air quality monitoring (high density, numer-
ical model errors and sensing errors). We present a generic framework that allows the
comparison of different strategies based on numerical simulations and an adequate
estimation of the simulation error and the sensing errors.

4.1 Area of interest and datasets

4.1.1 Area of interest
During this thesis, we considered the agglomeration of Lyon, which is located in the
region of “Auvergne-Rhône-Alpes” in the southeast of France. It comes third in the
ranking of the largest metropolis in France, with over 1.4 million people over 533.6
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km
2 [119]. The focus was particularly on a 5 ⇥5 km

2 area, mainly regrouping the
first, second, fourth, sixth, districts. The area of interest also covered portions of the
third and ninth districts of the city.

4.1.2 3M’Air platform data
The sensing campaigns’ sites and participants recruitment were carried out in collab-
oration with the “La Métropole de Lyon” metropolis and the “Environnement Ville
Société” (EVS) laboratory of Lyon city. The goal was to select an area at the heart of
Lyon city and another one at its vicinity. With this respect, we chose the ”Presqu’île”
peninsula located in the heart of the city of Lyon and the region of Saint-Fons south
of the city. For the participants’ recruitment, we wanted to mobilize volunteers from
different backgrounds with no particular technical knowledge in order to evaluate the
ease of use of our nodes. In this vein, the “La Métropole de Lyon” broadcasted a
call for participants through their means of communication for each measurement
campaign.

Following that, we received a decent amount of applications for the measurement
campaigns taking place on the ”Presqu’île” peninsula of Lyon city, which allowed
us to conduct 12 sensing campaigns between June 2019 and October 2019, with an
average of 10 participants each, ranging from students from the “Lyon 3” university,
members of the team, retired citizens, etc. Moreover, some sensing campaigns were
conducted without the presence of vehicles, as part of the pedestrianization project
of the peninsula. On the other hand, we received no applications for the region of
Saint-Fons, which resulted in only one sensing campaign on July 2019. This lack
of participation could be related to the fact that the issue of air pollution was not
among the main preoccupations of the residents of this region. It is worth mentioning
that due to the restrictions related to the COVID-19 pandemic, we were not able to
organize more sensing campaigns.

Moreover, in order to keep a certain control over the sampling and maximize
spatial coverage, the EVS laboratory provided predefined routes for participants (see
Figure 4.1). In addition, some routes were affected to more than one node/participant
for performance evaluation purposes.

The performed mobile sensing campaigns enabled measuring temperature, rela-
tive humidity, NO2, and particulate matters concentrations across the streets of the
”Presqu’île” peninsula of Lyon and its neighborhood during different periods of the
year, resulting in over 11,000 data points.

4.1.3 Explanatory variables
In addition to the aforementioned data, more than 120 explanatory variables that
characterize the city of Lyon were collected from multiple sources, as part of the
Urpolsens project (2015-2018), funded by the Labex IMU. Meteorological conditions
were provided by “Météo-France” 1. Traffic and land-use information were obtained
from Data Grand Lyon 2 and Open Street Map. For each point of the grid map rep-
resenting the area of interest, these variables provided information about population
density, land-use, meteorological conditions, road network, and traffic. Depending on
its nature, each explanatory variable represented either:

1
https://donneespubliques.meteofrance.fr/

2
https://data.grandlyon.com/
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Figure 4.1: An example of a pre-defined sensing path

• the surface in a buffer: considering a circular spatial buffer of a predefined
radius, this type of variables gives the surface of a particular type of zone (e.g.,
residential zone) within the buffer;

• the number in a buffer: Similarly, these variables provide information about
the count of buildings roads in a spatial buffer;

• the distance: gives the distance (in meters) between a point on the map and
a certain infrastructure (e.g., distance to highways)

Following the preprocessing of the correlation between the variables, only 35%
of the initial explanatory variables were retained. The variables are grouped in four
classes, as can be seen in Table 4.1.

4.1.4 Numerical simulations
Given the need for numerical simulations to perform data assimilation, we obtained,
for a proof of concept, annual averages of NO2 concentrations in Lyon city in 2008,
generated by the means of SIRANE, an atmospheric dispersion simulator widely used
by the certified associations of air quality monitoring in France [10, 120, 121]. The
dataset represented NO2 concentrations in µg/m3 on a 25 km

2 grid covering the city of
Lyon and its immediate surroundings, as illustrated by Figure 4.2. The phenomenon
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Categories Example of Variables
Land-use Number of buildings in a

given buffer
Traffic and road net-
works

Number and length of roads
in a given buffer

Population Density of population in a
given buffer

Meteorology Temperature, humidity

Table 4.1: Main categories of dependent variables

was assumed to be stationary during the study period, hence the consideration of
annual averages of NO2. The grid was formed by 63,001 data points with a distance
of 20 meters between each data point.

Figure 4.2: Annual averages of NO2 concentrations for the city of Lyon in 2008
(numerical simulations)

4.2 3M’Air platform’s data Analysis

The goal of this study is to explore the potential benefits of using low-cost sensors
in estimating air pollution using regression models. We investigate the impact of
the sampling rate of sensors on the performance of air pollution estimation and the
possible impact of lowering the sampling rate on the autonomy of the node and
the estimation error. In addition, we evaluate the capacity of regression models to
recover/fill missing data of one sensor based on the other sensors of the network,
which gives an insight on the overall performance of the system and the degree of
correlation between sensors.

We consider in this part PM2.5 concentrations collected during four sensing cam-
paigns that were conducted on the “Presqu’île” peninsula of the city of Lyon. The
sensing campaigns took place between the 20th of June 2019 and the 26th of October
2019 with a minimum of 8 sensors. nodes each

As explained in Chapter 2, estimation models often require extra features to ex-
plain the phenomenon and complement the measurements obtained by fixed or mobile
sensors. With this respect, we used the dataset of explanatory variables introduced
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in Section 4.1.3, in addition to the collected PM2.5 concentrations. Since our nodes
perform sampling at fixed time intervals (fixed temporal resolution) rather than prede-
fined positions with fixed distance intervals (variable spatial resolution), the distance
between two sampled points is variable. Therefore, we assigned to each measured
point by our nodes the explanatory variables of the nearest point on the grid, as
illustrated in Figure 4.3.

Figure 4.3: Assignment of explanatory variables to points measured by the sensors

4.2.1 Comparison of regression models
In order to get an insight on which model has the best performance with our data,
we compared the performance of four models that we explained in Chapter 2, namely
the multiple linear regression (MLR), k-nearest neighbors (KNN), extreme gradient
boosting (XGBoost), and a multi-layer perceptron neural network (MLP). In this
vein, we ran multiple iterations of estimations for each measurement campaign, using
the train/test split method, with 80% of data randomly selected for training and
the remaining 20% for testing. We also evaluated the impact of the parameter k on
the MAE, by varying its value, which showed that the lowest Mean Absolute Error
(MAE) was reached with k = 4.

Results in Figure 4.4 show the MAE for each model, applied to all sensing cam-
paigns. We first observe that the estimation error is relatively lower for the campaign
of June 6th, 2019, while the other three campaigns had similar behavior. Further-
more, we observe that MLR has the worst performance overall while KNN, MLP, and
XGBoost give approximately the same estimation error with a slight advantage for
KNN.

We also calculated the average execution time for one iteration of estimation for
each model over 40 iterations, using 80% of the data for training and 20% for testing.
Results in Table 4.2 show that the MLR model is the fastest with 0.035 seconds for
one iteration, followed by KNN (60% slower), then XGBoost with 1.8 seconds, while
the MLP is the slowest model among the four. We also observe that the overall
MAE is relatively higher for the three October campaigns compared to the June
campaign. This could be related to potentially smaller variations in PM2.5 during the
first campaign.

In addition, we evaluated the estimation error of the four models in function of
the size of the training set. For that, we varied the fraction of the training set from
10% to 90%, and for each fraction, we randomly constructed the training set and
evaluate the performance of the four models. This process was repeated 40 times for
each fraction. In Figure 4.5, the MAE of each model in function of the size of the
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Figure 4.4: MAE of PM2.5 concentrations estimation for each sensing campaign

Model KNN MLR XGBoost MLP
Average execution

time (seconds) 0.056 0.035 1.86 7.6

Table 4.2: Average execution time of 1 iteration for KNN, MLR, XGBoost, and MLP

training set is plotted. Results indicate that the impact of the size of training set size
could vary, depending on the model. For instance, MLR becomes less sensitive to the
fraction of training set after 30%, while the MLP shows more variation. KNN and
XGBoost have globally the same behavior with respect to the size of the training set.

Figure 4.5: MAE of PM2.5 concentrations estimation in function of the training set
fraction

Based on these observations, we chose to use KNN for the coming tests with k = 4,
because it performed better than the other algorithms in almost all campaigns, while
having a significantly lower execution time, especially compared to XGBoost and
MLP.
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4.2.2 Sensor data reconstruction
Deploying low-cost WSNs often involves multiple challenges such as loss of connection,
sensor failures, etc. In air quality monitoring applications, these events can have a
huge impact on the performance of the application, whether it is a simple loss of
communication or complete failure of the sensing probe. Thus, it is important to
evaluate the capacity of reproducing a sensor’s measurements based on the other
available sensors of the network. We plotted in Figures 4.6 PM2.5 concentrations for
two different routes of two sensing campaigns. Figure 4.6 (a) shows measurements
from sensors 1, 4, and 6 which were sampling the same route during the campaign of
October 5th, 2019, while Figure 4.6 (b) depicts measurements from sensors 5 and 6
which were sensing the same route during the campaign of the 12th of October 2019.
It can be seen from the plots that sensor readings follow globally the same trend,
except for some differences that could be related to improper handling of the sensors
or simply to the sensing probes’ performance. The Pearson coefficient of correlation
was calculated between these sensors, and it confirmed the visual observation as
indicated in Table 4.3.

(a) (b)

Figure 4.6: Example of PM2.5 concentrations measured by our sensing nodes during
the campaign of (a) October, 5th 2019 (b) October, 12th 2019

Date Group of nodes Pearson’s coefficient

October 5th, 2019
nodes 1 and 4 0.976
nodes 4 and 6 0.813
nodes 1 and 6 0.807

October 12th, 2019 nodes 5 and 9 0.783

Table 4.3: An example of Pearson’s coefficient of correlation of PM2.56 for sensors
concentrations

In order to evaluate the possibility of predicting faulty sensor’s data based on
the remaining operational ones, we imagined a scenario in which the system receives
no measurements from a node due to an operation problem. For this, performed
a cross validation by taking one sensor’s measurements for testing while using the
other sensors to train the model. This process was repeated for each measurement
campaign. The bar chart depicted by Figure 4.7 presents the MAE of predicting
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PM2.5 concentrations for each sensor during the four sensing campaigns. The error of
prediction varies depending on the considered sensor and the sensing campaign, with
the largest MAE (10.31 µg/m

3) reached during the campaign of October, 12th for
sensor number 2. On the other hand, sensor number 10 gets the lowest error (2.18
µg/m

3) during the same campaign.

Figure 4.7: PM2.5 concentration estimations MAE for cross-validation

These results help to evaluate the performance of the low-cost sensors as they are
likely to present some divergence in sensing, despite being of the same type, hence
the need for frequent calibration. Moreover, it can be noted from Figure 4.7 that
sensors number 10 and 11 for example have in general the lowest MAE across the four
campaigns, meaning that they are well represented by the other sensors. It should be
noted, however, that these results were obtained using a simple spatial interpolation
method (KNN) and explanatory variables that are not completely up-to-date. They
must be compared with other methods and using more recent datasets. Nevertheless,
these observations can provide some indications of the approach to adopt with a
dense network of sensors in function of the predictability of each sensor, such as
fixing different sampling rates for different sensors or choosing a scheduling approach
in which one sensor stops measuring when it is located in the vicinity of another
sensor.

4.2.3 Sensing rate VS energy consumption
As explained in the previous chapter, energy consumption is of utmost importance
when dealing with low-cost WSNs. In fact, sensing nodes and especially portable ones
are often equipped with small batteries to meet multiple requirements in terms of size
and budget, which can result in a greatly limited operating time. To cope with that,
one can maximize the idle state of the nodes in order to extend the lifetime of the
sensor nodes. However, this is often achieved at the expense of the spatio-temporal
resolution, which has a significant impact on the knowledge of the phenomenon.

In section 3.3.3 of the previous chapter, we have presented the evaluation of the
power consumption for our sensing nodes with multiple configurations. Results re-
vealed that with sampling and transmission rates fixed at 20 seconds and 1 minute,
respectively, the average energy consumption of our sensors is 231 mA. However, by
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removing the PM sensor, the power consumption drops remarkably to 115 mA be-
cause of its integrated fan. Therefore, by carefully deactivating the PM sensor, one
could considerably increase the operating time of the sensor.

Based on these results, we estimated the energy consumption for different config-
urations of sensing rate using a simple energy model. We introduced a sensing duty
cycle D that represents the fraction of time during which the PM sensing probe is
active over the sensing window. For example, if the sensor is active for 30 seconds
and off for 10 seconds, then D = 3/4. The sensing duty cycle has to take into account
the convergence time of the sensor, which is the time needed for a sensor to provide
reliable measurements. This value varies from a sensor to another [122]. The formula
of the energy consumption is given by:

Iaverage = IPMON
⇤D + IPMOFF

⇤ (1�D) (4.1)

where Iaverage is the average operating current of the 3M’air node, IPMON
is the

operating current of the node when the PM sensor is ON (231 mA in our case), and
IPMOFF

is the operating current when the PM sensor is turned off (115 mA in our
case). It is worth mentioning that we do not turn off just the fan of the PM sensor,
but the whole sensor instead. In addition, we do not turn off the other sensing probes
because their energy consumption is much lower compared to the PM sensor. The
GPS receiver is not turned off either because it needs a longer time to get to acquire
satellite signals

Furthermore, in addition to evaluating the energy consumption of our nodes with
a sensing rate of one sample every 20 seconds, we estimated their energy consumption
for a sampling rate of 40, and 60 seconds using (4.1) and a convergence time of 30
seconds for the PM sensor, as indicated in its data sheet [96]. For a rate of 20 seconds,
the PM sensor cannot be turned off because it does not have enough time to reach a
steady state (D = 1). In contrast, the PM sensor can be turned off for 10 seconds and
30 seconds when the sampling rate is set to 40 (D = 3/4) and 60 seconds (D = 1/2)
respectively. Table 4.4 shows the estimated operating current and time of the nodes
for the three configurations using a 5100 mAh battery. It can be observed that a small
change in the sampling rate can have a significant impact on the node’s autonomy.

Sampling rate
(seconds) 20 40 60

Average operating
current (mA) 231 202 173

Average operating
time (hours) 22.07 25.24 29.48

Table 4.4: 3M’Air node’s operating time in function of the sampling rate

The performance of estimating PM concentrations was evaluated when reducing
the sampling rate. For the first test, we randomly picked 80% of our sensors’ data
for each sensing campaign to train the model, and three configurations were tested
on the training set. In the first configuration, we kept the initial sampling rate (i.e.,
20 seconds). The sampling rate was then reduced to 40 seconds (by considering one
measurement every two measurements) for the second configuration. Similarly, we
lowered the rate to 60 seconds for the third configuration (i.e., taking one measurement
every 3 measurements). The temporal resolution for the testing set was kept at 20
seconds and the process was repeated 40 times.
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Figure 4.8: MAE of PM2.5 concentrations estimation with three different sampling
rates using 80% of data for training

Figure 4.8 shows the MAE of the estimation model for all sensing campaigns,
in function of the sensing rate. We observe that even when reducing the sampling
rate by a factor of two to three, the estimation model can still achieve acceptable
results compared to using the initial rate. Indeed, reducing the sampling rate to 40
seconds resulted in an error 1.57% larger while achieving 14.36% longer operating
time. Moreover, by lowering the rate to one sample every 60 seconds the performance
of estimation decreased by around 4.64%, but the node managed to save 33.57%
more energy. Therefore, the gain in power could outweigh the loss in estimation
quality, depending on the addressed application. Depending on the application, this
extra battery autonomy may allow sampling more locations and hence, reduce the
estimation error even further.

4.3 Air quality mapping using dense sensor networks

After highlighting the potential of low-cost environmental sensors through a data
analysis of the pollutant concentrations collected during our sensing campaigns. In
this part, we break the budget limit and consider a dense deployment of fixed low-
cost WSN for air quality monitoring, while comparing regression approaches to data
assimilation and taking into consideration multiple aspects, such as high density of
sensors, numerical model errors, and sensing errors. However, to achieve this scaling
towards data analysis of such dense network, the use of real data is impossible. Thus,
the need to develop a generic framework to generate synthetic data and enable the
performance evaluation based on these synthetic data.

4.3.1 Framework overview
In this section, we present an overview of the methodology that we followed in order to
compare different regression and assimilation methods (see Figure 4.9). We propose
to first generate multiple ground truth datasets based on simulated concentrations
from a physicochemical model and an adequate estimation of the covariance matrix
of the simulation errors. We explain in the next section the approach that we use to
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estimate the covariance matrix of simulation errors.
Once the ground truth datasets are generated, we generate for each one a large

number of observations (pollutant concentrations) in positions where low-cost sensors
are deployed. This generation takes into account the ground truth realizations as well
as the measurements’ errors variance-covariance matrix. Based on the measurement
realizations, the simulation values, and the ground truth realizations, multiple regres-
sion and assimilation methods can be implemented and compared.

Figure 4.9: Overview of the methodological flowchart used for the framework

Regarding the datasets, we consider the simulated NO2 concentrations in Lyon
and the explanatory variables presented in Sections 4.1.4 and 4.1.3, respectively, while
focusing on a 2.5 ⇥ 2.5km2 zone which corresponds to the center of Lyon and its
immediate vicinity (see Figure 4.10).

(a) (b)

Figure 4.10: The zone of interest (a) map of the center of Lyon and its immediate
vicinity (b) annual averages of NO2 concentrations in 2008 (simulated data)
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4.3.2 Characterization of the variance of simulation errors
In order to characterize the variance of the simulation errors, we used NO2 concen-
tration values provided by 16 reference stations in Lyon and compared them to the
simulated concentrations of SIRANE. We considered monthly values in both cases.
For each simulated value z, we computed the standard deviation of the errors associ-
ated to the simulated values in z± 5µg/m3. Figure 4.11 shows that the model’s error
standard deviation �b, depends linearly on the pollutant concentration starting from
a given threshold z0:

�b(z) = ↵(z � z0) + �, z 2 [z0,+1[ (4.2)

Where z is the simulated value. As shown in Figure 4.11, a linear regression with
z0 = 24 µg/m

3 results in ↵ = 0.344 and � = 2.27 µg/m
3 with a high R

2 value
(R2 = 0.94).

Figure 4.11: Error standard deviation vs Simulation Values

4.3.3 Ground truth and measurements generation
Based on the variances of simulation errors and correlation coefficients wll0 , we gener-
ate the variance-covariance matrix. We consider here the correlation coefficient as a
function of the distance [123] given as: wll0 = e

�� ˙d
ll0 , where � is the attenuation coeffi-

cient of the correlation function, and dll0 is the euclidean distance between locations l
and l

0. Assuming that the simulation error follows a multivariate normal distribution,
we generate multiple ground truth datasets based on the simulated values and the
computed variance-covariance matrix.

Once the ground truth datasets generated, we generate, for each ground truth set,
a large number of observations (measurements) in positions where low-cost sensors
are deployed. Sensor measurements are generated using a normal distribution, since
the sensing errors are not correlated with each other. Hence, the measurement error
variance-covariance matrix that we note R is given by: R = v0I, where v0 is the
vector of measurements’ error variance and I is the identity matrix. For each sampled
location l, the sensor reading is generated using a normal distribution of mean yl and
variance �

2
m, with yl the ground truth value, and �m the standard deviation of the

sensing error.
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4.3.4 Evaluation of regression approaches
In this section, we compare different mapping strategies using four regression ap-
proaches, namely multiple linear regression, k-nearest neighbors, random forest and
XGBoost, while taking into consideration the intrinsic characteristics of dense deploy-
ment of low-cost WSN for air quality monitoring. We compared these approaches on
30 realizations of ground truth obtained from a simulation with ↵ = 0.05.

Choice of the parameter k for the KNN algorithm

To choose a good value of k, we evaluated the MAE for different values of k. The
results are presented in table 4.5. We noticed that the parameter k had no significant
impact on the MAE for k 2 [3, 15]. However, the minimum MAE was reached when
k = 5. k was then set to 5 for the following comparisons.

k 3 5 7 9 11 13 15

MAE 3.246 3.230 3.234 3.240 3.245 3.251 3.256

Table 4.5: MAE vs k value of KNN regression (�m = 2 µg/m
3, Fraction of deployed

sensors = 0.3)

Impact of the number of deployed sensors

The aim of this study is to evaluate the performance of regression methods in function
of the percentage of deployed sensors, i.e., the fraction of sampled points. For that,
we evaluate the estimation MAE of these methods when increasing the fraction of
deployed sensors. For each ground truth dataset, all approaches are executed ten
times with different measurement realizations (with �m = 1µg/m3). The results,
depicted in Figure 4.12, show that all methods present a better performance when the
number of sensors increases. Indeed, the more deployed sensors, the lowest the error
and the better the estimate. Random forest outperforms all the methods, reaching
an MAE of 1.48µg/m3 when 40% of the points are sampled. It is followed closely by
XGBoost, then KNN, and finally MLR.

Figure 4.12: MAE vs percentage of sampled points, with �m= 1 µg/m
3
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Impact of sensor errors on regression methods

The main characteristic of low-cost environmental sensors, besides their cost and size,
is their low-accuracy. Therefore, we assessed the impact of the sensing error by vary-
ing �m from 1 to 7 µg/m

3, while fixing the number of deployed sensors to 30% of the
total number of possible points. Results, plotted in Figure 4.13a, show that the MAE
increases for all four methods as the sensing error increases, with XGBoost and ran-
dom forest being close and outperforming KNN and MLR. However, we can observe
different sensitivity to the �m for each method. Indeed, from the different curve plots,
we notice that XGBoost and the multiple linear regression are less sensitive to vari-
ations in sensing errors than random forest and KNN. Interestingly, although KNN
is relatively close to XGBoost and random forest when the sensing error is small, it
quickly deviates from the two as �m starts increasing. Another interesting observa-
tion is that starting from a given error threshold, XGBoost and MLR can outperform
random forest and KNN, respectively. These results give an idea regarding the choice
of which estimation method to use in function of the sensing error.

(a) (b)

Figure 4.13: (a) MAE vs standard error deviation, Fraction of deployed sensors =
0.3; (b) MAE of XGBoost method vs percentage of deployed sensors, �m 2 [1, 3, 7]

Moreover, we analyzed the behavior of regression approaches regarding the sensing
error and the density of the network. In this vein, we computed the MAE of XGBoost
while considering three different sensing standard deviation errors (�m = 1, 3 and
7 µg/m

3) and varying the percentage of covered points from 1% to 40%. Results
reveal in Figure 4.13b that when the sensing error is relatively high (�m � 3µg/m3),
increasing the number of deployed sensors does not necessarily improve the results,
but instead decreases the performance of the mapping when the sensor density exceeds
a certain value. In this case, when the sensing error is large, it is not useful to deploy
more sensors. The results of the four regression approaches were similar with different
sensing errors and sensor density.

4.3.5 Evaluation of data assimilation
In this part, we evaluate the performance of the data assimilation approach, namely
the best linear unbiased estimation (BLUE), presented in Section 2.7 of Chapter 2,
in function of the size of the network (number of deployed sensors), the simulation
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error, and the sensing error. Similar to regression methods, the results were obtained
over 30 realizations of the ground truth.

Impact of simulation errors

As seen in Chapter 2, data assimilation uses the output of numerical models as a base,
then considers measurements collected in the field in order to correct the model’s
estimation. Indeed, these models are not perfect and present some errors due to the
complexity of the studied phenomenon and the inputs that are usually averaged in
space and time. With this respect, we computed the MAE of data assimilation for
two models with ↵ equals to 0.05 and 0.4, a sensing error �m = 3, and a percentage
of sampled points ranging from 1% to 40%. We recall that the higher ↵ is, the higher
the error of the simulation model. Results depicted in Figure 4.14 show, as expected,
that an assimilation with an accurate simulation output (i.e., small ↵) performs better
than an assimilation applied to a less accurate physical model. Nonetheless, the two
systems benefit from the increasing number of deployed sensors to further correct
the model. However, the decrease in MAE is more important for the network with
↵ = 0.4.

Figure 4.14: MAE of data assimilation in function of the sensing error and the per-
centage of covered points �m = 3 µg/m

3

Impact of sensing errors

Since data assimilation relies on sensor readings to correct the numerical simulations,
the sensing errors certainly affect the final output. In order to evaluate this effect,
we performed the BLUE assimilation with a fixed ↵ (0.05) and a variable number of
sensors, on four networks with a sensing error equals to 1, 3, 5, and 7 µg/m

3, respec-
tively. As illustrated in Figure 4.15, the MAE decreases as we increase the fraction
of deployed sensors. Interestingly, in contrast to regression methods, increasing the
number of sensors deployed always helps to correct the model. Indeed, we can observe
from the figure that even with a �m=7, the data assimilation still manages to reduce
the error of the model, thanks to the consideration of both the simulation errors and
the sensing errors.
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Figure 4.15: MAE of data assimilation in function of the sensing error and the per-
centage of deployed sensors, ↵=0.05

4.3.6 Regression vs data assimilation
In this last simulation, we compare the four regression methods to the BLUE assimi-
lation with different simulation errors. For that, we plot in Figure 4.16 the MAE of all
methods while varying the value of ↵ from 0.05 to 0.45. The results show that BLUE
provides 40% better air quality estimation compared to random forest, which already
have the best performance among the regression methods. This is mainly due to the
consideration of the model’s error as well as the sensing errors in the assimilation
process. It is worth mentioning that BLUE performs very well when the simulation
error covariance matrix and sensing error covariance matrix are well estimated.

Figure 4.16: MAE of all regression and data assimilation methods in function of ↵,
with �m = 1 µg/m

3 and 30% of points sampled

The advantage of data assimilation is illustrated by Figure 4.17, which compares
a reference heatmap of NO2 concentrations (left) to two heatmaps estimated using
random forests (right) and data assimilation (bottom). The estimated heatmaps
were generated using a percentage of coverage of 20%, ↵ = 0.05, and �m = 3µg/m3.
From the figure, we can observe that data assimilation captures the variations of the
pollutant concentrations with higher resolution than random forest, which tend to
smooth the heatmap. Moreover, random forest visibly misses some hotspots compared
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to BLUE.

(a) (b)

(c)

Figure 4.17: NO2 concentrations heatmap for the area of interest, (a) a realization of
the ground truth (b) random forest estimation (b) BLUE estimation

4.4 Conclusion

Through this chapter, we first provided spatial analysis of data collected during four
sensing campaigns, using our lab-designed sensor nodes. This analysis allowed us to
explore questions related to participatory sensing using low-cost WSN, such as the
ability of the network to reconstruct missing data of a faulty sensor, or the gain/loss
in energy and sensing quality in function of the sensing rate. We compared four
statistical models and highlighted their ability to achieve acceptable performance
despite lowering the sampling rate of the sensors. Moreover, we investigated in the last
part, the use of dense low-cost WSN in air quality assessment. We proposed a general
framework that allows the comparison of different regression and data assimilation
approaches based on numerical simulations, while considering the size of the network,
the simulation errors, and the sensing errors. We observed that data assimilation is
less sensitive to the variations of measurement errors. In addition, we pointed out that

80
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI007/these.pdf 
© [M. Fekih], [2022], INSA Lyon, tous droits réservés



a large number of sensors with high errors is not always good for regression methods.
However, this is not the case for data assimilation, especially when covariance matrices
of the model’s errors and the sensing errors are well estimated.

In the next chapter, we tackle another issue related to participatory sensing, which
is the selection of participant routes. We propose two algorithms that take into
consideration the accuracy of the sensors and the relationship between participants’
routes, in addition to the distance constraint.
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Chapter 5

Route selection in participatory
mobile sensing

Given the mobile nature of the crowd, mobile crowdsensing platforms need to imple-
ment adequate route planning/selection solutions to better guide the crowd through
the area of interest and maximize the quality of monitoring.

Route planning and route selection are of great importance in mobile crowdsensing
applications. On one side, participants in route planning delegate the construction
of their route to the monitoring platform, which will drive participant movements
by leading them through specific points of interest. On the other side, in route
selection, each participant can have multiple favorite routes (generated using route
planner algorithms), and the role of the system is to select the most appropriate
path regarding the needs of the task. It is clear that the second method considerably
limits the degree of freedom of sensing platforms as they are restricted to choose
from already built candidate routes that may inevitably overlap, which results in the
same point/area being sampled several times, and thus in data redundancy. Data
redundancy can sometimes be beneficial when it comes to low-cost sensors, which
by definition present low-accuracy properties. Some monitoring applications can be
more tolerant regarding redundant data, in order to mitigate the impact of wrong
sampling caused by faulty sensors.

In this chapter, we address the route selection problem in a participatory sensing
context, while focusing on the application of air quality monitoring to validate our
proposal. We first provide an overview of some related research work discussing
route selection in crowdsensing applications. We then introduce the scenario we
consider in this study. Afterwards, we present two route selection algorithms that
take into consideration the low accuracy of the sensors. The first algorithm computes
the similarity between the different possible routes in order to find a combination
of participant routes that maximizes spatial coverage. The second algorithm takes
advantage of clustering to evaluate the resemblance between the points of the area of
interest in order to cover as many distinct points as possible. Finally, we evaluate the
performance of the proposed algorithms and compare them to other baseline route
selection algorithms.
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5.1 Route selection : a paradigm of great interest in

mobile crowdsensing

Mobile crowdsensing have raised questions regarding the movement of the crowd and
how to maximize coverage while taking into consideration the constraints of the par-
ticipants and the addressed application. This has opened the door for new research
studies that harness citizen’s mobility to improve the mapping of environmental phe-
nomena.

Synthetic measurements were used in [124] to predict a map of NO2 concentrations
between the 12th and 25th of February 2018 in the city of Marseille, France, while
considering up to 4500 bike-tracks randomly generated. The simulated concentrations
were generated using a numerical model with a spatial resolution of 25⇥25km2, while
the explanatory variables (including number of trees, buildings, configuration of the
road network, etc.) of the area were collected from “Open Street Map”. Fictive bike
tracks were constructed using a cyclist route planner API, with a distance following
a normal distribution of mean 2.5km and standard deviation 4.5km. The resulting
dataset served to train and compare the performance of three estimation models,
namely ordinary kriging, multilayer perceptron neural network, and a generalized
additive model (GAM), which is the generalization of the linear regression to non-
linear systems. The evaluation of the models used the simulated map generate by
the model (without the measurements along the selected bike tracks) as a testing
set. The performance assessment mainly evolved around the impact of the number
of tracks and the spatial resolution of the measurements on the prediction error of
the three models. The observed results showed that while the Mean Absolute Error
(MAE) of kriging continued to decrease as the number of tracks increases, the RMSE
for MLP and GAM showed almost no improvement with more than 100 tracks. The
same observation was made for the coefficient of correlation.

In multiple crowdsensing applications, the system owner pays the participants for
their collected data. In these use cases, the participants often perform sensing tasks at
specific locations rather than continuous sampling. The payment is generally related
to the number of accomplished tasks, their priority, the travel distance/duration, or
the quality of the collected data. In this context, given a budget, the system owner op-
timizes the mobility of the crowd in order to maximize the number of completed tasks
or the coverage of the study area, while satisfying the constraints of the participants.

A three-phase routing algorithm is proposed in [125] in a task assignment context.
A task is characterized by its location and its added value to the system. In this work,
the researchers do not rely on a third-party routing API, but instead, they construct
the participant routes from scratch. The proposed algorithm is composed of three
phases, where in the first phase the algorithm iteratively constructs the route from
the origin to the destination, by considering at each step the task that has the largest
added value. The task is assigned to the user if his device energy is enough to travel
from the current location to the target task, then to the destination point. The second
phase of the algorithm is similar to the first one, except that it starts the construction
backwards (i.e., from the destination point to the starting point of the participant).
The last part of the solution is the selection of the route with the highest added
value. This solution is appropriate if we consider specific sensing locations and a
limited budget constraint.

A crowd-based urban sensing framework is presented in [126] with the objective
of maximizing area coverage for noise sensing. It uses a graph-based task assignment
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algorithm and an objective function to maximize data coverage with a limited budget
constraint. An urban sensing task is defined as a sequence of collecting locations with
corresponding time intervals. The assignment of a task is done by estimating the
travel time needed for the participant traveling from its origin to the task location
and the travel time from this location to the destination of the participant. The
authors also propose a recruitment mechanism that randomly selects participants
from a candidate pool and then replaces them gradually by other candidates left in
the pool, until no improvement of coverage is possible anymore.

Instead of suggesting a whole route to a participant, the work in [127] takes a
different approach to maximize the coverage quality while avoiding redundant data.
The study proposes a reverse greedy algorithm that selects only a subset of segments
from the participant’s route, based on the cost of the task and the available budget.
The selected segments are those along which the participant performs the task. Thus,
the participant will be rewarded according to the selected segments instead of his
whole route. To achieve such result, the algorithm eliminates redundant segments.
Two segments are considered redundant if the distance separating their respective
endpoints is less than a predefined distance. After each round of trimming, if the
total cost is greater than the available budget, a new round of trimming starts with
a larger threshold distance to further reduce the number of selected segments. Two
coverage metrics were used to evaluate the solution, namely the coverage percentage
which indicates the ratio of covered to non-covered grids, and the uniform degree
which describes the spatial distribution of selected segments.

TaskMe [128] identifies two bi-objective optimization problems. The first aims
at maximizing the number of accomplished tasks and minimizing the total traveling
distance in a situation where there are few participants and many tasks. To solve
this problem, the authors present two algorithms based on Minimum Cost Maximum
Flow models, where the first one selects all tasks as candidate whereas the other one
takes into account only the nearest tasks to a given user. In contrast, the second
optimization problem is designed for the case where there are more participants and
only few tasks, and its objective is to find the set of participants to complete all
tasks while minimizing the total incentive payments and the total traveled distance,
knowing that the incentive is inversely proportional to the traveled distance. Since the
two objectives are contradictory, the authors propose to convert the multi-objective
problem to a single-objective one by either introducing weights to each objective or
considering one of them as a constraint in the optimization model.

Gong et al. [129] addressed the path planning problem to maximize the total
task quality in a scenario where users and tasks arrive dynamically. Each user has a
limited distance budget and has to register his starting and destination points upon
arrival. One of the proposed algorithms in this work selects the tasks that lead to
the largest gain-cost ratio, one by one in a greedy manner, as long as they satisfy
the travel distance budget of the user. An alternative solution tends to guide users
to task-dense areas to maximize the cost-gain ratio. In addition to that, the authors
designed an algorithm that takes into account the impact of a candidate task on the
travel distance budget, in order to leverage tasks with low impact on the available
budget. Given a candidate task, this algorithm evaluates the possibilities of the next
step by computing the distance from this task to the others. The task that does not
distract the participant from the rest of the tasks is selected. This algorithm yielded
better performance compared to the other two solutions.

In [130], the goal is to maximize the sub-profit in each time slot to approximately
approach the maximum profit of all slots for a given task. A task is represented as
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a number of sensing locations during a certain period, the area of interest is divided
into N cells, and the task duration into M time slots with the same length. Each
participant in this scenario is guided to move along the shortest path. However,
to avoid similar routes and maintain a stable dispersed distribution, the authors
use 2D entropy (E) to guide participant distribution. The more decentralized the
participants, the higher the entropy value. The solution first randomly selects a
number of cells and compute E, then repeats the selection process for multiple. At
last, the participant distribution with the largest E is selected as an approximately
optimal solution.

Although the aforementioned studies explore mobile crowdsensing capabilities to
accomplish sensing tasks, the majority of them focus more on specific sensing locations
rather than sampling the entire zone. This prevents performing continuous sampling,
which considerably limits the potential of the crowdsensing and significantly reduces
the spatial resolution, especially in air quality monitoring applications where there is
no sensing range. Moreover, the majority of these work do not take into consideration
the inaccuracy of the sensors, which is one of the main challenges when it comes to
monitoring air pollution using low-cost environmental sensors. Furthermore, in a
participatory sensing context, participants may use their own sensors, which adds a
new constraint that is sensor heterogeneity. Therefore, taking into account sensing
errors during the participant recruitment phase and the route selection process should
be highly considered.

5.2 Problem statement

In this section, we describe the scenario we focus on as well as the global objective
we aim at. Afterwards, we give a mathematical formulation of the problem to solve
it.

5.2.1 Scenario Description
In this part, we focus on a scenario in which multiple participants are equipped with
heterogeneous low-cost environmental sensors to measure a specific phenomenon in a
delimited area. Each participant has a starting point and wants to get a path to reach
his destination using a routing service. The participant is also willing to take a path
that contributes to the knowledge of the studied phenomenon, without deviating too
much from the optimal path.

5.2.2 Objective
Our global mission, in this context, is to suggest to each participant a route that
might not necessarily be the optimal/shortest path, but does improve the estimation
while being acceptable in terms of journey distance/duration. This implies taking into
consideration not only the length of the participant’s routes and their relationships
with other participant routes, but also the accuracy level of his sensor. In other
words, our goal is to find a best combination of routes that allows the system to
reduce the estimation error while still satisfying participants’ constraints in terms of
trip distance/duration.
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5.2.3 Mathematical notation
Let U = [u1, u2, ..., un] be the set of participants, S = [s1, s2, ..., sn] the set of their
respective sensors, �k the standard error of the k-th sensor, and Pk = [pk1, pk2, ..., pkq]
the set of possible paths for the k-th participant. The goal is to select for each
participant uk a path pkj from his possible q routes, knowing that he is equipped with
a sensor sk which has a standard error �k.

A brute force solution would be to test all the possible combinations (i.e., qn com-
binations). However, as the space of solutions grows exponentially with the number of
participants, implementation of such solution in a real life scenario is impractical. To
cope with that, we rely on heuristics that are not optimal, but have smaller solution
spaces, hence running much faster than the exhaustive search.

5.3 Traditional route selection algorithms

Through this contribution, we address route selection algorithms in the context of
participatory air quality sensing. The objective is to maximize the quality of the
prediction where there are no measurements, using a spatial interpolation method
and an efficient route selection algorithm.

Generally, route planning APIs always offer either the shortest path or q possi-
ble paths, while taking into consideration multiple parameters (e.g., traffic condition,
waypoints, type of path, etc.). Route selection consists of choosing for each partici-
pant a path among the q proposed ones. This is a key element as it determines the
geographical zones that will be sampled, which highly impacts the estimation quality.
We consider in this part three traditional routing approaches as baseline:

• Shortest-path-based routing (SPR): This algorithm prioritizes participant
comfort by reducing the travel distance for all participants, through suggesting
the shortest route among the q paths. In SPR, all route selections are performed
independently for each participant.

• Longest-path-based routing (LPR) : In contrast to SPR, this approach
aims at maximizing the set of points to visit. It suggests to all participants
the longest route possible among the q suggested routes. It is to be noted that
in this contribution, we consider the longest path within a predefined stretch
factor with respect to the shortest path. Suggesting the longest-path for all
participants will intuitively expand the set of collected measures, and hence,
improve the estimation quality. However, the correlation between paths and
especially the information provided by different points, which is very complex
to evaluate, means that this method does not always maximize the quality of
the spatial prediction.

• Random routing (RR): For each participant, randomly select a route among
the q possible ones without taking into consideration its length, the already
selected routes for previous participants, or the accuracy level of the sensors.

All three algorithms cited above are easy to implement, but their downside is
that they do not take into consideration the correlations between participant routes
or the accuracy levels of the sensors. In fact, the routes can pass through similar
points or even different points that provide redundant information (points with similar
characteristics). These observations feed the need for more sophisticated techniques,
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that will efficiently attribute routes to the participants that are not necessarily the
longest or the shortest ones, but which bring as much diversity in the dataset as
possible. This can be achieved by introducing metrics and techniques that help to
choose the most distinct routes possible and thus bring more information.

5.4 Similarity-based route selection

The level of accuracy differs from a sensor to another, even between sensors of the
same type. Therefore, to offer a good estimation, platforms should have an efficient
routing approach by also taking into consideration the heterogeneity of sensors quality.
In this regard, our algorithm processes first the participants with the most accurate
sensors. Hence, instead of independently suggesting routes for the participants, the
path provided to those with lower quality sensors are adapted according to the choices
made for participants with more accurate sensors. In the example depicted in Figure
5.1, participant A has a better sensor than participant B. As a result, the path
of A is chosen first before the path of B. In addition, the route of participant A

overlaps with one of the two possible paths for B (along the bold black segment).
Our similarity-based routing therefore selects the non-overlapping route B2 in order
to maximize the coverage of the map.

Figure 5.1: An example of overlapping segments

Given a pool of participants sorted according to their sensors’ accuracy. The
similarity-based algorithm considers the q possible routes of the first participant (q
routes satisfying a given distance threshold between the shortest and the longest path)
and selects the longest one. After that, the algorithm iterates over the next partic-
ipants in the pool and chooses for each one the route that has the lowest similarity
with the already selected routes from the previous participants. Every time a route
is selected for a participant, the latter is removed from the pool and the algorithm
moves to the next participant in a greedy manner, until the pool is empty. In Figure
5.1, the route B1 would be privileged over B2 for user B as it has a lower degree of
similarity. This process is illustrated by Algorithm 1.

The calculation of the similarity percentage between routes has a major role in
finding the most distinct routes possible, and can be computed in multiple ways. We
have mainly explored two commonly used metrics in image segmentation, namely the
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Jaccard index (also known as Intersection over Union or IoU) [131] and Sørensen–Dice
coefficient (also known as Dice Similarity Coefficient or DSC) [132]. Considering two
participant routes A and B, the formulas for these two coefficients are given as follows:

IoUA,B =
|A \ B|
|A [ B| (5.1)

DSCA,B =
2⇥ |A \ B|
|A|+ |B| (5.2)

Where |A| and |B| are the areas of route A and route B, respectively, |A\B| the
area of the intersection between the two routes (i.e., area of overlapping), and |A[B|
the area of the union between route A and route B (with no duplicates). It is obvious
that these two scores are positively correlated. Thus, we only consider the DSC in
this study.

Algorithm 1: Similarity-based route selection
Input: U : The set of users
Output: P : the set of selected paths
Initialization: P  ; // initialize the set of slected paths

// Order the set of users based on the accuracy of their sensors

U  order(U, descending_accuracy)

// take the longest path for the first user in U

P  longest_path(u0)

for u 2 U with u 6= u0 do

// select the path with the least similarity

s_path argmin
p2Paths(u)

Similarity(p, P )

P  P [ s_path

return P

5.5 Cluster-based route selection

Instead of computing the similarity between participant routes, this approach fo-
cuses on the similarity between the points of the map. The main idea is to regroup
the points of the map not based on the spatial distance separating them but on
explanatory variables related to surrounding conditions (such as distance to routes,
meteorology, etc.). To achieve such a goal, we have opted for the agglomerative hier-
archical clustering, which is a widely used technique of hierarchical clustering [133],
in order to create groups of similar points that might be far from each other, but
present similar properties. First, each point of the map is assigned to an individual
cluster, and we calculate the distance between the clusters based on the indepen-
dent variables. Then, clusters are merged successively while minimizing the sum of
squared differences between the clusters being merged. As a result, all points of the
map are classified into c clusters. Then, for each route, we calculate the number of
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clusters it traverses. The main idea of this route selection approach is to choose for
each participant the route that passes through the largest number of clusters (see
Algorithm 2).

In the example depicted in Figure 5.2, a participant has two possible routes to
reach his destination. Each route covers a different area of the map and passes through
different clusters. In this case, the algorithm will choose route B as it goes through
more clusters, despite being a bit longer than route A. In addition, the selection of a
participant’s route should take into account the clusters that have been already visited
by other participants. This will help the algorithm to have a larger area coverage and
therefore more data to train on for the estimation models.

Figure 5.2: An example of two possible paths activating different clusters

Algorithm 2: Cluster-based route selection
Input: U : The set of users
Output: P : the set of selected paths
Initialization: P  ;; // initialize the set of selected paths

C  ; // the set of visited clusters

// Order the set of users based on the accuracy of their sensors

U  order(U, descending_accuracy)

for u 2 U do

// select the path visiting more new clusters

s_path argmax
p2Paths(u)

NbClusters(p, C)

C  C [ Clusters(s_path)

P  P [ s_path

return P
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5.6 Validation

5.6.1 Methodology
In order to validate our proposal, we followed the methodology presented in Figure
5.3, by considering simulated NO2 concentrations as a reference map. We first start
with a pool of participants, each with a starting and destination points. Each partic-
ipant has a NO2 sensor with its own standard error �k. Instead of constructing the
different routes for each user, we rely on a routing service that provides us with several
alternative paths whose length is within a predefined stretch factor of the shortest
path. After that comes the route selection phase, during which the algorithm suggests
a path for each participant based on the reliability of the sensors and the relationship
between the routes. Following that, synthetic measurements are generated following
the same approach explained in Chapter 4). For each location l visited by a partic-
ipant’s route, a synthetic measurement is generated using a normal distribution of
mean yl and variance �

2
k, with yl being the reference concentration at the location l.

Finally, these synthetic observations are passed to three spatial interpolation models
presented in Chapter 2, namely multiple linear regression (MLR), k-nearest neighbors
(KNN), and extreme gradient boosting (XGBoost), in order to produce a predicted
map. The latter is then compared against the reference map to evaluate the impact
and performance of the route selection approaches.

Figure 5.3: The general methodology used in validation

5.6.2 Study area and reference map
We consider in this study an area of interest of 25km2, which corresponds to the
center of the city of Lyon and its immediate vicinity (see Figure 5.4a).

In order to build a reference map of NO2 concentrations, we consider the two
datasets presented in the previous chapter, i.e., the simulated NO2 concentrations
map of Lyon city (see Figure 5.4b) with a spatial resolution of 20m × 20m, and the
set of 40 explanatory variables for each point on the map.
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(a) (b)

Figure 5.4: (a) Area of interest (b) reference heatmap of NO2 concentrations (simu-
lated data)

5.6.3 Participant routes and sensor measurements generation
In our use case, a participant is represented as a triple consisting of his starting
point, his destination, and the accuracy level of the sensor he carries. First, we
generate 200 random participants with a distance between the starting and destination
ranging from 1km to 5km. To match a realistic scenario in which participants have
heterogeneous sensors, the accuracy of participant sensors varied between 1µg/m3

and 20µg/m3. Then, we use an existing routing API to generate a minimum of
5 alternative routes for each participant to meet a realistic scenario and to have a
substantial search space. Furthermore, to avoid ending up with very long alternative
routes, we only consider routes that are at most 30% longer than the shortest path.

In the second step, synthetic sensor measurements are generated using the stan-
dard errors of the sensors and a normal distribution at each point of the map that a
participant’s route passes through.

5.6.4 Computing the similarity
In order to implement the similarity-based algorithm, we need to compute the simi-
larity metric between the different routes. This metric should consider segments that
do not really overlap but are very close to each other. This may happen when two
participants pass by the same road but in opposite directions or parallel sidewalks.
For this reason, we build a buffer around each segment of a route, and then compute
the similarity between the buffers. The size of the buffer highly influences the sim-
ilarity metric. Indeed, the larger the buffer is, the higher the similarity value. This
size should also be adapted to the spatial resolution of the available data. Figure
5.5 shows an example of two routes that do not exactly overlap but are close enough
to be considered when computing the similarity metric. For the following validation
tests, we choose a buffer size of 60 meters around the segment (i.e., 30 meters from
each side of the segment).
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(a) (b)

Figure 5.5: An example of two routes not overlapping but close enough (a) routes
not considered overlapping without a buffer (b) routes considered overlapping using
a buffer

5.6.5 Clusters construction
The construction of clusters is a crucial phase in the cluster-based route selection
approach. It represents the foundation upon which the whole algorithm is built.
Therefore, the choice of the optimal number of clusters to construct has a great
importance. On one hand, choosing few clusters lowers the similarity threshold. As a
result, more points are clustered together without showing much resemblance. On the
other hand, a large number of clusters seeks very similar points. Hence, the clusters
may gather very few points.

In order to choose an adequate number of clusters in our context, we have eval-
uated the MAE of the estimation while varying the number of clusters from 250 to
1500 with a step of 250 clusters and 20 iterations for each step. Results depicted in
Table 5.1 show that the lowest MAE value is reached with 1250 clusters.

Number of clusters 250 500 750 1000 1250 1500
MAE (µg/m3) 5.19 5.08 5.13 5.11 4.97 5.16

Table 5.1: MAE vs the number of clusters with 40 participants

5.7 Performance evaluation and discussion

To evaluate the performance of our proposal, we first compared multiple spatial in-
terpolation models using the same route selection strategy in order to get insights on
which model performs better in estimating NO2 concentrations. The best model was
then used in the second part, which compares our proposed route selection strategies
with the previously pressed baseline approaches, in terms of estimation error and
traveled distance, using a variable number of participants increasing from 15 to 40
participants.
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5.7.1 Comparison of the performance of MLR, KNN, and XG-
Boost

We conducted multiple simulations with the MLR, KNN, and XGBoost, using the
similarity-based route selection approach, while increasing the number of participants
from 15 to 40 and randomly generating sensor errors between 1µg/m3 to 10µg/m3.
The number of neighbors for KNN was fixed to 5, based on the previous results
from Section 4.3.4. Figure 5.6 depicts the results of the average MAE in function
of the number of participants, obtained after 20 iterations. We observe that as the
number of participants increases, the prediction error decreases for all three models.
XGBoost outperforms KNN by around 30% and MLR by nearly 42% in terms of
MAE. Moreover, we present in Table 5.2 the average execution time of the three
models for one iteration. The table shows that MLR is the fastest model, while KNN
is the slowest among the three. The reason that KNN is much slower compared to
the tests in Section 4.2.1 is that the dataset used to perform the prediction is much
larger in this study, which makes the prediction step computationally intensive for
KNN, because it needs to loop over the entire dataset to find the closest points to
each unsampled one. The observations from Figure 5.6 along with those of Table 5.2
give hints about which model is more suitable for a real life scenario. In our case, we
chose XGBoost for the upcoming evaluations.

Figure 5.6: MAE vs number of participants

Estimation method KNN MLR XGBoost
Average Execution

time (seconds) 12.95 0.31 0.73

Table 5.2: Average execution time of 1 iteration For KNN, multiple linear regression,
and XGBoost

5.7.2 Comparison of route selection algorithms
With the aim of evaluating the impact of route selection strategies on the estimation
of NO2 concentrations, we carried out multiple tests considering the shortest-path-
based routing, the longest-path-based routing, and the two proposed route selection
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algorithms, i.e., the similarity-based routing, and the cluster-based routing. The
two proposed solutions have the same goal, that is, offering the most informative
routes possible while taking into account the correlations between them. However,
the difference lies in the evaluation of the relationship between the routes. The
similarity-based routing computes the similarity between participant routes and tries
to reduce the overlapping between the selected routes, while the cluster-based routing
takes advantage of hierarchical clustering to form groups of similar points and then
tries to maximize the set of visited groups.

The performance of the four route selection algorithms are evaluated using XG-
Boost, based on the observations from the previous test. Figure 5.7 depicts the MAE
of estimation in function of the number of participants. The experiments are per-
formed with a number of participants increasing from 15 to 40 and repeated 20 times.
At each iteration, we randomly select a new set of participants with sensor errors be-
tween 1µg/m3 to 20µg/m3. Results clearly show that increasing the number of users
helps decreasing the estimation error due to the presence of more routes and hence a
larger area being covered. An interesting observation is that while the shortest-path-
based routing has the worst performance in terms of MAE of the estimation, the
similarity-based and the cluster-based solutions outperforms the longest-path-based
routing. This means that choosing the longest path is not always a good decision
to improve the estimation. Indeed, the similarity-based route selection performs up
to 15.42% better than the shortest-path-based algorithm and 3.49% better than the
longest-path-based solution, while the cluster-based solution surpasses the shortest-
path-based and the longest-path-based by 16.84% and 5.22%, respectively.

Figure 5.7: MAE vs number of participants

In addition, we investigate the impact of the different route selection approaches on
the travel distance of participants. For this purpose, we calculate the total traveling
distance for each route selection approach. Figure 5.8 shows the total travel distance
accumulated for all participants. As expected, the shortest-path-based algorithm
offers the shortest distance by definition and hence outperforms all the other solutions.
Nonetheless, results reveal that our proposed solutions are also more efficient than
the longest-path selection in terms of traveled distance. Indeed, the similarity-based
algorithm improves the travel distance by up to 32.22% compared to the longest-path-
based algorithm and 15.50% compared to the cluster-based solution, while being 13.68
% longer than the shortest-path. These promising results state that our proposed
solutions give the lowest error while offering shorter routes compared to the best of
baseline algorithms.
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Figure 5.8: Total travel distance for the different route selection algorithms

In addition, to get an idea on the impact of the sensing error over the estimation
quality, we show in Figure 5.9 two heatmaps of the estimated NO2 concentrations
using the similarity-based algorithm, achieved with 40 users and sensor standard
errors between 1µg/m3 and 5µg/m3 (left) and sensor standard errors ranging from
1µg/m3 and 20µg/m3 (right). We can visually observe that the estimation with lower
sensing errors is more smooth and less noisy than the one with higher sensing errors.

(a) (b)

Figure 5.9: Heatmap of NO2 concentrations, estimated with 40 users and the
similarity-based algorithm with (a) sensor standard errors between 1µg/m3 and
5µg/m3 (b) sensor standard errors between 1µg/m3 and 20µg/m3

5.8 Conclusion

In this chapter, we addressed the problem of route selection in participatory sens-
ing with low-cost sensors. We proposed two route selection algorithms that take
into consideration the characteristics of low-cost sensors in the decision process. The
similarity-based routing algorithm aims to give spatially dispersed routes to maxi-
mize coverage using the Sørensen-Dice coefficient, a commonly used metric in image
segmentation. The cluster-based routing algorithm takes advantage of hierarchical
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clustering to build groups of similar points, then tries to visit as many groups as
possible to increase the diversity of the collected information. Both algorithms per-
form in a greedy manner by suggesting at each iteration a route for the user with
the most accurate sensor. We compared our solutions to two baseline route selection
algorithms, namely the longest-path-based and the shortest-path-based algorithms.

We showed through the results that our route selection approaches can obtain
close results to the longest-path-based approach or even outperform it, while being
efficient regarding the travel distance. Our solution is adapted to a scenario in which
participants do not necessarily arrive at the same time. Moreover, the idea behind
the clustering-based approach can be used to find the safest route possible in terms
of exposure to air pollution, by reducing the number of high polluted locations to be
visited.

In the next chapter, we provide a general conclusion to summarize all the work
that has been achieved during this thesis, as well as some future research directions
that can be explored.
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Chapter 6

Conclusion and perspectives

Today, mobile crowdsensing and low-cost wireless sensor networks form together an
attractive and promising approach in various fields. Low-budget applications can
make use of this solution and benefit from the cost-efficiency of low-cost WSNs and
the crowd density in order to reach large-scale deployments and collect extensive data.

In this chapter, we summarize the contributions of this thesis and subsequently
point out some perspectives on possible future research directions.

6.1 Main conclusion

Throughout this Ph.D. thesis, we addressed the use of low-cost WSN in mobile crowd-
sensing for air quality monitoring, while focusing on three key elements: 1) the design
of low-cost participatory air quality monitoring systems, 2) the analysis of dense low-
cost WSN data and their benefit in generating high-resolution air pollution maps,
and 3) the selection of the participant routes in order to improve the knowledge of
the phenomenon. We provided details on the design of the 3M’Air participatory air
quality monitoring platform, along with some engineering guidelines that take into
consideration the characteristics of the addressed application. We leveraged small,
battery-powered, and low-cost sensor nodes equipped with three environmental sens-
ing probes and long-range wireless communication. The proposed solution was com-
pared to reference sensors, and the first results showed that our sensor readings are
satisfactory. The 3M’Air platform operated during multiple sensing campaigns that
were organized in the city of Lyon with the help of the 3M’Air project partners.

The collected measurements from the sensing campaign helped us to evaluate the
performance of our nodes on the field and the consistency of their data. Moreover,
this dataset allowed us to study the relationship between the energy consumption,
the sensing quality, and the sensing rate. Furthermore, we considered a large-scale
low-cost WSN deployment with the help of numerical simulations, and designed a
general framework that enables the comparison of data assimilation and regression
approaches, while taking into account the low accuracy of low-cost sensors. Through
the obtained results, we observed that data assimilation outperformed all the con-
sidered regression methods, thanks to its capacity to consider both simulation and
measurement errors. In addition, the results pointed out that increasing the number
of deployed sensors is not always suitable for regression methods, especially when the
sensing error is significantly large.

Our last contribution during this thesis focused on the problem of route selection
in low-cost participatory sensing. We introduced two new route selection algorithms
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that consider the low accuracy of low-cost sensors in their decision process. The first
algorithm aims at reducing overlapping between participant routes using a metric
inspired by the imagery field. The second algorithm leverages agglomerative clustering
in order to maximize coverage in terms of distinct locations. Both algorithms were
compared to baseline route selection approaches, and the impact of their strategy on
the assessment of air quality was evaluated. The results indicated that our solution
can help assessment models to achieve good performance, while suggesting shorter
routes compared to the best baseline algorithm.

6.2 Extensions and future work

The contributions of this thesis form a basis on which we could build new solutions
and address other challenges in order to improve our knowledge of air quality.

6.2.1 Future extensions of our participatory sensing platform
Our platform is operational and has been used in several measurement campaigns
in Lyon. However, we believe that there is still room for improvement. To this
aim, we are planning to improve our platform by adding the possibility to remotely
manage the nodes. This will give us the ability to change the sampling/transmission
parameters of the nodes and to put certain sensors/receivers in sleep mode. Therefore,
the web application will not be used for data visualization only, but also for nodes
administration. Regarding the node, we could add BLE support, which will give us
the ability to use, when possible, the GPS of smartphones instead of the integrated
GPS module, which could save us some energy. Another possible improvement is the
support of downloading sensor data by just connecting the node to a computer or a
smartphone via BLE.

Moreover, our sensing nodes are not limited to be used on foot, but can also be
mounted on other mobile platforms, such as buses or bicycles [31]. However, some
challenges need to be addressed in order for our node to operate properly. First,
we need to evaluate the impact of the air flow on the reading of the sensing probes.
In addition, we might need to adapt the design of the nodes to provide natural
ventilation on 360° instead of the current 180°. Another parameter to be adapted is the
sensing rate. In fact, buses and bicycles move faster than pedestrians, which means
that with the current sensing rate of 20 seconds, the node will cover fewer locations
as the traveled distance at each cycle is longer compared to the current scenario.
Therefore, nodes should perform measurements at a higher rate to maintain a high
spatial resolution. This could imply adopting another communication technology that
is more adapted for this use case.

6.2.2 Expanding the network’s lifetime
The sensing duty cycling consists of putting some sensors/receivers in sleep mode
unless they are performing measurements. Such duty cycle behavior is limited by
the convergence time of the sensors embedded in the node. The convergence time is
indeed the duration that a sensor needs in order to reach a steady state in stationary
conditions and then to output valid readings. Every sensor has its own stabilization
time that depends not only on the type of the probe but may also depend on the
duration of the sleep phase. Based on the data sheets, the convergence time of the
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DHT22 is about 2 seconds [97], while the PM sensor’s convergence time is about 30
seconds [96]. Based on the first experiments conducted in [42], the convergence time
of the Alphasense NO2 sensor in stationary conditions varies from around 50 seconds
to ten minutes when the previous sleep phase goes from one minute to one hour,
respectively.

Based on these observations and those on the impact of the sensing rate on the
energy consumption and the sensing quality, we are planning to conduct more anal-
ysis in order to propose adaptive sampling [134] in function of the meteorological
conditions, the node’s trajectory, speed, and the convergence time of the sensors.
This may lead to irregular sampling intervals in order to expand the node’s lifetime,
while enhancing the overall air quality estimation. We also believe that it would
be interesting to investigate whether the GPS receiver can be deactivated at some
sensing cycles and the location of a measurement predicted, based on the time of the
measure and its value. This would make it possible to extend the battery life of the
node even further. Another solution that can be leveraged to expand the operating
time of the network is the notion of “rendez-vous” presented in [135]. Besides the
problem of sensor calibration, this solution could be used to put on sleep mode some
sensors when there are more than one in a given spatial buffer.

6.2.3 Extensions of our route selection solutions
The first simulations that we performed using our proposed route selection algorithms
showed promising results. Yet, we still need to validate their performance in a real
life scenario. Currently, the clustering-based algorithm takes a significant amount of
time to find the routes, which is not suitable, especially in a scenario where routes are
not known a priori. Therefore, we need to optimize the algorithm in order to reduce
its computational cost. In addition, the similarity-based algorithm highly depends on
the size of the buffer surrounding the routes. In turn, the size of the buffer depends
on the sensing rate and the spatial resolution of the measurements. We believe that
the impact of the buffer’s size on the selection strategy should be investigated in order
to achieve better results.

Furthermore, the temporal aspect is worth taking into consideration in the deci-
sion process. Indeed, in a near real-time monitoring scenario, where participants do
not start the sensing task at the same time, only recent segments should be kept in
memory for the route selection algorithm, i.e., the algorithm should take into consid-
eration the freshness of the measurement. Additionally, route planning could be used
in order to better lead the participants through locations where the estimation error
is large.
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