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à r x = 9δ. Une décomposition rapide de ce terme a révélé que la dominance de ce terme aux très grandes échelles est due à ce terme u 1 u 2 ∂u 1 ∂x 2 , qui est dû à la corrélation entre les grandes et petites échelles de l'écoulement. * et ce pic positif de -P r coïncide avec le pic négatif de -Π . L'échelle à laquelle ce pic se produit augmente progressivement avec l'in l'augmentation de la distance de la paroi de la même manière dans les trois ensembles de données DNS lorsque la distance de la paroi est normalisée par δ. Cimarelli et al. 23 ont observé ce comportement de Π dans un DNS de TCF, pour conclure que cela est dû à la cascade spatiale inversée où l'énergie énergie monte vers la ligne centrale du canal en ligne droite dans l'espace (r y , r z , y).

Une micro-échelle de Taylor modifiée, dérivée pour des écoulements turbulents limités par des parois, séparément dans le sens de l'écoulement et dans le sens de l'envergure, permet de mettre à l'échelle le pic de -Π depuis l'extérieur de la couche tampon jusqu'au voisinage de la ligne centrale de l'écoulement du canal.
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Résumé Introduction

Les écoulements turbulents sont résolus à l'aide de l'équation de Navier-Stokes, et la complexité de l'écoulement implique que la simplification de l'écoulement entraîne une perte significative de physique. Ceci est dû aux non-linéarités associées à l'écoulement, en plus de la physique qui dépend des différentes échelles de mouvement. Cette nature multi-échelle des écoulements turbulents a été étudiée par Richardson [START_REF] Richardson | Weather prediction by numerical process[END_REF] dans le cadre de la turbulence isotrope, décrite dans ce célèbre poème : 'Big whirls have little whirls .... and so on to viscosity'. Selon son modèle, l'énergie est injectée aux grandes échelles et s'écoule vers le bas de l'échelle jusqu'à ce qu'elle atteigne la plus petite échelle où elle est dissipée en raison de la viscosité. Et la viscosité et la dissipation sont confinées aux plus petites échelles du flux, et la cascade d'énergie peut se produire entre des échelles de taille similaire et est toujours une cascade d'énergie vers l'avant, c'est-à-dire des plus grandes aux plus petites échelles.

Cette théorie est suivie par celle de Kolmogorov 67 , 68, 69 , également connue sous le nom de théorie K41, et Oboukhov 89 a postulé l'hypothèse de l'universalité qui se produit à la limite des grands nombres de Reynolds où la plage d'inertie séparant les échelles intégrales et les échelles dissipatives est si grande que les petites échelles se découplent entièrement des grandes échelles et présentent une isotropie. Les résultats du passé ont montré quelques résultats importants sur l'écoulement turbulent qui est homogène et isotrope. En réalité, les écoulements turbulents présentent une inhomogénéité ou une anisotropie dans certaines directions, ce qui rend l'applicabilité des études du passé plus restrictive. De Karman and Howarth [START_REF] De Karman | On the statistical theory of isotropic turbulence[END_REF] ont utilisé le coefficient de corrélation entre deux points pour étudier les statistiques multipoints. Avec l'introduction de la fonction de structure de second ordre par Kolmogorov, il est devenu possible d'étudier le phénomène de cascade énergétique dans l'espace physique et dans l'espace des échelles. Ce phénomène est largement connu sous le nom de loi 4/5e qui peut s'écrire comme suit

-(δu 1 ) 3 + 6ν d dr (δu 1 ) 2 = 4 5 r (1) 
où est le taux de dissipation moyen de l'énergie cinétique turbulente, ν est la viscosité cinématique du fluide et les parenthèses angulaires représentent les moyennes d'ensemble.
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Résumé

Hill [START_REF] Hill | Exact second-order structure-function relationships[END_REF] a dérivé l'équation exacte pour le bilan énergétique échelle par échelle directement de l'équation de Navier-Stokes sans aucune moyenne ou hypothèse sur l'isotropie/homogénéité de l'écoulement. Cette équation de Kolmogorov généralisée, également connue sous le nom d'équation de Kármán-Howarth-Monin-Hill (KHMH), est une équation d'évolution de l'énergie cinétique turbulente locale et instantanée relative à un vecteur de séparation donné (δu 2 ) qui quantifie les différents processus associés au transfert d'énergie à la fois dans l'espace physique et dans l'espace des échelles et peut être appliquée à tous les écoulements turbulents numériques et expérimentaux. Elle est donnée par

∂ ∂t (δu i ) 2 At + δu j ∂ ∂r j (δu i ) 2 Π + 2δu j δu i ∂ ∂r j (δu i ) Pr + u * j ∂ ∂X j (δu i ) 2 A + u * j ∂ ∂X j (δu i ) 2 Tu = - 2 ρ δu i ∂ ∂X i (δp) Tp + 2ν ∂ 2 ∂r 2 j (δu i ) 2 D r1 + 2ν ∂ 2 ∂r 2 j (δu i ) 2 D r2 + 4ν ∂ 2 ∂r 2 j (δu i δu i ) 2 D r3 + ν 2 ∂ 2 ∂X 2 j (δu i ) 2 Dx - (2) 
L'équation de Kármán-Howarth-Monin-Hill a ouvert la possibilité d'étudier le bilan énergétique échelle par échelle dans la plupart des écoulements turbulents complexes. Cela a donné lieu à une multitude de recherches dans différents écoulements turbulents. Voici les différentes études qui ont résulté de l'équation KHMH dans les simulations numériques, y compris les simulations numériques directes (DNS) et les simulations de grands tourbillons (LES). Marati et al. [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF] ont étudié la cascade d'énergie et le flux spatial dans la TCF et ont détaillé le comportement du transfert, de la production et de la dissipation inter-échelle dans différentes régions de la turbulence délimitée par des murs. De cette manière, la double nature des écoulements turbulents, à savoir la dynamique à petite échelle définie dans l'espace des échelles d'une part et la physique à proximité de la paroi définie dans l'espace physique, est abordée en même temps. Cimarelli et al. [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] ont analysé les chemins de la cascade d'énergie dans le TCF à partir de la production de la couche tampon vers la paroi et l'écoulement extérieur et souligne l'importance de la cascade d'énergie inverse dans de tels processus.

Cimarelli and De Angelis 21 ont discuté des problèmes de modélisation dans LES de la rétrodiffusion qui est prévalente dans les petites échelles 23des flux turbulents de paroi. Cimarelli et al. [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] ont décrit les deux mécanismes d'entraînement, à savoir (a) une source d'énergie à forte échelle dans la couche tampon concernant le cycle proche de la paroi (b) une source extérieure associée à un cycle turbulent extérieur en suivant les termes spécifiques de l'équation KHMH représentant le processus de cascade énergétique. Alves Portela et al. [START_REF] Alves Portela | The turbulence cascade in the near wake of a square prism[END_REF] ont étudié la cascade de turbulence sur la ligne centrale du sillage turbulent créé par un prisme carré en utilisant l'équation KHMH. Il existe une région éloignée du prisme mais dans le champ proche du sillage où le terme de cascade inter-échelle moyenné sur l'orientation est à peu près égal au taux de dissipation même si les processus liés à l'inhomogénéité sont importants. Mollicone et al. [START_REF] Mollicone | Turbulence dynamics in separated flows: the generalised kolmogorov equation for inhomogeneous anisotropic conditions[END_REF] ont analysé le bilan échelle par échelle dans la dynamique de la couche de cisaillement dans une région séparée derrière une bosse dans l'écoulement du canal, où l'équation KHMH est résolue en cinq dimensions comprenant trois coordonnées d'espace d'échelle et deux coordonnées physiques dans la direction du courant et de la paroi normale pour relier à la fois la physique dans l'espace physique et l'espace d'échelle. Le présent travail vise à étudier le bilan énergétique échelle par échelle en utilisant l'équation KHMH afin de répondre aux questions suivantes.

• Il est connu que l'écoulement turbulent en canal et l'écoulement turbulent en couche limite sont similaires l'un à l'autre et qu'ils sont limités à certaines distances aux parois. Ainsi, les résultats obtenus à partir des termes de l'équation KHMH moyenne sont également les mêmes entre les deux écoulements lorsqu'ils sont normalisés avec les paramètres appropriés ? La forme instantanée des termes KHMH se comporte-t-elle de la même manière entre les deux flux ?

• Considérant que les résultats de l'équation KHMH instantanée reposent sur une estimation précise des fluctuations des différents termes, est-il possible d'obtenir les mêmes résultats à partir des ensembles de données DNS avec des expériences (PIV) qui permettent d'obtenir des résultats à un nombre de Reynolds plus élevé (Re τ ) que le DNS ?

• Yasuda and Vassilicos 137 ont proposé d'étudier l'équation KHMH au sens instantané pour obtenir le bilan énergétique échelle par échelle dans une turbulence isotrope. La même idée mise en oeuvre dans des écoulements turbulents limités par des murs permetelle de découvrir de nouvelles informations sur la physique de la cascade énergétique ?

• Marati et al. [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF] ont utilisé l'équation KHMH pour la fluctuation de la vitesse pour étudier le comportement des différents termes en moyenne sur un plan dans le sens du courant et de l'envergure. Bien qu'il s'agisse de directions homogènes, l'étude de la physique de l'écoulement dans le sens de l'écoulement et dans le sens de l'envergure séparément révèle-t-elle plus d'informations ?

• Saikrishnan et al. [START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF] ont découvert que dans la région logarithmique, le transfert d'énergie inter-échelle de l'équation KHMH moyennée varie avec le nombre de Reynolds. L'influence du nombre de Reynolds est-elle uniquement visible dans la région logarithmique, même avec les statistiques instantanées ?

• Casciola et al. [START_REF] Casciola | Scale-by-scale budget and similarity laws for shear turbulence[END_REF] introduisent l'échelle de croisement l + c , qui sépare les régimes dominés par le transfert et les régimes dominés par la production. Existe-t-il une autre échelle qui correspond au comportement de certains termes de l'équation KHMH ?

Résumé des Résultats

Résultats des ensembles de données DNS Le présent travail permet de tirer diverses conclusions sur la physique des écoulements Turbulents limités par des parois, sur la base des valeurs moyennes et instantanées des termes de l'équation KHMH et de leur évolution en fonction de la distance aux parois. Les principales conclusions sont les suivantes.

Moyenne Spatio-Temporelle des Termes de l'équation KHMH

Les valeurs moyennes spatio-temporelles des termes de l'équation de KHMH dans les écoulements TCF et TBL avec des moyennes nulles ou négligeables sont -A t , -A , T p et D x . Et les termes dominants sont D r2 près de l'échelle de Kolmogorov, -Π dans les multiples plages d'échelles dépendant de la distance aux parois, -P r au-delà de l'échelle intégrale, -T u près de la ligne centrale de l'écoulement du canal et du bord de la couche limite turbulente, et les termes de dissipation ( * ) dans toutes les échelles à toutes les distances aux parois. De plus, près du bord de la couche limite, -A et T p i sont dominants dans le TBL550.

Le -Π est dominant seulement aux plus petites échelles dans la couche tampon. Avec l'augmentation de la distance aux parois, -Π est dominant à des échelles plus grandes. Au niveau de l'axe du canal et du bord de l'épaisseur de la couche limite, -Π est non nul même à des échelles supérieures à δ. Dans TCF3000, -Π est approximativement égal à 0,5

Les valeurs moyennes spatio-temporelles des termes de l'équation KHMH sont différentes entre la direction du courant et celle de l'envergure. Ceci est principalement observé entre -Π et -P r . A partir de la couche tampon, il y a quelques échelles dans lesquelles la production dépasse le

Termes instantanés de l'équation KHMH

Les résultats du comportement instantané de l'équation KHMH révèle d'autres aspects de différents termes qui étaient masqués dans les moyennes. Les termes dominants dans l'équation l'analyse de l'équation KHMH instantanée sont A t + A, T p , Π, T u . Et les fluctuations de ces termes dominants sont au moins d'un ordre de grandeur supérieur à celui des termes fluctuation du terme de dissipation ( * ), et elle tend à augmenter avec la distance de la paroi. La dominance de A t + A, Π et T u peut être expliquée par l'anti-alignement des termes d'accélération locale et convective. les termes d'accélération locale et convective des écoulements turbulents en canal. Lorsque les Lorsque l'écart-type des termes est normalisé par l'écart-type de Π, l'ampleur de l'écart-type des termes de l'accélération locale et de l'accélération convective est plus importante. l'ampleur de l'écart-type de tous les termes est la même entre le TCF à différents différents nombres de Reynolds et l'écoulement TBL.

Un coefficient de corrélation élevé entre A t + A et (Π, T u ) de l'ordre de -0.5 de y + = 12 à y δ = 1 est observé dans TCF550 et TBL550. Et le coefficient de corrélation avec A t + A est compris entre 0,65 et 0,8 avec Π + T u de y + = 12 à y δ = 1. dans TCF550 et TBL550. A proximité du mur, cela s'explique par le fait que A t + A équilibre la valeur de Π + T u , et loin du mur, cela pourrait être dû au fait que les structures à grande échelle balayant les structures de petite échelle (hypothèse de décorrélation par balayage). Un coefficient de corrélation élevé est observé entre A t +A et T p uniquement à proximité de la paroi, de l'ordre de 0,3 dans les trois ensembles de données DNS. Un coefficient de corrélation de l'ordre de de 0,35-0,45 est observé entre T p et les deux termes de transfert d'énergie (Π, T u ). Le coefficient de corrélation de coefficient de corrélation entre T p et Π + T u est de l'ordre de 0,5 à 0,65. Ce haut coefficient de corrélation élevé des deux termes de transfert d'énergie avec A t + A et T p reflète la relation entre le terme non linéaire et le terme de transfert d'énergie. la relation entre le terme non linéaire et le terme dérivé du temps, et le terme non linéaire et le terme de pression dans l'équation de Navier-Stokes. Cet argument selon lequel le terme non linéaire est à l'origine de ce coefficient de corrélation est renforcé par le fait que le coefficient de corrélation entre A t + A et T p est négligeable sauf près de la paroi.

L'augmentation du nombre de Reynolds augmente le coefficient de corrélation entre A t + A et Π + T u , ce qui est perceptible de y + = 12 jusqu'à la ligne centrale du canal. D'autre part, l'augmentation du nombre de Reynolds entraîne une réduction du coefficient de corrélation entre T p et Π + T u . coefficient de corrélation entre T p et Π + T u lorsque y + > 100. Le coefficient de corrélation élevé de -0.5 est observé entre A t + A et les deux termes de transfert d'énergie s'étend à des échelles de l'ordre de 9δ dans la DNS de TCF à Re τ = 3000. La décomposition des deux termes de transfert d'énergie révèle que les termes δu 1 et ∂δu 1 ∂x j contribuent le plus, notamment le δu 1 i ), il est révélé qu'il existe une cascade d'énergie inverse dans la couche tampon à y + = 12. la couche tampon à y + = 12, ce qui coïncide approximativement avec l'observation de Cimarelli et al. [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] comme source d'énergie d'échelle, où la production surpasse la dissipation. Avec l'augmentation de la distance aux parois, la cascade inverse se déplace vers des échelles plus élevées dans le sens de l'envergure dans les trois ensembles de données DNS. Ceci est suivi par la valeur négative du pic de -Π dans la direction r z à différentes distances de la paroi. Ce pic négatif de -Π coïncide approximativement coïncide approximativement avec le pic positif de -P r . La tendance des deux pics en r z /δ est linéaire en y δ . linéaire en y δ . Il n'y a pas d'effet de Re τ , de y δ = 0,01 à 0,1 dans la position des deux pics, ce qui suggère qu'il s'agit d'un effet de l'environnement deux pics, ce qui suggère que cela se situe dans la gamme des structures de la couche tampon. Dans la plage 0,1< y δ <0,4, les pics de la TCF et de la TBL à Re τ = 550 sont ensemble, et le pic de la TCF3000 suit une trajectoire de plus en plus longue. TCF3000 suit une courbe différente, et ceci est dans la gamme des structures autosimilaires attachées au mur (WCF). structures autosimilaires (WASS).

Résultats des expériences de PIV Incertitude de mesure

Les variances et les covariances des ensembles de données de PIV concordent bien avec celles des DNS de Re τ similaires lorsque y + > 20 et y + > 40 pour la PIV avec Re τ = 2220 et 3840 respectivement. L'incertitude de mesure pour les deux ensembles de données de PIV est inférieure à 1% de la vitesse du flux libre pour les deux ensembles de données de PIV. La valeur du bruit associé aux fluctuations de la vitesse dans le sens de l'écoulement est de l'ordre de 0,03-0,06 pixels et de 0,04-0,08 pixels pour l'ensemble de données de PIV avec Re τ = 2220 et 3840 respectivement.

Calcul de la dissipation

Le taux de dissipation normalisé D + calculé avec l'ensemble de données de PIV avec Re τ = 2220, en remplaçant les dérivées manquantes par l'hypothèse d'axisymétrie [START_REF] George | Locally axisymmetric turbulence[END_REF] s'accorde bien avec celui de l'ensemble de données TBL DNS Re τ = 1989 lorsque y + > 25. Ceci est vérifié pour le calcul à partir de l'utilisation du système 1 de S-PIV, du système 2 et d'une combinaison de deux systèmes (système 1|2 ), et ils tendent tous à être en bon accord avec les ensembles de données DNS quand y + > 25.

Le taux de dissipation normalisé D + calculé avec l'ensemble de données PIV avec Re τ = 3840 ne correspond pas à celui de l'ensemble de données DNS lorsque y + < 200. Ceci est vi attribué à la résolution spatiale limitée qui est de l'ordre de 4.6η -5.6η. Avec la PIV à Re τ = 2220, la résolution spatiale est de l'ordre de 2.3η-2.8η, ce qui a aidé au calcul qui concorde avec les jeux de données DNS.

Équation KHMH moyenne spatio-temporelle

La moyenne spatio-temporelle des termes de l'équation KHMH obtenue à partir des deux ensembles de données de PIV, a révélé que -Π est qualitativement le même entre les ensembles de données DNS et PIV. Cependant, leur valeur maximale est plus élevée dans les deux ensembles de données de PIV par rapport aux ensembles de données DNS. -P r des deux ensembles de données de PIV dépasse * à peu près à la même échelle, et il augmente avec la distance de la paroi. En comparaison, -P r est toujours inférieur à * pour toutes les valeurs r + x considérées dans la présente analyse des ensembles de données DNS dans la présente analyse. L'utilisation de deux systèmes S-PIV dans le calcul entraîne une erreur de biais pour -A t et A , mais le terme -A t + A est approximativement le même quel que soit le système utilisé pour le calcul quel que soit le système utilisé pour le calcul dans la PIV avec Re τ = 2220. Le site Le calcul avec le PIV à Re τ = 3840 a une valeur plus élevée pour -A t + A que tous les autres ensembles de données. autres ensembles de données. La micro-échelle de Taylor modifiée ne met pas exactement à l'échelle le pic dans les données PIV et DNS. dans les ensembles de données de PIV et de DNS lorsqu'elle est considérée comme ayant des termes uniquement dans le plan XY. cela pourrait être dû à l'absence de ∂u 1 ∂x 3 et ∂u 2 ∂x 3 termes.

Termes de l'équation KHMH instantanée

L'écart type de Π et T u est du même ordre dans les ensembles de données PIV et DNS et donc ces termes ont le moins d'effet de bruit. P r n'est pas affecté par le le bruit en moyenne, cependant, son écart type à y + = 40 n'est pas comparable à celui des ensembles de données DNS. À y + = 100 et 140, l'écart type de P r est approximativement le même entre la PIV et les ensembles de données DNS. A t + A est le terme le plus affecté par le bruit des ensembles de données de PIV. L'utilisation de deux systèmes S-PIV a permis de réduire cet écart type, mais il reste plus élevé dans les deux ensembles de données PIV que dans l'ensemble de données DNS.

Le coefficient de corrélation entre A t + A et Π, T u s'améliore lorsque deux systèmes S-PIV sont utilisés. Cela peut s'expliquer par l'écart type plus faible du terme A t + A lorsque deux systèmes S-PIV sont utilisés. À y + = 40, ce coefficient de corrélation de la PIV à Re τ = 2220 est approximativement le même que celui des ensembles de données DNS. Cependant, avec l'augmentation de la distance à la paroi, ce coefficient de corrélation augmente en valeur absolue dans le DNS, et il reste le même dans la PIV avec Re τ = 2220. La PIV avec Re τ = 3840 présente le coefficient de corrélation le plus faible des trois ensembles de données. Cela vii Résumé pourrait être attribué à la résolution spatiale limitée de l'ensemble de données.

L'effet du bruit dans le signal instantané est simulé avec l'ensemble de données DNS par l'ajout de bruit blanc gaussien additif (AGWN) de différents niveaux de rapport signal/bruit (SNB). Il a été constaté que lorsque le SNB=150, les résultats du coefficient de corrélation du DNS est approximativement égal à celui de la PIV à Re τ = 2220. De plus, la valeur absolue réduite du coefficient de corrélation entre A t + A et T u est produite dans l'ensemble de données DNS avec l'ajout de l'AGWN, ce qui montre l'effet du bruit dans les petites échelles.
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Chapter 1

Introduction

Turbulence is the most important unsolved problem of classical physics.

Richard P. Feynman

Turbulent flows present a challenging front in fluid mechanics research for more than a century. Its ubiquitous presence in natural and engineering flows including the flow of gulf streams, ocean currents, rivers, canals, etc for the former and the flow around aircraft, ships, cars, buildings, wind farms for the latter making it more relevant in the modern-day life. One of the first studies involved includes the classification of flow into laminar and turbulent states and was performed by Hagen [START_REF] Hagen | Ueber die bewegung des wassers in engen cylindrischen röhren[END_REF] . This is followed by Reynolds [START_REF] Reynolds | Xxix. an experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF] who studied laminar and turbulent flow in a pipe by performing a coloured filament experiment at different velocities. He experimented with different velocities, pipe diameters, and viscosities and found that the transition roughly happened at the same value of a dimensionless number, which is since addressed by his name Reynolds number, Re = V d ν .

Turbulence has inspired artists to make interesting works that date back to 15 thcentury artwork by Leonardo da Vinci (1507), who painted the water flowing into a reservoir with attention to different scales of motions present in it. Three centuries later Vincent Van Gogh depicted turbulence in many of his paintings, notably The Starry Night 127 had much more detailing and has led to some researchers who then concluded that the paintings follow the turbulence theories [START_REF] Aragón | Turbulent luminance in impassioned van gogh paintings[END_REF][START_REF] Beattie | Is the starry night turbulent?[END_REF] that came decades later.

Turbulent flows are solved using the Navier-Stokes' equation, and the complexity of the flow implies that simplifying the flow results in a significant loss of physics. This is due to the non-linearities associated with flow, in addition to the physics that This is followed by Kolmogorov 67 ,[START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF][START_REF] Kolmogorov | On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid[END_REF] , alternatively known as the K41 theory, and

Oboukhov [START_REF] Oboukhov | On the distribution of energy in the spectrum of turbulent flow[END_REF] postulated the universality hypothesis that occurs at large Reynolds number limit where the inertial range separating the integral scales and the dissipative scales are so large that the small scales decouple entirely from large scales and exhibit isotropy. Based on this hypothesis, Kolmogorov argued that the dynamics of small scales are entirely governed by the mean dissipation of energy and viscosity ν, and therefore proposed length (η = ( ν 3 ) 1/4 ), time (τ = (ν/ ) 1/2 ) and velocity (υ = (ν ) 1/4 ) at those scales. He continued by stating that scales larger than the viscous scales thus discussed, will be free from the effect of viscosity and hence be governed by mean dissipation of energy alone. This gave rise to the famous 'two-thirds law' and 'five-thirds law', which states that the mean square of the velocity structure-function (δu 2 ) is equal to C( r) 2/3 in the real space and equal to C 1 ( ) 2/3 k -5/3 in the Fourier space, provided the 'r' and 'k' corresponds to the scale and wavenumber in the inertial subrange. The year 1961 produced further refinement to the existing hypothesis surrounding local the structure of turbulent flow at the limit of large Reynolds number by including the effect of intermittency of dissipation field. This essentially means that the K41 hypothesis is valid on the constancy of the mean rate of dissipation of kinetic energy , and it does undergo highly disordered fluctuations and this only increases with the Reynolds number.

This lead to corrections of the 'two-thirds law' and 'five-thirds law' which made them agree with the experimental and numerical data in the present day. Kolmogorov theory and its interpretation does go beyond the scope of the thesis and the interested reader may refer to Frisch and Kolmogorov [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF] for a complete review.

The results from the past have shown some important results about the turbulent flow which is homogeneous and isotropic. In reality, turbulent flows are present with inhomogeneity or anisotropy in some directions which makes the applicability of the studies from the past to be more restrictive. De Karman and Howarth 31 used the correlation coefficient between two points to study the multi-point statistics. With the introduction of the second-order structure-function by Kolmogorov became possible to study the energy cascade phenomenon in both physical space and space of scales. This is widely known as the 4/5 th law which can be written as

-(δu 1 ) 3 + 6ν d dr (δu 1 ) 2 = 4 5 r (1.1)
where is the mean dissipation rate of the turbulent kinetic energy, ν is the kinematic viscosity of the fluid and the angular brackets represent the ensemble averages.

The derivation for the above can be found in Batchelor is the small scale dynamics defined in the space of scales on the one hand and the near-wall physics which is defined in the physical space is addressed at the same time. This work was extended to higher Reynolds numbers by Saikrishnan et al. [START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF] , who discovered the regimes with specific properties as a function of newly defined cross-over length scale which was not possible with the previous study. Cimarelli et al. [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] analysed the paths of energy cascade in TCF from the production from the buffer layer to the wall and the outer flow and emphasises the importance of inverse energy cascade in such processes. Cimarelli and De Angelis 21 discussed the modelling issues in LES of the backscatter which is prevalent in the small scales of wall-turbulent flows. Cimarelli et al. [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] described the two driving mechanisms namely, (a) a strong scale energy source in buffer layer concerning the near-wall cycle (b) an outer source associated with an outer turbulent cycle by following specific terms of the KHMH equation representing the energy cascade process. Alves Portela et al. [START_REF] Alves Portela | The turbulence cascade in the near wake of a square prism[END_REF] studied the turbulence cascade on the centerline of turbulent wake created by square prism using the KHMH equation. There exists a region far from the prism but within the near field of wake where the orientation averaged interscale cascade term is roughly equal to the dissipation rate even though the processes related to inhomogeneity are significant. Mollicone et al. [START_REF] Mollicone | Turbulence dynamics in separated flows: the generalised kolmogorov equation for inhomogeneous anisotropic conditions[END_REF] analysed the scale-by-scale budget in the dynamics of the shear layer in a separated region behind a bump in the chan-nel flow, where the KHMH equation is solved in five dimensions comprising three scale-space coordinates and two physical co-ordinates in streamwise and wall-normal direction to link both the physics in both physical and scale space.

The following studies involve the use of the KHMH equation to study the scaleby-scale budget using experimental methods Particle Image Velocimetry (PIV) and Hot-wire Anemometry (HWA). Thiesset et al. [START_REF] Thiesset | Scale-by-scale energy budgets which account for the coherent motion[END_REF] studied the central region of the wake behind a cylinder using the scale-by-scale budget in the context of isotropic and general frameworks. Danaila et al. [START_REF] Danaila | Yaglom-like equation in axisymmetric anisotropic turbulence[END_REF] applied the KHMH equation in a different form to study the kinetic energy budget in the impact region of two opposed jets to conclude that the energy transfer occurs mostly in planes perpendicular to the axisymmetry axis and is strongly inhibited along the axisymmetry direction.

Valente and Vassilicos 125 investigated the grid-generated turbulence to study the behaviour of different physical processes corresponding to different terms of KHMH equation such as energy transfer, dissipation, advection, production and transport at different distances from the grid. Gomes-Fernandes et al. [START_REF] Gomes-Fernandes | The energy cascade in near-field non-homogeneous non-isotropic turbulence[END_REF] performed a PIV experiment behind grid-generated turbulence to study the energy cascade process using the KHMH equation to conclude that both forward and inverse cascade coexist instantaneously but only forward cascade on average. They also pointed out that well-defined 5/3 power law is obtained in the streamwise direction which is at a small angle to the inverse cascade region.

Objectives

The present work is perfomed in Labarotoire de Mécanique des Fluides de Lille -Kampé de Fériet (LMFL). The research in this group is mainly focused on understanding and explaining the physics of wall turbulence, by using both numerical simulations and experiments. Earlier and ongoing works by researchers in this group include the characterisation of high Reynolds number in decelerating TBL [START_REF] Cuvier | Extensive characterisation of a high reynolds number decelerating boundary layer using advanced optical metrology[END_REF] , the study of near-wall reverse flow event [START_REF] Willert | Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer[END_REF] on the PIV experiments side. Analysis of TBL flows using DNS to apply the skeletonization method to obtain detailed statistics on coherent structures [START_REF] Solak | Simulation numérique directe et analyse des grandes échelles d'une couche limite turbulente[END_REF] , on the numerical side.

The present work aims to study the scale-by-scale energy budget using the KHMH equation to answer the following questions.

• It is known that the Turbulent Channel Flow and Turbulent Boundary Layer flows are similar to each other and it is restricted to certain wall-distances.

Thus, the results obtained from the terms of mean KHMH equation terms • Saikrishnan et al. [START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF] found that in the logarithmic region, the interscale energy transfer of averaged KHMH equation varies with the Reynolds number. Is the influence of Reynolds number only visible in the logarithmic region even with the instantaneous statistics?

• Casciola et al. [START_REF] Casciola | Scale-by-scale budget and similarity laws for shear turbulence[END_REF] introduces cross-over scale l + c , which separates the transfer dominated regimes and the production dominated regimes. Is there any other scale that corresponds to the behaviour of certain terms in the KHMH equation?

Approach

The primary goal is to solve the KHMH equation to obtain information about the scale-by-scale energy budget in the wall-bounded turbulent flows. There were different KHMH equations used in the past, and each has its own sets of advantages and disadvantages. For the present work, it was decided to use the KHMH equation written for total velocity 137 , in which the velocity decomposition is performed to separate the influence of mean and turbulent fluctuations separately. For the present study, the values of r y = 0 is used. This condition results in a lot of terms becoming identically equal to zero. Then the non-zero terms are computed and averaged with the DNS of a TCF at Re τ = 550. This DNS is chosen because it is closer to some related studies in the past [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF][START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF] , thereby validating the codes used for computation. This is followed by the use of the instantaneous KHMH equation to understand the physics associated with the fluctuations of each term. Computation of the KHMH equation as they appeared, resulted in a high residue in the balance of the left-hand and the right-hand sides of the equation. Thus it is necessary to obtain the correct balance to move forward. This is performed by switching back to original coordinates for the computation of the KHMH terms [START_REF] Gatti | An efficient numerical method for the generalised kolmogorov equation[END_REF] . This method of computation resulted in negligible balance, which in turn allowed to perform the analysis in the instantaneous KHMH equation

The instantaneous behaviour of all the terms was quantified by visualising the standard deviation of all the terms. This is followed by the computation correlation coefficient between the different terms of the KHMH equation. Since each term corresponds to a physical process in the energy cascade, any significant value of correlation coefficient between certain terms essentially reveals the correlation between physical processes associated with them.

After analysing the terms with the TCF at Re τ = 550, the next step was to study the effect of the Reynolds number. And so the same analysis is performed on a DNS of TCF at Re τ = 3000. The different results so obtained from this flow is then compared with that of the previous DNS, by normalising the parameters accordingly ie., using wall units and channel half-width. This is followed by performing the same analysis on ZPG TBL at Re τ = 550 and is compared with the results of TCF at the same Reynolds number. This is to identify the differences or similarities that occur between the two canonical wall-bounded turbulent flows.

The results obtained so far forms the base on which the PIV experiment on the ZPG TBL in LMFL is planned. With the results of the DNS of ZPG-TBL, it became possible to identify the type of experiments and to adjust the different parameters to obtain comparable results. The DNS data also allowed to choose the plane (XYplane) for the two sets of independent stereoscopic PIV experiments overlooking the same field of view. The PIV experiment of ZPG-TBL is at Re τ = 2272, 3840, which is much higher than that of DNS of ZPG-TBL, and so the results of TCF at Re τ = 3000 so analysed previously gives the proper idea of what to expect from the experiments. The results from the PIV are obtained by the right use of the data Chapter 1. Introduction from the two independent stereoscopic PIV systems, to make the data free from noise.

The PIV dataset is then used to do the KHMH equation analysis with both averaged and the instantaneous sense. Since the PIV experiment is performed on an XYplane, some spanwise derivatives ( ∂u 1 ∂x 3 , ∂u 2 ∂x 3 ) are not available for the computation of KHMH equation terms. Thus the DNS datasets are re-analysed by removing the missing derivatives so that the results correspond to that of PIV datasets which are plotted side-by-side for comparison.

Contents and Organisation of the thesis

The present work is organised into four parts which are further divided into eight chapters. Two appendices present the different computations and results involved in the present work. The parts are presented in an order that makes it easier for the reader to follow the introduction, motivations, methodology and results, which is the direct reflection of the work performed for the past three years.

Part I is the introduction of the document. Chapter 1 starts with the introduction of turbulence in general and is followed by the objectives and the research approach. Chapter 2 presents the relevant literature review of the wall-bounded 
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Wall turbulence

Wall-bounded flows are one of the first flows where the turbulence was formally recognised [START_REF] Hagen | Ueber die bewegung des wassers in engen cylindrischen röhren[END_REF][START_REF] Reynolds | Xxix. an experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF] . In this case, vorticity is usually generated by an incoming flow which is bought to rest instantly by the presence of the wall. This is called the no-slip condition and it ensures that the tangential velocity of the fluid at the wall is equal to the tangential velocity of the wall. If the wall is at rest, then the no-slip condition requires the tangential velocity of the fluid at the wall to be identically zero. The vorticity thus generated is diffused, amplified or transported. The flow may develop in the absence of walls such as the free shear flows. On the other hand, wall-bounded turbulent flows are attached to the flow surface and evolve continuously under the influence of the wall.

In addition to the presence of a wall, turbulence usually requires the flow to be at a high Reynolds number (Re). In the definition of Reynolds number, viscous forces are in the denominator and hence high Re meant the flow was approximated to be inviscid. This led to the famous D'Alembert's paradox of no drag (viscous drag) in such inviscid flows. In reality, whenever flow happens around an object, there is always drag in addition to that as the velocity increased flow tends to separate, produces wakes and so on. Prandtl recognised the importance of viscous no-slip condition and proposed that at least one viscous term must be present in the high Reynolds number limit.

The equations used to solve the turbulent flows are the continuity equation also known as the conservation of mass equation and the Navier-Stokes' equation also known as the conservation of momentum equation. In the present work, the fluid flow is considered to be incompressible and isothermal, which implies that there is no change in density or temperature during the process. The governing equations Chapter 2. Wall turbulence are given by : ∇.u = 0 (2.1)

∂u ∂t + u.∇u = - 1 ρ ∂p ∂x + ν∇ 2 u + g (2.
2

)
where t is the time, u is the velocity vector, p is the pressure, ρ is the density of the fluid and ν is the kinematic viscosity of the fluid. External forces such as body forces (gravity, magnetic forces) are given by g.

Reynolds [START_REF] Reynolds | Iv. on the dynamical theory of incompressible viscous fluids and the determination of the criterion[END_REF] introduced the decomposition of instantaneous velocity components into their mean and fluctuation parts, which is given by

u = u + u and p = p + p (2.3)
where the overbar denotes the mean component and the prime denotes the fluctuation component of the quantity.

Applying the Reynolds decomposition to the governing equations, we get the Reynolds Averaged Navier-Stokes' (RANS) equation, given by :

du i dx i = 0 (2.4) ρ ∂u i ∂t + u j ∂u i ∂x j = ∂p ∂x i + µ ∂ 2 u i ∂x 2 j -ρ ∂u i u j ∂x j (2.5)
where u i u j is the Reynolds stress tensor. The Reynolds Stress transport equation is obtained by subtracting Equation 2.5 from Equation 2.2, and then multiplying the result with u k and this is given by :

∂ ∂t u i u k + u j ∂ ∂x j u i u k = p ρ ∂u i ∂x k + ∂u k ∂x i + ∂ ∂x j - 1 ρ p u k δ ij + p u i -u i u j u k + 2ν s ij u k + s kj u i -u i u j ∂ ∂x j u k + u k u i ∂ ∂x j u i -2ν s ij ∂u k ∂x j + s kj ∂u i ∂x j (2.6)
where s ij is the strain rate tensor, which is defined by

s ij ≡ 1 2 ∂u i ∂x j + ∂u j ∂x i

Turbulent Boundary Layer theory

The Reynolds stress tensor is symmetric whose trace is equal to twice the turbulent kinetic energy, which is given by :

k = 1 2 u i u i
The equation for turbulent kinetic energy is obtained by contracting the free indices.

For steady flows with constant physical properties, it is given by 45

∂ ∂t + u j ∂ ∂x j k = ∂ ∂x j - 1 ρ p u i δ ij - 1 2 q 2 u j + 2νs ij u i -u i u j ∂ ∂x j u i -2νs ij s ij (2.7)
where q 2 ≡ u i u i , and is related to k which is given by:

k = 1 2 q 2
In the above equation, each term corresponds to a different process concerning the turbulent kinetic energy fluctuations which are described in Schlichting and Gersten [START_REF] Schlichting | Boundary-layer theory[END_REF] . The first term on the left-hand side corresponds to the rate of change of kinetic energy due to convection. The second term on the left-hand side is the rate of change of the kinetic energy through advection of mean flow through an inhomogeneous fluid. The first term on the right-hand side corresponds to the transport of kinetic energy in an inhomogeneous fluid by the action of pressure fluctuations, turbulence fluctuations and viscous stresses respectively. This is followed by the rate of production of turbulent kinetic energy from the mean velocity gradient, which represents the flow of energy from the mean flow towards the turbulent fluctuations.

The last term on the right-hand side represents the viscous dissipation term which is always positive. And the negative sign preceding the term makes it an "energy sink". When the production and dissipation are greater than all the other terms of the equation, both of them tend to balance each other and this represents the so-called "equilibrium region".

Turbulent Boundary Layer theory

In wall-bounded flows, a boundary layer is formed at the region close to the wall where the effect of viscosity is dominant and influences the dynamics of the flow. At the start of the development of the boundary layer, it is laminar and with an increase Chapter 2. Wall turbulence of Reynolds number, the boundary layer eventually transitions to be fully turbulent.

In an ideal fluid, the flow field is composed of a viscous boundary layer close to the wall and an inviscid outer flow which exhibits no fluctuations of velocity. In practice however, the outer flow is not free from turbulence. The turbulence intensity 105 is given by

T urbulence intensity = 1 3 (u 2 + v 2 + w 2 ) U ∞ = 2k/3 U ∞ (2.8)
The laminar-turbulent transition in a flow is dependent on the turbulence intensity.

In addition, the development of turbulent boundary layer, point of separation and heat transfer are all influenced by the turbulence intensity of the outer flow.

The edge of the turbulent boundary layer is characterised by the transition from irrotational outer flow to the rotational turbulent boundary-layer flow. The thickness of the turbulent boundary layer (δ) is taken as the point at which the velocity of the flow (u) attains 0.99 times the freestream velocity of the flow (U e ). This quantity δ is not an absolute one, since the boundary layer exhibits strong fluctuation spatially and temporally. However, the boundary layer characteristics can be explained by displacement thickness (δ * ) and momentum thickness (θ), which has definite physical meaning. They are given by: The displacement thickness (δ * ) is defined as the distance through which the flow must be displaced outwards to the loss of velocity in the boundary layer due to friction. The momentum thickness (θ) defines as the thickness of an imaginary layer in fluid flow whose momentum is equal to the loss of momentum per unit time to the real fluid in the turbulent boundary layer. A quantity relating the two thicknesses is the shape factor (H), which is the ratio of displacement thickness to momentum thickness

δ * = ∞ 0 1 - u(
H = δ * θ (2.11)
In wall-bounded turbulent flows, it is important to study the physics that defines the wall itself. One such quantity is the wall shear stress, which is defined by

τ w = ν ∂u ∂y w (2.12)

Boundary-Layer Equations for Plane Flows

where the subscript 'w' denotes the value of the quantity at the wall. A nondimensional quantity that defines this wall shear stress is the skin-friction coefficient

c f = τ w (x) 1 2 ρU 2 e (2.

13)

The normalisation based on wall viscous length scale is given by δ ν = ν uτ and on the friction velocity scale is u τ = τw ρ . The Reynolds number based on this friction velocity is given Re τ = uτ δ ν . Another equally used Reynolds number is based on the momentum thickness, given by Re θ = Ueθ ν

Boundary-Layer Equations for Plane Flows

The fundamental equations given in Equations 2.4, 2.5 are simplified using the twodimensional boundary layer approximations (w ≡ 0) which hold for Re → ∞, given by:

• δ << L • ∂ ∂x << ∂ ∂y • v << U e
where δ is the thickness of the boundary layer, L is the length scale in the streamwise direction of the flow and v is the mean velocity in the wall-normal direction and U e is the free-stream velocity outside the turbulent boundary layer. Applying the boundary layer approximations to the equation 2.5 in the y-direction results in :

0 = ∂p ∂y - ∂ρv 2 ∂y (2.14)
Integrating the equation over the boundary layer thickness gives

p + ρv 2 = p w = p e (2.15)
Here, the outer layer is assumed to be free from turbulence and so the pressure is p e . Since the velocity fluctuations are zero at the wall, the pressure at wall p w = p e .

However, in the turbulent flow between the wall and the outer layer, the pressure p Chapter 2. Wall turbulence is not a constant but p + ρv 2 is a constant. The equation of kinetic energy of turbulent fluctuations after boundary layer approximations is given by:

ρ u ∂k ∂x +v ∂k ∂y = µ ∂ 2 k ∂y 2 - ∂ ∂y v p + ρ 2 q 2 -ρu v ∂u ∂y -ρ(u 2 -v 2 ) ∂u ∂x -ρ (2.18)
where is the pseudo-dissipation [START_REF] Pope | Turbulent flows[END_REF] Boundary layers are classified into three categories based on how the pressure varies downstream. They are : (a) Zero Pressure Gradient (ZPG) which implies the mean pressure doesn't vary as the flow travels downstream ( ∂p ∂x = 0), (b) Favourable Pressure Gradient (FPG) which implies the mean pressure decreases as the flow travels downstream ( ∂p ∂x < 0), (c) Adverse Pressure Gradient (APG) which implies that the mean pressure increases as the flow travels downstream ( ∂p ∂x > 0).

ZPG Turbulent Boundary Layer

ZPG Turbulent Boundary Layer occurs in the canonical wall-bounded turbulent flows like fully developed turbulent pipe flow, channel flow and ZPG turbulent boundary layer flow. In these flows, at sufficiently high Reynolds number two distinct regions exist, which are the inner region and the outer region.

The inner region encompasses the flow between the wall and y + = 0.1δ, where δ is the thickness of turbulent boundary layer [START_REF] Pope | Turbulent flows[END_REF] . This is analogous to the thin walllayer in the two-layer structure in which Schlichting and Gersten 

ZPG Turbulent Boundary Layer

There are two ways by which the momentum is transferred between the wall and the rest of the flow. They are momentum transfer due to viscosity (τ v and momentum transfer due to turbulent fluctuations (τ t ). Integrating the above equation in the wall-normal direction till the wall, we get

τ = µ ∂u ∂y -ρu v = τ w = ρu 2 τ (2.20)
The above equation can be rearranged by the following

τ w = ρu 2 τ = µ ∂u ∂y y=0 = constant (2.21)
Integrating the equation gives

u(y) = y u 2 τ ν (2.22) u + = f (y + ) (2.23)
The inner layer is further divided into a viscous sublayer, buffer layer and an overlap layer. The viscous sublayer is also known as the linear sublayer where the viscosity effect dominates and the Reynolds stress is negligible. This is followed by the buffer layer, where both viscous and Reynolds stresses are comparable. In the overlap region, the Reynolds stress term dominates the viscous stress term. This is summarised in Table 2 The outer region or core region is where the direct effect of viscosity is negligible.

This found approximately at y + > 50. Tennekes et al. [START_REF] Tennekes | A first course in turbulence[END_REF] explains that the Reynolds stresses scales with u 2 τ and so the mean velocity gradient in the wall-normal direction dU/dy will scale with u τ /h. Hence :

dU dy = u τ δ dF dη (2.24)
where η = y δ , and F is an unknown function with dF dη of order 1. Integrating the above equation from till the edge of the boundary layer,

U e -u u τ = F (η) (2.25)
The overlap region is a region where the scaling laws for both the inner region and the outer region holds good. This is derived by matching equations for inner and outer regions and was proposed by Millikan This results in :

F (η) = U e -u u τ = 1 κ ln(η) + constant (2.30) f (y + ) = u u τ = 1 κ ln(y + ) + constant (2.31)
Both the equations above are valid only if η << 1 and y + >> 1. The constant κ in the above equations is called the von Kármán constant, since Von Kármán 128 derived this logarithmic profile using similarity arguments. The value of κ is much debated from the second half of the last century to even today. For ZPG turbulent boundary layers, an accepted value of κ is 0.41 [START_REF] Cuvier | Characterisation of a high reynolds number boundary layer subject to pressure gradient and separation[END_REF] . This logarithmic region is also valid for fully developed channel flows, pipe flows in which the corresponding length scale must be used in the derivation. 

Coherent Structures

Coherent Structures

It is well known that turbulent flows are random, complex, most importantly multi- It is well-known that in the Turbulent Kinetic Energy Equation 2.7, the production term contains the product of the Reynolds stress and the mean velocity gradient.

It is also known that the net Reynolds force retards the mean velocity in the core of the flow and accelerates it near the wall. Corino and Brodkey [START_REF] Corino | A visual investigation of the wall region in turbulent flow[END_REF] with their experiment on moving frame-of-reference found out the connected regions of near flow erupted away from the wall due to the near-wall deceleration in a process of ejection.

In addition, Corino and Brodkey Q3 type events and serves as a redirection of particles to the wall before passing into the Q2 and Q4 type events, in agreement with the results of Brodkey et al. [START_REF] Brodkey | Some properties of truncated turbulence signals in bounded shear flows[END_REF] .

In addition, the Lagrangian particle tracking enabled to obtain the result that at y + = 12, all particles contributing to Q2 events do not originate from y + < 12.

Lozano-Durán et al. [START_REF] Lozano-Durán | The three-dimensional structure of momentum transfer in turbulent channels[END_REF] 

Chapter 3

Kármán-Howarth-Monin-Hill equation

The KHMH equation with full velocity

The KHMH equation which was introduced in the previous chapters was originally derived by Hill 54 from Navier-Stokes' equation. It follows different processes associated with the evolution of (δu) 2 , which when derived in its general sense, contains no velocity decomposition, no assumption and also no averages. In this form, it is possible to extract the basic underlying physics behind each process in the energy cascade. ∂ ∂t

(u i ) + u j ∂ ∂x j (u i ) = - 1 ρ ∂ ∂x i (p) + ν ∂ 2 ∂x 2 j (u i ) (3.1)
The KHMH equation based on total velocity (mean+fluctuation) is derived by applying the Navier-Stokes' equation (given by Equation 3.1) at two points separated by distance 'r'. This results in two equations, which are then subtracted to obtain the equation in terms of the increment of velocity 'δu i '. The resulting equation is then converted from the co-ordinates based on two points to co-ordinates based on midpoint (X) and separation distance (r), by the following equations :

∂φ ∂X j = ∂φ ∂x j 1 + ∂φ ∂x j 2 ∂φ ∂r j = 1 2 ∂φ ∂x j 2 - ∂φ ∂x j 1 ∂ 2 φ ∂X 2 j = ∂ 2 φ ∂x 2 j 1 + ∂ 2 φ ∂x 2 j 2 + 2 ∂ ∂x j ∂φ ∂x j 2 1 (3.2)
Chapter 3. Kármán-Howarth-Monin-Hill equation

∂ 2 φ ∂r 2 j = 1 4 ∂ 2 φ ∂x 2 j 1 + ∂ 2 φ ∂x 2 j 2 - 1 2 ∂ ∂x j ∂φ ∂x j 2 1
This equation is then multiplied by an increment of another component of velocity to get an equation for 'δu i δu k '. And another equation is written with 'i' and 'k' reversed to obtain it in terms of 'δu k δu i ', which is then added together with the previous equation. The trace of that resulting equation gives an equation for 'δu 2 i ', which is called the local and instantaneous TKE relating to a given separation vector.

∂ ∂t

(δu i ) 2 + δu j ∂ ∂r j (δu i ) 2 + u * j ∂ ∂X j (δu i ) 2 = - 2 ρ δu i ∂ ∂X i (δp) + 2ν ∂ 2 ∂r 2 j (δu i ) 2 + ν 2 ∂ 2 ∂X 2 j (δu i ) 2 -2ν ∂u i ∂x j 1 2 + ∂u i ∂x j 2 2 (3.3)
where ν is the kinematic viscosity, ρ is the fluid density.

The equation above is the KHMH equation which quantifies the energy cascade in space of scales and the physical space. The seven different terms in the equation 3.3, defines seven different processes related to energy cascade in the flow, given by:

• ∂ ∂t (δu i ) 2 is the time-derivative term • δu j ∂ ∂r j (δu i ) 2 is the interscale energy cascade term • u * j ∂ ∂X j (δu i ) 2
is the energy transfer term in physical space

• 2 ρ δu i ∂ ∂X i (δp) is the pressure-velocity term • 2ν ∂ 2 ∂r 2 j (δu i ) 2 is the diffusion in scale space • ν 2 ∂ 2 ∂X 2 j (δu i ) 2 is the diffusion in physical space • 2ν ∂u i ∂x j 1 2 + ∂u i ∂x j 2 2
is the dissipation term

The KHMH equation with velocity decomposition

The KHMH equation based on full velocity is used to study the scale-by-scale energy budget in flows with no mean flow, such as the periodic box simulations. This way the Equation 3.3 enables to study the dynamics of the flow due to the fluctuation

The KHMH equation with velocity decomposition

of velocity. In the current study on wall-bounded turbulent flows in which there is mean flow, it becomes necessary to decompose the velocity into its mean and fluctuation components. The resulting equation consists of a lot of terms containing both mean and fluctuation terms of structure functions. In the present study, it is then simplified by studying the behaviour of the terms only along the streamwise (r x ) and spanwise direction (r z ) in the scale space, i.e., r y = 0. In fully developed canonical wall-bounded turbulent flow such as the channel flow, the mean flow velocity varies only in the wall-normal direction (y-direction). If the y-direction scale space (r y ) is kept at zero, then this will eliminate all the structure-function quantity which contains the mean velocities, i.e., δu i = 0. This is explained for all terms.

Substituting

δu i = δu i + u i
The time derivative is given by

∂ ∂t (δu i + δu i ) 2 = ∂ ∂t (δu i ) 2 At + ∂ ∂t (δu i ) 2 + 2δu i ∂ ∂t (δu i ) + 2δu i ∂ ∂t (δu i )
zero terms when ry=0

(3.4)
The interscale energy transfer is given by

(δu j + δu j ) ∂ ∂r j (δu i + δu i ) 2 = δu j ∂ ∂r j (δu i ) 2 Π + 2δu j δu i ∂ ∂r j (δu i ) Pr + δu j ∂ ∂r j (δu i ) 2 + δu j ∂ ∂r j (δu i ) 2 + δu j δu i ∂ ∂r j (δu i ) zero terms when ry=0 + 2δu j δu i ∂ ∂r j (δu i ) + 2δu j δu i ∂ ∂r j (δu i ) + 2δu j δu i ∂ ∂r j (δu i )
zero terms when ry=0

(3.5)

The energy transfer in physical space is given by

(u * j + u * j ) ∂ ∂X j (δu i + δu i ) 2 = u * j ∂ ∂X j (δu i ) 2 A + u * j ∂ ∂X j (δu i ) 2 Tu + u * j ∂ ∂X j (δu i ) 2 + 2u * j δu i ∂ ∂X j (δu i ) + 2u * j δu i ∂ ∂X j (δu i ) zero terms when ry=0 + u * j ∂ ∂X j (δu i ) 2 + 2u * j δu i ∂ ∂X j (δu i ) + 2u * j δu i ∂ ∂X j (δu i )
zero terms when ry=0

(3.6)

Chapter 3. Kármán-Howarth-Monin-Hill equation

The pressure term is given by

- 2 ρ (δu i + δu i ) ∂ ∂X i (δp) = - 2 ρ (δu i ) ∂ ∂X i (δp) Tp - 2 ρ δu i ∂ ∂X i (δp)
zero term when ry=0

(3.7)

The interscale diffusion term is given by 2ν ∂ 2 ∂r 2

j

(δu i + δu i ) 2 = 2ν ∂ 2 ∂r 2 j (δu i ) 2 D r1 + 2ν ∂ 2 ∂r 2 j (δu i ) 2 D r2 + 2ν ∂ 2 ∂r 2 j (2δu i δu i ) D r3 (3.8)
The diffusion in physical space term (D x ) is given by

ν 2 ∂ 2 ∂X 2 j (δu i + δu i ) 2 = ν 2 ∂ 2 ∂X 2 j (δu i ) 2 Dx + ν 2 ∂ 2 ∂X 2 j (δu i 2 ) + ν 2 ∂ 2 ∂X 2 j (2δu i δu i )
zero terms when ry=0

(3.9)

The dissipation term ( ) is considered as an entire term, i.e., without velocity decompositions. This is given by the last term in Equation 3.3. However, there is another form of dissipation based on the derivative of velocity fluctuations, which is also used in the present study. This is given by

= 2ν ∂u i ∂x j 1 2 + ∂u i ∂x j 2 2 (3.10)
Thus the remaining terms of the velocity decomposed KHMH equation with r y = 0 is given by:

∂ ∂t (δu i ) 2 At + δu j ∂ ∂r j (δu i ) 2 Π + 2δu j δu i ∂ ∂r j (δu i ) Pr + u * j ∂ ∂X j (δu i ) 2 A + u * j ∂ ∂X j (δu i ) 2 Tu = - 2 ρ δu i ∂ ∂X i (δp) Tp + 2ν ∂ 2 ∂r 2 j (δu i ) 2 D r1 + 2ν ∂ 2 ∂r 2 j (δu i ) 2 D r2 + 4ν ∂ 2 ∂r 2 j (δu i δu i ) 2 D r3 + ν 2 ∂ 2 ∂X 2 j (δu i ) 2 Dx - (3.11)
Each term in the equation corresponds to a different process contributing to the evolution of δu 2 in physical space and the space of scales.

• A t = ∂ ∂t (δu i ) 2
represents the rate of change of δu 2 i at every physical point and the separation distance. In the present study, the turbulent boundary layer

The KHMH equation with velocity decomposition datasets (both DNS and experiment) contained the time derivative of Navier

Stokes' equation, from which A t is computed. For the DNS of Turbulent Channel Flow, the time derivative term was obtained by computing all the other terms of the Navier Stokes' equation, from which A t is computed.

• Π = δu j ∂ ∂r j (δu i ) 2 represents the interscale energy transfer between the fluctuation of velocity. This term accounts for non-linear interactions in the redistribution of δu 2 i in the space of scales by the fluctuation of velocity. Thus this term is central to all the studies of scale-by-scale energy budget and is one of the three terms in the Kolmogorov equation for scale-energy balance.

• P r = 2δu j δu i ∂ ∂r j (δu i ) term, which when transformed back to the two-point physical co-ordinate system gives δu j δu i ( ∂u i ∂x j 2 + ∂u i ∂x j 1 ). The two terms when averaged, results in the production term of one point turbulent kinetic energy equation. Thereby P r represents the production δu 2 i through the gradient of mean velocity. In addition, the equation for δu i has the same term with an opposite sign similar to the production term in one-point kinetic energy equation [START_REF] Alves Portela | The turbulence cascade in the near wake of a square prism[END_REF] .

• A = u * j ∂ ∂X j (δu i ) 2
is the advection term, which represents the transport of δu 2

i by the mean flow in the physical space.

• T u = u * j ∂ ∂X j (δu i ) 2
is the transport of δu 2 i by the fluctuation of velocity. This is the physical space counterpart of interscale energy transfer term Π.

• T p = 2 ρ δu i ∂ ∂X i (δp)
is the pressure velocity term, which accounts for the effect of pressure in the dynamics of the flow. [START_REF] Adrian | Stochastic estimation of organized turbulent structure: homogeneous shear flow[END_REF] is the diffusion of δu 2 in the space of scales. When the two points for the computation of structure-function coincide, this is the only non-zero term that compensates dissipation. This is a dominant term close to the wall. Away from the wall and at higher separation, its contribution is negligible. The other terms D r1 and D r3 has negligible contribution to the dynamics of the flow.

• D r2 = 2ν ∂ 2 ∂r 2 j (δu i )
• D x = ν 2 ∂ 2 ∂X 2 j (δu i ) 2 is the diffusion of δu 2
i in the physical space, which is analogous to the diffusion term in the one-point turbulent kinetic energy equation, whose contribution is appreciable very close to the wall.

• * , * represents the sum of energy dissipation rate at the two points based on total velocity and fluctuation of velocity respectively.

KHMH equation based on fluctuations of velocity

The KHMH equation has been used to study different processes associated with scale-by-scale energy budget in different turbulent flow fields. This meant that the equation has been derived in many forms for various studies. One of the widely used forms of the KHMH equation is by deriving it for the velocity fluctuations [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF] . The equation is given by:

∂ ∂t (δu 2 ) At + ∂ ∂X j (δu 2 u * j ) Tu + ∂ ∂r j (δu 2 δu j ) Π + ∂ ∂X j (δu 2 u * j ) A + ∂ ∂r j
(δu 2 δu j )

+ 2δu i u * j ∂ ∂X j δu i + 2δu i δu j ∂ ∂r j δu i Pr +2δu i ∂u i u j ∂x j 2 -2δu i ∂u i u j ∂x j 1 = - 2 ρ δu i ∂ ∂X i (δp) Tp + ν 2 ∂ 2 (δu 2 ) ∂X j 2 Dx + 2ν ∂ 2 ∂r j 2 (δu 2 i ) D r2 -2 * (3.12)
In comparison between Equations 3.12 with that derived with velocity decomposition given by Equation 3.11, the common terms between the equations are named accordingly. The last two terms on the left-hand side of the present equation are the Reynolds stress terms, which aren't found in Equation 3.11. This is because, to obtain the equation for fluctuation of velocity, the Reynolds Averaged Navier Stokes' equation is subtracted from the Navier Stokes' equation for full velocity, and this resulted in the two Reynolds stress terms. However, in the derivation of Equation 3.11, the mean equation was not subtracted. And the terms which are not named were equal to zero when r y = 0.

Computation of KHMH equation terms

The terms of the KHMH equation when computed in the way they appear in Equations 3.11 didn't exactly balance the terms of the left-hand and right-hand sides of the equation. To understand the reason behind this problem, the KHMH equation was solved at every step of its derivation. Starting with Navier-Stokes' equation which produced the difference between left-hand and right-hand sides of the order of zero of the computer. While tracking the error at every step, it was found that the step where the conversion of coordinates from (x j 1 , x j 2 ) to the mid-point and

Computation of KHMH equation terms

separation vector coordinates (X j , r j ), is where the error increased. However, if this step is avoided then the final equation will not have terms that are in space of scales.

Instead, all terms of that equation will have a dependence on physical space and the difference between the left-hand side and the right-hand side still stays close to computer zero.

To have the KHMH equation whose terms depend on both physical space and scale space and to correctly compute the terms, it was decided to take the final form of KHMH equation terms and compute them by transforming them back to (x j 1 , x j 2 ). The transformation of KHMH equation terms from (X j , r j ) co-ordinates to (x j 1 , x j 2 ) is given by Equation 3.2. More detail on how each term is transformed is given in Appendix A.3.

Part II

Overviews of the DNS datasets and its analysis with KHMH equation The DNS of TCF550 is performed with the code that solves for incompressible three-dimensional Navier Stokes' equation, which is made dimensionless using channel half-width h as the reference length, the maximum velocity at inlet U max as the reference velocity. The spatial resolution is given by Figure 4.1, which shows that DNS is well-resolved in the wall-normal direction close to the wall and it increases close to 1.8η away from the wall, where η = (ν 3 / ) 1/4 is the local isotropic Kolmogorov scale. In the streamwise and spanwise directions, the spatial resolution is close to 4η close to the wall and becomes close to 1.7η away from the wall. France)

The DNS of TCF3000 is performed by L.Thais and co-workers, which solves for Newtonian or viscous turbulent channel flow using a massively parallelised code.

The spatial discretisation used is the sixth-order compact finite difference scheme for the wall-normal direction and Fourier modes in the streamwise and spanwise directions. The grid is stretched in the wall-normal direction such that the first grid point is at y + = 0.5 from each wall and up to 18 points are used to discretize till y + = 10. The simulation was performed on the IBM Blue Gene/Q computer running at the IDRIS/CNRS computing centre, Orsay, France. Interested readers could refer to Thais et al. [START_REF] Thais | A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow[END_REF] , for more details about the simulation. 

Assessment of DNS datasets

Dataset Re θ L x /δ L y /δ L z /δ N x × N y × N z ∆x + ∆z + TBL 250

Processing of DNS datasets

The three DNS datasets used in the present work had to be pre-processed to compute the scale-by-scale energy budget. The issues to be addressed were (a) the spatial derivatives of both velocity and pressure fields weren't available for all three DNS datasets, (b) time-derivative of velocities were available only for TBL550 datasets and not for the TCF550 and TCF3000 datasets.

The first issue is solved by the computation of spatial derivatives of the fields in all directions, which is performed by obtaining the cubic spline of each field in the corresponding direction and computing their derivatives. The second issue which is the computation of time derivative for the TCF datasets is solved by obtaining all the terms of Navier-Stokes' equation except the time derivative term. The time Chapter 4. DNS datasets derivative is then calculated from the sum of all the other terms with the proper sign.

Spatio-temporal averaging of DNS datasets

The KHMH equation is an energy budget equation in both physical space and space of scales. Hence the equation has three coordinates in the physical space defined by the three cartesian coordinates and coordinates system of space of scales in all three axes: The x-axis is along the streamwise velocity direction, the y-axis is along the wall-normal velocity direction and the z-axis is along the spanwise velocity direction. In addition, each DNS dataset contains the velocity field in multiple time-steps, which makes the variable dependent on time. Thus each variable used in the computation of KHMH equation terms is of the form a(t, x, y, z, r x , r y , r z ).

With the three DNS datasets being steady, the average is performed along the timesteps. For the two channel flows, the streamwise and spanwise directions are homogeneous directions with periodic boundary conditions and so for both the channel flows the averaging is performed on the x-and z-directions. For the TBL, the homogeneous direction is only in the spanwise direction. And the streamwise extent of 6δ is assumed to be homogeneous, which then allows averaging in the x-direction for this region in addition to the z-direction. Thus the spatio-temporally averaged variable in the computation of KHMH equation terms is of the form a(y, r x , r y , r z ) .

To understand the behaviours of the KHMH equation terms in the present work, it is plotted at a certain wall distance (y + ) and along either r x or r z direction. So, when the results are plotted along r x direction, the other values r y = r z = 0 such that it becomes a(y + , r x , r y = 0, r z = 0) , and when the results are plotted along the r z direction, and the other values r y = r z = 0, such that it becomes a(y + , r x = 0, r y = 0, r z ) .

Convergence of the DNS datasets

It is important to discuss the level of convergence obtained by the datasets before understanding the results. To be relevant to the present study, the time derivative of the KHMH equation ( A t ) is chosen as the quantity to determine the convergence of the results. And this particular term is chosen to display the convergence of the results because this term has the highest amount of fluctuation and the present flows under consideration are steady flows and so the average value of the time derivative This chapter is organised as follows. Following the introduction, Section 5.2 explains the analysis of KHMH equation terms computed from the DNS of Turbulent Channel Flow at Re τ = 550, henceforward this flow will be addressed as TCF550.

It shows the results of the behaviour of the terms of the KHMH equation in average and instantaneous form, before proceeding to discuss the correlation coefficient between different terms of the KHMH equation. These results are then compared with

Turbulent Channel Flow at Re τ = 3000, henceforward this flow will be addressed as TCF3000. In Section 5.3 the same analyses as with the previous flows are performed on Zero Pressure Gradient Turbulent Boundary Layer (ZPG-TBL) at Re τ = 550, henceforward this flow will be addressed as TBL550, which is then compared with the corresponding results of TCF550. Section 5.4 shows the results of the energy cascade in the streamwise-spanwise plane in all three DNS datasets at different wall distances. This is followed by section 5.5, where the results of the wall-attached eddies are discussed in all three DNS datasets.

Scale-by-scale energy budget with DNS of Turbulent Channel Flows

This section begins with understanding the behaviour of different terms of the KHMH equation in its averaged form from the studies in the past and continues towards the present work, which is the analysis of average values of KHMH equation on Turbulent Channel Flows and the influence of an increase in Reynolds number. This is followed by the results concerning the instantaneous part of the terms of the KHMH equation terms, which is made possible by considering the equation without averages. Then the correlation coefficient of different terms are computed to understand the physics underlying the cascade of energy. 

Spatio-temporal average values of the KHMH equation terms

Scale-by-scale energy budget with DNS of Turbulent Channel Flows

Studies of the scale-by-scale energy budget in channel flows using the KHMH equation include Marati et al. [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF] , who solved the KHMH equation for fluctuations of velocity (Equation 3.12) to understand the behaviour of each term of the equation in the space of scales and physical space at different wall distances. 

Format of the plots

For the results to be comparable between the two channel flows at different Reynolds numbers. The left column of each figure is the result from TCF550 and its corresponding comparison with TCF3000 is present on the right column. When there is a result of a KHMH term given by a(r + x , r + y , r + z , y + ) is presented in one direction, the indices of other variables are zero. Thus, when the results are presented along r x direction for a particular wall distance y + , the other scale variables are considered to be zero, for example in the r x direction the results would correspond to a(r +

x , r + y = 0, r + z = 0, y + ). Similarly for the results in r z direction, it is a(r + x = 0, r + y = 0, r + z , y + ). 

All

Normalisation of the results

In the comparison of the two channel flows at different Reynolds numbers, two different normalisations are used. To observe the limits of each normalisation, the comparison is made for both types from near the wall to the turbulent core in both r x and r z directions. The wall-units normalisation is plotted for results from The terms of the KHMH equation have different behaviours depending on the wall distance considered, and so the observation will be based on looking at each term separately and how it evolves as the wall distance is increased, and as well as the influence of the Reynolds number. Starting with the time derivative term -A t , it is well-known that this term is zero on average when the flow is statistically steady such as the Turbulent Channel Flow studied in this subsection. This is discussed in the previous chapter, where it was pointed out that the residual value that appears at higher wall distances correspond to the limits of convergence of the current dataset at those high wall distances. This is attributed to the increase of correlation that exists when moving away from the wall, which would require more uncorrelated samples to converge the dataset. The advection term -A and the pressure term T p tends to be negligible on average at all wall distances and all scales considered in the analysis.

The interscale energy transfer term -Π in TCF550 at y + = 12 in r x and r z directions, starts at zero and increases to reach a peak, then decreases until the integral scale and becomes negligible thereafter as the scale separation increases. In addition in the r z direction, there is a negative peak for the -Π after the first positive peak. The negative values observed only in the r z direction suggests a possibility of inverse energy cascade, which will be discussed later in this section. As the wall distance is increased, the negative peak value tends to move to higher scales. Also with an increase of wall distance, -Π tends to be significant at scales much larger than the integral scale. At the channel centre-line, this term is the most dominant at all scales till r + = δ, except at very small scales.

With a higher Reynolds number in TCF3000, -Π behaves qualitatively the same way between the two channel flows at all wall distances when normalised accordingly discussed previously in this subsection in both r x and r z directions. And the peak value of this term tends to be larger in TCF3000 than in TCF550 indicating an effect of Reynolds number in the average, as observed in Saikrishnan et al. [START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF] .

The production term -P r in TCF550 increases from zero at r + x = 0 to approximately 1.8 times the value of * at large scales at y + = 12. When the wall distance is increased, the behaviour of -P r remains approximately the same, except its value at large scales which reduces with increased wall distance. Beyond y + = 25 it tends to attain approximately the value of * . -P r in the r z direction starts from zero at r + z = 0, and increases to have a positive peak at approximately the same scale as the previously mentioned negative peak of -Π above 2

* , and at scales thereafter it reduces to approximately 1.8-1.9 * . With the increase of wall distance, -P r at large scales approaches * similar to that in r x direction.

However, the positive peak of -P r in the r z direction is always higher than * up to y + = 320. Beyond y + = 320, the dominance of this term reduces with the further increase of wall distance, and it becomes negligible at the centre-line of the channel flow in both r x and r z directions.

When the Reynolds number is increased, -P r has the same behaviour in both TCF550 and TCF3000 in the r x direction, when the x-axis is normalised using wallunits till y + = 320 and thereafter using the channel half-width. In the r z direction however, the positive peak compares well between the two flows with the x-axis normalised by wall-units up to y + = 40, and thereafter it agrees well when the x-axis is normalised by the channel half-width δ.

The energy transfer in physical space T u is negligible at all wall distances until y/δ = 0.72. Beyond y/δ = 0.72, the contribution of this term to the average in- 

Discussion

Starting the discussion near the wall at y + = 12, it is well known from single point turbulent kinetic in the buffer layer, the production -P r exceeds dissipation and this can be concluded by the fact that the production term being approximately 1.6-1.8 * at large scales. -Π dominates between the modified Taylor microscale and the integral scale in the r x direction. In the r z direction, the positive peak of -P r coinciding at the same scale at which -Π has its negative peak. This could be due to the presence of the inverse cascade in this direction, and this is discussed in section 5.5.

Above the buffer layer, from y + = 25 to y + = 320, there are three distinct ranges of scales observed in the average dynamics of KHMH equation terms. The first range of scales in both r x and r z direction is characterised by the domination of Moving from the bulk region of the flow from y/δ = 0.72 to the centre-line of the channel flow at y/δ = 1, the role of the P r starts to diminish compared to the previous wall distance. At the centre-line of the channel flow, P r vanishes entirely from the dynamics of the flow, which is known previously due to the zero value of du dy . In the bulk region of the flow, the interscale energy transfer term -Π is dominant from modified Taylor microscale to scales larger than the integral scale.

D
At the centre-line, this term is dominant from modified Taylor microscale to even scales of the order of δ, and this is investigated later in the subsection. In the bulk region, the reduction of the -P r coincides exactly with the increase of -T u .

Along the centre-line, this term is dominant in large scales and contributes equally to the dynamics of the flow as Π . Thus in the bulk and the centre-line, the process of transfer of energy in both physical-space and the scale-space dominates the entire dynamics of the flow. The dynamics of the flow in the r x and r z direction are similar Chapter 5. Results: DNS only as the centre-line is reached, despite both streamwise and spanwise being both homogeneous directions.

Modified Taylor microscale

The Taylor microscale λ is defined for the isotropic turbulence by the following

equation = 15ν u 2 λ 2 (5.1)
where is the dissipation based on fluctuation of velocity, u 2 is defined as 1 3 u i u i which is equal to u 2 1 in the isotropic turbulence. The Taylor microscale is also associated with the curvature of the spatial velocity autocorrelation function. Lundgren [START_REF] Lundgren | Kolmogorov turbulence by matched asymptotic expansions[END_REF] showed that for the compensated third-order structure-function, the peak occurred at 1.5λ. This is quantitatively verified by Obligado and Vassilicos 88 who observed in decaying turbulence which is nearly isotropic, that the compensated the third-order structure-function has its peak at r ≈ 1.5λ.

In the context of wall-bounded turbulence which is anisotropic, a length scale based on the Taylor microscale is introduced in the present work. This modified Taylor microscale is defined separately for the streamwise and the spanwise directions. This modified Taylor microscale in r x direction is λ x is obtained by the use of only u 2 instead of all the velocity components, and given by :

λ x = 15 ν u 2 (5.2)
And in the r z direction, λ z is obtained by the use of w 2 , and [START_REF] Brown | On density effects and large structure in turbulent mixing layers[END_REF] 2 is used as the coefficient instead of 15. This is given by : It is observed that in TCF550 in the r x direction, the positive peak of -Π coincides with the λ x in the range 0.1 < y/δ < 1. In the r z direction, the positive From the previous studies in isotropic turbulence, it is known that the Taylor microscale scales the peak of the third-order structure-function. In the present study of the anisotropic flow, it is observed that the modified Taylor microscale scales the peak of -Π , which is the derivative in scale space of the third-order structure-function. Similar to the -Π , the -T u is also a derivative of the thirdorder structure-function, but in physical space. And the modified Taylor microscale 

λ z = 15 2 ν w 2 (5.3)

Average value of Interscale energy transfer at large scales

The -Π is dominant between the Kolmogorov scales and the integral scales near the wall in both r x and r z direction. As the wall distance is increased, the scales at which -Π is significant also increases. And as the centre-line is reached, -Π remained close to 0.5 * even at r x = δ. This prompted the question about whether -Π remains the same even beyond r x = δ. If there is a significant average at large values of r x , it is necessary to decompose -Π to observe the contribution of each (5.4)

Figure 5.8 shows -Π and its decomposed terms at large scales till r x = 9δ. For this analysis, only the results away from the wall is used because the value of -Π becomes negligible at small values of r x /δ, near the wall.

It is observed that along the centre-line, Π at scales as large as 9δ is still approximately 0.5 * . Thus this signifies a very large scale correlation between some terms that contribute to -Π . It is also observed that a 21 which is due to the wall-normal derivative of the streamwise velocity is the main contribution to -Π at all scales along the centre-line. When a 21 is negative or negligible at y + = 270, 600, Π becomes negligible even at scales less than δ. This term a 21 is given by: ∂x 2 to a significant correlation between the large and the small scales of the flow. With the present results, it can be shown that such correlation between large and small scales of the flow is responsible for high values of interscale energy transfer near the centre-line of the flow.

a 21 = δu 1 δu 2 ∂u 1 ∂x 2 b + ∂u 1 ∂x 2 a = (u 1 b -u 1 a )(u 2 b -u 2 a ) ∂u 1 ∂x 2 b + ∂u 1 ∂x 2 a = (u 1 b u 2 b ) -(u 1 b u 2 a ) -(u 1 a u 2 b ) + (u 1 a u 2 a ) ∂u 1 ∂x 2 b + ∂u 1 ∂x 2 
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Conclusion

In this subsection, the Spatio-temporal average behaviour of individual terms of the KHMH equation at different wall distances is discussed in detail. The terms that have zero or negligible average and thereby don't contribute to the average dynamics of the flow at all wall distances are A t , A, T p , D x .

The interscale diffusion term D r2 , is equal to * at r = 0, and reduces with increase of scale and becomes negligible beyond the modified Taylor micro-scale in both r x and r z directions at all wall distance away from the wall.

The interscale energy transfer term -Π at y + = 12, starts at zero at r + = 0, and reaches its peak and reduces thereafter to becomes negligible after the integral scales. This is by observation of energy spectrum, where there are three distinct ranges, in which the energy cascade process occurs in the inertial subrange which is situated between the viscous effects dominated Kolmogorov scale and the energycontaining integral scales. However, as the wall distance is increased, this term starts to become relevant well beyond the integral scales, and along the centre-line of the channel it reaches close to 0.5 * at scales r + = 9δ. This pointed out the long-range correlation between some velocity and vorticity components, which symbolises the correlation between the large and small scales of the flow. In addition, the increase of Reynolds number manifests as a higher peak value of this term.

The modified Taylor microscale derived for the channel flow in r x and r z directions separately, scales the positive peak of -Π in the range 0.1 < y/δ < 1 in the r x direction, and the range 0.1 < y/δ < 0.9 in the r z direction. In isotropic turbulence, the Taylor microscale is observed to scale the peak of the third-order structurefunction. And in the present flow, modified Taylor microscale which is a similar parameter is observed to scale only the peak of -Π which is the scale derivative of the third-order structure-function.

The production term starts dominating the flow dynamics beyond the integral scales at all wall distances. At y + = 12, which is the buffer layer, the production exceeds * in both r x and r z directions at all scales beyond the integral scale. Beyond the buffer layer in the r x direction, it never exceeds * . On the other hand, there is a positive peak of production term where it exceeds * at all wall distances till y/δ = 0.58. This peak of production term coincides with the negative peak of -Π . Cimarelli et al. [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] explain that this is an inverse energy cascade and ascends to the centre-line of the channel flow moving through a straight line in the spanwisewall-normal separation plane. As the wall distances approach the centre-line, the Chapter 5. Results: DNS influence of the production term starts to reduce and it becomes negligible at the centre-line of the channel flow. Here, the energy transfer in physical space dominates the flow dynamics, and so at the centre-line of the channel both the energy transfer terms (physical and scale) mostly balance the dissipation term.

Instantaneous KHMH equation terms

It is a well-known fact that intermittency is an integral part of the turbulent flow.

And an averaged value of quantities only provides part of the information. Despite the knowledge that the turbulent energy cascade is forward on average i.e., large to small scales, there have been multiple studies in the past that shows the evidence of inverse energy cascade i.e., small to large scales, in free shear-flows [START_REF] Brown | On density effects and large structure in turbulent mixing layers[END_REF] , in wallturbulence [START_REF] Jiménez | The physics of wall turbulence[END_REF] . This will also be discussed in the present work in section 5.4. at small scales and this was also observed with the average results, where D r1 balances the * at r + = 0. In addition, this high value of dissipation and diffusion
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terms at such small scales could be due to small values of the standard deviation of interscale energy transfer at those small scales. The standard deviation of * greater than that of * could be explained by the higher value of mean velocity derivatives compared to the derivatives of fluctuations of velocity near the wall at y + = 12.

The dominance of the production term at y + = 12 is explained by the fact that this region is the buffer layer which is considered to be the engine of turbulent fluctuations in wall-bounded turbulent flows. The negligible value of the standard deviation of P r at the centre-line is explained by the fact that the mean velocity gradient in the wall-normal direction is zero at the centre-line of the channel flow, and this particular result is also reflected in -P r in the last subsection. However, the decreasing influence of instantaneous dynamics of P r with the increase of wall distance between the buffer layer and the centre-line of the channel flow is not captured by the average value of this term.

The terms A t + A, Π, T u and T p have approximately the same order at all wall distances and so contribute equally to the dynamics of the flow. However, the average value of all terms except for Π is either zero or negligible compared to * .

Chen et al. [START_REF] Chen | Acceleration in turbulent channel flow[END_REF] showed that in a turbulent channel flow, the local ( ∂u ∂t ) and convective (u .∇u ) accelerations tend to anti-align each other. With local acceleration partly in A t and the convective acceleration is present in Π and T u , it is clear that these terms (A t , Π, T u ) are of the same order. The standard deviation of T p being of the same order of the other terms implies that there is some contribution from the pressure term in the energy transfer processes in the flow and this will be discussed in the upcoming subsection.

Conclusion

The instantaneous part of the terms helped to observe the full contribution of each term beyond their averages. This is especially important for the terms with negligible or zero average like A t , A and T p . Thus it also helped to identify the dominant terms at different wall distances which gives more information about the dynamics of the flow. The increase of Reynolds number doesn't produce any change in the standard deviation of the KHMH terms when normalised by the standard deviation of Π.

The near-wall dynamics and the small-scale dynamics at all wall distances are dominated by the diffusion and dissipation terms. The production term is dominant at the buffer layer and gradually decreases with an increase of wall distance and 

Correlation coefficient of KHMH equation terms

In the previous subsections, starting with average values of KHMH equation terms and discussing the results, and moving towards the instantaneous behaviour of KHMH equation terms, some correlation between KHMH terms are identified and that the instantaneous contribution of each term is completely different from its average contribution to the dynamics of the flow.

To study the correlation between different terms of KHMH equation, Pearson's correlation coefficient is used and is given by:

corr(Q 1 , Q 2 ) = Q 1 -Q 1 Q 2 -Q 2 σ Q 1 σ Q 2 (5.7)
where Q 1 and Q 2 are the terms for which the correlation coefficient is computed, σ Q 1 and σ Q 2 is the standard deviation of the terms Q 1 and Q 2 respectively. The angular brackets . represent the Spatio-temporal averaging which is obtained over time, streamwise and spanwise directions such that the correlation coefficient is a function of the three scale-space variables and the wall distance (r x , r y , r z , y).

The most interesting correlation-coefficient occured between :

• Q 1 = A t + A and Q 2 = Π, T u • Q 1 = T p and Q 2 = Π, T u , P r
Thus the correlation coefficients are studied with only the following six KHMH equation terms: A t + A, P r , T p , Π, T u , and the sum of two energy transfer terms Π + T u . It is also known that the standard deviations of all the above terms are nonnegligible at the wall distances from y + = 12 till y/δ = 1. And so the correlationcoefficient of these terms is analysed at all the wall distances as in the previous subsection i.e., y + = 12, 40, 100; y/δ = 0.72, 1.

Observation with A t + A term this is presented at various wall distances, where the xaxis and wall distances are normalised by wall-units between (a) to (f ), and by channel half-width from (g) to (j)

The correlation coefficient of A t + A and Π term approximately has correlation coefficient of -0.4 to -0.5 after the integral scale and remains in this value thereafter.
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With the increase of wall distance, the correlation coefficient between A t + A and Π remains close to -0.5 at large scales in both r x and r z directions. However between A t + A and T u , it increases until approximately to -0.75 at the centre-line of the channel flow in the r x direction. In the r z direction, the correlation coefficients between A t + A and both the energy transfer terms remains approximately the same from y + = 12 till the centre-line of the channel flow. The correlation coefficient of A t + A and T u also reaches the value to close to -0.5 at scales larger than integral scales. As the scales reduce smaller than integral scales, the correlation coefficient between A t + A term and T u increases, whereas the same with Π decreases. When the two energy transfer terms were considered together as Π + T u , the correlation coefficient of this term with A t + A is higher than the correlation coefficient with the individual terms (Π, T u ). The correlation coefficient between A t + A and Π + T u is a constant value at all scales, and it is approximately -0.55 at y + = 12 and reaches a value of approximately -0.8 to -0.85 at the centre-line of the channel flow.

The increase of Reynolds number increased the correlation coefficient between A t +A and Π, T u , Π + T u , with the most difference in Π + T u which is between -0.55 to -0.7

for TCF550 and between -0.65 to -0.9 for TCF3000.

A small correlation coefficient exists between T p and A t + A, and it starts at y/δ = 0.72 and it increases when the wall distance is increased in TCF550. On the other hand, this correlation coefficient is not observed in the TCF3000. This is not observed in the r x direction of both the flows. Hence it could be concluded that it is an artefact of the particular simulation at high values of wall distance in the spanwise direction.

Observation with T p term This results in the sum of the two acceleration terms tend to be much smaller and scales very differently to the individual acceleration terms [START_REF] Chen | Acceleration in turbulent channel flow[END_REF] . In the current study, the local acceleration can be thought of as A t + A because A t is from the timederivative term of Navier-Stokes' equation. The Π and T u terms are obtained from the convective acceleration term (u .∇u ) of Navier-Stokes' equation. Figure 5.17 The sweeping decorrelation hypothesis states that the dissipative eddies being swept by the large scales works for the dynamics far from the wall. And so for the results obtained from the correlation coefficient, it could have been easier to explain the phenomenon in the region away from the wall. However, the result is the same even close to the wall making it difficult to understand the flow dynamics with this physical explanation. Thus the present results are not fully explained by the sweeping decorrelation hypothesis in the near-wall dynamics of the flowfield.

It is known that the Navier-Stokes' equation, at the wall, reduces to pressure term balancing the diffusion term. And when the wall distance increases, the total velocity becomes non-zero and so the other terms of Navier-Stokes' equation which starts to contribute to the dynamics of the flow. Thus near the wall, the time derivative term, advection term starts to increase faster than the convective acceleration (u .∇u ) term. However, the sum of time derivative and advection term scales like the nonlinear terms. This could be an explanation for the correlation coefficient between the A t + A term and the two energy transfer terms Π + T u . In addition, this could be the reason for T p not correlating with the two energy transfer terms very near the wall.

Chapter 5. Results: DNS

Correlation coefficient of interscale energy transfer at large scales

In the previous analysis of correlation coefficients, it is observed that at large scales (r larger than Integral scales), the correlation coefficient between both the energy transfer terms Π and T u tends to have approximately a constant value of -0.5 with A t + A and 0.35-0.45 with T p , up to r = δ. That observation prompted the curiosity to perform the analysis to verify the limits of 'r' values at which this correlation coefficient tends to decrease. The present simulation of TCF3000 is available for approximately 6πδ and so the analysis is performed for scales up to the order of 9δ, because of the periodicity in the streamwise direction. It is shown in the previous subsection that the energy transfer terms can be decomposed into 9 terms given by Equation 5.4, for which the correlation coefficients can be computed. For example, the correlation coefficient computation for a 11 and A t + A is given by:

corr(a 11 , A t + A) = (a 11 -a 11 )(A t + A -A t + A ) σ Π σ At+A (5.8)
This way, the correlation coefficient for all the decomposed terms can be computed, and the sum corr(a ij , A t +A) will be equal to corr(Π, A t +A). This method helps to 12 -0.58 -0.28 0 -0.018 -0.11 0.003 -0.001 -0.18 0.001 0.003 30 -0.51 -0.21 -0.0055 0.001 -0.073 0.004 -0.002 -0.2 0.004 -0.002 40 -0.54 -0.25 0.0005 -0.006 -0.08 0.005 -0.0045 -0.18 -0.004 -0.027 227 -0.57 -0.27 -0.0026 -0.014 -0.1 0.0062 -0.0097 -0.14 -0.01 -0.032 599 -0.64 -0.26 -0.063 -0.071 -0.067 -0.004 -0.03 -0.07 -0.027 -0.04 2178 -0.66 -0.28 -0.072 -0.076 -0.07 -0.005 -0.029 -0.066 -0.027 -0.032 3000 -0.7 -0.24 -0.096 -0.078 -0.088 -0.024 -0.037 -0.067 -0.03 -0.025 It is observed that the correlation coefficient between Π and A t + A is mainly due to the term a 11 at all wall distances. There is an additional contribution from the terms a 21 and a 31 till y + = 227. Thus the correlation coefficient can be attributed to δu 1 and ∂u 1 ∂x j , where j=1,2,3. This implies that Π contributes to the dynamics of different processes through the product of the streamwise velocity with its derivatives in all three directions.

Chapter 5. Results: DNS

The correlation coefficient of T p and Π doesn't show a strong value of any individual term up to y + = 100. Beyond that wall distance, there is a higher contribution of correlation coefficient from the terms a 11 , a 21 and a 31 , but this contribution is limited to less than 0.1 from each of the decomposed terms. Thus it is not possible to conclude that this correlation coefficient contribution is due to the physics in the streamwise direction.

A similar analysis was performed on the correlation coefficient of energy transfer in physical space term T u with both A t + A and T p terms and didn't return any conclusive results.

Conclusion

It is observed that the A t +A has approximately -0.5 correlation with Π and T u , and -0.6 to -0.7 correlation coefficient with Π+T u from near the wall at y + = 12 till y/δ = 1. This is explained by the mathematical formulation of the sweeping decorrelation hypothesis which is explained by the anti-alignment of the local and convective acceleration terms in the channel flows. However, the physical explanation of the sweeping decorrelation hypothesis involving large scale structures and small scale structures is reasonable away from the wall. Near the wall, it is mostly due to the A t + A balancing the Π + T u resulting in the high correlation coefficient between them.

T p has a correlation coefficient of 0.35 with P r at y + = 12 and it reduces to 0.2 with the increase of wall distance and becomes negligible at the centre-line of the channel. T p has approximately 0.4-0.45 correlation with Π + T u from y + = 40 till the centre-line of the channel at y/δ = 1.

The increase of Reynolds number resulted in the increase of correlation coefficient between A t + A and Π + T u , which is noticeable from y + = 12 till the centre-line of the channel. On the other hand, the increase of Reynolds number results in the reduction of the correlation coefficient between T p and Π + T u when y + > 100.

At small scales, the A t + A has a high correlation coefficient with T u and T p has a high correlation coefficient with Π. As the scale increases and reaches the integral scales, the correlation coefficient of both the energy transfer terms Π and T u , with A t + A becomes approximately equal. This is also the same observation between T p and both the energy transfer terms. And the sum of two energy transfer terms Π + T u has an even higher correlation with A t + A and T p , than the individual terms Π and T u separately. This high correlation coefficient of both the energy
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transfer terms with A t + A and T p reflects the relation between the non-linear term and time derivative term, and non-linear term and the pressure term in the Navier-Stokes' equation. This argument that the non-linear term is causing this correlation coefficient is solidified by the fact that the correlation coefficient between A t + A and T p is negligible at all wall distances except near the wall.

When the correlation coefficient is computed for very large scales (r = 9δ), the correlation coefficient results of both the energy transfer terms with A t + A and T p remained the same, despite the length scale being several orders of magnitude higher than the integral scales. This is investigated further by decomposing Π to find that the correlation coefficient between Π and A t + A. The result of the correlation coefficient is mainly due to the δu 1 and ∂ ∂x j (δu 1 ) which needs further investigation. The investigation of decomposing Π and T p did result in showing that the terms involving δu 1 and ∂ ∂x j (δu 1 ) are dominant, but with correlation coefficient is not significant enough to make a reasonable conclusion. Thus the interscale energy cascade depends mainly on the δu 1 and ∂ ∂x j (δu 1 ) for its instantaneous dynamics in the flow.

Scale-by-scale energy budget with TBL550

The objective of the present work includes studying the behaviour of the KHMH equation terms in Turbulent Boundary Layer (TBL) using PIV experiments at high Reynolds numbers, Re τ = 2272 and 3840. In that regard, the results from the previous sections have given the basic idea of what to expect from the wall-bounded turbulent flows, specifically for turbulent channel flows. To proceed towards the experiment, it is necessary to know the behaviour of KHMH equation terms specifically with ZPG-TBL flows. To facilitate the comparison with the results of turbulent channel flow, the Re τ = 550 is chosen to study the DNS of TBL flow.

Spatio-temporal average values of KHMH equation terms

The first step in the process of comparing in the present analysis is to compare the average value of KHMH equation terms between TCF550 and TBL550. Since Between y + = 400 and y + = 500, there is a difference in the behaviours of the KHMH equation terms in the two flows. In TCF550 in both r x and r z directions, -P r do start from zero and attains a peak value as the scale increases and decrease thereafter with further increase of scales. However with TBL550, -P r stay higher than * at all scales larger than 300 + for r x direction, and 100 + for r z direction. -T u is non-negligible at large scales from y + = 400 and reaches approximately -0.5 * in the centre-line of the channel. In TBL550 -T u tends to be approximately to * at large scales in TBL550.

Discussion

The behaviours of the KHMH equation terms in TCF550 and TBL550 are approximately the same from y + = 12 till y + = 100. -P r surpasses * in the buffer layer where there is an excess of production. With the increase of wall distance, -P r becomes approximately equal to * at large scales. However at y + = 400, Chapter 5. Results: DNS -P r again surpasses * . This sudden increase of -P r meant that the energy transfer terms -Π and -T u are negligible at larger scales at this wall distance to balance the KHMH equation for * . In addition in the r z direction, there is a presence of negative values of -Π term till y + = 320, which in continuation with the explanation from the previous section shows the path in which the excess energy from the buffer layer reaches the larger scales with the increase of wall distance.

At y + = 550 in TBL550, multiple KHMH terms contribute to the dynamics of the turbulent flow. Both the energy transfer terms are dominant at large scales reach approximately equal to * . In addition, there is a high contribution from T p and A , which were negligible at all wall distances in both the channel flows.

Interscale energy transfer scaling with modified Taylor microscale In the previous section with the results of two channel flows, it is observed that the positive peak value of -Π coincides with the modified Taylor microscale

Scale-by-scale energy budget with TBL550

computed at that wall distance corresponding to each direction. This subsection focuses on the modified Taylor microscale with -Π in TBL550. 

Conclusion

The conclusions in this subsection are as follows. The TCF550 and TBL550 are part of the family of canonical wall-bounded turbulent flows which tend to have the same behaviour for the terms of the KHMH equation until y + < 100. As the wall distance is increased further, -P r surpasses * at 200 < y + < 400 at large scales in TBL550, however, P r always stays lower than * at all scales in TCF550 when y + > 100. In the spanwise direction, for some scales -Π is negative in the same region as the production surpasses dissipation, which is similar between the TCF and TBL flows. This could be explained by the transfer of excess production towards the large scales away from the wall.

At y + = 550, -Π and -T u attain approximately equal or higher than * in TBL550, whereas -Π and -T u attain approximately 0.5 * in TCF550. In addition, there is a high contribution from the T p and A from y + = 400 to y + = 550 in TBL550, and they are both negligible in TCF550 at y + = 550. These are explained by the difference in flow physics between TCF and TBL flows at

y/δ = 1.
The modified Taylor microscale does scale the peak of -Π in the range 40 < y + < 465 in the r x direction, and it is in the range 22 < y + < 465 in the r z direction, which is similar to what was observed from the channel flows.

Instantaneous KHMH equation

With the average behaviour of KHMH equation terms discussed in the previous subsection, the next step in this process is to discuss the instantaneous behaviour of the KHMH terms. This subsection presents the results of the standard deviation of KHMH equation terms in TBL550 and is then compared with that of TCF550.

The same wall distances as the previous subsection will be used for the comparison. In both the flows, the diffusion and the dissipation have considerable standard deviation near the wall at approximately all the scales. These terms are also dominant between the Kolmogorov scale and the modified Taylor microscale at all wall distances. The standard deviation of * is higher than * at y + = 12.

P r term is dominant at y + = 12 in both TBL550 and TCF550. With the increase of wall distance, the standard deviation of P r reduces and it becomes negligible at the centre-line of the channel for TCF550. However, in TBL550 the standard deviation of P r is not entirely negligible at the edge of the boundary layer. The standard deviation of A t + A, Π, T u and T p are all dominant from y + = 12 till the centre-line for the TCF550 and the edge of the boundary layer for TBL550. All the observations are valid in both r x and r z directions.

Discussion

It is already discussed in the previous section about the near-wall dynamics at all scales, and small scale dynamics at all wall distances being dominated by the diffusion and the dissipation terms in the two channel flows at different Re τ . The explanation that the diffusion and dissipation terms balance each other at small scales at all wall distances is equally valid for the turbulent boundary layer flows.

In addition, the smaller value of the standard deviation of Π at small scales could also contribute to the high values of the standard deviation of these terms at all wall distances.

The same reason as the buffer layer being considered the engine of turbulent fluctuations is valid for both Turbulent Channel Flows and Turbulent Boundary Layer flows at y + = 12. The reduction of the standard deviation of production term thereafter with the increase of the wall distance is explained by the mean velocity gradient in the wall-normal direction. However, this standard deviation is zero for the TCF550 at y + = 550, whereas it is non-zero for TBL550 could be explained by the difference of physics of both these flows at that wall distance. For channel flows, at the centre-line the mean velocity is at its maximum and is symmetric from
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both top and the bottom wall, thereby resulting in a zero mean velocity gradient in the wall-normal direction. For TBL flows, y + = 550 is approximately the turbulent extent of the flow in the wall-normal direction. It is not a strict boundary and therefore it fluctuates during the flow, and there are interactions between the outer laminar flow and turbulent part. This results in some evolution of mean velocity in the wall-normal direction at that wall distance, which could therefore explain the non-zero standard deviation of P r .

The dominance of the standard deviation of A t + A, Π, T u and T p follows the same explanation from the discussion in the previous section, which points out the anti-alignment of local and the convective acceleration in the channel flows [START_REF] Chen | Acceleration in turbulent channel flow[END_REF] . The standard deviation of the pressure term being of the order of local and convective acceleration could have resulted in the correlation coefficient between T p and Π + T u observed in the last section, however, more investigation is required in this direction to explain this observation.

Conclusion

In concluding this subsection, the instantaneous behaviour of the KHMH equation terms is mostly the same between the TCF550 and TBL550 at the same wall distance. This includes the behaviour of the diffusion and dissipation terms near the wall at all scales and in small scales at all wall distances. P r has the same behaviour between the two flows from y + = 12 and it reduces similarly in both the flows when the wall distance is increased. At y + = 550 however, it becomes zero for TCF550

and it stays non-zero for TBL550. This is explained by the difference of physics of both the flows at that wall distance. The standard deviation of A t + A, Π, T u and T p are dominant at all wall distances is partially explained by the anti-alignment of local and convective acceleration in these flows, and the dominance of pressure term needs further explanation.

Correlation coefficient of KHMH terms

With the average and the instantaneous behaviours of the KHMH equation discussed in the previous subsections, the next step in the present study is to compute the correlation coefficient of the KHMH equation terms with A t +A and T p with TBL550.

The results are then compared with the corresponding results of TCF550. This study is performed in the same wall distances as it was in the results in previous subsections. T p has approximately 0.1 correlation with A t + A term at y + = 12. This becomes negligible with the increase of wall distance.

The correlation coefficient of Π with A t + A is zero at r + = 0 and tends to increase to reach -0.4 to -0.45 at large scales. This large scale correlation coefficient between Π and A t + A tends to increase with the increase of wall distance and reaches -0.6 to -0.65 at y + = 550. The correlation coefficient of T u and A t + A starts around -0.6 at r + = 0 and decreases with 'r' to reach almost the same correlation coefficient as Π with A t + A at large scales. With the increase of wall distance, the correlation coefficient of T u with A t + A at r + = 0 tends to reach approximately -0.8, and the large scale value reaches approximately -0.7 at y + = 550. The correlation coefficient of A t + A and the sum of two energy transfers Π + T u has a higher correlation coefficient of -0.5 to -0.8 at all scales and all wall distances in both the flows. All the above observations are similar between the r x and r z directions.

Observation: T p term . This is presented at various wall distances, where the x-axis and wall distances are normalised by wall-units distances from y + = 12 till y + = 400. At y + = 550, these correlation coefficients are higher in TBL550 than in TCF550. The results although with a small difference
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still show the presence of the sweeping decorrelation hypothesis in both the flows.

The high value of correlation coefficient at y + = 550 for both the energy transfer terms with A t + A in TBL550 could be explained by the fact that the average value of both Π and T u are of the order of * . This shows the dominance of both the energy transfer terms at the edge of the boundary layer. By contrast, in channel flows, both the energy transfer terms never surpass or become equal to * at any scales or any wall distances considered in the present analysis. Despite the difference of flow physics at higher wall distances, the correlation coefficient between A t + A and Π + T u remains the same between the two flows at all wall distances in both r x and r z directions.

The correlation coefficient between T p and the two energy transfer terms Π and T u has a significant value from y + = 40 till the edge of the boundary layer. And the correlation coefficient values are similar between TCF550 and TBL550 from y + = 12 till y + = 400. At y + = 550, the correlation coefficient of both the energy transfer terms with T p is above 0.5 at large scales. In the average value of the KHMH equation terms in TBL550, it is observed -P r starts to become significant from y + = 400 in TBL550, and the average value of pressure term also reaches about the value of * , which could be attributed to the high correlation coefficient between the energy transfer terms and the pressure term. By contrast, the pressure term never had a significant average value at any scale and any wall distance considered in the present analysis in TCF550. The correlation coefficient between T p and Π + T u also remains the same above y + = 40 till y + = 550 in both the flows, despite the difference in flow physics at higher wall distances.

The increase of correlation coefficient between the pressure term and the A t + A term in TCF550 only in r z direction at y + = 550 is not observed in the TBL550 and TCF3000. So it could be termed as the artefact of the particular TCF550 simulation.

Conclusion

The correlation coefficients of both the energy transfer terms show the presence of the sweeping decorrelation hypothesis at all wall distances considered in the present analysis in TBL550, which is the same as TCF550. The correlation coefficient of both the energy transfer terms have significant values with the pressure term from y + = 40 till y + = 550 in both TCF550 and TBL550 flows. Thus the causal relationship between both the energy transfer terms and the A t + A term and T p term is valid in TBL550 as it was valid in TCF550.

Chapter 5. Results: DNS

The correlation coefficient between A t + A and the energy transfer terms (Π, T u ) is higher in TBL550 than TCF550 at y + = 550. This is the same between T p and the two energy transfer terms Π, T u . This is explained by the difference in dynamics of the two flows at higher wall distances. Despite the change in flow physics at higher wall distances between the two flows, the large scale correlation coefficient of Π + T u with A t +A, and Π+T u with T p terms are approximately the same between TBL550 and TCF550.

Cascade of Energy

This section focuses on the different types of energy cascade that occurs in wallbounded turbulent flows. This concept of energy cascade is central to the theory of turbulence, which started with the work of Richardson who proposed an energy cascade that is purely forward i.e., from large scales to small scales. In recent years, there have been hypotheses and also proofs based on the existence of inverse energy cascade, where the energy flows from small to large scales in some regions of the turbulent flows.

In both the channel flows and the turbulent boundary layer flow, -Π has a negative peak in the r z direction, after the first positive peak at λ z . This negative peak of -Π is observed between y + = 12 till approximately y/δ = 0.6. This suggests that there is a possibility of an inverse energy cascade. Cimarelli et al. [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] discovered this behaviour of interscale energy transfer term average value of Π with the turbulent channel flow in the r z direction for different wall distances. Cimarelli et al. [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] followed this up by explaining how the transfer of energy happens from the source to the sink in the turbulent channel flow with scale energy flux term (δu k (δu i ) 2 ) and proposed two sets of energy cascade : (a) attached reverse cascade and (b) detached forward cascade and divided the wall distances into different regions. This is followed by Alves Portela et al. [START_REF] Alves Portela | The turbulence cascade in the near wake of a square prism[END_REF] who showed that the necessary conditions to conclude the presence of inverse energy cascade are:

• positive value of scale energy flux in the radial direction (in cylindrical coordinates)

• positive value of interscale energy transfer term in the radial direction (in cylindrical coordinates)

The scale energy flux in the radial direction (in cylindrical coordinates) is given by:

δ u. ρ | ρ| (δu 2 i ) = 1 | ρ| (δu ρ (δu 2 i )) (5.9)
where δu ρ is the structure-function in the radial direction The divergence of a function φ from cartesian coordinates to cylindrical coordinates is given by:

∂φ x ∂x + ∂φ y ∂y + ∂φ z ∂z = 1 ρ ∂(ρφ ρ ) ∂ρ + 1 ρ ∂φ θ ∂θ + ∂φ z ∂z (5.10)
The radial component is given by the first term on the right-hand side. The interscale energy transfer term in the radial direction is given by:

∂ ∂r j (δu j (δu 2 i )) radial = 1 ρ ∂ ∂ρ ((ρ)(δu ρ δu 2 i )) = ∂(δu ρ δu 2 i ) ∂ρ + 1 ρ (δu ρ δu 2 i ) (5.11)
To visualise the energy cascades at different wall distances, it was decided to multiply both the interscale energy transfer rate in the radial direction Π r and the scale energy flux in the radial direction δu r (δu i ) 2 , such that the result is positive, when the two individual terms are positive: This conditional average for the cascade of energy is given by : And the energy cascade is direct in all the remaining scales.

Cinverse =    Π ρ if Π ρ > 0 and δu ρ (δu i ) 2 > 0 0 otherwise (5.12) Cdirect =    Π ρ if Π ρ < 0
It is observed that in all the three DNS datasets, there is a region of inverse cascade in the small scale values of both r x and r z . As the wall distance increases at on the other hand, it increases to higher r z values in TCF3000. At y + = 200, the inverse cascade is found at higher values of r z than it was in the previous wall distances in all three DNS datasets. In addition, the plots start to differ between the two Re τ for the three flows, and so the remaining wall distances will be normalised by δ. At y/δ = 0.72 and y/δ = 1, the scales of forward and inverse cascade don't resemble the same between the three flows.

y + = 25,

Discussion

From the results of the scales at which inverse cascade occurs, it is restricted to small values of r x and r z at the buffer layer in all three DNS datasets. This has been identified in the past as the scale energy source [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] in the buffer layer of the flow. With the increase of wall distance, the inverse cascade moves to higher scales in the spanwise direction, whereas it doesn't change appreciably in the streamwise direction in all three flows. At y + = 100, 200, the scales of inverse and forward cascades are comparable between TCF and TBL at Re τ = 550, however it is not the same in TCF3000. Normalising the axes and the wall distance by δ for higher wall distances, the results are further different between the two flows.

The observation of inverse energy cascade points to the fact that the excess of energy from the buffer layer moves towards higher wall distances through increasing values of r z , and this is observed to be similar between the three flows near the wall. There is an influence of the Reynolds number at y + = 100, 200 in the results.

Chapter 5. Results: DNS 

Wall-attached eddies

Observation

From the results of the Spatio-temporal averaging of KHMH equation terms, it is observed that -Π and -P r have negative and positive peaks respectively at the

Wall-attached eddies

same scales in the spanwise direction for various wall distances. And the scale at which the peaks occurred, increase with wall distance. This phenomenon suggests that the energy produced at the buffer layer tends to climb up the scale as the wall distance is increased to reach the turbulent core and eventually towards the centre-line of the channel flow, or the edge of the boundary layer. Cimarelli et al. [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] observed the same phenomenon in Turbulent Channel Flow where it is pointed out that a spatial reverse cascade occurs where the scale-energy ascends to the centre of the channel through a straight line in (r y , r z , y + ) space. This is confirmed in the last section that the energy produced in the buffer layer reaches a higher wall distance (inverse cascade) through the spanwise scales. 

Discussion

From the analysis of the energy cascade phenomenon in the three wall-bounded turbulent flows, it is concluded that there is a strong inverse energy cascade in the buffer layer at small streamwise and spanwise scales, and from there, there is forward cascade into smaller scales and inverse cascade to the large scales of the flow. As the wall distance is increased the inverse cascade is present only for certain values of spanwise scales and for many values of streamwise scales.

By tracking the peak of the interscale energy transfer term and the production term, it is clear that the inverse energy cascade which moves the energy to larger scales as the wall distance is increased, and thereby is responsible for generating the Reynolds stress which results in an increase of the production term in the spanwise direction.

This result is observed in the spanwise direction for r + x = 0, and is almost not present in the streamwise direction for r + z = 0. This is investigated by considering the value of these two terms normalised by the absolute value of * in the r xr z plane, which shows that this phenomenon is also present in the streamwise direction for some non-zero values of r + z .

Hwang et al. [START_REF] Hwang | Statistical behaviour of selfsimilar structures in canonical wall turbulence[END_REF] defines the wall-attached self-similar structures (WASS), which, in Chapter 6

PIV experiment

The primary goal of the present work is to solve the KHMH equation to obtain information about the scale-by-scale energy budget using experiments in the turbulent boundary layer. In this regard, it is necessary to know some information about the flow field beforehand such as the behaviour of the different terms of the KHMH equation, and for this reason, the analysis is started with a low Reynolds number (Re τ = 550) DNS of Turbulent Channel Flow. This DNS is chosen because it is closer to some related studies in the past [START_REF] Marati | Energy cascade and spatial fluxes in wall turbulence[END_REF][START_REF] Saikrishnan | Reynolds number effects on scale energy balance in wall turbulence[END_REF] , thereby validating the codes used for computation.

After validating the average behaviour of the KHMH equation terms with the studies from the past, the next step is to explore the physics behind the non-averaged part of the equation. This is studied by visualising the standard deviation. This is in turn followed by the computation of the correlation coefficient between the different terms of the KHMH equation. Since each term corresponds to a physical process in the energy cascade, any significant value of correlation coefficient between certain terms essentially reveals the correlation between physical processes associated with them.

After analysing the terms with the TCF at Re τ = 550, the next step was towards the objective to analyse the results at a higher Reynolds number. This is the reason behind choosing the DNS of TCF at Re τ = 3000 for the study. Various results so obtained from this flow is then compared with that of the previous DNS, by normalising the parameters accordingly i.e., using wall distances normalised by wall-units for y + < 200, and using wall distance normalised by channel half-width for y + > 200.

It is known beforehand that the experiment will be performed on a ZPG TBL flow This way of having neutrally buoyant tracers are possible in experiments in liquids flows where the many tracers available such as oils, oxygen bubbles, aluminium flakes, hollow glass spheres are used whose densities are approximately equal to that of water. For aerodynamic experiments, the closest to neutral buoyancy is achieved by the use of Helium-Filled-Soap-Bubbles (HFSB) [START_REF] Scarano | On the use of helium-filled soap bubbles for large-scale tomographic piv in wind tunnel experiments[END_REF] . Other commonly used tracers for airflows include oils, propylene glycols, glycerine water mixture, smoke, polystyrene etc, which aren't neutrally buoyant in air. To alleviate this problem of density difference, the particle sizes should be very small (of the order of µm) to ensure good flow tracing fidelity. However small particles scatter less light and it becomes difficult to distinguish between the particle and the background.

Thus a compromise has to be reached between the two parameters. The motion of these particles is made visible by the illumination of a laser light sheet, which is obtained by expanding a laser light through an appropriate cylindrical lens. The images of the particles at specified time intervals are captured by the camera.

Before moving further into the discussion, it is important to discuss the imaging of the small tracer particles. When the light is scattered by the particle hits the circular aperture of the camera, it generates a far-field diffraction pattern which with the help of a lens gets imaged on the imaging sensor. Thus the image of the particle is recorded as a diffraction pattern, which cannot be changed even with a perfectly aberration-free lens [START_REF] Hecht | Optics addison-wesley[END_REF] . The peak in the centre of the intensity distribution is called Airy's disk. This value of the radius of the Airy's disk is given by :

d dif f D a 2λ = 1.22 (6.1) 
where 'd dif f ' is the diffraction-limited image diameter, 'λ' is the wavelength of the light, 'D a ' is the diameter of the aperture. Considering the lens formula and substituting the definition of magnification factor, the diffraction-limited image diameter is given by:

d dif f = 2.44f # (M + 1)λ (6.2)
where 'f # ' is the f-number of the lens, which is the ratio of focal length to the diameter of the aperture 47 , 'M ' is the magnification factor, which is the ratio of the object height to the image height. This diffraction-limited image diameter is relevant to particles at a small diameter. On the other hand, in experiments with large particles, the geometric diameter of the particle is more dominant. Thus the following formula is a good estimate of the diameter of the particle 3 :

d τ = (M d p ) 2 + d 2 dif f (6.3) 
The use of PIV experiments for planar 2C-2D measurements has allowed studying complex flows due to its non-intrusive nature. However, having only two components of velocity in a plane seriously limits the number of spatial derivatives available from the experiments. To partially solve this problem, Stereoscopic PIV 7 is used.

In this method, instead of one camera placed orthogonal to the laser light sheet, two cameras are placed at a certain angle to the light sheet and these images from both the cameras are then processed using stereoscopic cross-correlation methods to obtain all three components of velocity in a plane.

A calibration procedure is performed by using a calibration plate with crosses at known distances and is placed at the same place as the light sheet would be placed.

The calibration plate is then translated in the plane perpendicular to the light sheet and the images are recorded by the cameras, to obtain the information in that direction. This process enables us to obtain the relation between physical distance in the object plane to distance in the image planes of the different cameras used in the experiment. The displacement of the particles between two successive time steps with the known time delay between the two images, and the information from the calibration helps to obtain the velocity vector field in a plane by using crosscorrelation methods [START_REF] Keane | Theory of cross-correlation analysis of piv images[END_REF] .

The spatial resolution of the vector field obtained from the cross-correlation method depends on the size of the interrogation window [START_REF] Keane | Super-resolution particle imaging velocimetry[END_REF] . Thus decreasing the interrogation window size is a common procedure to increase the spatial resolution. However, this results in a reduction of the number of particles available for cross-correlation, thereby leading to random correlation peaks [START_REF] Keane | Optimization of particle image velocimeters. i. double pulsed systems[END_REF][START_REF] Prasad | Effect of resolution on the speed and accuracy of particle image velocimetry interrogation[END_REF] , random sub-pixel interpolation errors. On the other end, a large interrogation window provides a very accurate sub-pixel displacement and is robust provided the velocity gradient is small. With a large interrogation window, cross-correlation results in a smooth vector field, which has the possibility that the length scales corresponding to velocity fluctuations.

There have been many suggestions to improve the spatial resolution reported in the literature, which are the hybrid methods that combine the advantages of crosscorrelation methods to obtain good pattern matching capabilities with very high particle yield. This is a common feature of PTV methods which involves tracking
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individual particles in the flow. Keane et al. [START_REF] Keane | Super-resolution particle imaging velocimetry[END_REF] proposed such a hybrid method with the name of super-resolution PIV, which has led to further development in this direction [START_REF] Cowen | A hybrid digital particle tracking velocimetry technique[END_REF][START_REF] Van Der Plas | Accuracy and resolution of a fast ptv-algorithm suitable for hires-pv[END_REF][START_REF] Ishikawa | A novel algorithm for particle tracking velocimetry using the velocity gradient tensor[END_REF][START_REF] Takehara | A kalman tracker for super-resolution piv[END_REF][START_REF] Wernet | New insights into particle image velocimetry data using fuzzy-logic-based correlation/particle tracking processing[END_REF] .

Scarano [START_REF] Scarano | Iterative image deformation methods in piv[END_REF] implemented WIDIM (WIndow Deformation Iterative Multigrid) image distortion interrogation algorithm, which is based on the PID methodology proposed by Huang et al. [START_REF] Huang | On errors of digital particle image velocimetry[END_REF] , which is performed with the progressive refinement of interrogation window size. At first, PIV images are processed with cross-correlation with a large interrogation window size, which is usually based on some basic interrogation criteria such as the one-quarter rule. The result of this step is used as predictor displacement of all images. Based on the predictor, the two pairs of images are deformed. Each image is deformed for half of the displacement and so it is secondorder accurate for the displacement in the intermediate position. Then based on the defined refinement step, the interrogation window size is reduced. The processing of the images then yields displacement with a fine spatial resolution, which allows obtaining the velocity vector field and this is then validated based on specified criteria. The resulting validated velocity vector field is either used as final output or as an iterative input to the previous steps where the interrogation process is repeated until the conditions for convergence are satisfied.

Tomographic Velocimetry measurement

In the preceding subsection, the progress of PIV experiments from Planar PIV which is a 2D-2C experiment to Stereoscopic PIV which returns a 2D-3C experiment is studied. Proceeding in this direction, the next step would be to have the information about the 3D flow field, which would enable to obtain all the possible derivatives of the velocity vector. This has been attempted in the past by Brücker [START_REF] Brücker | Digital-particle-image-velocimetry (dpiv) in a scanning light-sheet: 3d starting flow around a short cylinder[END_REF] who used scanning light-sheet to reconstruct the 3D field around a short cylinder, by Maas et al. [START_REF] Maas | Particle tracking velocimetry in three-dimensional flows[END_REF] who developed the digital 3D Particle Tracking Velocimetry (3D-PTV) method. This is followed by Tomographic PIV, introduced by Elsinga et al. However, some disadvantages in using Tomo-PIV in obtaining the velocity field. As discussed previously, to achieve good spatial resolution, high seeding concentration Chapter 6. PIV experiment is necessary. This is possible in Tomo-PIV experiments, but the high concentration also results in ghost particles [START_REF] Elsinga | Experimental assessment of tomographic-piv accuracy[END_REF] during the reconstruction process. Additionally in Tomo-PIV, like that of planar PIV, the resulting vector field is always averaged value over the interrogation window (interrogation volume for Tomo PIV), and so it needs a bit of adaptation to account for the large gradients present in some regions of the flow [START_REF] Novara | Adaptive interrogation for 3d-piv[END_REF] . The important and main drawback of Tomo-PIV is the high computation time and also the high volume of data stored during the acquisition.

These discussions point to the direction towards saving the position of the particles in time to obtain the velocity field directly without making any kind of spatial average. Thus it is the Lagrangian measurement, in which the computation time can be greatly reduced, which is the direct effect of the considerable reduction in the amount of data to be processed compared to the voxel space. This is the basis of the 3D Particle Tracking Velocimetry (3D PTV) [START_REF] Maas | Particle tracking velocimetry in three-dimensional flows[END_REF] , where particle positions are obtained by triangulation, and then to determine the matching particle in the next time-steps.

Schanz et al. [START_REF] Schanz | Shake the box: a highly efficient and accurate tomographic particle tracking velocimetry (tomo-ptv) method using prediction of particle positions[END_REF] introduced the 'Shake The Box' (STB) method, which couples the IPR method [START_REF] Wieneke | Iterative reconstruction of volumetric particle distribution[END_REF] and an efficient way of using temporal information in a time-resolved PIV measurement. Thus this method combines the advantage of the IPR method, which is to processing highly seeded data and at the same time, tracking a large majority of real particles, at particle image densities higher than 0.1 particle-per-pixel (ppp). Schröder et al. [START_REF] Schröder | Near-wall turbulence characterization using 4d-ptv "shake-the-box[END_REF] used the STB method to obtain all the components of Reynolds stress tensor close to the wall, and the instantaneous wall-shear stresses, which helps to prove the efficiency of this algorithm to capture the physics at regions with high velocity gradient. This method is extended in the direction of using multi-pulse measurements by Novara et al. [START_REF] Novara | Lagrangian 3d particle tracking for multi-pulse systems: performance assessment and application of shake-the-box[END_REF] , where it has been applied to the study of turbulent boundary layers [START_REF] Novara | Lagrangian 3d particle tracking in high-speed flows: Shake-the-box for multi-pulse systems[END_REF] , and has been used to study other flows such as flow over a laminar wing [START_REF] Geisler | Volumetric multi-pulse particle tracking measurement for separated laminar transitional flow investigations[END_REF] , subsonic jet at Mach number 0.84 80 .

Two system S-PIV experiment

The present study requires an experiment of 4D (3D+time) velocity field and the pressure field to compute all the terms of the KHMH equation, which points towards a PTV experiment that is processed using the STB algorithm. However, there are some disadvantages of using the STB method for the present study. From the results from DNS, it is clear that the present study requires the accurate measurement of instantaneous values of velocity, to obtain the generalised KHMH equation terms.

It is well known that noise appears in the PIV experiment data processing and it It is possible to develop the necessary tools, however, the particles of a diameter of 1µm are well adapted for tomo PIV or PTV measurement when the third dimension is considerably smaller than the other two dimensions. Thus even if there is a possibility to obtain the velocity vector field in 3D using those measurements, the third direction is severely limited in terms of accessible length scales.

It is possible to mitigate the above-mentioned problems by using a planar measurement such as stereoscopic PIV which can provide the 3D velocity field in a plane.

Thus as much as the above-mentioned problems of Lagrangian-to-Euler transformation is alleviated, a stereoscopic PIV measurement is still limited to measurements in a plane. In addition, the pressure term is not computed in the present experiment.

To decide between the different options for the plane of measurement in Stereoscopic PIV, the terms of KHMH equation are computed in DNS, by considering only the XY-plane ( ∂ ∂x 3 = 0), another computation by considering only the YZ-plane ( ∂ ∂x 1 = 0), and another computation by considering only the XZ-plane ( ∂ ∂x 2 = 0) . The Reynolds number (Re τ ) used in the experiments is 2270 and 3840, and so the computation is performed with DNS of TCF3000 because it is the DNS with closest Re τ . In addition, it is possible to get terms ∂u 1 ∂x 1 , ∂u 2 ∂x 2 , ∂u 3 ∂x 3 using continuity equation from other two terms since the measurement is planar. To understand the effect of planar measurement on the results, there are different results to compare starting with the Spatio-temporal average values of the KHMH equation, the standard deviation of different terms, the correlation coefficient between different KHMH equation terms. The most important results which are sensitive to the fluctuating part of the datasets corresponds to the correlation coefficient between different terms. Of which the correlation coefficient of the pressure term with all the terms is not useful since there is no pressure term measured or computed from the experimental data.

Hence the next result would be to plot the correlation coefficient of A t + A with planar measurement terms. And the same result is plotted by full DNS data which takes into account the velocities and their derivatives in all three directions. When XY-plane is used, the result is only plotted for r x direction, since there is no information about ∂ ∂x 3 . When
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the YZ-plane is used, the result is only plotted for r z direction, since there is no information about ∂ ∂x 1 . When XZ-plane is used, there is information about r x and r z direction since both ∂ ∂x 1 and ∂ ∂x 3 is available.

It is observed that when the full DNS dataset is used, the correlation coefficient between A t + A and the two energy transfer terms becomes slightly greater than 0.5 at all scales higher than the integral scale in this wall distance in both streamwise and spanwise direction. When the same computation is performed over data only from XY-plane, it is observed that the correlation coefficient between A t + A term and the two energy transfer terms is close to -0.3 at large scales. With the YZplane, the correlation coefficient between A t + A and the two energy transfer terms are also close to -0.3 at large scales. With the XZ-plane, the correlation coefficient between A t + A and the two energy transfer terms has a correlation coefficient close to 0.5 at large scales in both the r x and r z directions similar to the corresponding results from DNS.

There are some practical difficulties in making the Stereoscopic PIV in XZ-plane concerning the Laser light sheet in the measurement close to the wall and the measurement itself. For the present experiment, the frequency of the acquisition f s = 4.5kHz, the diameter of the particle is 1.8 pixels. The free-stream velocity used is 3 m/s. Thus the out-of-plane displacement is computed to be 45µm. The light sheet thickness is computed such that there is less than one-quarter out-of-plane displacement. And the light sheet thickness is chosen as 500 µm, which gives 250 µm for the beam-waist (w 0 ). The magnification factor, M = 0.26, The parameters for the high-speed laser used in the experiment are as follows:

M 2 = 20, λ = 532nm.
Hence the angle of divergence at the field-of-view (θ 1 ) is computed as :

θ 1 = λM 2 πw 0 = 13.5 × 10 -3 rad (6.4) 
To make the measurement parallel to the wall, the light sheet must come from the side of the wind tunnel, and since the wind tunnel is 2m wide, the field-of-view will be in the centre. Thus the light sheet has to travel at least 1 meter from the spherical lens with an angle of 13.54 ×10 -3 rad, which means that the spherical lens must be at least 27.8 mm in length. And the measurement is close to the wall means that approximately half of the light-sheet goes below the wall and can result in problems such as multiple reflections from the glass surface. A better way to reduce these problems is to put the optics (prism) inside the wind tunnel on the side or downstream of the flow. And since the prism will be closer than 1m from the Chapter 6. PIV experiment field of view which would mean that the experiment will no longer be non-intrusive.

Additionally, to study the variation with wall distance, it is necessary to repeat the experiments at different wall distances.

On the other hand, when an XY-plane or YZ-plane is studied, the light sheet is perpendicular to the wall, it can be implemented by bringing it from the bottom of the wind tunnel. This way, the beam-waist is at 1cm from the wall since the height of the FOV is approximately 2cm from the wall. Thus the light sheet travels approximately 5-10 cm from the spherical lens (which is placed just below the wind tunnel) before forming the beam waist. To obtain the behaviour of the terms at different wall distances, with XY-or YZ-plane, it will just be one experiment. The only disadvantage with XY-or YZ-plane is that it is possible to study either in the r x direction or the r z directions with either experiment. The XY-plane is chosen for the present Stereoscopic PIV experiment.

In the S-PIV measurements, there is the presence of noise and it does affect the statistics dependent on the fluctuations of velocity. In the present study, the correlation coefficient and the standard deviation of KHMH equation terms are dependent on the fluctuating part of the terms and hence will be greatly affected. To mitigate this problem, it was decided to use two independent Stereoscopic PIV systems which records the images at the same Field of View (FOV). This way, whenever there is a multiplication of terms, one part of the term could be used from the S-PIV system 1 and the other part of the term could be used from S-PIV system 2. This is illustrated below

u 2 = u 1 × u 2 = (u 1true + σ u 1 ) × (u 2true + σ u 2 ) = u 1true u 2true + : 0 u 2true σ u 1 + : 0 σ u 2 u 1true + : 0 σ u 2 σ u 1 = u 2 true (6.5)
where u true is the true velocity component and σ u is the noise associated with the velocity component. The first term on the right-hand side of Equation 6.5 is the true value of u 2 . Since the noise generated by both the systems are random, they don't correlate with the velocity fields of the second system, and so u 2true σ u1 and σ u2 u 1true are zero. Along with the same argument, the noise generated by both systems are random and hence doesn't result correlate with each other and so σ u1 σ u2 is equal to zero.

This way of removing the noise from the data works only when there is an average involved. However, it doesn't work for an instantaneous value of a variable. In the present study, the correlation coefficient values between different terms, and their
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standard deviation depends on the instantaneous values of the terms and are affected by the noise. However, both these parameters are averaged over different points and time steps in the flow-field at each wall distance, and so the way of removing the noise explained above can help to remove the noise in the results.

6.2 Details of the experiment 6.2.1 The LMFL wind tunnel facility The present PIV experiment is performed in the Laboratoire de Mécanique des Fluides de Lille (LMFL) boundary layer wind tunnel. Figure 6.3 shows the sketch of the top-view and the front-view of the wind tunnel respectively. The wind tunnel Chapter 6. PIV experiment is powered by a fan of a 37kW electric motor, with which it is possible to have a free-stream velocity from 3 m/s up to a maximum of 9.4 m/s measured at 100 mm downstream of the start of the test section, with a stability of less than 0.5%.

The turbulence level is less than 0.3% and the temperature is regulated at ±0.15 • C, which is made possible using a heat exchanger located at the plenum chamber. The test section is transparent with high quality 10 mm glass on all four sides along its entire length allowing for easy optical access to do PIV experiments. The test section is 20.6 m long in the streamwise direction (x-direction), with the crosssection of 2 × 1 m 2 along the spanwise (z-direction) and wall-normal direction 

Stereoscopic PIV setup

For the present experimental campaign, the wind tunnel was used in the closedcircuit configuration. The cameras and the Laser are synchronised by LaVision's High-Speed Controller, which is then used to acquire the images using Davis 8.4 software. For Re τ = 2220, the chip-size of the camera used were 1280×512 pixels which correspond to a Fieldof-View of 60.4 × 18.4 mm 2 , and in wall-units, this is 503 + × 153 + . The acquisition frequency used is 4.5 kHz corresponding to 10 pixels displacement and the lasers are triggered at the same time with 10 mJ/pulse. For Re τ = 3840, the chip-size of the camera used was 640×512 pixels, which corresponds to a Field-of-View is 29.6 × 18.4 mm 2 , and in wall-units, this is 493 + × 306 + . The acquisition frequency used is 7.5 kHz corresponding to 14 pixels displacement and the lasers are triggered at 10.7 mJ/pulse. For both the Reynolds numbers, the magnification factor is 0.26, Chapter 6. PIV experiment and f-number, f # of 8.

Method of data acquisition

The calculation of parameters of the S-PIV experiment is explained in this section.

At first, it is important to choose the type of image acquisition for the PIV experiment. There are multiple possibilities concerning the frames and exposures in the PIV experiment, which are highly dependent on the needed results. For the present study, there are two ways of acquiring the data as shown in Figure 6. In a High-speed PIV experiment, the camera records two images with a given time delay. This time delay is only limited by the camera, and now there are cameras where it can be of the order of µs. These two images are then processed using cross-correlation methods to obtain the vector field. When the time between the first two images is as low as possible, the next image can be only captured after a certain time delay, which is determined by the frequency of the acquisition of the camera. This time delay value can be of the order of kHz for the full sensor of the camera. This method of obtaining the velocity vector field has the advantage that it is possible to converge the statistics with less amount of data since the datasets tend to be decorrelated if the time between the second frame of the first set of images and the first frame of the next two images is of the order of 2-3 integral time scales.

This time between the second image of the first double-frame and the first image of the second double-frame is directly dependent on the size of the camera sensor, and so if this parameter is reduced, it is possible to reduce the time between the second
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image of the first double-frame and the first image of the second double-frame. If the sensor size of the camera is so reduced that the time delay between the first two images are the same as the time delay between the second image of the first double-frame and the first image of the second double-frame, and this time delay is at least half the value of the characteristic time scale (Nyquist sampling theorem) to well-resolve the flow temporally, then it is called time-resolved PIV measurement.

Estimation of dt

To choose between the High-speed and Time-resolved PIV experiments, it is important to compute the characteristic time scales or the frequency associated with the flow. For the present experiment, characteristic frequency is:

u η = u ν 3 1 4 (6.6)
where η is the Kolmogorov length scale, u is the mean-velocity, is the dissipation, ν is the kinematic viscosity.

For the PIV experiments, the maximum value of u/η near the buffer layer is of the order of 4.5 kHz, which is chosen as the sampling frequency for PIV at Re τ = 2220.

This value of sampling frequency is higher than the frequency of the Miro camera used in the experiment, and this rules out the possibility of using High-speed PIV, in favour of Time-resolved PIV. This high frequency in time-resolved PIV is achieved by cropping the camera sensor.

Estimation of displacement between two frames

In PIV measurement, it is advisable to have 10 -20 pixels displacement between two images of the experiment. For the present experiment, 10 pixels displacement is chosen for Re τ = 2220 and a 14 pixels displacement is chosen for Re τ = 3840.

For a 10 pixels mean displacement, the measurement uncertainty is σ = 0.1 pixels; assuming a standard deviation of 10% of mean velocity so u RM S = 1 pixel, the error in the measurement of displacement is computed by

σ 2 u 2 RM S = 0.1 2 1 2 = 1% (6.7)
For a 14 pixels mean displacement, the measurement uncertainty is σ = 0.1 pixels; assuming a standard deviation of 10% of mean velocity so u RM S = 1.4 pixels, the Chapter 6. PIV experiment error in the measurement of displacement is computed by

σ 2 u 2 RM S = 0.1 2 1.4 2 = 0.5% (6.8)

Estimation of the number of uncorrelated samples

To compute the terms of the KHMH equation, it is necessary to have the spatial and temporal derivatives of velocity. Hence a time-resolved stereoscopic PIV is employed here which is capable of producing a 2D-3C velocity field in an XY-plane, which provides all the derivatives in x-and y-directions and the time-derivatives of all three velocity components. With the help of the continuity equation, it is possible to obtain the ∂w ∂z term. If the entire experiment is performed in a timeresolved way, the resulting datasets will be correlated until the integral time scale, and therefore it requires a lot of data to converge the statistics. To tackle the limitation, it was decided to perform the time-resolved stereoscopic PIV for some time-steps and this is followed by approximately two integral time scales of no recording and then is followed the time-resolved stereoscopic PIV and so on, as shown in Figure 6.6. This way, it is possible to obtain the time-derivatives and is also possible to have converged statistics with less amount of data compared to full time-resolved experiments.

The number of uncorrelated samples is estimated from the corresponding value from the DNS of TCF3000. For this study, the integral scale value at the centre-line of the channel flow is used. From section 4.1.3 it is known that it gets difficult to converge quantities as the analysis moves closer to the centre-line of the channel flow. The integral scales of TCF3000 at x-and z-directions are given by L 11 = 0.27δ and L 13 = 0.09δ respectively. The computation domain in x-and z-directions are 6πδ and 1.5πδ respectively. This results in approximately 69 

Processing of PIV datasets

The acquired data are then processed using a modified version of the MatPIV toolbox at LMFL. The experiment is calibrated by using a calibration plate that has crosses at known places and they are spaced equally between the known distance and this is captured by the cameras. Since it is a stereoscopic PIV experiment, which has the 3 velocity components, it is necessary to translate the calibration plate in the spanwise direction to a certain distance that is greater than the light sheet thickness. The images acquired by translation are fitted with a polynomial to estimate the mapping function. The order of the mapping function depends on the number of images obtained from translation. In the present experiment, the calibration plate is recorded in 11 spanwise positions. The mapping function for each camera enables us to obtain the 3C velocity field by reconstructing the images from the two cameras [START_REF] Soloff | Distortion compensation for generalized stereoscopic particle image velocimetry[END_REF] . This calibration procedure is followed by self-calibration [START_REF] Wieneke | Stereo-PIV using self-calibration on particle images[END_REF] , where a disparity map is constructed from the cross-correlation of images from both cameras, which in-turn helps to verify if the laser light-sheet coincides with that of the calibration plate.

Thus the disparity map allows to fit the true position of the light sheet in space and then the mapping functions are corrected accordingly. With this self-calibration procedure, it is possible to obtain the accurate mapping function even if the light-sheet and calibration plate don't coincide. This correlation maps also allows determining the different parameters of the light sheet such as their thickness, amount of overlap etc.

At first, the reflection of the wall from each camera is identified and is fitted with Chapter 6. PIV experiment a line. This is the reference of the first position for the wall-normal axis. And the mean background images were mapped using Soloff transformation. This enables us to build the mesh above the line (which is identified as the wall) with the mapped images and is then projected on each camera with the mapping function obtained by calibration.

The analysis is then performed with the projected grids. The images obtained were processed with cross-correlation PIV analysis [START_REF] Willert | Digital particle image velocimetry[END_REF][START_REF] Soria | An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[END_REF] in 3 passes with interrogation window sizes from [(96×32), (32×32), (24×24)]. This is followed by image deformation [START_REF] Scarano | Iterative image deformation methods in piv[END_REF][START_REF] Lecordier | Advanced piv algorithms with image distortion validation and comparison using synthetic images of turbulent flow[END_REF] , where bilinear interpolation is used for the displacement and b-spline cubic interpolation is used for the grey level, to improve the quality of the results. This is followed by the final pass cross-correlation PIV analysis with interrogation window size of (18×24), which corresponds to 0.97 × 0.97 mm 2 , which is equivalent to 8 + × 8 + for Re τ = 2220, and 16 + × 16 + for Re τ = 3840. The effect of laser reflection and the camera noise is limited by the use of background division [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF] .

With an overlap of approximately 60%, the final field of XY-plane has 152 × 45 vectors with a spatial resolution of 3. 

S-PIV measurement uncertainty

In addition to the validation of the results of PIV with that of DNS, it is important to compute the measurement uncertainty, to better assess the PIV experiment. In the past Kostas et al. [START_REF] Kostas | Application of double spiv on the near wall turbulence structure of an adverse pressure gradient turbulent boundary layer[END_REF] In the present experiment, however, the PIV uncertainty is quantified using the two PIV fields to obtain the denoised field and then to compute the uncertainty as 

Determination of noise in the PIV dataset

The main objective behind using two S-PIV systems with the same field of view in this present experimental campaign is to compute the terms of the KHMH equation without the influence of noise present in the measurement of each variable in the PIV experiment on average. Thus any average over multiplication involving the same variable will result in multiplication of noise. This multiplication of noise is necessarily bad because, for the same variable, the noise is fully correlated. To get rid of this, it was decided that whenever there is a multiplication of the same variables, one instance of the variable is taken from S-PIV system 1 and the other instance is taken from the S-PIV system 2. This way the result will only involve the multiplication of variables with zero noise in the average given by Equation 7.1. The noise value associated with the individual PIV system in the measurement of the streamwise velocity is given in Figure 7.7 in pixels. For the lower Re τ datasets, the value of error in pixel stays well below 0.06 pixels for both the PIV systems, when y + > 20, which agrees well with the widely accepted error value of 0.1 pixels [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF] .

For the higher Re τ dataset, the error value for PIV system 1 stays under 0.08 pixels when y + > 40. For both the datasets, the noise value is higher than 0.1 pixels close to the wall and it decreases as the wall distance is increased consistent with the explanation in the last subsection.

Conclusion

This subsection can be concluded by the fact the variances and covariance of PIV datasets agree well with that of the comparable DNS datasets above the wall distance y + = 20 and y + = 40 for the PIV datasets with Re τ = 2220 and 3840 respectively.

The measurement uncertainty associated with the velocity vector of the PIV datasets at both the Re τ is less than 1% of the free-stream velocity for both the PIV datasets.

The noise value is of the order 0.03-0.06 pixels for the dataset with Re τ = 2220, and between 0.04 to 0.08 pixels for the dataset with Re τ = 3840. This is true only when the values close to the wall and those along the boundaries of both the sides of the Field of View along the streamwise direction are removed from the analysis.

Computation of dissipation

The dissipation computed is essentially the pseudo-dissipation ˜ [START_REF] Pope | Turbulent flows[END_REF] which is different from the true dissipation , and is given by ∂x i is at most a few percentages of , and therefore can be negligible in virtually all circumstances. And therefore in the present work, whenever dissipation is used, it is the pseudo dissipation. From the PIV experiment, it wasn't possible to obtain the two derivatives This value is given in Figure 7.8 by the PIV experiment denoised for both Re τ values, and this is then compared with the same value computed from DNS of ZPG-TBL at Re τ = 1989. In addition, the computation of dissipation with the assumption of local isotropy is plotted for both PIV datasets and is observed to be the least accurate. For the lower Re τ PIV datasets, above y + = 25 (marked by the vertical line), the dissipation values tend to follow that of the DNS. This is by the results in the previous subsection, from this dataset.

˜ = ν ∂u i ∂x j ∂u j ∂x i = -ν ∂u i ∂x j ∂u j ∂x i (7.2)
The dissipation value computed from the PIV at Re τ = 3840 is not comparable to that of the DNS or the PIV at Re τ = 2220. There is a possible explanation for this behaviour. The interrogation window size used for the processing of the PIV dataset at Re τ = 3840 is close to 14 + ×14 + , and the Kolmogorov scale is of the order of 2.5 + -3 + . Thus the resolution is of the order of 4.6η -5.6η. On the other hand, the resolution of the PIV dataset at Re τ = 2220, is of the order of 7 + ×7 + , which corresponds to 2.3η -2.8η.

Figure 7.9 shows the value of each derivatives contributing to the value of dissipation from both PIV system '1', '2' and their corresponding denoised values. It is observed that the when y + < 25, the derivative values from the individual systems are much higher than the same that is denoised. All the terms except, The PIV experiment is performed on an XY-plane, and so the derivatives in the spanwise direction are not available. With continuity equation, it is possible to obtain the ∂u 3 ∂x 3 term. The PIV experiment doesn't have the pressure field and so the T p term is not computed. In addition, the second-order derivatives such as the diffusion terms are also not computed. Thus the terms A t , A, Π, T u , P r , * and * of Equation 3.11 are only computed with the PIV datasets.

Effect of denoising the KHMH equation terms

The first step in this analysis is to observe the effect of denoising the velocity signals in the averaged values of the KHMH equation. The following are how the denoising is implemented in the terms of KHMH equation.

A t = ∂ ∂t (δu i ) 2 = 2δu i ∂ ∂t (δu i ) = 2 δu i systema ∂ ∂t (δu i ) system b (7.6) Π = δu j ∂ ∂r j (δu i ) 2 = 2δu i δu j 1 2 
∂u i ∂x j 2 + ∂u i ∂x j 1 = δu i systema δu j system b ∂u i ∂x j 2 + ∂u i ∂x j 1 systema (7.7) P r = 2δu i δu j ∂ ∂r j (δu i ) = 2δu i δu j 1 2 
∂u i ∂x j 2 + ∂u i ∂x j 1 = δu i systema δu j system b ∂u i ∂x j 2 + ∂u i ∂x j 1 systema (7.8) A = u * j ∂ ∂x j (δu i ) 2 = 2δu i u * j ∂u i ∂x j 2 - ∂u i ∂x j 1 = 2 δu i systema u * j system b ∂u i ∂x j 2 - ∂u i ∂x j 1 systema (7.9)
Chapter 7. Results: PIV experiment at all scales when computed using the same system. However, when different systems are used, their averages are of the order of * at small and medium scales and approach zero approximately at r + x = 500. This is investigated in detail and was found to have a bias error with the PIV measurement. More detail of this investigation is given in Appendix C.2. it can be inferred that the bias error which was observed with -A t and -A when they are computed from two different S-PIV systems is approximately equal and opposite and so they tend to nullify each other on -A t + A .

T u = u * j ∂ ∂x j (δu i ) 2 = 2δu i u * j ∂u i ∂x j 2 - ∂u i ∂x j 1 = 2 δu i systema u * j system b ∂u i ∂x j 2 - ∂u i ∂x j 1

Comparison of averaged KHMH equation terms between PIV and DNS datasets

This subsection focuses on the Spatio-temporal average value of the KHMH equation terms at different wall distances in the PIV experiment of ZPG-TBL flow at Re τ = 2220 and Re τ = 3840. This is then compared with the results of DNS of TCF3000 computed without the ∂u 1 ∂x 3 and ∂u 2 ∂x 3 terms, to be compatible with that of PIV experiment. This is valid to all the terms except for the computation of the dissipation term, where the two missing spanwise direction derivatives are computed with the local axisymmetry assumption of George and Hussein 43 . From the previous subsection, it is known that -A t and -A are not converged enough when two S-PIV systems were used. However -A t + A ) is converged better than the individual terms. And also for the KHMH equation analysis in DNS datasets involved the A t + A term to avoid the correlations due to the Taylor hypothesis.

On comparison of the results between the two PIV and two DNS datasets, it is observed that -Π is qualitatively the same between all the datasets. And between the two PIV datasets and TCF3000, -Π are similar quantitatively, and the peak value of this term is larger in PIV datasets than in the DNS datasets. The energy transfer in physical space is negligible at the wall distances studied in the present analysis. The difference between * and * is approximately the same between the two DNS datasets and the PIV dataset at Re τ = 2220 at all the wall distances. -P r surpasses * in the PIV datasets and the scale at which it surpasses increases with wall distance. This is not observed in the DNS datasets at the wall distances considered in the analysis. The -A t + A term converges to a non-zero value at all scales in both PIV datasets, and the converged value is higher at Re τ = 3840 than at Re τ = 2220.

Conclusion

The -Π appears to be similar between all the datasets used in the analysis, however the peak of this term is overpredicted in the PIV datasets when compared to the same in DNS datasets. The -P r surpasses * at around the same scale in both the PIV datasets and this is not observed at any of the DNS datasets at this wall distance. From the previous subsection, it is known that * approximately resembles that of DNS and this could be attributed to the reduced difference between the normalised dissipation D + between the PIV and DNS datasets at those wall distances. The A t + A converges to a non-zero value in both the PIV datasets and the value is higher at Re τ = 3840, which could be attributed to the bias error in the measurement.

Instantaneous KHMH equation terms

After observing the Spatio-temporal average of the KHMH equation terms, the next step would be to quantify the instantaneous part of the same terms of the equation.

One way to proceed in this direction is to observe the standard deviation of different terms normalised by the standard deviation of the dissipation term. This way it is possible to compare different datasets. high anti-correlation between the A t and A terms are observed in both the datasets and it is known that this is due to the Taylor hypothesis. These two quantities are added together to obtain A t + A, and this is then plotted with other instantaneous KHMH equation is shown in Figure 7.16 at y + = 100. It is observed that with PIV, the A t + A term fluctuates much higher than the energy transfer terms. On the other hand, A t + A fluctuates approximately of the same order as Π in the DNS datasets.

Chapter 7. Results: PIV experiment

Effect of denoising the KHMH equation terms

Similar to the previous subsection, the denoising of the variables were performed in the computation of the standard deviation of the terms. There are two steps in performing this process. The first step is to denoise the computation of the KHMH terms using Equations 7.6, 7.7, 7.8, 7.9, 7.10. The second step is to compute the same terms by replacing system 1 for system a and system 2 for system b giving terms in 'system a|b '. The two systems are then swapped to giving the term with 'system b|a '. This results in two sets of terms which can be used with the following formula to obtain the denoised standard deviation for the term 'a' is computed by : for the standard deviation. And it is observed that only the standard deviation of A t + A has an appreciable difference when comparing the value using one S-PIV system and two S-PIV.

σ a = ( a system a|b - a system a|a )( a system b|a - a system b|b ) ( 7 
It is known that the multiplication of velocities at the same point in the velocity field results in the multiplication of noise. And so the use of two different systems provides a way to avoid this problem to some extent by using the velocity value from two different systems which have uncorrelated noise. From the results of the instantaneous values of KHMH equation terms, it is known that the highly fluctuating terms are A t and A. After adding the two terms to get past the Taylor hypothesis, it was observed that A t + A is highly fluctuating compared to the other KHMH equation. And it was observed that the average values of Π, P r and T u are approximately the same irrespective of which combination of the two S-PIV systems are used. So this could explain that the effect of denoising strongly influences the results of the standard deviation of A t + A term.

Comparison of the averaged KHMH equation terms between PIV and DNS datasets

After observing the instantaneous KHMH equation terms behaviour with PIV datasets, followed by observing the effect of denoising in the standard deviation of the KHMH equation terms, the next step is to compare the denoised standard deviation from the two PIV datasets with that of DNS of TCF3000. The standard deviation of the KHMH equation terms are normalised by the standard deviation of Π. is not comparable between the two PIV datasets. A t + A is the most affected term in terms of noise and the process of using two systems to denoise. This is also true with the average value of this term, on the other hand, it was observed that their average value resembled that of DNS when it was computed with only one system.

Observation

The standard deviation did reduce its value with two systems when compared to the same value computed with one system alone. However, it is still not comparable to the DNS datasets, where A t + A is approximate of the order of standard deviation of Π at all wall distances.

Correlation coefficient of KHMH equation terms

The KMHH equation analysis of DNS datasets in the previous chapter started with the averaged values of KHMH equation terms, followed by the instantaneous behaviour of KHMH equation with the standard deviation of each term and is then followed by the correlation coefficient between A t +A and other terms of the KHMH equation, and then between T p and other terms of the KHMH equation. In the present KHMH equation analysis with PIV datasets, the pressure field is not available, and so the correlation coefficient between A t +A and other terms of the KHMH equation is focussed in this section.

Effect of denoising the KHMH equation terms

Before comparing the results between PIV and DNS datasets, it is important to observe the effect of denoise in the computation of the correlation coefficient with two S-PIV systems. Similar to previous sections, the effect of denoising is performed for the computation of correlation coefficients of KHMH equation terms. The individual terms are computed using Equations 7.6, 7.7, 7.8, 7.9, 7.10, and the standard deviation is computed using Equation 7.11. The correlation coefficient between term 'Q 1 ' and 'Q 2 ' is computed by : To mitigate the problem of noise in PIV experiment, the two S-PIV system idea is used. Although the average values of the KHMH equation didn't have much influence on noise, the results were different for the standard deviation of the KHMH equation. In addition, the numerical scheme used for the computation of derivatives were optimised to have the least amount of noise. And the use of two S-PIV systems did indeed increase the correlation coefficient between the A t + A and the two energy transfer terms. However, all these methods of reduction of noise do reduce the noise when there is average involved. The noise in the instantaneous velocity signal is still present and this could be the reason for not having the same values of the correlation coefficient between the DNS and PIV experiments.

corr(Q 1 , Q 2 ) = ( Q 1 system a|b -Q 1 system a|a )( Q 2 system b|a -Q 2 system b|b ) ( Q 1 system a|b -Q 1 system a|a )( Q 1 system b|a -Q 1 system b|b ) ( Q 2 system a|b -Q 2 system a|a )( Q 2 system b|a -Q 2 system b|b ) ( 7 
The correlation coefficient between A t + A and other KHMH equation terms is not the only result that could be obtained from experiments. There is a strong anticorrelation between A t and A and this is observed in the instantaneous values of A t It is known that the A t and A have the highest fluctuation of all the KHMH equation terms, and so even with the presence of noise, the correlation coefficient is comparable between DNS and PIV datasets. On the other hand, with the term A t + A it becomes too difficult to find the correlation coefficient with other terms.

Addition of noise to the DNS datasets

In the previous section, the correlation coefficients of A t +A with other KHMH equation terms are studied. It is observed that the correlation coefficients computed by the PIV datasets are lower than those computed with the equivalent DNS datasets.

To investigate this part further, it is decided to add noise to the TCF3000 dataset and compute the correlation coefficient of A t + A and the other terms of the KHMH equation.

To simulate the effect of noise, Additive Gaussian White Noise (AGWN) is added to the velocity field of TCF3000 and every KHMH equation term is computed.

It is known that ∂u ∂t is computed by decomposing Navier-Stokes' equation in this dataset. And so computing ∂u ∂t after the noise is added to the velocity field results in a correlated noise between the time derivative and other terms. To avoid this The KHMH equation terms are a function of three scale-space variables and the wall-normal direction in the physical space. In the present study, when the behaviour in a particular scale direction is studied such as in r x direction, r z = 0 and vice-versa. Some results such as the one in Section 5.4 involved studying physics in the r x -r z plane. When the equation is studied with r y = 0, it allows performing the analysis in different combinations of available planes to give a better understanding of the flow [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF][START_REF] Mollicone | Turbulence dynamics in separated flows: the generalised kolmogorov equation for inhomogeneous anisotropic conditions[END_REF] .

Correlation coefficient between terms at different physical position

It was observed in both averaged and instantaneous KHMH equation terms that some physical processes exist at length scales much larger than the characteristic length scale of the flow, such as the channel half-width or the boundary layer thick-

Perspectives

ness. In the present study, when the correlation coefficient is obtained for two terms, they always belong to the same physical position. The same analysis can be performed, when the two terms are at different physical positions.

To start with, the first position can be static and be placed near the wall and the second physical position can be moved and the correlation coefficient so computed, will enable to connect with the results of wall-attached eddies. This can be slowly improved upon until the correlation coefficient between any two physical positions in the flow can be computed.

Other forms of interscale energy transfers

In the present study, the interscale energy transfer Π and the scale energy flux δu k δu 2 i is compared to conclude it is a direct cascade when both terms are negative and inverse cascade when both the terms are positive. So the direct cascade will result in a reduction of size in scales, followed by the reduction of energy and viceversa for the inverse cascade. However, there are physical positions where both terms have opposite signs, which would mean that there could be an increase of energy even when the scales are reducing and vice versa. The present analysis did show a significant presence of the other forms of energy cascade away from the wall. This will require a more detailed analysis to have a proper understanding of the phenomenon.

PIV/PTV experiments

It was noticed in the PIV experiment chapter that the XZ-plane gave a better result in terms of the correlation coefficient between A t + A and the two energy transfer terms. If the practical difficulty of implementation is solved, e.g., by using a different laser with a lower M 2 value, which will enable to perform the same experiment with XZ-plane at multiple wall distances. In addition, it is always possible to do an L-shaped SPIV experiment with one XY-plane and one YZ-plane, which helps to obtain the derivatives of velocity in all three directions [START_REF] Foucaut | Quantification of the full dissipation tensor from an l-shaped spiv experiment in the near wall region[END_REF] . This helps to compute the KHMH terms and dissipation accurately. where ν is the kinematic viscosity, ρ is the fluid density.

A.2 Computation of KHMH equation based on full velocity

In this section, the transformation of KHMH equation terms obtained without velocity decomposition, from (X j , r j ) co-ordinates to (x j 1 , x j 2 ). This is achieved by Dissipation term is the same in both the equations.

A.3 Computation of KHMH equation based on decomposed velocity

In this section, the terms of the KHMH equation which is obtained by decomposition of velocity into mean and fluctuations are transformed from their (X j , r j ) co-ordinates to (x j 1 , x j 2 ) co-ordinates.

KHMH equation before velocity decomposition is given by: This is represented as

∂
T x = T x1 + A + T x3 + T x4 + T x5 + T u + T x7 + T x8
The transformation to original co-ordinates is given by The terms of the KHMH equation contains both the velocity vectors and their derivatives. And so it is important to understand the effect of the noise, so as to find a way to reduce it without losing the physics of the flow. The terms considered here has both time and space derivative. It is true that the velocity vector in the PIV experiment is filtered in space due to the averaging of the velocity vector in the interrogation window. However the time derivative has no such filter and so it is important to address the noise in the time-derivative term.

T x1 = u j * ∂ ∂X j (δu i ) 2 =
The time-derivative in the present experiment is obtained by second-order central

Analyse de la cascade d'énergie dans une couche limite turbulente

Ce travail consiste à étudier la cascade d'énergie échelle par échelle dans les écoulements turbulents limités par des parois. L'équation de Karman-Howarth-Monin-Hill (KHMH) est une équation d'évolution de δu 2 , qui est directement liée au contenu énergétique dans l'espace des échelles et intégre différents processus associés aux transferts d'énergie dans l'espace physique et l'espace d'échelle (cascade). Le pic de la moyenne spatio-temporelle du terme cascade se met à l'échelle avec la micro-échelle de Taylor modifiée dans une région éloignée de la paroi. Le terme de dérivée temporelle modifiée instantanée et le terme de pression sont fortement corrélés avec les deux termes de transfert d'énergie. Une valeur positive de la moyenne spatio-temporelle du terme de cascade observée au niveau de la zone tampon se déplace vers des échelles plus élevées dans le sens de l'envergure à mesure que la distance à la paroi augmente, ce qui suggère une combinaison de cascade inverse et de tourbillon attaché à la paroi dans la physique de l'écoulement. L'utilisation d'une expérience de double PIV stéréoscopiques indépendantes a permis de débruiter les statistiques, ce qui a aidé à calculer certaines parties des termes de l'équation KHMH dans l'expérience des flux ZPG-TBL, permettant ainsi des mesures près de la paroi à des nombres de Reynolds plus élevés.

Mots clés: Turbulence, écoulement en canal, écoulement en couche limite, transfert d'énergie échelle par échelle, vélocimétrie par image de particules (PIV), nombre de Reynolds.

Analysis of energy cascade in wall-bounded turbulent flows

This work aims to investigate the scale-by-scale energy cascade in wall-bounded turbulent flows. Karman-Howarth-Monin-Hill (KHMH) equation is an evolution equation of δu 2 , which is directly linked to energy content in the scale space and incorporates different processes associated with energy transfers in both physical and scale-space (cascade). The peak of the Spatio-temporal average of cascade term scales with the modified Taylor microscale in the region away from the wall. The instantaneous modified time derivative term and pressure term correlates strongly with the two energy transfer terms. A positive value of the Spatio-temporal average of cascade term observed at the buffer layer moves to higher spanwise scales as the wall distance increases, suggesting a combination of inverse cascade and wall-attached eddy in the physics of the flow. The use of two independent Stereoscopic PIV experiments allowed to denoise the statistics, which helped to compute some parts of KHMH equation terms in the ZPG-TBL flows experiment, thereby enabling measurements close to the wall at higher Reynolds numbers.

Keywords : Turbulence, Channel Flow, Boundary Layer Flow, Scale-by-scale energy transfer, Particle Image Velocimetry (PIV), Reynolds number.
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  reiterated the hypotheses involved in the derivation of the equation and derived an exact equation that contained a new term reflecting the non-stationarity or a rather large scale non-homogeneity along the streamwise direction. This increased the applicability of the Kolmogorov equation but is limited to decaying turbulence only. Lindborg 75 arrived at generalising the Kolmogorov equation by adding the time derivative term and estimated the new term using k -model. Danaila et al. 28 derived the Kolmogorov equation for nearly homogeneous sheared turbulence by incorporating the shear effect in the outer region of the wall and also the non-homogeneity of large scales along the direction of the wall, which has good agreement with Hot-Wire Anemometry (HWA) data. Chapter 1. Introduction Hill 54 derived the exact equation for the scale-by-scale energy budget directly from Navier-Stokes' equation without any averages or assumptions about the isotropy/ homogeneity of the flow. This generalised Kolmogorov equation alternatively known as Kármán-Howarth-Monin-Hill (KHMH) equation, is an evolution equation for local and instantaneous Turbulent Kinetic Energy relating to a given separation vector (δu 2 ) which quantifies the different processes associated with the energy transfer in both physical space and the space of scales and is possible to apply to all numerical and experimental turbulent flows. This equation is derived in different forms such as second-order structure-function for total velocity 137 , velocity fluctuations 81, 30, 23 , velocity decomposed into mean and fluctuations 125, 4, 46 . Kármán-Howarth-Monin-Hill equation opened up the possibility to study the scaleby-scale energy budget in most complex turbulent flows. This has resulted in a multitude of research in different turbulent flows. The following are the different studies that resulted from the KHMH equation in numerical simulations including Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES). Marati et al. 81 studied the energy cascade and spatial flux in TCF and detailed the behaviour of the interscale transfer, production and dissipation in different regions in the wall-bounded turbulence. This way the dual nature of turbulent flows which

Chapter 1 .••

 1 Introduction are also the same between the two flows when normalised with the proper parameters? Does the instantaneous form of KHMH terms behave the same between the two flows? Considering that the results from instantaneous KHMH equation rely on accurate estimation of fluctuations of different terms, is it possible to realise the same results from DNS datasets with experiments (PIV) which allows obtaining results at a higher Reynolds number (Re τ ) than DNS? Yasuda and Vassilicos 137 proposed studying the KHMH equation in the instantaneous sense to obtain the scale-by-scale energy budget in isotropic turbulence. Does the same idea implemented in wall-bounded turbulent flows enables to uncover new pieces of information about the energy cascade physics? • Marati et al. 81 used the KHMH equation for the fluctuation of velocity to study the behaviour of different terms in average over a streamwise and spanwise plane. Despite being homogeneous directions, does studying the flow physics with streamwise and spanwise directions separately reveals more information?

  turbulent flows. Chapter 3 explains the different parts of the KHMH equation used in the present work. The three DNS datasets, which compares the effect of an increase of Reynolds number, and the differences between Turbulent Channel Flow and Turbulent Boundary Layer flow at the same Reynolds number is reported in Part II. Chapter 4 shows the parameters of the three DNS datasets used in the present work. Chapter 5 presents the results of the analysis of the KHMH equation with all three DNS datasets. The two system S-PIV experiment performed as a part of the present work is explained in detail in Part III. Chapter 6 shows the various computation of multiple parameters used to design the PIV experiments. Chapter 7 presents the results of KHMH equation analysis with PIV experiment datasets and are then compared with corresponding results of the DNS datasets. Part IV is the conclusion of the document. Chapter 8 presents the summaries of the conclusions of the results presented in the previous chapters. It also presents the possible perspectives for the KHMH equation analysis in general and to the DNS datasets and the PIV experiment datasets.
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 1 (2019). Energy budget in wall-bounded turbulent flows, Turin, Italy, September 2-6, 2019. The 17th European Turbulence Conference Chapter 2
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 21 Figure 2.1: (a) Smoke visualisation of the streamwise-wall-normal plane in a turbulent boundary layer (from Falco 37 ) (b) H 2 visualisation of low-speed streaks in the streamwise-spanwise plane (from Kline et al. 66 ).Figure and captions reproduced from Adrian 1 .

  Figure 2.1: (a) Smoke visualisation of the streamwise-wall-normal plane in a turbulent boundary layer (from Falco 37 ) (b) H 2 visualisation of low-speed streaks in the streamwise-spanwise plane (from Kline et al. 66 ).Figure and captions reproduced from Adrian 1 .

  scaled in nature. The need for a better understanding of the flow, such as finding order in the random flow, explaining the different mechanisms in the flow etc, motivates the study of so-called eddies 123 or coherent structures 17 . These structures are entities in the fluid flow that tends to possess temporal coherence, in addition to the spatial coherence which is an inherent part of fluid continuity. Thus the coherent structures tend to have time scales that are much larger than the smallest scales of turbulent flow and/or contributes significantly to the averaged statistics of the flow 1 . A brief account of the coherent structures in the canonical wall-bounded turbulent flow which includes the steady, fully developed, smooth-walled channel and pipe flow and the zero pressure gradient turbulent boundary layer is presented in this literature review. Starting with the well-known smoke visualisation of a low Reynolds number turbulent boundary layer flow in Figure 2.1(a) shows the many different known types of coherent structures. Near the outer edge between the smoke-filled regions and clearChapter 2. Wall turbulence regions are large-scale motions (LSMs) or turbulent bulges which is of the order of 2-3δ. There is the presence of hairpin vortices above the LSMs, which are similar to the horseshoe vortex proposed by Theodorsen[START_REF] Theodorsen | The structure of turbulence[END_REF] . The horseshoe vortices are vortex elements that are oriented in the spanwise direction and are slightly perturbed above the wall. Later investigations have shown this structure to be a hairpin with a pair of counter-rotating vortices oriented along the streamwise direction[START_REF] Robinson | Coherent motions in the turbulent boundary layer[END_REF] . In addition to the horseshoe vortex structures, other types of vortical structures that appeared in the literature such as hairpin vortices[START_REF] Head | New aspects of turbulent boundarylayer structure[END_REF] , counter-rotating eddy pair of elongated streamwise extent 9 , canes[START_REF] Guezennec | Stochastic estimation of coherent structures in turbulent boundary layers[END_REF] .The characteristics of the vortex structure such as the shape and size are dependent on the Reynolds number 50 , and studies have shown that they are inclined downstream at about 42 o -46 o , which indicates that on average it is about 45 o with the wall.

  Figure 2.1(b) shows the long streamwise low-speed streaks of H 2 bubbles reported by Kline et al.[START_REF] Kline | The structure of turbulent boundary layers[END_REF] near the wall. The streaks are observed in the buffer layer and are observed to have a mean spanwise spacing of about 100 wall units, which is widely accepted in studies of wall-bounded turbulence 1 . Robinson[START_REF] Robinson | Coherent motions in the turbulent boundary layer[END_REF] reports that these low-speed streaks associates with the quasi-streamwise vortices and are responsible for the lift-up of the viscously retarded fluid from regions near the wall. Studies have also shown that in which the streaks wavered vertically with high amplitudes and eventually becomes detached from the wall in a chaotic motion sequence of events which is termed as bursting.

Figure 2 . 2 :

 22 Figure 2.2: (a) PDFs of scales that have Q2 (green), Q4 (blue) and vortex clusters (grey). Instantaneous snapshot of the distribution of Q2, Q4 and vortex clusters with the same colour code as of (a). The results are of Lozano-Durán et al. 76 and are adapted and reproduced from Wallace129.

  extended the quadrant analysis by considering three-dimensional connected structures in the logarithmic and outer layers in DNS of turbulent channel flow. They obtained two types of structures namely, wall-attached and wall-detached structures based on the definition of hole Reynolds-stress u v magnitude filtering by Willmarth and Lu 136 . The properties of the wall-detached structures include small, isotropically oriented and are revealed not to have any contribution towards the mean shear stress. Thus all the contributions to mean Reynolds stress is mainly from the wall-attached structures which are larger than the wall-detached structures. The author also shows that despite the complex instantaneous structures dis-Chapter 2. Wall turbulence tribution (Figure 2.2(b)) in the logarithmic layer, the dominant ensemble-averagedstructure is a quasi-streamwise vortex separating the Q2 and Q4 events on the side given by Figure2.2(a). Lozano-Durán and Jiménez 77 extended this analysis at a higher Reynolds number to conclude that the large attached structures which are found to extend from the wall to the logarithmic layer tend to contribute most to the vertical momentum flux and also has long lifespans.

1

 1 Assessment of DNS datasets This chapter focuses on providing the details of the three DNS datasets used in the present work, which is the Turbulent Channel flow at Re τ = 550, 3000 and Zero-Pressure-Gradient Turbulent Boundary Layer at Re τ = 550. The parameters of the channel flow DNS datasets are given in

Figure 4 . 1 :

 41 Figure 4.1: Spatial resolution of DNS of TCF in streamwise and spanwise directions at Re τ = 550 (left) and Re τ = 3000 (right)

2 :

 2 Parameters of TBL DNS datasets at Re θ = 2068, where the boundary layer thickness δ = 8.46δ o , δ o being the laminar boundary layer thickness at the inlet. For the definition of Reynolds number and grid resolution in wall-unit, the value of friction velocity u τ and momentum thickness θ are used at this streamwise position. L x , L y , L z are the sizes of the domain and N x , N y , N z are the corresponding resolution in all three directions respectively The DNS of TBL is performed with the code of Incompact3d 71 , which is a massively parallelised code written in FORTRAN solving the incompressible Navier-Stokes' equation. Sixth order compact finite difference schemes are used for spatial discretization. The tripping mechanism uses the wall-normal momentum equation with a source term in a constrained volume near the lower wall as proposed by Schlatter and Örlü 104 . The DNS is performed with a domain size L x = 600δ o , L y = 40δ o , L z = 20δ o , where δ o is the laminar boundary layer thickness at the inlet. The grid is only stretched in the wall-normal direction such that the first grid point is at y + = 1 at the streamwise position for which the Re θ = 2068. The DNS of the turbulent boundary layer is integrated for more than 15 characteristic times, τ = T uτ δ , based on the boundary layer parameters at 75% of the domain length. Interested readers could refer to Solak 113 , for more details about the simulation.
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 142 Figure 4.2: Computation of Spatio-temporal average of normalised time derivative term ( A t / * ) in the streamwise direction separation for the three DNS datasets at various wall distances. The x-axis and the wall distances are normalised by wall units from (a) to (d), and by channel halfwidth or boundary layer thickness (δ) from (e) to (f )

Figure 4 .

 4 Figure 4.2 shows the convergence value of the computation of A t term with all three DNS datasets at different wall distances. It is observed that near the wall, the error stays well below 0.1 * , and this value grows as the wall distance is increased. This is due to the presence of a large scale correlation of velocity fluctuations, which results in less number of uncorrelated samples compared to the near-wall region or the log layer. At δ, each dataset has the highest value of error due to convergence, and this value is of the order of 0.1 * for TCF550 and TBL550, and of the order of 0.3 * for TCF3000.
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 51 Figure 5.1: Detailed balance of terms of KHMH equation 3.12 at y + = 80 in channel flow at Re τ = 180. (a) The behaviour of a group of terms in space of scales. The sum of all terms except diffusion and dissipation terms are given by filled circles, the sum of diffusion and dissipation terms are given by dashed lines. The dashed-dotted line corresponds to interscale energy transfer, the solid lines comprise of energy transfer in physical space, production, pressure terms. (b) Behaviour of individual terms in the space of scales. Here production (solid line), energy transfer in physical space (dashed line), pressure term (dashed-dotted line); the sign of each of these terms are changed. In the inset, dissipation (solid line), diffusion in scale space (dash-dotted line) and physical space (dashed line), respectively. Figure and caption reproduced from Marati et al.81

  Figure 5.1 (b)shows the behaviour of individual terms contributing to effective production, energy transfer in physical space, pressure, diffusion and dissipation of KHMH equation at y + = 80. It is observed that the energy transfer in physical space and pressure terms are negligible on average at all scales. The production term starts at zero at the small scales and increases with the scale and becomes approximately the value of dissipation at large scales. The diffusion in physical space is negligible on average at all scales. At r = 0, the diffusion in scale space is equal to dissipation and becomes negligible at large scales.

Figure 5 .

 5 Figure 5.1 (a) shows the behaviour of all these terms when they are combined under three groups : (i) interscale transfer, (ii) effective production terms, (iii) dissipation and diffusion terms. The behaviour of individual terms of the effective production, dissipation and diffusion terms are discussed previously. The interscale energy transfer starts at zero and increases with the scale to attain a peak and decreases thereafter as the scale increases. At this wall distance, Marati et al. 81 conclude that the scales at which production term dominates, is approximately equal to the dissipation and this is essentially the condition for the locally homogeneous shear. Below the production dominated regime, the interscale energy transfer dominates the dynamics of the flow in which the effect of shear and viscosity are negligible and it follows the result of the classical Richardson cascade ends at the local dissipative scale by diffusion. Continuing in this direction, this subsection focuses on the behaviour of the KHMH equation 3.11 terms in average at different wall distances from TCF550. Henceforth unless mentioned otherwise, the KHMH equation always refers to Equation 3.11. This is then compared with the results of the behaviour of the KHMH equation terms on average at different wall distances with Turbulent Channel Flow at Re τ = 3000 (TCF3000). This serves as a way to understand the effect of Reynolds number in the present analysis of KHMH equation terms in wall-bounded turbulent flows. Saikrishnan et al. 99 studied the effect of Reynolds number by analysing DNS of Turbulent Channel Flow at Re τ = 300, 590, 934 and compared it with the results of Marati et al. 81 who had the results of Turbulent Channel Flow at Re τ = 180. The main conclusion from their study includes that the results in the viscous sublayer and buffer regions were found to not influence the Reynolds number. The Reynolds

  KHMH terms in the figures are normalised by the absolute value of * . The vertical dash-dotted lines in each plot give the Kolmogorov micro-scale (coral), modified Taylor micro-scale (dim grey) and integral scale (crimson). The modified Taylor microscale is derived for the wall-bounded turbulent flow for both streamwise and spanwise directions separately. More detail about the modified Taylor microscale for each direction is explained later in this subsection. The integral scale plotted along the r x direction corresponds to u along the streamwise direction L 11 , and along the r z direction corresponds to u in the spanwise direction L 13 . More detail about the computation of integral scales is given in Appendix B.1.
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 25215354155 Figure 5.2: Spatio-temporal averaged values of all KHMH equation terms normalised by the absolute value of * in streamwise direction separation in TCF550 (left) and TCF3000 (right) at various wall distances. The wall distances and the x-axes are normalised by wall-units

  creases from 0.25 * at y/δ = 0.72 to approximately 0.5 * along the centre-line of the channel flow. The increase of T u approximately coincides with the reduction value of the production term at y/δ > 0.72. There is no influence of Reynolds number in the behaviour of this term. The diffusion in scale space due to velocity fluctuations D r2 is always equal to * when the two points of the structure-function coincide i.e., r = 0, in both r x and r z directions at all wall distances. Beyond r = 0, the influence of this term is shown to be negligible above the Taylor microscale in the context of grid generated turbulence by Valente and Vassilicos 125 . Although the present study uses a modified Taylor microscale, the result still holds good. The other diffusion terms D r1 , D r3 and 5.2. Scale-by-scale energy budget with DNS of Turbulent Channel Flows D x are negligible at all wall distances and scales.

  r2 which is valid from r + = 0 till the modified Taylor microscale. The next range of scales is characterised by the dominant -Π between Taylor microscale and the integral scales. -Π term tends to be positive in r x direction, suggesting the classical Richardson cascade. However, there is a range of r z values, for which the -Π is negative, which suggests a mix of both forward and inverse cascade in this direction. The forward and reverse cascade events are discussed for each flow in section 5.4. The third range of scales corresponds to where -P r tends to equal to * with the increase of scales, thereby reproducing the equilibrium assumption in this region.

Figures 5 .

 5 Figures 5.6 and 5.7 show -Π normalised by the absolute value of * along with the separation distance r x and r z normalised by Taylor micro-scale λ x and λ z respectively for DNS of TCF550 and TCF3000. The top two plots in each figure, show the full extent of -Π term normalised by the absolute value of * . The bottom two plots in each figure, show the plot near r = λ in the respective direction, which helps to visualise the peak of Π term at the modified Taylor microscale.
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 256 Figure 5.6: Spatio-temporal average of interscale energy transfer term normalised by the absolute value of * at different wall distances for TCF550 (a) in the streamwise direction, (b) in the spanwise direction. (c),(d) Same as (a),(b) but the x-axis zoomed in the region near r x = λ x and r z = λ z respectively
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 57 Figure 5.7: Same as Figure 5.6, but for TCF3000
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 5521256158 Figure 5.8: Spatio-temporal average value of -Π and its decomposed terms shown in Equation 5.4 normalised by the absolute value of * . This is presented along the streamwise separation direction (left) and spanwise separation direction (right), normalised by the channel half-width
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  Yasuda and Vassilicos 137 discovered that in DNS of periodic box simulations, the fluctuating part of KHMH equation terms presents a completely different picture than what was observed in their average. This is because there are terms with huge fluctuations, but with negligible or zero average. To expand that idea in wallbounded turbulence, this subsection focuses on the implementation of the analysis of instantaneous behaviour of KHMH equation terms.
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 5959 Figure 5.9: Instantaneous values of all KHMH equation terms, normalised by the absolute value of * . This is presented in (a) streamwise direction separation and (b) spanwise direction separation normalised by wall-units
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 510545 Figure 5.10: Instantaneous values of all KHMH equation terms excluding the A t and A terms and including A t + A term, normalised by the absolute value of * . This is presented in (a) streamwise direction separation and (b) spanwise direction separation normalised by wall-units
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 7215117211δ512 Figure 5.11: Standard deviation of all KHMH terms of TCF at Re τ = 550 (left) and TCF at Re τ = 3000 (right). This is presented in the streamwise direction separation, where the x-axis and the wall distances are normalised by the wall-units between (a) and (f ), and by the channel half-width between (g) and (j)

Chapter 5 .

 5 Results: DNS becomes negligible at the centre-line of the channel flow. The terms A t + A, Π, T u and T p are dominant at all wall distances from y + = 12 till the centre-line of the channel flow. The dominance of the A t + A, Π and T u are explained by the anti-alignment of local and convective accelerations in channel flow. The T p having a similar standard deviation as the acceleration terms may imply the involvement of pressure term in the energy transfer dynamics.
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 511δ5131δ514 Figure 5.13 and 5.14 shows the correlation coefficient of A t + A term with the other KHMH terms under consideration. The correlation coefficient of T p and A t + A is

Figures 5 .

 5 Figures 5.15 and 5.16 shows the correlation coefficient of T p with other terms of the KHMH equation. Similar to the previous analysis, the study is performed at y + = 12, 40, 100; y/δ = 0.72, 1, to understand the correlation coefficient between the terms from near the wall to the centre-line of the channel. The correlation coefficient between T p and A t + A observed here is the same as what was observed previously, about 0.1 correlation near the wall which becomes negligible after y + = 12. The correlation coefficient between P r and T p is approximately 0.35-0.37 at y + = 12, and it reduces to approximately 0.2 at y + = 100 and stays at the same value until y/δ = 0.72. This correlation coefficient becomes negligible at the centre-line of the channel.
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 11δ51572 Figure 5.15: Correlation coefficient of KHMH equation terms with T p in streamwise direction separation of TCF at Re τ = 550 (left) and TCF at Re τ = 3000 (right). This is presented at various wall distances, where the xaxis and wall distances are normalised by wall-units between (a) to (f ), and by channel half-width from (g) to (j)
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 1δ516517100 Figure 5.16: Correlation coefficient of KHMH equation terms with T p in spanwise direction separation of TCF at Re τ = 550 (left) and TCF at Re τ = 3000 (right). This is presented at various wall distances, where the x-axis and wall distances are normalised by wall-units between (a) to (f ), and by channel half-width from (g) to (j)

  shows the instantaneous value of A t + A and Π + T u to reinforce the point that these two terms arising from time derivative and the non-linear term of Navier-Stokes' equation approximately cancels each other. This results of the correlation coefficient between A t +A and the two energy transfer terms Π + T u obtained so far, are very different from what has been observed in the previous subsections, because the correlation coefficient between the terms remains the same from near the wall at y + = 12 till the centre-line of the channel flow at y/δ = 1. This is completely unusual because the dynamics in these regions close to the wall and away from the wall are different from each other. This difference is the reason behind dividing the wall-bounded turbulence into many different layers within the outer and inner layer classification.

11Figure 5 . 18 :

 518 Figure 5.18: Correlation coefficient of KHMH equation terms with (a) A t +A and (b) T p in TCF3000 at y + = 545 in the streamwise direction.

Figure 5 .

 5 Figure 5.18 shows the correlation coefficient of A t + A and T p respectively, at y + = 100 with other KHMH terms at scales till r = 9δ in the streamwise direction. As the observation is similar between the r x and r z directions at all wall distances, the result is only presented in r x direction for one wall distance. The main observation is that the correlation coefficient of Π and T u with A t + A stays approximately -0.65 to -0.7 respectively till r x = 9δ. The correlation coefficient of the same terms with T p is approximately constant and equal to 0.35 till r x = 9δ.
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 5195205 Figure 5.19: Spatio-temporal averaged values of all KHMH equation terms normalised by the absolute value of * in the streamwise direction in TBL550 (left) and TCF550 (right) at various wall distances. The wall distances and the x-axes are normalised by wall-units

Figure 5 . 21 :Figure 5 . 22 :

 521522 Figure 5.21: Spatio-temporal averaged values of all KHMH equation terms normalised by the absolute value of * in the spanwise direction separation in TBL550 (left) and TCF550 (right) at various wall distances. The wall distances and the x-axes are normalised by wall-units
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 523 Figure 5.23: Spatio-temporal average of interscale energy transfer term normalised by the absolute value of * at different wall distances for TBL550 (a) in the streamwise direction, (b) in the spanwise direction. (c),(d) Same as (a),(b) but x-axis zoomed in the region near r x = λ x and r z = λ z respectively

Figure 5 .

 5 Figure 5.23 shows the behaviour of -Π normalised by the absolute value of * , with the x-axis being the scale-space separation normalised by the modified Taylor microscale at each wall distance. The top plots show the full extent of the term in both r x and r z directions and the bottom plots are a zoom near the modified Taylor microscale in both directions. In the streamwise direction, the positive peak of -Π coincides with λ x in the range 42 < y + < 465, and in the spanwise direction, it is in the range 22 < y + < 465. This is approximately the same observation in the channel flows.
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 40524401005255 Figure 5.24: Standard deviation of all KHMH terms of TBL550 (left) and TCF550 (right). This is presented in the streamwise direction separation, where the x-axis and the wall distances are normalised by the wall-units
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 124010052612401005275 Figure 5.26: Correlation coefficient of the six KHMH terms with A t + A in the streamwise direction separation of TBL at Re τ = 550 (left) and TCF at Re τ = 550 (right). This is presented at various wall distances, where the x-axis and wall distances are normalised by wall-units

Figures 5 .

 5 Figures 5.28 and 5.29 shows the correlation coefficient of KHMH terms with T p between the two flows in the streamwise and spanwise directions respectively. T p has approximately 0.35-0.4 correlation with P r at y + = 12, and this correlation coefficient tends to reduce with the increase of wall distance to 0.2 until y + = 400. At y + = 550, the correlation coefficient between T p and P r reach about 0.4 at large scales. The correlation coefficient of T p with Π around 0.45-0.5 at r + = 0 and has a peak at small scales and reduces its value as the scale increases to reach a value of 0.35-0.4 at large scales. With the increase of wall distance, this large scale correlation coefficient value increases to 0.55-0.6 at y + = 550. The correlation coefficient of T p with T u starts around 0.3 at r + = 0 and tends to increase with scale and reaches 0.35-0.4 at large scales. With the increase of wall distance, the large scale correlation coefficient reaches 0.5 at y + = 550. The correlation coefficient of T p with the sum of two energy transfers Π + T u is approximately 0.55 at all scales above y + = 40 till y + = 550. All the observations are similar between the r x and r z directions.
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 312401005281240100529 Figure 5.28: Correlation coefficient of the six KHMH terms with T p in the streamwise direction separation of TBL at Re τ = 550 (left) and TCF at Re τ = 550 (right). This is presented at various wall distances, where the x-axis and wall distances are normalised by wall-units

Figure 5 .

 5 Figure 5.30, 5.31 shows the normalised conditional Spatio-temporal average of interscale energy cascade in radial direction Π / * for the three DNS datasets (TCF550,TCF3000 and TBL550) in r xr z plane for multiple wall distances from y + = 12 to y + = 300. Figure5.32 shows the same for the three DNS datasets, but at y/δ = 0.72 and y/δ = 1. The present result concerns the scales at which direct and inverse cascade occurs. Since each cascade occurs in certain scales and we are interested in finding the scales at which inverse cascade occurs to explain other results, the observation is made only for scales at which inverse cascade happens.
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 531 Figure 5.31: Direct and inverse cascade values in TCF550 (left), TCF3000 (middle) and TBL550 (right) in the streamwise-spanwise direction planes. The result is presented at different wall distances, where the x-axis and the wall distances are normalised by wall-units. ( Π ρ /abs( * )) > 0 : Inverse cascade. ( Π ρ /abs( * )) < 0 : Direct cascade.

Figure 5 . 32 :

 532 Figure 5.32: Direct and inverse cascade values in TCF550 (left), TCF3000 (middle) and TBL550 (right) in the streamwise-spanwise direction planes. The result is presented at different wall distances, where the x-axis and the wall distances are normalised by channel half-width or the boundary layer thickness. ( Π ρ /abs( * )) > 0 : Inverse cascade. ( Π ρ /abs( * )) < 0 : Direct cascade.
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 2533 Figure 5.33: Peak value of -Π (top) and -P r (bottom) in all three DNS datasets in the r z direction at different wall distances. The wall distance and the x-axes are normalised by δ of each flow

Figure 5 .

 5 Figure 5.33 shows the scale position of the negative peak of -Π and the positive peak of P r . There are two distinct ranges observed in the plot : (a) 0.02 < y/δ < 0.2 and (b) 0.25 < y/δ < 0.55. In the first range, all the three DNS datasets tend to follow the same trend, which means that there is no effect of Reynolds number or the type of flow in this range near the wall. However, the second range is observed to have an effect of Reynolds number, in which both the TCF and TBL at Re τ = 550 belongs to one set of range and TCF at Re τ = 3000 belongs to a different range.

Chapter 6 .

 6 PIV experimentin the wind tunnel. Hence to have a better idea of the type of results from the experiments, it is important to obtain the behaviour of the terms of instantaneous KHMH equation in the DNS of ZPG-TBL flow. This is made possible by the use of the DNS of ZPG-TBL at Re τ = 550, which corresponds to the same Re τ of one of the lower Reynolds number DNS, which then helps to compare the results between them. This helps to identify the differences or similarities that occur between the two canonical wall-bounded turbulent flows.The results obtained so far forms the base on which the PIV experiment on the ZPG TBL in LMFL is planned. The main results that would be obtained from the experiment are the Spatio-temporal averaged value of KHMH equation terms, the standard deviation and the correlation coefficient of the different terms in streamwise directions.6.1 Particle Image Velocimetry6.1.1 Planar PIV experiment

Figure 6 . 1 :

 61 Figure 6.1: Experimental setup for Planar PIV (2C-2D) measurement

6. 1 .

 1 Particle Image Velocimetryaffects the statistics concerning the fluctuations such as the variance and RMS values of velocity. It is more of a problem in a Tomographic (3D) experiment than in a planar experiment (2D) such as a planar or stereoscopic PIV experiment. The second concern with the Tomo-PTV with STB algorithm is that the measured data will be in the Lagrangian frame of reference, and the tool developed to compute the terms of the KHMH equation is in the Eulerian frame of reference. This would mean, either the tool to compute the KHMH equation term has to be modified to accommodate the velocity in the Lagrangian frame of reference or to use one of the transformation methods to convert the data to the Eulerian frame of reference 110 .
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 62 Figure 6.2: Correlation coefficient of A t + A with other terms of KHMH equation with only terms accessible in (a) XY-plane, (b) YZ-plane, (c), (d) XZ-plane, (e),(f ) full DNS volume using dataset of TCF3000 at y + = 40

Figure 6 .

 6 Figure 6.2 shows the correlation coefficient of A t + A with other terms of the KHMH equation using velocities and its derivatives available in XY-, YZ-and XZ planes.

Figure 6 . 3 :

 63 Figure 6.3: Sketch of the top view (top) and front view (bottom) of LMFL Turbulent boundary layer wind tunnel. Reproduced from Cuvier et al.27

  (y-direction) respectively. This long test-section allows to reach Reynolds number based on momentum thickness, Re θ up to 20,600 and the boundary layer thickness, δ of 0.24 m at 19.6 m from the tripping mechanism. Thus this facility enables us to make a detailed experimental investigation of near-wall physics. The wind tunnel can be operated at the closed circuit with velocity and temperature regulation, or open to the outside. The boundary layer is tripped using a 4 mm cylinder fixed in the bottom wall with silicon along the spanwise direction and then a 93 mm of Grit 40 sandpaper (mean roughness of 425 µm). The top layer is tripped in the same way as the bottom plate but without the cylindrical rod. All the glass surfaces which cover the test section is mounted in such a way that the opposite faces are perfectly parallel (less than ±0.1 • ) to each other. Interested readers could refer to Carlier and Stanislas 18 for more details.

Figure 6 .

 6 4 shows the schematic of the two sets of S-PIV (2D-3C) employing 4 cameras to capture a field of view illuminated by a laser light sheet in the streamwise-wall-normal plane. The present experimental campaign consists of performing S-PIV experiments at two free-stream velocities : (a) 3 m/s corresponding to a Reynolds number based on friction velocity Re τ = 2220, (b) 6m/s corresponding to a Reynolds number Re τ = 3840. The centre of the field of view in the streamwise directions is at 19.2 m from the inlet of the test section which corresponds to boundary layer thickness δ of 0.273 m, u τ of 0.1207 m/s for Re τ of 2220, and δ of 0.243 m, u τ of 0.2337 m/s for Re τ of 3840. The tracer for the experiment is a water-ethylene glycol mixture that is fully seeded in the entire closed circuit of the wind tunnel. The size of the droplets was estimated to be 1 µm and is expected to have a lifetime of 10 minutes.
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 264 Figure 6.4: Schematic of two S-PIV systems experimental setup, showing the laser light sheet, the position of cameras, in top view (top) and front view (bottom)
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 65 Figure 6.5: Schematic of image acquisition with time-resolved and highspeed PIV experiment

Figure 6 . 6 :

 66 Figure 6.6: Schematic of image acquisition in the present PIV experiment
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 333 for Re τ = 2220, and 75 × 45 vectors with a spatial resolution 6.6 + × 6.6 + for Re τ = 3840 experiment in the streamwise and the wall-normal direction respectively for both stereoscopic PIV systems. The computation of other parameters of S-PIV experiments are given in Appendix C.1.Chapter 7Results: PIV experimentThis chapter focuses on the results of S-PIV experiments, starting with the validation of PIV datasets in mean, variance and covariances of turbulent velocity fluctuation and by its comparison with DNS datasets of similar Re τ . This is followed by the measurement uncertainty in the PIV dataset, computation of noise and computation of dissipation associated with each S-PIV system and at both Reynolds numbers. This is followed by the KHMH equation analysis which involves Spatio-temporal averaging of the terms, the standard deviation of the terms and correlation coefficient of A t + A with other terms. The effect of denoise is discussed for each subsection of the KHMH equation analysis. This is followed by the analysis of adding Additive Gaussian White Noise (AGWN) to DNS datasets to simulate the results from PIV experiments.7.1 Validation of experimentThe current TBL datasets on PIV experiments are validated using different statistical quantities such as the mean, turbulence intensities velocity components. In the present experimental campaign, the datasets were obtained for two Reynolds numbers, Re τ = 2220 and Re τ = 3840. So the mean flow and turbulence quantities are then compared with the DNS dataset of the closest Reynolds numbers (Re τ ), to know the accuracy of the velocity components measured in the experiments.Thus for the PIV dataset of Re τ = 2220, the DNS dataset of ZPG-TBL of Borrell et al.13 , 112, 111 with Re τ = 1989 is used for comparison. And for the PIV dataset of Re τ = 3840, the DNS dataset of TCF of Hoyas and Jiménez[START_REF] Hoyas | Reynolds number effects on the reynoldsstress budgets in turbulent channels[END_REF] with Re τ = 4200 is used for comparison. In addition, the DNS dataset of TCF of Thais et al.[START_REF] Thais | A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow[END_REF] at Re τ = 3000 from the present work is also added in the comparison.

Figure 7 . 1 :

 71 Figure 7.1: Comparison of average streamwise velocity normalised with inner coordinates u + from the present PIV experiments at Re τ = 2220 and 3840 with DNS datasets of TCF at Re τ = 1989, 3000, 4200. The green vertical line shows the range of wall distances for the PIV experiment with Re τ = 2220, and the red vertical line shows the range of wall distances for the PIV experiment with Re τ = 3840

Figure 7 .

 7 Figure 7.1 shows the mean (u + ) profile from the present PIV experiments and their comparison with the same quantities in DNS datasets. The available wall distances in the PIV dataset with Re τ = 2220 are in the range 10.25 ≤ y + ≤ 157.31, and for the PIV dataset withRe τ = 3840 is in the range 20.19 ≤ y + ≤ 309.6. The limits of the wall distance values are marked by a vertical line of red and green colours for the higher and lower Reynolds number PIV experiments respectively. The mean velocity values (u + ) shows a good agreement of the PIV experiment with that of the DNS dataset, for the wall distances measured from the experiments for both the Reynolds numbers.

Figure 7 .Figure 7 . 2 :

 772 Figure 7.2 shows the variance of turbulent velocity fluctuations of all three velocity components and u v + , along the wall-normal direction. The streamwise velocity fluctuations u 2 + for both the PIV datasets don't agree well when y + < 20. At wall distances when y + > 20, the PIV dataset Re τ = 2220 tends to be between the two DNS datasets of Re τ = 1989 and Re τ = 3000. And the PIV dataset Re τ = 3840 seems to have a slight overprediction of this parameter. The spanwise velocity fluctuations w 2 + has a peak close to y + = 40 in all datasets except for
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 12377374 Figure 7.3: Measurement uncertainty in streamwise (top) and spanwise (bottom) components of velocity fluctuations in PIV systems '1' and '2' of PIV datasets at Re τ = 2220
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 7576 Figure 7.5: Measurement uncertainty in streamwise (top) and spanwise (bottom) components of velocity fluctuations in PIV systems '1' and '2' of PIV datasets at Re τ = 3840

Figure 7 . 7 :

 77 Figure 7.7: Noise value associated with streamwise velocity fluctuations (in pixels) for PIV dataset at Re τ = 2220 (left) and Re τ = 3840 (right)

Figure 7 . 8 :

 78 Figure 7.8: Computation of normalised dissipation D + with different methods in PIV datasets at Re τ = 2220 and 3840. This is then compared with the DNS of the TBL dataset at Re τ = 1989. A green vertical line shows the wall distances beyond which the axisymmetric assumptions holds good in the computation of dissipation
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 2379 Figure 7.9: The individual terms of dissipation term for the S-PIV experiment at Re τ = 2220
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 32132 contribute the high value of noise in the computation of dissipation below y + = 25. And the peak value close to the wall of the dissipation from both the individual systems is due to the two derivatives ∂u and due to the assumptions of George and Hussein[START_REF] George | Locally axisymmetric turbulence[END_REF] both these values are used two times for the computation. In addition, George et al.[START_REF] George | Velocity derivatives in turbulent boundary layers. part ii: Statistical properties[END_REF] showed that the local axisymmetry assumptions fail close to the wall, however, the wall distance up to which it is valid varies between different flows. In the present experiment in comparison to the dissipation value from DNS, it can be concluded that the local axisymmetry assumption is valid when y + > 25 for the PIV dataset at Re τ = 2220. This limiting value of y + = 25 is marked by a vertical line in Figure7.8.

7. 2 .

 2 Spatio-temporal average value of KHMH equation terms7.2 Spatio-temporal average value of KHMH equation termsThe datasets from both the PIV experiments are validated by comparing different statistics with that of DNS with comparable values of Re τ . And this is followed by the computation of noise in each S-PIV system at both the Re τ . The next part of the analysis is to obtain the averaged values of KHMH equation terms with PIV datasets, which is the focus of this section.
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 7101210012710 Figure 7.10: Spatio-temporal averaged values of KHMH equation terms from PIV datasets at y + = 100 in the r x direction, using different combinations of two S-PIV systems at Re τ = 2220

Figure 7 .

 7 Figure 7.10 shows the Spatio-temporal averaged values of KHMH equation terms obtained by the use of different combinations of S-PIV systems. It is observed that the terms -Π , -P r , * and * doesn't vary, with the use of different S-PIV systems in their computation. The terms -A t and -A are observed to be less than 0.2 *
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 110021112711 Figure 7.11: As Figure 7.10, but with the inclusion of -A t + A term and the exclusion of -A t and -A terms

Figure 7 .

 7 Figure 7.11 shows the Spatio-temporal averaging of KHMH equation terms, where the terms -A t and -A are added and are presented together. It can be observed that A t + A with its computation in all combinations of two S-PIV systems. Thus
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 12 Figures 7.12, 7.13 and 7.14 shows the Spatio-temporal average of the KHMH equa-
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 22712 Figures 7.12, 7.13 and 7.14 shows the Spatio-temporal average of the KHMH equation at different wall distances in streamwise direction with PIV experiments at two different Re τ , compared with the same result from the DNS of TCF3000. The wall
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 2111713 Figure 7.13: Spatio-temporal average value of the KHMH equation terms computed from PIV experiments at (a) Re τ =2220, (b) Re τ = 3840, and its comparison with (c) DNS of TCF3000 and (d) DNS of TBL550 in the streamwise direction at y + = 100
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 1111714 Figure 7.14: Spatio-temporal average value of the KHMH equation terms computed from PIV experiments at (a) Re τ =2220, (b) Re τ = 3840, and its comparison with (c) DNS of TCF3000 and (d) DNS of TBL550 in the streamwise direction at y + = 140

Figure 7 .

 7 Figure 7.15 shows the instantaneous values of KHMH equation terms obtained from PIV at Re τ = 2220, which is then compared with that of DNS at Re τ = 3000. The
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 715100716 Figure 7.15: Instantaneous values of the KHMH equation terms normalised by the absolute value of * computed from PIV at Re τ = 2220 (left) and DNS of TCF3000 (right) in streamwise direction at y + = 100
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 11210011007177 Figure 7.17: Standard deviation results of KHMH equation terms computed with different combinations of both S-PIV systems in the streamwise direction for the PIV dataset at Re τ = 2220

Figure 7 .

 7 Figure 7.18, 7.18 and 7.18 shows the standard deviation of KHMH equation terms A t + A, Π, T u and P r in the two PIV datasets and the DNS of TCF3000 at y + = 40, 100 and 140. It is observed that the standard deviation of T u is approximate of the same order as the standard deviation of Π at all wall distances in all three datasets. The production term has approximately the same standard deviation in all the three datasets at y + = 100 and 140. At y + = 40, however, the standard deviation of P r is the highest in the PIV at Re τ = 3840, followed by PIV at Re τ = 2220 and then the DNS of TCF3000. The standard deviation of A t + A is similarly highest in PIV at Re τ = 3840, followed by PIV at Re τ = 2220 and then the DNS at Re τ = 3000 at all wall distances.

6 DNS

 6 (T CF )Re τ = 3000|y + = 40 r + x Std. dev.

Figure 7 . 18 : 8 DNSxFigure 7 . 19 : 10 DNSFigure 7 . 20 :

 718871910720 Figure 7.18: Standard deviation of KHMH equation terms at y + = 40, from (a) PIV at Re τ = 2220, (b) PIV at Re τ = 3840, (c) DNS of TCF3000. All terms of normalised by the standard deviation of Π
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 100110021100211002721 Figure 7.21: Correlation coefficient of KHMH equation terms with A t + A in streamwise direction separation of PIV at Re τ = 2220 by using a combination of two systems '1' and '2' at y + = 100

Figure 7 .

 7 Figure 7.21 shows the correlation coefficient of A t + A with other terms of the KHMH equation with different combinations of two S-PIV systems at y + = 100. It is observed that the correlation coefficient values between A t +A and the two energy transfer terms Π and T u have higher absolute values when the two independent systems are used. And it gives approximately the same results irrespective of using system 1 and system 2 or vice-versa, is used in place of the system a or system b . This can be explained by the lower standard deviation of A t + A when two systems are used in their computation. It is beneficial to use the two S-PIV systems to compute the standard deviation value and in turn the correlation coefficient values. Hence the denoised correlation coefficient is used in both the PIV datasets to compare the results with that of DNS datasets.
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 722407 Figure 7.22: Correlation coefficient of the four KHMH terms with A t + A in streamwise direction separation of PIV at (a) Re τ = 2220, (b) Re τ = 3840 and is compared with the results of DNS of TCF at (c) Re τ = 3000 at y + = 40
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 723 Figure 7.23: Correlation coefficient of the four KHMH terms with A t + A in streamwise direction separation of PIV at (a) Re τ = 2220, (b) Re τ = 3840 and is compared with the results of DNS of TCF at (c) Re τ = 3000 at y + = 40

Figures 7 .1

 7 Figures 7.22, 7.23 and 7.24 shows the correlation coefficient of A t + A with other terms of KHMH equation in streamwise direction at different wall distances with PIV datasets at Re τ = 2220 and Re τ = 3840, which is compared with the DNS of TCF3000. It is observed for the PIV dataset at Re τ = 2220, that the correlation coefficient between A t +A and Π at large scales is of the order of 0.2, between A t +A and T u is of the order of 0.45 at large scales at all three wall distances. And it is observed for the PIV dataset at Re τ = 3840, that the correlation coefficient between A t + A and Π at large scales is of the order of 0.15, between A t + A and T u is of the order of 0.35 at large scales at all three wall distances.With the DNS datasets, the large scale correlation coefficient between A t + A and Π, A t + A and T u are of the order of 0.3 at y + = 40, 0.45 at y + = 100, and 0.5 at y + = 140. From the previous subsection, it is known that the present correlation coefficient computed from two S-PIV systems is higher than that computed with one system only. The reduction in correlation coefficient when the Reynolds number is increased in PIV datasets could be due to the limited spatial resolution of the PIV dataset at Re τ = 3840. However, the reduced correlation coefficient between
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 724 Figure 7.24: Correlation coefficient of the four KHMH terms with A t + A in streamwise direction separation of PIV at (a) Re τ = 2220, (b) Re τ = 3840 and is compared with the results of DNS of TCF at (c) Re τ = 3000 at y + = 40
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 1725 Figure 7.25: Correlation coefficient of advection term A with other terms of the KHMH equation in PIV experiments (left) and DNS of TCF3000 (right)
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 727728 Figure 7.27: Correlation coefficient of A t + A and other KHMH equation terms in TCF3000 with different levels of noise
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 1 It has been observed with the results of the PIV dataset at Re τ = 2220 that the average values of KHMH equation terms compare well with that of DNS datasets at the wall distances considered. The results of standard deviation and correlation coefficient of KHMH equation is reproduced to a greater extent in the PIV dataset at Re τ = 2220 than with the PIV dataset at Re τ = 3840. This was attributed to the limited spatial resolution of the Re τ = 3840 PIV dataset. Thus with a better Chapter 8. Conclusion and Perspectives camera, the Field of View can be zoomed to obtain the same spatial resolution of PIV at Re τ = 2220, which in turn helps to obtain comparable results at higher Re τ . The next step would also be to perform the KHMH equation analysis in the APG TBL flow configuration, which is possible with the LMFL wind tunnel. This introduces a lot of parameters to manage in terms of planning the experiment. Performing the KHMH analysis with previously obtained data in APG configuration, in addition to the results of the KHMH equation obtained from the present work would help to design the experiment optimised for the best results. With the rapid progress of Particle Tracking Velocimetry (PTV), velocimetry experiments with a large third dimension, and the possibility to obtain a 4D (3D+time) velocity field in the Lagrangian frame, which can be interpolated into the Eulerian frame of reference 110 . This opens up the possibility of performing the KHMH equation analysis in three-dimensional flows, which would help to improve the existing knowledge about complex flows. Derivation of KHMH equation based on full velocity
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 2204 Figure B.3: Mean velocity statistics of DNS datasets at different Re τ , in wall-units
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 41261 Figure B.6: Standard deviation of KHMH terms in streamwise direction separation of TBL at Re τ = 550(left) and TCF at Re τ = 550 (right)
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 2 Figure C.2: Computation of individual terms (a 1 to a 8 ) from different combination of systems
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 1310104434 Figure C.1, shows A t × 10∆t which is numerator of the time derivative term of KHMH equation. It can be observed that the error between the computation of this value is of the order of 10 -4 . In order to investigate further, this term is decomposed into its individual components, and the average value of all the individual terms are
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  Chapter 1. Introduction depends on different scales of motion. This multi-scale nature of turbulent flows was studied in isotropic turbulence byRichardson 97 , which is described in this famous poem, 'Big whirls have little whirls .... and so on to viscosity'. According to his model, the energy is injected at large scales and it flows down the scale until it reaches the smallest scale where it is dissipated due to viscosity. And viscosity and dissipation are confined to the smallest scales of the flow, and the energy cascade can occur between scales of similar size and is always a forward cascade of energy, meaning larger to smaller scales.

  10 , Landau and Lifshitz 72 . Monin and Yaglom 84 derived what was called the Kolmogorov structure function equation or alternatively known as the Kármán-Howarth-Monin (KHM) equation

without the assumption of global isotropy and had dropped the pressure term stating that velocity differences are uncorrelated with the difference of any scalar in isotropic turbulence. Frisch and Kolmogorov

[START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF] 

generalised this Kármán-Howarth-Monin equation by adding the driving force for the turbulence which acts only on large scale, is steady in time, is homogenous in space. In turn, he was able to derive the four-fifths law from the energy flux equation. Lindborg

[START_REF] Lindborg | On kolmogorov's third order structure function law, the local isotropy hypothesis and the pressure-velocity correlation[END_REF] 

argued that in the Kármán-Howarth-Monin equation, pressure terms are made zero by erroneous arguments about local isotropy and this restricts it from obtaining the proper physics behind pressure velocity correlation in the inertial range. Hill

[START_REF] Hill | Applicability of kolmogorov's and monin's equations of turbulence[END_REF] 

resolved the problem of neglecting pressure term on this basis of local isotropy and has provided derivations that show how different conditions such as local/global, isotropy/homogeneity, etc will result in pressure term becoming zero. Antonia et al.

[START_REF] Antonia | Analogy between predictions of kolmogorov and yaglom[END_REF] 

derived the equation for δu 1 (δu i ) 2 which appears similar to Yaglom's equation for δu 1 (δθ) 2 and is valid for relatively small scales and when the Reynolds number is moderate. The advantage is that this equation extends the Kolmogorov equation for all velocity components. Looking at the fact that limitation of Kolmogorov equation to apply for grid-generated decaying turbulent flow which is isotropic, Danaila et al.

[START_REF] Danaila | A generalization of yaglom's equation which accounts for the large-scale forcing in heated decaying turbulence[END_REF] 

  .1.

	Region	Location	Defining property	Equation
	Viscous sublayer Buffer layer Overlap Layer	y + < 5 5 < y + < 30 y + > 50, y/δ < 0.1	µ ∂u ∂y >> ρu v µ ∂u ∂y ∼ ρu v µ ∂u ∂y << ρu v	u + = y + + = constant ∂y + -u v ∂u + u + = 1 κ ln(y + ) + c
	Table 2.1: Different layers of inner regions with defining properties, repro-
	duced from Pope 92			

Table 4

 4 

	Dataset	Re τ	L x /δ	L y /δ	L z /δ	N x × N y × N z	∆x +	∆z +
	TCF	550	2π	2	π	576 × 257 × 288	5 +	5 +
	TCF	3000	6π	2	1.5π	5120 × 2048 × 768	11 +	7 +

.1, and that of the turbulent boundary layer is given in table 4.2.

Table 4 .

 4 

1: Parameters of TCF DNS datasets, where the channel half-width is δ. L x , L y , L z are the sizes of the domain and N x , N y , N z are the corresponding resolution in all three directions respectively

Table 4 .

 4 

	-2500	53.19	4.72	2.36	6401 × 321 × 448	8.27 +	3.94 +

  5.2. Scale-by-scale energy budget with DNS of Turbulent Channel Flows

	of the individual terms. The Π term is decomposed as :			
	Π = δu j	∂(δu i ) 2 ∂r j									
	= δu i δu j	∂u i ∂x j b	+	∂u i ∂x j a							
	= δu 1 δu 1	∂u 1 ∂x 1 b	+	∂u 1 ∂x 1 a	+ δu 2 δu 1	∂u 2 ∂x 1 b	+	∂u 2 ∂x 1 a	+ δu 3 δu 1	∂u 3 ∂x 1 b	+	∂u 3 ∂x 1 a
			a 11				a 12				a 13	
	+ δu 1 δu 2	∂u 1 ∂x 2 b	+	∂u 1 ∂x 2 a	+ δu 2 δu 2	∂u 2 ∂x 2 b	+	∂u 2 ∂x 2 a	+ δu 3 δu 2	∂u 3 ∂x 2 b	+	∂u 3 ∂x 2 a
			a 21				a 22				a 23	
	+ δu 1 δu 3	∂u 1 ∂x 3 b	+	∂u 1 ∂x 3 a	+ δu 2 δu 3	∂u 2 ∂x 3 b	+	∂u 2 ∂x 3 a	+ δu 3 δu 3	∂u 3 ∂x 3 b	+	∂u 3 ∂x 3 a
			a 31				a 32				a 33	

  5.2. Scale-by-scale energy budget with DNS of Turbulent Channel Flowsdetermine which terms, thereby which processes are contributing to this high value of correlation coefficient between Π and A t + A. The results are presented for all the correlation coefficients at large scales in Table5.1, with significant correlation shown in bold numbers. This is also extended to the computation of correlation coefficient of a 11 to a 33 with T p , which is presented in Table5.2.

		A t + A			Π			r x direction	
	y +	Full	a 11	a 12	a 13	a 21	a 22	a 23	a 31	a 32	a 33

Table 5 .

 5 1: Large scale correlation coefficient of A t + A with Π and its decomposed terms (a 11a 33 ) in the streamwise direction

		T p				Π			r x direction	
	y +	Full	a 11	a 12	a 13	a 21	a 22	a 23	a 31	a 32	a 33
	30 0.034 -0.048 0.0052 0.022 -0.043 0.0065 0.03 0.007 0.0047 0.05
	40 0.157 -0.017 0.009 0.022 -0.001 0.0072 0.039 0.031 0.009 0.057
	227 0.26 0.017 0.011 0.021 0.032 0.011 0.043 0.05 0.013 0.058
	599 0.35 0.087 0.008 0.016 0.066 0.016 0.03 0.066 0.022 0.037
	2178 0.32 0.08 0.007 0.013 0.065 0.018 0.026 0.062 0.02	0.03
	3000 0.32 0.07 0.012 0.014 0.058 0.026 0.024 0.056 0.025 0.03

Table 5 .

 5 2: Large scale correlation coefficient of T p with Π and its decomposed terms (a 11a 33 ) in the streamwise direction

  36 , 101 , as a solution to study the unsteady three-dimensional flows which are often found in turbulent flows. Relevant to the present work, there have been several studies in turbulent boundary layers by the Aerospace department in TU Delft, German company LaVision, German Aerospace Laboratory (DLR), the Fluid Mechanics lab of Lille in collaboration with Monash University (Elsinga et al. 32 , Elsinga et al. 33 , Elsinga and Marusic 34 , Atkinson et al. 8 , Schröder et al. 106 , Schröder et al. 107 , Schröder et al. 108 ).

  Starting with Navier-Stokes' equation at point 1 Substituting u i 2u i 1 = δu i and implementing the above mentioned assumption Converting from physical space (point 1,2 etc) to midpoint and space of separation vector (X,r), with X i = x i 2 + x i 1 and r i = x i 2x i 1 (u j 1 + u j 2 ) Multiplying the above equation with δu k Writing equation A.7 in terms of δu k and multiplying δu iA.2. Computation of KHMH equation based on full velocityTaking the trace of the equation ie., i=k

	∂φ ∂X i ∂ ∂r j |δu| 2 + u * = ∂φ ∂x i 2 j ∂φ ∂r i = 1 2 ∂φ ∂x i 2 + ∂ ∂X j ∂φ |δu| 2 = -∂x i 1 -∂φ + ∂x i 1 Transforming equation A.5 into (X,r) co-ordinates ∂ ∂t |δu| 2 + δu j	2 ρ ν 2	δu i ∂ 2 ∂X i ∂ ∂X 2 j |δu| 2 -2ν (δp) + 2ν	∂ 2 ∂r 2 j (A.6) |δu| 2 ∂u i ∂x j 1 2	+	2 (A.12) ∂u i ∂x j 2
	∂ ∂t	(δu i ) + u * j	∂ ∂X j	(δu i ) + δu j	∂ ∂r j	(δu i ) = -	1 ρ	∂ ∂X i	(δp) +	ν 2	∂ 2 ∂X 2 j	(δu i ) + 2ν	∂ 2 j ∂r 2	(δu i )
															(A.7)
	where u * j = 1 2 δu k ∂ ∂t (δu i ) + u * j δu k	∂ ∂X j	(δu i ) + δu j u k	∂ ∂r j	(δu i ) = -	1 ρ	δu k	∂ ∂X i	(δp) +	ν 2	δu k	∂ 2 j ∂X 2	(δu i )
															+ 2νδu k	∂ 2 j ∂r 2	(δu i )
															(A.8)
	δu i	∂ ∂t	(δu k ) + u * j δu i	∂ ∂X j	∂ ∂t (δu k ) + δu j u i (u i 1 ) + u j ∂ ∂r j (δu k ) = -∂ ∂x j (u i ) 1 1 ρ δu i = -∂ 1 ρ ∂X i ∂x i ∂ (δp) + (p)	1 ν 2	+ ν δu i	∂ 2 ∂x 2 j ∂ 2 j ∂X 2 (u i ) (δu k ) 1	(A.1)
	Similarly for point 2 ∂ ∂t (u i 2 ) + u j Adding equation A.8 and A.9 Subtracting equation A.1 from equation A.2 ∂ ∂x j (u i ) 2 = -1 ρ + 2νδu i ∂ 2 (δu k ) ∂ ∂x i (p) ∂r 2 j ∂ ∂t (u i 2 -u i 1 ) + u j ∂ ∂x j (u i ) 2 -u j ∂ ∂x j (u i ) 1 = -∂ ∂t (δu i δu k ) + u * j ∂ ∂X j (δu i δu k ) + δu j ∂ (δu i δu k ) ∂r j + ν 2 = -1 ρ δu k ∂ ∂X k (δp) -1 ρ δu i ∂ ∂X i (δp) + ν 2 ∂ 2 ∂X 2 ∂u i (δu i δu k ) -2 ∂X j j + 2ν ∂ 2 ∂r 2 j ∂u i ∂u k (δu i δu k ) -2 ∂r j ∂r j With the assumption that derivatives of quantities in point 1 with respect to point + ν ∂ 2 (u i ) (A.2) (A.9) ∂x 2 j 2 1 ρ ∂ ∂x i (p) 2 -1 ρ ∂ ∂x i (p) 1 ∂ 2 ∂x 2 j (u i ) 2 -ν ∂ 2 ∂x 2 j (u i ) ∂u k ∂X j 1 (A.3) (A.10) 2 is zero ∂ ∂x j 2 (u i 1 ) = 0 Simplifying the last two terms (A.4) ∂ ∂t (δu i δu k ) + u * j ∂ ∂X j (δu i δu k ) + δu j ∂ ∂r j (δu i δu k )
					∂ ∂t + 2ν (δu i ) + u j ∂ 2 ∂r 2 j (δu i δu k ) -2ν ∂ ∂x j (δu i ) = -1 ρ δu k ∂ ∂X k (δp) -1 ρ δu i 2 -u j ∂u i ∂u j 1 ∂x j ∂ 2 ∂ ∂X i (δp) + (δu i ) ∂u j 2 1 = -+ ν + ∂u i 2 ν 2 ∂ 2 ∂X 2 j (δu i δu k ) 1 ρ ∂ ∂x i ∂ 2 ∂x 2 j (δu i ) (δp) 2	2 -ν -(A.11) 1 ρ ∂ ∂x i ∂ 2 ∂x 2 j (δu i ) (δp)	1

1

(A.

5) 

  Term-by-term conversion of Equation A.13 from (X j , r j ) co-ordinates to (x j 1 , x j 2 )results in the following.

	Energy transfer in physical space is given by
			u * j	∂ ∂X j	|δu i | 2 = 2u * j δu i		∂δu i ∂x j 2	+	∂δu i ∂x j 1	= 2u * j δu i	∂u i ∂x j 2	-	∂u i ∂x j 1
	Pressure velocity term is given by
			-	2 ρ	δu i	∂ ∂X i	(δp) = -	2 ρ	δu i		∂δp ∂x i 2	+	∂δp ∂x i 1	= -	2 ρ	δu i	∂p ∂x i 2	-	∂p ∂x i 1
	Diffusion in physical scale is given by
	ν 2	∂ 2 ∂X 2 j	|δu i | 2 =	ν 2		∂ 2 |δu i | 2 ∂x 2 j	2	+	∂ 2 |δu i | 2 ∂x 2 j	1	+ 2	∂ ∂x j	|δu i | 2 ∂x j 2 1
						= 2	ν 2		∂u i ∂x j 2			2	+		∂u i ∂x j 1	2	+ δu i	∂ 2 u i ∂x 2 j 2	-	∂ 2 u i ∂x 2 j 1	-2	∂u i ∂x j 1	∂u i ∂x j 2
	using the following : Diffusion in scale space is given by 2ν ∂ 2 ∂r 2 j |δu i | 2 = 2ν 1 4 ∂ 2 |δu i | 2 ∂x 2 j 2 + 1 4 ∂ 2 |δu i | 2 ∂x 2 j ∂ 2 φ ∂X 2 j = = 2ν 1 4 ∂ 2 |u i | 2 ∂x 2 j2 + ∂ 2 |u i | 2 ∂x 2 j1 -2 ∂ 1 ∂r j ∂φ ∂X j ∂φ = -1 2 ∂x j = 1 2 ∂ ∂ 2 φ ∂x 2 j 1 + ∂x j ∂|δu i | 2 ∂x j 1 ∂φ ∂φ ∂x j 2 ∂|δu i | 2 + ∂x j 2 1 ∂φ ∂x j 2 ∂φ -∂x j 1 ∂ 2 φ ∂x 2 j 2 ∂ ∂x j 2 1 + 2 ∂x j ∂ 2 φ ∂r 2 j = 1 4 ∂ 2 φ ∂x 2 j 1 + ∂ 2 φ ∂x 2 j 2 2 ∂x j -1 ∂ = ν 2 × 2 ∂u i ∂x j 1 2 + ∂u i ∂x j 2 2 + δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1	∂φ ∂x j 2 1 ∂x j 2 1 ∂φ ∂u i + 2 ∂x j 1	∂u i ∂x j 2
							KHMH equation is given by
							∂ ∂t	|δu i | 2 + δu j	∂ ∂r j	|δu i | 2 + u * j	∂ ∂X j	|δu i | 2 = -	2 ρ	δu i	∂ ∂X i	(δp) + 2ν	∂ 2 ∂r 2 j	|δu i | 2 +	ν 2	∂ 2 ∂X 2 j	|δu i | 2
																			-2ν	∂u i ∂x j 1	2	+	∂x j 2 ∂u i	2
																			(A.13)
							Time derivative term is the same in both co-ordinate space
							Interscale energy transfer is given by
							δu j	∂ ∂r j	|δu i | 2 =	1 2	δu j	∂|δu i | 2 ∂x j 2	-	∂|δu i | 2 ∂x j 1	=	2 2	δu j δu i	∂δu i ∂x j 2	-	∂δu i ∂x j 1	= δu j δu i	∂u i ∂x j 2	+	∂u i ∂x j 1

  ∂t |δu i | 2 + δu j ∂ ∂r j |δu i | 2 + u * A.3. Computation of KHMH equation based on decomposed velocityThe decomposition of velocity of time derivative term leads to∂ ∂t (δu i + δu i ) 2 = ∂ ∂t (δu i ) 2The interscale energy transfer term (T r ) after decomposition is given by(δu j + δu j ) ∂ ∂r j (δu i + δu i ) = δu j ∂ ∂r j (δu i ) 2 + δu j ∂ ∂r j (δu i ) 2 + 2δu j δu i = T r1 + T r2 + T r3 + T r4 + T r5 + Π + T r7 + P r A.3. Computation of KHMH equation based on decomposed velocityThe energy transfer in physical space term (T x ) after decomposition is given by (u j + u j ) * ∂ ∂X j (δu i + δu i ) = u j

	At The time derivative remains the same in both co-ordinate space + ∂ ∂t (δu i ) 2 + 2δu i ∂ ∂t (δu i ) + 2δu i A t = ∂ ∂t (δu i ) 2 = 2δu i ∂ (δu i ) T r3 = 2δu i δu j ∂ ∂r j (δu i ) = 2δu i δu j ∂ ∂r j (δu i ) = 2δu i δu j 1 2 ∂δu i ∂x j 2 -* ∂ ∂X j (δu i ) 2 + u j * ∂ ∂X j (δu i ) 2 + 2u j ∂ ∂t (δu i ) * δu i ∂δu i ∂x j = δu i δu j ∂u i ∂x j 2 + + 2u j * δu i ∂ ∂X j (δu i ) + u * j ∂ ∂X j (δu i ) 2 + u * j ∂ ∂X j ∂ (δu i ) 2 (A.15) (δu i ) ∂X j ∂u i ∂x j 1 + 2u * j δu i ∂ ∂X j (δu i ) + 2u * j δu i ∂ (δu i ) ∂X j ∂t ∂ ∂t (δu i ) 2 = 2δu i ∂ ∂t (δu i ) = 0 2δu i ∂t (δu i ) 2δu i ∂t (δu i ) 2 = 0 = δu i δu j ∂u i ∂x j 2 ∂x j 1 + ∂u i ∂ = 2δu i δu j 1 2 ∂δu i ∂x j 2 ∂x j -∂δu i ∂ T r4 = 2δu i δu j ∂ ∂r j (δu i ) = 2δu i δu j ∂r j (δu i ) ∂ (A.17)
	T r5 = δu j Π = δu j ∂r j ∂ ∂r j ∂ (δu i ) 2 = 2δu i δu j (δu i ) 2 = 2δu j δu i + 2δu j δu i ∂ (δu i ) ∂r j ∂r j ∂ = 2δu j δu i 1 2 ∂δu i ∂x j 2 -+ 2δu j δu i ∂ ∂r j = δu j δu i ∂u i ∂x j 2 ∂u i (δu i ) + δu j ∂δu i ∂x j 1 (δu i ) + 2δu j δu i ∂ ∂r j (δu i ) 2 + δu j + ∂x j 1 ∂ (δu i ) ∂r j ∂ ∂r j (δu i )	∂ ∂r j ∂ ∂r j (δu i ) 2 (δu i ) (A.16)
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  A.3. Computation of KHMH equation based on decomposed velocityThe diffusion in physical space term (D x ) is given by(δu i ) 2 + (δu i ) 2 + (2δu i δu i )This is represented asThe transformation to original co-ordinate system is given by

	2u j = 2u j = 2u j (δu i ) 2 = 2δu i u * * δu i * δu i * δu i j ∂X j ∂ ∂X j ∂δu i (δu i ) ∂x j 2 + ∂u i ∂x j 2 -∂u i ∂δu i ∂x j 1 ∂x j 1 ∂ (δu i ) = 2δu i u * j ∂δu i ∂x j 2 + ∂δu i ∂x j 1 = 2δu i u * j ∂u i ∂x j 2 -∂u i ∂x j 1 ∂ ∂X j ∂X j ∂ * δu i A = u * j T x3 = 2u j (δu i ) = 2u j * δu i ∂ ∂X j (δu i ) ∂X j ∂ (δu i ) 2 = 2u * j δu i (2δu i δu i ) = 2ν T x5 = u * j 1 4 ∂ 2 (2δu i δu i ) ∂x j 2 + 1 4 ∂ 2 (2δu i δu i ) ∂x j 1 -1 2 ∂ ∂x j ∂(2δu i δu i ) ∂x j D x3 = 1 2 ν ∂ 2 ∂X 2 j (2δu i δu i ) = 1 2 ν ∂ 2 (2δu i δu i ) ∂x j 2 + ∂ 2 (2δu i δu i ) ∂x j 1 ∂ + 2 ∂x j ∂ ∂X j (δu i ) = 2u * j δu i ∂δu i ∂x j 2 + The interscale diffusion term is given by = 2ν 1 2 δu i ∂ 2 δu i ∂x 2 j 2 + 1 2 δu i ∂ 2 δu i ∂x 2 j 2 + ∂δu i ∂x j 2 ∂δu i ∂x j 2 -1 2 δu i ∂ 2 δu i 2 ∂x 2 j 1 1 ∂(2δu i δu i ) ∂x j = 1 2 ν 2δu i ∂ 2 δu i ∂x 2 j 2 + 2δu i ∂ 2 δu i ∂x 2 j 2 + 4 ∂δu i ∂x j 2 ∂δu i ∂x j 2 -2δu i ∂δu i ∂x j 1 = 2u * j δu i ∂u i ∂x j 2 -∂u i ∂x j 1 T u = u * j ∂ ∂X j (δu i ) 2 = 2u * j δu i 2ν ∂ 2 ∂r 2 j (δu i + δu i ) 2 = 2ν ∂ 2 ∂r 2 (δu i ) 2 + (δu i ) 2 + (2δu i δu i ) (A.19) 2 ∂ 2 δu i 1 ∂x 2 j 1 -1 2 δu i ∂ 2 δu i ∂x 2 j 1 + ∂δu i ∂x j 1 ∂δu i ∂x j 1 + ∂δu i ∂x j 1 ∂δu i ∂x j 2 + ∂δu i ∂x j 1 ∂δu i ∂x j 2 -2δu i ∂ 2 δu i ∂x 2 j 1 + 4 ∂δu i ∂x j 1 ∂δu i ∂x j 1 + 4 ∂δu i ∂x j 1 ∂δu i ∂x j i 2 ∂δu i ∂δu i + 4 ∂x j 1 ∂x j 2 j = ν δu i ∂ 2 u i ∂x 2 j 2 + δu i ∂ 2 u i ∂x 2 j 2 + 2 ∂u i ∂x j 2 ∂u i ∂x j 2 -δu i ∂ 2 u i ∂x 2 j 1 -δu i ∂ 2 u i ∂x 2 j 1 = ν δu i ∂ 2 u i ∂x 2 j 2 + δu i ∂ 2 u i ∂x 2 j 2 -2 ∂u i ∂x j 2 ∂u i ∂x j 2 -δu i ∂ 2 u i ∂x 2 j 1 ∂ 2 u i -δu i ∂x 2 j 1 ∂ ∂X j (δu i ) = 2u * j δu i ∂δu i ∂x j 2 The transformation to original co-ordinate system is given by + 2 ∂u i ∂x j 1 ∂u i ∂x j 1 + 2 ∂u i ∂x j 1 ∂u i ∂x j 2 + 2 ∂u i ∂x j 1 ∂u i ∂x j 2 -2 ∂u i ∂x j 1 ∂u i ∂x j 1 -2 ∂u i ∂x j 1 ∂u i ∂x j 2 ∂u i ∂u i -2 ∂x j 1 ∂x j 2 ∂δu i + ∂x j 1 = 2u * j δu i ∂u i ∂x j 2 -∂u i ∂x j 1 T x7 = 2u * j δu i ∂ ∂X j (δu i ) = 2u * j δu i ∂ ∂X j (δu i ) = 2u * j δu i ∂δu i ∂x j 2 + ∂δu i = 2u * j δu i ∂u i ∂x j 2 -∂u i T x8 = 2u * j δu i ∂ ∂X j (δu i ) = 2u * j δu i ∂ ∂X j (δu i ) = 2u * j δu i ∂δu i ∂x j 2 + ∂δu i ∂x j 1 = 2u * j δu i ∂u i ∂x j 2 -∂x j 1 The pressure term is given by D r3 = 2ν ∂ 2 ∂r 2 j (δu i + δu i ) ∂ ∂X i (δp) = δu i ∂ ∂X i (δp) + δu i ∂ ∂X i (δp) (A.18) D r2 = 2ν ∂ 2 ∂r 2 j (δu i ) 2 = 2ν 2 4 ∂δu i ∂x j 2 2 + 2 4 ∂δu i ∂x j 1 2 + 1 2 δu i ∂ 2 δu i ∂x 2 j 2 + ∂x 2 j 1 2 ∂x j ∂x j 2 1 -1 ∂ ∂δu i = ν ∂u i ∂x j 2 2 + ∂u i ∂x j 1 2 + δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 ∂x j 2 ∂x j -2 ∂u i ∂u i ∂ 2 δu i = 1 2 ν 2 ∂u i ∂x j 2 2 + 2 ∂u i ∂x j 1 + 2δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 ∂x j ∂x j 1 -4 ∂u i ∂u i 2 ∂u i = ν ∂u i ∂x j 2 2 + ∂u i ∂x j 1 2 + δu i ∂ 2 u i ∂x 2 j 2 ∂x 2 j 1 + 2 ∂u i ∂x j 2 ∂u i ∂x j ∂x j 2 1 + 2 ∂ ∂δu i ∂x j 1 D x1 = 1 2 ν ∂ 2 ∂X 2 j (δu i ) 2 = 1 2 ν 2 ∂δu i ∂x j 2 2 + 2 ∂δu i ∂x j 1 2 + 2δu i ∂ 2 δu i ∂x 2 j 2 j 1 ∂x 2 + ∂ 2 δu i -∂ 2 u i ∂x j 1 + 1 2 δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 ∂x j 2 ∂x j 1 + ∂u i ∂u i ∂x j 1 D r1 = 2ν ∂ 2 ∂r 2 j (δu i ) 2 = 2ν 2 4 ∂δu i ∂x j 2 2 + 2 4 ∂δu i ∂x j 1 2 + 1 2 δu i ∂ 2 δu i ∂x 2 j 2 ∂ 2 δu i The dissipation term ( ) is given by + ∂x 2 j 1 -1 2 ∂ ∂x j ∂δu i ∂x j 2 1 = 2ν 2 4 ∂u i ∂x j 2 2 + 2 4 ∂u i ∂x j 1 2 ν 2 ∂ 2 ∂X 2 j ν ∂ 2 2ν ∂(u i + u i ) ∂x j 1 2 + ∂(u i + u i ) ∂x j 2 2 = 2ν ∂u i ∂x j 1 2 + ∂u i ∂x j 1 2 ∂u i ∂u i + 2 ∂x j 1 ∂x j 1 (δu i + δu i ) 2 = 2 ∂X 2 j + 2ν ∂u i ∂x j 2 2 + ∂u i ∂x j 2 2 ∂u i + 2 ∂x j 2
	= 2u j = 2u j (δu i ) = 2δu i u j * δu i * δu i * ∂ ∂δu i ∂x j 2 ∂u i ∂x j 2 -+ ∂u i ∂δu i ∂x j 1 ∂x j 1 ∂X j (δu i ) = 2δu i u j * ∂δu i ∂x j 2 + ∂δu i ∂x j 1 = 2δu i u j * ∂u i ∂x j 2 -∂u i ∂x j 1 The transformation to original co-ordinates is given by T x4 = 2δu i u j * ∂ ∂X j δu i ∂ ∂X i (δp) = δu i ∂δp ∂x i 2 + ∂δp ∂x i 1 = δu i ∂p ∂x i 2 -∂p ∂x i 1 T p = δu i ∂ ∂X i (δp) = δu i ∂δp ∂x i 2 + ∂δp ∂x i 1 = δu i ∂p ∂x i 2 ∂x i 1 -∂p = 2ν 2 4 ∂u i ∂x j 2 2 + 2 4 2 ∂u i ∂x j 1 + 1 2 δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 + ∂u i ∂x j 2 D x = 1 2 ν ∂ 2 ∂X 2 j (δu i ) 2 = 1 2 ν 2 ∂δu i ∂x j 2 2 + 2 ∂δu i ∂x j 1 2 + 2δu i ∂ 2 δu i ∂x 2 j 2 ∂ 2 δu i + ∂x 2 j 1 ∂u i ∂x j 1 = ν ∂u i ∂x j 2 2 + ∂u i ∂x j 1 ∂ ∂δu i + 2 ∂x j ∂x j 2 1 2 + δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 + 2 ∂u i ∂x j 2 = 1 2 ν 2 ∂u i ∂x j 2 2 + 2 ∂u i ∂x j 1 2 + 2δu i ∂ 2 u i2 ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 -4 ∂u i ∂x j 1 = ν ∂u i ∂x j 2 2 + ∂u i ∂x j 1 2 + δu i ∂ 2 u i ∂x 2 j 2 -∂ 2 u i ∂x 2 j 1 ∂u i -2 ∂x j 2	∂u i ∂x j ∂u i ∂x j	∂u i ∂x j 1

  This section focuses on the effect of denoise in the average value of the time derivative term A t , given by:
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Townsend [START_REF] Townsend | The structure of turbulent shear flow[END_REF] and later developed by Perry and Chong [START_REF] Perry | On the mechanism of wall turbulence[END_REF] . In this context, the WASS is defined as having length scales in the range 3Re

τ ≤ l + y ≤ 0.6δ + . In addition, there is also another wall-attached u structures called buffer layer structures which are defined in the range l + y < 3Re

τ . Thus it can be concluded that the first part of the results where the peaks scale the same way for both the turbulent channel flows and the turbulent boundary layer flow is due to the buffer layer structures. And the second part of the results where the two turbulent channel flows and the turbulent boundary layer flow scales differently is due to WASS structures.

Part III

Overview of the PIV datasets and its analysis with KHMH equation

Chapter 7. Results: PIV experiment quantity 'u ' for system 'a' by the following equation:

Since the two PIV system records the same field of view, it becomes possible to compute this measurement uncertainty for the entire field of view. Figures 7.3 and 7.4 shows the measurement uncertainty of PIV system 1 and 2 in (m/s) for Re τ = 2220 dataset. For this dataset, the wall distances closer to the wall where y + < 20 is not plotted. The maximum value of measurement uncertainty is 0.028 m/s for streamwise and spanwise velocity components, which is of the order of 0.93% of the freestream velocity. For the wall-normal velocity component, it is 0.014 m/s which is of the order of 0.4% of the freestream velocity. It is observed that the noise is higher close to the wall and along the sides. This is because there is a reflection of the laser sheet from the wall which leads to high intensity of noise signal close to the wall. And the laser light sheet is more powerful in the centre than in the sides and this leads to the drop of the intensity of particles along the sides, thereby reducing the signal-to-noise ratio along the boundaries of the Field of View. problem, the time derivative term is computed without the addition of noise. This is followed by the addition of noise to the velocity field

To study the influence of the intensity of noise in the correlation coefficient results, different levels of noise is added by adjusting the Signal-to-Noise Ratio (SNR) parameter for 50, 100, 150, 200. For the TCF3000 to resemble that of the experiment, the Least Square method is used for obtaining the derivatives.

The instantaneous velocity signal with different levels of noise is given in Figure 7.26. The corresponding correlation coefficient computed with different levels of noise is given in Figure 7.27. On comparing the correlation coefficient of A t + A computed with the use of only one S-PIV system, with that from DNS with added noise, the results with SNR = 150 matches approximately with the result. Thus it is shown that a noise that is 1/150 times the velocity signal results in the correlation coefficient comparable to that, obtained from S-PIV experiments. In addition, the reduction of the absolute correlation coefficient between A t + A and T u at small scales is also replicated in the DNS with added noise. This could be attributed to the fact that when small scales are considered for (δu) 2 , the two points considered are close together such that their difference is mostly dominated by the noise of the signal. The -Π is dominant only at smaller scales in the buffer layer. With the increase of wall distance, -Π is dominant at larger scales. At the channel centreline and the edge of the boundary layer thickness, -Π is non-zero even at scales larger than δ. In TCF3000, -Π is approximately equal to 0.5 * at r x = 9δ. A quick decomposition of the term revealed that the dominance of this term at very large scales is due to this term u 1 u 2 ∂u 1 ∂x 2 , which is due to the correlation between the large and small scales of the flow [START_REF] Kholmyansky | On the origins of intermittency in real turbulent flows[END_REF] .

The Spatio-temporal average values of the KHMH equation terms are different between the streamwise and spanwise directions. This is mainly observed between -Π and -P r . From the buffer layer, there are some scales in which production surpasses the * and this positive peak of -P r coincides with the negative peak of -Π . The scales at which this peak occurs increases progressively with the increase of wall distance in the same way in all three DNS datasets when the wall distance is normalised by δ. Cimarelli et al. [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF] observed this behaviour of Π in a DNS of TCF, to conclude that this is due to the spatial reverse cascade where the energy ascends towards the channel centreline in a straight line in (r y , r z , y) space.

A modified Taylor microscale derived for wall-bounded turbulent flows separately for the streamwise and spanwise direction is observed to scale the peak of -Π from outside the buffer layer until near the centreline of the channel flow

Summary of findings

and the edge of turbulent boundary layer flow and is verified in all the three DNS datasets.

Instantaneous KHMH equation terms

The A high correlation coefficient between A t + A and (Π, T u ) of the order of -0.5 from y + = 12 to y/δ = 1 is observed in TCF550 and TBL550. And the correlation coefficient with A t + A is between 0.65 to 0.8 with Π + T u from y + = 12 to y/δ = 1 in TCF550 and TBL550. Near the wall, this is explained by A t + A balancing the Π + T u , and away from the wall, this could be due to the large scale structures sweeping the small scale structures (sweeping decorrelation hypothesis).

A high correlation coefficient is observed between A t + A and T p only near the wall, of the order of 0.3 in all three DNS datasets. A correlation coefficient of the order of 0.35-0.45 is observed between T p and the two energy transfer terms (Π, T u ). The correlation coefficient between T p and Π + T u is of the order of 0.5 to 0.65. This high correlation coefficient of both the energy transfer terms with A t + A and T p reflects the relation between the non-linear term and time derivative term, and non-linear term and pressure term in the Navier-Stokes' equation. This argument that the non-linear term is causing this correlation coefficient is solidified by the fact that the correlation coefficient between A t + A and T p is negligible except near the wall.

The increase of Reynolds number increases the correlation coefficient between A t +A and Π + T u , which is noticeable from y + = 12 till the centreline of the channel.

On the other hand, the increase of Reynolds number results in a reduction of the correlation coefficient between T p and Π + T u when y + > 100.

The high correlation coefficient of -0.5 is observed between A t + A and the two energy transfer terms does extend to scales of the order of 9δ value in the DNS of

Chapter 8. Conclusion and Perspectives

TCF at Re τ = 3000. On decomposing both the energy transfer terms reveals that the terms δu 1 and ∂ ∂x j (δu 1 ) contributes the most, especially the δu 1 ∂ ∂x 1 (δu 1 ), to the correlation coefficient between Π and A t + A, and between Π and T p .

Scale-by-scale energy cascade

On observing the radial component of interscale energy transfer term (Π ρ ) and the scale energy flux (δu ρ δu 2 i ), it is revealed that there is an inverse energy cascade in the buffer layer at y + = 12, which coincides approximately with the observation by Cimarelli et al. [START_REF] Cimarelli | Paths of energy in turbulent channel flows[END_REF] as the scale energy source, where the production surpasses the dissipation. With the increase of wall distance the inverse cascade moves to higher spanwise scales in all three DNS datasets. This is tracked by the negative peak value of -Π in r z direction at different wall distances. This negative peak of -Π approximately coincides with the positive peak of -P r . The trend of the two peaks in r z /δ is linear in y/δ. There is no effect of Re τ , from y/δ = 0.01 to 0.1 in the position of the two peaks, suggesting this is in the range of the buffer layer structures. In the range 0.1 < y/δ < 0.4, the peaks of the TCF and TBL at Re τ = 550 are together, and the peak of TCF3000 follows a different curve, and this is in the range of Wall-Attached Self-similar Structures (WASS).

Results from PIV experiments

Measurement uncertainty

The variances and covariance of PIV datasets agree well with that of DNS of similar Re τ when y + > 20 and y + > 40 for PIV with Re τ = 2220 and 3840 respectively. The measurement uncertainty with both the PIV datasets are less than 1% of free-stream velocity for both PIV datasets. The noise value associated with the streamwise velocity fluctuations is of the order of 0.03-0.06 pixels and 0.04-0.08 pixels for the PIV dataset with Re τ = 2220 and 3840 respectively.

Computation of dissipation

The normalised dissipation rate D + computed with PIV dataset with Re τ = 2220, with replacing the missing derivatives with the axisymmetry assumption [START_REF] George | Locally axisymmetric turbulence[END_REF] , agrees well with that of TBL DNS dataset Re τ = 1989 when y + > 25. This is verified for the computation from using S-PIV system 1 , system 2 and a combination of two systems (system 1|2 ), and they all tend to agree well with the DNS datasets when y + > 25.

Summary of findings

The normalised dissipation rate D + computed with the PIV dataset with Re τ = 3840 doesn't agree with that of the DNS dataset when y + < 200. This is attributed to the limited spatial resolution which is of the order of 4.6η -5.6η. With the PIV at Re τ = 2220, the spatial resolution is of the order of 2.3η-2.8η, which helped in the computation that agrees with the DNS datasets.

Spatio-temporal average KHMH equation

The Spatio-temporal average of KHMH equation terms obtained from both PIV datasets, on comparison, revealed that -Π is qualitatively the same between the DNS and PIV datasets. However, their peak value is higher in both the PIV datasets compared to the DNS datasets. -P r from both the PIV datasets surpasses * at around the same scale, and it increases with the wall distance. In comparison, -P r is always lower than * at all r + x values considered in the present analysis of DNS datasets. The use of two S-PIV systems in the computation results in bias error for -A t and A , however -A t + A term is approximately the same irrespective of which system is used for the computation in the PIV with Re τ = 2220. The computation with PIV at Re τ = 3840 has a higher value for -A t + A than all the other datasets. The modified Taylor microscale doesn't exactly scale the peak in both PIV and DNS datasets when considered to have terms only in XY-plane, and this could be due to the absence of ∂u 1 ∂x 3 and ∂u 2 ∂x 3 terms.

Instantaneous KHMH equation terms

The standard deviation of Π and T u are of the same order in both PIV and DNS datasets, and hence these terms have the least effect of noise. P r is not affected by the noise on average, however, its standard deviation at y + = 40 is not comparable to DNS datasets. At y + = 100 and 140, the standard deviation of P r is approximately the same between PIV and DNS datasets. A t + A is the most affected term from the noise of PIV datasets. The use of two S-PIV systems had resulted in the reduction of this standard deviation, however, it is still higher in both the PIV dataset than that of the DNS dataset. 

Computation of integral scales

The integral length scale defined on the basis of the velocity in a turbulent flow refers to correlation length that exists in a velocity signal in particular direction. It is used as the characteristic large scale in a turbulent flow where it becomes difficult to define a large length scale based on physical constraints of the flow domain [START_REF] Hinze | Turbulence. McGraw-Hill classic textbook reissue series[END_REF] . In the present work the integral scale is defined by :

where 'j' refers to the direction of velocity vector, 'k' refers to direction of integration and 'ii' refers to the autocorrelation function which is defined by :

The computation of the integral scale is not straight-forward to compute from Equation B.1. The autocorrelation curve generally decreases fast to its first zero crossing, and thereafter may become negative or continue to oscillate about zero. O'Neill et al. [START_REF] O'neill | Autocorrelation functions and the determination of integral length with reference to experimental and numerical data[END_REF] investigated the computation of the veloctity integral scale using different methods and concludes that the method of integrating upto the first zero crossing to be well defined and suitable for many flows. 

B.3 Average value of interscale energy transfer at large scales

The average value of Π at large scales is approximately equal to 0.5 and it is valid till r + = 9δ. This is investigated further by decomposing Π into nine terms (a 11 to a 33 ), which showed that a 21 = u 1 u 2 ∂ 2 u 1 contributes most to high average value of -Π . Following the work of Kholmyansky and Tsinober [START_REF] Kholmyansky | On the origins of intermittency in real turbulent flows[END_REF] , where they derived the following result

This Equation B.3 relates the product of velocity and velocity derivative to correlation coefficient between large and small scales of the flow. This section focuses on deriving similar relation for a 21 term.

Starting with the vector identity

Equating the #ı components and multiplying the resulting equation by u 1 to get the equation in terms of a 21 ,

Averaging the above equation gives

First term on the right hand side is non-zero only for the derivative in the wall-

The third and the fifth term on the left hand side can be simplified using continuity equation for incompressible flows

B.4. Standard deviation of KHMH equation terms

The second term on the left hand side is the only non-zero term, because it is in the wall-normal direction. The other terms on the left hand side of the equation are zero.

The term a 21 shows the correlation of a Reynolds stress term and a vorticity which in-turn suggests the correlation coefficient between the large and small scales of the flow. The out-of-plane velocity is computed for u ∞ = 3m/s as :

The out-of-plane displacement for sampling frequency, f s =4.6 kHz is computed as :

The thickness of light sheet has an upper limit, so that there is less averaging in that direction. The light-sheet should have equal distribution of energy of the laser all along the thickness to ensure high SNR value, and also that it is sufficiently smaller than the interrogation window. However for the lower end is defined by the fact that the out-of-plane displacement should be limited to one-quarter of the ligh-sheet thickness. Thus for the present experiment the out-of-plane displacement is 0.043 mm, interrogation window is 1mm, and so a trade-off value of light sheet thickness of 0.5mm is chosen for the experiment.

Appendix C. Computation of S-PIV parameters

The angle of divergence from the beam-waist at the field-of-view (θ 1 ) is computed by Equation 6.4 as 13.54×10 -3 rad. The Rayleigh length z r , which is defined as the distance along the propogation direction in which the area of cross-section doubles from the beam-waist. This is computed by :

This length corresponds to approximately the length of the field-of-view along the wall-normal direction which is 20mm. The laser beam is a diverging beam, which has an angle of 4.4 ×10 -3 rad, which is then made parallel by the use of 1000 mm lens. The radius of the laser beam which is parallel is given by 4.44 mm. The light-sheet thickness is decided to 0.5 mm, and so the angle of divergence at fieldof-view is 13.54 ×10 -3 rad, and so the focal length of the spherical lens to be used is computed by :

Since the laser beam is parallel before the spherical lens, it will converge at the focus which is 327 mm according to our requirements. The closest available spherical lens is 400 mm, and is therefore used in the experiment.

In order to decide the cylindrical lens for illuminating the field-of-view of 70 mm in length, it is decided to produce a light sheet of 180 mm. This high value is chosen because, the high value of M 2 = 20 for the laser means that the beam is more concentrated and powerful in the center and it is important that this region covers the entire field-of-view. For the computation of angle of divergence for cylindrical lens (θ 2 )

For the computation of focal length of the cylindrical lens,

The closest value of cylindrical lens is 22 mm and is used in the experiment to create the light-sheet.
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Appendix C. Computation of S-PIV parameters

the addition/subtraction of terms are performed, somehow the A t with individual systems are near zero and the one with denoised is away from zero.

difference scheme, which is given by :

If the noise is assumed to be correlated to a certain length scale, then the adjacent points are highly correlated than the points away from it. Hence it is possible to reduce the noise by obtaining the derivative from points next to the immediate neighbours. This will be addressed as central difference (skipped). This is given by : ∂u ∂t i = u i+2u i-2 4∆t (C.12)

Foucaut and Stanislas 39 observed that the Least-Square method (LS) [START_REF] Raffel | Particle image velocimetry: a practical guide[END_REF] , to obtain the derivative has smaller noise amplification coefficient than the central difference schemes, and still maintains the second-order scheme. So, this method is optimized to reduce the effect of noise in the computation of derivatives. This LS scheme is given by: ∂u ∂t i = -2u i-2u i-1 + u i+1 + 2u i-2 10∆t (C.13)

.5 shows the standard deviation of A t +A term from using different methods to obtain time-derivative. It can be observed that the second-order central difference scheme has the highest standard deviation followed by second order central difference scheme (skipped), where the next set of points are used and is followed by linear regression method. The least standard deviation of all 4 methods is obtained by the least square fit which is slmost equal to that of linear regresssion. In addition to time-derivative, there is also a space derivative in the A t + A and so the leastsquare method is used for the space derivative and this plotted as 'least square (space+time)' in Figure C.5. It is observed that the standard deviation is reduced when both the space and time derivatives are obtained using least-square method.

Hence this method is used to obtain the derivatives of velocity in the PIV datasets.