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Abstract

From a societal point of view, automated vehicles (AV) can bring many benefits, such
as an increase of road safety and a decrease of congestion (Fagnant and Kockelman, 2015;
Schwarting et al., 2018). However, due to the highly dynamic environments these vehicles can
encounter, technical concerns about their feasibility and ethical concerns about their actions’
deliberation, explainability and consequences (Lin, 2016; Gerdes and Thornton, 2016) seems to
damper the enthusiasm and optimism that once ruled the automotive sector and the public opinion
(Boudette, 2019).

This thesis addresses the core questions surrounding autonomous vehicles today: how
they should account the road users sharing the same environment in their decision making and
also how they should deliberate to act in dilemma situations. Firstly, a decision making process for
the autonomous vehicle under general situations is proposed, and then, as a particular situation,
the deliberation under certain collision, with other vehicles, pedestrians or static objects, is
implemented.

The discussion focus on an hypothetical AV implementation in urban environments,
where velocity is limited and many road users might interact with each other. Therefore, the
behavior from other road users is a significant source of uncertainty for the AV (Madigan et al.,
2019). In a first attempt to propose a decision making algorithm for the AV that contemplate
both generic and dilemma situations, the behavior of road users was considered static during the
execution of an AV policy.

A finite horizon MDP, with states representing only the AV’s configuration, was im-
plemented, leaving the road users’ configuration to be accounted in the reward function as an
evaluation of how much risk and performance each action would bring. With this state definition
the transition probability was defined as static scalar constant, given that it would represent only
the probability of the AV reaching an expected next state given a current one and an action. A
dilemma scenario was defined as when all available actions for the AV would result in an accident,
which is predicted by the outcome calculated in the reward function estimation. The results of
this implementation can be seen in (de Moura et al., 2020).



In the aforementioned article and also in (Evans et al., 2020), a measure of the risk in an
accident, called harm, was proposed. It accounts for the difference of velocity produced by the
collision and for the vulnerability between the involved road users. This last parameter is proposed
to be calculated via a statistical accidentology study from a region or a country, classifying the
severity of a collision according to the difference of velocity between the concern road users.
The harm represents a scaled measure of risk for each road user due to a collision and is used to
deliberate on which action the AV should execute in a dilemma scenario situation.

On the subject of ethical deliberation, (de Moura et al., 2020) and (Evans et al., 2020)
take different approaches. The former adapts the general idea of certain ethical theories (ralwsian
contractualism, utilitarianism and egalitarianism) into a mathematical formulation to choose the
action based on the expected harm it would produce, which is then used as a deliberation method
by the MDP for a state that presents a dilemma situation, instead of the usual value iteration
criteria for general situations. The method proposed by (Evans et al., 2020) adds to the harm the
concept of ethical valence, which represents the degree of social acceptability that is attached to
the claims of the road users in the environment. Then both measures are used by defined moral
profiles to deliberate on an action.

Coming back to the question about other road users’ behaviors uncertainty, a different
approach was considered for such parameter to the AV’s decision making. Using an intersection
as use case, a multi-agent simulation was implemented, with each decision making from other
road users (pedestrians and vehicles) being executed by a set of deterministic rules, to represent
the behavior of a standard driver/pedestrian. To estimate the intentions of other users, the AV
compares its predictions by assuming an intention vector and updating an instance of a Kalman
filter for each user. The distance between the estimate and the observation defines the probability
that a user has the assumed intention. To take into account the interactions between the different
users, we adopt a game theoretic approach with incomplete information (Harsanyi, 1967; Harsanyi,
1968b) to then calculate the Nash’s equilibrium, giving the final AV’s strategy.

Keywords: automated vehicles, decision-making, ethical decision-making, artificial
moral agents, game theory, behavior prediction



Résumé

D’un point de vue sociétal, le véhicule à conduite automatisée (VA) peut nous offrir
plusieurs avantages par rapport au trafic constitué seulement de véhicules avec conducteur, comme
une augmentation de la sécurité routière et une diminution de la congestion routière (Fagnant
and Kockelman, 2015; Schwarting et al., 2018). Cependant, à cause de l’environnent dynamique
et complexe où ces systèmes doivent opérer, des questionnements concernant leur sûreté de
fonctionnement et leur comportement vis-à-vis des autres utilisateurs se posent, en particulier
sur la capacité du VA de délibérer sous dilemme éthique, d’expliquer ses choix et de mesurer
les conséquences de ses actions (Lin, 2016; Gerdes and Thornton, 2016). Ces questions ont
finalement ralenti l’enthousiasme naïf et inouï qui avait conquis l’opinion publique et une partie
des constructeurs automobiles (Boudette, 2019).

Deux sujets sont abordés dans cette thèse concerant les défis du déploiement du VA
dans le monde réel: comment prendre en compte les autres utilisateurs de la route dans le
processus de prise de décision du VA dans un environnent urbain, et comment le VA doit délibérer
sous une situation de dilemme éthique. D’abord un algorithme de prise de décision conçu pour
traiter des situations génériques est proposé; ensuite, à partir de cet algorithme et dans le cadre
d’une situation spécifique, quand une collision avec des autres véhicules ou des piétons devient
inévitable, la délibération éthique est traitée.

La discussion concernant la prise de décision du VA est limitée à l’environnent urbain, où
la vitesse est limitée et plusieurs utilisateurs, protégés par des coques de métal (véhicules) ou pas
(piétons, cyclistes, etc.) interagissent les uns avec les autres. Le comportement des autres usagers
est une source majeure d’incertitude pour le VA. Dans une premiere proposition d’un algorithme
de prise de décision pour le VA, le comportement des autres utilisateurs a été considéré comme
statique.

Un processus de décision Markovien (Markov Decision Process, MDP) fini avec des états
qui représentent seulement la configuration du VA a été implémenté, avec la prise en compte de la
position des autres utilisateurs dans l’évaluation de chaque action action. Cette évaluation permet
aussi de détecter les situations de dilemme éthique, qui sont traités de deux façons différentes:
avec une optimisation (minimisation) du dommage (harm en anglais) prévu pour une collision



dans le cadre d’un processus délibération défini à partir d’une théorie éthique (de Moura et al.,
2020) ou en considérant des profils moraux qui prennent en compte la valence éthique de chaque
utilisateur et le dommage prévu (Evans et al., 2020).

La probabilité de transition entre états a été considérée comme statique pour le processus
de prise de décision proposé. Cependant elle est en réalité dépendante du comportement de chaque
utilisateur individuellement et de ses interactions avec les autres. Dans une généralisation de la
démarche précédente, nous avons introduit une modélisation pour prédire ces comportements.

Une simulation multi-agents est nécessaire pour que l’interaction avec les autres usagers
soit bien représentée. Pour estimer les intentions des autres usagers, le VA compare ses prédictions
en utilisant un vecteur d’intentions et en mettant à jour un filtre de Kalman pour chaque usager.
L’écart entre l’estimation et l’observation définit la probabilité qu’un utilisateur ait l’intention
prédite. Pour tenir compte des ineractions entre les usagers, nous adoptons une formulation
the théorie des jeux avec informations incomplètes qui permet de fournir le comportement de
l’ensemble des agents (Harsanyi, 1967; Harsanyi, 1968b). Le point d’équilibre de Nash permet
d’obtenir la stratégie finale du VA.

Mots-clés: véhicule automatisé, prise de decision, prise de decision éthique, agents
moraux artificiel, théorie des jeux, prédiction de comportement
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1.1 Automated driving vehicles in society

1.1.1 A note on terminology

The expression "automated driving vehicles" or "automated vehicles", will be preferably
used in this manuscript instead of autonomous vehicles. The technical meaning of an "autonomous
machine" is a machine that operates on its own, once programmed and started, without human
intervention. This is also the meaning of "automated machine"(Dictionary, 1989). Only environ-
ment and task complexity lead researchers in robotics to use "autonomous robots" in place of
"automated" because the necessary capacities in terms of perception, decision making, learning,
etc., are more diverse, and the tasks are more complex. However, "autonomous" and "autonomy"
in the general language, in philosophy and in law carry the meaning of deciding one’s own
goals and making one’s own decisions - including moral decisions - independently from other
agents’ influence, (Christman, 2008): "...to govern itself, to be directed by considerations, desires,

1



Chapter 1. Introduction 1.1. Automated driving vehicles in society

conditions and characteristics that are not simply imposed externally upon one but are part of
what can somehow be considered one’s authentic self". The decision-making algorithms proposed
and discussed in this thesis account for usual vehicle behavior control but also for decisions
having ethical stakes. This invalidates the use of autonomy as descriptive of such vehicles, since
machines do not have morality on their own. Automated driving vehicles accomplish compu-
tations as programmed in their algorithms, designed by humans - including through machine
learning methods - and are constrained by what these algorithms compute. It’s therefore important
to avoid any misleading terminology and to use the proper terms.

1.1.2 History

To explain from where the decision-making algorithms that govern automated vehicles
(AV) originated, a short history about the development of artificial intelligence (AI) in general,
with focus on mobile robotics, will be given, together with the past and current developments for
automated vehicles. A picture about the current deployment of automated driving technologies on
roads will also be presented, with the most popular use cases and main actors in the domain. This
overview will situate the motivations and contributions of this thesis and help to put the research
discussed in the next chapters into context.

The history of automated vehicles (AVs) is one that starts long before this century, and
in fact even before the well known DARPA challenges (2005 Grand challenge and 2007 Urban
challenge), that brought AVs into the public spotlight as a real and imminent innovation. The first
interaction between the wide public and cars that can drive themselves was in the New York’s
world fair in 1939. At that time, GM imagined a trench-like system build into highways to keep
vehicles separated. Then the driver could enable the automatic driving system and relax. All such
vehicles based their autonomy in mechanical systems (Kröger, 2016) since any kind of computing
machine technology was still in its beginnings.

Only in 1960’s, with the development of computational systems, semiconductors and
the establishment of artificial intelligence (AI), researchers start working towards reproducing
some sort of intelligence embedded in a vehicle. By introspection, what makes an agent1 become
an intelligent agent (which hypothetically receives some sort of authorization from society to
function with less or even without human supervision) is the possession of a model for the world,
which can be used to draw conclusion about how a task can be accomplished using computational
reasoning, can be enriched with additional information and allow the agent to execute tasks
necessary to complete a goal (McCarthy and Hayes, 1969). However the exigence towards the
performance level of said intelligent agent changed through the years. The first definition of
artificial intelligence for an inanimate agent, the Turing Test, verify if some sort of machine
is capable of producing an output indistinguishable from one originated from a human being

1Which are considered by the literal provenance of the word, from the latin agere, or to do, disregarding its
philosophical meaning.
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Figure 1.1 – Automated vehicles envisioned in 1950 (source: (Kröger, 2016))

(Turing, 1950). At this point the idea of an intelligent agent was connected to an equivalence
between human and machine, but a more accurate definition is perhaps the one given by (Bellman,
1978): "the automation of activities associated with human thinking".

With each advancement in the field, the equivalence was replaced by optimality, defining
an intelligent agent as a rational2 machine capable of executing the best outcome (or expected
best outcome under uncertainty) at each time given a mission (Russell and Norvig, 2009). The
same "rationality" is used in (Winston, 1992) through the definition of AI as "the computations
that make it possible to perceive, understand and act". This formulation of intelligence, born from
the introspection of the human mind (McCarthy and Hayes, 1969), is the first robotic paradigm
used to approach the implementation into a machine (Murphy, 2000).

Such concept of rationality, which is connected with the robot’s capacity to reason and to
construct a world model is based on a knowledge representation consisting of all the sensorial
data and a priori information about the environment (Murphy, 2000). Planning, state spaces and
transitions were used to construct this world model in the STRIPS planning system for the robot
Shakey (Munson, 1971; Fikes and Nilsson, 1971), even if at the time the theoretical tool used to
implement the planning was predicate logic, which does not offer the capacity to deal with the
uncertainties that may exist in an open and dynamic world. But when one considers the entire
concept of intelligence, only planning is not enough to reproduce, for example, the behaviors that

2Rational is used in (Russell and Norvig, 2009) as a property of someone or something that acts "doing the
right thing". It is not clear if this model of rationality accounts a moral component into the evaluation of what is
right. Therefore for this specific case, "the right thing" means quantitatively the best outcome without any moral
consideration.
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can be observed in animals given its complexity and the need for real-time execution (Brooks,
1986).

Intelligence as only defined by reason, and therefore with an artificial implementation
based on a top-down approach like the hierarchical paradigm, practically limits a robot’s capa-
bilities to some aspects of what one would expect from an intelligent agent (Brooks, 1991). For
example, the necessity for a real-time capacity to respond to stimulus can be in opposition to
the execution of a planning routine at every iteration (and it certainly was in the 1960s, when
computational capacity was much lower). It is from the search of a more "animal-like" responses
that the reactive paradigm came about. The seminal paper of (Brooks, 1986) defines the main
characteristics of this bottom-up approach (using a subsumption architecture): many distributed
components, each one emulating a kind of behavior, interact with each other and with other
components in different layers of increasing complex behavior. No planning is involved in this
approach, thus the agents do not have a model of the environment or any type of memory, instead
they react to what is perceived from the environment.

However, given the desire to implement an intelligent agent that has at least an equivalent
capacity to a human (if not more) to execute some specific task, the reactive paradigm also falls
short on finding a viable implementation (even though it produced many successful demonstrators
of animal behaviors, as (Brooks, 1989) or even other models of reactive behavior, as (Firby,
1989)). Having no capacity to plan is not realistically possible, since some kind of high-level
planning is necessary to execute long-term missions, map the environment and check the robot’s
performance (Murphy, 2000). So because of this outcome the planning step was added on top of
a deliberative process proposed by the reactive approach, in a hybrid configuration. The reactive
approach was a functional way to model the low-level real-time behavior for an agent but some
knowledge representation of the world is always necessary to plan, as it is shown in (Payton,
1986), (Arkin, 1990), (Giralt et al., 1990) and (Noreils and Chatila, 1995).

From the 1990s forward, two other modules started to appear and compose robotics
systems with perception, deliberation and action: communicate and learn (and given the dif-
fuse nature of the behavioral approach, these two functions where implemented by specific
components). The former is an essential source of information about other agents in the same
environment, allowing a more predictable interaction to optimize the main goal of both. Learn-
ing, and more specifically reinforcement learning presented itself as an alternative to the fixed
behaviors proposed by the reactive paradigm while using planning to find the best actions to be
executed (Sutton, 1990). Perception will also adopt learning for machine vision (Brauckmann
et al., 1994).

Throughout the development of the techniques, concepts and demonstrators of AI in
robotics, AV research (in this context AV refers to the domain of mobile robotics concerned into
producing vehicles for transportation) also took part in such progress from the 1980s. Given the
highly dynamical environment they should be able to operate, they touch the main problem of
hierarchical architectures, the need for a closed world assumptions, but an reactive approach is
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also not completely adapted a priori to the problem, since planning and representation is still
essential. Thus, since the beginning an hybrid approach was taken to build an AV architecture.
Some of the main demonstrators of self-driving AVs will be discussed bellow3.

One of the first implementation of camera-based perception for AVs was done by (Tsug-
awa et al., 1979). Two cameras were used in a stereo mount to detect and avoid objects, with
a maximum cruise velocity of 30km/h on private tracks. In 1987 (Dickmanns and Zapp, 1987)
successfully tested an AV capable of lateral and longitudinal guidance by computer vision in a
public highway for 20km with a maximal velocity of 96km/h. Such implementation extracted the
road boundary markings from images produced by a CCD TV-camera to determine an estimation
of the road geometry (curvature). Then this measure was updated at each iteration with the vehicle
state using a Kalman filter and used to calculate the longitudinal and lateral control.

The progress of self-driving continued from 1987 to 1995 due to the Prometheus project,
an European project that assembled car manufactures and research organizations to improve road
traffic safety from a vehicle perspective and from an infrastructure perspective. At the same time
the machine vision applied to AVs also was focus of research in the US and in Japan (Dickmanns,
2002). In (Dickmanns, Behringer, et al., 1994) a vision system composed of two platforms of
two cameras with different focal points was used to interpret the situation ahead and behind
the vehicle, with traffic sign detection, moving humans identification, obstacles and road lanes
finding. In the same project, (Brauckmann et al., 1994) proposed a vision system of sixteen
cameras, capable of detecting road vehicles all around, with a neural network capable of detecting
the rear of vehicles, a lateral blind spot surveillance and a short range visual object detection to
automate stop and go situations.

Figure 1.2 – Interior of the vehicle used to test the machine vision component proposed in
(Dickmanns and Zapp, 1987) (source: (Daimler, 2016))

3A more exhaustive list of projects can be found in (Claussmann, 2019)
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All of the developments cited were finally concentrated in the VITA II demonstrator
(Ulmer, 1994), which had the following capacities: lane, distance and speed keeping, lane change,
overtaking and collision avoidance. For the collision avoidance, two subsystems co-exist in the
vehicle: one that calculate controls based in a potential field approach and another that uses a state
transition model to represent all possible situations that may arise in traffic, invoking vehicle’s
maneuvers when necessary. Another European project, ARGO, also demonstrated a AV prototype
capable to drive long distances without a driver only with passive sensors (two cameras and
a speedometer) (Broggi, Bertozzi, et al., 1999). The road was reconstructed using monocular
images while detection and tracking of other vehicles was done with pattern matching. For the
vehicle control, a variable gain proportional controller with a non-holonomic bicycle model and a
quintic polynomial approximation produced the final trajectory. This demonstrator drove 2000km
in Italian highway network (not continuously). Problems related to illumination sensibility in
image acquisition and some control instability in high speeds were observed along during tests.

Figure 1.3 – Argo vehicle (source: (Parma, 1999))

Then it came the DARPA (Defense Advanced Research Projects Agency) challenges. The
race consisted in completing a 143 miles (approx. 230 km) route in the Mojave desert. No team
were able to complete the very first challenge in 2004, with the Red team from Carnegie Mellon
University traveling the farthest. The course route were given only 3 hours before the start of
the race, so the trajectory could not be calculated beforehand and since it is a off-road challenge
(thus no traffic infrastructure were available) the number of sensors needed to assure high speed
automated driving increased in number and complexity in comparison with the previous attempts
in highway environments. An effort from Red team was made to build a detailed map from the
entire region were the race could take place, with possible routes, geographic characteristics,
elevation and satellite images before the race. All this information was used, with the course
waypoints, to calculate a pre-established path, which should be tracked by the vehicle during
execution based on sensor readings (GPS for position and LIDAR and stereo vision for terrain
perception). Many incidents were reported, some related to the inability to modified the pre-
planned trajectory to avoid obstacles, but the one that provoked the final accident was due to an
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excessive sharpness in the pre-planned trajectory, tendency to cut corners from the pure pursuit
control and measurement errors in the GPS readings (Urmson, Anhalt, Clark, et al., 2004).

Figure 1.4 – Sandstorm vehicle in its final accident (source: Urmson, Anhalt, Clark, et al., 2004)

Since no team was able to finish the event, it was repeated in 2005. Five teams successfully
finished the course this time, with the Stanford team as first. The winner vehicle also possessed a
rich array of sensors as previously, from lasers, radars and cameras for environmental detection
to IMU, GPS and wheel encoders for position measurements. The Red team vehicle already
implemented an architecture close to the hierarchical paradigm, but the Stanford’s vehicle went
beyond and based its software in the three-layer architecture (will be detailed in the next chapter).
All position estimation measures were calculated using an UKF with a modified estimation for
GPS outages situations, where accurate vehicle modeling is necessary to maintain pose errors
contained. No environment a priori map was used, with the vehicle executing the obstacle
detection online and with laser measurements. Such detection is based on a probabilistic grid
approach with parameters tuned by a discriminative machine learning algorithm. For road finding,
since the laser range was insufficient given the speed necessary to complete the challenge, all
readings of safe terrain from laser origin were projected into the perceived pixels of the camera
image. Then, using a mixture of Gaussians the image pixels were classified and the drivable
surface was determined. The base trajectory was pre-calculated and modified online to avoid
obstacles while staying inside the course limits (Thrun et al., 2006).

As one can see, the complexity of the perception systems increased substantially since the
days of (Dickmanns and Zapp, 1987; Brooks, 1986) in terms of price and capacity. The other main
advancement that allowed such gain of performance is the availability of more capable computers.
Most of the machine vision processing done in (Dickmanns and Zapp, 1987) was done in specific
hardware; in (Thrun et al., 2006) the embedded processing unit had 6 processors. Advances
in machine learning were also capitalized in machine vision for the road and object detection
(although neural networks were already present in (Dickmanns, Behringer, et al., 1994)).

In 2007 the Urban Challenge took place, which consisted in a course of 97km through
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Figure 1.5 – Stanley vehicle in 2005 DARPA Grand Challenge (source: (Thrun et al., 2006))

an urban environment. This time it was the Carnegie Mellon University team that won the first
place. Their vehicle, called Boss, used a similar architecture from Stanley but with a focus on
active sensing. Given the nature of the challenge two different navigation modules existed: one
to generate a trajectory for road environments and another for non-structured zones (parking
zones). In roads multiple trajectories were generated from the middle of the current lane, allowing
the vehicle to choose the best lane to avoid static or dynamic obstacles. Outside roads, where
there was no nominal orientation, the vehicle model was used to generate offline a set of possible
maneuvers available for each state (in this case the state is composed by (x,y,θ ,v)4 ). Then this
space was searched online to form a trajectory, from the goal pose to the current position. Moving
obstacles were tracked using or a fixed-body hypothesis or a point-based estimation and then
classified as moving or not, while static objects first were identified in a instantaneous map to
then be filtered out or added into the temporally map (Urmson, Anhalt, Bagnell, et al., 2008).

But the real differential with the previous challenge was the mission planning. The
environment now had intersections, that needed to be managed in addition to the structured
and unstructured environment. Thus three behaviors were available: lane driving, intersection
handling and goal selection (for unstructured road). Each one of these behaviors had functional
components that could be used if necessary, in a reactive structure (Urmson, Anhalt, Bagnell,
et al., 2008).

From this point on there have been some initiatives from institutional projects, but the
private initiative took hold from the domain and started to develop real applications with the
technology displayed until this point (Anderson, Kalra, et al., 2016). Research beyond the 2010s
started to focus on the study of V2X communications combined with automated driving, as shown
by The Grand Cooperative Driving Challenge (Englund et al., 2016), an event in the molds of
the DARPA Challenge about wireless communication usage in traffic. Two other examples are
Broggi, Cerri, et al., 2015, a test in open street without driver in Parma, and Ziegler et al., 2014,
an automated driving test in the same route where the first cross-country automobile journey took
place, between Mannheim and Pforzhein in 1888.

4position in 2D, direction and velocity
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Figure 1.6 – Boss vehicle in 2007 DARPA Urban Challenge (source: (Urmson, Anhalt, Bagnell,
et al., 2008))

1.1.3 Current research status

Many applications for limited domain of operation are already present in the real world
today. The most popular system deployed are small shuttles operating in closed environments
and with limited velocity. For example, university campuses are very interesting environments
to test such technology and also to inquire the users about the service’s quality and its social
acceptability (Berrada et al., 2020; Nordhoff et al., 2021). Even if from a technical standpoint they
do not deliver what is expected – fully automated driving; Nordhoff et al., 2021 and Mouratidis
and Cobeña Serrano, 2021 had maximal velocity of 18km/h with automatic longitudinal control
but any obstacle avoidance needed to be executed by the operator and Berrada et al., 2020 had a
maximal velocity of 30km/h – their deployment in specific domains is useful to start studying
the societal effects that the automated driving can have in our society, which can vary from an
acceleration of urban sprawl (Soteropoulos et al., 2019) to an improvement of public transport
coverage in urban zones with few or infrequent buses (Mouratidis and Cobeña Serrano, 2021).

Usual car manufacturers already adopted level 1 or level 2 autonomy solutions. According
to the definition given by (SAE, 2018), level 1 automation is characterized by longitudinal or
lateral automatic control and level 2 both directions are controlled by the vehicle, but always
under de strict driver supervision. The latter is the frontier between having the driver in the loop5,
since from level 3 it is the machine that takes over – although in case of accidents or any type
of failure the driver must be ready to take over. For example, a very common system nowadays

5To be more precise, the difference between both levels is that level 2 assumes that no object or event detection,
recognition, classification, response preparation and response execution will be done by the vehicle, while level 3
internalize such tasks while maintaining the option to cede control for the driver (SAE, 2018)
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is the adaptive cruise control (ACC), which controls the velocity of a vehicle when engaged,
always checking ahead for obstacles. Another popular feature is the automatic emergency braking
(AEB), a system capable of detecting obstacles in front of the vehicle and break under danger
of collision. Its efficacy to reduce rear-end vehicle to vehicle (V2V) collision by was shown in
Fildes et al., 2015 for low speed (30km/h to 50km/h), but these systems still have difficulty to
prevent collisions with pedestrians in straight roads and in left and right turns (AAA, 2019).

Figure 1.7 – Definitions of levels of automation (source: (SAE, 2018))

Both aforementioned systems are classified as level 1. A level 2 system could be composed
for example by an ACC and a lane keeping system functioning at the same time, which is a
combination done by some brands (Toyota, Tesla and Mercedes, for example). No examples of
complete level 3 automation for open road usage6 exist in commercial cars today due to the lack
of regulatory legislation up to 2020, since level 3, often called conditional autonomy, is the first
stage of automated driving, thus, a priori, manufacturers could be liable for accidents during
execution of the given system, even in misuse cases.

6The open road usage was added to exclude parking assistants from the comparison, given that they are classified
as level 4 but they have a very specific raison d’être.
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From January 2021 forward, 60 countries (including the EU, Japan and Canada) adopted
a UN resolution that sets up the regulation of automated lane keeping systems (ALKS)7, limited
to 60km/h and roads with separation between opposite directions and without pedestrians or
cyclists. The regulation considers the system as primary driver and sets safety requirements for
emergency maneuvers, transition demands and minimal risk maneuvers. With level 3 capabilities
also comes two mandatory hardware components: a driver availability recognition system, which
detects the driver’s presence and readiness to take back control, and a data storage system, sort of
a black box for the automated system (UNECE, 2020). Thus, level 3 capable vehicles should be
expected in the near future.

Differently from the established car manufacturers, that avoid taking considerable risks,
some companies are working in level 4 urban AVs. Two of them already have automated demon-
strators working in the streets: Waymo and Cruise. The first, a spin-off from Google, is the
company with the most experience and mileage concerning simulation and real kilometers driven
in automated mode. It even created its own LIDAR sensor, which is used to give the vehicle a
360° vision of the environment. Cruise, a start-up that has as investors GM, Honda and Microsoft,
has a automated taxi service in central San Francisco without backup driver since October 2020,
after years of tests in the suburbs. Zoox, bought by Amazon in 2020, does not have vehicles
retrofitted with sensors to be autonomous, it has taken the approach to design a vehicle (in this
case a shuttle) from the ground up to be autonomous, with 4-wheel steering and bidirectional
driving.

The case of Tesla for automated driving is more complex. Tesla’s Autopilot has been
present in the streets since 2014 and it has generated controversy given its array of accidents and
problems, since its first accident in 2016 (Yadron and Tynan, 2016), when a Tesla drove under a
perpendicular lorry after failing to distinguish the latter from the bright sky (Tesla, 2016), until
another one in 2018 when a Model X hit a previously damaged median barrier at approximately
114km/h (Chokshi, 2020). In this last accident the National Transportation Safety Board, the
federal agency that investigated the incident pointed that the accident was caused by the driver
who has not paying attention to the road and that in 19 minutes of automated driving the driver
kept its hands on the wheel for a total of 34 seconds (Chokshi, 2020).

In 2017, as the result of an investigation of the 2016 accident (BBC, 2017), the same
agency had already issued two specific recommendations, for Tesla and all other manufacturers:
to limit the use of automated systems to the conditions accounted during design and to make sure
driver keep the focus on the road and their hands on the wheel (Chokshi, 2020). More recently
it was announced that US federal regulators investigate 23 accidents involving Tesla’s vehicles,
potentially using AutoPilot (it is not clear yet if the system was enable and functioning at the
moment of accident in all accounts). In these accidents there are instances when the Tesla crashed
into a stopped police vehicle without decreasing its velocity, another rear-ended a police vehicle
and one, which happened in February 2021, very similar to the 2016 lorry accident (Boudette,
2021).

7Despite the name, longitudinal control is also executed by the system
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Tesla’s new automated lane change system is the main focus of attention now. Since 2019
the Autopilot function can deliberate if a lane change is possible and necessary, and depending
on the settings used, it can executed or ask the driver permission to execute. Up until 2019 the
driver itself had to initiate the lane change. According to Barry, 2019, the functionality can cut off
cars in a way that drivers do not usually do. Other problems are mentioned, like the difficulty to
interact with high-speed vehicles coming from the rear during lane change and problems to merge
into traffic. Thus, one of the characteristics that an AV should have (or at least some vehicle with
advanced ADAS), the predictability of its actions by other drivers, sometimes is not present. By
hindsight, maybe the system executes such maneuvers because it has a greater analytical capacity
than a common driver, but there is no way to know since the inner works of the system are secret.

This privacy problem is also present in all other automated systems from other manufac-
turers, throwing all the responsibility to policymakers, that will need to establish the homologation
process for automated driving systems. This secrecy also prevents the inspection or the investi-
gation of these systems by the scientific community (or the public in general) at large. Despite
an expected re-calibration on the hopes and dreams about deploying fully functional AVs in the
roads at the beginning of this decade (Boudette, 2019), the technological development in the
private domain has already solidified and it is advancing towards a real prototype.

1.2 Motivation of the thesis

Simply put, the biggest selling point for the deployment of automated vehicles a possible
decrease in the number of accidents, given that that approximately 93.1% of them in the US
are due to human error (NHTSA, 2008). Such decrease is taken as a condition for the licensing
of automated systems according to guidelines from regulators (Luetge, 2017; Bonnefon et al.,
2020). Automated driving is estimated to represent a significant decrease in the number of deaths
in road accidents per year, which would be a gain for society as a whole, even if the gains of
such revolution would be felt in its majority in high-income countries, where the average rate
of death per 100.000 is 8.3 in comparison with 27.5 for low-income countries8 (WHO, 2018).
There are other reasons to study and push for AVs in the streets, for example to reduce traffic
and congestion (Narayanan et al., 2020), improve transportation efficiency (and therefore reduce
pollution) (Wadud et al., 2016), increase accessibility to the elderly and the disable (Fagnant and
Kockelman, 2015), but spare lives is the most urgent issue.

It is undeniable that an automated system can, a priori, have a better analytical capacity
than a human. This is even more evident if one considers afflictions that only affect humans, for
example alcoholic intoxication, lack of attention, disregard towards signalization or the traffic
code, drowsiness and many others. So, on the account of accidents involving these situations
an AV can make a difference. However, the interaction between AV and other drivers can itself

8It is also important to mention that road traffic injuries are the eight leading cause of death for all age groups and
the leading cause for the range of 5-29 years according to WHO, 2018.
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introduce new sources of accidents. This interaction between machine and human is even more
critical considering that it is expected from the AV the capacity to solve situations that would
result in an accident, thus possibly producing a non-obvious behavior for the other road users.
The AV’s ability to account for these interactions and predict the reaction of all other road users
is important and, by nature, these reactions are uncertain.

The AV itself also has some shortcomings. For example, every perception source has an
inherent noise, maximal range and other specficities related to each type of sensor (for example
GPS do not work well in dense urban areas and LIDAR measurements are disturbed by rain),
there is a limited time for reasoning and hardware failures are always possible. But even if one
assume that all the AV system and the infrastructure function at an ideal performance level, the
unpredictability about the other road users remain (considering situations were there is an human
component in the environment). Thus, even in an ideal world some uncertainty always exists and,
because of that, the possibility of an accident happening cannot be disregarded (Goodall, 2014).
According to Teoh and Kidd, 2017, in 2016, Google’s AV registered 3 reportable incidents in tests
at Mountain View, California. The comparison with real drivers shows that the AV is safer than a
normal driver, but without statistical certainty (95% confidence interval). Looking the numbers of
disengagement initiated by the backup driver, out of 13, 10 would have caused a contact. A more
detailed study is done in Blanco et al., 2016, which also does not have enough data to reach a
conclusion but observes the same tendency, this time adjusted by US national statistics9.

It is clear from this point that a probabilistic approach needs to be adopted at the planning
component of the AV, to account the behavior of other road users and all the related uncertainty.
But if an ethical dilemma situation presents itself in the planning, how the AV should deliberate?
Firstly, an ethical dilemma is defined as a situation where harm will be inflicted by the AV toward
other road users for every possible action executed (Evans et al., 2020). If the planning for some
non-dilemma situation predicts a possible collision (i.e., there is a risk of harm for some of
the users), the simple imperative that the AV must not cause accidents can be used to avoid
completely this situation, and in this normal situation other parameters would be used to drive
the decision, as for example the AV’s performance given the chosen action, proximity to other
road users, etc. But this imperative is invalid in a dilemma situation, and the other ones are not
pertinent, since deliberation about the harm distribution must be the priority, which is dependent
on how one thinks it is pertinent, fair, moral to distribute the risk of harm between each one in the
environment. Such deliberation is necessarily an ethical one (Evans et al., 2020).

Considering the predicament mentioned, this is the main motivation of the thesis: to inves-
tigate how an automated vehicle should deliberate under normal situation and in dilemma
situations. From a defined decision process for normal situations an additional component must
be integrated, to enable the AV to reproduce some sort of moral deliberation, given a pre-defined
ethical theory, to determine how the distribution of risk needs to be done if the planned situation

9Another interesting problem with a direct comparison of accidents is that all accidents are reported by AVs, which
is not true for human drivers, creating a bias against the AV. Even so, the final conclusion in Blanco et al., 2016 says
that only for the least severe crashes the AV is safer at a statistically significant level.
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manifest itself in the real world.

The reasoning to argue that ethics is necessary in the decision-making component of
an AV presented above might be classified as a top-down justification, since it starts discussing
the general capabilities of an AV to them point where the need for ethical reasoning arises. The
inverse direction could also be used to justify the same need: assuming that during the life-cycle
of an AV and that because of the highly dynamic environment characterized by urban areas, at
least once it might face a dilemma situation, maybe only in planning, but if it is predicted it
might materialize itself. In this case, how it should deliberate? Should it choose at random, or
should it beforehand have some capacity to choose one action over the other (Lin, 2016)? This
consideration also assumes that it is improbable that an AV could be treated as a perfect implicit
ethical machine, i.e. a system capable to avoid any type of ethical issues at all times (Moor, 2006).

1.3 Contributions of the thesis

The following contributions were implemented and tested through a multi-agent simula-
tion of an environment containing vehicles, pedestrians and AV.

• Definition of a harm measure for collisions: Defined by the difference os velocity be-
tween the two road users involved in the collision and scaled using a constant that represents
the inherent fragility of a road user.

• Ethical deliberation according to different moral theories: Rawlsian contractualism,
utilitarianism and egalitarianism were used to inspire three different optimization criteria
for the risk of harm in an accident.

• Reward function combined with ethical consideration: An ethical component assumes
the role as reward function when necessary, projecting future dilemma situations into the
present to actively avoid it.

• Model of interaction between road users using an probabilistic game theory ap-
proach: Accommodation of other road users probable behavior into the AV’s decision-
making structure using a game with incomplete information to model expected reward
given each possible action for the AV.

Results from the ideas and propositions during this thesis are presented in the following
publications:
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Peer-Reviewed Journals
Title: Ethical Decision Making In Autonomous Vehicles: The AVEthics Project
Authors: Katherine Evans, Nelson de Moura, Stéphane Chauvier, Raja Chatila & Ebru Dogan
Journal: Science and Engineering Ethics, Springer
Volume: 26, Pages: 3285-3312, Year: 2020, Reference: Evans et al., 2020

Peer-Reviewed Conferences
Title: Ethical decision making for autonomous vehicles
Authors: Nelson de Moura, Raja Chatila, Katherine Evans, Stéphane Chauvier & Ebru Dogan
Conference: IEEE Intelligent Vehicles Symposium
Place: Las Vegas, US (virtual), Date: October 2020, Reference: de Moura et al., 2020

1.4 Structure of the document

Chapter 2 presents the state of the art in the most relevant domains addressed in this thesis,
decision-making, ethical decision-making, behavior prediction and game theory. Comments
about the structure and types of methods inside each domain is followed by the mention of
a set of representative publications about the methods discussed.

Chapter 3 proposes the decision-making algorithm to process normal situations. Before diving
into the implementation details, a discussion about the architecture used and the theoretical
definition of a Markov decision process are done. Next, the details about the implementation
of a MDP are given, which is followed by the policy determination procedure and the
results obtained in simulation.

Chapter 4 proposes two possible deliberation procedures to determine an action to be executed
in a dilemma situation. The chapter starts with the definition of what is a dilemma situation,
to then propose a severity measure of an accident. The two deliberation methods are treated
next and to finish the chapter, the simulation results are discussed.

Chapter 5 ’s main goal is to relax the assumption about the invariability of the other road
users behaviors during the execution of the AV’s policy. Starting from the determination
of the errors that might drive the AV into a dilemma situation, the a new use-case and
the definition of the deterministic decision process for other agents in the simulation is
addressed. The AV’s estimation of the other road users intent and the game theoretic model
are proposed, in a first moment only considering pure strategies and then modifying the
proposed framework to account for mixed strategies.

Chapter 6 closes this document with the final remarks and future research perspectives concern-
ing this thesis thematic.
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Appendix A includes a presentation of the simulation environment and set-up, based on Webots,
to which we have made some adaptations.
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Chapter 2

State of the Art
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To propose a decision-making system capable to deal with the situations mentioned in
Chapter 1 it is necessary to consider two main subjects. The first is the algorithms that reason
about the world around the AV and allow it to make decisions in place of the driver during the
mission. They usually consider criteria about the consequences of actions towards achieving a
goal as the only (or the most important) measure to find the best action. Three domains from this
first subject are explored in this thesis: how to predict the behavior of other agents, how to model
interaction between agents and how to account for uncertainty.

The second subject concerns the fusion between ethical considerations and normal
decision making. The resulting methods from this domain are grouped on what is called ethical
decision-making methods; their imperative is to determine the best action according to some
ethical theory of what is right, good or fair. A discussion about the scope of ethics needed to
implement these methods and the one used in the algorithms that are proposed in subsequent
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chapters will be followed by a report of the past and current state of the art in the field of artificial
moral agents.

Two other domains are of importance, this time for the questions addressed in chapter 5.
To relax the assumption that no interaction between road users happens during the AV’s mission
it is necessary to, first estimate the intention of each road user and then account for possible
interactions. Therefore, a discussion about behavior prediction is due, as is one concerning game
theory, the most appropriate tool to model interaction between agents that present some form of
rationality.

2.1 Decision Making

As the title clearly states a decision making system uses its input, that may be sensor
information, a priori data or any sort of exploitable data, with its decision structure to deliberate
on what the automated1 system (AS) should do, given a mission or an objective. Considering the
hierarchical paradigm, decision-making is the embodiment of the plan step (for mobile vehicles
motion planning2 is also a part of the plan step, if it is not handle by the decision-making itself),
and for the reactive paradigm the decision is indirectly implemented by the sum of all components
in all layers.

There is a wide range of methods for decision making in many tasks and situations.
Autonomous systems cover a wide range of applications, from the automated vehicles (aerial,
terrestrial or aquatic) to robotic manipulators, but the discussion here will be centered in the
decision making methods for automated vehicles. In the AV domain, the organization established
by the hierarchical paradigm is often used to define the AV’s architecture (more details on this
point will be given in chapter 3), with the sense-plan-act layers. These three layers can also be
divided in sub-components, which is typically the case of the planning layer: its task can be
separated in strategic, tactic and operation procedures. Such classification is used in (González
et al., 2016) and (Sharma et al., 2021) and in most of the AV published research, although with
different names. Decision-making methods concerns exactly the planning layer, with the tactical
component (path planner in the former and behavioral planner in the latter) being of special
interest since it is where the global path is adapted to the environment constraints and the behavior
of other road users.

The realization of this architecture can be done in different ways. One notable difference
1The same reasoning as for the discussion between automated and autonomous vehicles is valid here; the term

more commonly known is autonomous systems, but automated systems will be used.
2There might be some confusion related to the frontier between motion planning and decision-making. It will be

considered that decision-making is more general than motion planning and thus can refer to decisions about other
variables than the trajectory to be executed, which the output of each motion planning method necessarily refers to; for
example, considering the AV context, the decision-making can reason about the necessity to adopt some general profile
of defensive driving in certain situations, which does not have a direct relation with the trajectory to be followed.
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concerns the flow of information inside an AV. According to (Schwarting et al., 2018), these
organizations can be resumed to three representations, shown in figure 2.1 (they are fairly similar
to the usual architecture for an AV, as it will be explored in section 3.1). The first and the
second approaches have the perception and control components well defined, having as difference
the separation or not from the motion planning and the higher decision-making process. Such
difference depends upon the characteristics of the model, for example, if some internal motivation
or long-term strategy is calculated as a separate process, then this result necessarily becomes
the input for the motion planning, that may deal not only with the geometric constraints of the
trajectory but also with the interaction with other road users. On the other hand, methods as
Markov Decision Process (MDP) can fuse both procedures in one only component, even if some
internal variable needs to be calculated as to guide the trajectory determination.

Input Output

Sequential
Perception Decision making Motion planning Control

Integrated
Perception Behavior-aware planning Control

Unique
End-to-end planning

Figure 2.1 – Possible structures for the AV’s decision-making

The third option has recently being in the spotlight due to the advancements delivered by
deep-learning methods, which enables the learning procedure to be executed directly from the
input data mass without any type of separation, rule abstraction or clear hierarchy. However, the
first application of end-to-end driving was proposed years before, by (Pomerleau, 1988), which
used an neural network to teach a vehicle how to keep driving in the same lane. Given the critical
characteristic of automated driving, this implementation philosophy is somewhat contentious,
since these systems function as black-boxes and that they are approximate methods without a
measure of limits to which the output values can assume.

Considering the frameworks of possible methods and proposed organization for the flow
of information, some examples of decision-making application into for AVs will be discussed
next. A preference will be given for MDP-inspired decision-making algorithms, since it directly
relates to all the methods proposed here, and, together with end-to-end learning based on neural
networks, constitutes the two most used approaches for AVs decision-making implementation.
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2.1.1 Related works

Given the importance of the uncertainties involved in automated driving, finite state
machines are not commonly used to embody the decision-making of an AV. Markov decision
processes are much more adapted to this task, which is observed by the number of publications
that propose such methods. Aiming to solve a partially observable Markov decision process
(POMDP) in real time, (Ulbrich and Maurer, 2013) organized the entire decision system using
two levels: one that detects if a lane change is possible and/or beneficial, using two different
signal processing networks, and a POMDP that has as input these networks and chooses the
action to take the AV to a state from a defined set of eight possible states. These are defined by
three boolean variables, that represents if the lane change is possible, if it is beneficial and if it
is in progress, while the action set is composed by continue in lane, change lane and abort lane
change. The main idea is to encapsulate into the POMDP all the sensor noise handling while
maintaining a low complexity so as to allow real-time execution.

Still in the lane change use-case, (Wei et al., 2011) uses a point-based Markov decision
process (QMDP) to implement a decision-making capable to account for three types of uncertain-
ties: sensor noise, perception limitations and other vehicles’ behaviors. Such interpretation of the
usual MDP algorithm uses Monte Carlo sampling from the sensor readings to define the states
which will have the reward calculated, instead of using a POMDP. The sensor uncertainty and the
perception range limitation also modifies the transition probability calculation during the policy
evaluation.

In (Brechtel et al., 2011) an MDP with a Dynamic Bayesian Network (DBN) as a
transition model is proposed. The state space is discretized in rectangles of equal size so as
to allow the definition of a finite set of states, while the use of an DBN gives the possibility
to express multiple abstraction levels. The model resolution is obtained by applying a Monte
Carlo approximation, that is solved partially offline and then refined online, allowing a real-time
execution.

Two types of uncertainty are the focus of (Brechtel et al., 2014) proposed POMDP
model: the environment evolution uncertainty and the limitation of sensor. In order to address
these parameters, the transition probability function is defined by a DBN, similar to (Brechtel
et al., 2011) but without the state space discretization, where the current state is related to the
environment context, the planned trajectory and the action, transitioning to a new state with
a certain probability. Finally, the model is solved using the Monte Carlo Value Iteration, an
algorithm proposed in (Brechtel et al., 2013) which determines a discrete representation of the
state space and calculates the α-vectors; such representation is formed offline and then used in
real time for a T-intersection use-case.

Addressing the same two uncertainty sources, (Hubmann et al., 2018) defines a POMDP
with a limited number of parameters, searching to determine the longitudinal acceleration neces-
sary for the AV to cross an intersection. The lateral motion is considered to be extracted from
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the road geometry. Each vehicle in the environment is represented in the state by its position,
longitudinal velocity and its assumed path, which is not observable as the other two variables,
but it is determined from the current state of the vehicle in question and it has its prediction
uncertainty calculated by a naive Bayes instance. This POMDP is solves using an adaptive belief
tree (ABT) proposed in (Kurniawati and Yadav, 2016), a method that uses an unweighted particle
filter-like approach to create a belief tree while selecting with actions should be favored in the
particle sampling using an upper confidence bound determination (UCB).

Bayesian change-point detection is used in (Galceran et al., 2017) to classify observed
states from other vehicles based on predefined action-policies, or intentions, which are formed
by low-level commands. These distributions are then sample to determine the possible actions
that need to be evaluated, for the entire environment (AV and other vehicles). Then the expected
reward for each possible state are maximized to find the best policy to be executed.

Without a high penetration of automated vehicles in the real world vehicle-to-vehicle
communication will remain based on non-verbal signals between drivers, as is today. The work in
(Lenz et al., 2016) offers a method to participate in such exchange using Monte Carlo Tree Search
(MCTS). It is defined that two vehicles are interacting if their respective reward functions are
influenced by each other, which means that changes in the value function (the expected reward
considering some fixed horizon) happen due to the behavior from another vehicle. In the defined
context it is also assumed that all vehicles act in a rational manner, i.e. they try to maximize
their reward function. The MCTS proposed is similar the ABT algorithm of (Kurniawati and
Yadav, 2016) in the sense that it also uses a tree structure and the UCB algorithm to select which
action should be used to expand the tree during its evaluation process. For each vehicle the
reward function (in this case a cost function) is defined by the cost for the considered vehicle,
itself defined by typical parameters like lane change cost or acceleration cost, calculated using a
weighted sum, and a cooperative cost function defined as the sum of the vehicle cost and all other
vehicles’ cost multiplied by the cooperation factor. The first one is used in the tree expansion and
the second updates the cost in the back-propagation. Multiple scenarios are tested, with different
cooperation levels.

The starting ideal used in (Broadhurst et al., 2005) is to reason about the road users
future paths and to assess the related danger from the combination of all of then. Pedestrians
and vehicles were given geometric bodies (squares and rectangles respectively), with the latter
following a front-wheel steering single track model. Two different goals are considered, straight
line following and road following, so as to determine the future control inputs, which has its risk
measured by a conditional probability, dependent of these control inputs. The integral resulting
from the conditional probability is calculated using a Monte Carlo random sampling, which
samples behaviors from different trajectories defined by different intentions (as stop, turn and
stop, change lane, etc.). The end result allows the algorithm to detect intersections in the path of
each road users, and according to the probability of this intersections to raise a warning of unsafe
behavior in the environment.
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Focusing in the intersection problem, (Barbier et al., 2018) proposes an POMDP to model
the uncertainty related to sensor readings and other vehicle behavior but also key performance
indicators to measure the calculated policy quality. The state evaluates is defined by the distance to
the intersection and the speed of the ego-vehicle and the other vehicle together with the calculated
intention from the other vehicle and the expectation for both vehicles in regards to each other.
These three last variables, intention and expectations are calculated as proposed in (Lefèvre,
Laugier, et al., 2012), which motivates the Bayesian network representation of the transition
probability. A method known as POMCP, proposed in (Silver and Veness, 2010), solves the
POMDP model using a combination of Monte Carlo update of the belief state and a MCTS
representation. The key performance indicators are divided in four categories: safety, navigation,
trust and comfort; they were used to evaluate two different policies calculated using different
weights for the rewards’ component terms. The set of indicators were able to represent the
performance of the policy related to each of the categories and the trade-off available between
then to improve the performance.

Decision-making can also be implemented using fuzzy logic; (Claussmann et al., 2018)
employs a multi-criteria decision-making based on fuzzy logic to select the most appropriate
trajectory to be executed by the AV in an highway scenario. A wide range of criteria is considered,
from vehicle and passenger safety to passenger comfort and energy savings, to select which
trajectory has the best behavior (if the AV should change lane or stay in the same one) and the
most desirable acceleration/deceleration profile. The usefulness of such approach becomes clear
due to the capacity to mix a fairly big number of criteria (eight in this publication) and reach a
decision concerning multiple candidates of trajectories. Another application of fuzzy methods is
the estimation of risk during driving. Using a two-level architecture (Derbel and Landry Jr., 2018)
uses a fuzzy approach to measure the global risk of a situation.

Any type of negotiation between humans, that inevitably will fall under the AV’s purview,
can be focus of a learning method. Using the lane swap that might happen in an highway
environment as an use-case, (Schmerling et al., 2018) proposed a learning algorithm capable of
determine probability distributions over possible behaviors from human to human training data
(obtained experimentally), to then determine a policy using conditional variational auto-encoders.
Using as input the history of the interacting driver and the optimal response from the AV, this
network is capable of estimating the future response of the driver, from a Gaussian mixture
models used to evaluate the probability to observe some specific answer from the driver.

Lane changes are recurrently target of decision-making implementations, given its com-
plexity in a highway scenario. Having as an objective the evaluation of a lane change desirability,
(Scheel et al., 2018) adopted a bidirectional recurrent neural network (RNN), which can process
information in both directions of time. According to the results, such arrangement allows the
algorithm to improve its performance in detection when a lane change is possible in comparison
with the same network exploring only the future and also in comparison with the results of an
SVM-based risk assessment.
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Markov decision processes, and particularly the partially observable variation, can take
a prohibitive amount of time and computational effort to be solve, without even pointing out
the necessity of variable discretization. One of the applications of deep learning has been the
policy representation of such problems using a neural network, facilitating the application
of reinforcement learning methods. (Qiao et al., 2018) compared the results of policies for
crossing intersections from three different methods: one based on time-to-collision, another which
implements calculates a POMDP via a long short-term memory (LSTM) neural network and a
MDP model with hierarchical decisions. This structure divides the possible policies in different
categories restricted only to certain states, and in the experiments conducted produces the safest
policy, in comparison with the other two implementations.

Every learning method so far dealt with the decision-making component of the automated
driving, always having the control as a separate piece of the pipeline, consisting on the information
flows named sequential or integrated, in figure 2.1. The first example of end-to-end driving
here comes from (Jaritz et al., 2018), with a deep reinforcement learning algorithm for race
driving. Using a realistic rally game to extract the training data and a state decoder composed
by convolutional neural networks (CNN) plus LSTM with a asynchronous actor critic (A3C)
framework, which allows the network escape from local minima at training, the end result is a
policy capable of driving the AV, although still with some crashes. The calculated policy also
shown some generalization with tested in unseen tracks.

One of the main problems with black-box type learning methods is the lack of assurances
about the existence of unsafe outputs, given the definition of safe for a specific context. To avoid
this inconvenient (Mirchevska et al., 2018) coupled a reinforcement learning formulation with a
safety verification of the next state given the action to be executed, allowing the end policy to
guide the AV through a highway scenario, executing a target velocity and navigating through
multiple vehicles, which sometimes demand lane change operations. The state used in the model
corresponds to only thirteen variables, the AV’s velocity itself and the relative velocities and
distance towards other six vehicles considered in the policy calculation. Such limited set of
features also favors a faster convergence rate than larger implementations.

Targeting pedestrian collision-free automated driving, (Pusse and Klusch, 2019) used
an hybrid POMDP resolution method, combining the deep reinforcement learning and the
approximated POMDP planning. The approximated belief tree built during the POMDP planning
operation has its construction guided by the neural network, for each leaf expansion the new
belief distribution is given by the network’s output. As training data the collision history recorded
in project GIDAS (German in-depth road accident study) are used, resulting in a policy capable
of avoiding such collisions while remaining competitive in terms of performance and smoothness
of driving.

Reinforcement learning does not restrain itself only to the use of deep learning methods
to calculate the policies. In an application of inverse reinforcement learning to obtain driving
styles from human drivers, (Kuderer et al., 2015) tried to determine parameters from real data
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to improve the comfort during the automated driving. Features like longitudinal and normal
acceleration, jerks, following distance and curvature were used to learn the closest policy that
results in a behavior compatible to the one demonstrated by the driver.
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2.2 Ethical decision-making

In more common applications an instance of decision making tries to emulate reasoning
based on objective quantifiable concepts that are connected by logical relationships. Every bit of
care is taken for ASs in general to adhere to strict limitations on performance, comfort, safety and
so forth. However, as the number of applications where robots are employed without supervision
increases, they get closer and closer to situations in which not only economical and scientific
factors are important, but also certain moral features3 the consequences of an automated system’s
actions should be another parameter in its decision-making (Arkin, Ulam, and Wagner, 2012;
Allen et al., 2000). The automated vehicle is an emblematic case, since controlling a one thousand
to two thousand kilogram vehicle at 40km/h with unprotected humans around clearly demands
an evaluation of the risk that actions might pose to multiple parties. Many other such morally
salient cases exist and will continue to crop up in the future, such as the helper robot which will
interact with the elderly, or more topically, the level of independence of "autonomous" weapons.
As the point of depart of the discussion about artificial moral agents, the three main domains of
normative ethics will be discussed to then detail some of the implementations of artificial moral
agents proposed throughout the years.

2.2.1 Normative Ethics

Consequentialism

Consequentialist ethics can be defined by the idea that an action is morally acceptable,
desirable or necessary in virtue of the results it produces (Gips, 1995; Alexander and Moore,
2020), rather than the nature of the action (or agent) themselves. Of course, before any type of
evaluation can occur, what is of value needs to be defined. It is generally agreed upon that "the
Good" is the value that must be targeted, i.e. an action is more morally justifiable if it increases "the
Good". The definition of goodness varies according to the flavor of consequentialism considered.
Taking the example of utilitarianism, the ’Good’ which ought to be considered is underpinned by
a monistic account of value, which implies that utilitarians hold that only one factor in a decision
has moral salience, namely happiness or pleasure(Brink, 2018). Other consequentialist theories,
on the other hand, may be underpinned by a pluralistic account of value, implying that multiple
values ought to be seen as morally relevant in decision making: John Rawls, for instance, believed
that the desirability of an action should also be connected with questions of justice, such as who
receives this "Good", and how this effects inequalities in society.

Two main currents of thought from this domain of normative ethics will be discussed
later on: utilitarianism, where the Good should simply be maximized; and egalitarianism, which
defends that an equal distribution of the Good is morally preferable to its simple maximisation.

3The terms ethics and morals will be used interchangeably.
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Two main critiques may be levelled against consequentialist theories. The first is that
many consequentialist theories, by for instance focusing exclusively on the maximization of
happiness, do not capture enough about what is seen to matter morally. Other features that many
people might find important in moral decision making, such as the motivations of the agent, the
circumstances of the action, or any pertinent rights or entitlements are often disregarded. There
is no list of a priori forbidden actions, everything boils down to the consequences produced by
the action, however apparently abhorrent it may be. In the AV context, this would represent the
act of targeting an older person to save two younger ones for example, considering only the
general maximisation of utility. From this conclusion came the idea of relaxing the maximization
requirement, allowing the consideration that only a certain amount of utility may be sufficient.
To this end, the second critique addresses the practical feasability of these more monistic types
of consequentialist theories, which compel an agent to consistently and categorically maximize
utility, leaving little room for individual goals or preferences, or any weakness of the will on the
part of the agent.

Deontology

This domain of ethics defends that an action should be considered good or evil according
to its nature, denying the justification of an action based on its results and imposing a rigid
and immutable constraint that cannot be changed, a norm, which is the case of the categorical
imperative from Kant. For an action to be good, it needs to obey a categorical imperative, i.e.
the rightness of an action is assessed by its adherence to a universal maxim or law which all
rational agents autonomously accept (Allen et al., 2000). One clear consequence of this approach
aligns with the second critique of consequentialist theories, namely, that the uncompromising
recommendations that deontology may yield are too much for many human beings to live up
to. Some other lines of thought consider more flexible interpretation of the pre-defined norms,
allowing exceptions to be made according to the situation.

One of these interpretations, proposed by W.D. Ross, consider the norms to act morally
as prima facie duties. Such an interpretation is useful in the case of a conflict between the duties,
were it is argued that a stronger duty can supersede another. It also offers a list of basic duties
that a person should observe and a priority list, that creates an hierarchical order between them
in case of conflict. Asimov’s three laws of robotics is also an example of normative framework
based on the essential premise of deontological ethics.

Another class of interpretations about how to use norms to define if an action is morally
acceptable is the contractarian deontological theories. An act would be immoral if it violates a
framework of norms defined by a social contract and accepted by society. The origins of Rawls’
theory of justice resides in deontology, since the two imperatives which ground his theory– that
inequalities are not acceptable and if they exist, they should benefit the worse off–are basically
norms. Later on, a version of these two laws will be adapted to the AV context.
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One of the main critics of this type of moral reasoning is that sets of norms resemble
more heuristic attempts to capture a deliberation process that would be better represented with an
utilitarian approach (Gips, 1995). Another is the lack of consideration of information uncertainty
and uncertainty in actions’ consequences into the definition of the normative framework, although
some recent works address this question (Alexander and Moore, 2020).

Virtue Ethics

Virtue ethics predates both previous ethical schools and departs from a focus on both
actions and consequences. Its origins can be placed in ancient Greece, when ethical behaviour was
understood in terms of an agent’s virtues and dispositions, rather than an action’s consequences or
its rightness according to some normative framework. Thus, if an agent has a virtuous disposition–
acting with wisdom, courage, temperance and justice (the four cardinal values proposed by
Plato)–then right action would be a consequence of his reasoning and deliberation process.

One can already understand that such theory is based on highly symbolic values held by
persons, the concept of a virtue, which can be defined as human excellence embodied in a list of
character traits (Hursthouse and Pettigrove, 2016). Naturally, the substantive definition of these
virtuous traits is the point of contention for this approach. Some, as Aristotle, argue that virtues
are divided into intellectual virtues and moral virtues, with the first type has the possibility to
be taught, while the second set must be learned practically through experience. This learning in
practice is one of the main tenets of virtue ethics, allowing the agent to discern what to do to
accomplish its intention through an action in any situation, and thus developing indirectly the
virtue connected to this action.

2.2.2 Artificial moral agents

Artificial moral agents (AMA) is a qualifier that represents every application that tries
to implement some sort of ethical reasoning. This goes from simple applications, like the ones
proposed in (McLaren, 2003) and (Anderson, Anderson, and Armen, 2005) that are basically
programs have ethical recommendations as an output, to (Thornton et al., 2017) and (de Moura
et al., 2020) who propose ethical components close to real robotic applications. It should also
be pointed out that in most cases, the aim of these approaches is to approximate human moral
reasoning, able to consider a universal set of problems, using some form of generic formalism to
translate the world into comprehensible data.

Another choice is to focus on specific applications, which is the case of the methods
proposed in the next chapters, where the entire ethical deliberation process is designed to solve
problems having a specific format and constant properties. Therefore, the question is not whether
the agent is morally good or bad, since the approach itself does not aim to simulate moral agency.
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Instead, what is important is that the artificial moral agent is capable of making ethical choices
which align or coincide with what a human moral agent might decide in a similar context, using
the same tools and available information. This argumentation is what motivates the use of the
word automated instead of autonomous. Both cases, AMA for generic and specific cases, would
be classified as explicit ethical agents using the classification proposed by (Moor, 2006), given
that the ethical deliberation are coded into their systems, for more generic that they may be.

The role that uncertainty in information acquisition and processing has within any ethical
deliberation (Anderson and Anderson, 2007) must also not be forgotten, because it can directly
impact the end decision or invalidate the entire reasoning method. This is one of the main
difficulties of the implementation of AMAs, since uncertainty is always present in measurement
and most of the time it is not easy to estimate. Most of the works in the domain assume that the
information received from other parts of the system is exact, avoiding this concern.

The three domains of normative ethics are viable options to be implemented into an AMA.
Deontological and consequentialist approaches are ever present (Gips, 1995; Allen et al., 2000)
with the Kantian categorical imperative and the utilitarian maximization principle respectively
most of the time. Virtue based methods are less popular, and considering that an AMA does
not have agency, an ethical reasoning method based on this approach could be proposed as
having some sort of variables that represent virtues that might evolve through time, according
to the success, failure and observed consequences of its actions. Another way to implement
a virtue-based approach is to use the role morality concept (as is done in (Thornton et al.,
2017)). According to (Gips, 1995), virtue-based systems are usually translated as deontological
approaches for an application. The other two are the focus of much of the published works on the
area, as we will explain shortly.

AMAs can be employed in a wide range of applications, from counseling a human’s
ethical decision to deciding whether a lethal action from a drone is ethically permissible. In the
automated vehicle domain the ethical component is most of the time connected to the safety claim
of the road users, meaning that there is always a risk of death involved. Therefore the domain is
posed to be the first one that presents to laypeople an application that can present ethical behavior
in some situations, given that it was already established that braking and relinquishing control
from the AV to the driver is not always the best option (Lin, 2016).

Related works

Since the advent of autonomous systems and our expectations for their deployment
in the real world, certain ethical concerns related to these systems have become well known.
In (McLaren, 2006), two implementations of the casuistry approach, were a real problem is
compared to an instance of a similar case so as to guide the decision-making, are reported one.
The first compares ethical dilemmas questioning if the truth or a lie should be told. Adopting the
point of view from the person that ponders what to do in a dilemma, the algorithm points out the
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motivations as to why the truth should be told that are valid for the current situation and the base
situation (the one loaded a priori in the machine to serve as a comparison point), that are more
strongly connected to one case or that it is only valid in one instance.

The second program, proposed in (McLaren, 2003), operates as an ethical board review
would, comparing past instances of deliberated cases and ethical codes. Then, given a new case
to be analyzed, the system would give a list of possible pertinent codes, a list of pertinent cases
and additional suggestions concerning the relationships that may exist between the cited ethical
codes. Its deliberation procedure involves a two-step graph-mapping algorithm, where in the first
each of the cases in the database are given a score according to the similarity to the one being
evaluated, which is used with a A∗ algorithm to establish the most similar cases.

Taking a similar approach, using recorded cases of ethical decisions as the baseline to
the resolution of new ones, (Anderson, Anderson, and Armen, 2005) implements the principles
of Biomedical Ethics (that are prima facie duties) into a program, which extract principles from
some cases and use these to solve new cases. The implementation is divided in three components:
a knowledge-based interface, that manages the selection of principles to be applied, a advisor
module, that make the decision and a learning module, that abstract principles from particular
cases. This last one uses inductive logic programming to generate the decision rules that are
representative from the problems given as training and that might passed undetected given that an
reflection of multiple cases is necessary to detect them.

Ethical constraints for autonomous weapons were addressed by (Arkin, Ulam, and
Duncan, 2009) through the definition of a framework that contains a ethical governor, proposed
in (Arkin, Ulam, and Duncan, 2009) and an ethical adaptor, proposed in (Arkin and Ulam, 2009).
The first module restrains the lethal actions that a robot can take given constraints defined by
the Laws of War and the rules of engagement, which are grouped in obligations and forbidden
constraints for the current mission. Such constraints are applied to the robotic response calculated
by the system, and if it is not a permissible action another one is selected and then executed.
Two components define the action selection: one deals with evidential reasoning, extracting from
perception, a priori information, target data and current behavior the logical assertions that will
confront the current constraints; and the constraint applicator, that process such logical assertions,
composed by the constraint interpreter, that translated the general language used to restrictions
that should be applied in the current situations and the damage estimator, that estimates the
consequences of an action in an utilitarian fashion, accounting for structural damage and loss of
life. However it is assumed that accurate targeting with precise uncertainty correction is employed,
which may be too optimistic to consider.

The ethical adaptor acts in the level of the constraints used to evaluate the chosen
behavior, and more generally tries to modify the robot’s behavior so as to insert an emotion-like
deliberation during the behavior selection. It functions both as a reviewer of the robot’s actions
after the fact and it measures the effect of a violation of the LOW or ROE using emotion-based
functions; both mechanisms have as objective the evolution of the robot’s procedures so as to
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prevent another violation of its constraints. As such, it works only by increasing the intensity of
restrictions, never on the other direction. In (Arkin and Ulam, 2009), it is the second function
that is discussed. It employs a measure of guilt towards violations of the restrictions, which
can accumulate throughout the mission and result in then necessity to disable temporarily or
permanently the lethal actions available to the robot until an after-action review is completed. In
this context the guilt "feeling" works as a representation of the overall ability of the machine to
behave ethically.

(Berreby et al., 2015) proposes a formal language to model a generic ethical dilemma,
allowing the artificial agent to reason about an ethical choice during its occurrence using the
information at hand. Taking the trolley dilemma as an example, a model of causality is established
as an Event Calculus model, which enables the program to reason about responsibility of actions
while taking into consideration the actual state of the world and also account prevented situations.
This framework then uses the deliberation given by the formalization of the Doctrine of the
Double effect (DDE), represented here by the nature-of-the-action, that measures if an action
is appropriate from its inherent nature, the means-end and right-intention condition, that avoids
negative intentions and instances that use negative actions to achieve positive ends, and the
proportionality condition, that demands that positive and negative effects be proportional.

On the same line, trying to give the machine the capacity to deliberate similarly as an
person might do in ethical dilemma situations, (Bonnemains et al., 2018) propose formal tools to
describe a situation and some models of ethical principles that can be used with this descriptions
to achieve an ethically motivated decision. Three ethical frameworks are proposed, based on
utilitarian and deontological ethics and another inspired by the Doctrine of Double effect. Given
a particular situation, it is described as logical facts which are taken into account to deliberate on
a decision by a respective profile; the utilitarian approach chooses the decision that present the
greater good having also the lesser evil; the deontological approach judges the decision by its
nature; the DDE is implemented with the same formalization than the proposed in (Berreby et al.,
2015). The same assumption made in (Arkin, Ulam, and Wagner, 2012) and in (Berreby et al.,
2015) is present here: all decisions and facts are considered to be certain, hence no uncertainty is
taken into account inside the deliberation process.

Using a new approach to decide under ethical dilemma, (Leben, 2017) proposes a criteria
based on Rawls’ Maximin principle as an alternative to an utilitarian approach or the usage of the
Doctrine of the Double effect, outlining an algorithm to implement such a principle while using
a "veil of ignorance" to conceal information that could create a bias. The procedure applied in
a dilemma, using an automated vehicle in a inevitable collision as an example, is to put every
involved road user in an original bargaining position of fairness to find the final decision. The
biggest difference from the utilitarian approach if that the proposed decision procedure operates
trying to increase the worst possible option that might happen, while the utilitarian approach
always based its decision in maximizing its expected criteria in uncertain situations, without
looking to what might happen in the worst possible option.
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But one can only go so far with hypothetical situations. Parameters such as dynamic
interactions between agents and uncertain action consequences must be taken into account to
produce fair, realistic, and acceptable ethical deliberation. Focusing on a situation when an AV
must decide between a collision with pedestrians or a physical barrier, (Pickering et al., 2019)
used an estimation of the AV’s deformation against the barrier and statistical data to define a risk
velocity for the pedestrian collision. A bi-linear model of the deformation is tuned to be similar
to a finite element analysis (FEA) instance of a full-frontal collision, and from that model the
maximum deformation that can be produced so as the injuries involved are minor is obtained. The
pedestrian injury severity is then represented by the vehicle’s velocity obtained by a statistical
analysis of collisions in another study. Then the deliberation becomes clear if one or the other
possible decision, collide with the barrier or with the pedestrian results in minor injuries, but the
case when it is equally bad to do either is not treated.

Taking a design approach to infuse ethical constraints in the control component of an
AV, (Thornton et al., 2017) uses concepts from deontology, consequentialism and virtue ethics
to define a Model Predictive Control (MPC) that respect ethical constraints by design. Such
MPC is proposed in an straight road, with shoulder and an obstacle ahead of the vehicle. Every
choice that may be taken in this scenario have an ethical component: if the vehicle uses the other
lane while there is a double solid yellow line it will break the traffic code; if it uses the should
lane then it needs to be unoccupied and can only be used for brief periods of time; and if the
stop behavior is chosen then the mobility property of the vehicle is affected. Firstly, the path
tracking cost is dependent to the necessity to deviate from the reference trajectory while the
steering angle have two constraints from different philosophic origins: a limit on the steering
angle limits (in a deontological sense) and a cost function connected to its rate of change (in a
consequentialist sense), a process to avoid the obstacle with absolute certainty and the adherence
to the traffic code, which is treated as a soft constraint that can be set with a high weight
(thus approach a deontological behavior) or with a low weight (approaching a consequentialist
behavior). Two different experiences are made, one with different weight values from each of the
reward parameters and another simulating a form of role morality connected to an emergency
vehicle goal.
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2.3 Behavior prediction

An essential role of the AV during execution is the capacity to predict other road users’
behaviors, given the environment that they are in. Multiple information sources can be used to
predict what road users intent to do next, from the road structure itself to wireless communications
and traffic rules, without forgetting the road users’ dynamics itself. The most immediate use of
these methods are in advanced driving assistance systems (ADAS) to detect possible dangers
to the driver and passengers, but without the need to deliberate on an action based on this
information.

Different types of road users are present and interact between themselves in urban
environments. A useful classification of this environment is the definition of vulnerable road users
(VRU), which assemble pedestrians, cyclists and two-wheeled drivers into one single category
that distinguishes itself for the lack of protective "shell" (WHO, 2018) surrounding the user.
Every one of these groups is the focus of multiple studies to predict the behaviors of each specific
road users type, but the two most studied groups are pedestrians and car-like vehicles, given that
66% of deaths in EU roads in 2018 were pedestrians or vehicle passengers (Commission, 2018).
Pedestrians and car-like vehicle passengers are the only two types of road users considered in this
thesis.

According to (Rudenko et al., 2020), motion prediction procedures contain three main
elements:

• Stimuli: represents the agent’s motivation to execute the trajectory observed. It can be
divided in two parameters, the agent motion intent and other influences, exerted by the
environment itself (and in this case the road infrastructure) or by other road users.

• Modeling approach: encodes the agent’s reasoning; given a stimuli composed of an intent
and the environment influence, it produced as output what the agent will do in the future to
accomplish its intent.

• Prediction: the format of the output from the previous element; it can be the a trajectory
itself to a probability distribution given some possible maneuvers for example.

The reasoning model is the main component of the behavior prediction. Three different
approaches may be taken to reason about an agent behavior: focus on a physical description of
the agent to predict on a short-term basis, try to learn these behaviors from data and reproduce
it generically or reason about each agent motivations to then find the correct behavior. In these
three options the term behavior represents a different quantity being estimated. Figure 2.2 shows
which is the meaning of behavior in a short ∆t, a mid-range ∆t and a long-term ∆t prediction4.

4Roughly speaking, one can consider a short ∆t as less than 1 second, and a long-term ∆t as more than 4 seconds
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This structure can be identified in the survey done in (Rudenko et al., 2020), where physics-based
methods predict short-term movements, pattern-based methods try to learn features and cues from
past agents’ trajectories and planning-based methods that reason about the agent’s motivation.

IntentLong ∆t

Maneuver∆t

TrajectorySmall ∆t

Behavior

Figure 2.2 – Hierarchy of possible significations for behavior

A different classification is proposed by (Lefèvre, Vasquez, et al., 2014), where three
different types of behavior prediction are also proposed, with the first pertaining to the physical
prediction, short-term models that takes into account the mechanical properties of the agent. The
difference between both classifications comes from the other two categories, maneuver based
prediction and interaction based prediction, which represents the capacity to observe a specific
maneuver being executed, already accounting the possible intention determination that lead the
agent to choose a maneuver and, lastly, changes in behavior during interactions between road
users. What becomes clear from this classification is that the three levels as defined are not
disjoint, they can complement each other, going from prediction close to the seconds scale to
accounting interactions between agents, as to plan and execute a mission.

In comparison between the classification proposed by (Rudenko et al., 2020) the learning
method does not need to restrain itself only to a maneuver abstraction level, it can determine the
intent of a road user using the data available, that usually is also composed by interactions with
other road users. Clearly, the proposed organization it is not completely rigid in its definition.
But, since it is more pragmatic, it considers the implementation method for behavior prediction,
thus interactions between agents are considered at every level. To understand the body of work
in behavior prediction (which is also present in some decision-making methods too, since the
former frequency is a part of the latter) it is important to consider the type of method being used
to implement the prediction model and what is really being observed as a behavior.

2.3.1 Vehicle prediction

Methods that use the physical prediction approach usually search the minimization of
measurement errors while predicting the position of the vehicle in the near future. Aligned with
the ability to predict the behavior in short-term periods of time, one the main use cases of such
approach is to estimate risk of collision given a specific situation. Considering a cooperative
group of vehicles in a road with the possible presence of cyclists and pedestrians, (Batz et al.,
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2009) uses unscented Kalman filters (UKFs) to predict trajectories during a specified ∆t and
thus monitor the distance between pairs of agents, taking into account the physical dimensions
of each road user. The distance is calculated from a set of vectors defined by the Minkowski
sum between the uncertainty ellipsis, calculated from the covariance estimated by the UKF, the
possible rotations of the rectangle that represents the body of the road user, which also considers
a range of values extracted from the covariance matrix, and the mean position. Inside a group
of vehicles, one of them is designated as leader, which will execute the probabilistic prediction,
check if all vehicles are at a minimal distance from each other, and if there are not then signal
that the situation is dangerous.

The trigger time of AEB systems is a critical parameter that might prevent a collision or
even reduce its severity. It is in the short term that the real need of activation needs to be checked,
which is proposed in (Kaempchen et al., 2009) to be determined considering the trajectories of
all road users involved. Only if all possible trajectories evaluated result in a collision that the
vehicle must trigger the braking (reason why only the maximal acceleration is considered to
determine the trajectory). One sensible point is the determination of which trajectories should
be checked, which is done by sampling the Kamm’s circle5 to obtain the different values of
longitudinal and cross accelerations that might be applied in a short period of time. Given the
infinite number of possible trajectories, a search through the circle is done using the approximate
collision intersection area between the involved parties. When no zero area is detected after a
gradient descent search, the AEB must be triggered.

In (Brännström et al., 2010) a linear bicycle model is used to model vehicles in near
accident scenarios and assess the risk of collisions. These models are then tested to verify if
there are possible collisions in the future, and if there is, to determine and execute different
policies according to the driver’s preferences and the other vehicle’s actions. Observations that,
for example, drivers tend to use constant steering angle velocity followed by a constant steering
angle (Godthelp, 1986) during normal driving or in evasive situations, specially in the moose
test6, that the steering velocity is correlated with the posterior steering angle (Breuer, 1998)
were used to model possible maneuvers to be tested. They are a combination of swerving and
acceleration or braking, always determined to avoid contact with other road users, given that each
one of them are considered as rectangles. The system is triggered if no possible safe maneuver
that respects the driver’s preferences (orientation position and its rate of change and acceleration
value and its rate of change) and proceeds to a two-step verification: considering the other road
user as deterministic, it finds the maneuvers that the ego-vehicle should execute, and also does
the opposite for the other vehicle. As such, it can improve the timing of AEB activation as assess
how the driver can avoid collisions.

Following the same line of (Brännström et al., 2010), the uncertainties connected to
road geometry detection and measurement are accounted in the sampling of possible trajectories

5Encompass all possible direction of the forces between the interaction of the tires and the road.
6The moose test is a high-speed avoidance maneuver test that tries to emulate a vehicle avoiding an obstacle ahead

maintaining its velocity constant during a lane change and going back afterwards
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by (Petrich et al., 2013). Each lane center-line is approximated by a cubic Hermite curve, and
the mean value of the vehicle’s state (estimated by an EKF) is projected into this center-line,
defining a way-point. Since there is also uncertainty in the lane’s determination, they are also
considered to be distributed normally, thus making the assignment of a dynamic object to a
lane by an χ2-test possible. Each lane, to be considered as a viable hypothesis, need to score
higher than a determined threshold in the test. Then all possible trajectories are predicted by the
EKF, considering constant acceleration and that the vehicle always follows the orientation of the
center-lane. These hypothesis over time are evaluated by a multivariate cumulative sum algorithm,
used to detect small and moderate mean shifts in probabilistic distributions, which is adapted to
consider the vehicle’s possible lane change.

As it can be seen, for the physical methods approach the most used implementations to
model the vehicle are constant models, for example constant velocity (CV), constant acceleration
(CA) or constant turn model (CT) with a bicycle model to represent the dynamics. But more
complexity can be necessary in some contexts, even more in dangerous situations that tend to
approach the vehicle to high lateral accelerations (Polack et al., 2017). Kalman filters are the
go to method to account for uncertainties, but there are implementations that use Monte Carlo
methods or dynamic Bayesian network (DBN) to relax the Gaussian incertitude assumption
(Rudenko et al., 2020). Other methods that can be applied are potential fields derived algorithms
and interaction multiple model (IMM) implementations.

Using maneuver recognition, with pre-determined maneuvers, and a constant yaw rate
and acceleration (CYRA), (Houenou et al., 2013) achieves an improved prediction accuracy in
comparison if only the physical model was used to predict the trajectory. Three types of maneuvers,
keep lane, change lane and turn at intersection, are used to generate different trajectories using
the current state and the road’s parameters. A Malahanobis distance between the current position
and the center-lane is used to define the correct lane and, by consequence, the maneuver being
executed. The selection of the most appropriate one is done by a cost function that accounts for
the comfort during the execution of the trajectory (which means no high normal accelerations)
and a time parameter to punish longer maneuvers. The physical prediction is done using the
CYRA model, as if the vehicle was a determinist agent. This physical prediction and one of the
sampled trajectories are fused using a pre-defined weight function.

Also considering maneuvers, but this time taking an offline learning approach to learn
following, overtaking and flanking maneuvers, (Firl and Tran, 2011) uses a Hiden Markov
Model (HMM) to represent each one of them. The learning method chosen is an expectation-
maximization-type (EM) algorithm, with the online recognition being done by calculating the
value given by argmaxi P(λi|O) ∝ P(O|λi) ·P(λi), with λi being the HMM model and O the
observation vector. The likelihood P(O|λi) is modeled as a mixture of Gaussians (MoG), with is
obtained, together with the prior, in training. Still, roads with different spatial disposition and
interaction between more than one vehicle are not considered.

Further improvements came in (Tran and Firl, 2013) where a bi-dimensional Gaussian
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process was used to model traffic situations at intersections and an UKF to estimate the trajectory.
The parameters of the Gaussian process are obtained by maximizing the log marginal likelihood
given some training data, which classify the behavior of other vehicles as turn left, turn right or
go straight. With the most probable maneuver identified, the correct Gaussian process is used in
the update step of the UKF to correct the prediction. In another implementation, (Tran and Firl,
2014), the same structure is used, but this time the algorithm combines 3-dimensional Gaussian
processes with a particle filter, instead of the previous UKF. Another dimension was added to the
processes to allow training the model with data that originated from different intersections and
similarly, the process that correctly represents the situation is used to calculate the weight of each
particle in the filter.

The road structure configuration exert an important influence into the behavior of all
road users. Together with distances to surrounding vehicles and road characteristics, (Gindele
et al., 2010) employs a dynamic Bayesian network (DBN) to model the relationship between
position, context, behavior and trajectory. Using a bicycle model without slip to model vehicles
and six possible maneuvers (free ride, following, acceleration, sheer out, overtake and sheer in),
it predicts the most probable trajectory, which is approximated by a cubic Bézier curve. The
resulting filter is solved using a particle filter approach to calculate the update equation. The
model is further improved in (Gindele et al., 2013) adding a learning step to determine the correct
policy model for other road users given a specific context.

Up until now probabilistic methods composed the entirety of algorithms discussed, but in
pattern approach and also later, in planning-based methods , two other type of methods will start
to appear. The use of logical reasoning is one of them. in (Hummel et al., 2008), it description
logic is used to describe all the possible different forms and configurations of intersections that
may exist in a city. A case-based approach is taken by (Vacek et al., 2007) to interpret situations
and deliberate on a maneuver to be executed. Each case is composed by a description of a situation
that might occur and the correct behavior that needs to be executed. During the execution new
knowledge can be added, possibly modifying a case solution.

Deep learning is the other technique that is increasingly popular in behavior prediction.
Long short-term memory (LSTM) is used as a recurrent neural network (RNN) in (Cho et al.,
2019) in the implementation of the encoder, interaction and prediction components. The first
models patterns of trajectory of other vehicles, the second measures both multi-modality (how
many situation can occur) and robustness slackness related to a rule (exclude situations that cannot
occur) while the third effectively predicts the trajectory and the robustness of a rule. Maneuvers
are considered as a logical relation, formalized by a signal temporal logic (STL) approach, which
has a the robustness slackness measure defined to create an order of priority in a set of rules. The
last component of the algorithm is a controller, implemented by an MPC.

Another work that uses deep learning is (Messaoud et al., 2021), which considers the
environment surrounding the ego-vehicle as a grid, to encode drivable areas and all vehicle present
into the input vector to the encoder layer. Then a middle layer, called attention layer, decides
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which vehicles must be prioritized when the trajectory is being defined. The output of this layer
is fed to the decoder layer, that executes the trajectory prediction, formed by two networks: the
LSTM decoder and two fully connected layers separated by a leaky rectified linear unit (ReLU).
Each output of this last network represents the probability of the predicted trajectories.

Pattern approaches can use pre-defined maneuvers or offline learning methods but with a
defined set of maneuvers. Popular methods are GPs, HMMs, DBNs, neural networks (Rudenko
et al., 2020). But there are also methods that use learning to model and detect the intention of
other road users. Intersections are one of the most dangerous road environments, given the number
of accidents that are observed in them. The work in (Lefèvre, Laugier, et al., 2012) proposed
to use the difference between what is expected from road users from what they intent to do as
a measure of risk. A DBN model is used to estimate the vehicles’ motion while the behavior
intention and expectation is estimated jointly. Both the context at the moment of estimation and
the interaction between road users, through the jointly estimation, are considered to measure the
risk. An RNN with LSTMs is used in (Zyner et al., 2018) to predict the intent of other road users
in non-signalized intersections. The proposed method is applied in tangential roundabouts7, with
lidar data as input.

In an implementation of a system capable to predict vehicle behavior in generic envi-
ronments, (Bonnin et al., 2012) proposes the use of an hierarchy of cases, where each node
represents a specific behavior that might be detected in different locations. Inside each node there
is multiple models, itself defined by a set of features and classifiers. A node is activated based on
GPS readings and road infrastructure information collected from an a priori map, and it competes
with its children nodes to find the one that better fits the situation.

Uniting physical, pattern and planning based approaches into one single framework,
(Lefkopoulos et al., 2021) implemented a predictor that uses an interacting motion model Kalman
filter (IMM-KF) with 6 different longitudinal and lateral behaviors for each vehicle, which passes
through an selection based on the detection of collision during prediction, given the size of each
vehicle. Then an hierarchical approach allows the algorithm to define an order of priority, taken
into account the Highway Code, decoupling the multiple prediction of N vehicles into N single
prediction operations.

Focusing on a long horizon prediction of local vehicles in highways, (Xin et al., 2018)
used two LSTM networks, one that concentrates into determining the driver’s intention, and a
second dedicated to predict the future trajectory. All the data used in classification and prediction
is obtained by the ego vehicle.

7Tangential roundabouts are characterized by higher speeds given that the entry curve is tangential to the center
island; this configuration differs from the radial approach, adopted mostly in Europe, that ensures the entry into the
roundabout through a deliberate turn maneuver to reduce speed.
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2.3.2 Pedestrian prediction

The pedestrian’s behavior estimation methods can also be divided into the physical,
pattern and planning approaches, with probabilistic and data-driven philosophies being the most
popular implementations. Since, the trajectory prediction in the algorithms proposed in chapters
3, 4 and 5 will be made considering a constant velocity model, only a short state of the art will
be commented here, nonetheless containing the most used approaches in the domain. A more
detailed survey can be found in (Ridel et al., 2018) and for deep learning based approaches,
(Ahmed et al., 2019).

Considering the context of an automated vehicle, it is important to determine the behavior
of an pedestrian not only in correspondence with interactions with vehicles but also taking into
account the interaction between pedestrians. Using bird-eye images to as support to predict the
pedestrian behavior, (Coscia et al., 2018) represents the agent by its position and velocity. This
last one is the focus of a prediction dependent on four parameters: semantics of the position, ob-
servation from training data, constant velocity inertia and a destination probability. The semantics
of a position is supported by measures of desirability of the pixel, according to the number of
pedestrian trajectories that passed close to it and resistivity, which represent the proximity of
obstacles.

In contract to social forces prediction methods, which are usually hand crafted, (Alahi
et al., 2016) uses a LSTM network to model not only the constant and predictable movement that
originates from attraction and repulsion approaches, but also disruptive behaviors, as for example
the response of a pedestrian when it perceives a crowded environment. To account the interaction
between pedestrians the hidden states from an LSTM are shared with neighboring LSTMs.

Taking a probabilistic approach to predict long-term behavior of pedestrians and their
intent was done in (Karasev et al., 2016) by modeling the latter as a function of the goal,
considered hidden (but with a goal space known) and the state. This unknown goal is represented
by the posterior probability of goal and state given past observations, and it is updated using a
Rao-Blackwellized particle filter. Then the intent function, which is considered as a sample from
an MDP policy, is estimated not by the optimal policy, but by an approximation, since to use the
optimal solution would be to consider the pedestrian completely rational limiting too much the
choices of possible trajectory. In the policy it is considered too traffic signals states, enabling the
model to predict a stop from the pedestrian due to a red light.

As it can be seen, the methods for predicting behavior for vehicles and pedestrians are
almost the same, with the exception that for pedestrians there is another source of information
available: the body language, and more importantly for intention estimation, the head orientation.
The 3D body language of the pedestrian is modeled in (Quintero et al., 2014) using a Gaussian
process dynamic model (GPDM), one for each hypothetical behavior, for example starting to
walk, stopping and walking combined with left and right. A feature vector for each pedestrian is
formed by the 3D coordinates of specific body joints and their velocities, which has the dimension
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reduced by the GPDM and used to train the correct model. A naive Bayes classifier is used to
classify an observed pedestrian according to the correct model and a maximum a posteriori
(MAP) decision rule determines the correct hypothesis.
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2.4 Game theory

Game Theory assembles analytical tools that may be used to model a situation when
an agent’s best action depends on its expectations from the actions executed by other agents,
and vice-versa (Ross, 2001). Its first foundations, in the economics context, were established in
(Von Neumann and Morgenstern, 1966), with the following definition: They8 have their origin in
the attempts to find an exact description of the endeavor of the individual to obtain a maximum
of utility, or, in the case of the entrepreneur, a maximum of profit. In this definition three main
entities can be identified:

• Individual: it represents the agent, the decision-maker that interacts with others.

• Utility: quantify the agent’s preference towards some object or event, expressing these
preferences into all possible choices of action.

• "Maximum of": what the individual wants from the interaction; corresponds to some
deliberation method to determine the action with the most utility.

The concept of utility came about as a quantity that represented subjectively some form
of fulfillment for the agent, thus its main objective is to maximize it. The relationship between
choices and utility that emanates from them is represented by the utility function. It allows the
mathematical formalization for the maximization operation that is executed by every agent. Two
forms of utility function exists, an ordinal9 form, which express a preference order without a
particular meaning for the magnitude of these utilities, and a cardinal one, where magnitude
matters (Ross, 2001), such that the utility measures directly the desired property. One example of
a cardinal utility functions is when such function represents a currency.

The definition of a game is the realization of some situation when an agent can only
maximize some utility if it anticipates the behavior of other agents. Such abstractions allows
different situations to be represented and analyzed by the same set of tools. Examples of different
backgrounds that may use a game formulation are the economical domain, to study social
interactions and even in robotic implementations. As for the anticipation towards other agents
decision, it is based on the rationality model assumed to explain the behavior of the other agents.
In normal life, rational behavior means that an agent look for the best mean to achieve a goal
(Harsanyi, 1976).

Such definition of rationality is close but not exactly the same as the classical one,
that consider not only a set of means but also multiple ends. It is assumed as constraints that
the decision-maker have perfect access to all relevant knowledge concerning its environment,

8Problems arising from economic behavior
9When the type of utility function is not mentioned, it should be considered as an ordinal function.
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cognitive capacity to deliberate on an action and clear preferences about its action consequences
(Osborne and Rubinstein, 1994; Simon, 1955). Equation 2.1 formulates the usual optimization
executed by the classic rationality assumption under certainty, where A is the set of available
actions, g(·) is the action-consequence function and U(·) is the utility function.

a∗ = argmax
a∈A

U(g(a)) (2.1)

However, the classical model of rationality have clear downfalls and approximations.
This subject is pointed out in (Simon, 1955), where a number of adjustments are discussed. For
example, in real situations the perfect information hypothesis is almost never realistic, each agent
only has access to some part of the total information necessary to define the entire situation. Other
two problems pointed out are the limited cognitive capacity of each agent, which may impede the
optimization of the utility if it needs a complex quantification to be determined and an inability
of the classical rationality to model situations when utility preferences are not clearly comparable
(Simon, 1955). Another practical problem is the limited period of time available to deliberate
on an action. Even though these limitations are well known, the classical rational model is still
widely adopted but sometimes some a priori constraints are relaxed, notably the perfect access to
information.

The properties below are useful to characterize different types of games and to establish
the conditions in which a game unfolds (Osborne and Rubinstein, 1994).

• Interaction between agents:

– Non-cooperative: games with no communication or enforceable agreements (Nash,
1951), where the individuals decide on their own volition (Shoham and Leyton-Brown,
2008).

– Cooperative: games with communications and/or enforceable agreements, where
reasoning as a collective is possible.

• Decision time:

– Strategic game: each player makes only one decision, at the beginning of the game;
all players decide at the same time.

– Extensive game: each player has the liberty to make a decision and revisit it whenever
it wants.

• Information:

– Perfect information: All agents have access to all information about the other players.

– Imperfect information: Some information might not be accessible for the agents.
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Depending on the type of game an analytical solution might exist. Non-cooperative
games are the most studied type of game, since it involves competition between individuals and
because cooperative games can be remodeled into non-cooperative bargaining games (Harsanyi
and Selten, 1992). In this context, a game that considers the classical model of rationality is
guaranteed to have an equilibrium point (Nash, 1951).

One of the most important interaction scenarios to be considered is when the decision
makers do not have knowledge about preferences and motivations of the other with which it
interacts. This incomplete game can be transformed into a complete game according to (Harsanyi,
1967) if a joint probability function about these unknown information exists, then the incomplete
game is equivalence to a game with complete information and any equilibrium point determined
in this equivalent game represents also an equilibrium point for the original game (Harsanyi,
1968b). Chapter 5 will use this transformation to estimate the behavior of other road users, given
that the AV does not know their motivation.

2.4.1 Related works

As one would expect, all the instances where a game theoretic approach was taken in-
volves interaction with other road users. It can be used in physical, pattern or planning approaches.
In a racing scenario, where two vehicles try to overtake one another, (Wang et al., 2019) adds
a prediction step into the game theoretic controller that is able to estimate how much the other
vehicle will yield to the ego-vehicle. Collision is avoided because both vehicles share the same
collision constraint into their controller. One player use the same game-theoretic controller while
the other uses an MPC, which allows the demonstration of typical racing behaviors, as blocking
and overtaking. This game controller was inspired by the implementation in (Spica et al., 2020)
for two drones racing, but with the addition of the bicycle model to describe the dynamics of the
vehicles involved.

The previous algorithm depends on reliable information about the other player, hence it is
susceptible to measurement errors. To fix such vulnerability (Notomista et al., 2020) proposes to
use the algorithm proposed in (Wang et al., 2019) as a high-level controller (notably named Senna),
while implementing a low-level planning algorithm (this one named Prost) to deal with possible
unreliable information. This second algorithm uses a control barrier function as a constraint to
mitigate uncertainties in the opponent’s model or in its state estimation.

In (Turnwald et al., 2016) the Nash equilibrium is used to reason about the interactions
between agents. The use-case considered is a robot moving inside a crowed environment. Two
game models are considered, one static, where all players take decision simultaneously, and one
dynamic, where decision comes sequentially. The cost functions10 is defined as a sum of two

10Cost function, payoff function and utility function are three names that represent the same entity, the utility
function, as explained in the beginning of the section 2.3.
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terms, one involving the state of the robot and another accounting for the interaction with other
agents (notably if there is a collision predicted or how close a human pass another). Contrary to
the last two examples, where the utility function to be optimized was the difference in position of
two racing drivers in reference to how ahead one is from the other, the utility function here is
based more on ordinal preferences.

One simple situation where interaction between agents is vital to achieve an acceptable
behavior is the lane change maneuver. Usually the AV has to "negotiate" with a surrounding
vehicle(s) to insert itself into another lane. Vehicle to vehicle communications can help a lot in
this negotiation, but even in a far future there will be manual vehicles in highways. Therefore, in
(Meng et al., 2016) a method to evaluate if a change of lane can be executed consists basically
in a Nash equilibrium calculation, where the actions for the AV are to change or not the lane,
and to the other vehicle are to decelerate or accelerate. The payoffs for the AV are the difference
between the maximal cruise velocity in two situations: if it continues in the current lane (which is
the initial one) and if some safety gap is respected during the lane change operation; otherwise
the payoff if defined as a cost. For the other vehicle the payoffs are defined as the inverse of the
acceleration (or the absolute value of deceleration), also if the security criteria is respected.

The lane change use-case is also explored in (Ding et al., 2018) but now using a learning
approach. The maneuver is considered to be composed by two moments, first when one vehicle
adjust its state to allow an other vehicle to merge, and second when the merging maneuver happens.
Two possible controllers for the operation ae examined; the first one, called asynchronous, controls
the vehicles with a controller trained using a deep Q-learning algorithm that acts as a single
agent, hence it does not take into account the behavior of other vehicles. The second controller,
called synchronous, is implemented using a Markov game11 to account the interaction between
both users. The reward function in this case has a cost term connected with the occurrence of a
collision, and every Markov game with a stationary policy has at least one Nash equilibrium. It is
observed that the first scheme fails constantly, while the second is successful after a reasonable
amount of training episodes.

Interaction between the AV and a human driver is usually treated using an open-loop
information structure, as was in (Spica et al., 2020) for example. The approach taken in (Fisac
et al., 2019) is to consider a fully coupled interaction model, with two levels: a strategic one
where interactions are treated integrally and dynamics in a simplified way; and a tactical level,
which uses the opposite arrangement, since it operates in short time periods. The result of the
strategic level (and the value functions calculated) is used as the best outcome for the tactical
level, that takes such information in considerations in its planning, solving a high-fidelity model
of each vehicle with a receding horizon approach. A Stackelberg game is used to model the game
in the high-level layer, with the AV as the leader.

It is well known that human drivers make decisions based on experience and emotions,

11Also called stochastic game, is a game defined as a Makov system, with the payoff function equal to the value
function.

43



Chapter 2. State of the Art 2.4. Game theory

while most of the proposed methods for implementations in AVs are based on procedural analysis
of the environment and prediction of the other assuming that their behavior can be approximated
by another procedural representation. The work done in (Ji and Levinson, 2020) tries to estimate
the behavior difference between the real decision taken during a discretionary lane change
situation and one that is taken using a game theoretic approach with payoff function defined by
safety and time-saving terms with adjusted parameters using real data collected by the NHTSA.
The result of simulations with different initial gaps and initial velocities are that greater initial
distances allow the vehicles to pursue more selfish non-cooperative behaviors, while high-velocity
allows a fast maneuver but worsens the total payoff since also extends the period in which a
dangerous choice can be made by one of the drivers.
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2.5 Conclusion

As it was seen in the section about decision-making methods for the automated vehicle,
two main approaches dominate the domain: Markov-based application or learning methods. The
method proposed here is based on the first approach, with a key simplification to avoid considering
the changes in other road users’ behavior into the decision process. Without such simplification
it would be necessary to consider a complex model to calculate the transition probability, as it
is done in (Brechtel et al., 2014) for example, and adopt a sampling-based solving algorithm, a
common resolution method in many MDP and POMDP applications (Ulbrich and Maurer, 2013),
(Hubmann et al., 2018), (Wei et al., 2011). The proposed decision-making is designed to work in
any type of environment, urban or in highways, and it was tested in an urban scenario.

The literature about ethical decision-making is rich on thought experiments but less
numerous on real applications. Most works deal with logic rules of some sort, but there are
examples using other approaches such as trajectory control (Thornton et al., 2017) or collision
severity analysis Pickering et al., 2019. The methods proposed in this thesis to deliberate under
ethically sensitive situations are based on consequentialist ethics and are specific to situations
where the ethical consequences need to be accounted for, in opposition to Thornton et al., 2017
that includes by design the ethical component of the decision in situations where it is not necessary.
Another difference from the literature is that, during the ethical deliberation uncertainties play a
main role, differently to the applications proposed by (Bonnemains et al., 2018) and (Berreby
et al., 2015) that relies only in deterministic logical relations for example.

Finally, the last part of the thesis deals with the prediction of other road users’ behavior
and how they should modify its decision accordingly. An incomplete game is then modeled using
the behavior probabilities for the other road users, applying the Harsanyi’s transformation to
enable a resolution via Nash equilibrium. Two main differences from the standard application
of game theory in the current literature can be pointed out: it is used to make the AV’s decision
more robust, given the max-min nature of the Nash equilibrium itself and the influence of the
uncertainties into the final deliberation; this last one is rarely seen in game-theoretic applications
((Meng et al., 2016), for example). The approach, as was used here, is similar to (Turnwald et al.,
2016) in that he models the interaction between multiple agents in a higher symbolic level, but the
proposition will go beyond since it also accounts for uncertainties; although such use is second to
the most popular application: to model and exploit agent interaction in low symbolic level, as for
example in the control component of agents (Wang et al., 2019), (Notomista et al., 2020).

Each symbolic option of the game is represented by behavior profiles, modeled using
CV (constant velocity) or CA (constant acceleration) policies for pedestrians or vehicles. This
method represents a typical physical-based approach application to behavior prediction, given
that the prediction happens in the dynamic level and that the interval range considered for the
implementation is a small one (Rudenko et al., 2020). A similarity analysis is then executed
based on the expected behavior given the assumed profile, that generates a prediction at each
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iteration using a Kalman filter, and the observation of the environment evolution, typical of
pattern-based approaches such as (Houenou et al., 2013). The behavior probabilities calculated
with this approach are used by the game model to deliberation on the best strategy.
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3.1 Theoretical background

This chapter starts with a discussion on the architecture most commonly used for AVs,
considering the reactive and hierarchical paradigms approaches presented in chapter 1, which is
followed by the theoretic definition of a Markov Decision Processes (MDP), from its components
to the conditions of uniqueness and existence for the policy calculation. Section 3.2 details the
specification of the MDP formulation used in de Moura et al., 2020 and the results obtained in
simulation, together with the value iteration procedure used to calculate the resulting policy are
discussed in section 3.3.

47



Chapter 3. MDP for decision making 3.1. Theoretical background

3.1.1 AV’s Architecture

Before talking about the MDP implementation for an AV decision-making, it is necessary
to discuss the architecture used in automated vehicles, which appear after the subsumption
architecture, cited in chapter 1, reached its "capacity ceiling". After implementing an airplane
controller using a subsumption architecture, Hartley and Pipitone, 1991 noted that one flaw in
such organization is the lack of modularity, since each behavior layer interferes with the one
below only in terms of suppressing it or allowing it to change the output of the controller. This
means that complexity scales fast according to the number of layers and changes in one layer
needs to be met with changes in all superior layers.

Since the beginnings of the reactive approach other architectures were proposed, similar
to the subsumption although having key differences with respect to it. One common point in
these architectures was the presence of three layers, one containing no internal state, another
containing information about the past and one last with predictions about the future, according
to Gat, 1998. Some examples of such organization are the AuRa robot (Arkin, 1990), the task
control architecture, notably used in (Simmons et al., 1997) and in many robots designed for
NASA (Murphy, 2000) and the 3-tiered (3T) architecture (Gat, 1991). Every single one of these,
since there are modified the ideas put forth by subsumption to be more modular and to allow
planning, are classified as belonging to the hybrid paradigm (Murphy, 2000).

The three layers mentioned earlier and present in many of the hybrid approach architec-
tures can be divided in (using the nomenclature presented in Gat, 1998):

• Controller: It is the layer that communicates with the actuators representing the
low-level algorithms. Usually it does not have any internal states, it deals with the
execution of some behavior passed from higher layers.

• Sequencer: Its role is to choose which behavior the controller must execute, while
receiving information about the general planning from the upper layer.

• Deliberator: Executes the time consuming strategic planning tasks.

As it can be seen in figure 3.1 the relationship between layers are modified to input and
output, differently from the suppression relation employed in the reactive paradigm. This structure
is curious because it is outdated by the three levels of control during a driver task, presented in
Michon, 1979: strategic level, tactical level and operational level (apparently there are no direct
connection between the these works). The highest level deals with the global planning of the
mission, the route determination, traffic level evaluation during the mission and possibly the
risks involved in the chosen route. The tactical level deals with local constraints, adapting the
route to interactions with other road users, while the operational level deals with the execution
of the trajectory that possibly was modified by the previous layer. The same organization later
appeared in Donges, 1999, with a different nomenclature (navigation, guidance, stabilization)
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and is adopted by multiple AV decision-making publications (Ulbrich and Maurer, 2013).

Deliberator

Sequencer

Controller

Figure 3.1 – Three tiered (3T) architecture

Nowadays the three layers architecture is the dominant one, being the one used in the
Stanley vehicle at the DARPA challenge (Thrun et al., 2006) for example, and also in the majority
of publications that deal with the decision-making of autonomous vehicles. Hence, the vehicle
architecture considered here uses such organization in its planning section, as it is shown in figure
3.2.

Environment Sense

Perception

Plan

Strategic

Tactical

Operational

Act

ControllerVehicle

Figure 3.2 – AV architecture adopted

The perception node involves all communication, localization and mapping procedures
together with sensor data acquisition. It can receive information from the operational layer and
the tactical layer (data from the strategic layer may come using the tactical link since the latter is
expected to function at a higher frequency than the former; the same is valid with the controller
data and the operational layer link to perception). The plan step is formed by the three layers
discussed earlier, with the strategic layer calculating the global route, the tactical adjusting this
route to local constraints and the operational one converting the resulting route into a trajectory
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for the controller. The proposed architecture works according to the hybrid approach, since the
sense plan act structure is respected, but the tactical and operational layers are not limited by the
strategy layer in their capacity to react to external stimuli.

The discussion in the next sections and next chapters will focus mostly in the tactical
layer, considering the operational layer and the controller component only to explain how the
implementation was done to allow the simulation of the entire system. An a priori route will
be considered as given, and the perception component will be short-circuited by the simulation
supervisor that can detect the configuration of every agent at any time.

3.1.2 Markov Decision Process

About the MDP choice

As it can be seen in the chapter 2, specifically in the section that presents the state of the
art for decision-making, two main types of algorithms are used to give a robot, or in our case
a vehicle, the capacity to function without supervision and in a flexible way, so as to deal with
uncertainties and variations of environment parameters that are common in dynamic scenarios.
One is the Markov-based algorithms and another is the deep learning (DL) based methods. Both
have advantages and inconveniences, but one of them cannot, at least not currently, does not have
some essential properties to be used as a decision-making model for AVs.

To model the deliberation process, in normal and ethical situations, a Markov decision
process will be proposed in the rest of this chapter. This was done because this method offers a
well defined theoretic framework to deal with uncertainty into action selection and also because it
has tree main characteristics that deep learning does not have (Barredo Arrieta et al., 2020):

• Comprehensability: The ability to represent its learned knowledge in some repre-
sentation that is understandable by humans.

• Explainability: The ability to explain in human terms why a decision was taken.

• Transparency: If the model is understandable (there are different levels of trans-
parency)a.

aThe important point is that deep learning methods are not transparent, the discussion about different
levels of transparency is left to Barredo Arrieta et al., 2020

Given that every single decision made by an AV needs to be verified and validated, the
three characteristics are essential, because not only one must be able to explain why an AV did
what it did. It is also necessary to be certain concerning the limits of operation and which reactions
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might occur in extreme situations, mechanically and ethically to be able to define when dilemma
situations might occur or not; for example, for MDP it is possible to verify the convergence of its
policy calculation, which theoretically is not possible with DL methods.

And the point of this document is to propose methods of ethical deliberation inspired in
ethical theories, it is more coherent to do it in an understandable fashion. Of course, this does not
mean that any type of ethical oriented decision-making using deep learning is possible, nor that it
should not be researched and implemented, just that considering the points made previously this
was not the choice made here.

MDP definition

A Markov decision process (MDP) is a stochastic process that has the Markov property,
i.e., that is memoryless and that assigns values, positive or negative, to state transitions, according
to the desirability of such transition (Garcia and Rachelson, 2013).

Definition 1 Markov Property
Let {X(t), t ≥ 0} be a stochastic process defined on a measure space (Ω,F ,P), with Ω

being the sample space, F being the σ -algebra of Ω and P the probability measure on F .
{X(t), t ≥ 0} is a Markov process if:

P( X( tn+1 ∈ F ) | X(tn), ...,X(t0) ) = P( X( tn+1 ∈ F) | X(tn) ) (3.1)

The 5-tuple (S,A,T,R,γ) defines an MDP. What each component represents is detailed
below:

Components of an MDP

• State space (si ∈ S): represents all possible process configurations.

• Action set (ai ∈ A): represents the set of all possible actions available; triggers the
transition from one state to another.

• Transition probability (T): represents the probability whether, given a state, execut-
ing an action takes the process to some state; formulated as p(st+1|st ,at).

• Reward function (R): quantifies how good or bad the transition to another state was
according to a defined criteria.

• Discount constant (γ): represents the factor used to adjust the utility at a time
t +n, n ∈ [0,∞] to the present (time t); defined as γ ∈ [0,1].
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What makes an MDP a rather popular method to model stochastic processes is the
ability to expand on the capacities from a usual Markov chain and add uncertainty into the
transition between states. Figure 3.3 illustrates an MDP with three possible states and two actions.
From the state s0, if the action a0 is executed, there is a probability of ptn(s1 | s0, a0) that
the process at tn+1 will be at the state s1 and ptn(s2 | s0, a0) that it will instead be in s2, with
ptn(s2 | s0, a0)+ ptn(s1 | s0, a0) = 1.

The reward depends on the current state, the chosen action and the final state. If,
from s0, the action a0 is chosen and the process ends up in state s2 the reward would be
rtn(s0, a0, s2). The expected reward from state s0 and action a0 can be calculated as rtn(s0,a0) =

∑i∈S′(s0) ptn(i | s0 ,a0) · rtn(s0, a0, i), with S′(s0) being the set of possible next states from s0.

tn tn+1

(a)

{
ptn(s2 | s0, a0)

rtn(s0, a0, s2)

(b)

{
ptn(s1 | s0, a1)

rtn(s0, a1, s1)

s0

s1

s2

a0

a1

ptn(s1 | s0, a0)

rtn(s0,a0,s1)

(a)

ptn(s2 | s0, a1)

rtn(s0,a1,s2)

(b)

Figure 3.3 – Simplified example of an MDP

The output of an MDP is a policy, a data structure that encloses multiple decision rules,
one for each time epoch. Each one of these decision rules give, for each state, the optimal action
to be executed according to the transition probabilities and the reward function chosen (Puterman,
1994c). A policy usually is represented by the greek letter π . The decision rules can be Markov-
based (the input is the current state) or history-based (the input is a series of past states and actions)
and they can also be deterministic (one input gives one action) or stochastic (one input gives
a distribution of possible actions). Equation 3.2 shows a policy based in Markov-deterministic
decision rules.

π = (dt(st),dt+1(st+1), ...,dN−1(st+1)) (3.2)

There are multiple criteria to select which action should be executed at each state to
transfer the process to another state, supposedly closer to the objective. The criteria that will
be used for the rest of this document is the discounted reward criteria, which uses a discount
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factor to scale down the influence of future rewards into the current decision. This constant also
allows the convergence of the value function in infinite horizon MDPs. Solving an MDP means
obtaining a policy that has the best reward throughout the entire execution, based on the current
transition and all the future transitions that the process might choose. Equation 3.3 defines the
value function, that evaluates the total amount of reward that a policy produces, and equations 3.4
show how to calculate the optimal policy can be determined.

V π(st) = E

[
∞

∑
t=0

γ
trt(st ,at) | s0

]
(3.3)

{
V ∗(st) = maxa ∈ A E [∑∞

t=0 γ trt(st ,at) | s0]

π∗ ∈ argmaxπ∈ΠHS V π(st)
(3.4)

The calculated optimal policy in 3.4 was considered to be the most general possible,
having the history-based stochastic type (HS). However, Markov-based deterministic policies
are easier to calculate. The proposition 1 shows that for each history-based stochastic policy
there exist a Markov-based stochastic (MS) one with equal value function1, hence allowing the
consideration of a Markov-based stochastic policy as a solution.

Proposition 1 Equivalence of history and Markov based policies:
Let π ∈ ΠHS be a stochastic history-based policy; for each initial state there exists a
Markov-based stochastic policy π

′ ∈ΠMS such that:

V π
′

γ (s) =V π
γ (s) (3.5)

To further verify that the optimal policy can be obtained using a deterministic policy, first
the optimal equation needs to be determined. An infinite horizon will be considered, since the
simplification for finite horizon can be easily done. The following simplification assumptions
will be adopted:

MDP Optimality Assumptions

• Rewards and transition probabilities are stationary: they do not vary according to
time.

• Rewards are bounded: |r(s,a)| ≤M < ∞.

• The state space is discrete.

1The proof of this proposition can be found in Garcia and Rachelson, 2013 or Puterman, 1994b.
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Since rewards and transition probabilities are stationary through time, then the pol-
icy itself can be considered stationary, i.e. being composed by only one decision rule, π =
(d(st),d(st+1), ...,d(st+1)). All these assumptions are valid regarding the implementation dis-
cussed in this and the next chapters. Then, the optimal value equation for infinite horizon MDPs
is defined by equation 3.6, called Bellman equation.

V (s) = max
a ∈ A

[
r(s,a)+ γ ∑

s j∈S
p(s j | s,a)V (s j)

]
(3.6)

Transforming equation 3.6 into the vector form the operator L on V can be defined, as
shown in equation 3.7 , for ∀π ∈ ΠMS.

LV = max
π ∈ ΠMS

(rπ + γPπV ) (3.7)

From it the proposition 2 can be established2, stating the equivalence between determin-
istic and stochastic policies under the previous assumptions. The space V refers to the space of
all functions V : S → R.

Proposition 2 Equivalence between stochastic and deterministic policies:
For all V ∈ V and 0≤ γ ≤ 1

max
π ∈ ΠMD

(rπ + γPπV ) = max
π ∈ ΠMS

(rπ + γPπV ) (3.8)

Finally, from the stationary equivalent policy, it is only necessary to prove the existence
of an optimal policy. For that, the next theorem ,13 establishes the existence and uniqueness of an
optimal solution for the Bellman equation, while theorem 24 shows that there is a optimal policy
π∗ connected to such V ∗.

Theorem 1 Existence and uniqueness of Bellman equation solution
If V = LV , for V ∈ V , then V = V ∗ and is the only optimal solution for the Bellman
equation.

2Proof found in Puterman, 1994a; the proof of this proposition is done during the proof of theorem 1.
3The proof of existence can be found in Puterman, 1994a, and of uniqueness in Garcia and Rachelson, 2013.
4Proof found in Garcia and Rachelson, 2013.
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Theorem 2 Existence of optimal policy
For γ < 1:

• π∗ ∈ ΠMS is an optimal policy⇔ V π∗ is a solution of V = LV and V π∗ =V ∗

• Any stationary policy π∗ ∈ argmaxπ∈ΠHA rπ + γPπV ∗ is an optimal policy.

Then, under the conditions assumed earlier, an MDP has a unique optimal value solution
and an optimal policy connected to it. How to determine such policy will be discussed in
subsection 3.3.1.

3.2 AV decision-making model

In this section the physical model of the AV will be detailed, together with the definition
of the state set and action set (subsection 3.2.1), the transition probability function (subsection
3.2.2) and the reward function (subsection 3.2.3).

3.2.1 State and action sets

State Set

Unlike many MDP (or POMDP) implementations that consider the state as the descriptor
of the environment including other road users’ configuration together with the AV’s configuration
as the state, the definition used here only includes the AV configuration, as seen in 3.9. All other
road users are considered through their interaction with the AV in the reward function. The state
is composed by the AV’s middle rear-axis point coordinates (x,y), direction θ , scalar velocity v
and steering angle φ .

st = [xt ,yt ,θt ,vt ,φt ] (3.9)

For the AV’s model, a non-holonomic single-track vehicle model without slippage was
chosen, as it can be seen in figure 3.4. The correspondent model, using front-wheel driving, is
given by equation 3.10.
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~x

~y

~z

G

(x,y)

l
~vφ

θ

Figure 3.4 – AV’s kinematic model



ẋt+1 = vt cosθt cosφt

ẏt+1 = vt sinθt cosφt

θ̇t+1 = vt
l sinφt

v̇t+1 = at,1

φ̇t+1 = at,2

(3.10)

Action set

Both acceleration and steering angle rate of change are defined as discrete actions for the
MDP (3.11). The action set is then defined as the set of pairings considering the possible values
for v̇ and φ̇ (values are presented in table 3.1).

at = (v̇t , φ̇t) (3.11)

State space discovery

Using this finite number of actions, the state space can be determined expanding the
initial state during N transitions using the vehicle model given by 3.10 and each action. Each
transition is defined to last ∆ttrans. Such expansion is clearly exponential, requiring a limited
number of transitions to form the state space for the problem. All actions were used at each state
to generate possible next states. Considering Na as the number of possible actions (i.e. size of A),
equation 3.12 gives the total number of states. The state space discovery produces a tree of states,
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with each level corresponding to a specific time epoch and the leafs being the terminal states.

Ns =
N

∑
i=0

Ni
a (3.12)

During the propagation of states, each one is checked if it remains in the bounds of the
environment being simulated. If it is outside, then for this specific state the action chosen is not
used and the state is removed from the tree. Another criteria to eliminate possible states is the
mechanical limit for the steering angle of the AV. It the current state already achieve the maximum
angle, then all actions that increase this angle are discarded. The same is valid for null or negative
velocities coupled with actions with negative acceleration, since velocities smaller than zero are
not considered in this implementation.

Figure 3.5 depicts an example of how the state space discovery is done for an hypothetical
MDP with 2 transition and 3 possible actions. Stating from s0, the states s4, s5, s6 and the ones
that remain to be discovered from s1 and s2 are the terminal states of this process.

Time Epoch ts0

Time Epoch t +1s1 s2 s3

Time Epoch t +2s4 s5 s6 · · · · · ·

a0 a1 a2

a0 a1 a2

Figure 3.5 – Example of state space discovery

All constants that concern the state space discovery used in the implementation discussed
here are displayed in table 3.1.

3.2.2 Transition function

The main source of uncertainty in planning for AVs comes from other road users’ behavior
estimation. Since this knowledge is considered to be known during the planning (hence it is
also why the state is defined entirely by the AV’s configuration) the only source of uncertainty
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Table 3.1 – Parameters used in the state space discovery

Parameter Possible values

v̇(m/s2) −1,0,1
φ̇(◦/s) −40,−20,0,20,40

∆ttrans(s) 0.5
N (number of transitions) 4

Na (number of actions) 15

becomes the imprecision due to the vehicle model considered. The transition probability was
defined using the steering angle rate of change, i.e. there are no uncertainty concerning changes
in velocity.

In each set of actions with equal acceleration, the chosen action will have a probability of
0.8 of being successful, meaning that for state s0, in figure 3.6, the action a3 takes AV to s4 with
probability of 0.8 and to s3 or s5 with probability of 0.1 each. For example, if a3 = (−20,−1),
there is an 0.8 probability that the next state will be the correct one, given the model equations
and the current state, 0.1 probability that the process ends up in the next state from (−40,−1) and
0.1 that it will arrive in the state from (0,−1). In cases when only one neighbor exists, notably
when the steering angle is at its mechanical limit, then the transition probabilities become 0.9/0.1
(action a0).

s0

s1 s2 s3 s4 s5

a0

0.9 0.1

a3

0.1 0.8 0.1

Figure 3.6 – State transition uncertainty for a0 and a3

The choice of parameters for the transition probability was made arbitrarily. A possible
tire slippage, that is not modeled by the single track model presented in figure 3.4, is represented
by the incertitude in the AV’s steering angle rate of change with values (0.1 and 0.8) inspired by
MDP grid-like applications that are frequently used as an example of Markov processes. Such
definition is enough to display the entire AV’s behavior but it is without saying that for a real
application some form to calculate this probability, including the uncertainty of the other road
users’ behavior, is necessary (and it will be presented in chapter 5).
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3.2.3 Reward function

The reward function indicates to the system which actions are preferable in regards to
achieve a certain goal. It is based on two parameters: performance (sperf) and action consequences
(sconseq), as given by equation 3.13.

R(st ,at ,st+1) = sperf + sconseq (3.13)

Performance term

Performance for the vehicle is measured as lateral distance to the strategic path, direction
offset and time to arrival at goal point. Equation 3.14 calculates the reward using three variables:
qlat represents the lateral distance to the trajectory, ∆θ is the offset angle between the direction of
the AV and the trajectory and qeta represents the approximated time of arrival (ETA).

sperf = wlat ·qlat +wdir ·∆θ +weta ·qeta (3.14)

Both variables qlat and qeat are actually offsets from the real lateral distance (dlat) and the
approximated time to arrival (teta), as equations 3.15 and 3.16 show. For the lateral distance, since
the ideal is that dlat = 0, the constant rlat sets the reward of this ideal situation. The same idea is
applied with reta, where it represents the maximum allowed ETA before qeta becomes a cost (both
wlat and weta are positive).

qlat = rlat−dlat (3.15)

qeta = teta− reta (3.16)

This approximated ETA is calculated using the projection of the AV’s velocity onto
the direction of the distance between the front axis middle point (pppav

fr ) and the trajectory goal
(equation 3.17). More details about how this projection is done will be presented by equation
3.21. It is an hypothetical measure, since the vehicle does not necessarily has the same direction
than this distance vector, but is enough to capture some idea of how much time it will take to
arrive at the goal given the current speed and direction.

teta =
dobj

vproj(d̂obj)
av

(3.17)
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If the AV has a velocity equal to zero, then equation 3.14 is replaced by a fixed cost ceta.
The weights wlat , wdir, weta together with the constants rlat and reta are calibrated heuristically,
enabling the AV to arrive at its goal following a trajectory given by the strategic layer of the AV.
Since the strategic layer is not of concern here, the trajectory comes from the simulation’s input
and is the same throughout the execution.

pppav
fr

dobj

vproj(d̂obj)
av

*

vavθav

dlat

Figure 3.7 – Performance reward parameters

Action consequences term

The action consequences score is measured by two parameters, adherence to the traffic
code (straf) and proximity to other road users (sprox), as equation 3.18 indicates. The values straf
and sprox can assume negative values or 0, with the latter approximately 10 times lower than the
former. This difference is necessary since sprox has two functions: evaluate how close the AV is
from other road users and detect collisions; if no collisions are detected the term straf must always
prevail in case of traffic code violation. In case of a collision, as said before, the entire reward
function (equation 3.13) is replaces by a negative constant costs.

sconseq = straf +
i<Nag

∑
i=1

sav,rui
prox (3.18)

However, traffic code violations are not considered to be constitutive of a dilemma
situation event. If, for example, there is one action that violated the traffic code and all others end
up in collisions, then the AV will execute the action that violates traffic code to avoid the accident.
The objective of this implementation is to focus in unavoidable collisions, not in the ethical and
legal question of a possible trade-off between code violation and possible accidents. A cascade of
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if-elses emulates some traffic rules into the AV’s decision process by adding the resulting costs. If
no infringement is detected, straf = 0.

If the AV’s velocity surpasses the legal limit, then the cost cvel is added to straf = 0, but if
the acceleration is negative, then racc is also added, to favor actions that decrease the velocity in
this context. Five points are considered to analyze a possible AV intrusion in the opposite lane or
in the sidewalk: its four corners and the rear axis middle point. If two of these points are in the
opposite lane, then straf = straf +2 · coplane (if it is inside the sidewalk and the opposite lane the
cost accumulate).

Traffic code evalutation

• Velocity above limit: add the cost cvel to reward.

• AV in opposite lane: add the cost coplane to reward for each point in the opposite
lane.

• AV in the sidewalk: add the cost csidewalk to reward for each point in the sidewalk.

To ascertain if the AV is too close to another road user, a minimal distance frontier is
defined in figure 3.8. These security zones are the spaces between the vehicle’s body and the
red lines. All positions, orientations and velocities used to evaluate these parameters correspond
to the time epoch t, the same as the current state (unless it is said otherwise). These frontiers
represent an implicit risk measure for the reward function, since their role is to verify if breaking
while maintaining the same direction is still a valid collision avoidance strategy for this state and
action and if it is not, the action’s reward is negatively impacted.

Frontal
zone

Right zone

Left zone

Rear
zone dw

dl

dl

dbr d f r

Figure 3.8 – AV with all the proximity limits

The region around the vehicle are divided in front, left, right and back. The front is
defined as the region inside the frontal cone, delimited by the lines formed by the two frontal
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rectangle’s corners and the frontal axis middle point (blue lines in figure 3.8). The left zone
is defined by the two left corners and the frontal axis middle point; the right zone is defined
analogously, while the rear zone is defined by the rear cone. The frontier checked depends on
with region the closest road user corner is. If it is inside the frontal zone, then the frontier defined
by dfr +dbr will be used to verify it there is a potential dangerous situation, while is it is in one of
the lateral zones, dl is used. No frontier in the rear is defined.

Lateral frontiers are placed at a distance equal to dl from the AV’s body (dw). Equation
3.19 gives the calculation of the dl , with all parameters corresponding to the current time epoch
t. This variable takes into account the lateral security distance dsecl , that is a static input of the
simulation, and the lateral displacement of the other road user during t and t +1, evaluated by
∆ttrans · ‖~v

proj(θ̂⊥av)
ru ‖. To calculate this displacement, the velocity of the other road user is projected

perpendicularly to the AV’s direction (equations 3.20 and 3.21), this last defined by 3.22.

dl = ∆ttrans · ‖~v
proj(θ̂⊥av)
ru ‖+dsecl (3.19)

~vproj(θ̂⊥av)
ru = ~vru − vproj(θ̂av)

ru (3.20)

vproj(θ̂av)
ru = θ̂av · ~vru (3.21)

θ̂av = [cos(θav), sin(θav)] (3.22)

The frontal limit is given by dfr plus dbr, the breaking distance given vav (the AV’s velocity
at t) and calculated by equation 3.24. The distance dfr, as dl did, also takes into account the
displacement of other road users during ∆ttrans, but now using the term ∆ttrans · vproj(θ̂av)

ru to do so,
with the velocity calculated previously by equation 3.21. The constant dsec f is the frontal security
distance, similar to the previous dsecl , while the deceleration constant v̇break is also a static input
of the simulation.

dfr =−∆ttrans · vproj(θ̂av)
ru +dsec f (3.23)

dbr =
1
2
(vav)

2

v̇break
(3.24)

It is assumed as an hypothesis that if an emergency breaking happens the AV will continue
at the same direction (φt = 0), thus no term related to the change in direction is necessary in
equations 3.19 and 3.23. The behavior of the other road user in the calculation of these equation
is that it will continue in the same direction, with the same velocity.

If a road user is predicted to remain outside the security frontiers, then sav,rui
prox = 0;

otherwise the correspondent score becomes a cost, calculated by equation 3.25. To check this
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condition the position of the road user at t +1 is used. In equation 3.25 there is a static cost, cst ,
to punish the next state due to a frontier violation, a static weight wv, defined heuristically and the
difference of velocity variations.

sav,rui
prox = cst +wv ·

[(
vproj(d̂t+1)

rui,t+1 − vproj(d̂t+1)
avt+1

)
−
(

vproj(d̂t)
rui,t − vproj(d̂t)

avt

)]
(3.25)

Each of the difference of velocities refers to a time epoch. Defining the distance vector
between the AV and the considered road user (RUi) as the vector from the AV’s front axis middle
point (pppav

fr ) to the closest corner of the road user’s body, the difference of velocity refers to the
projection of each velocity onto this distance versor.

This measure shows if the AV is converging on (∆v negative) or diverging from (∆v
positive) the road user with the proposed action, while the weight wv (always negative) controls
how important it is to avoid a situation where the AV tends to cross other road user’s immediate
direction while being too close to it. The equation 3.21 is used to calculate the projected velocities,
but with the distance versor (d̂t) instead of the AV’s direction versor. Figure 3.9 given an example
of the evaluation procedure of this velocity variation for t +1.

dt+1

vavt+1

vproj(d̂t+1)
avt+1 vrui,t+1

vproj(d̂t+1)
rui,t+1

Figure 3.9 – Calculation of velocity projections

Collision detection

To detect collisions during a transition, each road user’s position (including the AV)
is predicted ten times during a transition period ∆ttrans. Each road user (including the AV) is
represented by a rectangle (pedestrians are particularly represented by squared), reflecting their
real dimensions. This evaluation is done before the verification if the road user is too close to the
AV, as it can be seen in the workflow presented by figure 3.10.
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Evaluate sprox

Compare AV
with RUi

Check if already
is in collision

Determine region

Check eq. 3.23 Check eq. 3.19

Inside?

Check collision
in transition

r(st ,at ,st+1) = ccolCalculate sav,rui
prox

sprox+ = sav,rui
prox

End

if i≤ Nru

no

yes

front

lateral

rear

sav,rui
prox = 0

no

yes

no

collision

i = i+1

if i > Nru

Figure 3.10 – Workflow for sprox calculation

In two moments the algorithm checks for collisions involving the AV: at the beginning of
the procedure to evaluate sprox+= sav,rui

prox in equation 3.18, to determine if the AV already collided
and if the road user i is detected to be inside the safety frontier. In this last case, the collision
is checked during the transition. If it is detected, the algorithm stops and sets 3.18 to ccol. Two
different situations can be labeled as a collision, an intersection with the rectangle that represents
the other road user, or if the AV is out of the bounds of the environment being simulated. The
limits of the state space are considered to be rectangular walls.

According to Gottschalk et al., 1996, one possible way to verify if two convex 2d-
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polygons intersect each other is to search for an axis where the projection of both polygons
do not intersect each other. If this axis exist, then the line perpendicular to such axis separates
both polygons. It is only necessary to check, for each polygon, a set of lines parallel to each
side, since the separation line, if it exists, is parallel to one of the edges of the polygon; hence,
since a rectangle have two parallel sides, only two lines need to be checked, per rectangle. This
theorem is originated from the hyperplane separation theorem, presented in theorem 3 (Boyd and
Vandenberghe, 2004):

Theorem 3 hyperplane separation theorem
Suppose C and D are nonempty disjoint convex sets (C ∩ D); then there exists a 6= 0 and
b such that aT x≤ b for all x ∈C and aT x≥ b for all x ∈ D. The hyperplane {x | aT x = b}
is called a separating hyperplane for the sets C and D.

Figure 3.11 shows an example of the procedure for the rectangle V0V1V2V3. One of the
sides taken as a separating axis, V0V1, generating the axis r, has an intersection between the
projection of the square P0P1P2P3 and the projection of the rectangle, which is the edge V0V1
itself. But the second side chosen as separation axis, V0V3 (line l) does not have an intersection
between projections, therefore it is a separation axis (and a line perpendicular to it separates both
rectangles).

V0

V1

V2

V3

P0

P1P2

P3

l

r

Figure 3.11 – Calculating the separation line

Table 3.2 shows the values of all constants used in the reward calculation. The information

65



Chapter 3. MDP for decision making 3.3. Results and discussion

about the parameters for the AV (mass, acceleration, etc.) and for the other road users in the
simulation will be given in the next section.

Table 3.2 – MDP parameters used

Parameter Value Parameter Value Parameter Value

wlat 60 wθ −50 weta −35
rlat 10 reta 30 ceta −1250
cvel −1000 racc 750 coplane −50

csidewalk −1500 wv 30 dsec f 5m
dsecl 0.5m ∆ttrans 0.5s cst −1000
ccol −15000 γ 0.9

In the proposed implementation the γ value was arbitrarily set to 0.9, given that only
four transitions are chosen and that the current AV needs to stay aware of future collisions and
transgressions. A lower γ might dampened the costs given to collisions. As for the other constants,
they impact the reward and consequently the behavior of the AV in the following manner:

• The parameters related to the proximity term of the reward (cst , wv and ccol) should have a
highly punitive nature to the vehicle with no possibility of generating a positive reward.
The decision if it should be calculated is controlled by the frontier around the AV (dsecl ,
dsec f ).

• The parameters related to traffic code violations (cvel, racc, coplane and csidewalk) have a
similar nature but they are always verified.

• The parameters related to the performance have the possibility to produce positive re-
wards, which are controlled in value by the constants rlat and reta. The cost of not driving
is expressed by ceta. How important each of the parameters related to lateral distance,
direction offset and estimated time of arrival is defined by the three weights wlat, wθ , weta,
respectively.

3.3 Results and discussion

3.3.1 Value iteration

The output of a MDP algorithm is a policy π∗ which, for each state, yields the optimal
action to be executed, as discussed in section 3.1. It was already determined that this optimal
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policy is Markov-based, deterministic and that it exists. The only remaining piece of the puzzle is
a tool to calculate it given an MDP formulation with the assumptions declared before.

V ∗(s) = max
a ∈ A

[
r(s,a)+ γ ∑

s j∈S
p(s j | s,a)V (s j)

]
(3.26)

Equation 3.26 needs to be solved to obtain the policy. There are many ways to solve a
Bellman equation, but the one adopted here will be the value iteration, where in each iteration the
value for all states is calculated, until an equilibrium is reached. At this point the value function
with the selected actions will be the solution, and the optimal policy can be determined by the
actions that produced such values (Garcia and Rachelson, 2013). This algorithm is shown in 1.

At each iteration the mean squared error of the difference between each value calculation
for every state is calculated. Such iteration can also be represented using the L operator, as is
in equation 3.27. The algorithm is stopped if the calculated error becomes smaller than ε = 0.5
(defined heuristically) and the current value iteration is then used by equation 3.28 to obtain the
policy.

V t+1 = LV t (3.27)

Algorithm 1 convergence is verified by theorem 4 in Puterman, 1994a.

Theorem 4 Optimal solution via value iteration
Let V ∈ V , ε > 0 and let V t satisfy 3.27 for n≥ 1; then:

1. V t converges in norm to V ∗

2. The stationary policy defined in equation 3.28 is ε-optimal
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Algorithm 1: Value Iteration
Data: Spaces S and A, functions R and P, constant γ , environment data e
Result: Policy π∗(s), Optimal Value V t(s)

1 t = 0
2 do
3 for every si ∈ S do
4 V t+1(si) = maxa∈A

[
R(si,a,s′,e)+ γ ·∑s′j P(s′j|si,a)V t(s′j)

]
5 t = t +1
6 end
7 while MSE(V t+1−V t)> ε

8 for every si ∈ S do
9

π
∗(si) = argmax

a∈A
V t(si) (3.28)

10 end

3.3.2 Simulation

Configuration

Using the WeBots simulator (Michel, 2004), the aforementioned algorithm was tested in
the scenario shown by figure 3.12. A real depiction of the simulation environment is shown in
figure 3.13. While the AV is traveling in its lane, two pedestrians, P1 and P2 suddenly cross into
the street (both start moving at tsimul = 4s). Every behavior from other road users are considered
to be known; for example, the other vehicle’s behavior is assumed to be the will to cruise the
entirety of the straight road with 10m/s. For the two pedestrians, before they start moving the AV
consider that they will remain stopped. When they start moving, then the AV assumes that they
will cross the road.

All MDP parameters and the physical information of road users’ are shown in table 3.3.

Vehicle control

The obtained policy is used as a one shot fashion. Since the state space has a tree structure,
from the current state to all other possible ones, with a fixed number of layers (which is equal
to four in this implementation), the policy has the same structure, with an action for each state.
Hence, starting from the root, one can determine the sequence of action that should be executed.
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(2,3.25,0,0,0)

AV (100,6.75,π,10)

VEH

(22.5,1.5, π

2 ,1)

P1

(25,0, π

2 ,1)

P2

Figure 3.12 – Initial simulation setup (other road users’ configuration is represented by (x,y,θ ,v),
not in scale)

Figure 3.13 – Simulation environment

It is this sequence of actions that is used to command the AV.

Every action sequence originated from a policy is used during one second, considering
that the four transitions can plan the trajectory for two seconds. After this period the MDP is
re-initiated, with a different state space, given that the position of the AV changed, and a new
policy originates another trajectory. The reason why this two transition buffer is necessary will be
made clear in the next chapter, but it can be said that the AV, at the end of the policy execution,
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Table 3.3 – Road users’ physical properties

AV Pedestrian Vehicle

Mass (kg) 2105+80 80 1065+80
Width, Height (m) 4.853,1.65 0.625,0.625 3.475,1.310

Wheelbase (m) 2.933 − 2.55
Acceleration (m/s2) 1 − 1
Deceleration (m/s2) −7 − −7

Steering angle limits (°) 25 − 25

should be able to known that no collision is predicted before the policy recalculation. Such
justification accounts for the need to keep one transition as buffer. As it will be explained in
subsection 4, two actually need to be kept.

Inside the simulation the velocity of car-like objects are controlled by a cruising control,
meaning that they decelerate and accelerate using a constant acceleration value. The steering
angle has a clear mechanical limit, as has its rate of change. For the pedestrians, a constant
velocity is used in its displacement, with the body’s articulation movements being controlled by
the simulator’s controller.

3.3.3 MDP policy results

The AV should not produce accidents or critical situations on its own. Varying the initial
position of the vehicle (xveh) and the velocity direction of one of the pedestrians (θped) relative
to figure 3.12, different AV behaviors can be observed, for this precise road configuration. Each
policy predicts two seconds ahead, with one second used for control ((v̇, φ̇) are directly fed into
the AV), before the policy being recalculated.

The AV needs at least two transitions to verify if the next action will not cause an accident,
and that a state has actions which will not necessarily lead to a dilemma situation. And if it
does, this fact needs to be signaled to the entire state space to propagate the high cost connected
to a collision to the respective states. It is because of this necessity to look ahead of time that
the execution of a policy is limited to N−2 (N is given by table 3.1), before the recalculation
of the policy. The weights of equations 3.14 and 3.25 were set heuristically to obtain a result
representative of the MDP defined in section 3.2.3.

The first of the AV’s behavior plots shown in figure 3.14, for xveh = 100m is acceptable
(but not ideal given that it should have stopped and waited the crossing), avoiding the pedestrian
and returning to the other lane afterwards. All road user states are considered observable and
known, therefore at the beginning of a policy calculation the AV can assert correctly all its states
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Figure 3.14 – AV’s behavior for xveh = 100, 80, 40m

and predict changes throughout the decision horizon. But since the AV only has the capacity to
predict two seconds ahead of time, it starts the maneuver without knowing how it will end.

This can be seen more clearly in the second plot, for xveh = 80 when after the beginning of
the maneuver, it reaches a critical situation and simply collides with the wall beyond the sidewalk
(every limit of the environment is defined as a static wall). But if five transitions is used to plan
the policy the collision is avoided, as it can be seen in figure 3.15. This is because, according to
the Y position graphic at figure 3.16 the vehicle under four transitions do not see clearly the other
vehicle approaching and thus places himself ahead of the vehicle in the implementation with five
transitions. The moment where collision becomes unavoidable is signaled by point 15, where the
orientation for the first case takes a turn to the left, while in the second it turns to the right and
accelerates to return to its lane in time.

Adding one mode transition to the policy produces a viable trajectory, but increases the
total calculation time from t = 60.1s to t = 802.4s, due to the exponential nature of the state
space discovery process.

Starting the other vehicle at xveh = 40m (third plot in figure 3.14) creates a situation in
which the AV cannot execute the avoidance trajectory. It is perhaps intuitive for a human driver to
stop and wait for the pedestrians, but here the AV only reduces its velocity at a certain point and
continues to move until the path is clear. Even with five transitions (second plot in figure 3.15)

71



Chapter 3. MDP for decision making 3.3. Results and discussion

Figure 3.15 – AV’s behavior for xveh = 80,40m with 5 transitions

Figure 3.16 – AV’s velocity, direction and trajectory for xveh = 80m

the behavior is similar, meaning that it needs more transitions to receive the delayed reward from
the future and understand that a stop and go behavior is the right one in this context (including in
the cases where it can use the opposite lane without ending up in an accident).
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Some conclusions can be drawn from these three different situations:

I The decision-making horizon needs an appropriate length to anticipate short-term
behaviors from other road users. However, the exponential nature of the state space
discovery process (subsection 3.2.1) must be avoided.

i One way to do this is to sample the most probable next states given a current state
and an action, focusing only on these discovered next states (as some POMDP
solvers do). In theory, considering a fixed transition function, if a bigger number
of transition were to be used, so as to only eliminate the states inside the decision
horizon deemed not useful to the AV, the complexity of the resolution might be
decreased. However, the heaviest step to solve this MDP is the evaluation of the
reward function, not the iteration in itself, and since it is the reward the indicator
of pertinence, this solution would not accomplish what is expected.

ii Another possible solution involves the inclusion of all other road users into the
state and to evaluate a transition probability function capable to identify the most
pertinent states, given the interaction between all users. This could break the
exponential character of the problem if the actions of the AV were subjected to
the same treatment as the states of the other users, i.e. not all actions need to be
considered, only the ones that somewhat optimize one transition.

II In reality the decision horizon is dependent of the AV’s velocity. If it increases too
much the capacity to observe sufficiently ahead of time needs to increase, in the case
that transition time (∆ttrans) is fixed. One can see the beginning of this problem in
the situations commented above, but the real problematic becomes evident if one
considers high speed limits. Planning should occur in small steps of trajectory, even
more since the trajectory planned is based on piece-wise linear segments. Without
a small enough transition time it is clear that the maneuver capability of the AV
decreases rapidly.

III Risk evaluation is also necessary to stop the AV from starting a maneuver that cannot
be completed in one policy, as it was done in figure 3.14. Defining the state space
without a fixed number of transitions and using the end of a maneuver as a sign of
policy termination would allow the AV to start and end in low-risk states.

Changing the direction of the first pedestrian from π

2 rad to 3π

4 rad creates a different
situation, but the results obtained are similar. Figure 3.17 shows the trajectory at xveh = 100 m
and 40 m and figure 3.18 at xveh = 40 m for five transitions.

In comparison with figure 3.14, figure 3.17 produces similar behavior, where an additional
transition allows the AV to avoid an accident. For xveh = 40 and 5 transitions, it makes the AV
choose to accelerate to avoid an accident, which in turn causes it to invade the sidewalk. With
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Figure 3.17 – AV’s behavior for xveh = 100, 40m and θped = 3π

4 rad

Figure 3.18 – Trajectory for xveh=40m, θped= 3π

4 rad for 5 transitions

only four transitions the collision cost was not detected, only the sidewalk invasion cost is, which
fix the future outcome to a collision with the environment’s border.

Another critical point in the implementation is the weights used for the reward function.
All the considered weights and constants were defined heuristically for the specific use case
considered. Even so, the best values obtained still do not reproduce an ideal trajectory, which
can be seen in figure 3.14 between [5,15] at the X axis. The small but perceptible change in AV’s
direction, an oscillation in its direction, is not illegal but rather pointless.

3.4 Conclusion

This chapter analyzed an proposition of an MDP algorithm for the decision-making of an
AV under normal situations. Before its definition, a discussion about which architecture is used in
automated vehicles in general was addressed and the question of why a Markov-based algorithm
was chosen instead of a deep-learning approach was also answered afterwards. After the MDP
model was formally defined, from the necessary components to the existence and uniqueness
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of its resulting optimal policy to subsequently define all the particularities of the model for this
instance.

The proposed algorithm was tested in a simulation environment, considering multiple
configurations from other road users. It was observed that, for the heuristic weights chosen
for the reward function, the AV behaved correctly in most situations, but some problems were
flagrant. The exponential nature of the state set discovery did not allowed the use of an appropriate
horizon prediction to correctly account the behavior of the other road users with the AV’s velocity
worsening this problem if the transition time is kept the same. No guarantee is done towards the
finalization of a maneuvers before the end of the prediction horizon, which demands at least a
risk assessment to avoid terminating in an unsafe state.
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Up until now dilemma situations were not treated by the algorithm proposed in chapter
3, even if when the collision was inevitable, notably the case in graphic 3.14. Two methods to
treat such situation will be exposed in this chapter: the ethical valence theory (EVT), proposed by
Evans et al., 2020 and the ethical optimization, proposed in de Moura et al., 2020. Both methods
use to guide its decision the estimated harm that may happen in an accident, while the EVT also
uses the ethical valence with a deliberation procedure to choose the most appropriate action. This
chapter ends with the explanation about how the value iteration, used to obtain the MDP policy, is
modified to account for dilemma scenarios and a discussion about the results of both publications.
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4.1 Dilemma situations

At each step of its trajectory, the AV should be able to tell whether a situation constitutes
a dilemma worthy of moral consideration. This situational classification is necessary to determine
if the AV must act according to ethical constraints or simply concrete objectives. Three rules can
be defined to represent the AV’s responsibilities towards the other road users in its environment
and its own passengers and they must be followed at all times. If one or more of these rules
are violated across all possible actions, this indicates that the non-dilemma portion of the AV’s
decision-making cannot cope with the consequences of all possible actions, and thus ethical
deliberation is required for the AV to act in an acceptable way. Here harm is defined as the
negative consequences suffered by a human after some type of collision with another road user.

AV duties towards other road users

• The lives of the passenger(s) must not be put in harm’s way.

• The lives of the road users in the environment must not be put in harm’s way.

• Traffic regulations must be followed.

Interactions between road users and the AV are covered by the two first rules. If the
geometric representation of two road user (including the AV), during a transition, intercept each
other, a collision is considered to have occurred. As it was done in the last chapter, a safety
frontier around the AV can be defined to discourage the execution of actions which would remove
the possibility of breaking without swerving to avoid an accident. But even so the AV could be
exposed to dilemma situation, since the main uncertainty source comes from the behavior of
the other road users. The general risk of a dilemma can also be minimized with a conservative
behavior from the AV, however it can only go so far if it adopts a precautionary approach since it
also must produce a performance capable to justify its existence.

There is a certain antagonism between the two first rules and the third one. One can ask
himself if the former should take precedence over the other, so it is certainly desirable that the AV
should also be sensitive to the interplay between ethical and legal behavior. In this sense, when
there is a conflict in dilemma situations between harm to humans on one hand, and adherence
to the traffic code on the other, the standard behavior adopted will be that the avoidance of the
former should take precedence. As such, the MDP algorithm must be defined so as to express
this priority in ways independent from the influence of the temporal discount rate. However, after
the transgression, the AV must return to a ‘safe’ state, guaranteeing that another collision does
not arise as a direct consequence of its original action choice. If this is the case, then for the
AV’s decision-making algorithm all actions, at the first moment, end in collision, considering the
proposed policy calculations that will be presented in the next sections.

Make the AV conform to traffic laws by design is not a subject that is widely addressed in
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the literature. Generally, legal conformity presents challenges related to the interpretation of laws
which can be vague, admit exceptions, or be internally incoherent; the resolution of all of which
may demand some degree of common sense reasoning in order to be solved (Prakken, 2017).
Additionally, with adherence to traffic laws comes the need to embed relatively abstract norms,
used in laws to map concrete behavior, into an AV, and more broadly, into an autonomous system
(Leenes and Lucivero, 2014). Some authors have already attempted to implement some portions
of various traffic codes — related to circulation and behavior — into an autonomous vehicle,
such as Rizaldi et al., 2017 (German legislation). Categorically, these attempts have been made
using logic-based approaches to emulate constraints, representing only the procedural demands
which usually compose a traffic code.

Given these considerations, when the duty obliging traffic code adherence is adequately
defined, the entirety of the given traffic code does not need to be exhaustively implemented. To
simplify the implementation of this evaluation algorithm, a set of logical rules will represent the
procedural rules present in the specific scenario simulated. This set of rules should almost always
allow the AV to cruise in a lawful manner. Exceptions to the code and the resolution of conflict
between rules will not be covered here, the latter being treated as an ethical decision (even if
ideally the procedures to solve conflicts between rules present in traffic codes should be used
where possible).

For example, in a straight line domain, without pedestrian strips or semaphores, and with
a solid double line the following logic rules can be used:

Simplification of traffic rules

• Do not cross over into the opposite lane.

• Do not drive onto the sidewalk.

• Do not surpass the speed limit.

This simplified rules are the same as the ones used in the last chapter to calculate the
cost connection to traffic code infringement, in subsection 3.2.3. In a real implementation, where
the AV should target full automation (level 4 or more) in specific and generic environments, the
actual set of rules will be extended well beyond these three rules and include also the conciliation
process between these rules.

4.2 The definition of harm

The purpose of considering ’harm’ in ethical deliberation is to measure the risk for
AV passengers and other road users involved in a hypothetical collision. For decades, the main
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measurement variable to estimate this property has been the difference of velocity between the
two implicated road users at the moment of collision (∆v) (Evans, 1994; Jurewicz et al., 2016;
Martin and Wu, 2018; Hussain et al., 2019).

Most of the research conducted within the domain of vehicle collisions uses historical
accident data to analyze the influence of ∆v in collisions. To quantify injury, two metrics are
popular: risk of fatality and the Abbreviated Injury Scale (AIS) (MacKenzie et al., 1985). The
latter is preferred, since it is important to consider not only fatal collisions but those that can
inflict severe damage (referred to as MAIS3+, which indicates that at least one injury in some
region of the body is above AIS3, a scale going from 0 to 6). In the European Union, this metric
is used as standard to measure road accidents (Weijermars et al., 2018).

All ∆v used as thresholds for severe injuries are indicated in table 4.1, along with their
source (typically, an injury is considered as ‘severe’ if it indicates a MAIS3+ injury probability
of 10%1). For the pedestrian case, the value was obtained from Kröyer, 2015, which considers
severe injury as having an ISS (Injury Severity Score, defined as the squared sum of AIS for the
three most severely injured body regions) larger than 9, which is stricter than MAIS3+. Lateral
crashes are covered by near side (driver’s side) and far side (passenger’s side). For single vehicle
collisions, the same ∆v defined for collisions between vehicles is used.

Table 4.1 – ∆v threshold used for fatality collisions

Collision type Contact ∆v value Taken from
Pedestrian collision - 6.94 m/s (Kröyer, 2015)

Vehicle collision

Frontal 7.78 m/s (Jurewicz et al., 2016)
Rear 10.56 m/s (Jurewicz et al., 2016)

Near side 5.56 m/s (Jurewicz et al., 2016)
Far side 6.39 m/s (Jurewicz et al., 2016)

The data presented in Jurewicz et al., 2016 was collected by the National Highway
Traffic Safety Administration (NHTSA), published in Bahouth et al., 2014, considering injuries
in the front seat, with a seat-belt, without rollover, with a passenger age ranging from 16 to
55, involving passenger vehicles and heavy vehicles. In Kröger, 2016 the data comes from the
Swedish STRADA database, possessing a complete registry of pedestrian collision between 2004
and 2008.

This retrospective analysis of reported accidents has some drawbacks. According to
Rosén et al., 2011, the data may be biased, since it is only collected across a small set of
countries. Also, in the pedestrian case, age is an important feature (Kröyer, 2015), therefore the
age distribution in the studied population plays a role which is unaccounted for in the resulting
curve. Under-reporting of non-dilemma cases (Martin and Wu, 2018), estimation of collision
velocities (Rosén et al., 2011), negligence of a vehicle’s mass and geometry (Martin and Wu,

1This is the threshold used by some automotive companies to define an unacceptable risk of collision.

80



Chapter 4. Dilemma Deliberation 4.2. The definition of harm

2018; Mizuno and Kajzer, 1999) and the use of different methodologies to evaluate AIS scores
(Weijermars et al., 2018) also reduce the precision of such an approach.

Given that the previous method presents problems when applied to specific situations
(despite it generalizing relatively well across a population), accounting for contextual information
is necessary. The collision interaction between vehicles can be approximated by a damper-spring-
mass system, where the initial velocity of each vehicle is projected onto the axis nnn (normal to
contact plane between both vehicles) and ttt (tangential to contact plane). One example of such
approach is Pickering et al., 2019, that uses a sprint bi-linear model to estimate the severity
of a frontal collision might have if to avoid a pedestrian the AV needs to collide with a static
object. The approach that will be considered here should be able to handle any specific situation,
being capable to represent multiple collision configurations, from all frontal collisions types to
variations of lateral impacts.

The collision can be divided in two phases: the first is the compression, where the
deformation of each vehicle happens with the transfer of kinetic energy into to the deformation
process, followed by the restitution, when the vehicles plastic deformation settles, and part of the
energy transferred to deformation returns as kinetic energy (Smit et al., 2019). Given the multiple
possible collision configurations and the objective of having an approximated measure of the
severity, an impact the point-mass collision approach will be adopted (Brach and Brach, 2011),
with some simplifications, to model the interaction between road users and the AV in case of
collision. The following simplification assumptions are adopted:

Collision mechanics simplificatory assumptions

1. No slidding during the collision (when the vehicle skid tangentially the other instead
of deform in the normal direction)

2. Dissipation forces are negligible.

3. Crash interface between vehicles is a point.

4. Duration of the crash is infinitesimal.

With the collision mechanics defined, one can start to reason what "harm" should repre-
sent. This should refer to a single road user, during a collision. Thus, a plausible evaluation would
be h ∝ ~J, cvul , h representing the road user’s harm, J for the impulse applied during collision
and cvul for a measure of physical vulnerability, which will be explained in subsection 4.2.2.
Considering the point-mass approach, the expression then becomes h ∝ ∆~p, cvul , resulting in the
equation 4.1, for a road user k:

kh(st ,at ,s′t) =
kcvul ·

(
‖~v f − k~vi‖

)
(4.1)
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The collision velocity is calculated using the conservation of linear momentum, that will
be explained in subsection 4.2.1. The variable v f , represents the collision velocity for both road
users, k and l. The velocities l~vi and k~vi are measured at the imminence of impact for k and l.

4.2.1 ∆v for collision

To calculate the velocity after collision, v f , used in equation 4.1, both road users (k and
l) are considered as punctual masses and all dissipation forces are neglected. From the original
equations of the momentum, given by 4.2 and 4.3 for each road user, which can be brought
together in one single equation, 4.4, which represents the conservation of linear momentum. The
masses mk and ml correspond to the total mass of each road user (if it is a vehicle, then its mass
plus the passengers’ mass)

mk
k~v f −mk

k~vi =
kJ (4.2)

ml
l~v f −ml

l~vi =
lJ =− kJ (4.3)

(
mk

k~v f −mk
k~vi

)
+
(

ml
l~v f −ml

l~vi

)
= 0 (4.4)

Usually to solve the system of equations presented by equations 4.2 and 4.3 it is necessary
to "find" two more equations (six variables and only four equations, two for x̂ component and
two for the ŷ component). Then comes the particular knowledge about the dynamics of collision
restitution from the coefficient of restitution e and the impulse ratio µ , that is the relation between
the normal and tangential impulse (no relation to the friction coefficient, that frequently is
represented by the same letter) (Brach and Brach, 2011).

Given that it is essential for the harm to estimate the danger that a collision might pose
and that such collision can be represented roughly by a spring-mass system (dissipation forces
are negligible, so the presence of the damper is not necessary), it would be interesting to evaluate
the final velocity present at equation 4.1 in the moment of maximal acceleration, which is the
most important information to measure injury for passengers/pedestrians. This moment is the
end of the compression phase, when the vehicles compose a single structure, right before the
restitution takes place and separates them. Thus, this final velocity can be considered equal for
both vehicles, giving the following equation:

(
mk

k~vi +ml
l~vi

)
= (mk +mk) ·~v f (4.5)
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With equation 4.5 it is finally possible to calculate the final velocity for each road user~v f

used in the harm equation 4.1, without any particular specificity about the vehicle body properties.
For collisions with pedestrians, it is considered that the pedestrian’s~v f is equal to the AV’s~vi,
which implicitly means that the linear momentum of the pedestrian is negligible in comparison
with a vehicle, given the difference in mass, approximately by a factor of 10 and the difference of
velocity, that can also reach a factor of 10. Thus, the AV’s velocity variation due to the collision
can be neglected, and its harm is equal to zero.

This simplification was adopted considering that the most common variables used to
predict injury for pedestrians, according to the current research about collisions between pedestri-
ans and vehicles, are the type of vehicle involved (Mizuno and Kajzer, 1999), specially due to
the height of bonnet leading edge, parameter that can explain why SUVs are more dangerous to
pedestrians than other vehicle types and the mass of the entire vehicle which usually is bigger
than the average due to its size (Malczyk et al., 2012; Simms and Wood, 2006), along with
the impact velocity. Therefore, this danger that is not captured by the velocity is the focus of
another parameter, which accounts for the inherent vulnerability of a road user, together with
other parameters. This subject comes into discussion with the definition of the vulnerability
constant in equation 4.1.

For collisions with static objects, the same reasoning which was used with vehicle to
vehicle collisions is applied, but in this case v f is equal to zero. In the last chapter, the borders of
the simulation environment were defined as static walls (subsection 3.2.3); when the AV leaves the
bounds of simulation it considers that the final velocity in a collision (at the end of the respective
transition) is equal to zero to evaluate its harm in a direct collision with this wall.

4.2.2 Vulnerability constant

A plethora of studies exist in accidentology addressing collisions between vehicles and
pedestrians or only between vehicles. The role of vulnerability constant cvul is to represent the
inherent physical vulnerability of each road user during a collision using the information captured
by these statistical studies in a way to complete the information given by the velocity variation
described in subsection 4.2.1. Lets consider the following scenario: a frontal collision between
two vehicles with a ∆v equal to 30km/h and another between a vehicle and a pedestrian with the
same ∆v. Lets first disregard the cvul and define the harm as only being the variation of velocity
of a road user due to a collision.

According to equation 4.1 the harm for each vehicle (named l and k, with l~vi = (20,0)
and k~vi = (−10,0) and equal mass) would be the norm of the difference between the final velocity,
which is the mass weighted sum of their velocities (equation 4.8), and their initial velocity, at this
moment not using cvul. This value, expressed by equations 4.6 and 4.7 needs to be compared with
the same situation happened with the vehicle l but this time with a pedestrian p.
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kh =
(
‖~v f − k~vi‖

)
= ‖(5,0)− (−10,0)‖= 15 (4.6)

lh =
(
‖~v f − l~vi‖

)
= ‖(5,0)− (20,0)‖= 15 (4.7)

~v f =
mk

k~vi +ml
l~vi

(mk +ml)
== (5,0) (4.8)

What can be observed from the comparison between the equations 4.6 and 4.7 with 4.9
and 4.10 is that for the pedestrian collision the harm would be 25% higher in comparison with
the vehicle case.

ph = (‖~v f − p~vi‖) = (20,0) (4.9)
lh = 0 (4.10)

~v f =
l~vi (4.11)

One can argue that this conclusion can be interpreted as an evidence that in this case the
collision with the pedestrian can be more severe. But two important details are not included in
this procedure:

• Multiple essential information are left out of the calculation. For example, the type
of vehicle is an important information, giving a hint about the mass and geometry of
the vehicle; the configuration of collision also is important, since frontal collisions
and lateral collision may present different risks for the passengers.

• The graduation between the harm’s value and the probability of an MAIS3+ injury
is not straightforward either. It cannot be said, for example, that there is a 25%
higher change that the collision with the pedestrian result in such injury than in
comparison with the vehicle collision.

The objective of the vulnerability constant cvul is to add these information about the road
users and also scale the harm measure to be an accurate representation of the danger coming
from the collision, considering all different information. Its determination should come from the
∆v curves available in the literature, that connects a certain value of ∆v with a probability of an
injury MAIS3+. However, given the number of parameters the determination of such constant in
rather complex. The following parameters should be considered to define the constant:
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Parameters necessary to define the constant of vulnerability

– Type(s) of vehicle(s) involved (minis, SUVs, sedans, etc.).

– Configuration of collision (frontal, oblique, lateral, etc.).

– Homogeneous absolute velocity interval.

Both first and second parameters are self-explanatory. The third refers to the fact that ∆v
is only a difference of velocities, therefore to have a ∆v = 30km/h is different when one of the
vehicles have v1 = 100km/h and if it have v1 = 30km/h. This parameter guarantees that accident
data relative to fast corridors in cities does not pollute the set, pushing up the probability of injury
for a certain ∆v.

For each combination of the three parameters presented above, one curve ∆v versus
probability of MAIS3+ injury would be necessary. If it existed, then, assuming some specific
curve form for the vulnerability constant, it could be fitted to give the harm the same proportional
increase according to the risk of injury. The necessary offer of graphs do not exist today, all the
open databases concerning traffic accidents usually does not comport the velocity before collision
nor the type of vehicle involved (the french database does not have neither, while the NHTSA has
only the first, both also without the injury measurement based on the AIS scale).

The choice made to generalize all information about the correlation between the phys-
iological impact of an accident into humans, together with the parameters connected with the
compatibility between vehicles (in V2V collisions) and collision configuration, using the statisti-
cal data of accidents, tries to simplify the procedure of estimating the harm considering all these
variables. All different modes of collision could be added into the collision mechanics, but would
necessitate a 3D dynamic model of the vehicle to calculate all the forces involved, including a
precise model of the interaction between road and tires. And to account the inherent vulnerability
of the user would be more difficult, maybe with some relation between acceptable levels of short
pulses of acceleration for humans. As said before, an accidentology approach also has drawbacks,
but all the data, in the format proposed, does not need to be validated since it comes from real
accidents.

As the determination of the initial velocity of an vehicle right before a collision and
the aforementioned curves themselves are subject of entire projects and because the necessary
databases are not open to public, the vulnerability constant was simplified in the implementation
presented at the end of this chapter. As such, the cvul was considered equal to one, given that the
velocities used in simulation where no higher than 10m/s, originating ∆vs that do not signal a
critical difference of risk in the collisions studied later on.
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4.3 Ethical deliberation process

Given an hypothetical dilemma situation, the AV must be able to act in an ethical manner,
using explainable methods and basing its decision in criteria that is clear and well known. This
section offers two different methods to achieve such decision procedure: the ethical valence theory
and the ethical optimization. This section ends with an explanation concerning the necessary
adaptation into the value iteration to allow the AV to switch from the reward-value optimization
to one of these ethical deliberation processes.

4.3.1 Ethical Valence Theory

The ethical valence theory was proposed in Evans et al., 2020 as a method to mitigate
the claims that each road user has about the AV’s behavior and also about their right of safety in
a public space. It considers two variables to take a decision, the ethical valence, which tries to
capture an hierarchy of protection based on a priori criteria, and the harm, already defined in the
precedent section. Then an ethical deliberation procedure, based on these variables, define which
road user should be safeguarded against a possible collision.

Valence definition

The purpose of a valence is to represent the degree of social acceptability that is attached
to the claims of the road users in the vehicle’s environment. In this sense, the claims of certain road
users can be more or less ‘acceptable’ to satisfy via the vehicle’s action selection. The valences,
in so far as they are rooted in the phenomenal signature of individuals, then track various physical
characteristics which are seen to carry social importance: height, age, gender, helmet-wearing-
cyclist, or stroller-pushing-adult, all of which are detectable by the object classification algorithms
of the AV. Importantly, the determination of the strength of these valences is accomplished through
a type of ranking or hierarchisation, which associates a road user’s claim with a certain class or
category of valence, as shown by table 4.2. In this way, depending on the amount or detail of the
valence features under consideration, there can be more or less valence categories.

In this example for instance, two features are used: age and type of road user. The
classification was created considering recent studies which suggest that western societies prefer
to spare the young and vulnerable (understood in terms of exposure to injury) in AV collisions
(Awad et al., 2018). In the case of multiple people, vehicles or agglomeration of pedestrians, the
entity that has the larger number of users with a high classification has the preference. Between
an AV with passengers C and F and another with C and D, the latter is considered to have a higher
valence.
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Table 4.2 – Possible valence hierarchy

Feature 1 Feature 2 Classification
Young (0 – 18 years) Pedestrian A

Old (65+ years) Pedestrian B
Young Vehicle passenger C

Old Vehicle passenger D

Adult (18 – 65 years)
Pedestrian E

Vehicle passenger F

In cases where the chosen valence features are minimal or simple (such as in the example
above) the likelihood that multiple road users will have the same valence, but differing claims,
increases. In this sense, there may be certain situations wherein the harm measurement becomes
the decisive factor in action selection. In these cases, the vehicle satisfies the strongest claim in
its environment, protecting the person whose welfare is most severely impacted, due either to
a dangerous context (high velocity difference) or to an inherent vulnerability (detected by the
vulnerability constant). This simple maximization of welfare, however, is complicated by the
operational moral profile, which specifies the claim mitigation process between those passengers
inside the car, and those road users outside of it. To this end, two possible moral profiles can be
seen in table 4.3. Risk is considered severe if ∆v surpasses the limits defined in table 4.1.

Table 4.3 – Possible moral profiles for an AV

Moral profiles Definition

Risk averse altruism
Protects the road user with the
highest valence as long as AV
passenger’s risk is not severe.

Threshold egoism
Protects AV passengers as long as risk for

other road users with higher valence
than the AV is not severe.

None of these profiles perfectly resemble any traditional moral theory, or if anything,
resemble various positions along the spectrum of egoistic rationality (Parfit, 1984). This is
intentional, as these profiles are designed to capture various degrees of compromise between
the claims and valences of the AV’s passengers and those of the other agents within the AV’s
environment. These profiles often reinforce the idea that a certain degree of morally admirable
partiality is possible, or perhaps even necessary in AV behavior, in order to best align with user
expectations, or to garner user trust (Gerdes and Thornton, 2016; Keeling et al., 2019). The
profiles listed in table 4.3 are likewise non-exhaustive and represent somewhat factually opaque
renditions of the profile types the Ethical Valence Theory can accommodate. In these versions,
the role of the harm calculation is important, as it is the principal factor which informs the various
consequences of the AV’s actions, due to trade-offs between the passenger(s) claims and those of
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the other agents in the vehicle’s environment.

Moral deliberation

Once informed by the valences and harms, the AV can deliberate on an action, a step which
is crucially guided by the operational moral profile. Each moral profile indicates a unique form of
deliberation, as shown in table 4.4. It is perhaps worth restating that the moral profiles—and for
that matter, ethical deliberation itself—is only used if the AV detect a possible dilemma situation.
Otherwise, concrete, goal-driven planning is operative, using standard decision-making criteria.

Table 4.4 – Optimization procedure based on the moral profile chosen

Moral profiles Deliberation

Risk averse altruism
Minimize the expected harm of the road

user with the highest valence until
the AV’s collision becomes severe

Threshold egoism
Minimize the expected harm of the
AV until the risk to a road user with

a higher valence becomes severe

Each profile requires a different implementation. Using the risk-averse altruism case as an
example, to deliberate, the AV’s state (represented with the same variables as in subsection 3.2.1),
environment state (e, which contains the position and velocity of all agents in the environment),
highest road user valence (η) and maximum ∆v, are the input. The action that should be executed
(aη ), is the output. As a first step, all harm measurements for possible actions and the proceeding
states (represented by the state space S′, composed by the states reached after one single transition)
need to be calculated. Here the decisional horizon is equal to one transition, since the accident
will follow immediately afterwards. This is done first by solving equations 4.5 and 4.1. Only one
road user is implicated with the AV in a collision. The representation of other road users follow
the same procedure used in chapter 3: they have a static behavior and their current velocity is
used to predict their movements in the future, with no uncertainty involved.

Algorithm 2: Calculation of all possible harms

1 for all ai ∈ A do
2 for all s′i ∈ S′ do
3 ~v f ← calculate final velocities (equation 4.5)
4 kh(si,s′i,at)← calculate harm for all road users (including AV, equation 4.1)
5 end
6 end
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If all possible outcomes have a velocity difference which is larger than ∆v (the road user’s
initial velocity minus the AV’s velocity), then the collision is severe and the safety of the AV’s
passenger is prioritized. In the considered profile, the chosen action minimizes the expected harm
for the AV. It should be pointed out that ∆v changes according to collision type (as can be seen in
table 4.1). The transition probability is used to calculate the expected harm (hexp(si,a j), equation
4.12), which represents a mean harm value for a road user k, given that for one state si and action
a j different states s′i can be reached, and therefore different collisions can happen. The position
of all road users and the observation of the AV’s state is considered to be perfect (no uncertainty
in these measures).

khexp(si,a j) = ∑
s′i∈S′

p(s′i|si,a j)
kh(si,s′i,at) (4.12)

If the set of admissible actions according to ∆v, Aη , is not empty, the chosen action
minimizes the road user’s expected harm with the highest valence for the actions ∈ Aη . Otherwise
the action that minimize the harm for the road user with the highest valence is chosen; if multiple
minimal actions still exist, then the one that minimizes the AV’s expected harm is chosen. This
process is shown by algorithm 3.

Algorithm 3: Action selection

1 Aη ← all actions in A that (‖RU~vi−AV~vi‖ ≤ ∆v)
2 if Aη =∅ then
3 aη = argmina∈A

AV hexp(si,a j)
4 else
5 ac← argmina∈Aη

RU hexp(si,a j)

6 if Multiple ac exists then
7 aη = argminac

AV hexp(si,ac)
8 else
9 aη = ac

10 end
11 end

Passing from the AV’s harm minimization to the road user’s harm minimization may
appear to be an extreme position in comparison with other alternatives, such as the possible
minimization of both quantities. An infinite number of compromises can be imagined between
the AV and road users, however in our examples here both moral profiles oppose each other
to maximize the safety of only one road user. For the threshold egoism profile, only the action
deliberation process shown by algorithm 3 would change.
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4.3.2 Ethical Optimization

The original idea behind the optimization procedures discussed in this section is the adap-
tation of an ethical reasoning into a mathematical procedure given a specific context. Currently
and in the close future the existence of some robot capable of capturing all the nuances of human
reasoning and behavior, while being able to reason at all levels, from symbolic to practical sce-
narios, is highly improbable. So the legwork from theory to the application of an ethically-driven
form of decision-making must be partly done by the design of the decision-making model itself.

Three ethical principles were chosen to be applied to the collision dilemma situation. The
first discussed will be the Rawlsian contractarianism, based on the theory of justice, proposed by
Rawls, 1971. Then, the more familiar theory of utilitarianism will be considered, subsequently
followed by egalitarianism, an adaptation of the utilitarian idea but also evaluating the scale
of disparity between users. The discussion is concentrated on consequentialism methods, with
Rawlsian contractarianism and egalitarianism serving as starting points for reflection about the
drawbacks of utilitarianism.

Contractarian optimization

According to Rawls, 1971, justice is an inviolable right of humans, in which the only
compromise acceptable in the case of an unequal distribution of rights guaranteed upon people by
justice would be the closest possible to equality. The concept of fairness intervenes when two or
more persons are interacting, and fairness should determine which procedures and practices can
be used in their competition or cooperation, or the conditions under which one individual should
recognize another individual’s claim without the feeling of being forced or taken advantaged of.
These two properties are highly desirable in the context of an AV decision making that might
need to make decision in ethical dilemma situations.

From Rawls, 1958, the two principles of justice proposed are: "..., each person partici-
pating in a practice, or affected by it, has an equal right to the most extensive liberty compatible
with a like liberty for all; ..., inequalities are arbitrary unless it is reasonable to expect that they
will work out for everyone’s advantage ...". More specifically, the expression "must work out
for everyone’s advantage" excludes the justification of disadvantages for the worst of given the
advantages offered for the most well of.

Translating the generic context used here to the narrow case of justice as is applied to
dilemma decision scenarios, one can say that every road user must be awarded the most extensive
right to safety as is compatible with the safety of others, and that differences in safety across
road users should benefit those road users who are most at risk. In the imminence of a collision,
having the same amount of safety means that ideally the harm should be equally distributed for
all involved road users (involved here refers to all road users in reach of the AV that might be
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struck by it), if no other action is available that protects the most vulnerable road users.

Practically speaking, starting from the most equal state, when the standard deviation is
minimal for an action a that is available to the AV in a dilemma situation (equation 4.13; hexp(a)
represents the set ihexp(a), 0≤ i≤ n, n being the number of road users in the scene) an hierarchy
can be created, from the road user most protected to the least one. Then the largest expected harm,
considering this classification, should be minimized, as long as the harm for all other road users
involved does not increase (equation 4.14).

aint = argmin
a∈A

σhexp(a) (4.13)

Min
a

{ihexp(a)
}

, subject to jhexp(a)≤ jhexp(aint) (4.14)

This optimization model is the one used in de Moura et al., 2020, which results are
presented in the later subsection 4.4.2. But this formulation can still be improved to represent
more faithfully the ideas of justice proposed by Rawls. The author says that justice is a primitive
concept, that arises when morality is applied to the negotiation between the involved parties to
define practices that would be acceptable for all parties. It is the sentiment that comes from the
enforcement of these practices that configures fairness. If one party holds that some claim is not
legitimate, then to them the decision if unfair. Each one can have a definition of what is legitimate
and what is not.

If one considers the traffic code as the practice that deals with the opposing claims
from each road user, which in turn would assume that what is just is defined by this code,
one has an authentic picture of the relations between users in modern days. Walking back
from this commitment would certainly create an unjust action (without even discussing the
legal implications of such a decision), hence from this observation comes the first constraint:
during the deliberation for an action that will inevitably cause harm, the traffic code must
continue to be followed.

So fairness, in a dilemma scenario, would be characterized as the evaluation that a
concerned road user would perform concerning the claim which underpinned an AV’s action.
Let’s say that, in such a situation the right for safety is the main parameter to be considered when
an action is selected, since intuitively the claims connected to it are, at least in their majority and
assuming an acceptable level of pertinence, legitimate. But it would not be legitimate if to respect
some claim from one road user the AV should risk the safety of other users not involved in the
traffic situation, which means that road users not involved in the interactions that generated
the dilemma situation cannot be put in harms-way.

For pedestrians this constraint can be described roughly as "the AV must not invade the
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sidewalk as a tactic to decrease the harm in a collision" considering all possible options available,
since in doing so it inevitably will put other lives in danger that are not necessarily concerned by
the interaction on the road. The general idea expressed by this limitation was also proposed by the
guideline 9 in Luetge, 2017. The interpretation of what is legitimate used here is minimalist and
tries to capture a common sense argument since this legitimacy determination has an important
personal component involved.

One last modification should be done in the previously proposed deliberation procedure.
Given the emphasis that inequalities should only be accepted if the worst off is favored, a search
for the action that minimizes the greatest expected harm while maintaining the same level of
harm for everybody else was proposed. But such a minimization can be pushed even further:
the biggest expected harm should be minimized as long as the expected harm for the other
road users do not surpass a danger threshold. However, such threshold can only be defined
comparing the harm value before the accident and its consequences; such a comparison is not
available today.

Lets assume that this threshold can somehow be defined, for each type of road user. Then,
three scenarios might appear, for all considered actions, and are displayed below. The set of
actions considered below is formed by the original available actions minus the ones that violate
the traffic code and that brings danger to road users not concerned with the road environment
activity.

New contractarian deliberation

1. All road users have an expected harm below the threshold: the AV can execute the
action that distributes the harm in the best way possible.

2. Some road users’ expected harm surpass the limit and some do not: the action to be
selected must

(a) Reduce the expected harm of the biggest number of road users possible to
below the threshold.

(b) The action should not send road users above the limit, i.e. the one that are
below the threshold given the most equal action (determined the same way
as before, the action that has the smallest standard deviation) should remain
below the limit (but its expected harm can be increased).

(c) Accumulate the biggest reduction of expected harm for the road users above
the danger limit.

3. All road users’ expected harm surpass the limit: same behavior from the first case.

The proposed deliberation adheres better to the notion of justice expressed by Rawls
than the first proposition, given the road environment context. But some barriers still exist for its
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implementation, the most notable being the definition of this danger threshold, possibly related
to the MAIS3+ injury probability level. Somehow, this limit helps to define which claim has
preference in the mitigation process, together with the value of the expected harm itself. One
could suggest an implementation without this a priori threshold, calculating the median of all
expected harms and setting it to be the limit; in such case every situation would be treated by the
second item of the new proposition.

Utilitarian optimization

This approach is rooted in the Greatest Happiness Principle, which states that: "actions are
right in proportion as they tend to promote happiness, wrong as they tend to produce the reverse
of happiness. By happiness is intended pleasure, and the absence of pain; by unhappiness, pain,
and the privation of pleasure" Mill, 1859. Happiness, in this definition, refers to the happiness of
all people, not only for the individual that is deliberating about an action. Differently from the
previous theory discussed, which aimed at defining a just framework to arbitrate conflicts and
generate agreeable compromises, utilitarianism has its origins in trying to explain the motivation
of individuals to take actions and as a base to legal and social reform at the time, using this
theory to define what is morally good or right (Driver, 2014); which, according to the theory, is
fundamentally connected to the pursuit of pleasure (Brink, 2018).

This idea of the greatest good for everyone embodies the definition of utility, every
decision should be taken according to the maximization of utility, for the common good. Using
the second formulation of the stated principle, one can minimize the total amount of expected
harm to find the "least wrongful action", as equation 4.15 shows, the definition of the deliberation
rule for this criteria is rather straightforward, the minimization of the expected harm.

aeth = argmin
a

n

∑
i=0

ihexp(a) (4.15)

Egalitarian optimization

One of the biggest drawbacks of the utilitarian maximization approach is that everything
rests on general maximization, without any concern towards how the utility is shared among the
participants. This poses a real problem for the use case discusses here, because the total expected
harm can be minimized for some action while condemning some participants to severe injuries
instead of allowing a higher total expected harm for a more safe action for everyone. It is also
clear that there is a need to consider the distribution of harm so as to avoid extreme situations like
the one used previously as an example.
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An approach based on egalitarianism can be used to solve the harm distribution problem.
Equality discussion often refers to income distribution, which is an important subject for society,
but lets consider that the claim for safety due to each of the road users is more urgent in its
strength, demanding a stricter representation of equality in dangerous situations. Thus, in a
comparison between the two use cases, the latter should have less "tolerance" with possible
inequalities.

One re-interpretation of the utility principle adds how well the utility is distributed as
another parameter of the goodness of an action, besides the total amount of good produced by it.
Such a view of distribution and total quantity as equal measures of goodness is called communal
egalitarianism by Broome, 2017. One clear conclusion of this approach is that the general good
can be increased without the need to increase the total amount of good. Such a constraint is
translated into the harm optimization process by the minimization of the cost function composed
by the total expected harm and the variance of such expected harm for all involved road users, as
equation 4.16 shows. The index i refers to each individual possibly involved in the accident.

aeth = argmin
a

n

∑
i=0

varhexp(i,a) · ihexp(a) (4.16)

The variance is used as weight for each expected harm so as to modulate the propor-
tionality of the amount of harm expected for a specific road user and its comparison with the
quantity of harm estimated for the other. Another important detail of the proposed criteria is the
use of variance and not standard deviation, with amplifies the importance of inequalities into the
distribution of harm.

4.3.3 Value iteration for dilemma scenarios

The value iteration procedure explained in subsection 3.3.1 is a typical implementation
of a method to solve an MDP. But, after all the discussions about how the AV should account
for collision harm and the ethical consequences an action may present, it is clear that such
implementation does not support a way to use both methods to calculate the resulting policy.
Therefore, some changes in the value maximization need to be made, so as to, when the operation
done by equation 3.27 in algorithm 1 is executed, the action corresponding to the dilemma state
be the one chosen by one of the deliberation methods discussed previously, not by the reward
calculation proposed in chapter 3.

Some states may have actions that cause collisions and actions that do not. In this case
those that cause accidents are discarded during the iteration procedure, since it should be the
main prerogative of the AV the avoidance of any collision every time that it is possible. Only the
safe actions have their value function calculated and consequently, their action considered as the
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optimal solution for a given state. If a dilemma situation arises, then or the ethical value theory is
used to deliberate on an action, in which case the valence of all the road users involved is needed
as an input of the algorithm; or the ethical optimization might be used, to choose an action that
optimized the expected harm according to the three optimization measures defined in subsection
4.3.2. Algorithm 4 shows the resulting modified value iteration to be used to solve the MDP.

During the value iteration, the switch between a normal evaluation and a dilemma
evaluation happens if the set of actions for a state that do not result in accident, Asi

norm, is empty
(line 5). This set is calculated during the estimation of the reward function; it starts having the
same content as A but have actions removed if they end up in accident. If all actions ends up in an
accident, which is the same as saying that Anorm is empty, then the ethical deliberation method
chosen must deliberate on an action (line 6) and the value function correspondent to the current
state si and the chosen action aeth will receive the collision cost. If there is some action that do
not cause a collision, then the value V t+1(si,a j) is calculated normally, only using the actions
inside the set of admissible actions Anorm (line 11).

This abrupt change in the value iteration estimation might raise questions about the
assumptions made to guarantee the existence and convergence of the optimal calculation via value
iteration. Such assumptions are still valid (stationary and bounded rewards, subsection 3.1.2),
since the value adopted is a constant and establishes unequivocally the action to be executed for a
state. Intuitively speaking, the only problem that such approach could induce is a periodical switch
between both calculation methods, but the convergence theorem also remains valid (theorem 4).
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Algorithm 4: Value iteration including dilemma situations
Data: Spaces S and A, functions R and P, constant γ , environment data e
Result: Policy π∗(s), Optimal Value V t(s)

1 t = 0
2 do
3 for every si ∈ S do
4 Asi

norm determination
5 if Asi

norm = /0 then
6 aeth = Ethical_deliberation(si,A,e,P)
7 V t+1(si,aeth) = ccol
8 Asi

select = {aeth}
9 else

10 for every a j ∈ Asi
norm do

11 V t+1(si,a j) =
[
R(si,a j,s′,e)+ γ ·∑s′j P(s′j|si,a)V t(s′j)

]
12 end
13 Asi

select = Asi
norm

14 end
15 V t+1(si) = maxa∈Asi

select
V t+1(si,ai)

16 t = t +1
17 end
18 while MSE(V t+1−V t)> ε

19 for every si ∈ S do
20

π
∗(si) = argmax

a∈A
V t(si) (4.17)

21 end

One should also consider the future consequences of these actions that do not provoke an
accident immediately. It is possible that the AV choose an action that currently does not cause
an accident, but that in the future ends up in a dilemma situation. In such occasions this action
should be discarded. More serious than that, when the only actions available for the AV are
certain to provoke dilemma situations in the future the AV needs some capacity to compare both
sets of actions from different time epochs. This is done by projecting the parameters (at t +n)
used to deliberate ethically on which action must be chosen towards the present (at t). Figure 4.1
illustrates how the mechanism works.

Red states show that a collision occurred during the transition, and in such a case the AV
breaks and stops. State s2,2 is critical, since all its actions will cause an accident in all available
transitions. When the deliberation is done for s1,0, which is not critical per se, it realizes that s2,2
is. Thus s1,0 is considered to be critical and the collision information resulting from the chosen
action determined by the ethical deliberation in s2,2 is transferred to s1,0 to be used in its ethical
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s0,0 t = t0

s1,0 s1,1 s1,2 t = t0 +∆tpol

s2,0 s2,1 s2,2 t = t0 +2∆tpol

s3,0 s3,1 s3,2 t = t0 +3∆tpol

a1 a2 a3

a1 a2 a3

a1 a2 a3

Figure 4.1 – Projection of future collision into previous states

deliberation. The deliberation at s1,0 is done with the collision information (expected harm) for
a1 and a2 at t +∆ttrans and the information determined by s2,2 at t + 2∆ttrans for a3. The same
procedure is later done for s0,0, with its information for a1 being the expected harm for the action
chosen in s1,0.

Comments on the effect of the number of people in the ethical deliberation

How the ethical deliberation methods account for the number of persons that participate
in the collision while being in the same road user (AV’s passengers or many pedestrians close
together) is an important detail. In the EVT this is controlled by the moral profile, that uses the
expected harm and the valence to choose an action. In the two examples of moral profiles given by
table 4.4, the risk averse altruism considers only the road user with the highest valence and each
valence inside the AV, with the maximal valence representing the road user and the others having
a tiebreak function. The expected harm is calculated for the entire vehicle, no consideration is
made concerning differences in passenger placements. This could be done calculating the harm
for each of the passengers, but in this case using their placement as another parameter in the
calculation of the vulnerability constant.

However, the same is not valid for the ethical optimization approach. In the simulation
results that will be presented next, the vehicles (AV and the other vehicle) were assumed to be
carrying only one passenger, but lets assume that there are more passengers inside. The correct
would be to give each passenger its own harm and that the total harm for the AV in a collision
would be the sum of all passengers’ harms, which is compatible with the utilitarian philosophy.
This could create a disequilibrium in the deliberation because five medium intensity harms could
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beat one high harm for a pedestrian for example. Another option would be to keep using only
one harm per road user, even if there is multiple persons inside; such hypothesis would allow a
better account of the harms when the harm baseline is low, for example when the AV’s velocity
is low but in high velocities it could favor one individual instead of multiple. Thus, for the
contractarian and egalitarian the most coherent choice is to consider one harm per human being
in the environment but create the constraint that when the action that concerns multiple road users
are evaluated all harms must be evaluated, instead of the one by one basis from the contractarian;
the egalitarian would function the same way as the utilitarian, the sum of all expected harms, with
the variance as weights.

4.4 Results and discussion

4.4.1 Using EVT as ethical deliberation

In this publication an example of application of the ethical valence theory was given,
starting from a dilemma scenario, to compare the results that each of the deliberation methods
(risk-averse altruism and threshold egoism) would produce. The situation is illustrated by figure
4.2, where the AV is represented by the red vehicle, the yellow being a vehicle with driver and the
person in the middle of the road a pedestrian. Only three outcomes are possible, depending on the
action that the AV takes: collision with the wall if it turns right, collision with the pedestrian if it
continues with the same direction and frontal collision with the other vehicle if it turns left. The
direction is considered the only variable since the acceleration for this case is set to be negative.

The transition probability used to calculate the expected harm is the same proposed in
the last chapter, subsection 3.2.2. Only the changes in direction carry a probability of transition,
with the structure 0.1-0.8-0.1 for the action that continues in the same direction and 0.9-0.1 for
the two extremity actions. For the vehicle’s position prediction the same model used previously
was adopted here, a single-track kinematic non-holonomic model without slippage (figure 3.4),
with ∆ttrans = 0.5s.

To calculate the vulnerability constant, cvul , the data available in Kröyer, 2015 and
Jurewicz et al., 2016 are used in equation 4.18, with ProbMAIS3+(∆v) being the probability of
MAIS3+ injury given a ∆v, difference of initial velocities before the collision. Since the interval
of velocities considered here is small, this curve was chosen to demonstrate how the idea of cvul
should work.

cvul =
1

1−ProbMAIS3+(∆v)
(4.18)
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Figure 4.2 – Possible dilemma situation

Figure 4.3 shows the collision simulation with all the road users’ initial states in a
situation hereby defined as situation 1.

(10,3.25,0,15,0)

AV (25,6.75,π,15)

VEH

(17,3, π

2 ,1.5)

P1

Figure 4.3 – Initial simulation setup (other road users’ configuration is represented by (x,y,θ ,v),
not in scale)

Table 4.5 shows the preference order, given the valences for each road user in figure 4.4.

In situation 1, ∆v are equal to 23.1 m/s for the AV-vehicle (frontal collision), 14.1 m/s for
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Table 4.5 – Valence hierarchy

Road User Valences Classification
AV C, F, F 3◦

Vehicle C, D 2◦

Pedestrian A 1◦

the AV-pedestrian (pedestrian collision) and 14.2 m/s for AV-wall (frontal collision). Comparing
these values with the limits established in table 4.1, one can conclude that all actions pose a
serious risk for the AV and all other road users. Following the risk-averse altruism profile would
entail choosing to run over the pedestrian, since the AV must be prioritized (∆v is above the
limit, therefore the AV’s harm is minimized, selecting the red cell in table 4.6; such a procedure
was seen in algorithm 3). Table 4.6 shows the harm and expected harm calculated for the AV
considering each possible collision.

Figure 4.4 – Collision simulation for situation 1

If the AV was configured to have threshold egoism as its operational moral profile, the
choice would be to collide with the wall, since the pedestrian’s and vehicle’s valences are higher,
according to the table 4.5 (both ∆v are above the limit, thus the road users with valences higher
than the AV have their expected harm minimized, resulting in the blue cell at table 4.7). Table 4.7
presents in its first column the nominal road user’s harm, while in the second and third columns
the vehicle’s expected harm and the pedestrian’s expected harm, obtained using the transition
probability. Since the wall is a static object, its harm and expected harm is zero (only human safety
is considered; historical, cultural or affective value to a static object like a tree or a monument are
disregarded).

Figure 4.5 shows situation 2, where the initial AV’s state is (10,3.25,0,7.5,0) and the
position and velocity of the other vehicle also are changed. The new consequences of each action
are displayed by figure 4.6, changing the collision with the other vehicle from frontal to lateral.
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Table 4.6 – AV’s harm for each possible collision for situation 1

AV’s harm AV’s exp. harm
Veh. col. 8.77 7.02
Ped. col. 0 2.46
Wall col. 15.80 12.64

Table 4.7 – Road users’s harm for each possible collision for situation 1

Road user’s h Vehicle’s hexp Pedestrian’s hexp

Veh. col. 16.80 15.12 1.57
Ped. col. 15.71 1.68 12.57
Wall col. 0 0 1.57

There is a change in collision severity, given that the velocity differences ∆v would be 14.87 m/s,
5.63 m/s and 6.07 m/s for vehicle to vehicle, to pedestrian and to wall collision, meaning that the
two last ones do not surpass the severe threshold.

(10,3.25,0,7.5,0)

AV (22,6.75,π,7.5)

VEH

(17,3, π

2 ,1.5)

P1

Figure 4.5 – Second simulation setup (other road users’ configuration is represented by (x,y,θ ,v),
not in scale)

Using risk-averse altruism as the operative moral profile results in the wall collision
action being executed (the road user that has the highest valence has its expected harm minimized),
resulting in the action represented by the red cell in table 4.8 (in here, since two action have the
same expected harm the second highest valence had its exp. harm minimized, which is the other
vehicle) and for the threshold egoism the chosen action would be collision with the pedestrian
(In this case the AV’s expected harm would be minimized), resulting in the blue cell at table 4.9.
Tables 4.8 and 4.9 are analogous to tables 4.6 and 4.7, respectively.
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Figure 4.6 – Collision simulation for situation 2

Table 4.8 – AV’s harm for each possible collision for situation 2

AV’s harm AV’s exp. harm
Veh. col. 5.10 4.08
Ped. col. 0 1.12
Wall col. 6.07 4.86

Table 4.9 – Road users’s harm for each possible collision for situation 2

Road user’s h Vehicle’s hexp Pedestrian’s hexp

Veh. col. 10.85 9.76 0.56
Ped. col. 5.63 1.08 4.51
Wall col. 0 0 0.56

4.4.2 Using the Ethical Optimization profiles to deliberate

Here the simulation presented in subsection 3.3.3 are sightly modified to produce a
dilemma situation, forcing the AV to use the ethical optimization methods proposed previously.
The ethical dilemma scenario is created moving the other vehicle abruptly in just one time step
(also, the x coordinate of P1 and P2 are changed to 20 and 22.5, respectively). At this point the
AV must deliberate about an action. The velocity difference between each road user (∆v) is not
significant enough to be identified in the fatality probability versus ∆v graphic given by Hussain
et al., 2019 and Richards, 2010, thus the constant cvul used for the collisions will be equal to one.
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As it can be seen in figure 4.7, the result for all cases is a collision with the pedestrian.
But each policy chooses a different action, which imposes different collision consequences. Take
the contractarian policy, which has its results displayed in table 4.10: instead of decreasing the
velocity right before the collision (actions 1 through 5), it chooses to maintain it (vAV = 4m/s)
to escape a collision with the other vehicle (action a5). The AV ends up colliding with the firs
pedestrian (in the next calculated policy) with (vAV = 4m/s).

Figure 4.7 – Trajectories for contractarian, utilitarian and egalitarian methods

Table 4.10 – Expected harms and σhexp for contractarian policy

Action (m/s2,◦/s) AV P1 VEH P2 σhexp

a0 (−1,−40) 3.64 0 6.94 0 2.89
a1 (−1,−20) 3.64 0 6.94 0 2.89
a2 (−1,0) 3.61 0 6.90 0 2.87
a3 (−1,20) 3.54 0 6.77 0 2.82
a4 (−1,40) 3.49 0 6.76 0 2.81
a5 (0,−40) 0.383 4.38 0.730 4.00 1.83

For the utilitarian policy, (second plot of figure 4.7), action a0 is chosen because it
minimizes the total amount of harm, as can be seen in table 4.11. It decreases the velocity to
vAV = 3.5m/s and then increases to vAV = 4m/s so as to escape the other vehicle. The final
collision velocity, in the next calculated policy is vAV = 3.1m/s.
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Table 4.11 – Expected harms and Σhexp for utilitarian policy

Action (m/s2,◦/s) AV P1 VEH P2 Σhexp

a0 (−1,−40) 0.364 3.90 0.694 0 4.96
a1 (−1,−20) 3.28 0.433 6.25 0 9.96
a2 (−1,0) 3.63 0 6.93 0 10.57
a3 (−1,20) 3.58 0 6.83 0 10.40
a4 (−1,40) 3.55 0 6.81 0 10.36

The egalitarian policy, trying to achieve a compromise between total expected harm
minimization and dispersion minimization, actually increases the velocity right after the ethical
deliberation, and ends up colliding with the pedestrian with vAV = 4.5m/s. Action a10 predicts
that both pedestrians will be struck by the AV. This policy, in this example, produces more
negative consequences than the other two, but maybe with another formulation, one that calibrates
more the importance of distributing correctly the risks of a collision without allowing the harm be
concentrated in one user, while the other share more of the harm, but only slightly. This method
can represent a compromise between a contractarian and a utilitarian policy in such formulation.

Table 4.12 – Expected harms and total cost for egalitarian policy

Action (m/s2,◦/s) AV P1 VEH P2 Total

a0 (−1,−40) 3.77 3.34 7.20 0 95.06
a1 (−1,−20) 3.76 3.05 7.18 0 98.07
a5 (0,−40) 0.385 4.69 0.735 0 50.00
a6 (0,−20) 3.46 2.73 6.61 0 77.50
a10 (1,−40) 0.431 4.91 0.824 4.60 46.05

4.5 Conclusion

Two ethical deliberation methods were proposed in this chapter. A formal definition for
an ethical dilemma situation in the automated vehicle context was given in the first section, to
afterwards proceed to the definition of the harm in a collision, including its main parameters, the
difference of velocity due to the collision and the constant of vulnerability. The harm is then used
by the EVT or by one of the ethical optimization methods to deliberate on an action. From this
point a small modification for the value iteration algorithm that solves the MDP model from last
chapter is proposed, allowing the AV to switch between deliberation procedures when an ethical
situation is detected.
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The two deliberation methods were then tested in two different scenarios. The EVT was
used in an hypothetical situation where the AV was to decide if it should collide with the vehicle
in the other lane, the pedestrian right in from of with the wall in the right. With a higher AV
velocity used in situation 1 the profiles mandated the protection of the AV for the risk-averse
altruism, selecting the collision with the pedestrian; and the road user with the highest valence,
the pedestrian, for the threshold egoist profile and therefore selecting a collision with the wall. In
situation 2, when the AV’s velocity was decreased to 7.5m/s the situation inverted concerning the
collision with the pedestrian and the wall, both of which was not considered severe anymore.

All of the profiles for the ethical optimization were tested in the same scenario from
chapter 3, using the MDP model with the modified value iteration. From the three each one chose
the collision with the pedestrians, but with different end velocities, with the utilitarian profile
having the lowest one. Given the end velocity from all three instances, around 4m/s this was the
correct choice, not generating severe injuries for the pedestrian, due to the rather low velocity,
and avoiding a frontal collision with the vehicle in the other lane, that had a speed of 10m/s.
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In the previous chapters the proposed AV decision-making procedure considered the
behavior of other road users as constant throughout the prediction, as if no interaction happened
inside the environment. This kind of assumption can create a planning procedure that is not capable
to capture all the variability present in each situation, ignoring an important, if not essential,
source of uncertainty. This chapter focuses on correcting this issue using three algorithms: the
first one to determine the behavior presented by other road users from pre-defined profiles, which
are then used by the AV to estimate the most probable behaviors; and finally, the AV deliberates
on which behavior profile it should adopt while at the same time trying to increase its resilience
to errors in the prediction of the other road users’ behaviors.
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5.1 Broadening the scope

In an ideal world the AV would not encounter any dilemma situations. Given the abundant
number of sensors one would assume to be embedded in the vehicle and scattered around cities
and highways and fast, reliable and low-latency communication with other road users and the
cloud combined with enough processing power to execute all necessary operations, a priori
passengers can be safely driven anywhere, anytime. However, this is a naive assumption since
the quantity of hardware in a vehicle will always be minimized by car manufacturers due to
cost concerns, there will always be some imprecision in sensors measurements and also due to
sheer number of possible behaviors that might be originated by the inevitable interaction between
manual vehicles (or vehicles that do not have any type of communication capability, i.e., no V2X
communication capability), automated ones and vulnerable road users, at least in urban areas.
Considering the universe of difficulties that the AV can face, three categories of errors can be
defined:

Possible errors in automated driving

• Material error: due to failure in sensors, processing unit or actuators of the vehicle.

• Design error: represent mostly errors in the software components of the vehicle.

• Interaction error: unexpected behavior and imprecise measurement from other road
users can create situation that are not accounted for.

The first type of error refers to problems occasioned by the failure of hardware during
the automated driving task. This risk can be eliminated, and probably will be, with the adoption
of robustness standards and fail-safe strategies to take the vehicle to a safe configuration in
such occasions. Some inspiration can certainly be drawn from the aeronautical industry, that for
decades deals with this type of errors. The critical situation studied in (de Moura et al., 2020) and
discussed at subsection 4.4.2 was inspired by this type of error since during the simulation an
abrupt change in the position of the other vehicle is considered to be caused by a detection error
due to a sensor failure.

Design errors are a real problem in any software component, and even more in complex
systems. This category encompass the errors that originate from bugs and invalid assumptions
made during the design and implementation of the entire automated system for an AV. Such source
of problems can also be mitigated with the advancement of programming practices, verification
and validation procedures for the developed software and a robust homologation process, which,
as discussed in chapter 1, is not yet set in stone.

This chapter focuses on the third problem: the capacity to predict and correctly account
the behavior of other road users and their interaction with each other. First, the AV must be capable
to predict all possible behaviors of other road users, given the environment constraints that may
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exist, which can be different for each road user, and the influence of interactions between road
users in the selection of these behaviors; and second, it must be able to estimate the probability
that a certain behavior will be adopted for a road user. It is based on this two elements that the
AV’s decision-making must work to produce a safe behavior or at least be able to plan beforehand
its actions in possible dilemma situations that might appear.

Next section will present the new configuration for the simulation, assuming a multi-agent
formulation to enable the study of the possible interactions between agents. The decision-making
procedure executed independently by each road user will be detailed, followed be the AV’s
estimation procedure of each decision taken by other road users. Afterwards, an additional
procedure to increase the robustness of the AV’s decision is proposed.

5.2 Intent estimation

Given that the scope of the application was enlarged from the original AV’s decision-
making proposed in earlier chapters to also include the other road users’ behavior prediction and
the interaction between all agents1 in the environment, a new simulation scenario is necessary,
where each road users acts and reacts independently (subsection 5.2.1). To do so, every single
one of them (it will be considered only vehicles and pedestrians) need its own behavior selection
procedure (subsection 5.2.2). And from the AV’s perspective, it should be able to measure the
probability that each road user is acting according to the AV’s expectation (subsection 5.2.3).

5.2.1 Simulated Environment

Figure 5.1 represents the new environment to be simulated. An intersection is one of the
most challenging environments for an AV, because if it does not have any semaphores (which is
the case here) the negotiation between road users might depend on non-verbal communication
or movement cues that are not immediately distinguishable by a machine. Each leg of the T-
intersection has 50 meters of length, with an intersection in the form of a square with a 10x10
meters of surface. A manual driver is represented by the blue vehicle, that might turn right2 or
continue straight; the AV is represented by the red vehicle, that might turn left or right; and finally
the pedestrian can cross in any of the two pedestrians strips in the scene.

Each road user behavior is determined by its intent, which is a variable that defines
what the road user wants to accomplish in the environment. The intent, ci, is composed by two
components (gi, fi), where gi represents the goal that the road user has (for example, the vehicle

1From now on agents refers to all the other road users and the AV.
2When the turn maneuver is mentioned the frontal direction of the vehicle in question defines the left and right

sides.
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might want to continue straight in the intersection) and fi represents the qualitative behavior that
a road user might produce during an interaction with another road user. For the vehicles in figure
5.1 for example, this represents if the intersection priority, as defined by the traffic code, will be
respected, while for the pedestrian it signals if, in a situations where it does not have the priority,
it will nevertheless cross the road.
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5.2.2 Agent’s decision model

Two different types of agents coexist with the AV in the simulation: vehicles (representing
manually driven cars) and pedestrians. To implement an independent decision-making inside each
pedestrian and vehicle, a decision tree will be used. This component tries to emulate the behavior
of a road user if it follows its intent, according to a trajectory (gi is connected to a pre-defined
trajectory) and to some key behavior connected to a salient situation ( fi indicates generically what
will be done). All road users are represented by position, direction and velocity, s = [xt ,yt ,θt ,vt ],
at some time epoch t.

The intent of each agent in the environment is translated into its longitudinal and lateral
control. The goal determines the path3 to be followed, for the pedestrian, which has a predefined
trajectory, and for the vehicle, with always follows the middle-lane line. The reference path
determines the lateral control of each road user. As for the longitudinal control, it is determined by
the (or absence of) interaction with other road users. According to such interaction, one strategy
might be adopted as a way to accomplish the road agent’s intent. The box below shows all defined
strategies for each of the two possible agent types (the strategies are explained in detail at the
appendix A).

Available strategies for vehicle and pedestrian

• Vehicle

– Cruise
– Caution
– Follow
– Stop
– Emergency stop
– Swerve

• Pedestrian

– Walk

– Stop

– Run

Starting with the vehicle’s strategies, when cruise is the chosen strategy, the vehicle will
maintain its speed or it will continue to accelerate until it reaches the speed limit (with constant
acceleration). Caution represents the necessary decrease of speed due to the proximity of some
other agent. Follow is reproduced by copying the velocity of another agent in front. Stop is used
to reduce the velocity and eventually stop using a reasonable braking, while emergency stop uses
the maximum deceleration possible and stops in the shortest distance possible. Finally, swerve
reduces the velocity and also updates the trajectory proposed by gi to avoid a collision.

Walk represented the use of a constant speed for the pedestrian, while stop is the immedi-
ate reduction of the velocity to zero. Run simply multiplies the speed of the pedestrian in question

3Path is defined in this context as a sequence of waypoints that the agent must pass.
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by a factor of two.

Each strategy for a road user is determined from a pairwise comparison between the
agent in question and all others in the environment, as illustrated by the algorithm 5. Firstly, the
trajectory of all agent is determined during a certain prediction horizon, defined by the variable Nt

(line 1), assuming a default strategy, which for vehicle is cruise and walk for pedestrians. As for the
motion models for vehicles and pedestrians, the former uses same one used in previous chapters,
represented by equation 3.10, while the latter uses a simple point-mass model. Considering these
predicted states, the road user in question, indexed by i, is "compared" (how this comparison is
done will be explained shortly) to every other road user, indexed by j, depending on the type of
each one (lines 6, 8 and 14).

The output of each interaction is the predicted strategy for the agent i in respect to agent
j. If there are n road users in the scene, then at the end of all comparisons for agent i there will be
n−1 possible strategies (originated from lines 6, 8 or 14). From this set the final strategy ρi is
calculated simply by checking which ρi, j has the higher priority, which grows from top to the
bottom, using the previous box as reference. Thus, for the vehicle cruise has the lowest priority
and swerve has the highest; for the pedestrian walk has the lowest and run the highest.

All road users have access to some shared information, that are the environment structure
(dimensions of roads and localization of each structure in the global map), the position of each
road user and the decision procedure in itself, and exclusively for the other road users, the intent
of each agent. The AV does not known the others’ intent, only its own. Such choice is justified
with the assumption that the driver and the pedestrian can subjectively estimate the intention of
each other, and to model this subjective process is not the main objective in this chapter. What the
methods presented in this section and in the next ones try to achieve is to reproduce the behavior
of real road users in specific situations, to then enable the AV to identify such behaviors, not
necessarily to emulate completely this subjective process of intent estimation.

Next, the comparisons between predicted trajectories for pedestrians and vehicles will be
explained.
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Algorithm 5: Decision procedure for agent i
Input: Environment state st = {st

i}, i ∈ [0,Nt ] time epoch t
Output: Strategy set according to i, {ρ j}, j ∈ [0,Nt ] for t

1 s = {st ,st+1, · · · ,st+Nt} = agents_prediction(st)
2 for every agent si, i ∈ [0,Nt ] do
3 if agent i is a vehicle then
4 for every other agent j, j ∈ [0,Nt ]− i do
5 if agent j is a vehicle then
6 ρi, j = veh_decision({st

i}, {st
j})

7 else
8 ρi, j = ped_decision({st

i}, {st
j})

9 end
10 end
11 else
12 for every other agent j, j ∈ [0,Nt ]− i do
13 if agent j is a vehicle then
14 ρi, j = veh_decision({st

i}, {st
j})

15 end
16 end
17 end
18 ρi = strategy_calculation({ρi, j})
19 end

Vehicle model

For a road user that is a vehicle, to compare its trajectory to someone else’s, as done in
lines 6 and 14, four logical variables are calculated: if a collision happens, if one vehicle is too
close to the other, if there is an intersection ahead and who has priority over the other. Collisions
and proximity are checked using the mechanisms proposed in chapter 3, section 3.2, which are
the idea of frontiers for the proximity detection and the hyperplane separation theorem for the
collision detection. To determine the location of each road user inside the simulated environment,
a graph-like structure is used to construct the road environment, which is represented by figure
5.2. According to the position and the geometrical dimensions of the vehicle, it is placed in one
of the nodes of the road network graph, which automatically determines also the possible next
nodes for vehicles.

With the vehicles placed in one of the nodes, their predicted trajectory can be projected
into the graph. Each straight road has a reference lane and an opposite one; it is adopted that the
reference lane is the one that goes from the extremity not connected to the intersection, which
makes the opposite lane definition straightforward. The intersection has a more complex set of
possible destinations.
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Straight road 1 - str1

Straight road 2 - str2 Straight road 3 - str3Intersection - int

Ref. con.: int
Opp. con.: -

Ref. con.: int
Opp. con.: -

Ref. con.: int
Opp. con.: -

From To

Con.:
str1 str2, str3
str2 str1, str3
str3 str1, str2

Figure 5.2 – Road environment graph structure

The priority is calculated according to where the vehicle is. For example, if two vehicles
are in str1 and str2, two roads in the graph-like structure in figure 5.2, the priority to access the
intersection node is given to the one in the right side, considering that the right is measured as the
smallest angle between then. If one of them is already inside the intersection it automatically has
the priority. It was also defined that the pedestrian has priority over the vehicle if both are in the
same node4.

The comparison between agents if i is a vehicle is displayed by algorithm 6. For each
time epoch predicted (from t to t +Nt) the proximity is verified; if they are close to each other, j
might be in front of i, in which case the latter should follow the former (line 4); or both vehicles
might collide without being on the same lane. If so, the collision time and the necessary strategy
to avoid the collision are registered inside the variable colResult (line 7). Then the priority is
determined in two specific cases, if j is a vehicle and both are in the imminence of entering
a intersection (line 15) or if j is a pedestrian (line 17). The final strategy is calculated by the
function in line 19, which uses a decision tree, detailed in figure 5.3, to select the correct strategy.

All leafs in the tree have the final strategies according to the four variables calculated in
algorithm 6, which is case for cruise, caution and stop when there is no collision; if there is a
collision, then two specific labels are used: try to stop and dynamic stop. The first one refers to the
adoption of the stop strategy if there is enough space and a reasonable deceleration is sufficient to
do it and if not the stop degenerates to the emergency stop strategy. Similarly, the dynamic stop
checks by prediction what the vehicle can do to avoid the accident, if stop is enough, which can
also degenerates to a emergency stop or if a swerve strategy is necessary. All these tests are made
by the checkCollision function in line 7.

4A different approach could have been taken, for example defining that the pedestrian has the priority only inside a
pedestrian strip, while the vehicle has the priority if the pedestrian is crossing outside the strip.
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Algorithm 6: Comparison if i is a vehicle
Input: Agent i and j trajectories ({si}, {s j}) in [t, t +Nt ], starting time t0
Output: Calculated strategy for i, ρi

1 for each time epoch in {si} and {s j} do
2 if checkProximity(st

i, st
j) && type(j)!=pedestrian then

3 isClose = true
4 if shouldFollow(st

i, st
j, road_graph) then

5 following = true
6 end
7 if checkCollision(st

i, st
j, colResult) then

8 if !following then
9 ρi = colResult

10 Break
11 end
12 end
13 end
14 end
15 if localization(st

i)!=intersection && type(j)!=pedestrian then
16 hasPriority = checkV2V_Priority(i, j)
17 else if type(j) == pedestrian then
18 hasPriority = checkV2P_Priority(st

i, st
j, road_graph)

19 ρi = decideStrategy(isClose, following, colResult, hasPriority)

The strategy selection is dependent from the four logical variables calculated in the
vehicle comparison (algorithm 6): proximity, collision, placement and priority. This last one
can be modified by the second element of the intent, fi, to create an unexpected behavior. For
example, if one vehicle should yield in an intersection its fi can say that it should enter it anyway,
independently from the other user. The variable fi has the function to reproduce irresponsible
behavior in the simulation, and the challenge from the AV’s point of view is to anticipate such
behavior using the cues from the other vehicle’s movement. How this variable affects the decision
tree of a road user will be explained with an application in subsection 5.4.1.

Longitudinal control is defined by the strategy chosen while the lateral control is guided
by the middle-lane line. To calculate the final control for vehicles, given gi and the current position
the controller shown in equation 5.1 is used. It is the same controller proposed by (Hoffmann
et al., 2007) and used in (Thrun et al., 2006), but here the dynamic terms were neglected. It tries to
correct the direction offset and the lateral distance between the desired trajectory and the current
one and adjusts the steering angle to make the current direction intersects the tangent line from
the desired trajectory at k/v units of distance (Snider, 2009).

φt+1 = (θtraj−θt)+ atan
(

k ·dlat

vlong

)
(5.1)
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Figure 5.3 – Decision tree for vehicles

Pedestrian model

Pedestrians also have a method to compare the vehicle’s behavior with its own. It is
considered unnecessary to compare the behavior of two pedestrians, thus it is assumed that
no interaction exclusively between pedestrians cause a change in behavior, leaving only the
comparison with other vehicles to be done. The pedestrian strategy is obtained using the algorithm
7 but this time using the current road location of the pedestrian instead of the logical variable
related to the existence of an intersection ahead, as is done for vehicles. All trajectories considered
for the pedestrian involves crossing the street according to the environment proposed in figure
5.1.

Given that the agent i is a pedestrian, its priority is calculated at line 12 of algorithm 7, in
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the same manner that it is calculated when i is a vehicle and j a pedestrian. The parameter fi also
controls this priority decision, where it can overturn the yield if necessary.

Algorithm 7: Comparison is i is a pedestrian
Input: Agent i and j trajectories ({si}, {s j}) in [t, t +Nt ], starting time t0
Output: Calculated strategy for i, ρi

1 for each time epoch in {si} and {s j} do
2 if checkProximity(st

i, st
j) && type(j)!=pedestrian then

3 isClose = true
4 if checkCollision(st

i, st
j, colResult) then

5 ρi = colResult
6 Break
7 end
8 end
9 end

10 placement = find_Place(st
i)

11 if placement != sidewalk then
12 hasPriority = checkP2V_Priority(i, j)
13 end
14 ρi = decideStrategy(isClose, placement, colResult, hasPriority)

has col.?

placement

Walk
sidewalk

has priority?

Walk
yes

Stop

no

road
no

placement

Stop
sidewalk

has priority?

Walk
yes

Run

no

road

yes

Figure 5.4 – Decision tree for pedestrians

The lateral direction of the pedestrian, if its trajectory requires change in direction, is
done instantaneously, as is changes in its nominal speed of 1.5m/s.
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5.2.3 Estimating other agents’ intent

Given the previous decision model, the AV can now make use of it to predict the behavior
of all other road users, assuming an a priori intent for each one and then find the most probable
intents. The following information is available for the AV at the beginning of each iteration: the
position of all agents, its own goal gi and the decision process used by other agents. This last one
is considered here as a justified assumption for the AV to have due to the common knowledge
about the way a human drives or behaves as a pedestrian, based on the traffic code impositions on
the infrastructure and on the behavior of all agents and some introspection.

At the beginning of the simulation the AV faces the question of which intent hypothesis
best matches each agent, making it possible to explain why an agent is behaving as observed.
The entire scene is explained by the information vector c, defined by the union of every agent
intent as displayed in the expression 5.2 for N agents. Considering that the AV’s intent is always
represented by the subscription 0 then c̄ = (ci), i ∈ [1,N] is the vector that needs to be estimated
by the AV.

c = (c0, · · · ,cN) = ((g0, f0), · · · ,(gN , fN)) (5.2)

Using all possible values for c the AV tries to predict the next strategy, and consequently,
the future trajectories of all other road users. Considering the example given in figure 5.1, where
there are three road users and assuming that each one of them has 2 possible gi values and 2 fi

values, it totals 64 possible c configurations. One might question why the intention of the AV is
considered if this estimation about the entire environment is done from the AV’s perspective and
as such its intent is known; this is because it is important to understand what the other agents
are thinking or expecting as a behavior from the AV, which does not necessary mean to exploit a
situation where the others have a misguided impression about the AV’s intent. To profit from a
wrong estimation done by another road user is not so straightforward since it is desirable that the
AV maintain a defensive stance when driving, although it is a subject that merits more discussion
and exploration at a later time.

The proposed road-map of the algorithm consists in the following: from time t to t+Nt the
AV predicts the strategies of all road users according to an assumed intent vector c and propagates
their positions into the future using the prediction step of a Kalman filter. Then, at t +Nt , an
observation is made, which is compared with the predicted result to evaluate the probability of c
being the right intent vector for the environment. After the calculation of p(zt+1 | ck, st+1), where
zt represents the observation, all the predicted values are modified according to the update step
of the Kalman filter. The algorithm 8 shows how this procedure implemented, being executed
at each simulation step, ∆t. Given this short period for the agents to develop their strategies and
that physical cues to become detectable, the update of the EKF and the probability calculation
procedure are only executed after Nt transitions.
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The algorithm starts collecting the observation of each road user at line 2, to then proceed
to the prediction of the position at this time epoch at line 4. The total number of hypothesis
instances is represented by Nins = NNag

int , Nint being the number of intents per agent and Nag the
number of agents in the simulation (assuming that each agent has an equal number of possible
intents). Both prediction and update steps are represented below as a single procedure, given that
for this representation all agents’ state was concatenated into a single vector, as zt =

⋃Nag
i=0(zi,t)

and st =
⋃Nag

i=0(si,t). As such, all calculated values are also generalized to represent the entire
collection of agents.

Algorithm 8: Estimation of Pt+1(c)
Input: Previous state St , Previous distribution Pt

Output: Estimated state St+1, Current distribution Pt+1
1 begin
2 zt+1← get_observations()
3 for each hypothesis ck considered, given 0≤ k ≤ Nins, do

4 prediction

{
µ̄
[k]
t+1← T (µ

[k]
t ,ck)

Σ̄
[k]
t+1← Gt+1ΣtGT

t+1 +R
5 end
6 if t%Nt == 0 then
7 for each hypothesis ck considered do

8 update


w[k]

t+1 = p(zt+1 | ck, st+1) ·w[k]
t

Kt+1 = Σ̄
[k]
t+1HT

t+1 · (Ht+1Σ̄
[k]
t+1HT

t+1 +Q)−1

µ
[k]
t+1← µ̄

[k]
t+1 +Kt+1(zt+1−h(µ̄ [k]

t+1))

Σ
[k]
t+1← (I−Kt+1Ht+1)Σ̄

[k]
t+1

9 end

10 calculate Pt+1(c) =
w[k]

t

∑
Nins
j=0 w[ j]

t+1

for all k ∈ [0,Nins]

11 else
12 Pt+1(c) = Pt(c)
13 end
14 end

If the current time epoch is a multiple of Nt the update step is executed (line 8), where the
weight given for this hypothesis is calculated, together with the usual update step of a Kalman filter.
The probability connected to the hypothesis c is the normalized value of each one of the calculated
weights (line 10). One point remains to be discussed: the calculation of p(zt+1 | ck, st+1), which
quantify the similarity between what was observed and what was assumed a priori given the ck
chosen.
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Kalman filter for agent prediction

This part will focus in the application of the Kalman filter for a single road user, as such
all the formalism used here refers to a single road user, differently from the variables mentioned
in algorithm 8. Instead, the respective parts of each vector µt and zt are referenced as si,t and zi,t ,
i being the index for the road user. For each agent, one instance of an EKF is used. Following the
prediction equations given previously for the vehicle, shown in 5.3, and for pedestrians, 5.4, the
Kalman matrices Gt and Ht are defined for vehicles in expressions 5.5 and 5.6 and for pedestrians
in 5.7 and 5.8.

sveh
t+1 = sav

t+1 =



xt+1 = xt +∆t · vt cosθt cosφt

yt+1 = yt +∆t · vt sinθt cosφt

θt+1 = θt +∆t · vt
l sinφt

vt+1 = vt +∆t ·u1

φt+1 = φt +∆t ·u2

(5.3)

sped
t+1 =


xt+1 = xt +∆t · vt cosθt

yt+1 = yt +∆t · vt sinθt

vt+1 = vt +∆t ·u1

θt+1 = θt +∆t ·u2

(5.4)

The state of each other road user that is a vehicle also contains the steering angle, since,
due to the strategy estimation, the control using the trajectory defined by gi needs to be calculated.
The pedestrian’s state remains being expressed by the previous four variables (x,y,θ ,v).

Gveh
t =


1 0 −∆t · vt sinθt cosφt ∆t · cosθt cosφt −∆t · vt cosθt sinφt

0 1 ∆t · vt cosθt cosφt ∆t · sinθt cosφt −∆t · vt sinθt sinφt

0 0 1 ∆t
l sinφt

∆tvt
l cosφt

0 0 0 1 0
0 0 0 0 1

 (5.5)

Hveh
t = I5 (5.6)
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Gped
t =


1 0 −∆t · cosθt ∆t · vt sinθt

0 1 ∆t · sinθt ∆t · vt cosθt

0 0 1 0
0 0 0 1

 (5.7)

Hped
t = I4 (5.8)

The convergence of an Kalman filter is assured for the systems that obey the pre-requisites
given by theorem 5, proved in (Krener, 2003). The system considered is given in the form of
5.9, which is uniformly observable if the initial state can be reconstructed with the output and its
(n−1) first derivatives, n being the total number of state variables (Gauthier et al., 1992).

{
ẋ = f (x,u)
y = h(x,y)

(5.9)

Continuity of a function f : X → Y can be represented by the Lipschits condition, given
by the expression 5.10. The Euclidean norm is used as the metric for the spaces X and Y , with
L ∈ N and x1, x2 ∈ X .

‖ f (x1)− f (x2)‖ ≤ L · ‖x1− x2‖ (5.10)

Finally, the theorem below says that for the conditions assumed the EKF converges
exponentially to the correct result.

Theorem 5 Convergence of EKFs
Suppose that:

• The system in question is uniformly observable and satisfies the Lipschitz condition.

• The second derivative of f (x,u) is bounded.

• µt and Σt are the solutions of the extended Kalman filter, where Σ0 is positive definite
and s0−µ0 is sufficiently small

Then ‖st −µt‖ → 0 exponentially as t → ∞.

When a Kalman filter is used to estimate the evolution of some system through time the
output is a Gaussian distribution. This precise point is used to measure the similarity between
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what is being assumed as an hypothesis for the behavior of the agents and what is really being
observed.

Mahalanobis distance and similarity estimation

Usually when one wants to measure the similarity between two vectors the Euclidean
norm is used, if these two vectors are defined as points in an Euclidean space. For example, if
one have u, v ∈ R5, then the distance between the points is given by expression 5.11, where ui

and vi are the elements of each one of the respective vectors.

d(u,v) =

√
4

∑
i=0

(ui− vi)
2 (5.11)

The same is not valid for the output of the Kalman filter. The distance can be calculated
between the observation and the distribution mean, but an importance source of information will
be left out of the measurement, the covariance. Therefore one needs to evaluate the similarity
between a point, the observation obtained, and a distribution, the prediction of each agent state
maintained using the EKF, which can be done using the Mahalanobis distance expressed by
equation 5.12. This type of norm measures the distance between a sample from a distribution and
its center.

M(x) =
[
(x−µ)T ·Σ−1 · (x−µ)

] 1
2 (5.12)

So, to measure the coherence of an hypothesis ck used to predict the state of each agent,
the observation is considered as a sample of the state distribution.

M[k]
t =

[
(zt −µ

[k]
t )T ·

(
Σ
[k]
t

)−1
· (zt −µ

[k])

] 1
2

(5.13)

It is well known that the quadratic form of a Gaussian variable is distributed according
to the chi-squared distribution (Bensimhoun, 2009). To be more precise, the cumulative sum
of squares of n independently normally distributed Gaussian variables, with mean equal to 0
(or the null vector) and covariance equal to the identity matrix (In) is called central chi-squared
distribution with n degrees of liberty. This distribution will be used to calculated the probability
p(zt+1 | ck, st+1). However, as said before, the central chi-squared distribution is only a priori
valid for N (0, In) which is not the case for the distributions treated here.
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If one considers the expression (zt −µ
[k]
t ) a new variable, called U , it can be assumed

that U ∼ N (0,Σt) since zt is being used as a point of this distribution, thus the difference must
be zero. Then the theorem 5.1.3 on page 199 of (Mathai and Provost, 1992) can be stated:

Theorem 6 Distribution of M[k]
t

If U ∼ N (µu,Σ) and Σ is positive semi-definite, then a set of necessary and sufficient
conditions for UT AU ∼ X 2

n (δ
2) is:

• trace(AΣ) = n and µT Aµ = δ 2

• ΣAΣAΣ = ΣAΣ

• µT AΣAµ = µT Aµ

• µT (AΣ)2 = µT AΣ

Given that A = Σ−1 and µu = 0 the non-centered chi-squared distribution from the
theorem becomes centered due to δ 2 = µT Aµ = 0 and all the conditions are met. Equation 5.14
defines the opposite value of the cumulative probability of the ellipsoid defined between the
observation and the predicted state. Such ellipsoid, if small, shows that the observation is close to
the center of the distribution, meaning that the hypothesis k might be pertinent. The probability
that the Mahalanobis distance dM is smaller than the calculated value M[k]

t is the same as the
cumulative probability of X 2

n , which value is commonly known.

v[k]t = 1−P(dM ≤M[k]
t ) (5.14)

Finally, the probability of an observation given an assumed hypothesis and the current
state can be defined by equation 5.15.

p(zt | ck, st) =
v[k]t

∑
Nins
i=0 v[i]t

(5.15)

Using the algorithm 8, that estimates the probability of each possible intent for the agents
being true, the AV can now known which strategy it should use if all road users act according to
the decision-making procedure proposed in algorithm 5. One detail was left out of the decision
process: the variable fk, which controls the behavior of a road user during the interaction. Such
variable is used to emulate instances where an agent do not behaves as it should: for example, if a
vehicle does not yield for a pedestrian crossing the road. The AV might not be able to identify
such behavior and thus react sub-optimally to it.
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As such, the AV needs to choose a strategy considering a deviation from normal behavior
coming from other road users. To maximize the utility of the worst possible scenario is an
operation embodied by the Nash equilibrium in a game theory approach. But the same detail that
created the necessity to establish the estimation process of ck is also present if this approach is
applied: the agents do not know which is the intention of the other ones around them. Everything
done up until now compared these two by two to obtain an expected strategy given an assumed
intent; it is necessary now to consider the collective set of calculated strategies and the estimated
agents’ intent and their probabilities of being correct to arrive in a coherent decision for the AV.

Such configuration requires an incomplete game, where part or all the players do not
have access to some essential information. For such cases the method proposed in (Harsanyi,
1967) can be used to reach a formulation of the game that has a defined solution.

5.3 Incomplete game model

As discussed in chapter 2, in an incomplete game the players do not have access to some
information about the other players. Without such information it may be impossible to calculate
the utility of each possible action that might be taken (if the utility function form or some other
parameter is not known) and therefore to find an equilibrium point of the problem, if it exists. To
counteract the lack of information, this incomplete game can converted into a complete imperfect
one in which the Nash equilibrium is applicable.

5.3.1 Nash equilibrium

In a non-cooperative n-player game each player has at its disposal a set of different
strategies5, which, according to the idea of a game, produces different utilities for the player,
each one also depending on the choices of other road users. Every road user tries to anticipate the
others’ decision and maximize its utility and it is from this interaction between every player that
the notion of equilibrium point emerge.

A pure strategy is defined as a single action that an agent may execute, while a mixed
strategy is represented by a probability distribution over different actions (or similarly, over pure
strategies). As one may expect the interaction between agents happens through the choice of
a strategy; if it is assumed that all agents are rational, i.e. that they search to maximize their
preferences (deterministic reward for pure strategies and expected reward for mixed ones), then

5Used in this sense, strategy here is something more general than the longitudinal control profiles proposed earlier,
even though when this theoretical discussion is applied to the problem treated in this chapter, this general sense is
compatible with the definition of strategy used in subsection 5.2.3.
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each agent tries to anticipate the choice of the other agents and counter it with the best strategy
from its point of view. This same procedure is repeated inside other agents.

When, for every agent, there is no other better strategy than the one chosen, i.e. the
current strategy is self-countering, then an equilibrium point was reached (Nash, 1950). It has
been proven in (Nash, 1950) and (Nash, 1951) that every finite game has an equilibrium point,
which configures the best collective reward for all the n-players in a non-cooperation game. The
following definition from (Osborne, 2002) resumes the idea of Nash equilibrium:

A Nash equilibrium is an action profile (or a strategy) a∗ with the property that no player
i can do better by choosing an action different from a∗i , given that every other player j
adheres to a∗j .

However, the existence of an equilibrium point is only assured in the case of mixed
strategies (Osborne, 2002). This concept is essential to define what each agent does in response
to an interaction and it is the main tool to solve a game model. It assumes that each agent is
capable to predict the behavior of all other agents, which entails that the intent of each agent
needs to be perfectly known by the AV, which is not realist. It is at this point that a Bayesian
game formulation is necessary.

5.3.2 Harsanyi’s Bayesian game

In a n-player game with complete information all agents known the entirety of the
necessary information to predict the choices of the other agents, all their possible strategies and
their preferences. However, if these details are not accessible one can argue that each agent
maintain a subjective probability distribution over the possible alternatives. The conversion from
incomplete to complete information proposed in (Harsanyi, 1967) uses this concept of probability
over unknown information to try to find a complete game formulation that has similar properties
to the original one.

As said before, each player tries to anticipate the behavior of all others. In a incomplete
game, this means that player 1 has some expectation over the behavior of player 2, which in turn
also has some expectations about player 1. Such sequence can go on forever, since now player 1
also has an expectation over the expectation of player 2 has of him and so on. The Bayesian game
approach model these expectations as subject6 probability distribution over the behavior of all
other players (back later on).

6This probability, differently from the objective definition, refers to the belief of one agent about some phenomena
which need not be the same for each agent (Savage, 1954), therefore creating a graded belief towards this phenomena
(Hajek, 2019). The objective definition, according to (Harsanyi, 1967), refers to the frequentist interpretation of
probability.
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One can postulate that all the subjective probability distributions considered by each
agent are the marginal distributions of some original, base probability distribution that has as
parameters the information not known by the players, as indicated in expression 5.16, where
R refers to the probability distribution and c to the unknown information (which will be the
intent vector for the environment). Then the original game and the complete game formed by the
substitution of those subjective probability distributions by the marginal probability from this
base distribution, according to the definition 2, are equivalent, which entails that both have the
same resulting decision rule and the same Nash equilibrium point(s).

R(c)


R(c1, c2, · · · , cn| c0)

R(c0, c2, · · · , cn| c1)
...
R(c0, c1, · · · , cn−1| cn)

(5.16)

Definition 2 Bayes-equivalency
Let G be an incomplete game and G∗ be a complete one, both in standard form (defined
by expression 5.18). Both games are Bayes-equivalent if for a player j:

• The two games must have the same strategy (Si) and information (Ci) spaces (also
called intent).

• Both games must have the same expected value function for the payoffs.

• The subjective probability distribution Ri from player i must satisfy the following
relationship:

Ri(c0, c1, · · · , ci−1, ci+1, · · · | ci) = R∗i (c0, c1, · · · , ci−1, ci+1, · · · | ci) (5.17)

Form of a game

At this point it is necessary to give more details about the standard form of a game and its
normal form, which will appear subsequently. The standard form of a particular incomplete game
G, defined in (Harsanyi, 1967), has the composition shown in expression 5.18. In this context
Si represents the strategy space, Ci the information space (which space of possible values for
the intent vector), Vi represents the expected value for the payoff7 and Ri the base probability

7In (Harsanyi, 1967), the function V is defined as the common form of the payoff functions of each player, which
is only known by the respective player.
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distribution.

G∗ = {S0, · · · ,Sn ; C0, · · · ,Cn ; V0, · · · ,Vn ; Ri} (5.18)

The normal form of a game is presented in definition 3 (Shoham and Leyton-Brown,
2008). It is defined directly using actions, but it can also be defined in function of the strategies
that are available. If these strategies are pure, i.e. they represent only one action, then nothing
changes. But if one needs to consider mixed strategies then the total payoff needs to be calculated
as an expected payoff.

Definition 3 Normal-form game
A finite n-person game in normal form is defined by the following parameters:

• N, the number of players.

• A = A1×A2×·· ·×An, the finite set of actions.

• u = (u1, · · · , un), where ui : A→ R is the payoff function for the player i.

When the game is defined in the normal form, the strategies are also normalized. The
difference from the usual definition is that the normalized ones are actually functions from the
intent space of the road user in question to the strategy space.

Solving the equivalent game

The necessary and sufficient conditions for two games, the original G and the complete
one G∗, to be equivalent is enunciated by theorem 7, found in (Harsanyi, 1968b). Basically, it says
that if two games are equivalent, according to the definition 2, they need to have the same strategy
and attribute spaces, the same payoff functions and must respect the relationship described in
5.16. Games where the hypothesis that the original distribution exist can be called consistent
games, and those that do not, inconsistent. It will be assumed here that the game involving the
interaction between road users is a consistent one, although even if a game is inconsistent, the
equivalency can be extended to this case (Harsanyi, 1968a).

In the theorem below the normal form of the game is cited. This game formulation,
differently from the extensive game that exposes all possible outcomes for each player, is
composed of only three elements: the number of players, the set of available strategies for each
player and the combined payoff function, that for each player gives its payoff according to its
current strategy, there is not a dependency between players in this calculation.
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Theorem 7 Bayes-equivalency
Let G be an incomplete game and G∗ be a Bayesian equivalent game to G. To an n-tuple
strategy s∗ of G∗ also be an equilibrium point in G is it necessary and sufficient that in the
normal form N(G∗) of the game G∗, s∗ be an equilibrium point.

The estimated probability by algorithm 8 will serve as the base probability to calculate
the equilibrium points of the equivalent game. This discrete original distribution, calculated by the
Mahalanobis distance and the chi-square distribution, is itself based on the conclusion obtained
from the comparison about what each road user should do in the considered situation.

According to the determination of each strategy proposed in the previous section each
strategy is a pure one, consisting of a single action possible according to the situation at hand.
The Nash equilibrium point is not guaranteed to exist is such situations, but it will be assumed
that it does exists. Its determination, given the implementation specifications of this context, is
similar to the example presented in (Harsanyi, 1968b).

5.3.3 Decision making procedure

The main objective of this procedure is to account for every possible situation in the AV’s
decision-making, so as to avoid instances where the AV is not prepared for a behavior from some
road user. Of course, only the behaviors represented by the considered strategies are involved into
the deliberation, any other behavior that cannot be approximated by them is not considered. This
is a limitation of the procedure, but if one assumes that such strategies can be extracted from real
data, one can find a sufficient set of strategies to represent all possible reactions during road users
interactions. From the equivalent game formulation, the Nash equilibrium is calculated the payoff
values variations according to the intent vector probabilities and the strategies considered.

Each agent will use a reward function that is similar in form to the MDP implementation
displayed in subsection 3.2.3. For each intent vector hypothesis there will be a table of payoffs.
These tables are in turn connected to the probability that such situation is actually happening.
Considering the three agents in the scene represented by figure 5.1, the intent vector is formed
by three components, c1, c2 and c3 and the normalized strategies are represented by the Greek
letters ν , γ and ρ , respectively for each agent. They are functions that take as input the current
value of the respective ci and output the strategy that should be used in this given situation.

c = (c1,c2,c3)� (ν ,γ,ρ) (5.19)

Then, for each possible value of the c vector, the payoff is calculated, giving different
values for each type of strategy, represented by the Greek letters presented earlier with the

129



Chapter 5. Road User Intent Prediction 5.3. Incomplete game model

subscription that indicated the strategy index, as it can be seen in table 5.1. It this table agent one’s
strategy is represented by ν in the row direction while the combination of the possible values for
γ and rho are in the column direction. For clarity reasons each agent will be considered to have
only two possible strategies, even if the vehicles have six possible strategies and pedestrians three.
Multiple tables like the one below are calculated for different combinations of the intent vector c.

Table 5.1 – Example of reward table for a specific intent vector c

c = (c1,c2,c3)

ν\γρ γ1ρ1 γ1ρ2 γ2ρ1 γ2ρ2

ν1 r1,11
c r1,12

c r1,21
c r1,22

c

ν2 r2,11
c r2,12

c r2,12
c r2,22

c

Table 5.1 exemplifies the reward calculated for each strategy given an intent vector.
According to the definition of the Nash equilibrium point, no agent can achieve a better outcome,
so if the system is solved from the viewpoint of agent one, it is not necessary to calculate all the
rewards again and find the equilibrium point for agent two and three.

With the probability distribution Pt+1(c) calculated in algorithm 8, the total estimated
reward is determined by equation 5.20 for a certain combinations of strategies. The functions
f1 : c→ σ , f2 and f3 represent the normalized strategy being evaluated. For example, f1 can
assume four possible values according to the number of intents agent one can have (two in this
example) and the number of possible strategies (also two); if, for agent one f1 = 21 this means
that for the first intent the agent will choose the strategy 2 and for the other intent, the strategy 1.
Using this codification the estimated payoff matrix is formed having as row the possible values
for f1 and as column the combination of f2 and f3. Constants Nc1 , Nc2 and Nc3 represent the total
number of intents for each agent.

E[rν f1 ,γ f2 ,ρ f3
] =

Nc1

∑
i=0

Nc2

∑
j=0

Nc3

∑
k=0

Pt+1(ci,c j,ck) · r
ν f1(ci),(γ f2(c j)ρ f3(ck))
ci,c j,ck (5.20)

But if one considers that the intent of agent one is known a priori, only the conditional
expected reward is necessary, cutting the number of evaluations needed (equation 5.21). Then,
the conditional estimated payoff matrix will have two rows (represented in the equation below by
the index l), one for each of the possible strategies of the agent one, and the columns are all the
possible strategies for agents two and three ((γ11ρ11), (γ11ρ12), (γ11ρ21), · · · , (γ22ρ22), a total
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of sixteen columns).

E[rν lγ f2 ρ f3 | c1] =

Nc2

∑
j=0

Nc3

∑
k=0

Pt+1(c j,ck|c1) · rν l ,(γ f2(c j)ρ f3(ck))
c j,ck (5.21)

The optimal strategy in a Nash sense is calculated by equation 5.22 using a maxmin
operation, consisting of a minimum possible reward in the column, represented by the index h,
for each possible normalized strategy for the other agents, and then a maximization operation
to find the best strategy overall in the minimized row. Such strategy, as expected, will give the
security that at the worst possible situation the payoff is maximized but not necessarily that the
highest possible payoff if obtained in the best scenario.

ν
∗ = argmax

l
min

h
E[rν lγ f2 ρ f3

] (5.22)

It is the strategy dictated by ν∗ that should be executed by the AV, together with the
lateral reference given by its trajectory. This normalized strategy, that depends only on the current
state of agent one, is a pure strategy since the relationship between current intent and strategy is
deterministic. According to the theorem 7 this equilibrium point will also maximize the payoff
from the original incomplete game.

Example of application

To better explain the calculation of the Nash equilibrium point and the use of equations
5.19 to 5.22 an example will be provided below. It will be composed of two players, x and y, that
each can have two different intents i1 and i2 and execute the actions a1 and a2. This example is
similar to the one found in (Harsanyi, 1968b), but it will serve to explain how to apply the method
used to calculate the equilibrium point with more that two players. Table 5.2 gives the reward for
each possible situation for player x, while the rewards for player y are the same but multiplied by
−1. The circled numbers are the saddle points for each situation, the rows give the x actions and
the columns the y actions.

The functions ν and γ represent the strategy for agents x and y respectively given their
intent. Table 5.3 gives the intent probability, which is the output of the algorithm 8.

So, with these elements it is already possible to calculate the normalized strategies for
the road user x. There are two possible ways to proceed to the calculation of the Nash equilibrium
point: or the equation 5.20 can be used to calculate the expected payoffs for all possible intents of
x or, since its intent is known by itself, equation 5.21 can be applied. The second choice will be
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(a) Reward for intentions c1 = (i1, i1)

x\y γ(i1) = a1 γ(i1) = a2

ν(i1) = a1 r1,1
c1 = 5 r1,2

c1 = 10
ν(i1) = a2 r2,1

c1 = 3 r2,2
c1 = -5

(b) Reward for intentions c2 = (i1, i2)

x\y γ(i2) = a1 γ(i2) = a2

ν(i1) = a1 r1,1
c2 = 10 r1,2

c2 = -25

ν(i1) = a2 r2,1
c2 = -5 r2,2

c2 = -8

(c) Reward for intentions c3 = (i2, i1)

x\y γ(i1) = a1 γ(i1) = a2

ν(i2) = a1 r1,1
c3 = 9 r1,2

c3 = -31

ν(i2) = a2 r2,1
c3 = 15 r2,2

c3 = 27

(d) Reward for intentions c = (i2, i2)

x\y γ(i2) = a1 γ(i2) = a2

ν(i2) = a1 r1,1
c4 = 1 r1,2

c4 = -4
ν(i2) = a2 r2,1

c4 = -24 r2,2
c4 = -5

Table 5.2 – Rewards for player x

Table 5.3 – Intent probabilities

x\y c2 = i1 c2 = i2

c1 = i1 0.5 0.1
c1 = i2 0.1 0.3

made here and the x intent will be equal to i1, resulting in the conditional probabilities calculated
in table 5.4 (The probabilities Pt+1 are indicated by p).

Table 5.4 – Conditional probabilities for cx = i1

x\y cy = i1 cy = i2

p(cy | cx = i1) 0.833 0.167
p(cy | cx = i2) 0.25 0.75

Simplifying the equation 5.21 to two players gives:

E[rν lγ f2 | cx = i1] =
Nc2

∑
j=0

p(cy = i j|i1) · rν l ,(γ f2(c j))
c (5.23)

To determine the conditional payoff table, each row is formed by a possible strategy
for x, ν(i1) = a1 or ν(i1) = a2, while the columns are determined by the possible strategies for
y, indicated by γ . The values that it can assume are displayed below. It becomes clear then the
definition of the function f2 for the general case: if one considers the first item in the box below,
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f2(i1) = a1 and f2(i2) = a1, which defines γ11 (the numbers indicate the strategy index for each
intent of y).

• γ(cy = i1) = a1 and γ(cy = i2) = a1 or γ11

• γ(cy = i1) = a1 and γ(cy = i2) = a2 or γ12

• γ(cy = i1) = a2 and γ(cy = i2) = a1 or γ21

• γ(cy = i1) = a2 and γ(cy = i2) = a2 or γ22

The calculation of the conditional payoff for the cell in line one, column one is:

E[rν1γ11 | cx = i1] = p(cy = i1 | cx = i1) · r1,1
c1 + p(cy = i2 | cx = i1) · r1,1

c2 =
= 0.833 ·5+0.167 ·10 = 5.833

And for the cell in line two, column three:

E[rν2γ21 | cx = i1] = p(cy = i1 | cx = i1) · r2,2
c1 + p(cy = i2 | cx = i1) · r2,1

c2 =
= 0.833 · (−5)+0.167 · (−5) =−5

Finally, the conditional payoff table is given by 5.5.

Table 5.5 – Conditional payoffs for cx = i1

x\y γ11 γ12 γ21 γ22

ν1 5.833 0 10 4.167
ν2 1.667 1.167 −5 −5.5

To find the best strategy to be adopted, in a Nash sense, it is only necessary to apply the
minimal to each row, giving 0 to ν1 and −5.5 to ν2 and then to maximize this result, finding that
the best strategy is ν1, given that cx = i1.

5.4 Simulation results

Currently only the multi-agent simulation proposed in subsection 5.2.2 is ready to offer
some results; the intent estimation procedure proposed in subsection 5.2.3 has been implemented
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but not entirely to offer consistent outputs. Therefore, the results presented here will concern only
the interaction between the multiple independent agents in the simulation. The simulated scene
is given by the figure 5.1, with the same three road users. Given the limitations cited, the two
vehicles are implemented as manual drivers with the decision tree component, and the simulation
pertains only to the interaction between these road users.

5.4.1 Multi-agent simulation

According to the figure 5.1, there are two possible goals (gi) for each agent. The red
vehicle can turn right or left, the blue vehicle can continue straight or turn right and the pedestrian
can cross the intersection to the right or continue straight to the other pedestrian strip. These
options are combined with the second element, of the intent, fi, which is the reaction during the
interaction, creating four possible intents for each road user. For each vehicle and in this context
fi indicates if they will obey an yield imperative, since in an intersection without semaphores the
vehicle on the right always has priority; and for the pedestrian it defined which is the reaction of
the pedestrian in a dangerous situation: if it starts to run or if it freezes and stop in the middle of
the road.

Three different scenes will be displayed as a result:

• Situation 1: Red vehicle turns right, blue vehicle turns right and pedestrian crosses
to the right.

• Situation 2: Red vehicle turns right, blue vehicle continues straight and pedestrian
crosses to the right.

• Situation 3: Red vehicle turns right, blue vehicle turns right and do not give priority
and pedestrian crosses the pedestrian strip on top.

All the details about the vehicle object implementation, the implementation of each
strategy and the simulation itself can be found in appendix A.

Situation 1

An image from the output of the simulation when all road users are approaching the
intersection can be seen in figure 5.5. The same situation is shown (not exactly the same time
epoch) in figure 5.6, where it can be seen on the right side the three agents moving and on the left
the trajectory colored with the respective strategy in execution at each position.
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Figure 5.5 – Illustration of the intersection interaction

Considering that the pedestrian starts to move at t = 7s, one can clearly see that the
red rectangle agent (which represents the red vehicle at figure 5.5) detects that the pedestrian
is crossing the road and therefore has the preference. It decreases the velocity to stop in the
intersection and avoid a collision, until the point that it can be sure that no collision with this
pedestrian can happen, then it resumes the cruise strategy and turns downwards.

Figure 5.6 – Strategies used during situation 1
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The other vehicle (blue rectangle, blue car) stops first because it detects a collision with
the red agent during the turning trajectory, but resumes the cruise soon after. The pedestrian does
not detect any danger since the red vehicle waits for it to get to the opposite lane to start moving
again.

Situation 2

In this situation the blue vehicle now will continue straight ahead instead of turning right.
As it can be seen in figure 5.7, it detects that there is a pedestrian that might cross the street and
that the red vehicle has the priority over him, and because of these reasons it engages the stop
strategy very soon into the simulation, stopping right at the intersection. The red vehicle, given
that it needs to decelerate to turn and that in that specific instance the acceleration sampled was
2.5m/s2 (the discussion about the acceleration sampling can be found in appendix A), did not
need to stop and wait for the pedestrian to arrive at the opposite lane.

Figure 5.7 – Strategies used during situation 2

After the red vehicle turned, the blue vehicle starts the intersection crossing, it detects
that the red vehicle is in front and then start to follow him, as it can be seen by the green trajectory
in figure 5.7. Both vehicles continue cruising until the end of the simulation.
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Situation 3

This situation emulates a scenario where one of the vehicles, in this case the blue one,
do not abide the priority to the other vehicle and the pedestrian. However, since the idea is to
represent a human driver, the decision making is still sensible to collisions. Looking at the figure
5.8 one can see that there is one interval in the blue’s trajectory that is a emergency stop strategy,
which is exactly due to a possible collision with the pedestrian and the red vehicle. When the
pedestrians freeze in reaction to the proximity of the blue car the red vehicle also engages in a
controlled stop at the intersection, thus avoiding the collision altogether.

Figure 5.8 – Strategies used during situation 3

The parameter fi from the blue vehicle overrides the common decision tree for vehicles
shown in figure 5.3. In the no collision branch, the intermediary nodes related to the priority
are eliminated, since the blue vehicle will not yield in any situation; the new branch taken these
modifications into account can be seen in figure 5.9. The collision branches continue with the
same structure, which is why the blue vehicle, when it perceives a collision, uses the emergency
stop strategy.
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Col. type inter. ahead?

against ped.?

is close? Cruise
yes

is close? Cruise

no

yes

against ped.?

is close? Cruise
no

is close? Cruise

yes

no

no col.

Figure 5.9 – Modified vehicle decision for the no collision sub-tree

5.5 Final remarks

In chapter 3, to allow the definition of the MDP state as only the AV’s configuration it
was assumed that, from the start of the policy execution, after is calculation, the intentions of
other road users did not change, which entails that their direction and velocity remains the same.
This continuity allows the AV to predict their trajectory only using their current configuration.
The main goal of this chapter was to propose a method capable to predict this possible change in
intent during the policy execution, so as to relax this assumption made. Three main components
form the prediction algorithm: the deterministic decision-making that emulate other vehicles
and pedestrians, the probabilistic distance estimation, that calculates the probability of some
intent given an observation of the current situation and an incomplete game model to adapt the
choice of strategy to the current interaction between agents. Finally, the results of the multi-agent
simulation using the decision-making models are shown.

However, some considerations about the proposed intent estimation method needs to be
made. During the entire chapter the deterministic decision-making model proposed was suggested
to be used by the AV as a way to predict the other road users strategy and as the decision-making
process of the other road users themselves. This would work with the estimation of intent by the
AV, but the other capability, the game model to account the interactions between road users, is
supposed to close the gap between the simulation and real data. Thus, to test the incomplete game
formulation in a simulation it would be necessary to find another decision-making procedure to
be implemented in the agents, preferably one that mimics real humans using real data.

Another concern related to the game model is that it is based on the assumption that the
Nash equilibrium point could be reached using a pure strategy, which entails that for each agent,
given its state and intent, the strategy taken is deterministic. These agents are human drivers and
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pedestrians, that have personalities and different motivations, thus such assumption that every
single one would act equally is a strong one and must be relaxed. A mixed strategy would be
more suited for the problem, creating an additional degree of liberty according to the specificity
of each component that predicts an agent behavior. To allow such consideration it would be
necessary to update the proposed intent estimation given by algorithm 8 to a nested particle
filter, capable to consider multiple hypothesis of intent and for each intent multiple hypothesis of
strategy. Afterwards the proposed Nash equilibrium point determination would also need to be
modifies to deal with mixed strategies.
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Chapter 6

Conclusion
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6.1 Final remarks

In this thesis the question concerning how the automated vehicle should deliberate on
decisions, given its perception information, mission data and the presence of other road users
in its surroundings was treated. Both normal situations for a human driver and the hypothetical
case of a ethical dilemma situation were addressed. The starting point of the discussion around
automated vehicles, and more generally artificial intelligence and automated mobile robots, was
developed in chapter 1, from the early days of artificial intelligence with the definition of the
Turing Test, the development of the first automated mobile robots, the paradigms to orient the
architecture of such robots and the development of driveless vehicles during this process. Some
of the most important breakthroughs in the area were cited, for example the works of Dickmanns
and Zapp, 1987 and the two prototypes that won the DARPA challenges, Thrun et al., 2006 and
Urmson, Anhalt, Bagnell, et al., 2008.

Having done a review of the history of automated systems, the current state of the art in
the domain of automated vehicles was finally described, from most useful advantages that one
hopes the AV technology delivers, the current maturity level of the deployment of such robots
in the real world and what is currently being commercialized by the automotive industry. The
most promising prototypes of level four automated driving were also discussed, with an special
attention to the Tesla’s implementation of automated driving.
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Chapter 2 discusses the state of the art of each domain addressed in the theses: decision-
making, ethical decision-making, behavior prediction and game theory. Each subject starts with
an explanation about the organization of the concepts that define the field of research to then
proceed towards the analysis of a set of representative publications, recent and older, from each
domain.

The decision-making algorithm for an AV is proposed and explained in chapter 3. Starting
from the discussion about implementation paradigms from chapter 1, the choice of architecture
assumed, so as to model the decision-making process with the correct responsibilities and
functionalities, was defined to be the 3-tiered architecture Gat, 1998. From the theoretical side,
the formulation of a Markov Decision Process has presented next, focusing in the existence and
uniqueness of the soon to be calculated policy, given the assumptions made about the system.
Finally, the formulation of the MDP is presented, with the hypothesis that the behavior of the other
road users does not change throughout the execution of the policy, which enabled the definition
of the state to contain only the AV’s configuration while the other road users’ configuration were
accounted for in the reward function. The results obtained from the simulation are discussed
next, not before the definition of the simulation environment and the value iteration method. The
following conclusions could be drawn from such experimentation:

Conclusions from Chapter 3 experiments

• The necessary horizon to sufficiently account for the behaviors of other road users
is in direct conflict with the exponential nature of the defined state space.

• The prediction horizon and the AV’s velocity also have an antagonistic relationship,
given that the transition time remains fixed.

• Or some risk evaluation is necessary to stop the AV from starting a maneuver that
ends in an unsafe state for the current prediction horizon or the idea of prediction
horizon should be modified to be dependent to the maneuver completion.

Ethical dilemma situations are treated using the methods proposed in chapter 4. First,
one needs to define what are dilemma situations, which is done in the first section of chapter 4
to then step into the definition of the parameters used to calculate the harm of a collision, the
difference of velocity due to the physical interaction between road users and the vulnerability
constant. Using this concepts two types of ethical decision-making procedures are presented:
the Ethical Valence theory (EVT), that uses the ethical valence assigned to each road user, in
combination to the predicted harm, to deliberate; and the ethical optimization (EO), three different
handcrafted minimization procedures that are inspired by the utilitarian, egalitarian and Rawlsian
contractarian ethics. Both deliberation methods were tested, with the EVT in an hypothetical
solution and assuming a specific definition of features for the ethical valences while the ethical
optimization was tested as an MDP criteria for ethical decision, in the same configuration of the
tests executed in the previous chapter. In both implementations the algorithm correctly calculated
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that the collision with the opposite vehicle would be too dangerous, and opted or for the collision
with the pedestrian or for the collision with the wall in the frontier of the simulated environment.

Conclusions from Chapter 4 experiments

• EVT: According to the moral profile chosen, the deliberation system protected or
the AV’s passengers or the most vulnerable users.

• EO: The three actions produced the same result, a collision with the pedestrian,
but with different intensities; the utilitarian approach gives the smallest collision
velocity for the AV with the pedestrian.

The main subject of the chapter 5 revolves around the relaxation of the assumption made
in chapter 3, that the behavior of other road users did not change during the MDP policy execution.
To eliminate such assumption it is necessary to account the interaction between each road user,
which entails the estimation of their motivations, their intent. To entry in the matter at hand, the
types of errors that an AV is subject to are discussed, so as to isolate the error that might produce
an ethical dilemma situation, when other users act in an unforeseen way from the AV’s point of
view. From this point an deterministic decision model for vehicles and pedestrians is proposed,
making possible the implementation of a multi-agent simulation and allowing the AV to predict
what will be the answer of the other road users given some interaction between them. Using
this prediction the AV can test which intent describes the behavior of the other users the best,
according to this deterministic decision model, and then calculate the probability that some road
user has a determined intent given by the distance between the prediction made by the Kalman
filter and the observation.

This is only enough to estimate the intent of each road user, not to determine which
action it will execute next. For such task it is necessary to apply an game theory model of the
interaction, more specifically the interaction at a precise time is modeled as an incomplete game,
with the intent of the other agents, that are estimated by the previous algorithm, as the unknown
information. Calculating the Nash equilibrium point of the equivalent Bayesian game then gives
the adopted strategy for each of the agents in the environment. However, the algorithm described
only accounts for pure strategies, which does not guarantee the existence of the Nash equilibrium.
To allow mixed strategies as an end result of the procedure, it is necessary to modify the intent
estimation process so as to account multiple strategies for a single intent being compared, and
then also expand the Nash equilibrium determination procedure as well.

Using this procedure of intent estimation allows the correct evaluation of the transition
probability for the MDP proposed in chapter 3, which means that a more precise account of the
expected harm and the multiple possible outcomes in a dilemma situation can be determined and
deliberated upon. Not only this but the simulation itself is closer to reality due to the independence
of other road users behaviors from the AV’s controller. All could result in an proposition of a
decision-making with ethical deliberation capabilities that accounts for behavior uncertainty, an
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implementation yet not studied.

6.2 Future research perspectives

Multiple lines of research can be branched out from the work done in this theses. Some
of then are presented and commented below, in no specific order:

New decision-making system using an POMDP Given that, in the intent estimation for other
road users, their positions are predicted using a Kalman filter there is a probability dis-
tribution around the state (which are now defined by the configuration of each road user,
including the AV), then it would be more appropriate to consider a partially observable
Markov decision process to model de decision-making, instead of the model proposed
in chapter 3. Of course, this comes with more complications since it is harder to calcu-
late the optimal policy for such cases, often an approximate solution suffices due to the
computational cost involved to find the optimal solution. However, the same problems
observed in the MDP implementation still need to be solved, notably the antagonistic
relationship between the predicted horizon and the capacity to account to other road users
behavior (which can be better answered by a state space sampling methods, as the one that
Kurniawati and Yadav, 2016 proposes) and the addition of some measure to verify that
a maneuver, when started, is at least simulated until its end. In this case the structure of
ethical and normal decision making deliberation retains the same functionality as before,
if a dilemma situation is detected then the ethical deliberation takes place and a highly
negative reward is attached to the situation.

Definition of other road users’ behavior using machine learning In chapter 5 the decision
process of other vehicles and pedestrians were defined in a deterministic fashion by
decision trees. One improvement that could be made is to learn a driver or a pedestrian
behavior from real data using a machine learning approach, as Kuderer et al., 2015 did. The
resulting behavioral model could produce simulated agents that reproduce more realistically
the dynamics of driving, for example acceleration, deceleration, respect to the traffic code,
etc. Such method would also allows the test of multiple types of driving profiles, from a
more cautious to a more aggressive driver, with the same being valid for the pedestrian.
Specifically for pedestrians, there is an entire field of research about the prediction of inten-
tions of pedestrians using its pose, head orientation and position. Certainly the capabilities
of the intent estimation would be improved with more realistic methods.

Fusion between the normal reward criteria and the ethical deliberation The ethical deliber-
ation proposed in chapter 4 are only used if a dilemma situation is detected, which might
not necessarily happen for every real dilemma situation. Detection of some phenomena
almost always has to deal with false negatives instances of detection and given the gravity
of a dilemma situation even the existence of a false negative must be avoided at all times.
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Therefore, it would be more suitable to fuse both objective and ethical criteria into one
hybrid deliberation process. Both components would be accounted at every action taken,
with one predominant in normal situations and the other in ethical dilemmas, so as to
minimize the loss of performance given that the other component could influence the
system towards non-optimal decisions (in the context of a non-dilemma situation) and the
same during ethical deliberation. Another motivation for this modification is that up until
this point, outside the dilemma situation, the selection criteria for action is entirely based
on an objective regard of the situation, but an argument can be made that some instances in
normal driving should involve an ethical component for an AV (even if for a normal driver
this is not the case), so as to encompass possible passive risks due to each AV’s action. For
example, if there is a cyclist in the same lane as the AV, should it overtake him? From a
performance point of view, yes, but the increase of proximity between both agents would
mean that the risk of something go wrong and this vulnerable road user end up entangled
in a collision increases. Such fact ideally should also be accounted, which is possible using
a hybrid decision process.

Exploration of a virtue ethics approach for ethical learning As established in chapter 2, virtue
ethics says that morally good actions flows from a good moral character, which is composed
by the correct virtues. Implement such an approach in a machine is not as straightforward
as is for deontology or consequentialist based methods, since some sort of character needs
to be established and than it must evolve through practice, so as to learn to act ethically.
The reason why this is proposed here as a possible research perspective is that such system
would be interesting to define the weight of each component in a hybrid decision criteria.
Using the framework proposed in Arkin and Ulam, 2009 as a model (the emotions consid-
ered in the publication is exchanged by the virtues), one could simulate different outcomes
for many dilemma situations and assess the consequences of each action to then backtrack
to modify the virtue so as to prevent some actions to be execute while allowing others to.
The main question is how to represent a virtue, and to be sure that it represents the same as
we, humans, think it should. Or even some artificial virtues could be proposed specifically
to produce outcomes that could be considered morally correct.

Verification and validation of stochastic decision-making systems One of the key problems
with stochastic models of decision is that certainty cannot be guaranteed. So, to evaluate
the performance of some system and to check its safety operational properties different
indexes are needed. The necessity of such tools increase with the critical aspect of the
system, which means that decision-making algorithms for automated vehicles should pass
through verification and validation (V&V) using strict measures of performance and safety.
One example of V&V for AVs is Barbier et al., 2018 using KPI to evaluate a POMDP
performance.

Real-time implementation and test with a real AV To target a real testing session of the al-
gorithm some important modifications are necessary. The first one is the addition of the
perception procedure and the delays involved in the extraction of information before the
start of the deliberation process. Also, the measurement uncertainties must be combined
with the estimation procedures proposed here. The second question to be treated is the
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possible real-time execution of the deliberation. Given the computational effort necessary,
the limitations of an embedded system (even if it is a vehicle, it has a far less limitation
than a drone for example) and the already observed computation times it is fairly possible
that real-time performance is off the table. Nonetheless improvements in calculation effort
should be made to increase the responsiveness of the AV. One possible solution is the
implementation of parts of the algorithm using GPU, that can massively decrease the
processing time of highly parallel tasks. Considering only the evaluation of the reward in
chapter 3, it could be parallelized since each calculation is independent from each other.
Another algorithm that could take advantage of such operation is the intention estimation
nested particle filter structure.
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Simulation set-up

To test the algorithms proposed in this thesis, the simulator called WeBots was used.
It is a 3D simulation environment where dynamic simulations can be done using any type of
object, the already available modeled ones or personalized structures created using the constructs
available. Most of its applications are in the field of robotics, as for example industrial robots
like the UR3, UR5 and UR10 arm robots from Universal Robots, Spot, the dog-like robot from
Boston Dynamics and Nao, the humanoid robot from Aldebaran Robotics. It also has pre-modeled
vehicles, like the Tesla model 3 and many others. In this appendix it will be presented the main
structure of simulation, details about the control of vehicles and pedestrians and the modifications
made in the simulator to unlock new capabilities that were necessary for the simulations proposed
in the thesis.

A.1 Webots simulation structure

The simulation structure is similar to other simulators, offering as the main representative
entity nodes, that are any type of object in the 3D scene. In the AV context, the road environment
in the experiments described at chapters three, four and five was constructed with pieces of
straight roads and an intersection, as the figure A.1 shows. For the physical interaction between
agents, the Open Dynamics Engine (ODE), an open-source library, is used to calculate rigid
bodies dynamics.

The behavior of objects can be controlled externally using a controller, which can be
a program written in Python, C++, Matlab or Java. The controllers used, one for the vehicles1

1The AV uses the same control functionalities described here combined with the algorithms proposed throughout
the thesis.
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Figure A.1 – Main window of the simulator

and another for the pedestrian, were implemented in C++. It is also possible to use perception
sensors, cameras, LiDARs, radars and wireless communications, but given that in a simulation it
is possible to find the positions and velocities of all moving objects, this was the favored option as
a method to determine the inputs of the decision-making. Also, the implementation of perception
routines would add a complexity level that is outside the scope of this thesis (although it is an
important component that should be considered in a later time).

The controllers for both vehicles and the pedestrians have one component in common:
the interface between the control functions and the WeBots objects. This concerns uniquely
the observation acquisition, since the control reference dispatching is specific according to the
controller (and it will be detailed later on). For the observation acquisition, each object being
controlled can access the main node tree of the simulation, where every object in the scene have a
respective node, and pull the position and velocities for each moving object at each given time.

Every simulation done in this document uses the time step of 10ms, i.e. the frequency in
which the simulator calculates all the physical reactions and updates the positions and velocities
from the objects accordingly. Each time step happens synchronously; after the dispatch of a
control reference each object executes a function called step, that signals to the simulator that
it can execute another iteration. If there are other objects that did not yet execute this function,
the controller routine is blocked in this function until all other controllers call the same function
from their side. Then, after every controller signaled the simulator it calculates another step and
unblocks all the controllers.

In the next sections the particularities about each of the controllers used will be explained,
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and in the last section the modification of one of the simulator libraries, that consist in the creation
of one special function to control the car-like vehicle and a modification of the pedestrian model,
will be treated.

A.2 Controlling a car-like vehicle

One of the implemented controllers concerns the car-like vehicles. Apart from the
observation acquisition already described, it builds upon the capabilities of the WeBots libraries
called Driver and Car, the former providing all the functionalities that a human driver usually has
in a vehicle, including functions to steer and to accelerate/brake, and the latter completing the
former library with functions that are not usually available to the common driver, for example to
change the blinking period of the indicator or getting physical parameters of the car.

Two types of longitudinal control are available: speed mode and dynamic mode. The first
one emulates a cruising control system, increasing and decreasing the velocity of the vehicle
according to a velocity reference, using a constant acceleration value. In this mode the throttle
and the brake are not directly used to control the vehicle. This was the function used to change
the vehicle’s velocity during the simulations for chapters 3, 4 and 5 (this last chapter has some
particularities that will be commented in the last section). As for the dynamic mode, it allows
to control the vehicle with the throttle, the gears and the braking directly, according to the type
of engine of the chosen vehicle. Electric vehicles like the Tesla have only two gears, in a 1+1
configuration (forward and backward), while the combustion vehicles have six or seven gears, in
a 5(6)+1 configuration. Given the needs and limitations of the simulations developed throughout
the thesis the speed control was enough to model the vehicles’ behavior.

Velocity, acceleration and steering selection

As said in chapter 3, the steering and the velocity of the vehicle are defined by the action
selected by the policy being executed. The pair steering angle / velocity is directly sent to the
controller using the respective functions from the Car library with the speed mode activated. This
produces a cruise control-like behavior, with a constant fixed acceleration. Steering in this case is
managed by the MDP, given that the reward of each couple state / action depends on the reference
trajectory.

For the simulations in chapter 5, the Stanley controller, given by equation 5.1, takes care
of defining the steering angle to correct the vehicle’s trajectory towards the reference, both for the
AV and for the other vehicle. For the velocity, it is given according to the strategy chosen, and
it is applied to the vehicle using the cruising control from the speed mode, but this time with a
variable acceleration between iterations. In figure A.2, each point of a hypothetical trajectory is
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displayed; for each point the controller calculates a velocity limit, that depends on the curvature
and on the velocity limit imposed by the traffic code considered, together with an acceleration to
be used between the current and the next point, at least until next iteration.

Figure A.2 – Longitudinal control for the vehicle

For all trajectories, the curve trajectory was obtained with a 3rd order Bézier curve, which
was stitched into the two straight line trajectories at the middle of the road segments. Using
this curvature, the maximal velocity was calculated, given the friction limits of the vehicle, by
equation A.1, where µ is the tire’s friction coefficient, g is gravity and κ the curvature at the
trajectory point being considered. This expression comes from the the equality between the
centripetal force and the lateral friction, simplified so as to be equal to the maximum longitudinal
friction of only one tire where the correct would be to have a dynamic model capable to determine
the lateral force in all four tires given the dynamics of the car’s body and the slippage influence
in the friction force. But since the vehicle model used was kinematic, this approximation was
applied, which did not resulted in slippage during the turning operation.

vl,max =

√
gµ

κ
(A.1)

The maximal velocity to execute a turn operation was determined to be 5.41m/s, close to
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Figure A.3 – Vehicle’s acceleration sampling distribution

20km/h, which is a reasonable speed to execute a 90° curve. With this velocity determined, the
adjustment for all the trajectory points is done modifying the velocity in the points located before
the curve start, to arrive in it with the correct velocity. In the straight sectors the maximal velocity
is equal to the velocity limit established by the implementation of the traffic rule, 40km/h. As
for the longitudinal acceleration, a normal distribution given by the figure A.3 is used to define
the factor which multiplies the maximal acceleration from the vehicle used, the Tesla Model 3.
Its maximal acceleration is 6.945 m/s2, which is then multiplied by the value sampled from a
normal distribution defined as N (0.3,0.15).

But since only positive velocities are used the part of the Gaussian that refers to negative
values needs to be disregarded. Adding to this the fact that a minimum acceleration is necessary
results in the definition of the constant kacc, setting the minimal acceleration to be 1m/s2, which
has a probability of approximately 15% of being drawn (corresponds to the left area of the dashed
line in figure A.3). This sampling is useful to test multiple accelerations profiles, and once defined
this acceleration is used throughout the simulation, it is not changed depending on the situations
like the deceleration. Next, each of the available strategies for the vehicle at the chapter 5 will be
detailed.

Cruise, caution and follow strategies

The cruise strategy simply adopts the velocity limit given by the traffic code (or the
maximal velocity in curves, vl,max) as the reference for the cruising control. If the vehicle has a
higher velocity before the intersection, it calculates how soon it needs to decelerate to enter the
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turning trajectory with the correct velocity. The same value to accelerate is used to decelerate
initially, and if it is not enough to arrive at the curve’s entry point with the correct velocity, then
the necessary deceleration is calculated using the Torricelli’s equation (A.2), that determines the
resulting velocity v f ,x according to the initial one vi,x, the acceleration (or deceleration) considered
ax and the distance between initial and final points, ∆sx, all in one direction.

v2
f ,x = v2

i,x +2ax ·∆sx (A.2)

The caution strategy cuts in half the velocity of the entire trajectory while it is being used,
including in curves. And to execute the follow strategy, a vehicle needs to equate its velocity to
the one of the vehicle in front, hence the necessary deceleration is again calculated using equation
A.2 to achieve the correct velocity given the distance between both vehicles. This behavior, if
applied once and not updated during long stretches of time can cause a collision (which then
would result in a stop strategy), but it is refreshed at every iteration so if the vehicle in front
reduces its velocity the deceleration is again recalculated, allowing the maintenance of a safe
buffer distance.

Stop, emergency stop and swerve strategies

Two situations can trigger a stop strategy: when a collision is detected and when the
vehicle does not have the priority to access the intersection. In the first case, using the position in
which the collision was predicted, the deceleration necessary to stop 5 m from this position is
calculated, again using equationA.2. If the deceleration necessary is higher than the one available
(and since the speed mode is being used the maximal deceleration possible is equal to the max.
acceleration, 6.945 m/s2) then the emergency stop is activated. It simply consists of applying the
maximal deceleration until the vehicle stops or when the collision is no longer predicted.

In the second case, given that the environment is always perfectly observable, i.e. the
road graph structure illustrated in 5.2 is always available, so it is always possible to stop before
an intersection. If a vehicle perceives that another is driving to the intersection and that it has the
priority, then the stop procedure starts, with a calculated deceleration until the entry point of the
intersection.

The swerve strategy usually refers to the capacity of the vehicle to accelerate and change
direction to avoid a collision that usually cannot be avoided by braking2. Given the environment
used, the strategy of changing direction is never used, and therefore it was not implemented. On
the other hand, if the stop and the emergency stop are not enough, then an increase of velocity is
tested; if it works, it is adopted as a swerve, if not then the emergency stop strategy is used.

2If one assumes that the increasing the velocity in a dangerous situation is not allowed, so as to mitigate a possible
collision severity, the swerve can only happen when braking is not enough to avoid an accident.

152



Appendix A. Simulation set-up A.3. Controlling the pedestrian

A.3 Controlling the pedestrian

Differently from the vehicle case, there is not a special library with control functions for
pedestrians, but there is an example of a controller available as an application example preinstalled
that makes the pedestrian "walk". The controller implemented then uses some parameters from
this application, notably the joint angles. The pedestrian object (figure A.4) in the simulator is
defined by thirteen joints:

• Head angle

• Left shoulder angle, left elbow angle, left hand angle.

• Right shoulder angle, right elbow angle, right hand angle.

• Left hip angle, left knee angle, left foot angle.

• Right hip angle, right knee angle, rights foot angle.

Each one of the joints has eight angle values that are used to give a sense that the
pedestrian is moving, when it is actually being displaced at the same time that its joint angles
are being modified. One can even see in figure A.4 that the foot of the pedestrian penetrates
the geometric representation of the sidewalk, since the physical interaction between then is not
enabled. These joint angles function in a circular fashion, after eight iterations it start again but in
a value that is the natural continuation of the last, creating the illusion of a fluid movement.

As for the pedestrian control, it is rather straightforward; its velocity is changed as it was
a point of mass and the same is valid for its direction. The only feature implemented was the
timer to start, where the controller only starts the movement after certain amount of time.

The trajectory of the pedestrian is defined by five points in simulation (but it could be
used many points as needed), that are executed linearly. Its orientation is defined to be the same as
the segment from its position towards the next trajectory point. As it was said in chapter 5, danger
for a pedestrian is defined as a situation when the vehicle is closer than five meters, triggering a
change of strategy from walk to stop or to run. Walk is the behavior mentioned until now, the
execution of the trajectory in a linear piece-wise fashion, with a constant velocity of 1.5 m/s,
while the stop strategy is characterized simply by the instantaneous change in velocity to zero.
And the run strategy multiplies the pedestrian velocity by two, to 3 m/s.
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Figure A.4 – The pedestrian object

A.4 Necessary modifications

During the explanation of the control modes for the vehicle it was said that for the speed
mode, which is the one used to control the vehicle in all simulations, the acceleration used by
the cruising control is fixed to be the maximal acceleration possible given the car model used.
However, the strategies for the vehicle need to change its acceleration to brake under some
maximal distance and it is also necessary to change the acceleration used in the cruising control
so as to apply the sampled one, for the simulations done in chapter 5. To create this functionality
a modification was made to the Driver library.

All libraries for WeBots are implemented in C, to then be referenced by an C++ interface.
In the Driver C file, a call to a new function, that changes the acceleration of the angular motor
that controls the tires depending on the desired linear acceleration (or deceleration) for the vehicle,
makes the acceleration change possible. With the library compiled, the effects of the changes in
acceleration tested were correctly predicted by equations 3.10.

Another modification done was related to the capacity of the objects to access the node
tree to retrieve positions and velocities from the other objects in the simulated scene. To be able
to access such node tree, a robot should have the status of supervisor. For the vehicle this option
is already available at the simulator interface (which means that it is listed in the parameters file
of this particular car model), but not for the pedestrian. Figure A.5 shows the pedestrian node
with the already modified field.
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Figure A.5 – Pedestrian supervisor field

To enable this option one entry was added in the PROTO file of the pedestrian model,
which is the file that lists all existent parameters of an object, including motors’ parameters,
colors of the object’s parts, name of the object, initial joint values, etc. In this way the pedestrian
can obtain the observation from the environment the same way that the vehicle does, directly
from the simulator. Apart from these two modifications, the simulator is used as it is available in
the WeBots site.
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