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Yohann Foucher 
Jean-Marc Alliot 
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Sandrine Mouysset

Rapporteurs :
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Résumé

Cette thèse se focalise sur le problème de l’analyse de survie via une approche d’apprentissage
profond. L’objectif principal est d’estimer le risque d’un événement donné à l’échelle indi-
viduelle, puis de proposer une solution de maintenance pour minimiser ce risque compte tenu
d’un budget limité. Nous utilisons la distribution de Weibull qui est particulièrement pop-
ulaire et fréquemment utilisée dans l’analyse de survie car elle est adéquate pour modéliser
le temps jusqu’à l’événement dans un cadre réel en utilisant une base de données quelle
que soit sa taille, et est suffisamment flexible en raison de l’ensemble de formes, diverses et
variées, de distribution déterminées par ses paramètres de forme et d’échelle. Cependant, la
présence d’échantillons censurés (à droite) est fréquente dans les données de survie, et les
ignorer induit un biais significatif dans l’estimation du risque.

Pour résoudre ce problème, nous étudions, dans ce travail, le problème de l’estimation du
risque qu’un événement d’intérêt se produise chez un individu. Nous proposons, en premier
lieu, une approche d’apprentissage profond, DeepWeiSurv, en supposant que la distribution
temps-événement sous-jacente peut être modélisée par un mélange fini de distributions de
Weibull dont les paramètres respectifs sont à estimer par le réseau. Nous présentons et
décrivons l’architecture de ce réseau et la fonction de perte, avec laquelle il est entrâıné,
qui prend en compte les données censurées à droite. Des expériences sur des ensembles de
données synthétiques et réelles montrent que cette approche offre une meilleure performance
prédictive que les méthodes de l’état de l’art.

Cependant, la performance de ce modèle dépend de la taille du mélange qui est décrite
comme un paramètre du modèle et cela peut être problématique dans un cadre réel.Pour
résoudre ce problème, nous proposons une nouvelle approche, DPWTE, décrite comme une
version étendue de DeepWeiSurv avec pratiquement la même architecture, qui ne fixe pas la
taille du mélange mais fixe plutôt une limite supérieure (de la taille du mélange) suffisamment
grande et trouve la combinaison optimale (en termes de taille, de paramètres et de coefficients
de pondération) de distributions de Weibull pour modéliser la distribution temps-événement
sous-jacente. Pour ce faire, nous introduisons une couche de multiplication par éléments, que
nous appelons la couche Sparse Weibull Mixture, qui sélectionne par ses poids les distributions
de Weibull qui ont une contribution significative à la modélisation de la distribution temps-
événement. Pour stimuler ce processus de sélection, nous appliquons une régularisation
sparse (en utilisant la norme `0.5) sur cette couche en ajoutant un terme de pénalité à la
fonction de perte. Nous validons ce modèle sur des ensembles de données simulées et réelles,
en montrant qu’il permet d’améliorer les performances par rapport à DeepWeiSurv et aux
méthodes les plus connues et performantes de l’état de l’art.

Par la suite, nous proposons une solution pour minimiser le risque détecté par ces deux
approches tout en respectant les contraintes budgétaires. Pour ce faire, nous considérons
un problème d’optimisation sous contrainte (budgétaire) qui consiste à minimiser la proba-
bilité de risque d’un sujet donné à partir des données de survie, en supposant que chaque
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modification de caractéristique (contrôlable) a un coût donné. Les contraintes de bud-
get/coût étant modélisées par une boule `1 pondérée, nous proposons de résoudre ce problème
numériquement en utilisant l’algorithme de Descente du Gradient Projeté. Nous considérons
trois scénarios pour la fonction de risque de probabilité : la bôıte noire pour laquelle nous
utilisons LIME, la bôıte semi-blanche, et la bôıte blanche complète que nous rendons robuste
contre l’instabilité numérique en utilisant une technique de régularisation du gradient. Nous
réalisons une série d’expériences synthétiques pour évaluer les performances de la méthode
dans trois scénarios différents et montrons que la version robuste de la bôıte blanche complète
obtient des résultats prometteurs et encourageants. Ce problème principalement motivé par
l’analyse de survie, ou plus précisément la maintenance prédictive peut dépasser ce con-
texte et être posé pour tout problème de régression où le but est d’optimiser la sortie de la
régression d’un individu donné sous des contraintes de boules (pondérées) `1.

Enfin, nous présentons et décrivons le projet SmartOccitania qui peut être considéré
comme une application complète de l’analyse de survie dans le monde réel dont le but est de
prédire le risque qu’une alimentation basse tension subisse une panne de courant, où nous
testons et évaluons nos deux approches et proposons des solutions de maintenance.



Abstract

This work focuses on the problem of survival analysis via a deep learning approach. The
main goal is to estimate the risk of an event of particular interest at the individual and then
propose a maintenance solution to minimize this risk given a limited budget. We use the
Weibull distribution which is particularly popular and frequently used in survival analysis
since it is adequate for modeling the time-to-event of real-world events with small or large
data, and is sufficiently flexible due to the range of distribution shapes determined by its
shape and scale parameters. However, the presence of (right) censored samples is frequent
in survival data, and ignoring them induces a significant bias in the risk estimation.

To address this problem, we investigate, in this work, the problem of estimating the risk
of an individual to experience an event of interest. We propose, in the first place, a deep-
learning approach, DeepWeiSurv, assuming that the underlying time-to-event distribution
can be modeled by a finite mixture of Weibull distributions whose respective parameters are
to be estimated by the network. We present and describe the architecture of this network
and the loss function, with which it is trained, that takes into account the right-censored
data. Experiments on synthetic and real-world datasets show that this approach offers better
predictive performance than state-of-the-art methods.

However, the performance of this model depends on the size of the mixture which is
described as a model parameter and this may be problematic in a real-world problem. To
resolve this, we propose a novel approach, DPWTE, described as an extended version of
DeepWeiSurv with practically the same architecture, that does not fix the size of the mixture
but rather fixes an upper bound (of the mixture size) sufficiently large and finds the optimal
combination (in terms of size, parameters, and weighting coefficients) of Weibull distributions
to model the underlying time-to-event distribution. To accomplish this, we introduce an
element-wise multiplication layer, which we call the Sparse Weibull Mixture layer, which
selects through its weights the Weibull distributions that have a significant contribution to
the time-to-event distribution modeling. To stimulate this selection process, we apply a
sparse regularization (using `0.5 norm) on this layer by adding a penalty term to the loss
function. We validate this model on both simulated and real-world datasets, showing that
it yields a performance improvement over DeepWeiSurv and the most known/performant
state-of-the-art methods.

Afterward, we propose a solution to minimize the risk detected by these two approaches
while respecting budgetary constraints. To do this, we consider a (budget) constrained
optimization problem that consists of minimizing the probability risk of a given subject from
the survival data, assuming that each (controllable) feature modification has a given cost.
With the budget/cost constraints being modeled by a weighted `1 ball, we propose to solve
this problem numerically using the Projected Gradient Descent algorithm. We consider three
scenarios for the probability risk function: the black box for which we use LIME, the semi-
white box, and the full-white box that we render robust against numerical instability using
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a gradient regularization technique. We conduct series of synthetic experiments to evaluate
the performance of the method in three different scenarios and show that the robust version
of the full-white box achieves promising and encouraging results. This problem principally
motivated by survival analysis, or more precisely the predictive maintenance can go beyond
this context and be raised for any regression problem where the goal is to optimize the
regression output of a given individual under (weighted) `1 ball constraints.

Finally, we present and describe the SmartOccitania project which can be described as a
complete real-world application of survival analysis whose goal is to predict the risk that a
low-voltage feeder experiences a power failure, where we test and evaluate our two approaches
and propose maintenance solutions.
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Introduction

The research work presented in this thesis has been carried out within the scope of Smar-
tOccitania1 project supported by ADEME2 and ENEDIS3 in cooperation with the Research
Institute of Computer Science of Toulouse (IRIT) from the University of Toulouse III Paul
Sabatier. The current work focuses on developing new deep-learning approaches for survival
analysis using Weibull distributions and then proposes a maintenance solution under budget
constraints using constrained optimization.

Survival analysis is a sub-field of statistics [1] where the goal is to analyze and model a
type of data namely the so-called survival data, where the outcome is the time until expe-
riencing an event of interest. More precisely, the main objective of survival analysis is to
estimate the time of occurring an event of interest [2, 3, 1, 4]. One of the main challenges
in this type of statistical analysis is the presence of instances whose event outcomes are
non-observed during the monitoring period [5, 6, 7]. Such a phenomenon is called censoring
and the concerned instances are described as censored observations which can be effectively
handled using survival analysis techniques. Arguably, survival analysis has focused on inter-
pretability, potentially at some cost of predictive accuracy which is the reason why binary
classifiers based on machine learning are commonly used in applications in different areas
where survival methods are applicable [8]. However, while the machine-learning-based clas-
sifiers can output predictions for one pre-determined duration, one loses interpretability and
flexibility provided by the survival methodology that models the event time probabilities as
a function of time. Furthermore, the binary classifiers typically ignore the censoring phe-
nomenon [9, 10, 8], and therefore the use of survival models tends to be advantageous, if not
essential.

0.1 Context
In many areas, clinical or industrial, some professionals have a question in the mind as to
how much time will take for an event to happen. For instance:

• In a manufacturing plant, engineers and technicians are faced with the problem of
estimating the time remaining until failure of a mechanical system or electronic devices
to schedule an early maintenance [11, 12].

• Customer churn or attrition [13], i.e. the percentage of customers that stop using a
company’s products or services is one of the most important metrics for a business as
it usually costs more to acquire new customers than it does to retain existing ones.

1https://www.enedis.fr/sites/default/files/field/documents/cp-smart-occitania-certifie.pdf
2https://www.ademe.fr/sites/default/files/assets/documents/smart occitania - fiche laureat.pdf
3https://www.enedis.fr/actualites/reseau-electrique-intelligent-en-milieu-rural-le-projet-smart-occitania-

devoile-resultats
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• Credit risk [14] refers to the likelihood that a borrower will not be able to repay a loan
contracted by a lender. Therefore, financial institutions are under a duty to quantify
that probability to limit their exposure.

• Employees retention [15] which costs a lot in terms of money, time to acquire the
expertise (loss of knowledge when attrition happens).

• In the health field, doctors, sometimes, are led to conduct a clinical trial on a group
of patients and then analyze the risk of death given their features and medical history
[16].

These problems can be considered and resolved by survival analysis, also known as Time-
to-Event Analysis (see Table 1). This branch of statistics that emerged in the 20th century
[17], is heavily used in industrial world [11, 12], economics and finance [18, 19], insurance
[20], marketing [21], health field [16] and many more application areas [13, 14, 22, 23, 24, 25].
It is used to analyze and predict when an event can occur. An event in this context can
be manifold since the application areas range from medicine to industry. We call population
the group of subjects under the study, e.g. patients, mechanical systems, electronic devices,
employees of a company, loaners, customers, etc. Furthermore, the Survival Analysis study
needs to define a time frame in which this study is carried out. As in many cases, the given
time period for the event to occur may be the same as each other. In the real world, some
elements of the population on which the study is conducted do not get affected by the event
of study before the end of the time frame. These subjects are described as right censored [5].
To recap, in a survival analysis study, we need to define the event to be observed and must
have three main components for each element of the population: time recorded, status and
features [26]. The time recorded is the survival time (also known as time-to-event data) for
an observed, i.e. non-censored, subject and an underestimation of the survival time for the
right-censored one. The variable status supplies with the information of whether the subject
of study is right-censored or not. This triplet is what we call survival data or time-to-event
data in this field. The real strength of survival analysis is its capacity to take into account
the right-censored data in the event distribution modeling.

0.2 Questions Considered in Survival Analysis
In this section, we briefly describe a series of questions that should be considered when
analyzing survival data.

0.2.1 Description
• What is unique about survival data? Survival data has a unique format since the

outcome of interest has two key components: whether or not the event occurred and
when if so [26]. Traditional methods of logistic and linear regression are not suited to
be able to include both the event and time aspects as the outcome in the model [27, 28].
Traditional regression methods also are not equipped to handle censoring [9, 8] where
the true time to event is underestimated. Special techniques for survival data, as will
be discussed in the next chapter, have been developed [29, 30, 31, 32] to utilize the
partial information on each subject with censored data and provide unbiased survival
estimates.

• What are important methodological considerations of survival data? There are four
main methodological considerations in the analysis of survival data. It is important
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Table 1: Contribution of survival analysis for each case study described above (inspired by
[4]).

Case Study Subject Event Contribution
Predictive Mechanical System

Failure
Predict when the

maintenance in a or Electronic Device failure can happen
manufacturing plant. and thus schedule

the maintenance.

Customer Churn Customer Churn

Predict when customers

/Attrition

stop doing business,
to find a specific

strategy for customer
retention.

Credit Risk Loaner Repayment

Predict the speed of
repayment of a loan.

This will help to
mitigate losses due to
bad debt, customize
interest rates, etc.

Employee Retention Employee Retention

Estimates employee
turnover, by predicting

when an employee
will quit.

Clinical Trial Patient Death Estimates the lifespan
of the patient/population.

to have a clear definition of the target event, the time origin, the time scale, and to
describe how subjects will exit the study [26]. Once these are well-defined, then the
analysis becomes more straightforward. Typically there is a single target event, but
there are extensions of survival analyses that allow for multiple events [30].

• What is the question of interest? The choice of analytical tool should be guided by the
research question of interest. With survival data, the research question can take several
forms, that influence which function is the most relevant to the research question. Three
different types of research questions that may be of interest for survival data include:

1. What proportion of individuals will remain free of the event after a certain time?
2. What proportion of individuals will have the event after a certain time?
3. What is the risk of the event at a particular point in time, among those who have

survived until that point?

Each of these questions corresponds with a different type of function used in survival
analysis:

1. Survival Function, S(t): the probability that an individual will survive beyond
time t.

2. Probability Density Function (PDF), f(t), or the Cumulative Incidence Function
(CIF), F(t): the probability that an individual will have a survival time less than
or equal to t.
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3. Hazard Function, h(t): the instantaneous risk of experiencing an event at time t,
conditional on having survived to that time.

4. Cumulative Hazard Function (CHF), H(t): the integral of the hazard function
from time 0 to time t, which equals the area under the curve h(t) between time 0
and time t.

If one of these functions is known, the other ones can be calculated through the rela-
tionship between them, we will see this in more detail in Chapter Background.

• What assumptions must be made to use standard techniques for survival data? the
main assumption in analyzing survival data is that of non-informative censoring [33]:
individuals that are censored have the same probability of experiencing a subsequent
event as individuals that remain in the study. Because the analysis will otherwise be bi-
ased [33, 5, 34]. There is no definitive way to test whether censoring is non-informative,
though exploring patterns of censoring may indicate whether an assumption of non-
informative censoring is reasonable. If informative censoring is suspected, sensitivity
analyses, such as best-case and worst-case scenarios, can be used to try to quantify the
effect that informative censoring has on the analysis.

0.3 Research Questions

This thesis focuses, in large part, on the problem of estimating the probability of occurring an
event in the population of the study. The main research questions, that are being addressed,
are as follows:

• How to model the relationship between the subject features (also known as covariates)
and survival times at the individual level?

• How to take into account the right-censored sub-population in this modeling?

• What are the assumptions about the distribution of survival times that are the most
appropriate to the real-world case studies?

For the second part of the thesis, we will devote it to the problem of optimizing the
subject’s survival time. In this context, we consider that the subject risk is already identified
and we need to find the optimal way to maximize its mean lifetime. Several research questions
were investigated:

• In the real-world setting, there is a limitation on the budget dedicated to maintenance,
and some features could not be modified. Thus, the question is: how to take into
account these two constraints?

• How to model mathematically this problem?

• What is the most appropriate technique that should be used to solve this problem?

• How to evaluate the performance of this technique in the real-world survival data?
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0.4 Contributions
The work in this thesis focuses on developing methods for addressing the challenges raised in
the two parts of the thesis described above: survival probability estimation and optimization
of a mean lifetime at the individual scale. Regarding the first part, the main contributions
are as follows:

• DeepWeiSurv [35]: A deep learning approach for survival analysis with censored
data using Weibull Distributions. This model assumes that the survival times are
samples drawn from a finite mixture of Weibull distributions whose parameters are
to be estimated. The Weibull distribution is one of the most widely used lifetime
distributions in survival analysis, as it is known to be able to correctly model the
time-to-event of real-world data and flexible despite having only two parameters. A
mixture of Weibull distributions can only be better. Since the model has a neural
network basis, it does need to make any assumption on the nature of the relationship
between the covariates and survival times, which guarantees free modeling of this
relationship. DeepWeiSurv is consisted of two sub-networks and has three output layers
(one softmax [36] and two ELU [37] layers). DeepWeiSurv is trained by minimizing
a likelihood-based loss that takes into account the right-censored data. After training
DeepWeiSurv, we obtain the estimated parameters of this mixture with which we can
estimate the survival function S, the probability density function f , hazard function
h, and cumulative hazard function H. This model can also estimate the mean lifetime
unlike the other survival models cited and described in Chapter 1. This advantage
enables DeepWeiSurv to be considered as a mean lifetime function of a subject of
study. We will see this in the second part of the thesis.

• DPWTE [38] that stands for Deep Parsimonious Weibull Time-to-Event is considered
as an extension of DeepWeiSurv. DPWTE has the same architecture as DeepWeiSurv,
which means that it maintains the same assumptions and outputs the mixture param-
eters but the only main difference is that we add the so-called Sparse Weibull Mixture
(SWM) layer after the softmax layer. The motivation behind this is to filter non-
significant Weibull distributions, or in other words, to select, among the p (p < ∞
since it is a finite mixture) Weibull distributions, the ones which are significant in
terms of contribution to distribution modeling, that is, whose weights in the mixture
are relatively important. This means that we compose, through this layer, an opti-
mal mixture of q < p Weibull distributions selected from the initial set of p Weibull
distributions. To stimulate this process, we penalize the SWM weights by adding a
customized regularization term in the loss function which enforces the sparsity (hence
the word Parsimonious) of the so-called Sparse Weibull Mixture layer.

Regarding the second part, namely the optimization of the mean lifetime (also known as
expectation, expectancy, or lifespan), we make the following contribution:

• Predictive maintenance monitors the condition of an element in a system to reduce the
likelihood of an unwanted event: failures, death, etc. This problem has drawn much
attention with machine learning and especially the deep learning community. However,
researchers are mainly focused on the problem of predicting the risk of experiencing the
event under study. Here, we are rather interested in the problem of maximizing the life
expectancy of a subject of interest given a certain budget. In this work, we consider
a system defined by a set of features in which some of them are controllable (i,e.
whose respective values can be modified) and the given associated regression problem
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(network-based). The problem consists of maximizing the regression output under a
budget constraint, assuming that each (controllable) feature modification has a given
cost. This problem can be modeled as a constrained optimization problem where the
budget constraint is a weighted `1 ball. We propose to solve this problem numerically
using the Projected Gradient Descent algorithm. We consider three scenarios for the
regression model: black-box where we use LIME [39] to estimate the gradients, a semi-
white box in which architecture and the weights are known, and finally a full-white box
when the model can be trained and, in this case, we introduce the gradient penalization
in the training process to improve the robustness of the full-white box network.

0.5 Thesis Outline
This thesis is divided into four parts. The first one is dedicated to the basic concepts and
definitions in survival analysis as well as the state of the art. In the second part, we present
the two novel network-based approaches for survival analysis namely DeepWeiSurv and its
extended approach DPWTE. We also dedicate a chapter in this part to experiments on real-
world benchmark datasets. The third part presents a lifetime maximization method under
budget constraints. In the fourth and last part, we describe the SmartOccitania project as
a complete real-world application of the three approaches presented in the second and third
parts. In this section, we will briefly describe the content of each part in this thesis.

• In the first part of this thesis, which only contains Chapter 1, we first describe the
mathematical background required to understand the main problem considered in sur-
vival analysis. We will define the special features of survival analysis notably survival
data, censored data, survival and hazard functions, and the likelihood function in the
presence of censored data. We will also explain why traditional regression methods
are not suitable for survival data and censored data, and show the advantage of sur-
vival analysis methods over the traditional statistical ones. The predictive performance
scores, used to evaluate the survival analysis models, are presented and described as
well in this chapter. Then, we present the state of the art of survival analysis. We
start by describing the statistical methods namely non-parametric, semi-parametric
and parametric approaches. We will move to the machine-learning-based approaches
where statistical methods and machine learning were combined to improve the learning
of the relationship between data and the event of interest.

• In the second part, we present DeepWeiSurv and DPWTE and describe experiments
on real-world benchmark datasets. This part entails three chapters:

– Chapter 2 presents a novel network-based approach for survival analysis, the so-
called DeepWeiSurv, which models the event distribution with a finite mixture
of Weibull distributions whose respective parameters are learned by the model
network. In this chapter, we describe this approach as well as different simulated
experiments conducted to test and evaluate some of its theoretical properties and
its capacity to handle censoring at high levels.

– Chapter 3 presents DPWTE as not only another network-based approach but also
as an extension of DeepWeiSurv. This approach, unlike DeepWeiSurv, does not
fix the size of the mixture with which we model the underlying distribution, but it
rather fixes an upper bound of the number of Weibull, that can be used and tries to
find the optimal mixture whose composing Weibull distributions have a significant
contribution in the event-time distribution modeling. This model has an extra
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layer considered as a special feature that selects these Weibull distributions. As
in Chapter 1, we run different simulated experiments to evaluate this approach
in terms of some mathematical properties as well as its capacity to handle highly
censored settings.

– In Chapter 4, we run experiments on real-world benchmark datasets to evaluate
these two approaches, compare them and establish a comparison between both
models and the most known competing methods. We also present another ap-
plication of these approaches on simulated time-series data where the goal is to
predict the remaining useful life of an engine. In this experiment, we compare
a standard regression network to both DeepWeiSurv and DPWTE and show the
out-performance of the latter.

• In the third part, we present our contribution for lifetime maximization (or more gen-
erally regression output maximization) under budget constraints. Chapter 5, describes
the problem that we consider and make some assumptions to resolve it. To do this, we
propose to resolve this problem by applying the projected gradient descend algorithm
using the weighted `1-norm projection to maintain the budget constraints. We propose
three types of network-based models described as regression networks, depending on
the level of access to the network granted to us, namely the black, semi-, and full-white
boxes. We use LIME to model the black box function and apply a gradient regular-
ization technique to ’robustify’ the full white box since we have access to its weights
and gradients. We run simulated experiments to evaluate this method with these three
defined scenarios. We also run an experiment on the real-world Wine Quality dataset
(as an application of the regression output maximization with the real-world dataset)
and discuss the different solutions provided to optimize the quality of a given wine.

• In the last part, we describe the SmartOccitania project, on which we worked for
two years to fund my thesis, as a comprehensive application since on the one hand,
we apply our two survival analysis models to predict the failure risk of a given feeder
(subject under study) and on the other hand, we propose using our approach described
in Chapter 5, a maintenance solution with respect to the budget. Chapter 6, in the first
part, describes the survival analysis study conducted and presents the different results
provided by the considered models (including ours). In the second part of this chapter,
we propose different solutions, according to the budget dedicated to maintenance,
to extend the lifetime of the most-at-risk (detected via DeepWeiSurv and DPWTE
predictions) feeders.
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Chapter 1

Survival Analysis

1.1 Introduction

Due to the development of various big data acquisition technologies, different disciplines
have been interested in collecting a wide variety of data and monitor the observation over
periods [4]. For the majority of the real-world applications, the main objective of collecting
and monitoring this data is to estimate the time of occurring an event of interest [2, 3, 1, 4].
One of the main challenges present in such data, which we call survival data, is that usually
there exist the so-called censored instances [5, 6, 7]. This means that the event of interest is
not experienced by these instances, at least during the observation period, or more precisely,
certain instances for which the event has occurred but the information about the specific time
is only available until the end of the study. This challenge is the reason why it is not suitable
to directly use classical statistical techniques or machine-learning-based predictive methods
to analyze survival data [8]. Survival analysis provides a myriad of mechanisms to handle
censored data problems [6]. Therefore, many works are realized for this purpose, combining
survival analysis technique with machine learning especially deep learning frameworks in
recent years [32, 31, 30, 40, 41, 42, 43, 44]. In this chapter, we will first review some necessary
mathematical background used in survival analysis techniques, then we will describe the
state-of-the-art methods and related works done for this purpose. We recall the basic notions
on which such branch is based, in order to generate an intuitive understanding. The first
thing to note is that risk, survival, probability mean the same thing in this context. In fact,
we measure the risk or survival by probability. Second, survival relates to the membership
in what we call population. This means that a population consists of a number of subjects
and the survival times or probability is associated with each subject from this population
composing what we call survival data [26, 2]. However, this membership is not constant. The
change of membership is induced by an event of interest. The most common examples for
a potential event are: death [16], mechanical system failure [11], crime [45], customer churn
[13] and many other applications [22, 23, 24, 25]. Importantly, survival analysis originated
from medical research [46] but is not limited to this application area and can also be applied
to problems in engineering, marketing, finance, etc.

This chapter is organized as follows: in Section 1.2, we will give a brief review of the basic
concepts and definitions that are necessary to understand of what consists survival analysis.
Section 1.4 is dedicated to the evaluation metrics for survival models. Then, we describe the
traditional statistical methods including non-parametric, semi-parametric and parametric
models in Section 1.5. After that, we describe, in Section 1.6, several basic machine learning
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approaches, including survival trees, ensemble learning methods, and network-based survival
models, and summarize the state-of-the-art methods developed for survival analysis. Finally,
we conclude this chapter in Section 1.7.

1.2 Definition of Survival Analysis
In this section, we first describe what survival data is and what makes it different from other
types of data (Section 1.2.1). Then, we present a definition of censoring or censored data
and explain what makes this phenomenon challenging and with which concept we can model
censored data.

1.2.1 What is Survival Data?
Survival data is a term used for data measuring the time to a particular event of interest. It
is defined as a set of individuals under an event study. These individuals are characterized
by a set of features also known as covariates whose principal outcome in this context are the
respective times recorded within the study. In the simplest case, the event is death [26, 47, 4],
but the term also covers other events such as occurrence of a disease or a complication. This
term is extended to other areas, for example in industrial applications, it can typically
represent the time to failure of a unit or some of its components, while in economics, it
can be time to acceptance of a job offer for an unemployed person, etc. The event can be
described as a transition from one state to another (e.g., death is a transition from the state
alive to the state dead). Depending on the context, we use words like death, failure or event
to cover the same subject of interest namely what happens to the (concerned) individual or
population at the response time.

In broad terms, what makes survival data special is that the outcomes are times and thus
are not measured in the same way as other variables in regression problems. Generally, these
usual outcome variables are measured almost instantaneously. Whereas, time is observed
sequentially and this can lead to know the most common and important phenomenon in
survival analysis namely censoring [6, 5, 7], that is, the presence of censored data. This
phenomenon is what makes survival analysis approaches special and advantageous over tra-
ditional classifiers and regression models, where the latter does not handle and ignore this
phenomenon leading to an eventual severe bias in the survival estimation [48].

1.2.2 Censored Data
Censored data means that the observations are not totally known and the unknown ones
provide only an underestimation of their real survival time [5, 7]. This means that the
censored individuals (whose events are not observed) provide only partial information about
the time to the event. A common possible reason behind this phenomenon is that the
individual under study has not experienced the event of interest when the study is evaluated,
and this is all what is known about it. The presence of censored data is clearly a major
technical challenge for modeling the underlying event distribution [2, 5, 7]. In this work, as
in almost all survival data cases, censoring is right-censoring, i.e., observations are known to
be larger than some given value. For instance, a patient has a censored survival time if the
event has not yet occurred for this patient. To avoid confusion, let make clear one point with
an example: Patient ’A’ has the time recorded tA, if tA is greater than the cut-off time, then
we are talking about the censored time tA and the censored Patient ’A. We mean, by this
example, that the word ’censored’ can be used for both the subject and the time associated
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Figure 1.1: A visualization illustrating the meaning of the right-censoring (inspired from
[47])

with the survival data. In this thesis, we focused on the right censoring setting. Here some
cases where this patient is considered as right censored:

• The patient stops following an examination.

• The patient withdraws from the study.

• His associated event occurs after the time of study closure.

In Figure 1.1, we illustrate the phenomenon of censoring. For instance, subject ’B’ experi-
ences the event within the duration of the study unlike subject ’C’ which experiences the
event after the end of the study. Thus, this event is not observed by the study and the only
observable information that we have about it is that, at the end of the study, the subject
’C’ did not yet experience the event. We say, in this case, that ’C’ is a censored subject.
For subject ’A’, we have a censored survival time as well, but for a different reason because,
in this case, the study did not end yet. Formally, one calls the censoring for subject ’C’
fixed and for the subject ’A’ random, right-censoring. One important statement to point
out in this context is that the occurrence of censoring must be unrelated to the future ex-
pectation [26]. This means that the probability density function of the residual lifetime for
those censored must be exactly similar to that of those which are not censored and having
the same distribution of covariates. To combine expressions for events and right-censored
observations, it is common to use an event indicator variable [49, 50] that checks if the
event is observed (returning one) or censored (zero otherwise). Survival data with censoring
phenomenon seems to be complicated to analyze which is not the case. This is because the
distribution likelihood function provides information quantified by terms corresponding to
what we observe and thus, if the event is observed then it contributes with its density, or
only with the probability that the time-to-event variable exceeds t if the event is censored
at t [33]. We see this in detail in Section 1.2.4.
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1.2.3 Problem Statement
Let X = {(xi, ti, δi)i=1,..,N} denote a survival data containing N instances, each of them is
represented by a triplet (xi, ti, δi), where :

• xi ∈ Rd is the feature vector,

• δi is the event indicator (or the so-called status as mentioned in the introduction of
this thesis) which is equal to 1 if ith instance is non-censored and 0 otherwise [50],

• and finally ti = min(yi, ci) which denotes the recorded time which is described as the
survival time for non-censored (yi) or censored time (ci) otherwise.

Typically, we are unable to observe the variable of interest namely the survival times y1, .., yN
but we instead observe (t1, δ1), .., (tN , δN ), where δi stands for the event indicator which can
then be expressed as follows:

δi =
{

1 if yi ≤ ci
0 otherwise. (1.2.1)

The main objective of survival analysis is thus to estimate the time-to-event ŷj or the proba-
bility risk p̂j of experiencing the event, for a particular instance of interest j given its feature
values xj [4]. It is highlighted that, in the survival analysis problem, the time variable is
both continuous and non-negative 1. For this purpose, we use survival and hazard functions
considered as two crucial quantities in survival analysis that we will describe in Section 1.2.4.

1.2.4 Survival and Hazard Functions: General Characteristics
Let T be a non-negative random variable representing the times recorded for the sur-
vival data including the waiting time until experiencing an event for non-censored data
and censoring time for censored data. We assume that T is a continuous random variable
with probability density (p.d.f) function fT (t) and cumulative distribution function (c.d.f)
FT (t) =

∫ t
−∞ fT (u)du = P (T ≤ t). From now on, we will work with the complement of F ,

the survival function defined as follows:

ST (t) = 1− FT (t) =
∫ ∞
t

fT (u)du (1.2.2)

which expresses the probability that the event of interest has not occurred by duration t.
The function ST has the following properties:

• ST is defined on R+,

• ST is non-increasing,

• ST (0) = 1, i.e., the probability of surviving at the origin time is 1,

• ST (∞) = 0 since, by definition, limt→∞ FT (t) =∞.
The hazard function hT , also known as instantaneous rate of occurrence of the event, can
be described as an alternative function to characterize the distribution of T and considered
as a crucial quantity of interest in survival analysis [51]. hT is defined as

hT (t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)
δt

. (1.2.3)

The hazard function is described as ’instantaneous’ because only subjects with T ≥ t and
T < t+ δt for δt→ 0 are considered. It has the following properties:

1https://data.princeton.edu/wws509/notes/c7.pdf
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• hT is non-negative,

• hT has no upper bound,

• hT (t) = 0 means that there is no event happened in δt.

There is an important relation between hT , fT and ST , and this means that they are not
independent from each other. This relation, starting by the definition of hT , can be derived
as follows:

hT (t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)
δt

. (1.2.4)

Using the property of a conditional probability:

hT (t) = lim
δt→0

P (t ≤ T < t+ δt)
P (T ≥ t)δt . (1.2.5)

and, by definition of ST , we obtain:

hT (t) = lim
δt→0

P (t ≤ T < t+ δt)
ST (t)δt , (1.2.6)

= fT (t)
ST (t) . (1.2.7)

Note from Equation (1.2.2) that we can suggest rewriting Equation (1.2.7) as

hT (t) = − d

dt
logST (t). (1.2.8)

By integrating this equation from 0 to t and by using the property ST (0) = 1, the survival
function ST can be written as:

ST (t) = exp

{
−
∫ t

0
hT (u)du

}
. (1.2.9)

Hence, we obtain a formula for the probability of surviving to duration t as a function
of the hazard at all durations up to t. These results show that the survival and hazard
functions provide an alternative but equivalent characterizations of the distribution of T . The
difference between them can be summarized as: the survival function focuses on surviving
while the hazard one focuses on experiencing the event. Figure 1.2 shows the relationship
between these functions.

1.2.5 Likelihood Function for Censored Data
Let n be the size of a population with lifetimes drawn from T governed by a survival function
ST with associated p.d.f denoted by fT and hazard function hT . ti is the time during which
the subject i is observed. If the subject i died at ti, its contribution to the likelihood function
[33] is

Li = fT (ti) = ST (ti)hT (ti). (1.2.10)
However, if the subject is still alive at ti, the only information that we have about this subject
is that its lifetime exceeds ti, under non-informative censoring [33, 5]. The contribution to
the likelihood of the censored subject i, in this case is:

Li = ST (ti). (1.2.11)
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Figure 1.2: Relationship among different entities: fT (blue curve), FT (green shade), ST
(purple shade) and hT (red shade).

One can notice that ST (ti) contributes to the likelihood in both cases, which is obvious since
the subject lived up to time ti whether it is censored or observed. Therefore, the likelihood
of the underlying distribution, denoted by L, can be written as follows:

L =
n∏
i=1
Li (1.2.12)

=
n∏
i=1

ST (ti)δihT (ti)δi ST (ti)1−δi (1.2.13)

=
n∏
i=1

hT (ti)δiST (ti) (1.2.14)

Thus, the log-likelihood function for censored survival data can be expressed as:

log L =
n∑
i=1

δilog hT (ti) + log ST (ti) (1.2.15)

1.2.6 Expectation of Life
By definition, the expectation value of T , denoted by µ, is given by:

µ = E(T ) =
∫ ∞

0
tfT (t)dt. (1.2.16)

Integrating by parts, and using Equation (1.2.2) making use of the fact that -fT is the
derivative of ST with the two last properties of ST , namely ST (0) = 1 and ST (∞) = 0, one
can show that:

µ =
∫ ∞

0
ST (t)dt. (1.2.17)

In other words, the survival function can be used to obtain the mean life expectation.
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1.3 Why Traditional Regression Methods Are Not Suit-
able for Survival Data?

Survival data is unique because the variable of interest is not only whether or not an event
occurred, but also when that event occurred. Traditional methods of logistic and linear
regression are not fitted to take into account both the event of interest and time aspects as
the predictand in the model. Traditional regression methods also are not equipped to handle
censoring, whose occurrence biases the estimation of the true survival time. In fact, the
censoring phenomenon results in survival residuals that are not quite normally distributed
or at least as straightforward as they are in linear regression, mainly because, in the presence
of censoring, some values of survival times are not observed and thus unknown, which yield
a skewed residual distribution.

1.3.1 Naive Survival Estimators Yield Bias while Ignoring Censored
Data

To illustrate how ignoring censored data will result in biased results, we propose to analyze
three ’naive’ estimators for the survival function while only taking into account the observed
data (ti, δi) [34]. Let use the notation used so far, with T is the random variable of observed
times, and let Y,C denote the survival time and censoring variables respectively. We also
note FY (resp. FC) the cumulative distribution function of Y (resp. C) and denote by SY
the survival function of Y . These naive estimators are defined as follows:

Ŝ1
T (t) := 1

N

N∑
i=1

1ti>t Ŝ2
T (t) := 1

N

N∑
i=1

δi1ti>t. (1.3.1)

The first naive estimator is obtained by calculating the empirical cumulative survival
function directly from all the observations. The second one is calculated as the empirical
cumulative survival function over the non-censored observations. Ŝ1

T (t) is a consistent esti-
mator of P(T > t), that is, limN→∞ Ŝ1

T (t) = P(T > t). Under the independent censoring
assumption [49] that states that Y is independent of C, we have :

P(T > t) = P(Y > t,C > t) = SY (t)(1− FC(t)). (1.3.2)

This means that P(T > t) ≥ SY (t) ∀t ≥ 0. We can notice that for smaller t, the bias is
small as there is a lower risk to get censored contrary to larger values of t where the bias is
increasing until reaching a maximum and then decreases to converge to 0 at ∞.

The second estimator Ŝ2
T (t) is consistent of P(T > t,

∏
i δi = 1). Censoring times are

considered here as missing values, and thus we focus only on the observed survival times
(ti, δi = 1). This clearly deteriorates the sample size of the estimator and implies that one
should have :

P

(
T > t,

∏
i

δi = 1
)

= P(Y > t). (1.3.3)



26 CHAPTER 1. SURVIVAL ANALYSIS

However, using Fubini’s theorem

P

(
T > t,

∏
i

δi = 1
)

= P(Y > t) =
∫ ∫

1u>t1u≥vdY (u)dC(v) (1.3.4)

=
∫
1u>t

(∫
1u≥vdC(v)

)
dY (u) (1.3.5)

=
∫ ∞
t

(1− FC(u))dY (u) = SY (t)−
∫ ∞
t

FCdFY (1.3.6)

≤ P(Y > t), ∀t ≥ 0. (1.3.7)

We note that, for t = 0, we obtain:

P

(∏
i

δi = 1
)

= 1−
∫ ∞

0
FCdFY . (1.3.8)

This means that the estimator is already biased for t = 0 by the probability of being censored
expressed by the quantity

∫ ∞
0

FCdFY .

1.3.2 Biased Mean Squared Error of an Estimator
Let assume that (t1, δ1), .., (tN , δN ) observed samples drawn from a single exponential dis-
tribution Exp(λ). We choose this distribution for two simple reasons: first, exponential
distribution is among the most widely used distribution in survival analysis; second, it has
only one parameter and thus easy for calculations. Under the assumption of constant cen-
soring times [52, 5], the likelihood can be written as follows

Lλ =
∏
i

hδiT (ti)ST (ti). (1.3.9)

Since, for exponential distribution, hT = λ and ST (t) = exp(−λt), then:

Lλ = λncexp(−λ
∑
i

ti). (1.3.10)

where nc =
∑
i δi. We linearize Equation (1.3.10) with the log function and consider the

following optimization problem:

max
λ

log Lλ. (1.3.11)

Using the maximum likelihood estimation method, the solution to Problem 1.3.11, de-
noted by λ̃, should satisfy the following condition:

d log(Lλ)
d λ (λ̃) = nc

λ̃
−
∑
i

ti = 0, (1.3.12)

=⇒ λ̃ = nc∑
i ti

. (1.3.13)

We thus obtain the mean survival time µ̃:

µ̃ = 1
λ̃

= 1
nc

∑
i

ti. (1.3.14)
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Let denote the usual estimator for the mean by µ̂ and define it as the simple average of ti’s:

µ̂ = 1
N

N∑
i=1

ti. (1.3.15)

The mean squared error of µ̂ with respect to µ̃, denoted by MSE(µ̂, µ̃), can be calculated
as follows:

MSE(µ̂, µ̃) = E
[
(µ̂− µ̃)2] , (1.3.16)

= E[µ̂2] + µ̃2 − 2µ̃E[µ̂], (1.3.17)
= var(µ̂) + (E[µ̂]− µ̃)2. (1.3.18)

where E[z] denotes the expectation of z. The term b = (E[µ̂] − µ̃)2 quantifies the squared
bias of µ̂. Since we have: E[µ̂] = nc

N µ̃, then: b = (ncN − 1)µ̃. Therefore, the estimator is
unbiased when all the survival times are observed (nc = N), otherwise the bias increases
with the size of censored data (large biases for higher nc’s).

1.4 Predictive Performance Metrics
To evaluate and compare the predictive performance of all the methods considered in this
experiment, we used two evaluation metrics that account for the censored individuals. In
the following, we describe the two metrics: Concordance Index and Brier Score.

1.4.1 Concordance Index
In survival analysis, the concordance index or C-index [53] is one of the most commonly
applied evaluation metrics. C-index is designed to calculate the number of concordant pairs
of observations among all the comparable pairs, i.e. pairs of non-censored observations. In
other words, C-index is described as the probability that, for a random pair of individuals,
the predicted survival times of a pair of two individuals have the same ordering as their true
survival times. Aside from the fact that C-index accounts for censoring, this metric can be
interpreted as a misclassification probability and does not depend on a single fixed time for
evaluation [54]. The concordance index is calculated using the following steps:

1. Generate all possible pairs of individuals over the dataset.

2. Remove the pairs whose shorter survival time is censored and those which have equal
times unless at least one is non-censored.

3. For each comparable pair with different event times, count 1 if the shorter survival
time has worse predicted output.

4. C-index is defined by the sum of counts against the total number of comparable pairs.

As the concordance index only depends on the ordering of the predictions, it is useful for
evaluating linear-risk models since the ordering of these models does not change over time.
However, it is not the case here, or at least for our two proposed approaches. In fact, the
C-index cannot be applied for non-linear-risk models [55, 54]. Here, we will rather use a
metric based on the time-dependent concordance index, denoted by Ctd, proposed in [56]
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which estimates the probability that a pair of individuals are concordant given they are
comparable. This metric is defined as follows:

Ctd = P (Ŝ(ti) > Ŝ(tj)| ti > tj and j is non censored) (1.4.1)
= P (t̂i > t̂j | ti > tj and δj = 1) (1.4.2)

=
∑
i,j 1ti>tj .1t̂i>t̂j .δj∑

i,j 1ti>tj .δj
. (1.4.3)

where Ŝ is the predicted survival function and t̂i is the predicted time for the ith individ-
ual. Similarly to the Area Under Curve score [57], Ctd = 1 corresponds to the best model
prediction. For proportional hazards models, the metric is equivalent to C-index.

1.4.2 Brier Score
The Brier score [58] noted BS is a metric used in binary classification problems that measures
both discrimination and calibration of the estimates. BS is defined as follows:

BS = 1
N

∑
i

yi − p̂i

where N is the number of observations, yi ∈ {0, 1} is the label of the ith individual and p̂i is
the probability estimate of pi = P (yi = 1). For survival data, we choose a threshold time t
to label data according to whether a subject’s event time is greater or smaller than t. Graf
et al. [59] generalize this metric to take into account the censored events. Using the formula
proposed in [60], BS can be written as follows:

BS(t) = 1
N

∑
i

Ŝ(t|xi)2
1ti≤t1δi=1

KM(ti)
+ (1− Ŝ(t|xi))2

1ti>t

KM(t) (1.4.4)

where KM(t) is the Kaplan-Meier [61] estimate (described in detail in the next section) of
the probability that t is greater than the censoring threshold. The generalized form of BS
can be extended to an integrated BS that calculates the score for an interval:

IBS =

∫ t1

t0

BS(u)du

t1 − t0
(1.4.5)

IBS is calculated, in practice, by numerical integration.

1.5 Statistical Methods for Survival Analysis
In this section, we will introduce three main traditional statistical approaches to estimate
the survival or hazard functions namely: non-parametric, semi-parametric, and parametric
methods. In general, more than one approach can be correctly used in the same analysis.

1.5.1 Non-parametric Approaches
Non-parametric approaches do not rely on assumptions about the shape of the underlying
distribution of the survival time. In this context, they are used to describe the survival data
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Figure 1.3: Survival function of a SEER Breast Cancer population sample
(https://seer.cancer.gov/) estimated by Kaplan-Meier estimator [61].

by estimating the survival function, along with the median and quartiles of survival time.
However, for censored subjects from the concerned population, these descriptive statistics
cannot be calculated directly from the data, which underestimates the real survival time,
leading to skewed estimates of these statistics. Non-parametric models are, in general, used
as the first step in survival analysis works, in order to generate unbiased statistics. Let’s
describe the most known non-parametric approaches in survival analysis.

1.5.1.1 Kaplan-Meier Estimator

The most common non-parametric approach and among the first survival estimator in the
literature is the Kaplan-Meier model [61]. The survival function estimator is given by:

ŜKM (t) =
∏
ti<t

ni − di
ni

, t > 0 (1.5.1)

which depends only on two variables, namely ni that denotes the subjects known to have sur-
vived up to time ti and di the number of events experiences at time ti. The main assumptions
of this method, besides the random censoring, is that censoring occurs after experiencing
the event and that there is no cohort effect on survival, i.e. no variation of the characteris-
tics of the distribution over time, so subjects have the same survival probability regardless
of when they came under study. In Figure 1.3, we visualize an example of Kaplan-Meier
estimation of the survival function of a SEER Breast Cancer population sample [62]. SEER
is a program that provides cancer incidence data from population-based cancer registries
covering approximately 34.6% of the U.S. population. The estimated survival function from
the Kaplan-Meier method can be plotted as a step-wise function with time on the X-axis, as
shown in Figure 1.3. According to this figure, the model estimated for instance, that 80%
of this population survive beyond 37 months, while almost half (55%) survive beyond 173
months. This plot can be used to estimate the median or quartiles of survival time.
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1.5.1.2 Nelson-Aelen Estimator

Nelson-Aelen estimator [63], noted NAe, is considered as an alternative to Kaplan-Meier
method [61], which is based on using a counting process approach to estimate the cumulative
hazard function, HT . The NAe estimator of the cumulative hazard function is given by:

HNAe
T (t) =

∑
ti≤t

di
ni

(1.5.2)

which implies the definition of the NAe estimator of the survival function:

SNAeT (t) = exp
(
−HNAe

T (t)
)

= exp

−∑
ti≤t

di
ni

 (1.5.3)

As we see, the NAe estimator [64, 63] is an indirect estimator for the survival function unlike
the Kaplan-Meier estimator.

A non-parametric model to the analysis of survival data is used to simply describe the
distribution of survival times. More commonly, we are rather interested in the relationship
between the subject’s features/covariates and the time to the event which is not feasible
with this approach. To do so, we use the semi- and fully-parametric approaches that allow
the survival time to be analyzed with respect to the features. Let’s start by describing the
semi-parametric approach.

1.5.2 Semi-Parametric Approach Cox Proportional Hazard Model
A large family of models introduced by Cox [29] focuses directly on the hazard function.
The simplest member of the family is the Cox Proportional Hazards Model [29], noted CPH,
where the hazard at time t for a subject of covariates x ∈ Rd is assumed to be defined as:

hT (t|x) = h0(t) exp(xTβ) (1.5.4)

where h0(t) is called the baseline hazard. CPH is considered a semi-parametric because
the model is consisted of a non-parametric component h0 and a parametric one namely
exp(xTβ). The baseline hazard serves as the ’default’ hazard when the covariates are not
taken into account, or x = 0, and exp(xTβ) is the relative risk associate with the covariates
x. The variation of the relative risk is the same at all duration t. In this approach, no
assumption about the baseline hazard h0 is made. However, the model assumes:

• Time independence of the covariates x, which means that there is a constant relation-
ship between the survival time and x.

• Linearity in the covariates x: the implication of the first assumption is that the hazard
function for any two subjects are proportional at any point in time.

• Hazard proportionality: the second assumption implies that the hazard curves for two
subjects should be proportional.

In many situations, one is interested by the coefficients βi rather than the shape of hT . In
order to obtain this, we apply the logarithm on the hazard ratio given by (Equation 1.5.4):

log
hT (t|x)
h0(t) =

∑
i

βixi (1.5.5)

which leads us to solve a problem of linear regression.
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1.5.2.1 Regularized Cox Models

For high-dimensional data, it sometimes happens that the size of the covariate set is almost
equal to or even greater than the size of the data. This makes building the prediction model
with all the features a challenging task since the model might provide inaccurate results
due to overfitting [65]. This problem motivates using sparsity techniques to select the most
important features while assuming that most of them do not have a significant contribution
in terms of prediction [66]. To do this, different penalty functions are used to develop
prediction models using sparse learning techniques. `p-norm functions are the commonly
used ones. Many researchers have used these techniques in Cox regression methods resulting
in the following regularized Cox models:

• Lasso-Cox: Lasso [67] is a `1-norm regularizer known to be good at performing feature
selection and estimating the regression coefficients simultaneously. Tibshirani in his
work [68], incorporates the `1-norm regularizer into the log-partial likelihood to obtain
the Lasso-Cox model. Several extensions of Lasso-Cox method notably fused Lasso-Cox
[69], adaptive Lasso-Cox [70] and graphical Lasso-Cox [71].

• Ridge-Cox: Ridge regression was proposed by Hoerl and Kennard in [72] which is de-
fined as `2-regularized regression model whose goal is to select the correlated features
and distribute their values with each other. This regularization technique was incor-
porated in the context of Cox regression resulting in a `2-regularized Cox regression
model [73].

• EN-Cox: Elastic-Net (EN) is a regularized regression method combining `1 and squared
`2 penalties which have the potential to perform the feature selection and deal with the
correlation between the features simultaneously [74]. Noah Simon et al. [75] proposed
to introduce the EN penalty term into the log-partial likelihood function resulting in
the so-called EN-Cox.

1.5.3 Parametric Approaches

One of the main advantages of using a semi-parametric model is that the baseline hazard
does not need to be specified to estimate the hazard ratio that describes differences between
groups in terms of relative hazard. However, the estimation of the baseline hazard itself may
be of interest. In this case, a parametric approach is necessary and essential, where both
the effect of the covariates and the hazard function are specified. This latter is estimated by
making an assumption on the distribution of the underlying population. Due to the relation
between the hazard and the survival functions, this also makes this latter a parametric model.
Some specific models that are the most common and find frequent applications are listed
below. For simplicity, a parameter λ defined as a function of x will be written λ rather than
λ(x).

1.5.3.1 Exponential Distribution

The exponential distribution assumes that hT (t) depends only on model coefficients and
covariates and is constant over time. For this model, the hazard function, survival function
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are given by:

hT (t|x) = 1
η

(1.5.6)

ST (t|x) = exp

(
− t
η

)
(1.5.7)

with η is a non-negative function of x, called rate parameter. The expected life time is given
by:

µ(x) = η. (1.5.8)

1.5.3.2 Weibull Distribution

While the exponential distribution assumes a constant hazard, the Weibull distribution as-
sumes a monotonic one that can either be increasing or decreasing. For the Weibull model,
the hazard function and survival function are given by:

hT (t|x) =
(
β

η

)β
(1.5.9)

ST (t|x) = exp

{
−
(
β

η

)β}
(1.5.10)

where η is a non-negative function of x, called rate parameter and β the shape parameter.
hT of Weibull distribution has the following properties:

• hT is monotonously decreasing when β < 1, and monotonously increasing when p > 1

• hT is constant when β = 1.

The expected life time is given by:

µ(x) = η Γ
(

1 + 1
β

)
(1.5.11)

with Γ is the Gamma function defined by: Γ(s) =
∫∞

0 us−1exp(−u)du. We will describe this
distribution more in detail in the next chapter, as it is used in our approaches.

1.5.3.3 Log-Normal Model

For this model, hT , ST are given by:

hT (t|x) = 1
σ
√

2πt
exp

(
− (ln(t)− µ)2

2σ2

)(
1− Φ

(
ln(t)− µ

σ

))−1
(1.5.12)

ST (t|x) = 1− Φ
(
ln(t)− µ)

σ

)
(1.5.13)

where Φ is is the cumulative distribution function of the standard normal distribution
(N (0, 1)). The Log-normal has two parameters, since a normal distribution has two pa-
rameters µ ∈ R and σ > 0 (the mean and the standard deviation, respectively, of the normal
distribution associated). The expected life time is defined as follows:

E(T ) = exp

(
µ+ σ2

2

)
. (1.5.14)
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1.5.3.4 Log-Logistic Model

The hazard and the survival function for the Log-logistic model are given by the following
formulas:

hT (t|x) = β

η

(
t

η

)β−1
(

1 +
(
t

η

)β)−1

, (1.5.15)

ST (t|x) =
(

1 +
(
t

η

)β)−1

. (1.5.16)

As we see, the Log-logistic model depends on two parameters namely β > 0 and η > 0
that denotes respectively the shape and the scale of this distribution. The behaviour of the
hazard function depends on β:

• if β < 1, then hT is monotonously decreasing from ∞,

• if β = 1, then hT is monotonously decreasing from 1
η ,

• if β > 1, then hT is concave. In this case: hT (t = 0) = 0, and the maximum value of
hT is hT ((β − 1)

1
β ).

The expected life time is defined (when β > 1) as follows:

E(T ) = π

β η sin
(
π
β

) . (1.5.17)

1.5.3.5 Comparison of the four parametric models: Exponential, Weibull, Log-
Normal and Log-Logistic models

We show, in Figure 1.4, the four most common parametric models described above. We
can notice that the shape of the hazard function varies from a model to another. The
specific behavior of the hazard function decides which parametric model is appropriate for a
particular problem. For the Exponential model, the hazard function is a constant, whereas
the Weibull model of shape equal to 2, hT is linearly increasing. We can use this model,
for instance, when we analyze an event after an unsuccessful surgery or treatment. For the
Log-logistic with β < 1, the hazard function is monotonous and decreasing, this can be useful
in the case of a postoperative state of the patient after surgery or after a stock-market crisis.
Regarding the Log-normal distribution, the hazard function has a concave form (slightly
humped, in the shape of an inverted U).

1.5.3.6 Accelerated Failure Time

Accelerated Failure Time [76], noted AFT, models are a class of parametric survival models
that can be linearized by taking the log of the survival time model. Since T must be non-
negative, we might consider modeling its logarithm using a conventional linear model, say

log T = xβ + ε (1.5.18)

where ε is the error term that follows a specific distribution. This model specifies the dis-
tribution of log-survival for a subject as a noised baseline distribution by the error term ε.
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Figure 1.4: Comparison of the following parametric models: Exponential, Weibull, Log-
Normal, and Log-Logistic models. For each model, we plot the density, survival, and hazard
functions. For the Log-Normal model, the parameter α is the inverse of σ.

The main difference between AFT models and CPH models is that AFT models assume that
effects of covariates are multiplicative on the time scale, while Cox models use the hazard
scale as shown in Section 1.5.2.

There are many more parametric models notably:

• The Gombertz distribution [77] whose density expression is that of the log-Weibull
distribution. The log of the hazard function is thus linear in t, hence, Gompertz
distribution is a proportional hazard model. This kind of distribution is suitable for
actuarial survival data, as the risk increases exponentially over time like the event rate
of the Gompertz distribution.

• Log-Logistic distribution [78] which is an AFT model with ε following the standard
logistic distribution. However, it is not considered a proportional hazard model.

• Generalized Gamma distribution [79]: a family of distributions that contains nearly
all of the most commonly used distribution, including the exponential, Weibull, log-
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Table 1.1: Pros and cons of each family of traditional approaches

Type Advantages Disadvantages

Non-parametric
-Efficient when no - Not easy to interpret.
assumption about - Over- or under-estimate

theoretical distribution. survival time.

Semi-parametric

- Model the relationship between - The distribution of the
survival times and covariates. outcome is unknown.

- No assumption on the - Not easy to interpret
underlying distribution.

Parametric

- Easy to interpret. - Inconsistent and yields
- More informative: estimate non-optimal results

risk and predict survival when the distribution
time statistics. assumption is violated.
- Rely on full

maximum likelihood - Not robust to misspecification.
to estimate parameters.

- More efficient and yields
more accurate estimates
when parametric form
is correctly specified.

normal, and gamma distribution. This allows comparisons among the different distri-
butions.

• Splines Approach [80] that can be used for maximum flexibility in modeling the shape
of the baseline hazard h0, since the only general limitation of the specification of h0 is
that hT is non-negative with respect time t.

The main advantages of using a parametric approach over non- and semi-parametric ap-
proaches are:

• Parametric models are more informative than the two other approaches. In addition
to estimating the risk, they can also predict the survival time, hazard rates, mean,
median survival times, etc.

• Parametric approaches rely on full maximum likelihood to estimate parameters.

• When the parametric form is correctly specified, parametric models have more power
than semi-parametric models. They are also more efficient, leading to smaller standard
errors and more precise estimates.

This family of models has also the main disadvantage namely the fact that it relies on the
assumption that the underlying population distribution has been correctly specified. This
may be risky because they are not robust to misspecification, that is why semi-parametric
models are more common in the literature of survival analysis and are less risky to use there
is uncertainty about the underlying population distribution [81]. Table 1.1 (inspired by
[4]) summarizes both the advantages and disadvantages of each family of statistical survival
methods.
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1.6 Survival Analysis using Machine Learning
In the past several years, due to the advantages of machine learning techniques, notably
their ability to learn non-linear functions and representations of the data and the improved
quality of the overall predictions made, significant success has been achieved in various
practice areas. In survival analysis, the main challenge of machine learning is to model the
relationship between the covariates and survival times (not necessarily linear) while handling
the censored information. It should be noted, that machine learning is effective when there
are a large number of instances in a reasonable dimensional feature space. In this section,
we will do a comprehensive review of commonly used machine learning methods in survival
analysis.

1.6.1 Continuous-Time Models: Extension of Cox Model
Among the first network-based approaches for analyzing the survival data is the method of
Faraggi and Simon [32] described as an extension of Cox Proportional Hazard model [29]
that accommodates right-censored data. Their model is consisted of one hidden layer and
estimates the network parameters, that replace the linear function in the Cox approach,
by maximizing the likelihood. However, there is no performance improvement provided by
this approach. Katzman et al. [31] revisited the Cox model in a deep learning framework,
called DeepSurv which is a multi-layer perceptron predicting the probability of experiencing
the defined event without subjecting itself to the linearity constraint. Katzman et al. [31]
showed that their model outperforms CPH model [29] in terms of concordance index score
[53, 56]. DeepSurv was then used in Zhu et al. [44, 82] works by replacing the multi-layer
perceptron architecture of DeepSurv with convolution layers to analyze the pathological
images. Other variants and extension of Cox are then proposed by and Yousefi et al. [40]
(SurvivalNet, a framework for fitting proportional Cox models with neural networks and
Bayesian optimization of the hyperparameters) and Kvamme et al. [60, 8] notably:

• Cox-Time [60] where the Cox relative risk function depends not only on the covariates
but also on time. It also does not require a proportionality assumption and uses an
alternative loss function scaling well non-linear cases to remedy this constraint,

• CoxCC [60]: a proportional version of the Cox-Time model,

• PCHazard [8] that assumes that the continuous-time hazard function is piece-wise
constant.

1.6.2 Discrete-Time Models
An alternative approach to time-to-event prediction is to discretize the duration of the study
and compute the hazard function of survival function on this predetermined time grid.

1.6.2.1 DeepHit

Lee et al. [30] use a deep neural network to learn the distribution of the time-to-event data
without making any assumption about the form of the underlying distribution. DeepHit has
the following properties:

• DeepHit learns the relationship between the covariates and the survival times while
taking into account the variation of this relationship over time,
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• It smoothly handles a single-type risk as well as competing risks,

• It consists of a single shared sub-network for all the competing risks that computes
a latent representation of the data which is then used to feed the cause-specific sub-
network of each of the competing risks.

DeepHit is considered as a probability mass function (since it outputs a vector of probabilities
and hence the adjective ’discrete’) approach with a ranking loss function that can handle
the competing risks.

1.6.2.2 Logistic-Hazard

The Logistic-Hazard method parameterizes the discrete hazards and minimizes the survival
negative log-likelihood. This approach is also called Nnet-Survival by Gensheimer et al. [83]
and Partial Logistic Regression by Biganzoli et al. [84].

1.6.2.3 N-MTLR: The Neural Multi-Task Logistic Regression

Yu et al. [85] proposed a method called multi-task logistic regression (MTLR), to learn sur-
vival distribution at the individual level while taking into account the censored observations.
It consists of modeling the survival function by combining multiple local dependent logistic
regression models in order to handle the time-varying effects of the covariates. Afterward,
another work was done by Fotso et al. [41]. They introduce a new network-based approach
using the MTLR model as the base and a deep learning architecture as the core of the pro-
posed model. This model, called N-MTLR, seems to outperform the standard MTLR as well
as CPH.

1.6.2.4 BCE

The BCE method is an MLP with a similar network structure as the Logistic-Hazard, with
each output node corresponding to a binary classifier at time t. These binary classifiers
are constructed by minimizing the binary cross-entropy of the survival estimates at a set of
discrete times and discarding the censored individuals. The removal of censored observations
makes this approach biased since it underestimates the survival times of the non-observed
events.

Other interesting works are done in Survival Analysis with a discrete-time approach. In
fact, Luck et al. [42] proposed methods that are similar to DeepSurv [31], but with an addi-
tional set of discrete outputs for survival predictions. This approach consists of modeling the
survival function instead of estimating the hazard function and jointly predicts the survival
time as well as its rank using the Cox partial log-likelihood framework. Furthermore, Mar-
tinsson [43] proposed a recurrent network-based method called WTTE-RNN for sequential
prediction of the time-to-event for both censored and non-censored events. WTTE-RNN has
the main role of estimating the distribution of time of the next event as having a discrete or
continuous Weibull distribution whose parameters are to be estimated by a recurrent neural
network.

1.6.3 Survival Trees
Survival trees are trees performing regression or classification on survival data. The first
advantage of survival trees over standard trees is that they are adapted to handle censored
data. We recall that the basic intuition behind tree models is that data are recursively
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partitioned based on a particular splitting condition, and elements that are similar to each
other based on the event of interest will be placed in the same node. The difference between
a survival tree and the standard one is in the choice of splitting criterion. The standard
decision tree-based methods perform partitioning on the data by setting a threshold for each
feature. However, they can neither consider the interactions between the features nor the
censored information in the model. Two approaches are used as splitting criteria for survival
trees:

• those that minimize within-node homogeneity using this latter in the loss function to
train the method,

• those that maximize within-node heterogeneity.

Several metrics used in previous works to measure the homogeneity or heterogeneity by
symmetry, notably Wasserstein metric [86], exponential log-likelihood [87].

1.6.4 Ensemble Learning Models for Survival Analysis
Ensemble learning techniques [88] learn a committee of classifiers that predict the class labels
for a given data points by taking a weighted vote among the prediction results from all these
classifiers. Breiman proposed bagging [89] and random forests [90], to perform the ensemble-
based model building. Such models have been successfully adapted to the survival analysis
problem.

1.6.4.1 Random Survival Forests

Random Survival Forests (RSF) proposed by Ishwaran et al. [54], is a random forest-based
method for the analysis of the right-censored survival data. RSF computes a random forest
[90] using the log-rank test as the splitting condition. Afterward, the model computes the
cumulative hazards function of the leaf nodes of the random forest and averages over the
ensemble. Below the main steps:

• Draw N bootstrap samples randomly from the survival data,

• for each bootstrap sample, build a survival tree by randomly selecting features and
then split the node using the candidate ones that maximize the survival difference
between the child nodes,

• build the full-size tree under the constraint that a leaf node must have no less than
specific unique death,

• calculates the cumulative hazards function (CHF) for each tree, then average over the
tree to obtain the ensemble CHF,

• and finally, calculate the prediction error for the ensemble CHF using the Out-of-Bag
data (bootstrap samples).

RSF is known to be a very flexible continuous-time method that is not constrained by the
proportionality assumption. Most previous works benchmark their methods against the
random survival forests.
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1.6.4.2 Bagging Survival Trees

The bagging method is one of the most commonly used ensemble methods, typically known
to reduce the variance of the base models that are used. For bagging survival trees [91], the
survival function can be calculated by averaging the predictions made by a single survival
tree. Below, the three main steps:

• draw B bootstrap sample from the survival data,

• for each bootstrap sample, build the survival tree and guarantee that the number of
events is at least equal to the given threshold, for all the leaf nodes,

• average the predictions made by the terminal nodes and then calculate the aggregated
survival function. For each leaf node, the survival function is estimated using the
Kaplan-Meier [61] estimator. This means that all the instances within the same leaf
node are assumed to have the same survival function.

In contrast to aggregation by majority voting or averaging of the predictions in classical
regression or classification problems, averaged point predictions are of minor interest in
survival analysis. Instead, Hothorn et al. [91] did not aggregate point predictions but rather
predict the conditional survival probability function by computing respective single Kaplan-
Meier curves for leaves, each of which includes a sub-population of observations.

1.6.5 Summary
Broadly speaking, the survival analysis methods can be classified into two main categories:
statistical methods and machine-learning-based methods. These two families of survival
methods share the common goal to make predictions of the survival time or estimate the
survival probability (in terms of experiencing the event of interest). However, statistical
methods focus more on characterizing both the distributions of the event times and the sta-
tistical properties of the parameter estimation, while machine-learning-based survival meth-
ods focus more on the prediction of event occurrence at a given time point by incorporating
these traditional statistical methods in machine learning frameworks such as survival trees
and neural networks which takes advantages of the recent development in machine learning
and optimization to learn dependencies between covariates and the event times in differ-
ent ways. In addition, machine learning methods are usually applied to high-dimensional
problems, unlike statistical methods. A summarized (but not exhaustive) taxonomy of the
survival analysis methods described above, is shown in Figure 1.5.

Kaplan-Meier estimator [61] is considered as among the first estimators widely used for
time-to-event prediction, but it doesn’t incorporate individual covariates. In the time-to-
event analysis that explores the relationship between features and both event and censored
times, existing methods assume a linear dependence. The semi-parametric Cox Proportional
Hazards [29] (CPH) model assumes the effect of covariates is a fixed and multiplicative
covariate-dependent factor on the hazard rate (linear relationship) which may be too sim-
plistic since, in the real-world data, the covariate effects are often non-monotonic.

Thanks to the ability of neural networks to learn nonlinear functions, many researchers
tried to model the relationship between the covariates and the time-to-event data. An exten-
sion of CPH with neural networks was first proposed by Faraggi and Simon [32] who replaced
the linear risk of the Cox regression model, with one hidden layer multi-layer perceptron but
without performance improvement. Katzman et al. [31] revisited the Cox model in the
framework of deep learning (DeepSurv), which removes the proportionality constraint and
showed that it outperforms CPH in terms of concordance index score [53] which measures the



40 CHAPTER 1. SURVIVAL ANALYSIS

time ordering performance. Cox-Time [60] which is also a Cox extension, does not require
this assumption and uses an alternative loss function scaling well non-linear cases to remedy
this constraint. Most previous works benchmark their methods against the random survival
forests (RSF) [54]. RSF computes a random forest using the log-rank test as the splitting
criterion. It computes the cumulative hazards of the leaf nodes and averages them over the
ensemble. Hence, RSF is a very flexible continuous-time method that is not constrained by
the proportionality assumption. Other previous works are based on Cox regression such as
SurvivalNet [40], a network-based model using Bayesian optimization of the hyperparam-
eters, and Zhu et al. [44, 82] who proposed a convolutional neural network that replaces
multi-layer perceptron architecture of DeepSurv and applied this methodology to pathologi-
cal images. An alternative approach to time-to-event prediction is to discretize the duration
and compute the hazard or survival function on this predetermined time grid. Lee et al. [30]
proposed a method, called DeepHit, that estimates the probability distribution with a neural
net and combines the log-likelihood with a ranking loss. Furthermore, the method has the
added benefit of being applicable for competing risks. Fotso [41] proposed N-MTLR that
used a Multi-Task Regression (MTLR) as the base with a neural network that calculates
the survival probabilities on the points of the time grid. Another interesting work proposed
by Martinsson [43] in which he presented WTTE-RNN, a model for sequential prediction of
time-to-event for censored data whose main role is to estimate the distribution of time to
the next event as having a discrete or continuous Weibull distribution with parameters be-
ing the output of a recurrent neural network. Unlike these discrete-time models, considered
as probability mass functions, DPWTE [38] and DeepWeiSurv [35] model a time-to-event
distribution and thus a continuous survival function that enables to estimate of the survival
probability at any survival time horizon.

1.7 Conclusion
We presented in this chapter basic concepts of survival analysis and a detailed overview
of the main state-of-the-art methods proposed as approaches to survival analysis. We first
defined what survival data is and the phenomenon of censoring which makes the survival
prediction task more challenging. Then we described the key functions that characterize
an underlying time distribution corresponding to an event interest. We also showed how
to compute the mean lifetime and the likelihood of distribution while taking into account
the censored data. Then, we described the most common evaluation metrics used to assess
the predictive performance of the survival methods. After that, we described the baseline
statistical models starting with the non-parametric models which are among the first ap-
proaches, then the semi-parametric which is the most commonly used one namely Cox, and
finally the parametric approaches where particular assumption on the underlying distribu-
tion is made. We compared the semi-parametric to parametric models by highlighting the
advantages of the latter over semi-parametric approaches as well as the weakness provided by
the distribution assumption to parametric models. We also described different categories of
machine-learning-based methods namely continuous-time models, discrete-time models, and
ensemble learning methods. Finally, we summarized the different contributions provided
by the state-of-the-art methods, from non-parametric models to network-based parametric
methods.
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Figure 1.5: Taxonomy of the methods developed for survival analysis (inspired by [4]).
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Chapter 2

Estimation of Conditional
Mixture Weibull Distribution
with Right-Censored Data using
Neural Network for
Time-to-Event Analysis

2.1 Introduction

In this chapter, we propose a novel approach based on neural networks for survival analysis
with right-censored data. The model that we propose consists of the estimation of two-
parameter Weibull distribution conditionally to the features. For this purpose, we describe
the neural network architecture minimizing a loss function that takes into account the right-
censored events in its modeling. We extend our network-based approach to a finite mixture
of two-parameter Weibull distributions. We validate our model via synthetic experiments
which will be carefully described. The main goals of experiments on simulated datasets are:

• Assess the ability of the model to estimate the parameters of the conditional Weibull
distributions with an acceptable accuracy. More generally, the goal here is to verify if
this network-based approach succeeds in modeling the relationship between the survival
times and the covariates at the individual scale.

• Check if the model behaves correctly in the case of a highly censoring setting, i.e. when
there is a significant portion of censored observations in the population or even when
they make up the big majority of the population under study.

The second point permits us to show that our approach can consider any survival time
horizons. This means that, once the network, which is the core of our model, is trained, we
can estimate the survival function or density at different time t separated in time, even for
the censored subjects.

In our novel approach, which we call DeepWeiSurv, we make the one and only assump-
tion: we assume that the survival times distribution is modeled according to a finite mixture

43
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Figure 2.1: Weibull distribution right-censored at tc = 2 with x ∈ [0, 1] uniformly distributed.
In this figure, the parameters of the law are independent with regard to x.

of Weibull distribution (at least one), whose parameters depend on the features, for a right-
censored data. As Luck et al. [42], we propose a deep learning model that learns the survival
function, but we will do this by estimating the Weibull’s parameters. Unlike DeepHit [30],
whose model consists in discretizing the time considering a predefined maximum time hori-
zon, here, as we try to estimate the parameters, we can model a continuous survival function
and thus estimate the risk at any given survival time horizon. To do so, we constructed
a fully connected deep network model and a loss function to be minimized, which is the
negative log-likelihood of the finite mixture of Weibull distributions taking into account the
censored individuals.

This chapter is organized as follows. In Section 2.2, we discuss the necessary background
of the survival analysis and mixture of Weibull distributions. In Section 2.3, we describe
the architecture of DeepWeiSurv and the loss function used to train the model. Section 2.4
is dedicated to all the synthetic experiments that we conducted to evaluate the approach
in different aspects namely: the ability to estimate the likelihood (Experiment 1) and more
specifically, the parameters of the mixture (Experiment 2), the ability to model the relation-
ship between parameters and baseline data covariates (Experiment 2), the ability to estimate
the weighting coefficients (clustering problem in Experiment 3) and finally if the model can
handle highly censoring setting (Experiment 4 where we consider two scenarios with different
level of difficulty: uni-modal mixture and bi-modal mixture). We conclude in Section 2.5.

2.2 Weibull Mixture Distribution for Survival Analysis
In this section, we briefly review some basics in survival analysis and Weibull distributions.

2.2.1 Survival Analysis with Right-Censored Data

Let X = {(xi, ti|1 ≤ i ≤ n} be a set of observations with xi ∈ Rd, the ith observation of
the baseline data (covariates), ti ∈ R its time recorded associated, and δ denotes the event
indicator function defined as follows:

δ : R∗+ → {0, 1}

ti 7→
{

0 if the event experienced by i is censored,
1 if the event experienced by i is observed.

(2.2.1)
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For simplicity, we note δi := δ(ti). As shown in Figure 2.1, a blue point represents a
non-censored observation (xi, ti, δi = 1) and a red point represents a censored observation
(xi, ti, δi = 0). In order to characterize the distribution of the survival times T = (ti|xi)i≤n,
the aim is to estimate, for each observation, the probability that the event occurs after or at
a certain survival time horizon tsth defined by:

S(ti|xi) = P (ti ≥ tsth|xi).

Note that, tsth may be different to the censoring threshold time tc. We recall that it exists
an alternative characterization of the distribution of T is given by the hazard function h that
is defined as the event rate at time t conditional on survival at time t or beyond. Literature
[92] has shown that h can be expressed as follows: h(t) = f(t)

S(t) , f(t) being the density function.

Instead of estimating the survival value S(ti|xi), it is rather common to estimate directly
the expectation of the survival time E(t̂i|xi).

2.2.2 Weibull Distribution for Censored Data
From now, we consider that the survival time variable T follows a finite mixture of two-
parameter Weibull distributions, or at least a single Weibull distribution without a depen-
dence to the covariates xi (in the first place), which means: S(ti|xi) = S(ti) ∀i = 1, .., n. In
this case, we know the analytical expressions of the survival function and the hazard function
with respect to the mixture parameters. As the parameters of the mixture of Weibulls are
the only unknown parameters, this necessarily leads to consider the problem of estimating
the parameters of this mixture. Let’s start by taking the case of a single Weibull distribution.

2.2.2.1 Single Weibull Distribution

Here, we are dealing with a particular case where the survival times variable T follows a
single two-parameter Weibull distribution, denoted by W (β, η), whose parameters are the
shape, denoted by β, strictly positive, and the scale parameter, denoted by η, which is also
necessarily strictly positive. These two parameters can be estimated by maximizing the
likelihood of this distribution, a method known as Maximum Likelihood Estimation (MLE)
defined as follows:

arg max
β>0,η>0

L
(
β, η|ti

)
=

n∏
i=1

(
Sβ,η(ti).hβ,η(ti)

)δi (
Sβ,η(ti)

)1−δi
. (2.2.2)

where Sβ,η and hβ,η are defined as follows:

Sβ,η(y) = exp

{
−
(y
η

)β}
, (2.2.3)

hβ,η(y) =
(β
η

)(y
η

)β−1
. (2.2.4)

Since the log function is an increasing function, this problem is equivalent to the log-likelihood
maximization problem defined by the following equation:

β̃, η̃ = arg max
β>0,η>0

log L
(
β, η|ti

)
(2.2.5)

= arg max
β>0,η>0

n∑
i=1

[
δi log

{
Sβ,η(ti).hβ,η(ti)

}
+ (1− δi) log

{
Sβ,η(ti)

}]
(2.2.6)
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Using the estimation of β̃ and η̃, the mean lifetime µ̃ can thus be estimated and can be
expressed as a mean lifetime of the Weibull distribution W (β̃, η̃) [93]:

µ̃i = η̃i.Γ
(

1 + 1
β̃i

)
∀i ∈ [n] (2.2.7)

where Γ is the Gamma function.
To ensure that the log-likelihood of Weibull distribution is concave, we made a choice

to add another constraint: we assume that the shape parameter β is greater or equal one
(β ≥ 1). In the next section, we consider the general case of a finite mixture of Weibull
distributions.

2.2.2.2 Finite Mixture of Weibull Distributions

Now, we suppose that the survival times variable T rather follows a mixture of p (< ∞)
Weibull distributions Wp = {W (βk, ηk), αk|k = 1, .., p}, where βk and ηk are respectively,
the shape and scale parameters of the kth Weibull distribution of the mixture, and αk are
the weighting coefficients that weigh the contribution of each Weibull distribution in the
mixture. Let β = (β1, .., βp), η = (η1, .., ηp) and α = (α1, .., αp). These weighting coefficients
verify:

α ≥ 0, ∀k = 1, .., p (2.2.8)
p∑
k=1

αk = 1. (2.2.9)

The density of the mixture Wp, noted fWp
, is defined by:

fWp
=

p∑
k=1

αk fβk,ηk (2.2.10)

=
p∑
k=1

αk Sβk,ηk(ti).hβk,ηk (2.2.11)

where fβk,ηk , Sβk,ηk(ti) and hβk,ηk are respectively the density, survival and hazard functions
of W (βk, ηk). Therefore, the log-likelihood of the mixture Wp can be written as follows:

log L
(
β, η, α|(ti)i

)
=

n∑
i=1

[
δi log

{ p∑
k=1

αkSβk,ηk(ti).hβk,ηk(ti)
}

+ (1− δi) log
{ p∑
k=1

αkSβk,ηk(ti)
}]

.

(2.2.12)

Therefore, we need to estimate the weighting coefficients (αk)k and the Weibull parameters
(βk)k and (ηk)k that maximize the log-likelihood and thus the likelihood of the event time
distribution (ti)i. We do this by solving the following optimization problem:

β̃, η̃, α̃ = arg max
β > 0, η > 0
αk≥0,

∑
k
αk=1

log L
(
β,η,α|(ti)i

)
. (2.2.13)
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Knowing the analytical expression of the estimated expectation of a single Weibull, and
given that the estimated mean µ̃ of a finite mixture of Weibull distribution weighted by α̃, is
the α̃-weighted combination of the means of the Weibull distribution µ̃k that compose this
mixture, i.e. µ̃ =

∑p
k=1 α̃k.µ̃k, with µ̃k is defined in Equation (2.2.7). Thus, the estimated

mean lifetime [93] can be written as follows:

µ̃ = α̃ diag (η̃1, .., η̃p) Γ(1 + β̃−1)T (2.2.14)

where T denotes the transpose of vector operator, and β̃−1 = ( 1
β̃1
, .., 1

β̃p
). We thus consider

µ̃i as the survival time estimation of the subject i.

2.3 Methodology
Now, we consider that the Weibull mixture’s parameters are modeled conditionally to the
features, i.e. we model ti|xi with a mixture of Weibull distributions and this is the main
contribution of DeepWeiSurv. Let’s describe the model in the next section.

2.3.1 Description of DeepWeiSurv
We name gp the multivariate function that models the relationship between a subject’s
covariates xi and the parameters of the mixture of p Weibull distributions. gp is defined as
follows:

gp : Rd → (Rp)2 ∪ (Rp)3

xi 7→

{
(β, η) if p = 1,
(α, β, η) otherwise.

(2.3.1)

This function also treats the particular case namely: single Weibull distribution, i.e. p = 1.
In this case, it is not required to estimate α because it is a scalar equal to 1. Since we
cannot represent this function analytically, we propose to use a deep learning framework for
this purpose. The resulting network-based model, which we call DeepWeiSurv has a global
architecture as illustrated in Figure 2.2. Therefore, by training DeepWeiSurv that maximize
the likelihood of the mixture, we have a network representation of the function gp which
means that we can estimate the parameters β and η as well as α (if p > 1). Our proposed
approach is therefore a multi-task network. As seen in Figure 2.2, DeepWeiSurv is consisted
of a common sub-network, a regression sub-network denoted by reg and a classification sub-
network (if p > 1) denoted by clf whose all hidden layers are fully connected and activated
by ReLU [94] activation function :

• The shared sub-network calculates a common representation in a latent space. It takes
as an input the survival data X of size n and calculates Z the latent representation of
the data. For a mixture setting, i.e. p = 1, clf and reg sub-networks take Z as input
towards outputting the estimate of α and that of the couple (β, η) respectively.

• For the regression sub-network, we use Exponential Linear Unit [37] (ELU) function
with constant equal to 1:

ELU(y) =
{
y if y > 0
ey − 1 otherwise.

(2.3.2)

We choosed this activation function for several reasons notably the fact that, unlike
ReLU function, it produces negative outputs which help the network updating its
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Figure 2.2: The architecture of DeepWeiSurv.
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weights and biases and also produces activations instead of letting them be zero, when
calculating the gradient in the network training phase. However, the regression sub-
network is expected to outputs strictly positive values for η output layer and values
greater than 1 for β output layer and as the co-domain of ELU is ] − 1,+∞[, the
network will rather learn: {

β − 2
η − 1− ε, ε > 0

(2.3.3)

to get around this constraint. After the training step, these offset operations β ← β+2
and η ← η + 1 + ε are then applied to recover the concerned parameters.

• Regarding the classification sub-network, this latter learn α while ensuring these two
constraints: {∑p

k=1 αk = 1
αk ∈ [0, 1] ∀k ∈ [p].

(2.3.4)

For this purpose we used a softmax [36] activation in the output layer of clf. Therefore,
reg learns the p vectors of parameters βk = (βik)i=1,..,n and ηk = (ηik)i=1,..,n, whereas
clf learns the p αk = (αik)i=1,..,n where αik is defined as the estimated probability of
the event {Y = ti} with Y is a random variable following W (βik, ηik).

In the case of when we model the survival times by a single Weibull distribution, i.e.
p = 1, we have α = α1 = 1, thus we don’t consider the classification sub-network.

2.3.2 Loss Function
We recall that the estimated parameters and coefficients are supposed to maximize the
likelihood of the mixture distribution. Thus, to train DeepWeiSurv, we use the following
loss function:

loss = − 1
n
log L(β, η, α|(ti)i) (2.3.5)

=
(2.2.12)

− 1
n

(
LT1 .∆ + LT2 .(1Rn −∆)

)
(2.3.6)

where 1Rn a vector of ones of size n, ∆ =
(
δ1, .., δn

)
is the vector of event indicators of all

the subjects and L1, L2 are defined as follows:

L1 = log
{

A.diag (Mf
β,η(t1)T , ..,Mf

β,η(tn)T )
}

(2.3.7)

L2 = log
{

A.diag (MS
β,η(t1)T , ..,MS

β,η(tn)T )
}

(2.3.8)

with A = (αik)1≤i≤n
1≤k≤p

and:

Mf
β,η(ti) =

(
hβk,ηk(ti)Sβ,ηk(ti)

)
1≤k≤p

(2.3.9)

MS
β,η(ti) =

(
Sβk,ηk(ti)

)
1≤k≤p

, ∀i ∈ [n] (2.3.10)

L1 exploits the information provided by the observed events of non-censored data and thus
use the density hβk,ηkSβk,ηk , whereas L2 exploits the censored subjects by extracting the



50 CHAPTER 2. DEEPWEISURV

Figure 2.3: Computational graph of the loss function used to train DeepWeiSurv.

knowledge that their respective events will occur after the end of the study. This means
that this information is the only one that we have about the right censored subjects hence
the use of the survival function Sβk,ηk . Figure 2.3 is an illustration of the computational
graph of our loss function used for training DeepWeiSurv. The inputs are the baseline data
of covariates x, the real values of survival times and event indicator vector are denoted by
the couple (t,∆) and the final outputs are the triplet (β, η, α) if p > 1 and (β, η) otherwise.

2.4 Experiments on Simulated Data

In this section, we run different experiments on synthetic datasets. The goal here is to
evaluate and then validate DeepWeiSurv, that is, to show that this latter is able to estimate
the mixture parameters. In the first experiment, the main idea is to estimate the likelihood
of a simulated mixture of Weibull Distribution and compare the estimation with the real
value for different forms that parameters can take. In the second experiment, we evaluate the
ability of the model to reproduce the relationship between the parameters and the covariates.
In the third experiment, we perform a clustering problem where the goal is to evaluate the
ability of DeepWeiSurv in estimating the weighting coefficients α. For the fourth and last
experiment, we observe the ability of our proposed approach in handling the highly censoring
setting.

2.4.1 Network Configuration
DeepWeiSurv consists of three sub-networks: the shared sub-network is a 4-layer network,
three of which are fully connected layers with 128,64,32 nodes respectively and the last one
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is a batch normalization layer. The regression and classification sub-networks consist of
two fully connected layers with 32 and 16 nodes respectively, and one batch normalization
layer with two ELU and softmax output layers, respectively. The hidden layers of the three
sub-networks are activated by ReLU. DeepWeiSurv is trained via Adam optimizer with a
learning rate of 10−4. The network is implemented in a Pytorch environment.

2.4.2 Experiment I: Likelihood Estimation
Let X be a set of n = 1000 one-dimensional observations generated from the uniform dis-
tribution U[0,1] of support [0, 1]. In this experiment, we simulate the Weibull parameters
conditionally to X, train DeepWeiSurv (of parameter p, the mixture size) and compare the
mean negative log-likelihood (mnll) in this experiment (defined in Equation (2.3.6)) esti-
mated by DeepWeiSurv with the real value. The models considered here are: DeepWeiSurv
with p = 1, 2, 3, 4 and 5 Weibull distributions. We propose four different case studies:

• Single Weibull Distribution of parameters β and η, dependent linearly to X, defined
by the following functions:

β = 3X + 2
η = 2X + 1

• A mixture of 2 Weibull distribution (70% for the first distribution, 30% for the sec-
ond one) of parameters (β0.7, η0.7) and (β0.3, η0.3) respectively. These parameters are
defined by the following functions:

β1 = 3X + 2 η1 = 2X + 1
β2 = 1.5X + 1 η2 = 0.5X + 0.5

• Single Weibull Distribution of parameters β and η. Both of them have a quadratic
form with respect X and defined as follows:

β = 2X2 + X + 1
η = X2 + X + 1

• A mixture of 2 Weibull distribution (70% for the first distribution, 30% for the sec-
ond one) of parameters (β0.7, η0.7) and (β0.3, η0.3) respectively. These parameters are
polynomial or order 2 and 3, and defined as follows:

β1 = 2X2 + X + 1 η1 = X2 + 1
β2 = 2X3 + 1 η2 = X2 + X + 1

The results are displayed in bar plot in Figure 2.4. We can notice from the results shown in
2.4 that, for all scenarios, all the models have found a good approximation of the real value
of the log-likelihood (the projection of the black horizontal line onto the y-axis). Still, some
models perform better than others in each case study. For instance, in the first case (2.4a),
the best approximations are provided by p = 2 and = p = 4 with mnll equal to 0.6193 and
0.634 respectively, whereas the real value is 0.629. In the second scenario (2.4b), given the
true value of mnll: 0.7498, p = 2 has the best approximation with a value of 0.7402. p = 1
gives a slight overestimation, whereas p ≥ 3 slightly underestimate the log-likelihood, but
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(a) Single Weibull - β, η linear. (b) p = 2, α = (0.7, 0.3) - βk, ηk linear.

(c) Single Weibull - β, η quadratic. (d) p = 2, α = (0.7, 0.3) - βk, ηk not linear.

Figure 2.4: Results of Experiment One: For each scenario, the mean negative log-likelihood
is estimated by each considered model (in bar plot) and compared with the real value (black
horizontal line).
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these three models still outperform p = 1. These seem logical because we generate a mixture
of 2 Weibull distributions, thus if DeepWeiSurv with p = 2 is well trained, it can only get
the best approximation of mnll. In addition, with p = 1, we have more chance to poorly
estimate the parameters of a mixture whose size is equal to 2 than with p ≥ 2, especially
when the two Weibull that compose the mixture are largely different. For the third scenario
(2.4c), p = 3 has the best estimation with a value of 0.669 where the true value is 0.66. And
finally, in the fourth scenario (2.4d) where the true value of the mean log-likelihood of the
simulated distribution is 0.6615, p = 2 provides the best estimation with a value of 0.6609
(difference of order 10−4) but the models with p = 3 and 4 respectively also get a good
approximation with a value of 0.658 and 0.6585 respectively.

In this experiment, we evaluated the performance of DeepWeiSurv (with different values
of p) in terms of estimating the likelihood of the distribution generated using different sce-
narios. Now, we will move to the next experiment, where the goal is to see more specifically
if DeepWeiSurv can get a good estimation of the mixture’s parameters.

2.4.3 Experiment II: Parameters-Features Relationship Modelling
In this experiment, we seek to investigate and evaluate DeepWeiSurv’s ability to model the
relationship between the baseline data features and the mixture parameters, Let X a vector
of size n = 5000 of one-dimensional samples drawn from the uniform distribution U[0,1] of
support [0, 1]. We propose four scenarios where in each one of them, we try to reproduce
the parameters of the distribution with which we generate the survival times used to train
DeepWeiSurv. In this experiment, we consider that all the samples are non-censored. The
case studies considered are as follows:

• We generate survival times following a single Weibull distribution whose parameters
β, η are linear and defined as follows:

β = X + 2 η = 1
2(X + 1).

• We generate survival time samples from a single Weibull distribution whose parameters
are defined by the following functions:

β = X2 + 2X + 2 η = 1
2X2 + X + 1

2 .

• We generate survival times drawn from a single Weibull distribution with parameters
defined by the following equations:

β = 2 sin (2X + 1) sin (1 + eX) + 7
2 η = cos (1 + X) eX2

+ 1
2 .

• We generate survival times from a 50-50 mixture of 2 Weibull distributions whose
parameters βi, ηi, i = 1, 2 are defined by the following functions:

β1 = X + 2 η1 = 1
2X2 + X + 1

2 ,

β2 = X2 + 2X + 2 η2 = 1
2(X + 1).

In the three first scenarios, we use DeepWeiSurv with p = 1, whereas the last, we use
DeepWeiSurv with p = 2. For each case study, we plot three figures: the estimate β̂ vs. β,
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η̂ vs. η and the estimated mean Ê vs. the exact mean. The results obtained are in Figure
2.5 (for Scenario 1, 2 and 3) and Figure 2.6 (for Scenario 4).

In Scenario 1 and 2 where we use a single Weibull distribution whose parameters have,
respectively, linear and quadratic forms, we can notice that the estimate β̂ and η̂ almost
coincide with β and η respectively. This means that the estimated mean Ê practically
coincides with E since this latter is a function of β and η and this is what we see in the plots
2.5g and 2.5h. For the third scenario, where the two parameters have a complex function,
we can see that the model has difficulty in estimating the shape of β; nevertheless, β̂ and
β are both decreasing, in the same range values and the values of both of them are not far
from each other, while η̂ almost coincide with η which still a good thing because as we see
in the plot 2.5i, the estimate of the mean lifetime Ê is finally almost equal to E. Therefore,
this case study allows us to see, in these three case studies, that η has the biggest impact
on the mean lifetime as this latter takes the shape of η and this is because Γ(1 + 1

β ) does
not vary enough and does not stray too far from 1 which means that E is almost linear with
respect η and, above all, they coincide in these cases as we see in 2.5g, 2.5h and 2.5i.

For the last case study (Figure 2.6), where we are dealing with a 50-50 mixture of 2
Weibull distributions, we can notice that β̂i and η̂i have practically the values of βi and
ηi respectively, except for β̂1 (see Figure 2.6a) which mostly under- or over-estimate the
true values but still with a small deviation. This deviation does not substantially affect the
quality of the mean estimate Ê (see Figure 2.6e) since the latter largely depends on the η̂i.

We can, therefore, conclude from this experiment, that DeepWeiSurv provides promising
results in modeling the relationship between the parameters (β, η) and the covariates X. Still,
the performance of DeepWeiSurv depends on the complexity of this relationship (Scenario
3 more complex than 1 and 2) as well as the size of the mixture (Scenario 4 more complex
than Scenario 1, 2, and 3).

2.4.4 Experiment III: Clustering
Here, we want to test and evaluate the ability of DeepWeiSurv in estimating the weighting
coefficients α. For this purpose, we conduct this experiment where we consider a problem
of clustering. The main idea is to generate a point cloud in such a way that it forms two
clusters that cannot be separated by a hyperplane. Each cluster is characterized by a Weibull
distribution, which means that all the samples belonging to a given cluster have time outputs
drawn from the same Weibull distribution. We draw samples with the function make moon
from a Python package called scikit-learn that generates two clusters in a shape of a moon in
the waxing crescent phase (we add a standard deviation of Gaussian noise in the make moon
function). For each sample i of the first cluster, we draw ti from W (β1 = 6.5, η1 = 5) and for
each sample j of the second cluster, we draw tj from W (β2 = 1.5, η2 = 0.5). The parameters
of these Weibull distributions are chosen in a such way that they are markedly different
(see Figure 2.7a). As in the previous experiment, here, we suppose that all the samples
are non-censored. We model the time distributions of these two clusters with a mixture of 2
Weibull distributions (DeepWeiSurv with p = 2). The main objective is to check if the model
can reproduce this clustering. For this purpose, we use, for each sample i, the estimate of
αi = (α1i, α2i) ∈ [0, 1]2 where αij is the probability that the sample i belong to the jth
cluster. We see the results in Figure 2.7b where we visualize the value of α2i of each sample
i. We use the colormap to represent the intensity of the variable that we visualize (between
0 and 1). Since α1i+α2i = 1,∀i, α2i equal or close to 0 (respectively 1) means that i belongs
to the cluster one (respectively cluster two).

We notice from the figure 2.7b, the big majority of samples are assigned to their real
cluster (the samples in red and purple as in Figure 2.7b). The samples that are at the edge
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(a) β̂ vs β - Scenario 1 (b) β̂ vs β - Scenario 2 (c) β̂ vs β - Scenario 3

(d) η̂ vs η - Scenario 1 (e) η̂ vs η - Scenario 2 (f) η̂ vs η - Scenario 3

(g) Ê vs E - Scenario 1 (h) Ê vs E - Scenario 2 (i) Ê vs E - Scenario 3

Figure 2.5: Results of Scenario 1 (first column) and 2 (second column): β̂ vs β in the first
row, η̂ vs η in the second one and Ê vs E in the last one.
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(a) β̂1 vs β1 (b) β̂2 vs β2

(c) η̂1 vs η1 (d) η̂2 vs η2

(e) Ê vs E

Figure 2.6: Results of Scenario 4: β̂i=1,2 vs βi=1,2 in the first row, η̂i=1,2 vs ηi=1,2 in the
second row and finally in the third row, the predicted mean Ê and the true mean of the
mixture E.
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(a) The drawn samples (b) The samples coloured w.r.t α2i

Figure 2.7: On the left, two generated clusters using the make moon function from scikit-
learn package. On the right, the clustering reproduced by DeepWeiSurv with p = 2 using
the values of the second component of α.

of their real cluster or close to the neighbor cluster have values between 0 and 1. Still,
the border points of the first cluster have α2i → 0 (blue-stained or colored in sky blue)
and those of the second cluster have α2i → 1 (have a color between yellow and orange).
This means that if we apply a certain threshold on α2i values for these border points, we
finally reproduce the clustering of this sample. We, therefore, conclude, that DeepWeiSurv
gives first promising results in the estimation of the weighting coefficients, at least when the
simulated data is well chosen.

2.4.5 Experiment IV: Censoring Threshold Sensitivity
The main objective in this experiment is to evaluate the performance of DeepWeiSurv with
respect to the censoring rate, denoted by rc, present in the data, i.e. the size of censored
samples against the size of the data. We aim at each scenario defined by a different value of rc,
reproduce the simulated distribution. Admittedly, the difficulty of modeling the distribution
increases with the censoring rate but also varies with the shape of the distribution. For this
purpose, we test two different shapes in this experiment: uni-modal and bi-modal mixture.

2.4.5.1 Uni-Modal Mixture

In this case study, we draw n = 10000 time samples from W3 a mixture of three Weibull
distributions of parameters (β1 = 1.5, η1 = 0.5), (β2 = 2, η2 = 1) and (β3 = 2.5, η3 = 2)
respectively, with weighting coefficients of 0.4, 0.3 and 0.3 respectively. The composing
Weibull and the mixture distributions are plotted in Figure 2.8a. At an initial stage, we
train DeepWeiSurv with p = 3 on the samples without considering the censoring rate, i.e.
we first consider that all the samples are non-censored, and obtain the predicted values of
the triplets of parameters denoted (α̂i, β̂i, η̂i)i=1,2,3. We plot, as shown in Figure 2.8b, the
predicted Weibull densities as well as the mixture of them using the parameters (β̂i, η̂i)i=1,2,3
and the predicted weighting coefficients (α̂i)i=1,2,3. We can notice that DeepWeiSurv has
reproduced the three composing Weibull distributions of the mixture considered. Now, we
choose different values of the censoring rate rc. This means that for each value of the
censoring rate rc, we have a censoring time tc, described as a threshold, above which the
recorded time is considered as censored. By applying the censoring rate rc, the samples
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(a) Simulated Weibull distributions (b) Predicted Weibull distributions.

Figure 2.8: The density of Weibull distributions simulated on the left, and predicted ones
on the right.

are split into non-censored instances (of portion 1-rc) and censored ones (rc). Then, for
each case study, we train DeepWeiSurv with p = 3 on the samples (censored and non-
censored) associated and compare the simulated mixture distributionW3 with the one which
is predicted by the model since the goal is to estimate the overall distribution. We obtain
the results for rc ∈ {0, 0.25, 0.35, 0.45, 0.65, 0.75, 0.85, 0.95} in Figure 2.9. The purple curve
corresponds to the density of the mixture W3 simulated whereas the brown curve represents
the density of the mixture predicted by DeepWeiSurv (p = 3). The censoring time tc is
represented in all the plots with a red vertical line.

The first thing that we can notice, regarding the censoring rate rc, is that the higher is
the censoring rate, the poorer is the prediction of the model which is logical since when we
increase further the ratio of censored samples, we have less information about the overall
distribution. Although, the model learns the general shape of the density in all cases. For
rc = 0, which means that all the time samples are non-censored, the density of the predicted
mixture coincides with that of the mixture W3 simulated as seen in Figure 2.9a. The same
goes for rc = 0.25, 0.35, and 0.45, where the model keeps practically the same accuracy, as
for rc = 0, in estimating the mixture density. For rc = 0.65 and rc = 0.75, the respective
predicted densities of the underlying distribution have approximately the same value of the
peak as the real one and in the same position as well, but slightly overestimated shortly after
the peak and then underestimated with earlier mitigation.

For rc = 0.85 and rc = 0.95, the peak of the density is slightly overestimated, and the
slope of the decreasing part of the curve (shortly after the peak) is greater than that of the
real one, which means that the mitigation of the respective densities is earlier than expected
as shown in Figure 2.9g and Figure 2.9h. The model loses more accuracy because when
85% or 95% of the samples are censored, the model cannot have enough information about
the tail of the underlying distribution and this renders the estimation more constraining.
Still, the model correctly predicts the position of the peak. We can say that DeepWeiSurv
provides promising results in handling the highly censoring setting in the case of uni-modal
Weibull distribution.

2.4.5.2 Bi-Modal Mixture

We conduct a similar experiment but we used three Weibull distributions in a such way that
their mixture generates two peaks (bi-modal mixture). This example is more complicated
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than the previous one for the simple reason that in the case of an important censoring rate,
the model could have difficulty predicting the second peak especially if it is separated from
the first one in time. Let W3 be a mixture of three Weibull distributions whose parameters
are respectively, (β1 = 2, η1 = 0.5), (β2 = 2.5, η2 = 2 and (β3 = 4, η3 = 3) with weighting
coefficients of 0.4 0.2 and 0.4 respectively (see Figure 2.10a). In this experiment, we test the
following values of the censoring rate rc: 0, 0.3, 0.4, 0.65, 0.75 and 0.85. For rc = 0 and 0.3,
the model has a good estimation of the underlying distribution (the brown and purple curves,
representing the predicted and the simulated distributions respectively). Now, when we set
40% of the samples to censored status, DeepWeiSurv slightly underestimates the second peak
of the mixture (as seen in Figure 2.10d), and the more we increase the censoring ratio, the
more the model has difficulty in estimating the position and the magnitude of the second
peak until it ignores it, as we see for the case rc = 0.85. This seems logical because for
instance when we say that 50% of the time samples are censored, this means that all the
time samples that are greater than the median time are not observed, thus if the second
peak of the mixture is in this non-observed region, the model has difficulty to predict if
there is another peak or more generally the shape of the density in this non-observed region.
Therefore, this difficulty increases with the censoring rate. As we see in Figure 2.10e, the
model further underestimates the position of the second peak with an earlier attenuation
(the same goes for rc = 0.75). Finally, in the case where we have 85% of the time samples are
censored, the model only predicts the position of the first peak with a slight overestimation
of its magnitude. In this scenario, the model has completely ignored the second peak and
replaces it with earlier density mitigation. Certainly, in the case of the bi-modal mixture,
DeepWeiSurv has more difficulties handling a highly censoring setting than in the uni-modal
mixture case, but still manages samples with an important portion of censored ones.

2.5 Conclusion
In this chapter, we presented a novel network-based approach to the survival analysis, called
DeepWeiSurv. The main idea behind this approach is to assume that event times distribu-
tion can be modeled by a mixture of Weibull distributions whose parameters are functions
of the covariates at an individual scale. DeepWeiSurv, therefore, learns, via its regression
and classifier sub-networks, these parameters as well as the mixture weighting coefficients,
respectively, by maximizing the log-likelihood of the mixture. We conducted four different
simulated experiments on simulated data to assess different properties of the model. In the
first experiment, the goal was to estimate the likelihood of a simulated mixture of Weibull
distribution whose parameters take different shapes with respect to the features of the gen-
erated data and where DeepWeiSurv had good performance for all scenarios considered.
Whereas in the second experiment, the main objective was to evaluate the ability of Deep-
WeiSurv to model the relationship or the function that links the covariates to the parameters
of a mixture of Weibull distributions. To do so, we tested DeepWeiSurv with different nature
of the relationship (linear, quadratic, and a trigonometric-based function) and in a case of
single and a mixture of 2 Weibull distributions, where, even if the complex scenarios result in
an overall loss of performance, it showed generally good performance. The third experiment
was dedicated to the weighting coefficients estimation which tells us about the importance of
each Weibull distribution that composes the mixture. We conducted a clustering experiment
where each cluster is labeled by a Weibull distribution. The goal was to evaluate the ability
of the model to estimate the Weibull distributions parameters of each sample from both
clusters where samples from the same cluster are expected to have the same values of the
parameters. DeepWeiSurv had easily and correctly estimated the parameters of the samples
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that are far from the neighbor cluster, but with a slight difficulty for the samples in the
border. Finally, we evaluate the sensitivity of DeepWeiSurv towards the increasing of the
censoring rate. We showed that in general, DeepWeiSurv handles a highly censoring setting
for single-mode mixture, but for bi-modal mixture, the model tends to ignore a part of the
distribution as the censoring rate increases, but the model still handles a significant portion
of censored data. The last experiment showed that the approach allows considering many
survival time horizons of prediction. In the next chapter, we will discover an extension of
this approach where the final size mixture is to be estimated.
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(a) rc = 0 (b) rc = 0.25

(c) rc = 0.35 (d) rc = 0.45

(e) rc = 0.65 (f) rc = 0.75

(g) rc = 0.85 (h) rc = 0.95

Figure 2.9: Results of the conducted experiment on the single-mode mixture repeated with
different values of censoring rates rc: densities of the simulated mixture vs. predicted mix-
ture.
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(a) Bi-modal mixture

(b) rc = 0 (c) rc = 0.3

(d) rc = 0.4 (e) rc = 0.65

(f) rc = 0.75 (g) rc = 0.85

Figure 2.10: In the first row: density of W3 and those of the Weibull distributions that
compose this mixture. In the remaining rows: results of the conducted experiment on
the bi-modal mixture repeated with different values of censoring rates rc: densities of the
simulated mixture vs. predicted mixture.



Chapter 3

DPWTE: A Deep Learning
Approach to Survival Analysis
using a Parsimonious Mixture of
Weibull Distributions

3.1 Introduction
In this chapter, we propose an extended version of DeepWeiSurv, the network-based ap-
proach to time-to-event analysis, that we have described in the previous chapter. As for
DeepWeiSurv, we assume that the underlying event-time distribution can be modeled by a
finite mixture of Weibull distributions whose parameters are to be estimated conditionally
to the baseline data features at an individual level. In addition, no particular assumption
about the nature of the relationship between the parameters and the features is made. The
main difference here compared to DeepWeiSurv, is that we seek to estimate the optimal
combination of the Weibull distributions assuming that the size of this optimal mixture is
not fixed. This means that it is up to the model that we propose, which we call DPWTE
standing for Deep Parsimonious Weibull Time-to-Event, to estimate the optimal number of
Weibull distributions, as well as their respective parameters, it needs to combine to model
the underlying event-time distribution, unlike to DeepWeiSurv where this number; the mix-
ture size p; is fixed. This novel approach, therefore, guarantees more freedom in modeling
the underlying distribution. For this purpose, given an upper bound of the size mixture,
the model selects the distributions that have an important contribution to the final mixture,
through the weights of a special layer that we call Sparse Weibull Mixture described as a
filter. In order to stimulate this selection, we penalize these weights by applying a sparse
regularization using the `0.5 norm. The main contributions of this extended approach of
DeepWeiSurv are summarized as follows:

• The survival times are assumed to be drawn from a random variable that follows a
finite mixture of Weibull distributions.

• The right-censored observations are considered in the conception of the model.

• Without fixing the size of the mixture as done for DeepWeiSurv, but rather by setting

63
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an upper bound pmax of the number of Weibull distributions with which we seek
to model the underlying distribution, the network-based model learns, through the
special layer called Sparse Mixture Weibull, the optimal combination of the Weibull
distributions, by estimating the parameters as well as the weighting coefficients of these
distributions that compose this mixture and thus the size of the latter (initially set to
an upper bound pmax).

This chapter is organized as follows. In Section 3.2, we describe the architecture of the
DPWTE’s network, highlighting the role of the Sparse Weibull Mixture layer in this ap-
proach. We also describe our proposed loss function and justify this choice. In section 3.3,
we conduct three different simulations on different simulated datasets tested in different
scenarios where we evaluate the performance of DPWTE in terms of modeling the relation-
ship covariates-parameters, estimating the weighting coefficients, and finally handling highly
censoring setting. We conclude this chapter in Section 3.4.

3.2 Methodology
We remind that the goal is to model a time-to-event distribution with a finite mixture of
Weibull distributions. The question that deserves to be asked is with how many Weibull
distributions, we compose a mixture that could model a given event-time distribution. In
other words, we need to know the estimated value of the mixture size p for the most accurate
modeling of a specific survival time distribution. This problem was not identified in the
DeepWeiSurv model since p is fixed. Using this approach, we will need to test with different
values of p to find the optimal one in terms of the model’s performance. In this section, we
will present and describe the DPWTE model which proposes a solution to this issue.

3.2.1 Description of DPWTE
As discussed above, DeepWeiSurv fixes the value of p, the number of Weibull distributions
used for distribution modelling. Hence, we don’t know if this value is the optimal one, and
this represents one of the limitations of this approach. DPWTE’s approach addresses this
issue, it has almost the same architecture and configuration as DeepWeiSurv, but the only
difference is that, in the clf sub-network, we interleave a new layer called Sparse Weibull
Mixture layer between the softmax layer and the output layer of clf as shown Figure 3.1
As for DeepWeiSurv, this network learns the triplet (α, β, η) that maximizes the likelihood
of the mixture distribution. However, we will not necessarily use all the outputs to model
the distribution, because we only combine the Weibull distributions whose weights, stored in
the Sparse Weibull Mixture layer, are selected in the post-training steps (see Section 3.2.3).
This weight selection is monitored by the sparse regularization that we apply on this layer
(see the loss function in Section 3.2.4).

3.2.2 Sparse Weibull Mixture Layer
We recall that we seek to find the number of Weibull distributions with which we compose
the mixture to have the most accurate modeling of the underlying event-time distribution. In
other words, we assume here that p that denotes the mixture size is a variable that we need to
estimate where the final mixture size estimate is denoted by p̃ initially set to an upper bound
pmax, i.e. p = pmax before training DPWTE. The latter is set, beforehand, at a sufficiently
large value. For this purpose, we introduce the Sparse Weibull Mixture layer. This layer
performs an element-wise multiplication of its weights by the softmax layer outputs in the clf
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Figure 3.1: The architecture of DPWTE

Figure 3.2: Softmax and Sparse Weibull Mixture layers of clf sub-network.
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Figure 3.3: Schematic figure depicting the post-training steps of composing the optimal
mixture of Weibull distributions.
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sub-network. As we see in Figure 3.2 that describes the softmax and Sparse Weibull Mixture
layers, we have αk = ωspk � qk, where qks are the outputs of the softmax layer (in the case
of DeepWeiSurv, p̃ = p and qk = αk, k = 1, .., p), ωspk s are the weights of the Sparse Weibull
Mixture layer and � denotes the element-wise multiplication. The weights ωspk , through the
importance of their values, can tell us if W (βk, ηk) has a significant contribution to the final
mixture. In order to interpret the value of ωspk to know which Weibull distributions must be
used for the modelling, we need to satisfy the following conditions:

1. ωspk ∈ [0, 1],

2. αk ∈ [0, 1], k = 1, .., p,

3.
∑p
k=1 αk = 1.

The constraint on ωspk (1) can’t be guaranteed even if we initialize them in that way. The
constraints (2) and (3) are established to guarantee that α is a probability vector. As αk =
ωspk � qk and qk ∈ [0, 1], we have (1) =⇒ (2) and thus the latter is automatically checked
if (1) is already checked. To ensure implicitly these constraints, we apply the following
transformations:

(T1) ωspk ←
|ωspk |∑p
l=1|ω

sp
l |
, k = 1, .., p (3.2.1)

(T2) αk ←
αk∑p
l=1 αl

, k = 1, .., p. (3.2.2)

(T1) is applied in the calculation of the Sparse Weibull Mixture layer’s outputs (before nor-
malizing α, αk = T1(ωspk )� qk). Whereas (T2) is an operation performed in the architecture
of the model (Normalizer step, see Figure 3.2) to train correctly the network (the loss func-
tion uses α as a probability vector) and in one of the post-training steps, after selecting the
’significant’ distributions to compose the optimal mixture (αk become α′k, see Figure 3.3).

3.2.3 Post-Training Steps: Selection of Weibull Distributions to
Combine for Time-to-Event Modelling

So far, we have not yet estimated the value of p̃. The learning phase is the same as for
DeepWeiSurv (even if they don’t have the same loss function, we will see this in detail
in section 3.2.4). However, after the DPWTE’s network is trained, we select the triplets
(αk, βk, ηk) such as αk is greater or equal a certain threshold denoted by αth that we fix
beforehand. As we change the distribution of α after this selection (before training: α =
(α1, .., αp) and after training and selection process: α = (αk, αk ≥ αth) but we want to keep
the probability constraint, we thus need to apply the transformation (T2) to the new α.
Therefore if A = {(αk, βk, ηk)|αk ≥ αth} is the set of selected triplets for modelling, then:

1. p̃ = Card(A)

2. α = (αk, αk ≥ αth) −→
T2

α′

3. β = (βk, αk ≥ αth) −→
offset(+2)

β′

4. η = (ηk, αk ≥ αth) −→
offset(1+ε)

η′



68 CHAPTER 3. DEEP PARSIMONIOUS WEIBULL TIME-TO-EVENT

Algorithm 1 Post-Training Steps Algorithm
Require: dpwte, αth
Ensure: α′, β′, η′.

1: α̂, β′, η′ ← empty lists
2: Train DPWTE network dpwte
3: Output the mixture parameters using dpwte: α, β, η
4: for k = 1, .., p do
5: if αk ≥ αth then
6: βk ← βk + 2
7: ηk ← ηk + 1 + ε
8: α′.append(αk)
9: β′.append(βk)

10: η′.append(ηk)
11: end if
12: end for
13: Apply (T2) on α′

where offset(γ)(θ) = θ+γ. The underlying event-time distribution can therefore be modeled
by: ∑

(αk,βk,ηk)∈A

α′kW (β′k, η′k).

This post-processing is described by Figure 3.3. As illustrated in this figure, the model
learns the 2 × pmax parameters βk, ηk and the pmax weighting coefficients αk, then using
a threshold αth and after applying the normalization (T2) and offsets respectively on the
weighting coefficients and the parameters, we obtain the selected triplets representing Weibull
distributions whose mixture is the optimal one for modeling the underlying time distribution.
The algorithm used to execute these post-training steps to find the selected parameters is
given in Algorithm 1.

3.2.4 Loss Function
As discussed in previous sections, DPWTE is supposed to find the optimal combination
of Weibull distributions. For these reasons, we propose, using notations established in the
previous chapter, to train DPWTE with the following loss function:

loss = −log L(β, η, α|(ti, δi)i) + λ||ωsp|| 1
2
, (3.2.3)

= −(LLδ=1 + LLδ=0) + λ||ωsp|| 1
2
. (3.2.4)

where:

• LLδ=1 =
∑n
i=1 δi log

{∑p
k=1 αkSβk,ηk(ti).hβk,ηk(ti)

}
is the contribution of the non-

censored observations,

• LLδ=0 =
∑n
i=1(1 − δi) log

{∑p
k=1 αkSβk,ηk(ti)

}
is the contribution of the censored

observations,

• λ is the regularization parameter,
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Figure 3.4: Computational graph of the loss function used to train DPWTE.

• and ||ωsp|| 1
2

=
∑p
k=1

√
|ωspk |.

The first element of the loss is the negative log-likelihood which is used as a loss function
for DeepWeiSurv. We recall that LLδ=1 is the partial log-likelihood of the recorded times
which are non censored, while LLδ=0 exploits the information provided by the censored times
namely the knowledge that the concerned events do not occur before the end of the study.

To stimulate the triplet selection process discussed in the previous section, we apply a
sparse regularization on ωsp = (ωspk )1≤k≤p the weights of Sparse Weibull Mixture layer by
adding the penalty term λ||ωsp|| 1

2
to the loss function, hence the name of Sparse Weibull

Mixture layer and the word ’Parsimonious’ in the name of the model. The purpose behind
the sparse regularization is to enforce sparsity in the layer that contains the vector ωsp
or at least encourage some ωspk to become almost zeros, and in this case, the threshold
ωth is applied. Clearly, the `0 regularizer is ideal for this purpose in the sense of yielding
the most sparse weights. However, the `0 norm is non-differentiable, we, therefore, cannot
incorporate it directly as a regularization term in the loss function. C. Louizos et al. [95]
proposed a solution through the inclusion of a collection of non-negative stochastic gates,
which collectively determine which weights to set to zero but it is a complex optimization
problem that is difficult to be solved. The solutions of the `2 regularizer are smooth, but they
do not possess the sparse property. While the `1 regularizer leads to a convex optimization
problem, but it does not yield a sufficiently sparse solution. X. ZongBen et al. [96] proposed
`0.5 norm as the new regularizer which is more sparse than the `1 regularizer while it is still
easier to be solved than the `0 regularizer. The sparsity property of `0.5 regularization was
demonstrated by Fan et al. [97]. In this approach, we opt for `0.5-regularization as we see
in the proposed loss function. Figure 3.4 is an illustration of the computation graph of the
proposed loss function. The inputs are the baseline data of features x as well as the times
recorded (ti)i and the outputs are βk, ηk and ηk used to calculate LLδ=1 and LLδ=0. The
weights ωsp1 , .., ωspp are used to calculate the penalty term using the `0.5 norm.
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3.3 Experiments on Simulated Data

In this section, we conduct three experiments on synthetic datasets where the main goal
is to empirically investigate our proposed approach. These simulations are by no means
exhaustive but are intended to verify that the methodology behind behaves as expected. In
the first experiment, we evaluate the ability of DPWTE to learn the relationship between
the mixture parameters and the baseline data features. Three scenarios are simulated with
different functions of different levels of complexity as well as different mixture sizes. In the
second simulation, we perform a clustering based on the weighting coefficient values, as done
for DeepWeiSurv in the previous chapter, to evaluate the ability of DPWTE in estimating
the weighting coefficients α and the size of the mixture needed to do so. We generate
different shapes of datasets namely noisy moons, noisy circles, and noisy blobs. In the third
and last experiment, we evaluate the ability of the network in handling the different levels of
censoring settings. We test three different shapes of mixture: uni-modal (i,e. with one peak),
bi-modal, and tri-modal mixtures. We would point out that these experiments were also run
with different values of αth (10k, k = −2,−3,−4,−5) to test different levels of tolerance and
check whether the respective results are better. However, the same patterns were found in
these settings, we therefore only keep the following value of the threshold αth = 0.1 in this
chapter. We would also highlight that p̃ should not always equal the number of Weibull
distributions with which we simulate survival times (see an example in Section 3.3.4).

3.3.1 Network Configuration
DPWTE consists of a shared sub-network which is a 4-dense-layer network where the batch
normalization is applied immediately following the first fully connected layer. These four
hidden layers have 128, 64, 32, and 16 nodes respectively. The regression sub-network has
two dense layers with 16 and 8 nodes respectively, whose the second one is batch normalized
and two ELU output layers, while the classifier sub-network is composed of 2-dense layers
with 16 and 8 nodes respectively, a softmax layer followed by the Sparse Weibull Mixture
layer whose weights are initially generated using the uniform distribution of support [0,1].
The hidden layers are activated using the ReLU function. The network is trained via Adam
optimizer with a learning rate of 10−4. We initialize the mixture size with pmax = 10,
set the regularization parameter λ = 10−4 and finally set the threshold αth = 0.1 for the
post-training operations.

3.3.2 Experiment I: Parameters-Features Relationship Modelling
The purpose of this experiment is to investigate and evaluate DPWTE’s ability to model
the relationship between the baseline data features and the mixture parameters. Let X be
a vector, of size n = 5000, of one-dimensional samples drawn from the uniform distribution
U[0,1] of support [0,1]. We consider three scenarios where we seek to reproduce the rela-
tionship between the covariates X and the mixture parameters with which we draw survival
time samples, used to train DPWTE. We assume for this experiment that all the samples
are non-censored. The scenarios considered here are defined as follows:

• The survival times samples are drawn from a single Weibull distribution where the
parameters are defined as follows:

β = X2 + 2X + 2 η = 1
2X2 + X + 1

2 .
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• We generate survival times from a single Weibull distribution with parameters defined
by the following functions:

β = 2 sin (2X + 1)sin (1 + eX) + 7
2 η = cos (1 + X) eX2

+ 1
2 .

• We generate survival times from a 50-50 mixture of 2 Weibull distribution whose pa-
rameters β1, η1, β2, η2 are defined by the following functions:

β1 = X + 2 η1 = 1
2X2 + X + 1

2 .

β2 = X2 + 2X + 2 η2 = 1
2(X + 1).

We compare the results of DPWTE and DeepWeiSurv. In the two first scenarios, we use
DeepWeiSurv with p = 1, while in the last, we use DeepWeiSurv with p = 2. We set
pmax = 10 for all scenarios. For each case study, we plot the simulated parameters β, η
against their respective estimates. In these defined scenarios, we do not need to plot the
estimated expectation since, using this data configuration, it has the same shape as the
parameter η as shown in the second simulated experiment of the previous chapter. The
results of the first scenarios are displayed in Figure 3.5 and those of Scenario 3 in Figure 3.6.

For the first scenario, we train DPWTE and obtain the mean of α̂ over the 5000 instances:
(2.1e−5, 4.15e−7, 2.9e−4, 9.976e−1, 3.15e−8, 1.8e−3, 9.97e−10, 4.8e−7, 2.57e−4, 3.107e−
10), where, by applying the threshold αth, the fourth distribution (average of α̂4 = 0.9976) is
the only distribution selected and thus we obtain p̃ = 1 which seems logical, since the survival
times are drawn from one Weibull distribution. The results of the estimate parameters
β̂ = β̂4, η̂ = η̂4 associated are plotted in Figure 3.5a and Figure 3.5c respectively, and those
of DeepWeiSurv associated are shown in Figure 3.5b and 3.5d. We can notice that DPWTE
and DeepWeiSurv have practically the same performance. In the second scenario, where
the relationship between the Weibull parameters and X are more complex than that in
the first case study for no other reason than that we have a composition and product of
exponential and trigonometric functions, whereas in the first scenario, the relationship is
polynomial of degree 2. The trained network outputs α whose mean is equal to (1.0333e−5,
7.7868e−7, 5.8331e−6, 1.5778e−4, 3.5203e−7, 9.9988e−1, 5.4700e−6, 7.9631e−7, 6.0515e−7,
2.6980e−5), therefore by applying the threshold αth, we obtain p̃ = 1 and the post-training
steps only select the sixth distribution since α6 is the only weighting coefficient above the
threshold. The results of the estimate parameters β̂ = β̂6, η̂ = η̂6 associated are plotted in
Figure 3.5e and 3.5g respectively, and those of DeepWeiSurv associated are shown in Figure
3.5f and 3.5h. As we notice, non-smooth parts of the curve aside, both models provide a
good approximation of η (Figure 3.5g) as for DeepWeiSurv (Figure 3.5h), while for β, they
had more difficulty to model the function (Figure 3.5e and Figure 3.5f for DPWTE and
DeepWeiSurv respectively).

For the last case study, we train DPWTE and obtain the estimation of the weighting
coefficients α̂ whose mean over the samples is (0.447, 0.46, 9.5e−4, 7.659e−4, 8e−4, 0.02,
5e−3, 0.065, 4.84e−4, 9.9e−8), which means that, after applying the threshold αth = 0.1, the
process selects the two first distributions to model the simulated mixture, which means that
p̃ = 2. We notice that the average of α̂1 and α̂2 are close to each other and this implies
that after normalizing, we obtain approximately a 50-50 mixture. Now let’s describe the
results of the mixture parameters selected shown in Figure 3.6. In this figure, we notice
that DeepWeiSurv, as shown in Section 2.4.3 of Chapter 2, provides estimate values that
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(a) DPWTE: β in Scenario 1 (b) DeepWeiSurv: β in Scenario 1

(c) DPWTE: η in Scenario 1 (d) DeepWeiSurv: η in Scenario 1

(e) DPWTE: β in Scenario 2 (f) DeepWeiSurv: β in Scenario 2

(g) DPWTE: η in Scenario 2 (h) DeepWeiSurv: η in Scenario 2

Figure 3.5: Results of DPWTE and DeepWeiSurv in Scenarios 1 and 2.
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(a) DPWTE: β̂1 vs β1 (b) DeepWeiSurv: β̂1 vs β1

(c) DPWTE: η̂1 vs η1 (d) DeepWeiSurv: η̂1 vs η1

(e) DPWTE: β̂2 vs β2 (f) DeepWeiSurv: β̂2 vs β2

(g) DPWTE: η̂2 vs η2 (h) DeepWeiSurv: η̂2 vs η2

Figure 3.6: Results of DPWTE and DeepWeiSurv for Scenario 3.
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practically coincide with the real ones. The same goes for DPWTE which has the same
performance as DeepWeiSurv but the only difference is that the model started by modeling
the mixture with pmax=10 Weibull distributions and found out, after training, that he only
needs 2 Weibull distributions to do so which coincide with the exact size of the simulated
mixture.

3.3.3 Experiment II: Clustering
In this experiment, we want to evaluate the ability of DPWTE in estimating the weighting
coefficients used to generate the simulated survival times. For this purpose, we consider
the problem of clustering in this experiment. The main idea here is to generate m clusters
C1, .., Cm not linearly separable. Each cluster Ci is labeled by a Weibull distribution. In other
words, the samples that belong to a cluster Ci have their respective survival times that are
drawn from the same single Weibull distribution of parameters βi, ηi. We test three case
studies:

• We draw 10000 samples using the function make moon (Figure 3.7a) from the scikit-
learn package of Python, half of which forms the first cluster C1 and the second half
forms the second one C2. These clusters are in a shape of a moon in the waxing crescent
phase hence the name of the function. We add a standard deviation of Gaussian noise
to have thick clusters (std = 0.15). We draw for the samples of C1, time outputs from
a single Weibull distribution whose parameters are β1 = 6.5, η1 = 5, whereas for the
samples belonging to C2 have their survival times drawn from a Weibull distribution
of parameters β2 = 1.5, η2 = 0.5.

• We draw 10000 samples using the function make circles (Figure 3.8a) from scikit-learn
package of Python, regularly distributed on two clusters C1, C2. These clusters are two
nested circles, i.e. a large circle containing a smaller circle in 2d. We apply a standard
deviation on 0.1 to generate noisy circles. For each sample i of the small cluster C1,
we draw ti the time output from a Weibull distribution β3 = 3.5, η3 = 2.5 and for each
sample j from the bigger cluster C2, we draw tj from W (β4 = 5, η4 = 7.5).

• We draw 15000 samples using the function make blobs (Figure 3.9a) from scikit-learn
package to generate three isotropic clusters with a Gaussian noise (standard deviation
of 0.8), fairly shared among the three clusters Ci=1,2,3. C1 is characterized by W (β1, η1),
C2 is characterized by W (β2, η2), while C3 is labeled by W (β3, η3).

In each scenario, the Weibull distributions with we which we label the clusters are chosen in
a such way that their respective densities are markedly separated in time. As in the previous
experiment, we assume that all samples are non-censored. We recall that the objective of
this experiment is to check if the model can reproduce the clustering. We train DPWTE in
each scenario, and obtain the estimate α̂i = (α̂i1, .., α̂ip̃) for each sample i ∈ ∪

k∈[m]
Ck after

applying the threshold αth = 0.1 and α-normalization, where p̃ is the estimated size of the
mixture predicted and α̂ik = P(i ∈ Ck) is the probability that the sample i belongs to the
cluster Ck. Since

∑p̃
k=1 α̂ik = 1 as well as α̂ij and 1 −

∑
k 6=j α̂ik are complementary, the

latter thus provide the same information. We use the colormap to represent the intensity of
the variable to visualize (between 0 and 1).

3.3.3.1 Results and Discussion

In the two first scenarios, we obtain p̃ = 2, whereas, in the third scenario, we obtain p̃ = 3,
which means that DPWTE estimate exactly the optimal mixture size in these three cases.
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(a) The drawn samples (b) The samples coloured w.r.t α̂i2

Figure 3.7: On the left, two noisy moons generated using the make moon function from
scikit-learn package. On the right, the clustering reproduced by DPWTE using the values
of the second component of α̂ (p̃ = 2).

(a) The drawn samples. (b) The samples coloured w.r.t α̂i2

Figure 3.8: On the left, two nested noisy circles generated using the make circle function
from scikit-learn package. On the right, the clustering reproduced by DPWTE using the
values of the second component of α̂ (p̃ = 2).
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(a) The drawn samples. (b) The samples coloured w.r.t 1 - α̂i2.

(c) The samples coloured w.r.t 1 - α̂i1. (d) The samples coloured w.r.t 1 - α̂i3.

Figure 3.9: Three clusters generated using the make blobs function of scikit-learn package
as well as their reproduced clustering performed by DPWTE (p̃ = 3).
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In Figure 3.7 and Figure 3.8 corresponding to Scenario 1 and 2 respectively, we visualize
(α̂i2, i ∈ C1 ∪ C2). We notice, for the moon-shaped clusters (3.7b), the big majority of samples
from C1 and C2 have their value of α̂i2 associated equal to 0 and 1 respectively. Only the
samples that are in the edge of the cluster that faces towards the neighbor cluster have
values between 0 and 1. Still, the border points in the edge of C1 are blue stained or colored
in sky blue, which means that α̂i2 converges to 0 (according to the colormap), and those
of C2 is rather between yellow and orange, i.e α̂i2 converges to 1. Compared to the same
clustering performed by DeepWeiSurv in the previous chapter, DPWTE performs the same
result starting with pmax = 10 Weibull distributions and finding the optimal mixture of size
p̃ = 2 as expected. For the nested-noisy-circle clusters, the samples of the outer noisy circle
making C2 have almost all the value of α̂i2 equal to 0.95, except those in the surface to
the smaller circle whose α̂i2 values are between 0.85 and 0.95 which still a good result (far
from 0.5), whereas for the inner circle forming the cluster C1, the samples belonging to the
latter have their respective values of α̂i2 not far from zero (colored in a blue sky) except for
those that find themselves in the edge facing towards the outer noisy circle which has greater
values but still acceptable (between blue sky and green, i.e. α̂i2 way below 0.5).

In the third scenario, we have two degrees of freedom since α̂i1 + α̂i2 + α̂i3 = 1. We
thus visualize for each cluster Ck the value of 1− αik (Figure 3.9c for C1, Figure 3.9b for C2
and finally Figure 3.9d for C3). We can notice that the majority of the samples belonging to
the two last clusters are correctly labeled (colored in purple) (1 − α̂i2 = 0 and 1 − α̂i3 = 0
respectively) except the border points on the edge facing toward the two neighbors where the
values are not zero but still not far from zero. Whereas the non-border samples of the first
cluster are blue coloured, which means that their respective values of 1− α̂i1 are not exactly
zero ( 1 − α̂i1 between 0.1 and 0.2) and the border points are blue sky coloured, still their
respective values far below 0.5 which are acceptable values because by applying a threshold
these samples are correctly labeled. We therefore conclude that DPWTE can have a good
estimation of the weighting coefficients regardless the distribution of the baseline data and
can also provide an improvement when compared to DeepWeiSurv (e.g. in the first scenario).

3.3.4 Experiment III: Censoring Threshold Sensitivity
The main objective in this experiment is to evaluate the performance of DPWTE with respect
to the censoring rate, denoted by rc, present in the data, i.e. the size of censored samples
against the size of the data. We aim at each scenario defined by a value of rc, reproduce
the distribution simulated. Admittedly, the difficulty of modelling the distribution increases
with the censoring rate, but also varies with the shape of the distribution. For this purpose,
we run this experiment on three mixture distributions of different shapes:

• Uni-Modal Mixture: we draw m = 10000 time samples from a 50-30-20 mixture of three
Weibull distributions whose parameters are (β1 = 1.5, η1 = 0.5), (β2 = 2.5, η2 = 1.5)
and (β3 = 3.5, η3 = 3) respectively with a weighting of 0.5, 0.3 and 0.2 respectively:

W1
3 = 0.5W (β1, η1) + 0.3W (β2, η2) + 0.2W (β3, η3).

The composing Weibull distributions and their mixture are illustrated in densities in
Figure 3.10. For this mixture, we test the following values of censoring rate rc: {0, 0.5,
0.7, 0.85, 0.95, 0.99}.

• Bi-Modal Mixture: we draw m = 10000 survival time samples from a 40-20-40 mixture
of three Weibull distributions of parameters (β1 = 1.5, η1 = 0.5), (β2 = 2.5, η2 = 1.5)
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(a) Simulated Weibull distributions W1
3 (b) Predicted Weibull distributions

Figure 3.10: The density of composing Weibull distributions simulated on the left, and those
of predicted ones.

and (β3 = 4.5, η3 = 3.5) respectively with a weighting of 0.4, 0.2 and 0.4 respectively:

W2
3 = 0.4W (β1, η1) + 0.2W (β2, η2) + 0.4W (β3, η3).

The composing Weibull distributions and their mixture are illustrated in densities in
Figure 3.12a. For this mixture, we test the following scenarios of the value of censoring
rate rc: {0, 0.25, 0.45, 0.55, 0.65, 0.75, 0.85}.

• Tri-Modal Mixture: we draw m = 10000 samples from a 40-30-30 mixture of three
Weibull distributions of parameters (β1 = 1.5, η1 = 0.5), (β2 = 5.5, η2 = 1.5) and
(β3 = 3.5, η3 = 3) respectively with a weighting of 0.4, 0.3 and 0.3 respectively:

W3
3 = 0.4W (β1, η1) + 0.3W (β2, η2) + 0.3W (β3, η3)

The composing Weibull distributions and their mixture are illustrated in densities in
Figure 3.13. For this mixture, we test the following scenarios of the value of censoring
rate rc: {0, 0.1, 0.2, 0.3, 0.45, 0.55, 0.65, 0.85}.

3.3.4.1 Uni-Modal Mixture

At an initial stage, we train DPWTE on the samples without considering the censoring
rate, which means that we assume that all the time samples are non-censored, and obtain
the predicted values of the triplets of parameters denoted by (α̂i, β̂i, η̂i)i=1,2,3. We plot,
as shown in Figure 3.10b, the predicted Weibull densities as well as the mixture of them
using the parameters (β̂i, η̂i)i=1,2,3 and the predicted weighting coefficients (α̂i)i=1,2,3. As
we can notice in Figure 3.10b and Figure 3.11a, the three distributions are reproduced
and the predicted mixture coincides with the simulated one, which means that the mixture
parameters and their weighting coefficients are correctly estimated by DPWTE. Now, let’s
see when we switch a portion of rc of the data into a censored status. This means that the
samples are split into non-censored sub-population (of size b(1− rc)×mc) and censored sub-
population (of size brc ×mc+ 1). Then for each scenario defined by a value of the censoring
rate, we train DPWTE on the resulting data and compare the mixture distribution with the
one predicted by the model, since the goal is to estimate the underlying distribution. We
obtain the results for all the values of rc tested in Figure 3.11. The purple curve corresponds
to the probability density function of the mixture simulated while the brown curve is that
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(a) rc = 0, p̃ = 3 (b) rc = 0.5, p̃ = 4

(c) rc = 0.7, p̃ = 3 (d) rc = 0.85, p̃ = 2

(e) rc = 0.95, p̃ = 2 (f) rc = 0.99, p̃ = 1

Figure 3.11: Results of the conducted experiment on the uni-modal mixture repeated with
different values of censoring rates rc: densities of the simulated mixture vs. predicted mix-
ture.
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of the predicted mixture. We recall that tc corresponds to the censoring time, defined as
the (1 − rc)-th quantile of the vector of simulated times, above which a recorded time is
considered as censored. This censoring time rc is represented in the plots by a red vertical
line.

The first thing to notice is that we do not have the same value of the estimate p̃ from a
scenario to another. This may be due to the fact that sometimes, the network apportions a
Weibull distribution to more than one node or because another Weibull distribution resembles
that of the mixture with a weak weighting coefficient but shortly above the threshold αth.
We also suspect the decreasing of p̃ (while the censoring rate increases) comes from the
fact that the more we increase the censoring rate the more the network ignores a part of
a mixture and thus model the mixture with less Weibull distributions than it should be.
We will see this example more clearly in the next scenario (bi-modal mixture). Another
interesting thing that we can notice is that the precision of prediction decreases as the
censoring rate increases which is expected since the increase of the censoring rate implies a
loss of information about the overall distribution. Still, the model learns the shape of the
distribution regardless of the value of rc. As we noticed before, when rc = 0, the two curves
match up perfectly. For rc = 0.5 and rc = 0.7, the two densities almost coincide with each
other. The same goes for rc = 0.85 even the model does not have information about the
tail of the distribution, but it predicts earlier density mitigation. For the extremely highly
censoring setting namely the cases rc = 0.95 and rc = 0.99 (see Figure 3.11e and Figure
3.11f), the peak is overestimated which implies an early density attenuation. Still, the peak
is well located even if it is not observed (the red vertical line is placed before the peak in these
two cases). We can conclude, as in the experiment of the uni-modal mixture conducted by
DeepWeiSurv in the previous chapter, that DPWTE can provide promising results in terms
of handling the highly censoring setting as shown in this experiment.

3.3.4.2 Bi-Modal Mixture

We conduct a similar experiment on the bi-modal mixture W2
3 described above, but with

different values of rc. We notice from Figure 3.12b that the simulated and predicted densities
coincide with each other when rc = 0. In this scenario, the model combines the same number
of Weibull distributions to model the simulated one (p̃ = 3). In the case where we have 25%
of censored samples, DPWTE estimates the density of the mixture using three Weibull
distributions (p̃ = 3) with a very slight degradation of the precision (the second peak is
slightly underestimated and slightly shifted on the left), however, it learns the underlying
shape of the distribution and the positions of the peaks. For rc = 0.45, the model predicted
only the first peak which seems logical as the second peak is way located after the censoring
time tc. In fact, the model learned the first two distributions (hence p̃ = 2) but completely
ignored the second peak. Actually, the third highest value of α before normalization was of
the order of 0.06 (less than the threshold 0.1), which corresponds to the third distribution
that the model could not learn because of the high censoring. Still, the observed curve
(before tc) is perfectly estimated. The same goes for rc = 0.55 and rc = 0.65 where the
model used 2 distributions, but it further ignores the tail of the distribution as the censoring
time tc further backward. For the last two cases, the respective predicted densities still
ignoring the second peak while having earlier density mitigation. Compared to the uni-
modal scenario, the degradation of the model performance (in terms of handling highly
censoring setting) occurs before in this scenario. This is because, when the ratio of censored
samples is important, the bi-modal mixture is considered more complex to learn than the
uni-modal especially when the two peaks are largely separated in time.
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(a) Densities of W2
3 . (b) rc = 0., p̃ = 3

(c) rc = 0.25, p̃ = 3 (d) rc = 0.45, p̃ = 2

(e) rc = 0.55, p̃ = 2 (f) rc = 0.65, p̃ = 2

(g) rc = 0.75, p̃ = 2 (h) rc = 0.85, p̃ = 1

Figure 3.12: Results of the conducted experiment on the bi-modal mixture repeated with
different values of censoring rates rc: densities of the simulated mixture vs. predicted mix-
ture.
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Figure 3.13: Densities of W3
3 and its composing distributions.

3.3.4.3 Tri-Modal Mixture

The same experimental protocol is executed on the tri-modal mixture W3
3 with different

values of rc. This means that the complexity of the problem grows even further. The third
peak here appears but with a sharpness less important as seen in Figure 3.13. In the scenario
where all the samples are non-censored, the model estimates with good precision the mixture
with its three peaks correctly located. For rc = 0.1, the model correctly predicted the peaks
with their respective magnitudes and positions in time. For rc = 0.2 and rc = 0.3, the third
peak starts to disappear, while the density values before this peak are perfectly estimated
(the purple and brown curves coincide from t=0 to t=2 which corresponds to the interval
that contains the first two peaks). For the cases rc = 0.45 and rc = 0.55, even if the second
peak is not observed (it is placed after the red vertical line) the model predicts the latter with
a very slight shift on the right but a significant overestimation of the magnitude which speeds
up the density mitigation. For the last two cases, the precision of the density estimation
continues to decline after the first peak, but still perfectly estimating the part of the curve
corresponding to the observed times.

3.3.4.4 Summary Results

To sum up, these three datasets represent different levels of difficulties in terms of modeling
the mixture in a highly censoring setting. The difficulty of modeling in the presence of
censored data depends on the number of peaks, their respective positions in time, and also
their respective magnitudes. For example, let’s take an example of two bi-modal Weibull
distributions whose peaks have respectively the values (0.6,0.2) and (0.4,0.4). Since the
magnitude of the second peak of the second Weibull is greater than that of the first Weibull.
The latter is more likely to be ignored than that of the second Weibull because for a given
value of rc, the tc associated is lower in the first case and thus the model further loses
information.

In general, we can say that DPWTE handles censoring samples at a varying portion
that depends on the shape of the distribution. For instance, in the uni-modal mixture, even
with 99% of censoring, the model is considered to be well-performing until rc = 0.85 but still
learn the underlying shape of the distribution as well as the position of the peak, while in the
bi-modal the deterioration in the quality of estimates starts earlier with notably rc = 0.45.
Finally, for the tri-modal mixture, the model has difficulties even earlier (it ignored the last
peak from the case rc = 0.2 and overestimated the magnitude of the second peak from the
case rc = 0.45 until it ignored it in the case rc = 0.85), but in most cases, the position of
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(a) rc = 0, p̃ = 3 (b) rc = 0.1, p̃ = 3

(c) rc = 0.2, p̃ = 3 (d) rc = 0.3, p̃ = 3

(e) rc = 0.45, p̃ = 2 (f) rc = 0.55, p̃ = 2

(g) rc = 0.65, p̃ = 2 (h) rc = 0.85, p̃ = 2

Figure 3.14: Results of the conducted experiment on the tri-modal mixture repeated with
different values of censoring rates rc: densities of the simulated mixture vs. predicted mix-
ture.
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the second peak is well predicted even if it is not observed.

3.4 Conclusion
In this chapter, we presented an extended approach of DeepWeiSurv for survival analysis
called DPWTE. This network-based approach can model complex relationships between the
covariates of the baseline data and the event times, assuming that the latter is drawn from
a mixture of Weibull distributions. This means that DPWTE leverages Weibull advantages,
namely the fact that these distributions are known to be a good representation for survival
time distribution and it also to consider any time horizon, we indirectly learn a continuous
probability density function, via the mixture parameters that the model learns by maximizing
the likelihood of the mixture. The main contribution of DPWTE relative to DeepWeiSurv
is that it does not fix the size of the Weibull mixture with which we model the underlying
distribution but rather initializes it by an upper bound and finds the optimal combination of
Weibull distributions using a ’filter’ layer that we call Sparse Weibull Mixture layer. To stim-
ulate the process of selecting the significant contribution distributions, we applied a sparse
regularization on the weights of this layer. We conducted three experiments with different
scenarios. In the first experiment, we evaluated the performance of DPWTE in terms of
learning the relationship between the covariates and the mixture parameters and compared
it with that of DeepWeiSurv. To do so, we tested three functions with different levels of dif-
ficulty and found that DPWTE provides an improvement in estimation over DeepWeiSurv,
especially in the most complex function where the variance of the estimation decreased.
The second experiment was dedicated to the weighting coefficients estimation which gives
us information about the importance of the contribution of each Weibull distribution in
the mixture. We ran a clustering experiment using three simulated clustering benchmark
datasets with different shapes. The goal was to evaluate the ability of the proposed model to
estimate the weighting coefficients of the samples considering that all samples from a given
cluster should have the same weighting coefficient. DPWTE showed an improvement in re-
lation to DeepWeiSurv (illustrated by the moon cluster). Finally, the last experiment was
conducted with the aim of evaluating the sensitivity of the model towards the importance of
the censoring rate. We tested three shapes of distribution namely uni-modal, bi-modal, and
tri-modal mixture where DPWTE showed that it handles the extremely highly censored set-
ting in the uni-modal distribution, however, for bi-modal, the model performance is altered
because the model tends to ignore a part of the distribution (notably the second peak) when
the censoring rate increases and the same goes for the tri-model with more alteration for the
same reasons. Still, the model can handle a significant rate of censoring. So far, we described
the two approaches: DeepWeiSurv in the previous chapter and DPWTE in the current one,
we conducted different experiments on simulated data to verify different properties. In the
next chapter, we will describe other experiments that we have done on real-world benchmark
datasets where we compare the respective performances of DeepWeiSurv and DPWTE with
those of the state-of-the-art. We will also see an application of these two approaches in time
series.



Chapter 4

Experiments on Real-World
Benchmark and Simulated
Time-Series Datasets

4.1 Introduction

In Chapter 2 and Chapter 3, we presented two deep learning approaches to survival anal-
ysis namely DeepWeiSurv as well as its extended approach DPWTE. We described their
respective architectures and conducted different simulated experiments to test and evaluate
the different properties of these two models. In this chapter, we will run experiments on
real-world datasets where we compare the predictive performance of the two network-based
approaches, one with another as well as with that of the most known state-of-the-art mod-
els. To compare our models with the competing models that we propose here, we use two
evaluation metrics: concordance index [53, 56] and Brier score [58, 59]. We will also conduct
a time-series experiment on NASA Turbofan Jet Engine Data Set including Run-to-Failure
simulated data from turbofan jet engines. The goal of this dataset is to predict the remaining
useful life (RUL) of each engine in the data. To do so, we propose to combine Long-Short
Term Memory (LSTM) with DeepWeiSurv and DPWTE respectively for this experiment
where we compare the predictive performance of these two combinations not only with each
other but also with the predictive performance of a fully connected deep network combined
with LSTM. This chapter is split into two parts:

1. Experiments on Real-World Benchmark Data Sets: we conduct two sets of experiments,
with the same experimental protocol, to compare the proposed models with the state-
of-the-art competing models:

• In the first instance, we apply the experimental protocol (that we will define) on
all models with the proposed benchmark datasets and compare their respective
predictive performances in each dataset.

• Second, we apply the same protocol as before but with changing the censoring
rate of the datasets. This changes the distribution of the censored and observed
time events and thus may bring an additional challenge to risk prediction. In this
experiment, we aim (as in the last experiments of both Chapter 2 and Chapter
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3 but with real-world datasets) to evaluate the sensitivity of the models towards
the highly censored settings.

2. Experiments on Simulated Time Series: we conduct an experiment on a simulated
data called Turbofan Jet Engine Dataset using three models which are a combination
of LSTM with a fully connected network, DeepWeiSurv and DPWTE respectively. We
compare these models, by evaluating their RUL predictions on test data as well as
their Mean Absolute Error values.

This chapter is organized as follows: in Section 4.2, we describe the experiments conducted
on real-world benchmark datasets. Section 4.3 is devoted to the simulated experiments ran
on Turbofan Jet Engine dataset. We conclude in Section 4.4.

4.2 Experiments on Real-World Data
In this section, we evaluate our proposed models on real-world datasets and compare their
predictive performance with that of the competing models from the state-of-the-art methods.
The datasets considered here are the following: SEER Breast Cancer, SEER Heart Disease,
METABRIC, SUPPORT and FLCHAIN.

4.2.1 Description of the Real-World Datasets
Here, we briefly define the real-world datasets used in this section and we also visualize
the respective distributions of the most important variables for each dataset. We give an
overview on descriptive statistics of these five datasets in Table 4.1.

4.2.1.1 FLCHAIN

Assay of Serum Free Light Chain [98] is a database used to study the relationship between
serum free light chain (FLC) and mortality. We used a stratified random sample containing
50% of the subjects from this database. We extracted 8 variables which are the following:
age, sex, kappa and lambda portion of serum free light chain, FLC group for the subject,
serum creatinine and monoclonal gammapothy indicator denoted by mgus which checks if
the subject has been diagnosed with mgus. The respective distributions of all these variables
as well as that of the event time target variable called futime are shown in Figure 4.1.

4.2.1.2 METABRIC

The Molecular Taxonomy of Breast Cancer International Consortium1 (METABRIC) database
is a Canada-UK Project which contains targeted sequencing data of 1980 primary breast tu-
mor samples of which 888 are non-censored [99]. This database contains gene expressions
and clinical features including age at diagnosis, stage and size of the tumor, positive and
removed lymph nodes, and the Nottingham prognostic index (NPI) which is used to de-
termine prognosis following surgery calculated using the size of the tumor, the number of
lymph nodes and the grade of the tumor. It also contains categorical variables such as ER
immunological historical chemistry (IHC) status, Progesterone Receptor status (PR), etc.
In figure 4.2, we show the most important variable distributions as well as the distribution
of the event time target variable.

1https://ega-archive.org/studies/EGAS00000000083
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(a) Sex, mgus and status variables

(b) Age (c) Creatinine (d) FLC Group

(e) Kappa (f) Lambda (g) Event times

Figure 4.1: The distributions of FLCHAIN variables.

Table 4.1: Descriptive Statistics of Real-World Datasets

Datasets No. Uncensored No. censored No. Features Censoring Time Event Time
min max mean min max mean

SEER BC 9152(42.8%) 12221 (57.2%) 1 226 63.7
34 1 227 181.5

SEER HD 12014 (49.6%) 12221 (50.4%) 1 224 76.7
FLCHAIN 2169(27.6%) 5705(72.4%) 8 1 5215 4226.2 0 4998 2174.5
SUPPORT 5844(68.1%) 2735(31.9%) 36 344 2029 1060.2 3 1944 206.0

METABRIC 888 (44.8%) 1093 (55.2%) 21 1 308 116.0 1 299 77.8
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(a) Event times

(b) Age (c) Positive lymph nodes. (d) Removed lymph nodes.

(e) NPI (f) Tumor size (g) Stage

Figure 4.2: The distributions of METABRIC variables.
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(a) creatinine (b) heart rate (c) meanbp.

(d) resp (e) scoma. (f) wblc.

(g) sod (h) temp (i) Event times

Figure 4.3: The distributions of SUPPORT variables.

4.2.1.3 SUPPORT

SUPPORT which stands for Study to Understand Prognoses Preferences Outcomes and
Risks of Treatment is a larger study that researches the survival time of seriously ill hos-
pitalized adults [100]. The SUPPORT dataset consists of 9105 patients under study, of
which 68.1% died during the survey with a median death time of 58 days, described with
36 non-correlated attributes including age, mean arterial blood pressure (meanbp), heart
rate, temperature (temp), respiration rate (resp), white blood cell count (wblc), Glasgow
coma scale (scoma), serum’s sodium (sod) and serum’s creatinine. The distributions of these
variables are displayed in Figure 4.3.

4.2.1.4 SEER

The Surveillance, Epidemiology and End Results (SEER)2 [62] Program provides cancer
incidence data from population-based cancer registries covering approximately 34% of the
U.S. population. Here, we focused on the patients recorded between 1998 and 2002 who have
Breast Cancer (BC), Heart Disease (HD), or who have survived to the end of this period.

2https://seer.cancer.gov
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(a) Age (b) Grade (c) Regional Nodes

(d) Scope of RLNS (e) Tumor marker 1 (f) Event times

Figure 4.4: The distributions of SEER BC variables.

We kept 34 covariates including:

• Age of patient.

• Tumor grade.

• Tumor size.

• Regional nodes examined: records the total number of regional lymph nodes that were
removed and examined by the pathologist.

• Scope of RLNS: scope of Regional Lymph Node Surgery describes the procedure of
removal, biopsy, or aspiration of regional lymph nodes performed during the initial
work-up or first course of therapy at all facilities.

• Tumor marker 1: records prognostic indicators for breast cancer cases.

• EOD 10-nodes: records the highest specific lymph node chain that is involved by the
tumor.

• Progesterone and Estrogen Receptor Status.

We generated from this database two single-event datasets namely: SEER BC and SEER HD
corresponding to the Breast Cancer and Heart Disease events respectively. The distributions
of the most important variables in SEER BC and SEER HD as well as that of the event
times variable are displayed in Figure 4.4 and Figure 4.5 respectively.

4.2.2 Methods
In Chapter 2 and Chapter 3, we presented two new survival methods based on a Weibull
distribution assumption and neural networks namely DeepWeiSurv and its extended version
DPWTE. In the following experiments, we consider the models above:
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(a) Age (b) Grade (c) Regional Nodes

(d) Scope of RLNS (e) EOD (f) Event times

Figure 4.5: The distributions of SEER HD variables.

• Cox Proportional Hazards Model (CPH) [29] with a penalty term in the order of 10−1.

• Weibull Accelerated Failure Time Model (Weibull AFT).

• Random Survival Forests (RSF) [54] with number of trees set to 100.

• DeepSurv [31] with 2 layers of 32 nodes.

• DeepHit [30] with a dropout probability of 0.6 between all the hidden layers. We used
the TensorFlow implementation.

• DeepWeiSurv: We test DeepWeiSurv with two possible values of p = 1, 10.

• DPWTE: trained with pmax = 10 and λ = 10−4.

We will evaluate the performance of these models and compare our approaches with those
of the state-of-the-art. We do not test the method proposed by Luck et al. [42] because
it belongs to the proportional hazard models family and is therefore restricted in all the
same ways as CPH and other proportional methods. For the network-based methods, we
standardize the numerical covariates and encode the categorical ones, while for RSF, we
directly used the categorical variables without any transformations. For DeepWeiSurv and
DPWTE, we use the same network configurations as described in Chapter 2 and Chapter 3
respectively. All the methods are trained via Stochastic Gradient Descent optimizer with a
learning rate of 10−4.

4.2.3 Experiment One
In the first experiment, we will apply the experimental setting, as described below, executed
on all the considered models (our proposed methods and the competing ones) with the
benchmark datasets described above and will discuss their respective performances in terms
of survival time predictions ordering and error of probability predictions.
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4.2.3.1 Experimental Protocol

For evaluation, we applied 5-fold cross-validation: the data is randomly split into the training
set and validation set (80-20 split). For each iteration, the models are fitted by the corre-
sponding training set (4 folds) and evaluated on the validation set (1 fold) by calculating Ctd
and IBS using the duration of the validation set as the time span. Once all iterations are
executed, we obtain for each method and for each dataset, two vectors (of size 5) containing
Ctd and IBS for each iteration.

4.2.3.2 Results and Discussion

The results are summarized in Table 4.2 and Table 4.3 where we calculated the confidence
interval and the average of the concordance index scores and IBS scores respectively, over
the five cross-validation folds. In METABRIC, DeepHit and our proposed models provided a
significant improvement in terms of concordance when compared to other competing meth-
ods, especially DPWTE, using p̃ = 1 Weibull distributions that have the mean concordance
index slightly exceeding that of DeepHit and DeepWeiSurv (p = 1, 10), but it still has wider
interval confidence. We can say that for METABRIC, DeepHit and DPWTE have practi-
cally the same ordering performance (when we take into account the trade-off between the
mean and the variance of Ctd). For the SUPPORT dataset, DeepHit outperforms the other
models in terms of times ordering, but both DPWTE, using p̃ = 3 Weibull distributions,
and DeepSurv minimized the difference between their respective concordance and DeepHit’s
one compared to RSF, CPH, and Weibull AFT. The same remark goes for FLCHAIN, but
with a slight decrease of the scores for all the models and DPWTE only used p̃ = 1 Weibull
distribution. In the SEER dataset, for Breast Cancer and Heart Disease populations alike,
we can notice that both DPWTE, with p̃ = 2, and DeepWeiSurv, showed a large signifi-
cant out-performance compared to the competing methods, with a slight improvement from
DeepWeiSurv with p = 1 to DPWTE. We can also remark that the standard deviation of Ctd
for METABRIC data is relatively greater than that of SEER, FLCHAIN, and SUPPORT
datasets. We suspect that this could come from the small size of METABRIC data regard-
ing the other datasets. Furthermore, another thing to point out is that for all the datasets,
except METABRIC, the respective confidence intervals of DPWTE and DeepWeiSurv are
narrower than those of the competing methods, which means that our proposed methods
produced a more stable estimation. DPWTE seems to have the best discriminative per-
formance overall. Now, let’s analyze the calibration of the survival estimates. From Table
4.3, where we show the average and the deviation of the integrated Brier score, we can no-
tice that DeepHit and DPWTE seem to generally perform the best. DeepHit outperforms
in FLCHAIN, SUPPORT, and METABRIC datasets with a very slight improvement, if it
is not significant, compared to DPWTE, whereas the latter outperforms all the competing
methods in SEER data with significant difference compared to the competing methods (ex-
cept DeepHit). We can also notice that DPWTE has a stable estimation as shown by the
narrowness of its confidence intervals. As we see DPWTE estimated different values of p̃
for the five datasets. In the case of SUPPORT, we have p̃ = 3 but this does not necessarily
mean that it used 3 disjoint Weibull distribution which is the case here. In fact, among these
3 Weibull distributions, 2 have practically the same estimate parameter values with differ-
ent values of weighting coefficient estimates. Technically, DPWTE modeled the SUPPORT
distribution with 2 disjoint and separated Weibull distributions.
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Table 4.2: Comparison of Ctd performance tested on the five benchmark datasets (mean
and 95% confidence interval)

Models Datasets
SEER BC SEER HD FLCHAIN SUPPORT METABRIC

CPH 0.831 0.785 0.789 0.805 0.661
(0.824 - 0.839) (0.781 - 0.788) (0.783 - 0.794) (0.799 - 0.813) (0.635 - 0.687)

Weibull AFT 0.832 0.785 0.789 0.807 0.659
(0.825 - 0.839) (0.78 - 0.79) (0.784 - 0.795) (0.802 - 0.814) (0.634 - 0.684)

DeepSurv 0.841 0.786 0.79 0.826 0.662
(0.836 - 0.847) (0.784 - 0.787) (0.78 - 0.8) (0.811 - 0.831) (0.635 - 0.69)

RSF 0.838 0.755 0.75 0.783 0.667
(0.829 - 0.848) (0.744 - 0.765) (0.708 - 0.791) (0.78- 0.789) (0.636 - 0.699)

DeepHit 0.875 0.846 0.816 0.835 0.821
(0.867-0.883) (0.842-0.851) (0.809-0.821) (0.83-0.842) (0.805-0.827)

DeepWeiSurv 0.877 0.857 0.78 0.802 0.805
p = 1 (0.864-0.891) (0.85-0.866) (0.75-0.79) (0.79-0.809) (0.782-0.829)

DeepWeiSurv 0.908 0.863 0.79 0.815 0.819
p = 10 (0.906 - 0.909) (0.86 - 0.868) (0.78 - 0.797) (0.79 - 0.82) (0.812 - 0.837)

DPWTE 0.912 0.871 0.812 0.83 0.829
(0.911 - 0.914) (0.865 - 0.878) (0.79 - 0.82) (0.812 - 0.843) (0.808 - 0.849)

p̃ 2 2 1 3 1

Table 4.3: Comparison of IBS performance tested on the five benchmark datasets (mean
and 95% confidence interval)

Models Datasets
SEER BC SEER HD FLCHAIN SUPPORT METABRIC

CPH 0.15 0.17 0.192 0.167 0.224
(0.14-0.2) (0.15-0.182) (0.189-0.197) (0.161-0.169) (0.219-0.23)

Weibull AFT 0.158 0.169 0.191 0.164 0.227
(0.14-0.19) (0.155-0.182) (0.188-0.197) (0.161-0.167) (0.22-0.234)

DeepSurv 0.152 0.162 0.185 0.16 0.219
(0.15-0.16) (0.16-0.174) (0.183-0.189) (0.158-0.162) (0.215-0.224)

RSF 0.164 0.168 0.188 0.164 0.221
(0.162-0.17) (0.166-0.17) (0.186-0.192) (0.159-0.166) (0.217-0.226)

DeepHit 0.149 0.151 0.174 0.152 0.196
(0.145-0.151) (0.147-0.153) (0.172-0.179) (0.15-0.155) (0.194-0.199)

DeepWeiSurv 0.152 0.155 0.184 0.158 0.209
p = 1 (0.148-0.155) (0.151-0.158) (0.182-0.188) (0.156-0.161) (0.206-0.214)

DeepWeiSurv 0.147 0.15 0.179 0.155 0.208
p = 10 (0.145-0.15) (0.148-0.153) (0.177-0.183) (0.152-0.157) (0.206-0.212)

DPWTE 0.142 0.149 0.175 0.153 0.198
(0.139-0.145) (0.147-0.15) (0.177-0.181) (0.149-0.157) (0.195-0.201)
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Table 4.4: Distribution of METABRIC observations (censored/non-censored) for each
censoring threshold in QMETABRIC .

tc No. censored No. non-censored Added portion
tMETABRIC 1093 888 -

q0.5 1285 696 17.6%
q0.45 1411 570 29%
q0.35 1559 422 42.6%
q0.25 1670 311 52.8%

Table 4.5: Distribution of FLCHAIN observations (censored/non-censored) for each
censoring threshold in QFLCHAIN .

tc No. censored No. non-censored Added portion
tFLCHAIN 5705 2169 -

q0.65 6237 1637 9.3%
q0.55 6534 1340 14.5%
q0.4 6820 1054 19.5%
q0.3 7086 788 24.2%

4.2.4 Experiment Two: Censoring Threshold Sensitivity
In the previous experiment, the models learned on the original version of the considered
benchmark datasets. This means that the censoring threshold is fixed in each dataset. In
this experiment, for a given dataset X , we train the models with different censoring thresholds
that are greater than the initial one. In other words, let tc0 denotes the initial censoring
threshold for a given dataset X , we choose k censoring thresholds {tci |tci > tc0 , i = 1, ..k}
where for each tci , the original is transformed to a new set Xci = {ti | δ(ti) = 1 if ti <
tci and 0 otherwise} with which the models are fitted. Then, for each censoring threshold
tci , we evaluate the associated models on all the Xci . The goal here is to investigate the
ability of the models to handle the highly censored settings. We conduct this experiment on
FLCHAIN and METABRIC by testing the 4 best models that show a good performance in
the previous experiment namely: DeepSurv, DeepHit, DeepWeiSurv with p = 10, and finally
DPWTE. We choose METABRIC because of its size which is relatively small compared
to the others which render the task more challenging, while FLCHAIN is selected because
DeepHit has shown the best performance for this dataset and thus represents a fair choice.

4.2.4.1 Experimental Protocol

For each considered dataset in this experiment, the censoring thresholds are expressed in
quantiles qα of the event time variable and chosen in such a way that each threshold provides
a significant portion of censoring compared to the one that precedes it, or in other words,
changes significantly the time distribution. For METABRIC and FLCHAIN, we respectively
choose the following censoring threshold vectors: QMETABRIC = (q0.5, q0.45, q0.35, q0.25)
and QFLCHAIN = (q0.65, q0.55, q0.4, q0.3). Table 4.4 and Table 4.5 give, for each censor-
ing threshold, the associated distribution of censored/non-censored samples for METABRIC
and FLCHAIN datasets respectively. The ’Added portion’ column represents the percentage
(out of the initial distribution) of data whose status switch from non-censored to censored.

For each scenario defined by a couple: censoring threshold tci and associated dataset Xci ,
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(a) METABRIC (b) FLCHAIN

Figure 4.6: Mean values of the estimate p̃ calculated over the 5-fold cross validation for each
censoring threshold tc in both METABRIC (left) and FLCHAIN (right).

we apply the five-fold cross-validation where, in each iteration, we train the models M on
the associated training folds (4/5 of the global size) of Xci then evaluate these models on
the associated validation fold of (Xck)ck∈QX by calculating the concordance index Ctd. We
obtain at the end of each scenario, a vector of five scores (calculated over the 5 iterations)
for each model evaluation and for each validation fold.

4.2.4.2 Results and Discussion

To highlight the mean and the standard deviation of the scores obtained, we use box plots.
The results are shown in Figure 4.7 and Figure 4.8 for METABRIC and FLCHAIN datasets
respectively where each scenario as described above is represented by a sub-figure. We call
the time horizon th, the censoring threshold in the case of prediction. Firstly, it is considered
overall, that the smaller the censoring threshold, i.e. the tighter the observation period, the
weaker is the predictive performance of the models, which is (for the same reason as in the
simulated experiments discussed in Chapter 2 and Chapter 3) normal since the quantity of
knowledge about the distribution increases with the size of observed (non-censored) samples.
For the METABRIC dataset, DPWTE outperforms in all scenarios whereas DeepSurv has
the worst performance which means that it has the most difficulty in handling highly censored
settings. As regards the two other models namely DeepHit and DeepWeiSurv, they still have
a good performance with a normal drop for small thresholds. Still, the models generally per-
form an acceptable confidence interval. For FLCHAIN, DeepSurv gets closer to other models
but still in the last of the ranking in terms of predictive performance. DeepHit starts (in the
two first scenarios, i.e., for tc = q0.65, q0.55) by outperforming the rest of models as in the pre-
vious experiments, but we notice that it has more difficulty than DPWTE and DeepWeiSurv
for tc = q0.4, q0.3. Furthermore, DeepHit performs standard deviations greater than those of
DPWTE and DeepWeiSurv. We can conclude that DPWTE and DeepWeiSurv are the best
in handling highly censored settings with a slight improvement provided by DPWTE. We
suspect that their performance comes from the fact that the Weibull distribution best fits
the respective underlying distributions of the benchmark datasets. Another thing to notice,
from Figure 4.6, is that the estimate p̃ globally decreases, regardless of the survival time
horizon th, while decreasing the censoring threshold (hence the censoring rate is increasing).
We suspect this comes from the fact that the more we increase the censoring rate the more
the network ignores a part of the underlying distribution and thus model the latter with an
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(a) tc = q0.5 (b) tc = q0.45

(c) tc = q0.35 (d) tc = q0.25

Figure 4.7: Box plots of the concordance index scores calculated, for each censoring threshold
tc ∈ QMETABRIC over the five-fold cross validation for METABRIC dataset.
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(a) tc = q0.65 (b) tc = q0.55

(c) tc = q0.4 (d) tc = q0.3

Figure 4.8: Box plots of the concordance index scores calculated, for each censoring threshold
tc ∈ QFLCHAIN over the five-fold cross validation for FLCHAIN dataset.
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insufficient combination of Weibull distributions (in terms of mixture size in this case).

4.3 Experiments on Simulated Time Series: Remaining
Useful Life Prediction on NASA Turbofan Jet En-
gine Dataset using LSTM-Based Networks

In this section, we will conduct an experiment on Turbofan Jet Engine which is a run-to-
failure simulated time-series data, whose goal is to predict the remaining useful life (RUL).
We test and evaluate the performance of three network-based models namely DeepWeiSurv,
DPWTE, and a fully connected network (FCN) where all of them are combined with the
LSTM network.

4.3.1 Introduction
The remaining useful life (RUL) is a technical term that is defined by the length of time a
machine is likely to operate before it requires repair or replacement [101]. In other words,
RUL is used to describe the progression of a machine failure in order to schedule maintenance.
In this way, RUL estimation has the potential to prevent critical faults, avoid unplanned
downtime as well as optimize operating efficiency [102]. In the context of this experiment,
where we use a Kaggle version of the very well known public data set for asset degradation
modeling from NASA called Turbofan Jet Engine, the RUL of each engine is equivalent to
the number of flights that remained for the engine after the last data point recorded [103].
Here, we seek to investigate the predictive performance of the three models cited above (that
we will briefly describe in Section 4.3.2) in terms of RUL prediction.

4.3.2 Description of the Models
To perform the RUL prediction, we use the three networks one of which is a standard classifier
and the remainder namely our two approaches are survival methods:

• Fully Connected Network (FCN): a network consisted of two hidden layers and one
output layer that calculates the RUL values. ReLU activation function is applied on
all the layers. FCN is trained by minimizing the mean squared error loss function.

• DeepWeiSurv (with the same configuration as described in Chapter 2) with p = 1, 2 and
3: since DeepWeiSurv learns the parameters of the Weibull mixture, it can estimate
the RUL variable considered as the mean lifetime which only depends on these mixture
parameters. We thus add a new output layer that takes, as an input, the outputs of
the two previous layers namely the mixture parameters and calculates the RUL values.

• DPWTE, pmax = 10: with the same network configuration described in Chapter 3, it
can do the same regression task as DeepWeiSurv by adding the extra layer.

Since we deal here with time series, we choose to combine individually LSTM with these
three networks, to obtain the final models used for RUL prediction denoted by LSTM+FCN,
LSTM+DeepWeiSurv, and LSTM+DPWTE respectively. Figure 4.3.2 describes the global
architecture of these models. The inputs (xt)t of the models as shown in this figure are
sequences of time series obtained via a method described in Section 4.3.3.1.
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Figure 4.9: Global architecture of the three models considered in the experiment, with M
= DeepWeiSurv, DPWTE or FCN.

4.3.3 Experimental Protocol
The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS [104]) turbo aero-
engine dataset is widely used in the predictive maintenance area. This family of datasets
simulated the degradation of aero-engine in four working environments to get the corre-
sponding datasets with different fault modes [105]: FD00X, X=1,2,3,4. The samples of
FD001 suffered high-pressure compressor failure under a single operating condition, while
FD002 describes the same fault mode but under six operating conditions. For FD003, the
samples suffered high-pressure compressor as well as fan failure under a single operating
condition, while in FD004, there are also these two fault modes but under six operating
conditions. Here, we only conduct the experiment on the first working environment namely
FD001. This dataset is further divided into training and test subsets that consist of multiple
multivariate time series of different engines constituting a fleet of engines of the same type
with their remaining useful life values. The training samples degrade until engine failure,
and the time associated with the last record of a given engine unit is considered as the failure
time. In the test set, the time series ends sometime prior to system fault and the failure
period is recorded only for verification. The objective of this experiment is to predict, via
three network-based models considered, the number of remaining operational cycles before
failure in the test set.

4.3.3.1 Data Preprocessing

FD001 dataset describes the evolution of 100 engines (identified by the ’unit number’ vari-
able) where each engine x is recorded nx times. The monitoring data in each sample consists
of three operational settings, that jointly determine the system’s working mode and have a
significant effect on engine performance, as well as 26 noisy sensor measurements including
total temperature, pressure at fan inlet, physical core speed, bleed enthalpy and other quan-
titative variables (see [103] for more details about variable description). Different sensors
have different physical meanings and different range values. For this purpose, we standardize
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Figure 4.10: Diagram illustrating the sequence generation of an engine x with n records. For
sequence generation, a sliding window is applied on the data with a window of size k and
shifting by l, to obtain n′ sequences with n′ =

⌊
n−k
l

⌋
+ 1.

the data to adjust the range of each sensor and by doing this, we eliminate the influence
of ranges on the degree of contribution in the RUL prediction. Since we use LSTM, we
transform the data into a set of sequences of time series using a sliding window, of a fixed
length k, large enough to span relevant contextual information that is necessary to estimate
the RUL variable (see Figure 4.10 for illustration). The same transformation is thus applied
to the target variable. We point out that each sequence is from the same engine, which
means that the window stops at the last record of the current engine, and a new window is
applied on the next engine records to avoid sequences with more than one engine. Therefore,
the model inputs are written as follows: ((X1, Y1), ..., (X100, Y100)) where Xj = (Xj

1 , ..., X
j
n′
j
)

and Yj = (Y j1 , ..., Y
j
n′
j
) correspond to the records of the engine of unit number j, sensor

measurements Xj and RUL values Yj .

4.3.3.2 Evaluation Metrics

Let y and ŷ denote the real RUL and the predicted RUL variables respectively. In the context
of predictive maintenance, the late predictions (ŷi > yi) are considered to have more serious
consequences than the early ones (ŷi ≤ yi). Thus to evaluate the predictive performance
of the proposed models, we calculate the two following scores: mean absolute error (MAE)
and the averaged weighted sum of RUL error (WRE). Mean Absolute Error gives an equal
penalty to late and early predictions, as we see in the following equation:

MAE = 1
|y|
∑
i

|yi − ŷi| (4.3.1)

where |y| is the size of predictions. The second metric WRE, proposed by [103], is defined
as an asymmetric function which penalizes late predictions more than the early ones. WRE
is nothing but a weighted sum of remaining useful life errors averaged over the predictions,
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Table 4.6: MAE and WRE scores for each model in each scenario.

Models MAE WRE
k = 10 k = 25 k = 50 k = 10 k = 25 k = 50

LSTM+FCN 26.72 21.17 17.91 45.5 25.6 16.8
LSTM+DeepWeiSurv 12.49 10.18 9.81 15.03 9.16 4.95

LSTM+DPWTE | p̃ = 3 11.43 7.06 6.89 9.87 6.3 2.22

and defined by the following equation:

WRE = 1
|y|
∑
i

si,

si =
{
e−

ŷi−yi
13 − 1 if ŷi < yi

e
ŷi−yi

10 − 1 otherwise

A perfect model would have a score equal to zero.

4.3.3.3 Experimental Settings

We evaluate the models in three scenarios: we train the models on the sequences generated
from the training data by applying a sliding window with a size of k = 10, then k = 25 and
finally k = 50 and we choose to set the step size l to 1 for these three cases. We set p = 10
for DeepWeiSurv and pmax = 10 for DPWTE. The models are trained via Adam optimizer
with a learning rate of 10−4. For each scenario, we calculate the RUL predictions performed
by the models and plot them with the real values of the target variable. We also calculate
two evaluation metrics namely the mean squared error (MAE) and the averaged weighted
sum of RUL errors (WRE).

4.3.4 Results and Discussion

The results of RUL predictions for different scenarios are shown in Figure 4.11 and the
evaluation scores are summarized in Table 4.6. The first thing that we can notice, is that
increasing length boosts the predictive performance and the models achieve lower error scores
on the sequences of size 50 than those calculated on sequences of size 25 and even less
than those on sequences of 10 samples. This observation confirms that investigating fault
progression in short sequences is more challenging and this is because we lose some contextual
information in short sequences. This increasing of length implies a significant performance
boost in terms of RUL prediction for LSTM+FCN as shown in Figure 4.11 and quantified
in Table 4.6. Still, LSTM+DPWTE, with an optimal mixture of 3 Weibull distributions,
outperforms the two other models but not with the same difference. In fact, as we see in
this figure, the RUL predictions performed by the DPWTE-based model almost coincide
with the real values in the best case (k = 50). In addition, DeepWeiSurv performance is
getting closer to that of DPWTE in the best case namely k = 50, and thus still acceptable.
Concerning the two error scores, we can notice that our two proposed approaches decrease
substantially the MAE and WRE compared to FCN. This means that the two proposed
models have RUL estimations much more accurate and prevent well from late predictions
and even better when the length of the sequences is sufficiently large.
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(a) k = 10

(b) k = 25

(c) k = 50

Figure 4.11: RUL prediction results: we evaluate the performance of LSTM+{FCN, Deep-
WeiSurv, DPWTE} in three cases defined by the values of the window length k tested namely
k = 10, k = 25 and k = 50.
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4.4 Conclusion
In this chapter, we investigated the performance of DeepWeiSurv and DPWTE in two ex-
periments different than those conducted (with simulated data) and described in Chapter
2 and Chapter 3. In the first experiment, we first evaluated the performance of our ap-
proaches as well as that of the well-known state-of-the-art methods and compared between
them using two evaluation metrics namely the time-dependent Concordance Index (Ctd) and
Integrated Brier Score (IBS). We showed that DPWTE, DeepWeiSurv, and DeepHit have
practically the same performance but our approaches still have a larger gap, in terms of
predictive performance measured by Ctd, when they outperform for a given dataset (e.g.
0.912/0.908 for DPWTE/DeepWeiSurv vs. 0.875 for DeepHit in SEER BC) while the gap
is not statistically significant when DeepHit outperforms, especially between the latter and
DPWTE (e.g. 0.812, 0.83 for DPWTE vs. 0.816, 0.835 for DeepHit, in FLCHAIN and
SUPPORT respectively). The difference between model performances is even more marked
in the second part of the first experiment where we evaluated the model sensitivity towards
a highly censored setting. In fact, DeepWeiSurv and DPWTE handle better the higher
censoring rate than the other models, and the difference in performance increases with this
ratio. Then, in the second experiment, we explored the predictive performance of our two
approaches combined with LSTM in a run-to-failure simulated time-series experiment using
two error scores (RMSE and WRE) and compared them with that of LSTM combined with
a dense network. In this experiment, our two models largely outperform the other model in
terms of RUL prediction and late prediction penalty score and this means that DPWTE and
DeepWeiSurv prevent way better the late predictions whose consequences are important in
this context.
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Chapter 5

Deep Learning Approach for the
Maximization of a Regression
Output under Budget
Constraints

5.1 Introduction

Predictive maintenance (PdM) techniques are designed to estimate or predict when equip-
ment or machine failure will occur so that the required maintenance can be scheduled.
Among the first models widely used in this field is the Kaplan-Meier estimator [61]. How-
ever, it is limited in the sense it does not incorporate the observations’ covariates. Another
model called semi-parametric Cox Proportional Hazards [29] takes into account the covari-
ates but makes a simplistic assumption where it considers that the probability of failure is
a linear function of covariates. After that, several works have been carried out that pro-
pose a network-based approach notably Faraggi-Simon network [32], DeepSurv[31] (deeper
in terms of layers), Luck’s model [42] and deepHit [30] (these two models learn the survival
function which makes them more general, i.e., we can estimate the failure probability at any
given time) and DeepWeisurv [35] which assumes that the survival times variable follows a
mixture of Weibull distributions allowing, through the learned parameters of this mixture,
to estimate the survival function, the mean lifetime, the median, etc.

Many, if not most of the works in survival analysis focused on estimating the risk of
experiencing an event. However, once the model is able to estimate this risk, the problem is
to find the most optimal way to maximize the life expectancy given a certain budget. Admit-
tedly, the optimization of the mean lifetime in a predictive maintenance context motivates
our work, but the problem can go beyond this context and can be raised for any regression
problem where optimizing the output makes sense and the subjects of study have some con-
trollable (i.e., modifiable) features. Let’s take an example of the problem of modeling wine
preferences [106] where the goal is to estimate the quality (0 to 10) of the wine (subject)
given its physico-chemical features. Since some features are controllable such as alcohol, pH,
and volatile acidity, we can raise the problem of wine quality optimization for wines whose
qualities are under 10 for example. For this purpose, we consider, for a given subject, a
constrained-optimization problem whose objective function is f(x), with f is the regression

105
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model used and x the variable that represents the features of the concerned subject, and
whose solution is the optimal modification of its controllable features while respecting the
budget constraint. In other words, the solution belongs to a weighted `1 ball that represents
this constraint to which the solution must submit. This optimization problem is similar to
that of the model explication/interpretation because we need to estimate the importance of
each (controllable) feature, or in other words, the (positive or negative) contribution of each
feature in the model output for output optimization purpose. To solve this problem while
respecting the budget constraint, we use the Projected Gradient Descent (PGD) algorithm
which requires to calculate the gradients of f , at each iteration. Furthermore, this problem
can be formulated as a an adversarial attack problem in a regression setting since a trans-
lation of the current iterate in the update step of the PGD algorithm could be considered
(especially when the network is not robust, i.e. not trained against adversarial instances) as
an adversarial input to the network f . Therefore, we consider three scenarios in which the
regression network f can be found :

• Semi-White Box when the regression model f is a given neural network already trained
with which we can only calculate the gradients with respect to the inputs. This means
that we cannot re-train the network, or modify the weights of the network layers.

• Full-White Box when f is a white-box neural network that we can train, that is, we
have access and control on the weights. To robustify the network, we introduce a
gradient penalization technique to train f in such a way to resist adversarial inputs,
or in other words, to reduce the numerical instability of the network;

• Black Box when f is a black box, which means we cannot calculate the gradients of
f and have access to the weights. In this case, we need to interpret the black-box
model, which means we need to locally estimate the contribution of each covariate in
approximating f , that is calculating the gradients with respect to covariates and locally
model the relationship between f and the covariates using the inputs and outputs of the
black-box model f . To do so, we use the LIME approach, which is a linear-regression-
based method to model f locally.

This chapter is organized as follows: Section 5.2 is dedicated to describe the model-
agnostic interpretability method for black-models namely LIME. In Section 5.3 we present
and describe the mechanism defense used to make a network robust against adversarial
examples. In Section 5.4, we describe how to calculate the projection onto a weighted `1 ball
that we use in the PGD algorithm. In Section 5.5, we describe the main problem considered
in this work. Section 5.6 describes the PGD algorithm as well as the three scenarios of the
regression model. In Section 5.7, we conduct two simulation studies (one is dedicated to
the three scenarios, and another one only for the robust full-white box). In Section 5.8, we
run an experiment on Wine Quality dataset [106] where we discuss the performance of the
robust full-white box network. We conclude and propose perspectives in Section 5.9.

5.2 Estimating Gradient of Black-Box Networks using
LIME

The model-agnostic interpretability methods [107] are methods used to explain already
trained supervised machine learning models, notably the neural networks. These techniques
explain predictions of these machine learning models, assumed to be black boxes, without
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inspecting the internal model parameters (e.g. model’s weights). Model-agnostic inter-
pretability methods enable models to be interpreted either globally or locally regardless of
the complexity. Global interpretability generates explanations of the overall behavior over
the entire population under study. For instance, explaining which of the covariates have
a significant contribution in the construction of the model or describing the (positive or
negative) impact of each feature, on average, on the predictions of the model. While local
interpretability methods, also known as local surrogate models, are interpretable models that
are used to explain individual predictions of the model. The principle of this approach is
to assume that model predictions in the neighborhood of a given instance can be approxi-
mated by a simple with-box interpretable model such as a regularized linear regression model
(LASSO or Ridge). In the next section, we present and describe the local model-agnostic
model that we use in this work namely the so-called LIME whose role is to estimate the
feature contributions and linearly combine them to model the black-box network.

Description of LIME
In this work, we are interested in local surrogate models and specifically, the Local Inter-
pretable Model-Agnostic Explanation method (LIME) [39] to handle the third scenario as
described in the Introduction. In this case, f is a black-box network-based model which
can only be used to take input data points and provide predictions. The goal is therefore
to capture the link between inputs and outputs at the individual level, that is, we seek to
understand why the black-box model made a certain prediction for a given individual. The
concept of LIME is to investigate the prediction change when we give variations or perturb
data into the model. For this purpose, LIME generates for a particular instance a new
dataset consisting of the instance itself and its neighborhood as well as the corresponding
predictions of the model f . Many methods are possible to use to generate this neighbor-
hood such as Gaussian and Latin Hyper-cube (LHS) [108] sampling methods. On this new
dataset, LIME then trains an interpretable model (e.g. Lasso) weighted by the proximity of
the neighborhood individuals to the instance of interest. We use the Euclidean distance and
the Gaussian kernel π to measure the proximity and calculate the weight of each element of
the neighborhood respectively. Mathematically, LIME can be expressed as follows:

LIME(x) = argmin
g∈L

L(f, g, π,x) +R(g) (5.2.1)

where g is the explanation model for instance x, expected to minimize the loss function
L (e.g., mean squared error) which measures the gap between explanation and prediction
provided by the original model f . L is the family of all possible linear regression models and
R(g) is the penalty term used to apply a regularization on the weights of g. The proximity
metric π defines how large the neighborhood around a particular instance x is that we
consider performing the explanation. In this approach, one has to think about the number
of features nv to have in the conception of g. The lower nv, the easier it to interpret the
model. However, we risk losing precision since higher nv potentially produces models with
higher fidelity. Several methods can be used to select nv best feature candidates notably:

• Forward selection: which is a method taking as input nv and selects the nv highly
contributing variables by iteratively adding features that bring significant improvement
to predictions.

• Lasso model which is trained on the dataset to select the features that have a non-zero
contribution on the predictions, by calculating their respective weights. This method
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is unsupervised in the sense it does not require nv as a parameter, which means that
it can return a set of features whose size is less than nv.

• , In the same way, we can use Ridge regression to calculate the (negative or positive)
contribution of the features through the model weights and select those that have
non-zero weights (or above a given threshold).

To summarize the process of training LIME below is the recipe:

1. Select the instance of interest x for which we want to have an explanation of its black
box prediction f(x).

2. Perturb the instance using a Gaussian or LHS method to generate the neighborhood
V(x).

3. Weight the new samples of V(x) according to their proximity to the instance x using
the kernel π and the euclidean distance.

4. Apply the feature selection method, to choose the nv (or less) features to model LIME.

5. Train LIME on the perturbed dataset.

6. Use LIME to explain prediction by investigating the weights, predict a new instance
drawn from the neighborhood distribution, or calculate the gradients which are nothing
but the weights of this explanation model.

Finally, LIME as a solution to Problem 5.2.1 can be written as follows:

LIME(x) = g∗(x) =
nv∑
i=1

aixi, ai ∈ R∗ (5.2.2)

where xi are the features selected to explain predictions and ai the weights associated. Thus,
the partial derivative of f in the direction xi can be approximated by:

∂f

∂xi
≈ ∂g∗

∂xi
= ai (5.2.3)

Therefore, we can approximate, using LIME solution (i.e., g∗), the output og the black-box
model f corresponding to the input x as well as its respective local gradients. Figure 5.1
visually illustrates how sampling and local model training works. We use an example of an
instance x of two dimension characterized by the covariates x and y where the analytical
function to model locally is defined as: z = f(x, y) = 2x2 + xy + y2 + x + y. The output
z is defined by the colormap. LIME currently uses an exponential smoothing kernel to
define the proximity of the neighborhood V(x): π

(
x′ ∈ V(x)

)
= e−

‖x−x′‖2
2 . This smoothing

kernel is a function that takes the particular instance of interest as well as an element of the
neighborhood and returns a proximity measure.

5.3 Robustifying Networks using Gradient Regulariza-
tion against Adversarial Regression Attacks

In this section, we start by synthesizing the state-of-the-art works that dealt with this prob-
lem. Then, we describe a method that penalizes adversarial inputs in the training phase of
a particular network.
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(a) z values given features x and y (b) x and V(x)

(c) Assign π values on V(x) (d) Train linear model for V(x)

Figure 5.1: LIME algorithm for 2D data. (a) z values for different feature values x and y
from [0, 5]. (b) An instance of interest x (in big dot) and its neighborhood V(x) sampled from
a normal distribution (shaded small dots). (c) Assign weights to the neighborhood using π
(higher weights for the nearest neighbors and lower weights for the farthest ones. (d) Learn
the local model using Ridge regression taking into account the weights of the neighborhood
data.
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5.3.1 State of the Art

Adversarial attacks in machine learning, i.e. augmented data points generated by perturba-
tion of input samples against neural networks, has been a research area for over a decade
[109], but have recently drawn much attention with the machine learning and data mining
community [110, 111, 112, 113, 114, 115]. However, adversarial attacks in a regression setting
are understudied so far. In fact, Biggio and Roli provided in [109] an extensive survey of
the history of adversarial machine learning and current research directions, but surprisingly
little work has been done on adversarial regression problems [111].

To explain why adversarial examples exist, Szegedy et al. [116] suspected this phe-
nomenon comes from the fact that the network output is a highly nonlinear function of
inputs and reported that in [117] that concatenation of non-linear layers in between the
input and the output nodes is a way for the network to encode non-local generalization
prior over the input space. This means that one assumed that it is possible to assign non-
significant probability values to regions of the input space whose vicinity is free of training
instances. Whereas Goodfellow et al. argued in [114] that this particular phenomenon could
arise naturally from high dimensional linearity. Similarly, Fawzi et al. [118] support that
non-linearity is not the fundamental reason behind adversarial attacks and reported that
the ability to generalize adversarial examples is due to the resemblance of network models
to linear classifiers. To attenuate the impact made by adversarial inputs, Gu et al. [119]
penalized the Jacobian matrix based on a series of approximations of adversarial noise. Still,
their model leads to an accuracy drop aside from the training downturn caused by the addi-
tional cost. Szegedy et al. [116] have demonstrated that adversarial training is the suitable
solution, that is, injecting those perturbed samples back in training and take them into ac-
count in the loss function. Goodfellow et al. [114] followed and extended this idea to the
fast gradient sign method where, using this approach, the models are more robust against
adversarial attacks.

Despite this newfound investment in adversarial attacks in machine learning, few works
investigate the regression case. Among the most known works on this problem are respec-
tively those of Nguyen and Raff in [111], Simon-Gabriel et al. in [112], Lyu et al. in [110] and
Yu et al. in [113] who took the perspective that adversarial attacks in a regression setting
(and can be applied in a classification setting, e.g. [110]) are likely caused by numerical
instability in learned networks. Another work performed by Singh et al in [120] where it is
assumed that the weights of individual layers of a network are ill-conditioned and they are
one of the contributing factors in neural network’s susceptibility towards adversarial attacks.
This means they take the perspective of numerical instability from a layer view, while others
are concerned with the numerical stability of the network as a whole function and this is
what we exploit in our work.

5.3.2 Gradient Regularization against Numerical Instability

In this section, we will describe the method, inspired by [110] and initially proposed in [114],
that we use to build a robust version of a full-white box model f in order to handle the
numerical instability.

5.3.2.1 General Description of Gradient Regularization Method

Let L(x; θ) denote the loss function where x is the baseline data and θ the parameters of
a given model f . To train f on x, it usually proposed to solve the following optimization
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problem:
argmin

θ
L(x; θ) (5.3.1)

However this problem does not handle adversarial examples (i.e. perturbed instances) and
thus the model is highly vulnerable to numerical instability. In fact, it is desirable that the
loss function `(.) should have no great change in output for small perturbations ε. Usually,
these adversarial instances are translation of the original data (i.e, in the form of x + ε).
Goodfellow et al. [114] proposed to train on adversarial examples, that is train the model f
with an adversarial loss function. The idea can be formalized as follows. Instead of solving
5.3.1, we seek to build a robust model against numerical instability by solving the following
min-max optimization problem:

argmin
θ

argmax
‖ε‖p ≤ σ

L(x + ε; θ) (5.3.2)

where ‖.‖p is the `p norm and σ is the radius of the `p ball to which ε should belong.
The norm constraint of the inner problem says that we only require our model f to be
robust against certain perturbation. This means that the maximization portion finds the
perturbation ε that maximizes the loss given the data and constraints. Then, the outer
minimization attempts to alleviate this loss by optimization model parameters θ. Since,
this problem is non-convex with respect to ε and θ, it is difficult to find an exact solution.
Alternatively, we propose to solve the problem using an approximation technique [110]. To
do so, we approximate L(x; θ) by its first-order Taylor series at x. For the sake simplicity,
L(x; θ) will be henceforth shorthanded as L. The inner max problem can thus be written as
follows:

argmax
‖ε‖p ≤ σ

L+∇xLT ε (5.3.3)

The problem becomes linear and hence convex with respect to ε. Since L(x) is independent
of ε. The Lagrange dual associated is defined by the following equation:

argmax
ε

∇xLT ε− λ(‖ε‖p − σ) (5.3.4)

Using the Karush-Kuhn-Tucker (KKT) theorem [121], we can show that necessary and suf-
ficient conditions for ε to be an optimum are:

∇xL − λ

∇ε ‖ε‖p︷ ︸︸ ︷
|ε|p−1 ‖ε‖p−1

p sgn(ε) = 0 (5.3.5)
λ(‖ε‖p − σ) = 0 (5.3.6)

where sgn is the signum vector function. Assume that the optimal ε has a norm strictly
lower than σ, that is, ‖ε‖p < σ. Let ε′ = σ

‖ε‖p
ε. Therefore ‖ε′‖p = σ

‖ε‖p
‖ε‖p = σ and hence

ε′ is a feasible solution. In addition,

∇xLT ε′ = σ

‖ε‖p
∇xLT ε > ∇xLT ε

We thus constructed a feasible solution ε′ which attains a loss value greater than that of
ε. This leads us to a contradiction. Therefore, we are set to solve the following equation
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system: {
∇xL − λ|ε|p−1 ‖ε‖p−1

p sgn(ε) = 0
‖ε‖p = σ

(5.3.7)

Combining the two equations of System (5.3.7), we have:

∇xL = λ|ε|p−1σ1−psgn(ε) (5.3.8)

∇xL
p
p−1 = λ

p
p−1 sgn(ε)

p
p−1
|ε|p

σp
(5.3.9)

Let p∗ = p

p− 1 denote the dual of p, i.e., 1
p∗

= 1− 1
p

. Then, by applying the absolute value
function and summing over two sides of Equation (5.3.9), we have:∑

|∇xL|p
∗

= |λ|p∗
∑ |ε|p

σp
(5.3.10)

=⇒ ‖∇x‖p
∗

p∗ = |λ|p
∗ ‖ε‖pp
σp

= |λ|p
∗

(5.3.11)

where ‖.‖p∗ is the dual norm associated to the `p norm. Combining System (5.3.8) and
Equation (5.3.11), we obtain:

|∇xL| = |λ|σ1−p|ε|p−1 (5.3.12)
= ‖∇xL‖p∗ σ

1−p|ε|p−1 (5.3.13)

Finally, one finds the solution of the inner problem which is written as follows:

ε = σ sgn(∇xL)
(
|∇xL|
‖∇xL‖p∗

) 1
p−1

(5.3.14)

5.3.2.2 Inner Problem Solution with Respect to the `p Norm

In the following, we analyze the solution of the inner maximization problem in different cases
defined by the norm constraints. Here, we only examine two norm constraints namely when
p = 1 and p =∞.

`1-Norm Constraint In this case, we have p∗ → ∞ and thus the perturbation that
maximizes the loss becomes:

lim
p→1

ε = σ sgn(∇xL) lim
p→1

(
|∇xL|
‖∇xL‖p∗

) 1
p−1

(5.3.15)

= σ sgn(∇xL)
(
|∇xL|
‖∇xL‖∞

)∞
(5.3.16)

Since we are constrained by the `1 norm of the perturbation ε whose value is regardless of the
directions being penalized, it is intuitive to choose one direction that maximize the overall
perturbation. Thus, a suitable solution will be written as:

εj =
{
σ sgn(∇Lj) if ‖∇xL‖∞ = ∇Lj

0, otherwise. (5.3.17)
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where ∇Lj = ∂L
∂xj

. The loss function can therefore be approximated as follows:

L+∇xLT ε = L+ σ∇Li0sgn(∇Li0) (5.3.18)
= L+ σ|∇Li0 | (5.3.19)
= L+ σ ‖∇xL‖∞ (5.3.20)

where i0 = argmax |∇Li| is the penalized direction and σ ‖∇xL‖∞ is the regularization
term. However, the main drawback in using this regularization term is that it only penalized
one direction, and thus it is not interesting to use the `1-norm constraint in our context.

`∞-Norm Constraint In this case, where p→∞ and thus p∗ → 1, the best perturbation
(in terms of maximizing the loss) is written as follows:

lim
p→∞

ε = σ sgn(∇xL) lim
p→∞

(
|∇xL|
‖∇xL‖p∗

) 1
p−1

(5.3.21)

= σ sgn(∇xL)
(
|∇xL|
‖∇xL‖1

)0
(5.3.22)

By obviously assuming that |∇xL| > 0, we therefore have:

ε = σ sgn(∇xL) (5.3.23)

This special case corresponds therefore to fast gradient sign method proposed in [114]. The
loss function is thus written as follows:

L+∇xLT ε = L+ σ∇xLT sgn(∇xL) (5.3.24)
= L+ σ ‖∇xL‖1 (5.3.25)

where σ ‖∇xL‖1 is the associated regularization term. Mathematically, the `1-norm regu-
larization tends to shrink the less important feature’s gradients to zero, this mean that this
regularization encourages sparsity and thus only selects the important features.

5.4 Projection onto the Weighted `1 Ball
In this section, we describe the calculation of the projection of a vector onto a weighted
`1 ball. We firstly show how to calculate this projection without constraining the feature
values (Section 5.4.1). Secondly, we assume that the features have bounded range values and
calculate the projection accordingly (Section 5.4.2).

5.4.1 Box-Constraint-Free Projection
Let X denote a subspace of Rd. Given two vectors x ∈ X , w ∈ (R∗+)d, and a real number
b0 > 0, let Bb0

w,x0 denote the w-weighted `1-ball of center x0 and radius b0:

Bb0
w,x0 = {h ∈ X |

∥∥w� (h− x0)
∥∥

1 ≤ b0} (5.4.1)

and xb the projection of x onto Bb0
w,x0 the solution of the following minimization problem:

argmin
y∈Bb0

w,x0

1
2 ‖y− x‖22 (5.4.2)
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We assume that X 6= ∅ to guarantee feasibility and existence of a solution. Many works
[122, 123, 124, 125] on unweighted or weighted `1-constrained problem used a well-known
property that allows to calculate the projection onto a weighted ball as long as one can
project onto the simplex associated. The following lemma presents a reduction of Problem
5.4.2 to the simplex-constrained problem given in Equation (5.4.3).

Lemma 1 ([122], Lemma 3). Let b0 > 0, w ∈ (R∗+)d, x0 ∈ X and x ∈ X be the vector to
be projected. Let u be a vector obtained by taking the absolute value of each component of
x− x0, i.e., ui = |xi − x0

i | and ∆b0
w,x0 denote the simplex :

∆b0
w,x0 = {h ∈ X | wT (h− x0) = b0 and h ≥ x0}

Let xs be the solution of the following minimization problem:

argmin
y∈∆b0

w,x0

1
2 ‖y− u‖22 (5.4.3)

then the solution to Problem 5.4.2 is

xb = x0 + sgn(x− x0)� (xs − x0), (5.4.4)

where sgn is the signum vector function.

Proof. The proof is given by [122] with x0 = 0Rd , where 0Rd is the zero vector of Rd (for
simplicity, 0Rd = 0 in the following text). For x0 6= 0, we apply the same reasoning to
x− x0.

Therefore, we need to solve the problem defined in Equation (5.4.3) whose solution is
simpler to compute. The following lemma presents the analytical expression of the solution.

Lemma 2. Let b0 > 0, w ∈ (R∗+)d, x0 ∈ X and x ∈ X be the vector to be projected. Let
∆b0

w,x0 denote the simplex : {h ∈ X | wT (h − x0) = b0 and h ≥ x0} and let xs and xb the
solutions to Problem 5.4.3 and Problem 5.4.2 respectively. We recall that if x ∈ ∆b0

w,x0 then
x is the solution, i.e., xs = x and the same goes for when x ∈ Bb0

w,x0 . If x is outside ∆b0
w,x0

then there exists a unique real λ∗ such that:

xsi = x0
i + max{xi − (wiλ∗ + x0

i ), 0}, ∀i ∈ [d] (5.4.5)

Using Lemma 1, we thus have; when x 6∈ Bb0
w,x0 ; the solution to Problem 5.4.2 defined as

follows:
xbi = x0

i + sign(xi − x0
i ) (xsi − x0

i ) (5.4.6)

where sign is the signum function.

Proof. See Section A.1 in Appendix A.

We use a direct algorithm to compute this projection since d is considered as not large
enough to use ω − pivotF or ω − bucketF that are described as efficient algorithms for high
dimensional vectors proposed in [124]. This algorithm which is a generalization of [126] is
given in Algorithm 2. The solution provided here can be used in a simulated experiment
where feature values are not bounded. However, this cannot represent real-world problems
in which the numerical features are mainly bounded in range values.
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Algorithm 2 Projection onto the weighted `1 ball
Require: x, x0, w, b0
Ensure: xb = ProjectionBb0

w,x0
(x), the projection of x onto Bb0

w,x0

1: z←
{
xi−x0

i

wi
|i = 1, .., d

}
2: δ ← sort ↑ (z) return the index permutation δ
3: z← {zδ(i)|∀i = 1, .., d}

4: %←
{
−b0+

∑d

j=i+1
wδ(j)(xδ(j)−x0

δ(j))∑d

j=i+1
wδ(j)

|i = 1, .., d
}

5: % z←
{
%i − zδ(i)|i = 1, .., d

}
6: if % z.size() ≥ 1 then

7: imax ← arg max
i=1,..,d

{
−b0+

∑d

j=i+1
wδ(j)(xδ(j)−x0

δ(j))∑d

j=i+1
w2
δ(j)

> zδ(i)

}
8: λ∗ ←

−b0+
∑d

j=imax+1
wδ(j)(xδ(j)−x0

δ(j))∑d

j=imax+1
w2
δ(j)

9: else
10: λ∗ ←

−b0+
∑d

j=1
wδ(j)(xδ(j)−x0

δ(j))∑d

j=1
w2
δ(j)

11: end if
12: for i = 1..d do
13: xsi ← x0

i + max{xi − (wiλ∗ + x0
i ), 0}

14: xbi ← x0
i + sgn(xi − x0

i )(xsi − x0
i )

15: end for

5.4.2 Upper- and Lower-Bounded Projection

We modify the problem described above to a box-constrained scenario containing the upper
and lower bounds on the vector to be projected. In this case, using the same notations, we
need to calculate the projection of a vector x on a box-constrained `1-ball Bb0

w,x0 of center x0

and radius b0. Mathematically, xb that denotes the projection of x on Bb0
w,x0 is the solution

of the following optimization problem:

argmin
y∈Bb0

w,x0

1
2 ‖y− x‖22 s.t. a ≤ y ≤ b (5.4.7)

where ai and bi are lower and upper bound of the ith feature of x. In this work, we make
one assumption on these box constraints: all the intervals [ai, bi] are not containing 0, which
means that there does not exist j such that aj ≤ 0 ≤ bj . This case study is treated by Gupta
et al. in [127]. This assumption implies that the respective range values in which yi should
lie can be characterized as [ai,bi] ⊂ R∗− or R∗+. These two remaining cases are assessed
to be equivalent under sign flip (`2 distance preservation, `1 norm preservation and range
transformation under sign flip). Therefore, we can assume here that all the boundaries are
positive. The idea here, is to apply a change of variables on y, x and b:

ŷ, x̂, x̂0, b̂ := {y,x,x0,b} − a (5.4.8)
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Using this transformation, Problem 5.4.7 and its equivalent simpler problem respectively
become:

argmin
ŷ∈Bb0

w,x̂0

1
2 ‖ŷ− x̂‖22 s.t. 0 ≤ ŷ ≤ b̂ (5.4.9)

argmin
ŷ∈∆b0

w,x̂0

1
2 ‖ŷ− x̂‖22 s.t. 0 ≤ ŷ ≤ b̂ (5.4.10)

where Bb0
w,x̂0 and ∆b0

w,x̂0 are respectively the w-weighted `1 ball of center x̂0 and radius b0
and its simplex associated. The solution to 5.4.9 can therefore be derived from 5.4.10, i.e.
the projection onto the simplex associated ∆b0

w,x̂0 . This leads to propose the following lemma
that presents the final solution to Problem 5.4.7.

Lemma 3. Let use the notation defined so far, and let x̂b and x̂s be the solutions to 5.4.9
and 5.4.10 respectively. If x /∈ Bb0

w,x0 which implies x̂ /∈ Bb0
w,x̂0 , then there exists a unique

real λ∗ such that:

x̂si =


x̂0
i if x̂i − x̂0

i ≤ λ∗wi
b̂i if x̂i − b̂i ≥ λ∗wi

x̂i − λ∗wi if x̂i − b̂i < λ∗wi < x̂i − x̂0
i

(5.4.11)

Based on Lemma 1 and using the inverse transformation associated to 5.4.8, the projec-
tion onto Bb0

w,x0 xb can be written as follows:

xbi = x̂bi + ai = ai + sign(xi − x0
i )(xsi − x0

i ) (5.4.12)

where xs = x̂s + a and sign is the signum function.

Proof. See Section A.2 in Appendix A.

From Equation (A.2.9), we can notice that b0 is a decreasing function of λ, that we denote
by g, delimited by 2d values namely x̂i − b̂i and x̂i − x̂0

i . As we highlighted in the proof
above, we used an approach resulting to an algorithm inspired from [127] to calculate the
optimal sub-sets L∗, U∗ and C∗ with which we can find λ∗. The pseudo code that calculates
λ∗ is given in Algorithm 3. To do this, we find the uncertainty interval, denoted by [λL, λU ]
for λ, initially set to [min(x̂− b̂),max(x̂− x̂0)] (line 2) and iteratively reduced by bisection
at a selected pivot from the merged vectors x̂− b̂ and x̂− x̂0 while belonging to the current
uncertainty interval (lines 10-16). As in [128], we set the pivot to the median (line 6) of the
uncertainty interval and apply the partitioning around the pivot before each dichotomy step
(line 7). Let λpivot be the current pivot at a particular iteration and bpivot0 = g(λpivot). This
means:

bpivot0 = Sw,x̂0 − λpivot ‖w‖2 + λpivot
∑

i∈U∪L
w2
i

−
∑

i∈U∪L
wi(x̂i − x̂0

i ) +
∑
i∈U

wi(b̂i − x̂0
i ) (5.4.13)

= Sw,x̂0 − λpivot ‖w‖2 −
∑
i∈L

wi(x̂i − x̂0
i )−

∑
i∈U

wi(x̂i − b̂i)

+ λpivot
∑

i∈U∪L
w2
i (5.4.14)
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Let define the two partial sums that will be used in the algorithm:

ΣL =
∑

x̂i−x̂0
i
≤λL

wi(x̂i − x̂0
i ) (5.4.15)

which represents the sum for all projection components that are guaranteed to converge to
zero, i.e. the sum over L∗, and:

ΣU =
∑

x̂i−b̂i≥λU
wi(x̂i − b̂i) (5.4.16)

representing the sum for all projection components that are guaranteed to converge to the
upper bounds b̂i’s, i.e. the sum over U∗. Using these two partial sums bpivot0 can be expressed
as follows:

bpivot0 = Sw,x̂0 − λpivot ‖w‖2 − ΣL − ΣU
−

∑
λL<x̂i−x̂0

i
≤λpivot

wi(x̂i − x̂0
i − λpivotwi)

−
∑

λpivot≤x̂i−b̂i<λU
wi(x̂i − b̂i − λpivotwi) (5.4.17)

Let 0 < btarget0 <
∑d
i=1 wi(b̂i − x̂0

i ). If bpivot0 > btarget0 , then the current uncertainty interval
is replaced by [λpivot, λU ], and L∗,ΣL are also updated:

L∗ = L∗ ∪ {i | λL < x̂i − x̂0
i ≤ λpivot} (5.4.18)

ΣL = ΣL +
∑

λL<x̂i−x̂0
i
≤λpivot

wi(x̂i − x̂0
i ) (5.4.19)

Otherwise, the uncertainty interval is replaced by [λL, λpivot] and U∗,ΣU are updated:

U∗ = U∗ ∪ {i | λpivot ≤ x̂i − b̂i < λU} (5.4.20)

ΣU = ΣU +
∑

λpivot≤x̂i−b̂i<λU
wi(x̂i − b̂i) (5.4.21)

The optimal sub-sets L∗, U∗ and C∗ are thus found when the uncertainty interval is reduced
to two end points without points of discontinuity between them. The unique λ∗ is therefore
found and the projection is then calculated using Lemma 5.

5.5 Problem Statement
For simplicity, we will adopt a general term, referring to the variable to maximize under a
budget constraint as ’expectation’ such as the life expectancy in survival analysis, quality
variable in wine preference problem, price in the house pricing problem, etc. Consider a
regression model f which takes an input x0 ∈ X ⊂ Rd and returns its expectation f(x0) ∈
R+. For instance, in the context of wine preference modeling, f could be a regression network
that estimates the wine quality (positive scalar) with respect to its physico-chemical features
(input).

We recall that the main goal is to find the optimal update of x0 that maximizes the
expectation. In addition, in the real-world cases, each feature modification has its own cost
and there is a limited budget b0 <∞ devoted to these modifications. In this work, we make
the following assumptions:
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Algorithm 3 Box-constrained projection onto the weighted `1 ball

Require: x̂, x̂0, w, , b̂ b0, b
target
0

Ensure: x̂s
1: merged data ← merge(x̂− x̂0, x̂− b̂)
2: id λL, id λU ← 0, 2d− 1 \\ respective indices of λL and λU

3: define Sw,x̂0

4: ΣL,ΣU ← 0, 0
5: while id λU > id λL + 1 do
6: λpivot ← median(merged data, id λL, id λU )
7: partition(merged data, id λL, id λU , λpivot)
8: id λpivot ← index(λpivot)
9: Calculate bpivot0 using (5.4.17)

10: if bpivot0 > btarget0 then
11: id λL ← id λpivot

12: Update L∗ and ΣL using (5.4.18) and (5.4.19)
13: else
14: id λU ← id λpivot

15: Update U∗ and ΣU using (5.4.20) and (5.4.21)
16: end if
17: end while
18: Calculate λ∗ using (A.2.11)
19: for i = 1, .., d do
20: Calculate x̂si using (A.2.1)
21: end for

• uncontrollable variables : the features that we cannot modify are frozen, i.e., whose
values are not modifiable. Thus we only consider the controllable ones in the problem
formulation. Let C = {i|ith feature is controllable}, where [d] is the set of integers in
the interval [1, d].

• cost linearity : the cost of transforming a feature value x0
i to x1

i = x0
i + α is linear

with respect to |α|.

• Independent cost variables : the costs of modifying x0
i and x0

j ; i 6= j; are independent
from each other.

Let wi > 0, for i ∈ C, be the cost factor associated to the controllable feature of index i,
which means that the cost of transforming x0

i to x1
i = x0

i +α is wi|α|. Considering the budget
constraints and the assumptions, we seek to solve the following optimization problem:

arg min
x∈Rd

-f(x)

s.t.
∑
i∈C

wi|xi − x0
i | ≤ b0

and xi = x0
i ∀ i 6∈ C

(5.5.1)

If we define by extension wi = c > 0 for i 6∈ C as indefinitely large such as the modification of
the feature i is impossible, the constraint:

∑
i∈C

wi|xi−x0
i | ≤ b0 will be nothing but a weighted

`1 norm of x − x0 bounded above by b0. Therefore, the solution must be in the weighted
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`1 ball of center x0 and radius b0, i.e, x ∈ {h |
∥∥w� (h− x0)∥∥

1 ≤ b0} where � denotes
the component-wise multiplication. For this purpose, we use the PGD algorithm to solve
Problem 5.5.1. The extra step compared to the classical gradient descent is the projection
of the iterate onto the weighted `1 ball, and this is what ensures that the constraints of the
problem are respected.

5.6 Methodology

Algorithm 4 PGD algorithm to solve 5.5.1 for an instance x0.
Require: ∇f, x0, w, b0, ne \\ ∇f : gradient of f
Require: a, b \\ when using box-constrained projection
Ensure: x(ne), the solution to Problem 5.5.1

1: if box constrained then
2: P ← Projection onto Bb0

w,x0 with [ai, bi] box constraints (Algo 3)
3: else
4: P ← Projection onto Bb0

w,x0 (Algo 2)
5: end if
6: x(0) = x0

7: for k = 1..ne do
8: αk ← b0

‖w‖1
√
k

9: grad← ∇f(x(k−1))
10: \\ freeze the non-modifiable features
11: pk−1 ← { sgn(gradi) if i ∈ C else 0 }
12: y(k) ← x(k−1) + αk pk−1
13: x(k) ← Projection(y(k))
14: end for

Now we are able to calculate the projection of a vector x onto Bb0
w,x0 , we can apply

PGD to solve the problem 5.5.1 which is given in Algorithm 4. The algorithm has x0 as
an initial guest (line 1), then calculates ne iterates where the last one is supposed to be the
solution. We use a diminishing step size αk (limk→∞ αk = 0,

∑
k∈R+ αk =∞) in a such way

that, regardless of the number of iterations, the first iterate x(k) reaches the Bb0
w,x0 surface

(||w � (x(1) − x(0))||1 = b0) on which the solution is located when f is concave (line 3).
Thus, We choose ne sufficiently large in order to circulate on the surface if f is concave or
search the solution inside the ball otherwise. To ensure that the non-controllable features do
not change, we activate only the directions provided by the gradient of f on the controllable
features (line 6).

We can apply PGD on a regression model f since we can calculate f(x) the expectation
of x and ∇f(x) the gradient of f with respect to x for x ∈ X . In this work, we recall
that we consider three possible scenarios, and thus three groups of models: semi-white box,
full-white box and black box.

5.6.1 Semi-White Box
In this scenario, we assume that the network is semi-white box which means that the network
is already trained and can be only used to calculate outputs and gradients in the PGD
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algorithm but we cannot retrain it or modify its architecture. This network, denoted by
fnet, is constructed as follows:

• fnet is consisted of four hidden layers with 128, 64, 32 and 16 nodes respectively.

• Hidden output layers are activated by the ReLU function.

• We use the mean squared error (MSE) as the loss function to minimize, and Adam
optimizer to update fnet weights.

5.6.2 Full-White Box
We recall that in this case study, we assume that we have the possibility to train the network.
The way in which this problem is dealt with in this problem is similar to that of the problem
of adversarial attacks [114, 115]. In fact, apart from the weights of Bb0

w,x0 , PGD algorithm
as described in Algorithm 4 is known as one of the most efficient methods to exploit the
weakness of a classical network such as fnet to generate attacks. This means that PGD
can find a ’fake’ solution whose expectation is far from the truth. Actually, updating the
initial input x0 in the PGD algorithm can generate a linear perturbation of fnet. This
perturbation can be caused by an inherent numerical instability of the learned network
[111], which describes the degree to which fnet’s output changes after the update step. For
instance, fnet(x(k)) can be relatively far from the value it should take (and in this case
x(k) is considered as an adversarial input [111, 110]). For this purpose, we introduce a
regularization-based technique proposed in [110] as a defense to improve the robustness and
the stability of fnet. This method consists in penalizing the gradients of the network in the
training phase. Choosing the `1 norm to measure this perturbation, the new loss function
`σ is defined as follows:

`σ(.) = `(.) + σ

∥∥∥∥∂`(.)∂x

∥∥∥∥
1

(5.6.1)

where `(.) is the MSE loss function and σ is a regularization strength parameter. We use
the same architecture and training protocol as fnet. This model is denoted by fnet+σ.

5.6.3 Black Box
Here, we assume that we have the model f as a black box, which means that we cannot
change its weights or calculate directly the gradients of f . For this purpose, we use LIME
[39] which is a method that builds a sparse linear model around each prediction of f to
learn its local behavior. In this scenario, we assume that fnet and fnet+σ are already trained
and will be used as black boxes. Below are the steps for fitting LIME to model locally
f ∈ {fnet, fnet+σ} around an instance x:

• Generate a vicinity V(x) of the instance x following a Gaussian distribution and get
their predictions using f .

• Weight the new samples by their proximity to x using the euclidean distance.

• Fit the linear model on the weighted vicinity and their predictions using Ridge regres-
sion.

As LIME is a linear regression model, the gradients are nothing but the regression coefficients
(without the intercept term), thus we can apply PGD to this model. By lime ◦ f , we denote
the LIME approach to model locally f .
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5.7 Synthetic Experiments
In this section, we will evaluate the precision of the approaches, described above, in cal-
culating the optimal solution of the problem 5.5.1. For this purpose, we run two different
experiments on a simulated data generated by a given exact function with which we compare
our methods. The synthetic dataset is a matrix X = (xi)i∈[n] ∈ Rn×d of size n = 5000 with
d = 5 columns which are all controllable. The samples are drawn from a uniform distri-
bution of support [0, 1]. g denotes the exact function that takes x ∈ Rd as an input and
calculates g(x) the ’expectation’ that we seek to estimate by our models and then maximize
it under budget-constraint. We thus generate the expectation vector (target) of X by g and
we train fnet and fnet+σ. PGD is then applied on g and each considered model to solve
(5.5.1) for m < n instances of indices J ⊂ [n] picked randomly from X. We obtain for each
model f , {x̂i, f(x̂i)}i∈J , and for g, {x∗i, g(x∗i)}i∈J the solution to Problem 5.5.1 for each
instance in J . We then evaluate the performance of f by comparing its results with those of
g. Once the solutions are calculated, we then evaluate the performance of the eleven models
by calculating the following metrics:

• m1 = ‖x∗−x̂‖2
‖x∗‖2

which measures the gap between the exact solution x∗ and the solution
found by f , i.e, how much is the solution of f , far from the exact one;

• m2 = |f(x∗)−g(x∗)|
|g(x∗)| which measures the degree of precision in which f estimates the

exact value of the optimal expectation;

• m3 = |f(x̂)−g(x̂)|
|g(x̂)| which evaluates the precision of the estimated value f(x̂);

• m4 = |g(x̂)−g(x∗)|
|g(x∗)| explains if x̂ can be considered as a solution for an optimal value of

g;

• m5 = |f(x̂)−g(x∗)|
g(x∗) which measures the gap between the optimal expectation calculated

f(x̂) using f , and the exact value of the optimal expectation g(x∗).

Then we plot the mean of these metrics over J for each model. In this section, we use
box-constraint-free projection as we are dealing with simulated data and thus do not need
to use real-world box constraints.

5.7.1 Experiment 1: Comparing the Black, Semi- and White-Box
Performances

5.7.1.1 Experimental Protocol

In this experiment, we consider the following models: fnet (semi-white box), lime ◦ fnet
(black box), fnet+σ (full-white box) and lime ◦ fnet+σ (black box) for σ = 0.1, 0.25, 0.5 and
0.75. In addition, we test g in two forms: linear and quadratic (the two functions are defined
in the caption of Figure 5.2). Therefore, in both cases, we have 10 models to fit (trained in
2500 epochs with a learning rate lr = 1e − 4 and Adam optimizer), on which we apply the
experimental protocol described above. For simplicity, we set σ = 0 for the semi-white box
network fnet = fnet+0. For the black box models, we set the size of the vicinity V to 5000,
generated following a Gaussian distribution of mean x and standard deviation that of the
training set distribution. We choose to set m to 100 in this experiment because LIME-based
models take too much time in terms of execution in comparison with the other models, and
this is because we need to fit LIME-based models as many times as the number of epochs
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Figure 5.2: The results of Experiment 1: mean values of the five metrics calculated for the 10
models for the linear and quadratic settings. In the top, we set g(x) = trace(D·diag(x))+bg,
g(x) = x.D.xT + bg for the linear and quadratic shapes respectively, for each xi of index
i ∈ J , where D = diag( 5

2 , 1,
3
2 , 1,

1
2 ) and bg = 1e−4.

ne, since they are defined locally. For the constraints, we set the cost coefficients of the d
columns to w = [15, 20, 10, 17, 25] and the budget b0 is fixed at 150. We run PGD with
ne = 350 iterations. The results are displayed in Figure 5.2.

5.7.1.2 Results and Discussion

For the case where g has a linear form, we notice, from the values of m1, that x̂ and x∗ do
not coincide, and are relatively far from each other and this is valid for all the tested models.
This result implies the fact that m4 is relatively far from zero for the simple reason that
g is linear (and thus has a unique optimum). In addition, according to the values of m2,
σ = 0.5 provides the best estimation f(x∗) of the exact optimal expectation g(x∗), whereas
fnet+σ and lime ◦ fnet+σ with σ = 0.25 have the closest value to the exact expectation of
x̂ according to the values of m3, and this means that σ = 0.25 affords more robustness
to compared with other values of σ. However, the optimal expectation f(x̂) provided by
σ = 0.75 almost coincide with the exact optimal expectation g(x∗) (m5 = 0.005, 0.02 for
fnet+0.75, lime ◦ fnet+0.75 respectively) unlike the other values of σ, the semi-white box
model and its LIME-based variant (lime ◦ fnet). Therefore, in this scenario, the models did
not find the exact optimal solution (x̂ 6= x∗) since m1 is far from zero; nevertheless, σ = 0.75
practically provides the same optimal expectation as the exact one g(x∗).

Concerning the case where g has the quadratic form, the semi-white box model (σ = 0)
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and its LIME variant (lime ◦ fnet) find the closest solution x̂ to the exact one x∗ (m1 < 0.1)
but they do not provide the closest optimal expectation f(x̂) to the exact one g(x∗) which
is done by σ = 0.1. Furthermore, this value of σ provides the most accurate value of the
expectation of x̂ according to the metric m3, but the models with this value of σ have
approximately the same performance, in estimating the expectation of the exact solution x∗
as the other models. We can notice, in this case, that the models have more difficulties (in
comparison with the linear case) to estimate the optimal expectation.

Performance Comparison Now, let’s compare the performance of the full-white box
models fnet+σ with their LIME-based versions lime ◦ fnet+σ. For g linear, we notice that
both lime ◦ fnet+σ and ◦fnet+σ models have practically the same scores which means that
LIME provides no improvement. Whereas for the quadratic form setting, lime ◦ fnet+σ
do not have the same scores as fnet+σ. In fact, for σ = 0, that is, for the non-robust
version, lime ◦ fnet outperforms fnet and thus provides improvement over the black-box
model contrary to the linear case. This means that LIME improves the black-box predictions
through its local modeling approach. For non-zero values of σ, we can remark that robust
versions of the full-white box networks outperform LIME-based methods. This means the
gradient regularization improves further robustness against the local modeling of LIME.
We can say that LIME and gradient regularization improve the numerical stability of the
network predictions with a slight out-performance of the gradient regularization technique
that showed a significant improvement, but the latter depends on the value of the strength
regularization parameter σ. Furthermore, according to the execution time results of both
cases (see Figure 5.2), LIME-based variants take the most time compared to the network-
based method (whose PGD execution takes less than one second). When running PGD on
the couple (fnet+σ, lime◦fnet+σ), fnet+σ take in average 4.2% of the time while LIME-based
one take 95.8% of the total time consumed. We can conclude, through Experiment 5.7.1, that
both LIME and gradient regularization provide improvement in terms of numerical stability
of the networks, but LIME still largely expensive in terms of execution time which affects
the speed of PGD calculations that directly depends on the number of LIME calls (number
of epochs ne).

5.7.2 Experiment 2: Effect of Increasing the Weighted `1-Ball Ra-
dius on the Semi- and Full-White Box Performance

5.7.2.1 Experimental Protocol

As discussed in Experiment 5.7.1, for a fixed value of σ, lime◦fnet+σ showed practically the
same performance as fnet+σ. Here, we apply the same experimental protocol as before tom =
1000 samples with five full-white box network models: {fnet+σ}σ, σ = {0, 0.1, 0.25, 0.75, 2.5}
trained with the same learning process. Given the multitude of case studies to be tested,
not all of which can be included in this work, we keep, for this experiment, the case where
g is linear (as defined in the caption of Figure 5.2). We set w = (16, 20, 15, 19, 12), which
means that the most expensive (∝ 20) and the cheapest (∝ 12) modifications are those of
the second feature and the last feature respectively, and run the PGD-based algorithm with
three different values of b0: 150, 350 and 500. The main goal in this experiment is to assess
the impact of the radius of Bb0

w,x0 on the performance of the models. As in Experiment 5.7.1,
once we have the solutions, we calculate and then plot the five metrics (mi)i=1,..5 (Figure
5.3) and we present two additional results:

• For each model fnet+σ, we plot g(x∗) with respect to fnet+σ(x̂). This result is more
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Figure 5.3: The two first results of Experiment 5.7.2 for b0 = 300, 150 and 75 (from top to
bottom): visualization of g(x∗) with respect to fnet+σ in the first column and mean values
of the five metrics associated in the second column.

informative than m5, because it does not only give the information about the distance
between fnet+σ(x̂) and g(x∗) but also the nature of the relationship between these two
outputs (see Figure 5.3).

• Using the Principal Component Analysis (PCA), we plot the solutions x̂ and x∗ in a
reduced 2d space.
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Table 5.1: Solutions provided by the exact function g and fnet+σ for the instance i0 ∈ J .

Features 1 2 3 4 5 E
x0i0 0.46 0.96 0.32 0.37 0.02 2.97
x̂i0σ=0 0.46 0.96 7.48 0.37 3.57 5.75
x̂i0σ=0.1 0.46 0.96 6.06 0.37 5.33 10.3
x̂i0σ=0.25 5.44 0.96 3.81 0.37 1.5 8.3
x̂i0σ=0.75 1.82 0.96 7.51 0.37 1.71 9.2
x̂i0σ=2.5 1.02 0.96 7.25 0.37 3.11 8.3

x∗ 0.46 0.96 0.32 0.37 12.52 9.22

5.7.2.2 Results and Discussion

As illustrated in Figure 5.3, for b0 = 300, σ = 0.75 (blue points) provides the closest values
to the exact ones (g(x∗) denoted by the red line) since the blue scatter plot has a more or
less linear shape with a low dispersion, half of which is crossed by the exact straight line in
red and the other half forms a relatively small angle with it. fnet+σ with σ = 0.25 or 0.1
overestimates the optimal expectation whereas σ = 0 and 2.5 are underestimating it and for
these four values of σ, fnet+σ(x̂) outputs higher-dispersion scatter plots with different values
of dispersion (σ = 0.25, 0.1 have practically the highest dispersion). Concerning the five
metrics calculated for this case study, we notice that any of the models reached the optimal
solution x∗ provided by g according to m1 and m4. In addition, m2 and m3 tell us that
fnet+2.5 is the most robust since it has, in average, the most accurate expectation of x̂ and
x∗ but fnet+0.75 outperforms it in terms of estimating the optimal expectation as shown by
m5 values.

Now, when we shorten the weighted `1 ball’s radius by 150, i.e. b0 = 150, the first
thing that we can notice is that the dispersion of the point clouds generated by fnet+σ have
decreased and form a kind of beams with practically the same slope as g. Furthermore,
it is apparent that a significant proportion of the green scatter plot (fnet+0.25 outputs) is
crossed by the straight line in red, however, σ = 0.75 and 2.5 have the best performance
(with a slight improvement provided by σ = 0.75), as illustrated by the values of m5 in the
five-metrics plot associated. Still, fnet+2.5 is more accurate in calculating f(x∗) and f(x̂).
Similarly to the previous case study, the models do not reach the exact optimal solution x∗
as shown by m1 and m4 values.

Finally, when we shorten the radius further by 75 (b0 = 75), the scatter plot that repre-
sents f(x̂) become practically straight lines with approximately the same slope as the exact
expectation function g (except fnet). We notice from the scatter plot, with σ = 2.5, that
fnet+2.5(x̂) ' g(x∗) and for the other non-zero values of σ, fnet+σ(x̂) ' g(x∗)− εσ, εσ > 0,
which means that these three models underestimate the optimal expectation with different
biases. Unlike the two previous case studies, except the semi-white box model, the models
fnet+0.1 and fnet+0.75 have almost reached the exact solution with m1 < 3% and m1 < 1%
respectively, whereas the other models namely fnet+0.25 and fnet+2.5 have reached the exact
solution (with m1 < 0.1% for both of them). However, σ = 2.5 is largely outperforming the
other models in terms of estimating the expectation of both x̂ and x∗ according to m2 and
m3 values as well as in terms of estimating the optimal expectation as shown by m5 values
of the associated five-metrics plot.
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Discussion of the Impact of Increasing Bb0
w,x0 Radius What can be noticed from these

results is that the more the radius b0 of the weighted `1 ball Bb0
w,x0 is increased, which means

that the optimization constraint becomes wider, the more the solutions of the network-based
models fnet+σ are less precise (higher dispersion and therefore it looks less and less like a
straight line), which is logical since a larger budget implies a greater variability of the features
and therefore we are more likely that the distribution of x̂ is significantly different from that
of the inputs X0. In addition, this experiment illustrates a significant improvement, in
terms of quality of estimation, provided by the gradient penalization which is usually used
as a robustifying technique. Still, the value or the range of adequate σ values depends on
the conditions of the experiment, notably: the input distribution, the budget, the standard
mode, etc. In figure 5.4, we visualize the expected solutions x̂ and the exact ones x∗ for
the m = 1000 samples, after applying on them the linear dimensionality reduction using
PCA. For simplicity, we mean by x̂σ the solution x̂ provided by the model fnet+σ, for a
given σ. For b0 = 75, we notice that almost all the solutions are contained in a large
cluster around which 6 small red clusters are formed and which correspond to a significant
portion of the solutions provided by σ = 0, as well as a green cluster even smaller (located
in [0, 20]× [−60,−40]) which corresponds to some solutions of σ = 0.25. These red clusters
justify the m1 score of fnet since a substantial proportion of σ = 0 solutions are relatively
far from the exact solutions (in purple) which, all of them, are contained in the big cluster.
In the cases where b0 = 150 and 300, we can notice that only the exact function g produced
a large and unique cluster (in purple). The other generated models rather several clusters,
some of which overlapped with the ’exact’ cluster, which explains the m1 values of all the
models.

Discussion of the Solutions Now, we will dig a little deeper in our analysis and look
at the different solutions x̂i proposed by the models fnet+σ and compare them with that
of the exact function, g for a given instance i ∈ J . Let’s look at the case b0 = 150 where
the solutions x̂ are in average relatively far from x∗, and select randomly an instance i0
to analyze its different proposed solutions. The solutions are displayed in Table 5.1. The
five first columns represent the feature values and the last column denoted by E is the
expectation. The first row represents the initial values of the features and the expectation
calculated by g as follows: g(x0i0) = trace

(
D · diag(x0i0)

)
+ bg = 5

2 × 0.46 + 0.96 + 3
2 ×

0.32 + 0.37 + 1
2 × 0.02 + bg = 2.97. The first thing that we can remark is that for all the

models as well as g, the feature values 2 and 4 did not change and this may be due to their
relatively high cost coefficients namely 20 and 19 respectively. While, g has only modified
the feature 5 as we see in the last row of the table, fnet+σ changes two or three features
(3-5 or 1-3-5). σ = 0 has the worst performance which was expected given the results in
Figure 5.3. σ = 0.1 modifies the features (3,5) and overestimates the optimal expectation
(fnet+0.1 = 10.3 > g(x∗) = 9.22), whereas σ = 0.25, 2.5 modify the features (1,3,5) differently
and underestimate it with an optimal expectation equal to 8.3 for both of them. Still,
these last 3 values of σ have a small relative error in the order of 10% (between 9.7% and
11.7%) unlike σ = 0 (37.6%). For σ = 0.75, fnet+σ found the exact value of the optimal
expectation (fnet+0.75(x̂i0σ=0.75) ' g(x∗) = 9.22), even they did not change the instance i0 in
the same way. In fact, g spent the entire budget b0 on the modification of the 5th feature,
whereas fnet+0.75 distributed the budget to the modifications of the features 1,3 and 5, which
implies that having x̂ different from x∗, i.e. m1 relatively far from 0, does not necessarily
mean that the optimal expectation is underestimated or overestimated by fnet+σ. The last
thing to check, is that for each solution s ∈ {x̂i0σ=0, x̂i0σ=0.1, x̂i0σ=0.25, x̂i0σ=0.75, x̂i0σ=2.5, x∗}:
wT (s− x0i0) = 150 = b0, which means that the budget is totally consumed.
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Table 5.2: Descriptive Statistics of physico-chemical characteristics for both red and white
wine

Covariate Red Wine White Wine
min max mean min max mean

fixed acidity (g/dm3) 4.6 15.9 8.3 3.8 14.2 6.9
volatile acidity (g/dm3) 0.1 1.6 0.5 0.1 1.1 0.3

citric acid (g/dm3) 0 1 0.3 0 1.7 0.3
residual sugar (g/dm3) 0.9 15.5 2.5 0.6 65.8 6.4

chlorides (g/dm3) 0.01 0.61 0.08 0.01 0.35 0.05
free sulfur dioxide (mg/dm3) 1 72 14 2 289 35
total sulfur dioxide (mg/dm3) 6 289 46 9 440 138

density (g/cm3) 0.99 1.004 0.996 0.987 1.039 0.994
pH 2.7 4 3.3 2.7 3.8 3.1

sulfates (g/dm3) 0.3 2.0 0.7 0.2 1.1 0.5
alcohol (% vol.) 8.4 14.9 10.4 8 14.2 10.4

5.8 Real-World Dataset Experiment
In this section, we apply our method on two real-world datasets namely: red and white vinho
verde wine samples [106]. These datasets contain many quantitative variables that describe
the physico-chemical characteristics of each wine from both (red and white) types of wines
and have a target variable called quality which measures the human wine taste preferences.
In this experiment, we model the wine preferences under a regression approach using fnet+σ
models described in the previous section, and see how they maximize the quality given the
cost coefficient of each modifiable physico-chemical variable and a certain budget. In other
words, we use fnet+σ to solve the problem 5.5.1 where f ∈ {fnet+σ, σ} predicts the wine
quality. The goal, here in this section, is just to analyze the optimization solutions provided
by the network-based models in a real-world application. To do so, we proceed as follows:
first of all, we analyze the wine datasets, by giving brief descriptive statistics of the data per
wine type, and calculating the variable importance for both datasets, highlight the different
correlations between the variables, that occur for each type of wine. Then, we fit the models
and present their performances in order to validate them and thus use them to optimally
improve the wine quality. And finally, compute the solutions provided by the models, analyze
and compare their respective solutions. Clearly, we use the box-constrained projection in
the PGD calculations.

5.8.1 Wine Data
The vinho verde wine dataset, is data about wines produced in a Portuguese region called
vinho verde. In this experiment, we use the two most common variants, white and red
wine. During the pre-processing step, the database was transformed in such a way that all
observations of a given sample are aggregated into a single row. Furthermore, only the most
common physicochemical tests were selected. Since the red and white wines are different in
terms of taste, two analyses are performed separately. The red and white wine datasets were
built with 1599 and 4898 samples respectively. Cortez et al. [106] give more details about
the wine data. The descriptive statistics of both datasets are given in Table 5.2.

Concerning the quality variable, each sample was evaluated by a minimum of three sen-
sory assessors, which graded the wine with a score from 0 to 10. The final score, which is
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Table 5.3: Confusion matrix for th = 0.5 and the two metrics precth and recth for th =
0.5 and1, calculated using fnet+1

Actual Red Wine White Wine
Quality 3 4 5 6 7 8 3 4 5 6 7 8 9

3 1 2 2 0 0 0 3 3 2 0 0 0 0
4 1 12 3 3 0 0 0 30 21 4 0 0 0
5 0 20 151 45 1 0 0 28 315 169 0 0 0
6 0 0 65 134 24 2 0 0 135 576 31 0 0
7 0 0 2 14 48 6 0 0 12 100 173 8 0
8 0 0 1 2 2 3 0 0 3 9 21 24 0
9 - - - - - - 0 0 0 0 0 1 1

precth=0.5 50 58.8 67.4 67.7 64 27.7 100 49.2 64.5 67.1 76.9 72.7 100
recth=0.5 20 63.2 69.6 59.5 68.6 37.5 37.5 54.5 61.5 77.6 59 42.1 50
precth=1. 88.2 92.1 95 96 89.8 98.7 100 80.8 84.2 88.4 93 90.9 100
recth=1.1 66 83.5 85.6 72.3 84 70.3 71.3 73.3 79.7 94.2 75.6 72.8 81.2

represented by the variable variable, is given by the median of these evaluations.

5.8.2 Model Performance
In this section, we evaluate the performance semi- and robust white-full box in wine quality
prediction. We first describe the experimental setting used to perform the wine quality
classification experiments (Section 5.8.2.1) on the concerned models. Then, we compare the
respective performances of the models considered in this experiment (Section 5.8.2.2).

5.8.2.1 Experimental Setting

As the aim is to predict the quality variable which has 6 and 7 possible classes for red and
white wines respectively, we could consider the multi-class classification problem. However,
since we need to calculate the optimal wine quality after solving Problem 5.5.1, we will rather
adopt the regression approach using fnet+σ whose performances are to be assessed before
moving to the next and the final step which is the goal of this section. For this purpose,
we need to convert the latter to a float variable, which means that the actual classes of the
quality variable become floats and the predictions as well. This approach preserves the order
of the wine quality variable. For instance, if the true score is 5, then a model that predicts
a value from the range [5, 6[ is better than one that predicts a value from [7, 8[. Here is the
experimental protocol: we use the 2/3 of the data randomly selected to train fnet+σ, and
the remaining 1/3 is used for test. Let yi denote the actual quality of an instance i, ŷi the
predicted value and th a threshold value. To assess the performance of the models in the
test data, we compute the following metrics:

• mean absolute error (mae) defined as follows: 1
N

∑
i |ŷi − yi|, where N the size of the

dataset,

• we compute an adapted confusion matrix Cthm , where the predicted class associated to
ŷi, denoted by Cŷi , is given by:

Cŷi =
{

yi, if |yi − ŷi| ≤ th
argmin

y∈{bŷic,dŷie}
|y − ŷi| otherwise (5.8.1)

where b.c and d.e denote the floor and ceil functions respectively. This means that we
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Table 5.4: Mean Absolute Error and the accuracy accth for two value of th: 0.5 and 1,
calculated for each value of σ.

Red Wine White Wine
σ mae accth (%) mae accth (%)

th = 0.5 th = 1. th = 0.5 th = 1.
0.001 0.55 54.1 79.1 0.58 52.3 80
0.1 0.58 53.23 80.54 0.59 50.2 82.5
0.25 0.45 61.34 89.5 0.46 62.25 88.1

1 0.39 64.15 91.24 0.45 67.3 88.9
2.5 0.5 58.22 86.78 0.53 59.2 87

assign to ŷi its closest class if |yi − ŷi| > th otherwise, we assign the class yi to it. We
show the confusion matrix in Table 5.3 of fnet+σ that provides the best performance.

• Once Cthm is calculated, we calculate the precision precth and recall recth for each class
(below the confusion matrix in Table 5.3), and the classification accuracy accth (Table
5.4).

We apply this experimental protocol to fnet+σ with σ= 0.001, 0.1, 0.25, 1 and 2.5.

5.8.2.2 Results

From Table 5.4, we notice that fnet+1 has the lowest thus the best mae for both datasets, and
also outperforms the other models in terms of accuracy, especially for th = 0.5. Furthermore,
σ = 0.25 provides the second best performance whose results are close to those of σ = 1
especially for white wine dataset, and σ = 2.5 slightly under-performs the two last models,
but has significantly better results than σ= 0.001 and 0.1. From the values of precth and
recth confusion matrix Cth=0.5

m calculated for the best model, we notice that fnet+σ which
is a regression approach perform a good multi-class classification especially when th = 1.
Therefore, to solve the problem 5.5.1 for both datasets, we use fnet+σ with σ=1, 0.25 and
2.5. To calculate the global variable importance (Figure 5.5) for both datasets, we use fnet+1
as the black-box model for LIME.

We can notice from Figure 5.5 that the contributions of the variables are different within
each wine type. For instance, the citric acid and residual are more important in white wine,
whereas pH level has a big impact on the quality of the red wine (color, taste, and smell).
However, sulfates have the largest (positive) contribution and an increase of alcohol tends
to result in a higher quality for both cases.

5.8.3 Wine Quality Optimization

In Section 5.8.2, we assessed the performance of the semi- and robust full-white box in terms
of wine quality prediction. Now, we will apply our methodology to wine instances (red and
white) and analyze and discuss the results. In this experiment, since we are dealing with
real-world datasets, we will use the box-constrained projection method in PGD calculations.
We first describe the experimental setting (Section 5.8.3.1). Then, we present, discuss and
compare the results of different models (Section 5.8.3.2).
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Table 5.5: Modifications provided by fnet+σ, σ = 0.25, 1 and 2.5 in terms of volatile acidity,
pH and alcohol to improve the quality of the instance insred.

Volatile Acidity pH Alcohol Quality
initial 0.59 3.52 11.4 5
σ = 0.25 0.31 4.08 14.16 6.42
σ = 1 0.505 3.62 15.93 6.98
σ = 2.5 0.45 4.07 14.46 6.1

5.8.3.1 Experimental Setting

We recall that particular wine regardless of the type (red or white), which is recorded in
the data is defined by a vector containing values of physico-chemical variables. Some of
these physico-chemical variables can be controlled to improve the (individual) wine quality.
For example, alcohol concentration can be increased or decreased by monitoring the grape
sugar concentration prior to the harvest [106]. Also, by suspending the sugar fermentation,
the residual sugar could be increased in white wine. It is also possible to monitor pH
levels periodically throughout the wine production process for the red wine that should be
less acidic (pH between 3.4 and 3.8). In addition, it is possible to remediate the volatile
acidity using Reverse Osmosis that lowers the acetic acid concentration. However, even the
total sulfur dioxide has a big contribution in the red wine, controlling it is no easy task
since it implies controlling sulfur-free in the wine, and the portion that is bound to other
chemicals. To optimize the wine quality, we solve the problem 5.5.1 using fnet+σ, σ=0.25,
1 and 2.5. For the red wine, we choose to control pH, alcohol, and volatile acidity whose
cost coefficients are, respectively, set to 3, 1, and 2 whereas for the white wine, we choose
alcohol, residual sugar and citric acid with cost coefficients: 1, 1 and 3 respectively. We set
the budget b0 to 5. The values of cost coefficients represent nothing in reality and we assume
that variables that are hard to control are more expensive (relatively higher cost coefficient
value) such as pH which is not easy to monitor. For Alcohol, Citric Acid, pH, Residual
Sugar and Volatile Acidity, we set respectively the box constraints while providing a real-
world setting12: a = (11, 0.1, 3.4, 11, 0.3) and b = (16.5, 0.35, 4.2, 16, 0.61). We randomly
take two instances insred and inswhite from the red and white wine datasets respectively
whose quality variable value is 5. Then, we apply PGD using box-constrained projection
(with box constraints defined by a and b) on fnet+σ to find the optimal modifications in
insred and inswhite. The results are shown in Table 5.5 for insred and Table 5.6 for inswhite.
For both tables, the first row corresponds to the initial values of the instance, whereas
the three last rows correspond to the modifications and the optimized quality provided by
fnet+0.25, fnet+1 and fnet+2.5 respectively.

5.8.3.2 Results and Discussion

The first thing that we can notice, is that the three models increase the alcohol level in both
wines. These modifications are acceptable since an increase in alcohol (which is among the
most relevant attribute for both types of wine) tends to improve the wine quality. For the
red wine, the models decrease the volatile acidity, which is a good thing because it has a
negative impact on the quality since the acetic acid makes the taste more vinegary [106].

1https://winemakermag.com/
2https://www.homebrewit.com/
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Table 5.6: Modifications provided by fnet+σ, σ = 0.25, 1 and 2.5 in terms of citric acid,
residual sugar and alcohol to improve the quality of the instance inswhite.

Citric Acid Residual Sugar Alcohol Quality
initial 0.24 12.1 9.5 5
σ = 0.25 0.15 14.76 11.56 7.88
σ = 1 0.24 12.1 14.5 7.38
σ = 2.5 0.24 14.86 11.74 6.98

They also increase pH which means that the wine becomes less acidic and thus tastier. Of the
three models, fnet+1 finds the best pH (3.62) for a good red wine because it decreases acidity
while staying in the recommended range namely: 3.4-3.8. By decreasing volatile acidity and
increasing alcohol and pH, if we round the optimal quality values, fnet+0.25 and fnet+2.5
could improve the quality by 1 and fnet+1 by 2. For the white wine, inswhite, fnet+1 only
modifies increase the alcohol by 5% to improve the quality by 2 (rounded), while fnet+2.5
increases the residual sugar and alcohol by roughly 2 to provide practically (by rounding) the
same improvement. On the other hand, fnet+0.25 not only increases; in the same way as f2.5;
the alcohol and the residual sugar but also decrease the citric acid, which is an interesting
result since the citric acid and residual sugar levels are more important in white wine, where
the balance between the freshness (controlled by the citric acid) and sweet taste (provided
by the residual sugar) is more appreciated.

5.9 Conclusion
This work, principally motivated by the predictive maintenance world, presents an approach
for any regression problem where the goal is to maximize the regression output with respect
to the controllable features under given budget constraints. The main idea is to translate
this problem into an optimization problem under weighted `1-constraints whose solution
is the optimal update of the controllable features that maximize the output. We solved
this optimization problem numerically using PGD. We proposed three scenarios namely:
semi-white box model pre-trained, full-white box ’robustified’ using gradient regularization,
and a black box case modeled linearly and locally LIME. In the synthetic experiments, we
have shown, by comparing with the exact functions, that the robust network outperformed
the two other models. Still, the performance of the robust network depends on the value
of the regularization strength parameter. In the real-world experiment, we discussed the
different solutions provided by different values of the regularization parameter. An important
direction for future works would be to take into account the case where the lower and upper
bounds of the box constraints have opposite signs, which means box constraints containing
zero without necessarily being an endpoint. Because, actually in some real-world datasets,
there are some variables that can have both positive and negative values (e.g., temperature).
This scenario can be important since we could have a case where the values required to
optimize the output are not in the range values defined by the box constraints.
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Figure 5.4: Visualization (in two dimensions using PCA) of the solutions x̂ of the four σ-
regularizer models and the semi-white box one, as well as the exact solutions x∗ for three
case studies (from top to bottom): b0 = 300, 150 and 75.
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Figure 5.5: Global variable importance using LIME with fnet+1 for the red and white wine
datasets.
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Chapter 6

Real-World Application :
SmartOccitania Project

6.1 Introduction

In parallel with the thesis, more precisely in the first two years, we worked on a multi-
stack-holder project, called Smart Occitania. The problem that we studied in this project
which is: developing AI algorithms for predictive maintenance on low-voltage feeders, can
be considered as concrete and complete application of the main problems addressed in this
thesis, from a survival analysis study to a maintenance strategy proposition. In fact, the main
objective of this part of the project was to identify locally the most-at-risk rural distribution
networks (of the region of Occitania) in terms of power failures, or in other words, those
with the highest probability of experiencing a power failure in the next three years and
detect the respective associated causes. We use, for this purpose, the information provided
by the communicating objects placed on the electrical networks as well as the inherent
characteristics of the low-voltage feeders. In this chapter, we conduct a full study where,
first of all, we analyze the sets of data provided for this purpose and conduct an experiment
to evaluate the most common models as well as our two approaches in terms of estimating the
failure risks, taking into account the cause behind. Then, we move to the second stage, where
we run an experiment, using our methodology as described in the last chapter, to propose the
optimal modification to optimize the mean lifetime of the most-at-risk low-voltage feeders.

This chapter is organized as follows. In Section 6.2, we globally describe the project,
e.g. its major challenges, the principal actors, objectives, etc. Section 6.3 is devoted to the
survival analysis study, where we first analyze the sets of data provided for this purpose,
then conduct an experiment, using four network-based models including our two approaches
namely: DeepWeiSurv and DPWTE, to evaluate their performance in terms of estimating
the risk and identifying the most-at-risk feeders. For the latter, we introduce a novel score
that we describe in the same section. In Section 6.4, we conduct an experiment where we
apply our constrained-optimization-based methodology to propose locally, i.e. at the low-
voltage feeder level, the optimal modifications that should be operated to maximize the mean
lifetime. We conclude this chapter in Section 6.5.
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6.2 Description of Smart Occitania Project
The Smart Occitania project is a demonstrator of smart electrical networks in rural areas
based on the infrastructure of public electricity distribution networks enriched with an ad-
ditional telecom infrastructure1. Enedis2 in the region of Occitania and its partners have
won the call for projects launched by ADEME3 as part of the ”Intelligent Electric Networks”
program of the future investments. Around a coherent set of experiments, the project in-
tegrates a logic of industrial development, regional development, and energy planning. The
Occitania region is particularly well suited for this type of project because, on the one hand,
the potential for renewable energies is important, and on the other hand, the electrical net-
work is extensive and overhead, which makes it sensitive to climatic hazards. The Smart
Occitania project answers two strong stakes:

• Participate in the success of the strategic project of the Occitania region to become
the 1st positive energy region in 2050.

• Improve the quality of electricity supply by reducing the average time of interruption
per customer, that is, by deploying an efficient predictive maintenance strategy to avoid
long interruptions at the customer level.

This project is expected to be built around three experimental studies of a technical,
industrial, scientific, and societal nature, carried out in all the departments of the Occitanie
region. The respective objectives of these three studies can be summarized as follows:

• Renewable Energy Deployment (RED): the main objective is to facilitate the integra-
tion of electricity production from renewable sources, which is intermittent by nature.
The output of the RED project is the increased capacity of the electricity networks to
receive renewable energy networks. To perform this, the production and consumption
of sites with non-electric storage (e.g., methane plants) will be regulated according to
the constraints of the network.

• Involving all stakeholders in the energy transition: the objective is to raise awareness
among private customers and small professionals on the topic of the energy transition.
To do this, the Smart Occitania project launched an important survey to evaluate the
level of knowledge of the residents on the subject of the energy transition. Then, the
project team put at the disposal of the customers and communities an educational pro-
gram on the energy transition adapted to their level of knowledge. The first feedbacks
will allow feeding a network of local companies, acting in favor of the energy transition,
and participating in the calls for projects of the region of Occitania.

• Improve the observability of the public distribution network in rural areas: composed of
several sub-studies, the technical part of Smart Occitania will allow working on several
themes linked to the advanced functions of a rural distribution network. Among these
sub-studies was one whose goal is to highlight the role of AI in predictive maintenance.
In fact, the electricity suppliers seek to identify the most-at-risk areas, that is, those
which contain low-voltage feeders that are likely to experience a power failure within
a handful of years.

We, as researchers, were brought to realize one of the technical projects of Smart Occitania,
namely the use of AI to implement an algorithm on predictive maintenance. More precisely,
we used a deep learning framework for this purpose.

1https://www.smartgrids-cre.fr/projets/smart-occitania
2https://www.enedis.fr/enedis-en-midi-pyrenees-sud
3https://www.occitanie.ademe.fr/
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Figure 6.1: Illustration of an electrical network structure as defined in the region of Occitania.

6.3 Detection of Competing Risks of Power Outage
In this section, we will describe a study on a survival analysis problem that we carried as a
part of a collaborative project, the so-called Smart Occitania, driven by ENEDIS4. One of
the goals was to improve, using a deep learning framework, the estimation of the risk of a
power failure and its potential cause, on the low-voltage side of a given feeder, in rural areas
of the region of Occitania. This means, that we are dealing with a competing risks problem,
i.e., the failure events can be due to different causes from a feeder to another, unlike all
the experiments conducted in the previous chapters. The reason behind this motivation,
since the budget for repairs is limited, is to have the ability to schedule maintenance for the
most-at-risk low-voltage feeders and thus minimize the inferred costs. For this purpose, we
conduct an experiment on the data provided by ENEDIS where we test (in competing risk
setting), evaluate, and compare the respective performances of our two approaches as well
as those of DeepHit and a fully connected network (FCN).

6.3.1 Data Description
As said above, our main goal in this project was to predict the risk of power failure at the
lower-voltage feeder level. Before describing the data that we have at our disposal, we briefly
describe the structure of the electricity network deployed in the region of Occitania. In fact,
the low-voltage feeders, which are the subjects of study, form geographical clusters each of
whom is connected to a high-voltage-to-low-voltage transformer (HV/LV) substation. The
transformer sub-stations are in turn linked to different high-voltage stations. Figure 6.1
is an illustration (does not represent a real example for purposes of confidentiality) of the
electrical system structure deployed in this region. As shown in this figure, the high-voltage
station (in yellow) is connected to three HV/LV transformer substations (in green) which
are in turn connected to two, one, and three respectively (in red).

To construct the link in the data, each low-voltage (LV) feeder, high-voltage to low-
voltage (HV/LV) transformer sub-station, and high-voltage (HV) station is defined by an
identifier that we call GDO code. For a low-voltage feeder, a GDO code is nothing but
a string of roughly 9 to 10 digits, whereas, for HV/LV transformer sub-station and high-
voltage station, a GDO code is defined in the format ’XXXXXYXXXX’ with X a number
from 0 to 9, Y = P to designate HV station and Y ∈ {R,S, T, U, V } for HV/LV transformer
sub-station.

4https://www.enedis.fr/actualites/reseau-electrique-intelligent-en-milieu-rural-le-projet-smart-occitania-
devoile-resultats
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(a) Before normalization (b) After normalization

Figure 6.2: Distribution of the variables describing low-voltage feeders before and after
normalization

To conduct this study, we were provided with three types of data within the same period
2011-2016:

• Data on all the low-voltage feeders describing the respective characteristics and the
respective number of clients. Each low-voltage feeder in the data, is defined by an
identifier consisted of a string of numbers.

• Aggregate data at high-voltage station level.

• History of power failures that occurred during the period under study.

• Additional data on the pruned zones: this data contains information about the zones
whose trees are pruned and cleaned up. This includes the dates of the operations, the
concerned feeders, the size of of the pruned portions, etc.

6.3.1.1 Data at the Low-Voltage Feeder Level

This dataset contains, aside from the GDO code of the feeders and those of their respective
corresponding lines and stations, information about the characteristics of the low-voltage
feeders and the number of clients per feeder, recorded during a period of 6 years (2011-
2016), which means that each feeder is recorded once per year. A feeder can consist (but
not exclusively) of overhead (’oh’), twisted (’tw’), or underground (’ug’) sections. Table
6.1 gives a description of each numerical variable recorded. We point out that we removed
variables that are functions of some of those considered. We also removed variables whose
values are mainly blank (NaN values). As we see in Figure 6.2a, the variables do not have
the same order of range values which can be problematic because these differences will affect
the training of the networks. For this purpose, we normalize the data and thus obtain the
new distributions as seen in Figure 6.2b.

6.3.1.2 Aggregate Data at the High-Voltage Station Level

We have at our disposable 6 sub-datasets correspondings to data on high-voltage stations
recorded each year during the period 2011-2016. This data describes the modification done,
during this period, at the high-voltage station level. The reason behind this modification is
to minimize the risk of a power failure. Aside from the GDO code, the data has four addi-
tional attributes that describe the state of the station, namely: the length of the overhead,
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Table 6.1: Description of the low-voltage feeder variables.

Variables Description
len oh, len tw, len ug total length of the overhead, twisted

and underground sections respectively
nb oh sect, nb tw sect, nb ug sect number of overhead, twisted

and underground sections respectively
age oh, age tw, age ug age of overhead, twisted

and underground sections respectively
nb imp clt number of important clients

nb clt number of current clients

Table 6.2: Failure rate of grp1 and grp2 for each year from the period under study

Year rate grp1 (%) rate grp2(%)
2012 2.12 6.6
2013 1.02 3.43
2014 0.8 2.92
2015 0.44 1.71

underground and twisted wires as well as the length of the ’weak’ section of the overhead
wire. This data is considered as aggregate data because these attributes are aggregated,
that is, each value of a variable for a station in this data is nothing but the sum of the
values of the corresponding variables over the feeders that belong to that station. In order
to minimize the risk for the coming years, three possible modifications can be done, but
not exclusively: reduce the overhead wire, add underground or twisted sections. To check
the impact of these modifications on the failure rate, we have done the following test: for
a given year ye, we divided the population of this data into two sub-groups, the first one
(denoted by grp1 of size 5000) contains stations experiencing a modification in this year and
the second one (denoted by grp2) is a similarly-sized sub-group of stations randomly selected
from the complementary of the first one. We then calculated the failure rate over the coming
years (> ye) in the period and obtained the results as shown in Table 6.2. As we see, it is
significantly less likely that the failure occurred in grp1 than in grp2. As with the first data,
we apply normalization on these four variables to eliminated the biased contributions of the
high range values.

6.3.1.3 History of Power Failures Recorded in the Period under Study

This data contains all the records of failures that occurred during the period 2011-2016.
It has the following attributes: the date of the incident, the GDO code of the concerned
low-voltage feeder, the cause behind the incident, and the date of the last maintenance. The
latter is useful to implicitly have the information of the mean lifetime. The time observed t
that we use for modeling the failure risk is the difference between the date of incident and
that of the last maintenance (in days). Two insights to highlight :

• The first point is that we have different causes behind the failure (hence the ’cause’
variable), and this means that we are in a competing risk setting.

• The second point is that the feeders recorded in this data are (relatively small) sub-set
of the set of feeders recorded in the first data, which means that failure, regardless of
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Figure 6.3: Failure distribution of the period under study.

the cause, is a rare event and thus we’re dealing with censored data.

These are two challenges that we are going to face in this study. Five possible causes can be
found in this data, namely:

• Exceeding electrical capacities (exc elec cap).

• Deregulated drivers (dereg driv).

• Normal wear and tear (nor we te).

• Hardware failure (hdwa fail).

• Insufficient pruning (insuf prun).

In this study, we are interested only in the internal causes, i.e. the failures that are due
to an internal dysfunction (e.g., hardware failure) and anomaly around the feeders (namely
insufficient pruning). Other causes such as weather conditions are deleted due to lack of
data. In Figure 6.3, we show the distribution of different causes of failures recorded during
the period under study. We notice that the numbers of occurrences of the failure, regardless
of the cause behind it, are very small (in the order of 10−2, 10−1) which confirm the fact
that a failure is a rare event.

6.3.1.4 Combined Data

As a reminder, we have at our disposal 4 different data: feeder data, station data, history
data, and extra data on pruned zones. The last is only used when we want to estimate the
risk of failure of cause: insufficient pruning. In order to exploit the evolutionary aspect of the
stations, we merge the first two data using the feeder GDO code as a primary key resulting
in data used as the baseline data for our experiment in this section. Then for each year from
the period under study, we have a set of low-voltage feeder observations, consisting of the
features of the merged data and a target object consisted of the history associated, with five
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Figure 6.4: Distribution of censored and non-censored populations in the two defined sce-
narios: in the top, distribution of the sub-populations without station-level data. At the
bottom, their corresponding distributions using station-level data. Since, in each scenario,
there is an overlap between the respective density modes of the two sub-populations, we plot
the result twice but with highlighting a different density mode in each time.

features (target matrix) corresponding to the five potential causes considered in this study,
or one column (target variable) in the case of power failure estimation regardless of the cause
behind. To show the contribution of the high-voltage station data to the predictability of
the failure risk, regardless of cause, we run the following test considering two scenarios: one
where we use only the low-voltage feeder data, and the second where we use the combination.
In each scenario, we divide the data into two censored and non-censored sub-population and
then calculate the kernel density estimation for each sub-population to visualize the spatial
distribution of the censored and non-censored populations (as shown in Figure 6.4). To
reduce the dimensionality of the data for visualization, we apply PCA5 on the data.

As we see in Figure 6.4, in the first scenario where we use only the observations at the
feeder level, the two density modes (located in [−10, 0] × [−10, 0]) coincide, which means
that there is practically any indicator that helps the models to predict the risk and thus the
estimation will be done almost randomly. Whereas in the second scenario, the respective
modes are separated in space (the non-censored one is located in [−10, 0]× [−10, 0] while the
censored one in [30, 40]× [0, 10]) and this means thatt the data at the station level provides
a non-zero contribution to the predictability of the risk. However, the density of the non-
censored population is totally covered by that of the censored one which means that the
failure estimation task is still challenging.

5Principal Component Analysis
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6.3.2 Experiment: Power Failure Prediction
In this section, we describe the experimental scenario that we apply to the models tested
in this study, then we define the metric used to evaluate the performance of these models.
Next, we define the evaluation strategy, and finally, we discuss the results of this experiment.

6.3.2.1 Problem Statement

As a reminder, the main objective of this study is to predict the probability that a given
low-voltage feeder experiences a power failure, or in other words, model the run-to-failure
probability distribution at the individual scale. For this purpose, we consider two scenarios:
first, we model this probability distribution regardless of the type of cause behind the failure.
It will therefore be a binary classification problem. Second, we model the run-to-failure
probability distribution for each type of cause, i.e. we will predict not only the probability
that a given feeder will break down but also the likelihood of each cause considered. As seen
in Section 6.3.1.3, the power failures, all causes combined, that were recorded during the
period under study are considered as rare events, which is challenging the models to predict
the likelihood of failures and even more when it comes to predicting the cause (events, when
classified by cause, are even rarer).

6.3.2.2 Models

Since we are in a competing risk setting with five different potential causes where we seek
to learn the joint distribution and not the marginal one, we are dealing with a multi-class
(but not multi-label) classification problem. This means that the models are expected to
output five probabilities, each one represents the probability that a given feeder experiences
a failure of a given cause. For this purpose, we use in this experiment four network-based
models, one of which is a standard classifier while the remainder is survival methods:

• Fully Connected Network FCN : consisted of four hidden layers with 64, 32, 16, and 8
nodes respectively, and a softmax output layer. For the first scenario, we set 1 node
in the output layer and 5 (corresponding to the number of potential causes) for the
second scenario.

• DeepHit [30] : for the purpose considered in this study, DeepHit will consist of a
shared sub-network linked to m cause-specific sub-networks where each sub-network k
learns the probability of experiencing the kth cause. A single softmax layer is used as an
output layer that stores the probabilities learned by the m cause-specific sub-networks.
We set m at 1 and 5 for the first and second scenarios respectively.

• DeepWeiSurv : by definition, DeepWeiSurv handles competing risks. The (multi-class)
classification is performed using the weighting coefficients. We set p the mixture size
at five for both cases in this study.

• DPWTE : like DeepWeiSurv, DPWTE can be used in a competing risk setting via its
weighting coefficients. We set pmax = 10 and λ = 10−4 for both scenarios.

We apply the ReLU activation function on all the hidden layers of the models cited above.

6.3.2.3 Evaluation Metrics

We recall that the reason behind this study is to detect the most-at-risk low-voltage feeders
to make them a priority in the maintenance program, given the limited budget allocated for
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this purpose. This means that we have to evaluate the predictive performance of the models
taking into account this real-world budget constraint. In this case, the time-dependent con-
cordance index Ctd [56] is not the most suitable evaluation metric, or at least not sufficient,
because it only describes the likelihood of concordance of pairs of failures. This means that
it evaluates the probability that for a pair of failures, the respective predicted time-to-failure
have the same ordering as the real ones, but this score does not establish any priority be-
tween the feeder with respect to the failure probability. Still, this score is useful to evaluate
the model performance in the first stage for the binary classification problem.

The same goes for the Top-k Accuracy classification score in the multi-class classification
problem, but we use it to assess the performance of the models in the second scenario. We
recall that Top-k Accuracy6 (denoted here by TopA-k) computes the number of times where
the correct class is among the top k labels predicted, in decreasing order of probability.

Let ŷ ∈ [0, 1]n×m is the prediction matrix where n is the size of the population under
study and m corresponds to the number of possible classes (of size m-1) plus the last column
that indicates if the instance is predicted to experience the event of interest (e.g, if the ith
sample is expected to experience an event, a perfectly correct prediction of the ith value of
the last column would be 1, or at least not far from 1). Let y ∈ {1,m}n denote the index
vector of the true labels, i.e. yi = j means that the ith sample has the jth label. Then
TopA-k is defined as follows:

TopA-k = 1
n

n−1∑
i=0

k∑
j=1

1

(
argmax
i∈[m]rSi

j

ŷi,: = yi

)

Sij =

∅ if j = 1
argmax

i∈[m]rSi
j−1

ŷi,: otherwise

where ŷi,: is the ith row of ŷ corresponding to the joint probability distribution of the ith
sample and 1 is the indicator function. TopA-1 is the accuracy where true class matches
with the most probable predicted classes, which is the same as a standard accuracy.

Score of Most-at-Risk Samples Detection under Budget Constraint Let B ∈ N∗
the budget devoted to maintenance interventions. In this study, we make the following
assumptions:

1. For the first scenario, a budget B allows B maintenance interventions, which means
that the cost of intervention is assumed to be 1.

2. In the second scenario, all the failure causes have the same intervention cost which is
1.

3. Each year a budget B is allocated for maintenance in the first scenario, and a budget
of 5B fairly shared over the five failure causes for the second scenario.

The idea here is to classify the low-voltage feeders, from the set to evaluate, through decreas-
ing order of predicted failure probability, then take the first B most-at-risk feeders according
to the predictions (since only B maintenance interventions are possible given the budget)
and count those which have actually experienced the power failure. This allows us to have
the information of the percentage of failures that we would have avoided over a year if we

6See details in: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.top k accuracy score.html
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Table 6.3: Second scenario result: Ctd scores calculated for each potential cause using the
four models considered in this study.

Models exc elec cap dereg driv nor we te hdwa fail insuf prun
FCN 0.608 0.616 0.604 0.629 0.665

DeepHit 0.631 0.631 0.612 0.648 0.67
DeepWeiSurv 0.624 0.631 616 0.642 0.672

DPWTE 0.626 0.633 0.617 0.645 0.678

have spent a budget B for maintenance interventions on the feeders that are the most likely
to experience the power failure.

Let ŷ ∈ [0, 1]n×m is the prediction matrix on the evaluation set of size n. For the second
scenario, m corresponds to the number of potential causes (of size m-1) plus the predict
event indicator column. For the first scenario, m = 1. Let y ∈ {0, 1}n×m denote the matrix
of true labels. Then, the score of the first B most-at-risk feeders, denoted by TopR-B, is
defined as follows:

TopR-B = 1
B

B∑
i=1

1
(
yσj(i),j = 1

)
, j=1,..,m (6.3.1)

where σj is the permutation corresponding to the decreasing order of ŷ:,j the jth column
of ŷ, that is, ŷσj(1),j > ŷσj(2),j > .. > ŷσj(n),j . Clearly, the TopR-B takes into account the
budget B which represent a real-world constraint. A perfect score of TopR-B is therefore 1
corresponding to predicting B most-at-risk feeders, that is, using 100% of the budget for B
most-at-risk feeders.

6.3.2.4 Evaluation Strategy

We recall that we have at our disposal all the data recorded during the period 2011-2016.
However, we cannot use the data recorded in 2016 because we do not have a failure history
of the following year namely 2017. We choose therefore to use the combined data recorded
between 2011 and 2014 and history recorded between 2012 and 2015 as the training, while
the combined data and history recorded in 2015 and 2016 respectively, will be used for
evaluation. To have an idea about the size of the divided data: the training data contains
175000 observations whose 1700 are non-censored regardless of cause, whereas the evaluation
set contains 44000 instances with 320 observed failures. For both scenarios, we train the
competing models via Adam optimizer with a learning rate of 10−4. After the training
phase, we calculate the concordance index score Ctd for all the models in both scenarios,
and TopA-k accuracy only for the multi-class problem. We also calculate TopR-B for different
values of B = [20, 30, 40, 50, 2500] for both all-cause and competing risks scenarios.

6.3.2.5 Results and Discussion

The concordance index scores calculated in the first scenario as well as the TopA-k scores (k =
1, 2) calculated in the second scenario are displayed in Table 6.4, whereas the concordance
index scores for each cause under study (exceeding electrical capacities, deregulated drivers,
normal wear and tear, hardware failure, and insufficient pruning) are calculated using the
four models as shown in Table 6.3. For the budget-based score, Figure 6.6 and Figure 6.5
show, respectively, the TopA-B scores calculated in the first and the second scenarios.
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Table 6.4: TopA-2 and TopA-1 calculated for the second scenario, and Ctd scores calculated
for the first scenario, using the four models considered in this study.

Models TopA-2 TopA-1 Ctd

FCN 0.689 0.644 0.675
DeepHit 0.717 0.658 0.699

DeepWeiSurv 0.712 0.651 0.704
DPWTE 0.715 0.661 0.709

Figure 6.5: Second scenario result: TopR-B scores calculated, for each cause, for different
values of B using the four models considered
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Figure 6.6: First scenario result: TopR-B scores calculated for different values of B using
the four models considered.

Classification Results From Table 6.4, we can notice that DeepHit very slightly out-
performs, in terms of TopA-2, DPWTE and DeepWeiSurv but outperforms FCN with a
statistically significant difference. Whereas, in terms of TopA-1, DPWTE outperforms the
other models, with a slight improvement over DeepHit. This means DPWTE and DeepHit
have the highest performance in terms of multi-class classification in this experiment. Since,
as we remark in this table, TopA-2 scores are greater than TopA-1, this means that the mod-
els learned useful latent information from the combined data. However, the performances of
the models are still low, this may be due to the fact that they (except FCN which is a classical
classifier model) are described as survival methods and thus have focused on interpretability,
potentially at some cost of predictive accuracy. In addition, FCN is under-performing even
if it is described as a classifier whose goal is the maximization of the accuracy by minimizing
the categorical cross-entropy in order to approximate the underlying event time distribu-
tion. Concerning the Ctd scores calculated for the first scenario as shown in the same table,
DPWTE outperforms the other models with a slight difference compared to DeepWeiSurv
and DeepHit.

In the second scenario, DPWTE and DeepHit globally outperform DeepWeiSurv (slight
difference) and FCN (with a statistically significant difference). The models have the lowest
performance predicting the ’normal wear and tear’ cause (nor we te) compared to other
causes, while for the insufficient pruning cause, the models have the highest performance.
This may be due to the extra data on the pruned zones that we merged with the combined
data. Still, the scores are globally low (compared to the scores calculated in the experiment on
the benchmark datasets, in Chapter 4). We suspect these predictive performances, measured
by Ctd and TopA-k, come from the lack of some important characteristics and data at the
low-voltage feeder level notably the electrical power, meteorological data as well as the
modifications are done at the feeder level instead of aggregate data on the station level. We
also suspect this underperformance is due to the short history (in terms of time duration)
and the period where the data and high-voltage station modifications are recorded as well as
the history size, that, is the number of observed events which is relatively small compared
to the size of the electrical network under study.



6.3. DETECTION OF COMPETING RISKS OF POWER OUTAGE 147

Results of Most-At-Risk Samples Detection under Budget Constraint Regarding
the TopR-B that measures the portion of the most-at-risk feeders priority detected, DPWTE
outperforms the other models in the first scenario with an increasing average score differential
with respect to B. For instance, for B = 10, DPWTE and DeepWeiSurv outperform DeepHit
and even further FCN hitting practically the same score, whereas, for B = 30, 40, and 50,
DPWTE is outperforming the other models. For the latter, TopR-50 = 0.52, which means
that using a budget of 50, one could save 52%, that is, roughly 25 to 26 most-at-risk feeders
that would have experienced a power failure in the coming year. We can notice that with
B = 30, DPWTE doubled his score compared to B = 20 with 40% against 20%, that is,
moving from B = 20 to B = 30 provides a ratio of 2. Whereas, B = 40 provides a slope a
ratio of 1 compared to B = 20 ( 0.4−0.2

40−20 × 100 = 1). In the same way, B = 50 multiplied the
score of B = 20 by 5

2 , providing a ratio of 1. This shows that the TopR-B score is not linear
as formulated in Equation (6.3.1).

In the second scenario, FCN is still under-performing the other models, while DPWTE is
slightly outperforming in practically all the cases (except in the case of predicting ’insufficient
pruning’ when B = 20, where DeepWeiSurv outperforms). We can also notice that the scores
not only vary from a value of B to another, but also between the five potential causes. We
suspect this variation comes from the distribution of events (per cause) recorded in the
training period. For instance, ’insufficient pruning’ and ’normal wear and tear’ are the two
causes that have the highest scores for all values of B, and this might be due to the number
of occurrences of these causes in the history and/or the extra file that stores all the pruning
information (GDO code, geographical location, length of the pruned limbs, etc.) for the
’insufficient pruning’ cause. Whereas, ’exceeding electrical capacities’ cause has the lowest
TopR-B scores. This under-performance, aside from the model imperfections and the short
training period, may come from the eventual lack of information about the total low-voltage
(or at least high-voltage) electrical power, and the electrical voltage at different levels of the
electrical structure (LV feeder, HV/LV transformer sub-station and HV station). Yet, this
cause can be considered as the most feasible to oversee thanks to the corresponding sensors,
and then monitor the electrical power and voltage for example. In this experiment, we can
summarize the results as follows:

• The three survival methods namely: DeepHit, DeepWeiSurv, and DPWTE outper-
form the classifier FCN in terms of most-at-risk detection, time ordering, and even
classification accuracy. We expect this comes from the fact that FCN is ignoring the
censoring phenomenon which severely penalizes its performance since we are dealing
with a highly censoring setting. Hence, the survival methodology is the most suitable
solution to this problem.

• DPWTE outperforms, in most cases, the other considered models.

• Some causes are easier to detect than others. The reasons behind this phenomenon may
be multi-fold (they only represent some hypotheses): the single-event distributions in
the training history are different, the lack of information about some important char-
acteristics for some causes (e.g. electrical power and voltage for ’exceeding electrical
capacities’ and ’hardware failure’ causes), some sensor information for ’deregulated
drivers’, etc.

• The Ctd, TopA-k and TopR-B scores are relatively low in all cases and for all models.
This might be due to, in addition to the reasons cited above, the relative rarity of
incidents which induces a huge ratio of censored events which, makes the task more
challenging. Another complementary explanation to this under-performance would be:
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the variables or attributes stores in the provided are not sufficiently relevant or simply
not sufficient to distinguish between the most-at-risk feeders and ”safe” ones. This can
be supported by the analysis that we performed above, illustrated in Figure 6.4. And
last but not least, the data provided describes only the state of the stations/feeders of
a part of the region under study, while it is more interesting to collect data of other
areas in this region even for local predictions.

Now after having described this survival study and discussed its results, we will consider
the next stage namely the maintenance strategy. We will propose, using our methodology,
given a budget for a given feeder, the optimal modifications to perform in a maintenance
intervention in the feeder of interest, in order to maximize its mean lifetime.

6.4 Low-Voltage Feeder Mean-Lifetime Optimization un-
der Budget Constraint

In the previous section, we conducted a survival analysis study on low-voltage feeders in the
region of Occitania. Now in this section, we will see, by applying the methodology described
in Chapter 5 what are the optimal modification given a budget, that it could be done for
a particular feeder of interest in order to maximize its mean lifetime. Clearly and logically,
we will be interested in the most-at-risk feeders detected using the models evaluated in the
study described in the previous section. In the previous section, the fully connected net-
work FCN showed a significant underperformance compared to DeepHit DeepWeiSurv and
DPWTE. In addition, contrary to DeepWeiSurv and DPWTE, DeepHit is described as a
discrete-time model, which means that we cannot use it as a continuous regression function
to calculate the survival function at any given point in time. Therefore, we only test our two
approaches in this experiment. As these network-based models are described as full-white
boxes, we have the possibility to make them robust against numerical instability via the `1
gradient regularization technique described in Chapter 5. To do this, we need to re-train
these networks but this time with their respective adversarial losses associated (called adver-
sarial training, since we train the network to be robust against adversarial examples).This
experiment is organized as follows: we first briefly describe the problem statement (Section
6.4.1). Then, we describe the calculation steps of the respective adversarial losses of each
model (Section 6.4.2). Finally, we describe the experimental protocol and discuss the results
(Section 6.4.3).

6.4.1 Problem Statement
We note that, in this experiment, we use the considered models to estimate the survival
function of a feeder at a given point in time t. We also highlight that, as we are limited by
the lack of some potential variables that could affect failure probabilities of some cause, we
are interested only in the minimization of the failure probability, and thus the maximization
of the survival function, in a general way, i.e. regardless of the cause behind. For simplic-
ity we formulate the problem at the individual level, that is we consider the minimization
failure probability problem for a most-at-risk low-voltage feeder of particular interest. Let
Spdws, S

p̃
dpwte denote the survival functions learned by DeepWeiSurv (of parameter p) and

DPWTE (with p̃ is the size of the optimal combination of Weibull distribution) respectively.
We also note C the set of controllable features of the feeder data, c the cost factor vector
associated to the features (where for non-controllable ones, the respective cost factors are
defined as indefinitely large so their values do not change), and B the individual budget
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Figure 6.7: Correlation between feeder variable (except age variable).

dedicated for maintenance. Under the assumptions stated in Section 5.5 of Chapter 5, the
problem that we consider here, for a particular feeder x of interest, can be formulated as
follows:

arg max
y∈Rd

S(t,y)

s.t.
∑
i∈C

ci|yi − xi| ≤ b0

s.t. ai ≤ yi ≤ bi ∀ i ∈ C and yi = xi ∀ i 6∈ C

(6.4.1)

where S ∈ {Spdws, S
p̃
dpwte} is a survival function learned by DeepWeiSurv or DPWTE and d is

the number of features of feeder data. The solution to Problem 6.4.1, denoted by y∗ lower and
upper bound by a = (ai), b = (bi) respectively, is nothing but the optimal modification of the
given feeder (in terms of controllable feature values) that best minimizes the failure risk under
the defined budget constraint. We recall that the feeder data have the features described
in Table 6.1. Clearly, the values of the ’age’ variables cannot be modified. Furthermore,we
assume that removing a an important client from a feeder is so costly that it is not feasible.
We therefore assume that important client variable is not controllable. We also choose to not
let our methodology operate on the section total length variables for the sheer fact that there
exists a highly strong positive correlation (of 84%, see Figure 6.7) between the number of
section variable and the total length variable of the same type (e.g. the correlation between
the ’number of overhead sections’ variable denoted by nb oh sect and the ’total length of
overhead section’ variable denoted by len oh is equal to 0.84), and more precisely increasing
the number of sections of a given type implies the increasing the total length of the sections
of the same type. These assumptions and choices made leave us with a resulting controllable
features set (C) on which our methodology can operate which is consisted of the following
variables: the number of current clients as well as the number of overhead, underground
and twisted sections variables, i.e C = {nb clt, nb oh sect, nb ug sect, nb tw sect}. To solve
the optimization problem described in (6.4.1), we first robustify both DeepWeiSurv and
DPWTE networks against adversarial inputs, i.e. numerical instability through `1-norm
gradient regularization.
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6.4.2 Robustifying DeepWeiSurv and DPWTE Against Adversarial
Inputs

Let fpdws and fp→p̃dpwte denote respectively the function learned by DeepWeiSurv of parameter
p and the function learned by DPWTE as trained previously on the feeder data, where p̃ is
the mixture size estimate initially set to an upper bound p. We also note ω the weights of
the Mixture Weibull Sparse (MWS) layer of DPWTE. Then, using the notation established
in Chapter 2 and Chapter 3, fpdws and fp→p̃dpwte are solutions of the following loss minimization
problems

fpdws = argmin
β≥1,η>0,α≥0,‖α‖1=1

Lpdws = −log L(β, η, α|X), (6.4.2)

fp→p̃dpwte = argmin
β≥1,η>0,α≥0,‖α‖1=1

Lpdpwte = −log L(β, η, α|X) + λ||ω|| 1
2
. (6.4.3)

where X = (x1, ..,xN ) is the training data and λ is the regularization parameter to penalize
MWS weights. These two networks which respectively minimize Equation (6.4.2) and Equa-
tion (6.4.3), may be vulnerable against some adversarial inputs generated by PGD algorithm.
Thus, we propose a robust version of them using `1 gradient regularization, resulting to two
functions that we denote fpdws+σ, fp→p̃dpwte+σ defined as follows:

fpdws+σ = argmin Lpdws+σ = Lpdws + σ ‖∇XLpdws‖1 (6.4.4)

fp→p̃dpwte+σ = argmin Lpdpwte+σ = Lpdpwte + σ
∥∥∥∇XLpdpwte

∥∥∥
1

(6.4.5)

where σ is the strength parameter. After the learning phase (and the post-training steps for
DPWTE), we construct the respective survival functions, that we respectively denote Spdws+σ
and Sp̃dpwte+σ, of the robust versions of DeepWeiSurv and DPWTE from the learned Weibull
parameters in fpdws+σ and fp→p̃dpwte+σ respectively. In this experiment, we use the following
(robust) objective function S(t, .), where S ∈ {Spdws+σ, S

p̃
dpwte+σ} instead of {Spdws, S

p̃
dpwte}.

6.4.3 Experiment : Feeder-Level Survival Function Maximization
under Budget Constraint using Robustified DeepWeiSurv and
DPWTE

We recall that in order to optimize the survival function of a given low-voltage feeder which
potentially can experience a failure event, we need to do some modifications by operating
on its intrinsic features as well as the number of clients that use the feeder of interest.
Furthermore, we point out that in this experiment, for the sake of confidentiality, we hide
the identity of the feeder. In the same way, as in Section 6.3.2, we note that the values of
the cost vector c do not reflect reality, but for the sake of consistency, we make the following
assumptions:

• A modification at the intrinsic feature level has the same cost (that we set at 1)
regardless of the type of section (underground, overhead or twisted).

• A modification of the number of clients is more expensive for the simple reason that an
obligation to decrease the number of clients from a most-at-risk feeder may imply other
modifications such as the change of the electrical capacity or other electrical features
(whose details are not at our disposal), or construction of a new feeder to host each
part of clients from most-at-risk feeders, etc.
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Still, these interpretations rely on assumptions that may not sufficiently reflect the reality on
the ground, but the results are expected to be at least consistent and open to interpretation
since the performance of the models are acceptable. We choose therefore regardless of the
feeder under study, the following configurations:

• We set the respective cost factors for the intrinsic features at 1, that of the number of
current clients at 5:

ci =


1 if i ∈ {nb oh sect, nb ug sect, nb tw sect}
5 if i = nb clt

c′ >> b0 otherwise

• We set the budget b0 = 50.

• Another way to freeze the non-controllable features is to set: bi = ai = xi, ∀i 6∈ C,
where x = (xi) is the features values of the feeder of interest and C is the set of the
controllable features.

• For controllable features, we set ai = 0, ∀i ∈ C, since the respective range values of the
concerned variables necessarily belong to R+, and we set bi = 50 for intrinsic features
and bi = 90 for the number of current clients variable.

6.4.3.1 Experimental Scenario

To train the robust versions of DeepWeiSurv and DPWTE, represented respectively by the
functions fpdws+σ and fp→p̃dpwte+σ, we apply the same protocol as in Section 6.3.2.4. In this
experiment, we test different values of σ = 0.5, 1, 2.5 (other values of σ are tested but they
are not included in the results of this experiment for the sheer fact that they provide similar
performances). Once these two groups of networks are trained, we numerically solve the
problem defined in Equation (6.4.1) for given a most-at-risk feeder x from the test set (year
2016). To calculate the optimal modifications in the feeder of features x, we apply, using the
configurations fixed above, the projected gradient descent method defined in Algorithm 4
(Chapter 5) using a box-constrained and weighted `1-ball projection as defined in Algorithm
3 (Chapter 5) with a and b the lower and upper bounds respectively. As results, we obtain for
each value of σ both the optimal modifications as well as the optimal survival value associated
S(t, .) provided by fpdws+σ and fp→p̃dpwte+σ. The time t (in days) for which we calculate the
survival function output corresponds to the day in which the feeder of interest experienced
the failure in 2016 (as indicated in the history data), which means that maximizing S(t, .) by
operating on the feeder covariates gives us an idea about how long we could have extended
the life span of the feeder. To summarize the protocol that we describe above, let’s briefly
describe the steps applied to find the optimal modification in a feeder of covariates x:

1. Train the networks fpdws+σ and fp→p̃dpwte+σ, for each selected value of σ, using the exper-
imental protocol described in 6.3.2.4.

2. Apply the PGD algorithm using a box-constrained projection to calculate the optimal
modifications x̂ and the survival function value S(t, x̂), S ∈ {Spdws+σ, S

p̃
dpwte+σ} for

each network and for each value of σ.

As mentioned above, we test feeders that experienced a failure in the last year of the study
period namely: 2016. We then see what are the modifications that needed to be made at
the feeder level and which could have maximized the survival function and thus prolonged
its mean lifetime. We choose for this experiment two feeders from this group:
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Figure 6.8: The mean global variable importance calculated over all the models considered
in this experiment.

• The first feeder, of covariates y, is totally underground with the following feature
values: nb oh sect = 0, nb ug sect = 15, nb tw sect = 15 and nb clt = 82.

• The second one, of covariates z, is practically overhead with nb oh sect = 11 overhead
sections, one underground and one twisted sections (nb ug sect = 1 and nb tw sect =
1) feeding 44 current clients (nb clt = 44).

We will apply the experimental setting described in this section on these two feeders. Then,
we analyze and discuss the different solutions provided by the models considered.

6.4.3.2 Results and Discussion

Before discussing and analyzing the results of this experiment, we note that using each model,
we calculated the global importance of all the features, or in other words, we quantified the
(negative or positive) contribution, of each feature, to the survival prediction. We then
average the global importance of these features over the models considered here and obtain
the mean global importance of all the variables (used to train the models as shown in Figure
6.8). As we see in this figure, only four variables (2 of which are controllable namely the
number of underground sections nb ug sect and the twisted sections nb tw sect) have positive
contributions to the prediction of survival. This means that increasing the values of these
features can only increase the survival value, i.e. extend the lifetime of the feeder of interest.
Whereas, 7 out of 11 variables have a negative contribution, three of which are controllable,
namely the number of the current client (nb clt) as well as the number (nb oh sect) and
the length (len oh sect) of the overhead sections (the last feature is not taken into account
since there is a significant correlation between it and nb oh sect), and whose values should
be decreased to extend the lifespan. We assess this statement in the results presented in the
following discussion.

The results of the experiment applied on both feeders described above are displayed in
Table 6.5 and Table 6.6. For both tables, each row corresponds to the respective values
of the controllable features of the feeder of interest. The last row in each table represents
the current controllable-feature values taken by the feeder before an eventual maintenance.



6.4. LOW-VOLTAGE FEEDER MEAN-LIFETIME OPTIMIZATION UNDER BUDGET CONSTRAINT153

Table 6.5: Propositions of modifications (raw solutions) on the feeder y provided by the
robust versions of DeepWeiSurv and DPWTE with σ = 0.5, 1 and 2.5.

nb oh sect nb ug sect nb tw sect nb clt
ŷdwsσ=0.5 0 22.91 21.59 74.9
ŷdpwteσ=0.5 0 19.83 20.17 74
ŷdwsσ=1 0 41.37 38.63 82
ŷdpwteσ=1 0 46.1 33.9 82
ŷdwsσ=2.5 0 39.02 26.68 79.14
ŷdpwteσ=2.5 0 34.24 24.01 77.65

y 0 15 15 82

Table 6.6: Propositions of modifications (raw solutions) on the feeder z provided by the
robust versions of DeepWeiSurv and DPWTE with σ = 0.5, 1 and 2.5.

nb oh sect nb ug sect nb tw sect nb clt
ẑdwsσ=0.5 0 30.09 10.91 44
ẑdpwteσ=0.5 1.02 24.09 8.98 42.21
ẑdwsσ=1 2.58 13.46 10.12 40
ẑdpwteσ=1 0 20.78 20.22 44
ẑdwsσ=2.5 0.38 13.57 9.01 40.24
ẑdpwteσ=2.5 0.37 15.7 11.42 41.15

z 11 1 1 44

For instance, ŷdwsσ=0.5 is a solution to Problem 6.4.1 for the feeder y provided by the robust
version of DeepWeiSurv of σ = 0.5. All the results meet the budget constraint namely:
‖c� (x− ŷ)‖1 ≤ b0. In those instances, during PGD calculations, the iterate was projected
onto the c-weighted `1 sphere of center x and radius b0, which means that all the budget was
consumed to calculate the numerical (raw) modifications, e.g., for the feeder y, the solution
ŷdwsσ=0.5 meet the budget constraint: 1×(22.91−15)+1×(21.59−15)+5×(82−74.9) = 50 = b0.

However, as we notice in these two tables, the feature values of the solutions are float
numbers (raw format of the solutions as calculated in PGD algorithm), while the features
from the controllable set C only take integer values. We, therefore, in the first instance,
round the feature values to get the final solutions. We choose to round the solutions to the
nearest integer below their respective current values (floor denoted by b.c) for the features
with positive contributions and above their respective values (ceil denoted by d.e) for the
negative-contribution features, for the simple reason that otherwise, we could exceed the
amount in the budget especially if the cost of the feature concerned is greater than 1. This
first post-process results in some budget residual bres, which can then be shared between all
the feasible modifications or devoted to extra modification on the most important variables
(with respect to the respective cost factors).

To illustrate this, if we take the modifications on the feeder z provided by DPWTE’s
robust version of σ = 0.5, we can propose to operate the following modifications :

• Reduce the number of the overhead section to 2 (11→ d1.02e = 2).

• Add 23 underground section (1→ b24.09c) = 24).
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Table 6.7: Final solutions (in bold) for the feeder y provided by the robust versions of
DeepWeiSurv and DPWTE with σ = 0.5, 1 and 2.5.

nb oh sect nb ug sect nb tw sect nb clt budget residual survival

ŷdwsσ=0.5

0 22.91 21.59 74.9 0 -
0 22 21 75 2 -
0 23 22 75 0 0.63

ŷdpwteσ=0.5

0 19.83 20.17 74 0 -
0 19 20 74 1 -
0 20 20 74 0 0.59

ŷdwsσ=1

0 41.37 38.63 82 0 -
0 41 38 82 1 -
0 42 38 82 0 0.68

ŷdpwteσ=1

0 46.1 33.9 82 0 -
0 46 33 82 1 -
0 47 33 82 0 0.66

ŷdwsσ=2.5

0 39.02 26.68 79.14 0 -
0 39 26 80 5 -
0 42 28 80 0 0.63

ŷdpwteσ=2.5

0 34.24 24.01 77.65 0 -
0 34 24 78 2 -
0 36 24 78 0 0.65

y 0 15 15 82 0 - 0.36

Table 6.8: Final solutions (in bold) for the feeder z provided by the robust versions of
DeepWeiSurv and DPWTE with σ = 0.5, 1 and 2.5.

nb oh sect nb ug sect nb tw sect nb clt budget residual survival

ẑdwsσ=0.5

0 30.09 10.91 44 0 -
0 30 10 44 1 -
0 31 10 44 0 0.67

ẑdpwteσ=0.5

1.02 24.09 8.98 42.21 0 -
2 24 8 43 6 -
0 26 10 43 0 0.64

ẑdwsσ=1

2.58 13.46 10.12 40 0 -
3 13 10 40 1 -
2 13 10 40 0 0.58

ẑdpwteσ=1

0 20.78 20.22 44 0 -
0 20 20 44 1 -
0 21 20 44 0 0.69

ẑdwsσ=2.5

0.38 13.57 9.01 40.24 0 -
1 13 9 41 5 -
0 15 11 41 0 0.62

ẑdpwteσ=2.5

0.37 15.7 11.42 41.15 0 -
1 15 11 42 6 -
0 18 13 42 0 0.65

z 11 1 1 44 - 0.26
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• Add 7 twisted sections (1→ b8.98c = 8).

• Remove 1 client (44→ d42.21e = 43)

These modifications will therefore cost 1×(11−2)+1×(24−1)+1×(8−1)+5×(44−43) =
44 = b0−bres, which means that bres = 6 can be fairly shared between the three first features
(of cost 1) and thus used to reduce nb oh sect to zero and add extra underground and twisted
sections (2 each).

Once the final modifications are calculated, we estimate the survival value S(t, x̂), S ∈
{Spdws+σ, S

p̃
dpwte+σ} for each solution x̂ with the corresponding model. We illustrate these

steps and obtain the final solutions in Table 6.7 and Table 6.8 for both feeders y and z
respectively. The first insight that we can extract from these two tables is that all the
modifications are translated by a lifespan extension as we see in the column ’survival’ which
stored the values of S(t, .). In fact, through our methodology, both feeders y and z could
multiply their respective survival value by a factor of 1.7 and 2.4 respectively (the final
survival is equal to 0.64 on average for both of them while the initial values of survival
are respectively 0.36 and 0.26 for y and z. This means that, by applying the proposed
modifications, both feeders have up to 64% chance to survive in the coming year). For
each feeder, the survival values predicted by the models using their respective solutions
induce a tight standard deviation which can explain the numerical stability of the robust
versions. The second thing to notice, if we look at what happens on a feature scale, is that
all the models tend to decrease the values of both nb oh sect and nb clt features, whereas
they increase nb ug sect and nb tw sect. This fits with the fact that both the number of
overhead sections and the number of clients have a negative impact on the lifespan, while
the number of underground and twisted sections have positive contributions on the feeder
survival as indicated by the global importance of the controllable features represented in
Figure 6.8. This result is in line with what was stated and operated by ENEDIS in the
previous section and was expected, in the case of the use of reliable models, since as we have
seen in Section 6.3.1.2, the only possible modifications done during the study period are:
reducing the number of overhead sections, increasing the number of underground sections or
increasing the number of twisted sections.

6.5 Conclusion
In this chapter, we have seen concrete, real-world and complete application of the main
problems developed in this thesis namely the project on which we worked with ENEDIS.
The aim of this project during these two years was to use different nature of data at their
disposal to implement an algorithm, using a machine learning framework whose role is to
predict the failure on an individual scale. In the first instance, we were interested in only
predicting the failure regardless of the cause behind it. Then, we extend the problem to a
multi-class prediction where the nature of the risk is also a subject of study. We started by
analyzing the data provided, including the failure history data, and describing the main pre-
processing steps that result in clean pre-processed data. After that, we briefly described the
main experiment that we conducted during the project, where we described the network-
based models including our two approaches DeepWeiSurv and DPWTE used for failure
prediction and the evaluation metrics which we consider relevant to evaluate these models.
We also defined the experimental settings, presented and discussed the result of our two
approaches as well as the competitive methods which globally were outperformed by our
models in terms of classification, most-at-risk feeders detection, and the most likely failure
ranking. The overall performance is still subject to optimization in the future by feeding
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further the database with more information notably new relevant variables (e.g., consumed
power, weather quantitative information, etc.), data about feeders from other zones of the
region, and the failure history associated to strengthen the models against biases. Finally,
we completed the study (not performed during these two years on which we worked with
ENEDIS) by proposing a different solution, for a given most-at-risk feeder, to increase or
extend its lifespan. For this purpose, we used our optimization-based methodology presented
in Chapter 5, combined by `1-regularized versions of DeepWeiSurv and DPWTE to get
around the numerical instability induced by the PGD algorithm. We conducted a simulation
experiment on two anonymous feeders that experienced a failure (regardless of the cause
behind for the sake of simplicity) and discussed the modifications proposed by our models
that could have been operated at the controllable feature level to increase the survival value
at the time of the experienced failure and thus to extend their respective lifespans. As
a result, both groups of models have proposed, for a given feeder and subject to budget
constraint, to reduce both the number of overhead sections and the number of the current
clients directly linked to the feeder of interest as well as to increase both the number of
underground and twisted sections. This result is almost perfectly in line with the strategy
of ENEDIS performed at the high-voltage station level to reduce the failure risks.



Conclusion

In this thesis, we first investigated the problem considered in survival analysis namely, given
survival data, the quantification of the risk of experiencing an event of interest at the in-
dividual scale while taking into account censoring in the data. We proposed, to tackle
this problem, two deep learning approaches called DeepWeiSurv (Chapter 2) and DPWTE
(Chapter 3) respectively, that assume that the underlying event time distribution can be
modeled by a finite mixture of Weibull distributions whose parameters are estimated by a
neural network maximizing the likelihood of this mixture. We empirically showed, using
simulated tabular datasets, that both models learn the respective parameters as well as the
weighting coefficients of the Weibull distributions composing the mixture. We also con-
ducted experiments on time-series datasets and real-world datasets, testing several methods
(our two models and the most known state-of-the-art methods described in Chapter 1) and
showed that our approaches (especially the so-called DPWTE) are globally outperforming
the competing methods at different degrees. Apart from the predictive performance, an-
other advantage of these two models over the competing ones, is that we can estimate the
(individual) mean lifetime as well as the survival probability at any point of time.

The main difference between our two approaches is that DeepWeiSurv takes the size of
the mixture denoted by p as a parameter which means that the performance of this method
depends on the value of p, while DPWTE tackles this problem by only taking as input
an upper bound, sufficiently large, of the size and find the optimal mixture (whose size is
lower than the upper bound) of Weibull distributions to model the underlying distribution.
We showed, through simulated experiments described in Chapter 3, that DPWTE finds the
size of the mixture as well as the parameters and the weighting coefficients with which we
generated the datasets given that the model takes an upper bound largely greater than the
size of the generated mixture. In addition, we showed, through the experiments on the
real-world data described in Chapter 4, that DPWTE has at least the same, if not better,
performance as DeepWeiSurv. The approach behind these two models can also be applied
on other statistical distributions (while adapting the loss function) notably the mixture of
normal distributions.

After having tackled the problem of survival analysis, we proposed, in Chapter 5, a
hypothesis-based approach to maximize the lifespan, i.e. minimize the risk of the event by
operating on individual covariates under budget constraints. This approach consisted of
solving the constrained optimization problem where the solution is the set of modifications
to be operated on the concerned features. We considered, in our experiments, three scenar-
ios for the objective function (that calculates the risk/lifespan) namely the black, the semi-,
and the full-white boxes, where the first one is interpreted by LIME [39] and the last one is
robustified using the gradient regularization technique to address the numerical instability.
We empirically showed that the robust version of the full-white box family outperforms com-
pared to the first two scenarios. We also showed, through a simulation, that the performance
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of the method depends on the radius of the weighted ball that models the budget/cost con-
straints. Since the proposed method, admittedly motivated by the predictive maintenance
field, can be applied for any regression problem whose objective is to maximize the output
under linear constraints as assumed in this work, we run an experiment on the wine dataset,
where the goal was to maximize the quality of a certain wine given its physico-chemical
characteristics, using the robust version of the full-white box and discuss the results. We
noticed that the provided solutions make sense in reality.

However, in addition to the research directions explored in this work, we believe that
there are still some perspectives that must be taken into account in the future and deserve
further investigation. We recall that the approach presented in Chapter 5 is developed under
the assumption that limits its scope of application. In reality, the cost linearity assumption
is not always correct and thus the assumption of a non-linear relationship between the cost
and the feature modification must be made resulting in non-linear budget/cost constraints.
The same goes for the independent cost variables in which case, in reality, a modification
of a variable may imply a change in another variable and thus induces additional costs that
must be taken into account in the modeling. Regarding the box constraints, an interesting
direction for future works would be to consider the case where the upper and lower bounds
have opposite signs which may be possible for some variables such as the temperature, a
force in physics, etc.

In the last chapter (Chapter 6), we described the study conducted within the SmartOc-
citania project supported by ENEDIS and ADEME. This study, considered as a complete
application of our approaches developed during this thesis, aims to model the risk that a
low-voltage feeder experiences a power failure. For this purpose, we used DPWTE and
DeepWeiSurv as well as DeepHit considered as the best competing method according to the
experiments described in Chapter 4 whose results are acceptable but need improvement and
this is, in part, due to the quality and the quantity (limited space and short duration) of
the provided baseline and history. Then, we applied the approach presented in Chapter 5 to
propose optimizing solutions for the most-at-risk feeders.
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Appendix A

Proofs of Lemmas used to
Calculate the Projection onto
the Weighted `1 Ball

A.1 Box-Constraint-Free Projection

Lemma 4. Let b0 > 0, w ∈ (R∗+)d, x0 ∈ X and x ∈ X be the vector to be projected. Let
∆b0

w,x0 denote the simplex : {h ∈ X | wT (h − x0) = b0 and h ≥ x0} and let xs and xb the
solutions to Problem 5.4.3 and Problem 5.4.2 respectively. We recall that if x ∈ ∆b0

w,x0 then
x is the solution, i.e., xs = x and the same goes for when x ∈ Bb0

w,x0 . If x is outside ∆b0
w,x0

then there exists a unique real λ∗ such that:

xsi = x0
i + max{xi − (wiλ∗ + x0

i ), 0}, ∀i ∈ [d] (A.1.1)

Using lemma 1, we thus have; when x 6∈ Bb0
w,x0 ; the solution to Problem 5.4.2 defined as

follows:
xbi = x0

i + sign(xi − x0
i ) (xsi − x0

i ) (A.1.2)
where sign is the signum function.
Proof. Let b0 > 0, w ∈ (R∗+)d x0 ∈ X and x ∈ X be the vector to be projected. Let ∆b0

w,x0

denote the simplex : {h ∈ X | wT (h− x0) = b0 and h ≥ x0}. We suppose that x is outside
∆b0

w,x0 . The projection onto ∆b0
w,x0 is formulated as:

argmin
y∈∆b0

w,x0

1
2 ‖y− x‖22 (A.1.3)

The Lagrangian of the problem above is:

L(y, λ, µ) = 1
2 ‖y− x‖22 + λ(wT (y− x0)− b0)− µT (y− x0)

where λ ∈ R is a Lagrangian multiplier and µ ∈ (R∗+)d is a vector of non-negative Lagrange
multipliers. Using Kuhn-Tucker [121] conditions, the optimum satisfies:{

∇yL = y− x + λw− µ = 0
µ(y− x0) = 0. (A.1.4)

161
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By defining y and µ such as ∀i ∈ [d]:

yi = x0
i + max{xi − (wiλ+ x0

i ), 0}, (A.1.5)
µi = max{wiλ+ x0

i − xi, 0}. (A.1.6)

the two conditions defined in System (A.1.4) still respected. By definition, y ≥ x0. Let
g : R 7→ R a function defined as follows:

g(λ) =
∑
i∈[d]

wi(yi − x0
i ) (A.1.7)

=
∑
i∈[d]

wi max{xi − (wiλ+ x0
i ), 0} (A.1.8)

We aim at finding the value of λ∗ such that g(λ∗) = b0. From the definition, g is a positive
part function and piece-wise linear whose breakpoints z are defined by the following set:

z = {xi − x
0
i

wi
| ∀i ∈ [d]}. (A.1.9)

Let δ denote the permutation of x − x0 and w such that zδ(1) ≤ zδ(2) ≤ · · · ≤ zδ(d). Thus,
the values of g at the breakpoints are:

g(zi) =
d∑
j=1

wj max{xj − x0
j − wjzδ(i), 0}

=
d∑

j=i+1
wδ(j)(xδ(j) − x0

δ(j) − wδ(j)zδ(i))

For any zi < λ∗, yi = x0
i (A.1.5) and g(zi) > b0 (since g is non-increasing). This implies:

d∑
j=i+1

wδ(j)(xδ(j) − x0
δ(j) − wδ(j)zδ(i)) > b0

=⇒
−b0 +

∑d
j=i+1 wδ(j)(xδ(j) − x0

δ(j))∑d
j=i+1 w

2
δ(j)

> zδ(i)

Thus, yi = x0
i for i ∈ [imax], with:

imax := arg max{i |
−b0 +

∑d
j=i+1 wδ(j)(xδ(j) − x0

δ(j))∑d
j=i+1 w

2
δ(j)

> zδ(i)}

By calculating imax, we obtain λ∗ as follows:

g(λ∗) =
d∑

j=imax+1
wδ(j)(xδ(j) − x0

δ(j) − wδ(j)λ
∗) = b0

=⇒ λ∗ =
−b0 +

∑d
j=imax+1 wδ(j)(xδ(j) − x0

δ(j))∑d
j=imax+1 w

2
δ(j)
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This proof shows that there exists a unique solution x∆b0
w,x0 to Problem A.1.3 such that:

x
∆b0

w,x0

i = x0
i + max{xi − (wiλ∗ + x0

i ), 0}, ∀i ∈ [d]. (A.1.10)

A.2 Upper- and Lower-Bounded Projection

Lemma 5. Let use the notation defined so far, and let x̂b and x̂s be the solutions to 5.4.9
and 5.4.10 respectively. If x /∈ Bb0

w,x0 which implies x̂ /∈ Bb0
w,x̂0 , then there exists a unique

real λ∗ such that:

x̂si =


x̂0
i if x̂i − x̂0

i ≤ λ∗wi
b̂i if x̂i − b̂i ≥ λ∗wi

x̂i − λ∗wi if x̂i − b̂i < λ∗wi < x̂i − x̂0
i

(A.2.1)

Based on lemma 1 and using the inverse transformation associated to 5.4.8, the projection
onto Bb0

w,x0 xb can be written as follows:

xbi = x̂bi + ai = ai + sign(xi − x0
i )(xsi − x0

i ) (A.2.2)

where xs = x̂s + a and sign is the signum function.

Proof. Let assume that x̂ the vector to be projected is outside Bb0
w,x̂0 . The bounded projection

onto ∆b0
w,x̂0 ⊂ Bb0

w,x̂0 is formulated in Equation (5.4.10). The Lagrangian of this optimization
problem can be written as follows:

L = 1
2 ‖ŷ− x̂‖22 + λ(wT (ŷ− x̂0)− b0)− µT (b̂− ŷ)− γT (ŷ− x̂0) (A.2.3)

where λ ∈ R is a Lagrangian multiplier and µ, γ ∈ (R∗+)d are two vectors of non-negative
Lagrange multipliers. Using KKT conditions [121], the optimum satisfies:

∇yL = ŷi − x̂i + λwi + µi − γi = 0 (A.2.4)
µi(b̂i − ŷi) = 0 (A.2.5)
γi(ŷi − x̂0

i ) = 0 (A.2.6)

The second complementary slackness KKT conditions in Equation (A.2.6), implies that
ŷi = x̂0

i when x̂i − x̂0
i = λwi − γi. Since γi > 0, then ŷi = x̂0

i if x̂i − x̂0
i ≥ λwi. The

first complementary slackness KKT condition in Equation (A.2.5) implies that ŷi = b̂i when
b̂i − x̂i + λwi + µi = 0. As µi > 0 thus ŷi = b̂i when x̂i − b̂i ≥ +λwi. Now, using both
complementary slackness KKT conditions, we have µi = γi = 0 when x̂0

i < ŷi < b̂i which
implies that : ŷi = x̂i − λwi when x̂i − b̂i < λwi < x̂i − x̂0

i . Therefore, for a given λ, ŷi’s are
divided into three disjoint sub-sets denoted by L,U,C respectively:

ŷi =


x̂0
i if x̂i − x̂0

i ≤ λwi : L
b̂i if x̂i − b̂i ≥ λwi : U

x̂i − λwi if x̂i − b̂i < λwi < x̂i − x̂0
i : C

(A.2.7)



164 APPENDIX A. PROJECTION ONTO THE WEIGHTED `1 BALL - PROOFS

The budget constraint can therefore be expressed as,

b0 =
d∑
i=1

wi(ŷi − x̂0
i ) (A.2.8)

=
∑
i∈U

wi(b̂i − x̂0
i ) +

∑
i∈C

wi(x̂i − x̂0
i )− λ

∑
i∈C

w2
i (A.2.9)

=

Sw,x̂0︷ ︸︸ ︷
d∑
i=1

wi(x̂i − x̂0
i )−

∑
i∈U∪L

wi(x̂i − x̂0
i ) +

∑
i∈U

wi(b̂i − x̂0
i )− λ

∑
i∈C

w2
i (A.2.10)

To find the optimal boundaries of the sub-sets L, U and C which therefore allow to estimate
λ, we use the approach proposed by Gupta et al. in [127]. Denoting the optimal sub-sets by
L∗, U∗ and C∗ as well as the optimal λ by λ∗, we obtain,

λ∗ =
Sw,x̂0 −

∑
i∈U∗∪L∗ wi(x̂i − x̂0

i ) +
∑
i∈U∗ wi(b̂i − x̂0

i )− b0∑
i∈C∗ w

2
i

(A.2.11)

By definition, L∗, U∗ and C∗ are unique, hence the same goes for λ∗.
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