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Abstract

Industrial X-ray computed tomography (CT) has proven its value as a non-destructive
method for inspecting light metal castings. The CT volume generated enables the
internal and external geometry of the specimen to be measured, casting defects to be
localized and their statistical properties to be investigated. On the other hand, CT
volumes are very prone to artifacts that can be mistaken for defects by conventional
segmentation algorithms. Based on CT data of aluminium alloy castings provided
by industrial partners, we have developed an automatic approach to analyze discon-
tinuities inside CT volumes based on a three-step pipeline: (1) 2D segmentation of
CT slices with automatic deep segmentation to detect suspicious greyscale discon-
tinuities; (2) classification of these discontinuities into true alarms (defects) or false
alarms (artifacts and noise), using a trained convolutional neural network classifier;
(3) localization of the validated defects in 3D to investigate their statistical prop-
erties such as sphericity, elongation and compactness. Based on this, the validated
3D defects are then classified into porosities or shrinkage cavities using an SVM
classifier and a siamese neural network. The choice of each model and the training
results are presented and discussed, as well as the efficiency of the approach as an
automatic defect detection algorithm for industrial CT volumes.
Keywords: Casting, CT, X-Ray, Defect Detection, Machine Learning, Deep Learn-
ing, Few-Shot Learning.
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Introduction

This work is part of a collaborative project between the Technical Centre CTIF, LVA
laboratory of INSA Lyon, and an industrial group including: RENAULT, Groupe
SAB, MONTUPET, EUROCAST and CONSTELLIUM.

Aluminium alloy castings are widely used in the automotive and aerospace indus-
tries, e.g. wheel rims, cylinder housings, engine blocks etc., as they have an excellent
combination of mechanical and technological properties in addition to their stabil-
ity. Although these components are subjected to high mechanical stress and fatigue,
they allow fuel economy due to their light weight and high durability and safety. On
the other hand, the production of castings is a difficult task and the manufactured
specimens are never free of flaws. Various forms of defects, such as gas voids and
shrinkage cavities can occur during the casting of the molten metal due to reactions
with the sand of the mould or the ambient air, and due to material contraction during
the subsequent cooling and solidification [1]. Although defects reduce the stability
of the specimens, they are not all equally damaging. To maintain the longevity and
reliability of the production, we need to ensure that a specimen has only the least
harmful forms of defects and that they occur only in non-critical regions. We can
achieve this either by destructive methods such as cutting the part open [2] or by
non-destructive testing (NDT).

To ensure the integrity of aluminium alloy components and to increase their lifetimes,
most foundries perform non-destructive testing after casting their specimens, to
locate defects and study their impact. One of the most common methods is 2D
radiography, which provides access to discontinuities inside the casting that are not
visible to the naked eye. However, because this method projects the volume of

1
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Introduccion 2

the casting onto a plane, it can sometimes be difficult to locate the defects along
the thickness variations or to clearly project the sides of the casting. For these
reasons, many foundries are moving to 3D computed tomography (CT) to inspect
their castings, which allows to directly access the 3D volume of the casting and
locate the discontinuities in 3D. CT initially had great success in evaluating and
measuring the castings where there is no time constraint; and recent advances in
computer technology and the increasing speed of image reconstruction algorithms
have made it possible to use CT for inspecting castings on the production line
[3]. In addition, tomography can be used to determine whether the discontinuities
disappear or clog on the surface during machining or whether they are located in
an area that is crucial for the mechanical resistance of the component.

Eliminating defective specimens in the early stages of production after inspection
with CT saves time and money and increases the lifespan of validated specimens [4].
However, this requires a manual subjective interpretation of the CT volume, which
is time consuming and depends mainly on the quality of the CT data. Indeed, the
interpretation of industrial CT images is challenging for several reasons:

• To speed up production, inspectors prefer to limit the scanning time, which in
turn leads to compromises in the spatial resolution of the images.

• Casting processes are very prone to small porosities and shrinkage cavities
whose contrast in the output images is very low, and can easily be missed
during a visual inspection.

• CT is prone to various types of artifacts that can arise during the 3D recon-
struction of the volume of the specimen. These artifacts can have the same
contrast as real defects, and can easily be mistaken for defects by non-trained
users.

• Image interpretation is usually done upon binary images. This requires bin-
arizing greyscale CT images, which can lead to deviant results if a validation
procedure is not correctly applied.

All these obstacles raise the need for an automatic defect detection algorithm that
can shorten the interpretation time and automatically process the industrial CT
volumes, which is the ultimate goal of this study. To fully automate the processing,
several deep learning algorithms were used to: (1) locate suspicious discontinuities
that could be defects, but also artefacts; (2) classify these discontinuities as true
defects or false alarms; (3) and finally identify the type of true defects, porosit-
ies or shrinkage cavities. To train these deep learning models, several industrial
CT volumes of aluminium alloy castings were provided by the industrial partners,
scanned with different tomography machines under unique scanning conditions,
providing unique contrast and spatial resolutions.

In chapter I, we give a brief introduction about industrial computed tomography,
explaining its foundations and the various forms of artifacts. This is followed by a
literature review concerning defects detection algorithms with respect to CT data.
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In chapter II, we present two segmentation algorithms, 2D and 3D, which serve
as tools to generate ground-truth binary volumes from the greyscale CT volumes,
which in turn serves as training datasets for the deep learning models and to validate
their predictive abilities.

In chapter III, the state-of-the-art model U-Net is trained from ground up with our
data to over-segment CT slices and include real defects as well as artifacts and noise
in its output.

In chapter IV, a deep learning classifier named CT-Casting-Net is developed and
trained to recognise real defects in CT images and distinguish artifacts as false
alarms.

U-Net and CT-Casting-Net are coupled in chapter V to make up a new approach
for automatic defect detection, which takes a 3D CT volume and generates a bin-
ary volume in which casting defects are highlighted. This approach was validated
on manually segmented CT volumes, using validation metrics relevant to the non-
destructive testing field.

And finally, Using a siamese neural network presented in chapter VI, defects valid-
ated by the above approach can be classified into porosities or shrinkage cavities,
after studying their geometrical properties such as sphericity, elongation and com-
pactness.
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Chapter I

Tomography for Casting
Inspection

I.1 Industrial Computed Tomography . . . . . . . . . . . . . . 5

I.2 Cone-Beam CT System . . . . . . . . . . . . . . . . . . . 5

I.3 3D Reconstruction & Artifacts . . . . . . . . . . . . . . . . 10

I.4 Casting Inspection: Tomography vs. Radiography . . . . . . . 12

I.5 Automatic Defect Detection Challenges . . . . . . . . . . . . 15

I.6 Literature Review: Automatic Defect Detection in Industrial CT
Images . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I.7 CNN Under the Loop. . . . . . . . . . . . . . . . . . . . 23

I.8 Deep Learning Models Challenge: Overfitting & Underfitting . . . 26

In this chapter we look at the theoretical aspects of computed tomography
(CT) and the use of this non-destructive testing (NDT) method for inspecting alu-
minium alloy castings, as well as its advantages compared to other NDT methods.
We present the challenges in developing automatic defect detection algorithms for
the analysis of CT casting images and the available CT data for the study. A liter-
ature review on casting defect detection methods such as guided image processing
techniques, machine learning and deep learning algorithms , is provided.

4
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I.1. Industrial Computed Tomography 5

I.1 Industrial Computed Tomography
The manufacturing industry is constantly searching for a compromise between

the life cycles and the geometrical features of its products. Advances in manufactur-
ing technology allow the production of components with high geometric complexity
in terms of freedom surfaces and internal structures, which in turn complicate the
conformity and integrity of the products. Consequently, this rises the need for new
methods to check the production in terms of dimensions, tolerances and manufactur-
ing defects in order to reduce economic costs and waste on the production line. One
of the most advanced solutions for this task is X-ray computed tomography (CT),
a non-destructive method that allows external and internal inspection without ac-
cessibility restrictions.

CT was developed in the late 1970s for medical imaging as a non-invasive imaging
technique. It revolutionized the field of medical diagnosis by providing more in-
formation and details about the patient and was later widely applied to industrial
applications such as material analysis, crack and void detection and metrology [5].

CT can be used during conception to validate the conformity of the design by per-
forming a double quality check on the same CT data, such as dimensional quality
and material quality [6]. This makes it the only technology that measures internal
and external geometry without having to cut and destroy the component. Simil-
arly, CT can also be applied after the specimen has been assembled into a complex
structure. This allows gaps, surface deviations and forced tolerances to be detec-
ted, ensuring the proper functioning of the assembled system. Figure I.1 shows the
quality control possibilities that can be applied to the same CT volume of a casting,
such as geometrical deviations, thickness verification and material integrity (density
and chemical composition).

I.2 Cone-Beam CT System
Before giving a brief description of the setup of a CT system, we must explain

a few terms that will be used very frequently throughout the following chapters:

• Volume: a 3D array which represents the body of the specimen. It is recon-
structed based on 2D X-ray projections at different angles.

• Slice: a CT volume can be sliced along a specific direction, producing a stack
of 2D images called slices.

• Voxel: corresponding to the pixel in a 2D image, a CT volume is a 3D array
of volumetric pixels called voxels, arranged in a regular grid and representing
a small region of the specimen as illustrated in Figure I.2. The dimensions of
the voxel along each direction represent the spatial resolution of the volume,
and a CT volume is considered as isotropic if the 3 dimensions of the voxel
are equal. In the following chapters, we will use the term voxel when referring
to a 3D volume unit, as well as 2D slice unit since each slice has a physical
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I.2. Cone-Beam CT System 6

Figure I.1: Quality control with CT: (a) reconstructed CT volume, (b) geometry control,
(c) thickness conformity, (d) porosity analysis. Source: [7]

thickness with respect to the inspected specimen.
• Greyscale Value: Each voxel has a greyscale value, which represents the

X-ray attenuation level, i.e. the proportion of X-ray energy absorbed by the
specimen at a defined region. The attenuation level, and consequently the
greyscale value, depends on the X-ray energy spectrum and the composition
and density of the material.

A variety of CT systems are available in the market, depending on the application
and the size of the specimen [8]. A basic CT system consists of an X-ray source, a
detector, a moving system that holds the specimen to be examined, and computation
devices. The detector captures the X-rays attenuated by the specimen at different
angles forming 2D radiographic images; and the computation devices reconstruct a

Figure I.2: Each 2D slice of the CT volume has a physical thickness determined by the
voxel size.
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I.2. Cone-Beam CT System 7

3D volume based on these radiographic projections. In contrast to medical systems,
the specimen is not fixed but rotated on a movable table, and is usually exposed to
higher X-ray energy as there is no health hazard during the examination.

The industrial partners who provided CT data for the study use cone-beam CT
systems, which are capable of scanning and producing 3D volume of a specimen in
a single rotation. Figure I.3 shows the geometry of an industrial tomograph that
captures the X-ray attenuation of a cone-shaped beam. Although this system is more
prone to artifacts compared to the fan-beam, it is preferred for many applications
because of the speed advantages and the ability to scan large specimens, either in
stepwise or helical manners [9]. In the following, the influence of each component
on the CT data quality is discussed.

I.2.1 Source

In the X-ray tube, the cathode shoots accelerated free electrons at a target metal
(anode) to pull electrons out of the its atoms and produce X-ray energy. The
amount of this energy is controlled by two factors set by the manufacturer: current
and voltage. The first defines the number of electrons to be accelerated and the
second the acceleration of the free electrons, which in turn defines the minimum
wavelength of the polychromatic spectrum of the extracted electrons. Both factors

Figure I.3: Cone-beam industrial computed tomograph machine at INSA Lyon, with
max X-ray voltage of 300 kV and current of 1000 µA. The object is placed
on a rotary table, and the respective distances between the object, source
and detector control the magnification factor, i.e. the spatial resolution of
the output volume.
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I.2. Cone-Beam CT System 8

control the amount of X-rays emitted by the source and consequently the contrast
resolution of the CT volume after reconstruction.

Another important design factor is the size of the focal spot, i.e. the point from
which the X-rays are emitted. Increasing the size of the focal spot increases the
maximum intensity of the X-ray beam, but at the expense of geometrical sharpness
of the specimen volume, as this reduces the maximum permissible magnification.
Consequently, enlarging the focal spot reduces the spatial resolution, i.e. the
dimensions of each voxel in the CT volume [10].

I.2.2 Detector

Opposite the source, the detector measures the unabsorbed X-ray radiations after
penetrating the specimen. Flat panel detectors are the most common X-ray detect-
ors in industrial CT and consist of three successive layers: the scintillating layer, the
photodiodes and the thin film transistors. When the scintillating layer is irradiated
with X-ray energy, it produces visible light, which is then converted into electrical
charge by the photodiodes. The thin-film transistors pass this electrical charge on
to the readout electronics, which amplify this analogue signal and convert it into a
digital representation.

The detector is structured as an array of X-ray sensors, each called a detector
element, whose size, together with the thickness of the scintillator layer, has a major
influence on the spatial resolution of the output image. On the other hand, the
process of digitizing the analogue electrical charge controls the limits of the contrast
resolution [11].

I.2.3 Object

The object or the specimen to be examined is positioned on a rotating table between
the source and the detector. If the table is closer to the source, we have a higher
magnification and the spatial resolution is more influenced by the size of the focal
spot of the source. If the table is close to the detector, we have a lower magnification
and the spatial resolution is determined by the size of the detector elements. In
addition, the total distance between the detector and the source plays a major role
in the contrast resolution, as doubling the distance reduces the X-ray radiation
received by the detector by a quarter according to the inverse square law [12].

If the X-ray beam is not attenuated by the object during exposure, it is represented
as black voxels in the reconstructed greyscale CT volume. If it is completely atten-
uated by a dense object, it is represented as white voxels. The level of attenuation
controls the contrast resolution and is determined by several physical effects that
depend on the material properties of the object, such as Rayleigh scattering, the
photoelectric effect and the Compton effect. The sum of the contributions of the
individual effects is the total attenuation coefficient, which is shown in Figure I.4
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Figure I.4: The attenuation coefficient of the aluminium alloy EN AW 2014 [13] as a
function of the energy of the X-ray radiation.

for an aluminium alloy and can be defined as follows:

µ = µR + µpe + µCompt (I.1)

When an X-ray beam with intensity I0 travels through matter with attenuation
coefficient µ > 0, it suffers an exponential loss of intensity. This X-ray attenuation
can be expressed with the Lambert-Beer law, integrated over the energy spectrum
of the beam and along the crossed path length:

I(L) =
∫ Emax

0
I0(E)e−

∫ L

0 µ(E,x)dxdE (I.2)

I, the intensity after interaction with the matter; E, the energy of X-rays;
L, the thickness of the material to be penetrated by the X-ray beam.

Since attenuation depends on the properties of the material, the source voltage must
be adjusted according to the thickness of the specimen, as shown in Table I.1, to
achieve better contrast resolution. To avoid underexposure, the longest dimension
of the specimen is usually mounted perpendicular to the rotating table.

I.2.4 Exposure

CT volumes are prone to artifacts caused by various types of noise during exposure.
This can arise from the process of X-ray emission, its attenuation by the object and
quantization by the X-ray detector; all of which are stochastic processes. Due to
the low probability of photons being emitted from the focal spot of the emitter, and
consequently the amount of X-rays received by the scintillating layer of the detector,
the actual X-rays received can be estimated using the Poisson distribution [15].
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I.3. 3D Reconstruction & Artifacts 10

Accordingly, to measure the quality of the X-ray projections before reconstructing
the 3D volume, we can use the signal-to-noise ratio (SNR), which is usually equal to
the square root of the theoretical intensity of the X-ray radiation. This means that
the contrast resolution depends strongly on this noise, so much so that a doubling
of the SNR requires a quadrupling of the X-ray dose.

In addition, the projections suffer from other sources of noise, such as the detector’s
readout electronics after receiving the attenuated radiation at the scintillating layer.
All these noises manifest as artifacts in the reconstructed 3D volume, as explained
in the following section.

I.3 3D Reconstruction & Artifacts
After taking X-ray radiographic projections at different angles around the spe-

cimen to obtain information about attenuation, a 3D map of the internal volume of
the specimen can be reconstructed without overlapping features, as can be seen in
Figure I.5. The contrast of the final volume is a mixed combination of density and
composition information of all individual projections and can be visualized either as
a 3D array, or as 2D slices after cutting the volume along a certain direction.

In mathematical terms, the reconstruction process solves an inverse problem by
drawing a conclusion about the cause from an observation. This can be done using
3D reconstruction algorithms [17]. A widely used algorithm for cone-beam CT data
is the Feldkamp algorithm, which projects the captured intensities from the detector
back into object space [18]. Due to the difficulty of implementing reconstruction
algorithms, optimized versions are usually used in industrial CT machines for fast
computations. However, this shortcut implementation, together with the varying
sources noise in the CT system, has disadvantages for the quality of the reconstructed
volumes, which can manifest as reconstruction artifacts, as shown in Figure I.6.

These artifacts and noise manifest themselves in the form of greyscale variations or
discontinuities that untrained users might mistake for defective zones. There is a
long list of possible artifacts found in CT volumes [19], and the following are the
most common in industrial casting data:

• Noise is a spontaneous greyscale variation in the image. It is usually the result
of stochastic attenuation and detection during exposure. Note that some of

Table I.1: Typical maximum penetrable material thicknesses for common industrial ma-
terials. Source: [14]

X-Ray Voltage 130 kV 150 kV 190 kV 225 kV 450 kV
Steel/Ceramic 5 mm <8 mm <25 mm <40 mm <70 mm

Aluminium <30 mm <50 mm <90 mm <150 mm <250 mm
Plastic <90 mm <130 mm <200 mm <250 mm <450 mm
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Figure I.5: 3D reconstruction of CT volume workflow. Projection images at different
angles θ are digitally reconstructed using reconstruction algorithms in order
to generate an internal representation of the specimen. Results can be viewed
as a 3D rendered volume (i) or as 2D cross-sections called slices. Source: [16]

the noise in the 2D projections is removed after reconstruction by averaging
the projections with the reconstruction algorithm.

• Figure I.6a: Cupping artifact occurs when the material appears darker as
we move towards the centre of the image. This effect, also known as "beam
hardening artifact", is due to the fact that the X-ray spectrum moves towards
higher energy radiation as it passes through the object, while lower energies
are preferentially absorbed [20].

• Figure I.6b: Streaks appear at the periphery of the specimen, which receives
less energetic radiation. These streaks are due to large differences in thickness
through which the X-ray beam passes (e.g. the corners of the specimen).

• Figure I.6c: Ring artifacts are caused by a miscalibration of the detector or
by the presence of dead detector elements. If a sensor element has a sys-
tematic greyscale difference compared to its neighbours, a line appears in the
projections, which is then reconstructed as a ring in the 2D slices.

• Figure I.6d: Feldkamp artifacts are reconstruction artifacts in the 3D volume
as a result of using modified approximations of the Feldkamp algorithm.
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(a) (b)

(c) (d)

Figure I.6: Different types of industrial CT artifacts: (a) beam hardening, (b) streaking,
(c) ring artifact, and (d) Feldkamp artifact.

I.4 Casting Inspection: Tomography vs. Radio-
graphy

Once the casting is finished, manufacturers must verify internal shapes, features
size and clearances, which is not an easy task when dealing with complex structures.
As mentioned earlier, CT provides a non-destructive method to scan the internal
volume and look for cracks, voids or inclusions of foreign materials. Compared
to radiography and radioscopy, CT provides more contrast information about the
specimen, and from different angles. As illustrated in Figure I.7, the output image
of radiography inspection is perpendicular to the X-ray beam plane and represents
the total integral of µ along the X-ray path through the specimen, i.e. a single
image represents the total attenuation along the entire thickness penetrated by the
X-ray radiation. On the other hand, CT generates a 3D map representing the local
attenuation µ in each small volume element (voxel) of the specimen, making the
contrast resolution largely independent of the geometry and the output data more
informative about the casting specimen.

Radiography detects defects of various sizes and shapes present along the penetra-
tion path, but do not provide information on the depth of the defect, as shown in
Figure I.8. CT, on the other hand, provides volumetric data about each defect and
gives its true dimensions relative to the specimen thickness. However, the detectab-
ility of defects with CT can be affected by many factors, including spatial resolution,
contrast resolution and artifacts as stated earlier.
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Figure I.7: Inspection of casting with radiography and tomography. Radiography is not
able to distinguish between thickness and density changes, but CT provides
a clear and quantitative characterization by giving access to the internal
volume. Source: [21, 22]

Today, the acceptance of castings tested by radiography is based on ASTM X-ray
reference images. There are many standards depending on the alloy, the casting
process, the spatial resolution and type of the defect. For aluminium alloys, the
standards of reference images are ASTM E155/E505 for radiography with film, and
ASTM E2422/E2973 for radiography with digital detectors [23, 24, 25, 26]. A sample
of reference radiographs is shown in Figure I.9. By comparing the radiographic pro-
jection of a defective zone with these images, a qualified operator can manually assess
the criticality level and decide whether or not the casting meets the requirements.

However, this method of comparison is not always reliable for the following reasons:
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Figure I.8: Defects representation by radiography and tomography. Unlike CT, radio-
graphy does not give depth information about the defects.

• The progression of ASTM images is not linear in terms of defect size and
density. Some levels are very close to each other, while between two successive
levels there is sometimes a very large difference, as is visible between levels 3
and 4 in Figure I.9.

• Visual comparison is subjective and there are often differences between the
operators’ decisions, or between one client and another.

• Comparison with ASTM images leads to high rejection rates and economic
costs [4] because they are not based on quantitative characteristics.

• Castings may have sufficient strength and stiffness for the intended application
despite some defects in the body, and subsequent machining and processes
sometimes determine the reliability of the specimens despite comparison with
ASTM images [27].

Such disadvantages can be avoided with tomography, as it can provide much relevant
information for assessing the impact of a defect on the functionality of the casting.

Figure I.9: ASTM E2973 radiographs for interpreting radiographic projects of a high-
pressure aluminium casting specimen. If a defective zone shows a high poros-
ity density after inspection with radiography, the level of criticality of the
zone is decided after visual comparison with the ASTM images.
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In 3D, the defect size and its position are the decisive parameters and not the com-
plete coverage with limited visual criteria. For this reason, foundries using CT to
inspect their casting productions are constantly looking for automatic defect detec-
tion algorithms that help eliminate false alarms such as noise and artifacts, locate
and isolate 3D defects in the volume and investigate their geometrical properties.

I.5 Automatic Defect Detection Challenges
The quality of inspection of a casting production using CT requires a trade-

off between the cost of the inspection device, the spatial resolution of the volume,
the contrast resolution, and the time to scan and analyse the data, as shown in
Figure I.10. Although the detection of small discontinuities requires very high spatial
resolution, it is unreasonable to expect such feature after scanning large specimens,
as the time and cost of inspection becomes very prohibitive. Manufacturers usually
prefer to reduce the cycle time when implementing CT, even if this is at the expense
of data quality. As a result, contrast resolution is reduced due to lower exposure
and more noise and artifacts are introduced into the reconstructed images.

In addition, CT is still used today as an "in-lab" inspection method because it takes a
lot of time to analyse the data manually, which in turn could affect production if CT
is used directly on the production line. In fact, it is very time-consuming to assign a
human inspector to slice through the volume looking for discontinuities that belong

Figure I.10: Industrial CT scan is a compromise between spatial resolution, contrast res-
olution (image sharpness), components cost and desired cycle time. Source:
[28]
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to real defects. Therefore, automatic methods for locating and detecting discontinu-
ities are needed to reduce analysis time and enable the future implementation of CT
on the production line.

Our work focuses on the development of a new approach to detect discontinuities
inside any CT casting volume, to correctly classify these discontinuities into true
alarms (defects) or false alarms (artifacts, noise or geometrical features) without
user intervention in order to reduce the cycle time. As mentioned earlier, the scope
is focused on aluminium alloy castings as the available data for this project was
provided by industrial partners working with light alloys. As shown in Figure I.11,
our work focuses on post-processing volumetric data of aluminium alloy castings, as
the available data has already been reconstructed after scanning different specimens.

Figure I.11: CT scanning workflow. Our work focuses on the last phase, where the
volumes are already reconstructed and ready to be analysed.

I.5.1 Available Data

In this work, we have developed several algorithms for processing CT images
of aluminium alloy castings, trained and tested on CT images provided by our
industrial partners, namely CTIF, Renault, Groupe SAB, Montupet, Constellium
and Eurocast. To avoid conflicts of interest, the contents of these volumes are not
presented entirely in this manuscript.

A total of 20 volumes were made available. Each represents a unique specimen
scanned under unique conditions and with unique spatial and contrast resolutions.
The volumes can be divided into two categories depending on the casting process:
high-pressure die casting and gravity die casting.

I.6 Literature Review: Automatic Defect Detec-
tion in Industrial CT Images

There is a gap in the literature when it comes to automatic defect detection
algorithms inside CT volumes of castings. This can be attributed to the following
reasons:

• Compared to 2D radiography, tomography inspection is still new and some-
times unknown to some foundries. And for some, this method is only used in
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the design phase of the components, but not on the production line.
• As mentioned earlier, tomography inspection leaves many artifacts in the CT

volumes after reconstruction. This problem requires user intervention to en-
sure that these artifacts are not counted as defects. Therefore, many foundries
still consider it a big risk to leave the entire interpretation to automatic defect
detection systems.

• There is no publicly available CT data of castings in open-source to conduct
research and experiments with defects detection algorithms.

In the field of radiography, there is the GDXray dataset [29], which contains radio-
graphs of welding and aluminium casting tests. Much work has been done on this
dataset to automatically detect flaws in 2D X-ray images using image processing
techniques [30], traditional machine learning algorithms [31, 32] and deep learning
models [33, 34, 35, 36]. On the other hand, there is no open-source CT data, as CT
reveals everything about the specimens, which in turn may raise concerns about the
manufacturer’s intellectual property. Furthermore, the industrial CT data exceeds
the terabyte limit, which makes public release difficult.

Our literature review study does not include the work developed based on 2D ra-
diographs of casting, nor medical CT images for the following reasons:

• Because they show the total attenuation along the thickness of the specimen,
2D radiographs do not give a complete representation of the defects, and in
some cases defects could be suppressed by the geometrical variations, as shown
in section I.4. Conversely, CT offers different semantics, as the depth of each
defect is equally represented in the image, as well as artifacts that do not exist
in 2D radiographs (cf. section I.3).

• To avoid health hazards during medical CT examination, patients are usually
exposed to a lower X-ray dose compared to mechanical specimens, resulting in
lower contrast resolution [37]. In addition, anomalies that should be detected
by medical CT, such as tumours or cysts, have different semantics than casting
defects [38].

In the following section, we discuss work related to automatic defect detection meth-
ods used on CT images of castings. These methods or algorithms can be divided
into three categories:

1. Algorithms based on image-processing techniques, such as region growing and
image subtraction.

2. Traditional Machine learning, which classifies suspicious discontinuities after
calculating handcrafted features.

3. Deep learning models, where the raw greyscale images are used directly as
inputs before applying deep segmentation or region classification.
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I.6.1 Image Processing Techniques

Hadwiger et al. [39] proposed an interactive approach to exploring industrial CT
volumes. They performed region growing segmentation by manually selecting a voxel
seed and repeating the process until the features merge, as shown in Figure I.12. The
algorithm checks all neighbouring voxels in 3D that have a greyscale value within
a certain range and make up the same entity (defect or artifact). A 3D transfer
function classifies each entity based on volumetric size and density in order to decide
whether it is a true alarm (defects) or a false alarm (artifact or noise). Although
their method is helpful in segmenting and identifying the type of discontinuities,
it requires manual tuning of various parameters, such as target ranges of density
and size alongside the selection of seed points for each volume, which increases the
processing time.

Figure I.12: In each pass, new features can be created and already existing features may
grow and merge. Background voxels can be suppressed in order to improve
pre-processing performance. Source: [39]

Another common approach to detecting anomalies in industrial CT volumes is the
defect-free reference approach., where the CT slices of the specimen are compared
with CT slices of a defect-free volume. The latter can be obtained by scanning
a defect-free specimen of the same shape, with the same tomograph and under
the same scanning conditions [40]. Consequently, the volume of this "golden" part
has the same artifacts as the examined specimen. By subtracting the slices of
both volumes, geometrical structures and artifacts are removed from the difference
images, and defects are highlighted. The pipeline of this approach comprises five
steps:

1. CT slices enhancement by reducing noise with Wiener filter [41], for example,
followed by histogram equalization to account for the dynamic range of the
greyscale values distribution.

2. Compensation for deviations in orientation and translation between the de-
fective and defect-free specimens. An optimization algorithm estimates the
parameters of an affine transformation based on the divergence of greyscale
values between the two volumes.
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3. Absolute subtraction operation takes place in order to obtain the difference
image.

4. The difference image is segmented by thresholding, where the threshold is
chosen to maximize the sum of the entropy values of the foreground and back-
ground entropy values.

5. Morphological opening operation is applied in order to filter small indications
and refine the segmentation results.

This method gives good results in detecting defects inside the CT volumes, including
cold fills. Theoretically, it can be applied to the inspection of a mass production line,
i.e. one golden defect-free specimen is required for all specimens to be inspected.
However, it is an impossible task to place all specimens in the same position and
at the same angle as the golden specimen, and the compensation for deviations is
never perfect. Gondrom-Linke [42] suggested scanning the same specimen a hundred
times and averaging all volumes to obtain a defect-free version, and Rieter et al.
[43] suggested the use of robots to ensure accurate placement, but both solutions
would slow down the production line. In addition, Reiter et al. suggested using
simulation algorithms to create a defect-free volume. However, this simulated replica
should include all physical effects, including detector response, to account for all
artifacts, and it requires a registration step between the simulated replica and the
real specimen.

Defect-free reference algorithms are very prone to false alarms in the case of small
deviations, as absolute subtraction could create additional discontinuities in the
difference image. Furthermore, they are 100% dependent on the casting geometry.
Every time the geometry of the casting is changed, or in the case of a new casting,
the process has to be repeated all over, which can be tedious and expensive.

Proposition: in chapter I, we present two segmentation algorithms based on im-
age processing techniques to localize discontinuities inside the casting, which are
independent of the shape of the specimen. We show their segmentation results and
discuss their advantages and limitations.

I.6.2 Traditional Machine Learning

The second category includes traditional machine learning algorithms such as
support vector machine (SVM) or random forest that take handcrafted features as
inputs. The latter are calculated after isolating suspicious discontinuities in 3D.

Zhao et al. [44] have proposed a very interesting approach to detect casting defects
in 3D CT images of aluminium castings. Their pipeline uses random forest (RF)
to classify discontinuities into defects or artefacts based on their greyscale values
and shape curvature. The pipeline consists of 4 main steps: locating and select-
ing candidate discontinuities, isolating these discontinuities, extracting features and
classification. Each step can be summarised as follows:
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1. Candidate selection, with the help of morphological closing followed by a 3D
convolution with Gabor filters to remove streaks artifacts [45]. This step can
be assimilated to a thresholding where low response voxels are removed, which
reduces the number of discontinuities to be processed.

2. In order to isolate the selected discontinuities, their zones are locally subtracted
from a defect-free volume, as introduced in the previous section. However, the
method of obtaining the defect-free volume was not elaborated in the paper.

3. 25 texture features and 4 geometrical features are calculated from each discon-
tinuity based on the greyscale level and the shape curvature. Texture features
are calculated using the "grey-level co-occurrence matrix" (GLCM) [46], which
describes the frequency of occurrence of greyscale values in relation to other
values (voxel-pairs occurrence) at a given distance and direction, as well as the
uniformity of the greyscale distribution, contrast, entropy and standard devi-
ation. Curvature-based features are calculated by computing the voxel-wise
derivatives to find the principal curvatures [47]. Based on the latter, a "shape
descriptor" is calculated for each discontinuity to assign a shape category and
calculate mean, standard deviation and entropy.

4. Random forest model is used to classify each discontinuity into defect or normal
zone based on the extracted features.

Without giving information on the training process, the proposed method achieved
a high recognition rate of 94% on 31 CT volumes with 49 porosities and shrinkage
cavities. However, this method has some limitations in practice: (1) it requires a
defect-free volume to isolate the candidates for discontinuities in future inferences,
which is time-consuming as explained in the previous section; (2) most greyscale
features do not contribute equally to the RF decision, and their computation has a
disadvantage for processing time; and (3) the shape descriptor is only sensitive to
roundish gas pores.

Osman, Kaftandjian et al. proposed a data fusion-based classifier (DFC) to inspect
CT images of aluminium castings [48]. This classifier was originally developed for 2D
radioscopy data [49] and then extended to 3D CT images of castings. Based on 30
features calculated from each discontinuity, DFC decides whether it is a real defect
or a false alarm (artifact or noise). The model was trained on a highly imbalanced
dataset with 26 defects and 200 false alarms and validated on 18 defects and 198
false alarms. The DFC was then compared with the support vector machine (SVM)
in terms of performance.

Performance was quantified using the classification rate per class and the area under
the receiver operating characteristic (ROC) curve [50] on a validation dataset. The
area under ROC allowed the authors to determine which features had the greatest
impact on DFC performance, reducing the number of inputs to the model. Com-
bining only two features resulted in the same recognition performance with DFC
compared to SVM that required eleven features. However, SVM performed better
in classifying false indications, i.e. noise and reconstruction artifacts.
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Proposition: to decide whether a zone is defective or not, we avoided traditional
machine learning algorithms because selecting the right features is a very time-
consuming task and strongly depends on the contrast resolution and the shape of
the defects in the training dataset. However, in chapter VI we tried to categorize
3D defects into porosities or shrinkage cavities using SVM based on geometrical
features such as sphericity, elongation and compactness.

I.6.3 Deep Learning

Deep learning-based algorithms, which have been at the forefront of computer
vision in recent years [51], make up the third category of automatic defect detection
techniques. Image classification is the best known deep learning application that
has reached the state-of-the-art [52, 53]. Deep learning classifiers have reached a
stage where they can often outperform humans in image labelling tests, according
to [54]. The core of this technique is to use raw images as inputs, and instead
of manually extracting handcrafted features, a convolutional neural network learns
how to automatically extract features in a hierarchical fashion.

Deep learning has been explored to reduce artifacts in CT data, either before or
after reconstructing the CT volume. Deep scatter estimation [55] approximates the
result of Monte-Carlo function, which in turn removes the scatter artifacts from 2D
projections before 3D reconstruction. On the other hand, in medical imaging where
low X-ray dose is used, removing noise and artifacts after reconstructing CT volumes
with low contrast resolution is an active research area [56, 57, 58]. However, when
applied to industrial CT volumes to improve data quality, there is a risk of removing
small porosities in homogeneous regions.

In our research area, two leading software companies in the field of industrial CT
data analysis and visualization, ZeissT M and V olumeGraphicsT M , are constantly
exploring the possibilities of deep learning to detect defects in CT casting data.
In 2020, Schlotterbeck et al. [59] in collaboration with ZeissT M have presumably
developed an approach to detect defects inside CT volumes of aluminium castings
using the following pipeline:

1. Anomaly detection using SVM model, which was trained on difference volumes
after subtracting many specimens from their defect-free versions. The latter
are each calculated by averaging many 3D volumes of the same specimen.

2. Deep learning by transfer-learning in order to classify each anomaly detected
by SVM into porosities or voids, or even geometrical features such as core
breaks or wall shifts.

3. To decide if each anomaly is a defect or a geometrical feature, the authors
used two models: 3D U-Net for deep segmentation [60], or random forest after
calculating handcrafted features. The majority votes of the decision trees are
used to determine the type of the anomaly.

The authors did not give any information about the training data, the learning
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process, nor the training results. The article focused only on the processing time.
Moreover, SVM will always require a defect-free volume before detecting anomalies
in a new volume, which is a time-consuming task as explained earlier. In addition,
applying 3D segmentation with the convolutional neural network U-Net is not effi-
cient because the model does not perform well on anisotropic volumes where voxels
do not have the same size along the three axes [61].

In 2021, Fuchs et Al. [62] in collaboration with V olumeGraphicsT M worked on
an approach to detect defects inside CT scans of aluminium casting using deep
segmentation. The authors developed a CT mesh simulation pipeline that generates
a huge amount of synthetic training data with labelled discontinuities. Casting
defects (gas holes, cavities, cracks) and artifacts can both be generated by this
pipeline to train a modified version of U-Net (state-of-the-art deep segmentation
model) to binarize CT slices. The model achieved an accuracy of 65% when tested
on real low-quality CT data, outperforming a reference-based method and a random
forest algorithm.

Synthetic data is useful to train deep learning models when real data is not available.
However, using a large amount of fake data, not to mention unrealistic defects, to
train DL models inevitably leads to overfitting, at least towards the real data on
which the simulation pipeline was designed.

Proposition: In chapter III, we used the state-of-the-art U-Net model to segment
CT volumes by binarizing each slice individually and then stacking all slices to form
a binary CT volume. In chapter IV, we trained a new convolutional network from
ground up, and compared its performance with state-of-the-art models in classifying
discontinuities in 2D CT slices into true alarms (defects) or false alarms (artifacts or
noise). All these models were trained with different CT slices coming from different
volumes scanned by different tomography machines (various spatial resolutions and
X-ray imaging conditions). This diversity is a very important factor as it helps the
models to generalize better and increases their future reliability in detecting defects
inside new CT inferences. Finally, in chapter VI, we trained a siamese convolutional
neural network to predict the type of 3D casting defects.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



I.7. CNN Under the Loop 23

I.7 CNN Under the Loop
A deep learning model arranges a large number of linear classifiers, called neur-

ons, into a large number of successive layers. The weights (and bias terms) of these
neurons are the trainable parameters of the network, and its output depends on the
training task, e.g. a label map in the case of segmentation or membership probabil-
ities in the case of classification. Since we are working with CT images, a multilayer
perceptron (MLP) or dense feed-forward neural networks must be avoided. These
neural networks cannot learn how to correctly detect defects in the image since
they always look at fixed positions. For this reason, convolutional neural networks
(CNNs) must be used because they apply convolutional operations to the input
looking for suspicious discontinuities, regardless of their positions on the image.
The most common CNN layers that we have used to make up the models of the
following chapters are described below.

I.7.1 Convolutional Layers

In convolutional neural networks, the first layer is always a convolutional layer
that acts as the first feature extractor. In this layer, as well as in subsequent
convolutional layers, several convolutional operations are performed on the input by
sliding some filters (kernels) of size m × m to search for texture information. The
output of the convolutional layers is a set of feature maps, which are in fact the
cross-correlation product (despite the term used) between each filter and the input.
These feature maps provide information about the semantics of the image, learned

Figure I.13: Hierarchical semantics learned by the consecutive convolutional layers of a
CNN from the pixel (or voxel) to the very object. Source: [63]
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in a hierarchical fashion throughout the architecture, as shown in Figure I.13. For
a 2D image I and a 2D filter or kernel K, the feature map G is obtained as follows:

G(i, j) = (I ⊛ K)(i, j) =
∑

u

∑
v

I(i + u, j + v) · K(u, v) (I.3)

I.7.2 Activation Functions

One of the most important components of a neural network is the activation
function, which is a mathematical equation applied to the output of a previous layer
(e.g. a convolutional layer) [64]. Choosing the right activation function is crucial
because it can cause a model to converge faster and achieve high performance,
and sometimes prevent it from converging at all because of saturation. Figure I.14
illustrates the most commonly used activation functions in deep neural networks.
Each convolutional layer in the network is coupled with an activation function that
is applied to each feature map outputted by the layer. The use of an activation
function improves the learning process by performing a kind of non-linearity on the
weights of the network.

Figure I.14: Common activation functions used in neural networks. Each one is a math-
ematical equation that can be applied to the output coming from the pre-
vious layer.

I.7.3 Max-Pooling Layers

After applying an activation function, a convolutional layer is usually followed
by a pooling layer. The main advantage of the latter is to reduce the computational
cost by reducing the size of the feature maps. Figure I.15 shows the reduction of
the dimensionality of the feature maps in the case of max-pooling, which uses the
maximum value in a kernel of size n × n to generate a new feature map. Unlike
convolutional layers, pooling layers are not followed by an activation function.

I.7.4 Fully-Connected Layers

Fully-connected layers are the most commonly used layers in NN and they are
essential components in classification models. Each fully-connected (dense) layer is
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Figure I.15: Resolution reduction of a greyscale image by applying max-pooling, which
holds the maximum value in each kernel to generate a new image.

interconnected with the previous layer and the next layer as shown in Figure I.16.
This means that each neuron in this layer receives information from all neurons
of the previous layer, and sends information to all neurons of the following layer.
It performs matrix-vector multiplication, where the vector is the input and the
matrix values are the weights of the layer that needs to be trained in order to
map the underlying relationship between the input and the output. In the case
of classification, the final output is a vector with k dimension that represents the
membership distribution of the input over the k classification classes.

I.7.5 Transpose Convolutional Layers

As mentioned above, CNNs use convolutional layers followed by a pooling layer
to learn the contextual information (semantics) in the input image by generating
feature maps. In a segmentation task, where the final output is a segmented version
of the input, the model needs to upsample these feature maps to undo the down-

Figure I.16: A series of deeply interconnected dense layers. The final output of the dense
block is a membership distribution over the classes.
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sampling by the pooling layer and restore the feature maps to the original size of
the input. One way to do this is to interpolate the individual feature vectors to
increase their resolution. However, it is almost impossible to find an interpolation
that works well with every input image. An alternative solution is the transposed
convolutional layer (incorrectly called deconvolutional layer), which works like an
upsampling layer [65, 66].

When training a segmentation model, the kernels ( filters ) of this layer learn how to
correctly upsample the feature vectors while preserving the contextual information.
The simplest way to think of the process is to calculate the output shape of a direct
convolution and then invert the input and output shape. The layer then learns a set
of weights that can be used to reconstruct the inputs. Figure I.17 shows the most
common configuration of upsampling with a transposed convolutional layer, with a
2 × 2 kernel, a stride of 2 and a padding of 1.

Figure I.17: A schematic diagram of convolutional transpose operation of a small input
of 3 × 3. An intermediate grid is created by stretching the input, followed
by padding removal before applying a convolution with one of the layer’s
kernels in order to find the right output size. Source: [67]

I.8 Deep Learning Models Challenge: Overfitting
& Underfitting

The main goal in training a neural network model is to ensure that it can
perform well on new unseen data points (in our case, segmentation or classification).
This ability to process new inputs that the model has not been exposed to during
training is called generalization. To measure this, the model tests itself at the end
of each training iteration (epoch) on a vector of data called the validation set. The
error measure on the training set is called training loss, and that for the other set
is called validation or generalization loss. The latter is defined as the value of
the error on new inputs. To ensure generalization, we need to make the training loss
as small as possible, as well as the gap between the training loss and the validation
loss. The optimal state is shown in Figure I.18.
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Figure I.18: After training, overfitting or underfitting can be spotted by looking at the
training and validation losses. The model is well trained when it reaches
the optimal capacity: both losses are close to zero, and the gap between
them is relatively small. Source: [68]

These requirements are not met if one of two phenomena occurs: (1) underfitting,
when the model is too shallow to capture the underlying relationship between the
input and output variables, resulting in a high training loss; or (2) overfitting, when
the model has been overtrained on the particularities of the training dataset so
that it cannot perform well on new unseen data that does not exhibit the same
noise trends, resulting in a large gap between the training and validation losses.
Optimal capacity can be achieved by increasing the size of the dataset, applying
regularization techniques or changing the training conditions, as explained in the
following chapters.

I.9 Implementation Setup
The algorithms in the following chapters were developed using Python 3.6,

Matlab and C++17. Training deep learning models was performed using Keras
[69] (Tensorflow-gpu 2.1.0 backend) as Python deep learning API. To ensure fast
training, CuDNN 7.6 —a GPU-accelerated library for deep neural networks— was
used with this framework. The workstation is equipped with an Nvidia P3200 GPU
(6GB memory) and an Intel Core i7-8850H @2.60GHz CPU.

Conclusion
CT is a powerful non-destructive testing method for industrial production in-

spection. It provides a large amount of data with internal and external details about
the specimens. However, as it leaves artifacts inside the volumes, the foundry in-
dustries are always looking for algorithms that can automatically isolate defects in
the CT volumes and ignore artifacts without user intervention. Furthermore, this
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detection algorithm should be able to process any CT volume regardless of its con-
trast and spatial resolution. In the literature, algorithms intended for this endeavour
fall into 3 categories: image processing techniques, traditional machine learning and
deep learning algorithms. The available algorithms today are either semi-automatic
approaches that can guide a human examiner, or fully automatic approaches that
rely on a defect-free reference specimen.

In the following, we present two segmentation algorithms that we have used to
binarize CT data, either in a slice-by-slice fashion or by using the 3D volume directly
as input. These algorithms were used to create ground truth data for training and
validation of deep learning models, presented in the subsequent chapters.
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In this chapter, we present two algorithms for locating defects inside CT im-
ages. Two edge-based segmentation algorithms are presented, one takes 2D CT
slices as input and the other takes directly a 3D CT volume. The output of each
algorithm is a binary version of the input in which defective zones are highlighted.
These algorithms need to be tuned manually, which hinders their use as automatic
inspection tools. They are used to generate ground truth images in order to train
or verify the efficiency of future methods.

II.1 CT Volumes Analysis
After inspecting a specimen with tomography, a mathematical process generates

the 3D volume of the specimen from X-ray projections taken at different angles
around it [70] (cf. Figure I.5). This volume is a 3D grid of voxels that can be
described as a cartography of the local attenuation of X-rays by the specimen.
The denser the material, the higher the attenuation and the brighter the voxels.
Conversely, if the region is defective (lack of material), the voxels are darker. Such
volume can be sliced along any direction, generating a set of CT slices, as illustrated

29
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in Figure II.1. This volume was provided by one of our partners: it is a greyscale
volume of a gravity die casting specimen, with a size of 1118 × 776 × 1349, bitmap
of 16 bits per voxel, and a spatial resolution of 320µm.

(a)

(b)

(c) Right view

Figure II.1: A 3D CT volume can be sliced along any direction to generate 2D slices.
The highlighted slices within the 3D volume (left column) are shown in the
right column: (a) a slice along the top view; (b) a slice along the front view;
and (c) a slice along the right view.

Since this volume has 16 bits per voxel (8 bits for others), each can have a greyscale
value ranging from 0 to 216 − 1 = 65536. In Figure II.2, we can see the intensity
histograms of 2 slices, as well as the histogram of the whole volume, which shows
the distribution of voxels with respect to their greyscale values. Each histogram is
model, i.e. has two obvious relative modes, or data peaks. This means that there
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are 2 majorly represented classes of voxels: (1) the hump on the left, representing
the voxels with lower greyscale values, i.e. the empty zone outside the specimen; and
(2) the hump on the right, representing the body of the specimen, which has bright
contrast due to the high x-ray absorption or attenuation. On the other hand, any
voxel that belongs to a lack of material or an artifact lies between these two humps.
This shows that the classes of voxels, defective vs. normal, are very imbalanced
as the defects make up a very small proportion (that lies between the two humps)
compared to the total number of voxels.

II.1.1 True Alarms and False Alarms

Since the castings are made in a single operation, the presence of defects inside
the specimen is inevitable. In fact, there is no such thing as a flawless casting
and the real endeavour is to know the impact of the defects on the lifetime of the
castings and how to control them [71]. When a casting is inspected by tomography,
we can find inside its CT volume some discontinuities that can belong to real defects
(True Alarms), as in Figure II.3, but also other discontinuities that can represent
artifacts or noise (False Alarms), as in Figure II.4. Unlike defects that arise during
the casting process and physically exist, artifacts are inconsistencies between the
CT images after reconstruction and the real material density and geometry of the
specimen, i.e. they have no physical existence and yet unavoidable [72].

Most factories using this NDT method employ a human inspector to distinguish the
potential defects from other discontinuities since CT is filled with artifacts. However,
this human inspection leads to dubious quality control because visual inspection
suffers from relative bias and eye fatigue. And from a methodological point of view,
the number of inspectors, the zone to be inspected and the inspection interval have
to be planned, which is very time-consuming [73]. Therefore, foundries are always
looking for an automatic means to assist the inspection process. As explained in the
last chapter, such methods have been extensively studied in various applications over
the last decades, and computer vision and image processing algorithms are widely
used for such tasks [74]. To achieve the goal of detecting defects in CT volumes, we
present two algorithms based on image processing techniques that require tweaking
some parameters. The aim of these algorithms is to enhance the display and binarize
the volume, i.e. isolate the defects from the background and generate ground-truth
binary volumes from the originals. Each algorithm processes the CT in a different
way: one processes the entire volume directly in 3D, and the other proceeds more
slowly and processes each slice separately in 2D.

II.2 Image Segmentation Techniques
Image segmentation is a process that partitions an image I into n non-intersecting

subregions Ii, such that I = ⋃n
i=1 Ii and each region Ii is homogeneous. Image seg-

mentation algorithms can be categorized into two classes based on the greyscale
values of the voxels as illustrated in Figure II.5:
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(a) Slice №150/1349

(b) Slice №750/1349

(c) Entire 3D volume

Figure II.2: 65536 bins histograms showing the greyscale value distribution in CT im-
ages: (a-b) histograms of some 2D slices along the frontal direction, plot-
ting the number of voxels for each greyscale value; (c) histogram of the 3D
volume. The large hump represents the voxels belonging to the empty zone
outside the specimen and the smaller one represents the normal regions
filled with material. The voxels of the defects and artefacts lie in between.
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Figure II.3: Shrinkage cavities inside a CT volume after applying a segmentation al-
gorithm that separates discontinuities from the background.

• Discontinuity-based: an image is partitioned based on the boundaries between
two regions, which represent abrupt changes in greyscale value.

• Similarity-based: an image is partitioned into regions by grouping neighbour
voxels that have similar values according to a set of predefined criteria.

In recent decades, many segmentation algorithms have been developed that fall into
these categories [75]. In our two approaches, we have combined two algorithms that
come from different categories:

• Edge-based segmentation, which is the most common method used in the
discontinuity-based category, where an edge operator is applied to the image:
depending on the output of the edge operator, a voxel is classified as an edge
if it represents an abrupt greyscale variation; if not, it is assigned to the
background class.

Figure II.4: CT slice from our database that contains ring and streaks artifacts.
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Figure II.5: Image segmentation techniques categories based on the discontinuity or sim-
ilarity of regions in the image.

• And thresholding, which is a similarity-based algorithm that assigns voxels to
classes based on intensity ranges. In global thresholding, only one threshold is
selected for the entire image, while in adaptive thresholding, local thresholds
are selected for each region of voxels.

II.2.1 Edge-Based Segmentation

When we move from one region to another, for example from the body of the
specimen to the empty zone outside, or from a defective zone to a normal zone,
the greyscale value changes. This discontinuity belongs to the boundary of the
specimen or the boundary of the defect, also called edges. Edge-based segmentation
techniques locate these edges by applying an edge detection operator [76]. Edge
detection methods require high image quality, which is not always the case with
CT images (cf. section I.2). Photonic and electronic noise, as well as the blur
created by the limitations of the focusing mechanism of the source and the spatial
resolution of the detector, reduce the SNR of the images. This gives the edges a
blurred noisy ramp profiles as illustrated in Figure II.6, and make the edge detection
more difficult. On the other hand, edge operators have a tendency of amplifying the
noise in the image even further [77]. For this reason, a prior denoising of the input
must be considered before applying an edge operator [78]. The resulting image of
the latter, called edge map, is not the final segmented image. Additional steps are
required in order to reduce the number of unnecessary segments in the edge map
(global thresholding in our case), followed by morphological operations to fill the
edge-based segmented indications. In summary, 3 steps are required in order to
apply edge-based segmentation:

1. Image filtering, or denoising, in order to reduce the noise in the image.
2. Image differentiation with an edge operator in order to detect potential edge-

points in the denoised image.
3. Edge localization, where only the points that belong to a real edge, such as

specimen boundary or defect zone boundary, are kept in the output image.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



II.3. 2D Segmentation Algorithm 35

Figure II.6: Two regions separated by a blurred edge in a digital image. Source: [76]

II.3 2D Segmentation Algorithm
The 2D segmentation algorithm takes a tomographic slice as input and returns

a binary image where defects are isolated from the background. The pipeline illus-
trated in Figure II.7 consists of three main steps as mentioned in the last section,
preceded by preprocessing.

II.3.1 Preprocessing

As seen in Figure II.2, CT slices have bimodal histograms where the background
and the specimen have two separate humps. An automatic thresholding with Otsu
can binarize the image and separate the specimen from the background. The prepro-
cessing block consists of removing noise and artifacts (greyscale values) in the empty
zone outside the specimen by multiplying the image by its Otsu binary version:

a) Before applying Otsu’s thresholding, the image is sharpened in order to en-
hance the borders of the specimen. The output image, also called the gradient
∇I, is obtained by convolving the image I with a 3 × 3 sharpening kernel as
follows:

∇I(x, y) = I(x, y) �

 0 −1 0
−1 5 −1
0 −1 0

 (II.1)

For each 3-by-3 block of voxels in the slice, we multiply each voxel by the
corresponding entry of the kernel and then take the sum. This sum becomes
a new voxel in the output gradient, which eventually represents a sharpened
version of the original image.

b) The second step consists of segmenting this gradient using thresholding [79].
The output is a binary image, where the voxels that belong to the specimen are
set to white, while the rest of the image, i.e. the background, to black. We used
Otsu’s thresholding algorithm [80], which selects the threshold by minimizing
the within-class variance of two majorly represented groups of voxels.

c) The third step is an emphasizing operation. By multiplying the binary slice
with its original version (before sharpening), we obtain a new image where the
specimen is highlighted while the background and its artifacts are concealed.
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Figure II.7: 2D segmentation pipeline for detecting or localizing casting defects. The
input is a greyscale CT slice (Scale 14cm × 14cm in this example), and the
output is a binary version where casting defects are highlighted.
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II.3.2 Denoising

d) The denoising step consists of smoothing with a gaussian kernel. By applying a
2D convolution between the image with suppressed background and the latter,
we can smooth or blur the image and remove noise [81]. A gaussian kernel has
the shape of Gaussian distribution with a size of 3×3 or 5×5, and its weights
are calculated using the following 2D gaussian function:

g(x, y) = 1
2πσ2 e− x2+y2

2σ2 (II.2)

where (x,y) is the coordinate of each element in the kernel and σ is
the standard deviation of the gaussian distribution.

Although technically the kernel can be of any size, σ must be scaled in pro-
portion to the kernel size. In the case of a large kernel with a small sigma,
the kernel elements at the extremes will have no real effect on the computa-
tion. Moreover, the value of the standard deviation σ controls the extent of
smoothing. The higher the σ, the stronger the smoothing effect.
At the end of the pipeline there is a subtraction operation where the borders
of the specimen are removed and the edges of the defects are maintained. For
this reason, we applied two separate convolutions with two gaussian kernels as
illustrated in Figure II.7:

• Image on the right: the image with suppressed background is denoised
with a 3 × 3 kernel and σ = 1.5.

• Image on the left: the image with suppressed background is over-smoothed
with a 5 × 5 kernel and σ = 2.5 where the defects are removed.

II.3.3 Differentiation

e) The differentiation block has one step, which is the essential operation of
edge-base segmentation. Both images outputted by the filtering block are
convoluted with an edge operator. The output of this convolution is a greyscale
gradient where the abrupt greyscale discontinuities are highlighted. At each
voxel, the operator calculates the gradient of intensity. In the case of an
edge, this gradient shows how abruptly the image has changed, as well as the
orientation of this edge from dark to light. Various edge operators can be used
to find finite-difference approximations of the gradient [82], and after many
trial-error attempts we have used Prewitt operator as it has been found to
be more sensitive to small variations compared to other operators due to the
absence of an additional smoothing module [83]. This ensures that poorly
contrasted defects are not overlooked during segmentation.
Prewitt operator uses two 3×3 kernels which are convoluted with the smoothed
image in order to calculate its horizontal and vertical derivatives. If we define
S(x, y) as a smoothed image by the gaussian filter, S

′
x and S

′
y, the horizontal

and vertical derivatives approximations, are calculated as follows:
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S
′

x = S(x, y) ⊛

1 0 −1
1 0 −1
1 0 −1

 ; S
′

y = S(x, y) ⊛

 1 1 1
0 0 0

−1 −1 −1

 (II.3)

At each point of S(x, y), the resulting gradient approximations can be com-
bined to give the gradient magnitude, which is a greyscale image with potential
edge segments:

∇S(x, y) =
√

(S ′
x)2 + (S ′

y)2 (II.4)

This gradient is calculated for the smoothed and over-smoothed images from
the last step of the pipeline. Each contains segments of edges that belong to
the specimen borders, defects, artifacts and even noise.

II.3.4 Localization

The last block of the pipeline is the localization block where edges that belong
to noise or artifacts are eliminated as much as possible.

f) In order to get rid of the edges that belong to noise or artifacts without affecting
the edges that belong to defects, we decided to apply Otsu’s thresholding
method to the greyscale gradients. As explained earlier, this segmentation
method finds the threshold that separates the two majorly represented classes
of voxels - background and foreground. By multiplying this threshold by a
fudge factor, we can change the amount of edges that should be preserved in
the output image. For example, if we set the fudge factor to 0.1, this means
that the segmentation threshold is set to 10% of the value calculated by Otsu
and the output image will have more edges after segmentation. Conversely,
the higher the fudge factor, the less edge segments in the output.
By looking at the step f) in Figure II.7, Otsu was applied to both gradients,
or edge maps, coming from the previous step:

• On the left, the output binary image does not have the defects because
of the over-smoothing at step d) with the gaussian filter.

• On the right, the output binary image contains the borders of the speci-
men, as well as the defects in the CT slice.

g) For clarity, the 2 images from the last step can be subtracted to remove the
borders of the specimen and keep the defects isolated. Then, if needed, a
morphological operation can be applied to the image to fill the hollow edges
segmented by the pipeline.

II.4 3D Segmentation Algorithm
The 3D algorithm is straightforward compared to the 2D algorithm because

processing 3D images requires time-consuming calculations. The algorithm takes a
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3D image as input, and outputs a binary 3D volume, as in Figure II.8. The segment-
ation is edge-based and consists of three main steps: preprocessing, differentiation
and localization.

II.4.1 Preprocessing

Before applying an edge operator, we need to suppress the empty zone outside
the specimen and its artifacts. As with the 2D algorithm, this can be done by
multiplying the volume by its Otsu binary version. Otsu thresholding works well in
our case because the histogram of all 3D CT volumes (Figure II.2) is bimodal, i.e. the
voxels can be classified into one of 2 major classes: Background and Foreground.
The Otsu method gives a binary volume with the specimen voxels set to 1 and
the background voxels set to zero. When we multiply the volume by this binary
version, the specimen remains unchanged, but the grey zone outside the specimen
and its noise are deleted or suppressed. Unlike the 2D algorithm, the preprocessing
is not followed by a denoising step with a gaussian filter, as this could remove small
discontinuities. However, we have chosen a 3D operator that has a smoothing effect
to reduce the noise along the 3 directions.

II.4.2 Differentiation and Localization

The second step is to find the edges of the volume. This is done by applying
an edge operator to the volume to obtain a greyscale edge map, followed by an
adjustable Otsu threshold to remove the edges that belong to false alarms. Edge
detection is performed by convolving the volume with a set of three 3D operators,
also called kernels, which find a discrete approximation of the partial derivatives of
the volume with respect to each direction. Depending on the layout of the 3D CT
volume, the first kernel detects the discontinuities in the right direction, the second
in the top direction and the third in the front direction. In our application, we
used Sobel-Feldman operator, which has three 3 × 3 × 3 kernels applicable in three
consecutive frames along the 3 directions. The convolution operations between the
denoised volume V (x, y, z) and the 3D Sobel-Feldman edge detector in the directions
X, Y, Z are as follows:

V
′

x = V ⊛


−1 0 1

−2 0 2
−1 0 1


x−1

,

−2 0 2
−4 0 4
−2 0 2


x

,

−1 0 1
−2 0 2
−1 0 1




x+1

(II.5)

V
′

y = V ⊛


 1 2 1

0 0 0
−1 −2 −1


y−1

,

 2 4 2
0 0 0

−2 4 −2


y

,

 1 2 1
0 0 0

−1 −2 −1




y+1

(II.6)
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Figure II.8: 3D segmentation pipeline for localizing casting defects. The input is a
greyscale 3D X-ray volume and the output is a labelled 3D binary volume.
For clarity, the opacity of each volume is adjusted for better visualization,
and each volume is displayed with a 3D ortho-slice view.
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V
′

z = V ⊛


−1 −2 −1

−2 −4 −2
−1 −2 −1


z−1

,

0 0 0
0 0 0
0 0 0


z

,

1 2 1
2 4 2
1 2 1




z+1

(II.7)

where V
′

x is the gradient approximation or partial derivative along the X-axis, and
so on. The final edge map, or the total gradient, is tracked by combining the 3
dissimilarities maps into a single magnitude greyscale map as follows:

∇V (x, y, z) =
√

(V ′
x)2 + (V ′

y)2 + (V ′
z)2 (II.8)

We used the Sobel-Feldman operator because it gives good approximations of the
gradients along each direction, has a denoising effect on the volume, and is not very
sensitive to isolated point fluctuations with high intensity [84]. The edge map con-
tains many edge-points of false alarms that need to be eliminated with thresholding.
Using Otsu’s algorithm, we can find the optimal threshold that eliminates these un-
wanted edge segments. By manually adjusting this threshold with a fudge factor,
a binary volume W (x, y, z) can be obtained in which defects and borders of the
specimen are highlighted:

W (x, y, z) =
1 if ∇V (x, y, z) > fudge factor × Thresh

0 otherwise
(II.9)

A morphological operation was then applied to the volume to fill the hollow edges
segmented by the pipeline. An additional labelling step can be applied at the end
of the pipeline to isolate each defect separately. In the binary volume outputted
by the previous step, each set of adjacent white voxels is assigned a unique integer
representing a single defect, as in Figure II.9.

II.5 Results & Discussion

II.5.1 2D Algorithm

The 2D algorithm detects discontinuities in CT slices belonging to defective
zones, as in the pipeline in Figure II.7. This algorithm is very fast and requires no
computational cost. However, some of the discontinuities detected by this algorithm
may belong to noise or artifacts if the fudge factor is not set properly. The fudge
factor controls the value of Otsu threshold applied to the edge map outputted by
Prewitt operator and consequently has a large impact on the result, as can be seen
in the following images:
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Figure II.9: Some detected defects inside the 3D CT volume, segmented by the 3D edge-
based segmentation algorithm (fudgefactor = 26%).

• Figure II.10 shows that for the same image, a decrease in the threshold value
can increase the number of detected noise and artifacts. Conversely, increasing
the value decreases the detected discontinuities to the point where true defects
could be missed in the output binary image.

• Figure II.11 shows that a defined fudge factor is not suitable for all slices of
the same volume because the contrast changes along the volume and therefore
constant adjustment is required to reduce the number of unwanted segments.

Because of this need for user intervention, this algorithm cannot be used to automat-
ically inspect CT slices of casting specimens. We will use it to generate ground truth
images to train neural networks and validate their efficiency, as shown in chapter IV.

II.5.2 3D Algorithm

The 3D segmentation algorithm in Figure II.8 can be applied directly to a CT
volume, yielding a binary volume in which discontinuities are highlighted. However,
as with the 2D algorithm, it is almost impossible to find the right fudge factor that
works well for the entire volume, as the contrast changes along the thickness of the
specimen. In Figure II.12, we applied the algorithm to small regions of interest
(ROIs) along the volume to detect embedded defects. In this example, the fudge
factor is adjusted as we move along the height of the specimen in order to avoid
segmenting noise or artifacts when the fudge factor is very low, or missing the true
defects when the fudge factor is very high.
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Figure II.10: The sensitivity of the 2D segmentation algorithm is controlled with a fudge
factor. To find the right value (32 % for this image), the user must inter-
vene to avoid segmenting artifacts (low fudge factor) or missing the defect
itself (high fudge factor).
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Figure II.11: The same fudge factor does not give good results for all slices of the same
volume. As the thickness changes along the volume, the X-ray absorption
changes and so does the contrast of the images. Therefore, the fudge factor
must be adjusted independently for each slice.
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Figure II.12: 3D segmentation algorithm applied to small ROIs along the height of the
specimen. As we move across the volume, the fudge factor needs to be
adjusted so that defects are not missed.
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Conclusion
In this chapter, two edge-based segmentation algorithms are described in detail.

The first is a 2D algorithm that takes a CT slice as input, and outputs the defects
present in the image; the second takes a 3D ROI, and outputs a binary 3D volume
with the defects embedded. Both algorithms give good results if their parameters,
called fudge factors, are tweaked correctly. However, such human intervention slows
down the inspection process when used on the production line.

In the next chapter, a potential neural network, called U-Net, is trained to perform
image segmentation automatically without tweaking any parameters. The training
data (ground-truth images) were manually segmented using the 2D segmentation
algorithm presented in this chapter. And in chapter VI, a geometrical character-
ization study is conducted to investigate the properties of 3D volumes containing
casting defects, segmented using the 3D segmentation algorithm.
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In chapter II we presented a 2D segmentation algorithm based on image pro-
cessing techniques that extracts defects in CT images. It requires adjusting a fudge
factor for each slice along the volume to avoid under- or over-segmentation. An ideal
algorithm binarizes all CT slices of the same volume without tweaking any severity
factor. However, such segmentation potential is very difficult to achieve with stand-
ard image processing algorithms because CT volumes have different contrasts and
artifacts depending on the tomography system and the slice index along the slicing
axis.

In the biomedical field, a fully convolutional-based network called U-Net has shown

47
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robust efficiency in segmenting CT slices [85, 86]. In this chapter, we explore the
potential of U-Net in segmenting CT slices of the same casting volume as well as
slices derived from other volumes without user intervention. This is achieved by
training this model from ground up with a manually segmented dataset that we
built by cropping 2D slices from different volumes of different specimens scanned
under different acquisition conditions.

III.1 Segmentation Task
Some tasks are too difficult to solve with traditional algorithms in terms of pro-

cessing, execution time and implementation settings. In recent decades, advances in
the deep learning have made some tasks easier to solve, such as segmentation, classi-
fication, regression, transcription, machine translation, anomaly detection, synthesis
and sampling, denoising and density estimation [87]. Deep Learning tasks can be
defined as the process by which a deep learning model learns from a set of examples,
or data points, to perform a particular task. Each example from this set, represented
as a vector xi ∈ Rn, is a collection of features xij. In the case of image segmentation,
the model learns to output a segmented version of xi, called a label map or mask
pi, by assigning each feature (pixel or voxel) xij to a certain class.

Image segmentation tasks with deep learning models, more specifically convolutional
neural networks (CNNs), fall into two broad categories depending on the output.
Looking at Figure III.1, these two categories can be distinguished as follows:

• In semantic segmentation, an image is divided into several contiguous regions.
This pixel (or voxel)-wise partitioning is based on the correlations between the
pixels in the image. If the input image contains several elements of the same
type, such as a chair, all these elements would be assigned the same colour in
the output. In the case of binary classification, the output contains only black
and white areas, as is the case with chapter II segmentation algorithms.

• Instance segmentation is a more difficult task. It is done at the pixel (or
voxel)-level of the individual elements in an image. If an image contains two
chairs, instance segmentation distinguishes which pixels belong to which chair.
This category of algorithms distinguishes not only the semantics, but also
each individual object of interest. In classical image processing, this task is
equivalent to semantic segmentation with an additional labelling step.

III.2 Learning Experience
Deep learning models can be divided into two categories, depending on the

learning experience and the amount of information contained in the dataset: (1)
unsupervised learning algorithms, which are trained on data points without labels
so that the algorithm learns the underlying structure or distribution in the data
itself; and (2) supervised learning algorithms, which are trained on a dataset where
each data point is given a label, also known as a target or ground truth. The term
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Figure III.1: Semantic segmentation (middle) and instance segmentation (right). Se-
mantic segmentation assigns a single colour to all elements of the same
category, while instance segmentation processes each element individually.

"supervised" stems from the fact that for each data point xi the target yi is given
by the "teacher", whereas in the unsupervised case there is neither a teacher nor a
target and the algorithm is supposed to draw inferences from the dataset without
human intervention. To teach U-Net to segment CT images, we trained it with the
following manually segmented dataset making the learning process supervised. We
chose to train the segmentation model with 2D slices instead of directly using the
entire volumes, as we only have a limited amount of 3D CT data.

III.2.1 Training Dataset

We built a dataset by cropping 512 × 512 images from 2D CT slices of high-
pressure and gravity aluminium alloy castings provided by our industrial partners. A
snapshot of one of the CT volumes and the cropping process is shown in Figure III.2.
Due to GPU memory constraints, 512×512 was chosen as the cropping size and the
input to the U-Net model was limited accordingly. A sample of this dataset can be
seen in Figure III.3 where we can see a variety of contrasts and spatial resolution in
the CT slices.

After normalization, each greyscale 512×512 image was segmented individually using
the 2D segmentation algorithm explained in Figure II.7 after manual adjustment of
the fudge factor, resulting in a dataset with a total of 3000 data points. Each
segmented mask contains the following classes of voxels:

• Black voxels, which belong to non-defective zones filled with material, or the
empty zone outside the specimen, or artifacts or noise.

• White voxels, which belong to real defects.

During each training epoch (iteration), the segmentation model is trained on 80%
of the dataset, and at the end of the epoch it validates itself on the rest to give an
unbiased estimate of the skill of its architecture with the current weight update, as
explained in section I.8.
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Figure III.2: The segmentation database contains 512 × 512 images with their target
binary masks. Each was cropped from a 2D image that was sliced from a
3D volume.
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Figure III.3: Examples of images from the segmentation database of 3000 images: (Left)
512×512 images cropped from the CT volumes, (Right) their binary target
masks where only defects are segmented. This segmentation is to ensure
that the model only responds to discontinuities that belong to real defects.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



III.3. Performance Measurement 52

III.3 Performance Measurement
The proper use of state-of-the-art models to perform semantic segmentation

can achieve high accuracy and reduce the time required to optimize a new architec-
ture. However, these advanced models, such as U-Net, need appropriate metrics to
evaluate their learning process and predictive ability on new inferences. It should
be noted that U-Net does not output a binary black and white mask like the usual
image segmentation algorithms. During training, for each CT image in the dataset,
U-Net learns to output a greyscale mask that resembles the target binary mask in
the dataset as closely as possible. An image correctly segmented by U-Net, also
called a label map, must fulfil the following conditions:

• If the binary target in the dataset contains voxels set to 1 (white voxels be-
longing to defects), U-Net must set the same voxels as close to 1 as possible
in its greyscale output.

• In the case of voxels set to 0 (black voxels belonging to the background), U-Net
must set the corresponding voxels in its output as close to 0 as possible.

During training, the model’s learning is evaluated using a loss function based on
how far the voxels are from the target values 0 or 1. However, when the model is
tested on new unseen images after training, we need to convert the outputs of U-Net
into binary images to compare them with the binary versions of the new inferences.
This conversion from greyscale images to binary images could be done with a simple
thresholding, as explained in chapter V.

Common loss functions, such as cross-entropy, are not relevant in our semantic
segmentation task due to class imbalance. This occurs when classes of regions, in
our case "defects" or "background", are not equally represented in the image. Indeed,
CT images are dominated by voxels belonging to a normal zone filled with material
or to the empty zone outside the specimen, as in Figure II.2. Therefore, we need
to find a new metric that does not reward the model for correctly classifying the
background voxels without equally considering the voxels of defects. In other words,
we need other metrics that help the model to converge optimally during training, as
shown in Figure I.18, while preventing it from developing a bias towards the largely
represented class. For this reason, we measured the training and validation phases
during each training epoch with a loss function based on an extended version of the
Sørensen-Dice coefficient [88].

III.3.1 Dice Loss

When it comes to the segmentation task, a variety of loss functions can be used
as metrics to evaluate the learning process [89]. However, common loss functions
evaluate the performance of the segmentation model in predicting the class of each
voxel and then average over all voxels. As explained earlier, this evaluation approach
is misleading for images with imbalanced classes. The dice coefficient is a well-
known evaluation metric for image segmentation tasks and can also serve as a loss
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function [90]. Such a loss resolves the class imbalance by rewarding the model not
only for correctly classifying the background voxels as true negatives (TN), but also
for classifying the defect voxels as true positives (TP), with the same penalty.

What is the dice coefficient?

The dice coefficient measures the overlapping between 2 masks Mask1 and Mask2
for each class of regions k = 1, . . . , M . The total dice coefficient is the average of
overlapping over all classes and it can be calculated as follows:

Dice = 1
M

M∑
k=1

Diceclass=k = 1
M

M∑
k=1

2 ×
∣∣∣Maskk

1 ∩ Maskk
2

∣∣∣∣∣∣Maskk
1

∣∣∣ +
∣∣∣Maskk

2

∣∣∣
∣∣∣∣∣∣
class=k

(III.1)

• M , the total number of classes in both images.
• |Maskk

1 |, the total number of voxels in Mask1 that belong to class k.
• |Maskk

2 |, the total number of voxels in Mask2 that belong to class k.
• |Maskk

1 ∩ Maskk
2 |, the number of voxels in common that belong to class k.

In the case of 2 binary masks, there are only two classes of voxels in the images,
k = 1, 2, i.e. white or black voxels. In this case, the total dice coefficient can be
calculated as follows:

Dice = 1
2

2 ×
∣∣∣Maskwhite

1 ∩ Maskwhite
2

∣∣∣∣∣∣Maskwhite
1

∣∣∣ +
∣∣∣Maskwhite

2

∣∣∣ +
2 ×

∣∣∣Maskblack
1 ∩ Maskblack

2

∣∣∣∣∣∣Maskblack
1

∣∣∣ +
∣∣∣Maskblack

2

∣∣∣
 (III.2)

By dividing the overlap of each class by the total number of voxels, the background
class (black voxels) is prevented from dominating over the smaller class, so that each
class is penalized with a balanced magnitude.

Dice Loss for U-Net Evaluation

During training, for each image xi with a target mask yi, the segmentation model
predicts a label mask pi, where the overlap between the regions k of both masks must
be as high as possible, i.e. the dice coefficient must be maximized. Alternatively,
the dice loss must be minimized, and can be deduced as follows:

Ldice(yi, pi) = 1 − 1
M

M∑
k=1

Dice(yk
i , pk

i ) (III.3)

As explained earlier, each training epoch consists of training the model on a subset
of images X, followed by validation on a subset X ′. To evaluate the learning of
a segmentation model, we need to compute the error on each subset, also called
training and validation losses. Plotting both losses can help spot signs of underfitting
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or overfitting, as explained in section I.8. In the case of binary segmentation (k =
1, 2), the dice loss on a subset of length N is calculated for all images and then
averaged to obtain a final score:

Ldice = 1
N

N∑
i=1

Ldice(yi, pi) = 1
N

N∑
i=1

{
1 − 1

2

2∑
k=1

Dice(yk
i , pk

i )
}

(III.4)

Ldice = 1
N

N∑
i=1
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i ∩ pblack

i
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This equation works well in the case of a segmentation model that outputs a binary
mask in which voxels have discrete values 0 or 1. However, as mentioned earlier, the
output of U-Net is an array of probabilities, i.e. a greyscale image where each voxel
has a value between 0 and 1. For this reason, we need a modified version of this dice
loss to make it differentiable. Sudre et al. introduced the soft dice loss in [90], which
can be used as a metric to evaluate U-Net training without computational cost. As
depicted in Equation III.6, the overlap is calculated by element-wise multiplication
between the target mask yi and the predicted mask pi as follows:

Ldice(yi, pi) = 1
N

N∑
i=1

{
1 − 2 .

∑
yi · pi∑

y2
i + ∑

pi
2

}
(III.6)

III.4 Adam Optimizer
Now that we have defined the performance metrics that measure the learning

process, an important question arises: How do we find the right weights of the
network that can achieve the lowest possible loss value?. For this reason, we need
an optimization algorithm that updates the weights as the training progresses. The
optimizer updates the weights of the network at the end of each training epoch until
the loss function reaches the lowest possible local minimum, as shown in Figure III.4.
This updating process is controlled by a parameter called learning rate, which must
be tweaked during training [91].

After many trial-error attempts, Adaptive Moment Estimation (adam) [93] was ad-
opted, which uses momentum and adaptive learning rates to make the loss function
converge faster. This means that a separate learning rate is maintained for each
weight, which is adjusted during the training process. As these learning rates de-
crease, the gradients of the weights are updated very slowly, which prevents the loss
function from overstepping a local minimum. Furthermore, during each epoch, the
training data is divided into small batches, and at the end of each batch, adam
optimizer estimates which weights need to be changed to achieve the minimum loss.
This ensures faster convergence towards a local minimum as the weights are updated
more frequently.
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Figure III.4: The loss landscape has many peaks and valleys based on the weights of
the network. Since it is impossible to reach the global minimum, the ideal
set of weights ensures that the model reaches the lowest local minimum.
Source: [92]

III.5 Semantic Segmentation with CNN
Semantic segmentation is the task of assigning each pixel or voxel in an image to

a class based on its value (RGB or greyscale). Many algorithms have been developed
for this pixel-wise classification task, including neural networks. In 2015, Shelhamer
et al. [94], trained a supervised Fully Convolutional Network (FCN) for pixel-
wise prediction on the PASCAL VOC, a dataset with 20 object categories where
each image contains pixel-level segmentation annotations. The FCN consists of two
phases, as shown in Figure III.5:

1. Downsampling phase, in which feature maps are generated using convolutional
layers (cf. subsection I.7.1).

2. Upsampling phase, in which transposed convolutions are applied to these fea-
ture maps to restore the original image size and regenerate the semantics in
the final output (cf. subsection I.7.5).

At the time, this network was revolutionary and led researchers to realize the po-
tential of deep learning models in the field of image segmentation. Later, SegNet
was proposed in [95], which is similar in structure to FCN. This network has good
real-time performance as it uses max-pooling (cf. subsection I.7.3) followed by fea-
ture map stretching as an upsampling method to reconstruct the segmented image
instead of transposed convolution, which in turn reduces the training parameters
and time.

Also in 2015, Ronnerberger et al. [97] introduced U-Net for medical image segment-
ation. The U-Net architecture outperformed the FCN network due to the increase
in number of feature maps by the same amount during the upsampling and down-
sampling phases. This allows the deep and shallow features of the image to be com-
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Figure III.5: A diagram of the structure of FCN. The original input is downsampled
by pooling and upsampled again to the original image size by transpose
convolution. Source: [96]

bined and solves the problem of the vanishing gradient. The latter occurs when the
loss improves slowly and the weights are only updated by a small amount, resulting
in a vanishing gradient and very slow convergence. To preserve the fine-grained and
local information of the image, U-Net uses connections between the upsampling and
downsampling, similar to FCN, and concatenates the feature maps of the different
phases, as shown in Figure III.6.

When it comes to segmenting CT images with neural networks, there are two cat-
egories of convolutional neural networks (CNNs) that can be used for this task: (1)
3D CT volumes are sliced along a specific direction into a series of 2D slices, so that
2D CNNs can segment CT volumetric images [98]; or (2) 3D fully-convolutional
architectures such as 3D U-Net [60] and V-Net [98] can be trained directly on the
CT volumes without the need for slicing. However, 3D CNNs have several short-
comings compared to 2D CNNs; For example, less stable training could be achieved
since there are not many pre-trained 3D CNNs that could be used as reference [99].
Furthermore, according to Isensee et al. [100], a 2D U-Net may outperform 3D U-
Net if the data is anisotropic, i.e. if the voxels have different dimensions along the
three axes, which is the case for one of our available volumes. Moreover, training
3D models is very time-consuming compared to 2D models and requires a tera-scale
amount of data.

We decided to use U-Net for segmenting CT slices of aluminium alloy as it offers
the following advantages:

• After reducing the number of filters in the convolutional and transposed con-
volutional layers compared to the original U-Net model, the modified net-
work consists of only 1,940,817 parameters compared to the original U-Net
(11,593,424), SegNet (29,457,797) and FCN (134,325,766) – with the same
input size–, and thus requires less computational cost and GPU memory al-
location.
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• When trained with the correct evaluation parameters, it can separate two
elements of the same class in the output image, even if these elements are
extremely close to each other in the original image.

• Since U-Net has skip connections between the downsampling and upsampling
phases, and its architecture has enough feature maps per convolutional block,
it preserves the contextual information of the image very well, especially the
neighbourhood information between voxels. Contextual information, includ-
ing the relationship between two or more voxels and the fine-grained detail
features such as the edges of the image, is needed during upsampling (recon-
struction of the segmented image) and it is provided by the skip connections
from downsampling, as shown in Figure III.6.

III.6 U-Net Under the Loop
When U-Net was proposed as a semantic segmentation algorithm for biomedical

images, it performed exceptionally well on the required task, outperforming the best
segmentation methods to date, despite being trained with very few images [101]. U-
Net belongs to the autoencoders family, which means that it consists of two paths,
as shown in Figure III.6:

1. On the left, a contractive path called the encoder. This part of the network
takes the input image, and outputs a set of feature maps called a feature vector
containing information and features representing the input.

2. On the right side is an expansive path called the decoder. It has the same
network structure as the encoder, but in reverse orientation. This part of
the network takes the feature vector from the encoder, which is in the middle
(bottleneck) of the network, and outputs the closest representation of the input
image. The feature vector in the bottleneck is also called the code or sparse
representation of the input.

3. In the middle, skip connections between both paths that add the feature maps
of the encoder to the decoder in order to reduce the coarseness of the output.

The architecture of U-Net is fully-convolutional, i.e. it has no fully-connected layer
(cf. subsection I.7.4) and consists of several convolutional blocks divided into en-
coder and decoder paths. In Figure III.7, the version of U-Net architecture we used
to segment 512 × 512 CT casting images is shown. We decided to keep the ori-
ginal U-Net architecture [97], although we reduced the number of kernels in each
convolutional layer to reduce the trainable weights and computational costs.

Encoder

The encoder consists of 5 convolutional blocks, each containing two consecutive
convolutional layers followed by a downsampling layer called max-pooling, except
for the bottleneck block. All conv layers have 3×3 kernels and the number of feature
maps per block is doubled between two consecutive blocks. On the way from 1st
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Figure III.6: Illustration of U-Net Architecture. The model consists of an encoder and
a decoder pathways connected with skip connections, which concatenate
the feature vectors of the first to those of the second. The output of a
well-trained U-Net architecture is a greyscale mask, which is the closet
representation of a binary version of the input.

block to 5th block, the number of filters is 16, 32, 64, 128 and 256 respectively.
These conv layers are used to extract or model features from the original image in
hierarchical order.

The max-pooling layer applied at the end of each block has a kernel size of 2×2 and
a stride of 2, reducing the size of the feature vector by half each time. If the size
of the input image is not even before applying max-pooling, a checkerboard effect
may occur during downsampling, resulting in some loss of information [102]. This
was avoided in the case of our dataset with 512 × 512 images.

Decoder

To reconstruct a quasi-segmented mask at the output of U-Net with the same size
as the original image, we need to upsample the feature vectors along the decoder to
increase their size. The decoder starts after the 5th block of the encoder and consists
of 4 convolutional blocks, each of which contains: (1) a transposed convolutional
layer with a kernel size of 2 × 2 and a stride of 2 like the max-pooling layers (cf.
subsection I.7.5), (2) two successive convolutional layers with the same number of
filters (feature maps) as their counterparts in the encoder, (3) and a concatenation
layer explained below. Each convolutional layer and each transposed convolutional
layer is coupled with a ReLU activation function (cf. subsection I.7.2). The latter
f(x) = max(0, x) sets negative voxels of each feature map to zero without further
computational cost. In fact, the dice loss at the beginning of the training is always
close to 1, which can lead to instability by exploding the weights gradients. Using
the ReLU function after each conv layer can resolve this gradient explosion [103].
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At the output of the architecture, an additional convolutional layer is used to output
a greyscale mask that is closest to a binary mask, as shown in Figure III.6. This
convolutional layer has a 1 × 1 kernel and is used to map 16 512 × 512 feature maps
of the 9th block to a single feature map of size 512 × 512, where each voxel has a
value between 0 and 1. This layer, unlike the other convolutional layers, is coupled
with a sigmoid activation function.

Figure III.7: U-Net architecture with 512 × 512 input size. Throughout the encoder,
the size of the input is reduced by applying a max-pooling operation at
the end of each convolutional block. And in the decoder, it is upsampled
until it reaches its original size.

Skip Connections Between Encoder and Decoder

The concatenation layers, also called skip connections, come directly from the en-
coder, as shown in Figure III.7. For example, when an input arrives in the 6th block
of the decoder, its feature vector from the 4th block of the encoder is sent to the 6th

block to be concatenated before passing through the convolutional layers. And the
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feature vector from the encoder’s 2nd block is concatenated to the input of block 8,
and so on. It should be noted that the feature vector coming from the encoder is
sent to the decoder before max-pooling is applied.

This concatenation process distinguishes U-Net from other encoders and makes it
a powerful segmentation tool. It preserves contextual information that helps the
decoder to more accurately reconstruct the original image as a quasi-segmented
image.

III.6.0.1 Sigmoid Activation Function

The last layer of the architecture is a convolutional layer with only one filter. This
layer takes the feature vector from the previous convolutional layer and outputs a
new feature map with a depth of 1. Then an activation function is coupled at the
output of this layer to map the voxels of this feature map to new values between 0 and
1 to reconstruct the final mask. Sigmoid activation function, shown in Figure III.8,
is the right choice for this task because it ranges between 0 and 1. This function
takes the feature map Gi of the last convolutional layer and outputs a greyscale
image Pi by mapping the voxels as follows:

Pi = Φ (Gi) =


0 < pij < 0.5 if gij < 0

pij = 0.5 if gij = 0
0.5 < pij < 1 if gij > 0

(III.7)

Consider a scenario where the final activation function of U-Net is a binary step
function that outputs a binary image with voxels 0 and 1. In this case, the soft-dice
loss would be a function with discrete values, as explained in subsection III.3.1. This
would prevent the network from converging, as a loss function must be differentiable
in order for the optimizer to compute the gradients and update the weights after
each epoch. Outputting greyscale images whose voxels lie between 0 and 1 using
the sigmoid function ensures the differentiability of the soft-dice loss function and
consequently convergence to a local minimum. For example, if the voxel in the target

Figure III.8: Plot of the sigmoid function which exists between 0 and 1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



III.7. Regularization 61

mask is 1 (white), the soft-dice loss function penalises the weights of the network
depending on how far the voxel in the predicted mask is from 1.

III.7 Regularization

III.7.1 Dropout

To help the model generalize better and reduce the risk of overfitting (cf. sec-
tion I.8), e.g. learning during training that the casting defects to be segmented have
only the shapes represented in our dataset, we added a dropout layer between suc-
cessive convolutional layers as a regularization method. Consequently, a percentage
of the convolutional filters are temporarily dropped out during training by reset-
ting them to their initial kernel values. This removes dependencies and prevents
all filters from synchronously optimizing their weights [104]. The decision of which
filters to drop is random and dropout layers have no parameters to be learned [105].
In the results section, we study the impact of the number of dropout layers in the
architecture on the training and validation dice losses.

III.7.2 Data Augmentation

When the model is trained on a limited number of observations, it tends to
over-learn from the available examples without being able to make correct predic-
tions on new images. This challenging problem requires some kind of regularization
to improve the performance of the model on new unseen inferences [106]. One such
regularization technique is data augmentation (DA), which consists of artificially
increasing the size of the dataset using image manipulation methods. DA is imple-
mented through operations that change the appearance of each training instance
without changing its semantics. For example, by rotating the image or flipping it
horizontally and vertically. In our study, we used online augmentation, which means
that the modified versions of each original instance were generated in real time dur-
ing training. This ensures that the network is trained on different images during
each epoch, as these new images, which should be as realistic as possible, are not
stored in memory and are never generated more than once.

The transformations used include random zooming into the image by a factor
between 0−0.2, random rotation by a value between 0◦ −30◦, horizontal and vertical
shifts by a factor between 0 − 0.1, shearing by a factor between 0 − 0.15 and ver-
tical or horizontal flipping. These techniques help to make the model more tolerant
to variations in position, orientation and size of discontinuities in CT slices. It is
important to note that we did not use a transformation that changes the greyscale
values in order to preserve the texture information. During training, transforma-
tion operations are randomly combined to augment the dataset by generating new
512 × 512 images with their corresponding masks, as shown in Figure III.9.
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Figure III.9: Generation of new instances from the same image via random data aug-
mentation.

III.7.3 Hyperparameters

Training U-Net to correctly segment CT slices requires a series of trials in which
the hyperparameters are tweaked interchangeably. Hyperparameters are not model
parameters, such as the weights of the layers, and they cannot be trained directly
on the data. The model parameters are learned during training when the weights
are updated based on the loss function using an optimizer, while the hyperpara-
meters are manually tweaked before training begins. Since we decided to keep the
same architecture of U-Net as in the original paper, the remaining hyperparameters
that can be tweaked are: initial learning rates of the optimizer, number of epochs,
batch size, number of filters per convolutional layer, kernels weights initialization
algorithm, and dropout layer rate. Finding the optimal set of hyperparameters,
included stopping training, changing the hyperparameters and restarting training
again until the training and validation dice losses were as close to zero as possible.
The options for setting these hyperparameters are default values from the software
package, manual configuration by the user, or configuration for optimal predictive
performance through a tuning procedure.

III.8 Performance Results
As mentioned in subsection III.2.1, during each training epoch, U-Net was

trained on 2400 augmented images, and at the end of the epoch it validates itself on
600 images. The goal is to teach U-Net to output a greyscale image that resembles
the target masks as closely as possible. Therefore, the average training and valida-
tion losses at the end of each epoch were recorded to monitor the training and stop
it if there were signs of overfitting or underfitting. As can be seen from the training
curves in Figure III.10, the latter phenomenon occurred because the validation dice
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Figure III.10: Evolution of dice loss evolution on training and validation data with re-
spect to training epochs. The stagnation of the validation loss at 0.6459
is a sign of underfitting, which means that the model could not map the
underlying relationship between the training images and the correspond-
ing binary target masks.

loss did not show any improvement during the training, no matter how many times
we changed the hyperparameters before starting the training.

This underfitting could be due to the fact that the CT images in the dataset contain
various artifacts, as explained in section I.3. In most cases, these artifacts may have
the same contrast range as the defects, creating an ambiguity that could prevent the
model from distinguishing the right voxels to be segmented. In Figure III.11 we see
that a defect and a region filled with streaks have the same greyscale ranges, and
only the defects are supposed to be segmented in the corresponding binary target
mask.

After a number of failed attempts, we decided to change the approach to CT slices
segmentation by following the steps below:

1. Train U-Net with over-segmented images as explained in the following section.
This will teach U-Net to recognise suspicious greyscale discontinuity that could
belong to a real defect, artifacts, noise or even geometrical borders.

2. Send these segmented discontinuities to a CNN classifier, whose training is
presented in the following chapter, to decide whether the discontinuities belong
to true alarms (defects) or false alarms.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



III.9. Training U-Net with Over-Segmented Images 64

Figure III.11: 16-bit greyscale CT image from the training dataset. Both artifacts and
defects voxels have close contrast or greyscale values.

III.9 Training U-Net with Over-Segmented Im-
ages

III.9.1 Dataset

For this dataset, we segmented the same greyscale 512 × 512 images of the
dataset individually using the 2D segmentation algorithm of section II.3, but with
a lower fudge factor. A sample of this dataset is shown in Figure III.12. – compare
with Figure III.3. Each mask contains the following classes of voxels:

• Black voxels, which belong to non-defective zones filled with material or the
empty zone outside the specimen.

• White voxels, which belong to suspicious discontinuities such as defects, arti-
facts, or even the abrupt change of greyscale at the borders of the specimen.

The fudge factor for each image was carefully chosen to include all voxels belonging
to such discontinuities. A side effect of such over-segmentation is that U-Net learns
to produce similar results when used to segment new images. On the other hand, this
has the advantage of reducing the false negative rate, i.e. the number of undetected
or missed discontinuities that could belong to real defects. It should be noted
that over-segmentation does not mean that the shape of the defects is
over-extended, but that there is an excess of discontinuities. Furthermore,
these additional false alarms are expected to be eliminated using trained classifiers,
as described in the following chapters.
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Figure III.12: sample of images from the segmentation database of 3000 images: (Left)
512x512 images cropped from the CT volumes, (Right) their target
masks where defects, borders and false alarms are segmented. This over-
segmentation of the dataset is intended to make the model sensitive to
slight discontinuities.
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III.9.2 Training Results

Training a deep learning model requires monitoring the loss values and restart-
ing the training process if the results are not satisfactory after tweaking the hyper-
parameters interchangeably,as explained in subsection III.7.3. Table III.1 gives the
final values or choices of hyperparameters that led to the best training results.

Table III.1: U-Net training hyperparameters that gave best training results on CT seg-
mentation dataset. The final values were obtained after a series of inter-
changeable tweaking.

Hyperparameter Final Value or Choice
Loss Function Soft-Dice Loss
Optimizer Choice adam
Optimizer Learning Rate 10−3

Batch Size 12
Dropout Rate 0.2
Encoder: filters in Conv layers 16, 32, 64, 128, 256 consecutively
Decoder: filters in Conv layers 128, 64, 32, 16, 1 consecutively
Filters Initialization Algorithm "He algorithm" suitable for layers with ReLU [52]
Epoch Training is stopped when validation loss stops improving

Although we decided to use the same layers in U-Net as in the original paper,
we changed the number of dropout layers to study their impact on training and
validation losses. Table III.2 shows the dice loss values depending on the number of
dropouts in the encoder and decoder. In each case, the number of dropout layers in
the contractive path (encoder) is equal to the number of dropouts in the expansive
path (decoder) to maintain the symmetrical property of the architecture. According
to the results, completely removing the dropout layers from the architecture has
a disadvantage for the dice loss. As explained in subsection III.7.1, the dropout
layers prevent the convolutional filters from synchronously optimizing their weights
and thus provide better generalization by letting the network rely only on robust
features in the feature vectors. On the other hand, adding 4 dropout layers did not
lead to the best results, as it causes the network to lose the contextual information
about the images that is essential for reconstructing the quasi-segmented version of
the input.

The optimal architecture contains 2 dropouts in the encoder and 2 more in the
decoder: one dropout layer is introduced between two convolutional layers in blocks
2nd and 4th of the encoder, and blocks 6th and 8th of the decoder (cf. Figure III.7).
With the set of hyperparameters in Table III.1, the architecture has achieved a
training loss of 0.1231 and a validation loss of 0.1456 after 72 training epochs.
Figure III.13 illustrates the evolution of the training and validation losses over the
course of training.

The spikes on the curves are caused by mini-batch weights updates by adam optim-
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Table III.2: The impact of dropout layers in the contractive path (encoder) and the
expansive path (decoder) on training results. Adding two dropouts to each
path achieved the lowest training and validation dice losses.

Number of dropout
layers per path

Training dice
loss

Validation dice
loss

Number of epochs
(before stagnation)

0 0.1335 0.1612 32
1 0.1272 0.1670 35
2 0.1231 0.1456 72
3 0.1263 0.1471 42
4 0.1519 0.1756 30

izer. During each epoch, data is sent to the network in batches of 12 and at the end
of each batch adam optimizer updates the weights of the network based on the dice
loss value. In some batches, there are training instances that have more discontinu-
ities belonging to geometrical borders compared to other images (cf. Figure III.3).
This difficulty manifests itself on the training curve by a sudden increase in the dice
loss, or spikes. From epoch 16, the model started to adapt to this particularity in
the dataset which was intended to reduce the number of missed defects.

Conclusion
This chapter explored the potential of U-Net as a segmentation tool for CT

images. Due to the presence of artifacts in CT, the model was not able to learn from

Figure III.13: Evolution of training and validation losses over training epochs. The
lowest validation dice loss was achieved after 72 training epochs.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



III.9. Training U-Net with Over-Segmented Images 68

the manually segmented dataset to minutely segment CT slices. In contrast, when
the model was trained on an oversegmented dataset, it achieved higher training
and validation losses and shifted the segmentation task from detecting defects to
detecting discontinuities that could belong to a defect, artifact, noise or even the
borders of the specimen.

In the next chapter, we present a CNN classifier that can be coupled with U-Net
to distinguish true defects from false alarms after it has been trained on a binary
dataset. In chapter V, we explain the implementation details and validate this
coupling approach on CT volumes of castings.
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In chapter II, we have proposed a 2D segmentation algorithm that can be used
on 2D images after slicing the CT volumes along a certain direction. This algorithm
outputs the discontinuities that could represent real defects if the fudge factor is
set correctly. This means that the algorithm always requires human intervention to
avoid artifacts or noise segmentation. In chapter III, we trained U-Net model to
over-segment CT images, highlighting casting defects and reducing false negatives.
Unlike the 2D segmentation algorithm, U-Net does not require any parameter to be
adjusted, even when applied to images from different volumes. The only drawback
is the amount of false positives in the output that do not belong to real defects.

In this chapter we propose an automatic classifier that can be combined with U-Net
to reduce false alarms. Once the discontinuities are located by U-Net, a 64 × 64
greyscale ROI (and not binary) is cropped around each discontinuity to classify it
using a trained deep learning algorithm, specifically a convolutional neural network
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(CNN). This may be a new architecture trained from ground up, or a pre-trained
state-of-the-art model adapted for this classification task.

In this chapter we will discuss the following: (i) building a diverse dataset from 2D
CT images of high-pressure and gravity castings, (ii) training and optimizing a new
convolutional network from ground up, (iii) comparing this new model with deep
state-of-the-art models and demonstrating that high performance can be achieved
with a relatively less deep architecture.

IV.1 Classification Task
Classification is a process of dividing a given set of data into classes, often called

targets, or labels. In the last decade, deep learning models such as convolutional
neural networks have emerged as the most powerful solutions for modern object
classification [107, 108]. The goal of this chapter is to use CNN to classify 64 × 64
CT images into true alarms or false alarms after learning from a binary dataset.

Our classification task consists of learning to classify xi into k classes. xi is an image
from a dataset of length N , i.e. i = 1, ..., N . Each image xi is an array of length
M of voxels, and each voxel value, also called feature, can be represented as xij

with j = 1, ..., M . The CNN must output a vector pi associated with xi, where pi

is the probability distribution over the possible classes. In our classification task,
k ∈ 1, 2 represents the number of classes, where 1 is the false alarm class (normal
zone or artifact) and 2 is the true alarm class (defect). In practice, these classes are
converted into array-like categorical variables such that 1 is encoded as [1, 0] and 2
as [0, 1].

Given these variables, we can now define the mapping function f : Rn → 1, ..., k,
which maps each image to a vector that determines the probability of distribution
after applying an activation function. The mapping function f can be represented
as follows:

pi = f(xi; W ; b) = W · xi + b =
∑

wm · xim + b (IV.1)
The weight matrix, denoted W, and the bias vector b are referred to as the paramet-
ers of the network. These parameters should be optimized throughout the training
process until the network is able to output the best probability distribution. The
latter is a vector whose values represent the membership probability to each class,
yi = [yi1, yi2]. For example, if the second value of this vector is the maximum
probability value, it means that the image belongs to class 2 (true alarm).

IV.2 Learning Experience
Since we want to train a CNN to classify small regions in CT slices into true or

false alarms, we built a binary dataset in which each data point xi is associated with
a target label yi that indicates whether xi represents a defect or not. As the labels
are provided, this makes the learning experience supervised as the model observes
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multiple examples xi with their assigned labels yi and learns to predict yi from xi

by estimating pi(yi | xi).

IV.2.1 Training, Validation and Test Data

In metal casting, aluminium specimens can be made either by injecting mol-
ten metal into a mould under high pressure or by cooling the metal in a mould
under the force of gravity. As explained in subsection I.5.1, the data available for
this study include CT volumes of different specimens fabricated by one of these pro-
cesses. These specimens are very diverse in terms of thickness and shape and mostly
represent mechanical parts from the automotive and aerospace industries that have
been inspected using different CT systems. Due to this diversity, each volume was
scanned under different imaging conditions in terms of source voltage and current
and magnification factor (cf. section I.2).

Consequently, a total of 20 CT volumes have been cropped to build a binary dataset
to train the neural networks in this chapter. Although this diversity poses a challenge
for learning, it should help the networks to generalize better and avoid overfitting
by training them on CT images that have different contrasts, spatial resolutions and
artifacts. Building the dataset involved two steps:

1. Each 3D volume was sliced along the three axes to generate series of 2D slices
as explained in chapter II.

2. Several defective and normal zones of 64×64 were cropped manually from each
slice. The choice of 64 × 64 as cropping size served the purpose of capturing
the extended shape of any potential casting defect in CT slices, given a spatial
resolution between 150 and 450 µm.

Figure IV.1 shows a typical 2D CT slice of a casting specimen where different "to-
be-cropped" zones are highlighted:

• Cropped casting defects are mostly porosities and shrinkage cavities, and they
were labelled as "True Alarm".

• Normal zones may be empty zones outside the casting (black zones), and/or
homogeneous grey zones of material representing the body of the casting. Typ-
ical tomography artifacts such as streaks and ring artifacts are also considered
normal zones as they are generated after the 3D reconstruction of the CT im-
ages and have no physical existence (cf. section I.3). Since these crops do not
represent a defect, these zones were labelled as "False Alarm".

It is important to note that the black background may be included in the "true alarm"
images, as some defects may occur near the borders of the specimen. On the other
hand, artifacts in CT volumes are very peculiar and depend on the scanning system.
Ring artefacts occur, for example, when the sensitive elements of the X-ray detector
respond differently to photon energy. For thick castings, the calibration of the CT
system is not very efficient due to the difference between the calibration energy
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and the X-ray spectrum reaching the detector after passing through the specimen,
resulting in coaxial rings along the axis of rotation, as shown in Figure IV.1. Another
example of artifacts are the streaks resulting from scattered X-rays or caused by large
thickness differences within the specimen or by the presence of materials with high
attenuation coefficients compared to aluminium (cf. Figure I.6). With typical image
processing techniques, these artifacts could be incorrectly segmented as defects due
to their high contrast compared to their surrounding regions. Since their shapes are
relatively regular compared to the casting defects, different types of artifacts were
included in the dataset and the neural network models were trained to recognize
them as normal zones, "false alarms".

Figure IV.1: Two defects and a ring artifact highlighted in a CT slice, as well as a normal
non-defective zone. The training dataset is built by cropping 64×64 images
around such zones.

A sample from this dataset is illustrated in Figure IV.2. At the end of the cropping
process, we built a binary dataset with the following number of 64 × 64 images:

• 5500 true alarms, i.e. defective regions.
• 8500 false alarms, i.e. normal regions, artifacts or noise.

As explained in section I.8, training a neural network on a dataset requires splitting
the data for each phase of the learning process. 80% of the images in the dataset
are used as the training set, and 20% as the validation set, with a batch size of
32. The latter is a hyperparameter that specifies the number of images the model
must observe before updating the weights of the network using an optimizer, as
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Figure IV.2: A sample from the binary casting dataset: (top) defects, (bottom) false
alarms. This dataset is very diverse in terms of contrast and spatial resol-
ution.

explained in section III.4. After training is done and the models are saved, each can
be tested on a new vector of images called the test vector. This vector contains 350
images representing each class (700 in total) cropped from new volumes. This test
evaluates the models’ ability to recognize defects as true alarms and artifacts and
normal zones as false alarms by plotting the confusion matrix.

It was decided to work with 2D CT slices instead of using 3D CT volumes directly
as input. Although the defects in CT have 3D geometries, building a dataset of
3D zones requires a large number of defect samples. In practice, to increase the
number of 2D 64 × 64 images in the above dataset, we sometimes cropped multiple
zones from the same defect along different slicing axes. Conversely, working in 3D
means that the entire defect is considered as one data point, which limits the size
of a possible 3D dataset and hinders efficient training.

IV.3 Performance Measurement
To select the best CNN architecture and evaluate its learning ability, we need to

measure its performance quantitatively. In the case of a classification task, accuracy
is a reliable parameter that measures the proportion of examples for which the model
predicted the correct labels. Another important parameter is the loss function, which
indicates the magnitude of the prediction error that the model made during training
and validation, as explained in section I.8.

On the other hand, to evaluate the predictive ability after training, the confusion
matrix can be used to calculate the F1-score on a new set of images. This parameter
helps to compare the predicted labels pi with the ground truth labels yi of a small
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dataset that the model did not observe during training.

IV.3.1 Evaluation Metrics

Accuracy is the intuitive metric that can be used to measure the learning abil-
ity of a model during training. In binary classification, accuracy can be calculated
in terms of positive and negative results as follows:

Accuracy = TP + TN

TP + TN + FP + FN
, where (IV.2)

TP = True Positives, correctly classified defects,
TN = True Negatives, correctly classified normal zones,
FP = False Positives, normal zones misclassified as defects,
FN = False Negatives, defects misclassified as normal zones.

After training is done and the model is saved, the performance of the model on new
unseen data points can be measured using F1-score. This metric is established by
measuring the precision and recall of the model given a vector of new data points.
These two parameters can be explained as follows:

• When the possibility of false positives is very high, as is the case in our clas-
sification task where artifacts and noise could be mistaken for defects, we can
use precision to measure how often the model is correct in predicting positive
outcomes.

Precision = True Positives

True Positives + False Positives
(IV.3)

• With the same understanding, recall measures the model’s ability to identify
true positive outcomes (defects). This metric is useful when the cost of missing
defects is high, as its denominator takes into account the detected defects (TP)
and the missed defects (FN).

Recall = True Positives

True Positives + False Negatives
(IV.4)

F1-score combines precision and recall. When testing the model on a new dataset,
a high F1-score means that the model predicted few false positives and few false
negatives, i.e. this metric measures the performance of the model, considering all
classification categories equally [109]. This metric is used to evaluate the models on
new inferences (unseen images).

F1 − Score = 2 Precision × Recall

Precision + Recall
(IV.5)
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IV.3.2 Loss Function: Binary Cross Entropy

As explained in subsection III.3.1, a loss function indicates how efficient a model
is at classifying the data points in the training dataset. The smaller the loss, the
better the model at mapping the relationship between the input images and the
output labels (false or true alarm). Conversely, a large loss value means that we need
to optimize the training parameters to improve the training process [110, 111]. In
binary classification tasks, the most common loss function is binary cross entropy,
which can be described as the average log-likelihood that the model assigns to the
training data points. In information theory, entropy is considered a measure of
uncertainty. For this reason, it is logical to logarithmically transform what we are
uncertain about; and in our classification task, uncertainty is represented as the
predicted probabilities.

Binary cross entropy log loss compares the predicted probabilities pi = [pi1, pi2] to
the real label yi = [yi1, yi2] of the input. As mentioned earlier, the latter can be
either [1, 0] = "false alarm" or [0, 1] = "true alarm". The equation of this log loss
over a dataset of length N is as follows:

BCE = 1
N

N∑
i=1

−[yi log(pi) + (1 − yi) × log(1 − pi)] (IV.6)

If the model predicts that an observation should have a higher membership probab-
ility to the first class (e.g. [0.98, 0.02]), a large penalty will occur if the true label
is [0, 1]. On the other hand, a smaller penalty will occur if the true label of the
input is [1, 0]. In other words, the binary cross entropy loss calculates the score
that penalizes the probabilities based on how close or far the predicted probabilities
[pi1, pi2] are from the target values [yi1, yi2]. To summarize the performance metrics,
the accuracy and loss function are used while training the network. And once the
model is trained and saved, the F1-score is used to evaluate the model on a vector
of new images.

IV.4 SGD Optimizer
Gradient descent [112] is a famous optimization algorithm that works over the

loss landscape, as shown in Figure III.4. After many trial-error attempts, stochastic
gradient descent (SGD) optimizer [113] with momentum was used with each model
in this study to find the weights of the network that need to be updated, at the
end of each training epoch. The momentum parameter accelerates the updating
of the gradients towards a local minimum, leading to even faster convergence. For
the tth iteration, the weights update is denoted by Equation IV.7, where θt denotes
the current weight update and θt−1 the previous update. W represents the weights,
E is the average loss over the dataset, and ∇E(W ) is the negative gradient. α is
the learning rate and γ ∈ [0, 1] represents the momentum used for speeding up the
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convergence of the gradient and preventing oscillations [114]:

θt = γθt−1 − α∇E(Wt−1)
Wt = Wt−1 + θt

(IV.7)

The initial value of the learning rate α was set to 0.01 and the momentum γ to
0.9. Using the callback "reduce learning rate on plateau" in the Keras library, the
learning rate is automatically reduced by a factor of 0.1 each time the validation
loss stagnates over five consecutive epochs.

IV.5 State-of-the-Art Models
To achieve high performance, deep convolutional neural networks require a large

dataset of labelled images, which can be a costly process in many domains. One
possible solution to this challenge is to use one of the pre-trained "state-of-the-art"
CNNs, such as VGG19, GoogLeNet, AlexNet, etc. Each of these networks has been
trained on a very large dataset consisting of natural images, such as ImageNet [115].
Consequently, their convolutional layers have very sophisticated filters that aptly
respond to different details in the images. The learning ability of these convolu-
tional filters could be applied to a new classification task through a procedure called
transfer learning [116].

Transferring the learning of these models to a new classification task requires fine-
tuning the weights of these models, without initialization, with a new dataset,
usually similar to ImageNet. And before conducting fine-tuning, the last block of
layers must be replaced to prevent the model from classifying a new image accord-
ing to its previous configuration. The last block, called FC head, consists of fully
connected layers (cf. subsection I.7.4). In Figure IV.3 we see the FC head of a very
famous deep state-of-the-art model VGG19.

After replacing the FC head, we can start fine-tuning by adjusting the hyperpara-
meters until we find the best configuration. This process consists of two steps:

1. Warming-up, in which the model is trained on the new dataset with frozen
weights except those of the FC head layers. This prevents the gradients of
the newly initialized layers from propagating backwards through the entire
network and weakening the powerful filters of the convolutional layers.

2. Fine-tuning, where the model is completely unfrozen and its weights are up-
dated with a very small learning rate so that the original convolutional filters
do not deviate dramatically.

When the dataset was still under construction, we fine-tuned VGG19 architecture
with our casting dataset without initialising its weights. Since ImageNet is an
RGB dataset, this required a preprocessing step where each image in the dataset
was converted from greyscale to RGB by repeating each image three times along
the channel dimension. As a result, the fine-tuned VGG19 achieved near-perfect
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Figure IV.3: Fine-tuning consists of removing the original FC layers, highlighted in red
in VGG19 architecture, and replacing them with new layers that are better
adapted to the new classification task. Source: [117]

performance, suggesting overfitting as the model sees each voxel three times during
training. An alternative solution was to develop a new architecture and train it from
ground up with our casting dataset.

To support the claim that CNNs can be used as classifiers to distinguish greyscale
discontinuities in CT slices of casting volumes and that, when trained on a diverse
dataset, they can correctly distinguish artifacts from true defects, we compared this
new model with five state-of-the-art models after changing their inputs to greyscale
images, modifying their FC heads and initializing their weights. This means
that we trained these models from ground up without transfer learning, just like the
new model. To show that a dataset of greyscale CT images does not require much
depth, the state-of-the-art models were selected based on their depth to compare
performance.

IV.6 Building a New CNN Architecture
The process of finding an efficient convolutional architecture begins with select-

ing an arbitrary design and modifying it progressively according to learning losses
and accuracies. In the early stages of training, the loss function was very high when
the dataset was still under reconstruction. This is due to the fact that our dataset
contains two types of defective images, as shown in Figure IV.4: (a) images with
uniform background, a normal zone around the defect filled with material; and (b)
images with multiple backgrounds, a normal zone around the defect and a dark zone
outside the casting. The contrasts of the defect and the dark background (outside
the specimen) are of the same range. Consequently, this ambiguity slowed down the
improvement of accuracy throughout the optimization process until we increased
the size of the dataset to solve this problem.

Deep learning models have many hyperparameters that control the learning process,
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Figure IV.4: Two types of defective images in the dataset: (a) defect surrounded by a
uniform background, (b) defect surrounded by a uniform background and
a dark zone outside the casting body.

as explained in subsection III.7.3. These parameters have a great impact on the
training process as well as on the training time. The list of hyperparameters includes:
learning rate of the optimizer, number of epochs, batch size, number of layers,
number of filters per convolutional layer, size and stride of convolutional filters,
number of neurons per FC layer, weights initialization algorithm, dropout rate and
choice of activation function. Finding the optimal architecture shown in Table IV.1
involved a long series of hyperparameters adjustment and tweaking while observing
the training loss and accuracy curves after each training attempt.

The first factor to consider when designing an architecture is the number of layers.
Increasing the depth of the network could lead to an increase in the number of
learning parameters, which in some cases could lead to overfitting, not to mention
higher space and time complexity. For this reason, we started with a very shallow
architecture, and then increased the number of layers progressively while observing
the improvement of loss and accuracy. In the following sections, we explain the
selection of each component that makes up our new architecture of 10 layers, named
CT -Casting-Net.

Table IV.1: The optimal architecture of the CT-Casting-Net after many trial-error at-
tempts for an input size of 64 × 64 × 1, with the shape of the output of each
layer, as well as the number of filters or units.

#Layer Layer Type Filter Size Number of Filters or Units Output Shape
1 Conv2D + ELU 5x5 64 64, 64, 64
2 MaxPooling2D 2x2 64 32, 32, 64
3 Conv2D + ELU 5x5 128 32, 32, 128
4 MaxPooling2D 2x2 128 16, 16, 128
5 Conv2D + ELU 5x5 256 16, 16, 256
6 MaxPooling2D 2x2 256 8, 8, 256
7 Conv2D + ReLU + Dropout 5x5 512 8, 8, 512
8 MaxPooling2D 2x2 512 4, 4, 512
9 Flatten + FC + ReLU - 256 256
10 FC + Softmax - 2 2
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IV.6.1 Convolutional Layers

Convolutional filters are applied to the training images to look for zones that might
trigger class activation, i.e. a discontinuity representing a casting defect. Each
image is convolved with multiple filters whose weights are initialized with the "He
algorithm" suitable for layers with ReLU activation function [52]. The He function
draws samples from a truncated normal distribution centred at 0 with a standard
deviation σ =

√
2

tin
, where tin is the number of filters in the layer.

One of the most influential hyperparameters besides the number of layers is the
number of filters per convolutional layer. Decreasing this parameter makes the
neural network too shallow to detect the class activation zones, and increasing it
provokes a time complexity. Each filter convolves the feature map coming from the
previous layer and looks for a shape that could be voted as a defect. Increasing the
number of filters implies that the number of votes that decide whether the zone is
defective or not also increases. To reduce the processing time and to avoid detecting
noisy trends in the images, the comparison was stopped at [64, 128, 256, 512].

In CT-Casting-Net architecture, after many trial-error attempts, four convolutional
layers with filter sizes of (5×5) were used. Small filters were used in the convolutional
layers because the training images are relatively small (64 × 64 voxels) and because
defects in casting CT images, such as porosity, are usually small. A stride of 1 × 1
was used, which corresponds to the scanning step of the kernel over the image,
meaning that a convolutional layer outputs feature maps of the same size as the
input image.

IV.6.2 Activation Layers: ReLU

As explained in section IV.4, SGD optimizer updates the weights of the network,
including the values of the convolutional kernels or the weights of the FC layers, by
computing the gradient of these weights with respect to the loss value. However,
when the loss improves slowly, the weights are updated by only a small amount
leading to a vanishing gradient and very slow convergence. One solution to this
vanishing gradient problem is to use ReLU (rectified linear unit) as the activation
function [107].

When the accuracy started to stagnate after many training trials, the ReLU function
was replaced by ELU in the first two convolutional layer and the training process
was restarted with the same hyperparameters. As shown in Figure I.14, ELU does
not have the ReLU dying problem, i.e. setting the negative pixels (or voxels) of
the feature maps to zero. This advantage ensures that the loss converges faster and
gives more accurate results.
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IV.6.3 Max-Pooling Layers

After each convolutional layer, a max-pooling operation with a kernel size of 2×2 is
applied. The architecture includes 4 max-pooling layers with the same kernel. Each
of these layers creates a new reduced matrix by dividing each feature map into non-
overlapping grids and then taking the maximum value in each grid [107]. Combining
responses at different locations increases robustness to small spatial variations, and
reducing the size of the feature maps reduces the learning parameters of the network
and speeds up the learning process.

IV.6.4 Fully-Connected Layers

After extracting features using a series of convolutional blocks, we need to classify
the input into one of the classes. This can be done using a fully connected (FC) layers
of neurons or units, explained in subsection I.7.4. All feature maps of the same input
image are flattened into a one-dimensional vector and passed to a fully-connected
layer, also called dense layer, as shown in Figure IV.5. Like the convolutional layers,
FC layers are also coupled with an activation function, and these layers form together
the classifier block. Using the SGD optimizer, the weights of this block are updated
during the training process until the classifier block correctly assigns the feature
maps of each image to the correct class (true alarm or false alarm).

Figure IV.5: The output of the convolutional layers is flattened to create a single long
feature vector. This is then sent to a block of fully-connected layers called
classifier block, which decides the class of the input image.

After four convolutional blocks, the feature maps are flattened and sent to an FC
layer with 256 units, coupled with a ReLU. The last layer of the architecture is also
a FC layer with a number of units equal to the number of classes (two in our case).
This layer is coupled with a softmax activation function that maps the output to a
vector [pi1, pi2] so that the total sum is 1. In other words, the output of softmax is
a probability distribution over the possible classes, as shown in Figure IV.6.
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Figure IV.6: Softmax converts the output of the last FC layer into a vector of member-
ship probabilities that sum to 1 over classes.

IV.6.5 Regularization

IV.6.5.1 Dropout

In the last convolutional block, a dropout layer was added between the convolutional
layer and the max-pooling layer with a rate of 35% as shown in Table IV.1. This
means that before applying convolution, 35% of the filters (randomly selected) are set
to their initial kernel values [105]. This type of regularization improves the learning
process by reducing the noisy trends that could be learned by the convolution layer
filters that come after the dropout. Indeed, when looking at the feature-maps before
adding the dropout in Figure IV.7, it is clear that the convolutional filters were
triggered by the defects and the borders of the images. This is an example of a
noisy trend learned by the network that can lead to overfitting if no regularization
is applied.

Figure IV.7: Some feature-maps before adding dropout. The convolutional filters de-
tected the irregular shape of the defects, as well as the noisy trends at the
borders.

IV.6.5.2 Data Augmentation

As explained in subsection III.7.2, one of the most common ways to improve the
generalization of a CNN model is to train it with more data. In practice, obtaining
and labelling more data is an expensive and difficult process. To get around this
problem, we can create fake data by twisting and modifying the existing data, which
is very beneficial in a classification task. The CNN is supposed to map a high-
dimensional input xi into a probability distribution pi over the possible classes.
When xi is modified by applying aspect transformations, the model learns not to
rely on the particularity of the original example, improving its ability to generalize
and prevents overfitting. We applied the same transformations of subsection III.7.2
to each greyscale training instance.

In practice, during each training epoch, the CNN is trained on a dataset generated
by the data augmenter that has the same length as the original dataset. Since these
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augmented images are not stored in memory, this means that the model does not see
the same version of the data point xi more than once during the learning process.
At the end of training, the model would be trained with P × Q images, where P is
the number of images in the dataset and Q is the number of training epochs. And
when comparing two CNN models, it is important that both models are trained
using the same hand-designed dataset augmentation schemes.

IV.7 Performance Results & Discussion
As explained earlier, the search for the architecture of CT -Casting-Net involved

a long series of trial-error attempts: After determining the number of layers and
the number of filters in the convolutional layers, we began to change the other
hyperparameters interchangeably until it achieved high accuracy on the CT casting
datasets. Finally, to evaluate the learning process, we compared the performance
with state-of-the-art models trained from ground up. During each training epoch,
the training loss, which is the output of the binary cross-entropy loss function, and
the training accuracy, which evaluates each model on examples it was constructed on,
were plotted. Similarly, at the end of each training epoch, the model was validated
on the 20% of the data and the validation loss and accuracy were plotted as shown
in Figure IV.8. The resulting curves help to understand the learning process and
spot any sign of overfitting. Ideally, the loss and accuracy should be closer to zero
and one respectively.

The training was started with a learning rate of 0.01 and the weights of the networks
were updated using the SGD optimizer. In the first trials, training and validation
losses diverged after a few epochs, indicating overfitting as explained in section I.8.
This was attributed to the small size of the dataset. Subsequently, this divergence
was systematically reduced by increasing and diversifying the dataset, adding dro-
pout regularization, and applying data augmentation techniques. For each model,
the training process is stopped when the validation accuracy no longer improves
over five consecutive epochs.

Table IV.2: Comparison of the performance of CT -Casting-Net and five state-of-the-
art models based on training and validation results. CT -Casting-Net (10
layers) achieved the best performance in terms of loss and accuracy.

Model Depth Training
Loss

Training
Accuracy

Validation
Loss

Validation
accuracy

CT-Casting-Net 10 0.0364 98.80% 0.0488 98.30%
VGG19 22 0.4764 77.74% 0.4775 78.44%

ResNet50 50 0.1481 94.58% 0.1278 95.47%
ResNet101 101 0.2367 91.68% 0.2620 91.55%
Xception 126 0.3596 88.46% 0.3025 90.01%

InceptionV3 159 0.3588 81.67% 0.3694 82.88%
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The first step of the comparison study is to eliminate the state-of-the-art models that
do not achieve high accuracy on the dataset. For this study, 5 state-of-the-art models
were selected based on their depth: VGG19 (22 layers), ResNet50 (50), ResNet101
(101), Xception (126) and InceptionV3 (159). Table IV.2 shows the performance
of CT-Casting-Net trained from the ground up and the initialized state-of-the-art
models as explained in IV.5. The performance comparison is based on losses and
accuracies of training and validation.

Of all the state-of-the-art models, ResNet50 performed best with a training accuracy
of 94.58% and a validation accuracy of 95.47%. CT -Casting-Net, which consists
of only ten layers, outperformed the state-of-the-art models, achieving a training
accuracy of 98.80% and a validation accuracy of 98.30% with less training time.
This shows that increasing the depth does not necessarily increase the classification
accuracy and does not guarantee better performance. The final training curves of
CT-Casting-Net are shown in Figure IV.8.

Figure IV.8: Casting Dataset: CT-Casting-Net training curves with respect to train-
ing epochs. The model achieved training and validation accuracies close to
1, and training and validation losses close to 0. The best performance was
obtained after 63 epochs of training.

IV.7.1 Inference Results

After training is done, the best performing model CT-Casting-Net was tested
on a set of 700 new images cropped from a new volume, in order to check its
performance. The output of this test is a confusion matrix that summarises the
classification results by checking how often the predicted labels are correct compared
to the actual labels. As stated in subsection IV.3.2, for each inference image, the
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Table IV.3: Inference results of CT-Casting-Net on a balanced vector of 350 defects and
350 false alarms. The model achieved high F1-score of 96.85%.

CT-Casting-Net Metrics
False Alarm TN= 340 FP= 10 Recall= 96.57%
True Alarm FN= 12 TP= 338 Precision= 97.12%

False Alarm True Alarm

model outputs a vector pi = [pi1, pi2], where pi1 is the probability of membership to
the false alarm class and pi2 to the true alarm class. The highest probability defines
the class predicted by the model for each image.

According to the confusion matrix of CT-Casting-Net shown in Table IV.3, CT-
Casting-Net achieved high recall of 96.57% and precision of 97.12%, indicating an
F1-score of 96.85% (Equation IV.5) even though the test images come from a new
volume, with different contrast and spatial resolution compared to the training data-
set. In fact, in aerospace and automotive industries it is very important to detect all
defects in order to evaluate their consequences on the lifetime of the casting speci-
men. On other hand, misjudging normal zones or artifacts as defects could lead the
high rejection rate and economic problems. For that reason, having high F1-scores
ensures that the models are able to classify both defects and normal zones correctly.

IV.7.2 Visual Test

To understand how CNNs make their classification decisions, the gradients map
of the final convolutional layer of a model can be calculated for a specific image in
order to highlight the zone that triggered the class decision. This gradient map is
calculated with the help of Gradient-weighted Class Activation Mapping, or more
simply, Grad-CAM. As introduced by [118]: "Grad-CAM uses the gradients of any
target concept, flowing into the final convolutional layer to produce a coarse loc-
alization map highlighting the important regions in the image for predicting the
concept".

In Figure IV.9, two Grad-CAM of the best performing model are shown after sending
test images of shrinkage cavities. The model labelled both images as true alarm
(defect). Looking at the grad-cams, it is clear that the filters of the last convolutional
layer actually detect the correct patterns in the image and are activated around
these patterns. These gradient maps ensure that the high accuracies achieved did
not occur by accident or happenstance and that the model was not activated on
irrelevant patterns.
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(a) (b)

(c) (d)

Figure IV.9: Grad-cam output of the final convolutional layer showing the class trig-
ger: (a-c) 64 × 64 zones with shrinkage cavities; (b-d) Grad-CAM by CT-
Casting-Net.

Conclusion
Classical defect detection algorithms cannot perfectly distinguish between arti-

facts and defects, as both indications represent a zone of high contrast compared to
the surrounding backgrounds. This ambiguity is also reported by operators when
using automatic image recognition algorithms as an interpretation aid. The pro-
posed CNN classifier CT-Casting-Net, which directly processes greyscale images,
proved to be very efficient in correctly classifying casting defects as true alarms and
artifacts or noise as false alarms. In addition, CT-Casting-Net achieved near-perfect
performance compared to widely recognised deep CNN models, despite having only
10 layers, in terms of training and inference metrics.

Since the segmentation model U-Net from the last chapter has been trained to over-
segment CT images, CT-Casting-Net is coupled with U-Net in the next chapter to
recognize real defects in 3D volumes and eliminate false alarms. This represents a
new approach for automatic defect detection in industrial CT volumes of castings.
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The ultimate goal of this chapter is to design a generic approach to automat-
ically detect defects inside CT volumes of aluminium alloy castings without user
intervention. In chapter III we trained U-Net to over-segment CT slices in order to
detect all suspicious discontinuities. And in chapter IV we trained a CNN model,
CT-Casting-Net, to classify discontinuities into true alarms (defects) or false alarms.
By coupling U-Net and CT-Casting-Net, we can detect and validate true defects in-
side CT volumes and eliminate artifacts and noise.

As shown in Figure II.1, CT volumes are mostly filled with empty void outside the
specimen and only 20% of the data show the actual aluminium casting. Further-
more, this 20% is mostly filled with material and defects make up only a very small
proportion. Therefore, in order to validate the deep learning approach, we need val-
idation metrics that primarily consider the voxels with defects and indicate whether
they were detected or not. This chapter presents the details of this coupling ap-
proach and its validation on 6 CT volumes at the object level using the probability
of detection (POD) and at the voxel level using Intersection-over-Union (IoU).

V.1 Automatic Defect Detection Approach
As illustrated in Figure I.11, the proposed approach is intended to be used as

a post-processing algorithm after reconstructing the CT volume of an aluminium
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specimen from X-ray projections. This approach consists of four steps as illustrated
in Figure V.1:

a) The volume is sliced along the longest dimension of the specimen, and the 2D
greyscale slices are individually over-segmented by U-Net. The binary slices
are then stacked together to make up a binary volume. The latter is labelled
by assigning a unique integer to each object. This can be a defect, noise,
artifact or even borders segmented by U-Net.

b) The coordinates of the centre-of-mass (COM) of each object are retrieved and
located in the original greyscale volume.

c) By locating the COMs of each object, three greyscale zones of 64 × 64 are
cropped around each COM along the three planes XY, YZ and XZ.

d) The three 64 × 64 crops are sent to the CT-Casting-Net to validate the type
of each image, defective zone or false alarm, and consequently the object from
which they were cropped. If the three crops are classified as defects, the object
is retained, otherwise it is removed from the binary volume of step a).

V.1.1 Slice-by-Slice Segmentation with U-Net

After slicing the volume along the longest dimension of the specimen, the user
chooses a random ROI of 512 × 512 × (Z) to send to U-Net model. Unlike the 3D
algorithm in section II.4, the input is not limited along the Z direction, but along
the X and Y axes due to the size of the images on which U-Net was trained. If an
inference slice is smaller than 512 × 512, the edges of the slices along the smaller
dimension are padded with zeros. And if the slice is larger, an automatic crop is
applied along the larger dimension. In the last case, parallel segmentation can be
performed on different crops of the image, and the final results are concatenated to
obtain a segmented slice with the same size as the original.

As explained in chapter III, the output of U-Net is a greyscale image in which each
voxel has a value between 0 and 1. Each represents the confidence with which U-Net
decides the type of voxel; e.g. voxels of suspicious discontinuities are set as close
to 1 as possible. When U-Net is put into deployment after training, an additional
threshold must be applied to its greyscale output in order to convert it to a binary
mask. For a greyscale mask pi estimated by U-Net, the binary slice is obtained by
setting the voxels to 0 or 1 depending on how far they are from the threshold τ .
The thresholding function is depicted as follows:

f(pi) =
{

0 (Black) if pij < τ
1 (White) if pij ≥ τ

(V.1)

Where pi is the output of U-Net, and pij are the voxels of this output.

Stacking the binary slices together after thresholding results in a binary volume
in which defects, artifacts, noise and some borders are highlighted. In the Results
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Figure V.1: Automatic defect detection approach that takes a 512 × 512 × (Z) ROI as
input and outputs a volume containing only the defects. The U-Net model is
used to isolate discontinuities, followed by CNN classifiers to classify these
discontinuities as defects or false alarms. In this example, only 153/550
indications were validated as defects.
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section, we will explore the impact of the threshold τ on the final output of the ap-
proach, in terms of true positives (detected defects), false negatives (missed defects)
and false positives (misclassified false alarms).

V.1.2 3D Labelling and CNN Classification

Since U-Net was trained on over-segmented dataset, the binary volume will
contain many irrelevant discontinuities that belong to false alarms, regardless of the
threshold. For this reason, we need to call each object individually and validate
its type using the CNN classifier. To handle each object individually, we first need
to label the binary volume by assigning a unique integer to all voxels belonging to
the same object. Voxels labelled 1 form object number one, voxels labelled 2 form
object number two and so on. The labelling process is controlled by a parameter
called "voxel connectivity", as shown in Figure V.2.

To avoid including the borders of the specimen in the case of a defect near the
surface, and to process each defect individually in the case of a region with high
density of porosities, we chose a neighbourhood of 6 as the optimal connectivity.
This means that if a voxel has been segmented as white by the U-Net model, only
6 voxels in the neighbourhood that share a common surface with it will be tested
whether they have also been segmented as white or not. In this way, all white voxels
in the 6-neighbourhood are assigned the same integer as the voxel in the centre, so
that together they form the same object. The process is repeated systematically
with each white voxel of this object, checking its own neighbourhood to determine
the final shape.

It should be noted that any object with a size of less than 10 voxels was removed

Figure V.2: Voxels considered as neighbours of a given central voxel under different con-
nectivities: In the case of 6-connectivity, two voxels are considered neigh-
bours and belong to the same object only if they share a common surface.
In the case of 18-connectivity, two voxels are considered neighbours if they
share at least one edge. And in the case of 26-connectivity, it is sufficient if
they share a vertex point to be considered neighbours.
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during processing. This is due to the fact that the largest spatial resolution available
in our database is 450µm, which means that a defect of 10 voxels corresponding to
0.911mm3 can be safely neglected. By iterating the list of labels after removing
small objects, the coordinates of each object COM are rounded and located inside
the original greyscale volume. Within this volume, three 64×64 images are cropped
around each COM along the three ortho-planes and then sent to the trained CNN
model CT-Casting-Net of chapter IV to predict whether all the crops represent a
real defect. If, on the other hand, at least one of the crops is classified as a false
alarm, the corresponding object is removed from the binary volume.

V.1.2.1 Why 3 Ortho Crops?

In the early phase of validation, the number of crops around the COMs was set
to 1: a single crop along the thickness of the specimen is sent to CT -Casting-Net
to validate the nature of the object. However, there were some cases of ambiguity
where false alarms had been incorrectly validated as defects. Figure V.3 shows a
ROI inside the output of the approach under this condition, where coaxial ring
artifacts had been validated as true alarms. In fact, these artifacts are close to real
defects contained in the 64 × 64 crop around the COM of each artifact, which in
turn created the ambiguity. Processing 3 crops along the XZ, XY and YZ planes
reduced this ambiguity by examining each object from 3 angles before determining
its final class.

Figure V.3: ROI inside a binary volume at the output of the approach that processes
only one crop around each object COM. Coaxial ring artifacts were wrongly
classified as true defects because the classification model rather considered
the near defects that exist at a distance of less than 64 voxels.
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V.2 Validation Metrics
The output of the detection algorithm is a binary volume in which voxels of

validated defects are set to 1 and all others to 0. To validate the approach, we
performed a comparison between this output and manually-segmented ground-truth
volumes according to the following classes of voxels:

TP = True Positives, correctly classified voxels of defects,
TN = True Negatives, correctly classified normal voxels,
FP = False Positives, normal voxels misclassified as defects,
FN = False Negatives, voxels of defects misclassified as normal.

The validation metrics were carefully chosen to ignore TN and focus mainly on voxels
of defects that were either correctly detected (TP) or missed (FN). While varying
the threshold τ that controls the output of U-Net (Equation V.1) and consequently
the output of the whole approach, the detection performance was evaluated using
the following metrics that ignore normal or background voxels.

V.2.1 Precision Recall Curve

A metric very commonly used in NDT is the Receiver Operating Characteristic
(ROC) curve, which plots the rate of true positives (TPR) against the rate of false
positives (FPR) for each system threshold (Equation V.2). However, the FPR takes
into account the TN voxels (correctly classified background voxels), which leads
to a bias towards the voxels that are largely represented in the images, i.e. the
background class. This means that the ROC curve is not suitable for data with
imbalanced classes such as CT images [119, 120].

TPR = TP

TP + FN

FPR = FP

FP + TN

(V.2)

The equivalent of the ROC curve for imbalanced data is the Precision Recall (PR)
curve, which answers two important questions while varying the binarization threshold
[121, 122]:

• How many voxels in the output volume actually belong to real defects?, i.e.
the precision:

Precision = TP

TP + FP
(V.3)

• And how many voxels of defects in ground truth can actually be found in the
output?, i.e. the recall:

Recall = TPR = TP

TP + FN
(V.4)
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In other words, the PR curve represents the percentage of detection, not in terms
of the number of defects, but the number of voxels belonging to any defect. By
plotting the PR curve for each threshold, we can evaluate the performance of the
model at the voxel level, taking FP into account.

V.2.2 Intersection-over-Union

The Jaccard index or Intersection-over-Union (IoU) [123, 124] is a standard
metric for evaluating object detection algorithms for imbalanced data. For each
threshold, this parameter represents the overlap between the predicted binary volume
pi and the ground truth binary volume yi divided by their union, as shown in Equa-
tion V.5, without considering TN. IoU ranges from 0 to 1, where 0 represents no
overlap and 1 represents perfectly overlapping masks. In machine learning, an IoU
value greater than 0.5 is usually a sign of "good" performance [125].

IoU(yi, pi) = Area of Overlap

Area of Intersection
= |yi ∩ pi|

|yi ∪ pi|
= TP

TP + FP + FN
(V.5)

V.2.3 Probability of Detection

A metric commonly used in non-destructive testing is the probability of detec-
tion (POD), which measures the performance of a segmentation system as a function
of the number of defects detected (hits) or not segmented (misses) [126, 127], which
has the same meaning as recall. Unlike the previous metrics, hit-or-miss POD com-
pares the ground truth volume to the predicted volume at the object level rather
than at the voxel level, which is more reliable for digital images with different spatial
resolutions. In other words, POD processes each object (or eventually a defect) as
a whole, regardless of its size.

Plotting POD versus the binarization threshold gives a better insight into the reli-
ability of the segmentation approach. For each threshold τ , we crafted this metric
to consider each ground truth defect as a single entity and check whether it was
detected by the approach or not according to the following equation:

POD(τ) = Recall = nhit

nhit + nmiss

(V.6)

V.3 Validation Results & Discussion
The approach was evaluated on 6 CT volumes of high-pressure and gravity

cooled specimens representing automotive and aircraft components. Based on the
above metrics, the approach can be evaluated at the voxel level with PR-curve and
IoU, and at the object level with POD. It should be noted that the threshold
is applied to U-Net output, but the performance is measured after elim-
inating false alarms with CT-Casting-Net.
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By calculating the IoU for each volume against the binarization threshold with a
step size of 0.05, the average IoU can be plotted, giving insight into the similarity
between the ground-truth binary volumes and the results of the approach. As can be
seen in Figure V.4a, the IoU increases with the increase of the binarization threshold.
In fact, an increase in τ means that the thresholds of U-Net label maps are stricter,
resulting in fewer irrelevant voxels being sent to CT-Casting-Net. In addition, the
objects that are validated as defects by CT-Casting-Net have smaller shapes and
are less over-segmented, which increases the overlap between the ground-truth and
the final output (IoU). On the other hand, the side effect of the strict thresholding
is that small defects are usually suppressed, which explains the low IoU at small
values of τ .

(a)

(b)

Figure V.4: Voxel level metrics to evaluate the performance of the approach: (a) Average
IoU and (b) Precision-recall curve, against the binarization threshold.

The average IoU plot not only shows how accurate and how sharp the label map is
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Figure V.5: (left) A crop along Z-axis of a casting porosity in a CT volume with low
spatial resolution; (middle) the contour of this defect segmented and val-
idated by the approach; (right) manually segmented contour of the same
defect.

after applying a threshold and eliminating false alarms with CT-Casting-Net, but
also provides the best threshold for binarization in the case of good data quality.
The average IoU between the results of the approach and the ground-truth binary
volumes is higher than 51% depending on the threshold, and the highest average
value of 64.371% was obtained with a threshold τ = 0.65.

Always at the voxel level, the PR-curve in Figure V.4b shows the impact of the
threshold on the number of FP and FN voxels. We see that the average precision
and the average recall of the results on 6 volumes are inversely proportional to each
other: increasing recall (finding more voxels of defects) leads to decreasing precision
(producing more voxels of false alarms). An ideal PR-curve has two perpendicular
segments with a corner representing high average precision and high average recall
at the same time.

As shown in Figure II.6 and Figure V.5, digital images in general and CT images
in particular suffer from various sources of noise that make the contours of defects
noisy and thus difficult to define, even when the slices are manually segmented
to find the ground-truth. This makes the IoU and PR values relatively low and
insufficient to determine the optimal value of the system threshold. These metrics
require high spatial resolution, which is not the case in industry where inspection
time is reduced at the expense of quality, as explained in Figure I.10. For this
reason, it is common in non-destructive testing to evaluate the performance of a
system based on the number of defects detected or missed, rather than examining
each voxel individually.

A commonly used metric POD can be crafted to measure the performance of the
approach at the object level. Figure V.6a shows the average of POD (or recall)
on 6 CT volumes with respect to the binarization threshold τ , which is always
higher than 93%. At higher τ , POD begins to decline as the strictness of the
thresholding leads to under-segmentation and missing defects in the binary output.
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Conversely, a low threshold leads to a high POD, as over-segmentation ensures
that more greyscale discontinuities are detected, while FP increases the evidence of
additional false alarms.

Since POD only considers hit defects (TP) and missed defects (FN), the amount
of false alarms (FP) was plotted separately against τ as shown in Figure V.6b. At
higher thresholds, the amount of FA decreases due to under-segmentation, but at
the expense of POD. On the other hand, low thresholds lead to over-segmentation
and increase FA. This is possibly due to false alarms generated near true defects
that cannot be eliminated by CT-Casting-Net.

An optimal threshold corresponds to the highest IoU and POD and the lowest FA
as shown in Figure V.6c. For example, a τ = 0.6 gives an average POD of 99.03%,
an average FA of 4.33, an average IoU of 63.66% and an average recall and precision
of 78.84% and 66.94% respectively, as shown in Table V.1. It can be noticed that
the number of objects or indications before classification with CT-Casting-Net is
very high, as U-Net has been trained to over-segment CT images. However, the
relatively high number of FA in V1 and V3 is not due to the over-segmentation, but
to the poorly contrasted small defects that we missed when manually creating the
binary ground-truth volumes, but which were nevertheless detected by the approach,
contributing to its reliability.

On the other hand, processing a ROI volume of 512×512×100 takes 15-18 seconds,
which is relatively fast, although this depends on the number of over-segmented
objects in the volume that need to be classified. In order to find the optimal range
of the threshold, this study needs to be performed in the future with a larger amount
of test data with ground-truth in order to increase the confidence rate.

Table V.1: Validation results with a threshold τ = 0.6. The number of detected objects
is reduced after each object is classified as a true or false alarm. The high
average probability of defect detection POD and the low amount of FA show
the efficiency of the approach in interpreting CT data of castings.

Test Volume Size
Nb Obj Before

Classification

Nb Obj After

Classification
FA

POD

%

IoU

%

Processing

Time (s)

V1 512 × 512 × 100 504 24 12 100 57.25 17.9

V2 512 × 512 × 100 676 30 0 100 72.18 18.3

V3 512 × 512 × 96 587 45 14 100 59.68 16.0

V4 512 × 512 × 100 220 19 0 100 68.79 12.2

V5 512 × 512 × 86 167 40 0 100 68.77 11.8

V6 512 × 512 × 100 354 24 0 94.23 55.28 13.8

Average: 4.33 99.03 63.66 15

The great advantage of this approach is the low rate of FN (missed defects), i.e.
high POD. Defective zones are very common in castings, especially those made by
injecting molten metal into a mould under high pressure. Overlooking these defects
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can lead to quality drawbacks at the level of the specimen itself and economic damage
at the level of the production line. Such problems can only be avoided if quality
control is carried out during the design stage of production using the right inspection
tools. Our methodology ensures this capability through two important steps:

• Increase false and true positives by over-segmenting the CT slices with U-Net
model to capture all potential defects.

• Reduce false positives by eliminating false alarms with the CNN classification
model, resulting in a correct true positive rate in the final output.

Conclusion
In this chapter we have interpreted the reliability of a defect detection approach

in the processing of CT data of castings. This approach uses a deep segmentation
model to over-segment CT slices, followed by a CNN classifier to decide whether the
segmented objects are true defects that should be retained or false alarms that need
to be eliminated. To go beyond deep-learning metrics, performance was measured
using voxel-level and object-level metrics related to the non-destructive testing lit-
erature, which, in addition to the fast processing time, ensured the reliability of the
approach in accomplishing the required task.
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(a)

(b)

(c)

Figure V.6: Object level metrics to evaluate the performance of the approach: (a) Av-
erage POD and (b) average FA, against the binarization threshold. The
optimal threshold at the object level (τ=0.5, average POD = 99.68%, aver-
age number of FA = 3.6) can be found by plotting (c) average POD against
average FA.
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Deciding whether or not a specimen is crucially defective in the early stages
of production can bring economic benefits. This decision depends on the regions
where defects occur during the cooling of the metal and the nature of the embedded
defects. In this chapter, we explore the 3D geometrical properties of casting defects
and the potential of traditional machine learning and deep learning algorithms in
classifying these defects into porosities and shrinkage cavities.

VI.1 Casting Processes
Before dividing the defects into porosities or shrinkage cavities, we must explain

their origin. As explained in subsection I.5.1, the cooling of a specimen into a mould
(or casting die) can be done either under pressure (high-pressure die casting) or by
the force of gravity (gravity die casting) [128].

98
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Figure VI.1: Diagram of gravity die casting in a sand mould. Source: learnengineer-
ing.net

In gravity die casting, the molten metal is poured into the mould slowly and very
gradually to avoid any stirring and turbulence of the metal on the surface, as shown
in Figure VI.1. The mould may be made of sand (sand casting) or steel (shell
casting) and has a riser which acts as a reservoir to compensate for the cumulative
shrinkage of the metal during the solidification process, and sometimes a core is
introduced into this mould to create hollow structures in the casting. In this type
of process, the casting may have a variety of embedded defects that emerge during
solidification and can be divided into two categories: (1) gaseous porosities, either
due to reaction between the mould and the metal, or to the gassing of the metal; (2)
shrinkage cavities due to the lack of sufficient molten metal when the casting cools.

In high-pressure die casting, the molten alloy is injected at high velocity (40 to 60m/s)
into a steel mould of type X38 CrMoV5 or equivalent under a very high pressure
(80 to 100 MPa) during solidification, as shown in Figure VI.2. The possible de-
fects after solidification can be divided into three categories: (1) gaseous porosities,
which are due to the incorporation of air into the injected metal. These porosit-

Figure VI.2: Hot chamber die casting machine. Source: bscdiecasting.co.uk
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ies can be very dense in thick regions of the specimen, and are characterised by a
spherical shape and smooth sides; (2) shrinkage cavities, which correspond to an
internal contraction in the metal and usually have an elongated shape; and (3) cold
fills, which are due to the turbulent injection associated with this process.

VI.2 Casting Defects Database
To investigate the geometrical properties of casting defects belonging to each

category, the industry partners provided a set of isolated 3D greyscale defects re-
trieved from CT volumes of high-pressure and gravity-cooled specimens. Using
the 3D segmentation algorithm in Figure II.8, these 3D volumes were segmented as
shown in Figure VI.3 to investigate the geometrical properties of each embedded
discontinuity. This dataset consists of 462 defects:

• High-pressure casting: 263 shrinkage cavities and 101 porosities.
• Gravity casting: 57 shrinkage cavities, 41 porosities.

(a) Porosities

(b) Shrinkage Cavities

Figure VI.3: 3D casting defects inspected by CT, after binarization: (a) porosities, (b)
shrinkage cavities. (No scaling applied)
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VI.2.1 Geometrical Properties

The aim of this chapter is to examine the validated defects inside the output
of the approach presented in chapter V. As the output is a binary volume, the
3D defects in the dataset were binarized for consistency. Consequently, texture
features (such as greyscale features) were avoided. Only the following geometrical
features were calculated for each defect, as presented in Figure VI.4 that shows these
properties for two typical defects:

• Volume V: the number of ‘on’ voxels in the region within the volumetric binary
image.

• Surface area SA: by iterating across the volume after blurring its image, ma-
chine cubes algorithm extracts a 2D surface mesh from the volumetric binary
image and measures its surface [129, 130].

• Sphericity Ψ: it is a measure of how spherical an object is. Proposed by [131],
the sphericity of a particle is defined as the ratio of the surface area of an
equal-volume sphere to the actual surface area of the particle:

Ψ = π1/3(6V )2/3

SA

(VI.1)

• Elongation: it is a measure of how elongated an object is. It is the ratio
between the lengths of the major and minor axes of the ellipse that has the
same normalized second central moments as the object [132]:

Elongation = major axis length

minor axis length
(VI.2)

• Compactness: Ratio of voxels of the object to voxels in the total bounding
box, the smallest box that can contain the object.

Figure VI.4: 3D geometrical properties of binary CT ROIs containing typical 3D casting
defects. The shrinkage cavity is less spherical and compact than a porosity,
but more elongated.
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(a)

(b)

(c)

Figure VI.5: Geometrical properties distribution with respect to the casting process,
and the category of the defect: (a) sphericity distribution; (b) elongation
distribution; (c) compactness distribution. The interquartile range in the
box plot contains 50% of the values, while the whiskers and their ends
represent the other 50%. The dashed lines in plots (a-c) represent the range
in which each category of defects exists with respect to the geometrical
property.
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VI.2.2 Properties Analysis

Figure VI.5 shows the distribution of the above properties with respect to the
defect types and the casting process. Shrinkage cavities in high-pressure and grav-
ity casting have median sphericity of 0.49 and 0.45, respectively, as shown in Fig-
ure VI.5a. And porosities have a median value of 0.82 for high-pressure casting,
and 0.85 for gravity casting. The dashed lines represent the range in which each
category of defects exists with respect to sphericity: porosities always have a spher-
icity greater than 0.6 and shrinkage cavities always have a sphericity less than 0.8.
It should be noted that some porosities can have a sphericity value of more than 1,
as can be seen in the boxplot. Such defects usually have a cylindrical shape with
convex fillet joints.

Figure VI.5b shows that shrinkage cavities have an median elongation of 1.8 and
1.7 for high-pressure and gravity casting, respectively, and 1.4 and 1.3 for porosity.
On the other hand, as shown in Figure VI.5c, shrinkage cavities tend to have a
compactness of less than 0.6 and greater than 0.3 for porosities.

Regardless of the casting process, porosities have a higher sphericity and compact-
ness because they are in fact gaseous bubbles. Conversely, shrinkage cavities have
a lower sphericity and a higher elongation, as they represent a lack of material due
metal contraction that can have any shape. In the intermediate range, i.e. with
sphericity between 0.6 and 0.8 and compactness between 0.3 and 0.6, the defect can
have a shape that is initially spherical and then becomes elongated, as shown in
Figure VI.6. To determine the type of defect in this intermediate range, a trained
user or a classification algorithm is required.

(a) (b) (c)

Figure VI.6: Defects with a sphericity value between 0.6 and 0.8: (a) shrinkage cavity.
(b) porosity attached to a shrinkage cavity. (c) shrinkage cavity.

VI.3 SVM for Defects Categorization
Deciding the type of each defect inside the binary volume at the output by

the approach of the last chapter requires a trained classifier that can identify the
defect category by assigning one of two labels: 0= shrinkage cavity or 1= porosity.
The above features or properties can be used to train a traditional machine learn-
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ing algorithm such as the Support Vector Machine (SVM). The latter search for an
optimal hyperplane that can separate each category in the training data using sup-
port vectors, where the margin between two different defects is maximal [133]. This
concept can be seen in Figure VI.7, where the dashed lines represent the support
vectors and the solid line the optimal hyperplane.

Figure VI.7: 2D hyperplane that separates 2D data points into two categories. Source:
medium.com

We trained the SVM with the properties of all available 3D defects. This means
that we mixed high-pressure cavities and porosities with their gravity counterparts
because: (1) the defects in both casting methods have the same range of sphericity,
elongation and compactness and (2) the gravity database (98 defects) is very small
to train a classifier on its own. The final dataset was split into a training dataset
(80%) to train the SVM and a test dataset (20%) to evaluate the predictive ability
using a confusion matrix.

The first training attempt consisted of training SVM with the 3 properties of each
defect to classify it into porosity or shrinkage cavity. Figure VI.8a shows the most
approximate 3D hyperplane found by SVM that can separate the two categories,
where each point represents a defect whose coordinates are its geometrical properties.
After training, the model is tested on 20% of the data and the confusion matrix of
this test is illustrated in Figure VI.8b. The recall of porosities class is 10.34%,
and 28.12% for the shrinkage cavities class, which make the model unready for
deployment.

In the second training attempt, we added the volume of each defect to the list of
training properties. The confusion matrix showed a slight improvement, but the
overall performance is still insufficient, as shown in Figure VI.9. Indeed, SVM
requires more features to achieve high inference results [48]. But finding relevant
features is a very tedious task, and since we have already binarized the defects and
have no texture features, we are limited to geometrical features. For this reason, we
need to find a model that can be trained with the available data, with the following
hypothesis and limitation:

• Defects with sphericity lower than 0.6 (shrinkage cavities) and higher than 0.8
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(a) (b)

Figure VI.8: Training results of SVM with 3 features: (a) SVM found the most approx-
imate hyperplane in R3 that separates as much as possible the red points
(porosities) and blue points (shrinkage cavities); (b) Confusion matrix that
shows the classification results of SVM on a test vector of 58 shrinkage cav-
ities and 32 porosities.

(porosities) do not need to be classified, and can be used as references to asset
the type of other inferences.

• Our database contains only 462 defects, or examples, or shots.

VI.4 Few-Shot Learning for Defects Classification
Few-shot learning is the practice of training a model with few training examples

[134]. Siamese neural networks (SNN) are deep learning models that fall into this
category [135]. Suh models take 2 (or more) images as input and give the probability
of similarity as output, as shown in Figure VI.10. SNNs are a special class of neural
networks because they consist of two (or more) identical subnetworks that have the
same architecture, the same parameters and the same weights. During training,

Figure VI.9: Confusion matrix that shows the classification results of SVM trained with
4 features, on a test vector of 58 shrinkage cavities and 32 porosities.
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the update of the weights in both subnetworks is mirrored, which means that the
update of the weights in one subnetwork leads to the update of the weights in the
other subnetwork.

During training, the model is exposed to a set of pairs labelled "0= negative pair"
(different objects) or "1= positive pair" (similar objects). This means that SNN
does not learn to classify the objects in the traditional sense by selecting 1 of N
possible classes, but rather decides whether the objects in the pair represent the
same category or not. The first layer after the convolutional subnetworks is usually
(but not always) an embedding layer that calculates the Euclidean distance between
the latent representation of the two images before giving the probability of similarity.
In our application case, each training pair contains two 3D images representing
defects belonging to the same category, or different categories, without calculating
any geometrical features.

VI.4.1 Preprocessing

When building a neural network, we must define its input dimension. The
3D images must be the same size, which is not the case with our database, so a
preprocessing step is required before sending them to the network. The size of the
input data can be arbitrary, but there are some important factors to consider when
choosing a reasonable size: (1) neural networks perform better when trained with
square or cubic images; (2) the size must be divisible by the size of the max-pooling
filters, e.g. if we have 3 layers of max-pooling in the architecture with a filter size
of (2 × 2 × 2), the cubic input must be divisible by 2 at least three times to avoid
the checkerboard effect during convolutional operations [136]; and (3) the size of the

Figure VI.10: Siamese neural network consists of two convolutional subnetworks that
take a pair of images as input, encode each image into a possible latent
representation, calculate the Euclidean distance between these two rep-
resentations and finally decide if they are similar or not.
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cube must not be very large to avoid GPU saturation. The input size was set to
(40 × 40 × 40), and the preprocessing consists of two stages:

1. The bounding box that contains each defect is padded with zeros along the
smallest dimensions to create a cubic volume. For example, if the bounding box
has a shape of (4, 3, 5), the edges of the smallest axes are padded symmetrically
to give a cubic final shape of (5, 5, 5).

2. Each cubic bounding box of the previous step is zoomed in or out to (40 ×
40 × 40) using spline interpolation [137].

VI.4.2 Data Augmentation

As explained in subsection III.7.2 and subsubsection IV.6.5.2, DA helps reduce
the risk of overfitting by training the model with synthetic data. The latter are
generated by applying transformations to the original dataset, while preserving the
original shape. This means that shear and twist transformations were avoided to
preserve a realistic shape for each defect. Finally, SNN model was trained during
each epoch on an augmented version of the dataset that undergone the following
transformations in a random manner:

• Flipping along one of the three axes.
• Rotation at an angle in a range of ]−180, 0[ ∪ ]0, +180[, along one of the three

axes.

VI.4.3 Creating Pairs

As explained earlier, SNN does not decide whether a defect belongs to the
porosities class or cavities class, but reports whether 2 defects are the same (belong
to the same class) or different (belong to different classes). For this reason, the
training dataset must contain positive and negative pairs:

• Positive pairs: 2 defects that belong to the same class.
• Negative pairs: 2 defects that belong to different classes.

By pairing each defect at least once with every other defect in the dataset of size
N, the result is a dataset with a total number of pairs equal to N ′, as depicted in
the equation below. As a result, 106491 pairs were generated and split 85% for the
learning process and 15% for testing the predictive ability of the model after training
is done the weights are saved. During each training epoch, 70% of the training data
are augmented to train the model, and 30% for validating the weights of the network
at the end of the epoch.

N ′ = (N − 1) [(N − 1) + 1]
2 (VI.3)
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VI.5 SNN Architecture and Hyperparameters
As shown in Figure VI.10, each 3D image of the pair passes through a branch

of the siamese neural network. Each branch starts with a convolutional subnetwork
that systematically converts the 3D input into a series of feature vectors that are
selected after several trials. Table VI.1 shows the architecture of each branch (which
are identical), consisting of eight layers: Each 3D defect is convoluted with a 3D
filter and its size is gradually reduced until it reaches the encoding layer, which holds
a possible latent representation of size (5 × 5 × 5 × 256).

Table VI.1: The optimal architecture of the convolutional subnetworks of the SNN
model, for an input size of (40 × 40 × 40).

# Layer Layer Type Filter Size
Number of Filter

or Units
Output Shape

1 Conv3D + ELU 5 × 5 × 5 16 40 × 40 × 40 × 16
2 MaxPooling3D 2 × 2 × 2 16 20 × 20 × 20 × 16
3 Conv3D + ReLU 5 × 5 × 5 32 20 × 20 × 20 × 32
4 MaxPooling3D 2 × 2 × 2 32 10 × 10 × 10 × 32
5 Conv3D + ReLU 5 × 5 × 5 64 10 × 10 × 10 × 64
6 MaxPooling3D 2 × 2 × 2 64 5 × 5 × 5 × 64
7 Conv3D + ReLU + Dropout 5 × 5 × 5 128 5 × 5 × 5 × 128

8
Enc Layer =

Conv3D + ReLU
5 × 5 × 5 256 5 × 5 × 5 × 256

After finding the latent representation of each 3D defect, the Euclidean distance
between the two is calculated, i.e. the square root of the sum of the squared differ-
ences between the two vectors, with a size of (5 × 5 × 5 × 256). As can be seen in
the diagram of Figure VI.11, the output is flattened using a global average pooling
layer, followed by a dense classification block consisting of three dense layers, and a
sigmoid activation function at the output. The latter gives the probability of simil-
arity between the defects of the pair, which is between 0 and 1. During inference,
we can binarize the output by applying a threshold of 0.5 to this probability to get
0 (belong to the same category) or 1 (different categories).

During each epoch, training and validation were evaluated using binary cross entropy
(Equation IV.6) and accuracy (Equation IV.2), as our comparison task is binary
(similar or different). Since a large amount of data was generated after pairing each
defect with every other at least once, the batch size was set to 100. This means that
the SGD optimizer, selected after trial-error attempts, updates the weights of the
network after exposing the SNN to only 100 pairs, instead of waiting until the end
of the epoch, which ensures faster convergence of the loss function towards a local
minimum, as explained in subsection IV.3.2.
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Figure VI.11: Our siamese neural network consists of two convolutional branches to find
a latent representation for each defect, followed by flattening with global
average pooling, and classification with a series of dense layers that yield
the final probability of similarity between the two input defects.

VI.6 Results & Discussion
By training SNN with a large number of pairs and applying data augmentation

during each epoch, the model learned the underlying relationship between the inputs
(defect pairs) and the corresponding ground-truth outputs (similar or different) very
quickly. Figure VI.12 shows that SNN needed only a few epochs to achieve low
loss and high accuracy. Achieving low losses and high accuracies with a small gap
between training and validation losses means that the model was neither under- nor
over-fitted.

Training was stopped after 20 epochs with training and validation losses of 0.0221
and 0.005 and training and validation accuracies of 99.11% and 99.97%. To test the
predictive ability of the model, it was tested on the remaining data to gain insight
into its sensitivity to similar and different pairs of defects. Table VI.2 shows the
inference results on a test vector of 7302 pairs of similar defects and 5478 pairs of
different defects. As the confusion matrix shows, the model achieved perfect results
with an F1-score of 99.63%, classifying only 40/5478 different defects as similar.
This means that the model is able to recognise whether a pair of defects represents
two inferences of the same category or whether both belong to a different category
(porosities or shrinkage cavities).
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Figure VI.12: Training curves of the SNN model on a dataset of defect pairs. The model
achieved the lowest training and validation losses after 20 epochs.

VI.7 Deployment Case
At the output of the approach in Figure V.1, the binary volume contains many

embedded defects that can be categorized into porosities or shrinkage cavities. With
the help of the SNN model, each defect can be classified using the following pipeline:

1. Defects with high sphericity and compactness, i.e. porosities; and defects with
high elongation and low sphericity, i.e. shrinkage cavities, are automatically
categorized and saved as references.

2. Defects with intermediate sphericity, compactness and elongation are ran-
domly paired with a sample of defects from the first category.

3. The pairs are sent to the trained SNN model to decide whether they are similar

Table VI.2: Inference results of SNN model on a test vector of 5478 negative pairs and
7302 positive pairs. The model achieved high F1-score of 99.63%.

SNN Confusion Matrix

Negative Pairs 5438 40

Positive Pairs 0 7302

Negative

Pairs

Positive

Pairs
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or not. For example, if an intermediate defect has a higher average probability
of similarity when paired with shrinkage cavities, it is categorized accordingly.

Conclusion
This chapter focused on the geometrical properties of defects as well as the

defect categories. Porosities and shrinkage cavities have different morphologies in
terms of sphericity, compactness and elongation, as the former are caused by gas
bubbles and the latter by metal contraction and lack of material during solidification
of the casting.

The field of few-shot learning was explored and the potential of siamese neural
networks in classifying pairs of defects as similar (two porosities or two shrinkage
cavities) or different. With this model, embedded defects can be classified as poros-
ities or shrinkage cavities in the binary output of the approach of the last chapter
by forming pairs with defects of clear morphologies, considered as references.
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Industrial CT images segmentation using classical image processing techniques re-
quires the adjustment of several parameters, since the contrast resolution changes
with the thickness of the specimen and since CT is prone to different types of ar-
tifacts that depend on the tomography system. This thesis covered an automatic
detection approach that was developed to isolate casting defects in CT volumes of
aluminium castings without requiring user intervention. This approach consists of
the following steps:

Deep Segmentation: Segmentation of the CT slices carries two major risks: (1)
under-segmentation, which leads to genuine defects being overlooked, or (2) over-
segmentation, which leads to irrelevant discontinuities being highlighted. Since the
first case leads to skipping defects that could be crucial and harmful, we decided to
train the state-of-the-art U-Net model with a slightly over-segmented database to
reduce the number of false negatives in its output, even if at the expense of false
positives.

Deep Classification: To eliminate false positives and recognize true defects, a clas-
sifier must be coupled with U-Net to remove irrelevant discontinuities. CT-Casting-
Net, a new convolutional neural network, was trained in a supervised manner on a
two-class dataset containing greyscale zones with defects (true alarms) and zones
with artifacts, noise or homogeneous material (false alarms).

Segmentation Followed by Classification: To develop an automatic defect de-
tection approach, U-Net and CT-Casting-Net are coupled together to process indus-
trial CT volumes. U-Net over-segments each slice of the model making up a binary
volume with 3D objects representing real defects or false alarms. By isolating each
object, three ortho-images are cropped around the centre-of-mass and sent to CT-
Casting-Net to decide whether to keep or remove the object. The final output is
a binary volume containing the embedded discontinuities inside the greyscale CT
input classified as defects.

Defects Characterization and Categorization: Defects occur during the so-
lidification of the molten aluminium alloy as it takes the final shape of the mould.
These defects can represent gas bubbles, metal contractions or turbulence in the
molten metal. By studying the geometrical properties of the embedded defects, we
can categorize them into porosities or shrinkage cavities based on their sphericity,
elongation and compactness, or decide whether two defects belong to the same cat-
egory or whether they are different using a siamese neural network that we have
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trained with very many examples.

When applied to a new inference of size 512 × 512 × 100 for example, this approach
requires only 20 seconds of processing, including the over-segmentation that yields
an excess of discontinuities, the automatic classification of these discontinuities into
true defects or false alarms, and finally the categorization of the true defects into
porosities or shrinkage cavities.

Building a training dataset for each model, finding the optimal architecture and
the right set of hyperparameters, and validating against new unseen inferences re-
quired tedious work and a long series of trial-error attempts. The global processing
methodology is now ready to be integrated into a computer vision software at the in-
dustrial sites to help metal manufacturers who use CT as a non-destructive method
to inspect their casting volumes, locate casting defects and investigate their impact
on the lifetime of the component.

Future Work
Extending the database: the available data have a spatial resolution between
150 µm and 450 µm. This database needs to be expanded in the future with unseen
volumes with more unique contrast and spatial resolutions to refine the models
and increase their generalization on new inferences derived from new tomography
systems. In addition, the database can be expanded to include castings made from
magnesium and titanium alloys, not just aluminium.

Extending Current Models: the siamese network has only been trained with the
most common and frequent defect types, porosities and shrinkage cavities. The 3D
defect database needs to be expanded to include surface cracks and cold fills, which
are rare, and the siamese model can be re-trained with the four categories instead
of two to increase its reliability.
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Résumé en français

Détection automatique des défauts
dans des volumes tomographiques
des pièces de fonderie en alliage

d’aluminium

1 Introduction : contexte et objectives
En France et en Europe occidentale, des fonderies se sont équipées avec des

tomographes industriels pour le développement et la mise au point des pièces mais
aussi pour le contrôle de production. Dans ce dernier cas, le but est d’avoir des
informations pertinentes sur le suivi de la qualité de la production afin d’anticiper des
dérives éventuelles. Dans le secteur automobile, toutes les pièces ne peuvent pas être
contrôlées en tomographie et la tendance est de privilégier les temps d’acquisition
plutôt que la recherche de résolution, ce qui réduit la qualité des images. D’ailleurs,
la tomographie est très prône aux artefacts, ce qui nécessite un logiciel de traitement
d’images pour interpréter ses volumes d’une façon automatique et isoler les vrais
défauts. Afin de répondre à ce besoin, le Centre Technique des Industries de la
Fonderie (CTIF) a lancé ce projet de recherche en collaboration avec le Laboratoire
Vibrations et Acoustique (LVA) de l’INSA de Lyon et avec des groupes industriels
: RENAULT, SAB, EUROCAST, MONTUPET et CONSTELLIUM.

L’objectif de ce travail porte sur le développement d’algorithmes de traitement des
données tomographiques des pièces de fonderie en alliages d’aluminium. Afin de
pouvoir automatiser entièrement le traitement, plusieurs types d’approches d’intelligence
artificielle ont été employées, pour (1) localiser et segmenter des indications pouvant
être des défauts, mais aussi des artefacts ; (2) classer ces indications en vrais défauts
ou fausses alarmes ; (3) identifier la nature des vrais défauts (retassure ou porosité).

La partie segmentation des volumes tomographiques repose sur un apprentissage à
partir d’une base de données de 3000 images 2D en niveaux de gris, extraites de
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20 volumes tomographiques fournis par les industriels du projet. Les 3000 images
binaires "cibles" correspondantes ont été obtenues par un algorithme de traitement
d’image classique nécessitant un ajustement manuel du seuil de détection. D’autre
part, la partie classification a été développée grâce à une base d’images 2D de petite
taille (64 × 64) en niveaux de gris, constituée de 5500 images de défauts, et 8500
images de zones normales (y inclus des artefacts). Ces images ont été elles aussi
extraites des 20 volumes industriels, mais également de la base de données interne
du CTIF. Les performances de la chaîne globale de traitement (segmentation + clas-
sification) ont été mesurées sur 6 volumes tomographiques supplémentaires fournis
par les industriels et par l’INSA.

Enfin, la partie identification de la nature de défaut a nécessité une base d’images
3D de défauts dont la nature a été labélisée. 462 volumes (320 retassures, 142
porosités) ont été fournis, soit segmentés à partir de la base interne du CTIF, soit
embarqués dans les volumes fournis par les industriels. Il est important de noter
ici que l’identification fine du défaut nécessite le volume complet de celui-ci, ce qui
explique le fait que le nombre d’images est plus réduit que lorsque la base de données
est constituée d‘images 2D.

2 Le principe de la tomographie
Comme la radiographie (en deux dimensions), la tomographie est basée sur

l’absorption différentielle des rayons X en fonction de la densité de matière, mais
elle exploite un plus grand nombre de vues réalisées suivant différents angles par
rotation de l’objet observé comme illustré dans la Figure VI.13. Les différentes vues
permettent de déterminer l’absorption de chaque élément de volume appelé "voxel"
et ainsi de reconstituer l’objet en trois dimensions. Il est alors possible d’obtenir
plusieurs représentations du volume de l’objet, dont la visualisation se fait sous
forme de coupes virtuelles. Cette représentation est la plus conventionnelle et la
plus pratique pour déterminer des taux de porosités ou mesurer des discontinuités
internes à la pièce. Pour examiner la totalité du volume, il faut faire défiler à l’écran
les coupes virtuelles 2D ou utiliser un algorithme permettant une représentation en
3D du volume de l’objet.

En tomographie, deux systèmes correspondant à deux géométries d’acquisition
existent :

• Les systèmes dits "Cône-Beam" pour lesquels, le cône de rayonnement du tube
à rayons X est exploité pour examiner l’objet à partir de vues 2D obtenues sur
un détecteur plan (ou panneau plat). Ce sont les équipements principalement
utilisés pour la tomographie industrielle.

• Les systèmes dits "Fan-Beam" pour lesquels, un fin faisceau de rayonnement
est envoyé à travers l’objet vers un détecteur linéaire. Ces matériels sont
plutôt réservés aux hautes énergies lorsque le rayonnement diffusé devient trop
important.
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Figure VI.13: Principe de la tomographie en configuration "cône-beam".

Dans le cadre de ce projet, les données fournies par les partenaires industriels sont
issues de systèmes "cone beam" essentiellement. A noter que la résolution spatiale
du système dépend du besoin et résulte d’un compromis avec le temps d’inspection.
Par conséquent, les images fournies pour ce travail ont des tailles de voxels pouvant
aller de 150 à 450 µm.

3 Le besoin industriel vis-à-vis de la tomographie
Pour le secteur industriel de la fonderie qui produit des pièces métalliques aux

formes "tourmentées" avec souvent des conduits internes, la tomographie est un outil
d’analyse de la santé interne de ces pièces. Par rapport à la radiographie, qui produit
des images du volume projeté sur un plan, la tomographie permet d’examiner la
matière en coupant le volume selon certaine direction, générant une série des coupes.
Cela évite d’être gêné par les nombreuses variations d’épaisseurs ou par les projec-
tions de parois qui sont caractéristiques de la radiographie de pièces de fonderie,
et ainsi la reconnaissance de la nature des discontinuités présentes est grandement
facilitée. Une illustration de la puissance de la tomographie par rapport à la ra-
diographie est l’examen des structures alvéolaires (structures lattices) métalliques,
issues de fonderie ou de fabrication additive est dans la Figure VI.14. Cette fig-
ure montre la différence entre l’image radiographique et une coupe tomographique
d’une mousse métallique produite par fonderie: en radiographie, l’image est floue, les
porosités se superposent et il est impossible de déterminer la dimension des pores,
tandis que les coupes tomographiques donnent des images nettes qui permettent
d’accéder à des données précises sur la dimension des pores et leur distribution.

En tomographie, le positionnement de la discontinuité dans l’épaisseur devient pos-
sible ainsi que sa visualisation suivant plusieurs orientations. Cela permet d’envisager
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Figure VI.14: Illustration des résultats de prise de vue en radiographie (à gauche) et
en tomographie (à droite) d’une mousse métallique produite par fonderie
(les vides sous forme de sphères ont ici des dimensions de l’ordre de 5 à 8
mm).

des critères plus pertinents en fonction de la position de la discontinuité par rap-
port à la surface ou par rapport à une zone critique très sollicitée. Actuellement,
la conformité de la santé interne des pièces de fonderie est réalisée en comparant
des images radiographiques 2D avec des images de référence disponibles auprès de
l’ASTM (American Society for Testing and Materials). L’inconvénient est que cela
peut conduire à rebuter une pièce alors que la discontinuité se situe dans la fibre
neutre et n’aura pas d’influence sur sa durée de vie en service. A l’inverse, de petites
indications situées en zone superficielle critique peuvent être conformes aux cahiers
des charges et néanmoins conduire à des ruptures prématurées de pièces. Avec la
tomographie, il est possible de savoir si les discontinuités vont partir à l’usinage ou
déboucher en surface ou si elles se situent dans une zone désignée dangereuse pour
la tenue mécanique de la pièce.

D’autre part, le volume des données tomographiques est très important, aussi une ex-
ploitation manuelle coupe par coupe est fastidieuse. L’automatisation du traitement
d’image est donc nécessaire pour une utilisation en contrôle de production. Dans
le cadre de cette thèse, nous avons souhaité développer l’ensemble des traitements
de façon indépendante de tout logiciel afin de maîtriser complètement la chaîne de
traitement. Le développement des algorithmes a été réalisé en Python 3.6, Matlab
et C++17, notamment les traitements d’images dits "classiques", et les algorithmes
de deep learning.
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4 La chaîne globale de traitement : segmentation
et classification

Le processus de traitement des données issues de coupes tomographiques com-
prend plusieurs étapes résumées sur Figure VI.15:

• La sur-segmentation qui a pour but de séparer les zones d’irrégularités du reste
de la pièce : celle-ci se fait coupe par coupe, puis les coupes sont empilées pour
former un volume binaire, et les indications sont labélisées.

• La classification des irrégularités, ou indications, pour séparer les vrais défauts
des faux positifs. Les faux positifs sont les indications relevées qui ne sont pas
des discontinuités de matière, mais plutôt des artefacts de tomographie. La
classification se fait sur la base de trois images perpendiculaires entre elles
qui sont découpées autour du centre-de-masse de chaque indication labélisée
à l’étape 1. Une indication est classée comme un défaut si les trois indications
présentent à la fois des zones défectives.

• Le "nettoyage" du volume binaire en éliminant les indications classées comme
fausses alarmes.

• Et finalement le classement des défauts validés selon 2 types : dans notre cas,
retassures ou porosités (cette étape n’est pas représentée dans la Figure VI.15).

4.1 L’étape de segmentation par deep learning

La segmentation s’applique aux coupes tomographiques donc en 2D. Cette seg-
mentation est basée sur les différences de niveaux de gris entre les défauts et la
matrice. Les défauts étant en fonderie le plus souvent des manques de matière, les
niveaux de gris de ces indications sont plus sombres (atténuation plus faible). Dans
ce cas, la segmentation nécessite une opération de seuillage où une limite en niveau
de gris doit être définie telle qu’en-deçà de cette valeur tous les voxels sont considérés
comme faisant partie du défaut et tous les autres comme étant de la matière saine.
On obtient ensuite une image binaire avec les défauts en blanc et le reste de la pièce
en noir. Bien évidemment, il faut auparavant avoir défini et fermé les contours de la
pièce, ce qui est souvent délicat. Ce processus de segmentation par seuillage est diffi-
cilement automatisable et nécessite un certain niveau d’expertise pour bien placer le
curseur au bon endroit, au risque sinon de donner des résultats en volume ou densité
de défauts qui seraient incohérents avec la réalité. En outre, la quantité d’images
en tomographie est très élevée et il est indispensable que les systèmes de détection
des indications soient autonomes. De plus, les images tomographiques comportent
un grand nombre d’artefacts : des cercles concentriques "rings" ou des marques dues
au durcissement du faisceau de rayons X lorsqu’ils traversent beaucoup de matière,
comme illustré dans la Figure VI.16). Ces artefacts peuvent être considérés comme
des défauts dans le cas d’une segmentation par seuillage global.

Pour améliorer l’efficacité de la détection, et surtout obtenir une méthode entière-
ment automatique, sans intervention de l’opérateur, et fonctionnant pour toutes les
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Figure VI.15: Résumé de la chaîne globale de détection et classification des indications
en vrais défauts ou fausses alarmes.
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(a) (b)

(c) (d)

Figure VI.16: Different types d’artefacts dans la tomographie industrielle : (a) beam
hardening, (b) streaking, (c) ring artifact, and (d) Feldkamp artefact.

pièces fournies par les industriels, nous avons décidé d’utiliser les algorithmes de type
deep Learning avec une approche en deux temps : segmentation puis classification.

Pour la segmentation, nous avons sélectionné des réseaux de neurones convolutifs
type U-Net, cf. Figure VI.17. Ce type de réseau de neurones a été développé en
2015 pour la segmentation d’images biomédicales au département d’informatique
de l’université de Fribourg en Allemagne et a donné des résultats très performants,
au-delà de tous les réseaux équivalents. Il s’agit d’un réseau entièrement convolutif
et sous forme de "U", qui a l’avantage de pouvoir fonctionner avec relativement peu
d’images d’entrainement et de permettre une segmentation précise. Il fait partie de
la famille des auto-encodeurs : la partie encodage (à gauche dans la Figure VI.17)
consiste à obtenir une représentation "latente" de l’image d’entrée sous forme de
caractéristiques, tandis que la partie décodage permet de reconstruire une image de
sortie qui doit ressembler le plus possible à la version binarisée de l’image initiale.
Il faut noter que la sortie n’est pas directement une image binaire mais une image
dont chaque voxel représente la probabilité d’appartenir à la classe discontinuité si
sa valeur est proche de 1, ou bien la classe arrière-plan si sa valeur est proche de
zéro.

4.1.1 Base de données d’entraînement

Un ensemble de 3000 images de taille (512 × 512) a été extrait des 20 volumes
tomographiques fournis par les industriels. Nous avons volontairement mélangé
des images provenant de différents procédés de fonderie (sous pression et gravité),
de différents tomographes, de façon à avoir une base riche en termes de diversité
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Figure VI.17: Architecture type U-NET : le modèle consiste en une partie encodage à
gauche, et décodage à droite, chaque couche étant connectée à sa cor-
respondante par une concaténation des vecteurs de caractéristiques. La
sortie du modèle est une image dont les valeurs sont comprises entre 0
et 1 et correspondant à la version la plus proche de la version binaire de
l’image d’entrée.

d’artefacts, de contraste, et de résolution spatiale. Le découpage en 512 permet à
la fois de conserver une taille non négligeable permettant d’avoir une segmentation
non seulement des défauts mais aussi des zones normales comme les bords de pièce,
ou les artefacts, et pour préserver la vitesse de traitement. Dans la mesure où on
souhaite développer un réseau de type segmentation supervisée, il est nécessaire que
chaque image en niveau de gris soit accompagnée de sa version binaire "vérité terrain"
(ground-truth). Cette image binaire a été obtenue par un algorithme de traitement
d’image automatique développé pendant la thèse, utilisant une approche classique
de débruitage, puis détection de contours et seuillage par la méthode d’Otsu. Le
seuil calculé par l’algorithme d’Otsu a été modifié par un facteur de réglage qui
permet d’ajuster la sévérité de la segmentation. Etant donnée que les volumes
tomographiques sont très gros, et les pièces sont d’épaisseur variable, le contraste
varie fortement au sein d’un même volume, ce qui empêche de trouver un seuil op-
timal unique pour un volume entier. C’est pourquoi nous avons d’une part recherché
une méthode complètement automatique de type U-Net, et d’autre part, utilisé ce
réglage manuel pour générer la base de données de vérité terrain. A noter qu’il
n’était pas possible d’obtenir cette vérité terrain directement de la part des indus-
triels car chacun aurait réalisé une segmentation sans doute différente, et certains
ne sont pas équipés de système de traitement automatique. La Figure VI.18 montre
une série d’images exemples tirées de la base ainsi constituée : dans la colonne de
gauche, le choix du facteur de sévérité est réalisé pour n’avoir que les défauts dans
la vérité terrain, alors que dans la colonne de droite, on choisit de détecter un excès
de discontinuités.
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(a) (b)

Figure VI.18: Exemples d’images en niveau de gris et leur image binaire correspondante
: à gauche version initiale de la base contenant uniquement les défauts seg-
mentés, et à droite version modifiée de la base avec une sur-segmentation.
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4.1.2 Résultats d’entrainement

Un premier essai du réseau U-Net a été effectué avec la base de données d’entraînement
dont les images binaires ont été segmentées de façon à ne conserver que les défauts
(réglage sévère du facteur d’ajustement correspondant à la colonne de gauche sur
la Figure VI.18. Le résultat n’a pas été probant car le réseau n’a pas été capable
de généraliser l’entraînement sur la base de test : en effet, les images en niveau de
gris contiennent des artefacts dont le contraste est aussi élevé que les vrais défauts
comme montré dans la Figure VI.19.

Figure VI.19: Exemple d’image contenant des défauts et des artefacts, de même con-
traste.

Par la suite, nous avons donc opté pour une méthode de sur-segmentation : la
base de données a été modifiée en réglant le seuil de sévérité de façon à conserver
un excès de discontinuités : les défauts, mais également les bords de pièce et les
artefacts (colonne de droite dans la Figure VI.18). L’intérêt est que le risque de
rater des défauts est dans ce cas très faible, voire nul. Néanmoins, la contrepartie
est que les indications doivent ensuite être triées pour ne garder que les vrais défauts
par un classifieur entraîné.

4.2 L’étape de classification des indications par deep learn-
ing

La sur-segmentation entraîne, bien entendu, de nombreux artefacts (faux pos-
itifs) qui sont traités au moyen d’un autre réseau de neurones pour trier les vraies
discontinuités des faux positifs. Pour cette deuxième étape cruciale pour l’efficacité
de la détection, nous avons privilégié de conserver l’information en niveaux de gris,
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en faisant le pari que les réseaux de neurones seront capables de séparer les vrais dé-
fauts par rapport aux artefacts grâce à ces niveaux de gris. Pour cela, une nouvelle
base de données a été créée en découpant des zones avec et sans défauts. Ces zones
de taille (64 × 64) ont été prélevées dans les volumes tomographiques fournis par
les industriels, mais aussi dans la base d’images interne du CTIF. La taille de 64 a
été sélectionnée pour pouvoir contenir les plus gros défauts quelle que soit la taille
des voxels (entre 150 et 450 µm), sans être trop grande non plus pour accélérer le
traitement. Au total une base de 5500 images de défauts, et 8500 zones sans défauts
(zones normales homogènes, ou artefacts). La Figure VI.20a montre comment les
images sont découpées, et la Figure VI.20b montre un extrait de la base.

Nous avons élaboré un réseau peu profond (seulement 10 couches) avec une ar-
chitecture composée de plusieurs couches convolutives. Nous avons privilégié une
architecture simple dans la mesure où nos images d’entrée sont beaucoup moins
complexes que les images naturelles telles que celles de la base de données ImageNet
sur laquelle de nombreux réseaux disponibles sont optimisés. Le Table VI.3 montre
les performances atteintes avec ce nouveau réseau appelé CT-Casting-Net, en com-
paraison avec plusieurs réseaux de la littérature.

Table VI.3: Performances du réseau CT-Casting-Net en comparaison avec d’autres
réseaux de la littérature, lors de l’apprentissage sur la base de 14000 im-
ages (5500 avec défauts, 8500 sans défauts).

Model Depth Training
Loss

Training
Accuracy

Validation
Loss

Validation
accuracy

CT-Casting-Net 10 0.0364 98.80% 0.0488 98.30%
VGG19 22 0.4764 77.74% 0.4775 78.44%

ResNet50 50 0.1481 94.58% 0.1278 95.47%
ResNet101 101 0.2367 91.68% 0.2620 91.55%
Xception 126 0.3596 88.46% 0.3025 90.01%

InceptionV3 159 0.3588 81.67% 0.3694 82.88%

Après l’apprentissage, le réseau est testé sur un ensemble de 700 images nouvelles
ne faisant pas partie de la base des 14000 images d’apprentissage. La matrice de
confusion obtenue est donnée par le Table VI.4. Sur les 350 zones avec défauts,
12 ne sont pas détectées ce qui correspond à un pourcentage de détection "recall"
de 338/350 = 96, 5%. Par ailleurs, 10 zones sans défauts sont classées par erreur
comme des défauts, ce qui correspond à une précision de 338/(338 + 10) = 97, 1%.

4.3 Validation de l’approche de détection + classification

Comme montré dans la Figure VI.15, pour chaque indication 3D identifiée par
le réseau U-Net, le centre de masse sert à découper une zone de (64 × 64) dans
le volume tomographique en niveau de gris, selon 3 plans perpendiculaires. Pour
chaque indication on a donc 3 résultats du réseau de classification, et seules les in-
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(a)

(b)

Figure VI.20: (a) Exemple de coupe tomographique et zones découpées pour former la
base ; (b) Exemples d’images de la base de données de classification : les
deux lignes du haut pour les défauts, et les deux lignes du bas pour les
zones normales (artefacts, bords de pièce, zones homogènes).
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Table VI.4: Matrice de confusion obtenue avec le réseau CT-Casting-Net sur un lot de
700 images nouvelles ne faisant pas partie de l’ensemble d’apprentissage.

CT-Casting-Net Metrics
False Alarm TN= 340 FP= 10 Recall= 96.57%
True Alarm FN= 12 TP= 338 Precision= 97.12%

False Alarm True Alarm

dications dont les 3 coupes présentent à la fois des zones défectives sont gardées pour
la suite du traitement. Cette approche a été validée sur un ensemble de 6 volumes
tomographiques n’ayant pas servi à l’apprentissage. Les performances obtenues sont
détaillées dans le Table VI.5.

On distingue les performances obtenues en termes d’objets détectés dans le volume
3D pouvant être des défauts ou des fausses alarmes (FA), et les performances ob-
tenues au niveau des voxels, mesurées par le paramètre IoU "intersection over union".
Ce dernier paramètre mesure l’intersection entre le volume segmenté obtenu par le
traitement automatique, et le volume de référence "vérité terrain", et le divise par
l’union des deux. Il est donc lié non seulement à la bonne détection des défauts,
mais aussi à la précision de leur dimensionnement. D’un point de vue industriel, les
performances de détection au niveau objet ont plus d’importance que l’IoU au niveau
voxel, d’où l’intérêt de montrer la probabilité de détection POD, qui représente le
taux de défauts détectés dans le volume donné par l’approche sur le nombre total
de défauts dans le volume binaire ground-truth.

Table VI.5: Performances obtenues sur 6 volumes tomographiques n’ayant pas servi à
l’apprentissage.

Test Volume Size
Nb Obj Before

Classification

Nb Obj After

Classification
FA

POD

%

IoU

%

Processing

Time (s)

V1 512 × 512 × 100 504 24 12 100 57.25 17.9

V2 512 × 512 × 100 676 30 0 100 72.18 18.3

V3 512 × 512 × 96 587 45 14 100 59.68 16.0

V4 512 × 512 × 100 220 19 0 100 68.79 12.2

V5 512 × 512 × 86 167 40 0 100 68.77 11.8

V6 512 × 512 × 100 354 24 0 94.23 55.28 13.8

Average: 4.33 99.03 63.66 15

4.4 La reconnaissance du type de défauts

A l’issue de la classification (voir Figure VI.15) chaque indication validée comme
défaut est disponible dans sa version binaire en 3D, et la Figure VI.21 montre des
exemples de défauts des deux types à différencier. Pour pouvoir classifier les défauts
entre porosités ou retassures, un nouveau modèle était entraîné sur une base de
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données contenant 263 retassures et 101 porosités pour la fonderie sous pression,
et 57 retassures et 41 porosités pour la fonderie gravité, soit 462 défauts au total
labélisé manuellement. Dans le métier du CND, ce nombre de défaut peut être
considéré élevé, mais en termes d’apprentissage il reste très faible.

A partir des volumes de discontinuités reconstruites, celles-ci ont été caractérisées
par leur taille (volume et surface), ainsi que trois caractéristiques de forme, comme
la sphéricité, l’allongement et la compacité. Les porosités sont globalement plutôt
sphériques et plutôt compactes alors que les retassures présentent un facteur d’allongement
élevé et une forme assez rugueuse, "chaotique". Le diagramme de Figure VI.22 re-
présente les paramètres de forme des deux populations d’indications, selon la procé-
dure de fonderie.

Etant donné que les deux types de procédés de fonderie donnent des défauts ay-
ant les mêmes gammes de caractéristiques, nous avons décidé de rassembler tous
les défauts en une seule base pour entraîner un nouveau classifieur à les catégoriser
automatiquement. La première approche a été de tester un SVM (Support Vector
Machine) entraîné avec 80% de la base totale de défauts, et utilisant les trois cara-
ctéristiques de forme en entrée. Le résultat obtenu n’était pas suffisant, avec un taux
de détection de 10% des porosités et 28% des retassures. Ensuite, une quatrième
caractéristique a été ajouté (le volume du défaut) ce qui a amélioré les performances
avec un taux de détection de 40% des porosités et 35% des retassures, mais cela
reste insuffisant pour un déploiement industriel.

Par la suite, nous nous sommes tournés vers des méthodes d’apprentissage qui ne
demandent que peu de données d’apprentissage, le domaine de "Few-Shot Learning".

(a) Porosities

(b) Shrinkage Cavities

Figure VI.21: Reconstruction en 3 dimensions de défauts de type cavité-retassure et
porosités. (sans échelle)
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En effet, notre base de défauts contient peu d’instances (462 au total). Par ailleurs,
la spécificité de nos défauts est que certains sont très faciles à séparer (ceux dont
la sphéricité est respectivement très faible ou très forte) : pour ceux-là un simple
seuil sur la sphéricité peut les discriminer. La difficulté de séparation concerne donc
seulement sur certains défauts de la base.

Les réseaux de neurones de type "siamois" (ou SNN Siamese Neural Networks) sont

(a)

(b)

(c)

Figure VI.22: Propriétés géométriques des discontinuités selon le procédé de fonderie
–sous pression ou gravité–, avec en bleu les retassures et en orange les
porosités : (a) sphéricité, (b) allongement, (c) compacité.
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Figure VI.23: Architecture du réseau siamois. Un réseau siamois consiste en deux
réseaux convolutifs qui permettent d’obtenir une représentation latente
de chaque image d’entrée. La distance euclidienne entre ces deux re-
présentations est alors calculée pour donner la probabilité de similarité
grâce à une fonction sigmoïde.

des réseaux dont la finalité est de donner en sortie la probabilité de similarité entre
deux ou plusieurs images d’entrée, comme illustré dans la Figure VI.23. Ils sont
constitués de deux sous-réseaux de même architecture, paramètres et poids. Lors
de l’entraînement, la mise à jour des poids de chaque sous-réseau entraîne la mise à
jour de l’autre sous-réseau. L’apprentissage consiste à fournir au SNN un ensemble
de paires d’objets similaires (label 1 = paire positive) ou non (label 0 = paire
négative). Dans notre cas, les paires sont les volumes 3D représentant les défauts
de différents types. La difficulté est que toutes les images d’entrée doivent avoir
la même dimension, ce qui n’est pas le cas de nos défauts. Nous avons adopté le
prétraitement suivant : (1) étant donné que chaque défaut est représenté par sa
boîte englobante, les plus petites dimensions sont "remplies" de valeurs zéro jusqu’à
obtenir une boîte cubique; (2) Chaque boîte cubique est zoomée par interpolation
spline jusqu’à obtenir une taille de 40 × 40 × 40 (le zoom peut être "in" ou "out"
selon la taille initiale des défauts).

La technique d’augmentation de données a été utilisée pour compenser le faible
nombre de défauts. Pour préserver la forme des objets, nous avons sélectionné
uniquement des transformations de retournement selon un des trois axes et rotation
entre 0 et +/-180°. L’entraînement du réseau consiste à fournir en entrée toutes les
paires possibles positives (défauts de même nature) ou négatives (défauts de nature
différente). Compte tenu de notre nombre initial de N = 462 défauts, cela nous
donne N ′ = (N − 1) ∗ N/2 = 106, 491 paires possibles. 80% de ces paires sont
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consacrées à l’apprentissage, et 20% sont conservées pour la validation.

Après plusieurs essais d’optimisation en modifiant les hyperparamètres des deux
sous-réseaux convolutifs, Une architecture de 8 couches a été adopté. A la sortie de
chaque sous réseau, la représentation latente de chaque image d’entrée est obtenue;
La distance euclidienne (racine de la somme de la différence carrée des deux vecteurs)
est calculée; les matrices de distances sont transformées en un vecteur 1D à l’aide
une couche de "pooling"; et finalement un bloc de trois couches "denses" et enfin
une fonction sigmoïde pour obtenir une probabilité entre 0 et 1. Un seuil de 0.5 est
appliqué pour la décision finale (probabilité de similarité inférieure à 0.5 = paire
identique, ou supérieure = paire différente).

Pour chaque itération (epoch) l’entraînement et la validation ont été suivis par le
calcul de la fonction de coût mesurée par l’entropie binaire croisée et la précision
(Figure VI.24). Comme le nombre de paires est élevé, la taille du lot a été fixée à
100, ce qui signifie que l’optimiseur (SGD) met à jour les poids du réseau après avoir
vu seulement 100 paires, sans attendre la fin de l’itération, ce qui permet d’accélérer
la convergence. La Figure VI.24 montre que la convergence est obtenue après une
vingtaine d’itération, sans manifester de signe de sur ou sous-apprentissage.

La matrice de confusion obtenue sur les paires de la validation (20% du nombre
initial de paires de défauts, soit 7302 paires identiques et 5478 paires différentes) est
montrée dans le Table VI.6. Le score F1 correspondant est de 99.6% avec seulement

Figure VI.24: Courbes de coût et précision obtenues lors de l’apprentissage du réseau
siamois développé pour la reconnaissance de la nature du défaut.
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Table VI.6: Matrice de confusion obtenue sur un vecteur test de 5478 paires négatives
et 7302 paires positives. Le score F1 est de 99.63%.

SNN Confusion Matrix

Negative Pairs 5438 40

Positive Pairs 0 7302

Negative

Pairs

Positive

Pairs

40 paires différentes classées comme identiques.

Conclusion
Les travaux développés dans cette thèse ont permis de démontrer que les mod-

èles d’intelligence artificielle rendent possible un traitement entièrement automatisé
des données tomographiques. Ce traitement intègre la reconnaissance du type de
discontinuité de matière, et a été ici évalué et validé sur des alliages d’aluminium
produits en fonderie gravité et en injection sous-pression. Les modèles développés
au cours de la thèse seront implémentés dans un logiciel industriel. L’enjeu étant à
terme par ces solutions de fiabiliser les contrôles en production des produits métal-
liques par tomographie, et de mettre à la disposition des industriels producteurs
et utilisateurs de ces produits contrôlables par tomographie, de nouvelles solutions
d’automatisation des contrôles sur la base de solutions qualifiées.

En fonction du type de défauts et à partir de leur taille, de leur localisation par
rapport à la surface, ou par rapport à une zone désignée, des critères pertinents
pourront être établis par les donneurs d’ordre en fonction du cahier-des-charges
appliqué à la pièce.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography

[1] I. Boromei, L. Ceschini, A. Morri, G. Nicoletto, and E. Riva, “Influence of the
solidification microstructure and porosity on the fatigue strength of Al-Si-Mg
casting alloys,” Metallurgical Science and Tecnology, vol. 28, no. 2, 2010.

[2] G. F. Vander Voort, Metallography, principles and practice. ASM Interna-
tional, 1999.

[3] J. Schache and O. Brunke, “Developments in 2D and CT X-Ray Inspection of
Light Alloy Castings for Production,” in The 14th International Conference
of the Slovenian Society for Non-Destructive Testing, September 4-6, 2017,
Bernardin, Slovenia. NDT.net Issue: 2018-06, 2017.

[4] D. M. Stefanescu, “Computer simulation of shrinkage related defects in metal
castings – a review,” http://dx.doi.org/10.1179/136404605225023018, vol. 18,
no. 3, pp. 129–143, 2013.

[5] L. De Chiffre, S. Carmignato, J. P. Kruth, R. Schmitt, and A. Weckenmann,
“Industrial applications of computed tomography,” CIRP Annals, vol. 63,
pp. 655–677, jan 2014.

[6] F. Zanini and S. Carmignato, “X-Ray Computed Tomography for Dimensional
Metrology,” pp. 1–48, 2019.

[7] J. P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, and
A. Weckenmann, “Computed tomography for dimensional metrology,” CIRP
Annals, vol. 60, pp. 821–842, jan 2011.

[8] S. Carmignato, “Traceability of dimensional measurements in computed tomo-
graphy,” in Proc. 8th A.I.Te.M. Conf., Montecatini, Italy, 2007.

[9] M. Defrise, F. Noo, and H. Kudo, “A solution to the long-object problem
in helical cone-beam tomography,” Physics in Medicine \& Biology, vol. 45,
p. 623, mar 2000.

[10] S. Gorham and P. C. Brennan, “Impact of focal spot size on radiologic image
quality: A visual grading analysis,” Radiography, vol. 16, pp. 304–313, nov
2010.

[11] F. R. Verdun, D. Racine, J. G. Ott, M. J. Tapiovaara, P. Toroi, F. O. Bochud,
W. J. Veldkamp, A. Schegerer, R. W. Bouwman, I. Hernandez-Giron, N. W.

132

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 133

Marshall, and S. Edyvean, “Image quality in CT: From physical measurements
to model observers,” Physica Medica, vol. 31, pp. 823–843, dec 2015.

[12] Z. Rui, Y. Jili, W. Jinjie, Y. Yang, L. Zhenyu, and Z. Zhenjie, “Study on
the inverse square law of X-ray radiation field,” Chinese Journal of Nuclear
Science and Engineering, vol. 37, no. 3, pp. 482–486, 2017.

[13] “EN AW-2014. Aluminium Material Data Sheet EN AW-2014, EN AW-Al
Cu4SiMg. 2011,”

[14] T. Zikmund, Possibilities of state of the art lab-based CT systems for industrial
part inspection. Ceitec, 2018.

[15] D. Mihailidis, “Computed Tomography From Photon Statistics to Modern
Cone-Beam CT,” Medical Physics, vol. 36, no. 8, p. 3858, 2009.

[16] J. D. O’Sullivan, J. Behnsen, T. Starborg, A. S. MacDonald, A. T. Phythian-
Adams, K. J. Else, S. M. Cruickshank, and P. J. Withers, “X-ray micro-
computed tomography (µCT): an emerging opportunity in parasite imaging.,”
Parasitology, vol. 145, pp. 848–854, nov 2017.

[17] U. Khan, A. U. Yasin, M. Abid, I. S. Awan, and S. A. Khan, “A Methodological
Review of 3D Reconstruction Techniques in Tomographic Imaging,” Journal
of Medical Systems, vol. 42, pp. 1–12, oct 2018.

[18] G. Wang, T. H. Lin, P. C. Cheng, and D. M. Shinozaki, “A General Cone-
Beam Reconstruction Algorithm,” IEEE Transactions on Medical Imaging,
vol. 12, no. 3, pp. 486–496, 1993.

[19] W. Sun, S. B. Brown, and R. K. Leach, “An overview of industrial X-ray
computed tomography.,” 2012.

[20] J. F. Barrett and N. Keat, “Artifacts in CT: Recognition and avoidance,”
Radiographics, vol. 24, nov 2004.

[21] J. Kastner and C. Heinzl, “X-Ray Tomography,” in Handbook of Advanced
Non-Destructive Evaluation, pp. 1–72, Cham: Springer International Publish-
ing, 2018.

[22] A. A. Malcolm, T. Liu, I. Kee, B. Ng, W. Y. Teng, T. Tung, P. Wan, and
C. J. Kong, “A Large Scale Multiple Source X-ray CT System for Aerospace
Applications,” pp. 13–15, 2013.

[23] ASTM International, “ASTM E155-20, Standard Reference Radiographs for
Inspection of Aluminum and Magnesium Castings, ASTM International, West
Conshohocken, PA, 2020, www.astm.org,”

[24] ASTM International, “ASTM E505-15, Standard Reference Radiographs for
Inspection of Aluminum and Magnesium Die Castings, ASTM International,
West Conshohocken, PA, 2015, www.astm.org,”

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 134

[25] ASTM International, “ASTM E2422-17, Standard Digital Reference Images
for Inspection of Aluminum Castings, ASTM International, West Consho-
hocken, PA, 2017, www.astm.org,”

[26] ASTM International, “ASTM E2973-15, Standard Digital Reference Images
for Inspection of Aluminum and Magnesium Die Castings, ASTM Interna-
tional, West Conshohocken, PA, 2015, www.astm.org,”

[27] S. Shukla, “Study of Porosity Defect in Aluminum Die Castings and its
Evaluation and Control for Automotive Applications,” International Research
Journal of Engineering and Technology, 2020.

[28] S. Gondrom, S. Gondrom, and M. Maisl, “3D reconstructions of micro-systems
using x-ray tomographic methods,” in 16th World Conference on Nondestruct-
ive Testing 2004. CD of proceedings, (Montreal), p. TS5.3.1, 2004.

[29] D. Mery, ·. V. Riffo, U. Zscherpel, G. Mondragón, I. Lillo, I. Zuccar, H. Lobel,
and M. Carrasco, “GDXray: The Database of X-ray Images for Nondestructive
Testing,” J Nondestruct Eval, vol. 34, p. 42, 2015.

[30] D. Mery, T. Jaeger, and D. Filbert, “A review of methods for automated
recognition of casting defects,” tech. rep., 2002.

[31] S. Arita, H. Takimoto, H. Yamauchi, and A. Kanagawa, “Automatic Detection
Method for Casting Defects based on Gradient Features,” 2014.

[32] B. Wu, J. Zhou, X. Ji, Y. Yin, and X. Shen, “Research on Approaches for
Computer Aided Detection of Casting Defects in X-ray Images with Feature
Engineering and Machine Learning,” Procedia Manufacturing, vol. 37, pp. 394–
401, jan 2019.

[33] R. B. Tokime, X. Maldague, and L. Perron, “Automatic Defect Detection for
X-Ray inspection: Semantic segmentation with deep convolutional network,”
in International Symposium on Digital Industrial Radiology and Computed
Tomography (DIR 2019), (Furth, Germany), 2019.

[34] W. Du, H. Shen, J. Fu, G. Zhang, and Q. He, “Approaches for improvement of
the X-ray image defect detection of automobile casting aluminum parts based
on deep learning,” NDT & E International, vol. 107, p. 102144, oct 2019.

[35] D. Mery, “Aluminum Casting Inspection Using Deep Learning: A Method
Based on Convolutional Neural Networks,” undefined, vol. 39, mar 2020.

[36] L. Duan, K. Yang, and L. Ruan, “Research on Automatic Recognition of
Casting Defects Based on Deep Learning,” IEEE Access, vol. 9, pp. 12209–
12216, 2021.

[37] A. du Plessis, S. G. le Roux, and A. Guelpa, “Comparison of medical and in-
dustrial X-ray computed tomography for non-destructive testing,” Case Stud-
ies in Nondestructive Testing and Evaluation, vol. 6, pp. 17–25, nov 2016.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 135

[38] S. Kumar, S. Rani, and K. R. Laxmi, “Artificial Intelligence and Machine
Learning in 2D/3D Medical Image Processing,” Artificial Intelligence and Ma-
chine Learning in 2D/3D Medical Image Processing, dec 2020.

[39] M. Hadwiger, L. Fritz, C. Rezk-Salama, T. Höllt, G. Geier, and T. Pabel, “In-
teractive volume exploration for feature detection and quantification in indus-
trial CT data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 14, pp. 1507–1514, nov 2008.

[40] I. Szabo, J. Sun, G. Feng, J. Kanfoud, T. H. Gan, and C. Selcuk, “Automated
Defect Recognition as a Critical Element of a Three Dimensional X-ray Com-
puted Tomography Imaging-Based Smart Non-Destructive Testing Technique
in Additive Manufacturing of Near Net-Shape Parts,” Applied Sciences 2017,
Vol. 7, Page 1156, vol. 7, p. 1156, nov 2017.

[41] J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise
reduction Wiener filter,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, no. 4, pp. 1218–1233, 2006.

[42] S. Gondrom-Linke, “Physics and Special Technology of Very Fast or Even
Inline Industrial 3D-CT,” in 15th Asia Pacific Conference for Non-Destructive
Testing, (Singapore), NDT.net Issue - 2018-03, 2017.

[43] M. Rieter, C. Gusenbauer, R. Huemer, and J. Kastner, “At-line X-ray com-
puted tomography of serial parts optimized by numerical simulations,” in In-
ternational Symposium on Digital Industrial Radiology and Computed Tomo-
graph (DIR)), (Fürth, Germany), NDT.net Issue - 2019-11, 2019.

[44] F. Zhao, P. R. Mendonça, J. Yu, and R. Kaucic, “Learning-based automatic
defect recognition with computed tomographic imaging,” 2013 IEEE Interna-
tional Conference on Image Processing, pp. 2762–2766, 2013.

[45] S. E. Grigorescu, N. Petkov, and P. Kruizinga, “Comparison of texture fea-
tures based on Gabor filters,” Ieee transactions on image processing, vol. 11,
pp. 1160–1167, oct 2002.

[46] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” Proceedings of the
25th International Conference on Machine Learning, pp. 1096–1103, 2008.

[47] P. R. Mendonça, R. Bhotika, S. A. Sirohey, W. D. Turner, J. V. Miller, and
R. S. Avila, “Model-based analysis of local shape for lesion detection in CT
scans,” Medical image computing and computer-assisted intervention : MIC-
CAI ... International Conference on Medical Image Computing and Computer-
Assisted Intervention, vol. 8, no. Pt 1, pp. 688–695, 2005.

[48] A. Osman, V. Kaftandjian, and U. Hassler, “Automatic classification of 3D
segmented CT data using data fusion and support vector machine,” in Tenth

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 136

International Conference on Quality Control by Artificial Vision, vol. 8000,
p. 80000F, SPIE, jun 2011.

[49] A. Osman, V. Kaftandjian, and U. Hassler, “Improvement of X-ray castings
inspection reliability by using Dempster–Shafer data fusion theory,” Pattern
Recognition Letters, vol. 32, pp. 168–180, jan 2011.

[50] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters,
vol. 27, pp. 861–874, jun 2006.

[51] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep
Learning for Computer Vision: A Brief Review,” Computational Intelligence
and Neuroscience, vol. 2018, 2018.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778, dec 2015.

[53] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” Pro-
ceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 07-12-June, pp. 1–9, oct 2015.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” in 2015 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 1026–1034, IEEE, dec
2015.

[55] J. Maier, S. Sawall, M. Kachelriess, and Y. Berker, “Deep scatter estimation
(DSE): feasibility of using a deep convolutional neural network for real-time
x-ray scatter prediction in cone-beam CT,” SPIE, vol. 10573, p. 105731L, mar
2018.

[56] M. L. Giger, “Machine Learning in Medical Imaging,” Journal of the American
College of Radiology, vol. 15, pp. 512–520, mar 2018.

[57] T. Higaki, Y. Nakamura, F. Tatsugami, T. Nakaura, and K. Awai, “Improve-
ment of image quality at CT and MRI using deep learning,” Japanese Journal
of Radiology 2018 37:1, vol. 37, pp. 73–80, nov 2018.

[58] K. Liang, L. Zhang, H. Yang, Y. Yang, Z. Chen, and Y. Xing, “Metal
artifact reduction for practical dental computed tomography by improv-
ing interpolation-based reconstruction with deep learning,” Medical Physics,
vol. 46, pp. e823–e834, dec 2019.

[59] M. Schlotterbeck, L. Schulte, W. Alkhaldi, M. Krenkel, E. Toeppe,
S. Tschechne, and C. Wojek, “Automated defect detection for fast evaluation
of real inline CT scans,” https://doi.org/10.1080/10589759.2020.1785446,
vol. 35, pp. 266–275, jul 2020.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 137

[60] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D
U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), vol. 9901 LNCS,
pp. 424–432, jun 2016.

[61] G. Mooij, I. Bagulho, and H. Huisman, “Automatic segmentation of prostate
zones,” 2018.

[62] P. Fuchs, T. Kröger, and C. S. Garbe, “Defect detection in CT scans of cast
aluminum parts: A machine vision perspective,” Neurocomputing, vol. 453,
pp. 85–96, sep 2021.

[63] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” may 2015.

[64] A.Géron, Hands-on machine learning with Scikit-Learn, Keras and Tensor-
Flow: concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, Inc., 2019.

[65] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional
Networks,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8689
LNCS, pp. 818–833, nov 2013.

[66] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” mar 2016.

[67] T. Rashid, Make Your First GAN With PyTorch. Independently Published,
2020.

[68] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[69] F. and others Chollet, “Keras,” 2015.

[70] R. Gordon, “Three-Dimensional Reconstruction from Projections: A Review
of Algorithms,” International Review of Cytology, vol. 38, pp. 111–151, jan
1974.

[71] Rahul T Patil, Veena S Metri, and Shubhangi S Tambore, “Causes of Casting
Defects with Remedies,” International Journal of Engineering Research and,
vol. V4, nov 2015.

[72] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent
Advances. SPIE PRESS, 2015.

[73] C. W. Kang, M. B. Ramzan, B. Sarkar, and M. Imran, “Effect of inspection
performance in smart manufacturing system based on human quality control
system,” The International Journal of Advanced Manufacturing Technology
2017 94:9, vol. 94, pp. 4351–4364, oct 2017.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 138

[74] T. S. Newman, “Survey of automated visual inspection,” Computer Vision
and Image Understanding, vol. 61, no. 2, pp. 231–262, 1995.

[75] C. Stolojescu-Crişan and t. Holban, “A Comparison of X-ray image segment-
ation techniques,” Advances in Electrical and Computer Engineering, vol. 13,
no. 3, pp. 85–92, 2013.

[76] R. C. Gonzalez and R. E. Woods, Digital image processing, 4th Edition. Pear-
son Education, 2018.

[77] A. Alazzawi, “EDGE DETECTION-APPLICATION OF (FIRST AND
SECOND) ORDER DERIVATIVE IN IMAGE PROCESSING,” Diyala
Journal of Engineering Sciences, vol. 8, pp. 430–440, dec 2015.

[78] H. P. Narkhede, “Review of Image Segmentation Techniques,” International
Journal of Science and Modern Engineering (IJISME), no. 8, pp. 2319–6386,
2013.

[79] C. Glasbey, “An Analysis of Histogram-Based Thresholding Algorithms,” CV-
GIP: Graphical Models and Image Processing, vol. 55, pp. 532–537, nov 1993.

[80] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE
Trans Syst Man Cybern, vol. SMC-9, no. 1, pp. 62–66, 1979.

[81] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Pro-
cessing On Line, vol. 3, pp. 286–310, dec 2013.

[82] N. Senthilkumaran and R. Rajesh, “Edge Detection Techniques for Image
Segmentation-A Survey of Soft Computing Approaches,” INFORMATION
PAPER International Journal of Recent Trends in Engineering, vol. 1, no. 2,
p. 250, 2009.

[83] Vipin Tyagi, Understanding Digital Image Processing. CRC PRESS, 2018.

[84] A. Alam, Zain-Ul-Abdin, and B. Svensson, “Parallelization of the estimation
algorithm of the 3D structure tensor,” 2012 International Conference on Re-
configurable Computing and FPGAs, ReConFig 2012, 2012.

[85] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A
nested u-net architecture for medical image segmentation,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 11045 LNCS, pp. 3–11, Springer
Verlag, 2018.

[86] A. N. J. Raj, H. Zhu, A. Khan, Z. Zhuang, Z. Yang, G. V. Mahesh, and
G. Karthik, “ADID-UNET—a segmentation model for COVID-19 infection
from lung CT scans,” PeerJ Computer Science, vol. 7, pp. 1–34, jan 2021.

[87] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 139

[88] Sorensen and T. A., “A method of establishing groups of equal amplitude in
plant sociology based on similarity of species content and its application to
analyses of the vegetation on Danish commons,” Biol. Skar., vol. 5, pp. 1–34,
1948.

[89] S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020
IEEE Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology, CIBCB 2020, 2020.

[90] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Gen-
eralised Dice overlap as a deep learning loss function for highly unbalanced
segmentations,” 2017.

[91] V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis, “Learning Rate Ad-
aptation in Stochastic Gradient Descent,” pp. 433–444, 2001.

[92] F. Sherwani, B. S. Ibrahim, and M. M. Asad, “Hybridized classification al-
gorithms for data classification applications: A review,” Egyptian Informatics
Journal, vol. 22, pp. 185–192, jul 2021.

[93] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 3rd
International Conference on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings, dec 2014.

[94] V. Nekrasov, J. Ju, and J. Choi, “Global deconvolutional networks for se-
mantic segmentation,” in British Machine Vision Conference 2016, BMVC
2016, vol. 2016-Septe, pp. 124.1–124.14, 2016.

[95] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[96] J. Lee, B. K. Iwana, S. Ide, and S. Uchida, “Globally Optimal Object Tracking
with Fully Convolutional Networks,” dec 2016.

[97] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks
for Biomedical Image Segmentation,” tech. rep.

[98] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation,” Proceedings - 2016 4th
International Conference on 3D Vision, 3DV 2016, pp. 565–571, jun 2016.

[99] Y. Xia, E. K. Fishman Johns Hopkins Medicine, Q. Yu, L. Xie, E. K. Fishman,
and A. L. Yuille, “Thickened 2D Networks for 3D Medical Image Segmenta-
tion,” tech. rep., 2019.

[100] F. Isensee, P. Jaeger, P. M. Full, I. Wolf, S. Engelhardt, and K. H. Maier-
Hein, “Automatic Cardiac Disease Assessment on cine-MRI via Time-Series
Segmentation and Domain Specific Features,” vol. 10663, jul 2017.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 140

[101] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy images,”
in Advances in Neural Information Processing Systems, vol. 4, pp. 2843–2851,
2012.

[102] O. Rukundo, “Effects of Image Size on Deep Learning,” jan 2021.

[103] Y. Moe, A. Groendahl, O. Tomic, E. Dale, E. Malinen, and C. Futsaether,
“Deep learning-based auto-delineation of gross tumour volumes and involved
nodes in PET/CT images of head and neck cancer patients,” European journal
of nuclear medicine and molecular imaging, vol. 48, pp. 2782–2792, aug 2021.

[104] Z. Tian, J. Chen, and Q. Niu, “DropFilter: Dropout for Convolutions,” oct
2018.

[105] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting,” Tech. Rep. 56,
2014.

[106] L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image
Classification using Deep Learning,” dec 2017.

[107] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
pp. 84–90, jun 2017.

[108] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” 32nd International Conference
on Machine Learning, ICML 2015, vol. 1, pp. 448–456, feb 2015.

[109] D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation,” oct 2011.

[110] P. Harrington, Machine Learning in Action, vol. 37. 2012.

[111] S. Marsland, Machine learning : an algorithmic perspective. CRC Press, 2009.

[112] S. Ruder, “An overview of gradient descent optimization algorithms,” sep 2016.

[113] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” in MM 2014 - Proceedings of the 2014 ACM Conference on Multi-
media, pp. 675–678, Association for Computing Machinery, Inc, nov 2014.

[114] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural Networks, vol. 12, pp. 145–151, jan 1999.

[115] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” pp. 248–255, mar 2010.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 141

[116] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,
and R. M. Summers, “Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and Transfer
Learning,” IEEE Transactions on Medical Imaging, vol. 35, pp. 1285–1298,
feb 2016.

[117] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” 3rd International Conference on Learning Repres-
entations, ICLR 2015 - Conference Track Proceedings, 2015.

[118] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
Localization,” International Journal of Computer Vision, vol. 128, pp. 336–
359, oct 2016.

[119] D. A. Turner, “An intuitive approach to receiver operating characteristic curve
analysis.,” Journal of nuclear medicine : official publication, Society of Nuclear
Medicine, vol. 19, pp. 213–220, feb 1978.

[120] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data - Recom-
mendations for the use of performance metrics,” Proceedings - 2013 Humaine
Association Conference on Affective Computing and Intelligent Interaction,
ACII 2013, pp. 245–251, 2013.

[121] J. Davis and M. Goadrich, “The relationship between precision-recall and ROC
curves,” ACM International Conference Proceeding Series, vol. 148, pp. 233–
240, 2006.

[122] T. Saito and M. Rehmsmeier, “The Precision-Recall Plot Is More Informat-
ive than the ROC Plot When Evaluating Binary Classifiers on Imbalanced
Datasets,” PLOS ONE, vol. 10, p. e0118432, mar 2015.

[123] Y. J. Zhang, “A survey on evaluation methods for image segmentation,” Pat-
tern Recognition, vol. 29, pp. 1335–1346, aug 1996.

[124] M. Everingham, S. M. Eslami, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The Pascal Visual Object Classes Challenge: A Retrospective,”
International Journal of Computer Vision, vol. 1, pp. 98–136, jan 2015.

[125] J. Yu, J. Xu, Y. Chen, W. Li, Q. Wang, B. I. Yoo, and J.-J. Han, “Learning
Generalized Intersection Over Union for Dense Pixelwise Prediction,” jul 2021.

[126] I. Virkkunen, T. Koskinen, S. Papula, T. Sarikka, and H. Hänninen, “Com-
parison of â Versus a and Hit/Miss POD-Estimation Methods: A European
Viewpoint,” Journal of Nondestructive Evaluation, vol. 38, pp. 1–13, dec 2019.

[127] J. H. Kurz, A. Jüngert, S. Dugan, and G. Dobmann, “Probability of Detection
(POD) Determination Using Ultrasound Phased Array for Considering NDT
in Probabilistic Damage Assessments,” in World Conference on Nondestructive
Testing (WCNDT), 2012.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



Bibliography 142

[128] G. Dour, Aide-mémoire - Fonderie - Livre Mécanique et matériaux. Dunod,
2e ed., 2016.

[129] J. Lindblad and I. Nyström, “Surface area estimation of digitized 3D objects
using local computations,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 2301, pp. 267–278, 2002.

[130] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3D surface con-
struction algorithm,” ACM SIGGRAPH Computer Graphics, vol. 21, pp. 163–
169, aug 1987.

[131] H. Wadell, “Volume, Shape, and Roundness of Rock Particles,” The Journal
of Geology, vol. 40, pp. 443–451, jul 1932.

[132] W. Pabst and E. Gregorová, “Characterization of particles and particle sys-
tems,” in ICT, (Prague), 2007.

[133] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A
comprehensive survey on support vector machine classification: Applications,
challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, sep 2020.

[134] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a Few Ex-
amples: A Survey on Few-Shot Learning,” ACM Computing Surveys, vol. 53,
apr 2019.

[135] J. Bromley, I. Guyon, Y. Lecun, E. Sickinger, R. Shah, A. Bell, and L. Holm-
del, “Signature Verification using a "Siamese" Time Delay Neural Network,”
Advances in Neural Information Processing Systems, vol. 6, 1993.

[136] Y. Sugawara, S. Shiota, and H. Kiya, “Checkerboard artifacts free convo-
lutional neural networks,” APSIPA Transactions on Signal and Information
Processing, vol. 8, pp. 1–9, 2019.

[137] C. A. Hall and W. W. Meyer, “Optimal error bounds for cubic spline inter-
polation,” Journal of Approximation Theory, vol. 16, pp. 105–122, feb 1976.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés



 

 

 

 

 

 
FOLIO ADMINISTRATIF 

 
THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON 

 
 
NOM : DAKAK DATE DE SOUTENANCE : 09/03/2022 
 
PRÉNOM : Abdel Rahman 
 
 
TITRE : Automatic Defect Detection in Industrial CT Volumes of Castings / 
             Détection Automatique des Défauts dans des Volumes Tomographiques des Pièces de Fonderie 
 
 
NATURE : Doctorat NUMÉRO D’ORDRE :  2022LYSEI013 
 
 
ÉCOLE DOCTORALE : Electronique, Electrotechnique, automatique (EEA) 
 
 
SPÉCIALITÉ : Traitement du Signal et de l'Image 
 
 
RESUMÉ : 
 
Industrial X-ray computed tomography (CT) has proven its value as a non-destructive method for inspecting light 
metal castings. The CT volume generated enables the internal and external geometry of the specimen to be 
measured, casting defects to be localized and their statistical properties to be investigated. On the other hand, CT 
volumes are very prone to artifacts that can be mistaken for defects by conventional segmentation algorithms. 
Based on CT data of aluminium alloy castings provided by industrial partners, we have developed an automatic 
approach to analyze discontinuities inside CT volumes based on a three-step pipeline: (1) 2D segmentation of CT 
slices with automatic deep segmentation to detect suspicious greyscale discontinuities; (2) classification of these 
discontinuities into true alarms (defects) or false alarms (artifacts and noise), using a trained convolutional neural 
network classifier; (3) localization of the validated defects in 3D to investigate their statistical properties such as 
sphericity, elongation and compactness. Based on this, the validated 3D defects are then classified into porosities 
or shrinkage cavities using an SVM classifier and a siamese neural network. The choice of each model and the 
training results are presented and discussed, as well as the efficiency of the approach as an automatic defect 
detection algorithm for industrial CT volumes. 
 
 
MOTS-CLÉS : Casting, CT, X-Ray, Defect Detection, Machine Learning, Deep Learning, Few-Shot Learning 
 
 
LABORATOIRE DE RECHERCHE : Laboratoire Vibrations et Acoustique (LVA) 
 
 
DIRECTEUR DE THÈSE : KAFTANDJIAN Valérie 
 
 
PRÉSIDENT DE JURY : M. OSMAN Ahmad 
 
 
COMPOSITION DU JURY : OSMAN Ahmad (président), ROMBAUT Michèle (rapporteur de thèse), RUAN Su 

(rapporteur de thèse), MERY Domingo (examinateur), DUFFNER Stefan (examinateur), KAFTANDJIAN Valérie (directrice 

de thèse), DUVAUCHELLE Philippe (co-encadrant). 
 
 
 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2022LYSEI013/these.pdf 
© [A. Dakak], [2022], INSA Lyon, tous droits réservés


	Notice XML
	Page de titre
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Chapter I Tomography for Casting Inspection
	I.1 Industrial Computed Tomography
	I.2 Cone-Beam CT System
	I.2.2 Detector
	I.2.3 Object

	I.3 3D Reconstruction & Artifacts
	I.8 Deep Learning Models Challenge: Overfitting & Underfitting

	Chapter II 2D & 3D Image Processing of Industrial CT Data
	II.1 CT Volumes Analysis
	II.1.1 True Alarms and False Alarms

	II. 2 Image Segmentation Techniques
	II.2.1 Edge-Based Segmentation

	II.3 2D Segmentation Algorithm
	II.3.2 Denoising
	II.3.3 Differentiation
	II.3.4 Localization

	II.4 3D Segmentation Algorithm
	II.4.1 Preprocessing
	II.4.2 Differentiation and Localization

	II.5 Results & Discussion
	II.5.1 2D Algorithm
	II.5.2 3D Algorithm

	Conclusion

	Chapter III U-Net for Industrial CT Images Segmentation
	III.1 Segmentation Task
	III.2 Learning Experience
	III.2.1 Training Dataset

	III.3 Performance Measurement
	III.3.1 Dice Loss

	III.4 Adam Optimizer
	III.6 U-Net Under the Loop
	III.7 Regularization
	III.9 Training U-Net with Over-Segmented Images
	III.9.2 Training Results


	Chapter IV CNN for Defects Recognition in Industrial CT Images
	IV.1 Classification Task
	IV.2 Learning Experience
	IV.2.1 Training, Validation and Test Data
	IV.3 Performance Measurement
	IV.3.1 Evaluation Metrics
	IV.3.2 Loss Function: Binary Cross Entropy

	IV.4 SGD Optimizer
	IV.5 State-of-the-Art Models
	IV.6 Building a New CNN Architecture
	IV.7 Performance Results & Discussion

	Chapter V Automatic Casting Defect Detection: Approach Validation
	V.1 Automatic Defect Detection Approach
	V.1.1 Slice-by-Slice Segmentation with U-Net

	V.2 Validation Metrics
	V.2.1 Precision Recall Curve
	V.2.2 Intersection-over-Union
	V.2.3 Probability of Detection

	V.3 Validation Results & Discussion
	Conclusion

	Chapter VI Few-Shot Learning for Casting Defects Categorization
	VI.1 Casting Processes
	VI.2 Casting Defects Database
	VI.5 SNN Architecture and Hyperparameters
	Conclusion

	Conclusion
	Résumé en Français
	1 Introduction : contexte et objectives
	2 Le principe de la tomographie
	3 Le besoin industriel vis-à-vis de la tomographie
	4 La chaîne globale de traitement : segmentation et classification
	4.1 L’étape de segmentation par deep learning
	4.3 Validation de l’approche de détection + classification
	4.4 La reconnaissance du type de défauts


	Conclusion
	Bibliography
	FOLIO ADMINISTRATIF



