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Résumé : Les modèles de réseaux neuronaux
capables d’approximer et d’échantillonner des
distributions de probabilité à haute dimension
sont connus sous le nom de modèles généra-
tifs. Ces dernières années, cette classe de mo-
dèles a fait l’objet d’une attention particulière
en raison de son potentiel à apprendre automa-
tiquement des représentations significatives de
la grande quantité de données que nous produi-
sons et consommons quotidiennement. Cette
thèse présente des résultats théoriques et al-
gorithmiques relatifs aux modèles génératifs et
elle est divisée en deux parties.

Dans la première partie, nous concentrons
notre attention sur la Machine de Boltzmann
Restreinte (RBM) et sa formulation en phy-
sique statistique. Historiquement, la physique
statistique a joué un rôle central dans l’étude
des fondements théoriques et dans le dévelop-
pement de modèles de réseaux neuronaux. La
première implémentation neuronale d’une mé-
moire associative (Hopfield, 1982) est un tra-
vail séminal dans ce contexte. La RBM peut
être considérée comme un développement du
modèle de Hopfield, et elle est particulièrement
intéressante en raison de son rôle à l’avant-
garde de la révolution de l’apprentissage pro-
fond (Hinton et al. 2006). En exploitant sa for-
mulation de physique statistique, nous dérivons
une théorie de champ moyen de la RBM qui
nous permet de caractériser à la fois son fonc-
tionnement en tant que modèle génératif et
la dynamique de sa procédure d’apprentissage.
Cette analyse s’avère utile pour dériver une
stratégie d’imputation robuste de type champ

moyen qui permet d’utiliser la RBM pour ap-
prendre des distributions empiriques dans le cas
difficile où l’ensemble de données à modéli-
ser n’est que partiellement observé et présente
des pourcentages élevés d’informations man-
quantes.

Dans la deuxième partie, nous considérons
une classe de modèles génératifs connus sous
le nom de Normalizing Flows (NF), dont la
caractéristique distinctive est la capacité de
modéliser des distributions complexes à haute
dimension en employant des transformations
inversibles d’une distribution simple et trai-
table. L’inversibilité de la transformation per-
met d’exprimer la densité de probabilité par
un changement de variables dont l’optimisa-
tion par Maximum de Vraisemblance (ML) est
assez simple mais coûteuse en calcul. La pra-
tique courante est d’imposer des contraintes
architecturales sur la classe de transformations
utilisées pour les NF, afin de rendre l’optimi-
sation par ML efficace. En partant de consi-
dérations géométriques, nous proposons un al-
gorithme d’optimisation stochastique par des-
cente de gradient qui exploite la structure ma-
tricielle des réseaux de neurones entièrement
connectés sans imposer de contraintes sur leur
structure autre que la dimensionnalité fixe re-
quise par l’inversibilité. Cet algorithme est ef-
ficace en termes de calcul et peut s’adapter
à des ensembles de données de très haute di-
mension. Nous démontrons son efficacité dans
l’apprentissage d’une architecture non linéaire
multicouche utilisant des couches entièrement
connectées.
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Abstract : Neural network models able to ap-
proximate and sample high dimensional proba-
bility distributions are known as generative mo-
dels. In recent years this class of models has
received tremendous attention due to their po-
tential in automatically learning meaningful re-
presentations of the vast amount of data that
we produce and consume daily. This thesis pre-
sents theoretical and algorithmic results pertai-
ning to generative models and it is divided in
two parts.

In the first part, we focus our attention on
the Restricted Boltzmann Machine (RBM) and
its statistical physics formulation. Historically,
statistical physics has played a central role in
studying the theoretical foundations and pro-
viding inspiration for neural network models.
The first neural implementation of an associa-
tive memory (Hopfield, 1982) is a seminal work
in this context. The RBM can be regarded to
as a development of the Hopfield model, and it
is of particular interest due to its role at the fo-
refront of the deep learning revolution (Hinton
et al. 2006). Exploiting its statistical physics
formulation, we derive a mean-field theory of
the RBM that allows us to characterize both
its functioning as a generative model and the
dynamics of its training procedure. This analy-
sis proves useful in deriving a robust mean-field
imputation strategy that makes it possible to

use the RBM to learn empirical distributions
in the challenging case in which the dataset to
model is only partially observed and presents
high percentages of missing information.

In the second part we consider a class of
generative models known as Normalizing Flows
(NF), whose distinguishing feature is the ability
to model complex high-dimensional distribu-
tions by employing invertible transformations
of a simple tractable distribution. The inver-
tibility of the transformation allows expressing
the probability density through a change of va-
riables, whose optimization by Maximum Like-
lihood (ML) is rather straightforward but com-
putationally expensive. The common practice
is to impose architectural constraints on the
class of transformations used for NF, in order
to make the ML optimization efficient. Procee-
ding from geometrical considerations, we pro-
pose a stochastic gradient descent optimiza-
tion algorithm that exploits the matrix struc-
ture of fully connected neural networks without
imposing any constraints on their structure
other than the fixed dimensionality required by
invertibility. This algorithm is computationally
efficient and can scale to very high dimensio-
nal datasets. We demonstrate its effectiveness
in training a multilayer nonlinear architecture
employing fully connected layers.
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Résumé en français
Une brève histoire de l’intelligence artificielle Le domaine de l’intelligence artificielle (IA)
a considérablement changé et évolué au cours des dernières décennies. Le même terme “intelligence
artificielle” a pris différentes significations suivant les progrès de l’époque, étant le plus souvent défini
de façon très vague. Nous identifions la genèse du domaine avec la première tentative de modélisation
mathématique des neurones biologiques, proposée par McCulloch et Pitts dans les années 1940. Leur
approche s’inspirait du cerveau biologique et s’inscrivait dans un ensemble d’efforts visant à construire
un cerveau artificiel capable d’une intelligence “humaine”, alimentés par les nouvelles avancées et
l’émergence de disciplines scientifiques modernes telles que la théorie du calcul, les neurosciences et
la cybernétique (Wiener, 1948) qui ont caractérisé le paysage scientifique de ces années-là.

Le premier écart par rapport à ce paradigme apparaît dès les années 1950, lorsqu’une nouvelle
approche est proposée pour “procéder sur la base de la conjecture selon laquelle chaque aspect
de l’apprentissage ou de toute autre caractéristique de l’intelligence peut en principe être décrit si
précisément qu’une machine peut être faite pour le simuler” (McCarthy, 1955). Ce changement de
paradigme est une conséquence directe de l’avènement de l’ordinateur moderne et il s’agit d’une
approche plus abstraite de l’IA, car elle repose sur l’hypothèse que l’intelligence peut être construite
et simulée sur la base de la logique et des systèmes formels. Les premières mises en œuvre réussies
de systèmes d’IA sont dues à cette approche, qui est devenue connue sous le nom d’IA symbolique
et a représenté le paradigme dominant pendant des décennies. Cependant, malgré une série de
succès initiaux, l’approche de l’IA symbolique a eu du mal à faire face à certains problèmes centraux
de la cognition humaine, tels que la perception, l’apprentissage et la reconnaissance des formes.
Ces problèmes fondamentaux semblaient être plus facilement abordés par les réseaux neuronaux
artificiels, systèmes d’unités de calcul du type du neurone de McCulloch et Pitts, qui ont suscité un
renouvellement de l’intérêt pour ce type de modèles dans les années 1980.

C’est à ce moment que l’intérêt pour les réseaux neuronaux a commencé à s’étendre à d’autres
domaines, notamment en ce qui concerne la science nouvellement établie de la complexité. Dans
ce contexte, des contributions substantielles aux fondements théoriques et au développement des
réseaux neuronaux sont venues du domaine de la physique statistique. Parmi celles-ci, Hopfield (1982)
a introduit le premier modèle de réseau neuronal fonctionnel pour une mémoire associative. Peu à
peu, l’objectif initial de réaliser un cerveau artificiel s’est estompé, et toute une classe de modèles
utilisant des réseaux neuronaux artificiels complétés par des outils mathématiques et statistiques
est apparue comme un domaine riche en soi. Désigné sous le nom de apprentissage automatique
statistique, ce domaine se concentre désormais sur l’ingénierie de systèmes capables d’exploiter les
données et les algorithmes de calcul pour résoudre des problèmes complexes.

Dans les années 2010, les progrès technologiques ont déterminé la révolution de l’apprentissage
profond : la disponibilité de ressources et d’infrastructures de réseau plus puissants pour le calcul,
ainsi que l’accès à la quantité massive de données constamment générées par des myriades de
dispositifs technologiques interconnectés, ont permis de construire des modèles de réseaux neuronaux
de plus en plus grands et puissants exploitant des quantités plus importantes de données pour
résoudre les problèmes les plus disparates avec un succès croissant. Le lien avec l’IA se trouve dans
le fait que les modèles d’apprentissage profond ont été employés pour résoudre automatiquement
des problèmes qui, traditionnellement, nécessitaient l’emploi de l’intelligence humaine, comme la
reconnaissance d’objets (Krizhevsky, 2012), la synthèse vocale (VanDenOord, 2018) et la traduction
en langage naturel (Devlin, 2019).

Organisationde la thèse Cette thèse est structurée en deux parties principales. Dans la première
partie, nous adoptons le point de vue de la physique statistique sur l’analyse des réseaux de neurones.
Cette approche est principalement basée sur la théorie des systèmes désordonnés (Mezard, 1987),
un type prototypique de système complexe particulièrement adapté à la description des réseaux de
neurones ; trouvant son origine dans les années 1980, cette ligne de recherche est très active de nos
jours. Dans ce contexte, l’étude ici présentée concerne la Machine de Boltzmann Restreinte (RBM),
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un réseau neuronal simple qui a été parmi les protagonistes de la phase initiale de la révolution de
l’apprentissage profond (Hinton, 2006). Ce réseau est particulièrement intéressant du point de vue
de la physique statistique car il peut être interprété comme une généralisation du modèle de Hopfield
(Barra, 2012). Dans le Chapitre 1, nous présentons le modèle de Hopfield et discutons des principes
de base permettant de dériver une théorie de champ moyen pour les réseaux neuronaux. Dans le
Chapitre 2, nous présentons la RBM. Nous commençons à discuter de nos travaux originaux dans
le Chapitre 3, avec la présentation d’une description empirique des propriétés dynamiques du RBM.
Cela pose la base de l’analyse théorique de champ moyen développée dans le Chapitre 4, en discutant
des propriétés d’équilibre et dynamiques. Enfin, dans le Chapitre 5, nous montrons comment adapter
la RBM au scénario difficile de l’apprentissage avec des informations manquantes, en tirant parti de
l’image théorique présentée dans les sections précédentes.

Dans la deuxième partie, nous nous intéressons aux Flux Normalisateurs (NF) (Papamakarios,
2021), un type de modèle plus récent qui trouve des applications dans des domaines similaires à ceux
de la RBM. Nous nous éloignons ici de la physique statistique : dans le Chapitre 6, nous proposons
un modèle NF qui utilise des réseaux neuronaux entièrement connectés et nous montrons comment,
à partir de simples considérations de géométrie riemannienne, nous pouvons dériver un algorithme
efficace pour entraîner le modèle proposé.
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Abstract

Neural network models able to approximate and sample high dimen-
sional probability distributions are known as generative models. In recent
years this class of models has received tremendous attention due to their
potential in automatically learning meaningful representations of the vast
amount of data that we produce and consume daily. This thesis presents
theoretical and algorithmic results pertaining to generative models and
it is divided in two parts.

In the first part, we focus our attention on the Restricted Boltzmann
Machine (RBM) and its statistical physics formulation. Historically, sta-
tistical physics has played a central role in studying the theoretical foun-
dations and providing inspiration for neural network models. The first
neural implementation of an associative memory (Hopfield, 1982) is a
seminal work in this context. The RBM can be regarded to as a develop-
ment of the Hopfield model, and it is of particular interest due to its role
at the forefront of the deep learning revolution (Hinton et al. 2006). Ex-
ploiting its statistical physics formulation, we derive a mean-field theory
of the RBM that allows us to characterize both its functioning as a gen-
erative model and the dynamics of its training procedure. This analysis
proves useful in deriving a robust mean-field imputation strategy that
makes it possible to use the RBM to learn empirical distributions in the
challenging case in which the dataset to model is only partially observed
and presents high percentages of missing information.

In the second part we consider a class of generative models known
as Normalizing Flows (NF), whose distinguishing feature is the ability
to model complex high-dimensional distributions by employing invertible
transformations of a simple tractable distribution. The invertibility of
the transformation allows expressing the probability density through a
change of variables, whose optimization by Maximum Likelihood (ML)
is rather straightforward but computationally expensive. The common
practice is to impose architectural constraints on the class of transfor-
mations used for NF, in order to make the ML optimization efficient.
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Proceeding from geometrical considerations, we propose a stochastic gra-
dient descent optimization algorithm that exploits the matrix structure
of fully connected neural networks without imposing any constraints on
their structure other than the fixed dimensionality required by invert-
ibility. This algorithm is computationally efficient and can scale to very
high dimensional datasets. We demonstrate its effectiveness in training
a multilayer nonlinear architecture employing fully connected layers.
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Introduction

A brief history of Artificial Intelligence

The field of artificial intelligence (AI) has changed and evolved considerably
over the last decades. The same term “artificial intelligence” has taken on var-
ious different meanings following the advancements of the epoch, being more
often then not only loosely defined. We identify the genesis of the field with
the first attempt to model biological neurons mathematically, proposed by Mc-
Culloch and Pitts [60] in the 1940s. Their approach took inspiration from the
biological brain and it is framed in a set of efforts to build an artificial brain
capable of “human” intelligence, fueled by novel advances and the emergence
of modern scientific disciplines such as the theory of computation, neuroscience
and cybernetics [80, 82] that have characterized the scientific landscape in those
years. The first departure from this paradigm comes as early as in the 1950s,
when a new approach is proposed to “proceed on the basis of the conjecture
that every aspect of learning or any other feature of intelligence can in principle
be so precisely described that a machine can be made to simulate it” ([59]).
This paradigm shift is a direct consequence of the advent of the modern com-
puter and it is a more abstract approach to AI, as it is based on the assumption
that intelligence can be constructed and simulated on the basis of logic and for-
mal systems. The first successful implementation of AI systems are due to this
approach [64], which became known as Symbolic AI and represented the domi-
nant paradigm for decades. However, in spite of a series of initial successes, the
Symbolic AI approach struggled to cope with certain problems that are cen-
tral to human cognition, such as perception, learning and pattern recognition.
These fundamental problems appeared to be more easily approached by arti-
ficial neural networks [69], systems of computational units of the kind of the
McCulloch and Pitts neuron, which sparked a renewed interest in this kind of
models in the 1980s. It is at this point that interest in neural networks started
to spread to other fields, especially with regard to the newly established science
of complexity [79]. In this context, substantial contributions to the theoretical
foundations and the development of neural networks came from the field of
statistical physics. Among these, [42] introduced the first functioning neural
network model for an associative memory, subsequently analyzed in exquisite
detail in [5, 7, 6], and [30, 29] produced seminal work on the storage capacity of
neural networks. Gradually, the original goal of realizing an artificial brain has

v



Introduction

faded away, and a whole class of models employing artificial neural networks
complemented with mathematical and statistical tools has emerged as a rich
field in its own right. Referred to as statistical machine learning, its focus has
become that of engineering systems capable of leveraging data and computa-
tions to solve complex problems. In the 2010s, the technological advancement
has determined the deep learning revolution: the availability of more power-
ful hardware and network infrastructures for computation, as well as access
to the massive amount of data constantly generated by myriads of intercon-
nected technological devices, have made it possible to build increasingly larger
and more powerful neural network models leveraging larger amounts of data
to solve the most disparate problems with increasing success. The relation to
AI is to be found in the fact that deep learning models have been employed
to automatically solve problems that traditionally needed the employment of
human intelligence to be solved, like object recognition [48], speech synthesis
[67] and natural language translation [23].

Thesis organization

This thesis is structured in two main parts. In the first part, we adopt the sta-
tistical physics point of view on the analysis of neural networks. This approach
is mainly based on the theory of disordered systems [61], a prototypical kind of
complex system that is particularly suited to describe neural networks; finding
its origin in the 1980s, this line of research is very active nowadays [17]. In this
context, the investigation here presented concerns the Restricted Boltzmann
Machine (RBM), a simple neural network that has been among the protagonists
in the initial phase of the deep learning revolution [39]. This is particularly
interesting from the statistical physics point of view as it can be interpreted
as a generalization of the Hopfield model [9]. In Chapter 1 we introduce the
Hopfield model and discuss the basic principles to derive a mean-field theory
for neural networks. In Chapter 2 we introduce the RBM. We start discussing
original work in Section 3, with the presentation of an empirical description of
the dynamical properties of the RBM. This poses the basis for the theoretical
mean-field analysis developed in Chapter 4, discussing equilibrium and dynam-
ical properties. Finally, in Chapter 5 we show how to adapt the RBM to the
challenging scenario of learning with missing information, taking advantage of
the theoretical picture discussed in previous Sections.

In the second part, we turn our attention to Normalizing Flows (NF) [68],
a more recent kind of models that finds applications in similar domains as
the RBM. Here we depart from the statistical physics focus: in Section 6.2
we propose a NF model that employs fully connected neural networks and in
Sections 6.3 and 6.4 we show how proceeding from simple Riemannian geometry
considerations we can derive an efficient algorithm to train the proposed model.

vi



Contributions

Contributions

A reading guide Let’s start with a stylistic note. Throughout the thesis, I
use “we” as the subject. This is to signal that all the work discussed has been
done with the help and guidance of my supervisors and collaborators. This is
the only Section in which I use “I”, and this is to point out in a precise way
my personal contributions.

In Part I, Chapter 1 serves as an introduction to the tools and models that
we use in the following Chapters. While the topics here discussed are well-
known, the presentation is rather original. The whole treatment is meant to be
self-contained, ultimately introducing the RBM in a principled way. Chapter 3
reports the empirical study of the RBM that I performed in the initial phase of
my PhD. In the development of the mean-field theory of Chapter 4 I took on a
more marginal role. The main theoretical analysis has been developed by my
supervisors while I contributed in general discussions, in performing numerical
analysis and writing the paper. This Chapter is supposed to be reasonably self-
contained, and it represents my attempt to more gently introduce the related
paper (Reprint B). For the work in Chapter 5 and Part II, I played a more cen-
tral role both in the design of the proposed algorithms and their development.
These Chapters are not self-contained; they represent a brief introduction to
the associated papers (Reprints C and D), that I suggest reading in full.

Publications Parts I and II of this thesis are meant to introduce and com-
plement the papers below, whose content is reported in full in the Reprints
section.

• Reprint A
A. Decelle, G. Fissore, and C. Furtlehner. “Spectral dynamics of learning
in restricted Boltzmann machines”. In: EPL 119.6 (2017), p. 60001

• Reprint B
A. Decelle, G. Fissore, and C. Furtlehner. “Thermodynamics of Re-
stricted Boltzmann Machines and Related Learning Dynamics”. In: Jour-
nal of Statistical Physics 172.6 (July 2018), pp. 1576–1608. issn: 1572-
9613. doi: 10.1007/s10955-018-2105-y. url: http://dx.doi.org/

10.1007/s10955-018-2105-y
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Chapter 1

Background

1.1 The mathematical neuron

To investigate the mechanisms underlying intelligent behavior, we need a model
of the brain that is simple enough to be studied yet rich enough to be functional.
More precisely, we want to come up with models and algorithms that are able to
realize complex tasks like pattern formation, object recognition and associative
memories. A fundamental assumption in this context is that solutions to these
complex tasks emerge from the interaction dynamics of a large number of simple
elementary constituents, so we can abstract from the biological implementation
details and build models that are useful and that we can analyze thoroughly.

The first successful attempt to model neurons mathematically has been
proposed by McCulloch and Pitts [60]. Their model of the brain consists of
a network of “on/off” binary nodes ni with associated thresholds µi and con-
nected by weights wij (connecting nodes i and j). The behavior of the network
is determined by a simple time-dependent update rule:

ni(t+ 1) = Θ


∑

j

wijnj(t)− µi


 . (1.1)

This update rule models the firing mechanisms observed in networks of real
neurons. Here the nodes are modeled as individual processing units that ac-
tivate when the inputs from the other units is above a certain threshold; the
weights wij mimic the role of synaptic connections, with positive and nega-
tive values respectively modeling excitatory and inhibitory synapses, and the
threshold values µi account for the need of an activation potential. Many bio-
logical details of real neurons are not directly included in this model, and we
can assume that their role is not fundamental in determining the emergence of
complex behavior in the network. Nonetheless, some features of the model are
not biologically plausible, most notably the implicit need for a global synchro-
nization mechanism (note that activations at time t+ 1 depend on the state of
the full network at time t) which has not been observed in the animal brain.
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1. Background

We will see in Section 1.2 how in the Hopfield model we relax this constraint
to obtain a functioning associative memory; here let us stress the fact that
ultimately our objective is not to build a model of the brain which is as close
to reality as possible but to study the abstract mechanisms that give rise to
complex behaviors, and it is in this sense that the McCulloch-Pitts network of
neurons is a success.

In the following Section we will introduce the Hopfield network, a simple
generalization of the McCulloch-Pitts model that gives rise to an associative
memory. Subsequently we will introduce the tools that let us analyze the
behavior and the limits of such networks, and we will see how to apply them
to the Hopfield model. Finally, we will introduce the main subject of interest
of this thesis, the Restricted Boltzmann Machine (RBM).

1.2 The Hopfield model

One of the simplest tasks that we can realize with a neural network is that of
implementing an associative memory, i.e. a memory system that is content-
addressable: given a partial observation of a pattern as input, the memory
retrieves a previously stored pattern that is similar to the input. A popular
neural network system to implement an associative memory is the Hopfield
model [42], consisting in a network of N binary nodes si = ±1 with associated
thresholds θi and connected by weights wij .

Storage of patterns. A pattern is represented by a specific configuration of
the nodes si and storage of patterns in the network is achieved through Hebbian
learning [36], which originates from the observation that synaptic connections
are stronger among neurons that activate simultaneously. The Hebbian rule
is commonly stated as “neurons that fire together, wire together” and in the
context of the Hopfield model with p binary patterns xµ to store it takes the
form

wij =
1

N

p∑

µ=1

xµi x
µ
j , i 6= j. (1.2)

We note that the model can be described by a symmetric weight matrix W ;
furthermore, connections of a node with itself are not allowed so that we have
wii = 0.

Patterns retrieval. In contrast to a network of McCulloch-Pitts neurons,
the Hopfield network is updated asynchronously: at each time step we select a
node si at random and we update its value following the rule

si = sign


∑

j

wijsj + θi


 , sign(x) =

{
−1 x ≤ 0

+1 x > 0
(1.3)

We assume without loss of generality that θi = 0. Further assuming that the
number of nodes in the network is large enough, stored patterns are stable
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1.2. The Hopfield model

under the application of the above update rule. To show this, let’s call hνi the
input to a node i when the network is presented with a stored pattern xν

hνi =
∑

j

wijx
ν
j =

1

N

∑

j

∑

µ

xµi x
µ
j x

ν
j .

If the number of stored patterns is small w.r.t. the number of nodes and
recalling that the patterns are binary, we have

hνi = xνi +
1

N

∑

j

∑

µ6=ν
xµi x

µ
j x

ν
j

' xνi
and thus the following stability condition holds

sign(hνi ) = xνi . (1.4)

This let us propose a possible strategy for retrieval of stored patterns. Starting
from an initial configuration, we let the network evolve under the update rule
(1.3); if we start from a configuration that is close to a stored pattern xν , we
might expect the network to stabilize on the configuration corresponding to xν ,
thus realizing the objective of a content-addressable memory. We now go on
by presenting a simple analysis of the convergence properties of the proposed
strategy, to show that it is indeed a sensible alternative to realize an associative
memory.

Convergence. A simple argument for the convergence of a Hopfield network
to a stable state is provided in [13]. We start by representing the network as
a bipartite graph; one partition includes the nodes whose value is +1 and the
other partition includes the nodes whose value is −1. Each node will have
“internal” connections linking it to the nodes in the same partition and “ex-
ternal” connections linking it to the nodes in the other partition. At each step
we select a node and we compute the sum of internal and external connections;
if the sum of the external connections is higher, we flip the node’s value and
we move it to the opposite partition. This process is equivalent to adopting
the Hopfield update rule (1.3) but from this point of view the convergence of
the network amounts to finding a minimum cut of the graph representing the
network. Given that at every step the number of connections linking the two
partitions either decreases or stays the same and that the number of possible
states of the network is finite (so we would eventually explore all nodes with
high probability) we are guaranteed to end up in a stable state.

Unfortunately, what is not guaranteed in the Hopfield model is that a stable
state corresponds to a stored pattern. It is easy to see, for instance, that the
reversed patterns −xν are also stable. As another example of a stable state,
we consider the special case in which the patterns are random and we take the
mixed state xm defined as

xmi = sign(xµ1

i + xµ2

i + xµ2

i ).
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As the patterns are random, 3 times out of 4 we expect to observe xmi = xµ1

i

(and the same is valid for xµ2

i and xµ3

i ), so that for N large the following
identity holds ∑

j

xµ1

j x
m
j =

3

4
N − N

4
=
N

2
.

Assuming again that the number of patterns is small (w.r.t. the number of
nodes) we get

hmi =
∑

j

wijx
m
j

=
1

2
xµ1

i +
1

2
xµ2

i +
1

2
xµ3

i +
1

N

∑

µk∈(µ1,µ2,µ3)

∑

j

∑

µ6=µk
xµi x

µ
j x

m
i

' 1

2
xµ1

i +
1

2
xµ2

i +
1

2
xµ3

i

which is equivalent to the stability condition (1.4) and thus xm is a stable
configuration of the network even though it is not a stored pattern. In general,
the argument can be extended to show that linear combinations of an odd
number of patterns are stable, and these are called mixture states.

As a final remark, let us note that patterns stability has been assessed
under the assumption that the number of patterns is small compared to the
number of nodes in the network. In principle this is not very problematic as
we can always assume the network to be large enough, but from a practical
perspective it would be useful to know what is the capacity of the model, i.e.
how many patterns we can store as a function of the size N of the network. We
will deal with this matter and other details about the conditions to guarantee
the functioning of the Hopfield model as an associative network in Section 1.7.

The energy function. To each configuration s of a Hopfield network we
can associate a scalar function E defined as follows

E(s) = −1

2

N∑

i=1

N∑

j=1

wijsisj +

N∑

i=1

θisi. (1.5)

This is called the energy function of the model, for reasons that will be clarified
in Section 1.3. For now we are interested in showing that the dynamics induced
by the update rule (1.3) minimizes this quantity. Starting from a configuration
s, at each step we select a node k and either we leave its value unchanged or
we transition to a new configuration s′ with s′k = −sk. In the first case the
energy doesn’t change, while in the second case we have

∆E = E(s′)− E(s)

= (sk − s′k)


∑

j

wkjsj − θk
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which is necessarily negative to be consistent with the update rule (1.3). Sim-
ilarly, when the network attains a stable configuration we have ∆E > 0 if we
flip the value of any node.

We can now paint an interesting picture of the Hopfield model, that will
be the starting point for the more advanced analysis presented later on. The
configurations of the network live in an energy landscape with many minima,
represented by stable configurations of the system. The network evolves under
rule (1.3) to minimize the energy of the system, attaining the stable configura-
tions. As the energy decreases at each step of the dynamical evolution, we can
think of the stable states as attractors of the system; initializing the system
close to a stable configuration, the network will be attracted to it. In this sense
it seems reasonable that under the right conditions the system can function as
an associative memory; Section 1.7 is devoted to delineating these conditions.

1.3 Statistical description of a neural network

We turn to a stochastic description of a network of computational neurons,
which amounts to introduce some uncertainty in the model by associating prob-
abilities to the possible states of the system. This let us reason directly on the
expected probabilistic behavior of the model and not on specific instances of
it, allowing us to reach general conclusions. Moreover, by analogy to neuronal
networks it seems reasonable to introduce some noise as a way to take into
account minor effects due to the complexities of the actual biological systems.

As a neural network of choice, we take the Hopfield model introduced in
Section 1.2 and define a probability distribution P (s) over the nodes of the
network. On this basis, we derive the exact form of this probability distribu-
tion and we introduce the necessary tools to analyze the expected behavior of
the system in great details. We remark that the Hopfield model as described in
Section 1.2 can already be considered weakly stochastic; indeed, its dynamics
depend on the random choice of nodes, but the update rule (1.3) is determin-
istic.

Defining a probability distribution over the nodes s we allow the equilibrium
configurations to fluctuate around their expected value. In this context the
description of the model in terms of the energy function is useful, as allowing the
configurations to fluctuate is equivalent to allowing the energy to fluctuate. But
what is a good functional form for the probability distribution over the nodes?
Our strategy is to look for a distribution that is as general as possible, i.e. we
want to avoid making unnecessary assumptions. This can be formulated as an
instance of the Occam’s razor, a principle stating that the most economical
theories are to be preferred. The logical and quantitative reasons motivating
the success of this principle lie in the fact that from a Bayesian standpoint
the most economical explanation consistent with the observations at hand is
more probable ([55], Chapter 28). Intuitively, in our case the only observation
that the appropriate probability distribution should encode is that the average
value of the energy is fixed and constant; as for the rest, avoiding assumptions
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1. Background

means that we are left in a state of maximum uncertainty about the fluctuations
of the system around the average. The information-theoretic expression that
quantifies uncertainty is the entropy of the distribution [71, 18]

H[P ] = −
∑

s

P (s) log(P (s)).

A sensible strategy to derive the functional form of the probability P (s) is thus
to apply the principle of maximum entropy [45]: we look for the normalized
distribution whose entropy is maximal under the only constraint of constant
average energy

maximize H[P ]

subject to
∑

s

P (s) = 1,
∑

s

P (s)E(s) = 〈E〉.

We can solve this constrained optimization problem by using Lagrange multi-
pliers. Introducing the multipliers λ and β we can write the Lagrangian

L = H(s)− λ
(∑

s

P (s)− 1

)
− β

(∑

s

P (s)E(s)− 〈E〉
)

that we extremize (eliminating λ) to get

P (s) =
e−βE(s)

Z
, Z =

∑

s

e−βE(s). (1.6)

Here β is a parameter that regulates the noise. To see this, we discuss the
stochastic dynamics of the network. An equilibrium configuration s of the
network is determined by a certain energy E(s) with associated probability
P (s). Being the system at equilibrium, the total probability of the network to
transition to a different state s′ must be counterbalanced by the probabilities
of transitioning to state s when found in a state s′ 6= s. Calling Ts→s′ the
transition probability from state s to state s′, a sufficient condition to guarantee
equilibrium is given by the detailed balance condition

Ts→s′P (s) = Ts′→sP (s′)

which we can write as

Ts→s′

Ts′→s
=
P (s′)
P (s)

= e−β(E(s)−E(s′)) = e−β∆E . (1.7)

A stochastic update rule for the Hopfield network must then obey condition
(1.7). A particularly fitting choice is the update rule defined by Glauber dy-
namics [32]

si =

{
+1 with probability fβ(hi)

−1 with probability 1− fβ(hi)
(1.8)
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1.4. Free energy

where

fβ(hi) =
1

1 + e−2βhi

hi =
∑

j

wijsj + θi.

Given rule (1.8) we see that the evolution of the system is completely random
for β → 0 (maximum noise) while it falls back to the deterministic rule (1.3)
for β → +∞ (no noise).

Equation (1.6) defines the Boltzmann-Gibbs distribution, with Z being
called the partition function. Such a distribution is used to model a wide
variety of physical systems at thermal equilibrium, where the energy function
effectively represents the energy of the system. In this context, the temperature
is a proxy for the noise and it is related to β as

β =
1

T
.

We will refer to β as the inverse temperature and to T as the temperature
of our model. While it might seem strange to define a temperature for a
neural network, we note that it is in truth pretty natural. In physical systems
the temperature is generally interpreted as a quantity that specifies the level
of noise, abstracting from the actual microscopic mechanisms generating the
noise; here, we introduced the inverse temperature in the exact same way.

1.4 Free energy

We have seen in Section 1.2 that in the deterministic case the energy of the
Hopfield network is minimized; the model evolves towards the states of min-
imum energy and such states are stable. In the stochastic case, due to the
noise, the system is allowed to move away from the states of lowest energy.
The actual value of the energy fluctuates, while its average value is constant.
The quantity that is now extremized is the entropy, which is required to be
maximal. Rewriting the entropy to explicitate the average energy

H[P ] = −
∑

s

P (s) logP (s) = β〈E〉+ logZ

we see that the quantity that gets minimized is now logZ, which is defined to
be the free energy

F
def
= −T logZ = 〈E(s)〉 − TH[P ]. (1.9)

This let us refine our picture of the Hopfield model. The system still evolves
towards states of minimal energy, but this tendency is counteracted by the
entropic term that allows other energy configurations at equilibrium. The
entropic term is weighted by the temperature: when T → 0 we get back to the
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1. Background

deterministic case and the energy of the system is minimized, while for T →
+∞ the entropic term dominates the dynamics and all energy configurations
are allowed.

The free energy fully determines the behavior of the system. From its
expression we can derive a variety of quantities of interest to describe the
system, like the average values of the nodes and their correlations

〈si〉 = −∂F
∂θi

〈sisj〉 = − ∂F

∂wij
.

A tractable form of the free energy is thus a very powerful tool to analyze the
system in depth. Unfortunately, this is not easy to compute as the partition
function Z involves a sum over an exponential number of terms. A standard
procedure is to express the free energy in a more general form and compute its
value in an approximated way, as we’ll see in Section 1.6.

1.5 Order parameters and phase transitions

The Hopfield network can operate in different regimes, depending on the aggre-
gated characteristic of the actual configurations of the nodes. These regimes
are called phases, and the terminology for the regimes comes from the theory
of the Ising model. The Ising model is an abstract model of a ferromagnet, in
which the nodes are called spins and the spins model the magnetic moments
of atoms in magnetic material. The specificity of the Ising model is that the
interactions among spins (the weights, in the Hopfield model) are all positive
and constant. At high temperature the entropic term dominates and the spins
are randomly oriented; the average value of the spins is thus zero, and this
phase is called paramagnetic in analogy to the paramagnetic material. When
the temperature is low, the interaction among the spins drive the system to
the minimum of the energy, which is identified by the configuration in which
all the spins are aligned. The system is thus found in a different phase in which
the spins are ordered, called the ferromagnetic phase; the magnetization is now
different from 0 and the transition from a null value to a finite value signals
the transition to a different phase of the system. The magnetization is called
order parameter as it signals the phase transition. For the Hopfield model,
at high temperature we can observe the same behavior and we have again a
paramagnetic phase. The behavior in the ferromagnetic phase is more subtle;
given that the weights can have both positive and negative values, the system
can be found in situations in which there are no ways to coordinate all the
nodes to attain orientations that minimize the energy. These are frustrated
configurations that evidence how the magnetization is not a good order pa-
rameter to describe the Hopfield model, and more refined alternatives need to
be used. Edwards-Anderson order parameters are appropriate to describe the
separation between paramagnetic and spin glass phase.
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1.6. Effective free energy

1.6 Effective free energy

In this section we approach the problem of computing a good approximation
to the free energy by exploiting the saddle point method, a general method-
ology that is applicable to a wide variety of models. We recall that the exact
form of the free energy (1.9) contains an exponential number of terms, mak-
ing the computation of its value a computationally hard problem. Adopting
a statistical description of the Hopfield model, we know from Section 1.4 that
the system evolves towards equilibrium states that minimize the free energy.
Furthermore, the equilibrium configurations are found in specific phases of the
system, characterized by the appropriate order parameters. Exploiting these
observations, the strategy consists in defining an effective free energy as a func-
tion of the order parameters. By construction, the minimum of the effective
free energy will be equivalent to the true free energy of the system, reducing
the problem of computing the free energy to a minimization problem. Further
assuming that the system is “large enough” we can compute the minimization
with the saddle point approximation. To exemplify this methodology, we will
consider the Ising ferromagnet and the associated magnetization. This choice
is made to simplify the presentation of the method, as the Hopfield model
necessitates of more elaborate order parameters (Section 1.5) and some more
involved mathematical manipulations. The general approach is nonetheless
the same; details about the Hopfield model are discussed in Section 1.7 and a
more elaborate method is presented in Section 4.2 with the introduction of the
Replica Method.

For the Ising ferromagnet, the magnetization m is the only order parameter
that we need to characterize the system

m =
1

N

∑

i

〈si〉. (1.10)

At equilibrium, the system will have a specific magnetization meq for which
the free energy is defined. To extend the notion of free energy, we want to con-
sider all possible values of magnetization. We start by rewriting the partition
function in terms of the free energy

Z =
∑

s

e−βE(s) = e−βF .

Now we can fix the value of the magnetization and consider all configurations
sm of the system that are consistent with such value, i.e. for which we have
1
N

∑
i si = m. Summing over all possible values of the magnetization, we can

rewrite the partition function as

Z =
∑

m

∑

sm

e−βE(sm)

from which a natural generalization of the free energy for a specific magneti-
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zation is defined

F (m)
def
= −T log

(∑

Sm

e−βE(Sm)

)
, Z =

∑

m

e−βF (m). (1.11)

We call this magnetization-dependent quantity the effective free energy and we
will also be interested in its per-node value

f(m) =
F (m)

N
.

For a large system (N → +∞) the magnetization can take an almost-continuous
set of values (flipping one node determines a change of 2

N in the magnetization)
so we can rewrite the partition function as an integral

Z =
N

2

∫ +1

−1

dm e−βNf(m).

As it turns out, for large N the value of the above integral is dominated by the
minimum value of f . We can thus substitute the integral to obtain

Z ' e−βNf(mmin).

This is called the saddle point approximation and it lets us link the effective
free energy to the equilibrium free energy

F ' F (mmin), mmin ≡ meq.

The problem of computing the partition function can be solved by deriving a
tractable form for f(m) and determining meq.

1.7 Mean-field theory of the Hopfield model

A complete mean-field theory of the Hopfield model has been derived in [5, 7]
under the assumption that the variables describing the patterns are indepen-
dent. In this section we summarize the derivation and clarify the role of the
patterns in defining a good order parameter for the Hopfield model. To begin
with, we will follow the strategy presented in Section 1.6 and derive a tractable
effective free energy. Subsequently, we discuss the need to average over the
patterns to describe a general statistical behavior of the system. We will only
present the results of this averaging; a more detailed account can be found in
[37, 66].

Effective free energy. To better understand why the partition function is
hard to compute, we rewrite the energy function of the Hopfield model as

E(s) = − 1

2N

p∑

µ=1

(∑

i

siξ
µ
i

)2

+ const.
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1.7. Mean-field theory of the Hopfield model

where we made explicit the dependence of the weights wij on the patterns and
we neglected the thresholds θi. The constant term comes from the diagonal
weights wii and we can drop it as it doesn’t impact the energy minimization.
We observe that the energy function can be interpreted as a sum of contri-
butions from each stored pattern, where each contribution is measured by the
square of the overlap of the system configuration with the considered pattern.
The partition function takes the form

Z =
∑

S

eβE(S) =
∑

S

exp


− β

2N

p∑

µ=1

(∑

i

siξ
µ
i

)2



which is hard to compute because the sum in the exponential includes quadratic
terms that cannot be factored. A simple yet powerful strategy to deal with this
problem is to introduce a Gaussian integral to verify the identity

exp


− β

2N

(∑

i

siξ
µ
i

)2

 =

(√
βN

2π

)p ∫ +∞

−∞
dmµ

× exp

[
−βN

2
(mµ)

2
+

(∑

i

siξ
µ
i

)
mµ

]

where we have introduced an auxiliary variable mµ for each pattern. This is
a Hubbard-Stratonovich transformation, useful to introduce the order param-
eters m = {mµ, µ = 1, . . . , p}. We will give the interpretation for these order
parameters in the next paragraph; for now we proceed to rewrite the partition
function by exploiting the above identity

Z =
∑

s

(√
βN

2π

)p ∫ +∞

−∞

∏

µ

dmµ exp

[
−βN

2
(mµ)

2
+ β

(∑

i

siξ
µ
i

)
mµ

]
.

(1.12)
The overlap terms in the exponential are now linear, so we can introduce a
tractable effective free energy f(β,m)

Z =

(√
βN

2π

)p ∫ +∞

−∞
dm e−βNf(β,m)

f(β,m) =
1

2
m2 − 1

βN

∑

i

log

[
2 cosh

(
β
∑

µ

mµξµi

)]
. (1.13)

Employing the saddle point approximation we calculate the equilibrium free
energy

F = Nf(β,meq)

and we can derive an implicit expression for mµ
eq

∂f

∂mµ

∣∣∣∣
mµeq

= 0 =⇒ mµ
eq =

1

N

∑

i

ξµi tanh

(
β
∑

ν

mν
eq ξ

ν
i

)
.
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Order parameters. In the previous paragraph we have omitted the thresh-
olds θi to simplify the notation. Reintroducing them in a Hebbian fashion,
we get a set of external fields θi =

∑
µ h

µξµi correlated to the patterns, where
hµ is a scalar value determining the strength of the threshold. The partition
function and the effective free energy (1.13) become

logZ = log
∑

S

exp


 β

2N

p∑

µ=1

(∑

i

siξ
µ
i

)2

+ hµ
∑

i

ξµi si




f(β,m) =
1

2
m2 − 1

βN

∑

i

log

[
2 cosh

(
β
∑

µ

(mµ + hµ) ξµi

)]
.

Deriving both expressions by the thresholds’ strenghts hµ we get

∂F

∂hµ
= − 1

β

∂ logZ

∂hµ
= −

∑

i

〈si〉ξµi

∂F

∂hµ
= N

∂f

∂hµ
= −

∑

i

ξµi tanh

(
β
∑

ν

(mν + hν) ξνi

)

and similarly to the previous paragraph we can get the equilibrium value of
the magnetization

mµ
eq =

1

N

∑

i

ξµi tanh

(
β
∑

ν

(
mν

eq + hν
)
ξνi

)
.

Putting together all of the above equations we finally get the equivalence

mµ =
1

N

∑

i

〈si〉ξµi (1.14)

where we see that mµ represents the overlap between the network’s configura-
tion and pattern ξµ. Its value depends on the correlation of the nodes si to
the pattern: we have mµ = 1 when the configuration of the network repro-
duces pattern ξµ exactly and mµ = 0 when there is no correlation. The order
parameters mµ can thus be thought of as the magnetizations of the network
correlated to the µth pattern, providing a concrete physical interpretation.

Patterns averaging and phase diagram. The expression that we have
derived for the effective free energy depends explicitly on the specific patterns
to store. To describe our model in full generality, we want to get rid of the
patterns by averaging out their effect on the free energy. This averaging process
requires fixing the statistical properties of the patterns that we can store, to
come up with a description of a statistical ensemble rather than a specific
model instance. The way this ensemble is chosen is fundamental to describe
functional systems, and the assumptions made in this context define the range
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1.7. Mean-field theory of the Hopfield model

Figure 1.1: Phase diagram of the Hopfield model.

of systems that are well described by the mean-field picture. We stress this
point here as it is fundamental in our treatment of a realistic model of RBM.
For the Hopfield model, the assumption is that the variables representing the
patterns are i.i.d. with ξµi = ±1 at random. Here, the difficulty lies in the fact
that it is not clear how to perform the average over the patterns in Equation
(1.13). In Section 4.2 we will introduce the Replica Method to address this
problem; for now, we skip the details on the averaging to list the results for
the Hopfield model.

In Section 1.2 we have seen how the stored patterns are stable states of the
network. We have also seen how certain kinds of mixture states are stable, and
we couldn’t roll out the possibility of stable spurious states, i.e. states that are
not correlated to the patterns. Moreover, we worked with the assumption that
the number of stored patterns is small and we didn’t provide any indications
about the capacity of the network. By analyzing the stability of the minima of
the averaged mean-field effective free energy, we can address all of the above
problems. A detailed discussion is provided in [37], and the results are sum-
marized in the phase diagram reported in Figure 1.1. We define the capacity α
of the network as the number of patterns per unit node: α = p

N . The patterns
are stable only in region A and B of the phase diagram; in both regions we
also find stable mixture and spurious states, with the mixture states always
presenting higher free energy than the stored patterns and thus the mixture
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1. Background

states are local minima in regions A and B. In region A the patterns represent
global minima and the spurious states are local minima, while in region B the
situation is reversed. Patterns are thus stable in the A region and metastable
in the B region. We call the AB region the retrieval phase. In region C only
the spurious states are stable, while in region D the noise dominates and only
states with m = 0 are possible. We note that there is a critical value αc for
the capacity above which the patterns are not stable, and that determines a
bound on the capacity of a functional Hopfield network.

The picture that emerges from the mean-field analysis is rather complete
and detailed. We pass from a not very well-defined energy landscape to a
more refined free energy landscape in which the functioning of the network
is described in detail. Finally, for T → 0 we recover the behavior of the
deterministic Hopfield model.

As a final note, let us remind that all of the above results are obtained for
random patterns. To describe a Hopfield model able to memorize real-world
data, we need more realistic assumptions. We will deal with this fundamental
problem in the chapters about the RBM.

1.8 Beyond memory: Boltzmann Machines

In the previous section we have seen how a stochastic description of the Hopfield
network is useful to analyze the model in great detail. Nonetheless, we have
seen that the deterministic rule (1.3) is sufficient to robustly retrieve stored
patterns, successfully realizing an associative memory. In this section we will
show how the introduction of stochastic units is not only useful for the purpose
of analyzing the model, but it can serve to approach the task of pattern forma-
tion and data generation. We will then discuss the need to introduce hidden
units to obtain more expressive networks, and define the Boltzmann machine
model in general terms.

Stochastic units. Let’s consider binary nodes vi = 0, 1 as opposed to si =
±1; we will keep this notation consistent throughout the chapters. The units
are stochastic, such that similarly to rule (1.8) we have

vi =

{
1 with probability p(x)

0 with probability 1− p(x)

with

p(x) =
1

1 + exp
[
−β
(∑

j wijxj + θi

)]

= sigm


β

∑

j

wijxj + θi
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where x represents the data (i.e. the patterns) and the sigmoid function
sigm(x) = 1/(1 + exp(−x)) appears naturally due to the use of vi = 0, 1 binary
units. Similarly to (1.6) the probability over the nodes is given by

P (v) =
e−βE(v)

Z
, Z =

∑

v

e−βE(v). (1.15)

The above expression defines a parametrized probability distribution over the
data, with parameters W ,θ. Assuming that the dataset is described by a
ground truth distribution, our goal is to determine the set of parameters that
best approximates such a distribution. Adding the requirement that we must be
able to efficiently sample from the learned distribution, we obtain a generative
model of the data.

Hidden units. The probabilistic model that we introduced above, in the
current formulation, presents a major limitation. The energy function only
contains first- and second-order terms in the nodes, meaning that the network
can enforce only up to pairwise correlations; higher-order correlations are not
contemplated. As an example, consider the configurations of even parity for
a network with 3 nodes: (000), (011), (101), (110). There doesn’t exist a set
of values for the weights of the network such that all of those configurations
can be represented by equilibrium states of the network. While in this simple
case the problem could be solved by adding an extra node with the appropriate
value for each configuration, in practice the extra information is not present
in the dataset to model. We need to add an extra set of hidden nodes to the
network, which are not used to represent the data but to introduce higher-order
dependencies among the original nodes. The original nodes are called visible
by virtue of the fact that they are used to directly represent the data.

The kind of stochastic network with visible and hidden nodes that we de-
scribed above is known as Boltzmann machine; its energy function includes
three different weight matrices L,J ,W to model visible-to-visible, hidden-to-
hidden and visible-to-hidden correlations. Denoting by vi and hj respectively
the visible and hidden nodes, the energy function reads

E(v,h) = −1

2

∑

i,j

vilijvj −
1

2

∑

ij

hijijhj −
∑

ij

viwijhj −
∑

i

θivi −
∑

j

ηjhj .

(1.16)
One final problem that we need to address to use the Boltzmann Machine to
model the empirical distribution of a dataset is to define a procedure to learn
the parameters of the model. A training algorithm for the Boltzmann Machine
has been proposed in [1]; in next chapters, we will see how dropping some
parameters let us define the Restricted Boltzmann Machine, for which a more
efficient training algorithm is readily obtained.
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1. Background

1.9 Statistical Physics approach to neural networks

This Chapter serves as an example of how statistical physics can be useful
to study neural network models in great detail. Scientific work adopting this
approach has been flourishing in the last decade [84, 17], tackling the challenge
of studying the theoretical foundations of deep learning. The work on the RBM
that is the object of next Chapters finds its spot in this context. In Section 1.8
we have discussed the similarity between the RBM and the Hopfield model; a
detailed analysis of this connection is found in [9, 8, 62]. What makes the RBM
a reference model from the statistical physics point of view is its similarity to
the Sherrington-Kirkpatrick (SK) model of a spin glass, that has been studied
in detail in [72, 74, 3]. Indeed, the RBM can be seen as a bipartite variant of
the SK model, and its theoretical analysis is based on this observation.
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Chapter 2

Restricted Boltzmann Machines
(RBM)

2.1 Definition

In section 1.8 we have seen how Boltzmann Machines (BM) provide a model to
go beyond an associative memory (Hopfield model) to build a generative model
of the data. While this is a success from the theoretical point of view, BMs are
not very practical as their training is very expensive for high dimensional data.
To improve on this situation, the RBM forbids connections among visible nodes
and among hidden nodes, making it possible to efficiently train the model.

The actual RBM model then consists in a bipartite graph with a layer of
hidden units hj and a layer of visible units vi. The units in one layer are not
connected among them but are connected to all the units in the other layer.We
restrict our treatment to the case of binary units hi, vi = 0, 1. The energy
function of the BM is readily adapted to the bipartite case

E(v,h) = −
∑

i,j

viwijhj −
∑

i

θivi −
∑

j

ηjhj (2.1)

where θi and ηj are external fields, or biases, acting respectively on the visible
and hidden units. The probability of a configuration (1.15) becomes

P (v,h) =
e−βE(v,h)

Z
, Z =

∑

v,h

e−βE(v,h). (2.2)

To simplify the equations, we set β = 1 without loss of generality. We recall
that in Section 1.3 we discussed how β is a parameter that regulates the noise
in the network; for the RBM, a proxy for β is given by the variance of the
weights W , as we’ll see in Section 2.3.

The crucial simplification in the RBM lies in the fact that units in the same
layers are not connected: they are thus conditionally independent given the
nodes in the other layer, and we can compute the individual probabilities in
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2. Restricted Boltzmann Machines (RBM)

closed form

P (vi = 1|h) =
1

1 + e−θi−
∑
j wijhj

= sigm


θi +

∑

j

wijhj


 (2.3)

P (hj = 1|v) =
1

1 + e−ηj−
∑
i wijvi

= sigm

(
ηj +

∑

i

wijvi

)
. (2.4)

What we are interested in is the probability for the visible units, which is the
layer we use to represent data. It can be easily defined as

P (v) =
∑

h

P (v,h)

=
e−Fc(v)

Z
, Z =

∑

v

e−Fc(v) (2.5)

where we have introduced the clamped free energy

Fc(v) = − log
∑

h

e−E(h,v)

= −
∑

i

aivi −
∑

j

log
(

1 + e(bj+
∑
i wijvi)

)
. (2.6)

To use the RBM as a generative model, we want to maximize P (v) for the
samples belonging to the training set. This is done by performing gradient
ascent over the log-likelihood logP (v), whose derivative with respect to the
weights can be computed to be

∂ logP (v)

∂wij
= 〈viP (hj = 1|v)〉data − 〈vihj〉model (2.7)

where 〈·〉data denotes an average over the empirical distribution of the training
set (Pdata(v) = 1

N

∑
vn∈data δ(v − vn)) and 〈·〉model denotes the average over

the distribution (2.5). Introducing the learning rate α (as a parameter for
gradient ascent) we obtain an update rule for the weight matrix

∆W = α
(
〈vhT 〉data − 〈vhT 〉model

)
. (2.8)

In the same way we can get the update rules for the external fields

∆θ = α (vdata − vmodel) (2.9)
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2.2. Contrastive divergence training

∆η = α (hdata − hmodel) . (2.10)

Given the update rules, the training consists in actually performing the gra-
dient ascent. Once this is done, it is possible to sample the equilibrium con-
figurations of the RBM to obtain samples which are generated according to
the approximated probability distribution of the training data. Unfortunately,
the average over the model distribution 〈·〉model is intractable as such term is
exponential in the number of visible units. Approximations are then necessary
to train and sample from an RBM; in particular, Monte Carlo based algorithms
are generally employed, such as k-steps contrastive divergence (CDk) [38] and
persistent contrastive divergence (PCD) [76]. Approximate algorithms based
on mean-field methods have also been employed, originally in [81] and more
recently in [28].

2.2 Contrastive divergence training

The standard strategy to compute an approximation of the gradient (2.8) is
to use a Montecarlo sampling procedure. The first term 〈vhT 〉data, also called
the positive term, is easily computed: here v is represented by the actual data
while h is computed with (2.4). The term 〈vhT 〉model, also called the negative
term, is more problematic: to average over the actual parameters of the model,
we can initialize v with the data and perform Gibbs sampling (Algorithm 1)
for a high number of steps k, i.e. until convergence is reached.

Algorithm 1 Gibbs sampling

1: Init: take a random configuration v
2: for i = 0 to k do
3: h ∼ P (h|v)
4: v ∼ P (v|h)
5: end for
6: Set vi = 1 with probability P (vi = 1|h)

This would give a good unbiased estimate of the negative term, at the cost of
a lengthy iterative procedure. In practice, instead of running the Montecarlo
procedure until equilibrium is reached, the negative term is usually estimated
by performing only a small number of Gibbs steps k, and this training procedure
is called k-steps Contrastive Divergence (CDk) [38]. CDk uses a rather crude
approximation to the gradient; a slightly refined training strategy consists in
using the data to initialize the Gibbs sampling procedure only at the first
gradient update, and keep iterating over the same chain for subsequent updates.
The rationale is that every gradient update perturbs the weight matrix only
slightly, meaning that after many minibatches and epochs of training we can
expect the sampled configurations to better approximate the equilibrium state
of the model. The sampled configurations are called the persistent chain and
the procedure k-steps Persistent Contrastive Divergence (PCDk) [76]. Both
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2. Restricted Boltzmann Machines (RBM)

CDk and PCDk have been analyzed in detail in [22], which shows that the
RBM can operate in two different regimes depending on the interplay between
the number of steps k and the mixing time of the Gibbs sampling procedure.
For small values of k (relative to the mixing time) the RBM operates in an
out-of-equilibrium regime in which it is possible to produce good qualitative
samples but whose data generation abilities don’t properly match the training
dataset. To obtain a properly equilibrated model, high values of k are necessary
and in this case the RBM is able to produce good qualitative samples that also
respect the expected statistics of the training set. In Algorithm 2 we detail
the CDk training strategy in vectorized (matrix) form. Here, we choose to
randomly initialize the negative term’s sampling chain as proposed in [21] while
traditionally the negative chain is initialized with the dataset samples as for
the positive term [40, 26]. Moreover, we note that in principle the number of
samples in the negative chain can be freely chosen and we expect to better
approximate the negative term by using a high number of samples. However,
the number of samples in the negative chain is generally chosen to be equal
to the batch size, which can be motivated by the need to keep the statistical
errors in between positive and negative terms comparable.

Algorithm 2 k-steps Contrastive Divergence (CDk)

1: Data: a training set of N data vectors vi
2: Randomly initialize the weight matrix W
3: for t = 0 to T (# of epochs) do
4: Divide the training set in m minibatches of n data vectors vi
5: for all minibatches m do

Positive term:
6: Vm = [v1 v2 . . . vn]
7: sample Hp ∼ P (Hp | Vm) (Equation (2.4))
8: sample Vp ∼ P (Vp |Hp) (Equation (2.3))
9: compute the positive term 〈vhT 〉data = 1

nVpH
T
p

Negative term:
10: initialize Vm randomly
11: sample Hn,Vn using Algorithm 1 for k steps
12: compute the negative term 〈vhT 〉model = 1

nVnH
T
n

Full update:
13: update W with Equation (2.8)
14: end for
15: end for

2.3 Mean-field training

We have seen in Section 1.9 how mean-field theories are a powerful tool to
study the kind of neural network models we are dealing with. Here we follow
[28] to introduce a mean-field strategy to compute the gradient of the log-
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2.3. Mean-field training

likelihood of the RBM. The advantage of this method is that we can substitute
the Montecarlo sampling with deterministic iterative mean-field equations.

To derive an effective free energy we explicitly reintroduce the inverse tem-
perature β

P (v,h) =
e−βE(v,h)

Z
. (2.11)

Exploiting the similarity of the RBM to the SK model discussed in Section 1.9,
we follow the derivation in [31] and adapt it to the bipartite case. This consists
in expanding the free energy at high temperature by setting β → 0 to obtain
the Thouless-Anderson-Palmer (TAP) expression for the effective free energy
[75] that, truncated at second order, is given by

FTAP (mv,mh) = + S(mv) + S(mh)

−
∑

i

aim
v
i −

∑

j

bjm
h
j −

∑

i,j

wijm
v
im

h
j

+
∑

i,j

w2
ij

2

(
mv
i −mv

i
2
)(

mh
j −mh

j

2
)

(2.12)

with S(m) = −∑i [mi logmi + (1−mi) log(1−mi)] and with mv,mh being
the equilibrium magnetizations of visible and hidden nodes. The minimization
of the above Equation (2.12) gives a valid approximation to the free energy F

F ' FTAP (m̃v, m̃h),
dFTAP
dm

∣∣∣∣
m̃v,m̃h

= 0. (2.13)

To obtain m̃v, m̃h it is then necessary to extremize (2.12) to obtain the fol-
lowing coupled equations

mv
i ' sigm



θi +

∑

j

[
wijm

h
j − wij

(
mv
i −

1

2

)(
mh
j −mh

j

2
)]


 (2.14)

mh
j ' sigm

{
ηj +

∑

i

[
wijm

v
i − wij

(
mh
j −

1

2

)(
mv
i −mv

i
2
)]}

(2.15)

that can be solved by iteration [11]. Finally, given the approximation to the
free energy (2.13), the optimization problem over the log-likelihood (2.7) is
greatly simplified: the average over the training samples 〈·〉data is unchanged
while the intractable average over the model distribution 〈·〉model is substituted
by the maximization of (2.13), giving

∆W = α

(
〈vhT 〉data −

∂FTAP (m̃v, m̃h)

∂wij

)
(2.16)

with
∂FTAP
∂wij

= −
∑

i,j

mv
im

h
j + wij(m

v
i −mv

i
2)(mh

i −mh
i

2
).
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2. Restricted Boltzmann Machines (RBM)

Summarizing, the training procedure based on TAP approximation is reported
in Algorithm 3. We note that similarly to CD/PCD, instead of running the
TAP equations (2.14)(2.15) to convergence we choose a fixed number of itera-
tions k to approximate the equilibrium results.

Algorithm 3 k-steps Extended mean-field training (EMFk)

1: Data: a training set of N data vectors vi
2: Randomly initialize the weight matrix W
3: for t = 0 to T (# of epochs) do
4: Divide the training set in m minibatches of n data vectors vi
5: for all minibatches m do

Positive term:
6: Vm = [v1 v2 . . . vn]
7: sample Hp ∼ P (Hp | Vm) (Equation (2.4))
8: sample Vp ∼ P (Vp |Hp) (Equation (2.3))
9: compute the positive term 〈vhT 〉data = 1

nVpH
T
p

Negative term:
10: initialize the batched magnetizations Mv = Vm,Mh = P (H | Vm)
11: approximate M̃v, M̃h by iterating Eqs. (2.14),(2.15) for k steps
12: negative term: average Equation (2.3) over the samples M̃v, M̃h

Full update:
13: update W with Equation (2.8)
14: end for
15: end for

We conclude by noting how the reintroduction of the inverse temperature
β is just a formal passage; in the context of the RBM the high-temperature
expansion β → 0 is substituted by a weak-couplings expansion, under the
assumption that the weights wij are small enough. The variance of the weight
matrix can then serve as an effective inverse temperature [63]

Teff =
1

V ar(W )
. (2.17)

2.4 Generalized RBM

In Section 2.1 we introduced the RBM using binary units for both the visible
and the hidden layers. While this is the original and the most commonly used
formulation of the model, we can generalize the definition to use different kinds
of units. This is done by introducing a prior probability distribution over visible
and hidden variables, that we denote respectively by qv and qh:

p(v,h) =
1

Z
qv(v)qh(h)e−E(v,h). (2.18)
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The conditional probability for visible and hidden layers read (Bayes formula)

p(h|v) =
p(v,h)∑
h p(v,h)

=
qh(h)e−E(v,h)

∑
h qh(h)e−E(v,h)

(2.19)

p(v|h) =
p(v,h)∑
v p(v,h)

=
qv(v)e−E(v,h)

∑
v qv(v)e−E(v,h)

. (2.20)

For the standard binary-binary RBM, a Bernoulli prior is used for both visible
and hidden units

qv(vi) =
1

2
(δvi,0 + δvi,1) (2.21)

qh(hj) =
1

2
(δhj ,0 + δhj ,1) (2.22)

which leads to Equations (2.3),(2.4) for the conditional activations.
When dealing with data whose features are better represented by real num-

bers, we can substitute the binary variables in the visible layer with Gaussian
units. The prior distribution in this case is

qv(vi) =
1√

2πσ2
v

e
− v2i

2σ2v (2.23)

and the conditional activation of the visible layer becomes

p(vi,h) = N


vi;

∑

j

wijhj + θi, σ
2
v


 (2.24)

where N (x;µ, σ2) is the Gaussian distribution of variable x with mean µ and
variance σ2. In practice, when using Gaussian visible units, the data are cen-
tered and normalized as a preprocessing step and the variance σ2

v is set to 1
and kept fixed.

Other choices of priors for the units of the RBM are possible, as well as
different combinations of visible and hidden units types; a detailed account can
be found in [21]. In this document we are only concerned with the Bernoulli-
Bernoulli and Gaussian-Bernoulli models described above.
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Chapter 3

Spectral Learning Dynamics of
the RBM

Concerning the learning procedure of neural networks, many recent statisti-
cal physics based analyses have been proposed, most of them within teacher-
student setting [84]. This imposes a rather strong assumption on the data:
it is assumed that these are generated from a model belonging to the para-
metric family of interest, hiding as a consequence the role played by the data
themselves in the procedure. From the analysis of related linear models [77,
12], it is already a well established fact that a selection of the most important
modes of the Singular Values Decomposition (SVD) of the data is performed
in the linear case. In fact in the simpler context of linear feed-forward models
the learning dynamics can be fully characterized by means of the SVD of the
data matrix [70], showing in particular the emergence of each mode by order
of importance with respect to the corresponding singular values.

In this section we present some empirical results to qualify the role of the
SVD of the weight matrix of the RBM during learning. We show how the
learning procedure follows the dynamics of the strongest SVD modes, in a
data-driven fashion. This will let us single out the information content of the
RBM, leading us to formulate the assumption that the SVD spectrum is split
in a continuous bulk of singular vectors corresponding to noise and a set of
outliers that represent the information content. This assumption forms the
basis for the mean-field analysis presented in Chapter 4.

The results presented here have been originally detailed in [19] (Reprint
A). We will briefly introduce the SVD technique and its relation to Principal
Components Analysis. Subsequently, we show how the linearized mean-field
equations for the RBM naturally suggest the use of the SVD. We then go on
to observe the SVD dynamics in a real-world scenario, characterizing the SVD
modes and the statistical assumptions over the weight matrix.
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3. Spectral Learning Dynamics of the RBM

3.1 Principal Component Analysis (PCA)

The PCA technique can be introduced by considering the covariance matrix of
a dataset. Given a data matrix X of dimension n × d with n > d, where n
is the number of samples and d is the dimension of each sample, and further
assuming that samples are centered (i.e. column means have been subtracted,
as data are arranged by rows), we can define an unbiased estimator for the
related covariance matrix (square and symmetric)

C =
XTX

n− 1
(3.1)

that can be diagonalized
C = V LV T (3.2)

where the columns of V are eigenvectors of C and L is the diagonal matrix
of the eigenvalues λα. Projecting the samples over the eigenvectors of the co-
variance matrix (also called principal directions in the context of PCA) we
obtain the principal components: new, independent variables that account for
the maximum possible variability in the data. More precisely, the first prin-
cipal component maximizes the variance of the projections of the data (i.e. it
has the highest possible variance) and the succeeding components maximize
the variance while satisfying the constraints of being orthogonal to the pre-
ceding components. A rigorous demonstration of the properties of principal
components is given in [10], Section 12.1.

3.2 Singular Value Decomposition (SVD)

The SVD is the generalization of eigenmodes decomposition to rectangular
matrices, and it is given by

X = UΣV T (3.3)

where U is an orthogonal n × d matrix whose columns are the left singular
vectors uα, V is an orthogonal d × d matrix whose columns are the right
singular vectors vα and Σ is a diagonal d × d matrix whose elements are the
singular values wα. The separation into left and right singular vectors is due
to the rectangular nature of the decomposed matrix, and the similarity with
eigenmodes decomposition is revealed by the following SVD equations

Xvα = wαu
α (3.4)

XTuα = wαv
α. (3.5)

Plugging the SVD of X into the definition of covariance matrix

C =
XTX

n− 1
=
V ΣUTUΣV T

n− 1
(3.6)

= V
Σ2

n− 1
V T
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we see how the right singular vectors can be identified as the principal direc-
tions and a relation between the singular values wα and the eigenvalues of the
covariance matrix λα is easily found

λα =
w2
α

n− 1
(3.7)

Finally, the principal components are given by UΣ (XV = UΣV TV = UΣ).

3.3 Linearized mean-field equations for a RBM

To see how the SVD enters the picture, we linearize the mean-field equations
[66] of our model. As there are no connections among variables in the same
layer, we can initialize the magnetizations mv

i ,m
h
j with Equations (2.3),(2.4)

and write the iterative mean-field equations

mv
i = sigm


θi +

∑

j

wijm
h
j −

∑

j

wij


 (3.8)

mh
j = sigm

(
ηj +

∑

i

wijm
v
i −

∑

i

wij

)
. (3.9)

At initialization the weights wij are small, and we can get rid of the external
visible field by centering the training data. The external hidden field is instead
initialized to zero and it varies slowly, so it doesn’t have any effects at the
beginning of the training. Thus, neglecting both the external fields we can
linearize the mean-field equations to obtain (defining m̃v

i = mv
i − 1/2, m̃h

j =

mh
j − 1/2 for convenience)

m̃v
i '

1

4

∑

j

wijm̃
h
j (3.10)

m̃h
j '

1

4

∑

i

wijm̃
v
i . (3.11)

We can now express the weights wij in terms of the SVD as (ui,α identifies the
ith component of the αth columns of U , and analogous notation is used for V )

wij =
∑

α

wαui,αvj,α (3.12)

and expand the magnetizations over the singular vectors

m̃v
α =

∑

i

ui,αm̃
v
i (3.13)

m̃h
α =

∑

j

vj,αm̃
h
j . (3.14)
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Figure 3.1: Samples of handwritten digits from the MNIST dataset.

Combining Equations (3.10),(3.12),(3.13) and recalling that the columns of U
form an orthonormal basis, we get

m̃v
α =

1

4

∑

α′

wαδα,α′m̃
h
α

=
1

4
wαm̃

h
α.

We can proceed in an analogous way with m̃h
α to finally obtain the coupled

iterative equations

m̃v
α =

1

4
wαm̃

h
α (3.15)

m̃h
α =

1

4
wαm̃

v
α. (3.16)

These equations show that at the linear level the magnetizations aligned to the
singular vectors with a strong wα are amplified, while magnetizations related
to small wα are penalized. We then expect the samples generated by a trained
RBM to be affine to the strongest singular vectors, and we can try to under-
stand how. To this end, we can better specify the role of the SVD matrices in
the context of a RBM:

• U encodes the singular vectors related to the visible layer; these can
be visualized in the pixel space and basically consist in the principal
components of W .

• V is related to the hidden layer; it is a square orthogonal matrix that can
be interpreted as a rotation and its columns are the principal directions
of W .

• The singular values wj contained in Σ can be thought of as scaling factors
whose action is to weigh the singular vectors composing W .

Given the above characteristics we focused our attention on Σ and U , tracking
the distribution of the singular values and looking at the corresponding left
singular vectors during the training.
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3.4. Distribution of the singular values

3.4 Distribution of the singular values

We now turn to the analysis of a training run: we use PCD to train the
RBM over the MNIST dataset [50] and we monitor the evolution of the SVD
components. The MNIST dataset is composed by 70000 images of handwritten
digits (60000 for training and validation, 10000 for testing) of size 28×28 pixels.
Some samples from the dataset are shown in Figure 3.1. The weight matrix W
is initialized as a Gaussian random matrix with variance σw (and zero mean).
The eigenvalues distribution of the corresponding symmetric square matrix
W TW is known to be given by the Marchenko-Pastur law [56] in its canonical
form. The singular values wα are related to the eigenvalues λj by (3.7), and by
defining the parameter r = Nh/Nv, with Nh the size of the hidden layer and
Nv the size of the visible layer (we recall that W is a Nv × Nh matrix), the
expression of the Marchenko-Pastur law is given by (in the limit Nh, Nv →∞
with r finite)

ρ(λ) =
1

2πσ2
w

√
(λ− r−)(r+ − λ)

rλ
(3.17)

where the higher and lower bounds r± are

r± = σ2
w

(
1±√r

)2
. (3.18)

Figure 3.2a shows the agreement between the empirical distribution and the
theoretical distribution. In particular, we note how all wα have values below
the threshold set by the Marchenko-Pastur law, forming a bulk of singular
values. Starting with the training, we see that many singular values increase
in magnitude and overcome the threshold for a Gaussian random matrix; these
are outliers leaving the bulk, shown in Figure 3.2b-3.2d. During the first epochs
of training this process is very fast and many wα values are easily extracted
from the bulk, growing by many orders of magnitude. The bulk is instead
shrunk to low values, meaning that the wα values that do not overcome the
threshold decrease in magnitude. Going on with the training this process slows
down, but it does not stop: outliers keep growing slowly, and the bulk keeps
shrinking to approach a spike around zero. It is important to note that a kind of
hierarchy is maintained in the process: the first outliers are never overcome by
the newly extracted wα, and this is made clear by looking at the corresponding
left singular vectors (see next Section). In the final epochs of training, the
singular values wα are separated into two categories: a concentrated set of
almost-null singular values and a set of outliers spread above the threshold, as
shown in Figure 3.2e.

The evolution of the wα distribution described above suggests that the
training process is able to discern between the most important singular vec-
tors, that are brought above threshold first and heavily strengthened, and a
bulk of less important singular vectors, that end up above threshold but whose
wα reach values order of magnitude smaller than those of the strongest singular
vectors. Moreover, the below-threshold singular vectors are practically elimi-
nated by cutting down the corresponding wα. These observations give a good
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3. Spectral Learning Dynamics of the RBM
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Figure 3.2: (a) Singular values distribution of the initial random matrix
compared to Marchenko-Pastur law. (b)-(d) With the training we can see
some singular values strengthening and overcoming the threshold set by the
Marchenko-Pastur law. (e) Distribution of the singular values after a long
training: we can see many outliers spread above threshold and a spike of below-
threshold singular values near zero.

indication about what are the dynamics of the learning process, but a couple of
matters need to be addressed: (i) it is not clear what singular vectors actually
represent, (ii) the meaning of more and less important singular vectors has to
be specified. We will deal with these problems in the next Section.

3.5 Dynamics of the singular vectors

To understand the role of the left singular vectors of an RBM we must keep
in mind the interpretation for the SVD decomposition of W given previously.
We have seen how the matrix of singular values Σ is shaped during learning,
and we recall that V is interpreted as a rotation in the space of the hidden
units. We then expect to recover the structure of the training data into the
U matrix; using the MNIST dataset proves useful in this context as we can
visualize the uα vectors as images in the pixel space.

Before focusing on the left singular vectors, we note that also the external
visible field can be visualized in the pixel space. Following [40] we can initialize
the field to

θi = log[pi/(1− pi)] (3.19)
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3.5. Dynamics of the singular vectors

(a) (b) (c)

(d)

(e)

(f)

Figure 3.3: (a) First mode learnt by the RBM with the external visible field
initialized as a null vector. (b) External visible field initialized with rule (3.19).
(c) First principal components extracted from the training set. (d) Principal
components extracted from the training set (starting from the second). (e) The
first 10 modes of a RBM trained for 1 epoch, using initialization rule (3.19).
(f) Same as (e) but after a 10 epochs training.

where pi is the proportion of training samples in which unit i is active. Using
the above rule (3.19) we are able to encode into the field the mean activations
of the visible layer, which is clearly shown in Figure 3.3b in the pixel space.
If we instead initialize the visible field with a null vector, the mean activation
pattern is learned very effectively as the strongest left singular vector uα. The
striking resemblance between the mean activation pattern computed from the
training data and the one learned by the RBM is shown in Figure 3.3a-3.3b
and it serves as a first example of what the uα vectors represent. It seems then
equivalent to either encode the mean activation pattern into the visible field
since the beginning or letting the RBM learn such a pattern as a left singular
vector. In practice the second case is not desirable as the RBM associates
to the mean activation pattern a very strong singular value, many orders of
magnitude higher than the strongest outliers. This results in a bias in the
sampling from the trained machine, such that the samples whose activation
pattern is nearest to the mean are sampled with a higher frequency (in the
worst case, those are the only configurations sampled at equilibrium).

The first 10 left singular vectors of a trained RBM are shown in Figure 3.3e-
3.3f. They are all composed by a homogeneous background on the borders and
a set of alternating dark and light traits in the center, highlighting the fact that
each singular vector acts globally on the visible layer. Even if the pictures seen
in Figures 3.3e-3.3f are quite different one from another, an interesting trend is
found: a higher number of alternating traits is present in the successive vectors.
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3. Spectral Learning Dynamics of the RBM

These observations suggest that the RBM is able to learn the modes that
compose the activation patterns of the data, starting with the low frequency
modes and proceeding with the high frequency ones. Moreover, with reference
to the wα distribution (Figure 3.2e), we note that the low frequency modes
are given a higher weight. Recalling the connection between SVD and PCA
(Section 3.2) these modes are understood as the principal modes of variation
of the data. In Figures 3.3d-3.3e we compare the SVD modes extracted from
the data and those of the W matrix, which prove to be very similar.

The dynamics described here present some similarities to the learning dy-
namics of deep linear neural networks [70]. Going on with the training we
expect non-linear effects to kick-in and this is seen in Figure 3.3f where the
SVD of the data is not comparable to the SVD of W anymore.

Analyzing the learning dynamics more in detail, we observed that the modes
take shape one by one as the corresponding singular value wα is brought above
threshold. The subsequent strengthening of the wα values corresponds to re-
finements and rotations, with little effects on the characterization of the modes
as high or low frequency modes. For what concerns the modes below threshold,
they present a dark border and a random configuration in the center; in this
case the only effect of the training is to discern what are the units which are
never activated and no information about the actual structure of the data is
found.

Summarizing, some insights on the behavior of an RBM in the linear regime
were given by looking at the SVD-like equations (3.15)-(3.16), where we have
seen how the magnetizations aligned to the strongest SVD modes are amplified.
These magnetizations are thus unstable and they drive the formation of new
mean-field fixed points during learning, that correspond to the magnetizations
affine to the samples in the training set. These observations highlight a con-
nection between the SVD of the data in the training set and the SVD of the
weight matrix W , at least in the linear regime.

3.6 Characterization of the modes

By looking at the singular values distribution of W we have seen that there
seem to be more and less important singular vectors. In the previous Section,
we have then refined this observation by highlighting how the lowest-frequency
modes are given the highest weights. We can then identify the more (less) im-
portant modes as the low (high) frequency ones. To gain some intuition about
the meaning of this separation we can think about the Fourier decomposition of
a square wave; in such a case the superposition of the low frequency harmonics
is sufficient to build a good approximation of a square wave, while the role of
the high frequency harmonics is that of sharpening the waveform at the dis-
continuity points. In the context of a trained RBM, we then expect that good
approximations to the training data are obtained by exploiting only the low
frequency modes, while the high frequency modes should represent minor cor-
rections. To discern between high and low frequency modes, we look at the wα
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Figure 3.4: Log-log plot of the singular values represented as discrete abscissas
(in decreasing order) with their magnitude reported on the ordinates. A cutoff
is highlighted by the onset of the linear behavior.

values in decreasing order on a log-log plot (Figure 3.4): the strongest wα val-
ues are located far above threshold and are of comparable magnitude, followed
by a tail of exponentially damped values. This picture is consistent across the
training, the only difference being the damping cutoff that is increasing with
the epochs. After a relatively long training, however, the increase in the cutoff
is very slow and this could serve as a signal to stop the learning, as such situ-
ation amounts to slowly strengthening singular values which are exponentially
less important than the already learned modes. We are then driven to define
the more important low frequency modes as the modes before cutoff, and the
exponentially less important high frequency modes as those after cutoff. A
consistency check is shown in Figure 3.5, where just the 100 strongest modes
are retained to construct the samples and the remaining modes are shown to
encode boundary corrections. Choosing the first 100 modes is arbitrary; in
Figure 3.4 we can see how the cutoff is well below 100, so with this choice we
are sure that we included in the reconstruction of the samples all the strong
modes before cutoff plus a small number of modes giving boundary corrections.

As a conclusion, the above observations suggest that the weight matrix of
a trained RBM is composed by two classes of modes; recalling the expansion
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3. Spectral Learning Dynamics of the RBM

(a)

(b)

(c)

Figure 3.5: (a) The image shows some samples obtained with the trained
RBM (after a 40 epochs training) and then ”filtered” by eliminating the 400
weakest modes (just the 100 strongest modes are retained). (b) The images
are composed by eliminating the 100 strongest modes to see what the weakest
modes actually encode (20 epochs training). (c) As in (b) but after a 40 epochs
training.

(3.12) we can express the components of W as

wij =
∑

α∈bulk
wαu

α
i v

α
j +

∑

α∈outliers
wαu

α
i v

α
j (3.20)

where the modes of the bulk are those that remain random after the training
(below threshold or after cutoff) while the outliers correspond to the modes
that actually encode the structure of training data. This separation sets the
basis for the mean-field analysis that we develop in the next section.
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Chapter 4

Mean-field theory

In Section 1.9 we have discussed how statistical physics tools have been fruit-
fully applied to model neural network models. In particular, various works [2,
44, 43, 8, 63] have studied the equilibrium properties of the RBM in order to
understand collective phenomena in the latent representation. The common
assumption is that the components of the weight matrix are i.i.d., and some
insights about the equilibrium phase of a trained RBM are given. However,
this approximation is problematic since the learning procedure introduces cor-
relations among the weights making the assumption of independent weights
unsuitable to describe a realistic model of the RBM.

In this Chapter we introduce a statistical ensemble for the weight matrixW
in which we drop the assumption of independent components and we apply the
Replica Method to derive a mean-field theory of the RBM and characterize the
equilibrium states of the model. These results have been presented originally
in [20] (Reprint B).

4.1 Statistical ensemble

In Chapter 3 we have seen how the evolution of the singular values of the
trained model departs strongly from a Marchenko-Pastur distribution, which
would be expected if the weights were i.i.d. Gaussian. In particular, we have
seen how the information content of the trained RBM is encoded into a finite
number of spectral modes, while a residual part of the spectrum constitutes a
noise source. 1 We can then assume the weight matrix W to be composed by
K spectral modes and a portion of random noise n

Wij =

K∑

α=1

wαu
α
i v

α
j + rij . (4.1)

1The separation of the weight matrix spectrum into a structured part and a random part
has been observed over different real-world datasets and for different configurations of the
trained RBM model. While this separation might not always hold, it is a relevant case in
practice.
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4. Mean-field theory

The vectors uα,vα represent the K strongest components of the SVD of the
weight matrix, while the components rij represent Gaussian noise. The above
formula describes a class of models that we can analyze statistically, i.e. the
statistical ensemble that we choose to model the RBM. In the following, we
derive the static and dynamical properties of this ensemble.

4.2 Order parameters and effective free energy

To obtain an effective free energy (Section 1.6) for the RBM we apply the
Replica method [61], which is based on the following identity

Eu,v,r [logZ] = lim
p→0

d

dp
Eu,,v,r [Zp] (4.2)

where u, v are the singular vectors components and r the Gaussian noise defined
in Section 4.1. The vα and uα vectors are orthonormal, giving v ∼ O

(
1/
√
Nh
)

and u ∼ O
(
1/
√
Nv
)
, and the noise terms are i.i.d. rij = N(0, σ2/L) where

Nv, Nh are the numbers of visible and hidden units and L =
√
NvNh. We

see from this equation that our objective is to average the free energy over
the noise and the components of the singular vectors; the second average is
the crucial one, as it represents the average over the structured part of the
weight matrix, i.e. the part that encodes the correlations among the weights.
Nonetheless, the components of the vectors uα and vα are assumed to be i.i.d.,
and we will see that the choice of their distribution determines the properties
of the equilibrium states.

An important assumption in the replica method is that the exponent p as-
sumes integer values, hence the replicated partition function Zp can be thought
of as the partition function of a system comprising p copies, i.e. the replicas,
of the original system. We will see that exploring the correlations among the
different replicas of the system will be crucial to fully characterize the equilib-
rium behavior of the system. For now the only concern is that Equation (4.2)
requires taking the limit p→ 0 while here we are assuming p to be integer; we
will discuss this incongruence at the end of the Section.

We can start by writing down the replicated partition function Zp

Zp =

p∏

a=1

∑

sa,σa

exp



−

∑

i,j,α

sai u
α
i wαv

α
j σ

a
j −

∑

i,j

sai σ
a
j rij





× exp



−

∑

i

ηis
a
i −

∑

j

θjσ
a
j



. (4.3)

By isolating the part of Zp that contains the noise terms rij we can compute
the noise average to obtain

exp


 σ

2

2L

(∑

a

sai σ
a
j

)2

 = exp


 σ

2

2L


p+

∑

a 6=b
sai s

b
iσ
a
j σ

b
j




 .
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Considering now the expansion of the units over the singular modes

saα =
1√
L

∑

i

sai u
α
i , σaα =

1√
L

∑

j

σaj v
α
j (4.4)

and neglecting the fields ηi, θj for a moment we can rewrite the replicated
partition function as

Zp ∝
p∏

a=1

∑

sa,σa

exp



−L

∑

α

wαsασα +
σ2

2L

∑

i,j,a 6=b
sai s

b
iσ
a
j σ

b
j



. (4.5)

We observe that both sums in the exponential include higher order terms that
we cannot factorize to simply compute the equilibrium averages over u and v.
Following the strategy presented in Section 1.7 for the Hopfield model, we can
introduce an appropriate set of order parameters to linearize the exponents.
For the first term we can consider the magnetization of the system ma

α, m̄
a
α

correlated with the spectral modes, expressed as

ma
α ∼ Eu,v,r (〈σaα〉) , m̄a

α ∼ Eu,v,r (〈saα〉) (4.6)

and introduced with the following integral identity (Hubbard-Stratonovich trans-
formation):

exp

(
L
∑

α

wαs
a
ασ

a
α

)
∝
∫ ∏

α

dma
αdm̄

a
α

2π

× exp

(
−L

∑

α

wα (ma
αm̄

a
α −ma

αs
a
α − m̄a

ασ
a
α)

)
.

We note that the magnetizations ma
α, m̄

a
α play the same role as the magnetiza-

tion over the stored patterns in the Hopfield model; for the RBM we effectively
substitute the patterns with the spectral modes. The second sum in (4.5) stems
from the average over the noise rij , whose effect has been to couple the differ-
ent replicas of the system. To treat the now interacting replicas, we take into
consideration their correlations by introducing the following order parameters:

Qab ∼ Eu,v,r
(
〈σai σbi 〉

)
, Q̄ab ∼ Eu,v,r

(
〈saj sbj〉

)
. (4.7)

These are the Edwards-Anderson order parameters and are fundamental to
paint a detailed description of the equilibrium states of the system. They are
introduced with the following Hubbard-Stratonovich transformation

exp


 σ

2

2L


 ∑

i,j,a 6=b
sai s

b
iσ
a
j σ

b
j




 =

∫ ∏

a6=b

dQabdQ̄ab
2π

× exp


−Lσ

2

2

∑

a 6=b


QabQ̄ab −

Qab
Nv

∑

i

sai s
b
i −

Q̄ab
Nh

∑

j

σaj σ
b
j
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whose utility is again to simplify the expression by linearizing the sum in the
exponent w.r.t. the nodes of single replicas.

Putting together the above manipulations and including the fields, we
rewrite the full average as

Eu,v,r [Zp] =

∫ ∏

a,α

dma
αdm̄

a
α

2π

∏

a 6=b

dQabdQ̄ab
2π

× exp


−L


∑

a,α

wαm
a
αm̄

a
α +

σ2

2

∑

a 6=b
QabQ̄ab −

1√
κ
A(m,Q)−√κB(m̄, Q̄)






(4.8)

with κ = Nh
Nv

and

A(m,Q)
def
= log


 ∑

sa∈−1,1

Eu


exp



√
κσ2

2

∑

a 6=b
Qabs

asb + κ
1
4

∑

a,α

(wαm
a
α − ηα)uαsa








B(m̄, Q̄)
def
= log


 ∑

σa∈−1,1

Ev


exp



√
κσ2

2

∑

a6=b
Q̄abσ

aσb + κ
1
4

∑

a,α

(wαm
a
α − θα)vασa






 .

where the fields are also expanded over the spectral modes and the projections
are assumed to be O(1):

ηα
def
=

1√
L

∑

i

ηiu
α
i = O(1) (4.9)

θα
def
=

1√
L

∑

j

θjv
α
j = O(1). (4.10)

The expression in Equation (4.8) makes it possible to compute the average over
u, v with the saddle point method by letting L → ∞ (thermodynamic limit),
which amounts to considering the average over a large system (we recall that
L =

√
NvNh). In order to proceed, we need to address a couple of issues:

i) we need to specify an explicit dependence of the order parameters on the
replica indices a, b;

ii) given the solution to the saddle point equations, we need to consider the
analytic continuation p→ 0 as in (4.2) to obtain the actual average free
energy. At this point, it is unclear how to perform this limit.

As for point i) the simplest assumption is that the order parameters should not
depend on the replica index; this seems to make sense given that replicas have
been introduced artificially in Equation (4.2) for mathematical convenience
and therefore we expect that they do not have any effects on the physics of
the system. Point ii) is more subtle, and a possible approach is to consider a
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4.2. Order parameters and effective free energy

specific structure for the order parameters such that the saddle point equations
are analytic in p [61].

The above assumptions are realized by the replica symmetric ansatz

Qab = δab + (1− δab)q (4.11)

Q̄ab = δab + (1− δab)q̄ (4.12)

in which the dependence on the replica index is dropped and the set of Edwards-
Anderson order parameters is reduced to the couple of q, q̄ parameters. The
resulting Q matrices are symmetric, filled with unity on the diagonal and with
q, q̄ off-diagonal, and they constitute a simple example of an ultrametric matrix.
This simple structure makes it easy to plug (4.11), (4.12) into (4.8) to transform
the sums involving the Qab, Q̄ab terms into analytic expressions involving p and
q, q̄.

We can now take the limit p→ 0 to obtain the effective free energy

f(m, m̄, q, q̄) =
∑

α

wαmαm̄α −
σ2

2
qq̄ +

σ2

2
(q + q̄)

− 1√
κ
Eu,x [log 2 cosh(h(x, u))]−√κEv,x

[
log 2 cosh

(
h̄(x, v)

)]
.

(4.13)

where x ∼ N (x; 0, 1).
Finally, in the limit L→∞ we extremize the effective free energy to obtain

the saddle point equations

mα = κ
1
4 Ev,x[vα tanh

(
h̄(x, v)

)
] q = Ev,x[tanh2(h̄(x, v))] (4.14)

m̄α = κ−
1
4 Eu,x[uα tanh(h(x, u))] q̄ = Eu,x[tanh2(h(x, u))] (4.15)

with

h(x, u)
def
= κ

1
4

(
σ
√
qx+

∑

γ

(wγmγ − ηγ)uγ

)

h̄(x, v)
def
= κ−

1
4

(
σ
√
q̄x+

∑

γ

(wγm̄γ − θγ)vγ

)
.

The numerical solution of (4.14), (4.15) characterizes the equilibrium states of
the system and in the next Section we will see what are the different phases of
operation of the RBM and what is the impact of the choice of distribution for
the u, v components.

To conclude this Section, let us remark that to obtain Equation (4.13)
we need to take the limit p → 0 coming from Equation (4.2) and the ther-
modynamic limit L → ∞ by carefully applying the Replica method’s recipe.
Indeed, there is no mathematical justification for taking the analytic continua-
tion p→ 0 after having treated p as an integer; moreover, we freely exchanged
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the order of the p→ 0 and L→∞ limits. While lacking a rigorous mathemat-
ical justification, the Replica method has been shown to provide the correct
equilibrium description for the SK model and other similar models to which it
has been applied [61]; for the RBM, our experimental results (Section 4.8) are
compatible with the theoretical description.

4.3 Phase diagram

The state of the system described by the solutions to Equation (4.14)(4.15)
is directly characterized by the value of the order parameters. The stable
solutions are determined by looking at the values of the order parameters for
which the Hessian of the effective free energy is positive definite. In turn, this
let us identify the unstable modes that define the lines of separation among
the different phases. In the basic case with no biases we identify three different
phases:

• a paramagnetic phase (q = q̄ = mα = m̄α = 0) (P),

• a ferromagnetic phase (q, q̄,mα, m̄α 6= 0) (F),

• a spin glass phase (q, q̄ 6= 0;mα = m̄α = 0) (SG).

The full phase diagram is found in Figure 4.1.

4.4 Learning phase

For an RBM learned on real-world data we expect that at equilibrium the
nodes condense over the spectral modes, determining a certain magnetization
of the system. We are thus interested in fully characterizing this learning phase,
which corresponds to the ferromagnetic phase introduced in Section 4.3 with
mα, m̄α 6= 0. Our objective is describing the magnetizations of the system in
terms of a combination of spectral modes, in order to obtain compositional
states that are suited to represent realistic data. This is in analogy to [63] in
which the equilibrium states are described in terms of a composition of hidden
nodes.

To our end, we are going to show how the distribution of the singular
vector components u, v determines the structure of the learning phase and how
the choice of an appropriate distribution is fundamental to describe a realistic
system. As a starting point, we consider Gaussian i.i.d. components. Once
again we discard the biases, so that the Gaussian averaging of the magnetization
part of the saddle point equations (4.14)(4.15) reads

mα = wαm̄α(1− q) (4.16)

m̄α = wαmα(1− q̄) (4.17)
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from which we see that the singular value of a mode contributing a non-zero
magnetization respects (singular values being non-negative)

wα =
1√

(1− q)(1− q̄)
. (4.18)

With non-degenerate singular values the above eq. (4.18) can be satisfied by a
single spectral mode, revealing how the i.i.d. Gaussian averaging falls short of
realizing the compositional phase we are looking for.

To see why the Gaussian averaging fails and how to fix it, we can approach
the averaging in a more general fashion. Assuming the distribution of u and v
to be even and introducing the auxiliary distributions

p∗(u)
def
= −

∫ u

−∞
xp(x)dx =

∫ ∞

|u|
xp(x)dx, p(x) = p(−x)

pα(u)
def
= p∗(uα)

∏

β 6=α
p(uβ)
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we can define the new variables qα, q̄α

qα =

∫
dx
e−x

2/2

√
2π

dvpα(v) tanh2

(
κ−1/4

(
σ
√
q̄x+

∑

γ

wγm̄γv
γ

))
(4.19)

q̄α =

∫
dx
e−x

2/2

√
2π

dupα(u) tanh2

(
κ1/4

(
σ
√
qx+

∑

γ

wγmγu
γ

))
(4.20)

and rewrite the averaging in the saddle point equations (4.14)(4.15) as

mα = wαm̄α(1− qα) (4.21)

m̄α = wαmα(1− q̄α). (4.22)

from which we get a generalized version of Equation (4.18) for the singular
value of a mode contributing to the magnetization

wα =
1√

(1− qα)(1− q̄α)

def
= w(qα, q̄α). (4.23)

To explicitate the conditions under which multiple modes are able to condense
and contribute to the magnetization, we can assume that a single mode α has
condensed and consider the onset of a mode β(β 6= α). The stability condition
for mode β coexisting with mode α is given by setting wγ = 0,∀γ 6= α, β in
the expression of the effective free energy (4.13) and looking for the positive
definiteness of its Hessian. This gives a stability gap

∆wα
def
= w(q, q̄)− w(qα, q̄α) (4.24)

for which an arbitrary β mode is unstable if

wβ < wα + ∆wα. (4.25)

In the Gaussian case the distribution p∗ that we introduced is still Gaussian
(p∗(u) = p(u)), meaning that the qα, q̄α parameters don’t really depend on
α and resulting in a null gap ∆wα = 0. This discards the possibility of a
compositional phase as all modes β with wβ < wα are unstable and thus only
the strongest spectral mode contributes to the magnetization of the system.
Considering other distributions for the u, v components results in obtaining a
set of different qα, q̄α parameters for each α mode, impacting the value of the
stability gap. With a negative gap, the possibility of multiple spectral modes
being stable is allowed and thus a compositional phase is possible. In the inset
of Figure 4.1 the stability gap is traced for various simple distributions. Of
particular interest is the Laplace distribution for the spectral components, as
it presents a negative gap, making it a good candidate for a realistic theoretical
description of the RBM. We will exploit this fact in the following.
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4.5. Learning equations

4.5 Learning equations

Building on the insights given in Chapter 3 and the above Sections, we will
exploit the decomposition of the learning equations (2.8), (2.9), (2.10) over the
SVD components. Introducing a time variable t we rewrite (4.1) as

wij(t) =
∑

α

wα(t)ui,α(t)vj,α(t) (4.26)

where we have discarded the noise term rij in (4.1) as at the onset of the
learning the weight matrix W is random and thus we don’t need to consider
a separate set of noisy modes. Moreover, in order to define deterministic dy-
namics, we also discard the noise due to the stochastic ascent optimization by
taking the continuous limit of eqs. (2.8), (2.9), (2.10) to obtain

dwij
dt

= 〈siσj〉data − 〈siσj〉model
dηi
dt

= 〈si〉data − 〈si〉model
dθj
dt

= 〈σj〉data − 〈σj〉model.

Projecting the above equations on the SVD basis we obtain

1

L

(
dW

dt

)

αβ

= 〈sασβ〉data − 〈sασβ〉model (4.27)

1√
L

(
dη

dt

)

α

= 〈sα〉data − 〈sα〉model (4.28)

1√
L

(
dθ

dt

)

α

= 〈σα〉data − 〈σα〉model (4.29)

with

sα =
1√
L

∑

i

siui,α , σα =
1√
L

∑

j

σjvj,α. (4.30)
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4. Mean-field theory

The left-hand side of (4.27),(4.28),(4.29) can be expressed in a simple form by
expanding it over the basis defined by the SVD

(
dW

dt

)

αβ

=
∑

ij

ui,α
dwij
dt

vj,β

= δα,β
dwα
dt

+ (1− δαβ)

(
wα

dvα,T

dt
vβ + wβu

α,T duβ

dt

)

= δα,β
dwα
dt

+ (1− δαβ)
(
wαΩuαβ + wβΩvβα

)
(4.31)

1√
L

(
dη

dt

)

α

=
dη

dt
−
∑

β

Ωuαβηβ (4.32)

1√
L

(
dθ

dt

)

α

=
dθ

dt
−
∑

β

Ωvαβηβ (4.33)

where we have defined the generators of rotations in both uα and vα bases

Ωuαβ(t) =
duα,T

dt
uβ (4.34)

Ωvαβ(t) =
dvα,T

dt
vβ . (4.35)

Finally, we can express the rotation generators in terms of the other quantities

Ωuαβ(t) = − 1

wα + wβ

(
dW

dt

)A

αβ

+
1

wα − wβ

(
dW

dt

)S

αβ

(4.36)

Ωvαβ(t) =
1

wα + wβ

(
dW

dt

)A

αβ

+
1

wα − wβ

(
dW

dt

)S

αβ

(4.37)

with

(
dW

dt

)A,S

αβ

def
=

1

2
(〈sασβ〉Data ± 〈sβσα〉Data ∓ 〈sβσα〉RBM − 〈sασβ〉RBM ) .

(4.38)

4.6 Linear regime

The random initialization of W generally entails that the magnetization of the
system is small in the beginning, so that we can describe the onset of learning
by considering an expansion of the mean-field free energy up to second order in
the magnetizations. For the RBM, we can adapt the expression of the effective
free energy (1.11) to contemplate a bipartite structure and non-constant wij
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couplings to obtain

F (mv,mh) ' 1

2

N∑

i=1

(1 +mv
i ) log(1 +mv

i ) + (1−mv
i ) log(1−mv

i ) (4.39)

+
1

2

M∑

j=1

(1 +mh
j ) log

(
1 +mh

j

)
+ (1−mh

j ) log
(
1−mh

j

)
(4.40)

−
∑

i,j

wijm
v
im

h
j +

N∑

i=1

aim
v
i +

M∑

j=1

bjm
h
j (4.41)

' 1

2

N∑

i=1

(mv
i )

2
+

1

2

M∑

j=1

(
mh
j

)2 −
∑

ij

wijm
v
im

h
j +

N∑

i=1

aim
v
i +

M∑

j=1

bjm
h
j .

(4.42)

The corresponding probability measure at fixed magnetization is Gaussian
(1.11), for which we can write the covariance matrix in the following form
(σv, σh being the variances of visible and hidden magnetizations)

cov(mv,mh) =




σ−2
h

σ−2
v σ−2

h −WWT
W 1

σ−2
v σ−2

h −WTW

WT 1
σ−2
v σ−2

h −WWT

σ−2
h

σ−2
v σ−2

h −WWT


 . (4.43)

In this mean-field picture, the values of visible and hidden nodes are identi-
fied with the magnetizations. This consists in treating a RBM with Gaussian
variables, and further assuming the external fields and the mean of the data
to be null (normalization and rescaling of the training set can determine such
conditions) we can rewrite the empirical expectation in (4.27) as

〈sασβ〉data = σ2
hwβ〈sασβ〉data = σ2

hwβ cov(sα, sβ) (4.44)

where we see that the covariance matrix of the data comes out.
The deterministic learning equation of the weight matrix (4.27) can thus

be written explicitly: the empirical average is given by Equation (4.44), while
the model average is given by the covariance matrix (4.43). The diagonal part
of the equation then reads

dwα
dt

= σ2
hwα

(
〈s2
α〉data −

σ2
v

1− σ2
vσ

2
hw

2
α

)
. (4.45)

while for the off-diagonal part we retain the rotation generators Ωu,vαβ rewriting
them as

Ωu,vαβ = (1− δαβ)σ2
h

(
wβ − wα
wα + wβ

∓ wβ + wα
wα − wβ

)
〈sαsβ〉Data. (4.46)

In the equation above we see that the rotations are null only when 〈sαsβ〉 is
diagonal, and this happens when the spectral modes are aligned to the principal
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Figure 4.2: Linear RBM. Reproduced from Reprint A.

components of the data. In turn, the diagonal evolution expressed in Equation
(4.45) involves only the singular values. The stable solutions of this diagonal
dynamics are

w2
α =

{ 〈s2α〉data−σ2
v

σ2
vσ

2
h〈s2α〉data

〈s2
α〉data > σ2

v

0 〈s2
α〉data < σ2

v

(4.47)

where we see how the evolution of the singular values is driven by the SVD
modes of the training data. The strongest modes, those above the threshold
σ2
v , are selected and learned while the modes below threshold are damped.

Equations (4.45)(4.46)(4.47) let us simply summarize the behavior of the
RBM in the linear regime: first, the learning equations drive the spectral modes
of the weight matrix to align to the principal components of the data; subse-
quently, the singular values of the aligned modes are selected and amplified
to match the dataset. Figure 4.2 shows the behavior of a linear RBM, in
agreement with our theoretical analysis.

4.7 Nonlinear regime

To derive the dynamics in the non-linear regime, we will make use of the mean-
field results of Sections 4.2 and 4.4 to compute the 〈. . . 〉Data (empirical) and
〈. . . 〉RBM (model) averages in Equations (4.27)-(4.29). In the empirical average
the value of the nodes of the network is driven by the data, so that we can
directly substitute the nodes values in Equations (4.21)(4.22) to obtain

〈σα〉Data = 〈wαsα(1− qα[s])〉Data (4.48)

〈sασα〉Data = 〈sαwβsβ(1− qβ [s])〉Data (4.49)
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4.8. Empirical dynamics

where q[s] is the empirical counterpart of the qα variable (4.19), here defined
as

q[s]
def
=

∫
dx

e
x2

2√
2π
dvpα(v) tanh2

(
κ−1/4

(
σx+

∑

γ

wγsγv
γ

))
. (4.50)

The above averages are relatively easy to compute for a given dataset, but it
is important to follow the prescriptions of Section 4.4 and select for the uα

and vα components an appropriate distribution that leads to a compositional
phase. The model average 〈. . . 〉RBM is instead computed by averaging the
stable mean-field solutions weighted by the corresponding free energies. The
mean-field partition function is thus defined as

ZTherm
def
=
∑

ω

e−Lf(mω,m̄ω,qω,q̄ω) (4.51)

where ω indexes all the solutions of the saddle point equations (4.14),(4.15).
The model averages then read

〈sα〉RBM =
1

ZTherm

∑

ω

e−Lf(mω,m̄ω,qω,q̄ω)m̄ω
α

def
= 〈m̄α〉Therm (4.52)

〈sασβ〉RBM =
1

ZTherm

∑

ω

e−Lf(mω,m̄ω,qω,q̄ω)m̄ω
αm

ω
β

def
= 〈m̄αmβ〉Therm (4.53)

and we can put together all of the above to write a set of nonlinear dynamical
equations that we are able to solve numerically

1

L

dwα
dt

= 〈sαwαsα(1− qα[s])〉Data − 〈m̄αwαm̄α(1− qα)〉RBM (4.54)

dη

dt
= 〈m̄α〉Therm − 〈sα〉Data +

∑

β

Ωuαβηβ (4.55)

dθα
dt

= 〈wαm̄α(1− qα)〉Therm − 〈wαsα(1− qα[s])〉Data +
∑

β

Ωvαβθβ .

(4.56)

4.8 Empirical dynamics

To experimentally analyze the mean-field dynamics of the RBM given by Equa-
tions (4.54)-(4.56) we introduce a simple synthetic dataset, composed by C
clusters of data with low dimensionality d embedded in a high dimensional
space represented by N binary variables si = ±1, with N � d. To generate
the data, we select a set of d orthonormal random vectors bα as a basis and we
fix the magnetizations

mc
i =

d∑

α=1

mc
αb
α
i (4.57)
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where the mc
α factors are drawn at random between [−1, 1] and normalized.

The multimodal distribution associated to the dataset is

P (s) =

C∑

c=1

pc

N∏

i=1

eh
c
isi

2 cosh(hci )
(4.58)

where pc is a probability weighting cluster c and hci is determined from the
magnetizations mc

i = tanhhci . Samples are generated by choosing a cluster
according to pc and setting the visible variables to ±1 according to

p(si = 1) =
1

1 + e−2hci
.

The generated dataset is used to compute the empirical averages and the Equa-
tions (4.54)-(4.56) are integrated numerically, choosing the Laplace distribution
for uα and vα components to compute the q, q̄, qα terms. The resulting data-
driven analytical dynamics are shown in Figure 4.3. For the singular values we

Figure 4.3: Predicted mean evolution of an RBM for a synthetic dataset, with
(Nv, Nh) = (1000, 500) and intrinsic dimension d = 15. The singular values
evolution is obtained by integration of Equation (4.54).

observe how the evolution is analogous to the linear case in which the modes
emerge from the bulk one by one, with the difference that while in the linear
regime the modes were evolving independently, here we notice how the ex-
pressed modes are interacting, with lower modes exerting a repulsive pressure
on the singular values above threshold. The number of fixed point solutions
used to compute the model averages increases in steps, roughly doubling each
time a new mode is expressed, and the learning trajectory on the phase dia-
gram (Figure 4.4) clearly shows how the RBM is found in the paramagnetic
phase at initialization and the learning dynamics drive the model towards the
learning phase, supporting our expectations that the model works in such a
phase at equilibrium.

Using the same synthetic dataset, we also performed a standard training
of the RBM (using CDk, see Section 2.2) and observed the spectral dynamics
shown in Figure 4.5. We see how the evolution of the singular values and the
emergence of new fixed point solutions follow closely the analytical evolution
described above, with the difference that the RBM training conserves a lower
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4.8. Empirical dynamics

Figure 4.4: Empirical trajectories of the RBM weight matrix in the phase
diagram.

Figure 4.5: Empirical evolution of the RBM for a synthetic dataset with
(Nv, Nh) = (1000, 500) and intrinsic dimension d = 15. The behavior is com-
parable to the predicted evolution shown in Figure 4.3.

Figure 4.6: Empirical evolution of the RBM for the MNIST dataset.

number of fixed point solutions. This is probably due to the fact that the biases
are expanded over an incomplete basis in Equations (4.9)(4.10), meaning that
we are neglecting a residual part perpendicular to the K-modes spectral basis;
this represents a limitation of our theoretical analysis but the overall behavior
is well described, meaning that our mean-field model is sound.

Finally, in Figure 4.6 we show the empirical dynamics over the MNIST
dataset. We see that the qualitative behavior follows the analytical prescrip-
tions, showing that the mean-field model is well adapted to real-world scenar-
ios. The picture of the RBM model that emerges is now rather complete. We
have seen how the learning equations drive the selection of a certain number of
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Figure 4.7: Projections of the mean-field magnetizations (in red) and sam-
ples from a synthetic dataset over the planes defined by the strongest spectral
directions x1, x2, . . . x5.

modes, which in turn determine the generation of new fixed point solutions for
the equilibrium phase. In Equation (4.54) we see how the learning converges
once the model average over the fixed point solutions matches the empirical
average, meaning that the fixed point magnetizations are able to accurately
represent the full dataset. This is seen by plotting the fixed point magnetiza-
tions together with the data along the spectral directions. In Figure 4.8 we see
that the learned RBM is able to accurately cover the data distribution with the
appropriate fixed points, while the extra fixed points in the mean-field model
shown in Figure 4.7 are not representative of the data. Nonetheless, the data
are clustered in the spectral space and the fixed point solutions in Figure 4.8
are coherent with the convergence expectations of Equation (4.54).
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4.8. Empirical dynamics

Figure 4.8: Empirical projections of the TAP fixed points of a trained RBM
(in red) and samples from a synthetic dataset over the planes defined by the
strongest spectral directions x1, x2, . . . x5.
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Chapter 5

Missing information

A key advantage of the RBM is that it makes it possible to efficiently compute
the conditional probability of a set of variables given the other variables. This
property is fundamental to define its learning strategy and it adapts naturally
to the case of missing information, i.e. datasets in which the visible variables
are not fully observed. In this context, of particular interest is the case of
learning with missing information and missing labels. We will show that the
RBM can easily be adapted to model the joint probability of features and labels
of a dataset, and this modeling results beneficial in imputing missing values for
both features and labels collaboratively.

In the next Section, we will introduce the problem more in detail and un-
derline its relevance. We will then introduce our approach and discuss our
results.

5.1 Multi-output learning with incomplete data

Modern machine learning techniques usually require large sets of fully observed
and well labelled data for training, which are seldom available in real-world ap-
plications. Sometimes a random subset of features is absent (e.g. failed sensors
of a monitoring system), sometimes the data are insufficiently annotated (limi-
tation due to the difficulties of human annotation) meaning that a lot of labels
are missing. In fact the most common situation is that we have to train a model
with both missing features and labels. Machine learning models that are able to
deal with missing observations and missing labels are therefore highly desired.

In our work, we will consider multi-class and multi-label learning; the for-
mer associates an input instance to one class of a finitely defined class set, while
the latter allows one instance to be associated to multiple labels simultaneously.
Though both the problems of data imputation and multi-output learning with
semi-supervised labels have been discussed in previous works [73, 14, 52], the
proposed models are generally not designed to handle both challenges concur-
rently. In our work we shall consider that both features and labels are missing
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5. Missing information

completely at random, meaning that the mask associated to a sample data is
assumed to be stochastically independent of the data.

Recently, methods based on Deep Latent Variables Models (DLVM) have
been proposed to deal with missing data. In [58], the Variational Autoencoder
[46] has been adapted to be trained with missing data and a sampling algo-
rithm for data imputation is proposed. Other approaches based on Generative
Adversarial Networks (GAN) [33] are proposed in [83] and [51]. Impressive re-
sults on image datasets are displayed for these models, at the price of a rather
high model complexity and the need for a large training set. In addition these
works are focused on features reconstruction, and additional specifications and
fine-tuning would be necessary to be able to take partially observed labels into
account. The models specifications are quite involved, and any new specificity
of the dataset may increase both the cost and the difficulty in training.

We chose to address the missing data problem in a more economical and ro-
bust manner. We consider the simple architecture of the Restricted Boltzmann
Machine and adapt it to the multi-output learning context (RBM-MO) with
missing data. The RBM-MO method serves as a generative model which col-
laboratively learns the marginal distribution of features and label assignments
of input data instances, despite the incomplete observations. Building on the
ideas expressed in [65] we adapt the approach to the PCD training procedure
(Section 2.2) and we propose a mean-field imputation method. Convincing re-
sults are shown on various real-world datasets. The advantage of the RBM-MO
model is that of providing a robust and flexible method to deal with missing
data, with little additional complexity with respect to the classic RBM. More-
over, it works seamlessly with multi-class and multi-label tasks, providing a
unified framework for multi-output learning.

5.2 Lossy-CDk

In this section, we consider an RBM model with a layer of binary hidden nodes
hj = 0, 1. The visible nodes are indicated by v and they will be either binary
(vi = 0, 1) or Gaussian, according to a prior distribution pprior as described in
Section 2.4, determining the following probability distribution

P (v,h) =
e−E(v,h)

Z
pprior(v). (5.1)

To model the presence of missing values in the dataset, we separate the visible
nodes in a set O of observed values and a setM of missing values. The visible
layer then separates into the observed nodes vo = {vi, i ∈ O} and the missing
nodes vm = {vi, i ∈ M}. The probability distribution over the observed
variables can be written as

P (vo) =
ZO
Z

(5.2)
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5.2. Lossy-CDk

where ZO is given by a marginalization over the missing variables

ZO =

∫ ∏

i∈M
pprior(vi)dvi

×e
∑
k∈V akvk

∏

j

(
1 + exp

(∑

k∈V
wkjvk + bj

))
, V = O ∪M. (5.3)

The log-likelihood gradient w.r.t. the weights takes the form

∂L(v)

∂wij
= 〈Io(i)vi

∑

hj

hjp(hj |vO)〉data (5.4)

+ 〈(1− Io(i))
∑

hj

∫
dvivihjp(hj |vo)〉data (5.5)

− 〈vihj〉RBM (5.6)

where Io is the indicator function of the set of observed nodes O. We note
that w.r.t. the standard case the empirical average is now split in two terms,
and we need to integrate over the missing variables vi, i ∈ M to compute the
conditional probability p(hj |vo) that we need to perform the Gibbs sampling.
This integration is akin to the computation of the negative term, meaning
that we can estimate the full positive term with a similar strategy: we pin
the observed visible nodes to their value and we iterate the Gibbs sampling
equations (Algorithm 1) for a prescribed number of steps k. The full training
algorithm becomes:

Algorithm 4 Lossy-CDk (RBM training with incomplete data)

1: Data: a training set of N data vectors
2: Randomly initialize the weight matrix W
3: for t = 0 to T (# of epochs) do
4: Divide the training set in m minibatches
5: for all minibatches m do

Positive term:
6: pin variables vi, i ∈ O to their observed value
7: initialize vi, i ∈M randomly
8: sample h,v using p(v | h) and p(h | v) for k steps
9: compute the positive terms in (5.4) and (5.5)

Negative term:
10: initialize v randomly
11: sample h,v using p(v | h) and p(h | v) for k steps
12: compute 〈vhT 〉model

Full update:
13: update W with equations (2.8) and (5.4)-(5.6)
14: end for
15: end for
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5. Missing information

5.3 Mean-field imputation

Given a trained RBM modeling an empirical data distribution, this can be used
to impute missing values for samples belonging to the same data distribution.
Similarly to the Lossy-CDk training, the idea is to fix the values of the ob-
served features and sample the missing features; fixing the known variables has
the effect of biasing the sampling procedure towards the correct equilibrium
configuration and helps in speeding up convergence, given that the fraction of
missing features is small enough. For high percentages of missing features, we
might expect this biased sampling to provide degraded solutions, as the low
information given by the observed features can be supplanted by the sampling
noise. To mitigate this effect, we can average multiple imputations weighted
by the learned distribution. Recalling the mean-field description of the RBM
in Chapter 4, we expect the equilibrium configurations to be represented by a
limited number of fixed point magnetizations. Averaging values imputed from
the fixed point magnetizations correlated with the observed variables provides
imputations that are weighted by the model distribution (assuming the free
energy differences of the fixed point solutions to be negligible), giving more
reliable solutions. A set of self-consistent equations to compute the mean-field
imputations is obtained by writing the mean-field equations at lowest order for
the marginal probabilities of visible variables mi and the marginal probabilities
of hidden variables qj

mi =


∑

j

wijqj + ai


σ2

v , i /∈ O (5.7)

qj = σ

(∑

i

wijmi + bj

)
(5.8)

that we can iterate to convergence while keeping fixed the observed values vi, i ∈
O. To obtain the weighted imputations, we simply run the above equations
Nf times (take Nf ∼ 10) starting from random initial conditions and average
the results

m̄i =
1

Nf

Nf∑

n=1

m
(n)
i . (5.9)

5.4 Multi-output classification with missing information

A rather flexible approach to introduce labels in the RBM model is to simply
model the joint probability distribution of both features and labels of an anno-
tated dataset [49]. This boils down to separating the set of visible nodes V into
a set of features nodes Vf and a set of label nodes Vl and let the model learn
the correct label structure and the correlations between labels and features.
The flexibility of this approach lies in the fact that multi-class and multi-label
scenarios can be handled seamlessly with the same model, testing the capacity
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5.4. Multi-output classification with missing information

of the RBM to properly learn the constraints on labels structure in the different
cases.

The learning algorithm is thus unmodified, while the mean-field imputa-
tion includes the pi magnetizations for label nodes giving the following set of
iterative equations

mi =


∑

j

wijqj + ai


σ2

v , i /∈ O (5.10)

pi = σ


∑

j

wijqj + ai


 , i /∈ O (5.11)

qj = σ


∑

i∈Vf
wijmi +

∑

i∈Vl
wijpi + bj


 . (5.12)

Qualitative results of the RBM learning with missing information are shown
in Figure 5.1 for the MNIST dataset; quantitative results for classification with
missing labels and missing features in the multiclass setting are reported in Ta-
ble 5.1, again for the MNIST dataset. The accuracy score in the base case in
which only 30% of both features and labels are missing comes close to the liter-
ature result for RBM classification with fully observed samples [49], providing
a good sanity check for our proposed mean-field imputation strategy. In the
extreme case in which 80% of features and labels are missing the model still
provides meaningful results, testifying the robustness of the approach. Other
datasets and experimental settings (the multilabel learning case in particular)
are discussed in [27] (Reprint C).

Table 5.1: Classification results for the MNIST dataset with missing informa-
tion. qml% is the percentage of missing labels, and qfea% the percentage of
missing features. The AUC score is the Area Under the ROC curve.

Averaged AUC Accuracy

qfea%
qmc%

30% 50% 80% 30% 50% 80%

30% 0.981 0.977 0.946 0.957 0.927 0.824

50% 0.975 0.971 0.933 0.954 0.915 0.830

80% 0.946 0.941 0.914 0.922 0.860 0.747
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5. Missing information

Figure 5.1: Features reconstruction by RBM-MO trained over an incomplete
dataset with 50% missing-at-random features, whose classification accuracy has
been measured to be around 91%. The first block shows some complete testing
instances. The second and third block show the same testing instances after
hiding respectively 50% and 80% of the pixels. The last two columns show the
results of the mean-field imputations over the incomplete testing instances.
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Normalizing Flows
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Chapter 6

Relative gradient optimization

In Part I about the RBM we have seen how a generative model of the data can
be expressed as an energy-based model. Here we proceed from the observation
that fundamentally we introduced generative models as probability distribu-
tions that we can learn from a dataset and subsequently sample from (Section
1.8). In this Part we present a simple invertible neural network architecture
to model empirical distributions, together with an efficient training algorithm.
This work has been originally presented in [35] (Reprint D).

6.1 Invertible transformations of probability densities
and Normalizing Flows

We proceed from the assumption that there exists a “ground truth” probability
distribution that assigns a normalized density to each sample x of the dataset
of interest. The samples are considered to be high dimensional, with dimension
d� 1, and our goal is to learn a parametrized and tractable approximation of
the distribution P (x) = P (x;θ). The strategy we adopt here is to consider a
transformation T that maps a tractable base distribution Ps(s) into the data
distribution P (x). That is, T transforms a set of samples s drawn according
to Ps into the dataset samples x

x = T (s), s ∼ Ps(s).

Restricting the transformation T to be invertible and differentiable (with a
differentiable inverse too), we can rewrite the data distribution in terms of
the s samples by introducing a change of variable ([10], Section 1.2.1). This
introduces the Jacobian matrix of the inverse transformation, that we denote
JT−1 , and let us write the data log-likelihood as

logP (x) = logPs(s) + log |detJT−1(x)|, s = T−1(x). (6.1)
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6. Relative gradient optimization

which we can optimize by Maximum Likelihood

P (x) = P (x;θ∗)

θ∗ = arg max
θ

Ex∈Data [logP (x;θ)] .

Choosing a tractable distribution Ps, the complexity of computing and opti-
mizing the data distribution P (x) is encapsulated into the determinant of the
Jacobian matrix, to which we will refer as the Jacobian term in the following.
We remark that restricting the transformation T to be invertible and differ-
entiable not only let us employ the change of variable (6.1), but it also gives
us the freedom to choose a tractable distribution Ps(s) without restricting the
class of distributions P (x) that we can model. Indeed, under mild conditions
over Ps and P , Equation (6.1) can represent any distribution P (x) if T is a
diffeomorphism, i.e. it is continuous and both T and T−1 are differentiable
[68]. On the other hand, requiring T to be a diffeomorphism entails that the
transformation must preserve the topological properties of the input space,
i.e. the spaces in which x and s are embedded will have the same topology.
Concretely, this comes with two major constraints:

i) x and s have the same dimension d;

ii) the base distribution Ps and the data distribution P (x) model the same
number of disconnected modes.

Constraint ii) tells us that, for instance, to choose an appropriate base distri-
bution Ps we need to know the number of separate clusters that the dataset is
separated into, which is generally unknown and it is not clear how to determine
it. This problem might seam daunting, but in practice we can ignore it and
let the data distribution P (x) connect the separate clusters with a negligible
amount of density mass; in practice, the employment of a unimodal base dis-
tribution has been shown to be able to approximate as well as possible some
complex input topologies ([68, 25], Figure 6.3). Constraint i) poses instead
some strong limitations on the approximation capacity of the model; for in-
stance, it is known that for transformations realized through neural networks,
the ability to arbitrarily choose the model’s width is necessary to achieve uni-
versal approximation capacity for arbitrary functions [53]. Notwithstanding
this limitation, we recall that models employing a diffeomorphic transforma-
tion T are universal approximators for distributions, which seams to suggest
that such models are powerful enough.

Another crucial property of diffeomorphic transformations T is that they
are naturally composable and they present a simple expression for the Jacobian
term in Equation (6.1)

T = T1 ◦ T2 =⇒ detJT−1
1 ◦T−1

2
= detJT−1

1
· detJT−1

2
.

This let us build complex transformations of the base samples s by chaining
together simpler transformations in successive steps, as exemplified in Figure
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6.2. Linear flows as Fully Connected neural network layers
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Figure 6.1: Example of a 4-step flow transforming samples from a standard-
normal base density to a cross-shaped target density. Reproduced from [68].

6.1. This idea is at the base of the class of models known as Normalizing Flows
(NF), where the name comes from the fact that we can consider the inverse
transformation taking the data samples and “normalizing” them into samples
of the base distribution through a “flow” of transformations.

A comprehensive account of NF models is found in [68]. The unifying as-
pect is that all NF models propose some kind of neural network architecture to
parametrize the transformation T and optimize the log-likelihood (6.1) through
backpropagation. The differences lie in the strategy that each model proposes
to deal with the Jacobian term, which is generally expensive to compute. In-
deed, being the Jacobian a d × d matrix, its determinant can be computed in
O(d3) time and the optimization with backpropagation also takes O(d3) times.
For high-dimensional datasets, it becomes quickly unfeasible to directly opti-
mize the Jacobian term; NF models solve this problem by imposing constraints
on the structure of the Jacobian matrix or by computing the Jacobian term in
an approximate way, to make the optimization of the Jacobian term feasible.

6.2 Linear flows as Fully Connected neural network
layers

One of the simplest transformations that we can consider in the context of
Equation (6.1) is an invertible linear transformation

s = Wx (6.2)

where W is an invertible d× d weight matrix parametrizing the inverse trans-
formation T−1. In the literature, the above transformation is known as a linear
flow [68] and its Jacobian matrix is simply the weight matrix W itself, imply-
ing that the Jacobian term is given by the determinant of W . Computation
of the determinant is an O(d3) operation, as well as the computation of its
derivative

∂ log |detW |
∂W

=
(
W T

)−1
(6.3)

where the O(d3) time complexity comes from the need of inverting the matrix
W T . Maximum likelihood optimization of a linear flow with backpropagation
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6. Relative gradient optimization

and Stochastic Gradient Descent (SGD) is thus a O(d3) process, as backprop-
agation essentially computes the gradient (6.3) with the chain rule.

A more general nonlinear transformation can be obtained by identifying a
linear flow as a Fully Connected (FC) layer of a multilayer neural network.
Denoting by σ the activation function of the network, the k-th layer gk is
expressed as

gk(x) = σ (Wkx) . (6.4)

Choosing σ to be invertible and differentiable, we obtain the diffeomorphic
transformation T−1

k = gk. The composition of multiple FC blocks let us define
a multilayer FC neural network g = g1 ◦ g2 ◦ · · · ◦ gL with

zk = gk(zk−1), k = 1, . . . , L (6.5)

where L is the number of layers. The input to the network will be the data sam-
ples x and the output represents the base samples s, so that we have z0 = x and
zL = s. Finally, for the base distribution we choose a standard multivariate
normal with identity covariance, meaning that Ps factorizes over the compo-
nents of s and we can write the loglikelihood of the multilayer transformation
as

logP (x) =
∑

i

logN ([g(x)]i; 0, 1) + log |detJg(x)| (6.6)

=
∑

i

logN ([g(x)]i; 0, 1) +

L∑

k=1

log |detJgk(zk−1)|

where we stress again that the computational complexity in estimating the
probability density of the data lies in the computation of the Jacobian term;
indeed, a forward pass through the network g has O(d2) complexity, which
becomes negligible w.r.t. the O(d3) complexity of computing the Jacobian
for large d. We note however that the computation of the Jacobian term
has to be performed only once, and its result can be reused to compute the
sample densities; in practice this mitigates the problem, as we can perform
a single O(d3) operation in advance and cache it to subsequently compute
sample densities in O(d2) time. Unfortunately this strategy doesn’t work in
the Maximum Likelihood optimization phase, in which we have to compute the
gradients (6.3) at every layer for each step of the SGD update.

To obtain a better scaling behavior and make the training of linear flows
feasible, we can parametrize the invertible matrix W in specific ways. [24, 47]
proposed to compute the PLU decomposition ofW , where P is a permutation
matrix (with unitary determinant) and L, U are lower- and upper-triangular
matrices, whose determinant is the product of the diagonal elements. Com-
putation of the Jacobian term is thus O(d), and the overall optimization is
O(d2). While this parametrization is in principle able to represent any invert-
ible matrix W [68], in practice we cannot optimize the permutation matrix
P , thus limiting the class of matrices that we can represent. A more flexible
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6.3. Relative gradients

alternative is to consider the QR decomposition of W , where Q is an orthogo-
nal matrix and R is upper triangular. Computing Q in full generality requires
O(d3) operations, but [78] showed that we can apply the Q transformation
as a sequence of at most d symmetry transformations each taking linear time.
This makes it possible to compute and optimize the QR decomposition of W
in O(d2) time; note however that the sequential nature of the computation
makes the method unsuitable for parallel optimization, making it rather slow
in practice. An experimental comparison of the performance of the PLU and
QR decompositions against the direct optimization of W is found in [41].

6.3 Relative gradients

The gradient of a function is generally introduced with the implicit assump-
tion that the objects to optimize are defined w.r.t. a Euclidean space, i.e. a
n-dimensional vector space in which the notions of distance and “orientation”
(angle) are well defined. Computations are thus performed in the usual Carte-
sian coordinate system over the real space1 Rn. In this context, invertible
d× d matrices can be represented in the Rd2 vector space, i.e. a real space of
dimension d2. This is possible due to the isomorphism between the space of
invertible matrices Rd×d = Rd ⊗ Rd, where ⊗ is the Kronecker product, and
the real space Rd2 . However, while the isomorphism preserves the algebraic
structure thus letting us perform valid computations, it doesn’t guarantee that
the geometric notions (such as distance) are preserved in the transformation.
In the general case, invertible matrices live on a space with its own specific
metric, i.e. a specification of the geometric notions of distance, angle, curva-
ture and others. The Euclidean space has a flat metric; in dimension 3, this
corresponds to the intuitive and evident properties of the physical world that
we perceive, i.e. “naturally flat” surfaces and the interior angles of a triangle
summing up to 180◦. The space of invertible matrices is a Riemannian man-
ifold, a smooth space that is locally equivalent to a Euclidean space but with
a different metric. Riemannian manifolds are generally thought of as curved
spaces; the prototypical example is the surface of a sphere, which is naturally
a 2-dimensional curved space. It is well known that it is not possible to project
this surface on a 2-dimensional plane without distorting distances, which moti-
vated the use of different maps and projections to represent the Earth surface
over the centuries.

In the context of optimization, the use of the ordinary gradient defined
in the Euclidean space becomes problematic when it is used with objects de-
fined on a Riemannian manifold, as it doesn’t respect the intrinsic curvature
properties of such spaces. For invertible matrices, [4] showed how the steep-
est direction is not represented by the ordinary gradient but by the Natural
Gradient (NG), which is introduced as the gradient computed directly on the

1Here we refer to the n-dimensional Euclidean space and the real space Rn interchange-
ably; it is understood that we work in the real space Rn equipped with Euclidean structure
and a Cartesian coordinate system.
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manifold and not on its projection in Euclidean space. In the context of blind
source separation, [16] derived a Relative Gradient (RG) for invertible matrices
that stems from the properties of the multiplicative form of linear transforma-
tions (of the same kind as Equation (6.2)) and enjoys desirable convergence
properties. As it turns out, the NG is identical to the RG as far as invertible
matrices are concerned, with the NG being applicable in more general terms
to any smooth manifold [15, 57].

For the layers of the FC network defined in Section 6.2, instead, the RG
is not equivalent to the NG; consequently, in this context the RG doesn’t
represent the steepest direction and it doesn’t enjoy the theoretical guarantees
of learning efficiency that the NG does [4]. Nevertheless, the same properties
that motivated the introduction of the RG are satisfied for the layers of the
FC network we introduced, making it an attractive alternative to the ordinary
gradient. We follow [16, 35] to introduce the RG in a simple way and show
that it provides a valid descent direction for a linear transformation.

A general way to compute the gradient of a function f is to perturb its input
and consider the first-order term of the resulting Taylor expansion. When the
input to the function is a matrix W , the perturbation will be represented by a
matrix E with infinitesimal entries. The ordinary gradient∇f(W ) is computed
by adding the perturbation to the input

W →W + E (6.7)

and computing the Taylor expansion

f(W + E)− f(W ) = 〈∇f(W ),E〉+ o(E) (6.8)

where 〈A,B〉 =
∑
ij aijbij is the Euclidean scalar product of matrices. The

corresponding SGD update rule is obtained by aligning the update opposite to
the gradient, i.e. setting E = −λ∇f(W ) to get

W →W − λ∇f(W ) (6.9)

where λ is the step size (corresponding to the learning rate in the context
of neural networks training). The relative gradient ∇frel(W ) is obtained by
considering a multiplicative perturbation instead

W →W + EW = (I + E)W (6.10)

where I is the identity matrix and the Taylor expansion reads

f((I + E)W )− f(W ) = 〈∇f(W ),EW 〉+ o(E) = 〈∇f(W )W T ,E〉+ o(E)
(6.11)

from which we obtain the equation defining the relative gradient2

∇frel(W ) = ∇f(W )W T . (6.12)

2([35], Reprint D) calls the update term in (6.13) the relative gradient. Here we align to
the original nomenclature by [16].
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6.4. Relative backpropagation

Considering again a perturbation opposite to the gradient E = −λ∇frel(W )
and applying it in a multiplicative fashion, we obtain the relative update rule

W →W − λ∇f(W )W TW . (6.13)

This update rule is valid, in the sense that it determines a decrease in the value
of f . This is easily seen by taking λ small and computing the value of f for
the updated value of W

f((I − λ∇frel(W ))W ) = f(W − λ∇frel(W )W )

= f(W )− λ〈∇f(W ),∇frel(W )W 〉+ o(λ)

= f(W )− λ〈∇f(W ),∇f(W )W TW 〉+ o(λ)

' f(W )− λ〈∇f(W )W T ,∇f(W )W T 〉
= f(W )− λ‖∇frel(W )‖2 < f(W )

where ‖·‖2 is the Frobenius norm.

6.4 Relative backpropagation

The crucial advantage of the RG is that it let us simplify the expression of the
derivative of the Jacobian term for linear flows. We will show how this makes
it possible to optimize linear flows efficiently and in full generality, i.e. without
imposing constraints on the structure of the weight matrix W as it is usually
done in NF literature. Subsequently, we will consider a more complex non-
linear model (the multilayer FC network introduced in Section 6.2) and show
how the RG can play nicely with backpropagation, letting us introduce a Rel-
ative Backpropagation algorithm that makes it possible to efficiently optimize
models employing unconstrained linear flows, with a cost that is equivalent
to ordinary backpropagation. Finally, we will show some experimental results
to empirically test the computational and statistical efficiency of the proposed
algorithm.

Optimizing Linear Flows. Taking a linear flow f(x) = Wx, we recall from
Section 6.2 that the Jacobian term Df is given by

Df (x) = log |detJf (x)| = log |detW |

and its gradient is

∇Df (W ) =
(
W T

)−1
. (6.14)

Exploiting Equation (6.12) we see that the RG is given by the identity matrix

∇Df rel = ∇DfW
T = I (6.15)

which is a remarkable result as it let us avoid the computation of the gradient
altogether and directly use the very simple update rule

W → (I − λ)W (6.16)
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where λ is the step size. This makes the optimization of the Jacobian term of
linear flows computationally efficient, as we avoid the matrix inversion. More-
over, we stress the fact that this optimization strategy can be applied in full
generality without imposing any constraints on the structure of the weight
matrix W , in stark contrast to the NF literature.

Backpropagating relative gradients. We consider the model g introduced
in Section 6.2 and defined by Equations (6.4)(6.5). Defining the two objectives

Lp(x) =
∑

i

logN ([g(x)]i; 0, 1)

LJ(x) = log |detJ(x)|

where LJ is the Jacobian term of the full network, the loglikelihood (6.6) can
be written as

L(x) = Lp(x) + LJ(x). (6.17)

We further split the Jacobian term over the layers and separate the linear
transformations from the nonlinearities to get

LJ(x) =

L∑

k=1

Lk(zk)

Lk(zk) = Lk,1(zk) + Lk,2(zk)

Lk,1(zk) =

d∑

i=1

log |[σ(yk)]i|

Lk,2(zk) = log |detWk|

where yk = Wkzk−1 and Lk,2 is the Jacobian determinant of a linear flow.
Optimizing the full objective L(x) in an efficient manner is not straightfor-

ward. Indeed, with backpropagation we can calculate the ordinary gradients of
each term of the loglikelihood, with the problem that the Lk,2 term would be
expensive to compute (Section 6.2). Substituting the ordinary gradient with
the relative gradient using Equation (6.12) we can optimize Lk,2 efficiently with
the update rule (6.16), but the update rules for the other terms are

Wk → (I − λ∇f(Wk)W T
k )Wk ∼ O(d3), f = {Lp,Lk,1}

which are in turn expensive to compute due to theO(d3) matrix multiplications,
as both ∇f(Wk) and Wk are d×d matrices. However, this problematic is only
apparent and using some care it is possible to efficiently compute the relative
gradient updates for all the terms of the loglikelihood. To see this, we use
the chain rule to compute the gradient of the terms f = {Lp,Lk,1} w.r.t. the
parameters of layer k, i.e. the weight matrix Wk:

∂f(x)

∂Wk
=

∂yk
∂Wk

∂f(x)

∂yk
= zk−1δ

T
k δk =

(
∂f(x)

∂yk

)T
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where δk is the error vector 3 that is computed with automatic differentiation
in the backpropagation algorithm. The relative gradient update rule then reads

Wk →Wk − λzk−1((δTkW
T
k )Wk) ∼ O(d2) (6.18)

which can be computed in O(d2) time by carefully avoiding the matrix-matix
multiplications (parentheses are important in Equation (6.18)). The full ob-
jective L(x) can thus be efficiently optimized in O(d2) time with a hybrid ap-
proach: the Lk,2 term is directly optimized with the update rule (6.16), while
for Lp and Lk,1 we first compute the backpropagated errors δk with automatic
differentiation and then apply the update rule (6.18).

Experimental results. To test the computational efficiency and the empir-
ical capacity of the model proposed in Section 6.2, we performed a couple of
experiments:

i) a benchmark comparing optimization through the ordinary and relative
gradients;

ii) probability density estimation over some simple 2-dimensional toy datasets.

In both cases, we used a model g = g1 ◦ g2 ◦ · · · ◦ gL with L layers comprising
the composition of a linear flow (6.2) and an invertible nonlinearity σk defined
as a smooth alternative to the Leaky ReLU function [54] commonly used in
neural network architectures

σk(x) = αx+ (1− α) log(1 + ex)

where α is a leakage coefficient that we treat as a hyperparameter. We note
that the above expression is not invertible in closed form; in practice, this
doesn’t represent a problem as we can invert it numerically with the Newton
method in a fixed number of iterations. For the last network layer we set
σL(x) = x, in an attempt to help the network to more easily map the outputs
to a centered Normal distribution (the motivation comes from noticing that
using the smooth Leaky ReLU defined above, we have σk(0) > 0).

The results of experiment i) are summarized in Figure 6.2. Even though
the theoretical asymptotic difference betweenO(d3) complexity for the ordinary
gradient and O(d2) complexity of the relative gradient is not clearly identified,
the relative gradient optimization shows to be two order of magnitudes faster
at both low and high dimensionality. We report benchmarking results for
dimensionality up to d ∼ 104; for higher dimensionality, the real bottleneck
becomes the number of parameters required by a FC layer, and the associated
memory requirements.

Experiments ii) consists in training our model over data sampled from some
simple 2-dimensional distributions and visualizing the learned probability den-
sities as a heatmap. In Figure 6.3 we can see that the model achieves very

3The derivative to compute δk is written in numerator layout notation; the derivatives
w.r.t. the matrix Wk are naturally arranged in the column vector zk−1.
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Figure 6.2: Comparison of the average computation times of a single evaluation
of the gradient of the log-likelihood over a batch of 100 samples; the standard
error of the mean is not reported as it is orders of magnitude smaller than the
scale of the plot. We set the number of layers to L = 2 and performed the
experiment using a Tesla P100 Nvidia GPU. Reproduced from [35].

good results in this simple setting. We remark that the original distributions
to model are composed by disconnected clusters, and we know from Section 6.2
that these cannot be mapped to a unimodal Normal distribution by smooth
invertible transformations. In spite of this, we see how the model is able to
seemingly connect the cluster with a negligible amount of density mass.

Further experimental results over real-world datasets are reported in the
original work ([35], Reprint D).
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Figure 6.3: Illustrative examples of 2-dimensional density estimation. Samples
from the true distribution and predicted densities are shown, in this order, side
by side.
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Conclusions

In Part I we have presented an extensive empirical analysis of the RBM during
training, with particular focus on the dynamics of the SVD components of the
weight matrix. We observed how the learning procedure selects a finite number
of spectral modes to amplify, and a linear analysis of this process elucidates
the role of the data in driving this selection. These observations motivated the
choice of a statistical ensemble for the weight matrix of the RBM composed of a
structured part and a random part. Mean-field analysis of the chosen ensemble
let us derive a set of deterministic equations to describe both the dynamical
evolution of the RBM during training and its equilibrium properties. The
main outcome of this mean-field analysis is a clustering interpretation of the
learning process, showing how the RBM is able to cluster the data around the
solutions of its mean-field equations. While the mean-field equations showed
some shortcomings in properly reproducing this clustering, a trained RBM fit
this interpretation effectively.

When dealing with missing information, the simple formulation of the RBM
naturally adapts to imputation problems. The clustering interpretation of the
learning procedure motivated an imputation strategy in which multiple mean-
field fixed-point solutions are averaged to obtain more robust results. This
imputation algorithm is economical and successful in practice. A distinctive
feature is its applicability to a wide range of different datasets including moder-
ately low-dimensional data with only few hundred samples in the training set,
as exemplified by an Internet-of-Things dataset discussed in [27] (Reprint C).
Data-hungry deep learning models would most probably struggle in such a sce-
nario. These considerations suggest that the proposed RBM-based imputation
algorithm is a convenient alternative in real-world scenarios.

A couple of remarks, which are not discussed in this thesis, provide inter-
esting avenues for further research. First, we note that a characterization of
the free energy landscape of the RBM could in principle provide more refined
imputations. The rationale is that the free energy of the mean-field fixed-point
solutions can be used to weight the imputations over which we average; for
simplicity, we disregarded this aspect in our work. Second, splitting the data
features in observed and missing variables sets is akin to introducing a second
layer of hidden units in the RBM architecture. From this point of view, with
fully observed data and a RBM with 2 layers of hidden units the mean field
imputation strategy can be analyzed as a training algorithm in its own right.
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6. Relative gradient optimization

In Part II we have introduced the relative gradient and shown how it can
be used to train Linear Flows without trading off expressive capacity for com-
putational efficiency. We further proposed the use of Linear Flows as building
blocks of a nonlinear multilayer neural network, and shown how the relative
gradient plays nicely with standard backpropagation to provide an efficient
training algorithm for the full architecture. The novelty of the proposed model
is that it can scale to very high dimensionality without the need to impose
structural constraints in the architecture or employing approximations during
training, providing a new flexible model for density estimation. This feature
makes it interesting from the theoretical point of view as it suggests a broader
field of applications. In particular, the common “Gaussianization” operated by
Normalizing Flows is conceptually close to Independent Component Analysis
(ICA). In our work we took inspiration from the ICA literature in which the
relative gradient is widely applied; inverting point of view, an interesting re-
search proposition is to study how and if our model can be applied to perform
ICA.

To conclude we note how the main subjects of this thesis have been com-
bined before [34], suggesting that the investigation of the interplay between
Restricted Boltzmann Machines and Normalizing Flows can be a fruitful one.
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Abstract – The Restricted Boltzmann Machine (RBM), an important tool used in machine
learning in particular for unsupervized learning tasks, is investigated from the perspective of its
spectral properties. Starting from empirical observations, we propose a generic statistical ensemble
for the weight matrix of the RBM and characterize its mean evolution. This let us show how in
the linear regime, in which the RBM is found to operate at the beginning of the training, the
statistical properties of the data drive the selection of the unstable modes of the weight matrix. A
set of equations characterizing the non-linear regime is then derived, unveiling in some way how
the selected modes interact in later stages of the learning procedure and defining a deterministic
learning curve for the RBM.

Introduction. – A Restricted Boltzmann machine
(RBM) [1] constitutes nowadays a common tool on the
shelf of machine learning practitioners. It is a generative
model, in the sense that it defines a probability distribu-
tion, which can be learned to approximate any distribution
of data points living in some N -dimensional space, with N
potentially large. It also often constitutes a building block
of more complex neural network models [2, 3]. The stan-
dard learning procedure called contrastive divergence [4]
is well documented [5] although being still a not so well
understood fine empirical art, with many hyperparame-
ters to tune without much guidelines. At the same time
an RBM can be regarded as a statistical physics model,
being defined as a Boltzmann distribution with pairwise
interactions on a bipartite graph. Similar models have
been already the subject of many studies in the 80’s [6–9]
which mainly concentrated on the learning capacity, i.e.
the number of independent patterns that could be stored
in such a model. The second life of neural networks has
renewed the interest of statistical physicists for such mod-
els. Recent works actually propose to exploit its statisti-
cal physics formulation to define mean-field based learning
methods using TAP equations [10–12]. Meanwhile some
analysis of its static properties, assuming a given learned
weight matrix W , have been proposed [13, 14] in order to
understand collective phenomena in the latent representa-

(a)E-mail: aurelien.decelle@lri.fr

tion [15], i.e. the way latent variables organize themselves
to represent actual data. One common assumption made
in these works is that the weights of W are i.i.d. which as
we shall see is unrealistic. Concerning the learning pro-
cedure of neural networks, many recent statistical physics
based analysis have been proposed, most of them within
teacher-student setting [16] which imposes a strong as-
sumption on the data, namely that these are generated
from a model belonging to the parametric family of inter-
est, hiding as a consequence the role played by the data
themselves in the procedure. From the analysis of related
models [17, 18], it is already a well established fact that
a selection of the most important modes of the singular
value decomposition (SVD) of the data is performed in
the linear case. In fact in the simpler context of linear
feed-forward models the learning dynamics can be fully
characterized by means of the SVD of the data matrix [19],
showing in particular the emergence of each mode by order
of importance regarding singular values.

In this work we follow this guideline in the context of a
general RBM. We propose to characterize both the learned
RBM and the learning process itself by the SVD spectrum
of the weight matrix in order to isolate the information
content of an RBM. This allows us then to write a deter-
ministic learning equation leaving aside the fluctuations.
This equation is subsequently analyzed first in the linear
regime to identify the unstable deformation modes of W ;
secondly at equilibrium assuming the learning is converg-

p-1

ar
X

iv
:1

70
8.

02
91

7v
2 

 [
co

nd
-m

at
.d

is
-n

n]
  3

0 
N

ov
 2

01
7

A. Spectral dynamics of learning in restricted Boltzmann
machines

80



A. Decelle et al.

ing, in order to understand the nature of the non-linear
interactions between these modes and how these are de-
termined from the input data. In the first section we re-
call the RBM model and associated learning algorithm.
In the second section we show how this algorithm can be
described by a generic learning equation. Then we first
analyze the linear regime and thereafter we describe what
happens with the binary RBM. A set of dynamical param-
eters is shown to emerge naturally from the SVD decom-
position of the weight matrix. The convergence toward
equilibrium is analyzed and illustrated later with actual
tests on the MNIST dataset.

The RBM and associated learning procedure. –
An RBM is a Markov random field with pairwise inter-
actions defined on a bipartite graph formed by two lay-
ers of non-interacting variables: the visible nodes and
the hidden nodes representing respectively data config-
urations and latent representations. The former noted
s = {si, i = 1 . . . Nv} correspond to explicit representa-
tions of the data while the latter noted σ = {σj , j =
1 . . . Nh} are there to build arbitrary dependencies among
the visible units. They play the role of an interacting field
among visible nodes. Usually the nodes are binary-valued
(of boolean type or Bernoulli distributed) but gaussian
distributions or more broadly arbitrary distributions on
real-valued bounded support are also used [20], ultimately
making RBMs adapt for more heterogeneous data sets.
Here to simplify we assume that visible and hidden nodes
will be taken as binary variables si, σj ∈ {−1, 1} (using
±1 values has the advantage of symmetrizing the equa-
tions hence avoiding to deal with “hidden” biases on the
variables when considering binary {0, 1} variables). Like
the Hopfield model [6] which can actually be cast into an
RBM [21] an energy function is defined for a configuration
of nodes

E(s,σ) = −
∑

i,j

siwijσj −
Nv∑

i=1

ηisi −
Nh∑

j=1

θjσj (1)

and this is exploited to define a joint distribution be-
tween visible and hidden units, namely the Boltzmann
distribution

p(s,σ) =
e−E(s,σ)

Z
(2)

where W is the weight matrix and η and θ are biases, or
external fields on the variables. Z =

∑
s,σ e

−E(s,σ) is the
partition function of the system. The joint distribution be-
tween visible variables is then obtained by summing over
hidden ones. In this context, learning the parameters of
the RBM means that, given a dataset of M samples com-
posed of Nv variables, we ought to infer values to W , η

and θ such that new generated data obtained by sampling
this distribution should be similar to the input data. The
general method to infer the parameters is to maximize the
likelihood of the model, where the pdf (2) has first been
summed over the hidden variables

L =
∑

j

log(2 cosh(
∑

i

wijsi + θj))− log(Z). (3)

Different methods of learning have been set up and proven
to work efficiently, in particular the contrastive divergence
(CD) algorithm from Hinton [4] and more recently TAP
based learning [10]. They all correspond to expressing the
gradient ascent on the likelihood as

∆wij = γ (〈siσjp(σj |s)〉Data − 〈siσj〉pRBM
) (4)

where γ is the learning rate. Similar equations can be
derived for the biases. The main problem is the second
term on the rhs of (4) which is not tractable, and various
methods basically differ in their way of estimating this
term (Monte-Carlo chains, mean field, TAP . . . ). For an
efficient learning the first term also has to be approximated
by making use of random mini batches of data at each step.

Deterministic dynamics of the learning. – In or-
der to understand the dynamics of the learning we first
project the CD equation (4) onto the basis defined by the
SVD of W . As a generalization of eigenmodes decomposi-
tion to rectangular matrices, the SVD for a RBM is given
by

W = UΣVT (5)

where U is an orthogonalNv×Nh matrix whose columns
are the left singular vectors uα, V is an orthogonalNh×Nh
matrix whose columns are the right singular vectors vα

and Σ is a diagonal matrix whose elements are the singular
values wα. The separation into left and right singular
vectors is due to the rectangular nature of the decomposed
matrix, and the similarity with eigenmodes decomposition
is revealed by the following SVD equations

Wvα = wαuα

WTuα = wαvα

We consider the usual situation where Nh < Nv,
which means that the rank of W is at most Nh.
W (t) represents the learned weight matrix at time
t. Let {wα(t) ∈ [0,+∞[}, {uα(t) ∈ RNv} and
{vα(t) ∈ RNh} such that the following decomposi-
tion wij(t) =

∑
α u

α
i (t)wα(t)vαj (t) holds. Discarding

stochastic fluctuations usually inherent to the learn-
ing procedure and letting the learning rate γ → 0,
the continuous version of (4) can be recast as follows:
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(
dw

dt

)

αβ

= δα,β
dwα
dt

(t) + (1− δα,β)
(
wβ(t)Ωvβα(t) + wα(t)Ωhαβ

)
= 〈sασβ〉Data − 〈sασβ〉RBM (6)

Ωvαβ(t) = −Ωvβα
def
=
duα,T

dt
uβ =

−1

wα + wβ

(
dw

dt

)A

αβ

+
1

wα − wβ

(
dw

dt

)S

αβ

(7)

Ωhαβ(t) = −Ωhβα
def
=
dvα,T

dt
vβ =

1

wα + wβ

(
dw

dt

)A

αβ

+
1

wα − wβ

(
dw

dt

)S

αβ

(8)

Here everything is expressed in the reference frame de-
fined by singular vectors of W . sα =

∑
i u

α
i si and

σα =
∑
j v

α
j σj represent spin configurations in this frame.

Note that one has to keep track of the original reference
frame to be able to evaluate the data and RBM aver-
age in particular when the basic variables are discrete.
We have introduced the skew-symmetric rotation genera-
tors Ωv,hαβ (t) of the basis vectors induced by the dynamics.
These tell us how the data rotate relatively to this frame.
The superscript S,A indicate the symmetric (resp. anti-
symmetric) part of the matrix. Note that these equations
become singular when some degeneracy occurs in W be-
cause then the SVD is not uniquely defined. This is not
really a problem since we are interested in rotations among
non-degenerate modes, the rest corresponding to gauge de-
grees of freedom. Similar equations can be derived for the

fields ηα(t)
def
=
∑
i ηi(t)u

α
i (t) and θα(t)

def
=
∑
j v

α
j (t)θj(t)

projected onto the SVD modes. At this point we make the
assumption that the learning dynamics is represented by a
trajectory of ({wα(t), ηα(t), θα(t),Ωv,hαβ (t)}, while the spe-
cific realization of the uαi and vαj is considered to be irrele-
vant, and can be averaged out with respect to some simple
distributions, as long as this average is correlated with the
data. This means that the decomposition ŝα =

∑
i u

α
i ŝi

of any given sample configuration is assumed also to be
kept fixed while averaging. What matters mainly is the
strength given by wα(t) and the rotation given by Ωv,hαβ (t)
of these SVD modes. Assuming for example i.i.d cen-
tered normal distribution with respective variance 1/Nv
and 1/Nh for uαi and vαj , the empirical term takes the
simple form:

〈sασβ〉Data =
1

Nh

〈
sα(sβwβ − θβ)V

( 1

Nh

∑

γ

(wγsγ − θγ)2
)〉

Data
where V (x) =

∫
dy
e−y

2/2

√
2π

sech2(
√
xy), (9)

which actually depends on the activation function (an
hyperbolic tangent in this case). The main point here is
that the empirical term defines an operator whose decom-
position onto the SVD modes of W functionally depends
solely on wα, θα and on the projection of the data on the
SVD modes of W . This term is precisely driving the dy-
namics. The adaptation of the RBM to this driving force
is given by the second term which can be as well estimated
in the thermodynamic limit, as a function of wα, θα and
ηα alone.

Linear instabilities. – First let us consider the lin-
ear regime which can be analyzed thoroughly. It can be
obtained by rescaling all the weights and fields by a com-
mon “inverse temperature” β factor and let this go to zero
in equations (6). This limit can be understood by keep-
ing up to quadratic terms in the mean field free energy
and should correspond to the first stages of the learning.
In this limit, magnetizations (µv, µh) of visible and hid-
den variables have Gaussian fluctuations with covariance
matrix

C(µv, µh)
def
=

[
σ−2v −W
−WT σ−2h

]−1

with σ2
v = σ2

h = 1 introduced for sake of generality when
considering general linear RBM. To simplify the exposi-
tion, we discard the biases of the data and related fields
(θα, ηα) of the RBM. In that case the empirical term in
(6) involves directly the covariance matrix of the data ex-
pressed in the frame defined by the SVD modes of W

〈sασβ〉Data = σ2
hwβ〈sαsβ〉Data.

From C(µv, µh) we get the other terms yielding the fol-
lowing equations:

dwα
dt

= wασ
2
h

(
〈s2α〉Data −

σ2
v

1− σ2
vσ

2
hw

2
α

)

Ωv,hαβ = (1− δαβ)σ2
h

(wβ − wα
wα + wβ

∓ wβ + wα
wα − wβ

)
〈sαsβ〉Data

Note that these equations are exact for a linear RBM,
since they can be derived without any reference to the
coordinates of uα and vα over which we average in the
non-linear regime. These equations tell us that, during
the learning the vectors uα (and also vα) will rotate until
being aligned to the the principal components of the data,
i.e. until 〈sαsβ〉Data becomes diagonal. Then calling ŵ2

α

the corresponding empirical variance given by the data,
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Fig. 1: Time evolution of the eigenvalues in the linear
model and of the likelihood. We observe very clearly how
the different modes emerge from the bulk and how the
likelihood increases at each eigenvalue learned. In the in-
set, the scalar product of the vectors u obtained from the
SVD of the data and of w. The us of w are aligned with
the SVD of the data at the end of the learning.

the system reach the following equilibrium values:

w2
α =





ŵ2
α − σ2

v

σ2
vσ

2
hŵ

2
α

if ŵ2
α > σ2

v ,

0 if ŵ2
α ≤ σ2

v .

From this we see that the RBM selects the strongest SVD
modes in the data. The linear instabilities correspond to
directions for which the variance of the data is above the
threshold σ2

v . This determines the deformations of the
weight matrix which can develop during the learning and
will eventually interact, following the usual mechanism of
non-linear pattern formation like e.g. in reaction-diffusion
processes [22]. Other possible deformations are damped
to zero. The linear RBM will therefore learn all (up to
Nh) principal components that passed the threshold but
it is important to remember that the resulting distribution
will still be unimodal. Note that this selection mechanism
is already known to occur for linear auto-encoders [18] or
some other similar linear Boltzmann machines [17]. On
Fig. 1 we can see the eigenvalues being learned one by one
in a linear RBM. For non-linear RBM when the system
escapes the linear regime, a well suited mean-field theory
is required to understand the dynamics and the steady-
state regime.

Non-linear regime. – During the linear regime some
specific modes are selected and at some point these modes
start to interact in a non-trivial manner. The empirical
term in (6) involves higher order statistics of the data as
exemplified by (9) and the Gaussian estimation with σ2

v =
σ2
h = 1 of the RBM response term 〈sασβ〉RBM is no longer

valid. In order to estimate this term in the thermodynamic
limit, some assumptions on the form of the weight matrix
are needed. A common assumption consists in considering

i.i.d. random variables for the weights wij and this, like for
example in [13–15], generally leads to a Marchenko-Pastur
distribution of the singular values of W , which as we shall
see in the next section is unrealistic. Instead, based on our
experiments such distribution corresponds to the noise of
the weight matrix, while its information content is better
expressed by the presence of SVD modes outside of the
bulk. This leads us to write the weight matrix as

wij =

K∑

α=1

wαu
α
i v

α
j + rij (10)

where the wα = O(1) are isolated singular values (describ-
ing a rank K matrix), the uα and vα are the eigenvectors
of the SVD decomposition and the rij = N (0, σ2/L) where
L =

√
NhNv are i.i.d. corresponding to noise. To be con-

sistent with the linear analysis, these modes are assumed
to span the (left) subspace corresponding to the part of the
empirical SVD above threshold while r spans the comple-
mentary space of empirical modes below threshold. We
limit the analysis here to the case where K is finite. This
then allows us to assume simple distributions pu and pv
for the components of uα and vα considered i.i.d. for in-
stance. This altogether defines our statistical ensemble of
RBM to which we restrict ourselves to study the learn-
ing procedure. For K extensive we should instead average
over the orthogonal group which would lead to a slightly
different mean-field theory [23, 24]. In the present form
our model of RBM is similar to the Hopfield model and
recent generalizations [25], the patterns being represented
by the SVD modes outside the bulk. The main difference,
in addition to the bipartite structure of the graph, is the
non-degeneracy of the singular values wα. Still the analy-
sis in the thermodynamic limit follows classical treatments
like [7,26] for the Hopfield model or [14] for bipartite mod-
els. The starting point is to express the average over u, v
and weights rij of the log partition function Z in (2) with
the help of the replica trick:

Eu,v,r[log(Z)] = lim
p→0

d

dp
Eu,v,r[Z

p].

After averaging over the iid weights, 4 sets of order
parameters {(ma

α, m̄
a
α), a = 1, . . . p, α = 1, . . .K} and

{(Qab, Q̄ab), a, b = 1, . . . p, a 6= b} are introduced with
help of two distinct Hubbard-Stratonovich transforma-
tions. These variables represent the following quantities:

ma
α ∼

1√
L
Eu,v,r

(
〈σaα〉

)
m̄a
α ∼

1√
L
Eu,v,r

(
〈saα〉

)

Qab ∼ Eu,v,r
(
〈σai σbi 〉

)
Q̄ab ∼ Eu,v,r

(
〈saj sbj〉

)
,

namely the correlations of the hidden [resp. visible] states
with the left [resp. right] singular vectors and the Edward-
Anderson order parameters measuring the correlation be-
tween replicas of hidden or visible states. Eu and Ev denote
an average wrt to the rescaled components u ' √Nvuαi
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and v ' √Nhvαj of the SVD modes. The transformations
involve pairs of complex integration variables because of
the asymmetry introduced by the two-layers structure by

contrast to fully connected models. They lead to the fol-
lowing representation:

Eu,v,r[Z
p] =

∫ ∏

a,α

dma
αdm̄

a
α

2π

∏

a6=b

dQabdQ̄ab
2π

exp
{
−L
(∑

a,α

wαmαm̄α +
σ2

2

∑

a6=b
QabQ̄ab −

1√
κ
A[m,Q]−√κB[m̄, Q̄]

)}

with A[m,Q]
def
= log

[ ∑

Sa∈{−1,1}
Eu
(
e

√
κσ2

2

∑
a 6=bQabS

aSb+κ
1
4
∑
a,α(m

a
αwα−ηα)uαSa

)]
,

κ = Nh/Nv and B[m̄, Q̄] obtained from A[m,Q] by re-
placing u by v, η by θ and κ by 1/κ. The thermodynamic
properties are obtained by first letting L→∞ allowing for
a saddle point approximation and then the limit p→ 0 is
taken. We restrict here the discussion to replica symmetric
(RS) saddle points [27]. The breakdown of RS can actually
be determined by computing the so-called AT line [28] and
will be detailed somewhere else [29]. In the RS case the set
{(Qab, Q̄ab} reduces to a pair (q, q̄) of spin glass parame-
ters, while quenched magnetization towards the SVD di-
rections are now represented by {(mα, m̄α), α = 1, . . .K}.
Letting x = N (0, 1) and skipping some details, the saddle-
point equations are given by

(mα, m̄α) = E
(
κ

1
4 vα tanh

(
h̄(x, v)

)
, κ−

1
4uα tanh

(
h(x, u)

))

(11)

(q, q̄) = E
(

tanh2
(
h̄(x, v)

)
, tanh2

(
h(x, u)

))
, (12)

with E denoting the average over (u, v, x) and

h(x, u)
def
= κ

1
4

(
σ
√
qx+

∑

γ

(wγmγ − ηγ)uγ
)

h̄(x, v)
def
= κ−

1
4

(
σ
√
q̄x+

∑

γ

(wγm̄γ − θγ)vγ
)
.

These fixed point equations can be solved numerically
to tell us how the variables condensate on the SVD
modes within each equilibrium state of the distribution
and whether a spin glass phase is present or not. The
important point here is that with K finite and a non-
degenerate spectrum the mode with highest singular value
dominates the ferromagnetic phase. The phase diagram
looks in fact similar to the one of the SK model with fer-
romagnetic coupling, when 1/σ is interpreted as a tem-
perature and wmax/σ the ferromagnetic coupling. Some
subtleties arise when considering various ways of averag-
ing over singular vectors components [29]. In [15, 30] it is
underlined the importance of the capability of networks
to produce compositional states structured by combina-
tion of hidden variables. In our representation, we don’t
have direct access to this property, but to the dual one in
some sense, namely states corresponding to combination

of modes. Their presence and their structure, are rather
sensitive to the way the average over u and v is performed.
In this respect the case where uα and vα are Gaussian i.i.d
distributed is very special: all other fixed points associated
to lower modes can be shown to be unstable as well as fixed
points associated to combinations of modes. Instead, for
other distributions with smaller kurtosis, like uniform or
Bernoulli, stable fixed points associated to many differ-
ent single modes or combinations of modes can exist and
contribute to the thermodynamics.

Coming back to the learning dynamics, the first thing
which is expected, already from the linear analysis, is that
the noise term in (10) vanishes by condensing into a delta
function of zero modes. Then the term corresponding to
the response of the RBM in (6) is estimated (in absence
of bias) in the thermodynamic by means of the order pa-
rameters defined previously:

〈sασβ〉RBM =
L

ZMF

C∑

q=1

e−Fqm̄(q)
α m

(q)
β , ZMF

def
=
∑

q

e−Fq

where the index q run over all stable fixed point solutions
of (11,12) weighted accordingly to their free energy. These
are the dominant contributions as long as free energy dif-
ferences are O(1), internal fluctuations given by each fixed
point are comparatively of order O(1/L). Note that this
is the reason why the RBM needs to reach a ferromagnetic
phase with many states to be able to match the empirical
term in (6) in order to converge. For instance, in the case
of a multimodal data distribution with many well sepa-
rated clusters, the SVD modes of W which will develop
are the one pointing in the direction of the magnetiza-
tions defined by these clusters. In this simple case the
RBM will evolve as in the linear case to a state such that
the empirical term becomes diagonal, while the singular
values adjust themselves until matching the proper mag-
netization in each fixed point. More precise statements
about the phase diagram of the RBM and the behaviour
of our dynamical equations including the dynamics of the
external fields ηα and θα will be given in [29].

Tests on the MNIST dataset. – We illustrate our
results on the MNIST dataset. The MNIST dataset is
composed of 60000 images of handwritten digits of 28×28
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(a) (b) (c)

Fig. 2: (a) Singular values distribution of the ini-
tial random matrix compared to Marchenko-Pastur law.
(b) With the training we can see some singular values
strengthening and overcoming the threshold set by the
Marchenko-Pastur law. (c) Distribution of the singular
values after a long training: we can see many outliers
spread above threshold and a spike of below-threshold sin-
gular values near zero.

pixels. It is known that RBMs perform reasonably well
on this dataset and therefore we can now interprete in the
light of the preceding sections how the learning goes. For
the training of the MNIST dataset we use the following
parameters. The weights of the matrix W were initiated
randomly from a centered Gaussian distribution with a
variance of 0.01 such that the MP bulk do not pass the
threshold. The visible fields are initialized to reproduce
the empirical mean of the data for each visible variable.
The hidden field is put to zero. The learning rate is chosen
to be ≈ 0.01. With these parameters we verified that our
machine was able to sample digits in a satisfactory way
after 20 epochs. Now we can investigate the value of some
observables introduced previously. First, we look at the
SVD modes of the matrix w during the learning on Fig. 2.
We see that, after seeing only few updates the system has
already learned many SVD modes from the data.

On Figure 2a-2c, we observe what is expected from the
linear regime. Some modes escape from the Marchenko-
Pastur bulk of the eigenvalues while other condense down
to zero. In particular, we can see that the modes at the
beginning of the learning correspond exactly to the SVD
modes of the data, see Fig. 3. On this figure, we notice
that the modes of the W matrix are the same as the ones
of the data at the beginning of the learning as predicted
by the linear theory.

After many epochs, we observe on Fig. 3-f that non-
linear effects have deformed the SVD modes of W with
respect to the beginning of the learning. We can also look
at the evolution of the eigenvalues of W . On Fig. 4 we
observe their evolution and when they start to be amplified
(or dumped). On the inset, we see how the strongest mode
get out of the bulk and increase while the lowest ones are
dumped after many epochs. We also observe that the top
part of the spectrum of W appear flattened as compared
to empirical SVD spectrum. This presumably favors the
expression of many states of similar free energy related to
various digit configurations, able to contribute to RBM

(a) (b) (c)

(d)

(e)

(f)

Fig. 3: (a) First mode learnt by the RBM with the ex-
ternal visible field initialized as a null vector. (b) Exter-
nal visible field initialized on the empirical mean. (c)
First principal components extracted from the training
set. (d) Principal components extracted from the training
set (starting from the second). (e) The first 10 modes of
a RBM trained for 1 epoch. (f) Same as (e) but after a
10 epochs training.

response term in (6).

Discussion. – The equations obtained for the dynam-
ics and the MF theory that allows us to compute them
constitute a phenomenological description of the learning
of an RBM. This is assumed to represent a typical learn-
ing trajectory in the limit of infinite batch size. These
equations have been obtained by averaging over the com-
ponents of left and right SVD vectors of the weight matrix,
keeping fixed a certain number of quantities considered to
be the relevant ones, fully characterizing a typical RBM
during the learning process. This averaging corresponds
actually to a standard self-averaging assumption in a RS
phase. The singular values spectrum {wα} is playing the
main role. The projections (ηα, θα) of the bias onto the
eigenmodes of W are also considered as intrinsic quanti-
ties. Finally the rotation vectors {Ωv,hα,β} give us the rel-
ative motion of the data w.r.t the time dependent frame
given by the singular vectors of W . In our phenomeno-
logical description the learning dynamics is represented
by a trajectory of {wα(t), ηα(t), θα(t),Ωv,hαβ (t)} which is
uniquely determined by our equations once an initial con-
dition specified by the decomposition of the data on the
singular vectors of W is given. By contrast to usual ap-
proaches which rely on the teacher-student scenario, we
may obtain generic learning curves of non-linear neural
networks, which are driven by intrinsic properties of the
data. The point is to give insights into the relationship
between model and data. This allows us to give some el-
ements of understanding on which properties of the data
drive the learning and how they are represented in the
model. Eventually this will lead us to identify and cure
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Fig. 4: Log-log plot of the singular values represented as
discrete abscissas (in decreasing order) with their magni-
tude reported on the ordinates. The RBM contained 400
hidden variables. A cutoff is highlighted by the onset of
the linear behaviour and the SVD modes of the data in
black. We qualitatively observe that beyond some αtresh

the modes are dumped while before they are amplified. In
the inset, the time evolution of the modes 1, 2, 10, 100,
350, 400 during the learning as a function of the num-
ber of epochs, we see that for large value of α, the modes
are decreasing. We observe that the linear cutoff (around
α ≈ 50 seems different from the one observed when going
deep into the non-linear regime (α ≈ 250).

some flaws of present learning methods.
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Boltzmann Machines and Related
Learning Dynamics

A. Decelle G. Fissore C. Furtlehner

Abstract

We investigate the thermodynamic properties of a Restricted Boltzmann Machine
(RBM), a simple energy-based generative model used in the context of unsupervised
learning. Assuming the information content of this model to be mainly reflected by
the spectral properties of its weight matrix W , we try to make a realistic analysis by
averaging over an appropriate statistical ensemble of RBMs.

First, a phase diagram is derived. Otherwise similar to that of the Sherrington-
Kirkpatrick (SK) model with ferromagnetic couplings, the RBM’s phase diagram
presents a ferromagnetic phase which may or may not be of compositional type de-
pending on the kurtosis of the distribution of the components of the singular vectors
of W .

Subsequently, the learning dynamics of the RBM is studied in the thermodynamic
limit. A “typical” learning trajectory is shown to solve an effective dynamical equation,
based on the aforementioned ensemble average and explicitly involving order param-
eters obtained from the thermodynamic analysis. In particular, this let us show how
the evolution of the dominant singular values ofW , and thus of the unstable modes, is
driven by the input data. At the beginning of the training, in which the RBM is found
to operate in the linear regime, the unstable modes reflect the dominant covariance
modes of the data. In the non-linear regime, instead, the selected modes interact and
eventually impose a matching of the order parameters to their empirical counterparts
estimated from the data.

Finally, we illustrate our considerations by performing experiments on both artifi-
cial and real data, showing in particular how the RBM operates in the ferromagnetic
compositional phase.

1 Introduction

The Restricted Boltzmann Machine (RBM) [1] is an important machine learning tool
used in many applications, by virtue of its ability to model complex probability distri-
butions. It is a neural network which serves as a generative model, in the sense that
it is able to approximate the probability distribution corresponding to the empirical
distribution of any set of high-dimensional data points living in a discrete or real space
of dimension N � 1. From the theoretical point of view, the RBM is of high inter-
est as it is one of the simplest neural network generative models and the probability
distribution that it defines presents a simple analytic form. Moreover, there are clear
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connections between RBMs and well known disordered systems in statistical physics.
As an example, when data are composed by vectors with binary components the dis-
crete RBM takes the form of an heterogeneous Ising model composed of one layer of
visible units (the observable variables) connected to one layer of hidden units (the
latent or hidden variables building up the dependencies between the visible ones), in
which couplings and fields are obtained from the training data through a learning pro-
cedure. In order to build more powerful models, RBMs can be stacked to form “deep”
architectures. In such a case, they can form a multi-layer generative model known as a
Deep Boltzmann Machine (DBM) [2] or they can be stacked and trained layerwise as
a pre-training procedure for neural networks [3]. The standard learning algorithms in
use are the contrastive divergence [4] (CD) and the refined Persistence CD [5] (PCD),
which are based on a quick Monte Carlo estimation of the response function of the
RBM and are efficient and well documented [6]. Nevertheless, despite some interesting
interpretations of CD in terms of non-equilibrium statistical physics [7], the learning
of RBMs remains a set of obscure recipes from the statistical physics point of view:
hyperparameters (like the size of the hidden layer) are supposed to be set empirically
without any theoretical guidelines.

Historically, statistical physics played a central role in studying the theoretical
foundations of neural networks. In particular, during the 1980s many works on the
Hopfield model [8, 9, 10, 11] managed to define its learning capacity and to compute
the number of independent patterns that it could store. It is worth noticing that, as
RBMs are ultimately defined as a Boltzmann distribution with pairwise interactions
on a bipartite graph, they can be studied in a way similar to that used for the Hopfield
model. The analogy is even stronger since connections between the Hopfield model and
RBMs have been made explicit when using Gaussian hidden variables [12], here the
number of patterns of the Hopfield model corresponding to the number of hidden units.
Motivated by a renewed excitement for neural networks, recent works actually propose
to exploit the statistical physics formulation of the RBM to understand what is its
learning capacity and how mean-field methods can be exploited to improve the model.
In [13, 14, 15], mean-field based learning methods using TAP equations are developed.
TAP solutions are usually expected to define a decomposition of the measure in terms
of pure thermodynamical states and are useful both as an algorithm to compute the
marginals of the variables of the model and to identify the pure states when they
are yet unknown. For instance, in a sparse explicit Boltzmann machine (i.e. without
latent variables) this implicit clustering can be done by means of belief propagation
fixed points 1 with simple empirical learning rules [16]. In [17, 18], an analysis of
the static properties of RBMs is done assuming a given weight matrix W , in order
to understand collective phenomena in the latent representation, i.e. the way latent
variables organize themselves in a compositional phase [19, 20] to represent actual
data. These analysis make use of the replica trick (or equivalent) making the common
assumption that the components of the weight matrix W are i.i.d.; despite the fact
that this approach may give some insights into the retrieval phase, this approximation
is problematic since, as far as a realistic RBM is concerned (an RBM learned on data),
the learning mechanism introduces correlations within the weights of W and then it
seems rather crude to continue to assume the independence and hope to understand
the realistic statistical properties of the model.

Concerning the learning procedure of neural networks, many recent statistical
physics based analyses have been proposed, most of them within teacher-student set-

1 a somewhat different form of the TAP equations

89



1 Introduction 3

ting [21]. This imposes a rather strong assumption on the data in the sense that it
is assumed that these are generated from a model belonging to the parametric family
of interest, hiding as a consequence the role played by the data themselves in the
procedure. From the analysis of related linear models [22, 23], it is already a well
established fact that a selection of the most important modes of the singular values
decomposition (SVD) of the data is performed in the linear case. In fact in the simpler
context of linear feed-forward models the learning dynamics can be fully characterized
by means of the SVD of the data matrix [24], showing in particular the emergence of
each mode by order of importance with respect to the corresponding singular values.

First steps to follow this guideline have been done in [25], in the context of a general
RBM and to address the shortcomings of previous analyses, in particular concerning
the assumptions over the weights distribution. To this end it has been proposed to
characterize both the learned RBM and the learning process itself by means of the SVD
spectrum of the weight matrix in order to single out the information content of the
RBM. It is assumed that the SVD spectrum is split in a continuous bulk of singular
vectors corresponding to noise and a set of outliers that represent the information
content. By doing this it is possible to go beyond the usual unrealistic assumption
of i.i.d. weights made for analyzing RBMs. Proceeding along this direction, in the
present work we first present a thermodynamic analysis of RBMs under the more
realistic assumptions over the weight matrix that we propose. Then, on the same
basis, the learning dynamics of RBMs is studied by direct analysis of the dynamics of
the SVD modes, both in the linear and non-linear regimes.

s1 snv

σ1 σnh

si

σj Hidden layer

Visible layer

Wij

Fig. 1: bipartite structure of the RBM.

The paper is organized as follows: in Section 2 we introduce the RBMmodel and its
associated learning procedures. Section 3 presents the static thermodynamical proper-
ties of the RBM with realistic hypothesis on its weights: a statistical ensemble of weight
matrices is discussed in Section 3.1; mean-field equations in the replica-symmetric (RS)
framework are given in Section 3.2 and the corresponding phase diagram is studied in
Section 3.3 with a proper delimitation of the RS domain where the learning procedure
is supposed to take place. The ferromagnetic phase is studied in great details in 3.4
by looking in particular at the conditions leading to a compositional phase. Section 4
is devoted to the learning dynamics. In Section 4.1, a deterministic learning equation
is derived in the thermodynamic limit and a set of dynamical parameters is shown
to emerge naturally from the SVD of the weight matrix. This equation is analyzed
for linear RBMs in Section 4.2 in order to identify the unstable deformation modes of
W that result in the first emerging patterns at the beginning of the learning process;
the non-linear regime is described in Section 4.3, on the basis of the thermodynamic
analysis, by numerically solving the effective learning equations in simple cases. Our
analysis is finally illustrated and validated in Section 5 by actual tests on the MNIST
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dataset.

2 The RBM and its associated learning procedure

An RBM is a Markov random field with pairwise interactions defined on a bipartite
graph formed by two layers of non-interacting variables: the visible nodes and the
hidden nodes representing respectively data configurations and latent representations
(see Figure 1). The former noted s = {si, i = 1 . . . Nv} correspond to explicit repre-
sentations of the data while the latter noted σ = {σj , j = 1 . . . Nh} are there to build
arbitrary dependencies among the visible units. They play the role of an interacting
field among visible nodes. Usually the nodes are binary-valued (of Boolean type or
Bernoulli distributed) but Gaussian distributions or more broadly arbitrary distribu-
tions on real-valued bounded support are also used [26], ultimately making RBMs
adapted to more heterogeneous data sets. Here to simplify we assume that visible and
hidden nodes will be taken as binary variables si, σj ∈ {−1, 1} (using ±1 values gives
the advantage of working with symmetric equations hence avoiding to deal with the
“hidden” biases on the variables that appear when considering binary {0, 1} variables).
Like in the Hopfield model [8], which can actually be cast into an RBM [12], an energy
function is defined for a configuration of nodes

E(s,σ) = −
∑

i,j

siWijσj +

Nv∑

i=1

ηisi +

Nh∑

j=1

θjσj (1)

and this is exploited to define a joint distribution between visible and hidden units,
namely the Boltzmann distribution

p(s,σ) =
e−E(s,σ)

Z
(2)

whereW is the weight matrix and η and θ are biases, or external fields on the variables.
Z =

∑
s,σ e

−E(s,σ) is the partition function of the system. The joint distribution
between visible variables is then obtained by summing over hidden ones. In this
context, learning the parameters of the RBM means that, given a dataset ofM samples
composed of Nv variables, we ought to infer values to W , η and θ such that new
generated data obtained by sampling this distribution should be similar to the input
data. The general method to infer the parameters is to maximize the log likelihood of
the model, where the pdf (2) has first been summed over the hidden variables

L =
∑

j

〈log(2 cosh(
∑

i

Wijsi − θj))〉Data −
∑

i

ηi〈si〉Data − log(Z). (3)

Different learning methods have been set up and proven to work efficiently, in particular
the contrastive divergence (CD) algorithm from Hinton [4] and more recently TAP
based learning [13]. They all correspond to expressing the gradient ascent on the
likelihood as

∆Wij = γ (〈siσjp(σj |s)〉Data − 〈siσj〉pRBM) (4)

∆ηi = γ (〈si〉pRBM − 〈si〉Data) (5)

∆θj = γ (〈σj〉pRBM − 〈σjp(σj |s)〉Data) (6)
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3 Static thermodynamical properties of an RBM 5

where γ is the learning rate. The main problem are the 〈· · · 〉pRBM terms on the right
hand side of (4-6). These are not tractable and the various methods basically differ
in their way of estimating those terms (Monte-Carlo Markov chains, naive mean-field,
TAP. . . ). For an efficient learning the 〈· · · 〉Data terms must also be approximated by
making use of random mini-batches of data at each step.

3 Static thermodynamical properties of an RBM

3.1 Statistical ensemble of RBMs
When analyzing the thermodynamical properties of RBMs, it is common to assume
that the weights Wij are i.i.d. random variables, like for example in [20, 17, 18]. This
generally leads to a Marchenko-Pastur (MP) distribution [27] of the singular values of
W , which is unrealistic.

In order to clarify our notation, let us recall the definition of the singular value
decomposition (SVD). As a generalization of eigenmodes decomposition to rectangular
matrices, the SVD for a RBM is given by

W = UΣVT (7)

where U is an orthogonal Nv ×Nh matrix whose columns are the left singular vectors
uα, V is an orthogonal Nh×Nh matrix whose columns are the right singular vectors vα

and Σ is a diagonal matrix whose elements are the singular values wα. The separation
into left and right singular vectors is due to the rectangular nature of the decomposed
matrix, and the similarity with eigenmodes decomposition is revealed by the following
SVD equations

Wvα = wαuα

WTuα = wαvα

In [25] it is argued that the MP distribution of SVD modes actually corresponds
to the noise of the weight matrix, while the information content of the RBM is better
expressed by the presence of SVD modes outside of this bulk. This leads us to write
the weight matrix as

Wij =

K∑

α=1

wαu
α
i v

α
j + rij (8)

where the wα = O(1) are isolated singular values (describing a rank K matrix), the
uα and vα are the dominant eigenvectors of the SVD decomposition and the rij =
N (0, σ2/L) are i.i.d. terms corresponding to noise, with L =

√
NhNv. The {uα}

and {vα} are two sets of respectively Nv and Nh-dimensional orthonormal vectors,
which means that their components are respectively O(1/

√
Nv) and O(1/

√
Nh), and

K ≤ Nv, Nh. We assume Nh < Nv to be the rank of W and wα > 0 and O(1) for
all α. Note that in the limit Nv → ∞ and Nh → ∞ with κ

def
= Nh/Nv fixed and

K/L→ 0, WWT has a spectrum density ρ(λ) composed of a Marchenko-Pastur bulk
of eigenvalues and of set of discrete modes:

ρ(λ) =
L

2πσ2

√
(λ+ − λ)(λ− λ−)

κλ
11{λ∈[λ−,λ+]} +

K∑

α=1

δ(λ− w2
α),
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3 Static thermodynamical properties of an RBM 6

with
λ±

def
= σ2

(
κ

1
4 ± κ− 1

4
)2
.

The interpretation for the noise term rij is given by the presence of an extensive number
of modes at the bottom of the spectrum, along which the variables won’t be able to
condense but that still contribute to the fluctuations. In the present form our model
of RBM is similar to the Hopfield model and recent generalizations [28], the patterns
being represented by the SVD modes outside of the bulk. The main difference, in
addition to the bipartite structure of the graph, is the non-degeneracy of the singular
values wα. The choice made here is to consider K finite, giving Wij = O(1/N) which
means that the thresholds θj (having the meaning of feature detectors) should be O(1)
because feature j is detected when an extensive number of spins Si is aligned withWij .
In addition, this allows us to assume simple distributions for the components of uα

and vα (for instance, considering them i.i.d.). Altogether, this defines the statistical
ensemble of RBM to which we restrict our analysis of the learning procedure.

Another approach would be to consider K = Nh extensive, thereby assuming that
all modes can potentially condense even though they are associated to dominated
singular values. In that case, the separation between the condensed modes and the
rest should be made when order parameters are introduced and the noise would then
correspond to uncondensed modes. If the number of condensed modes is assumed to
be extensive, then we should instead consider an average over the orthogonal group
which would lead to a slightly different mean-field theory [29, 30].

3.2 Replica symmetric Mean-field equation
Our analysis in the thermodynamic limit follows classical treatments using replicas,
like [31, 9] for the Hopfield model or [17] for bipartite models. The starting point is
to express the average over u, v and rij of the log partition function Z in (2) with the
help of the replica trick:

Eu,v,r[log(Z)] = lim
p→0

d

dp
Eu,v,r[Z

p].

First the average over rij yields

exp
î σ2

2L

Ä∑
a

sai σ
a
j

ä2ó
= exp

î σ2

2L

Ä
p+

∑

a6=b
sai s

b
iσ
a
j σ

b
j

äó
.

After this averaging, 4 sets of order parameters {(ma
α, m̄

a
α), a = 1, . . . p, α = 1, . . .K}

and {(Qab, Q̄ab), a, b = 1, . . . p, a 6= b} are introduced with the help of two distinct
Hubbard-Stratonovich transformations. The first one corresponds to

exp
î σ2

2L

Ä ∑
i,j,a 6=b

sai s
b
iσ
a
j σ

b
j

äó
=

∫ ∏

a6=b

dQabdQ̄ab
2π

× exp
î
−Lσ

2

2

∑

a6=b

Ä
QabQ̄ab − Qab

Nv

∑

i

sai s
b
i −

Q̄ab
Nh

∑

j

σaj σ
b
j

äó
.
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The second one is aimed at extracting magnetization’s contributions correlated with
the modes:

exp
Ä
L
∑

α

wαs
a
ασ

a
α

ä
∝
∫ ∏

α

dma
αdm̄

a
α

2π

× exp
Ä
−L
∑

α

wα
(
ma
αm̄

a
α −ma

αs
a
α − m̄a

ασ
a
α

)ä
,

with
saα

def
=

1√
L

∑

i

siu
α
i and σaα

def
=

1√
L

∑

j

σaj v
α
j , (9)

These variables represent the following quantities:

ma
α ∼ Eu,v,r

(
〈σaα〉

)
m̄a
α ∼ Eu,v,r

(
〈saα〉

)

Qab ∼ Eu,v,r
(
〈σai σbi 〉

)
Q̄ab ∼ Eu,v,r

(
〈saj sbj〉

)
,

namely the correlations of the hidden [resp. visible] states with the left [resp. right]
singular vectors and the Edward-Anderson (EA) order parameters measuring the cor-
relation between replicas of hidden or visible states. Eu and Ev denote an average w.r.t.
the rescaled components u '

√
Nvu

α
i and v '

√
Nhv

α
j of the SVD modes. The trans-

formations involve pairs of complex integration variables because of the asymmetry
introduced by the two-layers structure in contrast to fully connected models.

We obtain the following representation:

Eu,v,r[Z
p] =

∫ ∏

a,α

dma
αdm̄

a
α

2π

∏

a6=b

dQabdQ̄ab
2π

× exp
¶
−L
Ä∑
a,α

wαmαm̄α +
σ2

2

∑

a 6=b
QabQ̄ab − 1√

κ
A[m,Q]−√κB[m̄, Q̄]

ä©

with κ = Nh/Nv and

A[m,Q]
def
= log

î ∑

Sa∈{−1,1}

Eu
Ä
e

√
κσ2

2

∑
a6=b QabS

aSb+κ
1
4
∑

a,α
(wαm

a
α−ηα)uαSa

äó
, (10)

B[m̄, Q̄]
def
= log

î ∑

Sa∈{−1,1}

Ev
Ä
e

√
κσ2

2

∑
a 6=b Q̄abσ

aσb+κ
− 1

4
∑

a,α
(wαm̄

a
α−θα)vασa

äó
, (11)

(12)

with
θα

def
=

1√
L

∑

j

θjv
α
j = O(1).

Since {vα} is an incomplete basis we also need to take care of the potential residual
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transverse parts η⊥ and θ⊥, such that the following decompositions hold:

ηi = η⊥i +
√
L
∑

α

ηαu
α
i , (13)

θj = θ⊥j +
√
L
∑

α

θαv
α
j . (14)

To keep things tractable, both η⊥ and θ⊥ will be considered negligible in the sequel.
Taking into account these components would lead to the addition of a random field
to the effective RS field of the variables and eventually to a richer set of saddle point
solutions. Note that the order of magnitude of ηα and θα is at this stage an assumption.
If ηi and uαi (or θj and vαj ) were uncorrelated they would scale as 1/

√
L. Moreover,

regarding the ensemble average, we will consider ηα and θα fixed in the sequel.
The thermodynamic properties are obtained by first making a saddle point ap-

proximation possible by letting first L → ∞ and taking the limit p → 0 afterwards.
We restrict here the discussion to RS saddle points [32]. The breakdown of RS can
actually be determined by computing the so-called AT line [33] (see Appendix A).
At this point we assume a non-broken replica symmetry. The set {Qab, Q̄ab} reduces
then to a pair (q, q̄) of spin glass parameters, i.e. Qab = q and Q̄ab = q̄ for all
a 6= b, while quenched magnetizations on the SVD directions are now represented by
{(mα, m̄α), α = 1, . . .K}.

Taking the limit p→ 0 yields the following limit for the free energy:

f [m, m̄, q, q̄] =
∑

α

wαmαm̄α − σ2

2
qq̄ +

σ2

2
(q + q̄)

− 1√
κ
Eu,x
î
log 2 cosh

(
h(x, u)

)ó
−√κEv,x

î
log 2 cosh

(
h̄(x, v)

)ó
. (15)

Assuming a replica-symmetric phase, the saddle-point equations are given by

mα = κ
1
4 Ev,x

î
vα tanh

(
h̄(x, v)

)ó
, q = Ev,x

î
tanh2

(
h̄(x, v)

)ó
(16)

m̄α = κ−
1
4 Eu,x

î
uα tanh

(
h(x, u)

)ó
, q̄ = Eu,x

î
tanh2

(
h(x, u)

)ó
(17)

where

h(x, u)
def
= κ

1
4
(
σ
√
qx+

∑

γ

(wγmγ − ηγ)uγ
)

h̄(x, v)
def
= κ−

1
4
(
σ
√
q̄x+

∑

γ

(wγm̄γ − θγ)vγ
)
,

and κ = Nh/Nv, with Eu,x and Ev,x denoting an average over the Gaussian variable
x = N (0, 1) and the rescaled components u ∼

√
Nvu

α
i and v ∼

√
Nhv

α
j of the SVD

modes. We note that the equations are symmetric under the exchange κ → κ−1,
simultaneously with m ↔ m̄, q ↔ q̄ and η ↔ θ, given that u and v have the same
distribution. In addition, for independently distributed uαi and vαj and vanishing
fields (η = θ = 0), solutions corresponding to non-degenerate magnetizations have
symmetric counterparts: each pair of non-vanishing magnetizations can be negated
independently as (mα, m̄α) → (−mα,−m̄α), generating new solutions. So to one
solution presenting n condensed modes, there correspond 2n distinct solutions.
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3 Static thermodynamical properties of an RBM 9

3.3 Phase Diagram
The fixed point equations (16, 17) can be solved numerically to tell us how the variables
condensate on the SVD modes within each equilibrium state of the distribution and
whether a spin-glass or a ferromagnetic phase is present. The important point here
is that with K finite and a non-degenerate spectrum the mode with highest singular
value dominates the ferromagnetic phase.

In absence of bias (η = θ = 0) and once 1/σ is interpreted as temperature and wα/σ
as ferromagnetic couplings, we get a phase diagram similar to that of the Sherrington-
Kirkpatrick (SK) model with three distinct phases (see Figure 2)

• a paramagnetic phase (q = q̄ = mα = m̄α = 0) (P),

• a ferromagnetic phase (q, q̄,mα, m̄α 6= 0) (F),

• a spin glass phase (q, q̄ 6= 0; mα = m̄α = 0) (SG).

In general, the lines separating the different phases correspond to second order phase
transitions and can be obtained by a stability analysis of the Hessian of the free
energy. They are related to unstable modes of the linearized mean-field equations and
correspond to an eigenvalue of the Hessian becoming negative.

The (SG-P) line is obtained by looking at the Hessian in the (q, q̄) sector:

Hqq̄ =
m=0
q=0

−1

2

ï
σ2 σ4

√
κ√

κσ4 σ2

ò

from what results that the spin glass phase develops when σ ≥ 12. This transition
line is understood tacking directly into account the spectral properties of the weight
matrix. Classically, this is done with the help of the linearized TAP equations and
exploiting the Marchenko-Pastur distribution [32]. In our context, the linearized TAP
equations read ï

µ
ν

ò
=

ï−√κσ2 WT

W − σ2
√
κ

ò ï
µ
ν

ò

given the variance σ2/L of the weights in absence of dominant modes. Then we can
show that the paramagnetic phase becomes unstable when the highest eigenvalue of
the matrix on the rhs is equal to 1: if λ is a singular value of W , the corresponding
eigenvalues Λ± verify the relation

(Λ±√
κ
± σ2

)(√
κΛ± ± σ2

)
= λ2.

from which it is clear that the largest eigenvalue Λmax corresponds to the largest
singular value λmax. Owing to the Marchenko-Pastur distribution λmax = σ2(

√
κ +

1)(1 + 1/
√
κ) so Λmax verifies

(Λmax√
κ

+ σ2
)(√

κΛmax + σ2
)

= σ2(
√
κ+ 1)

( 1√
κ

+ 1
)
.

Λmax = 1 is readily obtained for σ2 = 1.

2 Note that in [17] a dependence
√
κ(1− κ)

Ä√
α(1− α)in their notation

ä
is found. This

dependence is hidden in our definition of σ2 giving L =
√
NvNh times the variance of rij

instead of Nv +Nh as in their case.
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For the (F-SG) frontier we can look at the sector (mα, m̄α) corresponding to the
emergence of a single mode α (written in the spin-glass phase):

Hαα =

[
wα w2

αEv,x
î
(vα)2 sech2

(
h̄(x, v))

)ó

w2
αEu,x

î
(uα)2 sech2

(
h(x, u)

äó
wα

]

=
mα=0

ï
wα w2

α(1− q)
w2
α(1− q̄) wα

ò

From this it is clear that the first mode to become unstable is the mode α with highest
singular value wα and this occurs when q and q̄, solutions of (16,17), verify

(1− q)(1− q̄)w2
α = 1.

As for the SK model, this line appears to be well below the de Almeida-Thouless
(AT) line, which is the line above which the RS solution is stable (see Figure 2, and
Appendix A for the computation of the AT line). This means that in principle a replica
symmetry breaking treatment would be necessary to properly separate the two phases.
However, we will leave aside this point as we are mainly interested in the practical
aspects, namely the ability of the RBM to learn arbitrary data, and so we are mostly
concerned with the ferromagnetic phase above the AT line.

For the (P-F) line we consider the same sector of the Hessian but now written in
the paramagnetic phase, i.e. setting q = 0 in the above equation, and this simply
yields the emergence of the single mode α for wα = 1.

Note that all of this is independent on how the statistical average over u and v
is performed. Instead, as we shall see later on, the way of averaging influences the
nature of the ferromagnetic phase.

Regarding the stability of the RS solution, the computation of the AT line reported
in Appendix A is similar to the classical one made for the SK model, though slightly
more involved. In fact we were not able to fully characterize, in replica space, all
the possible instabilities of the Hessian which would potentially lead to a breakdown
of the replica symmetry. At least the one responsible for the ordinary SK model RS
breakdown has a counterpart in the bipartite case that gives a necessary condition for
the stability of the RS solution:

1

σ2
>

√
Ex,u
Ä

sech4
(
h(x, u)

)ä
Ex,v
Ä

sech4
(
h̄(x, v)

)ä
,

For κ = 1 the terms below the radical become identical and the condition reduces to
the one of the SK model, except for the u averages which are not present in the SK
model. In Figure 2, is shown the influence on the phase diagram of the value of κ and
of the type of average made on u and v.

3.4 Nature of the Ferromagnetic phase
Some subtleties arise when considering various ways of averaging over the components
of the singular vectors. In [19, 20] is emphasized the importance for networks to be
able to reproduce compositional states structured by combination of hidden variables.
In our representation, we don’t have direct access to this property but, in some sense,
to the dual one, which is given by states corresponding to combinations of modes.
Their presence and their structure are rather sensitive to the way the average over u
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Fig. 2: Phase diagram in absence of bias and with a finite number of modes,
with Gaussian and Laplace distributions for u and v. The dotted line
separates the spin glass phase from the ferromagnetic phase under the RS
hypothesis. The RS phase is unstable below the AT line. The influence of
κ on the AT and SG-F lines is shown. In all cases, the hypothetical SG-F
line lies well inside the broken RS phase. Inset: high temperature (σ = 0)
stability gap ∆wα corresponding to a fixed point associated to a mode
β, expressed as a function of wα and considering various distributions.

and v is performed. In this respect the case in which uα and vα have i.i.d. Gaussian
components is very special: all fixed points associated to dominated modes can be
shown to be unstable and fixed points associated to combinations of modes are not
allowed. To see this, first notice that in such a case the magnetization’s part of the
saddle point equations (16,17) read

mα = (wαm̄α − θα)(1− q) (18)

m̄α = (wαmα − ηα)(1− q̄). (19)

Since the role of the bias is mainly to introduce some asymmetry between otherwise
degenerated fixed points obtained by sign reversal of at least one pair (mα, m̄α), let
us analyze the situation without fields, i.e. by setting η = θ = 0. We immediately
see that as long as the singular values are non degenerate, only one single mode may
condense at a time. Indeed if mode α condenses we necessarily have

w2
α(1− q)(1− q̄) = 1,

B. Thermodynamics of Restricted Boltzmann Machines and
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and this can be verified only by one mode at a time. Looking at the stability of the
fixed points, we see that only the fixed point associated to the largest singular value
is actually stable (details reported after the introduction of lemma 3.1).

For other distributions like uniform Bernoulli or Laplace, instead, stable fixed
points associated to many different single modes or combinations of modes can exist
and contribute to the thermodynamics. In order to analyze this question in more
general terms we first rewrite the mean-field equations in a convenient way which
require some preliminary remarks. We restrict the discussion to i.i.d. variables so that
we can consider single variable distributions. Joint distributions will be distinguished
from single variable distributions by the use of bold: u = {uα, α = 1, . . . ,K}, K being
the (finite) number of modes susceptible of condensing.

Given the distribution p and assuming it to be even, we define a related distribution
p? attached to mode α:

p?(u)
def
= −

∫ u

−∞
xp(x)dx =

∫ ∞

|u|
xp(x)dx, (20)

This distribution has some useful properties.

Lemma 3.1. Given that p is centered with unit variance and kurtosis κu, p? is a
centered probability distribution with variance

∫ ∞

−∞
u2p?(u)du =

κu
3
.

Proof. Consider the moments of p?. For n odd they vanish while for n even they read:
∫ +∞

−∞
unp?(u)du = 2

∫ ∞

0

unp?(u)du

= 2

∫ ∞

0

duun
∫ ∞

u

xp(x)dx

= 2

∫ ∞

0

xp(x)dx

∫ x

0

undu

=
1

n+ 1

∫ ∞

−∞
xn+2p(x)dx,

i.e. the nth even moments of p? relate to moments of order n + 2 of p. The lemma
then follows from the fact that p has unit variance.

In this respect, the Gaussian averaging is special because we have κu = 3 and
p? = p. Then the mean-field equations (16,17) corresponding to the magnetizations
can be rewritten in a form similar to (18,19) by introducing the variables qα and q̄α:

mα = (wαm̄α − θα)(1− qα), (21)

m̄α = (wαmα − ηα)(1− q̄α), (22)

99



3 Static thermodynamical properties of an RBM 13

with

qα =

∫
dx
e−x

2/2

√
2π

dvpα(v) tanh2
Ä
κ−

1
4
(
σ
√
q̄x+

∑

γ

(wγm̄γ − θγ)vγ
)ä
, (23)

q̄α =

∫
dx
e−x

2/2

√
2π

dupα(u) tanh2
Ä
κ

1
4
(
σ
√
qx+

∑

γ

(wγmγ − ηγ)uγ
)ä
, (24)

where
pα(u)

def
= p?(uα)

∏

β 6=α
p(uβ).

This rewriting will prove very useful also in the next section when analyzing the
learning dynamics.

Let us now assume, in absence of bias, a non-degenerate fixed point associated to
some given mode β with finite (mβ , m̄β) and mα = m̄α = 0, ∀α 6= β. The fixed point
equation imposes the relation

wβ =
1√

(1− qβ)(1− q̄β)

def
= w(qβ , q̄β). (25)

The stability of such a fixed point with respect to any other mode α is related to the
positive definiteness of the following block of the Hessian

Hαα =


 wα w2

αEv,x
î
(vα)2 sech2

(
h̄(x, v)

)ó

w2
αEu,x

î
(uα)2 sech2

(
h(x, u)

)ó
wα




with, in the present case

h(x, u) = κ
1
4
(
σ
√
qx+ wβm̄βu

β
)

and h̄(x, v) = κ−
1
4
(
σ
√
q̄x+ wβm̄βv

β
)
,

This reduces to

Hαα =

ñ
wα w2

α(1− q)
w2
α(1− q̄) wα

ô
.

Therefore for the Gaussian averaging case, since qβ = q, q̄β = q̄ and given (25), we
necessarily have

1− (1− q)(1− q̄)w2
α = 1− w2

α

w2
β

< 0 for wα > wβ ,

i.e. the Hessian has negative eigenvalues. This means that if the mode β is dominated
by another mode α, the magnetization (mα, m̄α) will develop until (1−q)(1−q̄)w2

α = 1,
while mβ will vanish.

For the general case of i.i.d. variables, assuming uα and vα obey the same distri-
bution p, let F and Fα be the cumulative distributions associated respectively to p
and pα

F (u)
def
=

∫ u

−∞
p(x)dx

Fα(u)
def
=

∫
du θ(u− uα)pα(u)dx = −

∫ u

∞
duα

∫ uα

−∞
xp(x)dx.

B. Thermodynamics of Restricted Boltzmann Machines and
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Given the values of (q, q̄) obtained from the fixed point associated to mode β, we have
the following property:

Proposition 3.2. If

(i) Fβ(u) < F (u), ∀u ∈ R+ then qβ > q and q̄β > q̄,

(ii) Fβ(u) > F (u), ∀u ∈ R+ then qβ < q and q̄β < q̄,

which in turn implies

w(q, q̄) < wβ (i) and w(q, q̄) > wβ (ii)

with
w(q, q̄)

def
=

1√
(1− q)(1− q̄)

.

Proof. This is obtained by straightforward by parts integration respectively over u
and v in equations (16,17), relative to magnetizations.

In other words if Fβ dominates F on R+ then there is a positive stability gap
defined as

∆wβ
def
= w(q, q̄)− wβ (26)

such that there is a non-empty range for higher values of wα ∈ [wβ , w(q, q̄)[ for which
the fixed point associated to mode β corresponds to a local minimum of the free energy.
Note that property (i) [resp. (ii)] is analogous (in the sense that it implies it) to pβ
having a larger [resp. smaller] variance than p, i.e. κu > 3 [resp. κu < 3]. Therefore
distributions p with negative relative kurtosis (κu − 3) will tend to favor the presence
of metastable states, while the situation will tend to be more complex for probabilities
with positive relative kurtosis. Indeed, in the latter case the fixed point associated
to the highest mode αmax might not correspond to a stable state if lower modes in
the range [w(q, q̄), wαmax [ are present, and fixed points associated to combinations of
modes have to be considered. Note that in contrary with the Gaussian case, this can
happen because qα is different for each mode and therefore more flexibility is offered
by equations (21,22) than from equations (18,19).

Let us give some examples. Denote by γu
def
= κu − 3 the relative kurtosis. As

already said the Gaussian distribution is a special case with γu = 0. In addition, for
instance for p corresponding to Bernoulli, Uniform or Laplace, we have the following
properties illustrated in the inset of Figure 2:

• Bernoulli (γu = −2):

p(u) =
1

2

(
δ(u+ 1) + δ(u− 1)

)
, F (u) =

1

2

(
θ(u+ 1) + θ(u− 1)

)

pα(u) =
1

2
θ(1− u2), Fα(u) =

1

2
θ(1− u2)(u+ 1) + θ(u− 1)

then Fα(u) > F (u) for u > 0, yielding a positive stability gap.

• Uniform (γu = −6/5):

p(u) =
1

2
√

3
θ(3− u2), F (u) =

1

2
√

3
θ(3− u2)(u+

√
3) + θ(u−

√
3)

pα(u) =
1

4
√

3
θ(3− u2)(3− u2), Fα(u) =

1

4
√

3
θ(3− u2)(3u− u3

3
+ 2
√

3) + θ(u−
√

3).
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It can be verified that Fα(u) > F (u) for u > 0, yielding again a positive stability
gap.

• Laplace (γu = 3):

p(u) =
1√
2
e−
√

2|u|, F (u) =
1

2
+

u

2|u|
(
1− e−

√
2|u|)

pα(u) =
1

2

(
|u|+ 1√

2

)
e−
√

2|u|, Fα(u) = F (u)− u

2
√

2
e−
√

2|u|.

Here we have Fα(u) < F (u) for u > 0, yielding a negative stability gap.
These three examples fall either in condition (i) or (ii), with a stability gap ∆wβ that
is either always positive or always negative, independently of wβ . We can also provide
examples for which the stability condition may vary with wβ . Consider for instance a
sparse Bernoulli distribution, with r ∈ [0, 1] a sparsity parameter:

p(u) =
r

2

(
δ(u+

1√
r

) + δ(u− 1√
r

)
)

+ (1− r)δ(u).

The relative kurtosis is in this case

γu(r) =
1

r
− 3.

Looking at F (u) and Fα(u) it is seen that both conditions (i) and (ii) are not fulfilled,
except for r = 1 which corresponds to the plain Bernoulli case. As we see in the inset
of Figure 2, for r < 1/3 the stability gap is always negative, meaning that a unimodal
ferromagnetic phase is not stable, and it is replaced by a compositional ferromagnetic
phase at all temperatures. Instead, for r > 1/3 and at sufficiently high temperature
(low wα) the single mode fixed point dominate the ferromagnetic phase.

Laplace distribution: let us look at the properties of the phase diagram in the case of
singular vectors’ components being Laplace i.i.d., case in which a negative stability gap
is expected and it may lead to a compositional phase. For this we need the expression
for a sum of Laplace variables to compute the averages involved in (16,17). For this
purpose, we define the following distributions:

f(s) =

∫ ∏

γ

duγ
λγ
2
e−λγ |u

γ | δ(s−
∑

γ

uγ),

gα(s) =

∫
duα

λα
4

(λα|uα|+ 1)e−λα|u
α|
∏

γ 6=α
duγ

λγ
2
e−λγ |u

γ | δ(s−
∑

γ

uγ).

Their Laplace transform upon decomposing into partial fractions reads:

f̃(ω) =
∏

γ

λ2
γ

λ2
γ − ω2

=
∑

γ

Cγ
λ2
γ

λ2
γ − ω2

and

g̃α(ω) =
λ2
α

λ2
α − ω2

∏

γ

λ2
γ

λ2
γ − ω2

= Cα
λ4
α

(λ2
α − ω2)2

+
∑

γ 6=α
Cγ

λ2
γλ

2
α

λ2
α − λ2

γ

Ä 1

λ2
γ − ω2

− 1

λ2
α − ω2

ä
.
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where

Cγ
def
=
∏

δ 6=γ

λ2
δ

λ2
δ − λ2

γ
.

From these decompositions we immediately identify

f(s) =
1

2

∑

γ

Cγλγe
−λγ |s|,

gα(s) =
λαCα

4
(λα|s|+ 1)e−λα|s| +

1

2

∑

γ 6=α
Cγ

λγλα
λ2
α − λ2

γ

(
λαe

−λγ |s| − λγe−λα|s|
)
.

This results in the following decomposition of the EA parameters:

q =

∫
dxds

e−
√

2|s|−x2/2

2
√
π

∑

γ

Cγ [m̄] tanh2
(
h̄γ(x, s)

)
(27)

qα =

∫
dxds

e−
√

2|s|−x2/2

2
√
π

î 1√
2

(|s|+ 1√
2

)Cα[m̄] tanh2
(
h̄α(x, s)

)
(28)

+
∑

γ 6=α
Cγ [m̄]

(wγm̄γ − θγ)2 tanh2
(
h̄γ(x, s)

)
− (wαm̄α − θα)2 tanh2

(
h̄α(x, s)

)

(wγm̄γ − θγ)2 − (wαm̄α − θα)2

ó

(29)

with
h̄γ(x, s)

def
= κ−

1
4
(
σ
√
q̄x+ (wγm̄γ − θγ)s

)

and

Cγ [m̄]
def
=
∏

δ 6=γ

(wγm̄γ − θγ)2

(wγm̄γ − θγ)2 − (wδm̄δ − θδ)2
.

This allows for an efficient resolution of the mean-field equations (16,17,21,22), which
let us observe the appearance of a purely compositional phase in the ferromagnetic
domain when the modes at the top of the spectrum get close enough. In order to
characterize this phase, we consider the stability gap ∆(n)(wα) for which the range
[wa−∆(n)(wα), wa] lies below the highest mode wa, such that the ferromagnetic states
correspond to the condensation of n distinct modes present in this interval, including
the highest.

In addition, this will prove useful when analyzing the learning dynamics described
in the next section.

4 Learning dynamics of the RBM

4.1 Learning dynamics in the thermodynamic limit
A mean field analysis of the learning dynamics has been proposed in [25], in the
form of phenomenological equations obtained after averaging over some parameters of
the RBM, i.e. by choosing a well defined statistical ensemble of RBMs and using self-
averaging properties in the thermodynamic limit. Here we rederive these equations, we
add some details and then explore their properties in the light of the preceding section.
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4 Learning dynamics of the RBM 17

First we project the gradient ascent equations (4-6) onto the bases {uα(t) ∈ RNv} and
{vα(t) ∈ RNh} defined by the SVD of W . Discarding stochastic fluctuations usually
inherent to the learning procedure and letting the learning rate γ → 0, the continuous
version of (4-6) can be recast as follows:

1

L

ÄdW
dt

ä
αβ

= 〈sασβ〉Data − 〈sασβ〉RBM, (30)

1√
L

Ädη
dt

ä
α

= 〈sα〉RBM − 〈sα〉Data, (31)

1√
L

Ädθ
dt

ä
α

= 〈σα〉RBM − 〈σα〉Data, (32)

with sα and σα given in (9). We also have
(
dW

dt

)
αβ

= δα,β
dwα
dt

+ (1− δα,β)
Ä
wβ(t)Ωvβα(t) + wα(t)Ωhαβ

ä

1√
L

(
dη

dt

)
α

=
dηα
dt
−
∑

β

Ωvαβηβ

1√
L

(
dθ

dt

)
α

=
dθα
dt
−
∑

β

Ωhαβθβ

where

Ωvαβ(t) = −Ωvβα
def
=
duα,T

dt
uβ

Ωhαβ(t) = −Ωhβα
def
=
dvα,T

dt
vβ

By eliminating
(
dw
dt

)
αβ

,
Ä
dη
dt

ä
α
and
Ä
dθ
dt

ä
α
we get the following set of dynamical equa-

tions:

1

L

dwα
dt

= 〈sασα〉Data − 〈sασα〉RBM (33)

dηα
dt

= 〈sα〉RBM − 〈sα〉Data +
∑

β

Ωvαβηβ (34)

dθα
dt

= 〈σα〉RBM − 〈σα〉Data +
∑

β

Ωhαβθβ (35)

along with the infinitesimal rotation generators of the left and right singular vectors

Ωvαβ(t) = − 1

wα + wβ

(
dW

dt

)A

αβ
+

1

wα − wβ

(
dW

dt

)S

αβ
(36)

Ωhαβ(t) =
1

wα + wβ

(
dW

dt

)A

αβ
+

1

wα − wβ

(
dW

dt

)S

αβ
(37)

B. Thermodynamics of Restricted Boltzmann Machines and
Related Learning Dynamics
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where
(
dW

dt

)A,S

αβ

def
=

1

2

Ä
〈sασβ〉Data ± 〈sβσα〉Data ∓ 〈sβσα〉RBM − 〈sασβ〉RBM

ä
.

The dynamics of learning is now expressed in the reference frame defined by the
singular vectors of W . The skew-symmetric rotation generators Ωv,hαβ (t) of the basis
vectors (induced by the dynamics) tell us how data rotate relatively to this frame.
Given the initial conditions, these help us keeping track of the representation of data
in this frame. Note that these equations become singular when some degeneracy occurs
in W because then the SVD is not uniquely defined. Except from the numerical point
of view, where some regularizations might be needed, this does not constitute an
issue. In fact only rotations among non-degenerate modes are meaningful, while the
rest corresponds to gauge degrees of freedom.

At this point our set of dynamical equations (33-37) is written in a general form.
Our goal is to find the typical trajectory of the RBM within a certain statistical
ensemble. For this reason, we make the hypothesis that the learning dynamics is
represented by a trajectory in the space {wα(t), ηα(t), θα(t),Ωv,hαβ (t)}, while the specific
realization of uαi , vαj and rij in (8) can be considered irrelevant and only the way they
are distributed is important. We are then allowed to perform an average over uαi , vαj
and rij with respect to some simple distributions, as long as this average is correlated
with the data. By this we mean that the components sα of any given sample are
kept fixed while averaging. In the end, what really matters are the strength and
the rotation of the SVD modes, respectively determined by wα(t) and Ωv,hαβ (t). As
a simplification and also by lack of understanding of what intrinsically drives their
evolution, the distributions of uαi and vαj will be considered stationary in the sequel.
Concerning rij , we allow its variance σ2/L to vary with time in order to give a minimal
description of how the MP bulk evolves during the learning. The detailed dynamics
of σ will be derived later in Section 4.3. Using the same notation of Section 3.4 and
in particular using the rescaling v ∼

√
Nhv

α
i , the empirical terms take the form:

〈σα〉Data = 〈(sαwα − θα)
(
1− qα[s]

)
〉Data (38)

〈sασβ〉Data = 〈sα(sβwβ − θβ)
(
1− qβ [s]

)
〉Data (39)

where

qα[s]
def
=

∫
dx
e−

x2

2√
2π

dvpα(v) tanh2
Ä
κ−

1
4
(
σx+

∑

γ

(wγsγ − θγ)vγ
)ä
,

Note that the last equation actually depends on the activation function (hyperbolic
tangent in this case), and the term σx corresponds to

∑
k rkjsk and is obtained by

central limit theorem from the independence of the rkj . qα[s] is the empirical counter-
part of the EA parameters q and qα already encountered in Section 3.4, and for simple
i.i.d. distributions like Gaussian or Laplace it can be estimated easily. The main point
here is that the empirical terms (38,39) define operators whose decomposition over the
SVD modes of W functionally depends only on wα, θα and on the projection of the
data over the SVD modes of W . These terms are driving the dynamics in a precise
way. The adaptation of the RBM to this driving force is given by the 〈. . . 〉RBM terms
in (33,34,35), which can be estimated in the thermodynamic limit (see Section 4.3) as
a function of wα, θα and ηα alone, by means of the order parameters (mα, m̄α) given
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Fig. 3: Time evolution of the eigenvalues and of the likelihood in the linear
model. We observe very clearly how the different modes emerge from
the bulk and how the likelihood increases with each learned eigenvalue.
In the inset, the scalar product of the vectors u obtained from the SVD
of the data and from the weights w. The us of w are aligned with the
SVD of the data at the end of the learning.

in Section 3.2 and once the mean-field equations (16,17) have been solved. Of course,
all of this is based on the hypothesis that the RBM stays in the RS domain during
learning. Experimental evidence supports this hypothesis (see Section 5).

4.2 Linear instabilities
At the beginning of the learning, the elements of the weight matrixW are usually small;
therefore, we can analyze the linear behavior of the RBM in order to understand what
happens. In particular, we will see that the dynamics of a non-linear RBM at the
beginning of the learning can be understood by looking at the stability analysis of
the learning process. The purpose of this analysis is to identify which “deformation
modes” of the weight matrix are the most unstable, and how they are related to the
input data. Additionally, a good feature of the linear case is that no averaging is
needed, the dynamics being actually independent on the particular realization of the
components uαi and vβj . Also, always relative to the linear case, no distinction has to be
made between dominant modes and other modes to be treated as the noise component
of equation (8), we can simply put all of the modes on the same footing.

Let us analyze the linear regime for an RBM with binary units. The derivation is
done by rescaling all the weights and fields by a common “inverse temperature” β and
letting this go to zero in equation (4). In principle, the stability analysis would lead to
assume both the weights and the magnetizations to be small. However, we can assume
only the magnetizations to be small and consider a slightly more general case with no
approximations. Such a case is analogous to a linear RBM whose magnetizations
undergo Gaussian fluctuations, and it is derived by keeping up to quadratic terms of

B. Thermodynamics of Restricted Boltzmann Machines and
Related Learning Dynamics
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the magnetizations in the mean field free energy:

FMF (µ, ν) ' 1

2

N∑

i=1

(1 + µi) log(1 + µi) + (1− µi) log(1− µi)

+
1

2

M∑

j=1

(1 + νj) log(1 + νj) + (1− νj) log(1− νj)

−
∑

i,j

(
Wijµiνj − 1

2
W 2
ij(µ

2
i + ν2

j )
)

+

N∑

i=1

ηiµi +

M∑

j=1

θjνj

=
1

2σ2
v

N∑

i=1

µ2
i +

1

2σ2
h

M∑

j=1

ν2
i −

∑

ij

Wijµiνj +

N∑

i=1

ηiµi +

M∑

j=1

θjνj .

where the variances (σ2
v, σ

2
h) of respectively visible and hidden variables read (Nh <

Nv):

σ−2
v = 1 +

∑

j

W 2
ij ' 1 +

∑

α

w2
α (40)

σ−2
h = 1 +

∑

i

W 2
ij = 1 +

∑

α

w2
α. (41)

We omitted the quadratic term in Wij coming from the TAP contribution to the free
energy, which is optional for our stability analysis. In absence of this term the modes
evolve strictly independently, while taking it into account leads to a correction to
individual variances which couples the modes.

Magnetizations (µ, ν) of visible and hidden variables have now Gaussian fluctua-
tions with covariance matrix

C(µv, µh)
def
=

ñ
σ−2
v −W
−WT σ−2

h

ô−1

We can discard the biases of the data and the related fields (θα, ηα) with a proper cen-
tering of the variables, and we consider equation (33) directly involving the covariance
matrix of the data expressed in the frame defined by the SVD modes of W

〈sασβ〉Data = σ2
hwβ〈sαsβ〉Data.

From C(µv, µh) we get the other terms yielding the following equations:

dwα
dt

= wασ
2
h

Ä
〈s2
α〉Data − σ2

v

1− σ2
vσ2
hw

2
α

ä

Ωv,hαβ = (1− δαβ)σ2
h

Äwβ − wα
wα + wβ

∓ wβ + wα
wα − wβ

ä
〈sαsβ〉Data

Note that these equations are exact for a linear RBM, since they can be derived without
any reference to the coordinates of uα and vα over which we average in the non-linear
regime. These equations tell us that the learning dynamics drives the rotation of the
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vectors uα (and vα) until they are aligned to the principal components of the data,
i.e. until 〈sαsβ〉Data becomes diagonal. Calling ŵ2

α the empirical variance of the data,
the system reaches the following equilibrium values:

w2
α =




ŵ2
α − σ2

v

σ2
vσ2
hŵ

2
α

if ŵ2
α > σ2

v,

0 if ŵ2
α ≤ σ2

v.

assuming (σv, σh) fixed. From this we see that the RBM selects the strongest SVD
modes of the data. The linear instabilities correspond to directions along which the
variance of the data is above the threshold σ2

v, and they determine the development
of the unstable deformation modes of the weight matrix; during the learning process,
these modes will eventually interact following the usual mechanism of non-linear pat-
tern formation encountered for instance in reaction-diffusion processes [34]. Other
possible deformations are damped to zero. The linear RBM will therefore learn all the
principal components that passed the threshold (up to Nh). Note that this selection
mechanism is already known to occur for linear auto-encoders [23] or other similar
linear Boltzmann machines [22]. On Fig. 3 we can see the eigenvalues being learned
one by one in a linear RBM.

If we take into account the expressions (40,41) for (σv, σh), we see that the system
cannot reach a stable solution except for the case in which all the modes are below the
threshold at the beginning. Otherwise the modes that are excited first will eventually
grow like

√
t for a large time, and the excitation threshold will tend to zero for all

modes.
In any case, by the definition of a multivariate Gaussian, this simple non-linear

analysis describes a unimodal distribution. In order to properly understand the dy-
namics and the steady-state regime of a non-linear RBM, a well suited mean-field
theory is required.

4.3 Non-linear regime
In the linear regime, some specific modes are selected and at some point they start
to interact in a non-trivial manner. As seen explicitly in (39), the empirical terms
in (4-6) involve higher order statistics of the data and then the Gaussian estimation
with σ2

v = σ2
h = 1 of the RBM response terms 〈sα〉RBM and 〈sασβ〉RBM is no longer

valid when the interactions kick in. Schematically, the linear regime is valid as long
as the RBM is found in the paramagnetic phase. But as soon as one mode passes
the linear threshold, the system enters the ferromagnetic phase. Then the proper
estimation of the response terms follows from the thermodynamic analysis performed
in Section 3, and depends on the assumptions made on the statistical properties of the
components of the singular vectors of the weight matrix. In the case of Gaussian i.i.d.
components, given the analysis proposed in Section 3.4, we know that the mode with
the highest singular value completely dominates the ferromagnetic phase: we expect
one single ferromagnetic state characterized by magnetizations aligned to this mode
only, while magnetizations correlated to other modes vanish. To be precise, this is
the correct picture without fields (η = θ = 0) but we don’t expect this picture to
drastically change in the case of non-vanishing fields. In fact, solving the mean-field
equations in presence of the fields show the appearance of meta-stable states correlated
with single dominated modes; however, the free energy difference with respect to the
ground state, i.e. the state correlated with the mode with the highest singular value,

B. Thermodynamics of Restricted Boltzmann Machines and
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learned on a synthetic dataset of 104 samples of size Nv = 1000 obtained
from a multimodal distribution with 20 clusters randomly defined on a
submanifold of dimension d = 15. The dynamics follows the projected
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Fig. 5: Scatter plots of the mean-field magnetizations (in red) and the samples
(in blue) in various plan projections defined by pairs of left eigenvectors
of W . This case corresponds to an RBM of size (Nv, Nh) = (100, 50)
learned on a synthetic dataset of 104 samples of size Nv = 100 obtained
from a multimodal distribution with 11 clusters randomly defined on a
submanifold of dimension d = 5. The scatter plot is obtained at a point
where 5 modes have already condensed and 16 saddle point solutions
have been found.

is of order O
(
L(wα−wmax)

)
, which means that the contribution of those meta-stable

states become rapidly negligible with large system size.
To draw a realistic picture of the learning process we now consider Laplace i.i.d.

components for the SVD modes that, as seen in Section 3.4, allow the ferromagnetic
phase to be of compositional type. The reason for this is that the Laplace distri-
bution leads to less interference among modes than the Gaussian distribution, so
that the modes will weakly interact in the mean-field equations. Solving equations
(21,22,27,29) in absence of fields yields the following picture: one fixed point solu-
tion will typically have non-vanishing magnetizations {mα, m̄α} for all α such that
wα ∈ [wmax − ∆w,wmax], where ∆w is approximately the gap ∆w(q, q̄) defined in
(26). This solution is a degenerate ground state, all other solutions being obtained by
independently reversing the signs of the condensed magnetizations (mα, m̄α). Hence
for K condensed modes we get a degeneracy of 2K . When the fields are included, all
these fixed points are displaced in the direction of the fields, and some of them may
disappear. In the end we are left with a potentially large amount of nearly degenerate
states able to cover the empirical distribution of the data, at least in some simple
cases.

Coming back to the learning dynamics the terms corresponding to the response of

B. Thermodynamics of Restricted Boltzmann Machines and
Related Learning Dynamics

110



4 Learning dynamics of the RBM 24

the RBM in (4,6) are estimated in the thermodynamic limit by means of the previously
defined order parameters:

〈sα〉RBM =
1

ZTherm

∑

ω

e−Lf(mω,m̄ω,qω,q̄ω)m̄ω
α

def
= 〈m̄α〉Therm,

〈sασβ〉RBM =
1

ZTherm

∑

ω

e−Lf(mω,m̄ω,qω,q̄ω)m̄ω
αm

ω
β

def
= 〈m̄αmβ〉Therm.

Here 〈. . . 〉Therm denotes the thermodynamical average and the partition function is
expressed, in the thermodynamic limit, as

ZTherm
def
=
∑

ω

e−Lf(mω,m̄ω,qω,q̄ω)

The index ω runs over all the stable fixed point solutions of (16,17) weighted accord-
ingly to the free energy given by (15). These are the dominant contributions as long
as free energy differences are O(1), and the internal fluctuations given by each fixed
point are comparatively of order O(1/L). In addition, the dynamics of the bulk can
be characterized by empirically defining σ2:

σ2 =
1

L

∑

ij

r2
ij ,

whose evolution is:

dσ2

dt
=

1

L

∑

ij

rij
dWij

dt
,

=
1

L

∑

ij

rij

ñ
〈si tanh

Ä∑
k

rkjsk + κ−
1
4

∑

α

(wαsα − θα)vαj
√
L
ä
〉Data − 〈siσj〉RBM

ô

given the independence of ri∗ (resp. r∗j) and uαi (resp. vαi ).
Exploiting the self-averaging properties of both the empirical and the response

terms with respect to rij , uαi and vαj yields

1

L2

∑

ij

rij〈siσj〉Data =
σ2

L

(
1− 〈q[s]〉Data

)

1

L2

∑

ij

rij〈siσj〉RBM =
σ2

L

(
1− 〈q〉Therm

)
,

with

q[s]
def
=

∫
dx
e−

x2

2√
2π

dvp(v) tanh2
Ä
κ−

1
4
(
σx+

∑

γ

(wγsγ − θγ)vγ
)ä
.

111



4 Learning dynamics of the RBM 25

Summarizing, our equations take the suggestive form

1

L

dwα
dt

= 〈sα(wαsα − θα)(1− qα[s])〉Data − 〈m̄α(wαm̄α − θα)(1− qα)〉Therm, (42)

dηα
dt

= 〈m̄α〉Therm − 〈sα〉Data +
∑

β

Ωvαβηβ , (43)

dθα
dt

= 〈(wαm̄α − θα)(1− qα)〉Therm − 〈(wαsα − θα)(1− qα[s])〉Data +
∑

β

Ωhαβθβ ,

(44)

dσ2

dt
= σ2
Ä
〈q〉Therm − 〈q[s]〉Data

ä
, (45)

with Ωv,h taking the form of a difference between a data averaging 〈. . . 〉Data and
a thermodynamical averaging 〈. . . 〉Therm involving only order parameters. Note here
that the wα variables, with respect to the other variables, evolve on a faster time scale.
This is our final and main result, which might possibly help improving current learning
algorithms of RBMs. From this, it is clear what the learning of an RBM is aimed at:
the equations will converge once the dataset is clustered in such a way that each
cluster is represented by a solution of the mean-field equations with magnetizations
m̄α and EA parameters qα corresponding respectively to their empirical counterparts
〈sα〉 and 〈qα[s]〉 representing cluster magnetization and variance. In particular, these
clusters can somehow be regarded as the attractors in the context of feed-forward
networks, defining a partition of the data. This can be seen by starting from random
configurations and letting the system evolve using the TAP equations or a MCMC
method. At the end the system will end up in one of those clusters (characterized
by a fixed point of the mean-field equations). Note that this is the reason why the
RBM needs to reach a ferromagnetic phase with many states to be able to match the
empirical term in (4) and reach convergence.

Additionally, the log likelihood (3) can be estimated in the thermodynamic limit
(after normalization by L).

L =
¨√

κEx,v
î
log cosh

Ä
κ−

1
4
(
σx+

∑

α

(wαsα − θα)vα
)äó∂

Data

−
〈∑

α

ηαsα
〉

Data
− 1

L
log
(
ZTherm

)
,

As an example, for a multimodal data distribution with a finite number of clusters
embedded in a high dimensional configuration space, the SVD modes of W that will
develop are the one pointing to the directions of the magnetizations defined by these
clusters (which will be almost surely orthogonal, given the high dimensionality of the
embedding space). In this simple case the RBM will evolve, as in the linear case, to
a state in which the empirical term becomes diagonal, while the singular values will
adjust to match the proper magnetization in each fixed point.

We have integrated equations (42,43,44,45,36,37) in simple cases by using the
Laplace averaging of the components of the SVD modes and using for the EA pa-
rameters the expressions given in (27,29). Basically, the hidden distribution to be
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modeled is defined by

P (s) =

C∑

c=1

pc

N∏

i=1

eh
c
i si

2 cosh(hci )
, (46)

i.e. a multimodal distribution composed of C clusters of independent variables, where
the magnetization of each variable i in cluster c is given by mc

i = tanh(hci ). Each
cluster is weighted by some probability pc. In addition we assume these magnetization
vectors mc to be embedded in a low dimensional space of dimension d << N . d
defines the rank of W . The initial conditions for W are such that the left singular
vectors {uα, α = 1, . . . d} span this low dimensional space. An example of the typical
dynamics obtained in the case at hand is shown in Figure 4. In contrast to the linear
problem where singular values evolve independently, here we distinctively witness the
interaction between singular values: a kind of pressure is exerted by lower modes on
higher ones resulting in successive bumps in the dynamics of the top modes. The
number of states is roughly multiplied by two each time a mode condenses and get
close enough to the top modes. Concerning the dynamics of the fields, we don’t really
observe convergence towards stable directions. Some (possibly numerical) instability
is observed when many modes condense, with both the fields and the number of fixed
point solutions becoming very noisy. It is also interesting to see how the magnetizations
related to the states are distributed with respect to the dataset. On Figure 5 we see
that the fixed points tend (as expected) to settle within dense regions of sample points.
However, our coarse description shows some limitations for more complex situations,
the number of adjustable parameters being too limited to be able to match arbitrary
distributions of clusters. It is then appropriate to think about this behaviour in a mean
sense; at least, it is able to reproduce a realistic learning dynamics of the singular values
of the weight matrix.

5 Numerical Experiments

Given the comprehensive theoretical analysis of the RBM model given in the previous
sections, we are now able to provide a meaningful description of the learning dynamics
for a RBM trained with k-steps contrastive divergence (CDk) [4]. The observations
presented in this section will serve as a validation for the theoretical analysis. First, to
provide a more direct comparison to section 4.3, we will look at the learning dynamics
of an RBM trained on a set of simple synthetic data. Subsequently, we will test the
model against real world data by training on the MNIST dataset.

5.1 Synthetic dataset
As a simple case, we trained the RBM over the same dataset defined in fig. 4, derived
from the simple multimodal distribution in eq. 46 (see Appendix B for details). Thus
we set Nv = 1000, Nh = 500 and we trained using 104 samples with an effective
dimension d = 15 organized in 20 separate clusters. The weights are initialized from
a Gaussian distribution with standard deviation σ = 10−3, while the hidden bias is
initialized to 0 and the visible bias is initialized with the empirical mean of the data

ηi =
1

2
log

Å
pi

1− pi

ã

where pi is the empirical probability of activation for the ith hidden node.
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Fig. 8: Scatter plots of samples (blue) and fixed points (red) in various plan
projections defined by pairs of left eigenvectors of W. The dataset is the
same as in Fig. 5 and in this case 5 modes have condensed and 7 fixed
point solutions have been found.

Finally, the training set is divided into batches of size 20, 5 Gibbs sampling steps are
used (CD5) and the learning rate γ is kept low in order to reduce noise, γ = 5× 10−8.
The results of the analysis are shown in fig. 6. We see that the dynamics of the singular
values obtained by direct integration of the mean-field equations (Fig. 4) are very well
reproduced, the only difference being a slightly higher pressure on the strongest modes.
The number of fixed point solutions also seems to follow the same trend but more noise
is present, an indication of the fact that the RBM has a tendency to learn spurious
fixed points during the training. The learning trajectory on the phase diagram is also
of interest; we see that the RBM is initialized in the paramagnetic state as expected
and the effect of the learning is to drive the model to the ferromagnetic phase. Once
in the ferromagnetic phase, the trajectory slows down and the model is assessed near
the critical line between paramagnetic and ferromagnetic states, where the estimate
of the weights is most stable (according to [35]). Finally, in Fig. 8 we see how the
RBM is able to generate a proper clustering of the data over the spectral modes. In
particular, the TAP fixed points of the trained model are well distributed and able
to cover the full data distribution, improving over the typical behaviour for Laplace
distributed weights that emerged with our theoretical analysis (Fig. 5).

5.2 MNIST dataset
The MNIST dataset is composed by 70000 handwritten digits (60000 for training,
10000 for testing) of size 28 × 28 pixels. Being highly multimodal, we expect this
dataset to push the limits of our spectral analysis. For the training, the initialization
of the model is the same one used for the synthetic data, 10000 training samples are
used (taken at random from the dataset) and the values of the other hyperparameters
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(a)

(b)

(c)

Fig. 9: (a) Principal components extracted from the training set (starting from
the second, as the first one is encoded into the visible bias). (b) The
first 10 modes of a RBM trained for 1 epoch (with γ ' 0.1). (c) Same
as (b) but after a 10 epochs training.

are as follows: Nv = 784, Nh = 100, batch size = 20, γ = 5 × 10−7. With respect
to the linear regime (described in section 4.2) we see in Fig. 9 how the RBM is
able to learn the SVD of the dataset quite precisely at the beginning of the training,
then the learning dynamics quickly enter the non-linear regime. Even in this highly
multimodal scenario, our findings over simple synthetic data seem to be confirmed,
as seen in Fig. 6. The high number of modes, however, determines an increase in the
magnitude of the singular values of condensed modes and seems to destabilize a bit
the learning, making the computation of fixed points less reliable. In fact, as a high
number of modes are condensing, the model is not able to get rid of all the spurious
fixed points. This problem can be mitigated by using an even smaller learning rate, at
the cost of slowing down the training. Probably, using a variable learning rate could
be a more practical solution (descreasing the learning rate from time to time to let the
model eliminate unneeded fixed points). Concerning the (relative) kurtosis of the mode
components distributions, we did not observe a very stable and systematic behavior.
Either we see small fluctuations around zero, either some excursions occur and a finite
value in the range [0, 3] is building up either for the u or the v components, coherently
to the compositional phase interpretation given previously. The latter is the case for
MNIST, as shown in Fig. 7. Additionally the transverse part of the fields, meaning
orthogonal to the condensed modes, is usually not completely negligible, in contrary
to what we assume in (13,14). This clearly constitutes a limitation of our analysis.
These transverse components offer more flexibility for generating and selecting fixed
points and interfere in some non-trivial way with the kurtosis property, which possibly
explains why we don’t get a systematic behavior.

6 Discussion

Before drawing some perspectives, let us summarize the main outcomes of the present
work:

• (i) thermodynamic properties of realistic RBMs: our analysis focused
on a non-i.i.d. ensemble of weight matrices, whose derivation has been inspired
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by empirical observations obtained by training RBMs on real data.
• (ii) RS equations and compositional phase: we found a way of writing the

RS equations for the RBM (in particular with equations (21,22,23,24)) which
leads to a simple characterization of the ferromagnetic phase where the RBM is
assumed to operate. Schematically, a negative relative kurtosis for the distribu-
tion of the singular vectors’ components favors the proliferation of metastable
states, while a positive one tends to favor a compositional phase. In particular,
we were able to precisely address a concrete case presenting the compositional
phase by considering a Laplace distribution for the singular vectors’ components.

• (iii) a set of equations representing a typical learning dynamics that
defines a trajectory in {wα(t), ηα(t), θα(t),Ωv,hαβ (t), σ2(t)}. The spectrum of the
dominant singular values, represented by {wα(t)} and expressing the information
content of the RBM, is playing the main role. The bulk of dominated modes
corresponding to noise sees its dynamics summarized by the evolution of σ2(t).
Rotations of dominant singular vectors during the learning process are given by
Ωv,h while the projections of the biases along the main modes are given by η and
θ. These equations have been obtained by averaging over the components of left
and right SVD vectors of the weight matrix, while keeping fixed the quantities
considered to be relevant. This averaging actually corresponds to a standard
self-averaging assumption in a RS phase.

• (iv) a clustering interpretation of the training process is obtained through
equations (42,43,44,45) where it is explicitly shown the kind of matching that
the RBM is trying to perform between the order parameters obtained from the
fixed point solutions and their empirical counterparts in the non-linear regime.
A natural clustering of the data can actually be defined by assigning to each
sample the fixed point obtained after initializing the fixed point equations with
a visible configuration corresponding to that same sample.

The main picture emerging from the present analysis is that of a set of clusters corre-
sponding to the fixed points of the RBM, which try to uniformly cover the support of
the dataset. A full understanding of the mechanism by which the RBM manages to
properly cover the dataset is still lacking, even though the case of Laplace distributed
singular vectors’ components gives some insights. By comparison, real RBMs have
more flexibility than the simple “mean Laplace RBM” considered in Section 3.4 and
they can produce a good covering of the data manifold. We were not yet able to
precisely pinpoint the main ingredients for that mechanism, even though we suspect
the transverse biases (orthogonal to the modes) of the hidden units to be the missing
ingredient in our analysis.

From the theoretical point of view we would like to see how these results can be
adapted to more complex models like DBM or generative models based on convolu-
tional networks. In particular we would like to understand whether adding more layers
can facilitate the covering of the dataset by fixed points. From the practical point of
view these results might help to orientate the choice of the hyper-parameters used for
training an RBM and to refine the criteria for assessing the quality of a learned RBM.
For instance, the choice of the number of hidden variables is dictated by two consid-
erations: the effective rank of W , i.e. the number of relevant modes to be considered,
and the level of interaction between these modes. Using less hidden variables gives
more compact RBMs and reduces the rank of W to its needed value, but it also leads
to modes with stronger interactions, which means less flexibility for generating a good
covering of fixed points.
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A AT line

The stability of the RS solution to the mean-field equations is studied along the lines
of [33] by looking at the Hessian of the replicated version of the free energy and
identifying eigenmodes from symmetry arguments. Before taking the limit p→ 0 the
free energy reads

f [m, m̄,Q, Q̄] =
∑

a,α

wαm
a
αm̄

a
α +

σ2

2

∑

a6=b
QabQ̄ab − 1√

κ
Ap[m,Q]−√κBp[m̄, Q̄],

with Ap and Bp given in (10,11). Assuming the small perturbations

ma
α = mα + εaα m̄a

α = m̄α + ε̄aα

Qab = q + ηab Q̄ab = q̄ + η̄ab,

around the saddle point (mα, m̄α, q, q̄), the perturbed free energy reads

∆f =
∑

a,α

wαε̄
a
αε
a
α +

σ2

2

∑

a6=b
η̄abηab +

∑

a,b,α,β

[(
δabĀαβ + δ̄abB̄αβ

)
εaαε

b
β + CT

]

+
∑

a6=b,c,α

[(
(δab + δac)C̄α + (1− δac − δbc)D̄α

)
εcαηab + CT

]

+
∑

a6=b,c 6=d

[(
δ(ab)(cd)Ē0 + 11{a∈(cd)⊕b∈(cd)}Ē1 + 11{(ab)∩(cd)=∅}Ē2

)
ηabηcd + CT

]
,

where CT means “conjugate term” in the sense ε ↔ ε̄, Aαβ ↔ Āαβ . . . , where δ̄ab
def
=

1− δab and the operators are given by

Aαβ
def
= (δαβ −mαmβ)wαwβ Bαβ

def
=
Ä
Ex,v

(
vαvβ tanh2(h̄(x, v))

)
−mαmβ

ä
wαwβ

Cα
def
=
κ1/4σ2

2
mα(1− q)wα Dα

def
=
κ1/4σ2

2

Ä
Ex,v

(
vα tanh3(h̄(x, v))

)
−mαq

ä
wα

E0
def
=

√
κσ4

4
(1− q2) E1

def
=

√
κσ4

4
q(1− q) E2

def
=

√
κσ4

4

Ä
Ex,v

(
tanh4(h̄(x, v))

)
− q2
ä

with
h(x, u)

def
= κ1/4

(√
qσx+

∑

α

(mαwα − ηα)uα
)
,

Conjugate quantities are obtained by replacing mα by m̄α, q by q̄, uα by vα, ηα by
θα and κ by 1/κ. As for the SK model, the 2Kp × 2Kp Hessian thereby defined can
be diagonalized with the help of three similar sets of eigenmodes corresponding to
different permutation symmetries in replica space.

The first set corresponds to 2K + 2 replica symmetric modes defined by ηaα = ηα
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and ηab = η solving the linear system

(wα
2
− λ
)
ε̄α − 1

2
Āααεα +

∑

β

(
Āαβ + (p− 1)B̄αβ

)
εβ +

(
(p− 1)C̄α +

(p− 1)(p− 2)

2
D̄α
)
η = 0

(wα
2
− λ
)
εα − 1

2
Aααε̄α +

∑

β

(
Aαβ + (p− 1)Bαβ

)
ε̄β +

(
(p− 1)Cα +

(p− 1)(p− 2)

2
Dα
)
η̄ = 0

(σ2

2
− λ
)
η̄ +

∑

α

(
C̄α +

p− 2

2
D̄α
)
εα + 2

(
Ē0 + 2(p− 2)Ē1 +

(p− 2)(p− 3)

2
Ē2

)
η = 0

(σ2

2
− λ
)
η +

∑

α

(
Cα +

p− 2

2
Dα
)
ε̄α + 2

(
E0 + 2(p− 2)E1 +

(p− 2)(p− 3)

2
E2

)
η̄ = 0

with eigenvalue λ solving a polynomial equation of degree 2K + 2 corresponding to a
vanishing determinant in the above system.

The second set corresponds to a broken replica symmetry where one replica a0 is
different from the others

(εaα, ε̄
a
α) =

{
(εα, ε̄α) for a 6= a0

(1− p)(εα, ε̄α) for a = a0

(ηab, η̄ab) =

{
(η, η̄) for a, b 6= a0

(1− p
2
)(η, η̄) for a = a0 or b = a0

This set has dimension (2K + 2)(p− 1). Its parameterization is obtained by imposing
orthogonality with the previous one. The corresponding system reads

(wα
2
− λ
)
ε̄α − 1

2
Āααεα +

∑

β

(Āαβ − B̄αβ)εβ +
p− 2

2

(
C̄α − D̄α

)
η = 0

(wα
2
− λ
)
εα − 1

2
Aααε̄α +

∑

β

(Aαβ −Bαβ)ε̄β +
p− 2

2

(
Cα −Dα

)
η̄ = 0

(σ2

2
− λ
)
η̄ +

∑

α

(C̄α − D̄α)εα + 2
(
Ē0 + (p− 4)Ē1 − (p− 3)Ē2

)
η = 0

(σ2

2
− λ
)
η +

∑

α

(Cα −Dα)ε̄α + 2
(
E0 + (p− 4)E1 − (p− 3)E2

)
η̄ = 0

Finally the eigenmodes of the Hessian are made complete by considering a broken
symmetry where two replicas a0 and a1 are different from the others, with the following
parameterization dictated again by orthogonality constraints with the previous sets:

(εaα, ε̄
a
α) = 0, (ηab, η̄ab) =





(η, η̄) for a, b 6= a0

3−p
2

(η, η̄) for a ∈ a0, a1 or b ∈ a0, a1

(p−2)(p−3)
2

(η, η̄) for (a, b) = (a0, a1).

The dimension of this set is now p(p−3), and it represents eigenvectors iff the following
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system of equations is satisfied

(σ2

2
− λ
)
η̄ + 2(Ē0 − 2Ē1 + Ē2)η = 0

(σ2

2
− λ
)
η + 2(E0 − 2E1 + E2)η̄ = 0

The corresponding eigenvalues read

λ =
σ2

2
± 2
√

(Ē0 − 2Ē1 + Ē2)(E0 − 2E1 + E2),

with degeneracy p(p− 3)/2. Finally the RS stability condition reads

1

σ2
>

√
Ex,u
Ä

sech4
(
h(x, u)

)ä
Ex,v
Ä

sech4
(
h̄(x, v)

)ä
,

which reduces to the same form of the AT line for the SK model when κ = 1, except for
the u and v averages that are specific to our model. As seen in Figure 2 the influence
of κ is very limited.

B Synthetic dataset

The multimodal distribution modeling the N-dimensional synthetic data is

P (s) =

C∑

c=1

pc

N∏

i=1

eh
c
i si

2 cosh(hci )
, (47)

where C is the number of clusters, pc is a weight and hc is a hidden field for cluster c.
The values for pc are taken at random and normalized, while to compute hci we take
into account the magnetizations mc

i = tanh(hci ). Expanding over the spectral modes,
we can set an effective dimension d by constraining the sum to the range α = 1, . . . , d

mc
i =

d∑

α=1

mc
αu

α
i (48)

Clusters’ magnetizations mc
α are drawn at random between [−1, 1] and normalized

with the factor

Z =

…∑
αm

2
α

d · r , r = tanh(η) (49)

where r is introduced to decrease the clusters’ polarizations (in our simulations, we
used η = 0.3). The spectral basis uαi is obtained by drawing at random d N-dimensional
vectors and applying the Gram-Schmidt process (which can be safely employed as N is
supposedly big and thus the initial vectors are nearly orthogonal). The hidden fields
are then obtained from the magnetizations

hci = tanh−1(mc
i ) (50)

and the samples are generated by choosing a cluster according to pc and setting the
visible variables to ±1 according to

p(si = 1) =
1

1 + e−2hc
i

(51)
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four methods above can handle all the challenges co-currently raised in our work. First, all of these assume
the testing instances to have fully observed feature profiles. They don’t consider coping with incomplete testing
instances by design. Second, all of them are designed specifically for multi-label learning and adapting them to
multi-class classification is not straightforward.

More recently, methods based on Deep Latent Variable Models (DLVM) have been proposed to deal with
missing data. In [MF19], the Variational Autoencoder [KW14] has been adapted to be trained with missing data
and a sampling algorithm for data imputation is proposed. Other approaches based on Generative Adversarial
Networks (GAN) by [GPAM+14] are proposed in [YJvdS18] and [LJM19]. Impressive results on image datasets
are displayed for these models, at the price of a rather high model complexity and the need for a large training
set. In addition these works are focused on features reconstruction, and additional specifications and fine-tuning
are required to be able to take partially observed labels into account. The models specifications are quite involved
and any new specificity of the dataset may increase both the cost and the difficulty in training (especially for
the approaches based on GANs).

In this paper we choose to address this problem in a more economical and robust manner. We consider the old
and simple architecture of the Restricted Boltzmann Machine and adapt it to the multi-output learning context
(RBM-MO) with missing data. The RBM-MO method serves as a generative model which collaboratively
learns the marginal distribution of features and label assignments of input data instances, despite the incomplete
observations. Building on the ideas expressed in [NK94, GJ94] we adapt the approach to the more effective
contrastive divergence training procedure [Hin02] and provide results on various real-world datasets. The ad-
vantage of the RBM-MO model is that of providing a robust and flexible method to deal with missing data,
with little additional complexity with respect to the classic RBM. Indeed, the trained model can be naturally
applied to both transductive and inductive scenarios, achieving superior multi-output classification performance
then state-of-the-art baselines. Moreover, it works seamlessly with multi-class and multi-label tasks, providing
a unified framework for multi-output learning.

2 Overview of Restricted Boltzmann Machines

An RBM is a Markov random field with pairwise interactions defined on a bipartite graph formed by two layers
of non-interacting variables: the visible nodes represent instances of the input data while the hidden nodes
provide a latent representation of the data instances. V and H will denote respectively the sets of visible and
hidden variables. In our setting, the visible variables will further split into two subsets Vf and V` corresponding
respectively to features and labels, such that V = Vf +V`. The visible variables form an explicit representation of
the data and are noted v = {vi, i ∈ V}. The hidden nodes h = {hj , j ∈ H} serve to approximate the underlying
dependencies among the visible units.

In this paper, we will work with binary hidden nodes hj ∈ {0, 1}. The variables corresponding to the visible
features will be either real with a Gaussian prior or binary, depending on the data to model, and labels variables
will always be binary (vi ∈ {0, 1}). The joint probability distribution over the nodes is defined through an energy
function

P (v,h) =
e−E(v,h)

Z
pprior(v), E(v,h) = −

∑

i∈V,j∈H
viwijhj −

∑

i∈V
aivi −

∑

j∈H
bjhj (1)

where ai and bj are biases acting respectively on the visible and hidden units and wij is the weight matrix that
couples visible and hidden nodes. pprior is in product form and encodes the nature of each visible variable, either
with a Gaussian prior pprior = N (0, σ2

v) or a binary prior pprior(v) = δ(s2 − s). Z =
∑

v,h pprior(v)e−E(v,h) is
the partition function. The classical training method consists in maximizing the marginal likelihood over the
visible nodes P (v) =

∑
h P (v,h) by tuning the RBM parameters θ = {wij , ai, bj} via gradient ascent of the log

likelihood L(v; θ).
The tractability of the method relies heavily on the fact that the conditional probabilities P (v|h) and P (h|v)

are given in closed forms. In our case these read:

P (v|h) =
∏

i∈Vf

e
∑

j∈H viwijhj+aivipprior(vi)∑
vi
e
∑

j∈H viwijhj+aivipprior(vi)

∏

i∈V`
σ
(∑

j∈H
viwijhj + aivi

)
, (2)

P (h|v) =
∏

j∈H
σ
(∑

i∈V
viwij + bj

)
, (3)
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where σ(x) = 1/(1+e−x) is the logistic function. The gradient of the likelihood w.r.t. the weights (and similarly
w.r.t. the fields ai and bj) is given by

∂L(v; θ)

∂wij
= 〈vihjp(hj |v)〉data − 〈vihj〉RBM (4)

where the brackets 〈〉data and 〈〉RBM respectively indicate the average over the data and over the distribution
(1). The positive term is directly linked to the data and can be estimated exactly with (3), while the negative
term is intractable. Many strategies are used to compute this last term: the contrastive divergence (CD)
approach [Hin02] consists in estimating the term over a finite number of Gibbs sampling steps, starting from
a data point and making alternate use of (2) and (3); in its persistent version (PCD) the chain is maintained
over subsequent mini-batches; using mean-field approximation [MTK15] the term is computed by means of a
low-couplings expansion.

3 Learning RBM with incomplete data

The RBM is a generative model able to learn the joint distribution of some empirical data given as input. As
such, it is intrinsically able to encode the relevant statistical properties found in the training data instances
that relate features and labels, and this makes the RBM particularly suitable to be used in the multi-output
setting in the presence of incomplete observations. In this sense, the most natural way to deal with incomplete
observations is to marginalize over the missing variables; in this section we show how the contrastive divergence
algorithm can be adapted to compute such marginals.

Given a partially-observed instance v, we have a new partition of the visible space V = O +M, where O
is a subset of observed values of v that can correspond both to features and labels. vo = {vi, i ∈ O} and
vm = {vi, i ∈ M} denote respectively the observed and missing values of v. The probability over the observed
variables vo is given by (θ representing the parameters of the model)

P (vo) =
ZO[θ]

Z∅[θ]
, ZO[θ] =

∫ ∏

i∈M
pprior(vi)dvi × e

∑
k∈V akvk

∏

j∈H

(
1 + exp

(∑

k∈V
wkjvk + bj

))

Taking the log-likelihood and then computing the gradient with respect to the weight matrix element wij

(also similarly for the fields ai and bj), we obtain two different expressions for i ∈ O and i ∈M.

∂ logZO[θ]

∂wij
= vi

∑

hj

hjp(hj |vo) i ∈ O, ∂ logZO[θ]

∂wij
=
∑

hj

∫
dvivihjp(vi, hj |vo) i ∈M (5)

The gradient of the LL over the weights (4) now reads

∂L(v; θ)

∂wij
=
〈
Io(i)vi

∑

hj

hjp(hj |vo)
〉
data

+
〈(

1− Io(i)
)∑

hj

∫
dvivihjp(hj |vo)

〉
data
− 〈vihj〉RBM (6)

where Io is the indicator function of the samples dependent set O. The observed variables vi, i ∈ O are pinned
to the values given by the training samples. In terms of our model, the pinned variables play the role of an
additional bias over the hidden variables of a RBM where the ensemble of visible variables is reduced to the
missing ones.

With respect to the non-lossy case where p(hj |v) is given in closed form, here we need to sum over the
missing variables in order to estimate p(hj |vo). This means that also the positive term of the gradient (6) is now
intractable and we need to approximate it. For CD training, we can simply perform Gibbs sampling over the
missing variables (keeping fixed the observed variables). Details are reported in Alg. 1.

We note that the extra computational burden of Lossy-CD with respect to standard CD is due only to the
extra Gibbs sampling steps in the positive term. Given that the observed variables strongly bias the sampling
procedure speeding up convergence, only few sampling steps are needed to compute this term. Indeed, in our
experiments we observed that a single sampling step (Lossy-CD1) is enough, making the additional complexity
minimal. Finally, we note that the same method can be applied to PCD and mean-field training procedures. In
the first case, it is sufficient to keep track of an additional persistent chain, which requires little extra memory
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and no extra computational complexity. In the second case, we only need to substitute Gibbs sampling with
iterative mean-field equations.

Algorithm 1: Lossy-CDk (RBM training with Incomplete data)

1: Data: a training set of N data vectors
2: Randomly initialize the weight matrix W
3: for t = 0 to T (# of epochs) do
4: Divide the training set in m minibatches
5: for all minibatches m do

Positive term:
6: pin variables vi, i ∈ O to their correct value
7: initialize vi, i ∈M randomly
8: sample h,vm using p(vm | h) and p(h | v) for k steps
9: compute the positive terms in (5)

Negative term:
10: initialize v randomly
11: iterate eq. (2), (3) (k steps) to compute 〈vihj〉model

Full update:
12: update W with equation (6)
13: end for
14: end for

4 Mean-field based imputation with RBM

As a generative model, the trained RBM can be used to sample new data. For imputation of missing features
and labels we just need to use the observed portions of our data to bias the sampling procedure in the same
way as for the computation of the positive term in Alg. 1. Namely, we estimate p(vm|vo) by pinning the
observed variables and iterating CD/PCD or mean-field to approximate the equilibrium values of the missing
variables. In case of a high percentage of missing observations, however, we might expect the observed variables
to be correlated to many different equilibrium configurations, such that the sampling could be biased towards
the wrong sample. To overcome this problem, we simply average over multiple mean-field imputations for each
incomplete data instance.

More in details, let {pi, i ∈ V`} and {qj , j ∈ H} be the marginal probabilities respectively of visible labels
and hidden variables to be activated and {mi, i ∈ Vf} the marginal expectation of the visible features variables.
Mean-field equations at lowest order (O(1/N), N being the size of the system) express self-consistent relations
among these quantities

mi =
(∑

j∈H
wijqj + ai

)
σ2
v ∀i ∈ Vf\O pi = σ

(∑

j∈H
wijqj + ai

)
∀i ∈ V`\O (7)

qj = σ
( ∑

i∈Vf
wijmi +

∑

i∈V`
wijpi + bj

)
(8)

Higher order terms corresponding to TAP equations are discarded [M1́7]. These equations can be efficiently solved
by iteration starting from random configurations until a fixed point is reached. Observed variables are simply
introduced by pinning their corresponding probabilities (0 or 1 for label variables) or their marginal expectation
(for feature variables) to the observed values. In practice we run these fixed-point equations Nf ∼ 10 times and
the imputations are obtained by simple average

m̂i =
1

Nf

Nf∑

n=1

m
(n)
i pi =

1

Nf

Nf∑

n=1

p
(n)
i .

In the multi-label setting, the predictor is the indicator function p̂i = (pi > t) (t is learned, it is chosen to
maximize the accuracy for known labels), while for class labels we have p̂i = 1 if i = argmaxk(pk)
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Model RMSE Averaged AUC Accuracy

qmc% 30% 50% 80% 30% 50% 80% 30% 50% 80%

RBM-MO(qfea% =50%) 0.183 0.182 0.185 0.969 0.971 0.929 0.950 0.912 0.822
CLE(qfea% =50%) 0.195 0.195 0.195 0.686 0.718 0.742 0.256 0.232 0.282

NoisyIMC(qfea% =50%) 0.209 0.210 0.210 0.621 0.578 0.552 0.225 0.232 0.192
MC-1(qfea% =50%) 0.334 0.335 0.337 0.495 0.493 0.500 0.110 0.111 0.112

RBM-MO(qfea% =80%) 0.209 0.213 0.211 0.938 0.932 0.906 0.920 0.852 0.733
CLE(qfea% =80%) 0.206 0.208 0.206 0.673 0.678 0.625 0.230 0.215 0.220

NoisyIMC(qfea% =80%) 0.212 0.211 0.213 0.652 0.577 0.537 0.230 0.217 0.210
MC-1(qfea% =80%) 0.334 0.334 0.335 0.500 0.501 0.500 0.112 0.110 0.110

Table 1: Transductive test on MNIST multi-class data set (our method in bold, best result in red)

Model RMSE Micro-AUC Hamming-Accuracy

qml% 30% 50% 80% 30% 50% 80% 30% 50% 80%

RBM-MO(qfea% =50%) 0.131 0.137 0.123 0.943 0.934 0.888 0.919 0.907 0.873
CLE(qfea% =50%) 0.130 0.130 0.131 0.905 0.893 0.898 0.885 0.871 0.878

NoisyIMC(qfea% =50%) 0.132 0.133 0.133 0.865 0.863 0.858 0.845 0.841 0.848
MC-1(qfea% =50%) 0.258 0.255 0.267 0.522 0.528 0.527 0.826 0.817 0.824

RBM-MO(qfea% =80%) 0.160 0.158 0.158 0.875 0.867 0.826 0.856 0.858 0.832
CLE(qfea% =80%) 0.129 0.129 0.128 0.913 0.897 0.899 0.889 0.875 0.876

NoisyIMC(qfea% =80%) 0.133 0.134 0.134 0.853 0.857 0.849 0.839 0.835 0.826

Table 2: Transductive test on Scene multi-label data set (our method in bold, best result in red)

5 Experimental Study

5.1 Experimental configuration

To evaluate the efficiency of RBM-MO we compare its performance against CLE, NoisyIMC and MC-1, which
provide state-of-the-art baselines.

For the transductive experiments we randomly hide features and labels of the whole dataset to generate
incomplete data for training, and we compute appropriate scores for the reconstruction of missing features and
labels. In the inductive test, instead, we split the whole dataset into non-overlapping training and testing sets.
Concerning the training set the same protocol is used as in the transductive test. For the test set the difference
is that now all labels are hidden. Once the classifier is trained, it is applied on the test set to predict the labels.
We still randomly hide the entries of test features vectors, so as to form an incomplete testing set. Finally,
in the splitting we use 70% of the data instances for training and the remaining 30% for testing.

We denote by qfea, qml and qmc the percentage of masked features, labels and classes labels respectively. Note
that a masked class label means that all binary variables attached to the classes of a given label are masked
together. These rates of masking are kept identical in the learning and test sets.

In the transductive test, we compute the Root Mean Squared Error (RMSE) to measure the reconstruc-
tion accuracy with respect to the missing feature values. Furthermore, for the reconstructed labels we calculate
Micro-AUC scores and Hamming-accuracy [GKG12] in the multi-label scenario, and Averaged AUC plus
Accuracy [LY15] in the multi-class case. In the tables, we define Hamming-accuracy as 1-Hamming loss
to keep a consistent variation tendency with the AUC scores. In the inductive test we only compute the scores
on the reconstructed labels, since reconstructing missing features is not the goal of inductive classification.

We run the test as described 10 times with different realizations of the missing features and labels. Average and

Model Averaged AUC Accuracy

qmc% 30% 50% 80% 30% 50% 80%

RBM-MO(qfea% =50%) 0.887 0.914 0.910 0.533 0.673 0.660
CLE(qfea% =50%) 0.785 0.791 0.791 0.297 0.256 0.268

NoisyIMC(qfea% =50%) 0.780 0.771 0.781 0.302 0.272 0.265

RBM-MO(qfea% =80%) 0.891 0.909 0.889 0.562 0.682 0.647
CLE(qfea% =80%) 0.768 0.664 0.622 0.271 0.200 0.176

NoisyIMC(qfea% =80%) 0.748 0.687 0.615 0.264 0.220 0.178

Table 3: Inductive test on Pendigits multi-class dataset (our method in bold, best result in red)
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Model Micro-AUC Hamming-Accuracy

qml% 30% 50% 80% 30% 50% 80%

RBM-MO(qfea% =50%) 0.839 0.826 0.793 0.970 0.970 0.965
CLE(qfea% =50%) 0.705 0.707 0.706 0.700 0.724 0.719

NoisyIMC(qfea% =50%) 0.704 0.702 0.700 0.710 0.717 0.718

RBM-MO(qfea% =80%) 0.759 0.791 0.766 0.964 0.964 0.967
CLE(qfea% =80%) 0.693 0.688 0.694 0.718 0.706 0.718

NoisyIMC(qfea% =80%) 0.689 0.688 0.685 0.705 0.704 0.704

Table 4: Inductive test on EventCat multi-label data set (our method in bold, best result in red)

Dataset No. of Instances No. of Features No.of Labels No. of Classes

Scene 2,407 294 6 -

Pendigits 10992 16 - 10

MNIST 70,000 784 - 10

EventCat 5,93 72 6 -

Table 5: Summary of 4 public multi-label and multi-class data sets.

standard deviation of the computed scores are recorded to compare the overall performances. In the tables, we
use red fonts to denote the best reconstruction and classification performances among all the algorithms involved
in the empirical study. The bold black font is used to highlight the performance of the proposed RBM-MO
method.

For the baselines, we used grid search to choose the optimal parameter combination following the suggested
ranges of parameters as in [HSSZ18].

The RBM-MO is trained following the guidelines in [Hin10]. We always use binary variables for the hidden
layer, while in the visible layer we use binary variables for MNIST and Gaussian variables for the other datasets.
In all the simulations, we fix the number of hidden nodes to 100. The learning rate η is fixed to 0.001 and the
size of the mini-batches to 10. During training the number of Gibbs steps is set to k = 1 while for imputation
we iterate the mean-field equations 10 times. As a stopping condition, we considered the degradation of the
transductive AUC scores with a look-ahead of 500 epochs

5.2 Summary of datasets

We consider 3 publicly available datasets related to image processing. These datasets cover both multi-label and
multi-class learning tasks, and they are popularly used as benchmark datasets in multi-output learning research.

In addition, we consider the challenging scenario of abnormality detection on IoT devices. The relevant
dataset, that we call EventCat, consists in security telemetry data collected from various network appliances
(e.g. smart watches, smartphones, driving assistance systems...), each reporting a features vector whose entries
indicate the occurring frequency of a specific type of alert (e.g. downloading suspicious files, login failures,
unfixed vulnerabilities...). Multiple labels are assigned to each device in the collected dataset, corresponding to
a variety of categories of security threats.

Some details about the datasets are reported in Table.5.

5.3 Qualitative results on MNIST

A qualitative evaluation of the performance of the RBM-MO model is given by looking at features reconstruction
for the MNIST dataset, as reported in Fig. 1. The model at hand has been trained over a dataset in which
50% of the features were missing. To assess the robustness of the method, we computed the reconstructions in
the highly challenging case in which 80% of the features were missing. Apart from some smoothing due to the
employment of mean-field imputations, the reconstructed samples look reasonably realistic. In general, from the
qualitative point of you the results are comparable to those obtained with more complex and expensive DLVMs
like MIWAE and MisGAN [MF19, LJM19].

5.4 Empirical results

The transductive results for MNIST (multi-class) and Scene (multi-label) datasets are reported in tables 1 and
2. Going into the details, we first observe that RBM-MO is by a large margin more efficient than all of the
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Figure 1: Features reconstruction by RBM-MO trained over an incomplete dataset with 50% missing-at-random
features, whose classification accuracy has been measured to be around 91%. The first block shows some complete
testing instances. The second and third block show the same testing instances after hiding respectively 50% and
80% of the pixels. The last two columns show the results of the mean-field imputations over the incomplete
testing instances.

baselines for the inference of class labels (table 1), probably because it is able to encode more complex statistical
properties.

On the multi-label problems, the situation is still in favour of RBM-MO but with less margin (table 2), in
particular at a larger percentage of missing features.

Now if we look at the reconstruction error on these datasets we observe that RBM-MO generally achieves a
higher reconstruction accuracy than the other opponents, especially on the MNIST dataset. The results verify
empirically the basic motivation of using a generative model such as the RBM: incomplete features and
labels can provide complementary information to each other, so as to better recover the missing
elements. The variance of the results is omitted in the tables by lack of space. For RBM-MO the standard
deviation of the derived RMSE, AUC and accuracy scores is not larger than 0.01 over the different datasets.
Although the RMSE scores reported by the baseline methods look comparable to the RBM-MO ones, and in
certain cases they are better, they also come with a slightly higher variance, such that the RBM-MO seems to
be more efficient and robust for features reconstruction.

Except MC-1, all the baseline methods are used for inductive learning. As in the transductive test, we
show only the mean of the derived metrics in the tables. Nevertheless, we have similar variance ranges for the
computed scores as reported in the transductive test. Clearly RBM-MO is much better adapted to this setting
than the baseline methods both for multi-class (table 3) and multi-label learning. The baseline inductive meth-
ods CLE and NoisyIMC are specifically designed for multi-label learning and their performance deteriorates
significatively in the multi-class scenario. By comparison, RBM-MO can be adapted seamlessly to multi-class
and multi-label learning, producing consistently good performances.

For the EventCat dataset, inductive results are reported in table 4. Even with highly incomplete training
data, RBM-MO produces the best predictions over partially observed testing data instances.

6 Conclusion

Machine learning is witnessing a race to high complexity models eager for large data and computational power.
In the context of multi-output classification in a challenging scenario - (i) learning with highly incomplete
features and partially observed labels; ii) applying the learnt classifier with incomplete testing instances) -
we advocate instead for simple probabilistic and interpretable models. After refining the learning of the RBM
model, we give empirical evidences that it can be efficiently adapted to this context on a great variety of datasets.
Experiments are conducted on both public databases and a real-world IoT security dataset, showing various sizes
of training sets as well as features and labels vectors. Our approach consistently outperforms the state-of-the-art
robust multi-class and multi-label learning approaches with imperfect training data, indicating good usability
for practical applications.
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Abstract

Learning expressive probabilistic models correctly describing the data is a ubiqui-
tous problem in machine learning. A popular approach for solving it is mapping
the observations into a representation space with a simple joint distribution, which
can typically be written as a product of its marginals — thus drawing a connection
with the field of nonlinear independent component analysis. Deep density models
have been widely used for this task, but their maximum likelihood based training
requires estimating the log-determinant of the Jacobian and is computationally
expensive, thus imposing a trade-off between computation and expressive power.
In this work, we propose a new approach for exact training of such neural networks.
Based on relative gradients, we exploit the matrix structure of neural network
parameters to compute updates efficiently even in high-dimensional spaces; the
computational cost of the training is quadratic in the input size, in contrast with the
cubic scaling of naive approaches. This allows fast training with objective functions
involving the log-determinant of the Jacobian, without imposing constraints on its
structure, in stark contrast to autoregressive normalizing flows.

1 Introduction

Many problems of machine learning and statistics involve learning invertible transformations of
complex, multimodal probability distributions into simple ones. One example is density estimation
through latent variable models under a specified base distribution [51], which can also have applica-
tions in data generation [14, 33, 19] and variational inference [44]. Another example is nonlinear
independent component analysis (nonlinear ICA), where we want to extract simple, disentangled
features out of the observed data [27, 30].

One approach to learn such transformations, introduced in [50] in the context of density estimation, is
to represent them as a composition of simple maps, the sequential application of which enables high
expressivity and a large class of representable transformations. Deep neural networks parameterize
functions of multivariate variables as modular sequences of linear transformations and component-
wise activation functions, thus providing a natural framework for implementing that idea, as already
proposed in [45].
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Unfortunately, however, typical strategies employed in neural networks training do not scale well for
objective functions like the aforementioned ones; in fact, through the change of variable formula, the
logarithm of the absolute value of the determinant of the Jacobian appears in the objective. Its exact
computation, let alone its optimization, quickly gets prohibitively computationally demanding as the
data dimensionality grows.

A large part of the research on deep density estimation, generally referred to under the term au-
toregressive normalizing flows, has therefore been dedicated to considering a restricted class of
transformations such that the computation of the Jacobian term is trivial [14, 44, 15, 34, 25, 12], thus
imposing a tradeoff between computation and expressive power. While such models can approximate
arbitrary probability distributions, the extracted features are strongly restricted based on the imposed
triangular structure, which prevents the system from learning a properly disentangled representa-
tion. Other strategies involve the optimization of an approximation of the exact objective [5], and
continuous-time analogs of normalizing flows for which the likelihood (or some approximation
thereof) can be computed using relatively cheap operations [13, 19].

In this work, we provide an efficient way to optimize the exact maximum likelihood objective for
deep density estimation as well as for learning disentangled representations by latent variable models.
We consider a nonlinear, invertible transformation from the observed to the latent space which is
parameterized through fully connected neural networks. The weight matrices are merely constrained
to be invertible. The starting point is that the parameters of the linear transformations are matrices;
this allows us to exploit properties of the Riemannian geometry of matrix spaces to derive parameter
updates in terms of the relative gradient, which was originally introduced as the natural gradient in
the context of linear ICA [11, 2], and which can be feasibly computed. We show how this can be
integrated with the usual backpropagation employed to compute gradients in neural network training,
yielding an overall efficient way to optimize the Jacobian term in neural networks. This is a general
optimization approach which is potentially useful for any objective involving such a Jacobian term,
and is likely to find many applications in diverse areas of probabilistic modelling, for example in the
context of Bayesian active learning for the computation of the information gain score [48], or for
fitting the reverse Kullback-Leibler divergence in variational inference [54, 7].

The computational cost of our proposed optimization procedure is quadratic in the input size—
essentially the same as ordinary backpropagation— which is in stark contrast with the cubic scaling
of the naive way of optimizing via automatic differentiation. The joint asymptotic scaling of forward
and backward pass as a function of the input size is therefore the same that aforementioned alternative
methods achieve by imposing strong restrictions on the neural network structure [44] and thus on
the class of functions they can represent. In contrast, our approach allows to efficiently optimize the
exact objective for neural networks with arbitrary Jacobians.

In sections 2 and 3 we review maximum likelihood estimation for latent variable models, backpropa-
gation and the Jacobian term for neural networks, and discuss the complexity of the naive approaches
for optimizing the Jacobian term. Then in section 4 we discuss the relative gradient, and show how it
can be integrated with backpropagation resulting in an efficient procedure. We verify empirically the
computational speedup our method provides in section 5.

2 Background

2.1 Maximum likelihood for latent variable models

Consider a generative model of the form

x = f(s) (1)

where s ∈ RD is the latent variable, x ∈ RD represents the observed variable and f : RD → RD is a
deterministic and invertible function, which we refer to as forward transformation. Under the model
specified above, the log-likelihood of a single datapoint x can be written as

log pθ(x) = log ps(gθ(x)) + log |detJgθ(x)| , (2)

where gθ is some representation with parameters θ of the inverse transformation2 of f ;
Jgθ(x) ∈ RD×D its Jacobian computed at the point x, whose elements are the partial derivatives

2The forward transformation could also be parameterized, but here we only explicitly parameterize its inverse.
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[Jgθ(x)]ij = ∂giθ(x)/∂xj ; and pθ and ps denote, respectively, the probability density functions of
x and of the latent variable s under the specified model. In many cases, it is additionally assumed
that the distribution of the latent variable is sufficiently simple; for example, that it factorizes in its
components,

log pθ(x) =
∑

i

log pi(g
i
θ(x)) + log |detJgθ(x)| . (3)

In this case, the problem can be interpreted as nonlinear independent component analysis (nonlinear
ICA), and the components of gθ(x) are estimates of the original sources s.

Another variant of this framework can be developed to solve the problem that nonlinear ICA is,
in general, not identifiable without additional assumptions [29]; that means, even if the data is
generated according to the assumed model, there is no guarantee that the recovered sources bear
any simple relationship to the true ones. In order to obtain identifiability, it is possible to consider
models [27, 28, 30, 20] in which the latent variables are not unconditionally independent, but rather
conditionally independent given an additional, observed variable u ∈ Rd,

log pθ(x|u) =
∑

i

log pi(g
i
θ(x)|u) + log |detJgθ(x)| , (4)

where d can be equal to or different from D depending on the model.

Maximum likelihood estimation for the model parameters amounts to finding, through optimization,
the parameters θ∗ such that the expectation of the likelihood given by the expression in equation (3)
is maximized. For all practical purposes, the expectation will be substituted with the sample average.
Specifically, for optimization purposes, we will be interested in the computation of a gradient of such
term on mini-batches of one or few datapoints, such that stochastic gradient descent can be employed.

2.2 Neural networks and backpropagation

Neural networks provide a flexible parametric function class for representing gθ through a sequential
composition of transformations, gθ = gL ◦ . . . ◦ g2 ◦ g1 , where L defines the number of layers of
the network. When an input pattern x is presented to the network, it produces a final output zL and
a series of intermediate outputs. By defining z0 = x and zL = gθ(x), we can write the forward
evaluation as

zk = gk(zk−1) for k = 1, . . . , L . (5)

Each module gk of the network involves two transformations,

(a) a coupling layer CWk
, that couples the inputs to the layer with the parameters Wk to

optimize;
(b) other arbitrary manipulations σ of inputs/outputs. Typically, these are element-wise non-

linear activation functions with fixed parameters; we can for simplicity think of them as
operations of the form σ(x) = (σ (x1) , . . . , σ (xn)) applied to vector variables.

The resulting transformation can thus be written as gk(zk−1) = σ(CWk
(zk−1)).

We will focus on fully connected modules, where the coupling CW is simply a matrix-vector
multiplication between the weights Wk and the input to the k-th layer; overall, the transformation
operated by such a module can be expressed as σ(Wkzk−1). Another kind of coupling layer is given
by convolutional layers, typically used in convolutional neural networks [36].

The parameters of the network are randomly initialized and then learned by gradient based optimiza-
tion with an objective function L, which is a scalar function of the final output of the network. At
each learning step, updates for the weights are proportional to the partial derivative of the loss with
respect to each weight.

The computation of these derivatives is typically performed by backpropagation [47], a specialized
instance of automatic differentiation. Backpropagation involves a two-phase process. Firstly, during a
forward pass, the intermediate and final outputs of the network z1, . . . , zL are evaluated and a value
for the loss is returned. Then, in a second phase termed backward pass, derivatives of the loss with
respect to each individual parameter of the network are computed by application of the chain rule.
The gradients are computed one layer at a time, from the last layer to the first one; in the process,

3

D. Relative gradient optimization of the Jacobian term in
unsupervised deep learning

136



the intermediate outputs of the forward pass are reused, employing dynamic programming to avoid
redundant calculations of intermediate, repeated terms.3

In matrix notation, the updates for the weights of the k-th fully connected layer Wk can then be
written as

∆Wk ∝ zk−1δ
>
k , (6)

where δk is the cumulative result of the backward computation in the backpropagation step up to the
k-th layer, also called backpropagated error. We report the full derivation in appendix A. We adopt
the convention of defining x, zk and δk as column vectors.

2.3 Difficulty of optimizing the Jacobian term of neural networks

In the case of the objective function specified in Eq. (3), we have L(x) = log pθ(x). By defining

Lp(x) =
∑

i

log pi(g
i
θ(x)); LJ(x) = log |detJgθ(x)| , (7)

the objective can be rewritten as L(x) = Lp(x) + LJ(x). The evaluation of the gradient of the first
term Lp can be performed easily if a simple form for the latent density is chosen, as it only requires
simple operations on top of a single forward pass of the neural network. Given that the loss is a
scalar, as backpropagation is an instance of reverse mode differentiation [4], backpropagating the
error relative to it in order to evaluate the gradients does not increase the overall complexity with
respect to the forward pass alone.

In contrast, the evaluation of the gradient of the second term, LJ , is very problematic, and our main
concern in this paper. The key computational bottleneck is in fact given by the evaluation of the
Jacobian during the forward pass. Since the Jacobian involves derivatives of the function gθ with
respect to its inputs x, this evaluation can again be performed through automatic differentiation.
Overall, it can be shown [4] that both forward and backward mode automatic differentiation for a
L-layer, fully connected neural network scale as O(LD3), with L the number of layers. This is
prohibitive in many practical applications with a large data dimension D.

Normalizing flows with simple Jacobians An approach to alleviate the computational cost of this
operation is to deploy special neural network architectures for which the evaluation of LJ is trivial.
For example, in autoregressive normalizing flows [14, 15, 34, 25] the Jacobian of the transformation is
constrained to be lower triangular. In this case, its determinant can be trivially computed with a linear
cost in D. Notice however that the computational cost of the forward pass still scales quadratically
in D; the overall complexity of forward plus backward pass is therefore still quadratic in the input
size [44].

Most critically, such architectures imply a strong restriction on the class of transformations that
can be learned. While it can be shown, based on [29], that under certain conditions this class of
functions has universal approximation capacity for densities [25], that is less general than other
notions of universal approximation [23, 24]. In fact it is obvious that functions with such triangular
Jacobians cannot be universal approximators of functions, since, for example, the first variable can
only depend on the first variable. This is a severe problem in learning features for disentanglement,
for example by nonlinear ICA [27, 30], which would usually require unconstrained Jacobians. In
other words, such restrictions might imply that the deployed networks are not general purpose: [5]
showed that constrained designs typically used for density estimation can severely hurt discriminative
performance. We further elaborate on this point in appendix E. Note that fully connected modules
have elsewhere been termed linear flows [42], and are a strict generalization of autoregressive flows.4

3 Log-determinant of the Jacobian for fully connected neural networks

As a first step toward efficient optimization of the LJ term, we next provide the explicit form of
the Jacobian for fully connected neural networks. As a starting point, notice that invertible and

3Note that invertible neural networks provide the possibility to not save, but rather recompute the intermediate
activations during the backward pass, thus providing a memory efficient approach to backpropagation [18].

4Comprehensive reviews on normalizing flows can be found in [42, 35]. Other related methods are reviewed
in appendix B.
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differentiable transformations are composable; given any two such transformations, their composition
is also invertible and differentiable. Furthermore, the determinant of the Jacobian of a composition of
functions is given by the product of the determinants of the Jacobians of each function,

detJ[g2 ◦ g1](x) = detJg2 (g1(x)) · detJg1(x) . (8)

The log-determinant of the full Jacobian for a neural network therefore simply decomposes in a
sum of the log-determinants of the Jacobians of each module, LJ(x) =

∑L
k=1 log |detJgk(zk−1)|.

We will focus on the Jacobian term relative to a single submodule k with respect to its input zk−1;
with a slight abuse of notation, we will call it LJ(zk−1). As we remarked, fully connected gk are
themselves compositions of a linear operation and an element-wise invertible nonlinearity; applying
the same reasoning, we then have

LJ(zk−1) =
D∑

i=1

log
∣∣σ′(yik)

∣∣+ log |detWk| =: L1
J(yk) + L2

J(zk−1) . (9)

where yk = Wkzk−1. The first term L1
J is a sum of univariate functions of single components

of the output of the module, and it can be evaluated easily with few additional operations on top
of intermediate outputs of a forward pass; gradients with respect to it can be simply computed via
backpropagation, not unlike the Lp term introduced in section 2.3.

The second term L2
J however involves a nonlinear function of the determinant of the weight matrix.

From matrix calculus, we know that the derivative is equal to

∂ log |detWk|
∂Wk

=
(
W>

k

)−1
. (10)

Therefore, the computation of the gradient relative to such term involves a matrix inversion, with
cubic scaling in the input size.5 For a fully connected neural network of L layers, given that we have
one such operation to perform for each of the layers, the gradient computation for these terms alone
would have a complexity ofO(LD3), thus matching the one which would be obtained if the Jacobian
were to be computed via automatic differentiation as discussed in section 2.

It can therefore be seen that these inverses of the weight matrices are the problematic element in the
gradient computation. In the next section, we show how this problem can be solved using relative
gradients.

4 Relative gradient descent for neural networks

We now derive the basic form of the relative gradient, following the approach in [11].6 The starting
point is that the parameters in a neural networks are matrices, in particular invertible in our case.
Thus, we can make use of the geometric properties of invertible matrices, while they are usually
completely neglected in gradient optimization in neural networks.

Relative gradient based on multiplicative perturbation In a classical gradient approach for
optimization, we add a small vector ε to a point x in a Euclidean space. However, with matrices, we
are actually perturbing a matrix with another, and this can be done in different ways. In the relative
gradient approach, we make a multiplicative perturbation of the form

Wk → (I + ε)Wk (11)

where ε is an infinitesimal matrix. If we consider the effect of such a perturbation on a scalar-valued
function f(Wk), we have

f((I + ε)Wk)− f(W) = 〈∇f(Wk), εWk〉+ o(Wk) = 〈∇f(Wk)W>
k , ε〉+ o(Wk) (12)

which shows that the direction of steepest descent in this case is given by making ε = µ∇f(Wk)W>
k

where µ is an infinitesimal step size. Furthermore, when we combine this ε with the definition of a
multiplicative update, we find that the best perturbation to W is actually given as

Wk →Wk + µ∇f(Wk)W>
k Wk (13)

5Though slightly more favorable exponents can in principle be obtained, see appendix C.
6For linear blind source separation, this approach also corresponds to the natural gradient, which can be

justified with an information-geometric approach [2].
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That is, the classical Euclidean gradient is replaced by ∇f(Wk)W>
k Wk, i.e. it is multiplied by

W>
k Wk from the right. This is the relative gradient.

A further alternative can be obtained by perturbing the weight matrices from the right, as
Wk →Wk(I + ε). A similar derivation shows that in this case, the optimal ε is given by
WkW

>
k ∇f(Wk); we refer to this as transposed relative gradient. In the context of linear ICA, the

properties of the relative and transposed relative gradient were discussed in [49]. This version of the
relative gradient might be useful in some cases; for example, the transposed relative gradient can be
implemented more straightforwardly in neural network packages where the convention is that vectors
are represented as rows.

The relative gradient belongs to the more general class of gradient descent algorithms on Riemannian
manifolds [1]. Specifically, relative gradient descent is a first order optimization algorithm on the
manifold of invertible D ×D matrices. Almost sure convergence of the parameters to a critical point
of the gradient of the cost function can be derived even for its stochastic counterpart, with decreasing
step size and under suitable assumptions (see e.g. [8]).

Jacobian term optimization through the relative gradient In section 3, we showed that the
difficulty in computing the gradient of the log-determinant is in the terms L2

J , whose gradient
involves a matrix inversion. Now we show that by exploiting the relative gradient, this matrix
inversion vanishes. In fact, when multiplying the right hand side of equation (10) by W>

k Wk from
the right we get (

W>
k

)−1
W>

k Wk = Wk , (14)

and similarly when multiplying by WkW
>
k from the left. Most notably, we therefore have to perform

no additional operation to get the relative gradient with respect to this term of the loss; it is, so to say,
implicitly computed — as we know that the update for the parameters in Wk with respect to the error
term L2

J is proportional to Wk matrix itself.

As for the remaining terms of the loss, Lp and L1
J , simple backpropagation allows us to compute the

weight updates given by the ordinary gradient in equation (6), which still need to be multiplied by
W>

k Wk to turn it into a relative gradient. We will next see that we can do this avoiding matrix-matrix
multiplications, which would be computationally expensive. Note that backpropagation necessarily
computes the δk vector in equation (6) and for our model, by applying the relative gradient carefully,
we can avoid matrix-matrix multiplication altogether by computing

(∆Wk)W>
k Wk ∝ zk−1

((
δ>k W

>
k

)
Wk

)
. (15)

Thus, we have a cheap method for computing the gradient of the log-determinant of the Jacobian, and
of our original objective function. In appendix D we provide an explanation of how our procedure
can be implemented with relative ease on top of existing deep learning packages.

While we so far only discussed update rules for the weight matrices of the neural network, our
approach can be extended to include biases. Including bias terms in our multilayer network endows it
with stronger approximation capacity. We detail how to do this in appendix F.

Complexity Note that the parentheses in equation (15) stress the point that the relative gradient
updates only require matrix-vector or vector-vector multiplications, each of which scales as O(D2),
in a fixed number at each layer; that is, overall O(LD2) operations. They therefore do not increase
the complexity of a normal forward pass. Furthermore, the overall complexity with respect to the
input size is quadratic, resulting in an overall quadratic scaling with the input size as in normalizing
flow methods [44], but without imposing strong restrictions on the Jacobian of the transformation.

Extension to convolutional layers As we remarked in section 2.2, the formalism we introduced
includes convolutional neural networks (CNNs) [36]. A natural question is therefore whether
our approach can be extended to that case. The first natural question pertains the invertibility of
convolutional neural networks; the convolution operation was shown [39] to be invertible under mild
conditions (see appendix G), and the standard pooling operation can be by replaced an invertible
operation [31]. We therefore believe that the general formalism can be applied to CNNs; this would
require the derivation of the relative gradient for tensors. We believe that this should be possible but
leave it for future work.

Invertibility and generation Given that invertible and differentiable transformations are composable,
as discussed in section 3, invertibility of our learned transformation is guaranteed as long as the
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Figure 1: Left: Comparison of the average computation times of a single evaluation of the gradient
of the log-likelihood; the standard error of the mean is not reported as it is orders of magnitude smaller
then the scale of the plot. Right: Time-evolution of the negative log-likelihood for deterministic
full-batch optimization for the two methods with the same initial points.

weight matrices and the element-wise nonlinearities are invertible. Square and randomly initialized
(e.g. with uniform or normally distributed entries) weight matrices are known to be invertible with
probability one; invertibility of the weight matrices throughout the training is guaranteed by the
fact that the L2

J terms would go to minus infinity for singular matrices (though high learning rates
and numerical instabilities might compromise it in practice), as in estimation methods for linear
ICA [6, 11, 26]. We additionally employ nonlinearities which are invertible by construction; we
include more details about this in appendix H. If we are interested in data generation, we also need
to invert the learned function. In practice, the cost of inverting each of the matrices is O(D3), but
the operation needs to be performed only once. As for the nonlinear transformation, the inversion is
cheap since we only need to numerically invert a scalar function, for which often a closed form is
available.

5 Experiments

In the following we experimentally verify the computational advantage of the relative gradi-
ent. The code used for our experiments can be found at https://github.com/fissoreg/
relative-gradient-jacobian.

Computation of relative vs. ordinary gradient As a first step, we empirically verify that our
proposed procedure using the formulas in section 4 leads to a significant speed-up in computation of
the gradient of the Jacobian term. We compare the relative gradient against an explicit computation
of the ordinary gradient, as described in section 3, and with a computation based on automatic
differentiation, as discussed in section 2.3, where the Jacobian is computed with the JAX package [10].
While the output and asymptotic computational complexity of the ordinary gradient and automatic
differentiation methods should be the same, a discrepancy is to be expected at finite dimensionality
due to differences in how the computation is implemented. In the experiment, we generate 100
random normally distributed datapoints and vary the dimensionality of the data from 10 to beyond
20,000. We then define a two-layer neural network and evaluate the gradient of the Jacobian. The
main comparison is run on a Tesla P100 Nvidia GPU. For the main plots, we deactivated garbage
collection. Plots with CPU and further details on garbage collection can be found in appendix H.1.
For each dimension we computed 10 iterations with a batch size of 100. Results are shown in figure 1,
left. On the y-axis we report the average of the execution times of 100 successive gradient evaluations
(forward plus backward pass in the automatic differentiation case). It can be clearly seen that the
relative gradient is much faster, typically by two orders of magnitude. Autodiff computations could
actually only be performed for the smallest dimension due to a memory problem. We report additional
details on memory consumption in appendix H.1.

Optimization by relative vs. ordinary gradient Since our paper is, to the best of our knowledge,
the first one proposing relative gradient optimization for neural networks (though other kinds of
natural gradients have been studied [2]), we want to verify that the learning dynamics induced by the
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Figure 2: Illustrative examples of 2D density estimation. Samples from the true distribution and
predicted densities are shown, in this order, side by side.

relative as opposed to the ordinary gradient do not bias the training procedure towards less optimal
solutions or create other problems. We therefore perform a deterministic (full batch) gradient descent
for both the relative and the ordinary gradient.7 We employ 1,000 datapoints of dimensionality 2 and
a two-layer neural network. We take 10 initial points and initialize both kinds of gradient descent at
those same points. On the x-axis we plot the training epoch, while on the y-axis we plot the value
of the loss. Figure 1, right shows the results: there is no big difference between the two gradient
methods. There may actually be a slight advantage for the relative gradient, but that is immaterial
since our main point here is merely to show that the relative gradient does not need more iterations
to give the same performance.

Combining these two results, we see that the proposed relative gradient approach leads to a much
faster optimization than the ordinary gradient. Perhaps surprisingly, the results exhibit a rather
constant speed-up factor of the order of 100 although the theory says it should be changing with the
dimension D; in any case, the difference is very significant in practice.

Density estimation Although our main contribution is the computational speed-up of the gradient
computation demonstrated above, we further show some simple results on density estimation to
highlight the potential of the relative gradient used in conjuction with the unconstrained factorial
approximation in section 2.1. We use a fairly simple feedforward neural network with a smooth
version of leaky-ReLU as activation function. Our empirical results show that this system, despite
having quite minimal fine-tuning (details in appendix H.3), achieves competitive results on all the
considered datasets compared with existing models—which are all tailored and fine-tuned for density
estimation. First, we show in Figure 2 different toy examples that showcase the ability of our method
to convincingly model arbitrarily complex densities. Second, in order to show the viability of our
method in comparison with well-established methods we perform, as in [43], unconditional density
estimation on four different UCI datasets [16] and a dataset of natural image patches (BSDS300) [41],
as well as on MNIST [37]. The results are shown in Table 1. To achieve a fair comparison across
models, the number of parameters was tuned so that the number of trainable parameters are as similar
as possible. Note that, as we can perform every computation efficiently, all the experiments are
suitable to run on usual hardware, thus avoiding the need of hardware accelerators such as GPUs.
As a final remark, the reported results make no use of batch normalization, dropout, or learning-rate
scheduling. Therefore, it is sensible to expect even better results by including them in future work.

Table 1: Test log-likelihoods (higher is better) on unconditional density estimation for different
datasets and models (same as in Table 1 of [43]). Models use a similar number of parameters;
results show mean and two standard deviations. Best performing models are in bold. More details in
appendix H.3

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

Ours 0.065± 0.013 6.978± 0.020 −21.958± 0.019 −13.372± 0.450 151.12± 0.28 −1375.2± 1.4

MADE −3.097± 0.030 3.306± 0.039 −21.804± 0.020 −15.635± 0.498 146.37± 0.28 −1380.8± 4.8
MADE MoG 0.375± 0.013 7.803± 0.022 −18.368± 0.019 −12.740± 0.439 150.84± 0.27 −1038.5± 1.8

Real NVP (10) 0.182± 0.014 8.357± 0.019 −18.938± 0.021 −11.795± 0.453 153.28± 1.78 −1370.7± 10.1
Real NVP (5) −0.459± 0.010 6.656± 0.020 −20.037± 0.020 −12.418± 0.456 151.76± 0.27 −1323.2± 6.6

MAF (5) −0.458± 0.016 7.042± 0.024 −19.400± 0.020 −11.816± 0.444 149.22± 0.28 −1300.5± 1.7
MAF (10) −0.376± 0.017 7.549± 0.020 −25.701± 0.025 −11.892± 0.459 150.46± 0.28 −1313.1± 2.0
MAF MoG (5) 0.192± 0.014 7.183± 0.020 −22.747± 0.017 −11.995± 0.462 152.58± 0.66 −1100.3± 1.6

7Notice that there’s no need to compare to autodiff in this case because the computed gradient should be
exactly the same as the ordinary gradient with the formulas in section 3.
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6 Conclusions

Using relative gradients, we proposed a new method for exact optimization of objective functions
involving the log-determinant of the Jacobian of a neural network, as typically found in density
estimation, nonlinear ICA, and related tasks. This allows for employing models which, unlike typical
alternatives in the normalizing flows literature, have no strong limitation on the structure of the
Jacobian. We use modules with fully connected layers, thus strictly generalizing normalizing flows
with triangular Jacobians, while still supporting efficient combination of forward and backward
pass. These neural networks can represent a larger function class than autoregressive flows, which,
despite being universal approximators for density functions, can only represent transformations
with triangular Jacobians. Our method can therefore provide an alternative in settings where more
expressiveness is needed to learn a proper inverse transformation, such as in identifiable nonlinear
ICA models.

The relative gradient approach proposed here is quite simple, yet rather powerful. The importance of
the optimization of the log-determinant of the Jacobian is well-known, but it has not been previously
shown that there is a way around its difficulty without restricting expressivity. Now that we have
shown that the optimization of this term can be done quite cheaply, a substantial fraction of the
research in the field can be reformulated in stronger terms and with more generality.

Broader impact

As this paper presents novel theoretical results in unsupervised learning, the authors do not see any
immediate ethical or societal concern. An important aspect of our paper is the improvement in
computational efficiency with respect to naive methods. This can hopefully lead to reduced energy
consumption to achieve comparable model performance.
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