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qui m’a accompagné pendant ces 3 années. Merci pour sa pleine confiance en mes
capacités, même quand je ne m’en sentais pas capable, et pour toutes les discussions
qui ont guidé mes réflexions et mon approche du travail d’enseignant chercheur.
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Abstract

I
n a world where the required computational capacitities grow exponentially,
FPGA-based hardware accelerators are imposing themselves as energy ef-

ficient alternatives to general purpose CPUs. However, while the software
development methodologies can rely on new paradigms and techniques to
improve the productivity, designing a digital circuit remains a daunting task
where both expertise and time are primordial.

In order to increase the productivity of hardware developers, we explore
the possibility of using a novel design paradigm called Hardware Construc-
tion Languages, which enables building parametrized design generators —
increasing both code reusability and parametrization — and exploiting high
level features such as object-oriented or functional programming.

The first contribution of this project aims at easing comparison of accel-
erators by exposing different estimation metrics and methodologies, in order
to provide designers and tools with interesting feedbacks.

We then consider leveraging this new paradigm to generate and compare
accelerators — introducing two complementary methodologies: meta design
and meta exploration. Meta design is based on the prior analysis of a given
algorithm to implement a parametrized design generator, where every gen-
erated design belongs to a design space to be explored. Meta exploration
is then used to leverage the users expertise of both application domain and
target execution board for an efficient exploration of so defined design space.

We choose Chisel as an HCL candidate, and introduce QECE — Quick
Exploration using Chisel Estimators — as a demonstrator for both contribu-
tions. As Chisel is built on top of Scala, we hence bring high level features
from software development to the hardware world. We finally leverage the
introduced methodologies by developing various representative FPGA ap-
plicative kernels, and expose various scenarii of estimation and exploration.

VI



Résumé

D
ans un monde où le besoin de ressources de calcul croit exponentiellement,
les accélérateurs matériels à base de FPGA s’imposent comme alternatives

à haute efficacité énergétique aux processeurs généralistes. Cependant, alors que
les méthodes de développement logiciel profitent de nouveaux paradigmes pour
améliorer la productivité, la conception de circuits numériques demeure une tâche
compliquée où le temps et l’expertise restent cruciaux.

Afin d’améliorer la productivité des développeurs matériels, nous explorons la
possibilité d’utiliser un nouveau paradigme basé sur les langages de construction
matérielle, qui permettent de construire des générateurs paramétriques de circuits,
améliorant à la fois la réutilisabilité et la paramétrisation, et d’utiliser des fonc-
tionnalités de haut niveau telles que la programmation orientée objet ou encore la
programmation fonctionnelle.

La première contribution de ce projet vise à faciliter la comparaison
d’accélérateurs en exposant différentes métriques et méthodologies d’estimation
de circuits, afin de fournir aux développeurs et aux outils des retours constructifs
sur le processus de développement.

Nous nous intéressons ensuite à l’exploitation de ce nouveau paradigme pour la
génération et la comparaison d’architectures, et introduisons deux méthodologies
complémentaires: la méta conception et la méta exploration. La méta conception
est basée sur une analyse préalable de l’algorithme cible afin de concevoir un
générateur paramétrique de circuits, où chaque implémentation générée s’intègre
dans un espace de conception à explorer. La méta exploration est ensuite utilisée
afin de mettre à profit l’expertise de l’utilisateur à propos du domaine applicatif
et du matériel cible, permettant une exploration efficace de l’espace ainsi généré.

Parmi les langages de construction matérielle disponibles, nous choisissons
Chisel afin de concevoir QECE — Quick Exploration using Chisel Estima-
tors — comme démonstrateur pour les deux contributions. Comme Chisel est
basé sur Scala, nous amenons ce faisant des fonctionnalités de haut niveau du
développement logiciel au monde du matériel. Finalement, nous démontrons
l’utilisabilité des méthodologies présentées en développant un ensemble de noy-
aux applicatifs représentatifs de l’utilisation des FPGA, et en mettant en avant
différents scénarios d’estimation et d’exploration.
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Introduction

1

T
he usage of digital circuits has grown exponentially for the last decades,
and embedded systems can be found everywhere nowadays. In fact, the

semiconductor industry leverages billions of euros each year, and circuits
tend to be smaller, denser and more energy efficient. From smartphones
to pay machines to super computers, electronic systems are being designed
every day, and the number of hardware designers — which build them — is
increasing accordingly.

However, while the software developers — which are their counterparts
from the computer science world — have benefited from conceptual advances
those past years to improve their productivity, designing a digital circuit
remains a daunting task that require both time and expertise.

Initiatives are thus being proposed in order to ease the life of hardware
developers, by providing faster processes and simpler ways to describe the
behaviour of an electronic system.

Among them, a trend has been growing since the 80’s that aim at devel-
oping circuits from more abstract descriptions, such as software programs,
instead of the verbose languages that are typically used. This approach is
based on automatic tools that iteratively compare and select circuits, as a
given code can be translated in many different ways to actually produce a
circuit with the same functionality. In order to find a best solution in a set
of various circuits, the developers thus rely on the automatic exploration of a
space composed of the different designs, which would otherwise be a tedious
and long task for them.

Nevertheless, while this approach has grown mature and is now used
in industrial processes, it is difficult to provide tools that produce clever
decisions during their exploration, and building an efficient software for this
task is still widely being investigated in both academic and industrial worlds.

On the other hand, different classes of circuits are to be considered de-
pending on their usage and functioning environment. Indeed, the develop-
ment processes can heavily differ, resulting in the need for specific work flows,
depending on both the target technology and the applicative domain.

1



Chapter 1. Introduction

While application specific integrated circuits are used in most integrated
systems — such as smartphones and components from the Internet of Things
— some use cases require to be able to modify and adapt the functionality
provided by a hardware design.

Among them, Field-Programmable Gate Arrays (FPGA) are reconfig-
urable circuits that can be used to implement algorithms on digital electron-
ics. On such technology, a simple process can be used to change the circuit
hosted in the FPGA, in order to modify its functionality. Doing so, the com-
putations can be faster than they would be on a standard processor, but the
resulting circuit can be modified at any time, rather than being fixed as it is
the case with dedicated circuits.

The adaptability of those reconfigurable circuits makes them excellent
candidates for the design of hardware accelerators — i.e. digital designs that
can be used to speed-up specific computations in many electronic system,
while reducing the required power consumption.

Designing a digital circuit is a tedious task relying either on old and time
consuming technologies, or on novel approaches which leverages automatic
tools but are still limited in their usage — and it is even more true for
FPGA-based implementations, as the heterogeneous structures of the targets
make it even more difficult to build generic and reusable designs. To cope
with those limitations, another approach has emerged recently, improving the
older programming languages while avoiding the limitations introduced by
using more abstract descriptions. This approach leverages recent software
techniques, which are adapted to digital design to provide the developers
with new methods to describe a circuit.

We present an initiative that leverage recent languages based on this ap-
proach to increase the productivity of hardware developers. More specifically,
we propose an exploration tool that can be configured by the designers to
adapt to their use cases, and uses high level features from the software world
to bring more expressivity to its users.
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Motivations

2

T
his chapter introduces the problematic of this thesis, as well as the is-
sues and challenges at stake in this work. Important considerations are

discussed to highlight some interrogations that will be answered throughout
this manuscript.

To begin with, we introduce the notion of hardware acceleration, with
a particular focus on how Field-Programmable Gate Arrays (FPGA) can
be used to build hardware accelerators. We then expose the standard de-
sign methodologies to discuss their limitations, and introduce the Design
Space Exploration (DSE) processes as a way to increase the productivity of
hardware developers. Finally, we discuss the usage of a new development
paradigm — known as Hardware Construction Languages (HCL) — to cope
with the limitations of the standard design methodologies, and how it can
be used for efficient DSE implementations.

Table of contents
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2.2 Design Space Exploration . . . . . . . . . . . . . 13
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2.2.2 Standard Approaches . . . . . . . . . . . . . . . . 14

2.2.3 Limitations . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Motivations and Organization . . . . . . . . . . . 16

2.3.1 Problem Statement . . . . . . . . . . . . . . . . . . 16

2.3.2 Thesis Organization . . . . . . . . . . . . . . . . . 17

3



Chapter 2. Motivations

2.1 Hardware Design

2.1.1 Hardware Acceleration

While people are growing familiar with the concept of generic purpose Central
Processing Units (CPU) integrated in their embedded devices and comput-
ers, they might not be familiar with the notion of hardware acceleration.
Hardware accelerators are digital circuits built to cope with the limitations
of CPUs, i.e. insufficient energy efficiency or performance, and can be found
in many application domains ranging from image processing to network filter-
ing. They relies on a particular trade-off between a circuit efficiency and its
programmability: CPUs can be programmed for every possible usage manip-
ulating digital data, but an Application-Specific Integrated Circuit (ASIC)
implementing a given algorithm will perform way faster than a CPU pro-
viding the same functionality, and consume way less energy — however the
ASIC function is fixed.

Other accelerators do exist on this programmability vs performance
range, varying from domain specific processors such as Graphical Processing
Units (GPU) or Digital Signal Processors (DSP) to (re)configurable circuits,
based on fabrics of basic operators that can be (re)programmed to perform
any operation, providing an interesting trade-off between programmability
and performance/energy efficiency.

Domain specific processors are promising candidates for hardware acceler-
ation, as programming processes are similar to software development. Usages
are evolving to cope with hardware acceleration needs — e.g. GPUs are now
used in many computation intensive algorithm acceleration beside graphical
processing, using particular programming patterns (such as matrix opera-
tions) to take advantage of the inherent structure of the hardware. However,
such development processes are limited to particular usages (either domain
specific algorithm or particular patterns), and are thus not appropriate for
every usages.

On the other hand, digital circuits (such as ASICs or configurable cir-
cuits), require specific development processes, known as hardware devel-
opment processes. In this context, configurable circuits are also to be
considered when building hardware accelerators, as their programmability
allows evolution abilities while offering performances and energy efficiency
orders of magnitude better than CPU implementations. Among them, Field-
Programmable Gate Arrays (FPGA) — digital chips built as arrays of re-
configurable basic blocs — are commonly used for hardware acceleration.
However, developing a hardware accelerator for a given algorithm requires
expertise about the target, as an ASIC implementation is way different from

4



2.1. Hardware Design

a FPGA one, and specific knowledge is to be brought by the developer in
order to develop efficient circuits. Hardware design is thus a time consuming
task which requires a lot of effort and expertise, and initiatives are taken to
ease and accelerate the work of hardware developers.

2.1.2 Field-Programmable Gate Arrays as Hardware
Accelerators

As FPGAs offer interesting performances for hardware implementation
while remaining more programmable than ASICs, they have been used as
hardware accelerators for a long time, and keep providing promising circuits
in various domains, such as network filtering [BHM+21], neural network im-
plementations [NVS+17] or DNA sequencing [DTOBS17].

Figure 2.1: Simplified schematic of Xilinx Virtex 7 FPGAs structure

In order to build efficient design methodologies for FPGA based accel-
erators, one must understand board structures to comprehend technological
specificities. Figure 2.1 introduce a simplified structure of a Xilinx FPGA as
an example. As can be remarked, the structure is inherently heterogeneous,
area being distributed between Input/Output blocks (IO), Configurable Logic
Blocks (CLB), Digital Signal Processors (DSP) and Block RAMs (BRAM).
Digital functions are based on CLBs (Fig. 2.2, as defined in [Xil16]) that
include both computation resources with Look-Up Tables (LUT) and mem-
ory resources with Flip Flops (FF), but DSP blocks can be used to perform
specific computations like multiplications, and BRAM can be used as em-
bedded memory to offer large memories with low access latency. At least four
different resources are thus to be considered when developing a hardware ac-
celerator for such target — LUT, FF, DSP and BRAM — depending on
both objectives and constraints of the problem.

5



Chapter 2. Motivations

Figure 2.2: Configurable Logic Blocks (CLB): Xilinx FPGAs basic blocks

Nowadays, most of FPGAs are integrated in various Systems on Chips
(SoC), tightly coupled with CPUs and other peripherals. However, in the
context of this work, we will only consider FPGA implementation of different
algorithms, and try to ease the life of FPGA developers, with no further
focus on the integration of the accelerators.

Such considerations raise the first interrogations of this manuscript:

− How can we ease hardware development ?

− How can we integrate FPGAs specific constraints in hardware
design methodologies ?

2.1.3 Standard Paradigms

As circuit complexity (i.e. number of transistors used in a chip) is growing
exponentially, as stated by Gordon Moore’s law in 1965 [Moo65], hardware
designs methodology are bound to evolve and exhibit high level abstraction to
developers to cope with the scaling of Very Large Scale Integration (VLSI).

First languages developed to describe hardware circuits by abstracting
low level considerations were Hardware Description Languages (HDL) such
as VHDL and Verilog. Originally developed for hardware simulation, work-
ing at Register-Transfer Level (RTL) — i.e. considering data signal as entity

6
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instead of considering physical implementation details such as transistor lay-
out and power supply — their aim was to raise the abstraction level and allow
design of large scale circuits. To do so, they allow to describe complex circuits
by combining behavioural descriptions (how digital signals are behaving in
the circuit, often used to describe basic modules with simple functionalities),
and structural descriptions (how are basic blocks interacting). HDL classic
development processes are quite straightforward, as can be seen in Figure
2.3 (as translated from Prost-Boucle’s thesis [PB14]), consisting in manual
translations of sequential algorithm to hardware description of the function-
ality. Circuit descriptions are then fed to a set of time consuming software
— including synthesis and place and route steps — in order to translate
such high level descriptions to physical representations that can be used to
program FPGAs. Moreover, in order to comply with design constraints and
objectives, such process requires manual iterations to find an acceptable fit,
and each iteration can be expensive due to the complexity of both synthesis
and place and route processes, and may require manual modifications of the
original design, which can be both time consuming and error prone tasks.

Figure 2.3: Example of RTL design flow
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Another approach for easing hardware development is based on Domain
Specific Languages (DSL). DSLs are languages leveraging prior knowledge
about the application domains (what are the important operations to per-
form, what data patterns are frequently used, ... i.e. what domain specific
optimizations can be performed) to build efficient mapping for acceleration.
In this way, this approach differs from DSP usage, as the goal is not to pro-
gram specific processors but rather build generic circuits — e.g. on ASIC or
FPGA — using specificity of a particular domain. A typical DSL develop-
ment flow (quite similar to HDL ones) is presented in Figure 2.4. Using do-
main specific knowledge allow easier writing and refinement of the DSL code
base, compared to HDL programming, resulting in faster iteration steps, and
feedback generations can also be enhanced by using pre-synthesis estimations
based on DSL operations, producing faster development methodologies. In
fact, providing early estimations of iteration metrics — e.g. area and fre-
quency — is a common technique to accelerate development flows by reduc-
ing the time dedicated to synthesis and place and route steps, and it was
used as used as a basis of one of the main initiatives for easier development:
High Level Synthesis (HLS).

Figure 2.4: Example of DSL design flow
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HLS methodologies have been developed to close the gap between soft-
ware developers and hardware designers. It is based on a modification of the
entry point of the whole process, as it does no longer require to use hard-
ware specific languages such as HDLs or DSLs, but rather uses standard
software languages such as C language to describe the target algorithm,
and then relies on a translation tool that compiles this algorithmic approach
to a hardware description at RTL level. Figure 2.5 (also translated from
Prost-Boucle’s thesis [PB14]) introduces a classical HLS based design flow,
operating on an intermediate representation issued from the compilation of
the input algorithm to perform optimization-estimation steps until given con-
straints and objectives are respected. Manual interventions of the developer
are reduced as the software is able to modify the generated circuits in order to
optimize the design, but can be needed in order to guide the tool by adding
specific knowledge — using optimization directives (such as C pragmas)
directly in the algorithm description to define memory patterns or exhibit
parallelism for example. This feature allows to close the performance gap
with HDL design flows, but as it requires specific hardware knowledge, it
can no longer directly be used by software neophytes and require prior skill
improvement.

Figure 2.5: Example of HLS design flow
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A quick review of standard paradigms for hardware development hence
exhibits some interrogations about classical design methodologies:

− What are the strength of standard paradigms for hardware
development ?

− What are their limitations ?

− How can we ease hardware development processes ?

2.1.4 Addressing Standard Paradigms Limitations
through Hardware Construction Languages

Standard paradigms for hardware development have evolved the last decade
in order to cope with the needs of faster development methodologies and
close the gap with software processes. However, such methodologies present
limitations that one should try to overcome in order to ease the life of hard-
ware developers. HDL development requires time consuming and error prone
processes, and does not allow easy component re utilization, as evolving a
design for a new use case require heavy manual modification of the base
code. On the other hand, HLS methodologies can accelerate development
processes, and code re utilization is easier as the base code is lighter than
with HDLs — nonetheless, modifying an existing accelerator requires an ad-
vanced knowledge of inserted directives which may not be intuitive, and the
whole process relies on automatic tool inferences. Algorithmic compilation
toward hardware description is a difficult problem, as it implies a change of
paradigm, from a sequential representation of the algorithm toward a be-
havioural definition of a circuit. In order to do so, the tool is taking decision
that are usually taken by expert developers in standard HDL methodolo-
gies that may generate non optimal designs, and wrong directive usage may
accentuate this flaw. Moreover, with the growing need of performance and
efficiency, some of those decisions may be very specific to produce optimal
utilization of available resources, and programming languages should allow
developers to have full control over generated hardware — and it cannot be
done if automatic decisions are taken without the user knowing it. In fact,
HLS enables higher abstraction of circuits for design processes, but results
in a lack of control over how those circuits are generated. As for DSLs, their
usage is by-design limited to specific domains, and thus cannot be generalized
as hardware development methodologies.

To cope with those problems and improve the expressivity of develop-
ers while maintaining control over generated hardware, new paradigms are
emerging, with Hardware Construction Languages (HCL) among them.
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HCLs are based on high level languages, allowing to build hardware
generators instead of hardware circuits: instead of building a specific ac-
celerators for a given task, such as a digital Finite Impulse Response Filter
(FIR Filter) with 128 taps operating with 32 bits fixed point numbers,
it can be used to build a parametrized FIR Filter generator that can be
used to build various circuits, varying on the number of taps or the data
type used for example. To do so, they leverage high level features such as
Object-Oriented Programming (OOP), functional programming or reflexivity
in order to provide more generic and reusable representations for hardware
circuits. Moreover, as HCLs are working at RTL like standard HDLs, no
performance/area overhead is introduced from using HCL over any other
HDL [IKL+17], resulting in controllable generation of hardware implemen-
tations. Figure 2.6 represents a typical HCL development flow, where the
main difference with respect to standard paradigms is that both generator
description and parameters definition are exposed by users, allowing to man-
age generated circuits while easing reuse and iteration over generated designs
through exposed programming features.

HCLs relies on Hardware Construction Frameworks (HCF) to translate
target-independent RTL code to technology dependent RTL, leveraging a
compiler-like separation of concerns: using an Intermediate Representation
(IR) of circuits to perform optimization and code generation, target specific
concerns are decorrelated from HCL description as they can be managed di-
rectly by operating on the IR. Common HCLs use high level languages such
as scala for Constructing Hardware in a Scala Embedded Language (Chisel)
[BVR+12], python for PyMTL [LZB14] or Haskell for Cλash [BKK+10].

As Chisel is a promising HCL, with state of the art implementations
from both academic and industrial worlds, such as in-order and out-of-order
RISC-V implementations [CPA15] [AAB+16] or Google latest Tensor Pro-
cessing Unit (TPU) [LT18], it will be used as an example of HCL in this
work. Chisel development flow is quite similar to standard HDL flows as it
relies on the same tool set to generate both constraint and objective metrics
and resulting bitstream — in fact Chisel is integrated in standard HDL
flows by generating structural RTL (Verilog) code after what is called the
emission phase (i.e. building a non parametrized hardware circuit from the
corresponding hardware generator). However, as both hardware generator
notion and high level programming features for hardware development are
recent progresses, improvements of HCL based methodologies are still to be
proposed.
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Figure 2.6: Example of HCL design flow

Emergence of HCL paradigm hence raises few interrogations on the im-
provement that new technologies and methodologies can bring to the industry
of semi-conductor:

− How can HCLs cope with standard paradigms limitations ?

− How can high level programming features be used in hardware
development ?

− What can HCLs bring to hardware developers ?

− How can HCLs flow be improved for easier iterations over gener-
ated designs ?

Moreover, as Chisel will be used as a basis for this work, an analysis of
its interesting features is provided in Appendix A. It should help readers to
understand the opportunities brought by the HCL paradigm, using simple
examples of Chisel usage to expose differences from standard HDLs.
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2.2 Design Space Exploration

2.2.1 Definitions and Interests

It may seem counter intuitive, but hardware designers expertise is more about
decision making than describing circuits. As a matter of fact, implementing
a particular algorithm for a given target can be done in a lot of different
ways, and it is up to the developer to choose among different implementation
options to build optimal circuits with respect to its use case. However, even
with senior expertise, optimal solutions may not be trivial, and developer
may not even consider them in the process, resulting in suboptimal designs.

To cope with this problem, Design Space Exploration (DSE) methodolo-
gies have emerged, allowing exploration and comparison of implementation
options at different granularity levels — options can vary from basic opera-
tion implementations such as multiplication algorithm, to global parameters,
such as parallelism level of the design. A design space is defined as the
set of every possible implementation candidate for a given algorithm, and
as implementation options may grow exponentially with circuit complexi-
ties, exhaustive exploration processes may be unfeasible in an acceptable
amount of time. Due to that, more complex exploration strategies were built
to reduce space traversal, thus reducing exploration time while maintaining
satisfying Quality of Results (QoR), i.e. finding implementations with per-
formances comparable to a global optimal implementation as could be found
from exhaustive space traversal.

However, one cannot define a generic, optimal solution for exploration, as
a lot of parameters are both target and algorithm specific [SW20]. Moreover,
design space definition is not trivial either, as defining the implementation
options require either automatic tool inferences, or programming expressivity
for developers to bring their expertise in the process. Ergo, DSE method-
ologies remain a prolific search domain, and standard approaches are contin-
uously being improved — raising even more interrogations:

− What does DSE bring to hardware developers ?

− Which features are necessary for efficient DSE ?

− Which features could be useful ?

13
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2.2.2 Standard Approaches

As exhaustive exploration remains impracticable for complex circuits, more
clever exploration strategies were developed to fasten exploration processes.
In order to do so, one of the main approach is based on Pareto optimal
solutions [SW20]: considering both a performance and a cost metric, Pareto
optimal solutions are implementations that are optimal in their neighbour-
hood, meaning that modifying a parameter will result in either a more costly
or a less performant solution. The goal is thus to build algorithm to approx-
imate the Pareto frontier without exhaustive traversal of the design space,
resulting in optimal design finding in a heavily reduced amount of time. Fig-
ure 2.7 introduce a classical, Pareto based DSE methodology, using resource
usage (which can be amount of transistor, of LUT, of DSP, ...) as a cost
metric, in order to find best implementations under both resource and perfor-
mance constraints. It enables design space partitioning to exhibit a reduced
number of implementations to developers, helping them in the design pro-
cess, as they can now choose among a set of implementations with a warranty
that they did not miss potentially optimal solutions.
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Figure 2.7: Example of Pareto optimal solutions finding under resource and
performance constraints
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As shown in Figure 2.5, standard HLS development flows rely on HLS
operations over generated circuit in order to generate acceptable solutions
with respect to objective and constraints. To do so, DSE is used in most
HLS tool as a medium to find acceptable solutions, varying implementation
parameters from the original algorithm, such as loop unrolling, operation
pipelining of memory partitioning: by giving freedom to the tool to make its
own decision, a heavy design space is generated to compare a lot of different
implementations. In order to reduce design space width, most flows thus use
algorithms to approximate the Pareto frontier, using specific heuristics such
as machine learning [NKO19] [FKA+20] or genetic algorithms [MKC+20],
and building efficient exploration strategies remains a trending search topic.
Moreover, optimization directives can also be given to guide the exploration
of the generated design space, resulting in efficient DSE processes.

However, defining optimization directives requires user expertise, and au-
tomatic inferences about the design space and how to explore it may result
in a lack of control of generated accelerators, which may lead to the impos-
sibility to find the best fit — especially on specific targets such as FPGAs
where resource heterogeneity requires experience to produce clever decisions.

Such considerations about standard DSE approaches bring interrogations
about such processes:

− What are the limitations of standard DSE approaches ?

− Can HCLs help addressing those limitations ?

2.2.3 Limitations

While standard DSE approaches have grown mature the last two decades —
especially with the rise of HLS tools — limitations are still to be addressed
to provide generic methodologies appropriate for every possible use cases.

We discussed the challenge of building an interesting design space to ex-
plore, as automatic inferences of the tools used to generate implementation
options allow multiple variations to be explored, but might result in an un-
controllable design generation in the end.

Moreover, doing so, the generated design spaces are composed in a vast
majority of known sub optimal solutions, as no particular expertise is used
at design space generation step. It results in heavy design spaces that cannot
be explored exhaustively, with the emergence of exploration strategies such
as Pareto approximations to cope with the large amount of possible imple-
mentations, even if a lot of those implementations are not sound and would
never be considered by a hardware developer.

15



Chapter 2. Motivations

Last but not least, most of DSE tools define their own strategies, as well
as metrics to optimize in the process, resulting in methodologies that are
hard to adapt and reuse to any new use case. In fact, some particular use
cases require to define specific metrics to optimize and consider, as well as
particular exploration strategies, and tools should allow developers to bring
their expertise and knowledge to the exploration process definition. For ex-
ample, specific domains such as Approximate Computing (AxC) requires to
consider the Quality of Service (QoS) of circuits in order to provide guaran-
tees about the functionality of a design. However, most DSE tools does not
allow users to add such metric in the exploration process, resulting in the
need to use different flows to consider multiple metrics.

In this context, one may wonder what can HCLs bring to hardware
developers, especially in the context of DSE:

− What can flexibility and genericity bring to DSE ?

− How can users define use case specific metrics ?

− How can users build custom exploration strategies ?

− How can HCLs be used for efficient DSE ?

2.3 Motivations and Organization

2.3.1 Problem Statement

This chapter introduces the motivations of the work presented in this thesis.
We discuss the role of FPGAs in the context of hardware acceleration, and
expose various methodologies used to develop hardware accelerators relying
on FPGAs specificities. Among them, we introduce HCLs as an emerg-
ing programming paradigm, and consider their usage to cope with standard
paradigm limitations. We put a particular focus on DSE processes as a
way to increase hardware developer productivity, and discuss HCLs usage
to improve those processes.
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With respect to those considerations, the goal of this thesis is hence to
answer those questions:

− How can FPGA designers productivity be improved
using HCLs ?

− Which limitations of standard paradigms for hardware
development can be addressed using HCLs ?

− How can HCLs be used for efficient DSE on FPGAs ?

2.3.2 Thesis Organization

In order to provide an intelligible analysis of the usage of Hardware Construc-
tion Languages (HCL) to build a flexible Design Space Exploration (DSE)
framework that target Field-Programmable Gate Arrays (FPGA), this thesis
is organized as follows.

Chapter 3 outlines the related works of the literature on efficient DSE
for FPGAs, as well as their limitations. Chapter 4 discusses the need of
qualitative estimators to increase the developers productivity, and proposes
interesting metrics to be considered in design and exploration processes, as
well as relevant estimation methodologies to be used. Chapter 5 introduces
the usage of DSE in an HCL context, before exhibiting two complementary
methodologies to exploit this paradigm in user defined custom strategies. In
particular, a novel formalism for DSE is introduced in order to exhibit how
the functional programming paradigm can be used to build intelligible and
concise exploration strategies. Chapter 6 exposes the experimental setup, in-
cluding a software demonstrator integrating the defined methodologies and
a benchmark of representative applications, and presents the results of the
experimentations that were led. Chapter 7 concludes this manuscript, dis-
cussing both the proposed contributions and the perspectives of evolution.

In addition to those chapters, four appendixes are to be found at the
end of this manuscript. Among them, Appendix A provides some insights
about the usage of Chisel, the chosen HCL for this work, which will help
the reader to have a better apprehension of the features that such language
can bring to the world of hardware design.
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3

T
his chapter outlines the related works about Design Space Exploration
(DSE) on Field-Programmable Gate Array (FPGA). As the notion of

DSE can refer to any process exploring variations of implementations, it can
be applied at various levels of granularity, from basic operator implementa-
tions [REHS+16][GMX+21] to whole Systems-on-chip (SoC) [ACP04][CV10],
and can even be applied for software/hardware co design [BTBB21].

Moreover, when it comes to digital design, DSE processes can be applied
for both Application-Specific Integrated Circuit (ASIC) and FPGA circuits,
and some previous works showed that an optimal ASIC solution may prove
to be suboptimal when targeting a FPGA [LLS19].

In the context of this work, we will hence focus on DSE application at
kernel level, meaning that we will consider FPGA-based implementations
of more or less complex algorithms that fit on a single FPGA device.

We will start by exposing some popular tools leveraging DSE for FPGA
based designs, and will consider how are design spaces exposed in the state
of the art methodologies. We will then examine which metrics are used in
DSE processes, and how relevant estimators are built and integrated in the
exploration frameworks. Finally, we will discuss various exploration strate-
gies, along with both their advantages and their limitations, before providing
a synthesis of the approaches for FPGA-based DSE in the literature.
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3.1 Overview of the Existing Tools

As an exhaustive listing of every Design Space Exploration (DSE) framework
is both unfeasible and of limited utility, we will start by providing a brief
review of the most popular tools aimed at easing the developers life, focusing
on rising the abstraction of design processes with approaches such as High
Level Synthesis (HLS) and Domain Specific Languages (DSL).

To begin with, Windh et al. [WMH+15] provide a rapid study of high level
tools for reconfigurable computing. A particular focus is put on HLS ini-
tiatives, with two industrial tools, namely Xilinx Vivado HLS [Zha08][Xil19]
and Altera OpenCL [Sin11], and two academic frameworks, LegUp [CCA+11]
and ROCCC [VPNH10]. BlueSpec System Verilog [Nik08], another approach
based on a simplified behavioural model — abstracting some of the difficulties
of standard Hardware Description Languages (HDL) — is also introduced.

Whereas the HLS approach is a main trend toward higher productivity,
some DSL based initiatives are also considered to close the gap between
domain specialists — such as data scientists or signal processing experts —
on one hand, and FPGA developers on the other. Kapre et al. [KB16]
expose a brief survey of different DSLs and their application domains: while
DFiant [PE17] focuses on dataflow based applications, Sano [San15] pro-
poses a framework targeting parallel streaming architectures. Kristien et
al. [KBSD19] expose how the Lift framework can be used for efficient de-
sign, leveraging functional patterns for compilation, while Spatial [KFP+18]
exhibits FPGA specific patterns and constructs for accelerator generation.

All those initiatives demonstrates the variability of the approaches for
efficient design, where the abstraction level, the parametrization, the ap-
plication domain or the target technology are as many knobs that can be
tuned to build an efficient design framework. Most of those approaches
rely — more or less heavily — on DSE processes to help designers make
expertise-based decisions, such as parallelism exhibition, interface definition
or dataflow pipelining.

In order to provide an interesting analysis of the existing literature on
FPGA based DSE, we thus chose to focus on three main concerns, which
we identified as being key levers for efficient strategy definition:

− design space exposition — i.e. defining which implementation varia-
tions can be explored, and how to generate corresponding architectures

− metric definition — i.e. exposing metrics of interests for a given
use-case, as well as how to build and integrate estimators

− exploration algorithm — i.e. describing how to scan the design
space in a clever way, providing rapid yet accurate results
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3.2 Design Space Exposition

When building a DSE framework, one of the main concerns is to define which
variations are to be considered in the exploration, and how to generate the
corresponding implementations from the initial description.

Various abstraction levels are also to be considered, ranging from high
level programming languages such as python or C/C++, which can be used
to allow software developers to design their own circuits, to Register-Transfer
Level (RTL) languages, which enable hardware designers to efficiently control
the built accelerators based on their expertise.

However, the input language and the abstraction level can also be consid-
ered from another point of view: the level of control over the implementation
variations. The DSE methodologies can either rely on the explicitation of
generation parameters, or on the automatic inference of the implementation
variations — but most of the popular high level tools are based on a mix-up
of those two options, allowing users to define some variations while inferring
others, based on the standard design methodology (with potential optimiza-
tions linked to the application domain and/or the target board).

In this section, we will hence consider how the design variations are cho-
sen in the different approaches, rather than their abstraction levels. Doing
so allows to classify the DSE initiatives without introducing the classical
distinction between HLS, DSL and other techniques, as the main difference
when it comes to exploration is the way to expose the explored design space.

3.2.1 Explicit Parametrization

The basic idea of the explicit parametrization approach is to allow users to
define explicit parameters in their code, in order to provide an explorable
design space built over understandable variations. Such parameters can be
application specific, for example matrix dimensions in a matrix multiplication
kernel, or independent, with standard parameters such as the Input/Output
(IO) bandwidth or the element type [FMR21a].

Application specific generators have been introduced in the literature to
easily expose and explore design spaces, at various levels of granularity. While
Rehman et al. [REHS+16] use a library of basic blocks and the composition
of components to explore approximate multiplier implementations, Yianna-
couras et al. [YSR07] introduce SPREE (Soft Processor Rapid Exploration
Environment), a framework allowing to explore the variations of a processor
by leveraging standard CPU notions such as Functional Unit (FU) imple-
mentation and dataflow pipelining. Other initiatives have been proposed for
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domain specific DSE, such as the implementation of Convolutional Neural
Networks (CNN), for example using different dataflow techniques as varia-
tions [PPP20]. We can thus state that developers may need to expose very
specific parameters in their exploration flow, and the exploration frameworks
should provide a way to do so.

To easily integrate the definition of parameters into the standard design
flows, Paletti et al. [PCS21] provide Dovado, a RTL-based exploration
framework leveraging HDL generic features to build the design space. How-
ever, their perspectives include supporting other languages with more con-
venient ways for parametrization, such as Chisel or other HCLs.

HCLs are recent initiatives focused on building parametrizable gener-
ators instead of use-case specific accelerators, using high level languages as
entry points to leverage promising software paradigms in the hardware world.
Among them, we can list python based initiatives such as MyHDL [JS15]
or PyMTL [LZB14], scala based frameworks such as Chisel [BVR+12] and
SpinalHDL [Pap17], and Cλash, an Haskell based project [BKK+10].

Several Chisel based initiatives are exploring the possibilities of both high
level programming features and highly parametrizable constructors to pro-
vide interesting exploration features. Cook et al. [CTL17] proposed Diplo-
macy, a parameter negotiation framework to automatically select and prop-
agate generation parameters of the Rocket chip processor1 [AAB+16]. To
go further, Bai et al. introduced the BOOM-Explorer [BSZ+21] to explore
the Berkeley Out-of-Order Machine (BOOM) core2, varying the generation
parameters of the different pipeline stages in the dataflow. A more generic
approach was also provided with JackHammer [SI15], an exploration frame-
work for Chisel based designs. However, the initiative is not maintained
anymore, and is claimed to be too specific for SHA-3, the target algorithm.

As one can observe here, exposing explicit parameters through HCL
usage seems to be a promising way for an efficient DSE framework definition.
Moreover, as Chisel is used as a basis for this work, we provide some useful
insights and basics in Appendix A, that should help readers to be more
familiar with the possibilities that this language offer.

3.2.2 Implicit Inferences

While a generator-based exploration allows users to define which variations
are to be explored, it cannot be used in frameworks based on a change of
programming paradigm, such as HLS. As HLS is based on translating an

1Rocket-chip is an open-source, in-order version of a Chisel-based RISC-V processor.
2BOOM is an out-of-order implementation of a Chisel-based RISC-V core.
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algorithmic description to a hardware one, choices are to be taken to model
the decisions that a hardware developer would take when doing the same
task — e.g. the level of loop unrolling, the memory model or the input
bit width. While those choices would usually require a lot of parameters
and description to be efficient, standard HLS tools often automatically infer
which transformations are to be triggered to provide an efficient solution.

To do so, the HLS flows iteratively select which transforms to perform
over the Intermediate Representation (IR), optimizing a certain set of ob-
jective functions under constraints [PBMR14] — Ye et al. [YHC+21] even
consider a multi-level IR to expose different optimizations depending on the
abstraction level. Some DSL also use a similar approach for compilation: the
Lift [KBSD19] frameworks expose implementation variations using rewrite
rules over the original description, while Sano et al. [San15] exploit the
inherent parallelism to generate different implementations to be explored.

A similar approach is also used in Approximate Computing (AxC) based
exploration frameworks, as the actual implementation of used operators does
not really matter. As a result, different approximations are considered to gen-
erate the implementations (named variants by Witschen et al. [WAGM+19])
and build the design space [MKC+20][BTBB21]. Other initiatives consider
some optimizations that are possible due to the AxC inherent freedom, such
as optimizing the data word lengths to reduce required hardware [HMS05]
or reordering the floating-point operations to optimize latency [GWC16].

Those approaches thus bypass both explicit decisions and parameter defi-
nition that should be provided by user, and automatically infer how to trans-
form the circuit representation to provide a best fit — which may result in
non optimal designs (with respect to a manually tuned design), and does not
allow to fully control generated circuits.

3.2.3 Mixing-up Approaches

However, when looking to the most popular DSE flows, we can remark that
they are actually based on a mix-up of those two approaches.

To begin with, Schafer et al. [SW20] provide a comprehensive study of
the HLS approaches for DSE, and formalize a notion that is key in the
design space exposition process: exploration knobs. Knobs are design
parameters exposed at some point in the process, that allow the users to
consider the synthesis process as a black box — providing different knobs
as inputs of the process resulting in a different RTL implementation at the
end of it. They are classified in three different categories, that are mainly
relevant for Application-Specific Integrated Circuit (ASIC) design, but can
also be considered when targeting a FPGA implementation:
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− local synthesis directives, which are used to control the local inferences
of the HLS tool.

They are often implemented using pragmas that are directly integrated
in the entry code, in order to fix some parameters that would have been
inferred by the tool otherwise — leveraging user expertise.

− global synthesis directives, which are used to specify some global pa-
rameters for the synthesis.

Among them, we can find the scheduling algorithm to be used for
compilation, the clock constraints or the Finite State Machine (FSM)
encoding scheme.

− FU constraints, which defines the level of sharing of FUs, introducing
a performance/area trade-off.

Such knob is often not considered by FPGA targeting HLS tools, as
sharing a FU on FPGA often requires more resources (mainly muxes)
than implementing another computation unit.

The popular HLS tools mainly leverage local synthesis directives, as it
allows to finely control generated hardware. However, defining such pragmas
is often a tedious task, as their impact on the generated circuit is often diffi-
cult to understand and may vary depending on the compiler version, which
requires an expertise about both hardware development and used HLS flow.
Moreover, it is difficult to modify the base code, as reusing the behavioural
description in another context will probably require to tune every pragmas
again, to guide the exploration flow.

Another approach based on controllable yet automatic inferences as been
introduced in Spatial [KFP+18], where automatic inferences for scheduling
and pipelining coexist with user defined parameters for generation.

3.2.4 Exposing an Explorable Design Space

We remark that exposing an interesting design space to be explored — i.e.
a design space that consider potentially optimal designs for the current use
case while providing a structure enabling an efficient exploration — often
requires the developers to bring their expertise using custom parameters,
while some freedom can be left to the tool for simple optimizations in order
to allow compact but usable descriptions.

In this way, we consider building an Hardware Construction Framework
(HCF) based approach for DSE, to allow users to expose specific parameters
for the exploration, while allowing automatic transforms — which should be
easily configurable — to be performed before generation.
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3.3 Metric Definition and Estimations

Another important concern when it comes to DSE is how to define the
goal of the exploration. As stated by Schafer et al. [SW20], no generic
exploration strategy can be defined as it depends on a lot of parameters such
as the application specificities, the target, the functioning conditions or the
use-case constraints and objectives. An exploration process is thus to be
defined specifically for a given combination of those parameters, including
the objective function(s) to be optimized through the flow — as a matter of
fact, multiple objectives and/or constraints are often to be considered in such
processes to provide usable solutions. Barone et al. [BTBB21] introduce the
need for efficient Multi-objective Optimization Problem (MOP) solving —
i.e. ”finding, for some decision variables, a set of values satisfying imposed
constraints, while optimizing a set of objective functions” [Osy85].

In this context, we hence aim at providing some insights about interest-
ing metrics and corresponding estimation methodologies for DSE: in other
terms, we want to discuss how two implementations can be compared for a
given set of constraint(s) and objective(s). Two complementary notions will
be considered in this section: metric definition, which corresponds to cir-
cuit properties that hardware developers consider when iterating over their
designs, and estimation methodologies, which are the ways those metrics
are estimated in the flow.

Actually, to be able to efficiently explore a design space, an accuracy
vs speed trade-off is introduced in the process, as providing an accurate
estimation of a metric may require long procedures from specific tools —
e.g. vendor frameworks such as vivado or quartus — while quick estima-
tion methodologies often result in approximate estimations. We will thus
consider mainstream metrics for exploration process, as well as interesting
methodologies for their estimations, in order to provide users with a way to
comprehend and take the best of this trade-off in their DSE design.

3.3.1 Estimating Temporal and Spatial Concerns

In standard FPGA processes, developers mainly consider two concerns for
validating a circuit — that it fits the target board, and that the temporal
behaviour respects the performance constraints.

The temporal behaviour is mainly considered using two metrics: func-
tioning frequency, which defines the clock cycle duration for the design,
and latency, which is an abstract notion considering the number of cycles
needed for a computation (e.g. in stream based applications such as Finite
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Impulse Response Filter (FIR Filter), it can be defined as the number of
cycles needed for an input sample to have an impact on the kernel output).
It can also be defined by combining those two metrics, providing a global
latency metric in second.

On the other hand, the spatial part is mainly divided in four metrics for
FPGA design, corresponding to the basic elements of a FPGA structure:

− Look-Up Tables (LUT)

− Flip Flops (FF)

− Digital Signal Processors (DSP)

− embedded memories, such as Block RAMs (BRAM)

Estimations for both metrics are classically based on manual analysis
of vendor synthesis or implementation reports, which can hence be used as
the reference value to achieve through estimations, but is obtained after
long processes. We will hence discuss different levels of estimations, from
high abstraction level to RTL based methodology, to provide insights about
speed, accuracy and usability of different methodologies.

Resource Estimation

To begin with, resource estimation is a key feature for efficient exploration,
with various level approaches proposed the last decades.

As RTL approaches are easy to integrate in any design flow (the repre-
sentation level being the entry point of most synthesis flows), HDL based
methodologies have been proposed for resource estimation. They mainly
rely on two complementary approaches: modelling steps that the synthesis
is expected to take in order to provide realistic estimations [SJ08], and use
characterisation of basic blocks and Intellectual Property (IP) cores [DSC08].
This characterization approach allows to adapt estimators to a given FPGA
and synthesis flow by providing a target specific way to generate the basis of
the estimation methodology — to do so, basic blocks of interests are identified
and synthesized only once, the report being parsed to provide a character-
ized model of the component to be used each time a similar component is
identified in the estimated circuit.

As for higher abstraction initiatives, MATLAB based approaches have
been introduced for early estimation of resource from algorithmic description
through analytical models of circuits [NHCB02][SHM+04] — however, as
HLS initiatives mostly consider C/C++ implementations, approaches based
on such model have been left aside for more integrated solutions.
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Regarding HLS recent initiatives, different techniques have been used
in order to provide quick feedback to the exploration flow, either based on
analytical models — e.g. to estimate DSP usage for multiplication imple-
mentation [ALS15], BRAM usage [ZFS+20] or approximate arithmetic im-
plementation [CGMVSH20] — or on statistical approaches to infer resource
usage from a circuit model [MOG+13].

Some application specific initiatives have also been proposed, for example
using a mathematical model to estimate the resource usage of a FPGA-based
Network-on-Chips (NoC) through a learning model [FCB14].

Timing Estimation

When it comes to early timing estimation, two main approaches are to be
considered: either try to estimate the functioning frequency, or fix it us-
ing synthesis directives, and use scheduling algorithms to provide a latency
estimation.

While this first approach is closer to standard design flows, it is imprac-
ticable to estimate critical path delay at early stages of FPGA based flows,
as most of the delay is actually induced by the routing phase — more than
60% of the delay [XK96] — that happens late in the process, is really difficult
to model and is heavily target dependent.

As a result, most of the HLS methodologies rely on the second approach,
which is more feasible, is a better fit due to the change of paradigm, and
can use the literature on scheduling methods to provide efficient ways to use
allocated hardware [PBMR14][WSL+20].

In contrast with such static approaches, recent initiatives based on dy-
namic execution have been proposed to extract sub traces from C/C++ runs,
using a Resource constrained List-Based Scheduler for latency estima-
tion [ZPL+16][SDR+21]. The profiling approach provides an interesting al-
ternative to static analysis of the circuit, as the entry point is an executable
description of the target algorithm [OLT+18].

Joint Estimation

While we considered separated estimations of both concerns until now, most
solutions used joint estimations of both spatial and temporal dimensions, as
they are heavily correlated.

When the design flow cannot be easily modelled by description analysis
— as it is done in HLS tools — it remains difficult to estimate the timing
accurately, and it is often necessary to run the full implementation flow to
validate the timing of a design after DSE phase. Todman et al. [TL12] use
an inner loop for quick iteration, and an outer, more time consuming loop for
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estimation validation, while Paletti et al. [PCS21] leverage multiple features
to the reduce synthesis time: syntheses are run on some implementations, and
a statistical method, named Nadaraya-Watson model, is used to estimate
both resource usage and timing considerations of the implementations near
to the synthesized ones. They also use the incremental compilation feature
from vivado to perform quicker synthesis of new points.

As for HLS based initiatives, they actually use the result of the schedul-
ing algorithm to provide both resource usage (by considering the minimum
amount needed for each operation primitive with an optimal scheduling) and
latency estimation. However, such estimations are quite inaccurate with re-
spect to post place and route results, and initiatives are taken to consider
multi-fidelity metrics in exploration process, using fast HLS based estima-
tion to select implementations to explore, and accurate synthesis results to
actually find the best fit among selected variations [LC18]. Some MAT-
LAB based approaches also use models to estimate both resource usage and
timing [SHM+04], in a similar way to initiatives discussed in the previous
sections, or profile based methods to extract metrics from MATLAB exe-
cutions [BMJ02].

Other initiatives for joint estimation include Machine Learning (ML)
methods — e.g. using transfer learning method to estimate resource and
timing using prior knowledge from previous DSE runs [KC20] — and profile
based approaches, where sub trace extraction is mixed with learning meth-
ods [ZPW+17] to improve the Lin-analyzer as introduced by Zhong et al.
[ZPL+16]. Bannwart Perina et al. [BPSBB21] also aim at improving Lin-
analyzer, providing a roofline model to perform efficient exploration.

As can be remarked, a lot of initiatives are taken to provide quick yet
accurate way to estimate both resource usage and temporal behaviour of
generated circuits early in the design flow.

3.3.2 Quality of Service Estimation

Most of design flows only consider introduced metrics, as they can be defined
in a generic way and don’t rely on considered application. However, in their
study on history and perspectives of HLS based DSE, Schafer et al. [SW20]
consider applying such methodologies to the AxC domain, by integrating
Quality of Service (QoS) concerns as additional metrics in the flow.

Different approaches have been proposed in the AxC domain in order to
build QoS based DSE frameworks — the first step being to define how to
estimate the accuracy of a given circuit for a particular use case.

Two orthogonal approaches can be considered for QoS estimation: either
use an analytic model [HMS05], or use empirical results, which can be based
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on RTL based simulations [MKC+20] or higher level executions (e.g. in the
context of HLS tools) [REHS+16][GWC16]. Recent initiatives have been
taken to provide quicker yet accurate estimation models, using ML methods
instead of long running simulations to predict QoS [AGMP21].

A notable feature provided by Manuel et al. [MKC+20] is the ability
to define custom QoS metrics, as accuracy can be evaluated in different
manners depending on the use case (Peak Signal to Noise Ratio, Root Mean
Squared Error, average error, ...). By providing different models for error
estimation, such approach thus enables users to tune the exploration tool for
their particular use case, thus providing a more generic approach.

Other approaches can be considered to provide relevant metrics for AxC-
based explorations — for example, Savino et al. [SPLDC19] consider the
usage of the Register Data Lifetime metric to identify the critical regions
in approximate circuits, and thus adapt the global effort to produce efficient
yet accurate designs.

3.3.3 Estimating Other Metrics

As DSE processes are built to guide and mimic developer intuitions in their
iterative workflow to achieve acceptable designs, only considering a fixed set
of metrics is a real limitation, and various initiatives have been proposed to
integrate more exotic metrics in exploration flows.

While Li et al. [LZPC15] expose an exploration flow to optimize appli-
cation throughput, Siracusa et al. [SDR+21] provide a comprehensive model
to consider memory usage in DSE.

Moreover, as limiting power consumption is a raising challenge for ecolog-
ical considerations, multiple approaches have been provided to consider such
concerns at exploration time. Deng et al. [DSC08] provide target specific
estimation of resources and power usage for given IP cores, while Manuel et
al. [MKC+20] use early power estimation tools from vendors [Int21][Xil21b]
to guide exploration. Other approaches use profiling for power estimation
[OLT+18], or ML based techniques [LZSZ20], in order to integrate energy
considerations early in the exploration process.

Finally, initiatives have been proposed to model and study security impact
of variations in DSE CPU based systems [AAPLP21][GSN21], to provide
useful insights in an era where security concerns are critical.

However, those contributions mainly aim at integrating specific metrics in
custom flows, instead of allowing users to define their needs in an integrated
fashion, by providing a comprehensive Application Programming Interface
(API) to expose and integrate custom defined metrics and corresponding
estimation methodologies.
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3.3.4 Defining and Integrating Metrics

Defining metrics of interest for a DSE process is a tedious task, as it depends
on various parameters from the application domain, the target environment
and even the positioning of the circuit on the market.

While generic metrics can be defined — based on spatial and temporal
considerations — other specific metrics can be defined, such as QoS, power
consumption or security, and initiatives are yet to be proposed to define a
generic DSE framework which would allow developers to define both metrics
of interests and estimation methodologies (including needed abstraction level
for the estimation).

In this section, we have exposed a few use cases where exotic metrics are
considered, without providing a comprehensive study of the possible needs
for metric definition in the context of hardware design. However, based on
the exposed needs, we can remark that depending on the objectives of the
exploration, different flows are to be considered, which potentially requires
acquiring new skills and specific knowledge each time.

3.4 Exploration Strategies

The last stage to provide efficient DSE methodologies is the definition of the
exploration strategies, which are the algorithms used to browse the design
space in an efficient way.

As the problem of finding a best fit or a set of best fits in a design space
is a tedious task with exponential complexity — where performing a compre-
hensive study of the whole space is most of the time not tractable — Schafer
et al. [SW20] propose an interesting taxonomy for exploration strategies
(Fig. 3.1). This taxonomy outlines the multiplicity of approaches that have
been taken to provide a solution to this problem, as well as the fact that it
is not possible to propose a best strategy for DSE in any context, as appli-
cation specificities, target particularities and execution environment are as
many variables to take into account when providing a solution for a particular
use case. Four different categories are considered: meta-heuristics, dedicated
heuristics, supervised learning and graph analysis based approaches, relying
either on synthesis results, model based analysis, or a combination of both.
Moreover, Shathanaa et al. [SR18] propose a similar taxonomy, providing a
set of different approaches for efficient exploration. As both surveys exhibit a
covering analysis of the various approaches, we will only consider initiatives
that seem promising here, and will not provide a comprehensive study of this
wide domain of research.
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Figure 3.1: Taxonomy for HLS based DSE approaches, as proposed by Schafer
et al. [SW20]

On the other hand, Barone et al. [BTBB21] expose a substantial liter-
ature for AxC-based exploration, showing that specific domains have their
own optimization problems, and claim that we need generic DSE framework
to address those specificities.

This section will thus expose a set of exploration initiatives based on
introduced taxonomy from Schafer et al. [SW20] (Fig. 3.1), and provide
some insights about usage and limitations of considered approaches.

3.4.1 Meta Heuristics

A first class of exploration algorithms is based on meta heuristics, which are
problem-independent heuristics that can be used to efficiently solve Multi-
objective Optimization Problems (MOP).

To begin with, Genetic Algorithms (GA) have been used to perform
MOP solving in an efficient way [MKC+20]. GA are evolutionary algo-
rithms that relies on performing biologically inspired operations to evolve
population toward better solutions, by model variations of implementation
as potential mutations in a population of architecture. Dovado [PCS21] ex-
ploit a Non-Dominated Genetic Algorithm from [SHM13] to solve the
DSE optimization problem, while Barone et al. [BTBB21] provide an evo-
lutionary search engine Bellerophon in their E-IDEA automatic exploration
framework. This framework itself is an amelioration of IDEA framework
[BIM16], which was using a branch-and-bound approach to solve this opti-
mization problem.

We can also consider stochastic processes such as Bayesian optimiza-
tion for MOP solving, which can be used to optimize costly (i.e. long to
estimate) functions in an efficient fashion. To do so, multi-variate spaces are
modelled using Gaussian processes [LC16][LC18], and space exploration is
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then performed without having to exhaustively explore the whole space. This
is the approach used by BOOM-Explorer to efficiently propose a perfor-
mant implementation of the BOOM core [BSZ+21]: Gaussian processes
are used for initial set characterization (along with machine learning tech-
niques), and Bayesian optimization is then used for Pareto optimization
of considered design space.

Other meta heuristics for optimization have been exposed by Schafer et
al. [SW20], where biological and natural behaviours are used as model for
optimization process, as it is the case with simulated annealing, for example.
Simulated annealing is a Monte Carlo based method aiming to model the
process of metal annealing, consisting in heating and cooling the metal in
order to achieve a better stability. It can be used to approximate a global
optimum for an optimization problem, by allowing to avoid local optima
which could be found by simpler strategies, and was used to solve DSE
problem by various initiatives, including Witschen et al. [WAGM+19].

As meta heuristic usage for MOP solving is a very wide research domain,
we will not list every initiative to provide efficient manners of solving such
problem. However, one should know that many algorithms can be used, and
should consider them when building a DSE framework.

3.4.2 Dedicated Heuristics

While meta-heuristics are problem-independent heuristics for optimization,
dedicated heuristics are designed for specific problem solving. As DSE prob-
lem has been considered for decades now, many initiatives have proposed
dedicated algorithms to perform efficient exploration, instead of trying to
apply generic heuristics from other optimization domains.

While Prost-Boucle et al. [PBMR14] propose a greedy approach to
synthesize C algorithms under constraints (selecting and applying trans-
forms in a sequential way to find Pareto optima), other approaches focus
on quick estimation methodologies to perform exhaustive search of the space
[ZPW+17][BPSBB21]. Other approaches uses the structure of design space
itself to perform more efficient optimizations: for example, random sam-
pling of the space can be used, either to easily find Pareto optimum designs
through neighbourhood exploration [YHC+21], or to identify regions of in-
terests before performing sub region exploration through other processes
such as search tree algorithms [AGMP21]. In order to provide efficient ex-
ploration of the space, one can also consider iterative processes in a greedy
approach — e.g. iteratively selecting next directive to optimize in HLS
based processes [SDR+21], or using gradient based algorithms to find local
optimum [WAGM+19].
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Moreover, dedicated heuristics can also be defined for application specific
explorations, with a rising needs for Convolutional Neural Network (CNN)
implementation exploration [MGAG16][PPP20]. This exhibits the specifici-
ties a domain can bring to the exploration problem, as well as the need for
users to define specific explorations strategies for their use cases.

More complex initiatives leverage multi-fidelity estimation: Dong Liu et
al. [DS16] perform HLS based estimation of the whole space, then perform
pruning before syntheses, using Rival Penalized Competitive Learning
to efficiently synthesize remaining implementations. In this way, they expose
a need for a way to explicitly specify sequential exploration strategies to build
complex strategy, while leveraging supervised learning methods to achieve
efficient exploration.

3.4.3 Supervised Learning

As defined in exploration taxonomy from Figure 3.1, both meta-heuristics
and dedicated heuristics are synthesis based processes, meaning that they
only consider synthesis (or other estimators) results to guide exploration.

On the other hand, model based initiatives have been proposed in or-
der to reduce the number of estimation processes to be run in an explo-
ration process, thus accelerating the global flow. Supervised learning meth-
ods have thus emerged, leveraging synthesis generated knowledge to feed
learning methods to be exploited later in the flow.

Different uses of supervised learning have been proposed, from leveraging
knowledge from prior explorations to speed-up the current one [FKA+20], to
fast simulated annealing using a decision tree [MS14].

Geng et al. [GMX+21] use Graph Neural Processing to explore adder
implementation, while Nardi et al. [NKO19] also leverage prior knowledge in
Spatial before using active learning under unknown feasibility constraints to
provide Pareto approximation in their DSE engine. Liu et al. [LC13] study
the usability of Random-Forest algorithm for HLS based DSE, providing
a comprehensive study on eight different learning models. Moreover, Meng et
al. [MAGK16] provide an interesting approach to re-think machine learning
usage for DSE, by using such methods to prune the design space before
running end-to-end exploration using synthesis processes.

Finally, BOOM-Explorer [BSZ+21] uses Gaussian process along with
active learning and deep kernel learning functions for both initial set gener-
ation and design space characterization before employing Bayesian optimi-
sation for exploration, showing that multiple approaches can be mixed to
generate efficient exploration strategies.
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3.4.4 Graph-Based Algorithms

The last class of DSE strategies in the considered taxonomy is purely based
on modelling the whole synthesis flow instead of performing costly syntheses.

Such initiatives include Lin-analyzer [ZPL+16], which uses profiling to
build a Dynamic Data Dependence Graph (DDDG) model, COMBA
[ZFS+17][ZFS+20], a model based exploration framework for HLS, and
FlexCL [WLZ17].

This approach does expose the needs for expressivity for users to be able
to build purely analytic models for exploration in their DSE framework.

3.4.5 Discussion on the Exploration Needs

A plethora of different approaches have been proposed in more or less recent
initiatives in order to improve DSE processes, and various heuristics and
algorithms should be considered by users aiming at implementing efficient
exploration flows.

Among those initiatives, some leverage multiple approaches by combining
them for efficient exploration [DS16][BSZ+21], displaying a need for flexibility
in the process of building an exploration strategy — the designers should be
able to define and guide their exploration based on both their applicative
and technological expertises.

In order to provide developers with such flexibility, a library of modular
exploration passes should be proposed for efficient strategy building, allow-
ing users to sequentially compose basic strategies to define more complex
DSE operations in a given design space — e.g. leveraging quick estimation
through learning methods for efficient pruning before running syntheses for
more accurate results [MAGK16].
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3.5 Synthesis on the Existing Approaches

Analysis of the literature

In this chapter, we have provided an analysis of the existing Design Space Ex-
ploration (DSE) strategies in the literature, focussing on three main aspects
— the design space exposition, the metrics to be considered for both evalua-
tion and comparison of different architectures, and the exploration strategies
to be used to efficiently browse through a design space.

We have identified some initiatives that could be considered to provide
performant exploration frameworks, including wide research domains such
as High Level Synthesis (HLS) and Domain Specific Languages (DSL), and
more recent approaches such as the Hardware Construction Language (HCL)
paradigm. Among them, we put a particular focus on building flexible frame-
works for strategy definition, such as the Approximate Computing (AxC)
specific E-IDEA [BTBB21], which aims at proposing a generic exploration
framework that allows its users to define application and target-independent
strategies in an extensible fashion.

In addition to this, we consider various taxonomies of exploration strate-
gies, and among them the one proposed by Shathanaa et al. [SR18], where
three strategy approaches are considered — namely hierarchical approach,
iterative approach, and sequential approach. We hereby identify an opportu-
nity to leverage the composition of basic exploration strategies in a functional
fashion, in order to provide the users with sequential approaches in their ex-
ploration framework.

Considered approach and planned contributions

Based on this analysis of the DSE research field, we plan to build an efficient
exploration tool to ease the life of the hardware developers. More specifically,
we examine providing a generic Field-Programmable Gate Array (FPGA)
based exploration framework which would allow users to expose and control:

− their own target and applicative domains
− their own design spaces
− their own metrics and estimation methodologies
− their own exploration strategies
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To do so, the first step is hence to define how the design spaces are to be
exposed in the framework. While we considered the usage of both HLS and
DSL-based techniques for exposing explorable design spaces in this analysis,
one can remark that such approaches have been widely explored in the past
decades, resulting in the creation of multiple, industrially used frameworks.
However, such tools are mainly based on the usage of architectural directives
in the code to guide the exploration, and do not allow to finely control the
generated accelerators as every choice that are not manually tuned by the de-
velopers are produced by automatic inference tools. On the other hand, some
recent initiatives considered using Register-Transfer Level (RTL) languages
to build generic exploration frameworks such as the one we are discussing
here [PCS21]. Nevertheless, they are based on standard Hardware Descrip-
tion Languages (HDL), which are difficult to use and apprehend, and do not
benefit from emerging paradigms to increase the productivity of the design-
ers. To cope with those limitations, we hence consider using an HCL and its
associated Hardware Construction Framework (HCF) to provide users with
high level features for hardware development, while enabling to efficiently
expose expertise-based design spaces.

As for the definition of the metrics of interest, as well as the correspond-
ing estimation methodologies, we consider implementing the most commonly
used methodologies as a proof of concept. However, some other approaches
among the ones that have been presented in this chapter could be applied
to build meaningful ways to evaluate and compare architectures, in order to
provide users with both modularity and flexibility in their design processes.
Indeed, some other initiatives cannot be applied in this context — e.g. con-
sidering an HCL as the entry point of the exploration flows is not compatible
with the estimation methodologies that rely on an algorithmic description of
the circuits behaviours, as it is the case for most of the HLS-based latency
and resource estimators.

Finally, when it comes to the exploration strategies, most of the consid-
ered algorithms can be applied for DSE regardless of the exposition of the
design space — except for graph-based algorithms, which also require an
algorithmic description to be used. In this context, and even if we only con-
sider implementing basic strategies in a first time, one could consider each
of those approaches to build a configurable library of exploration algorithms,
hence providing the users with a generic and modular tool.
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Identified limitations

After defining the scope of this work, as well as the planned contributions,
we identify some limitations about the proposed approach.

First of all, it will require its users to explicitly expose the design space,
thus requiring expertise about both the algorithm and the target board. It is
quite different from the HLS approach, for example, where the design space
is essentially defined by the transformations performed by the HLS tool to
generate the accelerators, that are quite transparent for the developers.

Moreover, our approach will require the users not only to define the design
space to be explored (by exposing the generation parameters as architectural
knobs), but also to describe the different generators of accelerators in a RTL-
based language, which also requires a lot of time and expertise.

Last but not least, we will only consider sequential exploration strategies
in this work, which could be a limitation for the algorithms relying on parallel
and interacting steps for instance.

However, we propose to explore the opportunity of building a fully con-
figurable exploration framework, that would leverage the features of recent
HCFs to facilitate the life of hardware developers.
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4

T
his chapter discusses the definition of metrics used in hardware develop-
ment processes, as well as their integration in a Hardware Construction

Framework (HCF). We then consider different types of metrics to be used
for hardware development, as well as various ways to estimate them, and
finally expose a generic Application Programming Interface (API) for users
to build their own estimation methodologies.
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4.1 Importance of Qualitative Estimations

In order to build efficient hardware designs under various constraints — such
as resource usage, power consumption or exploitable throughput — hardware
developers require quantitative estimations to make the best decision possi-
ble. However, design processes remain time-consuming tasks, and standard
design methodologies rely on heavy computations — e.g. logic synthesis
— to obtain exploitable feedback, resulting in long turnaround times. In
this section, we will consider different metrics and the quality of estimators
to retrieve them, then discuss the importance of qualitative estimators for
hardware design, and more specifically for Design Space Exploration (DSE).

4.1.1 Quality of the Estimators

Various metrics can be used to define the quality of a hardware implementa-
tion, depending on the target circuit environment and the objectives of the
developed accelerators. Among the most used metrics are resource usage,
operating frequency, circuit latency or power consumption. However, they
need to be adapted to the running environment of the design — e.g. resource
usage can be defined as the area of silicon used when building Application-
Specific Integrated Circuits (ASIC), but is most difficult to define for Field-
Programmable Gate Array (FPGA) design, as multiple resources have to be
considered due to the inherent heterogeneity of the boards (Fig. 2.2).

The quality of estimations needs to be considered to build efficient designs
and exploration flows, as using poor estimators will more than probably result
in a poor decision by the designer or by the exploration framework. However,
we first need to define what is the quality of an estimator for a given metric,
in order to quantify and compare multiple estimation techniques. Quality of
an estimator can only be defined with respect to a reference value, i.e. the
expected value for the metric being estimated. In the rest of this work, we
will consider synthesis results as the reference value for both resource and
frequency metrics, and consider estimators Quality of Results (QoR)1 with
respect to vendor specific tools such as vivado or Quartus.

In order to quantify quality estimators, we consider three aspects of an
estimation methodology: accuracy, faithfulness and speed. Accuracy
is defined as the proximity of the estimations to the expected values, while
faithfulness is defined using the standard deviation of the estimations —

1In the context of this thesis, both Quality of Results (QoR) and Quality of Service
(QoS) notions will be used. Please refer to the glossary for disambiguation purposes.

40



4.1. Importance of Qualitative Estimations

i.e. variation of estimators accuracy on different implementations.2 As a
result, estimators can have high faithfulness but low accuracy — e.g. al-
ways estimating twice as many resources allows to easily compare different
architectures, but can result in wrong design decisions as estimations are far
from real values. Finally, speed is defined with respect to the time needed
to perform estimation.

In this context, estimation methodologies offer different trade-offs be-
tween speed, accuracy and faithfulness, and estimator usage depends on the
design goal. For example, to validate that a circuit is suitable for a given
constraint set, one may consider slow but accurate estimations. Conversely,
performing DSE requires fast and faithful estimators, but accuracy is not a
main concern as the focus is put on comparing hardware implementations.

We built Table 4.1 using our expertise and the literature introduced in
Chapter 3. It presents different estimation methodologies, as well as the
corresponding quality metrics, showing different trade-offs depending on the
usage. Standard Register-Transfer Level (RTL) methodologies are used as
a baseline (Fig. 2.3), since they are used to generate the reference values.
Various works have explored rapid RTL-based estimations of both resource
usage and operating frequency. However, critical paths are almost impossible
to accurately estimate without running whole standard processes, therefore,
RTL-based methodologies are not appropriate for such estimations. To cope
with this challenge, High Level Synthesis (HLS) methodologies rely on fast
resource estimations to allow quick exploration of the design space, but most
tools use latency estimation and automatic scheduling rather than frequency
estimation, in order to build accurate and controllable timing estimations.
As for Spatial, it provides quick, reasonably faithful and accurate estimators,
but the framework relies on a Domain Specific Language (DSL), and is hence
not adaptable to every possible use case.

As a result, different metrics and estimation methodologies are to be
considered for hardware development, depending on use case specificities
— this aspect is known as multi-fidelity metrics usage and was already
considered in the context of HLS exploration [LC18].

4.1.2 Feedback Usage for Hardware Development

After defining qualitative concerns about metric estimators, we consider the
different uses of metric estimation for hardware development processes.

In standard RTL methodologies, iterating over produced designs is a
time-consuming task as obtaining feedback about the developed circuit qual-

2Estimators QoR should thus consider both notions.
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Entry level Metric Tools Accuracy Faithfulness Speed

RTL
Resource, Synthesis
frequency (vivado, Quartus)

High High Slow

RTL Resource
RTL estimation

Low Medium Fast
[SJ08][DSC08]

HLS
Resource, HLS tools
latency [CCA+11][Xil19]

Low Medium Fast

DSL
Resource,

Spatial [NKO19] Medium Medium Fast
frequency

Table 4.1: Comparison of different estimators depending on abstraction level

ity can take up to days of complex tool usage such as synthesis or place and
route. To increase productivity, quick estimators can be used to swiftly pro-
vide feedback to developers, guiding them toward acceptable solutions while
reducing the time spent in heavy computations — however, significant time
is still needed at the end of the process to validate that a design actually fits
on the target board.

Moreover, qualitative estimators are primordial for efficient DSE, as ex-
ploration speed is a main challenge for such methodologies — actually, two
levers can be considered to speed up exploration processes, namely explo-
ration strategies and estimation methodologies. As exploration strategies
will be considered in Chapter 5, this chapter will be dedicated to discussing
the impact of estimation methodologies on DSE processes.

As such processes are based on architecture comparisons in order to de-
termine the impact of implementation options on resulting designs, one of the
main challenges is related to how architectures should be compared. There-
upon, quick but faithful estimators need to be considered in such processes
to perform meaningful comparisons in a reduced amount of time.

4.2 Resource and Timing Estimations

Resource usage and timing concerns (e.g. operating frequency, circuit la-
tency) are among the principal considerations when it comes to FPGA de-
velopment, as target specific constraints are to be respected for a design to
pass the validation process. However, as stated in Section 4.1, classical flows
used to produce such metrics are time consuming, resulting in long iterations
over generated designs to find a suitable solution.

This section hence considers building fast resource and timing estimators
based on the Hardware Construction Language (HCL) paradigm to speed up
its usage — more specifically, we consider a Chisel based implementation.
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The aim is not to build state of the art estimators with particular focus
on a good accuracy, but rather to integrate proof of concept estimators in
an Hardware Construction Framework (HCF) and consider their usage as a
way to increase hardware developer productivity.

In order to do so, we chose to implement a resource estimation method-
ology similar to the one introduced by Schumacher et al. [SJ08], based on
operator characterization and an Application Programming Interface (API)
allowing users to model compilation steps that the synthesis tool is expected
to take in order to provide realistic estimations.

4.2.1 Intermediate Representation Usage

Using Chisel as an entry point for a hardware development flow, one still
requires a HCF to perform circuit elaboration, optimizations and back-
end emission, allowing the generated design to be fed to any RTL based
toolchain. As an HCF requires an Intermediate Representation (IR) to op-
erate on — as does any compiler — Flexible Intermediate Representation
for RTL (FIRRTL) [LIB16][IKL+17] was introduced along Chisel. It was
primarily built as an initiative to use HCLs for parametrized hardware li-
brary building, abstracting technology specific knowledge from the HCF
frontend and relying on further transforms and backend to transform target-
independent RTL to technology specific RTL — allowing, for example, to
use the same Chisel for both ASIC and FPGA targets. As a matter of
fact, adapting software compilers structure — i.e. separating entry language
(frontend), IR transforms and code generation (backend) — enables to reuse
HCL code, instead of using ad-hoc scripts to replace specific structures in
the entry code to target a particular technology, as is usually done in stan-
dard development processes. Such target specific transforms can now be
enabled by operating directly on the IR, and modifying the target technol-
ogy becomes as simple as changing the transforms and configuration used
for generation. Moreover, as both Chisel and FIRRTL are based on scala,
high level programming features can be used for both hardware generator
description and transform definition, enhancing developers expressivity for
hardware description.

Thereupon, to integrate estimators in an HCF, one must consider defin-
ing IR transforms as a way to operate on a given circuit and provide metric
estimations in the process.

43



Chapter 4. Building and Integrating Estimators

4.2.2 Basic Operator Characterization

Our first approach to build FIRRTL based estimators is based on a naive
approach of digital circuits, considering each operator individually on data
paths, adding individual metrics to build global estimators.

To begin with, we oppose costly vs non costly operators — based on our
designer experience — in Table 4.2, considering impact on both resource
usage and data paths traversal time.

Operator Description Impacting parameters
Considered

for estimation
ADD Adders Operand widths yes
MULT Multipliers Operand/result widths yes

BINOP
Binary operations
(OR, AND, NOT, ...)

Operand widths yes

MUX Multiplexers Operand/Condition widths yes
DSHIFT Dynamic shifts Shift/result widths yes

REGISTER Registers Element width yes
MEMORY Memory primitives Memory width and depth yes
SSHIFT Static shifts Input width no
SELECT Bit selection among words Result width no
PAD Word padding Result width no
CAT Word concatenation Result width no

CONVERT Type conversion Operand type and width no
IO Input/output Source/dest width no

CONST Constant definition Constant value no
CONNECT Signal connection Source/dest widths no

Table 4.2: Operator impacts on both timing and resource usage estimations

To define non costly operators, we consider operations that are mostly
reduced to rewiring of signals, as such action does not require particular
resource usage but routing resources, and as wire traversal is considered non
significant in this approach.

After identifying operators to consider for estimation, we use a pre-
characterization based approach. To do so, we use vendor specific tools —
such as the vivado synthesis tool for Xilinx FPGAs — to generate refer-
ence values for both resource usage and operator traversal time. Operators
are characterized for a given set of different operand bit widths — for exam-
ple, adders are characterized with operands on 1, 2, 4, ..., 256 bits — storing
all the results in a library file (using the JSON format).3 Once this is

3Different operand widths are not considered in this process to enable single parameter
characterization, thus only maximum operand bit width is considered for estimation in
this naive approach.
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done, we can use this characterized library to estimate both resource usage
and timing of a given operator, using maximum operand bit width in the
FIRRTL representation as a parameter for estimation. The estimation pro-
cess is then based on a simple statistical model: we retrieve the two nearest
results — i.e. nearest maximum operand bit widths — for an operator from
the library, and estimate both resource usage and data path cost using linear
regression between those two results, for each considered metrics.

A first distinction is then to be made between resource and timing estima-
tion: while we can estimate global resource usage by adding each individual
operator estimation — for each metric considered (e.g. LUTs, FFs, DSPs
and BRAMs) — we need further circuit analysis to provide interesting tim-
ing estimations.

Remark: characterization is not mandatory for REGISTER resource esti-
mation as technological mapping is quite straightforward — a n bit register
will only use n FFs. As for MEMORY primitive estimations, both width and
depth should be considered for estimation, and characterization is not needed
either for the same reason. We thus use an ad-hoc computation of memory
resource, based on a simple estimation of the total amount of bit in the
MEMORY primitive (depth× width).

4.2.3 Data Path Building

Timing considerations for hardware design are mainly based on the notion of
critical path. Critical path is defined as the longest path in the circuit —
each path corresponding to a sequence of wires and transistors from a starting
point to an ending point, the longest being the one where the total traversal
time is the greatest. In the context of synchronous designs, both starting and
ending points are mostly defined as memory primitives, being either registers
(FFs) or more complex memory components (e.g. BRAMs). Circuit IOs
are also to be considered for critical path definition, as they represent the
interface with the external world, and may impact on the operating frequency.
Maximal operating frequency is then defined as the inverse of the longest
path traversal time, as operating at a higher frequency will result in some
computation signals not being saved before new computations start.

In order to provide a maximum operating frequency estimation based on
FIRRTL, we thus have to estimate traversal time of each possible path in the
circuit, compare them, and expose the longest one(s) to users. We consider
three different cases in the process: register to register paths, IO to register
paths, and register to IO paths. It is important to note that the FIRRTL
representation uses a hierarchical approach for describing a circuit — like
do standard HDLs such as verilog or VHDL — which is used to describe
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a complex circuit as a composition of simpler parts, the modules. The
main circuit of a design process is denoted as being the top level module,
and corresponds to the main Chisel class being compiled. One of the main
challenges is hence to build every possible path, including cross-module
ones — i.e. paths originating in a module and terminating in another one
— which requires multiple passes over the circuit representation.

Once every possible path is built, we can finally use individual operator
traversal time estimations built in Section 4.2.2. We consider a basic, addi-
tion based approach, where every estimation in a given path are added to
estimate its total traversal time. We then compare each path traversal time,
and provide users with feedback on timing concerns.

Figure 4.1 introduces an example of this estimation methodology usage
on a simple circuit (Fig. 4.1b), when targeting a Xilinx VC709 board. Sub
results in Table 4.1c are computed using characterized values from Table 4.1a
and simple linear regression — e.g. for MULT operator estimation on 24 bits,
each value is computed using the average of values on both 16 and 32 bits.
Then, for resource estimation, each individual estimation is added, while for
critical path estimation, all paths are compared.

In this case, critical path goes from a 24 bits register to the 49 bits register
through both MULT and ADD operations, resulting in a total traversal time of
0.695 + 1.512 + 2.702 = 4.909 ns4 — corresponding to a maximum operating
frequency of 204 MHz.

4.2.4 Limitations of the Approach

While this first approach for both resource and timing estimation is simple
to apprehend, it presents some heavy limitations.

First of all, the operators are estimated using only the maximum operand
bit width as parameter. Nonetheless, some operators might require some
additional parameters, as shown in Table 4.2 — such as MEMORY primitives,
MUXes or DSHIFTs.

Moreover, the heterogeneous structure inherent to FPGAs led developers
to consider specific design patterns, in order to take advantage of available
resources on a given target. For example, Multiply and Accumulate (MAC)
operations are commonly used in domains such as signal or image processing,
and can use DSPs — if available — to favourably replace LUTs and improve
performance while reserving resources for other computations. Such usage
cannot be expressed when considering operators as individual entities, and
higher granularity should be enabled in the flow.

4The REGISTER traversal time is considered only once in the critical path.
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Operator Bit width LUT FF DSP BRAM Path (ns)

ADD

16 16 0 0 0 1.296
32 32 0 0 0 1.512
64 64 0 0 0 1.944

MULT

16 0 0 1 0 1.228
32 0 0 4 0 4.176
64 0 0 16 0 5.439

REGISTER

16 0 16 0 0 0.695
32 0 32 0 0 0.695
64 0 64 0 0 0.695

(a) Characterized operator library for estimation (Xilinx VC709 board)

(b) Example of a simple circuit to estimate

Operator # Bit width LUT FF DSP BRAM Path (ns)
ADD 1 32 32 0 0 0 1.512
MULT 1 24 0 0 3 0 2.702

REGISTER 3 24 0 24 0 0 0.695
REGISTER 1 49 0 49 0 0 0.695
Circuit 32 121 3 0 4.909

(c) Simple estimation of resource usage and critical path for a simple circuit (Fig. 4.1b)

Figure 4.1: Basic estimation methodology based on individual characterization

Finally, data paths can heavily differ depending on many factors such as
the operation, the operands or the target. For instance, adders are usually
implemented using carry adders, each result bit being generated in a se-
quential way — the first bit only requiring a 2 bit logical operation, while
the n bit require every results in [[0, n−1]] to compute the input carry. Let tn
be the traversal time of a n bit adder. We consider chaining two n bit adders

47



Chapter 4. Building and Integrating Estimators

a0 and a1, with the output of a0 being one of the operand of a1. Our naive
approach consider the total traversal time of the path as being 2× tn = t2×n,
however computations in a1 can begin after only t1, as computing a1 first
bit only requires knowledge about the first bit of a0 result. This means that
most of the total traversal time of this path is actually absorbed in a pipeline
fashion, with a total traversal time of tn+1 instead of t2×n.

All of these properties must be considered in order to build exploitable
estimators — i.e. estimators that may help designers into taking advanta-
geous decisions in the development process — as not considering them might
result in erroneous feedback.

4.2.5 Macro Block Replacement

(a) MAC unit macro block example for pattern (R3)(+1)(R1)

Name Description Type Range
bit width maximum input bit width generation [[1, 256]]
outFactor useful output bit width configuration [[1, 2]]

mult register number of REGISTER after MULT configuration [[0, 3]]
add number number of ADD in the MAC pattern configuration [[0, 1]]
add register number of REGISTER after ADD configuration [[0, 1]]

(b) MAC unit macro block parameters w.r.t. Xilinx VC709 specifications

Figure 4.2: MAC unit macro block

In order to improve this first approach, we now propose to consider more
complex patterns for estimation, modelling steps that the synthesis tool is
expected to take to pack operators [SJ08]. To keep the method generic, we
define two main steps for pattern recognition, replacement and estimation,
and consider a user trying to find and replace x different pattern [[p0, ..., px−1]]
in a FIRRTL representation of a circuit.

First of all, they need to define which pattern they are looking for, with
respect to the FIRRTL representation. To do so, we build a Directed Graph
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(a) MUXBLOCK example with 5 inputs and 4 conditions

Name Description Type Range
bit width maximum input bit width generation [[1, 256]]

input number number of inputs configuration 2i,i∈[[1,8]]

condition number number of conditions configuration 2i,i∈[[0,8]]

(b) MUXBLOCK parameters w.r.t. Xilinx VC709 specifications

Figure 4.3: MUXBLOCK macro block

(a) MEMORYBLOCK schematic

Name Description Type Range
element width memory element bit width generation [[1, 1024

address number number of addresses generation 2i,i∈[[1,16]]

register number number of register on address lines configuration [[0, 1]]

(b) MEMORYBLOCK parameters w.r.t. Xilinx VC709 specifications

Figure 4.4: MEMORYBLOCK macro block
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(DG) from a circuit FIRRTL representation to operate on. We then devel-
oped a set of custom utility functions to scan the DG, recognize patterns and
replace them by macro blocks in the graph. We thus search and replace
each pattern pi,i∈[[0,x−1]] in the DG representation in a sequential fashion,
therefore capturing complex computation patterns. At the end of the pro-
cess, an updated FIRRTL representation of the input circuit is produced in
which all operators recognized as belonging to a particular macro block are
replaced by the corresponding macro block. The HCF flow can then con-
tinue, and this representation can be fed into further FIRRTL transforms
— e.g. for estimation purposes.

The second step is used to characterize the macro blocks in a way
similar to the one described in Section 4.2.2. The user thus needs to provide
a Chisel implementation generator for each pattern pi,i∈[[0,x−1]], which is used
to generate the reference values for both resource usage and traversal time,
using vendor tools such as vivado syntheses. The generated values are then
used to enhance the operator library with new parametrized macro blocks.

However, as stated in Section 4.2.2, the first approach only considered
single parameter estimation based on operator input bit width. To cope
with such limitations, we consider two types of parameters to enhance the
estimation process — namely configuration parameters and generation
parameters. The main difference between those two types is the value
set width: configuration parameters can be explored exhaustively for
library building while generation parameters would require too many runs
and are thus only explored on a value subset for library building, before
using linear regression for estimation as was done for bit widths in previous
sections. Doing so enhances the library quality by adding a new entry for
each possible configuration — i.e. each configuration in the cardinal product
of configuration parameters — and each entry defines a regression based
estimator for each considered metric (LUT, FF, DSP, BRAM and delay
path), using generation parameters as arguments of estimation functions.

Three macro blocks were considered to the enhanced basic operator
library described in the first approach: Multiply and Accumulate (MAC)
units, complex MUXBLOCKs, and MEMORYBLOCKs. Figure 4.2 introduces the
MAC unit macro blocks patterns and parameters, based on Xilinx VC709
specifications. This pattern is defined to fill DSP blocks with a maximum
amount of FIRRTL operations by packing them, in order to produce more
accurate resource and timing estimations. This enables the MAC patterns to
absorb every MULT operators and potential ADD/REGISTER operators in the
same pattern, as the specifications state, for example, that Xilinx Virtex 7
boards can absorb up to 4 REGISTERs and one ADD in a DSP block [Xil18].
Figure 4.3 presents a complex MUXBLOCK macro block, as the FIRRTL repre-
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sentation system only considers 2-to-1 multiplexers in the emission process,
resulting in erroneous estimations of n-to-1 multiplexers, as they are repre-
sented as a chain of 2-to-1 MUX operations. In order to cope with those limi-
tations, we thus absorb any MUX pattern with n inputs and m conditions, and
use macro block characterization to improve resource estimation. Finally,
MEMORYBLOCK macro blocks were introduced with respect to Table 4.2, as
both element widths and depth must be considered for accurate estimation.
Figure 4.4 introduces both MEMORY patterns and parameters, which are quite
straightforward but enables a multi-variate estimation of the primitives using
so defined characterized library methodology.

Operator/macro Bit width LUT FF DSP BRAM Path (ns)

MAC [2, 0, 1, 1]
16 0 0 1 0 1.000
32 79 0 4 0 6.642

(a) Characterized macro library for estimation (Xilinx VC709 board)

(b) Updated circuit from Figure 4.1b after macro recognition

Operator/macro # bit width LUT FF DSP BRAM Path (ns)
MAC [2, 0, 1, 1] 1 24 40 0 3 0 3.821
REGISTER 3 24 0 24 0 0 0.695
Circuit 40 72 3 0 4.516

(c) Macro based estimation of resource usage and critical path for Fig. 4.5b circuit

Figure 4.5: Macro block based estimation methodology

Using the macro block replacement technique to improve our basic estima-
tion methodology enables better estimations of complex patterns, and thus
better estimations of FIRRTL circuits on FPGA. Figure 4.5 enhances the
estimation methodology exposed in Figure 4.1 with macro block recognition
and replacement. As macro blocks are parametrized by both generation and
configuration parameters, we denote with MACRO [p0, ..., pn−1] a macro
block with n configuration parameters px,x∈[[0,n−1]] in Figures 4.5a and
4.5c. For example, the MAC [2, 0, 1, 1] pattern represents a MAC unit with an
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outFactor of 2, no REGISTER after the MULT operation, one ADD operation and
one REGISTER after the computation. As we can see, for a maximum input bit
width of 16 bits, the whole pattern can be absorbed in only one DSP, while
it would have taken one DSP, 32 LUTs and 33 FFs for the same pattern
using only basic operator characterization. For the pattern introduced in
Figure 4.5b, the estimations thus differ depending on the used methodology.

4.3 Quality of Service Estimation

Both timing and resources are key concerns when building hardware de-
signs that target FPGAs, and should be considered in every design process.
However, additional metrics should also be considered in specific use cases,
as stated in Chapter 3, and estimation methodologies should allow to easily
integrate new metrics in order to be as flexible as possible.

To demonstrate such flexibility, we chose to consider the Quality of Service
(QoS) of circuits in our methodology, to demonstrate how additional estima-
tors can be built and used in hardware design processes alongside resource
and timing estimations. QoS is a main concern when it comes to partic-
ular domains such as Approximate Computing (AxC) or signal processing
systems, as applications often require guarantees about the maximum error
that may be introduced by approximations through computations. For ex-
ample, usage of fixed point representations instead of IEEE-754 floating point
numbers enable efficient hardware acceleration with no dedicated Floating-
Point Unit (FPU), but results in divergences with respect to the software
computational model — which often uses floating point representations as
CPUs embed dedicated FPU. It is thus necessary to analyse the error intro-
duced by such changes in the data representation to insure that acceleration
does not provide erroneous results, in particular for critical systems.

4.3.1 Taxonomy of the Estimation Approaches

In order to build flexible estimators, we define a taxonomy for estimation
methodologies and apply it to QoS estimation in Figure 4.6. An estimation
can either be based on an analytic formula, an empirical approach, or both
— e.g. when adding two fixed point numbers, one can consider the maxi-
mum error that may be generated, provide a statistical distribution of the
two operands to derive an error model, or take an empirical approach and
estimate the error by running multiple simulations. Each solution should be
considered in this methodology to enable users to leverage their knowledge
about the application domain and the target specificities — e.g. by making
the decision to use FPUs if any are available on the target board.
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Figure 4.6: Taxonomy proposition for QoS estimators

4.3.2 Analytical Estimations

In order to provide analytical estimations for QoS, one should consider the
specificities of both the data representation being used and the computations
being performed. In most cases, a purely analytical approach is not desirable,
as always considering the worst case for error propagation often results in
inaccurate conclusions. For instance, knowing that an output on 8 bits with
4 bits of precision might have accumulated an error of ±1/4 does not bring
any information on whether the implementation choices were good or not —
although can be used for critical system validation. Rather, statistical error
propagation models can be used as basis to chose the data representation
in a design, as assumptions on the statistical distributions of operands can
help reduce the error propagation deduced from the analytical study of the
system, and thus provide more relevant and exploitable results.

In this context, we chose to enable users to define estimators at an an-
alytical level, to derive QoS estimation from an expertise based analytical
formula or error propagation models — or any model based on analytical
study of the design. Such estimators can use hardware generator parame-
ters in analytical formulas, and should be achieved early in the flow, as they
should not require further information about the circuit (see Section 4.4.1).

4.3.3 Empirical Estimations

On the other hand, for non critical systems, an empirical approach may be
used to provide QoS estimation, as occasional deviations for the expected
behaviour should not have a noticeable impact on the design global QoS —
e.g. occasional glitches in a video decoder are not as serious as erroneous
results in the flight computer of plane.
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In this context, the users should be able to build estimators using simula-
tion processes to bring information about empirical results. We thus integrate
simulators in the estimation methodology, and propose helpers to build sta-
tistical analysis of empirical values to build significant estimators such as av-
erage error, standard deviation or Root-Mean-Square Error (RMSE) (which
can be normalized). As a trade-off exists between the accuracy of an empir-
ical estimator and the number of simulations to run, we expose the number
of simulation runs as a parameter of the estimation process.

After defining estimation methodologies for resource usage, critical paths
and QoS, we then propose a generic way to integrate them in an HCF.

4.4 Integrating Metrics in a Hardware

Construction Framework

The main goal of this contribution is not to integrate a particular set of
estimators to the chosen HCF, but rather to expose a generic API for users
to define their own metrics and estimators with respect to their particular
use cases. To do so, we propose a generic model for both metric definition
and their integration in the framework, and apply them to the integration of
estimators defined in Sections 4.2 and 4.3.

4.4.1 Exposing Multi-fidelity Estimators

In order to allow easy metric integration in the Chisel HCF, we start by
defining abstraction levels where metric integration should be possible, as
prior works exposed how multi-fidelity metrics can be useful for explo-
ration [LC18] — for it can enable either quick or accurate feedback depending
on the needs and the exploration step.

Figure 4.7 introduces the baseline Chisel development flow (Fig. 4.7a)
and the proposed estimator integration steps (Fig. 4.7b). We choose to focus
on three abstraction levels where estimators can be defined:

− Graph level — i.e. operating on FIRRTL circuit representation

− Simulation level — i.e. using simulation results for estimation

− Register-Transfer level — i.e. calling RTL based external tools

As we can see on Figure 4.7b, the entry point of the flow is not altered
with respect to the standard Chisel process (Fig. 4.7a).
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(a) Chisel baseline development flow
(b) Integration of multi-fidelity metric in

chisel development flow

Figure 4.7: Proposition for Chisel flow enhancement

The graph level estimators are then built by adding some custom trans-
forms to the ones that are used by Chisel to produce a low FIRRTL rep-
resentation, while the simulation level estimators are build by exposing
an interface with the different simulation backends that are integrated in
Chisel and operate either at FIRRTL level or on the generated verilog. For
readability purposes, we only expose the two main backends integrated in
Chisel: treadle, which is specific for Chisel and directly operate on the low
FIRRTL representation, and verilator, which is an open-source tool that
uses C++ for efficient cycle-accurate simulations. However, other simulators
can be integrated as well, as long as they can be interfaced with one of the
different representations at stake in the flow. Finally, the RTL estimators
are integrated through the usage of the file system, and can rely on any tool
that can take the generated verilog descriptions as its entry points.

Using those three abstraction levels, one can adjust both estimation QoR
and speed for their custom flows in a generic way — for example, both
resource and timing estimators from Section 4.2 are integrated at graph level,
while QoS estimators from Section 4.3 are integrated either at simulation
level or at graph level. The reference values that are computed through the
syntheses are integrated at RTL level, showing that a classical design flow
can also be achieved through this API.
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4.4.2 Proposed Application Programming Interface

In order to integrate our estimation methodology in Chisel HCF, we propose
to use the FIRRTL transform system, which is used by the framework
to enable optimization and circuit generation through IR scans, as shown in
Figure 4.7. In fact, we define three levels for the integration:

− pre-elaboration level — which does not require RTL generation (e.g.
analytical approach)

− elaboration level — which operates on FIRRTL representations (e.g.
resource and timing estimation)

− post-elaboration level — which operates after RTL generation (e.g.
simulation and syntheses)

Pre-elaboration estimations are performed directly on the generator,
by extracting metric estimations from constructor parameters, while post-
elaboration estimations are run at the end of the HCF process, and may
leverage external tools such as synthesis suits or simulators. As for elabora-
tion estimators, they are integrated directly in the FIRRTL flow, and uses
the inner transform and annotation system — which consists in a sequence of
transforms operating on a circuit representation, which can modify it and/or
use an annotation system to forward information in the flow — to generate
estimations from IR scans and forward it to the rest of the flow through
annotation usage.

At the end of an estimation run, all the estimated metrics can be collected
from the annotation system, and used by the developers to iterate on their
designs until a satisfying solution is found.
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4.5 Synthesis on Estimation Methodologies

In this chapter, we discussed the importance of qualitative estimations for
hardware development processes, and put a particular focus on their appli-
cation for Design Space Exploration (DSE).

We considered three different types of metric to be estimated — namely
resource usage, maximum operating frequency and QoS — as well as how
they can be estimated at different levels of fidelity. We proposed a sim-
ple estimation methodology based on an Intermediate Representation (IR)
analysis for both spatial and temporal concerns, as well as an estimation tax-
onomy for Quality of Service (QoS) metrics, focusing on the Approximate
Computing (AxC) domain.

We then introduced a generic Application Programming Interface (API)
integrated in the Chisel Hardware Construction Framework (HCF) to allow
users to define their own metrics and estimators. This interface is supposed
to be comprehensive enough to allow any user to leverage the FIRRTL
representation system to define their custom metrics.

As the Quality of Results (QoR) of estimators is a main focus when it
comes to DSE, various metrics and estimators will be considered in the next
section, which will focus on building an exploration framework integrated in
a HCF.
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5

A
fter defining the interest of relevant metrics and accurate estimators
for hardware development processes, we focus on their usage for Design

Space Exploration (DSE). This chapter outlines the specificities of Hardware
Construction Languages (HCL) that can be used for efficient DSE, before
proposing a methodology for HCL-based DSE. This methodology is based
on high level programming features such as Object-Oriented Programming
(OOP) or functional programming, which enable more expressivity for the
developers. We also exhibit the limitations of this approach and discuss
various solutions to improve the proposed methodology.
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5.1 Defining Design Space Exploration using

Hardware Construction Languages

This section aims at defining how Hardware Construction Languages (HCL)
specificities can be leveraged for efficient Design Space Exploration (DSE),
in contrast to other DSE methodologies based on various paradigms.

The HCL paradigm enables to describe hardware circuit generators in-
stead of hardware circuits, allowing to fully control generated hardware at
Register-Transfer Level (RTL). Doing so, we can define DSE methodologies
which leverage the developers expertise to reduce the amount of implemen-
tations to explore, as some of them can easily be pruned considering prior
knowledge on both algorithm and target. Moreover, high level features such
as Object-Oriented Programming (OOP) or functional programming can be
used to expose variations, exposing more complex implementation options —
such as the definition of various computation units using functions as module
parameters — when compared to standard DSE flows, such as High Level
Synthesis (HLS) methodologies.

5.1.1 Meta Design and Meta Exploration

In order to propose an efficient HCL-based DSE methodology, we start by
defining two main concepts: meta design and meta exploration.

Meta design is defined as the process of building an explorable design
generator based on a prior analysis of both algorithm and target (Fig. 5.1).
Leveraging this analysis, a developer can define relevant implementation vari-
ations — meaning that each possible implementation results from a choice
from the user — and expose them at top level, directly in the module con-
structor. Doing so, the exploration process no more relies on tool inferences
to generate such variations — e.g. as it is the case with HLS methodolo-
gies — but on controlled variations of the generators, resulting in a more
meaningful design space to be explored. Moreover, using such methodologies
enable a more intelligible approach of the exploration, as the implementation
options are directly defined by users, enabling a better apprehension of their
impacts on the generated design.

Figure 5.1: Meta design methodology
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We then define meta exploration (Fig. 5.2) as a process exploiting
a design generator — that was built using meta design — to explore its
implementation variations, thus defining a HCL-based DSE methodology.
In order to provide efficient exploration processes, this methodology allows
the users to define custom strategies — after defining the design space —
leveraging their expertise to guide the flow. In the next sections, we will
consider a strategy to be composed of various metrics to be estimated (with
respect to the considerations introduced in Chapter 4), as well as the different
steps to browse the design space (see Section 5.3).

Figure 5.2: Meta exploration methodology

5.1.2 Implementation Knobs and Parameters

As seen in Section 3.2.3, HLS and Domain Specific Languages (DSL) based
DSE methodologies are based on knobs — i.e. implementation options —
which can be of three kinds: local attributes (as pragmas), global synthesis
options and Functional Units (FU) options [SW20].

The exploration knobs are used by DSE tools to generate implementation
variations, resulting in an explorable space of equivalent implementations of
a same algorithm. It is thus comparable to the parameters of meta design
based circuit generators as defined in Section 5.1.1.

However, the high level parameters exposed by the meta design method-
ology cannot express global synthesis options as it is done with knobs, and
such variations must thus be considered in the meta exploration strategy,
in order to offer comparable features. Nevertheless, both local attributes
and FU options can be leveraged using design generator parameters, and
will then be used in this work to define explorable design spaces.
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5.2 Building Explorable Architectures

As defined in the previous section, the first step to define our HCL-based
DSE methodology is to build an efficient meta design method.

5.2.1 Designing Explorable Hardware Generators

To design explorable hardware generators, one should begin by analysing
both the algorithm and the target to exhibit meaningful implementation
variations. It should result in a design space of relevant architectures to be
explored, while leveraging the users expertise to expose both specific and non
specific parameters.

For example, the Input/Output (IO) bandwidth is a non specific parame-
ter, as it will have a significant impact on most of circuits, while the potential
of parallelism or the number of a particular FU in a given architecture is ap-
plication specific, as it will not have the same impact nor the same definition,
depending on the targeted algorithm. The user expertise is thus required to
produce a good analysis, and is primordial for this whole methodology to
produce meaningful results.

After defining the exploration parameters, one needs to exhibit the pos-
sible values for each of them, in order to build the design space — i.e. a set
of parameters which will be used in elaboration to give a particular imple-
mentation. For each parameter, users thus need to define a set of possible
values, and each set is then considered in a cartesian product to build the
resulting design space.

In order to integrate the meta design methodology in an Hardware Con-
struction Framework (HCF), we propose to expose both parameters and
their values at circuit top levels, in order to build intelligible flows and allow
easy evolutions of the exploration processes.

0 class DotProduct(

1 @linear(6, 12) dynamic: Int ,

2 @linear(6, 12) precision: Int ,

3 @enum (16) nElem: Int ,

4 @linear(0, 4) parallelism: Int

5 ) extends Module with Explorable

Listing 5.1: Exposing the dot product design space
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In Listing 5.1, we use Chisel constructors to expose the design space of a
dot product design, computing the dot product of two vectors an and bn.1

We define four different parameters, namely the element dynamic and pre-
cision in bits (as the circuit only consider fixed point elements), the number
of elements in each vector and the level of parallelism.

For each parameter, we only consider integer values for simplicity purpose,
and define different set generators in Figure 5.3.

− @byX(x, y) ⇔ p ∈ [[x, y]] ∧ p ≡ 0 (mod X)

− @linear(x, y)2⇔ p ∈ [[x, y]]

− @enum(x0, ..., xn) ⇔ p ∈ {x0, ..., xn} ∧ ∀i ∈ [[0, n]], xi ∈ N
− @powX(x, y) ⇔ p ∈ N/p = Xz ∧ z ∈ [[x, y]]

− @pow2(x, y) ⇔ p ∈ N/p = 2z ∧ z ∈ [[x, y]]

Figure 5.3: Annotation based parameter generation

We use the scala annotation system to directly annotate the constructor
parameters with value generators, thus embedding both parameters and their
values in the top level module — i.e. the entry point of the Chisel flow.

For the dot product algorithm, we thus build a 7 × 7 × 1 × 5 = 245
wide design space to be explored, using the cartesian product of each set
of possible values: both dynamic and precision can each take |[[6, 12]]| = 7
different values, while parallelism can take 5, and nElem is fixed.

5.2.2 Impact of the Implementation Parameters

This approach allows to define the design space in an easy way by integrating
it directly in the top level module, through its constructor.

However, leveraging the user expertise is not only about defining meaning-
ful parameters and their values for the exploration, but also about bringing
information about how the parameter variations may impact the exploration
processes. For example, in the dot product implementations, we can state
that the three first parameters — namely dynamic, precision and nElem —
impact the algorithm Quality of Service (QoS), while the fourth one — par-
allelism — does not, as it only impacts the latency of the generated circuit.

In order to improve this first approach with respect to this observation,
we thus need a way to define if a particular parameter variations has an

1Given an = (a0, ..., an−1) and bn = (b0, ..., bn−1), we compute c =
∑n−1

i=0 ai ∗ bi.
2Equivalent to @by1(x, y).
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impact on a given metric. With such feature, a given exploration step that
considers only the QoS of the designs will not consider the fourth dimension
of the dot product generator, as every variation of the fourth parameter in
the design space is to be considered equivalent with respect to the QoS. This
enables to reduce the design space, dividing the number of implementations
to explore by a factor 5 — the cardinality of the parallelism set of values —
for an exhaustive exploration process.

5.2.3 Exposing an Expertise Based Design Space for
Exploration

In order to enhance design space with informations on how chosen parame-
ters impact given metrics, we add yet another annotation system to module
constructors, in a way similar to the one introduced in Section 5.2.1. We
thus add a @qualityOfService annotation, which bears the information that
the annotated parameter does impact the QoS metric.

0 class DotProduct(

1 @qualityOfService @linear(6, 12) dynamic: Int ,

2 @qualityOfService @linear(6, 12) precision: Int ,

3 @qualityOfService @enum (16) nElem: Int ,

4 @linear(0, 4) parallelism: Int

5 ) extends Module with Explorable

Listing 5.2: Enhancing the dot product design space with quality of service
concerns

For the dot product example, Listing 5.2 shows how new information can
be brought about built design space: by specifying that only 3 of 4 parameters
have an impact on circuit QoS, we then reduce the design space from 245
to 49 different implementations to be explored for explorations focusing
on such concerns.

5.3 On Functional Programming for Design

Space Exploration

Using high level languages such as scala enables leveraging features such as
OOP or functional programming for hardware generation. However, as
such features are directly integrated in the HCF, they can also be used for
side functionalities beside hardware elaboration.
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In order to demonstrate how high level features can be used to improve
hardware developers life, we build a DSE methodology based on functional
programming.

5.3.1 Mathematical Formalization

In this section, we formalize how functional programming can be used to
define DSE strategies, and expose a methodology based on this formalism.

Theoretical basis

Let A be an input vocabulary, which will be used to define metric names. We
defineMA = A×R the set of named metrics with values in R, representing
any metric in an exploration process.

Metrics can be of two kinds: they either refer to the implementation pa-
rameters that were exposed through the meta design methodology, or they
represent objective and constraint metrics that were generated during prior
exploration steps. Named metrics are thus pairs of the form (name, value),
such as (dynamic, 12.0) or (frequency, 275.96).

Let n ∈ N∗, we define a configuration of order n — i.e. a configuration
relying on n named parameters3 — as xn = {x0, ..., xn−1}, with xi ∈MA
and i ∈ [[0, n − 1]]. Each configuration stands for a different implementa-
tion variation, and we hence define a design space as being all the possible
implementations for a given meta design.

We then define a point of order (n, k) as being an improved configu-
ration, bearing both the configuration parameters xi with i ∈ [[0, n− 1]] and
some generated metrics mi with i ∈ [[0, k − 1]]. A point p(n,k) can then be
defined as a vector of elements inMA which characterizes a given implemen-
tation:

p(n,k) = {x0, ..., xn−1︸ ︷︷ ︸
n parameters

,m0, ...,mk−1︸ ︷︷ ︸
k metrics

} (5.1)

Using such definition, we characterize a design space of order n as
being a set of points of order n, denoted as being sn = {p(n, )}. We
only consider the number of parameters for each configuration to define the
dimensions of a design space, as the metrics do not represent dimensions but
only information on the designs. For generalization purposes, we define Sn
as being the set of all the possible exploration spaces sn.

3Named parameters are a special case of named metrics, as they will represent
not only metrics (i.e. design properties) but also coordinates in the design spaces that
will be defined in this section.
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We now aim at defining design space exploration strategies operating
on so defined design spaces. We start by defining cost functions c as a way
to generate new named metrics in MA:

c :MA
n+k →MA

p(n,k) 7→ c(p(n,k))
(5.2)

Using so-built cost functions, we define estimation transforms of or-
der θ, which are used to enhance a given design space with θ new metrics.
Given θ cost functions ci with i ∈ [[0, θ − 1]], an estimation transform fθ
operating over points p(n,k) is defined as follows:

fθ :MA
n+k →MA

n+k+θ

p(n,k) 7→ p(n,k+θ)

(5.3)

The resulting points are thus enhanced with θ new named metrics:

p(n,k+θ) = {x0, ..., xn−1,m0, ...,mk−1, c0(p(n,k)), ..., cθ−1(p(n,k))}
= {x0, ..., xn−1︸ ︷︷ ︸

n parameters

,m0, ...,mk−1︸ ︷︷ ︸
k old metrics

,mk, ...,mk+θ−1︸ ︷︷ ︸
θ new metrics

} (5.4)

We define a morphism as a modification of a design space of order
n, which can be a way to sort, prune or even enhance it — and we call Mn

the set of all the possible morphisms of order n. A morphism can also
modify the dimensions of the design space, hence changing the number of
points to be explored:

mn : Sn → Sn′
sn 7→ s′n′

(5.5)

We finally define how the estimation transforms are to be applied over
a design space, before potentially modifying it through a given morphism.

Considering an estimation transform fθ of order θ, a morphism µn of
order n, and an input design space sn of order n, we define a transform
application function of order (n, θ) as being:

a(n,θ) : Fθ ×Mn × Sn → Sn′
(fθ, µn, sn) 7→ µn({fθ(p(n,k))}) with p(n,k) ∈ sn

(5.6)

It is important to remark that one cannot presume about how the morphism
and the estimation transform are applied over the input design space, and
how they interact together. For example, the estimation transform can be
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applied to all the points in the design space before applying a modification
of its structure, or it can be applied through a more selective approach, for
example using a gradient descent algorithm. In the following of this work,
we will denote the set of all the possible transform application functions
of order (n, θ) as A(n,θ).

For a more concise writing, we will use the currying notion, which is
used in the functional programming paradigm. It refers to the action of
converting a function with multiple arguments to a parametrized functions,
which only takes one argument. For example, a function f(a, b) can be
converted to a set of functions f(a), which can then be applied to the second
argument, b.

We will hence convert our transform application functions to be sim-
ple functions operating over an input design space:

a(n,θ)(fθ, µn, sn)⇒ a(n,θ)(fθ, µn)(sn) = α(fθ,µn)(sn) (5.7)

Using all those constructs, we define an exploration step as a function
operating over a design space by applying, given some transform appli-
cation function, a set of estimation transforms to the points composing
the space, before modifying its structure using a given morphism, and re-
turning a new space enhanced with new metrics. More formally, we define
an exploration step as being:

e : Mn′ × A(n,θ) × Sn → Sn′′
(mn′ , α(fθ,µn), sn) 7→ mn′(α(fθ,µn)(sn))

(5.8)

Doing so, we can use currying once again, to define exploration steps
as being simple functions operating over design spaces:

e(mn′ , α(fθ,µn), sn)⇒ ε(mn′ ,α)(sn) (5.9)

We finally use functional programming to compose basic strate-
gies and build more complex ones, by applying n exploration strategies
[[ε0, ..., εn−1]] in a sequential way over an initial design space.

Basic functions for a concise definition of the exploration steps

In order to take the best of the functional programming paradigm for DSE,
we provide some basic functions for a concise description of some popular pro-
gramming patterns. For each introduced function, we will propose multiple
equivalent descriptions — which are more or less compact and understand-
able — to help the user to understand how this emerging paradigm can be
used for DSE.
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First of all, we consider the map-reduce pattern, where a function is
applied to every element in a given sequence, before performing a reduction
to return only one value. For example, considering a vector of elements ei,
i ∈ [[0, k]], one can use this pattern to compute a sum of squares:4

sum = e.map(x⇒ x2).reduce((a, b)⇒ a+ b)

= e.map( 2).reduce( + )

= e.map(square).reduce(add)

with square(x) = x2 and add(a, b) = a+ b

(5.10)

We will also use some simple operations over the collections, for example
the sortWith function, which operates over a collection col and sort its
elements by applying a comparison function. For example, if we want to sort
a collection col of objects using a particular attribute .value, we can use:

newCol = col.sortWith((a, b)⇒ a.value ≤ b.value)

= col.sortWith( .value ≤ .value)

= col.sortWith(compare)

with compare(a, b) = a.value ≤ b.value

(5.11)

Another useful operation is about filtering a collection, using a boolean
function — e.g. to select only the elements for which the .value attribute
is above a threshold minvalue:

newCol = col.filter(x⇒ x.value > minvalue)

= col.filter( .value > minvalue)

= col.filter(func)

with func(x) = x.value > minvalue

(5.12)

With respect to the formalism introduced in the previous section, we can
remark that sortWith, map and filter can be defined as morphisms, if
the collection col is a design space. As those constructs do not modify the
number of parameters in the points they are operating on, they can even
be considered as endomorphisms — i.e. morphisms from Sn to Sn.

In the following section, we will then use a compact description of the
different functions to be applied on the design spaces, to exhibit how the
functional programming paradigm can help users to define concise yet
intelligible exploration strategies.

4In this context, we will use some simplification coming for the functional programming
paradigm, to replace implicit parameters (e.g. x) by a simple placeholder , when there is
no ambiguity for the compiler.
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Application examples

As an example, we define exhaustive strategies, where the transform
application function (from Eq. 5.7) consists in an exhaustive application
of the estimation transform to all the points in the design space:

exhaustive(mn,fα)(sn) = mn(sn.map(fα))) (5.13)

It can be applied to define exhaustive sort, based on a comparison
function cmp used to define an order over a design space sn:

sort(fα,cmp)(sn) = exhaustive(sortWith(cmp),fα)(sn)

= sn.map(fk).sortWith(cmp)
(5.14)

We also define exhaustive pruning of the space, using a pruning func-
tion fprune to specify which points are to be left in the resulting design
space:

prune(fα,fprune)(sn) = exhaustive(filter(fprune),fα)(sn)

= sn.map(fα).f ilter(fprune)
(5.15)

Based on those two basic strategies, we can define a more complex one,
which uses both quick metric generation through RTL estimations of the
resources, and accurate estimations through synthesis processes.

To do so, we define a first strategy ε0 which we will refer too as the prelim-
inary pruning, and a second one, ε1, that will be referred as the refinement.
We define estim as a cost function of order 1, based on a RTL estimation of
the LUT resource usage, producing a metric of named LUTestim for a given
circuit. We also define synth as another cost function of order 1, based on
an external synthesis tool call, producing a metric named LUTsynth, which is
the reference value that the LUT estimation should approximate.

ε0 is thus defined as follow, considering a threshold tmax which represents
the maximum amount of LUTs acceptable in an implementation:

ε0(sn) = prune(estim, .LUTestim<tmax)(sn)

= sn.map(estim).f ilter( .LUTestim < tmax)
(5.16)

As for ε1, it is defined as:

ε1(sn) = sort(synth, .LUTsynth> .LUTsynt)(sn)

= sn.map(synth).sortWith( .LUTsynth > .LUTsynth)
(5.17)

The global exploration strategy ετ = ε0 ◦ ε1 can hence be defined as:

ετ (sn) = sn.map(estim).f ilter( .LUTestim < tmax)

.map(synth).sortWith( .LUTsynth > .LUTsynth)
(5.18)
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This methodology hence enables to describe and compose exploration
strategies in a functional way, as each can be considered as a simple function
over a design space. Moreover, each strategy can itself be defined in a
functional way, as it is mainly defined as a combination of various estimation
transforms and some morphisms to be applied to a given design space.

5.3.2 Basic Exploration Strategies

To demonstrate how the defined methodology can be used by hardware devel-
opers to leverage their expertise and build intelligent exploration strate-
gies, we propose to implement five basic strategies as a proof of concept:

1. exhaustive sort of the space (Eq. 5.14)

2. exhaustive pruning of the space (Eq. 5.15)

3. explicit dimension removal, based on the user knowledge

4. gradient descent search over the space (Algo. 5.1)

5. quick pruning through frontier approximation (Algo. 5.2)

The first two strategies have already been defined in the previous section,
and will be used as basic elements for more complex strategy building — as
they rely on the exhaustive application of a given function to the explored
design space, their implementation can be trivially based on any high level
language featuring functional programming.

The third strategy is a simple way for users to specify that for the re-
maining of an exploration process, a given dimension is no more useful as it
will not impact the remaining steps, thus reducing the number of different
implementations in the design space.

Finally, for strategy 4 and 5, we consider a design space implementation
which provides a given set of functions to scan it. More specifically, we con-
sider map and filter functions, which respectively enhance every point with
a given number of metric(s), and prune some points by applying a boolean
function. We also consider some order functions, such as min and max func-
tions to find extremities of the space — i.e. combination of minimal/maximal
parameters — as well as a neighbourhood definition.

To do so, we consider building two n dimensional discrete distances,
namely d‖.‖1 and d‖.‖∞ , to formally define the neighbourhood of a given point.

For a given space sn based on the cartesian product of n dimensions,
we consider all the possible value sets δi for each dimension i ∈ [[0, n − 1]].
We begin by building an indexation function φ, which enables, for each
parameter xi (i ∈ [[0, n − 1]]) of a point p ∈ sn, to retrieve its position with
respect to all the possible values for the dimension i — i.e. the values of δi.
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As an example is always better to understand, we consider a simple design
space of order 1, with 5 different points {a, b, c, d, e} in it. We only consider
the configuration parameters of those points, resulting in a vector space
of elements in R:

space = { 1.0︸︷︷︸
a0

, 2.0︸︷︷︸
b0

, 4.0︸︷︷︸
c0

, 8.0︸︷︷︸
d0

, 16.0︸︷︷︸
e0

} (5.19)

In this vector, we can remark that the distance between two consecutive
parameters is growing exponentially, which makes it difficult to state that
both the pairs (a, b) and (d, e) are direct neighbours. To cope with this
problem, we define a vector space′, which corresponds to the position of the
parameter x0 in the sets of all the possible values space (which is actually
the set δ0 as defined earlier, as it is the set of all the possible values that the
first parameter of each point can take), for any p in {a, b, c, d, e}:

space′ = { 0︸︷︷︸
a′0

, 1︸︷︷︸
b′0

, 2︸︷︷︸
c′0

, 3︸︷︷︸
d′0

, 4︸︷︷︸
e′0

} (5.20)

We hence define a function which maps a point p to a set of coordinates
{x′i} (i ∈ [[0, n−1]]) with values in Nn, considering the sets of all the possible
values for each dimension, δi, for i ∈ [[0, n− 1]]. More formally, we define this
function φ as being:

φ : Sn → Nn

{x0, ..., xn−1,m0, ...,mk−1} 7→ {x′0, ..., x′n−1}
with x′i = k such that the kst value of δi == xi

In simpler words, we consider the position of each parameter xi (i ∈ [[0, n−
1]]) of a point p in the sets of the possible values that it could have in sn — we
thus need to consider the whole space to define such function. For any point
p ∈ sn we hence define its coordinates as being φ(p) = {φ(p)0, ..., φ(p)n−1}.

Based on those new coordinates, we define both distances as follows, by
considering two points (p, q) ∈ sn:

d‖.‖1(p, q) =
n−1∑
k=0

|φ(p)k − φ(q)k| (5.21)

d‖.‖∞(p, q) = max(|φ(p)k − φ(q)k|)k∈[[0,n−1]] (5.22)
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Using those distances, we define the neighbourhood of point p ∈ sn —
called N‖.‖x,y(p, sn) — as the set of points q ∈ sn for which d‖.‖x(p, q) ≤
y, for a given norm ‖.‖x. In both Algo. 5.1 and 5.2, we define
sn.getNeighbours(p, ‖.‖x, y) as being the function to compute N‖.‖x,y(p, sn).

Strategy 4. is based on a simple gradient descent algorithm as introduced
in Algo. 5.1, where the search is performed by sequentially exploring all the
neighbour points of the current optimum until a local optimum is found —
it is considered as being the global optimum. This strategy is similar to the
Hill Climbing algorithm that was used by Witschen et al. [WAGM+19],
and can be leveraged when one is confident in the growth of the cost metric(s)
with the dimensions of the problem (Hypothesis 5.1).

Hypothesis 5.1. The cost metric(s) to be optimized are growing with respect
to every dimension of the design space, until the constraints are violated.

Assuming such postulate — which can easily be stated for some use cases,
based on the user expertise — any local optimum can be considered global as
well, thus finding a global optimum can be achieved without applying the cost
function to the whole design space. However, the explored design space may
already have been pruned before applying this strategy, or the hypothesis
may be locally erroneous — e.g. for technological reasons, a local optimum
can result from a transfer from LUTs to DSPs — and this strategy may not
converge toward a global optimum. Nevertheless, it can still be leveraged to
find an acceptable solution in a reduced amount of time.

As for Strategy 5., it is based on Hypothesis 5.2 and is introduced in
Algo. 5.2. It is similar to a Pareto approximation approach proposed by Ye
et al. [YHC+21], which iteratively uses space sampling to find some Pareto
optimal points before exploring their neighbourhoods to approximate the
frontier. We define the isOnFrontier method as follows, for a point p ∈ sn
and a pruning function f — a point is considered to be on frontier if and
only if it is not pruned and at least one point in its direct neighbourhood (as
of the meaning of N‖.‖1,1) is pruned. In other word, a point is on the frontier
only if it is not filtered by the pruning function, but is in contact with a point
to be removed.

isOnFrontier(p)⇔ !f(p) ∧ ∃q ∈ N‖.‖1,1(p, sn)/f(q) (5.23)

Hypothesis 5.2. The pruning function partitions the space in two closed
sets of implementations.
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Algorithm 5.1 Gradient descent algorithm
1: Input
2: S design space to explore
3: f cost function to sort S
4: {x} optional starting point for the descent

5: Output
6: S’ sorted (and pruned) design space

7: procedure Gradient(S : Space, f : Point⇒ Double, {x : Point})
8: S ′ ← ∅ // the result set is empty at first

9: // either use x as starting point, or the head of S

10: (current, cost)← x ? (x, f(x)) : (S[0], f(S[0]))
11: // iterate until a local optimum is found

12: while True do // the space is finite; an optimum exists

13: neighbours← S.getNeighbours(current, ‖.‖1, 1)
14: costs← neighbours.map(f) // apply f to all neighbours

15: index← indexWhere(costs.max) // select best neighbour

16: S ′ ← S ′ + neighbours
17: // a neighbour is better than the current implem.

18: if costs[index] > cost then
19: // update current and cost with best neighbour

20: (current, cost)← (neighbours[index], costs[index])
21: else
22: // return sorted resulting space with respect to f
23: return S ′.sort
24: end if
25: end while
26: end procedure

Assuming that a single frontier separates pruned and non pruned imple-
mentations in the given space, one may prune it by applying the pruning
function to only a fraction of the points, resulting in a faster convergence.
To do so, the first step is to identify a first point on the frontier, which is
done by the Start procedure, using a simple assumption: if a frontier exist,
and if Hypothesis 5.2 is true, then the frontier crosses the diagonal subspace
composed of points ranging from the minimal to the maximal configuration
(with respect to the implementation parameters). After identifying this
first point, we iteratively build the frontier using the Frontier procedure,
which uses neighbourhood exploration to build it step by step, as we know
that the frontier is continuous (from the same hypothesis). The last step is
then to update the design space (using the Update procedure), only to keep
the points that are ”above” the frontier.
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Algorithm 5.2 Quick pruning algorithm
1: Input
2: S design space to explore
3: f pruning function to discriminate space

4: Output
5: S’ pruned design space

6: procedure QuickPruning(S : Space, f : Point⇒ Boolean)
7: // try to find a starting point on the frontier

8: procedure Start
9: // explore a sub space to find the starting point

10: // (a diagonal between the extrema)

11: diag ← S.getDiagonal(S.min, S.max)
12: // select the first non pruned point on the diag.

13: p← diag.filter(!f)[0]
14: // if a frontier exists, it crosses this diag.

15: // either directly, or by neighbourhood

16: if isOnFrontier(p) then
17: return p
18: else
19: return S.getNeighbours(p, ‖.‖∞, 1).f ilter(!f)[0]
20: end if
21: end procedure
22: // iteratively build the frontier

23: procedure Frontier(p : Point)
24: (currents, frontier)← ([p], [p])
25: while !currents.isEmpty do
26: // explore neighbourhoods to find frontier points

27: n← currents.f latMap(S.getNeighbours( , ‖.‖∞, 1)).f ilter(!f)
28: onFrontier ← n.filter(isOnFrontier)− frontier
29: frontier ← onFrontier + frontier
30: // update with the limits of the actual frontier

31: currents← onFrontier
32: end while
33: return frontier // a frontier has been found

34: end procedure
35: procedure Update(frontier : [Point])
36: // select only the points above the frontier

37: return S.filter(isAbove(frontier))
38: end procedure
39: return Update(Frontier(Start))
40: end procedure
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These five strategies will be used as a basis for building more complex
strategies in the following of this thesis. Moreover, there are built considering
parallelism, in order to define efficient and adaptable strategies which can
easily be integrated in an exploration framework.

Other strategies may be defined by the users — e.g. to build application
specific space traversal order, using neighbourhood constructions — mean-
ing that a framework implementing this methodology should allow an easy
integration of new basic exploration steps, to provide a library of functions
operating over design spaces. Such library could be used to define custom
exploration strategies, by composing different steps in a iterative way.

5.3.3 Complex Strategy Building

After defining some basic exploration functions, we can now expose more
complex strategies using the features introduced in the previous section, and
Figure 5.4 introduces three strategy examples using the defined constructs.

Figure 5.4a is a simple application of the sort strategy (Eq. 5.14). As it
can be seen, the strategy is quite simple as it relies on a single step, where
every possible implementation is synthesized before the results are analysed,
compared and sorted to indicate the best solution for the given use case.

As for Figure 5.4b, it illustrates the strategy ετ (Eq. 5.18). We here use a
two-step approach, with a preliminary pruning of the design space — where
the resource usage of each implementation is estimated, and a user-defined
boolean function is used to partition the space between fitting and non fitting
designs — to reduce the number of syntheses to run, before applying these
accurate but long processes on the remaining solutions to select the best one.

Finally, Figure 5.4c demonstrates how leveraging basic exploration steps
can be used to build a more clever strategy. After performing a preliminary
pruning and sorting of the design space using RTL estimations — i.e. ap-
plying both sort (Eq. 5.14) and pruning (Eq. 5.14) strategies — we use a
gradient descent algorithm (Algo. 5.1) to run a minimal amount of synthesis
process and find a local optimum. The starting point of this last step is the
widest implementation that still fits in the remaining space after the pruning
step, in order to speed-up the convergence of this greedy approach.

For those three strategies, the user needs to define the Chisel genera-
tor, and instrument it by annotating its constructor in order to define an
explorable design space — which corresponds to the meta design method-
ology. They then need to specify how to browse the design space, by compos-
ing basic exploration steps in a functional way: it is the meta exploration
methodology, which enables to build complex exploration strategies by com-
posing simple ones.
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(a) Simple exhaustive strategy

(b) Pruning based strategy

(c) Gradient descent based strategy

Figure 5.4: Building complex strategies
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5.4 Discussions on the Proposed Design

Space Exploration Methodology

5.4.1 Limitations of the Approach

Our approach strongly relies on the quality of the estimators to perform quick
space traversals while achieving accurate estimations, with the objective to
provide realistic solutions.

It is even more true when looking at the proposed frequency estimation
methodology, as it remains as complex as what synthesis is — in an algo-
rithmic meaning — and will probably not cope with the Field-Programmable
Gate Arrays (FPGA) specificities, resulting in erroneous estimations after
potentially longer processes. However, more accurate estimation methods
exist at various levels of granularity which could improve the explorations
quality, and our methodology would greatly benefit from proposing to its
users both multi-level and multi-fidelity estimators [YHC+21][LC18].

On the other hand, more complex exploration schemes are yet to be pro-
posed in order to achieve state of the art exploration performances, notably
by using meta heuristics for Multi-objective Optimization Problem (MOP)
solving (such as Genetic Algorithms (GA) [PCS21], Bayesian optimization
[LC16] or simulated annealing [WAGM+19]), or supervised learning tech-
niques [NKO19][FKA+20].

The proposed schemes are here introduced as a proof of concept of func-
tional programming usage for efficient DSE, and the introduced library of
basic strategies should be enhanced.

5.4.2 Synthesis on the Contributions

Using the estimation considerations that were exposed in Chapter 4, as
well as the Hardware Construction Languages (HCL) features, we defined
two complementary methodologies for Design Space Exploration (DSE) —
namely meta design and meta exploration.

We put a particular focus on how functional programming can be used
to define exploration strategies, by leveraging users expertise to build explo-
ration processes step by step. We then exposed various basic schemes that
can be used to build both application and target specific strategies.

The proposed methodologies are built considering naive use cases, and
both new estimation methodologies and exploration strategies should be pro-
posed in order to provide a more flexible approach.
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Experiments and Results

6

T
his chapter introduces the experiments that were run to demonstrate the
usability of both the estimation and the exploration methodologies that

were described in the previous chapters.
We built a Chisel-based demonstrator as a proof of concept framework, as

well as a benchmark of representative applications for analysis and compar-
ison purposes. We then ran multiple experiments to exhibit how Hardware
Construction Languages (HCL) can be used to improve the life of developers,
with a particular focus on their usage for Design Space Exploration (DSE).

Table of contents
6.1 Building a Software Demonstrator . . . . . . . . 80

6.1.1 Implementation Details . . . . . . . . . . . . . . . 80

6.1.2 Use Case: Exploring GEMM Implementations . . . 83

6.2 Application Benchmark . . . . . . . . . . . . . . . 85

6.3 Experimental Setups . . . . . . . . . . . . . . . . 86

6.4 Quality of the Estimators . . . . . . . . . . . . . 86

6.4.1 Resource Estimations . . . . . . . . . . . . . . . . 86

6.4.2 Timing Estimations . . . . . . . . . . . . . . . . . 90

6.4.3 Quality of Service Estimations . . . . . . . . . . . 91

6.5 Comparing the Exploration Strategies . . . . . . 93

6.5.1 Resource Estimation and Convergence Speed . . . 93

6.5.2 Quality of Service Based Explorations . . . . . . . 97

6.5.3 Use Case: Exploring Black Scholes Designs . . . . 100

6.5.4 Results of the Black Scholes Exploration . . . . . . 105

6.6 Synthesis on the Experiments . . . . . . . . . . . 109

79
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6.1 Building a Software Demonstrator

In order to demonstrate the usability of the methodologies introduced in
Sections 4 and 5, we built a Chisel-based framework — which is called Quick
Exploration using Chisel Estimators (QECE) — and integrated it into the
Hardware Construction Framework (HCF).

6.1.1 Implementation Details

QECE was built in a flexible and modular way, to allow users to easily define
both custom estimators and exploration strategies. It leverages scala high
level features to use software methodologies in hardware design processes.

Meta design

To do so, the first step was to enable users to exploit the meta design
methodology, in order to expose the design space to be explored at mod-
ule constructor level, as stated in Section 5.2.1. This was made possible
by using the java annotation system (as can be seen in Listing 5.1 for ex-
ample). We also added an annotation system to specify the impact of the
parameters on given metrics, enabling to leverage the user knowledge at
both implementation and exploration stages, by introducing a relationship
between parameters and strategies. It is done by defining a new annota-
tion class: class ImpactMetric(name: String) extends StaticAnnotation

— where the name parameter is used to identify a particular metric.1

Integrating estimators

In a second time, we developed wrappers around the FIRRTL transforms
to enable a seamless estimator integration, as exposed in Section 4.4.2.

We implemented both resource and timing estimators using linear in-
terpolations and macro block replacements to allow an early estimation of
the metrics in the exploration flows.

Some empirical Quality of Service (QoS) estimators were implemented
by binding to the Chisel simulation backends, as shown in Figure 4.7. Doing
so, one can retrieve some metrics from simulations, and can thus build their
own test benches, defining both which metrics they want to get and how they
are computed. As an example, we added helpers to compute the Root-Mean-
Square Errors (RMSE) from the simulation results, by providing an initial
workload and a software golden reference.

1The @qualityOfService annotation used in Listing 5.1 is a simple alias for
ImpactMetric("qualityOfService").
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Finally, we enabled building any analytical estimator operating on pre-
existing metrics in the flow — users can thus easily define analytical formulas
directly in their strategies.

Building strategies

We then built a flexible way to enable meta exploration by implementing a
generic Strategy class, which can then be used to define more or less complex
strategies, as defined in Section 5.3.

Figure 6.1: Object hierarchy for the implemented strategies

Figure 6.1 introduces the different strategies that were built for this
demonstrator, which have already been discussed in Section 5.3.2. As we
can see, every implemented strategy inherits from the base Strategy class
through ParallelStrategy, as each can take advantage of parallel threads to
speed-up the estimations. The strategies rely on custom defined parameters
that allow the users to finely tune every step of the process — it includes the
estimation transforms tfs to be run, the number of parallel threads
available, or different ways to estimate and compare the explored implemen-
tations. For both pruning strategies, the users hence need to provide
a boolean function which specify if a point should be removed from the
space, while the two other strategies rely on a cost function which build a
new metric from a set of existing ones.

The ImpactMetrics are considered at strategy level to reduce the design
space dimension by removing the non impacting parameters if needed. The
same mechanism is used for the dimension removal strategy that was exposed
in Section 5.3.2, in order to allow users to explicitly state that a given di-
mension will no more be relevant for the remaining of an exploration process.
Moreover, as the introduced estimation processes are independent, we also
implemented some helpers for parallelism exploitation in order to speed up
the whole processes — this is particularly helpful for time consuming estima-
tion processes such as synthesis runs — and we used caching techniques in
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the strategies to avoid multiple estimations of a same point. We finally im-
plemented composition and strategy building helpers as a syntactic sugar to
enable straightforward strategy definitions in a functional fashion — i.e. the
helpers hide all the side-effects needed for the strategy building, and expose
the exploration processes as simple functions operating over spaces.

Design space implementation

Building custom exploration strategies is thus made possible in a expressive
way. However, implementing a new strategy often relies on particular op-
erations over the input space, implying that the data structure used for its
implementation might have a huge impact on the exploration performances.

In order to allow the users to define their own space structures, we propose
a generic implementation for Spaces in Figure 6.2, with the basic operations
introduced in Section 5.3 that are needed to explore them (e.g. map, filter
or getNeighbours functions). It also includes operations to remove and add
dimensions, for cases where the ImpactMetrics are used to discriminate some
dimensions in the current exploration. We use a hierarchical, object-oriented
approach to allow the users to easily integrate their own space structures
if needed. As each implementation defines its own operations, some spaces
might be more suited for a given usage, and the strategy builder should
choose a structure fitted for their need. For the needs of this demonstrator,
we implemented two different structures: SeqSpaces and MatrixSpaces.

A SeqSpace is a simple space based on the scala Seq collections, that can
be used for sort purposes as it exposes an ordered structure. However, finding
the neighbourhood of a multidimensional Point in a flatten representation
of the space requires to scan it exhaustively, evaluating each distance and
selecting only the nearest points. As a SeqSpace does not exhibit any pattern
to directly access to the neighbourhoods, exploring the neighbours of a Point

in a large space can thus result in an exploding complexity.
On the other hand, a MatrixSpace is based on the scala representation

of matrices, built on multidimensional Arrays. Each dimension of the space
is represented at a different level in the built hyper matrix, and the space
also includes a dictionary mapping each dimension to all the possible values.
This enables to easily define the neighbourhood of a point, with a complexity
growing linear with the different dimensions of the space (which is ideal to
define efficient gradient descent based strategies). This also means that
the matrices may be sparse, for points that have already been pruned. How-
ever, such Space cannot be sorted as the structure does not exhibit an order,
and the scala Array-based implementations can only be used for dimensions
ranging from 1 to 5 — which is a limitation of the language — even if adding
dimensions is possible in a custom way if needed.
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Figure 6.2: Proposing different space implementations

A functional demonstrator

Using those two space implementations and the five basic strategies intro-
duced in Chapter 5, we built QECE as a proof of concept framework that
will be used to demonstrate the advantages of the proposed methodologies.

We deliver QECE as an open-source solution, to enable using the intro-
duced methodologies in any Chisel-based project [FMR21c].

6.1.2 Use Case: Exploring GEMM Implementations

We introduce a (simplified) example of the usage of QECE for a gradient
descent based exploration on General Matrix Multiply (GEMM) kernels
in Listing 6.1, implementing the strategy exposed in Figure 5.4c.

For each strategy, the user needs to define the set of estimation trans-
forms tfs to be run, and some functions to specify the exploration be-
haviour:2 for both sort and gradient steps, he needs to provide a function
func to associate a cost to each implementation, as well as a comparison
function cmp to expose an order relationship, while the prune step only re-
quires a boolean function (also called func) to specify whether a point is to
be removed or to be kept in the resulting design space.

2The ++ operation is used to build an ordered set of estimation transforms.
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The different metrics at stake in this use case are %lut, %dsp and
throughput, which respectively corresponds to the usage of LUTs and DSPs,
and to the theoretical throughput of the considered implementations.

The defined strategy is based on three consecutive steps:

1. lines 2-5: Estimate the resource usages and prune the implemen-
tations that consume too many resources.3

2. lines 7-10: Sort the design space to select the widest implemen-
tation that still fits on the target board, after this first pruning.

3. lines 12-17: Use this implementation as the starting point of a gradi-
ent descent algorithm based on synthesis runs, aiming to find local
optimum in an already pruned space (using the throughput (GOp/s)
as the objective function to optimize).

As the GEMM algorithm is computation intensive, we chose to consider
only the Look-Up Tables (LUT) and Digital Signal Processors (DSP) usages
for step 1., as the wide implementations will probably saturate the available
LUTs/DSPs before the other resources — it is important to note that this
decision is based on our expertise about hardware design. For step 2., we
then chose to define the widest design as the implementation estimated to
consume the greatest amount of LUTs for similar reasons, with the hypoth-
esis that the implementation with the maximal throughput — but that still
fits on the target board — will be near this estimated widest implementation.
This is then used in step 3., as the gradient strategy will use the first point of
the sorted space as the starting point for the descent. We thus improve the
convergence speed as we know that the implementations where both LUTs
and DSPs are estimated to be low will probably not be the optimal ones.

We defined some aliases for the estimation transforms to be run, to keep
the strategy concise and intelligible:

− TransformSeq.resources performs a FIRRTL estimation of the circuit
resource usage, using the methodology introduced in Section 4.2.

− TransformSeq.synthesis runs a synthesis backend and performs a re-
port analysis to provide both resource usage and operating frequency.

− TransformSeq.throughput computes the throughput using an analytical
formula (Eq. B.3). The implementations that did not fit on the target
board after the synthesis are marked as having a null throughput.

3Thresholds are arbitrary and shall depend on the accuracy of the used estimators.
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Using those transforms, we can express the exploration flow schematized
in Figure 5.4c in a readable, intelligible manner, by composing exploration
steps in a functional fashion. Each exploration step — i.e. prune, sort and
gradient — corresponds to a Strategy as defined in Section 6.1.1, defining
the estimation transforms to be run and the Space operations to be per-
formed, resulting in a complex, application specific strategy.

0 explore(

1 // prune the designs using too much DSP/LUT

2 prune(

3 tfs = TransformSeq.resources ,

4 func = (%dsp > x || %lut > y)

5 ),

6 // select the widest design to start descent

7 sort(

8 func = %lut ,

9 cmp = ( > _)

10 ),

11 // use gradient descent for exploration

12 gradient(

13 tfs = TransformSeq.synthesis ++

14 TransformSeq.throughput ,

15 func = throughput ,

16 cmp = ( > _)

17 )

18 )

Listing 6.1: Defining a gradient descent based strategy (Fig. 5.4c) in QECE

6.2 Application Benchmark

To demonstrate how QECE can be used to improve the developer produc-
tivity, we built an open-source benchmark of digital applications that are
relevant for FPGA-based implementations [FMR21b].

Appendix B exposes how the meta design methodology has been applied
to each kernel of the benchmark. More specifically, Table B.1 introduces its
composition as well as all the exposed design spaces.
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6.3 Experimental Setups

The experiments were run on two different experimental setups, as two
servers were available. Their characteristics are introduced in Table 6.1.

Name Mark #Core Frequency RAM Vivado
Server 1 † 12 3.46 GHz 78.8 GB v2017.3
Server 2 ‡‡ 24 3.2 GHz 188 GB v2021.1

Table 6.1: Experimental setups characteristics

It is important to note that vivado specifications claims that at most 8
GB of RAM will be used when targeting a VC709 board [Xil21a]. However,
the memory consumption is given only for designs that consume ≈ 80%
of the available resources — meaning that, for wider designs, the memory
usage may explode. To cope with this problem, we had to define a 2-hours
synthesis timeout, in order to keep the memory usage under constraint
and avoid crashes. We empirically noticed that doing so keeps the memory
usage under 20 GB for each synthesis, meaning that we can respectively run
at most 4 and 9 synthesis at once on server 1 and 2. As the version of vivado
can lead to different implementation choices, it is important to consider which
version of the software suite was used for syntheses — it is also important
to note that given the version and/or the synthesis heuristics used, synthesis
results may vary a lot: the whole flow is highly dependent on the quality of
the synthesis software used.

For the next sections, please refer to the column Mark to know which
setup was used for a particular experiment.

6.4 Quality of the Estimators

In this section, we will discuss the quality of the estimation methodologies
that were defined in Chapter 4, and show that our demonstrator is able to
leverage imperfect yet exploitable estimators for both resource and QoS met-
rics. We will also tackle the usability of our approach for timing estimation,
as well as limitations of such approach in quick exploration processes.

6.4.1 Resource Estimations

Figure 6.3 introduces a measure of the Quality of Results (QoR) of the graph
level resource estimators — or FIRRTL-based estimators — that were
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described in Section 4.2. The QoR is computed with respect to the synthesis
results for 5 different meta designs (see Table 6.2).

For each implementation, we ran three types of resource estimators:4

1. FIRRTL-based estimation, without macro block (see Section 4.2.2)

2. FIRRTL-based estimation, using macro blocks (see Section 4.2.5)

3. Synthesis based estimation, used as baseline (i.e. reference value)

We then plotted the relative difference histograms of both estimations 1.
and 2. with respect to 3., respectively in Figures 6.3a and 6.3b, to analyse the
QoR of both estimation methodologies. To do so, for each implementation
of each kernel, we tried to run those three estimators, computed the relative
differences with respect to the synthesis results, and built relative difference
classes for each resource type (LUTs, FFs, DSPs and BRAMs). Those
classes were then plotted in order to exhibit the impact of each estimation
methodology, for all the considered resources.

Kernel Space
Estimations Estimation time

(failures) Synthesis Macro No macro
GEMM‡‡ 168 151 (46) 15h48m11s 2h00m42s 25m55s

Black Scholes‡‡ 162 42 (3) 2h57m16s 10m19s 8m12s
Pi‡‡ 162 90 (12) 39m50s 4m14s 1m05s

FFT‡‡ 200 173 (22) 9h51m16s 3h14m06s 2h14m37s
Dot product‡‡ 144 144 (0) 27m54s 29s 26s

Total 836 600 (83) 29h44m27s 5h59m50s 2h50m15s

Table 6.2: Design spaces and running times of resource estimators (Fig. 6.3)

We observe that using the naive approach — i.e. without macro block
replacement (Fig. 6.3a) — the estimation accuracy is quite variable:

− the LUTs are estimated within [[0%, 1000%]] of the real usage for more
than 80% of the considered designs

− the FFs are estimated within [[0%, 400%]] of the real usage, and even
under 200% for a majority of designs

− the DSPs are almost always estimated perfectly, but errors in the
estimations may result in a 1500% overestimation

− the BRAMs are estimated within [[−100%, 100%]] of the real usage,
and are perfectly estimated for a majority of designs

4To keep both resource usage and processing time acceptable, we set a 30 minute
timeout for both macro replacement and resource usage estimation transforms.
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(a) Resource estimation (without macro block replacement)

(b) Resource estimation (with macro block replacement)

Figure 6.3: Average relative differences on 5 different meta designs between
the resource estimations and the synthesis results.‡‡

The kernels are introduced in Table 6.2.
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Based on the Figure 6.3b, we can then remark that using macro block re-
placements has a big impact on the estimations QoR. The LUT estimations
are now mainly produced in a [[0%, 500%]] interval, while the FF estimations
are now estimated within [[−50%, 100%]. The DSP estimations are mainly
as good as with the naive version, but extrema are divided by a factor 2, and
the BRAM usage is now always perfectly estimated.

We can thus claim that those estimators are not perfect, and that the
estimation variability could be considered too big to be exploitable. However,
some tendencies can be exhibited here, that could be used to take decisions
based on the estimations only:

− for most designs, using a factor 6 on the LUT estimation can enable
to estimate whether a design fits on the target board or not

− similarly, using a factor 2 for FFs can lead to realistic decisions

− both DSP and BRAM estimations can be trusted for most designs

As for the estimation process speed, we can observe in Table 6.2 that
both the naive and the macro based approaches are way faster than synthesis
runs, which was the main objective of those techniques. We can also remark
that using the macro block replacement methodology can consume a lot more
time that the naive approach, and it is specifically true for large and complex
designs such as GEMM or FFT. It is actually due to the implementation of
the macro replacement technique, which is based on building another graph
from the FIRRTL representation, and which does not seem to scale on large
designs. Most of the time is due to timeouts of the graph building processes,
and this could be mitigated by using a more optimized technique to do so.

We thus showed that the graph level techniques that were introduced in
Chapter 4 can be used to perform an early resource estimation, and could be
leveraged for early decision making from the developers. However, we still
need to exhibit what impact it can have on those decisions, and it will be
discussed later in this chapter.

Remark
While we did exhibit the QoR of the estimation methodologies on 5 dif-

ferent meta designs, one may want to analyse the quality of both method-
ologies for a particular kernel. For this purpose, we expose a disaggregated
version of Figure 6.3 in Appendix C — except for the GEMM kernels, which
results are exposed in Figure 6.6 as they will be used in later experiments.
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6.4.2 Timing Estimations

As for the timing estimations, Figure 6.4 introduces some considerations on
both the estimation processing times and the QoR for GEMM kernels, with
respect to the synthesis results. Table 6.3 provides more information about
the explored design space and the temporal behaviour of these experiments.5

Space size Estimator
Successful

Timeouts Exploration time
estimations

168

Synthesis 102 49 15h48m24s
RTL estimation

(with macro)
94 57 11h20m15s

RTL estimation
(without macro)

- - ≈8h

Table 6.3: Timing estimations over GEMM‡‡ implementations (Fig. 6.4)

For those experiments, a 2 hours timeout was used for both macro
replacement and critical path estimation transforms, in order to keep the
memory usage under constraints and avoid time consuming processes. Doing
so, we remark that for both timing estimation approaches — i.e. with and
without macro block replacement — the estimation time is mostly kept way
under the synthesis time. However, for complex designs, it can be longer
than the synthesis. This is mainly due to the complexity of the path building
algorithm, which unrolls every possible path on the considered design, and
is thus similar to the synthesis process — hence, it cannot be considered as
a faster approach, as the algorithmic complexities are comparable.

Using only those considerations, we can already state that those ap-
proaches cannot be leveraged to build efficient design processes, as for more
complex designs, actually synthesizing the circuit will result in a faster feed-
back for the users. Moreover, we can also remark that the frequency estima-
tion is totally unrealistic, with differences of hundred of MHz between the
estimations and the synthesis results.

Based on those results, we consider this timing estimation methodology to
be unpracticable with both approaches, and will not consider those estimators
to be usable in the rest of this work. However, some methods exist to provide
more realistic estimations of the operating frequency [KC20][PCS21], and
integrating them in QECE is considered, as they could bring both fast and
interesting feedbacks to users and tools.

5For the naive approach — i.e. without macro block replacement — the timing es-
timations are not fully available, as the memory blocks cannot properly be estimated.
However, the path building algorithm was run anyway to estimate the processing time.
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Figure 6.4: Relative difference between frequency estimations and synthesis
results on GEMM meta design‡‡ (using macro block replacement)

6.4.3 Quality of Service Estimations

In order to estimate the QoS of a design, we propose an Application Pro-
gramming Interface (API) to users in order to extract custom defined results
from a simulation backend, as specified in Section 6.1.1. To define an esti-
mator, one needs to provide a simulation test bench as well as a way to
compute and extract the QoS of the design with respect to a given workload.

Figure 6.5 introduces a simple use case on the dot product kernel, using
RMSE as an error metric. We here provide a simple analysis of the impact
of the data representation on the result of a dot product, and display the
error rate, showing that integrating a custom defined QoS metric is possible
in QECE. To define the data representation, we use a fixed point format
and consider two parameters: the number of bits used for the dynamic (i.e.
the number of bits before the binary point), and the number of precision
bits (i.e. after the binary point). As the parallelism level does not impact
the QoS, this dimension is not considered, while the number of elements by
input vector is fixed to 8, for visualization purposes.
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Figure 6.5: Heatmap of the Quality of Service estimations for the dot
product meta design‡‡ (vector size is fixed to 8 elements)

The empirical approach for this estimator is based on comparing the
simulation results with a software version of the same algorithm, based on a
floating-point representation. Doing so, we can select only the designs which
do not introduce a significant error in their results — on this use case, it
actually enables to compare the different data representations to select the
ones sufficiently wide to absorb the errors that are induced by the use of a
simpler representation. As the hardware implementation of Floating-Point
Units (FPU) requires a lot of resources and time, such approach can be
used to select a more efficient way to implement an algorithm, if the users
can precisely state which error rates are acceptable.
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As can be seen on the heatmap, the implementations that use not enough
dynamic bits are marked with a 10% error rate, as representation overflows
occurred during the simulations, resulting in a large error.6 Moreover, we
can also observe the impact of the precision parameter on the QoS, from
large representations where the error rate is under 10−7% to more compact
ones, where the error rate reaches 10%.

While this use case is quite simple, it demonstrates that one can easily
integrate an empirical, application specific estimator to estimate the QoS of
its circuits, providing him with an interesting feedback that can be leveraged
to select the best implementation that satisfy its accuracy need.

For example, in Figure 6.5, we can (visually) state that if the applicative
needs require an error rate lesser than 0.1%, any implementation with more
than 6 bits of dynamic and 10 bits of precision is enough.

6.5 Comparing the Exploration Strategies

We will now discuss how the user expertise can be leveraged for an efficient
DSE definition, using the methodologies introduced in Chapter 5.

For each strategy that will be compared in this section, the strategy
definition is based on assumptions on both considered algorithm and target
board, as our approach is based on providing users with ways to exploit their
expertise instead of trying to define generic strategies for every algorithm.

6.5.1 Resource Estimation and Convergence Speed

In a first time, we want to demonstrate how high level estimations of the
resource usage can be used for the quicker convergence of an exploration
strategy. We consider the exploration of two different meta designs —
FFT and GEMM — and compare the three exploration strategies that
were introduced in Figure 5.4. The results are exposed in Table 6.4. For
those experiments, the QoS is not considered, hence the element width is
fixed by the developer (assuming that they can specify at exploration time
that the chosen data representation is acceptable for the given use case),
meaning that the bit width dimension is not considered in those explorations.

6The error rate introduced in Fig. 6.5 is capped at 10% and uses a logarithmic scale
to properly visualize the smaller error rates, which are the region of interests in such
explorations, as the acceptable error rate should be under 10% to be meaningful.
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Kernel Strategy Best throughput #(space)
#synth

Time Speed-up
(#timeout)

FFT128†
Exhaustive (Fig. 5.4a) 1.767 Tb/s

7
7 (0) 00h22m45s -

Pruning (Fig. 5.4b) 1.767 Tb/s 7 (0) 00h24m14s ×0.94
Gradient (Fig. 5.4c) 1.767 Tb/s 3 (0) 00h19m51s ×1.15

FFT512†
Exhaustive 5.479 Tb/s

9
9 (0) 02h11m51s -

Pruning 5.479 Tb/s 9 (0) 03h17m52s ×0.66
Gradient 5.479 Tb/s 3 (0) 02h18m29s ×0.95

GEMM†
Exhaustive 231.334 GOp/s

41
41 (19) 13h51m56s -

Pruning 231.334 GOp/s 26 (7) 08h52m00s ×1.5
Gradient 231.334 GOp/s 6 (1) 03h21m06s ×4.1

Table 6.4: Comparing different exploration strategies with no quality of service
concerns. (Exhaustive strategies are used as baselines)

Defining a pruning function

For both kernels, we used a simple hypothesis to define the pruning function:

Hypothesis 6.1. Both FFT and GEMM kernels are computation intensive.

This means that the computational resources — i.e. LUTs and DSPs
— will be saturated first by the synthesis tool, and that removing too wide
designs can be done by considering only those metrics.

We thus defined the following pruning function to be applied in both
pruning and gradient strategies:

pruneest.(p) = LUTest.(p) > 200% ∨DSPest.(p) > 100% (6.1)

The thresholds were chosen with respect to the considerations that were
discussed in Section 6.4.1 and to the QoR of the resource estimations on
GEMM kernels, as presented in Figure 6.6b.

Exploring Fast Fourier Transform implementations

For the FFT explorations, the design spaces are reduced as the size of the
algorithm (see Table B.1 for the instantiation parameters) is considered fixed
by the developers at exploration time — meaning that FFT implementations
of different sizes are not compared during the exploration processes. This re-
sults in a single dimension exploration space to be explored, for each possible
FFT size. We only considered two different sizes — 128 and 512 — and we
remark that for both explorations, the pruning strategy is slower than the
baseline, as no actual pruning is done in the design space. In fact, we actually
applied the exhaustive strategy after running resource estimations, resulting
in a consequent overhead with respect to the baseline.

On the other hand, we remark that the gradient strategy results in less
synthesis needs for the same best fit finding — meaning that even if the explo-
ration time is not much impacted by the strategy choice, we can reduce the

94



6.5. Comparing the Exploration Strategies

global processor time needed for parallel syntheses. In fact, for the FFT512,
the actual convergence time is biased by synthesis timeouts, meaning that
improving the resource estimators could enable to prune more efficiently the
design space, and could help us avoiding long and non converging syntheses.

These use cases can be used to discuss the importance of the adequacy
between the chosen exploration strategy and the explored kernel. Indeed,
applying a preliminary pruning function to those use cases is not useful to
speed-up explorations, and just results in a useless time overhead, while the
gradient approach is practical and results in a speed-up that compensates
that overhead.

Exploring General Matrix Multiply implementations

For the GEMM-based explorations, we assumed that the defined pruning
function (Eq. 6.1) is more relevant, as it is based on an analysis of the QoR
of the estimators on the GEMM implementations. We observe that apply-
ing this pruning function enables to reduce the number of implementations
to be synthesized in the pruning strategy by more than a third. More
importantly, it reduces the number of synthesis timeouts by more than a
half, as some non fitting designs that would cause long or non converging
synthesis processes are not considered in this approach.

In addition to this, we observe that using the gradient strategy — i.e.
leveraging both high level resource estimations and clever space traversal —
results in ×6.8 less synthesis runs (6 instead of 41) and a ×4.1 exploration
speed-up.

We thus showed that building an application specific, user defined strat-
egy enables to speed-up exploration processes while producing comparable
solutions for this use case.

Disclaimer on the definition of the pruning function

One could argue that defining the pruning function after synthesizing the
whole design space to analyse the QoR of the resource estimators is not prac-
tical, as the goal of this methodology is to avoid such exhaustive exploration.
This is mainly due to the fact that the applied estimation methodology is
application specific — as the meta designs characteristics have a heavy im-
pact on the resource estimator QoR (see Appendix C for more information)
— and could be addressed by providing more accurate and reliable resource
estimators in the framework. This could be used to define more generic prun-
ing thresholds that would not require to run application specific syntheses to
define it. We could also run syntheses on a subset of the target design space
to define this pruning function.
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(a) Resource estimation (without macro block replacement)

(b) Resource estimation (with macro block replacement)

Figure 6.6: Relative difference between resource estimations and synthesis
results on GEMM implementations‡‡
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6.5.2 Quality of Service Based Explorations

We now consider the QoS of the generated designs, and demonstrate how
the proposed methodologies can enable to define multi-concern exploration
strategies for custom Multi-objective Optimization Problem (MOP) solving.
In contrast to the previous explorations, we do not make any assumption over
the data representation — particularly over the bit widths — and delegate
the responsibility of choosing a relevant data type to the exploration flow.

Comparing different pruning strategies

To begin with, we analyse the impact of the pruning strategies over both
quality and speed of the pruning. In other words, we will compare the ex-
haustive and the quick pruning strategies defined in Section 5.3.2 to check
that the quick pruning strategy prunes the same implementations that the
exhaustive approach does, while exhibiting the impact of the implementation
details on the run time.

First of all, we use the dot product meta design to measure the QoS
of each implementation using empirical transforms. To select only the im-
plementations that are compliant with the accuracy needs, the user provides
an error threshold — here accepting a 1% error rate — and uses the pro-
vided heuristic for quick pruning (Fig. 6.7) to partition the different spaces
more efficiently than by applying an exhaustive filtering. The heatmap rep-
resents the results of the exhaustive approach to illustrate the distribution of
the error rates, while the grey squares constitute the frontier that was built
in the Algo. 5.2, and is used to build the pruned design space in the end
(i.e. the implementations that are ”above” the frontier). We remark that
both strategies produce the same resulting space, meaning that the quick
pruning strategy can be used for quicker convergence of QoS-based ex-
plorations, at least for kernels that are assumed to comply with Hypothesis
5.2.
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Figure 6.7: Quick pruning strategy for Quality of Service based exploration on
the dot product meta design‡‡ (considering vectors of 8 elements)

Optimization Simulated impl. Time Speed-up
Exhaustive pruning 3844 12m22s —
Space reduction +
exhaustive pruning

961 03m07s ×3.97

Space reduction +
255 05m03s ×2.44

quick pruning (SeqSpace)
Space reduction +

quick pruning (MatrixSpace)
255 00m49s ×15.14

Table 6.5: Pruning results with respect to the used optimization on
the dot product meta design‡‡
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We now consider the impact of both strategies and of the implementation
details on the runtime. Table 6.5 exposes 4 different ways to prune the design
space, that are based on the composition of three techniques:

− Space reduction — i.e. reducing the number of explored dimensions
using the users knowledge about the parameters impact (Section 5.2.3)

− Strategy choice — either the exhaustive or the quick pruning strategy

− Space structure choice — either using a SeqSpace or a MatrixSpace

For all the considered techniques, we empirically checked that the result-
ing design spaces are identical, meaning that the same pruning is performed
by those 4 techniques. The impact of the space reduction technique on the
exploration time is obviously linear, as the number of estimated implementa-
tions is reduced in a linear way. In this context, as the parallelism parameter
is not considered for QoS-based explorations, we reduce by a ×4 factor the
number of considered implementations (as this parameter can take 4 differ-
ent values). Moreover, the number of implementations to simulate (column
Simulated impl. is also impacted by the chosen exploration strategy, as
using the quick pruning heuristic can lead to a relevant partition with less
simulations to run, with respect to the exhaustive pruning strategy.

We can also remark that the performance of the quick pruning strategy
heavily relies on the chosen space structure: using a SeqSpace representation,
the quick pruning is actually slower than the exhaustive strategy, while using
a MatrixSpace results in a ×3.8 (= 15.14/3.97) speed-up, with respect to the
strategy using both exhausting pruning and space reduction.

We thus showed on this simple example that the quick pruning strat-
egy can be used to speed-up a QoS-based exploration strategy. Moreover,
we provide further analysis about the QoS estimation and the quick pruning
strategy in Appendix D.
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6.5.3 Use Case: Exploring Black Scholes Designs

We now consider a more realistic use case to demonstrate how the proposed
methodologies can be leveraged to build a complex, application specific ex-
ploration strategy. To do so, we use a Black Scholes meta design — for
which the implementation details are provided in Appendix B — and define
an iterative exploration strategy based on our expertise of FPGA design.

As exposed in Appendix B, the meta design exposes 5 parameters: the
data representation parameters (i.e. dynamic and precision), the number
of iterations of the Monte Carlo method, the number of parallel cores
available, and the number of iterations of the Euler-Maruyama method.

Defining the objectives of the exploration

The first thing to do to define an efficient exploration process is to clearly
state the goal of the target flow. In this Black Scholes based use case, we
decided to try to maximize the throughput of the generated acceler-
ators, under the constraints that they fit on the target board and
produce results with a controlled error rate .

Testimation.s−1 =
freq

∆c

(6.2)

∆c ≈
nbIter × nbEuler

nbCore
(6.3)

The throughput — expressed in number of estimations by second — can
be approximated easily for these kernels, as they periodically produce a re-
sult: it is then computed as the ratio between the frequency and the la-
tency of a given implementation (Eq. 6.2). A theoretical latency (in number
of cycles) — i.e. the (fixed) period between the production of each result —
can be computed using the Equation 6.3, as a huge majority of the compu-
tation cycles are spent in the Monte Carlo cores iterations.7

We also define an area metric to verify that a design fits on the tar-
get board, using the maximum values of the usage percentage for the four
considered metrics (LUTs, FFs, DSPs and BRAMs).

Enhancing the design space

The next step to take in the introduced methodology is to instrument the
meta design with information on the metrics that will be used in the flow.

7This result has been verified empirically, proving that the impact of the control flow
variations on the latency is negligible with respect to the actual computation cycles.
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0 class BlackScholes(

1 @resource @qos @linear(8, 32) dynamic: Int ,

2 @resource @qos @linear(8, 32) precision: Int ,

3 @qos @pow2(5, 10) nbIteration: Int ,

4 @qos @pow2(1, 6) nbEuler: Int ,

5 @resource @pow2(2, 10) nbCore: Int

6 ) extends Module with Explorable

Listing 6.2: Expertise-based design space for Black Scholes meta design

For this exploration, we will sequentially consider two concerns: a first
stage will be based on the circuits QoS, and a second one will work over
their resource usage. We hence need to define, for both of those metrics,
which parameters have an impact on them, and which does not, based on
our knowledge about the algorithm. The analysis to do so is introduced
below, and is used to enhance the initial design space as exposed in Table
B.1, leading to the one introduced in Listing 6.2.

Due to the probabilistic nature of the Monte Carlo method, most of
the exposed parameters have an impact on the QoS, either because they act
on the data representation (as it is the case for both precision and dynamic
parameters), or because they impact the number and the precision of the
sampling in the Black Scholes equation (Eq. B.7), as do the number of
iterations and the number of Euler-Maruyama iterations. In contrast with
these statements, the number of cores does not impact the circuits QoS,
as it only modifies the temporal behaviour of the designs, and not their
functionalities — this parameter is hence not annotated as impacting the
quality of service (using the @qos annotation).

As for the resource usage, we now try to identify which parameters impact
the size of the generated designs. We can use our knowledge about the meta
design structure to state that both iteration parameters (the global number
of Monte Carlo iterations, and the number of inner Euler-Maruyama
iterations) does not significantly impact the amount of resources used in
a design. As a matter of fact, the number of iterations will act on the
global latency of the design (Eq. 6.3), but will have a small impact on the
resource usage, which mostly depends on the number of parallel cores and
their size.8 We thus annotate the data representation parameters and the
nbCore parameter with @resource to guide the exploration steps.

8The number of iterations actually impacts some counters in the control flow of the
designs — however, the impact is negligible with respect to the resources needed to im-
plement the computation cores.
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Outlining the estimation transforms

Once the design space has been enhanced to guide the exploration, we need
to define the different steps that are to be taken in the process. To build
a compact definition of this exploration strategy, we define some helpers in
Listings 6.3 and 6.4 to build the transforms that are to be used in the flow.

Listing 6.3 demonstrates how empirical QoS estimators can be integrated
in QECE, in a condensed way. We define QualityOfService.simulation as a
transform calling the simulation backend to estimate the RMSE of a given
implementation. The different generation parameters of the simulated
implementation are needed to instantiate the simulation test bench, and are
thus retrieved from the point metrics (the m variable at line 1., which is used
to define the parameters in lines 5-9). Moreover, some other parameters can
be provided by the users when they are building such estimation transform
— e.g. in this use case, they provide the number of software iterations (line
10.) to compute the reference value for the Black Scholes estimation, as
well as the number of hardware simulations to run on each implementation
to provide a significant result (line 11.). They also provide a workload (line
12.), which is the data distribution to be used in the test benches.

Remark: The circuits QoS are estimated using an empirical approach
(Section 4.3.3), as we use it to demonstrate the practicability of using the
simulation backend in the estimation methodologies. However, one could also
define an analytical formula to specify the relationship between the number
of iterations of a given implementation on one hand, and the accuracy of the
Black Scholes approximation on the other. While it would not be used to
estimate the impact of the data representation over the QoS, it could allow
to eliminate the parameters relative to the number of iterations from the
design space, at least for the exploration steps that rely on simulations.

As for Listing 6.4, it implements the analytical formulas from Equations
6.2 and 6.3. The transforms are easily defined, by specifying a pair (n→ f :
{mx, x ∈ [[0, p]]} ⇒ mxp+1) with n the name of the generated metric, and f
a function which operates on a set of metrics {mx, x ∈ [[0, p]]} to generate a
new metric named n to be propagated in the exploration process.

As can be seen in lines 1-4, the latency is estimated in the pre-
elaboration stage (with respect to the API introduced in Section 4.4.2), as
it only relies on the generation parameters.

On the other hand, both area and throughput are estimated in the
post-elaboration stage (lines 5-12). This is due to the fact that the
Transforms.throughput method is going to be called in the same exploration
step that the synthesis flow: as the formulas rely on the synthesis results,
they must be computed after the elaboration process.
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The area metric is computed by retrieving each resource percentage met-
ric from the current implementation, using the maximal value to check if a
design fits on the target board. To artificially eliminate the non fitting de-
signs, we then use a temporary metric _throughput to store the theoretical
throughput as computed using Equation 6.2 (lines 8-9), but only assign it to
the actual throughput metric if the area metric is under 100% (lines 10-11).

0 object QualityOfService {

1 val simulation = TransformSeq.simulation(m =>

2 (

3 c =>

4 new BlackScholesTester(

5 m("dynamic").toInt,

6 m("precision").toInt,

7 m("nbIteration").toInt,

8 m("nbCore").toInt,

9 m("nEuler").toInt,

10 nbSoftIteration,

11 nbSimulation,

12 workload

13 )(c)

14 )

15 )

16 }

Listing 6.3: Defining an helper for empirical quality of service estimations

0 object Transforms {

1 val latency = TransformSeq.preElab(

2 "latency" ->

3 (m => (m("nbIteration") * m("nbEuler")) / m("nbCore"))

4 )

5 val throughput = TransformSeq.postElab(

6 "area" ->

7 (m => max(m("lut"), m("ff"), m("dsp"), m("mem"))),

8 "_throughput" ->

9 (m => m("freq") / m("latency")),

10 "throughput" ->

11 (m => if (m("area") > 1.0) 0.0 else m("_throughput"))

12 )

13 }

Listing 6.4: Transform helper for the exploration
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Defining the exploration strategy

After defining the transforms that are going to be used in the exploration
process, the last step is to define the steps to be taken. We define a five
steps strategy for this use case, for which the code is exposed in Listing 6.5:

1. lines 1-5: the design space is pruned for implementations that are
estimated to induce an error of more than 5% (line 3.).

For this step, we use the quick pruning algorithm (Algo. 5.2)
to quickly partition the space in this pruning step (line 1.). More-
over, as we only consider the QoS of the different implementa-
tions, we specify that the framework can eliminate all the dimen-
sions that are not annotated with @qos (line 4.). Indeed, we use the
QualityOfService.simulation transform from Listing 6.3 to compute
the QoS (line 2.).

2. line 6: this line specifies how we reduce the dimensions of the design
space for the remaining exploration steps. All the meta design pa-
rameters (see Fig. 6.2) that are not annotated with @resource do
no act on the resource metrics, and are thus removed from the di-
mensions. They are in fact the parameters acting on the number of
iterations: nbIteration and nbEuler. Actually, we can state two things
at this point: all the remaining designs are acceptable with respect
to the needed QoS in this use case, and reducing the number of it-
erations can only benefit to improve both the resource usage and the
throughput.9

The boolean parameter of the context.reduceDimension method spec-
ifies that the dimension removal will project the parameters on the
minimal values in the space — as we want to keep the number of
iterations as low as possible among the remaining designs.

By removing those two dimensions from the design space, the number
of remaining implementations is hence heavily reduced.

3. line 7: we compute the latency of each remaining implementation.

4. lines 8-12: we select the ”minimal point” of the remaining design space
(the point with the minimal sum of parameters) and put it in front of
the design space, as the next step will use it as a starting point.

5. lines 13-17: we use the gradient descent algorithm (Algo. 5.1) to
find a local optimum with respect to the objective of the exploration.

9Increasing the number of iterations can only improve the QoS at the cost of latency
increase (Eq. 6.3), yet we already have a sufficiently low error after the pruning step.

104



6.5. Comparing the Exploration Strategies

In this step, we run syntheses in order to provide a realistic estimation
of both resource usage and operating frequency, and it is thus necessary
to adopt a clever strategy to limit the number of costly process runs. We
hence use neighbourhood explorations to iteratively find an acceptable
solution to the users.

0 val strategy = context.buildStrategy(

1 context.quickPrune[BlackScholes](

2 QualityOfService.simulation,

3 _.error > 0.05,

4 metric = Some(new qos)

5 ),

6 context.reduceDimension[BlackScholes](new resource, true),

7 context.map[BlackScholes](Transforms.latency),

8 context.sort[BlackScholes](

9 TransformSeq.empty,

10 m => m("dynamic") + m("precision") + m("nbCore"),

11 (_ < _)

12 ),

13 context.gradient[BlackScholes](

14 TransformSeq.synthesis ++ Transforms.throughput

15 func = _("throughput"),

16 cmp = (_ > _)

17 )

18 )

Listing 6.5: Expertise-based exploration strategy for Black Scholes
implementations

We hence defined a complex, expertise-based exploration strategy which
takes the best of the users knowledge to guide the framework and to speed-
up the traversal process. In order to provide an analysis on the relevance of
such strategies, we ran multiple exploration processes to expose the interests
of the meta exploration choices that led to the definition of Listing 6.5.

6.5.4 Results of the Black Scholes Exploration

In this last section, we will analyse the results of the exploration strategy
defined for the Black Scholes use case, to exhibit the advantages of defining
a custom strategy in a functional fashion.
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Comparing the pruning strategies

A first analysis can be done about the quality of the pruning processes, by
comparing the exhaustive pruning and the quick pruning strategies on
the Black Scholes use case.

Error Number
Strategy

Exploration
Speed-up

threshold of impl. time
Exhaustive pruning 46h29m19s -

5% 202500
Quick pruning 32h59m29s ×1.40

2% 202500
Exhaustive pruning 46h21m42s -

Quick pruning 48h46m53s ×0.95

Table 6.6: Comparing the pruning strategies over Black Scholes kernels‡‡

(a) 5% error threshold (b) 2% error threshold

Figure 6.8: Comparing the accuracy of the pruning strategies on Black Scholes‡‡

Table 6.6 introduces the results of four different explorations processes,
to compare both strategies using two different error thresholds for the
pruning. In those experiments, only the pruning step (lines 1-5 in Listing
6.5, compared to an exhaustive version of it) is considered, and we compare
the remaining implementations in Figure 6.8.

As we can see in the table, depending on the error threshold, the quick
pruning strategy can lead to a faster pruning of the space (as it is the case
with a 5% threshold), or a slower one if the frontier is difficult to estimate
and requires a lot of neighbourhood exploration steps to do so.

We can also see in Figure 6.8 that the quick pruning heuristic is not per-
fect: for example, using an acceptable error rate of 5% (Fig. 6.8a), 105012
remaining implementations were common to both strategies, while 45
were pruned by the quick strategy and not by the exhaustive one, and 16290
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were pruned by the exhaustive strategy, and not by the quick one (on a to-
tal of 202500 different implementations). If we consider the exhaustive
pruning to be the baseline — as estimating the QoS of each implementation
leads to a more realistic pruning of the design space, even if the empirical
approach can induce erroneous data — we can remark that the quick pruning
strategy tends to prune less implementations that the exhaustive one.

This shows that this strategy can lead to erroneous choice from the ex-
ploration tools — however, the average errors in the designs that should have
been pruned by the quick heuristic but were not are also displayed in Figures
6.8a and 6.8b (with average errors of respectively 5.55% and 2.65%). These
errors are computed on the points that were estimated in the frontier building
algorithms, through the neighbourhood exploration: those implementations
are thus near to this limit, and this is why they are not pruned as they would
have been in an exhaustive process.

Remark: among those points, some errors are approximated instead of
being estimated, in order to keep the number of simulations low. This is
done on the points that are considered ”above” the built frontier, but that
were not considered in the neighbourhood exploration process used to build
this frontier. In order to produce an error metric anyway, even if not actual
QoS estimation is performed, an artificial metric is built by copying the
error value of one of the points on the frontier to add it to every point that
was not estimated in frontier construction process. This means that the
average error values introduced in Figure 6.8 relies on this approximation,
and should be considered carefully.

Exploiting a complex strategy for exploration

We now consider a full exploration process based on the strategy exposed in
Listing 6.5, to demonstrate the usability of QECE on a complex use case.

Rank Parameters Error
Throughput Area

Frequency
(est.s−1) Max % Resource

1 [12, 21, 64, 2, 64] 5.34% 125.06 25% DSP 250.13 MHz
2 [12, 20, 64, 2, 64] 4.6% 125.06 25% DSP 250.13 MHz
3 [12, 22, 64, 2, 64] 6.54% 125.03 25% DSP 250.06 MHz
4 [13, 21, 64, 2, 64] 6.06% 125.03 25% DSP 250.06 MHz
5 [12, 22, 64, 2, 32] 5.34% 62.53 12.5% DSP 250.13 MHz

Table 6.7: Best implementations found using the exploration strategy from List-
ing 6.5‡‡. The whole exploration process took approximatively 38
hours to synthesize the 27 more interesting candidate implementa-
tions — through a gradient-based approach — and sort them.
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Table 6.7 introduces the five best implementations found at the end of the
exploration process — after 37 hours and 47 minutes. The parameters are
compressed in the table, and correspond respectively to the dynamic, the
precision, the number of iterations, the number of Euler-Maruyama
iterations and the number of cores. A total of 27 different implemen-
tations have been considered in the last step of the process, which we will
denote as being the synthesis step.

The first thing we can remark is that the pruning criteria is not strictly
respected, as was shown in the previous section — however, the error over-
head can be considered acceptable for some use cases, as it barely reaches
30% of the target error threshold.

We can also see that the four best implementations use 64 parallel cores,
resulting in a resource usage of 1/4 of the target board, and achieving a
throughput of 125 estimations by second.

One could thus argue that we could use up to 256 parallel cores, to fill
the targeted FPGA. However, after the pruning step, we found that 64
iterations (with 2 Euler-Maruyama inner iterations) were enough to ensure
a satisfying QoS on the implementations shown in the table. As the number
of cores cannot be larger than the number of iterations by design — it is
an inner constraint of the Black Scholes meta design used in this use case,
and could be addressed by modifying the Chisel description — the gradient
algorithm did not fully explore the number of core dimension, resulting
in a sub optimal solution. Nevertheless, as the kernels are independent, this
exploration showed that we could fit four Black Scholes accelerators in
parallel on the target board, using the resulting generation parameters.

As for the temporal behaviour of this experiment, we cannot expose a
baseline similar to the previous ones, as an exhaustive exploration of the
remaining design space would be too long (approximatively 6000 different
implementations to synthesize, which would take up to 500 days to complete,
with respect to the 2 hours timeout used).

However, we could cope with this problem by using a more hierarchical
approach to build the baseline. For example, some approaches in the litera-
ture uses a preliminary random sampling to identify regions of interest
in the design space, i.e. sub spaces where the solutions are expected to be
the best ones [AGMP21]. This strategy could be leveraged for two usages
in our experiment. First of all, we could use partial sampling of the design
space to run syntheses and state if the local approach of the gradient algo-
rithm caused a sup optimal choice in the space. Moreover, we could also use
such sampling to select the starting point of the gradient descent, instead of
arbitrarily selecting a point as it was done (lines 8-12 of Listing 6.5).
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6.6 Synthesis on the Experiments

Experimental contributions

In this chapter, we exposed the implementation details of a software demon-
strator (named Quick Exploration using Chisel Estimators (QECE)) for the
design methodologies that have been introduced in Chapters 4 and 5. Doing
so, we built a generic and modular framework for Design Space Exploration
(DSE) processes targeting Field-Programmable Gate Arrays (FPGA).

We also introduced a benchmark of algorithms that are representative of
the usage of FPGAs as hardware accelerators, in order to demonstrate the
usability of QECE in realistic use cases.

We finally ran multiple explorations as experiments to analyse the advan-
tages and the limitations of both our methodologies and our framework over
the hardware development processes. We explored the design spaces of three
different meta designs — General Matrix Multiply (GEMM), Fast Fourier
Transform (FFT) and Black Scholes — and considered different objectives
and constraints to show that one can define custom strategies for their ex-
ploration processes, based on their expertise about both the algorithm being
implemented and the FPGA board being targeted.

Synthesis on the results

In order to demonstrate how one can leverage its expertise about both the
application being explored and the FPGA board being targeted, we consid-
ered two different types of objectives to be considered at exploration time.

To begin with, we used both GEMM and FFT meta designs to expose
how a high level estimation of the resource usage can lead to the building
of efficient exploration strategies, and demonstrated that such strategies can
lead to speeding up exploration processes by a significant factor, reducing
the exploration time from 13 hours to 4 hours only for GEMM.

We then used a Monte Carlo based design, the Black Scholes pricing
meta design, to show how one can consider the Quality of Service (QoS) of
the developed circuits to build strategies that sequentially consider different
metrics to optimize. We implemented a pruning heuristic that can be used to
more or less efficiently partition a design space without having to simulate ex-
haustively the implementations that compose it, with speed-ups up to 40%
with respect to the exhaustive strategy, and exposed a complex, expertise
based meta exploration strategy that can be used to find efficient archi-
tectures for the given use case. Doing so, the number of implementations to
synthesize is heavily reduced, and only 27 different designs are considered in
those long processes, in a total design space of approximatively 6000 different
circuits, where an exhaustive exploration is indeed impracticable.
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Discussion on the approach

While we did show that exhibiting an expertise based strategy — that uses
custom defined metrics and estimation methodologies — can lead to a quicker
convergence of the exploration processes toward an acceptable solution (if
not an optimal one), we also showed that an inadequate strategy can lead to
suboptimal solutions, and can take more time that the standard exploration
flows that rely on heavy synthesis tools. The strategies that are being com-
pared here are quite naive and simple, and QECE would greatly benefit of
the implementation of more advanced heuristics, in order to provide users
with a more furnished library of configurable exploration steps.

However, we demonstrated the practicability of a novel way to consider
the exploration processes, using the functional programming feature to de-
fine such flows in a concise yet intelligible way for the users, by considering
an exploration process as a succession of basic steps. We also exhibited the
interests of the emerging Hardware Construction Language (HCL) paradigm
for hardware development, proving that a potentially consequent overhead
on the a priori analysis of the algorithm can lead to reusable hardware gen-
erators, which can then be easily adapted to new use cases.
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7

W
hile the life of the software developers has greatly benefited from emerg-
ing paradigms and new development methodologies in the past decades,

developing a digital circuit remains a daunting task, which requires both ex-
pertise and time. Initiatives have thus been taken in order to increase the
productivity of hardware designers, mostly by providing tools that are able
to make the simplest decision in their place, to allow them to focus on the
most complex tasks that really requires their skills and knowledges.

Among those initiatives, we propose a new design methodology, which
takes the best of an emerging hardware development paradigm — the hard-
ware construction paradigm — to build reusable and adaptable designs. We
put a particular focus on how this new paradigm, which comes with emerg-
ing features from the software world itself, can bring more expressivity to the
designers, and demonstrate its usage on a key challenge of digital design: the
design space exploration, i.e. the exploration of the different implementation
choices that a designer can make in the process of building a circuit.

To simplify our approach of the problem, we consider exploration pro-
cesses that target reconfigurable circuits — more precisely, FPGA boards
— as each implementation technology has its specificities. However, the
methodologies introduced in this work could be, with few modifications, ap-
plied to the development of other digital circuits, such as ASIC, and could
consider various levels of granularity, ranging from the development of basic
operators to the exploration of complex, multi-core systems.

After providing an analysis of the domain literature, which focuses on
three main concerns when it comes to design space exploration — namely the
space exposition, the metric definition and estimations, and the exploration
strategies — we introduce the main contributions of this work.

First contribution

First of all, we consider the different metrics of interests that can be used to
define the quality of a design, in order to help the users — or an exploration
tool — to make clever decisions in their design processes. We provide some
insights about what are the common metrics, and introduce a generic ap-
proach to define both application specific and non specific concerns, in order
to offer an intelligible yet usable approach of the estimation processes. We
introduce some estimation methodologies for the key metrics of interests of a
hardware implementation: the spatial and temporal aspects, i.e. the resource
usage and the operating frequency of a FPGA-based implementation.
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We also introduce the quality of service as a domain specific metric, as it
can only be used in the fields where result approximations can be used to im-
prove the performances of a circuit at the cost of accuracy, and demonstrate
how the proposed tool architecture can be leveraged to integrate exotic yet
useful metrics in the development flow.

Second contribution

The second and main contribution of this thesis is then addressed, with the
introduction of two complementary design space exploration methodologies,
namely meta design and meta exploration. We use the generation fea-
ture of the hardware construction languages — which refers to the action
of describing a circuit generator instead of a dedicated, non adaptable ac-
celerator — and instrument the framework of Chisel, an emerging HCL, to
expose clever and concise design spaces and integrate them directly in the
code. We then provide a formalization of what is a design space exploration
strategy, to demonstrate how the functional programming feature — which
is now accessible to the hardware developers, thanks to Chisel — can be
used to build custom and controllable strategies that takes the best of the
users knowledge and expertise about both the application and the target
board. A set of basic strategies are provided as a basis, to demonstrate how
an iterative approach of the design space exploration problem can lead to an
intelligible and concise description of different exploration processes.

Experiments and results

In order to demonstrate how this approach can be used in the daily life of the
hardware developers, we developed a scala-based framework named QECE
(Quick Exploration using Chisel Estimators), as Chisel is a meta language
that is built on scala. We also provide a set of Chisel-based generators
for algorithms that are representative of the usage of FPGAs as hardware
accelerators. The quality of results of the different estimation methodologies
is then analysed, using multiple experiments over so-defined benchmark, and
the limitations of those methodologies — which are introduced as a proof of
concept rather than as usable tools — are discussed. We then expose differ-
ent exploration use cases, and we demonstrate through various experiments
that the defined approach can be used to efficiently solve the design space
exploration problem, showing that using the users expertise can lead to faster
processes, with no significant deterioration of the quality of the solutions.

However, as the work of a single thesis could roughly be enough to address
this challenge in a generic way, multiple limitations as well as some ways to
overcome them have been identified.
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To begin with, the quality of the proposed estimation methodologies is ques-
tionable, as we do not reach a state of the art quality. The introduced
framework would thus greatly benefit from integrating performant estima-
tors at various levels of granularity and fidelity, to provide the users with
a configurable library of estimation processes that one could use and adapt
for a specific use case. Recent initiatives have been taken to provide quick
and accurate estimations to the users, notably by using machine learning
techniques to extract informations from prior estimations [KC20], or statisti-
cal approaches to limit the number of syntheses to be run [PCS21], and one
should be able to choose and integrate a specific estimation methodology to
build their own exploration flow.

Moreover, while we implemented some basic strategies as a proof of con-
cept, QECE should also offer a library of configurable exploration steps,
leveraging emerging approaches and algorithms to build efficient exploration
strategies. Doing so, we could provide further genericity and modularity for
the users, and the framework could even be leveraged to evaluate the qual-
ity of new exploration strategies, providing quick prototyping for exploration
processes. For even more modularity, we should also provide a way to inte-
grate external tools at different levels of the framework, for example by using
an external software to guide the exploration, as does the E-IDEA framework
with Bellerophon, an evolutionary-based search engine [BTBB21].

Last but not least, we should provide the users with an easy way to visu-
alize the results of an exploration, as solving a multi-objective optimization
problem in a multi dimensional space can be very difficult to understand
and interpret. To do so, Paletti et al. [PCS21] propose to integrate some
visual models from the literature, such as the roofline model [WWP09] or
the LogCA model [AW17]. As a matter of fact, the users should be able to
visualize both the exploration results and the interesting metrics of a given
circuits, as they are the ones that will be able to use quick and accurate
feedbacks to make clever decisions that an automatic tool could not.

On another side, to demonstrate the usability of the proposed method-
ologies, we could benefit from a wider benchmark to analyse different classes
of algorithms, showing the generic nature of the approach. While we did ex-
pose different use cases to exhibit how one can leverage its expertise to define
custom exploration strategies relying on different types of metrics of inter-
ests (and the corresponding estimation methodologies), more experiments on
other scenarios — and other application domains — could demonstrate the
impact of the algorithms specificities on a given strategy, for example.
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More specifically, some people at TIMA lab are working on different ap-
proaches to efficiently implement neural network on FPGAs, from the usage
of ternary data representations [PBBP+17] to the integration of LUT-based
logarithm multipliers to our own implementation of a configurable Multilayer
Perceptron (MLP) (Appendix B). Moreover, an industrial collaboration is
ongoing with OVHcloud to use Chisel to bring more expressivity for the
hardware developers [BHM+21]. Such local initiatives could benefit from
our exploration framework to enable a quick exploration of the architectural
space on different use cases.

Some other applicative domains which relies on heavily parametrized tem-
plates for both generation and exploration purposes could also benefit from
our work. For example, Delomier et al. [DLGCJ20] exposes a model-based
generator for the implementation of successive cancellation polar decoders
on FPGA, and uses HLS to generate efficient accelerators from such model,
based on architectural and algorithmic parameters. One could thus use our
exploration framework to efficiently explore the so-defined design space, after
defining the accelerators templates using Chisel. In a similar way, Mkhinini
et al. [MMLT17] leverages HLS to accelerate the computations of modular
polynomial multiplications in the context of Fully Homomorphic Encryp-
tions, exposing high-level parameters to generate the different architectures.
Once again, using our exploration methodology and framework could help the
users to improve the exploration performances by leveraging their expertise
to build efficient strategies.

Synthesizing the contributions

Regardless of the limitations that we identified for this work, we provide a
modular framework for the estimation and the exploration of design spaces,
which relies on an emerging paradigm. More generally, we propose an initia-
tive to enhance the expressivity of the hardware developers, giving them the
opportunity to use powerful features such as object-oriented and functional
programming to describe not only the accelerators to be generated, but also
the processes to build and explore them.

QECE, a Chisel-based framework for estimation and exploration, as well
as a benchmark of applications that were used to demonstrate its usage, are
provided as open-source projects [FMR21c][FMR21b]. It is important to note
that the need for a flexible framework for both estimation and comparison
of Chisel-based designs has already been expressed in the community, and
that we plan on communicating on our solution as soon as possible, notably
by proposing different use cases to integrate in the literature.
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Résumé

8

C
e chapitre propose un bref résumé du contenu de ce manuscrit, en français.
Il s’agit d’une synthèse du travail qui a été effectué durant cette thèse,

et qui est décrit en anglais dans les chapitres précédents.
Ce résumé commence par un exposé des motivations à l’origine de ces

travaux, et présente ensuite les travaux existants dans l’état de l’art quand
au domaine de l’exploration d’espace de conception. Les deux sections suiv-
antes concernent les contributions de cette thèse, respectivement la définition
et l’estimation de métriques d’intérêts pour la conception numérique, et
une méthodologie novatrice d’exploration d’espace de conception basée sur
l’utilisation des langages de construction matérielle, à savoir la méta explo-
ration. Ensuite, les expérimentations qui ont été menées pour démontrer
l’utilisabilité des méthodologies proposées sont présentées, conjointement
avec un démonstrateur logiciel spécialement développé pour cette thèse,
nommé Quick Exploration using Chisel Estimators (QECE). Finalement,
une synthèse sur les contributions de cette thèse est proposée, et les limita-
tions de ces travaux sont mises en avant afin demettre l’accent sur les pistes
de recherches qui restent ouvertes à la fin de cette thèse.
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8.1 Motivations

Les motivations qui se cachent derrière ce travail de thèse sont à contextu-
aliser par rapport à l’évolution historique des flots de conception numérique.
En effet, les méthodologies de conception de circuit ont drastiquement
évoluées au cours des dernières décennies, des méthodes de dessin de masque
jusqu’aux techniques de synthèse de haut niveau qui sont désormais utilisées
dans l’industrie.

Cependant, les alternatives actuelles qui s’offrent aux développeurs re-
posent soit sur des langages de description matérielle, comme VHDL ou Ver-
ilog, et requièrent un niveau d’expertise ainsi qu’un temps de développement
conséquent, ou sur des méthodologies qui impactent les performances des
circuits conçus, comme la synthèse de haut niveau ou les langages à domaine
spécifique.

Dans ce contexte, nous nous sommes intéressés à l’utilisation d’un
paradigme de développement matérielle qui a récemment vu le jour : les
langages de construction matérielle, qui, comme leur nom l’indiquent, pro-
posent une approche plus constructiviste de la conception numérique. Se
faisant, ces langages permettent de décrire des générateurs de circuits plutôt
que des circuits dont la fonctionnalité et les possibilités sont figées à la con-
ception.

Plus particulièrement, nous proposons dans ce travail d’étudier
l’utilisation de ces langages dans le contexte de l’exploration d’espace de
conception, c’est à dire le processus — manuel, assisté ou automatique —
qui consiste à faire varier des architectures équivalentes en terme de fonc-
tionnalité, afin de les comparer entre elles et de sélectionner celle qui répond
le mieux à un cas d’utilisation donné.

Les fonctionnalités de génération propres aux langages de construction
matérielle se trouvent donc être une opportunité intéressante pour proposer
des flots d’exploration d’espace de conception qui, contrairement à leurs
équivalents de plus haut niveau (notamment ceux utilisés dans les techniques
de synthèse de haut niveau), permettent aux développeurs de contrôler les
circuits générés tout en guidant, à l’aide de leurs expertises, les outils pour
converger rapidement vers une solution adaptée au cas d’utilisation initial.

8.2 État de l’art

Afin de positionner nos travaux par rapport à la littérature existante dans
le domaine de l’exploration d’espace de conception, nous nous proposons
d’analyser les différents outils et méthodologies d’exploration sous trois angles

116
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: l’exposition de l’espace à explorer, les métriques d’intérêt à considérer pour
estimer la ”qualité” d’une implémentation en particulier, et la façon dont les
architectures en jeu sont comparées entre elles afin de sélectionner la ou les
meilleure(s) solution(s).

L’exposition de l’espace de conception est un point clef pour définir
des processus efficaces d’exploration. En effet, si l’espace considéré inclut
trop de solutions, notamment des solutions qui sont trivialement sous opti-
males (comme cela peut être le cas si un outil est utilisé pour générer un
tel espace), le processus d’exploration sera peu efficace, car il devra com-
parer trop d’architectures différentes (chaque comparaison pouvant s’avérer
très coûteuse). D’un autre côté, si l’espace considéré est trop restreint, le
développeur risque de ne pas considérer une solution qui serait ”meilleure”
que celles qu’il a étudiée, pour un cas d’utilisation donnée. Ainsi, les ap-
proches d’exposition d’espace existantes se positionnent sur un spectre con-
tinu de solutions, qui va d’espaces composés de variations qui sont toutes
manuellement définies par le développeur (qui contrôlent donc totalement
les circuits qui sont considérés) à des espaces où l’ensemble de ces varia-
tions est inféré par un outil de façon implicite (par exemple, dans le cas
de la synthèse de haut niveau, les outils décident eux mêmes de comment
les différentes primitives de programmation logicielle seront traduits dans le
paradigme de description matérielle). La plupart des solutions existantes
se situent en réalité quelque part sur ce spectre, et combinent donc des
paramètres explicites pour contrôler les variations fines d’architecture, afin
d’optimiser la performance des circuits générés, et des inférences implicites
qui permettent aux développeurs de ne pas s’attarder sur certains aspects
simples des circuits pour lesquels les heuristiques d’inférence fonctionnent
bien. On notera ici la nécessité pour le développeur de pouvoir intervenir
dans le processus d’exposition d’espace de conception, afin de pouvoir s’il le
souhaite proposer des variations qui lui semblent pertinentes pour améliorer
la qualité des architectures proposées, mais aussi le processus d’exploration
en lui même (par exemple en supprimant certaines inférences si elle ne sem-
blent pas intéressantes).1

Une fois l’espace de conception défini pour un cas d’utilisation donné, le
développeur doit définir les métriques d’intérêts, ainsi que les méthodologies
d’estimation adéquates. Ce faisant, il fournit en réalité les bases de fonctions

1Cette philosophie — s’appuyer sur l’expertise des développeurs et développeuses
matériels pour améliorer leurs productivités — est d’ailleurs à la base de ces travaux,
qui cherchent à proposer un flot de conception totalement personnalisable qui permette à
ces utilisateurs de contrôler les aspects de conception qui leur semblent importants tout en
reposant sur de simples inférences pour les décharger des tâches les plus simples et ainsi
améliorer leurs expériences de conception.
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objectifs à optimiser, en spécifiant une façon de mesurer la qualité des ar-
chitectures de façon automatique. Ces métriques sont, pour les plus usuelles
d’entre elles, omniprésentes dans le travail quotidien des développeurs —
il peut s’agir de l’utilisation des ressources disponibles, de la fréquence
d’opération ou encore de la bande passante utilisée par les architectures
considérées. Nous proposons également de considérer des métriques plus
”exotiques”, comme la qualité de résultat (qui peut se définir, par exem-
ple, par le taux d’erreur induit sur les résultats d’un circuit par rapport à
une référence) ou encore la durée de vie des variables ou la sécurité des ar-
chitectures. L’accent est particulièrement mis, encore une fois, sur l’intérêt
qu’ont les développeurs à pouvoir définir eux même à la fois les métriques
considérées, mais aussi les techniques pour estimer ces métriques, ce qui peut
notamment influer sur la précision de ces estimations et sur leur rapidité.

Enfin, nous proposons de considérer un dernier aspect clef dans la
définition de méthodologies d’exploration d’espace de conception : la
stratégie d’exploration. Cette stratégie désigne l’algorithme qui va être utilisé
lors du procédé d’exploration afin de comparer les différentes implémentation
entre elles, cet algorithme étant le plus souvent implémenté dans l’outil
d’exploration, mais correspond également au processus d’optimisation bien
connu des concepteurs numériques, qui le plus souvent itèrent sur la de-
scription matérielle jusqu’à obtenir une solution qui satisfassent leurs con-
traintes et objectifs. Pour ce troisième point, nous appuyons notre anal-
yse sur différentes taxonomies de stratégie d’exploration existantes dans la
littérature. Tout d’abord, nous considérons trois types de stratégie possi-
ble pour explorer un espace de conception : les stratégies hiérarchiques, les
stratégies itératives et les stratégies séquentielles. Bien que les stratégies
hiérarchiques et itératives semblent très prometteuses dans le domaine de
l’exploration, notamment pour leurs capacités de passage à l’échelle, nous
nous sommes concentrés sur les stratégies séquentielles dans le cadre de ces
travaux, c’est à dire des algorithmes qui s’appuient sur un ensemble d’étapes
consécutives qui opèrent sur l’espace de conception afin de répondre à un
cas d’utilisation. La deuxième taxonomie considérée dans cette approche
classifie ces algorithmes en quatre catégories : les méta-heuristiques, les
heuristiques dédiées, les méthodes basées sur l’apprentissage supervisé et les
méthodes basées sur des analyses de graphe. Ces différentes catégories met-
tent en avant l’immense variété de possibilité qui s’offrent au développeur qui
souhaite explorer de façon efficace son espace de conception, et appuient une
fois de plus notre proposition de méthodologie générique et flexible reposant
sur les connaissances et l’expertise du développeur pour guider le processus
d’exploration.
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Dans cette analyse de la littérature, nous montrons donc que le domaine
de l’exploration d’espace de conception est un domaine très vaste, qui com-
porte de nombreuses contributions et méthodologies. Cependant, l’analyse
de l’état de l’art en trois point qui est proposée est, au vue de nos con-
naissances actuelles, novatrice dans son approche du problème d’exploration,
ces considérations d’exposition, d’estimation et d’exploration n’étant usuelle-
ment pas décorrélées mais plutôt considérées comme un tout. De plus, cette
analyse met en avant l’intérêt d’une méthodologie d’exploration qui soit flex-
ible et basée sur l’expérience des développeurs, là où la plupart des initia-
tives actuelles cherchent plutôt à permettre à des utilisateurs non experts de
réaliser cette tâche d’exploration, et ce le plus souvent au coût de la perfor-
mance des circuits générés.

8.3 Métriques et méthodologies d’estimation

Dans ce chapitre, nous explicitons l’intérêt de la tâche de définition des
métriques d’intérêt dans le cadre de l’exploration d’espace de conception.
En effet, il est nécessaire de définir une sorte de relation d’ordre entre les
différentes implémentations qui composent cette espace : factuellement, cela
revient à expliciter les critères de qualité qui sont à considérer pour définir si
une implémentation est préférable à une autre dans le cas d’utilisation donné.

Il est à noter que cette étape de définition explicite des métriques
d’intérêt s’intègre encore une fois dans notre approche flexible du problème
de l’exploration d’espace de conception : dans la plupart des outils, ces
métriques sont au mieux définies ”en dur” dans les outils (et l’utilisateur
peut choisir laquelle il souhaite considérer), et au pire ne sont même pas
paramétrables. A contrario, nous faisons le choix dans ce travail de laisser
au développeur la liberté de définir les métriques d’intérêts pour son cas
d’utilisation, mais aussi de définir les méthodologies d’estimation qui seront
utilisées pour définir ces métriques.

En effet, après avoir défini une métrique de qualité pour les
implémentations qui composent l’espace à explorer, il est nécessaire de
préciser comment cette métrique doit être calculée : cela peut être par des
formules analytiques, des analyses de la représentation interne du circuit
dans le flot de compilation Chisel, ou encore l’interfaçage avec des outils
externes. Par exemple, pour estimer la consommation de ressources d’une
implémentation, on peut décider d’utiliser une simple estimation (rapide)
basée sur le comptage des primitives de calcul qui apparaissent dans la
représentation du circuit, mais on peut aussi utiliser les résultats d’un outil
de synthèse logique (bien plus long, mais bien plus précis) afin de fournir à
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l’outil d’exploration des métriques plus réalistes. Ainsi, nous proposons une
méthodologie générique à la fois de définition et d’estimation des métriques
d’intérêt, qui s’appuie sur une interface de programmation flexible qui per-
met d’intégrer ces estimateurs à différents niveaux d’abstraction, en jouant
sur un compromis implicite entre la qualité d’un estimateur et sa rapidité.

Nous proposons également dans ce chapitre l’implémentation de plusieurs
estimateurs comme autant de preuves de concept de l’utilisabilité de cette
approche. Nous implémentons ainsi tout d’abord un estimateur rapide de la
consommation de ressource FPGA, basé sur une analyse hiérarchique de la
représentation intermédiaires des circuits générés par Chisel. Un estimateur
similaire pour le calcul des chemins critiques des circuits est proposé, mais
la difficulté de l’approche ainsi que sa complexité algorithmique résultent en
une solution qui est à la fois trop imprécise et trop lente pour être utilisable
en pratique. Afin de fournir des estimations réalistes, nous proposons une in-
terface simple pour les logiciels de synthèse logique propriétaire, permettant
d’estimer à la fois la consommation de ressources et les chemins critiques
d’un circuit. Cette estimateur est donc relativement lent, mais très utile
dans la mesure où les résultats de ces outils de synthèses devront être con-
sidérés tôt ou tard dans le processus de conception d’un circuit. Enfin, nous
implémentons un estimateur plus original, qui consiste à estimer la qualité
de service des différents circuits générés. Cette métrique d’intérêt, qui peut
s’avérer cruciale dans des domaines tel que celui des calculs approximés, est
rarement considérée dans les flots d’exploration classique, et cette proposition
permet de démontrer l’intérêt de la définition de métriques personnalisées par
le développeur, pour des cas d’utilisation très particuliers. L’estimation de
la qualité de service est basée sur deux approches distinctes : le développeur
peut fournir un modèle analytique pour estimer le taux d’erreur introduit
dans le circuit par rapport à ses paramètres de génération, ou peut utiliser
une approche empirique, basée sur les résultats de simulations RTL des cir-
cuits, afin d’estimer ce même taux d’erreur.

Dans ce chapitre, nous proposons donc à la fois une approche générique
pour la définition et l’estimation de métriques d’intérêt dans le contexte de
l’exploration d’espace de conception, mais aussi des estimateurs ”preuves de
concept” qui s’intègrent dans le flot de conception Chisel à travers l’interface
de programmation que nous avons définie.

8.4 Exploration d’espace de conception

Dans ce chapitre, nous proposons un approche complémentaire à celle de la
définition des métriques d’intérêt afin de définir des processus d’exploration
d’espace de conception flexible, basés sur l’expertise des développeurs.
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Dans un premier temps, nous proposons une méthodologie de conception
de générateurs de circuits basée sur l’utilisation des langages de construction
matérielle, dont le principe repose sur une analyse a priori de l’algorithme
implémenté, couplé à une connaissance poussée dans le domaine de la con-
ception numérique et sur la technologie cible. Cette méthodologie, appelée
méta conception, est utilisée pour concevoir des générateurs de circuits
dont l’exploration fait sens, c’est à dire dont les paramètres de génération
ont un impact contrôlé sur les implémentations générées, et dont l’espace de
conception induit comporte un maximum d’implémentations intéressantes,
c’est à dire des implémentations non trivialement sous optimale pour le cas
d’utilisation en jeu. La Figure 8.1 introduit les étapes qui constituent cette
méthodologie de méta conception, de l’analyse de l’agorithme et de la cible
à l’implémentation matérielle de la fonctionnalité et sa validation. En instru-
mentant un système d’annotation des générateurs produits, la méthodologie
proposée permet en outre de spécifier l’ensemble des valeurs possibles pour
chaque paramètre, exhibant ainsi l’espace de conception abordé ci-dessus.

Figure 8.1: Méthodologie de méta conception

Dans un deuxième temps, nous nous intéressons au processus
d’exploration de ces espaces de conception, et proposons la méta explo-
ration, une méthodologie d’exploration qui se basent sur la méta con-
ception. Cette méthodologie repose encore une fois sur l’expertise des
développeurs afin de maximiser la flexibilité et la généricité de l’approche
(Fig. 8.2). Nous discutons de l’utilisation du paradigme de programma-
tion fonctionnelle2 pour la définition des stratégies d’exploration d’espace de
conception. Plus précisément, nous nous intéressons à une sous classe des
stratégies d’exploration, les stratégies séquentielles, et proposons d’utiliser
ce paradigme de programmation pour capturer la nature même de compo-
sition de ces stratégies. Ainsi, nous proposons de considérer les stratégies
d’exploration comme une composition d’étapes basiques qui opèrent sur des
espaces de conception, et qui peuvent dont être composées pour constru-
ire des stratégies plus complexes. Chaque stratégie basique repose à la fois
sur les métriques d’intérêt à considérer, sur la façon à utiliser pour les es-

2Chisel étant un langage basé sur scala, proposant donc des fonctionnalités de pro-
grammation fonctionnelle
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timer et sur comment comparer les différentes implémentations de l’espace
de façon efficace (cela peut reposer sur une comparaison exhaustive de toutes
les implémentations afin d’optimiser les critères d’intérêt, mais aussi sur
des heuristiques moins complexes afin de réduire la durée des processus
d’exploration produits ainsi).

Figure 8.2: Méthodologie de méta exploration

Une formalisation mathématique de cette approche est proposée, afin de
faire le lien entre la théorie méthodologique et l’utilisation de la programma-
tion fonctionnelle pour l’implémenter, et plusieurs stratégies basiques sont
définies comme preuves de concept. Parmi elles, des méthodes classiques
d’opération sur des collections (les collections étant ici les espaces de con-
ception à explorer) sont introduites, à savoir les méthodes map (application
exhaustive d’une fonction sur l’ensemble des implémentations qui composent
un espace), sort (un tri de l’espace basé sur l’application d’estimateurs sur
l’ensemble des implémentations et sur une relation d’ordre explicite) et prune
(un élagage de l’espace, lui aussi basé sur l’application exhaustive d’une fonc-
tion binaire qui défini quelles implémentations doivent être retirées de l’espace
de conception, et quelles implémentations doivent rester). Nous proposons
également deux stratégies plus complexes, basées sur une exploration des
voisinages directs des implémentations dans les espaces de conception, afin
d’accélérer les processus d’exploration pour les cas d’utilisation où une ap-
plication exhaustive est infaisable dans un temps raisonnable Ces stratégies
peuvent donc être utilisées pour réaliser respectivement un tri rapide et un
élagage rapide des espaces de conception.

Dans ce chapitre, nous proposons donc une méthodologie duale
d’exploration d’espace de conception qui repose sur l’utilisation de l’expertise
des développeurs matériel, permettant de définir des processus d’exploration
flexibles et paramétrables, reposant sur la programmation fonctionnelle afin
de maximiser l’expressivité des utilisateurs.
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8.5 Expérimentations et résultats

Afin de démontrer l’utilisabilité de la méthodologie d’exploration d’espace de
conception présentée dans les chapitres précédents, un démonstrateur logiciel
nommé QECE (Quick Exploration using Chisel Estimators) est proposé dans
ce chapitre. De plus, la structure interne du logiciel ainsi que les détails
intéressants d’implémentation sont décrits pour permettre aux utilisateurs
de mieux appréhender les possibilités qu’un tel outil peut apporter au monde
de la conception numérique.

Toujours dans le but de démontrer l’utilisabilité de la méthodologie pro-
posée, un banc d’applications représentatives de l’utilisation des FPGAs en
tant que dispositifs d’accélération matérielle est proposé. Chaque noyau ap-
plicatif composant ce banc a été développé en appliquant la méthodologie
de méta conception, les détails d’implémentations pouvant être trouvés en
annexe du manuscrit en langue anglaise. Des expérimentations d’estimation
et d’exploration ont été menées sur trois noyaux de ce banc (GEMM, un
algorithme de multiplication de matrices, FFT, un algorithme provenant du
monde du traitement du signal, et Black Scholes, un modèle de calcul de la
valeur d’une action basé sur la méthode de Monte Carlo), afin de mesurer
la qualité des estimateurs introduits en Section 8.3, mais aussi des stratégies
d’exploration proposées en Section 8.4.

Tout d’abord, nous quantifions l’erreur introduite par les différents esti-
mateurs, démontrant que la méthodologie d’estimation de la consommation
des ressources basée sur l’analyse de la représentation intermédiaire introduit
une erreur importante par rapport aux résultats des logiciels de synthèses,
mais que les métriques estimées peuvent tout de même être utilisée pour
inférer la qualité des implémentations considérées en première approche. En
revanche, nous démontrons que la méthodologie d’estimation des chemins
critiques des circuits, basée elle aussi sur une analyse de la représentation
intermédiaire, produit des résultats très éloignés de la réalité (à savoir, les
résultats du logiciel de synthèse logique), très peu fiables, et en un temps qui
peut être plus élévé que les outils propriétaires que l’on cherche à approx-
imer. De ce fait, cette approche est laissée de côté comme piste d’amélioration
du logiciel proposé, et les estimations de chemins critiques et de fréquences
maximale d’opération utilisées dans la suite de nos travaux sont basées sur
l’analyse des rapports des outils de synthèse logiques, bien plus fiables mais
pouvant être coûteux en temps et en ressources de calcul. Enfin, nous
démontrons l’utilisabilité de la méthodologie empirique d’estimation de la
qualité de service des circuits sur un exemple simple (calcul d’un produit
scalaire), afin de montrer comment l’instrumentation des différents moteurs
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de simulation disponibles dans le flot de conception Chisel peuvent permettre
d’estimer des métriques intéressantes, pour certains cas d’utilisation.

Après avoir abordé l’aspect qualitatif des différents estimateurs pro-
posés, et démontré leurs utilisabilités, nous nous intéressons maintenant à
démontrer l’intérêt de l’approche fonctionnelle pour résoudre le problème
de l’exploration d’espace de conception, en proposant et en comparant
différentes stratégies de méta exploration comme définies dans le Sec-
tion 8.4. Tout d’abord, nous comparons trois stratégies d’exploration sur le
noyau applicatif GEMM, démontrons qu’une approche basée sur l’utilisation
de l’expertise du développeur peut permettre de réduire d’un facteur 4 le
temps passé pour explorer un espace restreint (42 implémentations) de façon
efficace, comparé à une solution par ”force brute” consistant à synthétiser
toutes les implémentations disponibles. Nous démontrons ensuite, sur le
noyau applicatif de Transformée de Fourier Rapide (FFT), qu’une des lim-
ites de cette approche d’exploration est la possibilité d’exprimer des relations
d’ordres claires entre les implémentations qui composent l’espace de concep-
tion, c’est à dire utiliser les métriques d’intérêts disponibles pour définir
comparer la qualité des implémentations dans un cas d’utilisation donné.
Sans modèle applicatif adéquat, il est impossible de comparer, par exem-
ple, des noyaux qui considèrent différentes tailles d’élements dans les cal-
culs, puisque des éléments plus grands vont augmenter la qualité de service
des circuits générés, mais également la consommation de ressources — c’est
donc au développeur de spécifier exactement cette relation d’ordre, qui ne
peut être implicite. Ainsi, sur ce noyau applicatif, nous démontrons que les
stratégies avancées d’exploration peuvent s’avérer moins performantes (en
terme de temps) que la stratégie par ”force brute”, dans le cas où le modèle
applicatif fourni est trop faible pour exposer des espaces de conceptions suff-
isamment large pour bénéficier de cette approche. Enfin, et pour palier ce
problème, nous proposons une stratégie d’exploration de l’espace de con-
ception des noyaux Black Scholes, basée sur une approche en deux temps:
tout d’abord, l’utilisation d’une approche empirique pour estimer la qualité
de service (l’erreur introduite par l’implémentation matérielle par rapport à
une référence logicielle) et discriminer toutes les implémentations qui intro-
duisent une erreur trop importante, avant de parcourir les implémentations
restantes pour sélectionner celle qui proposent le meilleur débit possible, pour
la carte FPGA cible. Une telle stratégie peut être définie en une dizaine de
ligne dans le logiciel QECE, démontrons à la fois l’intérêt et la concision de
l’approche fonctionnelle pour l’exploration d’espace de conception.

Dans ce chapitre, nous démontrons l’utilisabilité de la méthodologie de
méta exploration, contribution principale de cette thèse, à travers l’usage
d’un logiciel démonstrateur (QECE) que nous avons développé, et de mul-
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tiples expérimentations sur des noyaux applicatifs également développés par
nos soins. L’accent est mis sur l’utilisation de l’expertise des développeurs
matériels pour proposer des stratégies intelligentes qui convergent rapidement
pour les cas d’utilisation considérés.

8.6 Conclusion

Dans ce travail de thèse, nous nous intéressons au paradigme émergent
des langages de construction matérielle, dont Chisel est un exemple, afin
d’améliorer la productivité des développeurs matériel. Plus précisément,
nous proposons une approche originale pour résoudre le problème de
l’exploration d’espace de conception, qui se base sur une méthodologie in-
novante de conception couplée à l’utilisation du paradigme de programma-
tion fonctionnelle afin de définir des stratégies d’exploration intelligentes, car
définies par les développeurs eux mêmes.

Nous démontrons l’utilisabilité d’une telle méthodologie à l’aide d’un logi-
ciel développeur, nommé QECE, que nous avons développé pour l’occasion,
qui propose une bibliothèque de méthodologies d’estimation de métriques
d’intérêt pour les circuits considérés, et une bibliothèque de stratégies
basiques d’exploration qui peuvent être composées pour construire des
stratégies plus complexes et adaptables aux différents cas d’utilisation. Cette
approche permet une grande flexibilité d’utilisation, afin d’être réutilisable
et adaptable à de nouveaux cas d’utilisation, améliorant ainsi la productivité
des concepteurs numériques.
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Chisel Basics

A

This Appendix provides motivations about technological choices that were
made for this thesis, as well as some insights about basic usage of Chisel,
the chosen Hardware Construction Language (HCL).

Doing so, we aim at providing more information about the usage of HCLs
for hardware development. A particular focus is put on highlighting some no-
table differences with the standard Hardware Description Languages (HDL)
such as VHDL or verilog , in order to help readers that may be familiar with
such languages to comprehend the improvements that this paradigm enables.

Motivation

Hardware Construction Languages (HCL) are a novel paradigm which en-
ables the development of parametrized hardware generators instead of ded-
icated hardware accelerators, as described in Section 2.1.4. Such initia-
tives are based on high level languages such as python [LZB14], Haskell
[BKK+10] or scala [BVR+12], which enable leveraging novel software con-
structs for hardware development.

In this context, we chose to base this work on the usage of Constructing
Hardware in a Scala Embedded Language (Chisel), an HCL developed at
Berkeley since 2012. Since its creation, Chisel has been widely adopted by
both academic and industrial worlds, with initiatives such as the Rocket Chip
generator [AAB+16], an in-order generator of RISC-V cores, the Berkeley
Out-of-Order Machine (BOOM) generator [CPA15], an out-of-order version,
or the development of Google Tensor Processing Unit (TPU) [LT18].

Moreover, Chisel has also been used as a basic tile of the Chipyard project
[Ber21b], a set of tools used to create an agile framework for hardware de-
velopment, along with tools such as Hammer [WIS+18], which decouples
physical design concerns, logical design concerns, tool concerns and technol-
ogy concerns, and Diplomacy [CTL17], which enable automatic negotiation
of parameters when generating complex Systems-on-a-Chip (SoC). It proves
that Chisel ever growing community works to ever improve the language
features, and that it can be used in wild, complex initiatives.
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Basic usage

To begin with, a simple cheat sheet is available in the project, in order to give
some insights about available primitives for hardware generation [Ber21a].

However, as an exhaustive comprehension of available constructs is not
mandatory to understand the content of this work, examples of Chisel us-
age will be provided thereafter that should be sufficient to comprehend the
improvements brought by HCL usage.

Chisel compilation flow

The Chisel Hardware Construction Framework (HCF) structure is based on
a separation of concerns inherited from the structure of software compilers,
where the entry point (frontend) and the tool output (backend) are sep-
arated by an Intermediate Representation (IR). Such architecture allows to
implement support for various input and target languages, while exhibiting
a modular structure for the developers.

An example of a Chisel-based generation of a parametrized increment
module is introduced in Figure A.1, where two simple parameters are exhib-
ited: the width of the module output, and its initialization value.

Three main steps are taken during the generation of this module:

1. The Chisel parameters are resolved during the elaboration, meaning
that the parameters are fixed for the remaining of the flow. This is
similar to the verilog elaboration process where the explicit module
parameters are resolved and propagated in the circuit description.

A high level FIRRTL representation is here generated as a first IR.

2. Multiple transforms (including verifications such as combinatorial loop
detection) are run over the FIRRTL representation, progressively low-
ering the abstraction level, until a low level representation is produced.

At the end of this process, all the data types and widths have been
resolved, the conditional statements have been replaced, and it is guar-
anteed that every component is connected exactly once.1

One can remark that, at this step, the parameters are fixed (e.g. the
width of the output is fixed to 8 bits) and implicit control signals —
i.e. the clock and the reset — have been generated automatically.

1As the example module is very simple, no significant differences are exhibited between
high and low level FIRRTL representations.
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3. The last step is a simple translation, where the low FIRRTL is trans-
lated to verilog .

As the abstraction level remains the same, this process is quite straight-
forward, with the simple goal of providing an output language that can
be used by most tools in the industry.

Figure A.1: Implementing an increment module using Chisel
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Exposing high level parameters at constructor level

One of the main differences of HCLs with standard HDL is the possibility to
leverage Object-Oriented Programming (OOP) features — such as module in-
heritance — for hardware construction. While evolutions of those languages
have come with a way to define simple parameters for module generation, as
well as generate features which enable loop based generation of hardware, it
remains difficult to leverage complex parameters that could bring a lot for
hardware generation.

A simple example of a Chisel generator is introduced in Listing A.1, im-
plementing a type parametric adder generator. It leverages a scala construc-
tor for module definition, allowing to define how each constructor parameter
is used for adder generation — meaning that the type of op1, op2 and res

ports will be defined at elaboration time only. This code can then be used
to generate variations of an adder module, allowing to instantiate an adder
on 32 bit wide unsigned integers (line 14.) or on 8 bit fixed point numbers
(line 15.) with the same description.

Used parameter is here defined using the template feature from scala,
using a T type for generation. This type is then checked at elaboration, to
verify that it does implement the Data type (the basic type for any data
in Chisel) as well as the Num trait (which ensure that a given type does
implement basic arithmetic operations such as addition and multiplication).
Doing so, one can leverage polymorphism to generate modules operating on
any type that fits the requirements, enabling to build a library of easy to use
components that can be adapted to multiple use cases.

While this example is intentionally kept simple for the reader to under-
stand the provided code, it should be noted that providing a similar module
using standard HDL would require either to copy and adapt the code for ev-
ery possible type, or search and replace type specific operations in the code.
Moreover, more complex parameters can be defined, such as high-order func-
tions which can be used as module parameters to change the behaviour of a
circuit in functional fashion.

Using functions as block generators

Another interesting feature of Chisel is the ability to generate hardware
using functions to provide block abstractions — in other terms, calling a
function can result in RTL code generation at the end of the elaboration.

This includes constructor methods, meaning that the instantiation
process can be leveraged to generate behavioural description of circuit. A
simple example is provided in Figure A.2, where a verilog description of a
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0 import chisel3._

1 import chisel3.experimental.FixedPoint

2
3 class Adder[T <: Data with Num[T]](tpe: T)

4 extends Module {

5 val io = IO(new Bundle ({

6 val op1 = Input(tpe)

7 val op2 = Input(tpe)

8 val res = Output(tpe)

9 })

10
11 io.res := io.op1 + io.op2

12 }

13
14 val uintAdder = new Adder(UInt (32.W))

15 val fpAdder = new Adder(FixedPoint (8.W, 3.BP))

Listing A.1: Type parametric adder generator in Chisel

register (List. A.2) is compared to its Chisel counterpart (List. A.3).

As can be observed here, the semantic for describing a register in stan-
dard HDL is based on simulation needs, as those languages were originally
designed for simulation purposes instead of hardware description. One then
needs to declare a logic signal (line 6.), and a process sensitive to the clock
signal to either update the value, or reset it (lines 7-11).

While every hardware developer has grown used to such way to describe
registers, it remains a verbose way to describe a basic component that will
be instantiated hundreds of times in a single circuit. Moreover, this semantic
is quite confusing for beginners, as verilog exposes a reg keyword for signal
declaration, but that does not actually differ from the wire keyword from a
semantic point of view.2

On the other hand, Chisel leverages block generation through function
calls, enabling users to simply instantiate basic classes for register descrip-
tion (line 6.). Once it is done, assigning a signal to the register value (i.e.
myRegister value at line 6.) will change the next value (as does changing
the value on port D in List. A.2), while using the variable as a right-hand
operand (line 7.) is equivalent to reading the content of the register (Q port).

2The only way to describe a register is to use specific patterns such as the one in
Listing A.2, that will be recognized and translated by synthesis tools to instantiate actual
hardware registers.
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0 module register (parameter WIDTH) (

1 input clk ,

2 input reset ,

3 input [WIDTH -1:0] D,

4 output [WIDTH -1:0] Q);

5
6 reg [WIDTH -1:0] myregister;

7 always @(posedge clk) begin

8 if (reset)

9 Q = 0;

10 else

11 Q = D;

12 endmodule

Listing (A.2) Behavioural description of a register in Verilog

0 class MyRegister[T: Data](tpe: T) extends Module {

1 val io = IO(new Bundle{

2 val dataIn = Input(tpe)

3 val dataOut = Output(tpe)

4 })

5 // register width is inferred from dataIn type

6 val myRegister = RegNext(dataIn)

7 dataOut := myRegister

8 }

Listing (A.3) Building a register using Chisel constructs

Figure A.2: Building a register: HDL vs HCL

This simple semantic is less error prone, as it does not rely on a copy
of a particular pattern for instantiation, and allowing easier instantiation of
basic component is a key feature to allow developers to spend more time on
actual design problems, thus improving their productivity. We also see here
that using high level parameters as exposed in previous section can enable to
build highly reusable component generators, by defining a type parametric
register module for example.

Remark: Both clk and reset signals are not provided for register instan-
tiation in the Chisel example. In fact, those signals are implicit in any class
inheriting from Module, the basic class for hardware circuits. They are used
for instantiations of components that require them, and are being propagated
to every instantiated sub module in order to expose coherent time zones to
users. If needed, they can be overwritten manually to build different time
zones — e.g. for circuits using multiple clock domains.
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Leveraging high level constructs for generation

The last feature that we will consider here is the usage of high level func-
tionalities for hardware generation.

As Chisel is based on scala language, features from this language can be
used to define module generators and bring more expressivity for developers.

0 class DotProduct(width: Int , nElem: Int) extends Module {

1 val dataType = UInt(width.W)

2
3 val io = IO(new Bundle{

4 val op1 = Input(Vec(nElem , dataType ))

5 val op2 = Input(Vec(nElem , dataType ))

6 val out = Output(dataType)

7 })

8
9 io.out := ((io.op1 zip io.op2)

10 .map{ case (a, b) => a * b })

11 .reduceTree(_ + _) // use balanced tree

12 }

Listing A.4: Building a dot product kernel using Chisel

Listing A.4 introduces a dot product generator parametrized by ele-
ments width and number. This generator thus accepts two vectors of ele-
ments, which elements are multiplied two by two, before being summed to
produce the output. Such operation can be captured using the map-reduce
paradigm, as it would be done in a software implementation leveraging func-
tional programming, and hardware designers should also benefit from such
programming patterns.

An example of the target architecture is provided in Figure A.3, to help
the reader to understand the gap between the final circuit, and what the
designer actually requires to describe using either Chisel or verilog.

Lines 9. to 11. expose how Chisel can be leveraged to build a generator
for such implementations: input vectors are zipped — i.e. elements of each
vectors are paired — before multiplication is applied to each pair. Resulting
vector is then reduced through add operations, using a binary tree structure
to force elaboration to produce a balanced adder tree.

A verilog counterpart is proposed in Listing A.5, to exhibit the complexity
of building such generator in a traditional HDL. To do so, we require to ex-
pose a multidimensional array of elements and populate it according to some
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module dot_product #(

parameter NELEM,

parameter WIDTH,

) (

input [N-1:0] [WIDTH-1:0] op1,

input [N-1:0] [WIDTH-1:0] op2,

output [WIDTH-1:0] out,

);

localparam STAGES = clog2(NELEM);

localparam NPADDED = 2**(STAGES);

wire [STAGES:0] [NPADDED-1:0] [WIDTH-1:0] tab;

generate

// Init loop with mul (required padding for NELEM not power of 2)

for (i=0; i<NPADDED; i=i+1) begin:init

// 0 padding is fine for add reduce

assign tab[0][i] = (i < NELEM) ? op1[i] * op2[i] : ’0;

end

// main reduce loop with tree

for (stage=0; stage<STAGES; stage=stage+1) begin:stages

for (couple=0; couple<2**(STAGES-stage-1); couple=couple+1)

begin:couples

localparam first = couple * (2**(stage+1));

localparam second = first + (2**stage);

assign tab[stage+1][first] =

tab[stage][first] + tab[stage][second];

end

end

endgenerate

assign out = tab[STAGES][0];

endmodule

Listing A.5: Dot product generic implementation in Verilog

specific patterns on the indexes, through the generate ... for construct.
This pattern is hence recognized by the synthesis tool, which eliminates the
useless elements of the array, and build the correct adder tree.
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A last remark can be done on the differences between those two
paradigms: while changing the data path of the verilog module — e.g. to
add registers after multipliers and adders — requires to modify the whole
code, it can be done in a functional way in the Chisel description.

This is possible because both map and reduceTree functions accept high-
order functions as parameters to define which operations are to be performed,
which is known in the software world as functional programming. In fact,
the reduceTree construct even accepts a second function as parameter, to
define what to do on non balanced trees (when the number of elements is
not a power of two), allowing to define a simple delay using a RegNext in the
case of pipelined additions, for instance.

This final example thus exhibits how the introduced features enable to
build efficient hardware generators which are easier to design, understand
and adapt to new use cases.

Figure A.3: Example of a dot product architecture to generate
(using vectors of 4 elements)
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B

In order to analyse how the defined methodologies can be leveraged to im-
prove the life of hardware developers, we implemented 7 computation ker-
nels using Chisel, which are introduced in Table B.1.

Each kernel has been developed by applying the meta design method-
ology introduced in section 5.1.1, and this appendix also exposes — in ad-
dition to the benchmark description — which considerations were taken into
account, for each kernel, in order to provide an explorable meta design from
a prior algorithmic analysis.

This benchmark is proposed as an open-source project [FMR21b].

Kernel model

The kernels were built to be integrated in a simple programming model, by
exposing a unified interface. To do so, we defined a Chisel Role and Shell
based architecture, as can be seen in emerging Field-Programmable Gate Ar-
ray (FPGA) projects that aim at separating the accelerators implementation
from their interfaces [CCP+16].

The proposed interface is kept simple, as Role simply exposes a bi-
directional Ready/Valid interface with a parametric bandwidth (Fig. B.1),
that can be then be integrated in more or less complex Shells, ranging from
simple mapping of this Input/Output (IO) to the communication Intellec-
tual Property (IP) that may be available on the target board, to complex
communication protocols.

However, such structure is quite simple, and evolutions should consider
integrating multi-lane communications for configuration purposes — which
are currently done using the same IO bus, meaning that the accelerators
must consider configuration in their data communication protocols.
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Figure B.1: Simple Role and Shell model used

Dot Product

The dot product generator has been developed as a simple example, and
does not expose a heavy design space. Moreover, an example of the target
architecture is introduced in Figure A.3.

Given two vectors a and b of dimension n, we compute:

c =
n−1∑
i=0

ai ∗ bi (B.1)

The Vector width is used to define the algorithmic complexity of the im-
plementation, while both dynamic and precision define the element type to
operate on. In order to take advantage of an FPGA implementation, we
aim at exploiting the parallelism of the algorithm, while keeping the resource
usage under given constraints. The dot product can easily be expressed in
a functional way, using the Map-Reduce pattern, implying we can extract
a maximum parallelism level of n, by performing all the multiplications in
parallel before performing reduction through additions. We thus expose par-
allelism as a parameter, allowing the user to easily increase the throughput
at the cost of functional unit replication.
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General Matrix Multiply

The General Matrix Multiply (GEMM) algorithm is a generalization of the
matrix multiply algorithm.

Given three matrices A, B and C in Mn, the set of the matrices of
dimension n× n (that we consider square for simplification) and two values
α and β, we compute:

C = α · A×B + β · C (B.2)

A meta design for the GEMM algorithm has been introduced in prior work
[FMR20] — from which Equation B.3 is extracted — and was manually
explored in order to demonstrate how both meta design and meta explo-
ration can be leveraged to increase designers productivity [FMR21a].

The GEMM generator has been developed in order to maximize the IO
usage, targeting a temporal behaviour as represented in Figure B.2. Such
prior analysis enables to build a generic generator that uses both Block
Random-Access Memory (BRAM) and Multiply and Accumulate (MAC)
to build adaptable designs that will compute partial results on the fly, re-
sulting in a theoretical maximal usage of the bus.

ready

input α β C Bt A

valid

output XXX result

∆c

Figure B.2: Targeted chronogram for an efficient GEMM implementation

Equation B.3 introduces the theoretical throughput (in operation ·
second−1) of the designs generated from this description, and is used to define
a cost function to be maximized while exploring the GEMM design space.
One can remark that doing this enable to normalize a cost metric through
different matrices dimensions, as performing one GEMM computation
over Mn is comparable to performing eight Mn

2
computations.

TGOp/s =
f

∆cycle

=
2× n3 × f × b

3× n2 × e
(B.3)

As a result, we define three parameters for GEMM generation: the bus
bandwidth, which defines the capacity of the IO bus, the element bit width,
which defines the size of each element in the considered matrices — meaning
that bandwidth

bitwidth
element can be sent and received each cycle — and finally the

dimension (or n) of the matrices in Mn.
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Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm is used in signal processing to
provide frequency analyses from temporal data.

Given x0, ..., xn−1 ∈ C, FFT is computed using the following formula:

fj =
n−1∑
k=0

xke
− 2πi

n
jk (B.4)

The FFT generator was built to maximize the IO bus usage, resulting
in a pipelined implementation inspired from Gerez [Ger12].

The pipeline is based on the Radix-2 Multi-Path Delay Commutator
(R2MDC) technique [RG75], using multiple Radix-2 stages to reduce the
FFT problem size by 2 at each stage, in a divide and conquer fashion. We use
the Decimation In Frequency (DIF) mode in order to consume input data
(temporal samples) in a FIFO fashion, resulting in a need to reorder the
output data (frequency samples) at the end of the pipeline. This is done by
using a Ping Pong buffer, which enables to provide the frequency data in a
coherent order, even if the DIF-based implementations produce out-of-order
frequency samples — moreover, using another Ping Pong buffer on the
R2MDC inputs enables to exploit them at 100%. The Twiddle factors
— i.e. the trigonometric coefficients — are computed a priori and stored in
Read-Only Memories (ROM) to fasten the computations.

This pipelined implementation allows to maximize the IO bus usage as
we consume input data on the fly, while maximizing the resource usage.

The FFT generator relies on three parameters: the parallelism level,
which defines the number of lanes used in the R2MDC model — i.e. the
number of inputs that can be absorbed in one cycle in the generated acceler-
ator — the element bit width, which defines the size of each complex element
used for computation, and the size of the FFT problem being solved. As
for the element bit width, the FFT uses Fixed Point representation for the
computations, and one could want to explore this representation by defining
both dynamic and precision parameters. However, as we do not focus Qual-
ity of Service (QoS) based exploration on this kernel, we chose to define the
data representation using only one parameter — we use bitwidth

2
as values for

both dynamic and precision.

We can remark that, in contrast with the GEMM implementations, two
FFT implementations of different sizes cannot be compared easily, as the
first one cannot be expressed by composing instances of the second one. We
here solve different applicative problems, hence the developers either need to
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specify which size to use, or to allow the exploration process to make this
decision through applicative information (e.g. QoS).

Finite Impulse Response Filter

Finite Impulse Response Filter (FIR Filter) is a standard digital process-
ing algorithm, based on the application of a finite number of coefficients to
temporal samples in order to modify an input signal.

The filter response is computed using a discrete convolution between an
input signal x[t] and the function represented by ck, k ∈ [[0, n−1]] coefficients:

f(t) =
n−1∑
k=0

ck × x[t− k] (B.5)

Once again, we aim at exploiting the IO bus at its maximal capacity by
absorbing the whole input bandwidth as temporal samples at each cycle. To
do so, a structured buffer is built to enable windowed accesses to the buffer
data: if we consider that k elements are presented on the input bus at each
cycle, then those k elements ei, i ∈ [[0, k − 1]] are fed to a FIFO. On read,
this structure enables to access k different vectors for inputs ([[ei, ei+k−1]], i ∈
[[0, k − 1]]), meaning that we can compute k successive response of the filter
f(t + i), i ∈ [[0, k]] in parallel. Doing so, we hence built a parametrizable,
fully pipelined FIR Filter generator that takes the best of the available IO
capacities.

So built FIR Filter generator uses three parameters: the bus bandwidth,
which defines the capacity of the IO bus, the element bit width, which defines
the data representation used in the computations, and the tap number, which
defines the number of coefficients used in the filter. A fourth parameter allows
to define whether coefficients are hard-coded — i.e. stored in ROMs — or
provided in the communication protocol. However, no exploration process
should consider both kinds of implementations as they are not comparable
and depend on both applicative needs and target constraints.

Here again — as for FFT implementations comparison through multiple
sizes — it is difficult to compare FIR Filter implementations if the tap
numbers differ. However, one could define application specific metrics to
allow such comparison, for example by defining applicative needs — e.g. the
filter type (low-pass, band-pass, ...) or cut-off frequency — and running
empirical simulations to choose which implementation best fit one’s need.
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Monte Carlo

Both Pi and Black Scholes kernels are based on a parametric Monte Carlo
generator, for which the meta architecture is introduced in Figure B.3.

In order to provide random samples following normal distributions for
the different cores — which are generated using different seeds — we use a
parametric Tausworthe generator to feed pre-computed Box-Muller ROMs
[Box58]. Using so defined samples, each core performs the given computa-
tions, and the partial results are averaged to provide a statistical value for
the result — for example, we estimate the value of π by checking if random
points are inside a circle of radius one before computing the proportion of
points that are within this disk. This can be used to determine the area of
the disk, hence we can empirically approximate π.

Figure B.3: Monte Carlo kernel meta architecture

We use a Factory pattern to build different Monte Carlo kernels, fully
exploiting the Object-Oriented Programming (OOP) features of Chisel for
such generators. This enables to build both Pi and Black Scholes kernels by
defining specific inner functions while allowing code reusability by exploiting
inheritance.

For both kernel generators, we thus define four parameters: the dynamic
and the precision to define the Fixed Point representation for the compu-
tations, the iteration number, which defines the number of experiments to
be run before performing both average and post processing to provide a re-
sult, and the core number which defines the number of parallel cores to run
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iterations.
As for the Black Scholes generator, we aim at computing the price of an

action at time t, given the following equation — µ, σ and T being respec-
tively the risk free rate, the volatility and the maturity of the considered
option:

S(t) = S(0)× e(µ− 1
2
σ2)T+σ

√
TN (0,1) (B.6)

However, as hardware-based computations of the exponential function are
costly, we leverage Euler-Maruyama method to sequentially approximate
the formula (Eq. B.6):

S∆t = S0((1 + (µ− 1

2
σ2)∆t) + σ

√
∆tN (0, 1) (B.7)

To exploit this approximation model, the Black Scholes kernels are gen-
erated using a fifth parameter, namely the Euler iteration number, which is
used to define how many iterations are taken for each Euler-Maruyama
based approximation. Moreover, other parameters could be considered for
exploration, as this meta implementation uses hard coded values for the Black
Scholes specific parameters (µ, σ and T), and for the Monte Carlo parame-
ters, such as the Tausworthe and the Box-Muller configurations. Such values
may also be integrated in the communication protocol, in order to build
dynamically programmable accelerators.

For both Monte Carlo based kernels, we hence expose heavy design
spaces as the QoS is considered for exploration — we aim at maximizing
the design efficiency (i.e. performance vs cost ratio) while insuring that the
generated designs does not generate significant errors with respect to a given
workload model.

Multilayer Perceptron

The Multilayer Perceptrons (MLP) are simple neural network models that
are based on the original Perceptron model as introduced by F. Rosenblatt
in 1958 [Ros58]. They consist on a given number of fully connected neuron
layers — meaning that each neuron of a layer n is connected to every neuron
of the layers n− 1 and n+ 1.

Such model has been used for more than twenty years for multiple uses,
notably for image classification over the MNIST database (handwritten
digits) [LBBH98]. The MLP implementations are costly, as all the necessary
connections result in a complex interconnection model, which led researchers
to develop more compact neural network for Deep Learning (DL) — espe-
cially for image processing and recognition domains — such as Convolutional
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Neural Network (CNN) models. However, some specific domains still require
to use fully connected networks — e.g. personalization and recommendation
systems [NMS+19] — and given their simple structure, we chose to imple-
ment a MLP generator using Chisel.

We chose not to base developed generator on the Role model as in-
troduced in Figure B.1, in order to allow a multi-channel interface model,
notably to be able to configure the accelerator through a distinct IO bus.
In order to take the best of FPGA specificities, we chose to target a fully
unrolled implementation, meaning that each neuron in the network will be
an independent entity with its own memory and computation units — in
contrast to most hardware implementations which are based on scheduling
the different neuron tasks on a topology-independent amount of hardware
neurons — as existing works proved that unrolling networks on FPGAs can
lead to efficient implementations [PBBP+17].

Most of the design effort was done at neuron level, in order to provide
efficient basic units for computing neuron outputs. Let N(i, j) be the jth

neuron of the ith layer of a given network. N(i, j) got n different inputs
x0, ..., xn−1 resulting from the preceding layer, n different weights w0, ..., wn−1

that result from a prior training of the network and are used for configuration
purposes, and a bias b which is also provided by the training phase. An
activation function f is also applied to each neuron output, and is defined
at network level — thus it does not need to be configured at neuron level as
it is defined at elaboration time and can be hard-coded.

The output o(i, j) is then computed using the following formula:

o(i, j) = f(
n−1∑
k=0

xkwk + b) (B.8)

A simplified version of the chosen neuron architecture is introduced in
Figure B.4. Each neuron is composed of an embedded memory — which
should leverage BRAMs for Xilinx boards — to store network weights, and
a computation unit to perform Multiply and Accumulate (MAC) operations.
As MAC operations can easily be parallelized in a way similar to the dot
product, we hence expose a parallelism parameter at neuron level to easily
define the Functional Unit (FU) replication factor. In order to properly
schedule the output propagation, a scan-chain system is inserted after the
activation function, to manage the synchronization with the next layer.

Each neuron also includes a parallel data bus for configuration, which
uses a simple Finite State Machine (FSM) to write weights in a BRAM —
weights are written in a vector-like structure, enabling to access to k weights
w0, ..., wk−1 each cycle, in order to feed k MAC units in parallel.
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Figure B.4: Simplified schematic for a neuron implementation

Using this basic neuron generator, we thus define the whole network as a
composition of layers, each layer being defined as a composition of neurons,
with small FSMs for the control flow — including two different IO buses,
respectively for the data and the weights.

We chose to use MNIST as a use case for so defined MLP, as it is both
a simple example and a standard reference in image processing.

Beside the parallelism parameter, which allows to explore a trade-off be-
tween the neuron throughput and its resource usage, we defined three pa-
rameters: #neuron(1st layer) and #neuron(2nd) respectively to define the
number of neurons in 1st and 2nd layers, while the element bit width once
again defines how data are represented in the design. We here only explore
three layered networks, where the first layer is composed of as many neurons
as there are pixesl in an input picture, and the last layer is composed of
as many neurons as the number of possible classifications (here, 10 classes
for 10 different digits). Whereas this means that both input and output
layer widths are defined at application level, it also means that this gen-
erator can be adapted to any network, and that any number of layers can
be put between input and output layers, resulting in a possibly very wide
design space to explore. Moreover, multiple activation functions could be
explored using scala functional programming features, enabling to compare
either different activation functions or multiple implementations of a same
activation function.

In order to really take advantage of the FPGAs specificities, multiple
improvements are considered — including considering hard-coding the net-
work configuration parameters to reduce memory footprint, various arith-
metic possibilities that can be leveraged by changing the data type, and an
automatically searching for the best topology.
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C

This Appendix introduces a more detailed version of the histograms of rela-
tive differences that were presented in Figure 6.3.

For each of the considered kernels — namely Black Scholes, Pi, FFT and
Dot Product — we exhibit the relative differences of the resource estimations
with respect to the synthesis results, for both macro and non-macro estima-
tion methodologies that were introduced in Section 4.2. As for the GEMM
kernel, the relative differences are shown in Figure 6.6, as they are used for
exploration purposes in Section 6.5.1.

Please refer to Table 6.2 for both the experimental setups and the tem-
poral considerations of these experiments.
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(a) Without macro block replacement

(b) With macro block replacement

Figure C.1: Relative differences between the resource estimations
and the synthesis results on Black Scholes kernels
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(a) Without macro block replacement

(b) With macro block replacement

Figure C.2: Relative differences between the resource estimations
and the synthesis results on Pi kernels
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(a) Without macro block replacement

(b) With macro block replacement

Figure C.3: Relative differences between the resource estimations and
the synthesis results on Fast-Fourier Transform kernels
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(a) Without macro block replacement

(b) With macro block replacement

Figure C.4: Relative differences between the resource estimations and
the synthesis results on dot product kernels
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Comparing the Pruning Strategies

D

This Appendix provides further data on the empirical Quality of Service
(QoS) estimations that were introduced in Section 6.1.1. It shows the im-
pact of the different pruning strategies for partitioning a given design space,
with a particular focus on the quick pruning strategy that was defined in
Algorithm 5.2. For an easier representation of the results, we fix the vector
width parameter to 8, as was done in Section 6.4.3.

In a similar way to what was done in Table 6.5, we consider 4 different
strategies for these experiments:

− Strategy 1: exhaustive pruning

− Strategy 2: exhaustive pruning, with space reduction

− Strategy 3: quick pruning, with space reduction (using SeqSpace)

− Strategy 4: quick pruning, with space reduction (using MatrixSpace)

Figures
D.1 Quality of service evolution (N (0, 1), 10 simulations) . . . 158

D.2 Quality of service evolution (N (0, 1), 50 simulations) . . . 158

D.3 Quality of service evolution (N (0, 1), 100 simulations) . . 159

D.4 Quality of service evolution (N (0, 1), 1000 simulations) . . 159

D.5 Quality of service evolution (N (32, 10), 10 simulations) . . 160

D.6 Quality of service evolution (N (32, 10), 50 simulations) . . 160

D.7 Quality of service evolution (N (32, 10), 100 simulations) . 161

D.8 Quality of service evolution (N (32, 10), 1000 simulations) 161
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Table D.1 introduces 8 different experiments for comparing those strate-
gies — see Table 6.5 for a detailed explanation of these experiments — along
with heat map representations of the QoS evolution. For those experiments,
we set the acceptable error threshold to 1%, similarly to what was done in
Figure 6.7.

As can be observed, the speed of the exhaustive strategies does not seem
to be correlated with the initial distribution or with the number of simula-
tions. In fact, it seems that each simulation runtime is negligible with respect
to the static cost of launching the simulator, resulting in a null gain when
reducing the number of simulations. However, as dot products are quite
simple kernels, it is possible that for more complex ones, the simulation run-
time would scale, meaning that reducing the number of simulations could
bring better performance.

On the other hand, we remark that changing the distribution (i.e. the
simulation workload) can have a direct impact on the number of implemen-
tations that are explored to build the pruning frontier, thus impacting the
duration of each strategy — as the pruned space width reduces, it is easier to
build that frontier and thus the pruning process becomes faster. Moreover,
we can use those results to confirm the impact that the space structures have
on the exploration runtime. We can remark that using a linear SeqSpace can
be more time-consuming than an exhaustive exploration of the space, while
using a more complex MatrixSpace implementation can result in an acceler-
ation factor of ×5.4, depending on the size of the pruned search space.

Finally, we can state that reducing the number of dimensions before the
exploration is indeed an easy way to reduce the search time, under the as-
sumtion that the user is aware that a particular dimension has no impact on
a given metric for the considered exploration step.

As a conclusion, we can state that for QoS-based pruning, it seems to be
better to use the quick pruning strategy with a MatrixSpace structure,
after performing space reduction.1 One should also adapt the number of
simulations in order to cope with the law of large numbers and provide
meaningful QoS results.

1Here, only the parallelism dimension is being ignored at simulation time as it does
not impact the implementations QoS. Moreover, as the vector width is fixed to 8, the
exploration is thus in fact done in a two dimensional space.
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Figure D.1: Quality of service evolution (N (0, 1), 10 simulations)

Figure D.2: Quality of service evolution (N (0, 1), 50 simulations)
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Figure D.3: Quality of service evolution (N (0, 1), 100 simulations)

Figure D.4: Quality of service evolution (N (0, 1), 1000 simulations)
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Figure D.5: Quality of service evolution (N (32, 10), 10 simulations)

Figure D.6: Quality of service evolution (N (32, 10), 50 simulations)
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Figure D.7: Quality of service evolution (N (32, 10), 100 simulations)

Figure D.8: Quality of service evolution (N (32, 10), 1000 simulations)
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Publications

International publications

ARC2020 Toledo, Spain (short paper + poster) [FMR20]
Chisel Usecase: Designing General Matrix Multiply for FPGA

RSP’2021 Virtual event [FMR21a]
Integrating Quick Resource Estimators in Hardware Construction Frame-

work for Design Space Exploration
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Glossary

API Application Programming Interface.
An interface proposed by the developers of programming tools to their

users.

AxC Approximate Computing.
Application domain relying on a simple assertion: most of the applications

are redundant enough to allow approximation in the intermediate results,
thus some resources can be saved by changing the data representation and
using approximate FUs.

ASIC Application-Specific Integrated Circuit.
An integrated circuit customized for a specific application.

BOOM Berkeley Out-of-Order Machine.
A Chisel-based generator of RISC-V out-of-order cores [CPA15].

BRAM Block Random-Access Memory.
A memory block embedded in the FPGA itself, allowing an access that

is quicker than the external memories that may be available.

Chisel Constructing Hardware in a Scala Embedded Language.
A scala-based HCL developed at Berkeley since 2012 [BVR+12].

CLB Configurable Logic Block.
Basic blocks for Xilinx FPGAs, including both computation resources

(LUTs) and memory resources (FFs).

CNN Convolutional Neural Network.
A neural network model where each neuron is connected to a bounded

amount of preceding and succeeding neurons, in contrast to fully connected
networks.
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CPU Central Processing Unit

DL Deep Learning.
Machine learning methods based on multiple layered networks.

DIF Decimation In Frequency.
A standard approach for FFT computations, which enables consuming

the temporal data in a FIFO fashion.

DG Directed Graph

DSE Design Space Exploration.
A manual or automatic methodology for the exploration of a design space,

in order to find the best fit for an algorithm hardware implementation.

DSL Domain Specific Language.
A programming language targeting a specific domain, and thus embed-

ding very specific features which are keys for the usual computations in this
field. DSLs can thus be accelerated using some specific components, and
non experts can take advantage of such acceleration.

DSP Digital Signal Processor.
A computing unit dedicated to digital processing applications.

FIFO First-In First-Out.
A data structure in which data are consumed in their order of arrival.

FIR Filter Finite Impulse Response Filter.
A class of representative algorithms of signal processing. It is a digital

filter using a finite number of coefficients.

FIRRTL Flexible Intermediate Representation for RTL.
The Intermediate Representation (IR) used by Chisel.



FF Flip Flop.
Basic units of memorization of one bit— often assimilated to the registers.

FFT Fast Fourier Transform.
A representative algorithm in the signal processing field. It converts input

data from the time domain to the frequency domain.

FPGA Field-Programmable Gate Array.
A reconfigurable circuit that is able to behave as any sequential or com-

binatorial circuit.

FPU Floating-Point Unit.
Computation units dedicated to floating-point computations, based on

the IEEE-754 standard.

FSM Finite State Machine

FU Functional Unit.
Computation units used as the basis of a given architecture.

GA Genetic Algorithm.
A class of evolutionary algorithms that can be used for optimization and

search problem resolution.

GEMM General Matrix Multiply.
A representative algorithm in the field of linear algebra. It is a general-

ization of the basic matrix multiplication algorithm.

GPU Graphical Processing Unit

HCF Hardware Construction Framework.
A framework used to compile an entry HCL-based code to a RTL de-

scription that can be fed to any low level toolchain.
HCFs are similar to standard software compilers in their design, using a
frontend/transforms/backend separation.



HCL Hardware Construction Language.
A hardware language enabling the definition of hardware generators

instead of hardware designs, to ease the re-utilization of the code, thus
speeding-up the hardware development processes.

HDL Hardware Description Language.
Standard RTL languages, such as verilog , system-verilog or VHDL.

HLS High Level Synthesis.
A design methodology based on the compilation of algorithmic specifi-

cation toward a hardware description, to ease and speed-up the hardware
development.

IO Input/Output

IR Intermediate Representation.
An internal representation used by a compiler to abstract concerns from

both the entry language and the target machine.

IP Intellectual Property (core).
A reusable unit of logic, often subject to intellectual property laws, used

as a functional block in ASICs and FPGAs.

JSON JavaScript Object Notation.
A JavaScript-based format for representing textual data.

LUT Look-Up Table.
Basic electronic components, able to model any boolean function for a

given amount of inputs (usually 4 or 6). Notably used in the design of recent
FPGAs, due to this generic feature.

MAC Multiply and Accumulate.
A basic pattern of operation used in many domains such as signal pro-

cessing, image processing or machine learning. It relies on computing a joint
addition and multiplication.



ML Machine Learning

MLP Multilayer Perceptron.
A model of fully connected neural networks derived from the original

Perceptron model [Ros58].

MOP Multi-objective Optimization Problem.
As defined by Barone et al. [BTBB21], it is the process of ”finding, for

some decision variables, a set of values satisfying imposed constraints, while
optimizing a set of objective functions” [Osy85].

NoC Network-on-Chip.
A design paradigm which aims at integrating the communication system

directly on the chip.

OOP Object-Oriented Programming

QECE Quick Exploration using Chisel Estimators.
An estimation and exploration framework built as a proof of concept of

the usage of HCLs for DSE [FMR21c].

QoR Quality of Results.
In the context of this thesis, we consider the QoR to be the quality of

the proposed estimators with respect to some reference values about circuit
properties. A distinction must be done between QoR and QoS, as the second
one is an actual property of the circuit while the first one provides insights
about the adequacy of the estimation flow with respect to the development
environment.

QoS Quality of Service.
A property of a circuit that exhibits the errors that were introduced by

the implementation with respect to the initial algorithm. It is particularly
relevant in the context of Approximate Computing (AxC), where one can
build more performant designs at the cost of accuracy.

RAM Random-Access Memory



R2MDC Radix-2 Multi-Path Delay Commutator.
A standard technique for FFT optimization. The proposed implemen-

tation is based on a presentation from Gerez [Ger12] (itself based on the
literature [RG75]).

RMSE Root-Mean-Square Error.
A standard metric defined by computing the relative differences between

theoretical and experimental values.

RTL Register-Transfer Level.
The abstraction level used for hardware development, abstracting low

level consideration to only consider signal interactions.

ROM Read-Only Memory

SoC Systems on a Chip.
A single integrated circuit (ASIC) embedding all the needed components

- such as memories, IO ports or microprocessors - for a given application.

TPU Tensor Processing Unit.
An Artificial Intelligence dedicated ASIC.

VLSI Very Large Scale Integration.
Design processes used to integrate millions of transistors in a chip.



Bibliography

[AAB+16] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott
Beamer, David Biancolin, Christopher Celio, Henry Cook,
Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. The
Rocket Chip Generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.
(Cited on pages 11, 23, and 129.)

[AAPLP21] Ayaz Akram, Venkatesh Akella, Sean Peisert, and Jason
Lowe-Power. Enabling Design Space Exploration for RISC-V
Secure Compute Environments. Lawrence Berkeley National
Laboratory, 2021. (Cited on page 30.)

[ACP04] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. A
GA-Based Design Space Exploration Framework for Parame-
terized System-On-A-Chip Platforms. IEEE Transactions on
Evolutionary Computation, 2004. (Cited on page 19.)

[AGMP21] Muhammad Awais, Hassan Ghasemzadeh Mohammadi, and
Marco Platzner. LDAX: A Learning-based Fast Design Space
Exploration Framework for Approximate Circuit Synthesis. In
Proceedings of the 2021 on Great Lakes Symposium on VLSI,
Virtual Event USA, June 2021. ACM. (Cited on pages 30,
33, and 108.)

[ALS15] Yan Lin Aung, Siew-Kei Lam, and Thambipillai Srikanthan.
Rapid Estimation of DSPs Utilization for Efficient High-Level
Synthesis. In International Conference on Digital Signal
Processing (DSP), Singapore, Singapore, July 2015. IEEE.
(Cited on page 28.)

[AW17] Muhammad Shoaib Bin Altaf and David A Wood. LogCA:
A High-Level Performance Model for Hardware Accelerators.
ACM SIGARCH Computer Architecture News, 2017. (Cited
on page 113.)

169



[Ber21a] Berkeley. Chisel3 Cheat Sheet. https://github.com/
freechipsproject / chisel - cheatsheet / releases /

latest/download/chisel cheatsheet.pdf, 2021. [ON-
LINE] Last accessed on 10th november, 2021. (Cited on
page 130.)

[Ber21b] Berkeley Architecture Research. Chipyard project. https:

//chipyard.readthedocs.io/en/latest/index.html, 2021.
[ONLINE] Last accessed on 10th november, 2021. (Cited on
page 129.)

[BHM+21] Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan
Groleat, and Frederic Petrot. Towards Agile Hardware De-
signs with Chisel: a Network Use-case. IEEE Design & Test,
2021. (Cited on pages 5 and 114.)

[BIM16] Mario Barbareschi, Federico Iannucci, and Antonino Mazzeo.
Automatic Design Space Exploration of Approximate Algo-
rithms for Big Data Applications. In 2016 30th International
Conference on Advanced Information Networking and Appli-
cations Workshops (WAINA), Crans-Montana, Switzerland,
March 2016. IEEE. (Cited on page 32.)

[BKK+10] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boei-
jink, and Marco Gerards. ClaSH: Structural Descriptions
of Synchronous Hardware Using Haskell. In 2010 13th Eu-
romicro Conference on Digital System Design: Architectures,
Methods and Tools, Lille, France, September 2010. IEEE.
(Cited on pages 11, 23, and 129.)
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Leveraging Hardware Construction Languages for Flexible
Design Space Exploration on FPGA

Abstract — FPGA based accelerators are imposing themselves as energy efficient alternatives to
general purpose CPUs. However, the hardware development methodologies are still way behind
their software counterparts, and initiatives are to be taken in order to increase the productivity
of hardware developers. In this thesis, we explore the possibilities that the emerging Hardware
Construction Languages paradigm can bring to the hardware world, notably by leveraging high
level features such as functional programming or object oriented development. We start with
a comprehensive analysis of the estimation metrics and methodologies in the context of FPGA
development, and then put a particular focus on how such paradigm can be used for design space
exploration, introducing two complementary methodologies — meta design and meta exploration
— for such usage. A software demonstrator, QECE, has been developed and used to demonstrate
the usability of those methodologies in various use cases, thanks to a custom benchmark made of
representative applicative kernels.

This thesis is an initiative to enhance hardware developers expressivity, providing them with
powerful features such as functional programming and object-oriented development.

Keywords: FPGA, hardware accelerators, Chisel, design space exploration

Utilisation de langages de construction matérielle pour une
exploration flexible des espaces de conception sur FPGA

Résumé — Les accélérateurs matériels à base de FPGA s’imposent actuellement comme une
alternative à haute efficacité énergétique aux processeurs généralistes classiques. Cependant,
les méthodologies de développement matériel souffrent d’un grand retard par rapport à leurs
pendants logiciels, et des initiatives sont nécessaires afin d’accroire la productivité des concep-
teurs matériels. Dans cette thèse, nous explorons les possibilités que les nouveaux langages de
construction matérielle ouvrent pour le monde de la conception numérique, notamment en per-
mettant l’usage de fonctionnalités de haut niveau telles que la programmation fonctionnelle ou le
développement orienté objet. Nous proposons tout d’abord une analyse de différentes métriques
et méthodologies d’estimation pour le développement sur FPGA, et nous intéressons ensuite plus
particulièrement à ce que ces nouveaux langages peuvent apporter au domaine de l’exploration
d’espace de conception, en introduisant deux méthodologies complémentaires: la méta conception
et la méta exploration. Un logiciel démonstrateur, nommé QECE, est développé et utilisé afin de
démontrer l’utilisabilité de ces méthodologies sur différents cas d’utilisation, grâce à un ensemble
de noyaux applicatifs que nous avons développés.

Cette thèse est une initiative pour améliorer l’expressivité des développeurs matériels, en leur
fournissant des fonctionnalités à fort potentiel telles que la programmation fonctionnelle ou le
développement orienté objet.

Mots-clés: FPGA, accélérateurs matériel, Chisel, exploration d’espace de conception
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