
HAL Id: tel-03710472
https://theses.hal.science/tel-03710472v1

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining supervised deep learning and scientific
computing : some contributions and application to

computational fluid dynamics
Paul Novello

To cite this version:
Paul Novello. Combining supervised deep learning and scientific computing : some contributions and
application to computational fluid dynamics. Other Statistics [stat.ML]. Institut Polytechnique de
Paris, 2022. English. �NNT : 2022IPPAX005�. �tel-03710472�

https://theses.hal.science/tel-03710472v1
https://hal.archives-ouvertes.fr


574

N
N

T
:2

02
2I

P
PA

X
00

5

Combining supervised deep learning
and scientific computing: some
contributions and application to
computational fluid dynamics.

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦574 École Doctorale de Mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées

Thèse présentée et soutenue à Le Barp, le 09/03/2022, par

PAUL NOVELLO

Composition du Jury :

Marc Schoenauer
Directeur de recherche, INRIA Saclay, TAU Président du Jury

Raphaël Loubère
Directeur de recherche, Institut de Mathématiques de Bordeaux,
UMR 5251 Rapporteur

Clémentine Prieur
Professeure, Université Grenoble Alpes, Laboratoire Jean
Kuntzmann Rapportrice

Marc Massot
Professeur, Ecole Polytechnique, CMAP Examinateur

Sébastien Da Veiga
HDR, Safran Tech Examinateur

Rodolphe Le Riche
Directeur de recherche, Ecole des Mines de Saint-Etienne, LIMOS Examinateur

Gaël Poëtte
HDR, CEA CESTA Co-directeur de thèse

David Lugato
Directeur de recherche, CEA CESTA Co-directeur de thèse

Pietro Marco Congedo
Directeur de recherche, INRIA Saclay, Ecole Polytechnique,
PLATON Directeur de thèse





Abstract

Recent innovations in mathematics, computer science, and engineering have enabled more and
more sophisticated numerical simulations. However, some simulations remain computationally
unaffordable, even for the most powerful supercomputers. Lately, machine learning has proven
its ability to improve the state-of-the-art in many fields, notoriously computer vision, language
understanding, or robotics. This thesis settles in the high-stakes emerging field of Scientific
Machine Learning which studies the application of machine learning to scientific comput-
ing. More specifically, we consider the use of deep learning to accelerate numerical simulations.

We focus on approximating some components of Partial Differential Equation (PDE)
based simulation software by a neural network. This idea boils down to constructing a
data set, selecting and training a neural network, and embedding it into the original code,
resulting in a hybrid numerical simulation. Although this approach may seem trivial at
first glance, the context of numerical simulations comes with several challenges. Since we
aim at accelerating codes, the first challenge is to find a trade-off between neural networks’
accuracy and execution time. The second challenge stems from the data-driven process of
the training, and more specifically, its lack of mathematical guarantees. Hence, we have to
ensure that the hybrid simulation software still yields reliable predictions. To tackle these
challenges, we thoroughly study each step of the deep learning methodology while considering
the aforementioned constraints. By doing so, we emphasize interplays between numerical
simulations and machine learning that can benefit each of these fields.

We identify the main steps of the deep learning methodology as the construction of the
training data set, the choice of the hyperparameters of the neural network, and its training.
For the first step, we leverage the ability to sample training data with the original software to
characterize a more efficient training distribution based on the local variation of the function
to approximate. We generalize this approach to general machine learning problems by deriving
a data weighting methodology called Variance Based Sample Weighting. For the second step,
we introduce the use of sensitivity analysis, an approach widely used in scientific computing, to
tackle neural network hyperparameter optimization. This approach is based on qualitatively
assessing the effect of hyperparameters on the performances of a neural network using Hilbert-
Schmidt Independence Criterion. We adapt it to the hyperparameter optimization context
and build an interpretable methodology that yields competitive and cost-effective networks.
For the third step, we formally define an analogy between the stochastic resolution of PDEs
and the optimization process at play when training a neural network. This analogy leads
to a PDE-based framework for training neural networks that opens up many possibilities
for improving existing optimization algorithms. Finally, we apply these contributions to a
computational fluid dynamics simulation coupled with a multi-species chemical equilibrium
code. We demonstrate that we can achieve a time factor acceleration of 18.7 with controlled
to no degradation from the initial prediction.



Abstract

Les innovations récentes en mathématiques, en informatique et en ingénierie ont permis de
réaliser des simulations numériques de plus en plus complexes. Cependant, certaines simula-
tions restent inabordables en termes de temps de calcul, même pour les super calculateurs les
plus puissants. Récemment, l’apprentissage automatique a démontré sa capacité à améliorer
l’état de l’art dans de nombreux domaines, notamment la vision par ordinateur, la compréhen-
sion du langage et la robotique. Cette thèse s’inscrit dans le domaine émergent et à fort
enjeu de l’apprentissage automatique scientifique, qui étudie l’application de l’apprentissage
automatique au calcul scientifique. Plus précisément, nous nous intéressons à l’utilisation de
l’apprentissage profond pour accélérer des simulations numériques.

Pour atteindre cet objectif, nous nous concentrons sur l’approximation de certaines parties
des logiciels de simulation basés sur des Equations Différentielles Partielles (EDP) par un
réseau de neurones. La méthodologie proposée s’appuie sur la construction d’un ensemble
de données, la sélection et l’entraînement d’un réseau de neurones et son intégration dans
le logiciel original, donnant lieu à une simulation numérique hybride. Malgré la simplicité
apparente de cette approche, le contexte des simulations numériques implique des difficultés
spécifiques. Puisque nous visons à accélérer des simulations, le premier enjeu est de trouver
un compromis entre la précision des réseaux de neurones et leur temps d’exécution. En
effet, l’amélioration de la première implique souvent la dégradation du second. L’absence
de garantie mathématique sur le contrôle de la précision numérique souhaitée inhérent à la
conception du réseau de neurones par apprentissage statistique constitue le second enjeu. Ainsi
nous souhaiterions maitriser la fiabilité des prédictions issues de notre logiciel de simulation
hybride. Afin de satisfaire ces enjeux, nous étudions en détail chaque étape de la méthodologie
d’apprentissage profond. Ce faisant, nous mettons en évidence certaines similitudes entre
l’apprentissage automatique et la simulation numérique, nous permettant de présenter des
contributions ayant un impact sur chacun de ces domaines.

Nous identifions les principales étapes de la méthodologie d’apprentissage profond comme
étant la constitution d’un ensemble de données d’entraînement, le choix des hyperparamètres
d’un réseau de neurones et son entraînement. Pour la première étape, nous tirons parti de la
possibilité d’échantillonner les données d’entraînement à l’aide du logiciel de simulation initial
pour caractériser une distribution d’entraînement plus efficace basée sur la variation locale de
la fonction à approcher. Nous généralisons cette observation pour permettre son application
à des problèmes variés d’apprentissage automatique en construisant une méthodologie de
pondération des données appelée ”Variance Based Sample Weighting”. Dans un deuxième
temps, nous proposons l’usage de l’analyse de sensibilité, une approche largement utilisée en
calcul scientifique, pour l’optimisation des hyperparamètres des réseaux de neurones. Cette
approche repose sur l’évaluation qualitative de l’effet des hyperparamètres sur les performances
d’un réseau de neurones à l’aide du critère d’indépendance de Hilbert-Schmidt. Les adaptations
au contexte de l’optimisation des hyperparamètres conduisent à une méthodologie interprétable
permettant de construire des réseaux de neurones à la fois performants et précis. Pour la



troisième étape, nous définissons formellement une analogie entre la résolution stochastique
d’EDPs et le processus d’optimisation en jeu lors de l’entrainement d’un réseau de neurones.
Cette analogie permet d’obtenir un cadre pour l’entraînement des réseaux de neurones basé sur
la théorie des EDPs, qui ouvre de nombreuses possibilités d’améliorations pour les algorithmes
d’optimisation existants. Enfin, nous appliquons ces méthodologies à une simulation numérique
de dynamique des fluides couplée à un code d’équilibre chimique multi-espèces. Celles-ci nous
permettent d’atteindre une accélération d’un facteur 18.7 avec une dégradation de la précision
contrôlée ou nulle par rapport à la prédiction initiale.

2



Remerciements

Avant toute chose, je tiens à remercier chaleureusement les membres du jury de cette thèse:
Marc Schoenauer; Marc Massot; Rodolphe Le Riche; Sébastien Da Veiga; Raphaël Loubere
et Clémentine Prieur, pour leur attention ainsi que pour leurs remarques ayant contribué
à une discussion scientifique particulièrement enrichissante lors de la soutenance. Merci à
Raphaël Loubère et à Clémentine Prieur d’avoir accepté le rôle de rapporteur. Les rapports
de thèse m’ont beaucoup apporté, que cela soit à travers les critiques - m’ayant transmis un
précieux recul sur mes travaux ainsi que de nombreuses perspectives d’améliorations - ou les
encouragements - toujours agréables à recevoir.

A l’origine de cette thèse... il y avait David. Merci d’avoir monté ce projet, de m’y avoir
inclus, et d’avoir constitué cette petite équipe en faisant signe à Gaël et Pietro. Merci pour
ton implication, tes conseils et ces innombrables discussions dans ton bureau - pas forcément
très scientifiques. Gaël, ce fut un plaisir de naviguer avec toi entre bières et théorie de
l’approximation. Plus sérieusement, je ne cesserai jamais de me sentir chanceux d’avoir été
encadré par quelqu’un d’aussi accessible, bienveillant, passionné, tout en étant si rigoureux,
affuté, encyclopédique... Parfois à l’excès (pour chacune de ces qualités) ! Merci Pietro
d’avoir apporté ta vision d’ensemble, ton esprit de synthèse et ton expérience. Je suis honoré
d’avoir pu travailler avec toi. Passer trois années avec trois encadrants si impliqués fut
assurément très riche. Cela fut également à la fois fatiguant : à quatre, il est rare d’être tou-
jours du même avis; et réconfortant : il y avait souvent quelqu’un pour être d’accord avec moi !

Merci aux collègues du Cesta pour leur bonne humeur, à la bande de thésards et postdocs
pour les discussions sur fond de bruit de machine à café en fin de vie. Et pour certains, aux
bien-aimés et regrettés Umami et Sur-Me. Je regrette également que le covid m’ait empêché
d’aller plus régulièrement à l’Inria. Le peu de temps que j’y ai passé avec mes comparses
“Platoniciens” m’a toujours donné envie... d’en passer encore plus.

3



Ces trois dernières années furent professionnellement bien remplies. J’ai cependant la chance
d’avoir beaucoup gagné par ailleurs. J’ai gagné une femme, Marie, que je suis comblé d’avoir
épousé au beau milieu de cette thèse. Mon mariage a officialisé mon entrée dans une nouvelle
famille à laquelle je suis fier d’appartenir. J’ai également gagné par ce mariage ma bande de
témoins, que je garderai toute ma vie. J’ai gagné un acolyte qui en aurait assurément fait
partie si je l’avais rencontré plus tôt. J’ai gagné une nouvelle bande de potes Niço-Toulousains.
Pour la montagne, je ne peux pas en dire autant : c’est elle qui m’a gagné.

Je dédie enfin cette thèse à mes racines, ceux qui étaient là dès le début: ma famille. Novello
et Moulonguet se reconnaîtront. J’adresse une marque d’affection particulière à mes grands-
parents, et surtout à Papa, Maman, Delphine, Martin (et Pirouette). Je vous dois ce que je
suis aujourd’hui et ce que je serai demain.

4



Contents

Notations 7

1 Introduction 11
1.1 Challenges and stakes of numerical simulations . . . . . . . . . . . . . . . . . 12
1.2 Supervised deep learning as a way to speed-up simulation codes . . . . . . . 12
1.3 Supervised deep learning methodology in the eye of numerical and uncertainty

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Supervised deep learning and numerical simulations 19
2.1 Supervised machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Optimization in deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Importance of the training data, hyperparameters, and optimization . . . . . 29
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Training distribution and local variation 33
3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Link between local variations and learning . . . . . . . . . . . . . . . . . . . 37
3.3 Generalization of Taylor based Sampling . . . . . . . . . . . . . . . . . . . . 43
3.4 Variance Based Sample Weighting . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 VBSW for deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Discussion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Hyperparameter optimization using goal-oriented sensitivity analysis 55
4.1 Sensitivity analysis as a new approach to hyperparameter optimization . . . 58
4.2 HSIC-based goal oriented sensitivity analysis . . . . . . . . . . . . . . . . . . 62
4.3 Application of HSIC to hyperparameters space . . . . . . . . . . . . . . . . . 64
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Optimization by focusing on impactful hyperparameters . . . . . . . . . . . 81
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5



CONTENTS

5 A view of learning from the Partial Differential Equation theory 89
5.1 The optimization task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Stochastic resolution of Partial Differential Equations . . . . . . . . . . . . . 93
5.3 Learning task formulated as a stochastic PDE . . . . . . . . . . . . . . . . . 96
5.4 A PDE-consistent Stochastic Gradient Descent . . . . . . . . . . . . . . . . 102
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Efficient hybrid numerical simulations (with guarantees) 123
6.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 A general approach for constructing of hybrid simulation codes . . . . . . . . 129
6.3 Test case: a CFD code coupled with chemical equilibrium . . . . . . . . . . 132
6.4 Acceleration of the simulation code . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 Guarantees for the hybrid code . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.6 Discussion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7 Summary of the thesis/Résumé de la thèse (in French) 153

8 Conclusions 173

Conclusions 173
8.1 Contribution to the methodology of supervised deep learning . . . . . . . . . 173

8.1.1 Training distribution and local variations . . . . . . . . . . . . . . . . 173
8.1.2 Hyperparameter optimization using goal-oriented sensitivity analysis 174
8.1.3 A view of learning from the Partial Differential Equation theory . . . 175

8.2 Application of the methodology to the construction of a hybrid CFD numerical
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Bibliography 177

Appendices 197
Appendix A: Demonstrations (Chapter 3) . . . . . . . . . . . . . . . . . . . . . . 197
Appendix B: Hyperparameter spaces . . . . . . . . . . . . . . . . . . . . . . . . . 204
Appendix C: Construction of Bateman data set (Chapter 4) . . . . . . . . . . . . 210
Appendix D: HSICs for conditional hyperparameters (Chapter 4) . . . . . . . . . 211

6



Notations

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at
position i

diag(a) A square, diagonal matrix with diagonal entries given by
a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

7



CONTENTS

Sets

S A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the
elements of A that are not in B

Cp The set of p times differentiable functions.

Indexing

ai Element i of vector a, with indexing starting
at 1

Ai,j Element i, j of matrix A

ai Element i of the random vector a

Calculus

dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇xf(x)orG(f)(x) The Jacobian matrix of f at input point x

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫
f(x)dx Definite integral over the entire domain of x∫

S
f(x)dx Definite integral with respect to x over the set S

8



CONTENTS

Probability and Information Theory

px(x) The probability density function (pdf) of a
variable x

Px The probability distribution of a variable x

P(a) The probability of an event a

x ∼ px Random variable a has pdf px

x ∼ Px Random variable a follows distribution Px

dPx(x) The probability measure of x corresponding to
px(x)dx if x is continuous, and

∑
δxi

(x) if x
is discrete with values {xi}, i ∈ S ⊆ N

E[f(x)] Expectation of f(x) with respect to p(x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

N (µ,Σ) Gaussian distribution with mean µ and covari-
ance Σ

Functions

f : A → B The function f with domain A and range B

f ◦ g Composition of the functions f and g

fθ A function parametrized by θ.

log x Natural logarithm of x

||x||p Lp norm of x

||x|| L2 norm of x

1condition is 1 if the condition is true, 0 otherwise

9



CONTENTS

10



Chapter 1
Introduction

In the collective imagination, simulations are closely related to Artificial Intelligence (AI).
According to some theories (more or less credible), we may live in a simulation1, either created
by machines or other beings, mimicking the world and human intelligence. Some even state
that ”the answer to life, the universe, and everything” can be represented with 6 bits 2.

There is still a long way to go before these theories can be validated or refuted. Indeed, although
innovations in mathematics, computer science, and engineering have enabled more and more
complicated numerical simulations, computational experiments conducted by research and
industry are still limited by computing capabilities. Indeed, even the largest supercomputers
struggle to simulate physics at its most refined scale. Besides, even though AI has known
countless breakthroughs in the last decades, we are still far from general artificial intelligence
replicating human intelligence.

On the one hand, scientific computing and numerical analysis have been developed to solve
coupled systems of Partial Differential Equations (PDE) that model a phenomenon of interest,
with applications, for instance, in computational physics, biology, economy, and climatology.
On the other hand, AI, or machine learning, has been notorious for its tremendous computer
vision, robotics, and natural language understanding achievements. Scientific computing
and AI have long been poled apart, but recently, interest has grown to combine them to
unlock new advances. Their cross-fertilization has fostered the emergence of a new field called
scientific machine learning (Baker et al., 2019). This thesis is part of this new field and aspires
to contribute to this cross-fertilization.

1Simulacron 3 (Galouye, 1964), The Matrix (Wachovski, 1999), Are you living in a computer simulation?
(Bostrom, 2003), L’Anomalie (Le Tellier, 2020)

2The Hitchhiker’s Guide to the Galaxy (Adams, 1978)

11



CHAPTER 1. INTRODUCTION

1.1 Challenges and stakes of numerical simulations

Numerical simulations and scientific computing are ubiquitous in research and industry. In
research, it allows conducting computational experiments to validate or explore knowledge
about natural sciences. In industry, it is at the basis of complex system conception. However,
despite the immense computational power of modern supercomputers, numerical simulations
always face a performance-accuracy trade-off.

Indeed, to be accurate and reliable, a numerical simulation has to model accurate physics.
Nonetheless, in that case, the code execution can be lengthy, computationally intensive,
and sometimes even not affordable. Therefore, when working on a numerical simulation
code, scientists and engineers have to find the right level of accuracy to reliably simulate a
phenomenon, together with the right amount of simplifications to make it workable.

That is why there are high stakes at accelerating numerical simulation codes: it would induce
valuable time savings for single simulation runs that are of interest for forecasting, as well
as for parametric studies like uncertainty quantification, sensitivity analysis, or calibration
intensively used for system conception and decision-making. Finally, accelerating simulation
codes may also enable currently unavailable simulations.

1.2 Supervised deep learning as a way to speed-up sim-
ulation codes

Many coupled systems of equations, solved in simulation codes, can be decomposed into, for
example, two operators: {

F1(η,u) = 0,

F2(u,η) = 0,

(1.1a)
(1.1b)

where F1 and F2 are mathematical operators acting on the set of unknowns (u,η). Depending
on the physics of interest, the operators can strongly differ. For instance, in burn-up
applications (neutronics) (Bernède and Poëtte, 2018; Dufek et al., 2013), F1 is the linear
Boltzmann equation of unknown the density of neutrons u. For this equation, η is only a
parameter. On the other hand, η the vector of isotopic densities is the unknown of F2, the
Bateman system. In radiation hydrodynamics (Mihalas and Mihalas, 1984; Castor, 2004;
Clouët and Samba, 2004), F1 is the Euler system of unknown u, the vector made of the
mass density, the momentum and of the total energy, and F2 is the Boltzmann equation
of unknown η, the density of energy of photons. In Computational Fluid Dynamic (CFD)
for non-viscous fluids (Maire et al., 2007b; Loubère et al., 2014), F1 is the Euler system of
unknown u, the vector made of the mass density, the momentum and of the total energy,
and F2 is simply the call for the equation of state relating the main variable u to the vector
of thermodynamic quantities η (pressure, temperature, sound speed). Independently of

12



CHAPTER 1. INTRODUCTION

the physics of interest, the iterative resolution of the coupled system often needs successive
resolutions of equation (1.1a) and equation (1.1b) within an iteration. It is typically the case
for operator splitting (Strang, 1968). Hence, even if the resolution of equation (1.1a) alone is
not costly, the resolution of equation (1.1a) coupled with equation (1.1b) might be. In this
case, most of the computational time would be spent on the resolution of equation (1.1b).

There are already several ways to tackle this performance-accuracy trade-off. The most
classical one consists of making simplifying physical assumptions. Assume that η does not
vary that much when equation (1.1b) is solved. Then, solving equation (1.1a) could be enough
to satisfy accuracy constraints and allow a cost-effective resolution when equation (1.1b) is
neglected. One finer possibility is to construct abacuses from the resolution of equation (1.1b)
before the execution and then interpolate in these abacuses at run time instead of solving
equation (1.1b) (Sigrist, 2019, 2020). This is particularly used when equation (1.1b) is an
equation of state. Another popular method, called surrogate modeling, trains a surrogate
model to learn a mapping from input parameters to output quantities of interest. The
numerical simulation - here, the coupling between equation (1.1a) and equation (1.1b) - is
considered as a black-box function used to build the training data (Gramacy, 2020). Then,
the surrogate model is used in place of the simulation for parametric studies. However, all
these methods have their flaws:

• Simplifying hypotheses forbids taking into account finer phenomena. In our case, it
might be a problem where it is impossible to neglect F2 reasonably.

• Abacuses are irrelevant in high dimension because the domain of interest may be too
large to fill with interpolation points correctly. Moreover, interpolating at run time may
become computationally costly, for instance, when η’s dimensions are too high.

• The whole simulation code being computationally expensive, it may be impossible to
construct a sufficient database for black-box surrogate modeling to be effective.

A less common approach for accelerating simulation codes consists of approximating only the
resolution of equation (1.1b) with a surrogate model and then plugging it inside the simulation
code, yielding a hybrid simulation code (see Kluth et al. (2019); Behler and Parrinello (2007);
Han et al. (2019); Stecher et al. (2014) for examples). This approach solves the flaws of the
methods previously described:

• There is no simplifying hypothesis, and the phenomenon described by equation (1.1b)
is included in the simulation.

• One can choose a model that performs well in high dimensions.

• Even if most of the computational time is spent on the resolution of equation (1.1b),
this system is generally cheap to solve when considered independently. Therefore, it is
possible to build a large database for fitting a surrogate model. Moreover, this surrogate
can be reused for any simulation code that calls for the resolution of equation (1.1b).

13



CHAPTER 1. INTRODUCTION

In this thesis, we explore this approach and choose to use neural networks as surrogate models.
Neural networks are machine learning models that consist of artificial layers-structured neurons
connected by weights. They can have different shapes or architectures, characterized by
criteria called hyperparameters. The choice of this approach is motivated by several elements.

First, deep learning is one of the main building blocks of AI and is responsible for many of
its most eloquent breakthroughs. Furthermore, recent advances have dramatically improved
deep learning in terms of software with the research around optimization and neural networks’
architectures; and hardware with the exploitation of GPUs and TPUs. Hence, neural networks
are more and more accurate and more and more cost-effective.

Second, once trained, a neural network can be easily saved, exported, and used as a simple
function to be plugged inside a numerical simulation code. Moreover, its implementation
boils down to vector products, which allows processing batch inputs efficiently. Thus, it
is particularly suited to numerical simulations conducted on meshes, which are arrays-like
structures.

Finally, neural networks are very flexible, and their execution complexity does not depend on
the number of points used for training and only depends linearly on their input and output
dimensions. To sum up, supervised deep learning is a promising approach to accelerate
numerical simulation codes.

1.3 Supervised deep learning methodology in the eye of
numerical and uncertainty analysis

The methodology of supervised deep learning to construct a surrogate model based on a
neural network can be divided into three steps:

1 The construction of the training database using the code that solves F2.

2 The choice of the neural network’s architecture, based on hyperparameters.

3 The training of the network using optimization algorithms.

When considering this methodology through the prism of the performance-accuracy trade-off,
each of its steps becomes important and echoes the challenges and stakes of numerical simula-
tion. Indeed, the construction of the database has a substantial impact on the performance of
the reduced model. This impact has justified many works about designs of experiments. The
training database is crucial to ensure the good accuracy of the model, and it is also a way to
improve its accuracy without affecting its execution time. Then, many achievements of deep
learning were due to innovative architectures. That is why hyperparameters are also crucial
to obtain a competitive accuracy. Carefully selecting hyperparameters’ values is all the more

14



CHAPTER 1. INTRODUCTION

important since it also impacts the cost-efficiency of the neural networks. In our case, we
cannot simply choose them to maximize the accuracy: we have to make sure that the neural
network remains cost-effective. Finally, similarly to the construction of the training database,
the optimization process of neural networks has a significant impact on its accuracy without
affecting its execution time.

In this thesis, motivated by these observations, we investigate each of these steps. Considering
the field of application of this methodology, i.e. scientific computing, we take the opportunity
to examine these steps in the eye of best practices from numerical and uncertainty analysis.
As we shall see, such an approach can benefit both general supervised deep learning and
numerical simulations.

1.4 Contributions

This thesis gathers four contributions. The first three focus on each step of building surrogate
models with supervised deep learning, and the last contribution is the application of this
methodology for the construction of a hybrid simulation code in CFD.

1.4.1 Training distribution and local variation.

We elaborate on the intuition that in approximating a function f , a neural network is more
accurate when the training database focuses on regions where f is steeper. We derive an
illustrative generalization bound to legitimate this intuition and verify it empirically. To that
end, we use Taylor expansion of f to build a sampling scheme for constructing the training
database that we call Taylor-based Sampling (TBS). TBS proves to be promising but relies
on too stringent hypotheses for large-scale numerical simulations and deep learning in general.
Indeed, using Taylor expansion of f implies having access to its derivatives, which is often not
the case in practice, either because they are too costly to obtain or not defined. Moreover,
adding new sampled points to the training set requires evaluating f on these points, which is
impossible in general machine learning because we do not have access to f . For these reasons,
we construct a weighting scheme that alleviates these hypotheses and improves neural network
accuracy on various machine learning tasks.

Presentations

• A Taylor Based Sampling Scheme for Machine Learning in Computational Physics
Paul Novello, Gael Poette, David Lugato and Pietro Congedo, Second Workshop on
Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.

• A Taylor Based Sampling Scheme for Deep Learning in Computational Physics: L’avan-
tage du deep learning pour les simulations numériques.

15



CHAPTER 1. INTRODUCTION

Paul Novello, Gael Poette, David Lugato and Pietro Congedo, Machine Learning Meetup,
2019, Pau, France

Publications

• Leveraging Local Variation in Data: sampling and weighting schemes for supervised
deep learning
Paul Novello, Gael Poette, David Lugato and Pietro Congedo, Submitted to the Journal
of Machine Learning for Modeling and Computing

1.4.2 Hyperparameter optimization using goal-oriented sensitivity
analysis.

It is commonly accepted that hyperparameters have a strong impact on the accuracy of
neural networks. Another observation is that it is also difficult to characterize this impact
(Bergstra and Bengio, 2012): from one problem to the other, the same hyperparameter
can be more or less impactive. This work introduces a thorough goal-oriented sensitivity
analysis of the neural network’s accuracy concerning its hyperparameters, based on the
Hilbert-Schmidt Independence Criterion (HSIC). We adapt HSIC to hyperparameter spaces,
which is challenging because hyperparameters can be discrete (width of the neural network),
continuous (learning rate), categorical (activation function), or boolean (batch normalization
(Ioffe and Szegedy, 2015)); some hyperparameter’s presence is conditional to others (e.g.
moments decay rates specific to Adam optimizer (Kingma and Ba, 2015)); and they can
strongly interact (as shown in Tan and Le (2019), in some cases, it is better to increase
depth and width by a similar factor). The obtained metric allows building hyperparameter
optimization methodologies that are interpretable and yields competitive and cost-effective
neural networks.

Talks

• Explainable Hyperparameters Optimization using Hilbert-Schmidt Independence Crite-
rion
Paul Novello, Gael Poette, David Lugato and Pietro Congedo, MASCOT 2021 Meeting,
gdr-mascotnum, virtual

Publications

• Goal-Oriented Sensitivity Analysis of Hyperparameters in Deep Learning
Paul Novello, Gael Poette, David Lugato and Pietro Congedo, Submitted to the Journal
of Scientific Computing.

16



CHAPTER 1. INTRODUCTION

1.4.3 A view of learning from the Partial Differential Equation
theory

We build an analogy between the resolution of PDE and the training of neural networks,
leading to a PDE framework for learning. Based on this framework, we enhance classical
stochastic gradient descent with new terms that speed up the convergence in convex regions
of the parameter spaces from our experiments. We also use a stability condition from
PDE resolution theory that translates into constraints on the learning rate, which allows
efficiently exploring the parameter space while maintaining the stability of the process without
any learning rate tuning. These improvements are showcased on a simple two-dimensional
optimization problem involving training a neural network with two neurons.

1.4.4 Efficient hybrid numerical simulations (with guarantees)

We apply the neural network-based acceleration approach described in Section 1.2 to the
simulation of a hypersonic flow around an object during atmospheric reentry. To accurately
simulate this phenomenon, it is necessary to compute the chemical equilibrium of species
found in the fluid. We approximate the chemical reactions with a neural network and obtain
a significant speed-up for a comparable accuracy. Using error analysis based on uncertainty
propagation, we show that the hybrid code’s error is negligible compared to other sources
of errors that classical numerical simulation codes usually undergo. We also describe how
to obtain the exact predictions with the hybrid code by using its output to initialize the
computations of the original code. This allows reaching a speed-up factor of 10.

Talks

• Accelerating hypersonic reentry simulations using deep learning-based hybridization
(with guarantees)
Paul Novello, Gael Poette, David Lugato and Pietro Congedo, HSA’2021, IRT SystemX,
Saclay, France

Publications

• Accelerating hypersonic reentry simulations using deep learning-based hybridization
(with guarantees)
Paul Novello, Gael Poette, David Lugato and Pietro Congedo
In preparation. To be sent to the Journal of Computational Physics

17



CHAPTER 1. INTRODUCTION

1.5 Thesis organization

In Chapter 2, we introduce some basic notions about neural networks and supervised deep
learning that we organize around the previously described three-step methodology. Using a
decomposition of the neural network output error, we emphasize the importance of each of
these steps, to which the following three chapters are dedicated.

Chapter 3 focuses on the link between local variation in training data and learning difficulty,
chapter 4 introduces the use of HSIC based goal-oriented sensitivity analysis for hyperparameter
optimization, and chapter 5 investigates the link between learning and PDE theory.

Finally, Chapter 6 is dedicated to the application of this methodology to the acceleration of
the fluid dynamics simulation code.

To emphasize the parallel between the thesis structure and the supervised deep learning
methodology and to help the reader visualize its progression throughout the manuscript,
we provide a summary diagram in Figure 1.1. We clip it at the beginning of each chapter
(excepted Chapter 2).

1

co
nt

ri
b.  Analyse of the learning difficulty based  

 on the derivatives of the function to learn
 TBS : A new sampling scheme
 VBSW : A new weighting scheme

Construction of the training set

2

co
nt

ri
b.

 Adaptation of tools from sensitivity analysis
 An interpretable optimization methodology

Hyperparameters search

3

co
nt

ri
b. A PDE based framework for learning

PDESGD : a new optimization algorithm

Training

4 Application

co
nt

ri
b. Reliable and 

efficient hybrid
numerical
simulation codeM

et
ho

do
lo

gy

Figure 1.1: Methodology for supervised deep learning in numerical simulations and contributions of
the thesis

18



Chapter 2
Supervised deep learning and numerical
simulations

In this chapter, we introduce basic notions that we use throughout this thesis. First, we
formalize the task of supervised machine learning as a statistical estimation and optimization
problem. Then, we describe neural networks that form the basis of deep learning. We
emphasize them as parametric models whose mathematical definition can be explicit. It
clarifies the status of neural networks and gets them closer to classical statistical models
because it is formulated as a model whose parameters have to be tuned based on data. We
also highlight the importance of prior knowledge, or inductive bias, for constructing diverse
neural networks architectures like convolutional neural networks or recurrent neural networks.
Finally, we detail the challenges and stakes of the training process of neural networks, which
is a non-convex optimization problem.

As mentioned in Section 1.3, these three points, namely the formulation of the supervised
learning task, the architecture of neural networks, and their optimization, can be put together
as steps in the methodology of supervised deep learning. The first step consists of defining the
estimation problem and the training data, the second of finding hyperparameters that define
the architecture, and the third of training the neural network using optimization algorithms.
The importance of each step for deep learning and numerical simulation is highlighted in
the last sections, through discussions on the loss function and the specificities of applying
machine learning to numerical simulation.

19



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

Contents
2.1 Supervised machine learning . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Architectures as priors on data structure . . . . . . . . . . . . . . . 24
2.2.3 Some famous architectures . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Optimization in deep learning . . . . . . . . . . . . . . . . . . . . . 27
2.4 Importance of the training data, hyperparameters, and optimization 29

2.4.1 Importance for supervised learning . . . . . . . . . . . . . . . . . . 29
2.4.2 Importance for hybrid numerical simulations . . . . . . . . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Supervised machine learning

In the last decade, machine learning has flourished to become a major field in research and
industry. This breakthrough is strongly related to the massive increase in data availability
and to the rise of deep learning. Indeed, many applications that highlight machine learning
capabilities, such as image processing or language understanding, rely on the profusion of
data. Most of these applications are based on what is called a supervised learning approach.
Other successful approaches are dedicated to learning when data availability is limited, such as
unsupervised learning, semi-supervised learning, or few-shot learning. Moreover, some tasks
only make use of simulated or dynamically generated data, such as reinforcement learning.
Nonetheless, most of the time, the learning process contains steps formulated as supervised
learning. In this section, we formally describe this task.

Supervised machine learning consists of learning a mapping between input and output data,
often called features and targets. To that end, a model is constructed and optimized to fit
this mapping best.

More specifically, we can denote the mapping to learn as a function f : S ⊂ Rnin → Rnout where
S is a measured sub-space of Rnin depending on the considered application. Then, learning
comes to approximate f with a machine learning model. We denote such a model by fθ,
where θ ∈ Θ contains all the parameters of the model. Optimizing fθ to approximate f means
finding a value θ∗ for θ that minimizes an integrated loss function Jx(θ) = E[L(fθ(x), f(x))] =∫
S
L(fθ(x), f(x))Px, where L is a loss function, L : Rnout × Rnout → R. The random variable

x ∼ Px models the distribution of the input data in S.

In practice, we may not have access to Px and in order to optimize fθ, Jx is estimated by Ĵx
using N points {x1, ...,xN} ∈ S drawn from x, and their point-wise values {f(x1), ..., f(xN)}.

20



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

These sets are the input and output data, or features and targets. The supervised learning
task can be summarized as :

The supervised learning task

Find θ∗ = argmin
θ∈Θ

Jx(θ) by minimizing

Ĵx(θ) =
N∑
i=1

αiL(fθ(xi), f(xi)) ≈ E[L(fθ(x), f(x))], (2.1)

with {x1, ...,xN} ∈ S drawn from x, {α1, ..., αN} ∈ R+N estimation weights such that
Ĵx(θ) →

N→∞
Jx(θ).

At this point, we have provided a formulation of supervised learning that only implies data
{(x1, fθ(x1)), ..., (xN , fθ(xN))} and any machine learning model fθ.

Remark. This framework encompasses all parametric models constructed from data, including
polynomial interpolation, linear and kernel regression, kriging, and is not specific to neural
networks. Besides, even if the keyword ”machine learning” has been popularized only recently,
it refers to a very classical task that dates back to the method of least squares, introduced by
Legendre in 1805.

2.2 Artificial Neural Networks

Neural networks are machine learning models that are the main building block of deep learning.
It has been first introduced with an electronic hardware implementation by McCulloch and
Pitts (1943), and with a software implementation by Widrow and Hoff (1960). However, its
use has only become widespread since the recent breakthrough of deep learning in image
classification during the 2012 edition of Imagenet Large Scale Visual Recognition Challenge
(ILSVRC). On that occasion, a neural network called AlexNet (Krizhevsky et al., 2012)
dominated the leaderboard and broke the previous record by achieving a 10.8 percentage
points lower classification error. In this section, we mathematically define neural networks.
We also discuss the meaning of architectures in deep learning, and we give an overview of the
fundamental architectures that form the basis of deep learning.

2.2.1 Definition

We mentioned a parametric machine learning model fθ defined by its parameters θ. When
the model is a neural network, choosing θ alone is not enough to define it completely. Indeed,
a neural network can be represented by a succession of interconnected layers of neurons, also

21



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

called units, starting with an input layer and ending with an output layer. We talk about
deep neural networks when there is more than one hidden layer. The way these layers are
interconnected has an impact on the execution of the neural network. We call architecture a
specific type of interconnection. There may be many ways of arranging these interconnections,
which explains why the very furnished literature on deep learning is crowded with many
different neural networks names. To begin with, let us describe the most simple form of neural
networks: fully connected neural networks, also called Multi-Layer Perceptron (MLP).

A MLP can be fully described by two sets of parameters. The first set of parameters describes
its shape, or architecture :

• d the depth of the network, i.e. the number of hidden layers,

• nk the number of neurons in the network’s k-th layer, with k ∈ {0, d + 1} (with
nd+1 = nout and n0 = nin),

• σk the activation function of the k-th layer, generally non linear.

These parameters belong to a set of parameters called hyperparameters, which describe the
neural network’s architecture and its learning framework. The second set of parameters,
corresponding to θ, contains the parameters to be optimized during the learning process :

• W k = {ωk
ij}, (i, j) ∈ {0, nk − 1} × {0, nk−1 − 1} the weights matrix between (k − 1)-th

and k-th layers,

• bk = (b0, ..., bnk−1) the bias vector of the k-th layer.

Let us define fk : Rnk → Rnk+1 such that

fk
i (x) = σk

( j=nk−1∑
j=0

ωk
ijxj + bki

)
= σk(W

kx+ bk) (2.2)

with x = (x1, ..., xnk
) ∈ Rnk . Then, fθ : Rnin → Rnout , the function of the network can be

written

fθ(x) = fd+1 ◦ · · · ◦ f 1(x) (2.3)

with θ = {W k, bk|k ∈ {1, d + 1}}. Equation (2.2) and equation (2.3) emphasize that the
execution of a neural network, called forward pass, can be seen as a succession of matrix
vector products composed with activation functions. In Figure 2.1, we illustrate a MLP of
depth d = 1 (there is one hidden layer), n1 = 3 (the hidden layer has 3 neurons), with nin = 2

22



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

Figure 2.1: MLP of depth d = 1, with nin = n0 = 2, n1 = 3 and nout = n2 = 1. In this specific case,
for readability, we denote by σi the i-th component of the output of the hidden layer.

(the input dimension is 2) and nout = 1 (the output dimension is 1). For this network, we
have


fθ(x) = ω2

0σ(ω
1
00x0 + ω1

10x1 + b10) + ω2
1σ(ω

1
01x0 + ω1

11x1 + b11) + ω2
2σ(ω

1
02x0 + ω1

12x1 + b12) + b2

=
2∑

i=0

ω2
i σ(

1∑
j=0

ω1
jixj + bi) + b2

θ = {ω2
0, ω

1
00, ω

1
10, ω

2
1, ω

1
01, ω

1
11, ω

2
2, ω

1
02, ω

1
12, b

1
0, b

1
1, b

1
2, b

2}.

With this formulation, neural networks can be apprehended from the point of view of
approximation theory. Indeed, once the architecture is chosen, neural networks can be seen
as a parametric class of function approximators. Hornik et al. (1989) first demonstrates a
universal approximation theorem for neural networks with d = 1 and arbitrary width. It
makes deep learning close to polynomial regression, which benefits from the Stone-Weierstrass
theorem. Later on, Barron (1994) gives an upper bound for the L2 error of a neural network
approximating a function, with respect to the number of parameters of the model, and Lu
et al. (2017) extends the universal approximation theorem to networks of width nin + 4
with arbitrary depth. The analogy with classical approximation theory goes beyond these
similarities. Indeed, the last layer of a neural network is often constructed as a classical
general linear regression, with σd+1 chosen as the identity or a logistic function. Therefore,
we can understand deep learning as a process that constructs a basis, whose span is called
feature space, where the input data is projected, and linear regression is performed. This
process is precisely the same as polynomial regression, where the basis is arbitrarily chosen to

23



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

be polynomials, or gaussian process regression, shown to be a linear regression conducted on
vectors from a Restricted Kernel Hilbert Space (Rasmussen and Williams, 2005).

Still, very often, neural networks are presented as block diagrams, and a formula such as
equation (2.3) is not specified. Indeed, for complex architectures, which are ubiquitous in
modern deep learning, the formula may be very tedious to write and to read. In these
cases, diagrams provide a quick view of the architecture’s structure and are more efficient in
conveying the ideas behind its construction. However, as we shall see, many architectures
boil down to a particular case of a fully connected neural network.

2.2.2 Architectures as priors on data structure

As opposed to other machine learning models, neural networks are notorious for their profusion
of hyperparameters and different architectures. There are almost as many architectures as
deep learning applications. In this part, we explain how these architectures are linked to the
original MLP. In order to emphasize the link between modern neural networks and MLP,
let us first focus on one of the most famous declinations of neural networks: Convolutional
Neural networks (CNN). Introduced by Fukushima (1980), the idea of CNN is to adapt neural
networks to the specific structure of image data. To that end, instead of processing layers with
classical matrix multiplication of full weight matrices, CNN performs convolution operations.
Such operations are extensively used in classical image processing. That is why enforcing this
a priori within the neural network structure makes them very efficient for machine learning
tasks based on image data.

Let X ∈ Rn ×Rn. The CNN convolution operation involves a kernel K ∈ RnK ×RnK . When
applied to X, it outputs another matrix Y = X ∗K ∈ Rn × Rn such that

Yi,j = [X ∗K]i,j =
∑
p

∑
q

X(p, q)K(p− i, q − j), (2.4)

where p, q ∈ {1, ..., n}, and K : {−n, ..., n}2 → R; (i, j) → Ki,j and X : {−n, ..., n}2 →
R; (i, j) → Xi,j. Hence, a CNN applied on image data is a succession of matrices processed
by convolution operations.

Remark. The definition of CNN convolution is slightly different from that of the classical
convolution, where K(i− p, j − q) is considered instead of K(p− i, q − j).

To emphasize the link between CNN and MLP, let us write the convolution operation for
vectors. Let x ∈ Rnin and k ∈ Rnk . Then,

yi = [x ∗ k]i =
∑
p

x(p)k(p− i), (2.5)

24



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

with x and k defined similarly to X and K. We can write y such that y = W ∗x, with

W ∗ =


k(n− 1) k(n− 2) ... k(1) k(0)

k(n− 2) k(n− 3) ... k(0) k(−1)
... ... . . . ... ...

k(1) k(0) ... k(−n+ 2) k(−n+ 1)

k(0) k(−1) ... k(−n+ 1) k(−n)

 .

This expression shows that a convolution operation can be written in terms of matrix
multiplication, falling back under the MLP framework. It is also possible to reproduce this
formulation for convolution operations on matrices by constructing a vector x ∈ Rn×n out
of the elements of X ∈ Rn × Rn. In practice, a size s is chosen for the kernel k, so that
s = 2nk + 1 and k : {−nk, ..., nk} with nk < n. For example, if s = 3,

W ∗ =


0 0 0 ... 0 k(1) k(0)

0 0 0 ... k(1) k(0) k(−1)
... ... ... . . . ... ... ...

k(1) k(0) k(−1) ... 0 0 0

k(0) k(−1) 0 ... 0 0 0

 .

Now that it is clear that a CNN can be written as an MLP, let us focus on the differences
between those two types of networks by comparing W ∗ with an MLP’s full weight matrix.
The matrix W ∗ has two specificities: it is sparse, and it only has s different elements. These
characteristics come from constraints imposed by the definition of the convolution operation.
Thanks to these constraints, we no longer have n2 parameters to optimize, but only s, which
is often dramatically lower since, usually, nk � n. As a result, the CNNs that we can afford
are MLPs that are extremely larger than classical ones. We can think of CNN as giant
MLPs, allowing for approximating very complex functions, made trainable thanks to priors
on the weight matrices. These priors are adapted to images because they consist in enforcing
convolution operations. Hence, a CNN’s approximation capacities for image data may be
that of a giant MLP, but the complexity of its optimization is that of a regular MLP. The
effect of imposing constraints in order to guide the neural networks towards more efficient
architectures is called inductive bias.

In this part, we have explained that CNNs are nothing more than MLPs with constraints on
their parameters. Most of the other popular types of architecture that we describe in the next
section can be formulated as MLPs as well, with weights constraints and thereby inductive
bias adapted to their scope of application. However, the implementation of neural networks
by modern software frameworks, like TensorFlow Abadi et al. (2015) or Pytorch Paszke et al.
(2019), as computational graphs of operations, allows avoiding the MLP formulation. It is for
the best since the intuition behind the inductive bias of popular architectures is often only

25



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

visible when they are represented as graphs or diagrams.

2.2.3 Some famous architectures

In the last part, we have described convolutional neural networks, which are particularly
suited to image processing. Another famous archetype of neural networks is Recurrent Neural
Networks (RNN) (Hopfield, 1982), which has been introduced for learning on time series.
Their use has been popularized for natural language understanding, where sequences of words
are considered time series or audio processing. Since then, some other architectures have
been created to make RNNs even more efficient. Notably, Long Short-Term Memory (LSTM)
networks, introduced by Hochreiter and Schmidhuber (1997), and Gated Recurrent Units Cho
et al. (2014), are still popular. Recently, Attention mechanism (Vaswani et al., 2017a) has
obtained tremendous success in language understanding, overshadowing a bit the architectures
mentioned above.

Other types of networks aim at encoding different data structures. For instance, Bronstein
et al. (2017) introduce the use of neural networks on data that can be represented as graphs
and Qi et al. (2017) on points clouds. In a more abstract approach, Sabour et al. (2017)
construct neural networks, called capsule networks, capable of encoding the position of the
different objects in images.

Closer to the domain of scientific computing, some architectures constructed from physical
priors have been proposed for scientific machine learning. For instance, Hamiltonian neural
networks (Greydanus et al., 2019) are trained under the constraint of respecting conservation
laws in a physical phenomenon. In computational biology, Zhang et al. (2018) introduce
a neural network preserving the symmetry in inter-atomic potential energy models. For
learning PDE-based phenomenon, Raissi et al. (2019) uses a loss function that drives the
neural network towards solutions that satisfy physical laws. However, these approaches, as
well as the field of scientific machine learning, are still young. Therefore, the state-of-the-art
has yet to stabilize to identify a technique as fundamentals as CNN, RNN, or Attention.

This overview is not exhaustive and is restricted to architectures designed for supervised
deep learning. Besides, the aim of this section is not to provide a thorough review of all the
deep learning techniques, which would be the topic for a whole textbook (see Goodfellow
et al. (2016)). The aim is instead to emphasize that all the different names found in the
deep learning literature can be seen as classical neural networks subject to hard constraints
imposed to satisfy a priori knowledge of the learning problem. It justifies the potential of
cross-fertilization between machine learning and scientific computing. Indeed, the latter is full
of a prior knowledge, and there is still much to do to translate this knowledge into machine
learning terms.

26



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

2.3 Optimization in deep learning

So far, we have formalized the problem of supervised learning and discussed the role of the
architecture of neural networks. In this part, we briefly describe the training process at play
in deep learning.

The training of neural networks can be formulated as an optimization problem, as seen in
Section 2.1. This optimization problem is known to be particularly challenging. Indeed, the
compositions and the non-linearities imposed by activation functions make the optimization
problem non-convex. Besides, the problem is known to have many local minima - Auer et al.
(1996) demonstrate that there may be exponentially many for a neural network with a single
neuron. Hence, the optimization algorithms used to solve this problem are usually lengthy,
and the training of deep neural networks is very resource-intensive.

On the one hand, this challenge is difficult, and on the other hand, it carries high stakes due
to the potential of neural networks for machine learning and the cost of its training. Hence,
it has stimulated important research efforts in the last decades. Stochastic gradient descent
(Robbins and Monro, 1951) is the first optimization algorithm that was used to that end
and remains very popular. It is an iterative algorithm which updates the parameters in the
opposite direction of ∇θĴx(θ). Its success stems from its simplicity and its implementation,
based on back-propagation (Rumelhart et al., 1986), that efficiently computes ∇θĴx(θ) at
each iteration.

27



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

Back-propagation and automatic differentiation

The gradient back-propagation algorithm (Rumelhart et al., 1986) is an automatic
differentiation algorithm that allows efficiently computing the gradients of a neural
network.
Automatic differentiation is based on the chain rule of derivation that states that for a
function g : Rp → Rq such that g = gn ◦ ... ◦ g1 with gi : yi ∈ Yi → gi(yi) ∈ Yi+1 with
i ∈ {1, ..., n} and Y1 = Rp, Yn+1 = Rq,

∇yg(y) = ∇yng
n × ...×∇y1g

1(y)

It is then possible to compute ∇yg(y) using the product of derivatives of gi. The
back-propagation algorithm is a special case of automatic differentiation. Its name
stems from the fact that we compute the gradient of Ĵx with respect to each parameter
sequentially, starting from the parameters involved in the last layer of the neural network.

Let us first focus on the last layer of the neural network, with weight matrix W d = {ωd
ij},

i, j ∈ {1, ..., nd}2. For simplicity, we denote fd ◦ ... ◦ f 1(x) by fd(x). We also consider
∇θL rather than ∇θĴx(θ), which does not change the algorithm. We have:

∂L

∂ωd
j

(x) = L′(fd)
∂fd(x)

∂ωd
ij

(x) = L′(fd(x))odi (x)f
d−1
j (x),

where od = σ′
d(W

dfd−1(x) + bd) and L′ : x → ∂L
∂x
(x,y). It is then possible to obtain

the derivatives of L with respect to parameters of the d − 1-th layer, {ωd−1
ij }, i, j ∈

{1, ..., nd−1} by using the chain rule:

∂L

∂ωd−1
ij

(x) = L′(fd(x))
∂fd

∂fd−1
(x)

∂fd−1

∂ωd−1
ij

(x)

This formula is recursive, and for each layer, we have :
∂fk

∂fk−1
(x) = ok(x)W k

∂fk−1

∂ωk−1
ij

(x) = ok−1
i (x)fk−2

j (x).

Finally, ∇θL is computed backward by using the prediction fd(x), the weights of the
network with ∂fk

∂fk−1 (x), and the derivatives of the activation functions with ok(x). It is
particularly efficient since this computation can be cast into matrix-vector products,
just like the forward pass.

28



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

Most of the modern optimization algorithms used in deep learning are derived from stochastic
gradient descent. We refer to 5.1 for a review of these algorithms.

2.4 Importance of the training data, hyperparameters,
and optimization

In the previous parts, we have introduced the main building blocks of supervised deep learning:
the formulation of supervised learning problems based on estimation from training data,
the construction of the neural network’s architecture, and its training using optimization
algorithms. In the following, we emphasize the role of each block in deep learning and discuss
their importance for supervised learning in scientific computing.

2.4.1 Importance for supervised learning

Let us briefly remind the task of supervised deep learning. The aim is to find θ∗ such that
Jx(θ

∗) ≤ Jx(θ) ∀θ ∈ Θ by minimizing Ĵx(θ) ≈ Jx(θ). The specificity of supervised learning,
and what makes this task so challenging, is that the function that has to be minimized (Jx)
is not the function on which optimization algorithms are applied (Ĵx). Hence, the global
minimum of Ĵx, that we note θ̂∗, may be different from θ∗. However, the optimization being
non-convex, we have no guarantees that the value returned by actual optimizers is the global
minimum. Instead, the optimizer returns a local minimum θ̂. To sum up, we have :

• θ∗, the global minimum of Jx(θ),

• θ̂∗, the global minimum of Ĵx(θ),

• θ̂, a local minimum of Ĵx(θ) found by the optimizer,

and the final error of the neural network is Jx(θ̂). Now, we can decompose Jx(θ̂) into four
different parts, which can be identified according to their origin :

Jx(θ̂) = Jx(θ
∗)︸ ︷︷ ︸

Architecture

+
(
Ĵx(θ̂)− Ĵx(θ̂

∗)
)

︸ ︷︷ ︸
Optimization

+
(
Jx(θ̂)− Ĵx(θ̂)

)
︸ ︷︷ ︸

Generalization

+
(
Ĵx(θ̂

∗)− Jx(θ
∗)
)

︸ ︷︷ ︸
Estimation

. (2.6)

Architecture error. Universal approximation theorems (Hornik et al., 1989; Barron, 1994;
Lu et al., 2017) state that when approximating a function f with a neural network fθ, for
any ε, there is a network whose width or depth allows approximating f such that Jx(θ∗) < ε.

29



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

However, in practice, we choose the width, the depth, and other hyperparameters beforehand.
The error Jx(θ∗) is the minimum error that can be achieved for a given architecture, hence
the name of architecture error. This error is also referred to as approximation error (Bottou
and Bousquet, 2008).

Optimization error. As we discussed in the previous section, the minimization of Ĵx is a
non-convex optimization problem, with many local minima. Therefore, the optimizer often
returns a local minimum θ̂, resulting in an additional error corresponding to the difference
between Ĵx(θ̂), the value of Ĵx at the local minimum, and Ĵx(θ̂

∗), its actual minimum value.

Generalization error. At the end of the training, the optimizer returns θ̂. Even if it is
only a local, and not a global, minimum of Ĵx(θ), the value obtained for the error Ĵx(θ̂) is
usually quite satisfying. However, the error obtained on the training data may be different
from that obtained on unseen data. This difference, Jx(θ̂)− Ĵx(θ̂), is sometimes called the
generalization gap, or generalization error. This error may become so large that the obtained
model is not usable. This problem is called overfitting and is well known in machine learning.
Many techniques have been set up to limit this problem, such as cross-validation, weight
decay (Krogh and Hertz, 1992), dropout (Srivastava et al., 2014), early stopping (Caruana
et al., 2001)... But it will last as long as we do not have access to Jx(θ̂), that is to say forever.

Estimation error. In the hypothetic case where we would have access to a perfect optimizer
capable of finding the global minimum of a non-convex function, there would still be an error
because we do not explicitly optimize the function that we aim at minimizing (Jx), but an
estimation of this function (Ĵx). The error that comes from inaccuracies in the estimation of
Jx can be called estimation error. Note that this estimation error looks like the generalization
error, in the sense that it comes from a difference between Jx and Ĵx. However, the errors
are not evaluated at the same value of θ. The estimation error and the generalization errors
could be respectively high and low at the same time.

All these errors emphasize the importance of the steps described in the previous sections. The
estimation and generalization errors stress the importance of the training data: we can hope
to reduce these errors by working on the construction of the data set and on the estimation
of Jx. The architecture error points out the importance of hyperparameters, especially in
deep learning, where they are so numerous. Choosing a good architecture allows reducing the
architecture error. Finally, the optimization error illustrates the impact of the optimizer on
the final error.

Remark. The separation of the links between the error decomposition on one side and the
training data, hyperparameters, and optimization on the other side is not clear-cut. For
instance, some optimization algorithms aim at finding minima that generalize better (Izmailov
et al., 2018b), some architectures are designed to ease the optimization (He et al., 2015),
and there can be several hyperparameters in optimizers and data preprocessing techniques.

30



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

Nonetheless, this error decomposition is still true, and it is helpful to emphasize the primary
role of the training data, hyperparameters, and optimization in achieving good errors.

2.4.2 Importance for hybrid numerical simulations

By decomposing the loss function, we emphasized the role of the training data, hyperparame-
ters, and optimization in deep learning. The objective of using supervised deep learning to
accelerate numerical simulations requires analyzing each of these steps while considering the
specificities and the constraints of this field.

One of the specificities of learning in numerical simulations is that the training data used to
perform machine learning is simulated. Unlike typical machine learning problems where only
a set of real-world data acquired experimentally is accessible, we can construct our database.
Therefore, it is natural to think about methodologies for sampling training data when using
deep learning in numerical simulations. Moreover, when seeking to accelerate computations
using deep learning, the cost efficiency of neural networks becomes a concern because the
execution time of a hybrid code directly depends on the execution time of neural networks
used in that code. This concern reinforces the interest in working on the sampling of the
training data. Indeed, it is a way of reducing the prediction error without any cost in the
execution time.

Recent impressive performances of deep learning can be explained, among other reasons,
by the ability to construct broader and deeper networks. However, equation (2.2) shows
that the cost of one neural network’s prediction increases quadratically with the width and
linearly with the depth. These two hyperparameters are essential because they both have
an impact on the accuracy and on the execution time of neural networks. More generally,
there are many hyperparameters in deep learning, all impacting the error, and many of them
impacting the execution time. It justifies carefully selecting them and thinking about selection
methodologies.

Finally, as we shall see in Chapters 4 and 6, and as testified by the emulation in research on
non-convex optimization, the optimizer is essential to reduce the prediction error. Moreover,
reducing the error by improving the optimization has no impact on the final cost-efficiency of
the neural network. These points are strong incentives to study the optimization of neural
networks.

2.5 Discussion

In this chapter, we have introduced the notions needed to follow the approach of supervised
deep learning. These notions are the formulation of the learning task using training data,
the architecture defined by hyperparameters, and the training performed by the resolution
of a non-convex optimization problem. They can be seen as steps for the methodology of

31



CHAPTER 2. SUPERVISED DEEP LEARNING AND NUMERICAL SIMULATIONS

supervised deep learning. Indeed, one first needs to define the learning problem, then define
an architecture for the neural network, and finally train this network.

Remark. Although the three steps previously described have their own importance and
specificities, the second one, hyperparameters selection, generally encompasses the two others.
Indeed, there may be hyperparameters in the way the database is constructed as well as in the
optimization process.

Each step is crucial and carries its challenges and stakes. Moreover, intending to apply them
in the context of numerical simulation brings about additional concerns due to the specificities
and constraints of the field. All this justifies studying each step carefully before applying
them to the construction of hybrid numerical simulation codes.

32



Chapter 3
Training distribution and local variation

In this chapter, we leverage the importance of the training set distribution to improve the
performances of neural networks in supervised deep learning. Recall that the aim of supervised
learning is to approximate a function f with a model fθ parametrized by θ using data points
drawn from X ∼ dPX , X ∈ X . We build a new distribution dPX̄ from the training points
and their labels, based on the observation that fθ needs more data points to approximate
f on the regions where it is steep. We derive an illustrative generalization bound involving
the derivatives of f that theoretically corroborates this observation. Therefore, we build dPX̄

using Taylor expansion of the function f , which links the local behavior of f to its derivatives.

We first focus on the influence of using dPX̄ instead of dPX in simple approximation problems.
To that end, we build a methodology for constructing and exploiting dPX̄ , that we call
Taylor Based sampling (TBS). We then apply TBS to a more realistic problem based on the
approximation of the solution of Bateman equations. Solving these equations is an important
part of many numerical simulations of several phenomena (neutronic (Bernède and Poëtte,
2018; Dufek et al., 2013), combustion (Bisi and Desvillettes, 2006), detonic (Lucor et al.,
2007a), computational biology (Perthame, 2007), etc.).

Then, we study the benefits of this approach for more general machine learning problems. In
these cases, exploiting dPX̄ is less straightforward. Indeed, we do not know the derivatives
of f , and we cannot obtain labels for new data points sampled from this distribution. To
tackle these problems, we show that variance is an approximation of Taylor expansion up to
a certain order. Then we leverage the link between sampling and weighting to construct a
methodology called Variance Based Sample Weighting (VBSW). We specifically investigate its
application in deep learning, where we apply VBSW within the feature space of a pre-trained
neural network. We validate VBSW by obtaining performance improvements on various tasks
like classification and regression of text, from Glue benchmark (Wang et al., 2019), image,
from MNIST (LeCun and Cortes, 2010) and Cifar10 (Krizhevsky et al.) and multivariate
data, from UCI machine learning repository (Dua and Graff, 2017), for several models ranging
from linear regression to Bert (Devlin et al., 2019) or ResNet20 (He et al., 2015).

33



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

1

co
nt

ri
b.  Analyse of the learning difficulty based  

 on the derivatives of the function to learn
 TBS : A new sampling scheme
 VBSW : A new weighting scheme

Construction of the training set

2

co
nt

ri
b.

 Adaptation of tools from sensitivity analysis
 An interpretable optimization methodology

Hyperparameters search

3

co
nt

ri
b. A PDE based framework for learning

PDESGD : a new optimization algorithm

Training

4 Application

co
nt

ri
b. Reliable and 

efficient hybrid
numerical
simulation codeM

et
ho

do
lo

gy
Methodology for supervised deep learning in numerical simulations and contributions of the thesis

Contents
3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Link between local variations and learning . . . . . . . . . . . . . . 37

3.2.1 Illustration of the link using derivatives . . . . . . . . . . . . . . . 37
3.2.2 A sampling scheme based on Taylor Approximation . . . . . . . . 38
3.2.3 Application to simple functions . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Application to an ODE system . . . . . . . . . . . . . . . . . . . . 41

3.3 Generalization of Taylor based Sampling . . . . . . . . . . . . . . . 43
3.3.1 From Taylor expansion to local variance . . . . . . . . . . . . . . . 43
3.3.2 From sampling to weighting . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Variance Based Sample Weighting . . . . . . . . . . . . . . . . . . . 45
3.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Toy experiments & hyperparameter study . . . . . . . . . . . . . 46
3.4.3 Cost efficiency of VBSW . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 VBSW for deep learning . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Text Classification and Regression . . . . . . . . . . . . . . . . . . 50

34



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

3.5.4 Robustness of VBSW . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.5 Complementarity of VBSW . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Discussion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 Impact for numerical simulations . . . . . . . . . . . . . . . . . . . 52
3.6.2 Impact for machine learning . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Related works

This work introduces contributions that rely on different elements. First, many techniques
aim at altering the training distribution to improve the prediction error of neural networks.
Second, finding generalization bounds for neural networks is the goal of various works in
machine learning research. Finally, the methodology of constructing a sampling distribution
for statistical analysis is used for importance sampling and designs of experiments.

Modified learning distributions Some works are dedicated to improving neural network
performances by modifying the training distribution, either by weighting data points or by
inducing sample selection. Active learning (Settles, 2012) adapts the training strategy to a
learning problem by introducing an online data point selection rule. Gal et al. (2017) uses the
variational properties of Bayesian neural network to design a rule that focuses the training on
points that will reduce the prediction uncertainty of the neural network. In Konyushkova
et al. (2017), the construction of the selection rule is itself taken as a machine learning
problem. See Settles (2012) for a review of more classical active learning methods. Unlike
active learning, and similarly to VBSW, some other methods aim at introducing diverse a
priori evaluations of sample importance. While curriculum learning (Bengio et al., 2009a;
Matiisen et al., 2017) starts the training with easier examples, Self-paced learning (Kumar
et al., 2010; Jiang et al., 2015) downscales harder examples. However, some works have
proven that focusing on harder examples at the beginning of the learning could accelerate it:
Shrivastava et al. (2016) performs hard example mining to give more importance to harder
examples by selecting them primarily. This work also focuses on defining hard examples but
does so with an original, mathematical way based on f derivatives and local variance. It also
stands out from the aforementioned techniques for how it modifies the distribution based on
this information. Indeed, it suggests and justifies that a neural network should spend more
learning time on subspaces of X which contain harder examples.

Generalization bounds As an argument to motivate our approach, we derive a general-
ization bound. The construction of Generalization bounds for the learning theory of neural
networks has motivated many works (see Jakubovitz et al. (2018) for a review). In Bartlett
et al. (1998, 2019), the authors focus on VC-dimension, a measure that depends on the number
of parameters of neural networks. Arora et al. (2018) introduces a compression approach that

35



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

aims at reducing the number of model parameters to investigate its generalization capacities.
PAC-Bayes analysis constructs generalization bounds using a priori and a posteriori distribu-
tions over the possible models. It is investigated, for example, in Neyshabur et al. (2018);
Bartlett et al. (2017). Neyshabur et al. (2017); Xu and Mannor (2012) links PAC-Bayes
theory to the notion of sharpness of a neural network, i.e. its robustness to small perturbation.
While previous works often mention the sharpness of the model, our bound includes the
derivatives of f , which can be seen as an indicator of the sharpness of the function to be
learnt. Even if it uses elements of previous works, like the Lipschitz constant of fθ, our work
does not pretend to tighten and improve the already existing generalization bounds. It only
emphasizes the intuition that the neural network would need more points to capture sharper
functions. In a sense, it investigates the robustness to perturbations in the input space, not
in the parameter space.

Examples weighting VBSW can be categorized as an examples weighting, or importance
weighting algorithm. The idea of weighting the data set has already been explored in different
ways and for various purposes. Examples weighting is used in Cui et al. (2019) to tackle the
class imbalance problem by weighting rarer, so harder examples. On the contrary, in Liu
and Tao (2016) it is used to solve the noisy label problem by focusing on cleaner, so easier
examples. All these ideas show that depending on the application, examples weighting can
be performed in an opposed manner. Some works aim at going beyond this opposition by
proposing more general methodologies. In Chang et al. (2017), the authors use the variance of
the prediction of each point throughout the training to decide whether it should be weighted
or not. A meta-learning approach is proposed in Ren et al. (2018), where the authors choose
the weights after an optimization loop included in the training. VBSW stands out from
the previously mentioned examples weighting methods because it does not aim at solving
dataset-specific problems like class imbalance or noisy labels. It is built on a more general
assumption that a model would simply need more points to learn more complicated functions.
The resulting weighting scheme verifies recent findings of Xu et al. (2021) where authors
conclude that in classification, a good set of weights would put importance on points close to
the decision boundary.

Importance sampling The challenge of finding a good distribution is not specific to
machine learning. Indeed, in the context of Monte Carlo estimation of a quantity of interest
based on a random variable, importance sampling owes its efficiency to the construction of
a second random variable, which is used instead to improve the estimation of this quantity.
Jie and Abbeel (2010) even make a connection between the success of likelihood ratio policy
gradients and importance sampling, which shows that machine learning and Monte Carlo
estimation, both distribution-based methods, are closely linked. Moreover, some previously
mentioned methods use importance sampling to design the weights of the data set or to
correct the bias induced by the sample selection (Katharopoulos and Fleuret, 2018). In this
work, we construct a new distribution that could be interpreted as an importance distribution.
However, we weigh the data points to simulate this distribution. It does not aim at correcting
a bias induced by this distribution.

36



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Designs of experiments Some methodologies are dedicated to the construction of data sets
in the context of statistical analysis. These methodologies are called designs of experiments.
In our case, the construction of a new training distribution could be seen as a design of
experiments for learning. However, popular designs of experiments used for regression are
either space-filling designs or model-based designs. Space-filling designs, like latin hypercube
sampling (McKay et al., 1979) or maximin designs (Johnson et al., 1990), aims at spreading
the learning points to cover the input space as much as possible. Model-based designs use
characteristics of fθ to adapt the training distribution. Such designs can look to maximize
the entropy of the prediction (Shewry and Wynn, 1987) or minimize its uncertainty (Jones
et al., 1998b). These last designs of experiments can be conducted sequentially, getting close
to active learning (Seo et al., 2000; MacKay, 1992; Cohn, 1996). Our methodology does not
depend on fθ, nor aims at filling the input space. Instead, its goal is to adapt the design of
experiments to characteristics of f in order to reduce the prediction error.

3.2 Link between local variations and learning

Let us first remind some basics on supervised machine learning. We formalize the supervised
machine learning task as approximating a function f : S ⊂ Rni → Rno with a machine
learning model fθ parametrized by θ, where S is a measured sub-space of Rni depending on
the application. To this end, we are given a training data set of N points, {x1, ...,xN} ∈ S,
drawn from x ∼ dPx and their point-wise values, or labels {f(x1), ..., f(xN)}. Parameters θ
have to be found in order to minimize an integrated loss function Jx(θ) = E[L(fθ(x), f(x))],
with L the loss function, L : Rno × Rno → R. The data allow estimating Jx(θ) by Ĵx(θ) =∑N

i=1 ωiL(fθ(xi), f(xi)), with {ω1, ..., ωN} ∈ R estimation weights, generally equal to 1
N
.

Then, an optimization algorithm is used to find a minimum of Ĵx(θ) w.r.t. θ.

3.2.1 Illustration of the link using derivatives

In the following, we illustrate the intuition with a Generalization Bound (GB) that include
the derivatives of f , provided that these derivatives exist. The goal of the approximation
problem is to be able to generalize to points not seen during the training. The generalization
error Jx(θ) = Jx(θ)− Ĵx(θ) thus needs to be as small as possible. Let Si, i ∈ {1, ..., N} be
some sub-spaces of S such that S =

⋃N
i=1 Si,

⋂N
i=1 Si = Ø, and xi ∈ Si. Suppose that L is

the squared L2 error, ni = no = 1, f is differentiable, fθ is Kθ-Lipschitz and satisfies the
conditions of Hornik theorem Hornik et al. (1989). Provided that |Si| < 1, we show that

Jx(θ) ≤
N∑
i=1

(|f ′(xi)|+Kθ)
2 |Si|3

4
+O(|Si|4), (3.1)

37



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

where |Si| is the volume of Si (|Si| =
∫
Si
dPx). The proof can be found in Appendix A. We

see that in the regions where f ′(xi) is high, quantity |Si| has a stronger impact on the GB.
This idea is illustrated in Figure 3.1, which visually shows that the generalization bound
increases when |Si| and f ′(xi) are high at the same time for approximating the function
f : x → x3. Since |Si| can be seen as a metric for the local density of the data set (the smaller
|Si| is, the denser the data set is), the GB can be reduced more efficiently by adding more
points around xi in these regions. This bound also involves Kθ, the Lipschitz constant of the
neural network, which has the same impact as f ′(xi). It also illustrates the link between the
Lipschitz constant and the generalization error, which has been pointed out by several works
like Gouk et al. (2018), Bartlett et al. (2017) and Qian and Wegman (2019).

-1 X1 -0.5 X2 0.5 X3 1
X

-1.5

f(X1)

f(X2)

f(X3)

1.5

f(X
)

S1 S2 S3

-1 X1 -0.5 X2 0.5 X3 1
X

-1.5

f(X1)

f(X2)

f(X3)

1.5 S1 S2 S3

f : x x3 first order approx. of f maximum variations of f delimitation of Si training points max. generalization error (GB)

Figure 3.1: Illustration of the GB. The maximum error (the GB), at order O(|Si|4), is obtained by
comparing the maximum variations of fθ, and the first order approximation of f , whose trends are
given by Kθ and f ′(xi). We understand visually that because f ′(x1) and f ′(x3) are higher than
f ′(x2), the GB is improved more efficiently by reducing S1 and S3 than S2.

3.2.2 A sampling scheme based on Taylor Approximation

Equation (3.1) formalizes a link between generalization error and derivatives of f . These
derivatives are expressed at order n = 1 for analytical reasons, but in this work we explore
the use of derivatives of order n > 1. Using Taylor expansion at order n on f and supposing
that f is n times differentiable:

f(x+ ε) =
‖ε‖→0

∑
0≤|k|≤n

εk
∂kf(x)

k!
+O(εn).

The quantity f(x+ ε)− f(x) =
∑

1≤|k|≤n ε
k ∂kf(x)

k!
+O(εn) gives an indication on how much

f changes around x. By neglecting the orders above εn, it is then possible to find the regions
of interest by focusing on Dfn

ε , defined as:

38



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Dfn
ε (x) =

∑
1≤|k|≤n

εk
(∂kf(x))2

k!
, (3.2)

where k is a multi-index, i.e. k = (k1, ..., kni
) is a vector of ni non negative integers with

|k| =
∑ni

i=1 ki, k! = k1! × ... × kni
!, εk = εk11 × ... × ε

kni
ni , ∂k = ∂k1

∂x
k1
1

× ... × ∂kni

∂x
kni
ni

. Note that

Dfn
ε is evaluated using (∂kf(x))2 instead of ∂kf(x) for derivatives not to cancel each other.

To avoid these cancellations, the absolute could have been used, but we will see in Lemma
1 that the square value ensures interesting asymptotical properties.c f will be steeper and
more irregular in the regions where x → Dfn

ε (x) is higher. To focus the training set on these
regions, one can use {Dfn

ε (x1), ..., Dfn
ε (xN)} to construct a probability density function (pdf)

and sample new data points from it.

In this part, we empirically verify that using Taylor expansion to construct a new training
distribution has a beneficial impact on the performances of a neural network. To this end, we
construct a methodology, that we call Taylor Based Sampling (TBS), that generates a new
training data set based on the metric equation (3.2). To focus the training set on the regions
of interest, i.e. regions of high {Dfn

ε (x1), ..., Dfn
ε (xN)}, we use this metric to construct a

probability density function (pdf) - which is possible since Dfn
ε (x) ≥ 0 for all x ∈ S. It

remains to normalize it but in practice it is enough considering a distribution dPx̄ ∝ Dfn
ε .

Here, to approximate dPx̄ we use a Gaussian Mixture Model (GMM) with pdf dPx̄,GMM

that we fit to {Dfn
ε (x1), ..., Dfn

ε (xN)} using the Expectation-Maximization (EM) algorithm.
N ′ new data points {x̄1, ..., x̄N ′}, can be sampled, with x̄ ∼ dPx̄,GMM . Finally, we obtain
{f(x̄1), ..., f(x̄N ′)}, add it to {f(x1), ..., f(xN)} and train our neural network on the whole
data set.

TBS is described in Algorithm 1. Line 1: The parameter ε, the number of Gaussian
distribution nGMM and N ′ is chosen in order to avoid sparsity of {x̄1, ..., x̄N ′} over S. Line
2: Without a priori information on f , we sample the first points uniformly in a subspace S.
Line 3-7: We construct {Dfn

ε (x1), ..., Dfn
ε (xN)}, and then dPx̄,GMM to be able to sample

points accordingly. Line 8: Because the support of a GMM is not bounded, some points can
be sampled outside S. We discard these points and sample until all points are inside S. This
rejection method is equivalent to sampling points from a truncated GMM. Line 9-10: We
construct the labels and add the new points to the initial data set.

3.2.3 Application to simple functions

To illustrate the benefits of TBS compared to a uniform, basic sampling (BS), we apply it
to two simple functions: hyperbolic tangent and Runge function. We chose these functions
because they are differentiable and have a clear distinction between flat and steep regions.
These functions are displayed in Figure 3.2, as well as the map x → Df 2

ε (x).

All neural networks have been implemented in Python, with Tensorflow Abadi et al. (2015).

39



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Algorithm 1 Taylor Based Sampling (TBS)
1: Inputs: ε, N , N ′, nGMM, n
2: Sample {x1, ...,xN} from x ∼ U(S)
3: for 0 ≤ k ≤ n do
4: Compute {∂kf(x1), ..., ∂

kf(xN)}
5: Compute {Dfn

ε (x1), ..., Dfn
ε (xN)} using equation (3.2)

6: Approximate dPx̄ ∝ Dfn
ε with a GMM using EM algorithm to obtain a density dPx̄,GMM

7: Sample {x̄1, ..., x̄N ′} using rejection method to sample inside S
8: Compute {f(x̄1), ..., f(x̄N ′)}
9: Add {f(x̄1), ..., f(x̄N ′)} to {f(x1), ..., f(xN)}

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

f(x
)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
f2 (

x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f(x
)

0.0

0.1

0.2

0.3

0.4

0.5

D
f2 (

x)

Figure 3.2: Left: (left axis) Runge function w.r.t x and (right axis) x → Df2
ε (x). Points sampled

using TBS are plotted on the x-axis and projected on f . Right: Same as left, with hyperbolic
tangent function.

We use the Python package scikit-learn Pedregosa et al. (2011), and more specifically the
GaussianMixture class to construct dPx̄,GMM . The network chosen for this experiment is
a Multi Layer Perceptron (MLP) with one layer of 8 neurons and relu activation function,
that we trained alternatively with BS and TBS using Adam optimizer Kingma and Ba (2015)
with the defaults tensorflow implementation hyperparameters, and Mean Squared Error loss
function. We first sample {x1, ...,xN} according to a regular grid. To compare the two
methods, we add N ′ additional points sampled using BS to create the BS data set, and then
N ′ other points sampled with TBS to construct the TBS data set. As a result, each data set
have the same number of points (N +N ′). We repeated the method for several values of n,
nGMM and ε, and finally selected n = 2, nGMM = 3 and ε = 10−3.

Table 3.1 summarizes the L2 and the L∞ norm of the error of fθ, obtained at the end of the
training phase for N + N ′ = 16, with N = 8. Those norms are estimated using the same
test data set of 1000 points. The values are the means of the 40 independent experiments
displayed with a 95% confidence interval. These results illustrate the benefits of TBS over
BS. Table 3.1 shows that TBS does not significantly improve L2 error, but does so for L∞
error, which may explain the good results of VBSW for classification that we describe in

40



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Sampling L2 error L∞ error
f : Runge (×10−2)

BS 1.45± 0.62 5.31± 0.86

TBS 1.13± 0.73 3.87± 0.48

f : tanh (×10−1)

BS 1.39± 0.67 2.75± 0.78

TBS 0.95± 0.50 2.25± 0.61

Table 3.1: Comparison between BS and TBS. The metrics used are the L2 and L∞ errors, displayed
with a 95% confidence interval.

Section 3.5. Indeed, the accuracy will not be very sensitive to small output variations for a
classification task since the output is rounded to 0 or 1. However, a high error increases the
risk of misclassification, which can be limited by the reduction of L∞.

3.2.4 Application to an ODE system

We apply TBS to a more realistic case: the approximation of the resolution of the Bateman
equations, which is an ODE system :

{
∂tu(t) = vσa · η(t)u(t),
∂tη(t) = vΣr · η(t)u(t),

, with initial conditions

{
u(0) = u0,

η(0) = η0.
,

with u ∈ R+,η ∈ (R+)M ,σT
a ∈ RM ,Σr ∈ RM×M . Here, f : (u0,η0, t) → (u(t),η(t)). For

physical applications, M ranges from tens to thousands, but we consider the particular case
M = 1 so that f : R3 → R2, with f(u0, η0, t) = (u(t), η(t)), and σa = σr = −0.45. The
advantage of M = 1 is that we have access to an analytic, cheap to compute solution for f .
Of course, this particular case can also be solved using a classical ODE solver, which allows
us to test it end to end. It can thus be generalized to higher dimensions (M > 1).

All neural network training instances have been performed in Python, with Tensorflow. We
used a fully connected neural network with hyperparameters chosen using a simple grid search.
The final values are: 2 hidden layers, relu activation function, and 32 units for each layer,
trained with the Mean Squared Error (MSE) loss function using Adam optimization algorithm
with a batch size of 50000, for 40000 epochs and on N +N ′ = 50000 points, with N = N ′.
We first trained the model for (u(t), η(t)) ∈ R, with an uniform sampling (BS) (N ′ = 0), and
then with TBS for several values of n, nGMM and ε = ε(1, 1, 1), to be able to find good values.
We finally select ε = 5× 10−4, n = 2 and nGMM = 10. The data points used in this case have
been sampled with an explicit Euler scheme. This experiment has been repeated 50 times to

41



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

0 2 4 6 8 10

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
f
(u

0
,¥

0
,t

)

fu0, ¥0, t)

fµ(u0, ¥0, t) with BS

fµ(u0, ¥0, t) with TBS

(a)

0 2 4 6 8 10

t

0.0

0.5

1.0

1.5

2.0

f
(u

0
,η

0
,t

)

Figure 1b

f(u0, η0, t)

fθ(u0, η0, t) with BS

fθ(u0, η0, t) with TBS

(b)

0 1 2

η0

0.0

0.5

1.0

U
0

Figure 2a

0.00

0.02

0.04

0.06

0.08

0.10

D
n ε

(c)

0 1 2

η0

0.0

0.5

1.0

U
0

Figure 2b

−0.010

−0.005

0.000

0.005

0.010

L
2

er
ro

r
ga

in

(d)

Figure 3.3: (a) t → fθ(u0, η0, t) for randomly chosen (u0, η0), for fθ obtained with the two samplings.
(b) t → fθ(u0, η0, t) for (u0, η0) resulting in the highest point-wise error with the two samplings. (c)
u0, η0 → max

0≤t≤10
Dn

ε (u0, η0, t) w.r.t. (u0, η0). (d) u0, η0 → gθBS
(u0, η0)− gθTBS

(u0, η0),

ensure statistical significance of the results.

Table 3.2 summarizes the MSE, i.e. the L2 norm of the error of fθ and L∞ norm, with
L∞(θ) = max

x∈S
(|f(x)− fθ(x)|) obtained at the end of the training phase. This last metric is

important because the goal in computational physics is not only to be averagely accurate,
which is measured with MSE, but to be accurate over the whole input space S. Those norms
are estimated using a same test data set of Ntest = 50000 points. The values are the means
of the 50 independent experiments displayed with a 95% confidence interval. These results
reflect an error reduction of 6.6% for L2 and of 45.3% for L∞, which means that TBS mostly
improves the L∞ error of fθ. Moreover, the L∞ error confidence intervals do not intersect so
the gain is statistically significant for this norm.

Table 3.2: Comparison between BS and TBS

Sampling L2 error (×10−4) L∞ (×10−1) AEG(×10−2) AEL(×10−2)

BS 1.22± 0.13 5.28± 0.47 - -
TBS 1.14± 0.15 2.96± 0.37 2.51± 0.07 0.42± 0.008

Figure 3.3a shows how the neural network can perform for an average prediction. Figure

42



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

3.3b illustrates the benefits of TBS relative to BS on the L∞ error (Figure 2b). These 2
figures confirm the previous observation about the gain in L∞ error. Finally, Figure 3.3c
displays u0, η0 → max

0≤t≤10
Dn

ε (u0, η0, t) w.r.t. (u0, η0) and shows that Dn
ε increases when U0 → 0.

TBS hence focuses on this region. Note that for the readability of these plots, the values are
capped to 0.10. Otherwise only few points with high Dn

ε are visible. Figure 3.3d displays
u0, η0 → gθBS

(u0, η0) − gθTBS
(u0, η0), with gθ : u0, η0 → max

0≤t≤10
‖f(u0, η0, t) − fθ(u0, η0, t)‖22

where θBS and θTBS denote the parameters obtained after a training with BS and TBS,
respectively. It can be interpreted as the error reduction achieved with TBS.

The highest error reduction occurs in the expected region. Indeed, more points are sampled
where Dn

ε is higher. The error is slightly increased in the rest of S, which could be explained
by a sparser sampling on this region. However, as summarized in Table 1, the average error
loss (AEL) of TBS is around six times lower than the average error gain (AEG), with AEG =
E[Z(u0, η0)1Z>0] and AEL = E[Z(u0, η0)1Z<0] where Z(u0, η0) = gθBS

(u0, η0)− gθTBS
(u0, η0).

In practice, AEG and AEL are estimated using uniform grid integration, and averaged on the
50 experiments.

3.3 Generalization of Taylor based Sampling

The previous section empirically validated the intuition behind the construction of a new,
more efficient training distribution dPx̄. However, this new distribution cannot always be
applied as-is for two reasons. Problem 1: {Df 2

ε (x1), ..., Df 2
ε (xN)} cannot be evaluated since

it requires to compute the derivatives of f , and it assumes that f is differentiable, which is
often not true. Moreover, the previously described setting, in which we focus on f derivatives,
is not suited to classification tasks where the notion of derivatives is not straightforward.
Problem 2: even if {Df 2

ε (x1), ..., Df 2
ε (xN)} could be computed and new points sampled, we

could not obtain their labels to complete the training data set. In this section, we alleviate
this concern to be able to use insights from dPx̄ in practice.

3.3.1 From Taylor expansion to local variance

To overcome problem 1, we construct a new metric based on statistical estimation. In
this paragraph, ni > 1 but no = 1. The following derivations can be extended to no > 1
by applying it to f element-wise and then taking the sum across the no dimensions. Let
ε ∼ N (0, εIni

) with ε ∈ R+ and Ini
the identity matrix of dimension ni. We claim that

Lemma 1. Let e ∼ N (0, εIni
) with ε ∈ R+ and Ini

the identity matrix of dimension ni. Let
ε = ε(1, ..., 1). Then,

V ar(f(x+ e)) = Df 2
ε (x) +O(‖ε‖32).

43



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

The demonstration can be found in Appendix A. Using the unbiased estimator of variance,
we thus define new indices D̂f 2

ε (x) by

D̂f 2
ε (x) =

1

k − 1

k∑
j=1

(
f(x+ εj)−

1

k − 1

k∑
l=1

f(x+ εl)
)2
, (3.3)

with {ε1, ..., εk} k samples of ε. The metric D̂f 2
ε(x) →

k→∞
V ar(f(x+ε)) and V ar(f(x+ε)) =

Df 2
ε (x) +O(‖ε‖32), so D̂f 2

ε(x) is a biased estimator of Df 2
ε (x), with bias O(‖ε‖32). Hence,

when ε → 0, D̂f 2
ε(x) becomes an unbiased estimator of Df 2

ε (x). It is possible to compute
D̂f 2(x) from any set of points centered around x. Therefore, we compute D̂f 2(xi) for each
i ∈ {1, ..., N} using the set Sk(x) of k-nearest neighbors of x. We obtain D̂f 2(xi) using

D̂f 2(xi) =
1

k − 1

∑
xj∈Sk(xi)

(
f(xj)−

1

k

k∑
xl∈Sk(xi)

f(xl)
)2
, (3.4)

which is equation (3.3) where we replaced f(xi + εj) with f(xj) - and f(xi + εl) with f(xl) -
where xj,xl ∈ Sk(xi) are the neighbors of xi. Equation (3.4) has several practical advantages.
First, D̂f 2 can even be applied to non-differentiable functions and for classification problems,
unlike equation (3.2). Second, the definition of D̂f 2(x) does not rely on ε, unlike equation (3.3).
To compute D̂f 2, all we need are {f(x1), ..., f(xN)}, the points used for the training of the
neural network. In addition, equation (3.4) can even be applied when the data points are too
sparse for the nearest neighbors of xi to be considered as close to xi, which is almost always
the case in high dimension. It can thus be seen as a generalization of D̂f 2

ε (x), which tends
towards Df 2

ε (x) locally.

3.3.2 From sampling to weighting

To tackle problem 2, recall that the goal of the training is to find θ∗ = argmin
θ

Ĵx(θ), with

Ĵx(θ) = 1
N

∑
i L(f(xi), fθ(xi)). With the new distribution based on previous derivations,

the procedure is different. Since the training points are sampled using D̂f 2
ε, we no longer

minimize Ĵx(θ), but Ĵx̄(θ) = 1
N

∑
i L(f(x̄i), fθ(x̄i)), with x̄ ∼ dPx̄ the new distribution.

However, Ĵx̄(θ) estimates

Jx̄(θ) =

∫
S

L(f(x), fθ(x))dPx̄.

44



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Let px(x)dx = dPx, px̄(x)dx = dPx̄ be the pdfs of x and x̄ (note that Df 2
ε ∝ px̄). Then,

Jx̄(θ) =

∫
S

L(f(x), fθ(x))
px̄(x)

px(x)
dPx.

The straightforward Monte Carlo estimator for this expression of Jx̄(θ) is

Ĵx̄(θ) =
1

N

∑
i

L(f(xi), fθ(xi))
px̄(xi)

px(xi)
∝ 1

N

∑
i

L(f(xi), fθ(xi))
D̂f 2(xi)

px(xi)
. (3.5)

Thus, Jx̄(θ) can be estimated with the same points as Jx(θ) by weighting them with wi =
D̂f2(xi)
px(xi)

.

The expression of wi involves px, the distribution of the data. Just like for f , we do not
have access to px. The estimation of px is a challenging task by itself, and standard density
estimation techniques such as K-nearest neighbors or Gaussian Mixture density estimation led
to extreme estimated values of px(xi) in our experiments. Therefore, we decided to only apply
ωi = D̂f 2(xi) as a first-order approximation. In practice, we re-scale the weights between 1
and m, a hyperparameter, and then divide them by their sum to avoid affecting the learning
rate.

As a result, we obtain a new methodology based on weighting the training data set. We call
this methodology Variance Based Sample Weighting (VBSW).

3.4 Variance Based Sample Weighting

In this part, we sum up Variance Based Sample Weighting (VBSW) to clarify its application
to machine learning problems. We also study this methodology through toy experiments.

3.4.1 Methodology

Variance Based Samples Weighting (VBSW) is recapitulated in Algorithm 2. Line 1: m and
k are hyperparameters that can be chosen jointly with all other hyperparameters, e.g. using a
random search. Their effects and interactions are studied and discussed in Sections 3.4.2 and
3.5.4. Line 2-3: equation (3.4) is applied to compute the weights wi that are used to weight
the data set. Notations {(w1,x1), ..., (wN ,xN)} denote that each xi is weighted by wi. To
perform a nearest-neighbors search, we use an approximate nearest neighbor search technique
called hierarchical navigable small world graphs (Malkov and Yashunin, 2020) implemented
by nmslib (Boytsov and Naidan, 2013). Line 4: Train fθ on the weighted data set.

45



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Algorithm 2 Variance Based Samples Weighting (VBSW)
1: Inputs: k, m
2: Compute {D̂f 2(x1), ..., D̂f 2(xN)} using equation (3.4).
3: Construct a new training data set {(w1,x1), ..., (wN ,xN)}
4: Train fθ on {(w1, f(x1)), ..., (wN , f(xN))}

3.4.2 Toy experiments & hyperparameter study

VBSW is studied on a Double Moon (DM) classification problem, the Boston Housing (BH)
regression, and Breast Cancer (BC) classification data sets.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 3.4: From left to right: (a) Double Moon (DM) data set. (b) Heat map of the value of wi

for each xi (red is high and blue is low)

For DM, Figure 3.4 (c) shows that the points with higher wi (in red) are close to the boundary
between the two classes. Indeed, in classification, VBSW can be interpreted as a local label
agreement. This behavior verifies recent findings of Xu et al. (2021) where authors conclude
that in classification, a good set of weights would put importance on points close to the
decision boundary.

We train a Multi-Layer Perceptron of 1 layer of 4 units, using Stochastic Gradient Descent
(SGD) and binary cross-entropy loss function, on a 300 points training data set for 50 random
seeds. In this experiment, VBSW, i.e. weighting the data set with wi is compared to the
baseline where no weights are applied. Figure 3.4 (b) and (d) displays the decision boundary
of best fit for each method. VBSW provides a cleaner decision boundary than baseline. These
pictures and the results of Table 3.3 show the improvement obtained with VBSW.

VBSW baseline
DM 99.4, 94.44 ± 0.78 99, 92.06± 0.66

BH 13.31, 13.38 ± 0.01 14.05, 14.06± 0.01

BC 99.12, 97.6± 0.34 98.25, 97.5± 0.11

Table 3.3: best, mean + se for each method. The metric used is accuracy for DM and BC and
Mean Squared Error for BH.

46



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

For BH data set, a linear model is trained, and for BC data set, an MLP of 1 layer and
30 units, with a train-validation split of 80% − 20%. Both models are trained with Adam
Kingma and Ba (2015). Since these data sets are small and the models are light, we study
the effects of m and k on the error. Moreover, BH is a regression task and BC a classification
task, so it allows studying the effect of hyperparameters more extensively.

For BH and BC experiments, we conduct a grid search for VBSW on the values of m and k.
As a reminder, m is the ratio between the highest and the lowest weights, and k is the number
of neighbor points used to compute the local variance. We train a linear model for BH and
a MLP with 30 units for BC with VBSW on a grid of 20 values of m equally distributed
between 2 and 100 and 20 values of k equally distributed between 10 and 50. As a result, we
train the model on 400 pairs of (m, k) values and with 10 different random seeds for each pair.

Figure 3.5: Color map of the error, with respect to m and k. Left: BH data set, for the mean of the
MSE across 10 different seeds and right: BC data set, for the mean of 1− acc across these seeds.
Blue is lower.

These experiments, illustrated in Figure 3.5 show that the influence of m and k on the
performances of the model can be different. For BH data set, low values of k clearly lead
to poorer performances. Hyperparameter m seems to have less impact, although it should
be chosen not too far from its lowest value, 2. For BC data set, on the contrary, the best
performances are obtained for low values of k, while a high value could be chosen for m. These
experiments highlight that the impact of m and k can be different between classification and
regression, but it could also be different depending on the data set. Hence, we recommend
considering these hyperparameters like many others involved in deep learning, selecting their
values using hyperparameter optimization techniques. This procedure is illustrated in Chapter
6, where we use the hyperparameter optimization algorithm described in Chapter 4.

It also shows that many different (m, k) pairs lead to error improvement. It suggests that
the weights approximation does not have to be exact for VBSW to be effective, as stated in
Section 3.5.4.

47



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

3.4.3 Cost efficiency of VBSW

VBSW’s computational burden mostly relies on the complexity of the nearest neighbor
search algorithm, which is independent and can be used as a third-party algorithm. When
the data set is not too large, classical techniques like KDtree (Bentley, 1975) can be used.
However, when the number of points and the dimension of the data set increase, approximate
nearest neighbors searches may be necessary to keep satisfying performances. In the previous
examples, KDtree is more than sufficient. However, since we deal with more complex examples
in the following, we directly use nmslib (Boytsov and Naidan, 2013), an approximate nearest
neighbors search library for homogeneity of the implementation.

3.5 VBSW for deep learning

The high dimensionality of many deep learning problems makes VBSW difficult to apply in
the form previously described. In this part, we adapt VBSW to such problems and study its
application to various real-world learning tasks. We also study the robustness of VBSW and
its complementarity with other similar techniques.

3.5.1 Methodology

We mentioned that local variance could be computed using already existing points. This
statement implies finding the nearest neighbors of each point. In extremely high dimension
spaces like image spaces, the curse of dimensionality makes nearest neighbors spurious. In
addition, the data structure may be highly irregular, and the concept of nearest neighbor may
be misleading. Thus, it would be irrelevant to evaluate D̂2fε directly on this data.

One of the strengths of deep learning is to construct good representations of the data
embedded in lower-dimensional latent spaces. For instance, in Computer Vision, convolutional
neural networks’ deeper layers represent more abstract features. We could leverage this
representational power of neural networks and simply apply our methodology within this
latent feature space.

Variance Based Samples Weighting (VBSW) for deep learning is recapitulated in Algorithm 3.
Here, M is the initial neural network whose feature space will be used to project the training
data set and apply VBSW. Line 1: m and k are hyperparameters that can be chosen jointly
with all other hyperparameters, e.g. using a random search. Their effects and interactions are
studied and discussed in Sections 3.4.2 and 3.5.4. Line 2: The initial neural network, M, is
trained as usual. Notations {( 1

N
,x1), ..., (

1
N
,xN)} is equivalent to {x1, ...,xN}, because all

the weights are the same ( 1
N
). Line 3: The last fully connected layer is discarded, resulting

in a new model M∗, and the training data set is projected in the feature space. Line 4-5:
equation (3.4) is applied to compute the weights wi that are used to weight the projected data

48



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

set. Line 6: The last layer is re-trained (which is often equivalent to fitting a linear model)
using the weighted data set and added to M∗ to obtain the final model Mf . As a result, Mf

is a composition of the already trained model M∗ and fθ trained using the weighted data set.

Algorithm 3 Variance Based Samples Weighting (VBSW) for deep learning
1: Inputs: k, m, M
2: Train M on the training set {( 1

N
,x1), ..., (

1
N
,xN)}, {( 1

N
, f(x1)), ..., (

1
N
, f(xN))}

3: Construct M∗ by removing its last layer
4: Compute {D̂f 2(M∗(x1)), ..., D̂f 2(M∗(xN))} using equation (3.4).
5: Construct a new training data set {(w1,M∗(x1)), ..., (wN ,M∗(xN))}
6: Train fθ on {(w1, f(x1)), ..., (wN , f(xN))} and add it to M∗. The final model is Mf =

fθ ◦M∗

3.5.2 Image Classification

In this section, we study the performances of VBSW on MNIST LeCun and Cortes (2010)
and Cifar10 Krizhevsky et al. image classification data sets. For MNIST, we train LeNet
(Lecun et al., 1998), with 40 different random seeds, and then apply VBSW for 10 different
random seeds, with Adam optimizer and categorical cross-entropy loss. Note that in the
following, Adam is used with the default parameters of its keras implementation. We record
the best value obtained from the 10 VBSW training. We follow the same procedure for
Cifar10, except that we train a ResNet20 for 50 random seeds and with data augmentation
and learning rate decay. The networks have been trained on 4 Nvidia K80 GPUs. The values
of the hyperparameters used can be found in Appendix B. We compare the test accuracy
between LeNet 5 + VBSW, ResNet20 + VBSW, and the initial test accuracies of LeNet 5
and ResNet20 (baseline) for each of the initial networks.

VBSW baseline gain per model
MNIST 99.09, 98.87 ± 0.01 98.99, 98.84± 0.01 0.15, 0.03 ± 0.01

Cifar10 91.30, 90.64 ± 0.07 91.01, 90.46± 0.10 1.65, 0.15 ± 0.04

Table 3.4: best, mean + se for each method. The metric used is accuracy. For a model M, the
gain g for this model is given by g = max

1≤i≤10
(acc(Mi

f )− acc(M)) with acc the accuracy and Mi
f the

VBSW model trained at the i-th random seed.

The results statistics are gathered in Table 3.4, which also displays statistics about the gain
due to VBSW for each model. The results on MNIST, for all statistics and for the gain, are
significantly better than for the baseline. For Cifar10, we get a 0.3% accuracy improvement
for the best model and up to 1.65% accuracy gain, meaning that among the 50 ResNet20s,
there is one whose accuracy has been improved by 1.65% using VBSW. Note that applying
VBSW took less than 15 minutes on a laptop with an i7-7700HQ CPU. A visualization of the
samples weighted by the highest wi is given in Figure 3.6.

49



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

Figure 3.6: Samples from Cifar10 and MNIST with high wi. Those pictures are either unusual or
difficult to classify, even for a human (especially for MNIST).

3.5.3 Text Classification and Regression

In this section, we study the performances of VBSW on RTE and MRPC, two text classification
data sets, and STS-B, a text classification data set, extracted from the glue benchmark Wang
et al. (2019). For this application, we use Bert, a modern neural network based on transformers
Vaswani et al. (2017b) that is the state-of-the-art of text-based machine learning tasks. We
do not pre-train Bert, like in the previous experiments, since it has been originally built for
Transfer Learning purposes. Therefore, its purpose is to be used as-is and then fine-tuned
on any text data set see Devlin et al. (2019). However, because of the small size of the data
set and the high number of model parameters, we chose not to fine-tune the Bert model and
only to use the representations of the data sets in its feature space to apply VBSW. More
specifically, we use tiny-bert Turc et al. (2019), which is a lighter version of the initial Bert.
We train the linear model with TensorFlow to be able to add the trained model on top of
the Bert model and obtain a unified model. RTE and MRPC are classification tasks, so we
use binary cross-entropy loss function to train our models. STS-B is a regression task, so the
model is trained with Mean Squared Error. All the models are trained with Adam optimizer.
For each task, we compare the training of the linear model with VBSW and without VBSW
(baseline). The results obtained with VBSW are better overall, except for Pearson Correlation
in STS-B, which is slightly worse than baseline (Table 3.5).

VBSW baseline
m1 m2 m1 m2

RTE 61.73, 58.46 ± 0.15 - 61.01, 58.09± 0.13 -
STS-B 62.31, 62.20 ± 0.01 60.99, 60.88± 0.01 61.88, 61.87± 0.01 60.98, 60.92 ± 0.01

MRPC 72.30, 71.71 ± 0.03 82.64, 80.72 ± 0.05 71.56, 70.92± 0.03 81.41, 80.02± 0.07

Table 3.5: best, mean + se for each method. For RTE the metric used is accuracy (m1). For
MRPC, metric 1 (m1) is accuracy and metric 2 (m2) is F1 score. For STS-B, metric 1 (m1) is
Spearman correlation and metric 2 (m2) is Pearson correlation.

3.5.4 Robustness of VBSW

VBSW relies on statistical estimation: the weights are based on local empirical variance,
evaluated using k points. In addition, they are re-scaled using hyperparameter m. Section

50



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

3.4.2 shows that many different combinations of m and k and, therefore, many different values
for the weights improve the error. This behavior suggests that VBSW is quite robust to
weights approximation error.

We also assess the robustness of VBSW to label noise. To that end, we train a ResNet20 on
Cifar10 with four different noise levels. We randomly change the label of p% training points
for four different values of p (10, 20, 30 and 40). We then apply VBSW 30 times and evaluate
the obtained neural networks on a clean test set. The results are gathered in Table 3.6.

noise 10% 20% 30% 40%

original error 87.43 85.75 84.05 81.79

VBSW 87.76, 87.63± 0.01 86.03, 85.89± 0.01 84.35, 84.18± 0.02 82.48, 82.32± 0.02

Table 3.6: best, mean + se of the training of a ResNet20 on Cifar10 for different label noise levels.
These results illustrate the robustness of VBSW to labels noise.
The results show that VBSW is still effective despite label noise. Since label noise essentially
hurts weights approximation, this may be related to the robustness of VBSW to weights
approximation error, described previously.

Although VBSW is robust to label noise, note that the goal of VBSW is not to address
noisy label problem, like discussed in Section 3.1. It may be more effective to use a sampling
technique tailored specifically for this situation.

3.5.5 Complementarity of VBSW

Existing techniques based on dataset processing can be used jointly with VBSW, by applying
the first technique during the initial training of the neural network and then applying VBSW
on its feature space. To illustrate this specificity, we compare VBSW with the recently
introduced Active Bias (AB) (Chang et al., 2017) and transfer-learning-based curriculum
learning (TCL) (Hacohen and Weinshall, 2019). AB dynamically weights the samples based
on the variance of the probability of prediction of each point throughout the training, and
TCL creates a curriculum based on sample difficulty evaluated on previously trained neural
networks. Here, we study the effects of AB and TCL combined with VBSW for the training
of a ResNet20 on Cifar10. Table 3.7 gathers the results of experiments for different baselines:
vanilla, for regular training with Adam optimizer, AB / TCL for training with AB / TCL,
VBSW for the application of VBSW on top of regular training, and VBSW + AB / VBSW +
CL for initial training with AB / TCL and the application of VBSW. Unlike in Section 3.5.2,
we do not use data augmentation nor learning rate decay in order to simplify the experiments.

The accuracy obtained with VBSW is quite similar to AB. While TCL yields better results
than VBSW alone, the best accuracy is obtained when they are used jointly. Overall, the best
neural networks are obtained when AB and TCL are used along with VBSW (AB + VBSW
and TCL + VBSW), which demonstrates the complementarity of VBSW with other dataset

51



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

accuracy (%) VBSW gpm
vanilla 75.88, 74.55± 0.11 -
AB 76.33, 75.14± 0.09 -
TCL 78.54, 77.46± 0.07 -
VBSW 76.57, 74.94± 0.10 0.94, 0.40± 0.03

AB + VBSW 76.60, 75.33± 0.09 0.40, 0.14± 0.02

TCL + VBSW 79.86, 78.71± 0.09 2.19, 1.26± 0.08

Table 3.7: Best, mean + se of the training of 60 ResNet20s on Cifar10 for vanilla, VBSW, AB
and AB + VBSW. The gain per model (gpm) g is defined by g = max

1≤i≤10
(acc(Mi

f )− acc(M)) with

acc the accuracy and Mi
f the VBSW model trained at the i-th random seed.

processing techniques. Note that VBSW works much better when applied to a neural network
initially trained with TCL. It means that TCL creates neural network features particularly
suited to VBSW. This lead might be explored in future works.

3.6 Discussion and Perspectives

By studying the training distribution of the neural network, we explored a practical and
classical question that naturally arises when performing surrogate modeling for approximating
computer codes: how to construct the training set? This question comes from the methodology
of designs of experiments, which is closely related to numerical and uncertainty analysis.

Nonetheless, this work emphasizes the interplay between numerical analysis and machine
learning. Indeed, we found that exploring this question led to findings that are also relevant
for approximation theory, which is an important component of machine learning. In the
process of using supervised deep learning for numerical analysis, we contributed to supervised
deep learning, and we did so by using principles from numerical analysis.

Hence, the results obtained in this chapter are impactful both for machine learning in numerical
simulations and machine learning in general.

3.6.1 Impact for numerical simulations

This work comes from the observation that neural networks are more efficient when more
data are sampled in the regions where the function to be learnt is steeper. It is an attempt to
formalize this observation and to construct a workable methodology out of it. As a result, the
methodologies for constructing the distribution dPx̄ can be used as new, principled designs of
experiments.

52



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

In the context of numerical simulations, once dPx̄ is constructed, it is possible to sample
new data from it. It alleviates Problem 2, described in Section 3.3.2. In theory, Problem
1 is also solved since we could have access to the derivatives - either by instrumenting the
code with automatic differentiation if we have access to its implementation or by estimating
them with finite differences. However, the implementation of automatic differentiation can
be tedious, and if the computer code is slow and high dimensional, finite differences may be
unaffordable. In that case, it is possible to use a third methodology based on the approximation
of {Df 2

ε (x1), ..., Df 2
ε (xN)} using local variance, like VBSW, and the sampling of new points,

like TBS.

Finally, the method allows improving the error of neural networks without increasing the
computational cost of their prediction. This achievement is of interest when they are intended
to accelerate numerical simulations.

3.6.2 Impact for machine learning

VBSW is validated on several tasks, complementary with other training distribution modifi-
cation frameworks, and robust to noise. It makes it quite versatile. Moreover, the problem
of high dimensionality and irregularity of f , which often arises in deep learning problems, is
alleviated by focusing on the latent space of neural networks. This makes VBSW scalable.
As a result, VBSW can be applied to complex neural networks such as ResNet, or Bert, for
various machine learning tasks.

The experiments support an original view of the learning problem that involves the local
variations of f . The studies of Section 3.2.2, that use the derivatives of the function to be
learnt to sample a more efficient training data set, support this approach as well. This view
is also bolstered up by conclusions of Xu et al. (2021). VBSW allows extending this original
view to problems where the derivatives of f are not accessible and sometimes not defined.
Indeed, VBSW comes from Taylor expansion, which is specific to derivable functions, but in
the end, it can be applied regardless of the properties of f .

Finally, this method is cost-effective. In most cases, it allows to quickly improve the perfor-
mances of a neural network using a regular CPU. It is better than carrying on entirely new
training with a wider and deeper neural network.

53



CHAPTER 3. TRAINING DISTRIBUTION AND LOCAL VARIATION

54



Chapter 4
Hyperparameter optimization using
goal-oriented sensitivity analysis

Hyperparameter optimization is ubiquitous in machine learning, and especially in deep learning,
where neural networks are often cluttered with lots of hyperparameters. For applications to
real-world machine learning tasks, finding good hyperparameters is mandatory, but can be
fastidious for different reasons. i) The high number of hyperparameters by itself makes this
problem challenging. ii) Their impact on error changes very often depending on the problem,
so it is difficult to adopt general best practices and permanently recommend hyperparameter
values for every machine learning problem. iii) Hyperparameters can be of very different
natures, like continuous, discrete, categorical, or boolean, and have non-trivial relations, like
conditionality or interactions. Besides, when deep learning is applied to accelerate numerical
simulation, hyperparameter optimization suffers from one additional constraint: the obtained
neural network has to be cost-effective.

In this chapter, we tackle these problems by proposing a sensitivity analysis applied to
hyperparameter search space. To this end, we select a powerful metric used for goal-oriented
sensitivity analysis, called Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al.,
2005), which is a distribution dependence measure initially used for two-sample test problem
(Gretton et al., 2007). Once adapted to hyperparameter search space, HSIC gives insights
into hyperparameters’ relative importance in a deep learning problem.

Using HSIC in hyperparameters space is non-trivial due to their complex structure. First,
hyperparameters can be discrete (width of the neural network), continuous (learning rate),
categorical (activation function), or boolean (batch normalization (Ioffe and Szegedy, 2015)).
Second, some hyperparameter’s presence is conditional to others (e.g. moments decay rates
specific to Adam optimizer (Kingma and Ba, 2015)). Third, they can strongly interact (as
shown in Tan and Le (2019): in some cases, it is better to increase depth and width by
a similar factor). The metric should be able to compare hyperparameters reliably in such
situations. We introduce solutions to overcome these obstacles and illustrate them with some

55



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

simple examples. Once adapted to such complex spaces, we show that HSIC allows us to
understand hyperparameter relative importance better and to focus research efforts on specific
hyperparameters. We also identify hyperparameters that have an impact on execution speed
but not on the error. Then, we introduce ways of reducing the hyperparameter’s range of
possible values to improve the stability of the training and neural network’s execution speed.
Finally, we propose an HSIC-based optimization methodology in two steps, one focused on
essential hyperparameters and the other on remaining hyperparameters. Its efficiency is
validated on real-world problems: MNIST, Cifar10, and the approximation of the resolution
of Bateman equations used in Section 3.2.2.

56



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

1

co
nt

ri
b.  Analyse of the learning difficulty based  

 on the derivatives of the function to learn
 TBS : A new sampling scheme
 VBSW : A new weighting scheme

Construction of the training set

2

co
nt

ri
b.

 Adaptation of tools from sensitivity analysis
 An interpretable optimization methodology

Hyperparameters search

3

co
nt

ri
b. A PDE based framework for learning

PDESGD : a new optimization algorithm

Training

4 Application

co
nt

ri
b. Reliable and 

efficient hybrid
numerical
simulation codeM

et
ho

do
lo

gy
Methodology for supervised deep learning in numerical simulations

Contents
4.1 Sensitivity analysis as a new approach to hyperparameter opti-

mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.1 Challenges of hyperparameter optimization . . . . . . . . . . . . . 58
4.1.2 Classical hyperparameter optimization techniques . . . . . . . . . . 59
4.1.3 Benefits of Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . 60
4.1.4 Goal-oriented sensitivity analysis . . . . . . . . . . . . . . . . . . . 61

4.2 HSIC-based goal oriented sensitivity analysis . . . . . . . . . . . . 62
4.2.1 From Integral Probability Metrics to Maximum Mean Discrepancy 62
4.2.2 The kernel choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Hilbert-Schmidt Independence Criterion (HSIC) for goal-oriented

sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Application of HSIC to hyperparameters space . . . . . . . . . . . 64

4.3.1 Normalization of hyperparameters space . . . . . . . . . . . . . . . 65
4.3.2 Interactions between hyperparameters . . . . . . . . . . . . . . . . 67
4.3.3 Conditionality between hyperparameters . . . . . . . . . . . . . . . 70
4.3.4 Summary: evaluation of HSIC in hyperparameter analysis . . . . . 73

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Hyperparameter analysis . . . . . . . . . . . . . . . . . . . . . . . 75

57



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.4.2 Modification of hyperparameters distribution to improve training
stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3 Interval reduction for continuous or integer hyperparameters that
affect execution speed . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Optimization by focusing on impactful hyperparameters . . . . . 81
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.1 Impact for deep learning . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.2 Impact for numerical simulations . . . . . . . . . . . . . . . . . . . 85
4.6.3 Other comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Sensitivity analysis as a new approach to hyperpa-
rameter optimization

In this section, we describe the challenges of hyperparameter optimization. We emphasize the
limits of classical hyperparameter optimization algorithms used to tackle these challenges and
legitimate the approach of sensitivity analysis.

4.1.1 Challenges of hyperparameter optimization

Let a neural network be described by nh hyperparameters x1, ..., xnh
with xi ∈ Xi and

σ = (x1, ..., xnh
). We denote F (σ) the error of the neural network on a test data set

once trained on a training data set. The aim of hyperparameter optimization is to find
σ∗ = argmin

σ
F (σ). Even if its formulation is simple, neural networks hyperparameter

optimization is a challenging task because of the great number of hyperparameters to optimize,
the computational cost for evaluating F (σ) and the complex structure of hyperparameter
space. Figure 4.1 gives a graphical representation of a possible hyperparameter space and
illustrates its complexity. Specific aspects to point out are the following ones :

• Hyperparameters do not live in the same measured space. Some are continuous
(weights_decay ∈ [10−6, 10−1]), some are integers (n_layers ∈ {8, ..., 64}), others are
categorical (activation ∈ {relu, ..., sigmoid}), or boolean (dropout ∈ {True, False}).

• They could interact with each others. For instance batch_size adds variance on the
objective function optimized by optimizer.

• Some hyperparameters are not involved for every neural networks configurations, e.g.
dropout_rate is not used when dropout = False or adam_beta is only involved when
optimizer = adam. In this case, we denote them as ”conditional”, otherwise we call
them ”main” hyperparameters.

58



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

NN

activat-
ion

optimizer dropout

batch_
size

n_layers

n_units

weights_
decay

dropout_
rate

conditional hyperparameters
main hyperparameters

adam_
beta

sgd_
momentum

other_
cond

l2_
decay_
rate

other_
main

other_
cond

other_
cond

Figure 4.1: Example of hyperparameters space.

4.1.2 Classical hyperparameter optimization techniques

Many techniques have been introduced to tackle the problem of hyperparameter optimization.
Grid search or random search (Bergstra and Bengio, 2012) uniformly explore the search space.
The main difference between the two methods is that hyperparameters values are chosen on a
uniform grid for a grid search. These values are deterministic, whereas, for a random search,
hyperparameters values are randomly sampled from a uniform distribution in a Monte Carlo
fashion. The main advantages of random search over grid search are that it allows for more
efficient exploration of the hyperparameter search and that it is not constrained to a grid,
so it does not suffer from the curse of dimensionality - which is a problem here since the
hyperparameters can be pretty numerous. The standard costly part of these two methods is
that it requires training a neural network for each hyperparameter configuration, so exploring
the search space can be computationally very expensive.

Some methods aim at reducing the cost of such searches. For instance, Successive Halving
(Jamieson and Talwalkar, 2016) and Hyperband (Li et al., 2018b) train neural networks in
parallel, like in grid search or random search, and stop their training after a certain number
of epochs. Then, they choose the best half of neural networks and carry on the training only
for these neural networks, for the same number of epochs, and so on. This procedure allows
testing more hyperparameters values for the same computational budget.

On the contrary, other methods are designed to improve the search quality with less train-
ing instances. Bayesian optimization, first introduced in Mockus (1974), is based on the
approximation of the loss function by a surrogate model. After an initial uniform sampling

59



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

of hyperparameter configurations, the surrogate model is trained on these points and used
to maximize an acquisition function. This acquisition function, often chosen to be expected
improvement or upper confident bound (Shahriari et al., 2016), is supposed to lead to hyper-
parameter configurations that will improve the error. Therefore, it focuses the computation on
potentially better hyperparameters values instead of randomly exploring the hyperparameters
space. The surrogate model can be a Gaussian process (Snoek et al., 2012), a kernel density
estimator (Bergstra et al., 2011) or even a neural network (Snoek et al., 2015).

Model-based hyperparameter optimization is not easily and naturally applicable to condi-
tional or categorical hyperparameters that often appear when optimizing a neural network
architecture. Such categorical hyperparameter can be the type of convolution layer for a con-
volutional neural network, regular convolution or depth-wise convolution (Chollet, 2016); and
a conditional hyperparameter could be the specific parameters of each different convolution
type. Neural architecture search explicitly tackles this problem. It dates back to evolutionary
and genetic algorithms (Eiben and Schoenauer, 2002; Stanley and Miikkulainen, 2002) and
has been the subject of many recent works. For instance, Kandasamy et al. (2018) models the
architecture as a graph, or Pham et al. (2018); Tan et al. (2018) use reinforcement learning
to automatically construct representations of the search space. See Elsken et al. (2019) for
an exhaustive survey of this field. Nevertheless, their implementation can be tedious, often
involving numerous hyperparameters themselves.

Classical hyperparameter optimization methods handle hyperparameter optimization quite
successfully. However, they are end-to-end algorithms that return one single neural network.
The user does not interact with the algorithm during its execution. This lack of interactivity
has many automating advantages but can bring some drawbacks. First, these methods do
not give any insight on the relative importance of hyperparameters, whereas it may be of
interest in the first approach to a machine learning problem. They are black boxes and not
interpretable. Second, one could have other goals than the accuracy of a neural network, like
execution speed or memory consumption. Some works like Tan et al. (2018) introduce multi-
objective hyperparameter optimization, but it requires additional tuning of the hyperparameter
optimization algorithm itself. Finally, there may be flaws in the hyperparameters space, like
a useless hyperparameter that could be dropped but is included in the search space and
becomes a nuisance for the optimization. This aspect is all the more problematic since some
popular algorithms, like gaussian process-based Bayesian optimization, suffer from the curse
of dimensionality. We can sum up the drawbacks as lack of interpretability, difficulties in a
multi-objective context, and unnecessary search space complexity.

4.1.3 Benefits of Sensitivity Analysis

In this work, we alleviate these concerns by mixing hyperparameter optimization with hyper-
parameter analysis. In other words, we construct an approach to hyperparameter optimization
that relies on assessing hyperparameter’s effects on the neural network’s performances.

One powerful tool to analyze the effect of some input variables on the variability of a quantity

60



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

of interest is sensitivity analysis (Razavi et al., 2021). Sensitivity analysis consists of studying
the sensitivity of the output of a function to its inputs. We could define this function as F
and its inputs as σ. Then, it would be possible to make hyperparameter optimization benefit
from characteristics of sensitivity analysis. Indeed, sensitivity analysis allows specifically:

• Analyzing the relative importance of input variables for explaining the output, which
helps to answer the lack of interpretability problem. We could explain and better
understand hyperparameters’ impact on the neural network error.

• Selecting practically convenient values for input variables with a limited negative impact
on the output. It simplifies the multi-objective approach since we could, for instance,
select values that improve execution speed with a limited impact on the neural network
error.

• Identifying where to efficiently put research efforts to improve the output, which answers
the unnecessary search space complexity problem. Indeed, we could focus on fewer
hyperparameters to optimize by knowing which of them most impact the neural network
error.

4.1.4 Goal-oriented sensitivity analysis

Several types of sensitivity measures can be estimated after an initial sampling of input vectors
and their corresponding output values. The first type of metric gives information about
the contribution of an input variable to the output based on variance analysis. The most
common metric used for that purpose are Sobol indices (Sobol, 1993), but they only assess
the contribution of variables to the output variance. Goal-oriented Sobol indices (Fort et al.,
2016) or uncertainty importance measure (Borgonovo, 2007) construct quantities based on the
output whose variance analysis gives more detailed information. However, computing these
indices can be very costly since estimating them with an error of O( 1√

ns
) requires (nh+2)×ns

sample evaluations (Saltelli, 2002; Prieur and Tarantola, 2016), which can be prohibitive for
hyperparameter analysis. Another type of metrics, called dependence measures, assesses the
dependence between xi (that can be a random vector) and the output F (σ) (Da Veiga, 2013).
It relies on the claim that the more xi is independent of F (σ), the less important it is to
explain it. Dependence measures are based on dissimilarity measures between Pxi

Py and Pxi,y,
where xi ∼ Pxi

and y = F (σ) ∼ Py, since Pxiy = Pxi
Py when xi and y are independent. In

Da Veiga (2013), the author gives several examples of indices based on dissimilarity measures
like f -divergences (Csizar, 1967) or integral probability metrics (Müller, 1997). These indices
are easier and less expensive to estimate (ns training instances instead of (nh + 2)× ns) than
variance-based measures since they only need a simple Monte Carlo design of experiment.

This work focuses on a specific dependence measure, known as the Hilbert-Schmidt Indepen-
dence Criterion (HSIC). The following sections are dedicated to the description of HSIC and
its adaptation to hyperparameter optimization.

61



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.2 HSIC-based goal oriented sensitivity analysis

In this section, we recall the definition of Hilbert Schmidt Independence Criterion, how to use
it in practice, and how to adapt it in order to perform goal-oriented sensitivity analysis.

4.2.1 From Integral Probability Metrics to Maximum Mean Dis-
crepancy

Let x and y be two random variables of probability distribution Px and Py defined in X .
Gretton et al. (2007) show that distributions Px = Py if and only if E[f(x)]−E[f(y)] = 0 for
all f ∈ C(X ), where C(X ) is the space of bounded continuous functions on X . This lemma
explains the intuition behind the construction of Integral Probability Metrics (IPM) (Müller,
1997).

Let F be a class of functions, f : X → R. An IPM γ is defined as

γ(F ,Px,Py) = sup
f∈F

|E[f(x)]− E[f(y)]|. (4.1)

The Maximum Mean Discrepancy (MMD) can be defined as an IPM restricted to a class
of functions FH defined on the unit ball of a Reproducing Kernel Hilbert Space (RKHS) H
of kernel k : X 2 → R. In Gretton et al. (2005), this choice is motivated by the capacity
of RKHS to embed probability distributions efficiently. The authors define µx such that
E(f(x)) = 〈f, µx〉H as the mean embedding of Px. Then, γ2

k(Px,Py) can be written

γ2
k(Px,Py) = ‖µx − µy‖2H.

=

∫ ∫
k(x,x)(px(x)− py(x))(px(y)− py(y))dxdx

′

= E[k(x,x′)] + E[k(y,y′)]− 2E[k(x,y)],

(4.2)

where px(x)dx = dPx, py(y)dy = dPy, x,x′ are iid (independent and identically distributed)
and y,y′ are iid. After a Monte Carlo sampling of {x1, ...,xns} and {y1, ...,yns}, γ2

k(Px,Py)
can thus be estimated by γ̂2

k(Px,Py), with

γ̂2
k(Px,Py) =

ns∑
j=1

ns∑
l=1

k(xj,xl) +
ns∑
j=1

ns∑
l=1

k(yj,yl)− 2
ns∑
j=1

ns∑
l=1

k(xj,yl), (4.3)

and γ̂2
k(Px,Py) being an unbiased estimator, its standard error can be estimated using the

empirical variance of γ̂2
k(Px,Py).

62



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.2.2 The kernel choice

Equation (4.2) involves to choose a kernel k. In practice, k is chosen among a class of
kernels that depends on a set of parameters h ∈ H, where H is a kernel parameter space.
We therefore temporarily denote the kernel by kh. Examples of kernels are the Gaussian
Radial Basis Function kh : (x,y) → exp(− ||x−y||2

2h2 ) or the Matérn function kh : (x,y) →
σ2 21−ν

Γ(ν)

(√
2ν ||x−y||

η

)ν
Kν

(√
2ν ||x−y||

η

)
, where h = {σ, ν, η}, Γ is the gamma function and Kν

is the modified Bessel function of the second kind. In Fukumizu et al. (2009), the authors
study the choice of the kernel, and more importantly of the kernel parameters h. They state
that, for the comparison of probabilities Px and Py, the final parameter h∗ should be chosen
such that

γ2
kh∗ (Px,Py) = sup

h∈H
γ2
kh
(Py,Py). (4.4)

The authors suggest focusing on unnormalized kernel families, like Gaussian Radial Basis
Functions

{
kh : (x,y) → exp(− ||x−y||2

2h2 ), h ∈ (0,∞)
}
, also used in Da Veiga (2013), for which

they demonstrate that γ̂2
kh∗ (Px,Py), defined as

γ̂2
kh∗ (Px,Py) = sup

h∈H

[
ns∑
j=1

ns∑
l=1

kh(xj,xl) +
ns∑
j=1

ns∑
l=1

kh(yj,yl)− 2
ns∑
j=1

ns∑
l=1

kh(xj,yl)

]
, (4.5)

is a consistent estimator of γ2
kh∗ (Px,Py). It is thus possible to choose h by maximizing

γ̂2
kh
(Px,Py) with respect to h. Therefore, in this work, we use Gaussian Radial Basis Functions

kernel. Once h∗ is chosen, the approximation error of γ̂2
kh∗ (Px,Py) can also be estimated

like in Section 4.2.1. It is important to note that γ2
kh
(Px,Py) can be estimated in a O(n2

s)
computational complexity, which is not expensive given usual values of ns in hyperparameter
optimization context. The total complexity of the minimization process depends on the
minimization algorithm, but since the optimization problem is low dimensional - there is
never more than a handful of kernel parameters - the whole process is always cost effective.
To simplify the notations, we denote kh∗ by k in the following sections.

4.2.3 Hilbert-Schmidt Independence Criterion (HSIC) for goal-
oriented sensitivity analysis

Let x ∈ X and y ∈ Y , and G the RKHS of kernel k : X 2 × Y2 → R. HSIC can be written

HSIC(x,y) = γ2
k(Pxy,PxPy) = ‖µxy − µxµy‖G. (4.6)

Then, HSIC measures the distance between Pxy and PyPx embedded in H. Indeed, since

63



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

x ⊥ y ⇒ Pxy = PyPx, the closer these distributions are, in the sense of γk, the more
independent they are.

In Spagnol et al. (2018), the authors present a goal oriented sensitivity analysis by focusing
on the sensitivity of F w.r.t. xi when y = F (x1, ...,xnh

) ∈ Y, with Y ⊂ R. The sub-space Y
is chosen based on the goal of the analysis. In the context of optimization, for instance, Y is
typically chosen to be the best percentile of Y . To achieve this, the authors introduce a new
random variable, z = 1y∈Y. Then,

HSIC(xi, z) = P(z = 1)2 × γ2
k(Pxi|z=1,Pxi

), (4.7)

so HSIC(xi, z) measures the distance between xi and xi|z = 1 (to be read xi conditioned to
z = 1) and can be used to measure the importance of xi to reach the sub-space Y with F .
Using the expression of γk given by equation (4.2), its exact expression is

HSIC(xi, z) = P(z = 1)2
[
E[k(xi,x

′
i)] + E[k(z, z′)]− 2E[k(xi, z)]

]
, (4.8)

where xi,x
′
i are iid and z, z′ are iid.It is estimated for each xi using Monte Carlo estima-

tors denoted by Sxi,Y, based on samples {xi,1, ...,xi,ns} from xi ∼ dPxi
and corresponding

{z1, ..., zns} drawn from z. the estimator Sxi,Y is defined as

Sxi,Y = P(z = 1)2

[
1

m2

ns∑
j=1

ns∑
l=1

k(xi,j,xi,l)δ(zj = 1)δ(zl = 1)

+
1

ns
2

ns∑
j=1

ns∑
l=1

k(xi,j,xi,l)

− 2

nsm

ns∑
j=1

ns∑
l=1

k(xi,j,xi,l)δ(zl = 1)

]
,

(4.9)

with m =
∑ns

k δ(zk = 1) and δ(a) = 1 if a is True and 0 otherwise. We use this metric in the
following. This section mainly summed up the mathematics on which the sensitivity indices
are based and how they are used in practice in a sensitivity analysis context. The following
section is devoted to the application of HSIC in hyperparameter space.

4.3 Application of HSIC to hyperparameters space

HSIC has two advantages that make it stand out from other sensitivity indices and make it
particularly suitable to the hyperparameters space. First, equation (4.9) emphasizes that it is

64



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

possible to estimate HSIC using simple Monte Carlo estimation. Hence, in the context of
hyperparameter optimization, such indices can be estimated after a classical random search.
Secondly, using equation (4.7), HSIC allows to perform goal-oriented sensitivity analysis easily,
i.e. to assess the importance of each hyperparameter for the error to reach a given Y. For
hyperparameter analysis, Y can be chosen to be the sub-space for which F (x1, ..., xnh

) is in
the best percentile p of a metric (L2 error, accuracy,...), say p = 10%. Then, the quantity
Sxi,Y measures the importance of each hyperparameter xi for obtaining the 10% best neural
networks.

However, one cannot use HSIC as is in hyperparameter analysis. Indeed, hyperparameters do
not live in the same measured space, they could interact with each other, and some are not
directly involved for each configuration. In the following sections, we suggest some original
solutions to these issues.

To illustrate the performances of these solutions, we consider a toy example which is the
approximation of Runge function r : x → 1

1+15x2 , x ∈ [−1, 1] by a fully connected neural
network. This approximation problem is a historical benchmark of approximation theory. We
consider nh = 14 different hyperparameters (see Appendix B for details). We randomly
draw ns = 10000 hyperparameter configurations and perform the corresponding training on
11 training points. We record the test error on a test set of 1000 points. All samples are
equally spaced between 0 and 1.

In Section 4.3.1, we introduce a transformation to deal with hyperparameters that do not live
in the same measured space. Then, in Section 4.3.2 we explain how to use HSIC to evaluate
hyperparameters’ interactions. Finally, in Section 4.3.3 we deal with conditionality between
hyperparameters.

4.3.1 Normalization of hyperparameters space

Hyperparameters can be defined in very different spaces. For instance, the activation function
is a categorical variable that can be relu, sigmoid or tanh, dropout_rate is a continuous
variable between 0 and 1 while batch_size is an integer that can go from 1 to hundreds.
Moreover, it may be useful to sample hyperparameters with a non-uniform distribution (e.g.
log-uniform for learning_rate). Doing so affects HSIC value and its interpretation, which is
undesirable since this distribution choice is arbitrary and only relies on practical considerations.
Let us illustrate this phenomenon in the following example.

Example Let f : [0, 2]2 → {0, 1} such that

f(x1, x2) =

{
1 if x1 ∈ [0, 1], x2 ∈ [0, 1],

0 otherwise.

65



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Suppose we want to assess the importance of x1 and x2 for reaching the goal f(x1, x2) = 1
without knowing f . In the formalism of the previous section, we have Y = {1}. Regarding its
definition, x1 and x2 are equally important for f to reach Y, due to their symmetrical effect.
Let x1 ∼ N (1, 0.1, [0, 2]) (normal distribution of mean 1 and variance 0.1 truncated between
0 and 2) and x2 ∼ U [0, 2]. We compute Sx1,Y and Sx2,Y with ns = 10000 points and display
their value in Table 4.1. The values of Sx1,Y and Sx2,Y are quite different. It is natural since
their chosen initial distribution is different. However, this choice has nothing to do with their
actual importance; it should not have any impact on the importance measure. Here, we could
erroneously conclude that x2 is more important than x1.

x1 x2
Sx,Y(×10−2) 1.17± 0.05 1.55± 0.05

Table 4.1: Sx,Y values for x1 and x2

u1 u2

Sx,Y(×10−2) 1.54± 0.05 1.55± 0.05

Table 4.2: Sx,Y values for u1 and u2

This example shows that we have to make Sxi,Y and Sxj ,Y comparable in order to say that
hyperparameter xi is more important than hyperparameter xj. Indeed, if xi and xj do not
follow the same distribution or Xi 6= Xj, it may be irrelevant to compare them directly. We
need a method to obtain values for Sxi,Y that are robust to the choice of dPxi

. To tackle this
problem, we introduce the following approach for comparing variables with HSIC. Let Φi be
the CDF of xi. We have that Φi(xi) = ui, with ui ∼ U [0, 1]. After an initial Monte Carlo
sampling of hyperparameter xi, which can be a random search, we can apply Φi to each input
point to obtain ui corresponding to xi with ui iid, so living in the same measured space. Yet,
one must be aware that to obtain ui ∼ U [0, 1], its application is different for continuous and
discrete variables:

• for continuous variables, Φi(xi) is a bijection between Xi and [0, 1] so Φi can be applied
on draws from xi.

• For categorical, integer or boolean variables, Φi(xi) is not a bijection between Xi and
[0, 1]. Suppose that xi is a discrete variable with p possible values {xi[1], ..., xi[p]},
each with probability wp. Let us encode {xi[1], ..., xi[p]} by {1, ..., p}. Then, Φi(xi) =∑p

j=1 wj1[xi≤j](xi). When Φi is applied as is, Φi(xi) is not uniform. To overcome that,
one can simply use ui =

∑p
j=1 U [

∑
k<j wk,

∑
k<j+1 wk]δ(xi = j). This trick, introduced

in Kruskal (1964), is commonly used in Monte Carlo resolution of Partial Differential
Equations (Gillespie, 1976). As a result, ui ∼ U [0, 1].

Finally, all we have to do is sampling xi, like in a classical random search, following the
distribution we want, and then apply Φi to obtain ui. The corresponding HSIC estimation
is Sui,Y. It only involves ui and ui|z = 1 and since ui are iid, the comparison of different
Sui,Y becomes relevant. Coming back to the previous example, Table 4.2 displays values of
Su1,Y and Su2,Y. This time, the value is the same, leading to the correct conclusion that both
variables are equally important. Note that in the following, we denote Sui,Y by Sxi,Y for
clarity but always resort to this transformation.

66



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Let us apply this methodology to the Runge approximation hyperparameter analysis problem.
Figure 4.2 displays a comparison between Sxi,Y for hyperparameters of the Runge approxima-
tion problem, with Y the set of the 10% best neural networks. For readability, we order xi
by Sxi,Y value in the legend and the figure. We also display black error bars corresponding
to HSIC estimation standard error. This graphic highlights that optimizer is by far the
most important hyperparameter for this problem, followed by activation, loss_function
and n_layers. Other hyperparameters may be considered non-impactful because their Sxi,Y

values are low. Besides, these values are lower than the error evaluation. It could be only
noise, and therefore these hyperparameters can not be ordered on this basis.

Figure 4.2: Comparison of Sxi,Y for hyperparameters in Runge approximation problem. The
hyperparameters are ordered from the most important (top of the legend) to the least important
(bottom of the legend), and their value is graphically represented in a stacked bar plot following the
same order.

4.3.2 Interactions between hyperparameters

If Sxi,Y is low, it means that Pxi
and Pz are similar (in the sense of HSIC). We could want

to conclude that xi has a limited impact on Y . However, xi may have an impact due to its
interactions with the other hyperparameters. In other words, let xi and xj be two variables,
it can happen that Sxi,Y and Sxj ,Y are low while S(xi,xj),Y is high.

Example For instance let f : [0, 2]3 → {0, 1} such that

f(x1, x2, x3) =


1 if x1 ∈ [0, 1], x2 ∈ [1, 2], x3 ∈ [0, 1],

1 if x1 ∈ [0, 1], x2 ∈ [0, 1], x3 ∈ [1, 2],

0 otherwise.

67



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

In that case, let Y = {1}, ∀x ∈ [0, 2] we have px2|z=1(x) = px2(x) and px3|z=1(x) = px3(x).
Hence, according to equation 4.8 we have HSIC(x2, z) = HSIC(x3, z) = 0. However, we
have

HSIC(x1, z) = P(z = 1)2
∫
[0,2]2

k(x, x′)
[
px1|z=1(x)− px1(x)

]
×
[
px1|z=1(x

′)− px1(x
′)
]
dxdx′

=
1

8

[ ∫
[0,1]×[0,1]

k(x, x′)dxdx′ +

∫
[1,2]×[1,2]

k(x, x′)dxdx′

− 2

∫
[0,1]×[1,2]

k(x, x′)dxdx′
]
,

so for non-trivial choice of k, HSIC(x1, z) 6= 0. One could deduce that x1 is the only relevant
variable for reaching Y, but in practice it is necessary to chose x2 and x3 carefully as well.
For instance, if x1 ∈ [0, 1], f(x1, x2, x3) = 1 if x2 ∈ [1, 2] and x3 ∈ [0, 1] but f(x1, x2, x3) = 0
if x2 ∈ [1, 2] and x3 ∈ [1, 2]. This is illustrated in Figure 4.3, which displays the histograms
of x1 and x1|z = 1, x2 and x2|z = 1, x3 and x3|z = 1, obtained from 10000 points (x1, x2, x3)
sampled uniformly in the definition domain of f .

Figure 4.3: From left to right: 1 - Pairs of (x2|z = 1, x3|z = 1). 2 - Histogram of x1 and x1|z = 1.
3 - Histogram of x2 and x2|z = 1. 4 - Histogram of x3 and x3|z = 1.

Histograms are the same for x2, x2|z = 1 and x3, x3|z = 1 (uniform between 0 and 2), but
different for x1, x1|z = 1. Therefore, HSIC being a distance measure between x1 and x1|z = 1,
it becomes intuitive that it will be high for x1 and close to zero for x2 and x3, even if x2 and
x3 are important as well because of their interaction. To assess this intuition, we compute
Sx1,Y , Sx2,Y, Sx3,Y and S(x2,x3),Y after simulating f for ns = 2000 points. We also compute
S(x4,x5),Y, with x4 and x5 two dummy variables, uniformly distributed, to have a reference
for S(x2,x3),Y. The results can be found in Table 4.3. They show that Sx1,Y and S(x2,x3),Y are
of the same order while Sx2,Y, Sx3,Y and S(x4,x5),Y are two decades lower than Sx1,Y, which
confirms that Sx,Y may be low while interactions are impactful.

x1 x2 x3 (x2, x3) (x4, x5)
Sx,Y 1.51× 10−2 6.26× 10−6 1.64× 10−5 3.47× 10−3 3.70× 10−6

Table 4.3: Sx,Y values for variables of the experiment

68



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Figure 4.4: Sx,Y for each pair of variable.

Additionally, we display the S(xi,xj),Y for each pair of variable xi and xj on Figure 4.4. We can
see that for variables other than x1, S(xi,xj),Y is high only for i = 2 and j = 3. This example
shows that it is necessary to compute Sx,Y of joint variables to perceive the importance of
interactions between variables.

The values are easy to interpret in this example because we know the behavior of the underlying
function f . In practice, Sx1,Y and S(x2,x3),Y can not be compared because (x2, x3) and x1 do not
live in the same measured space (X2×X3 and X1 respectively). Moreover, like we see on Figure
4.4, S(xi,xj),Y is always the highest when i = 1, regardless of j. In fact, if for a given variable
xi, Sxi,Y is high, so will be S(xi,xj),Y for any other variable xj. Hence, care must be taken
to only compare interactions of low Sx,Y variables with each others, and not with high Sx,Y
variables. Coming back to Runge approximation example, Figure 4.5a displays the S(xi,xj),Y

for each pair of hyperparameters, and Figure 4.5b for each pair of hyperparameters, except
for the impactful hyperparameters optimizer, activation, n_layers and loss_function.

Figures 4.5a and 4.5b illustrate the remarks of the previous section. First, if we only look
for interactions on Figure 4.5a, we would conclude that the most impactful hyperparameters
are the only one to interact, and that they only interact with each others. Figure 4.5b shows
that this conclusion is not true. Hyperparameter batch_size is the 5-th most impactful
hyperparameter, and like we can see in Figure 4.2, is slightly above the remaining hyper-
parameters. It is normal that S(batch_size,xj),Y is high, with xj every other hyperparameters.
However, S(batch_size,n_units),Y is higher, whereas n_units is the 13-th most impactful hyper-
parameter. This means that batch_size interacts with n_units in this problem, i.e. that
when considered together, they contribute to explain the best results.

69



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

(a) (b)

Figure 4.5: (a) S(xi,xj),Y for each pair of hyperparameters. (b) S(xi,xj),Y for each pair of hyperpa-
rameters, except for optimizer, activation, n_layers and loss_function. The grid can be read
symmetrically with respect to the diagonal.

4.3.3 Conditionality between hyperparameters

Conditionality between hyperparameters, which often arises in Deep Learning, is a non-trivial
challenge in hyperparameter optimization. For instance, hyperparameter ”dropout_rate”
will only be involved when hyperparameter ”dropout” is set to True. Classically, two ap-
proaches can be considered. The first (i) splits the hyperparameter optimization between
disjoint groups of hyperparameters that are always involved together, like in Bergstra et al.
(2011). Then, two separate instances of hyperparameter optimization are created, one for
the main hyperparameters and another for dropout_rate. The second (ii) considers these
hyperparameters as if they were always involved, even if they are not, like in Falkner et al.
(2018). In that case, dropout_rate is always assigned a value even when dropout = False,
and these dummy values are used in the optimization. First, we explain why these two
approaches are not suited to our case. Then we propose a third approach (iii).

(i) The first formulation splits the hyperparameters between disjoints sets of hyperparameters
whose value and presence are involved jointly in a training instance. In Runge approximation
hyperparameter analysis, since dropout_rate is the only conditional hyperparameter, it
would mean to split the hyperparameters between two groups: {dropout_rate} and another
containing all the others. This splitting approach is not suited to HSIC computation because
it produces disjoints sets of hyperparameters, while we would want to measure the importance
of every hyperparameter and compare it to each other hyperparameter. Here, dropout_rate
could not be compared to any other hyperparameters.

70



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

(ii) In the second case, if we apply HSIC with the same idea, we could compute HSIC of a
hyperparameter with irrelevant values coming from configurations where it is not involved. Two
situations can occur. First, if a conditional variable xi is never involved in the hyperparameter
configurations that yield the p-percent best accuracies (depending on the percentile chosen),
the values used for computing Sxi,Y, i.e. xi|z = 1, are drawn from the initial, uniform
distribution ui. Then, Sxi,Y will be very low, and the conclusion will be that it is not
impactful for reaching the percentile, which is correct since none of the best neural networks
have used this hyperparameter. However, if xi is only involved in a subset of all tested
hyperparameter configurations and is impactful in that case, Sxi,Y would be lowered by the
presence of the other artificial values of xi drawn from the uniform distribution. In that case,
we could miss its actual impact. The following example illustrates this phenomenon.

Example. Let f : [0, 2]3 → {0, 1} such that:

f(x1, x2, x3) =


B if x1 ∈ [0, 1], x2 ∈ [0, t]

1 if x1 ∈ [0, 1], x2 ∈ [t, 2], x3 ∈ [0, 1],

0 otherwise,

With B a Bernoulli variable of parameter 0.5 and t ∈ [0, 2] (so that Sx2,Y is low). Let Y = {1}.
In that case, x1 plays a key role for reaching Y, and x3 is taken into account only when
x2 > t. In these cases, it is as important as x1 for reaching Y and we would like to retrieve
this information. Parameter t allows controlling how many values of x3 will be involved. We
evaluate f on ns = 2000 points uniformly distributed across [0, 2]3, first with t = 1.

(a) (b) (c) (d)

Figure 4.6: (a) - Histogram of x3 and x3|z = 1 (b) - Histogram of x3 and x3|x2 > t, z.
(c) - Sx,Y for x1; x2 and x3. (d) - Sx,Y for x1|x2 > t; x2|x2 > t and x3|x2 > t.

Figure 4.6a compares the histograms of x3 and x3|z = 1. Figure 4.6b compares histograms of
x3|x2 > t and of x3|x2 > t, z. This shows that the distribution of x3|z = 1 is different if we
choose to consider artificial values of x3 or values of x3 that are actually used by f (x3|x2 > t).
Figures 4.6c and 4.6d show that relative values of Sx1,Y and Sx3,Y are quite different whether
we chose to consider x2 > t or not, meaning that the conclusions about the impact of x3 can
be potentially different. To emphasize how different these conclusions can be, we compare
Sx1,Y and Sx3,Y for different values of t. The results are displayed on Figure 4.7 (top row).

71



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Since the value of t controls how much artificial values there are for x3, this demonstrates
how different Sx3,Y can be, depending on the amount of artificial points. This experiment
emphasizes the problem because in all cases, x3 is equally important for reaching Y whereas
for t = 1.8 we would be tempted to discard x3.

(i
i)

(i
ii)

Figure 4.7: Top (ii): Sx,Y for x1, x2 and x3 for different values of t. Bottom (iii): Sx,Y for
x1|x2 > t, x2|x2 > t and x3|x2 > t for different values of t.

To sum up, this formulation brings significant implementation advantages because it allows
computing Sxi,Y as if there were no conditionality. However, it carries a risk to miss essential
impacts of conditional hyperparameters and discard them illegitimately.

(iii) In this work, we propose a splitting strategy that produces sets of hyperparam-
eters that are involved together in the training, but are not disjoints, unlike (i). Let
Jk ∈ {1, ..., nh} be the set of indices of hyperparameters that can be involved in a train-
ing jointly with conditional hyperparameter xk. We define Gxk

= {xi|xk, i ∈ Jk}, the set
of hyperparameters involved jointly in hyperparameter configurations when xk is also in-
volved. By convention, we denote the set of all main hyperparameters by G0. In Runge
problem, dropout_rate is the only conditional hyperparameter, so we have two sets G0 =
{x1, ..., xnh

} \ dropout_rate and Gdropout_rate = {x1|dropout_rate, ..., xnh
|dropout_rate}

= {x1|dropout = true, ..., xnh
|dropout = true}. It is then possible to compute Sxi,Y for

xi ∈ G0, identify the most impactful main hyperparameters, then to compute Sxi,Y for
xi ∈ Gdropout_rate and to assess if dropout_rate is impactful by comparing it to other variables
of Gdropout_rate. On the example problem, we can compute Sxi,Y only for x1, x2 and x3 when
x2 > t. This set would be Gx3 (except that x2 is not categorical nor integer - but in that case
we can consider X̄2 = 1(x2 > t)). On the bottom row of Figure 4.7, Sx1|x2>t,Y and Sx3|x2>t,Y

keep approximately the same values for all t, which is the correct conclusion since when x3
is involved (i.e. x2 > t) , it is as important as x1 for reaching Y. Coming back to Runge,
Figure 4.8 displays Sxi,Y for Runge approximation for xi ∈ Gdropout_rate, compared to the first
approach where we do not care about conditionality, though in this specific case it does not
change much of the conclusion that dropout_rate is not impactful.

72



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

(a) (b)

Figure 4.8: Comparison of Sxi,Y for variables xi ∈ G0 (a) and for variables xi ∈ Gdropout_rate (b)

In Runge example, we have only considered one conditional hyperparameter, which is
dropout_rate, leading to only two groups G0 and Gdropout_rate. For another, more com-
plex example, we could introduce additional conditional hyperparameters such as SGD’s
momentum. In that case, there would be two additional groups. The group Gmomentum, that con-
tains hyperparameters conditioned to when momentum is involved, but also G(dropout_rate,momentum)

that contains hyperparameters conditioned to when momentum and dropout_rate are simulta-
neously involved. If the initial random search contains ns configurations, dropout_rate and
momentum are involved in ns/2 configurations. HSIC estimation of hyperparameters of the
groups Gdropout_rate and Gmomentum will be coarser but still acceptable. However, dropout_rate
and momentum would only be involved simultaneously in ns/4 configurations, which may
lead to too inaccurate HSIC estimation for G(dropout_rate,momentum). This happens because
dropout_rate and momentum do not depend on the same main hyperparameter. Hence, to
avoid this problem, we only consider groups G with conditional hyperparameters that depend
on the same main hyperparameter. In our case, these groups are G0, Gdropout_rate and Gmomentum.

4.3.4 Summary: evaluation of HSIC in hyperparameter analysis

In this section, we summarize the results of the previous discussions to provide a methodology
for evaluating the HSIC of hyperparameters in complex search spaces in Algorithm 4.

Comments on Algorithm 4. Line 1: one can choose any initial distribution for hyper-
parameters. Line 2: this step is a classical random search. Recall that HSIC evaluation
can be applied after any random search, even if it was not initially conducted for HSIC
estimation. Configurations σi are sampled from σ = (x1, ..., xnh

) ∈ H. Line 3: this step
strongly benefits from parallelism. Line 4: the set Y is often taken as the p % percentile of
{Y1, ..., Yns}, but can be any other set depending on what we want to assess. Line 6 - 10:
the evaluation starts with main hyperparameters because they are always involved. Once
most impactful main hyperparameters are selected, we assess the conditional ones.

Remark. The value of Sxi,Y strongly depends on the initial distribution chosen for xi. Indeed,

73



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Algorithm 4 Evaluation of HSIC in hyperparameter analysis
1: Inputs: hyperparameter search space H = X1 × ...×Xnh

, ns.
2: Sample ns hyperparameter configurations {σ1, ...,σns}.
3: Train a neural network for each configuration and gather outputs {Y1, ..., Yns}.
4: Define Y.
5: Construct conditional groups G0, ....
6: for each group, starting with G0 do
7: Construct ui for every xi using Φi of section 4.3.1.
8: Compute Sxi,Y := Sui,Y using equation (4.9).
9: By comparing them, select the most impactful hyperparameters.

10: Check for interacting hyperparameters.
11: Outputs: Most impactful hyperparameters and interacting hyperparameters.

if the distribution only spans values of xi that yield good prediction error, Sxi,Y will be low.
Conversely, if it spans good values but also includes absurd values, Sxi,Y will be higher. Hence,
without a priori knowledge, we recommend to select a large range of values for each xi

4.4 Experiments

Now that we can compute and correctly assess HSIC, we introduce possible usages of this
metric in the context of hyperparameter analysis. In this section, we explore three benefits
that we can draw from HSIC based hyperparameter analysis.

• Interpretability: HSIC allows analyzing hyperparameters, obtaining knowledge about
their relative impact on error.

• Stability: Some hyperparameter configurations can lead to dramatically high errors. A
hyperparameters range reduction based on HSIC can prevent such situations.

• Acceleration: We can choose values for less important hyperparameters that improve
inference and training time.

We illustrate these points through hyperparameter analysis when training a fully connected
neural network on MNIST and a convolutional neural network on Cifar10. We also study the
approximation by a fully connected neural network of Bateman equations solution, in a more
complex way than in Section 3.2.2. Details about the construction of Bateman equations data
set can be found in Appendix C and hyperparameters space and conditional groups G0, ...
for each problem in Appendix B.

74



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.4.1 Hyperparameter analysis

This section presents a first analysis of the estimated value of HSIC for the three benchmark
data sets: MNIST, Cifar10, and Bateman equations. These evaluations are based on an
initial random search for ns = 1000 different hyperparameter configurations. The set Y
is the 10%-best errors percentile, so ns is taken sufficiently large for HSIC to be correctly
estimated. Indeed, if ns = 1000, there will be 100 samples of ui|z = 1. For every data set, we
extract 10% of the training data to construct a validation set to evaluate z. We keep a test
set for evaluating neural networks obtained after hyperparameter optimization described in
Section 4.5. This random search was conducted using 100 parallel jobs on CPU nodes for
fully connected neural networks and 24 parallel jobs on Nvidia Tesla V100 and P100 GPUs
for convolutional neural networks, so the results for these configurations were obtained quite
quickly, in less than two days.

Note that for each data set, graphical comparison of Sxi,Y for conditional groups G0, ... is
displayed in Appendix D, for conciseness and clarity.

4.4.1.1 MNIST

We train ns = 1000 different neural networks. We can see on Figure 4.9a that the accuracy
goes up to ∼ 99%(1 − error) which is quite high for a fully connected neural network on
MNIST. Figure 4.9a also displays the values of Sxi,Y for each hyperparameter xi stacked
vertically. Here, activation, optimizer, batch_size and loss_function have significantly
high Sxi,Y. Hyperparameter n_layers also stands out from the remaining hyperparameter,
while staying far below loss_function HSIC. There is one conditional group to consider,
Gdropout_rate, and dropout_rate is found not to be impactful.

Interestingly, neither the depth (n_layers) nor the width (n_units) are among the most
important hyperparameters. Notice that the random search yields a neural network of
depth 4 and width 340 which obtained 98.70% accuracy, while the best networks (there were
two) obtained 98.82% accuracy for a depth of 10 and a width of 791 and 1403, respectively.
Recall that the min-max depth was 1-10 and width was 134-1500. It means that lighter
networks are capable of obtaining competitive accuracy. Another interesting observation is
that loss_function does not have the highest HSIC, meaning that Mean Squared Error
allows obtaining good test errors, which is surprising for a classification problem.

We plot histograms of ui and ui|z = 1 on Figure 4.10a for activation (top) and weights_reg_l1
(bottom) with repeated sampling for categorical hyperparameters, like in Section 4.3.1. Note
that the first and the second hyperparameters have respectively a high and low Sxi,Y. We
can see that for hyperparameters with high Sxi,Y, ui|z = 1 (orange for KDE, blue for his-
togram) is quite different from ui (red for KDE, gray for histogram). On the contrary, for
hyperparameters with low Sxi,Y there not seems to have major differences.

75



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

(a) MNIST (b) Cifar10 (c) Bateman

Figure 4.9: (top) Histograms of the initial random sampling of configurations and (bottom) compari-
son of Sxi,Y for every main hyperparameters.

(a) MNIST (b) Cifar10 (c) Bateman

Figure 4.10: Representation of ui|z = 1 (orange for KDE and blue for histogram) and ui (red for
KDE and grey for histogram), for hyperparameters xi with high (top) and low (bottom) Sxi,Y

76



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.4.1.2 Cifar10

We train ns = 1000 different convolutional neural networks. After the initial random search,
the best validation error is 81.37%. Note that the histogram of Figure 4.9b is truncated because
many hyperparameter configurations led to diverging errors. Here, pool_type, optimizer,
activation, learning_rate and kernel_size have the highest Sxi,Y, followed by n_filters.
Half of these hyperparameters are specific to convolutional neural networks, which validates
the impact of these layers on classification tasks for image data. The conditional groups
are listed in Appendix B. We do not show Sxi,Y comparisons for every group for clarity of
the article and simply report that one conditional hyperparameter centered, which triggers
centered RMSprop if this value is chosen for optimizer, is also found to be impactful.

The depth (n_layers) is the less important hyperparameters. Here, the random search yields
a neural network of depth 4 and width 53, with 3 stages (meaning that the neural network
is widened 3 times), which obtained 80.70% validation accuracy, while the best networks
obtained 81.37% accuracy for a depth of 6 and 48 but 4 stages. The conclusion is the same
as for MNIST: increasing the size of the network is not the only efficient way to improve its
accuracy.

We plot histograms of ui and ui|z = 1 on Figure 4.10b for pool_type (top) and n_layers
(bottom) like in the previous section. The histograms of n_layers are interesting because
even the histogram of ui does not seem uniform. An explanation could be that configurations
lead to out-of-memory errors or are so long to train that 1000 other neural networks with
different configurations have already been trained meanwhile. It also explains why its HSIC
is so low. Still, the conclusions that n_layers has a limited impact is valid since there is no
major differences between ui and ui|z = 1.

4.4.1.3 Bateman equations

For Bateman equations, mean squared error goes down to 2.90× 10−5. Like for Cifar10, the
histogram of Figure 4.9b is truncated because many hyperparameter configurations led to
diverging errors. For this problem, learning_rate, optimizer, activations and n_layer
can be considered as impactful. Conditional groups are also listed in Appendix B. Three
conditional hyperparameters are important: beta_2, the second moment decay coefficient
of Adam and Nadam, nesterov, that triggers Nesterov’s momentum in SGD and centered,
described previously.

HSIC for n_layers is still the lowest of the significant Sxi,Y and n_units belongs to less
impactful hyperparameters. We perform the same analysis as for MNIST and Cifar10 and
quote that the best neural network has depth 5 and width 470 while another neural network
of depth 5 and width 62 reaches 3.74× 10−5 validation error.

We plot histograms of ui and ui|z = 1 on Figure 4.10c for learning_rate (top) and
bias_reg_l1 (bottom). Histograms of learning_rate is interesting because this hyper-

77



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

parameter is continuous so the distribution ui|z = 1 seems more natural. This once again
illustrates the differences of ui and ui|z = 1 for hyperparameters with high and low Sxi,Y.

4.4.2 Modification of hyperparameters distribution to improve
training stability

Up to now, we only considered Y to be the 10% best error percentile, which is natural since
we want to understand the impact of hyperparameters towards good errors. However, HSIC
formalism and our adaptation to hyperparameter analysis allow us to choose any Y. In the
previous section, for Cifar10 and Bateman, we truncated histograms of Figure 4.9b because
many hyperparameter configurations led to diverging errors. It is possible to understand why
by choosing Y as the set of the 10% worst errors. Then, HSIC can be applied to assess the
importance of each hyperparameter towards the worst errors.

(a) Sxi,Y, Y = 10% worst errors (b) xi|Y, Y = 10% worst errors (c) xi|Y, Y = 10% best errors

Figure 4.11: Top: Cifar10. Bottom: Bateman. (a) Comparison of Sxi,Y when Y is the set
of the 10% worst errors. (b) Histogram of xi|Y when Y is the set of 10% worst errors, with
xi = activations for Cifar10 and xi = optimizer for Bateman. (c) Histogram of xi|Y when Y is
the set of the 10% best errors, with xi = activations for Cifar10 and xi = optimizer for Bateman.

Figure 4.11b shows Sxi,Y comparisons, for Cifar10 and Bateman, when Y is the set of the
10% worst errors. In that case, Sxi,Y measures how detrimental bad values of xi can be for
the neural network error. For Cifar10, activation is the main responsible for the highest
errors. If we plot the histogram of activation|Y, we can see that sigmoid is a bad value in
the sense that most of the worst neural networks use this activation function. If we come
back to Y being the set of the 10% best neural networks, we see that none of the best neural

78



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

networks have sigmoid as the activation function. By itself, this kind of knowledge is valuable
because it gives insights about hyperparameter’s impact. It also directly brings some practical
benefits: in that case, we could reasonably discard sigmoid from the hyperparameter space
and therefore adapt the distribution of activation to improve stability. The same reasoning
can be applied to Bateman, with xi = optimizer, for adagrad and rmsprop optimizers.

Note that we could have drawn the previous conclusions by directly looking at histograms as
represented in Figure 4.11b and 4.11c. However, when the number of hyperparameters grows,
the number of histograms to look at and visually evaluate grows as well, and the analysis
becomes tedious. Thanks to HSIC, we know directly which histograms to look at and how to
rank hyperparameters when it is not visually clear-cut.

4.4.3 Interval reduction for continuous or integer hyperparameters
that affect execution speed

One common conclusion of Sxi,Y values for the last three machine learning problems is that
one does not have to set high values for hyperparameters that affect execution speed, such as
n_units, n_layers, or n_filters, in order to obtain competitive models. It naturally raises
the question of how to bias the hyperparameter optimization towards such models. Multi-
objective hyperparameter optimization algorithms have already been successfully applied, like
in Tan et al. (2018) for instance, but these algorithms are black-boxes and involve tuning
additional hyperparameters for the multi-objective loss function.

In our case, we can use information from Sxi,Y to reduce the hyperparameters space search in
order to obtain more cost-effective neural networks. The most simple way to achieve that
goal is to select values that improve execution speed for hyperparameters which have low
Sxi,Y values. For MNIST, it would mean for instance to choose n_units = 128, for Cifar10,
n_layers = 3 or for Bateman, n_units = 32.

However, if all hyperparameters that affect execution speed are important, i.e. they have high
Sxi,Y value, we may not be able to apply the previous idea. In that case, we can use HSIC in
a different way to still achieve our goal, for integer or continuous hyperparameters (such as
n_layers, n_units, or kernel_size). Note that most of the time, for these hyperparameters,
a too low or high value will increase the error or the execution speed, respectively. We
would like to choose a value which is as low as possible without hurting the error too much.
Suppose that xi = n_layers ∈ {a, ..., b} and that Sxi,Y is high, so that n_layers is among
the most important hyperparameters. It is likely that Sxi,Y is high because a is too small.
One could therefore compute Sxi|xi∈{a+c,...,b},Y for c ∈ {1, ..., b − a}, starting with c = 1
until Sxi|xi∈{a+c,...,b},Y becomes low. Then, hyperparameter n_layers can be replaced by
n_layers|n_layers ∈ {a+ c, ..., b}, which has a low HSIC, and whose value can hence be set
to a+ c.

To illustrate this, let us come back to Runge data set. We first focus on this example because
we have been able to train ns = 10000 different neural networks so the methodology can be

79



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

tested with limited noise. In Figure 4.12, Sxi|xi∈{a+c,...,b},Y is plotted with respect to c, where
xi = n_layers. We see that Sxi|xi∈{a+c,...,b},Y decreases until n_layers = 3, after which the
tendency is not statistically significant. Choosing n_layers = 3 makes n_layers belong to
the less important hyperparameters so it is a good trade-off value for execution speed and
accuracy.

Figure 4.12: Sxi|xi∈{a+c,...,b},Y w.r.t. c for n_layers in Runge. The error bars traduce the standard
estimation error.

We apply this methodology to MNIST, Cifar10, and Bateman problems in Figure 4.13. When
plotting these curves, too high values of c have to be discarded since the more c increases, the
less points there are to compute Sxi|xi∈{a+c,...,b},Y. It could explain the strange behavior of the
plots at the right of the axis of Figure 4.13, and the widening of error bars for n_layers = 5
in Figure 4.12.

Note that in Figure 4.13, error bars are much larger than in Figure 4.12. Indeed, in these
cases, Sxi|xi∈{a+c,...,b},Y are evaluated with 10 times less points. Hence, one must be careful
with their interpretation. First, for so few estimation points, we are far from the asymptotical
regime under which estimation error is gaussian. It explains why error bars can go below 0,
whereas the value to estimate is a distance. Therefore, these bars only indicate how spread
the error is. Second, since it turns out that the error is very spread, the trade-off value must
be chosen with caution by taking this statistic into account. In this manuscript, we rely on a
human eye to qualitatively chose this value, but in future work, we should study the use of
statistical tests.

Finally, these plots suggests that we could set n_layers = 3 for MNIST, kernel_size = 3
for Cifar10 and n_layers = 3 for Bateman without affecting the error too much. Once the
hyperparameters space has been reduced to improve neural networks execution time, it is
possible to apply any classical hyperparameter optimization algorithm.

80



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

(a) MNIST (b) Cifar10 (c) Bateman

Figure 4.13: Sxi|xi∈{a+c,...,b},Y w.r.t. c for (a) n_layers in MNIST, (b) kernel_size in Cifar10 and
(c) n_layers in Bateman with error bars (top) and without error bars (bottom). The error bars
traduce the standard estimation error.

4.5 Optimization by focusing on impactful hyperparam-
eters

One of the most successful and widely used hyperparameter optimization algorithms is
Gaussian Processes-based Bayesian Optimization, which we denote GPBO by convenience.
However, this algorithm is known to struggle in too high dimensions. In the case of Cifar10,
choosing values for hyperparameters that affect execution time would still lead to a space of
dimension 20, which is quite large to apply GPBO.

In Song et al. (2007), the authors introduce the use of HSIC for feature selection and in
Spagnol et al. (2018), HSIC based feature selection is used in the context of optimization.
The idea is to compute Sxi,Y for each variable involved in the optimization and to discard
low Sxi,Y variables from it. More specifically, we fix the discarded variables to an arbitrary
value, and then the optimization algorithm is applied only in the dimension of the high Sxi,Y

variables.

This methodology is particularly suited to hyperparameter optimization. In this work, we have
emphasized the ability of HSIC to identify the most important hyperparameters. It allows
performing relevant HSIC driven hyperparameters selection, which can overcome optimization
in too high dimensional hyperparameters spaces. We go further and present a two-step
optimization. In the first step, we optimize the most relevant hyperparameters but in a
second step, we also fine-tune less important hyperparameters. As a result, the problematic

81



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

optimization in high dimension is split into two easier optimization steps:

1 Optimization in the reduced yet impactful hyperparameters space, which has reasonable
dimension. It allows applying GPBO despite the initially large dimension of the
hyperparameters space. At the end of this step, optimal values are selected for the most
impactful hyperparameters.

2 Optimization on the remaining dimensions. In our case, GPBO can be reasonably
applied in this space, but note that we might have hyperparameters spaces whose initial
dimension is so high that after the first step, the remaining dimensions to optimize
could still be too numerous to perform GPBO. In that case, less refined but more robust
hyperparameter optimization algorithms (like random search or Tree Parzen Estimators
(Bergstra et al., 2011)) could be applied, which would not be so much of a problem
since remaining hyperparameters are less impactful.

For the first step, values have to be chosen for less impactful hyperparameters that are not
involved in the optimization. In Spagnol et al. (2018), the authors choose the values yielding
the best output after the initial random search. Here, the value selection method that aims
at improving execution speed, introduced in Section 4.4.3, integrates perfectly with this
two-step optimization. Following this method brings two advantages. First, we can obtain
more cost-effective neural networks if we keep these values through the two optimization
step. Second, if we do not care so much about execution speed but only look for accuracy,
choosing cost-effective values during the first optimization step improves the training speed
and thereby global hyperparameter optimization time.

The rest of the low Sxi,Y hyperparameters value can be set as those of the hyperparameter
configuration yielding the best error. There is one last attention point: one has to be careful
about interactions between low Sxi,Y hyperparameters. If two low HSIC hyperparameters xi
and xj are found to interact, like discussed in section 4.3.2, and xi has an impact on execution
speed, the value of xj must be chosen so that value of the pair (xi, xj) is close to the value of
the hyperparameter configuration of a low error neural network. The two-step optimization is
summarized in Algorithm 5.

We evaluate this two-step optimization on our three data sets. For each of these, we consider
4 baselines. For each of these baselines, we report the test error (the metric is accuracy for
MNIST and Cifar10 and MSE for Bateman), the number of parameters of the best models,
and their FLOPs.

• Random search: The result of the random search of 1000 configurations plus 200
additional configurations for a total of ns = 1200 points.

• Full GPBO: Gaussian Processes-based Bayesian Optimization, conducted on the full
hyperparameters space, without any analysis based on HSIC. We initialize the opti-
mization with 50 random configurations and perform the optimization for 50 iterations
(enough to reach convergence).

82



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Algorithm 5 Two-step Optimization
1: Inputs: hyperparameter search space H = X1 × ...×Xnh

, ns

2: Apply Algorithm 4: ”Evaluation of HSIC in hyperparameter analysis”.
3: Perform interval reduction (for cost efficiency and stability), as in Sections 4.4.3 and 4.4.2.

4: Select values for less impactful hyperparameters that improve execution speed, taking
care of interaction, like discussed in Section 4.3.2.
// Step 1:

5: Apply GPBO to the most impactful hyperparameters.
// Step 2:

6: if goal = accuracy and execution speed then
7: Keep the optimal values of step 1 and the values of less impactful hyperparameters

that improve execution speed. Apply GPBO to the remaining dimensions.
8: else if goal = accuracy only then
9: Keep the optimal values of step 1. Apply GPBO to the remaining dimensions.

• TS-GPBO (accuracy): Two-Step GPBO described in Algorithm 5, with goal = accuracy.
HSICs are estimated using a first random search of ns = 1000 points. Steps 1 and 2 are
run for 25 iterations.

• TS-GPBO (accuracy + speed): Two-Step GPBO described in Algorithm 5, with goal =
accuracy and execution speed.

Random search (ran using 100 parallel jobs for MNIST and Bateman and 24 for Cifar10)
took between 2 and 3 days depending on the data set, full GPBO between 3 and 4 days and
TS-GPBO between 3 and 4 days as well (2− 3 days for the initial random search and 1 day
for the two steps of GPBO). Time measure is coarse because not all the training has been
conducted on the same architectures (Sandy Bridge CPUs, Nvidia Tesla V100, and Nvidia
Tesla P100 GPUs), even within the same baseline, for cluster accessibility reasons.

We chose the number of total model evaluations for each baseline to obtain approximately
the same total execution time. The differences between the number of evaluations, despite
identical total execution time, can be explained by different factors. First, the random search
can be fully executed in parallel, while GPBO is sequential. Second, step 1 of TS-GPBO
always chooses values for non-optimized hyperparameters that improve execution speed and
training time. As a result, step 1 is quite fast. Besides, experiments show that step 2 usually
converges faster, in terms of the number of evaluations, than full GPBO to the reported
minimum, perhaps because the optimal values found during step 1 make step 2 begin close to
an optimum. The results of 5 repetitions (except for random search) of each baseline can be
found in Table 4.4.

Results show that except for Cifar10, TS+GPBO yields very competitive neural networks
while having far fewer parameters and FLOPs. For MNIST, TS+GPBO model has ≈ 66 and 41
times fewer parameters and FLOPs than full GPBO and random search. For Bateman, these

83



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

data set baseline test metric params MFLOPs
MNIST RS 98.82 6,267,103 12,709 (×41)
- full GPBO 98.42 ± 0.05 10,271,367 20,534 (×67)
- TS-GPBO (accuracy + speed) 98.42 ± 0.02 151,306 307 (×1)
Cifar10 RS 81.8 99,444,880 1,832,615 (×11)
- full GPBO 82.73 ± 1.45 71,111,761 1,441,230 (×8)
- TS-GPBO (accuracy) 82.60 ± 0.58 9,604,539 650,269 (×4)
- TS-GPBO (accuracy + speed) 79.34 ± 0.15 9,281,258 178,621 (×1)
Bateman RS 1.99 ×10−4 1,259,140 2,516 (×359)
- full GPBO 2.94 ± 0.42 ×10−4 1,588,215 3,173 (×453)
- TS-GPBO (accuracy + speed) 3.49 ± 0.31 ×10−4 3,291 7 (×1)

Table 4.4: Results of hyperparameter optimization for Random Search (RS), Gaussian Processes
based Bayesian Optimization on full hyperparameters space (full GPBO) and Two-Steps Gaussian
Processes based Bayesian Optimization (TS-GPBO). The mean ± standard deviation across 5
repetitions is displayed for the test metric. For the number of parameters and FLOPs, the maximum
value obtained across repetitions is reported because it illustrates the worst scenario that can happen
for execution speed and how much our method prevents it.

factors are 482 and 380. An oversized initial hyperparameter search space could explain such
a high factor. Still, a reasonable size for the search space cannot be found a priori. Note that
for these cases, we only reported results of TS-GPBO (accuracy + speed) because the results
of this baseline were already satisfying, and TS-GPBO (accuracy) did not bring significant
improvement. For the particular case of Cifar10, TS-GPBO (accuracy) and (accuracy +
speed) both find a model which has 11 and 9 times fewer parameters than random search and
full GPBO. TS-GPBO (accuracy) finds a model with ≈ 3 and 2 fewer FLOPs than random
search and full GPBO while these factors are 10 and 8 for (accuracy + speed). Full GPBO and
TS-GPBO (accuracy) achieve comparable accuracy, but the standard deviation for full GPBO
is 2.5 times higher than for TS-GPBO (accuracy), which demonstrates the robustness of
TS-GPBO (accuracy). Even if execution time is not an explicitly desired output of TS-GPBO
(accuracy), the first step of TS-GPBO, which selects values that improve execution time,
seems to bias the optimization towards more cost-effective models, as the final number of
parameters and FLOPs shows. All these results have been allowed thanks to information
given by HSIC analysis. Hence, TS-GPBO outputs competitive and cost-effective models
but also grants a better knowledge of hyperparameters interaction in these machine learning
problems, as opposed to random search and full GPBO.

84



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.6 Discussion

In this chapter, we have investigated the problem of hyperparameter optimization. Indeed, as
we mentioned earlier, this step of supervised deep learning carries high stakes for numerical
simulation because hyperparameters can have a high impact on both the accuracy and the
cost efficiency of neural networks.

We used sensitivity analysis, an approach that is widely used in numerical and uncertainty
analysis. Finally, we designed a methodology that tackles the performance-accuracy trade-off.
Furthermore, as the experiments show, the obtained methodology is usable for a broad range
of machine learning applications that involve hyperparameters. As a result, in the process of
tuning the neural network hyperparameters to conduct supervised deep learning, we used a
methodology that comes from numerical and uncertainty analysis.

4.6.1 Impact for deep learning

Many techniques have already been introduced to handle hyperparameter optimization,
but they often suffer from a lack of interpretability and interactivity. In this work, we
tackled these problems by proposing an HSIC based goal-oriented global sensitivity analysis
applied to hyperparameter search spaces. We showcased how we can use this information
by improving the stability of training instances and the cost efficiency of trained networks.
We also introduced an interpretable hyperparameter optimization methodology that yields
competitive and cost-effective neural networks based on feature selection.

These findings are of interest to the machine learning community. Though these example
methodologies can be taken as contributions by themselves, they should also be understood
as demonstrations that HSIC based goal-oriented global sensitivity analysis is interesting
and valuable for hyperparameter optimization. In the end, an important outcome of this
work was to make an insightful tool, HSIC, available to the community in the context of
hyperparameter optimization.

4.6.2 Impact for numerical simulations

The impact on numerical simulations straightforwardly stems from the fact that we tackled
the performance-accuracy trade-off of neural networks. Indeed, we obtained lighter networks
without significantly affecting the error, which is the ideal goal when accelerating numerical
simulations.

Finally, the results on hyperparameters’ relative importance presented in this work have
one thing in common. Systematically, the optimizer is at least the second most impactful
hyperparameter. It motivates us to work on the optimization of neural networks in order to
improve the prediction error and legitimates the next chapter.

85



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

4.6.3 Other comments

Other points can be made regarding the presented results and the potential follow-up work.
They can be grouped into the following topics:

Hyperparameters modeling choice. HSIC is a powerful tool that is widely used for
sensitivity analysis as a dependence measure. Its application to hyperparameter optimization
required some work, especially regarding the complex structure of hyperparameter space. To
achieve this goal, we made some modeling choices, such as applying Φxi

to map hyperparameter
xi to a uniform random variable. The good results obtained in Section 4.5 validate not only
the usage of information given by HSIC for hyperparameter analysis but also this modeling
choice.

Automating Two-Step Gaussian Process-based Bayesian Optimization. In this
work, we presented methodologies for exploiting HSIC information that involved human
intervention. Indeed, someone has to actively decide which hyperparameter deserves to be
considered as more or less impactful. Nevertheless, one advantage of HSIC is that it is a
scalar metric. One could construct an HSIC based hyperparameter optimization by setting a
threshold above which hyperparameters are considered impactful. It would lead to an end-to-
end automatic yet interpretable hyperparameter optimization algorithm. Though Spagnol
et al. (2018) use the idea of a threshold, its application to hyperparameter optimization has
not been studied in this thesis and could be part of future works.

Other dependence measures. In this work, we used HSIC as a dependence measure. Our
derivations for its application to hyperparameter analysis still hold for any other dependence
measure sharing the same properties as HSIC, though studies of different dependence measures
is beyond the scope of this chapter.

Global hyperparameter optimization speed up. We presented some ways of using
HSIC in hyperparameter optimization, but this chapter mainly emphasized the possibility of
exploiting it in order to find lighter models. We are aware that execution speed is not always
a goal for machine learning practitioners. Still, machine learning practitioners are always
concerned about training speed. The first step of TS-GPBO (accuracy) demonstrated the
possibility to use HSIC to improve training speed without hurting the final accuracy, so even if
final execution speed is not a goal, TS-GPBO made it interesting to use HSIC for that purpose.
To go further, it would even be possible to apply parallel GPBO like described in Snoek et al.
(2012), or to use Hyperband on the initial random search, since HSIC computation only relies
on the error of the p-% best neural networks.

86



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

Further execution time improvement. One advantage of execution time improvement
obtained thanks to HSIC is that it only relies on choices for the conception of the neural
network. Therefore, additional improvements could be made by applying other techniques
like quantization, weights pruning, or multi-objective hyperparameter optimization.

87



CHAPTER 4. HYPERPARAMETER OPTIMIZATION USING GOAL-ORIENTED SENSITIVITY
ANALYSIS

88



Chapter 5
A view of learning from the Partial Differential
Equation theory

The third of the main steps for supervised learning that we identified in Chapter 2 is the
learning, or training step. As we mentioned earlier, training a neural network is a non-convex
optimization problem. Many techniques are used to tackle this problem, most of which are
first and second-order optimization algorithms.

This chapter explores a theoretical question: what is the link between second-order optimiza-
tion and PDE resolution? To that end, we consider the neural network fθ as the unknown of
a PDE defined on the parameter space Θ, and constructed using the formula of the Newton
algorithm. We show that under some conditions, this equation is a drift-diffusion PDE that
can be solved by averaging the realizations of a stochastic process. This PDE-based setting
provides a learning framework, relying on exploring the parameter space by a stochastic
process, that can benefit from PDE resolution theory.

We derive improvements from this framework and enhance classical stochastic gradient descent
with new terms that speed up the convergence in convex regions of the parameter space on
our experiments. We also use a stability condition from PDE resolution theory that translates
into constraints on the learning rate. It allows efficiently exploring the parameter space while
maintaining the stability of the process without any learning rate tuning. We showcase the
effects of these improvements on a simple two-dimensional optimization problem involving
training a neural network with two neurons. A complementary view of the work of the present
chapter can be found in Poëtte et al. (2021).

89



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

1

co
nt

ri
b.  Analyse of the learning difficulty based  

 on the derivatives of the function to learn
 TBS : A new sampling scheme
 VBSW : A new weighting scheme

Construction of the training set

2

co
nt

ri
b.

 Adaptation of tools from sensitivity analysis
 An interpretable optimization methodology

Hyperparameters search

3

co
nt

ri
b. A PDE based framework for learning

PDESGD : a new optimization algorithm

Training

4 Application

co
nt

ri
b. Reliable and 

efficient hybrid
numerical
simulation codeM

et
ho

do
lo

gy
Methodology for supervised deep learning in numerical simulations and contributions of the thesis

Contents
5.1 The optimization task . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Newton-based algorithms . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.2 Gradient descent-based algorithms . . . . . . . . . . . . . . . . . . 92
5.1.3 PDE based optimization . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Stochastic resolution of Partial Differential Equations . . . . . . . 93
5.2.1 A link between optimization and resolution of PDE . . . . . . . . 94
5.2.2 Background on stochastic resolution of PDE . . . . . . . . . . . . . 94

5.3 Learning task formulated as a stochastic PDE . . . . . . . . . . . . 96
5.3.1 The optimization step as a drift-diffusion equation . . . . . . . . . 96
5.3.2 Learning by simulating a stochastic process . . . . . . . . . . . . . 99

5.4 A PDE-consistent Stochastic Gradient Descent . . . . . . . . . . . 102
5.4.1 SGD as a stochastic process simulation . . . . . . . . . . . . . . . 103
5.4.2 A PDE based SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.3 Toy experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.4 Unbiasing PDESGD and experiments on real-world datasets . . . . 116

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

90



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

5.5.2 Interplay between numerical analysis and machine learning . . . . 121

5.1 The optimization task

As it has been mentioned in the previous chapters, the learning of a function f : Rpin → Rpout

by a neural network fθ consists in minimizing a loss function J(θ) with respect to θ ∈ Θ, the
parameters of the neural network. Recall that the loss function J(θ) is defined by:

J(θ) = E[L(f(x,θ), f(x))] =
∫

L(f(x,θ), f(x))dPx =

∫
L(x,θ)dPx,

where Px denotes the probability distribution of the data and L : Rpout × Rpout → R denotes
a loss function (for instance, the L2 error). We write L(x,θ) = L(f(x), f(x,θ)), and
fθ(x) = f(x,θ) for conciseness. Hence, learning is an optimization task where the goal is to
look for θ that cancels the gradient

∇θJ(θ) =

∫
L′(x,θ)∇θf(x,θ)dPx,

where we note L′ : x, y → ∇yL(x, y).

5.1.1 Newton-based algorithms

To cancel the gradient, Newton algorithm uses H(J)(θ) = ∇2
θJ(θ) to iteratively update θ.

The update formula is given by

θk+1 = θk −H(J)(θk)−1∇θJ(θ
k).

This algorithm belongs to a category of methods referred to as second-order optimization
methods. Note that most of these methods are derived from the Newton algorithm. However,
they are not common in deep learning because the optimization problem is non-convex, and
computing the inverse of the Hessian H(J)(θk)−1 is a challenging task. Indeed, in a non-
convex setting, nothing ensures that H(J)(θk)−1 is positive definite hence the optimization
may go upward. Moreover, explicit computation of the inverse of the Hessian suffers from a
O(Card(θ)3) complexity, which is unaffordable for modern neural networks.

The algorithms used in machine learning all alleviate the problem of the Hessian by avoiding
its exact computation. Inexact Newton methods compute an approximation of the Hessian,

91



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

which is inexact but still brings some computational advantages. For instance, rather
than computing H(J)(θk)−1, Conjugate Gradient Newton (Golub and Van Loan, 2013)
performs a few iterations of the resolution of the system H(J)(θk)s = ∇θJ(θ

k) of unknown
s. Subsampled Newton methods (Byrd et al., 2011) approximate the Hessian with fewer
samples, limiting the computational overhead. The default of these algorithms is that they do
not naturally deal with non-convexity because they are only designed for convex optimization
problems. Some methods are designed to solve this problem (Conn et al., 2000), but none
has been established as a gold standard.

Stochastic quasi-Newton methods like L-BFGS (Nocedal and Wright, 1999) or Gauss-Newton
methods (Schraudolph, 2002) tackle both problems at the same time by computing an
approximation of the Hessian that is ensured to be symmetric positive definite. Finally, some
methods only rescale the gradient, which is equivalent to approximating the diagonal of
the Hessian. Becker and Cun (1989) compute the diagonal of the Hessian estimated with
Gauss-Newton method, while RMSprop (Tieleman et al., 2012) ensures equal optimization
progress along each dimension. Empirical improvement on RMSprop, like Adagrad, Adadelta,
and Adam (Duchi et al., 2011; Zeiler, 2012; Kingma and Ba, 2015) are very popular in deep
learning.

5.1.2 Gradient descent-based algorithms

The most popular algorithms for optimization in deep learning are gradient descent algorithms.
The idea is to iteratively update θ along the direction defined by ∇θJ(θ) to hopefully reduce
J(θ) at each step. The formula for the update of θ is

θk+1 = θk − γ∇θJ(θ
k),

where γ > 0 is a hyperparameter called the learning rate, which can be seen as a step size.
This simple algorithm is the basis of a very furnished research area that encompasses all
first-order optimization methods for deep learning.

Notice that the gradient descent can be seen as a Newton algorithm that alleviates the
problems regarding the computation of H(J)(θ) by assuming that H(J)(θ)−1 = γICard(θ).
Besides, RMSprop, Adam, Adadelta, and Adagrad are often considered first-order optimization
algorithms because they only involve a rescaling of the gradient, and the rescaling does not
explicitly come from an approximation of the Hessian. Stochastic Gradient Descent (SGD,
Robbins and Monro (1951)), the stochastic counterpart of gradient descent, is still very
popular in its simplest form for optimization in deep learning. Indeed, it is computationally
efficient and naturally alleviates the problem of non-convexity because γ > 0. In addition, its
stochastic nature may avoid the process of getting stuck on saddle points in the optimization
landscape.

Some methods still aim at improving SGD. They do so by applying momentum to the

92



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

optimization trajectory, thereby helping the algorithm escape local minima and accelerating
the convergence. Among the most famous algorithms, we can cite heavy ball (Polyak, 1964),
which simulates the dynamics of a particle moving in the parameter space and subject to
Newton’s laws of motion. Another technique is to add Nesterov’s momentum (Nesterov, 1983),
which ensures the best convergence rate achievable with first-order methods when J is convex
and has Lipschitz continuous gradients.

5.1.3 PDE based optimization

Some works intend to cast the optimization at play in machine learning into PDE frameworks.
The first inspiration of heavy-ball, as well as the first analysis of its convergence in (Polyak,
1964), was based on second-order ODE analysis. Yang et al. (2018) revisit this approach and
introduce a more general framework that encompasses more diverse techniques such as SGD,
Newton’s methods, and their variants accelerated by Nesterov’s momentum. This framework
enables a more thorough analysis of these algorithms but only aims at gaining insights on
their behavior and is not designed to improve them.

Some works model the successive iterations of SGD as a stochastic process that solves a
diffusion PDE. Mobahi (2016) introduces an algorithm that brings many advantages stemming
from the analogy with PDE resolution. For instance, the process explicitly adds stochasticity,
and the framework dynamically controls the learning rate. Gelfand and Mitter (1991) introduce
Langevin SGD, which explicitly adds noise to the SGD to help it escape from local minima.
This algorithm was later analyzed by Raginsky et al. (2017), which draws a parallel between
Langevin SGD and a continuous-time diffusion process.

However, none of these works exploits the unique structure of the learning problem based
on the composition of L and fθ. In our work, we take this specificity into account, similarly
to the Levenberg-Marquardt algorithm (Marquardt, 1963) for least-squares problems. In
addition, we use our framework to derive a new optimization algorithm, which empirically
exhibits original stability and accuracy properties.

5.2 Stochastic resolution of Partial Differential Equa-
tions

In this section, we point out the link that can be made between optimization and resolution
of PDEs. These derivations assume that pout = 1, which still spans a large range of machine
learning problems. Then, we remind some tools of PDE resolution theory that are needed to
exploit this link.

93



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

5.2.1 A link between optimization and resolution of PDE

The update formula of Newton algorithm can be reformulated as :

∇θJ(θ) +H(J)(θ)(θ∗ − θ) = 0,

where θ is the current weights values and θ∗ is the updated value that we are looking for.
This formulation can be written based on f and L :

0 =

∫
L′(x,θ)∇θf(x,θ)dPx

+

∫ [
L′(x,θ)∇2

θf(x,θ) + L′′(x,θ)∇θf(x,θ)∇T
θ f(x,θ)

]
(θ∗ − θ)dPx.

(5.1)

equation (5.1) can be seen as a Partial Differential Equation (PDE), of unknowns θ∗ and
θ → f(x,θ), describing the update process of θ. Note that this PDE system is unclosed
because we only have one equation for two unknowns. This formulation still emphasizes
the previously described dimension problems stemming from the computation of ∇2

θf(x,θ).
However, it enables us to use tools from numerical analysis to try to overcome this problem.
In the following, we focus on Monte Carlo (MC) resolution of PDEs, which is particularly
suited to high-dimension problems.

5.2.2 Background on stochastic resolution of PDE

In order to explicitly bridge the gap between learning and stochastic resolution of PDE, we
need to introduce some theoretical tools. The formulations and notations are taken from
Oksendal (1992); Stroock and Varadhan (1997).

Definition (Ito process). Let t,x ∈ R+ × Rn → µ(t,x) ∈ Rn, t,x ∈ R+ × Rn → Σ(t,x) ∈
Rn×m and dBt be an m dimensional Brownian process. Then, the process X t defined by

dX t = µ(t,X t)dt+Σ(t,X t)dBt, (5.2)

is an Ito process.

Lemma 2 (Ito Formula). Assume X t is an n dimensional Ito process. Let t,x ∈ R+ ×Rn →
g(t,x) = (g1(t,x), ..., gp(t,x))

T ∈ Rp with g being in C2. Then Y t = g(t,X t) is a p dimensional
Ito process and verifies ∀k ∈ {0, ..., p}

dY t
k = ∂tgk(t,X

t)dt+
n∑

i=1

∂xi
gk(t,X

t)dX t
i +

1

2

n∑
i,j=1

∂2
xi,xj

gk(t,X
t)dX t

idX
t
j .

94



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

Lemma 3 (Ito lemma). Let X t be an Ito process following equation (5.2), with t,x ∈
R+ × Rn → µ(t,x) ∈ Rn and t,x ∈ R+ × Rn → Σ(t,x) ∈ Rn×m. Let t,x ∈ R+ × Rn →
g(t,x) = (g1(t,x), ..., gp(t,x))

T ∈ Rp with g being in C2 and Y t = g(t,X t). Then we have
∀k ∈ {1, ..., p}

dY t
k =

[
∂tgk(t,X

t)dt+
n∑

i=1

∂xi
gk(t,X

t)µi(t,X
t) +

1

2

n∑
i,j=1

∂2
xi,xj

gk(t,X
t)[Σ(t,X t)ΣT (t,X t)]i,j

]
dt

+
n∑

i=1

∂xi
gk(t,X

t)
m∑
j=1

Σi,j(t,X
t)dBt,

(5.3)
where [Σ(t,X t)ΣT (t,X t)]i,j =

∑m
k=1Σi,k(t,X

t)Σj,k(t,X
t). The previous equation (5.3) can

be formulated in a matrix form, for conciseness :

dY t =

[
∂tg(t,X

t)dt+∇xg(t,X
t)µ(t,X t) +

1

2
Tr[Σ(t,X t)T∇2

xg(t,X
t)Σ(t,X t)]

]
dt

+∇xg(t,X
t)Σ(t,X t)dBt

j.

(5.4)

In the previous definitions and lemma, we have introduced X t, an Ito process, and Y t =
g(t,X t). In order to tackle the learning problem defined in equation (5.1), we are going
to construct θ as an Ito process and f as a process constructed on θ, with appropriate
assumptions on µ and Σ. One last tool is needed to work on bridging the simulation of such
a process with our PDE resolution.

Theorem 1 (Kolmogorov backward equation). Let f 0 be in C2 and let X t be an Ito process
as in equation (5.2) with initial condition X0 = s. Kolmogorov’s theorem states that fs(t, s)
defined as fs(t, s) = EXt [f 0(x)] is solution of

∂tfs(t, s) +
n∑

i=1

∂sifs(t, s)µi(t, s) +
1

2

n∑
i,j=1

∂2
si,sj

fs(t, s)[Σ(t, s)ΣT (t, s)]i,j = 0,

fs(0, s) = f 0(s).

(5.5)

The terms µ(t, s) and [Σ(t, s)ΣT (t, s)] are the drift term and diffusion coefficients. This
theorem states that we can solve a drift-diffusion equation by averaging realizations of a
stochastic process, f 0(X t), which we can simulate based on an Ito process, Xt, thanks to Ito’s
lemma. At this point, we have introduced all the mathematical tools needed to bridge the
gap between the learning task and stochastic resolution of PDEs. Yet, we are still far from
this goal. The next section establishes this link.

95



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

5.3 Learning task formulated as a stochastic PDE

Using the tools previously described in the context of learning requires linking equation (5.1)
to equation (5.5) - as of now, those two equations may still seem very different. Indeed, the
former is not formulated as a drift-diffusion equation, is stationary, and still depends on x,
unlike the latter. In a first section, we formulate equation (5.1) as a drift-diffusion PDE and
close the gap with equation (5.5). Then, we introduce discretization methods to solve this
equation.

5.3.1 The optimization step as a drift-diffusion equation

In this section, we emphasize the link between the PDE formulation of the optimization step
introduced in equation (5.1) and a drift-diffusion PDE that can be solved stochastically using
Ito processes and Kolmogorov’s equation. To that end, we have to get equation (5.1) as close
as possible to equation (5.5).

There is a first link which can be established immediately. The variable s echoes θ so the
function fs echoes f and since they live in Rpout and Rp, p echoes pout. Moreover, n echoes
Card(θ). In the following, we denote pout by p and Card(θ) by n.

The second link is less straightforward but can still be established quite easily. It alleviates the
fact that equation (5.1) is vectorial while equation (5.5) is not. Let us introduce an arbitrary
vector α ∈ Rn. Then, equation (5.1) is equivalent to

0 =

∫
L′(x,θ)αT∇θf(x,θ)dPx

+

∫
αT
[
L′(x,θ)∇2

θf(x,θ) + L′′(x,θ)∇θf(x,θ)∇T
θ f(x,θ)

]
(θ∗ − θ)dPx,

∀α ∈ Rn.

(5.6)

This equivalency is ensured only if equation (5.6) is solved ∀α ∈ Rn or for α being the
components of a basis of Rn. To make it even more look like equation (5.5), we can
reformulate equation (5.6) to group the derivatives of f of the same order. Then, we have

0 =
n∑

i=1

∫
∂θifk(x,θ

t)αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjfk(x,θ
t)(θ∗j − θtj)

]
dPx

+
1

2

n∑
i,j=1

∫
∂2
θi,θj

fk(x,θ
t)2αiL

′(x,θt)(θ∗j − θtj)dPx,

∀α ∈ Rn, k ∈ {1, ..., p}.

96



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

The other problems we still have to deal with are more difficult and deserve their own section.
These problems are :

• Equation (5.5) is unstationary, i.e. there is a dependance in time and an additional
time dependent term, ∂tfs(t, s), whereas equation (5.6) is stationary.

• Equation (5.6) is integrated on dPx, while x is not explicitly found in equation (5.5).

To focus on these problems, from now on, we assume for clarity and without loss of generality
that pout = p = 1. Hence, fk becomes f in the following equations.

5.3.1.1 From stationary to unstationary processes

As we just saw, in equation (5.6), fs echoes f but fs depends on t, unlike f . Let us consider
the following unstationary equation

0 =∂t

∫
f(x,θt)dPx

+
n∑

i=1

∫
∂θif(x,θ

t)αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

]
dPx

+
1

2

n∑
i,j=1

∫
∂2
θi,θj

f(x,θt)2αiL
′(x,θt)(θ∗j − θtj)dPx,

∀α ∈ Rn, k ∈ {1, ..., p}.

(5.7)

This equation must be solved ∀t ∈ [0, T ] and ∀θ ∈ Θ. We consider the case with T < ∞
and |Θ| ≤ ∞, where equation (5.7) together with an initial condition f 0(θ) = f(x,θ0) is a
Cauchy problem. In that case, the problem is well posed (Brezis, 2010).

However, introducing nonstationarity implies changing the initial approach. Indeed, equa-
tion (5.1) describes one step of a Newton algorithm, so solving this PDE returns θ∗, the next
update value for θ. Here, we simulate a nonstationary process that satisfies equation (5.7).
Thus, θ∗ − θ can be seen as a parameter shift. We still have to model this shift, which will
be discussed later, but it is important to note that the simulated process now explores the
parameter space as much as it optimizes J(θ).

Now, since f depends on t through θt, J(θt) also does, and the optimal θt∗ is obtained by
monitoring J(θt) (or any reference metric, like for instance the validation error) throughout
the simulation. In other words, in that case,

θ∗ = θt∗ with t∗ = argmin
t∈[0,T ]

J(θt).

97



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

Remark. This methodology is similar to many simulation codes, especially in computational
physics (e.g. Kluth and Després (2010); Maire et al. (2007a)). We are often interested in
a metric based upon the simulated phenomenon. For instance, in solid mechanics, we may
monitor the main stress of material under simulated constraints. Recording the maximum
stress (which would be analogous to J(θt∗)) allows assessing if the material would break or
not under these constraints.

5.3.1.2 The dependence with respect to x

First of all, note that solving equation (5.7) is equivalent to solving ∀x,x ∼ dPx,



0 = ∂tf(x,θ
t)

+
n∑

i=1

∂θif(x,θ
t)αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

]

+
1

2

n∑
i,j=1

∂2
θi,θj

f(x,θt)2αiL
′(x,θt)(θ∗j − θtj).

f(x,θ0) = f 0(θ), θ ∈ Θ, t ∈ [0, T ], x ∼ dPx.

together with the evaluation of the error metric.

(5.8)

This equation is very similar to equation (5.7). The only difference is that it has to be solved
∀x ∼ dPx. Equation (5.8) is a typical formulation of an uncertainty quantification problem,
and many methods related to this research field are able to handle it, see Carrillo and Zanella
(2019); Pareschi (2020); Poëtte (2020, 2019a,b); Le Maitre et al. (2002). However, to stick
with the context of learning, we have to go further.

Let us decompose f(x,θt) into

f(x,θt) = f̄(θt) + f̂(x,θt),

where

f̄(θt) =

∫
f(x,θ)dPx and f̂(x,θt) = f(x,θt)− f̄(θt).

The function f̄ is the mean of f over dPx and f̂ is a centered fluctuation. This kind of
decomposition is intensively used in turbulence modeling, see Majda (1984). We then have to
solve

98



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY



0 = ∂tf̄(x,θ
t)

+
n∑

i=1

∂θi f̄(x,θ
t)

∫
αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

]
dPx

+
1

2

n∑
i,j=1

∂2
θi,θj

f̄(x,θt)2

∫
αiL

′(x,θt)(θ∗j − θtj)dPx

+
n∑

i=1

∫
∂θi f̂(x,θ

t)αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

]
dPx

+
1

2

n∑
i,j=1

∫
∂2
θi,θj

f̂(x,θt)2αiL
′(x,θt)(θ∗j − θtj)dPx,

f(x,θ0) = f 0(θ), θ ∈ Θ, t ∈ [0, T ], x ∼ dPx.

(5.9)

The above PDE is not closed in the sense that we have one equation but two unknowns f̄
and f̂ . One way to solve it is to choose a heuristic to add a second equation to the system.
In order to close the gap between equation (5.9) and equation (5.5), the most straightforward
hypothesis to make is that f̂ is negligible in the resolution of equation (5.9). It adds a second
equation which is f̂ ≡ 0, and yields the following PDE system :



0 = ∂tf̄(θ
t)

+
n∑

i=1

∂θi f̄(θ
t)

∫
αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

]
dPx

+
1

2

n∑
i,j=1

∂2
θi,θj

f̄(θt)2αi

∫
L′(x,θt)(θ∗j − θtj)dPx,

f(x,θ0) = f 0(θ), θ ∈ Θ, t ∈ [0, T ], x ∼ dPx.

(5.10)

Then, it is possible to solve equation (5.10) by identifying it with equation (5.5) and simulating
the corresponding Itô process.

5.3.2 Learning by simulating a stochastic process

In the previous part, we have constructed a formalization of the learning problem that
enables its resolution using equation (5.5), namely the Kolmogorov backward equation. Still,
equation (5.10) can not be solved as such. We need to choose µ and Σ to match equation (5.5).
This implies to choose values for α and θ∗ − θt. Moreover, the definition of θt and of Px is
continuous, and since equation (5.10) can not be solved analytically, we have to focus on their
discretization.

99



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

5.3.2.1 Identification of the drift and diffusion coefficients

In equation (5.10), the drift term µ can be easily identified. We have :

µi(θ
t) =

∫
αi

(
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

)
dPx.

However, identifying the diffusion coefficients, Σ is not so straightforward because it implies
to find Σ(θt) such that :

[
Σ(θt)ΣT (t,θt)

]
i,j

= 2

∫
αiL

′(x,θt)(θ∗j − θtj)dPx. (5.11)

Lemma 4. A decomposition as in equation (5.11) always exists.

Proof. Let us first remark that the matrix Σ(θt)ΣT (t,θt) is symmetric by construction.
Hence, we must have ∀i, j ∈ Rn,

[
Σ(θt)ΣT (t,θt)

]
i,j

=
[
Σ(θt)ΣT (t,θt)

]
j,i
. (5.12)

We can always satisfy this constraint by taking ∀i, j ∈ {1, ..., n}2,

αi(θ
∗
j − θtj) = αj(θ

∗
i − θti).

This property is verified if we choose αi = 0 or θ∗i − θti = 0, ∀i ∈ {1, ..., n} but the former is
trivial and the latter removes the stochasticity from the problem, which is not desirable. The
only other possibility is that α ∝ θ∗ − θt. In that case, it is possible to choose

• θ∗ − θt =
∫
L′(x,θt)1ndPx

• α = 1n,

where 1n = (1, ..., 1)T ∈ Rn, which allows defining :

Σ(θt) =
2√
n

∣∣∣∣∫ L′(x,θt)dPx

∣∣∣∣1n1n
T . (5.13)

100



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

Note that there may be other possible decomposition that satisfy equation (5.12) (see Section
5.4.1 for another example). Every possible decomposition choice could be seen as a different
heuristic to solve the minimization problem. However, in practice, since Σ(θt) is in factor of
g, it is not mandatory to perform the decomposition since one can simply directly sample
from N (0,Σ(θt)ΣT (t,θt)).

In the following, we assume the existence of Σ(θt) since we can always at least choose a
decomposition like in equation (5.13). Moreover, we denote Σ(θt) by

∫
Σ(x,θt,α,θ∗−θt)dPX

to account for the possible choices of α and θ∗ − θt and their impact on the integration with
respect to x. Indeed, they can be chosen such that they depend on x and θt. Nonetheless,
we do not include these dependencies in the notations for clarity and because they are not
mandatory.

5.3.2.2 Discretization schemes

Equation (5.10) still can not be solved as such because θt is defined as a continuous Itô
process, and Px is a continuous probability distribution. In practice, equation (5.10) can not
be solved analytically, and θt has to be simulated numerically. Moreover, we only have access
to a finite set of samples of Px, which is the training data set.

Discretization of θt : Thanks to Kolmogorov’s backward equation, we can solve equa-
tion (5.10) by averaging the stochastic process

θt = θ0 +

∫ ∫ t

0

[
αL′(x,θs) + L′′(x,θs)α∇T

θ f(x,θ
s)(θ∗ − θs)

]
dPxds

+

∫ ∫ t

0

Σ(x,θs,α,θ∗ − θs)dPxdB
s,

with Bs a m dimensional Brownian motion. Many discretization schemes can be used in
order to simulate this stochastic process. In this work, for simplicity, we consider an explicit
Euler discretization scheme over time step [tk, tk+1 = tk +∆t]. The process θt can then be
simulated using the expression

θk+1 = θk +∆t

∫ [
αL′(x,θk) + L′′(x,θk)α∇T

θ f(x,θ
k)(θ∗ − θk)

]
dPx

+
√
∆t

[∫
Σ(x,θk,α,θ∗ − θk)dPx

]
g,

(5.14)

with g = (g1, ..., gm) and gi ∼ N (0, 1) independent and identically distributed.

Remark. Equation (5.14) implies to choose a discretization time step ∆t. This hyperparameter
is analogous to the learning rate γ, which can be seen as a time step on the optimization

101



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

trajectory of gradient descent.

Discretization of Px : The discretization of Px is ubiquitous in machine learning since,
most of the time, we only have access to {x1, ...,xN}, a set of samples from this distribution.
In such cases, the solution is to use Monte Carlo integration. Hence, equation (5.14) becomes

θk+1 = θk +
∆t

N

N∑
i=1

[
αL′(xi,θ

k) + L′′(xi,θ
k)α∇T

θ f(xi,θ
k)(θ∗ − θk)

]
+

√
∆t

N

[
N∑
i=1

Σ(xi,θ
k,α,θ∗ − θk)

]
g.

(5.15)

Remark. In equation (5.15), we need to compute ∇T
θ f(xi,θ

k) in order to obtain θk+1. The
PDE formulation of the problem does not alleviate the need to use the gradient back-propagation
algorithm.

Now, thanks to equation (5.15), we have a general, PDE-based framework for optimizing θ
in order to minimize any test error based on fθ. All that is left is to simulate θt and assess
our test metric of interest at any iteration. For suitable choices of α, θ∗ − θ and in the
regime where f̂ ≡ 0, Kolmogorov backward equation guarantees that this process solves our
minimization problem. It naturally raises the question of whether the assumption f̂ ≡ 0,
and the possibility to choose α, θ∗ − θ are reasonable or not. The following sections tend to
comfort these assumptions. Indeed, we show that SGD, well known for its empirical success,
falls under our PDE framework. Moreover, we design a new and promising optimization
algorithm using specific choices of α and θ∗ − θ.

5.4 A PDE-consistent Stochastic Gradient Descent

The PDE-based framework for learning based on the simulation of θt as a stochastic process
leaves the possibility to choose α and θ∗−θt. As we mentioned earlier, different choices would
possibly lead to other heuristics and different algorithms. That said, we could investigate to
what extent already existing optimization algorithms used in Deep Learning fall under this
framework. As a first step towards a complete answer to this broad question, we focus on the
most commonly used one: Stochastic Gradient Descent (SGD). We first emphasize how SGD
is related to our PDE framework. Then, thanks to well-known properties from PDE resolution
theory, we introduce a new ”PDE-consistent” SGD that we test on a simple example. This
algorithm is an illustration of how learning may benefit from numerical analysis.

102



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

5.4.1 SGD as a stochastic process simulation

To emphasize the link between SGD and the PDE framework, let us first come back to the
definition of Gradient Descent (GD). Recall that, in its more general form, one iteration of
GD can be written

θk+1 = θk − γ∇θJ(θ
k),

with
∇θJ(θ) =

∫
L′(x,θ)∇θf(x,θ)dPx.

The gradient ∇θJ(θ) is estimated using a training data set {x1, ...,xN} of N samples drawn
from Px. Hence, one iteration of GD follows the expression

θk+1 = θk − γ

N

N∑
i=1

L′(xi,θ)∇θf(xi,θ
k) = θk − γ

∫
L′(x,θ)∇θf(x,θ

k)dPN
x ,

where dPN
x = 1

N

∑N
i=1 δ(xi − x) where δ is the Dirac measure. In practice, in deep learning,

SGD is almost always used instead of GD. SGD consists in randomly selecting a subset
{xp(1), ...,xp(Nb)} of the training data set {x1, ...,xN}, with Nb < N a hyperparameter called
batch size and g : {1, ..., Nb} → {1, ..., N} an injective application randomly defined at each
batch construction. Then, the update formula is given by

θk+1 = θk − γ

Nb

Nb∑
i=1

L′(xg(i),θ)∇θf(xg(i),θ
k).

Remark. This preference can be justified by different reasons. First, when the training data
set is too large, estimating the gradient with the whole data set may be too expensive in terms
of hardware memory consumption. Moreover, some empirical results show that with a reduced
batch size (Keskar et al., 2017; Izmailov et al., 2018a), the obtained neural networks generalize
better, although it is still very discussed (Hoffer et al., 2017; He et al., 2019). Finally, inducing
stochasticity may help to escape from saddle points and local minima.

Due to the statistical properties of Monte Carlo estimator,

1

Nb

Nb∑
i=1

L′(xp(i),θ)∇θf(xp(i),θ
k) =

∫
L′(x,θ)∇θf(x,θ

k)dPN
x +O

( 1√
Nb

)
.

=
1

N

N∑
i=1

L′(xi,θ)∇θf(xi,θ
k) +O

( 1√
Nb

)
103



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

Furthermore, asymptotically (when Nb and N grow), thanks to the central limit theorem,

1

Nb

Nb∑
i=1

L′(xp(i),θ)∇θf(xp(i),θ
k) =

∫
L′(x,θ)∇θf(x,θ

k)dPN
x +

Λ(θk)√
Nb

g,

=
1

N

N∑
i=1

L′(xi,θ)∇θf(xi,θ
k) +

Λ(θk)√
Nb

g

where g ∼ N (0, In) and Λ(θk) is defined such that

[ΛΛT ](θk) =

∫ (
L′(x,θ)

)2∇θf(x,θ
k)∇T

θkf(x,θ
k)dPN

x

−

[∫
L′(x,θ)∇θf(x,θ

k)dPN
x

][∫
L′(x,θ)∇T

θkf(x,θ
k)dPN

x

]
,

=
1

N

N∑
i=1

(
L′(xi,θ)

)2∇θf(xi,θ
k)∇θf(xi,θ

k)T

− 1

N2

N∑
p,q=1

L′(xp,θ)∇θf(xp,θ
k)L′(xq,θ)∇T

θkf(xq,θ
k),

where the matrix [ΛkΛkT ] ∈ Rn×n is the covariance matrix of Λkg. Consequently, for one
SGD iteration, we asymptotically have

θk+1 = θk−1 − γ

N

N∑
i=1

L′(xi,θ)∇θf(xi,θ
k) +

γ√
Nb

Λkg. (5.16)

Remark. In the previous derivations, we considered that the set {xg(1), ...,xg(Nb)} was sampled
from {x1, ...,xNb

} with replacements. However, most of the time, {xg(1), ...,xg(Nb)} is sampled
without replacement, so K = N/Nb iterations are performed following equation (5.16). These
K iterations are called an epoch. In fact, there are two loops in SGD. In the first, one
iteration is one epoch during which all the points in the data set are used. The second loop
consists of K updates of θ and is nested in one epoch. In this section, we chose not to
formalize the epochs since it would make the notations heavier without affecting the analysis.

Equation (5.16) emphasizes that the optimization trajectory of θ in SGD can be seen as a
realization of a stochastic process. This observation naturally raises the question of how SGD
integrates into our PDE framework. The answer relies on modeling choices for L, α and
θ∗ − θ when comparing equation (5.16) with equation (5.15).

104



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

Reminder: The PDE framework for learning

In the PDE framework, learning consists of simulating the stochastic process

θk+1 = θk +
∆t

N

N∑
i=1

[
αL′(xi,θ

k) + L′′(xi,θ
k)α∇T

θ f(xi,θ
k)(θ∗ − θk)

]
+

√
∆t

N

[
N∑
i=1

Σ(xi,θ
k,α,θ∗ − θk)

]
g.

It asymptotically solves the PDE

0 = ∂tf̄(θ
t)

+
n∑

i=1

∂θi f̄(θ
t)

∫
αi

[
L′(x,θt) + L′′(x,θt)

n∑
j=1

∂θjf(x,θ
t)(θ∗j − θtj)

]
dPx

+
1

2

n∑
i,j=1

∂2
θi,θj

f̄(θt)2αi

∫
L′(x,θt)(θ∗j − θtj)dPx,

f(x,θ0) = f 0(θ), θ ∈ Θ, t ∈ [0, T ], x ∼ dPx,

which matches the PDE formulation of learning described in equation (5.6) if f̂ ≡ 0 and
for a given α. The expression of the drift term and the diffusion coefficients that are to
be identified are:

• The drift term: µ(θ) =
∫
α
(
L′(xi,θ) + L′′(xi,θ)∇T

θ f(x,θ)(θ
∗ − θ)

)
dPx,

• The diffusion coefficients:
[
ΣΣT

]
i,j
(θ) = 2

∫
αiL

′(x,θ)(θ∗j − θj)dPx.

For readability, we provide a reminder in 5.4.1 to emphasize the importance of choosing L, α
and θ∗ − θ. Let us choose α = −∇θf(x,θ

k). We retrieve the first term of µ, the drift term.
Then, the second term in the drift becomes

αiL
′′(x,θt)∂θjf(x,θ

t)(θ∗j − θtj) =
1

N

N∑
i=1

L′′(xi,θ
k)∇θf(xi,θ

k)∇T
θ f(x,θ)(θ

∗ − θk). (5.17)

In order to identify equation (5.16) with equation (5.15), we have to make sure that this term
is negligible. This happens if either θ∗ − θ = 0 - but it would cancel the diffusion coefficients
thereby forbidding stochasticity - or if L′′ = 0. We then have to choose the second solution
and set L′′ = 0, which implies that L′ is a smooth L1 norm.

Let us now focus on the diffusion coefficients. Considering the previous choices, we have to
ensure that

105



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

2

∫
L′(x,θk)∂θif(x,θ

k)(θ∗j − θkj )dPx =γ2

∫ (
L′(x,θ)

)2
∂θif(x,θ

k)∂θjf(x,θ
k)TdPx

− γ2

∫ ∫
L′(x,θ)∂θif(x,θ

k)L′(x′,θ)∂θjf(x
′,θk)dPxdPx′ ,

where x′ follows the same distribution of x. This condition holds if we choose:

θ∗ − θk =
γ2

2
L′(x,θk)∇T

θ f(x,θ
k)− γ2

2

∫
L′(x,θk)∇T

θ f(x,θ
k)dPx.

By making hypotheses on α, L, and θ∗ − θ, we managed to recast SGD as a special case of
our PDE framework.

5.4.2 A PDE based SGD

Considering SGD under the previously described PDE framework implies modeling choices
that may not be reasonable. In this part, we construct a modified version of SGD, which we
call PDESGD, which enjoys benefits from the PDE framework.

5.4.2.1 Alleviating constraints on the stochastic process

In the previous section, we demonstrated that under some hypothesis made on α, L and
θ∗ − θ, the process θk simulated with SGD solves the PDE equation (5.10). However, these
hypothesis hold under constraints on L and f̂ . These constraints are :

• f̂ ∼ 0,

• L′′ ∼ 0.

For machine learning problems where L′′ ∼ 0, e.g. when the loss function is a smooth L1

error, SGD is known to yield satisfying results (this loss function is implemented in all deep
learning libraries). Hence, in this work, we assume that the constraint f̂ ∼ 0 is reasonable
(this point is thoroughly discussed in Poëtte et al. (2021)). However, the constraint L′′ ∼ 0
is not respected in many machine learning problems. It is the case, for instance, when L
is chosen as the mean squared error or the binary cross-entropy. In this section, we make
different choices for α and θ∗ − θ that alleviate this constraint, resulting in a new update
formula that is slightly modified compared to that of the classical SGD.

Let us choose

106



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

α =−∇θf(x,θ
k),

θ∗ − θ =
λ

2
L′(x,θk)∇T

θ f(x,θ
k)− λ

2

∫
L′(xi,θ

k)∇T
θ f(x,θ

k)dPx,

µ(θt) =−
∫ [

L′(x,θk)∇θf(x,θ
k) +

λ

2
L′′(x,θk)L′(x,θt)∇θf(x,θ

k)∇T
θ f(x,θ

k)∇θf(x,θ
k)

− λ

2
L′′(x,θk)∇θf(x,θ

k)∇T
θ f(x,θ

k)

∫
L′(x′,θt)∇θf(x

′,θk)dPx′

]
dPx,

Σ(θt) =
1√
Nb

Λ(θt),

where Λ(θt) is given by

[ΛΛT ](θt) =
λ

N

N∑
i=1

(
L′(xi,θ)

)2∇θf(xi,θ
k)∇θf(xi,θ

k)T

− λ

N2

N∑
p,q=1

L′(xp,θ)∇θf(xp,θ
k)L′(xq,θ)∇T

θkf(xq,θ
k),

(5.18)

and λ ∈ [0, 1] is a parameter whose value is fixed to 1 for now. These choices are similar to
those of SGD, except that we did not suppose that L′′ ∼ 0. Moreover, in our case, the noise
is explicitly included in the update, as opposed to SGD, where the noise comes from sampling
batches. The noise can be controlled by simulating an arbitrary batch size of Nb, even if the
gradient is estimated with N > Nb points.

The iteration formula then becomes

θk+1 = θk − ∆t

N

N∑
i=1

[
L′(xi,θ

k)∇θf(xi,θ
k)

+
λ

2
L′′(xi,θ

k)L′(xi,θ
t)∇θf(xi,θ

k)∇T
θ f(xi,θ

k)∇θf(xi,θ
k)

− λ

2N
L′′(xi,θ

k)∇θf(xi,θ
k)∇T

θ f(xi,θ
k)

N∑
j=1

L′(xj,θ
t)∇θf(xj,θ

k)
]

+

√
∆t

Nb

Λ(θt)g.

(5.19)

Note that we do not have to find an explicit expression of Λ(θt) in order to simulate this
process. It is enough sampling from a centered multivariate Gaussian random variable
of dimension n, and of covariance matrix [ΛΛT ](θt), which can be estimated. Averaging
realizations of this stochastic process statistically solves the PDE system :

107



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY



0 = ∂tf̄(θ
t)

−
n∑

i=1

∂θi f̄(θ
t)

∫ [
L′(x,θk)∇θf(x,θ

k)

+
λ

2
L′′(x,θk)L′(x,θt)∇θf(x,θ

k)∇T
θ f(x,θ

k)∇θf(x,θ
k)

− λ

2
L′′(x,θk)∇θf(x,θ

k)∇T
θ f(x,θ

k)

∫
L′(x′,θt)∇θf(x

′,θk)dPx′

]
dPx

+
1

Nb

n∑
i,j=1

∂2
θi,θj

f̄(θt)[ΛΛT ]i,j(θ
t),

f(x,θ0) = f 0(θ), θ ∈ Θ, t ∈ [0, T ], x ∼ dPx.

(5.20)

With these choices, averaging realizations of the process described in equation (5.19) solves
equation (5.20), which is equivalent to solving equation (5.1) under the only constraint that
f̂ ≡ 0. The constraint is less stringent than for SGD, and we can use any loss function. We
call the optimization algorithm defined by the parameter update of equation (5.19) PDESGD.

5.4.2.2 Stability of the process

Classical results from ODE and PDE theory state that at iteration k, taking a time step ∆kt
of the form

∆kt = ×min

(
ε

max
i∈{1,...,n}

µi(tk,θk)
,

ε2

max
i∈{1,...,n}

[Σ(tk,θk)g]2i

)
, (5.21)

ensures having stability and accuracy O(ε) for process (θk)k∈N in the approximation of
(θt)t∈R+ . In other words, Equation (5.21) gives a value for the time step, or the learning rate,
that theoretically ensures stability and approximation accuracy of O(ε).

5.4.2.3 Complexity of PDESGD

The iteration formula of PDESGD introduces additional operations in comparison to SGD. The
additional computations involved in µ(θk) can be implemented such that their complexity is
O(n), when the vector products are computed from right to left, which is the same complexity
as one iteration of SGD. However, computing [ΛΛT ](θt) to sample from Λ(θt)g has complexity
O(n2). Hence, in the following, we approximate [ΛΛT ](θt) with diag

(
[ΛΛT ](θt)

)
so that

computing [ΛΛT ](θt) has complexity O(n) and the complexity of PDESGD stays the same
as SGD.

108



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

0
10
20
30
40
50
60
70
80
90

Figure 5.1: The loss function Ĵ plotted with respect to θ1 and θ2

5.4.3 Toy experiments

We test the algorithm obtained using our PDE framework on a simplistic optimization problem
in two dimensions. The problem consists in optimizing two weights of a neural network in the
approximation of the constant function x → 1 using N = 100 points {x1, ..., xN} equidistant
between −5 and 5. The neural network has the following characteristics :

• n_layers = 1,

• n_units = 2,

• activation = σ = Relu,

• loss_function = L2 error,

• has no bias parameters

• has a residual connection between the input and the output (like in Resnet, see He et al.
(2015)).

The parameters to optimize are θ = {θ1, θ2}, the weights of the first layer, and fθ can be
written :

fθ(x) = σ(θ1x)− 2σ(θ2x) + x,

so the objective function that we aim at minimizing is:

109



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

Ĵ(θ) =
1

N

N∑
i=1

(
σ(θ1xi)− 2σ(θ2xi)+xi− 1

)2 ≈ J(θ) =
1

10

∫ 5

−5

(
σ(θ1x)− 2σ(θ2x)+x− 1

)2
dx.

The loss landscape (θ1, θ2) → Ĵ(θ1, θ2) is represented in Figure 5.1. We select this test case
as a toy example for two reasons. First, its dimensionality makes it possible to visualize
the loss landscape precisely. Some works aim at giving a 2D visualization of the surface
when Card(θ) > 2 using projections (Li et al., 2018a), but the obtained surface is always an
approximation. In our case, we would like to track all the local minima and to be able to
assess whether the tested algorithms reach the vicinities of the global minimum or not. The
second reason why we choose this test case is that there is one remarkable global minimum
and an infinity of local minima. In the following, we test the effect of the iterative algorithm
with the update formula given by equation (5.19). We also explore the benefits of the stability
granted by a learning rate given by equation (5.21).

5.4.3.1 PDESGD in a convex setting

0 50 100 150 200 250 300 350 400
k

100

101

J(
)

SGD
PDESGD
ADAM

Figure 5.2: The loss function J plotted with respect to the number of iterations of the optimization
process.

In this experiment, we test the convergence speed of PDESGD when the process starts in
a convex area around a minimum, whether it is local or global. To that end, we randomly
initialize 10 processes in the square [−3,−0.5]× [0.1, 1.5] and track the value of J(θ) along the
iterations. We also conduct the same experiment with SGD and another popular optimization

110



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

algorithm, Adam (Kingma and Ba, 2015). For PDESGD and SGD, we use the same learning
rate of 10−3 to be able to compare the trajectories (otherwise, the speed of the algorithm
with the highest learning rate would be boosted). Note that using this learning rate for Adam
makes it so much slower than SGD and PDE-consistent SGD that we took the liberty of
increasing it to 10−2, even if 10−3 is its default value in many implementations. For SGD
and ADAM, the batch size is 10, and for PDESGD, the actual batch size is N = 100, but we
choose Nb = 10 to simulate the stochasticity coming from a batch size value of 10.

In Figure 5.2, we plot the 10 evolutions of J(θ) with respect to k and their mean (in bold)
for each algorithm. First, PDESGD converges much faster than Adam and SGD, which is a
good point. Then, two more observations may be related to one another. The first is that the
curve of PDESGD is noisier than the others. The second is that PDESGD does not seem to
converge towards the minimum J(θ) and stays stuck around a value slightly above. These
observations can be explained by the stochasticity coming from g, which prevents the process
from sticking to the minimum.

0 50 100 150 200 250 300 350 400
k

100

101

J(
)

SGD
PDESGD
ADAM

Figure 5.3: min
i<k

J(θi) plotted with respect to k, the number of iterations of the optimization process.

It should be recalled that PDESGD is constructed as an exploratory process as well as an
optimization process. Moreover, the optimization result is the value of θk that led to the
minimum of J(θ) throughout all the optimization trajectories rather than the last value of θk.
To illustrate this point, in Figure 5.3, we plot the evolution of min

i<k
J(θi) for the 10 different

initializations with respect to k for each algorithm.

This experiment shows that making SGD consistent with the PDE framework, alleviating

111



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

the constraint L′′ = 0, grants a significant convergence speed-up to the optimization process.
It also emphasizes the nuance between exploration and optimization and how they may be
related.

5.4.3.2 Effect of the constrained learning rate

In this section, we illustrate the effect of the learning rate defined in equation (5.21). We run
PDESGD for 200 iterations and monitor max(|θk+1 − θk|), for ε ∈ {10−2, 10−3, 10−4, 10−5},
wheremax(|x|) denotes the highest component of the absolute value of x. We plotmax |θk+1−
θk| with respect to k in Figure 5.4 for each value of ε.

0 50 100 150 200
k

10 2

m
ax

|
k

+
1

k |

(a) ε = 10−2

0 50 100 150 200
k

10 4

10 3

m
ax

|
k

+
1

k |

(b) ε = 10−3

0 50 100 150 200
k

10 5

10 4

m
ax

|
k

+
1

k |

(c) ε = 10−4

0 50 100 150 200
k

10 5

m
ax

|
k

+
1

k |

(d) ε = 10−5

Figure 5.4: Plots of max(|θk+1 − θk|) with respect to k for ε ∈ {10−2, 10−3, 10−4, 10−5}

112



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

We recover the properties of accuracy ensured by equation (5.21). The advantages of being
able to toggle the magnitude of |θk+1 − θk| for reaching the desired accuracy are twofold.
First, we control the optimizer error, mentioned in 2.4.1. It could be a good asset for research
studies looking to assess the importance of the different sources of error in deep learning.
Second, it tackles a common problem in deep learning, identified by Bengio et al. (1994) called
the exploding gradient, whereby the gradients can suddenly take high values, yielding an
unstable optimization. Our solution is different than the traditional gradient clipping method
Pascanu et al. (2013) in the sense that we impose a constraint on |θk+1 − θk| rather than
∇θJ(θ).

5.4.3.3 Constrained learning rate for stable exploration

Since deep learning is a non-convex optimization problem with high dimensions and plenty of
local minima, it is desirable to explore the parameter space as much as possible. To that end,
one solution is to increase the learning rate of the chosen optimization algorithm. However,
by doing so, there is a risk of observing unstable and diverging optimization trajectories, and
finding the good trade-off value for the learning rate may require many trials and errors.

The learning rate constraint can be used for purposes other than those described in the
previous section. Here, we highlight how we can use equation (5.21) to explore the parameter
space. The exploration aims at looking for good potential convex regions in the parameter
space. Hence, we define an objective convex region around the global minimum θ∗, which we
exactly identify using a Newton algorithm. This region is a 0.6× 0.4 rectangle centered on
the global minimum of Ĵ(θ).

We initialize PDESGD and SGD processes on a 20×20 grid with θ1 ∈ [−4, 1] and θ2 ∈ [−1.5, 2],
and evaluate the probability to reach the objective region from each point of the grid. For
PDESGD, we choose ε = 1, i.e. we have

∆kt = min

(
1

max
i∈{1,...,n}

µi(tk,θk)
,

1

max
i∈{1,...,n}

[Σ(tk,θk)g]2i

)
. (5.22)

For SGD, we reproduce this experiment for γ ∈ {0.01, 0.05, 0.1}. To have a visual overview
of the exploration, we plot a heat map whose pixels value is the probability of the considered
algorithm reaching the region of interest when initialized on this point. This probability is
evaluated in each point with 10 different random seeds. The evaluation is coarse, but this is
not so much of a problem here since the primary goal is to illustrate the exploration behavior
of the algorithms. The heat maps can be found in Figure 5.5. We also compute the probability
to reach the region of interest integrated over the grid. The results are gathered in Table 5.1.

These results show that PDESGD, when coupled with learning rate limitation, explores the
domain and almost always finds the convex region. For SGD, a learning rate tuning is required:

113



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

1.04

(a) PDESGD. P = 0.94

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

(b) SGD, γ = 0.01, P = 0.55

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) SGD, γ = 0.05, P = 0.95

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

(d) SGD, γ = 0.1, P = 0.05

Figure 5.5: Heat maps of the probability to reach the region of the global minimum from coordinates
of the map for PDESGD and SGD with different learning rates γ. The total probability P is also
displayed.

PDESGD SGD
γ - 0.01 0.05 0.1

P 0.94 0.55 0.95 0.05

Table 5.1: Probability to reach the region of interest

γ = 0.05 yields result comparable with those of PDESGD, but if γ = 0.01, SGD is far less
likely to find the convex region when initialized near suboptimal local minima and when
γ = 0.1, SGD is unstable and almost always diverges. It illustrates the practical advantage of
having a stable process without carefully tuning optimization hyperparameters. We also plot

114



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

the points visited by the process on Figure 5.6, for PDESGD and SGD with γ = 0.05, when
θ0 = (−3,−1) (outside the convex region). It shows the differences in the behavior of SGD
and PDESGD. The process of PDESGD is more spread and visits the vicinities of many local
minima and the global minimum, while SGD is more focused on the global minimum. It is
natural since SGD is not constructed as an exploration algorithm.

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2

0
10
20
30
40
50
60
70
80
90

(a) PDESGD

4 3 2 1 0 1
1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2
0
10
20
30
40
50
60
70
80
90

(b) SGD

Figure 5.6: Trajectories of the process of PDESGD and SGD for an initialization of θ0 = (−3,−1),
outside the convex region.

Still, as such, this process is not sufficient to complete the optimization process. As showed in
equation (5.21), using equation (5.22) to compute the step size only ensures an accuracy for
θk which is O(1). Hence, this algorithm is only suited for the exploration of the parameter
space and not the optimization of the objective function.

5.4.3.4 Bias of PDESGD

Despite all those promising results, PDESGD as such has limitations. Indeed, it turns out
that in our test case, in the convex region, the point towards which the algorithms converges
is not the global minimum but a point that is slightly shifted. This phenomenon is illustrated
in Figure 5.7, where we initialized a PDESGD process without noise, without learning rate
constraint, and with λ = 10−4, near the global minimum.

This bias in the obtained minimum may be explained by the second and the third terms in
µ(θt). Let us come back to GD. If γ 6= 0, the convergence of the process is reached if and
only if ||µ(θt)|| = γ||∇θJ(θ

t)|| < ε′, with ε′ > 0 a convergence criterion. In other words:

||θk+1 − θk|| < ε′ ⇔ ||∇θJ(θ
k)|| < ε′

γ
,

115



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

1.30 1.25 1.20
1

0.30

0.32

0.34

0.36

0.38

0.40

2

Min.
Init.

0.249
0.258
0.267
0.276
0.285
0.294
0.303
0.312
0.321
0.330

Figure 5.7: Trajectory of the optimization near the global minimum.

so canceling the gradient ||∇θJ(θ
k)|| with accuracy ε′

γ
is equivalent to reaching ||θk+1−θk|| < ε′.

In our case, this equivalency does not hold. Indeed, recall the expression of µ(θt) for PDESGD:

µ(θt) =−
∫ [

L′(x,θt)∇θf(x,θ
t) +

λ

2
L′′(x,θt)L′(x,θt)∇θf(x,θ

t)∇T
θ f(x,θ

t)∇θf(x,θ
t)

− λ

2
L′′(x,θt)∇θf(x,θ

t)∇T
θ f(x,θ

t)

∫
L′(x′,θt)∇θf(x

′,θt)dPx′

]
dPx.

Then, by noting that ∇θJ(θ
k) =

∫
L′(x,θk)∇θf(x,θ

k)

||θk+1 − θk|| <ε′

⇔||∇θJ(θ
k) +

∫ [λ
2
L′′(x,θk)L′(x,θk)∇θf(x,θ

k)∇T
θ f(x,θ

k)∇θf(x,θ
k)

− λ

2
L′′(x,θk)∇θf(x,θ

k)∇T
θ f(x,θ

k)∇θJ(θ
k)
]
dPx|| < ε′.

Therefore, it is far from obvious that the convergence of the process is equivalent to the
cancellation of the gradient in this case because the terms of the left-hand side could cancel
each other without the gradient being equal to zero.

5.4.4 Unbiasing PDESGD and experiments on real-world datasets

This section introduces a different choice for θ∗ − θ that solves the bias problem previously
described, when L is the L2 error. We demonstrate how it circumvents this problem and
showcase examples of this ”unbiased” PDESGD on real-world regression tasks.

116



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

5.4.4.1 Unbiasing PDESGD

Let us recall the previous choice for θ∗ − θ:

θ∗ − θ =
λ

2
L′(x,θt)∇T

θ f(x,θ
t)− λ

2

∫
L′(xi,θ

t)∇T
θ f(x,θ

t)dPx.

Now, let us consider another choice:

θ∗ − θ =
λ

2

∫
L′(xi,θ

t)∇T
θ f(x,θ

t)dPx =
λ

2
∇θJ(θ

t), (5.23)

where we only kept the right part of θ∗ − θ. In that case, the expression for µ(θt) becomes:

µ(θt) = −
∫ [

L′(x,θt)∇θf(x,θ
t) +

λ

2
L′′(x,θt)∇θf(x,θ

t)∇T
θ f(x,θ

t)∇θJ(θ
t)
]
dPx. (5.24)

The intuition behind this choice stems from the following lemma, that ensures that for this
choice of θ∗ − θ, cancelling µ(θt) is equivalent to cancelling the gradient ∇θJ(θ

t), unlike for
the previous version of PDESGD:

Lemma 5. Let θ∗ − θ be chosen as in equation (5.23), µ(θt) defined as in equation (5.24),
and L chosen as the L2 error. Then,

µ(θt) = 0 ⇔ ∇θJ(θ
t) = 0.

Proof. Let us come back to equation (5.24):

−µ(θt) =

∫ [
L′(x,θt)∇θf(x,θ

t) +
λ

2
L′′(x,θt)∇θf(x,θ

t)∇T
θ f(x,θ

t)∇θJ(θ
t)
]
dPx.

= ∇θJ(θ
t) +

∫ [
λ∇θf(x,θ

t)∇T
θ f(x,θ

t)∇θJ(θ
t)
]
dPx.

since ∇θJ(θ
t) =

∫
L′(x,θt)∇θf(x,θ

t)dPx and L′′(x,θt) = 2. Then,

−µ(θt) =

(
In + λ

[∫
∇θf(x,θ

t)∇θf
T (x,θt)dPx

])
∇θJ(θ

t),

−µ(θt) = F (θt)∇θJ(θ
t),

where F (θt) = In + λ

[ ∫
∇θf(x,θ

t)∇θf
T (x,θt)dPx

]
. By definition, ∇θf(x,θ

t)∇θf
T (x,θt)

117



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

is positive semidefinite, so
∫
∇θf(x,θ

t)∇θf
T (x,θt)dPx is positive semidefinite as well. Since

In is positive definite, so is F (θt), which implies that it only has non zero positive eigenvalues:

µ(θt) = 0 ⇔ F (θt)∇θJ(θ
t) = 0 ⇔ ∇θJ(θ

t) = 0.

Therefore, in the following, we use PDESGD on regression problems based on L2 error defined
by equation (5.23) and equation (5.24) with the following iteration formula:

θk+1 = θk − ∆t

N

N∑
i=1

[
L′(xi,θ

k)∇θf(xi,θ
k)

+
λ

N
∇θf(xi,θ

k)∇T
θ f(xi,θ

k)
N∑
j=1

L′(xj,θ
k)∇θf(xj,θ

k)
]

+

√
∆t

Nb

Λ(θk)g.

(5.25)

5.4.4.2 Experiments on real-world datasets

In this section, we test PDESGD on five real-world regression datasets extracted from UCI
dataset repository (Dua and Graff, 2017). We consider California Housing (CH), Diabetes (D),
Boston Housing (BH), Combined Cycle Power Plant (CCPP), and Airfoil Self Noise (ASN)
datasets. An MLP with one hidden layer of 10 units, with ReLU activation function is trained
with the L2 error as loss function using SGD, ADAM and PDESGD with a learning rate of
10−3 on kf = 106 steps. For SGD and ADAM, the batch size is 50, 10, 10, 50 and 20 for CH,
D, BH, CCPP and ASN respectively. For PDESGD, the actual batch size is min(1000, N),
and Nb is set to the corresponding value of the batch size of SGD and ADAM. The dataset is
randomly split between a training and validation set. For each dataset, Nt = 30 instances of
training are executed with different initializations.

Figure 5.8 gathers the mean of the learning curves (in bold) as well as the curve that obtained
the best validation error (in transparent) for each dataset and for the first 400 iterations.
Table 5.2 displays the errors for PDESGD, ADAM and SGD. Let {L(θk

i )}k∈{1,..,kf} be the
learning curve of the i-th optimization. The format of the reported error is best, mean,
where best = min

k,i∈{1,..,kf},{1,..,Nt}
L(θk

i ), mean = 1
Nt

∑Nt

i=1 min
k∈{1,..,kf}

L(θk
i ). The standard error

for the estimation of mean is not displayed because in our case it is always of order < 10−6.
Hence, the results of Table 5.2 are statistically significant.

Two observations can be made regarding these results:

118



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

(a) California Housing (CH) (b) Diabetes (D) (c) Boston Housing (BH)

(d) Combined Cycle Power Plant
(CCPP) (e) Airfoil Self Noise (ASN)

Figure 5.8: Train (top) and validation (bottom) errors for each dataset, with respect to k, the
number of θk update. The bold curve is the mean of the 30 learning curves, and the transparent
curve is the best of the 30 learning curves.

• Convergence speed: Figure 5.8 shows that PDESGD seems to exhibit a similar
convergence speed as ADAM: both algorithms are significantly quicker than SGD. This
is a good practical advantage for PDESGD.

• Validation error: Table 5.2 shows that, most of the time, the validation error of SGD
ends up being lower than that of ADAM. However, PDESGD consistently obtains the
best validation error. This result is almost always robust to the initialization since the

119



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

×10−3 CH D BH CCPP ASN
SGD 14.73, 15.29 25.83, 26.99 5.38, 6.77 3.04, 3.06 5.39, 7.51
ADAM 15.02, 16.08 26.59, 28.02 5.58, 6.13 3.05, 3.07 9.96, 12.01
PDESGD 14.03, 14.56 24.96, 26.28 4.99, 6.63 2.85, 2.94 3.25, 6.36

Table 5.2: best, mean validation error for the five considered UCI datasets.

mean of PDESGD is only beaten by ADAM once, on BH.

In summary, in this benchmark, PDESGD is at least better than SGD and ADAM, in terms
of convergence speed and validation error. These results are all the more so encouraging since
ADAM is a state-of-the-art, widely adopted optimization algorithm.

Remark. For the Diabetes dataset, the validation error goes up after a few iterations. It is
an illustration of the overfitting phenomenon. Still, in that case, it does not prevent PDESGD
from obtaining the best validation error, for best and mean.

5.5 Discussion

The work presented in this chapter is mainly theoretical. The experiments with PDESGD are
convincing, but the test cases are too simplistic to conclude about their relevance for large-scale
deep learning problems. In addition, the analysis only holds for pout = 1. Unfortunately, we
have not been able to study its application to high dimensional problems involving large
neural networks in the time span of the thesis. Such a study would be in the continuity of
this work: it is the closest perspective.

5.5.1 Perspectives

Even if the presented results focus on PDESGD, the PDE framework is also one of the main
contributions of this work. There are many other things to explore beyond PDESGD:

• First, more experimental work could help to elaborate on the choices for α and θ∗ − θ.
To that end, it should be helpful to study the properties of the solved PDE for each
different choice.

• The PDE framework relies on the assumption that f̂ ∼ 0. There is an interest in
assessing this assumption to improve the optimization possibly. The report of Poëtte
et al. (2021) is an attempt to evaluate this hypothesis using transport PDE theory.

• The classical SGD could benefit from the PDE framework. Indeed, equation (5.16)
provides a principled formula for noise injection based on the central limit theorem.

120



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

It could conciliate the advantages of large and small batch training. Indeed, a large
batch could be used to estimate ∇θJ(θ) more accurately, and at the same time, a
noise modeling the stochasticity of small batches could be explicitly injected. This
approach has been tested, although not extensively studied in Section 5.4.4.2, and would
deserve more thorough investigations. Moreover, controlled stochasticity could have
other advantages, such as automating learning rate schedules or automatically stopping
the training by principled criteria like statistical tests (similarly to Lang et al. (2019)).
The learning rate limitation could also bring advantages to enforce the process’s stability
or control the accuracy of the obtained minimum, which could be of interest for the
characterization of the different sources of error in Machine learning, as described in
Section 2.4.1.

• As seen in the experiments of Section 5.4.3.3, the stability granted by the step size
limitation could allow starting the optimization by an exploration step to find a good
initialization. Then, reducing the step size would make the algorithm switch back to a
more classical optimization setting. This approach has already been discussed by Ye
et al. (2017) and could benefit from the PDE framework.

5.5.2 Interplay between numerical analysis and machine learning

This chapter focused on the optimization step of the supervised deep learning process. This
step is particularly interesting regarding our final goal because it allows improving the error
for no additional cost in the neural network run time. Finally, we achieved valuable results
by revisiting the optimization at play in machine learning using stochastic PDE theory.
The application range of the obtained findings is broader than numerical simulations and
encompasses all optimization-based machine learning problems.

121



CHAPTER 5. A VIEW OF LEARNING FROM THE PARTIAL DIFFERENTIAL EQUATION THEORY

122



Chapter 6
Efficient hybrid numerical simulations (with
guarantees)

In the previous chapters, we have investigated the three main steps of supervised learning in
light of the concerns and specificities of numerical simulation and scientific computing. In
this chapter, we apply our findings to a supervised learning task that aims at accelerating a
multi-physics CFD simulation code.

We describe a neural network-based acceleration approach that is applicable to any numerical
simulation codes involving the resolution of coupled systems of equations. This approach relies
on the identification of a pattern in such codes that emphasizes the possibility to approximate
a part of the code with a neural network. It yields a hybrid simulation code that leverages
the implementation advantages and appealing performances of neural networks.

We apply this approach to the simulation of a hypersonic flow around an object during an
atmospheric reentry. To accurately simulate this phenomenon, it is necessary to compute the
chemical equilibrium of species found in the fluid. We approximate the chemical reactions
with a neural network and obtain a significant speed-up - up to a factor 18.7 - for a comparable
accuracy. Using error analysis based on uncertainty propagation, we show that the hybrid
code’s error is negligible as compared to other sources of errors that classical numerical
simulation codes usually undergo. We also describe how to obtain the exact same predictions
with the hybrid code, by using its predictions to initialize the computations of the original
code.

123



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

1

co
nt

ri
b.  Analyse of the learning difficulty based  

 on the derivatives of the function to learn
 TBS : A new sampling scheme
 VBSW : A new weighting scheme

Construction of the training set

2

co
nt

ri
b.

 Adaptation of tools from sensitivity analysis
 An interpretable optimization methodology

Hyperparameters search

3

co
nt

ri
b. A PDE based framework for learning

PDESGD : a new optimization algorithm

Training

4 Application

co
nt

ri
b. Reliable and 

efficient hybrid
numerical
simulation codeM

et
ho

do
lo

gy
Methodology for supervised deep learning in numerical simulations and contributions of the thesis

Contents
6.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Helping numerical simulations from the outside . . . . . . . . . . . 125
6.1.2 Surrogate modeling: replacing the whole code for parametric studies 126
6.1.3 Hybridization of machine learning and numerical simulations . . . 128

6.2 A general approach for constructing of hybrid simulation codes . 129
6.2.1 Structure of simulation codes based on coupled equations . . . . . 129
6.2.2 Neural networks as reduced models . . . . . . . . . . . . . . . . . . 131

6.3 Test case: a CFD code coupled with chemical equilibrium . . . . 132
6.3.1 Euler equation coupled with Gibbs free energy minimization . . . 132
6.3.2 Mutation++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3 The computational burden of chemical equilibrium . . . . . . . . . 135

6.4 Acceleration of the simulation code . . . . . . . . . . . . . . . . . . 136
6.4.1 Methodology for designing NN hybrid code . . . . . . . . . . . . . 137
6.4.2 Application of the vanilla methodology . . . . . . . . . . . . . . . . 138
6.4.3 Effect of HSIC analysis and Variance based sampling . . . . . . . . 142
6.4.4 Is the error acceptable? . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 Guarantees for the hybrid code . . . . . . . . . . . . . . . . . . . . . 144

124



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

6.5.1 Zero error guarantee using initialization . . . . . . . . . . . . . . . 144
6.5.2 Acceptable error guarantee using error analysis . . . . . . . . . . . 145

6.6 Discussion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 149
6.6.1 Towards a general approximation of Mutation++ . . . . . . . . . . 149
6.6.2 Possible usages of hybrid simulation codes . . . . . . . . . . . . . . 149
6.6.3 Concluding remark . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1 State of the art

Recently, the expansion of machine learning and its success in computer vision, natural
language understanding, and pattern recognition has stimulated interest in its use in scientific
computing. Some publications emphasize the need for whole scientific communities to integrate
machine learning in their best practices, for instance, in numerical sciences (von Rueden et al.,
2020); high energy physics (Albertsson et al., 2018); or molecular simulation (Noé et al.,
2020).

Besides, machine learning and, more generally, statistical methods are already used to improve
the performances of numerical simulations, with different degrees of modifications of simulation
codes, that we detail in the following sections. First, machine learning can be used outside
of the code and guide its execution or its conception. On the contrary, the code can be
completely replaced by a machine learning model to enable parametric studies that could
not be conducted with the original, too lengthy simulation code. This approach is called
surrogate modeling. Finally, a third, intermediate degree consists of replacing a part of the
simulation code with a machine learning model, yielding a hybrid code. Our approach falls
under this last category, which aims at accelerating computer codes, but can also be used to
guide the conception of these codes.

6.1.1 Helping numerical simulations from the outside

Machine learning can be considered a tool to improve numerical simulation codes. Some
works leverage the ability of machine learning to process and analyze large volumes of data,
experimental or not: data mining and machine learning-based data processing can be used
to help simulations in different ways. Roscher et al. (2020) recommend the use of machine
learning to extract patterns from data in order to help scientists understand a natural
phenomenon and help for the conception of simulation codes. For instance, Reichstein et al.
(2019) extract knowledge from geospatial data to enrich simulation codes. It is also used
to improve agent-based simulations (Arroyo et al., 2010), aircraft fleet simulations (Painter
et al., 2006), or to help simulation-based car conception (Bohn et al., 2013) by looking for
more informative inputs. Similarly, Plattner et al. (2017); Zimmerman and Bowman (2015);

125



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

Doerr and De Fabritiis (2014) combine data-mining with active learning to improve molecular
simulations. Finally, the authors of Lahoz et al. (2010); Baker et al. (2018) argue for the use of
machine learning-based data processing to improve earth sciences and biological simulations.

Machine learning can also be used to improve the building blocks of existing simulation codes.
At run-time, mesh adaptation Fidkowski and Chen (2021) can help to design efficient meshes,
for instance, by detecting the shock in fluid dynamic (Beck et al., 2020). Furthermore, the
parametrization of such codes can also be optimized using physics-informed neural networks
(Raissi et al., 2017, 2019). These last techniques have become more and more popular lately,
and we refer to Cai et al. (2021) for an exhaustive overview of its applications.

There are plenty of ways to improve numerical simulations using machine learning based data
analysis. However, such methods do not explicitly and directly optimize the computational
time of the code or one of its components. Therefore, all these works are complementary to
ours.

6.1.2 Surrogate modeling: replacing the whole code for parametric
studies

In several domains like physical sciences, economics, biology, or climatology, simulation codes
are designed to predict the behavior of complex systems given input parameters. These input
parameters can be made variable either to model uncertainty of their knowledge, to study the
sensitivity of the prediction to these parameters, or to optimize the choice of these parameters
in order to satisfy some practical design constraints (calibration). A parametric study is
unavoidable in each case. However, such studies always imply repeated calls to the code
with different input parameters value. When the code is computationally expensive, it may
be unaffordable. The field of surrogate modeling has been developed in order to tackle this
problem. The idea is to approximate the whole simulation code, seen as a black box, with a
statistical model. This model is computationally cheaper than the original code, so it can be
used in place of the code for parametric studies. Surrogate modeling can be performed with
various machine learning models.

6.1.2.1 A variety of surrogate models

Gaussian Process regression, as popularized for machine learning by Rasmussen and Williams
(2005) has percolated up to a leading position in surrogate modeling. Gaussian processes-based
sensitivity analysis, introduced as Bayesian sensitivity analysis in Oakley and O’Hagan (2004)
models the output of the code with a Gaussian process and computes the sensitivity indices of
input parameters using this approximation. See Da Veiga et al. (2009) or Marrel et al. (2015)
for examples of recent improvements of this approach. For calibration, Kennedy and O’Hagan
(2001) introduced a Bayesian framework for calibration of computer models, which remains
the top canonical approach (Gramacy, 2020). The remaining field based on gaussian process

126



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

surrogates models is called Bayesian optimization. It has already been used in Chapter 4,
which illustrates its range. The review of Shahriari et al. (2016) gives an idea of the diversity of
its application. Bayesian optimization is also popular in numerical simulations for engineering,
since the works of Jones et al. (1998a) and the continuous work of Santner et al. (2018).

Based on the seminal work of Wiener (1938), Polynomial chaos (Xiu and Karniadakis,
2002; Blatman and Sudret, 2008) is also very popular, especially in problems of uncertainty
quantification and sensitivity analysis Sudret (2008); Lucor et al. (2007c). Since the work of
Le Maître and Knio (2004), it is extensively used in non intrusive uncertainty propagation
(Hosder et al., 2006; D. et al., 2003; Poëtte et al., 2009), but also for calibration Lucor et al.
(2007b); Congedo et al. (2011).

First applications of neural networks, e.g. to assess e probability of failure (Hurtado, 2001),
or structural reliability (Papadrakakis et al., 1996) dates back to the late 1990s. However,
their use for surrogate modeling has become more widespread in the last decade due to the
recent breakthroughs of neural networks as successful statistical models. For uncertainty
quantification, neural networks are often considered as classical surrogates (Zhu et al., 2019;
Winovich et al., 2019). Nonetheless, some works develop and use Bayesian approaches that
allow naturally propagating uncertainty similarly to Gaussian processes (Gal, 2016; Lampinen
and Vehtari, 2001; Kwon et al., 2020). Neural networks are also used as surrogate models for
calibration and optimization (Koziel and Leifsson, 2012; Guo et al., 2016; Rudy et al., 2017),
or simply to replace computer codes (Feng et al., 2018; Mao et al., 2021; Lu et al., 2021).

Although they are less common, other surrogate models such as random forest (Breiman,
2001), gradient boosting machine (Friedman, 2000) or Multivariate Adaptive Regression
Splines (Friedman, 1991) are also used in similar ways, as described and tested in Storlie and
Helton (2008) and Storlie et al. (2009).

6.1.2.2 Limits of surrogate modeling

Surrogate modeling is quite similar to our approach since we approximate a - part of a -
computer code with a neural network. However, contrarily to us, it considers the simulation
code as a black box.

Its strength relies on the cost efficiency of the surrogate as compared to the approximated code.
However, for high dimensional simulation codes that take days to return a prediction, surrogate
modeling can become irrelevant because of the lack of data and its high dimensionality.
Moreover, even in workable cases, the accuracy of surrogate models as predictors is often
limited due to the computational cost of obtaining training data points.

In this work, we open the black box to plug a surrogate model inside the original code, leading
to a hybrid simulation code. The part of the code that the neural network replaces is not
so costly when executed as a standalone application: it allows constructing a large training
database, thereby dramatically improving the prediction performances of the surrogate. In

127



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

addition, we leverage the ability of neural networks to process data in batches very efficiently -
thanks to the matrix product structure of their implementation - to improve the performances
of the hybrid code. As a result, there are two points to insist on :

• The approach of approximating a part of a simulation code allows to speed-up computer
code so expensive, in terms of computational cost and dimensionality, that classical
surrogate modeling would fail.

• Embedding the neural network inside the simulation code and generating a large training
database yields a hybrid code that returns predictions whose accuracy is comparable to
that of the original code. It enables its use in contexts where prediction accuracy must
be ensured.

6.1.3 Hybridization of machine learning and numerical simulations

The idea of constructing a hybrid code based on both numerical simulation and machine
learning has already been explored in previous works. Most of them replace a part of
a simulation code with a machine learning model. In molecular simulations, Behler and
Parrinello (2007) use a neural network approximation of potential energy surface, and Stecher
et al. (2014) use Gaussian processes to sample Gibbs free energy surface, opening the avenue
for applications based on such methodologies Schneider et al. (2017); Mones et al. (2016);
Bereau et al. (2018); Brockherde et al. (2017). In CFD simulations, (Danvin et al., 2021)
use neural networks to predict mode amplification and (Bourriaud et al., 2020) to prevent
troubled cells and adapt reconstruction polynomial degrees. Other works are even closer to
our approach. Han et al. (2019) use neural networks to approximate physical components
of multi-physics problems for electro-thermal simulation when conducting electrosurgery. In
Kluth et al. (2020); Kluth et al. (2019), the authors approximate non-local thermodynamic
equilibrium in the simulation of inertial confinement fusion. Moreover, (Danvin et al., 2021)
use neural networks to predict mode amplification in CFD simulations.

In our work, we also initialize a numerical simulation code with the prediction of a hybrid
code. This methodology is similar to these of Huang et al. (2020), where the prediction of
a neural network is given as initialization to a PDE-based solver. However, unlike in our
work, a new neural network is trained for each test case. Moreover, the neural network is a
surrogate model trained to approximate the whole code. Hence, it suffers from the difficulties
of surrogate models mentioned in the previous paragraph.

This work aims at strengthening the interest of the scientific computing community in following
such hybrid approaches. Indeed, we give a general framework that emphasizes the applicability
of this approach to a large range of multi-component simulation settings. We demonstrate
its potential gains in computational time with limited accuracy loss in a multi-physics CFD
code. In addition, we exploit a specificity of neural networks that previous works do not
leverage. Neural networks implementation is very efficient and boils down to a sequence
of matrix multiplications, which allows for efficient processing of batch, arrays-like inputs.

128



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

This characteristic is particularly suited to numerical simulations, often conducted on meshes
which are arrays-like structures. When replacing physical components that can not naturally
be executed in parallel, the perspectives of computational gains are even larger.

6.2 A general approach for constructing of hybrid sim-
ulation codes

Numerical simulation codes often share a common structure based on the coupling of several
equations. This section describes the pattern behind this structure and justifies why and how
neural network-based hybrid simulation codes can be constructed by leveraging this pattern.

6.2.1 Structure of simulation codes based on coupled equations

A multi-physics simulation code often solves a system of several components that model
different physics. In this part, we formalize the mathematical framework of this system. To
simplify the framework, we only consider a code with two coupled systems of equations. The
system can be written : {

F1(η,u,α) = 0,

F2(u,η,α) = 0,

(6.1a)
(6.1b)

where

• u and η are vectors of unknowns,

• α is a vector of physical parameters, that are not computed during the simulation (e.g.
physical or chemical constants),

• F1 and F2 are mathematical (possibly differential) operators.

Such a formalism encompasses physical simulations like non-equilibrium thermodynamics,
neutronic, combustion, detonic... Examples of such systems are illustrated in the following.

129



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

Example 1 : Boltzman-Bateman equations in neutronic

Some neutronic applications (Bernède and Poëtte, 2018; Dufek et al., 2013) consist in
solving the system :

∂tu+ vω∇u+ vΣtηu− vΣsη

∫
Psudω

′ = 0

∂tη − ηΣrv

∫
udω = 0.

• u is the particle density, η the material density

• α = (Σt,Σr,Σs) contains the cross sections, fixed parameters of the simulation,
and Ps is a scattering law.

• F1 and F2 are respectively

– The Boltzmann equation to model the transport of particles in matter (costly
to solve)

– The Bateman equations to model the reactions of particles with matter
(cheap to solve independently, but costly when embedded)

Example 2 : Navier-Stockes-Bateman equations in CFD

Some CFD applications (Day and Bell, 2000; Najm et al., 1998) consist in solving the
system : ∂tρv +∇(ρv ⊗ v + p(η))− µ∇2(v)− 1

3
µ∇(∇v) + ρ(η)g = 0

∂tη − Σrη · η = 0,

where ⊗ is the outer product.

• u = (v, ρ, p) contains the flow velocity, the density and the pressure, and η is a
vector of densities of molecules.

• α = (µ, g,Σr) contains the dynamic viscosity, the gravitational constant and a
reaction constants, fixed parameters of the simulation.

• F1 and F2 are respectively

– The convective form of the Navier-Stokes momentum equation to model the
flow of a compressible fluid (costly to solve)

– The Bateman equations to model reactions within the components of the
fluid (cheap to solve independently, but costly when embedded)

The resolutions of such codes often share a common pattern. In order to solve equation (6.1a),

130



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

the solver needs to solve equation (6.1b). As a result, equation (6.1a) is costly to solve because
it regularly calls for the resolution of equation (6.1b). Indeed, most of the computational time
is spent on these calls. All this justifies all the more the construction of a hybrid model based
on the approximation of the resolution of the second equation.

6.2.2 Neural networks as reduced models

Using approximations to avoid the computational time induced by the resolution of equa-
tion (6.1b) is already in practice in the field of numerical simulations. For instance, some
abacuses are constructed using the solver of equation (6.1b), and this solver is replaced by
interpolation in these abacuses at run-time (Sigrist, 2019, 2020). However, this method
becomes vacuous when the dimension increases because the number of points needed to
obtain a proper interpolation increases, whereas the complexity of a search depends on the
number of points in the abacus. Another example is the use of simplifying hypotheses to
make the resolution of equation (6.1b) cheaper. These hypotheses may strongly accelerate
the computation, but the simulated phenomenon may be very different from the one we are
interested in. This last point is illustrated in Section 6.4.

Instead of using such traditional reduced models, we use neural networks as surrogate models
for the resolution of equation (6.1b). Neural networks stand out from traditional surrogate
models such as chaos polynomials or Gaussian processes because :

• The complexity of a forward pass to obtain a prediction scales linearly with the dimension
of the problem (unlike for chaos polynomials), and the execution time does not depend
on the number of points used for the training (unlike Gaussian processes). In other
words, they are particularly resistant to the curse of dimensionality. Hence, we can
construct a large database using the solver of equation (6.1b), which is likely to foster
approximation accuracy.

• The recent advances in the research field of AI have stimulated many breakthroughs
(dropout (Srivastava et al., 2014), batch-normalization (Ioffe and Szegedy, 2015), residual
connections (He et al., 2015), etc...) that make neural networks more and more accurate.

• The implementation of neural networks using TensorFlow C api makes it suited to the
integration inside an already existing high performances simulation code. Besides, since
a prediction boils down to a succession of matrix products, it is very cost-effective when
called on arrays-like structures, like meshes.

131



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

6.3 Test case: a CFD code coupled with chemical equi-
librium

We consider a multi-physics CFD code, which simulates the dynamic of a multi-atomic gas
fluid around an object of a given shape. The gas stream meets the object at hypersonic speed,
creating a shock. The temperature and pressure increase inside the shock so that chemical
reactions can occur between the chemical species that are found in the fluid. The phenomenon
is illustrated in Figure 6.1. The code is executable on simple test cases but can be scaled up
to run computationally demanding simulations, which makes it perfectly suited to our study.

Object

Fluid stream

Shock

Chemical
reactions

Figure 6.1: Illustration of the simulation.

This code can be used, for instance, to simulate the entry of a space shuttle into the earth’s
atmosphere. In that case, the object is a space shuttle, and the fluid is the air: a gas with two
atomic elements, oxygen O and azote N . We are interested in the pressure and temperature
at the boundary of the shuttle, which allows predicting whether the shuttle will be destroyed
or not in these conditions.

6.3.1 Euler equation coupled with Gibbs free energy minimization

The fluid dynamic is simulated by the resolution of Euler equations:

∂tU +∇F (U) = 0, (6.2)

132



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

with

U =



ρ1

. . .

ρne

ρv

ρw

ρE


, Fx(U) =



ρ1v

. . .

ρnev

ρv2 + p

ρvw

ρu(E + p
ρ
)


, Fy(U) =



ρ1w

. . .

ρnew

ρvw

ρw2 + p

ρw(E + p
ρ
)


,

where ρi = ρη̃i is the partial density of element i ∈ {1, ..., ne} (for ne elements - in the case of
the atmosphere, ne = 2 and the elements are O and N), ρ =

∑ne

i=1 ρi is the density of the
fluid, v and w are respectively the horizontal and vertical speeds, E = ε+ v2+w2

2
is the total

energy and p is the pressure. This system of equations is not closed and we need another
equation to obtain the pressure.

A first solution is to make the hypothesis that the fluid is a perfect gas, in which case we
have :

p = (γ − 1)ρε,

where γ is the Laplace constant. In the case of a diatomic gas, γ = 1.4. However, the
hypothesis of perfect gases is coarse, and this value of γ holds only for diatomic gases. In a
more general case, the pressure p can be accurately computed by simulating the chemical
equilibrium between the species produced by the chemical reactions that occur during the
dynamic. For instance, we could consider the reaction

N +O � NO.

In that case, there are two elements, N and O, and there are three species, N , O, and NO.
Let us consider ns species. Then the pressure is obtained using


p(ρ, ε,η) =

ρRT (ε,η)

m

T (ε,η) =
ε−

∑ns

i=1 ηih
0
i∑ns

i=1 ηiCvi

,
(6.3)

where R is the universal gas constant, h0
i and Cvi are respectively the mass enthalpy of

formation and the mass heat capacity at constant volume of specie i, and m =
∑ns

i=1 ximi,
with mi and xi the molar mass and the molar fraction of the specie i. All these quantities are
associated with the considered species. These expressions also involve η = (η1, ..., ηns), where
ηi is the mass fraction of specie i. In order to obtain η, the CFD code uses a method based
on the minimization of the Gibbs free energy G, obtained by solving

133



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

∆G(η, U,αG) = 0, (6.4)

where αG contains all the parameters used in the minimization, which are the numbers of
moles and the Gibbs functions of pure species. This method is implemented by the library
Mutation++ (Scoggins et al., 2020).

Finally, we can link this code to the general structure of Section 6.2.1. The code writes:



∂tU(η) +∇F (U(η)) = 0,

p(ρ, ε,η) =
ρRT (ε,η)

m
,

T (ε,η) =
ε−

∑ns

i=1 ηih
0
i∑ns

i=1 ηiCvi

,

∆G(η, U,αG) = 0

• The vector u = (ρi|i=1,ne
, v, w, ε, p, T ) and the vector η = (η1, ..., ηns).

• α = (R, h0
i|i=1,ns

, Cvi|i=1,ns
,αG).

• F1 and F2 are respectively

– The operator concatenating equation (6.2) and equation (6.3).
– The equation of minimization of the Gibbs free energy, equation (6.4).

6.3.2 Mutation++

In the CFD code, Mutation++ takes as inputs ρ, the density, ε, the mixture energy, and the
mole fractions of the elements initially found in the fluid. It outputs {η1, ..., ηns} the mass
fractions of the mixture of ns chemical species but also additional metrics: c, the speed of
sound, Cp the heat at constant pressure, Cv, the heat at constant volume, p the pressure and
T the temperature after the reactions.

In practice, the mass fractions of the input elements are always the same since the fluid is
permanently renewed by the dynamic. Hence, for the same test case, we only consider 2
inputs: ρ and ε. The function of Mutation ++ can be summarized as :

134



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

M++ :

(
ρ

ε

)
∈ R2 −→



η1

...

ηns

P

T

Cp

Cv

c


,∈ Rns+5 (6.5)

with M++ denoting Mutation++. In the following, we aim at constructing a neural network
approximating M++.

6.3.3 The computational burden of chemical equilibrium

The code solving F1 is executed on a mesh using a resolution scheme detailed in Peluchon
(2017). When executed alone, i.e. using the perfect gas hypothesis, the resolution is cost-
effective. However, when considering chemical equilibrium, the minimization of the Gibbs free
energy using Mutation++ has to be conducted in each cell of the mesh for each time step of
the resolution. In that case, the whole resolution is more accurate but becomes expensive.

To illustrate this slow-down, we simulate the dynamic for a sphere entering the atmosphere
at a speed of 4930 m.s−1 (Mach 16) on a structured mesh, and consider one reaction between
Oxygen (O) and nitrogen (N): O + N → ON . We call this code MPP. We compare the
prediction of MPP with that of the simulation of a perfect gas without reactions, which we
call PG. The parameters of the simulation are gathered in Table 6.1.

Input value
Elements (elem:fraction) O:0.2, N:0.8
Upstream pressure 35737.40Pa

Upstream temperature 216.57K

Upstream speed 4930.83 m.s−1

Chemical species N, O, NO

Table 6.1: Simulation parameters and boundary conditions for the toy example

Figure 6.2 plots the pressure field of the fluid around the object for MPP and PG. The
pressure maps clearly differ, emphasizing the importance of simulating finer physics (here,
chemical equilibrium). However, the cost of the code is significantly affected: the execution
time of MPP is 4090 seconds, against 81 for PG, which is 56 times higher.

135



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

0.2

0.4

0.6

0.8

1.0

1e7

(a) With chemical equilibrium - 4090 seconds

0.2

0.4

0.6

0.8

1.0

1e7

(b) Without chemical equilibrium - 81 seconds

Figure 6.2: Pressure field for the code with and without chemical equilibrium.

Simulating chemical equilibrium takes most of the computational time of the code, but on the
other hand, Figure 6.2 shows that we cannot avoid simulating it to obtain accurate predictions.
There are consequently high stakes at accelerating the computations related to the chemistry
of the problem.

6.4 Acceleration of the simulation code

This sections aims at demonstrating the benefits of hybrid codes, but also to showcase the
previous contributions of the thesis. We consider three different types of codes:

• PG: Execution of the CFD code without simulating any chemical reactions (perfect
gas).

• MPP: Execution of the CFD code with the simulation of chemical reactions using
Mutation++.

136



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

• NN: Execution of the CFD code with the simulation of chemical reactions using a neural
network approximating Mutation++.

For each code, we perform the computations on a low-resolution mesh (30× 100) and on a
high-resolution mesh (90 × 100). For a code C, we denote respectively by C_high and by
C_low its execution on the high and low-resolution mesh. We execute the codes on two
different mesh resolutions for two reasons. First, the prediction of MPP_high can be taken as
a reference to compute the prediction errors of the other codes, including MPP_low. Second,
as we shall see, the high-resolution version of NN is still faster than the low resolution of
MPP while being more accurate for some output metrics (see Section 6.4.2.2).

6.4.1 Methodology for designing NN hybrid code

In order to construct NN hybrid code, the first step is to design and train the neural network
that will be embedded inside the code. This process follows the three steps described in 2,
and around which the previous chapters were organized: construct the training database;
select hyperparameters; and train the network. In our case, and following remark 2.5, we
include the training database construction and the training in the hyperparameter search,
since these steps may have their own hyperparameters.

To demonstrate the benefits of hybrid codes and to illustrate the advantages of the previous
contributions, we compare two methodologies: the first, vanilla, and the second, thesis,
characterized as:

vanilla

• Construct the database with uniform
sampling.

• Find hyperparameters using a random
search.

thesis

• Allows to construct the database us-
ing variance based sampling or to
weight it using variance based sam-
ple weighting (3).

• Find hyperparameters (including for
VBSW) using TS-GPBO (4.5).

Vari-

ance based sampling refers to the same algorithm as TBS 1, but with Df 2
ε estimated using

local variance, like in equation (3.4). The input space is defined by ρ ∈ [0.1, 3.8] and
ε ∈ [2.07503× 107, 3× 108]. For ε, the zero is not the same for the CFD code as for M++, so
its boundaries are chosen so that the lower bound of ε matches the zero of the CFD code. In
addition, its distribution is log uniform. For ρ, the boundaries are chosen wide enough to
encompass all the possible values of the test case.

The neural network that we use is a Multi Layer Perceptron, and the hyperparameter space
is described in Appendix B. It is trained using Tensorflow in python on a training dataset
of 170000 points, and the hyperparameters are selected using a validation data set of 20000

137



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

points. Then it is exported and embedded into the original code in place of Mutation++
using the Tensorflow C api with a wrapper, CppFlow1.

As opposed to Mutation++, the calls of the C++ implementation of a neural network are nat-
urally vectorized. Therefore, we also modify the original code to leverage the implementation
advantages of neural networks so that it can be called on the whole mesh, in a batch fashion.

Remark. It turns out that this characteristic of neural networks is key to obtain a speed-up in
our case. Indeed, when it is called on one input point, Mutation++ is faster than the neural
network. The latter actually shines when it is called on the whole mesh, whereas Mutation++
has to be called sequentially on each cell.

6.4.2 Application of the vanilla methodology

In this section, we assess the results of vanilla. We first study the predictions of the neural
network for the approximation of Mutation++. Then, we introduce the first results obtained
with NN, the hybrid code.

Figure 6.3: Histogram of the normalized L2 validation error of the neural networks for approximating
M++.

6.4.2.1 Approximation of Mutation++

We assess the performances of neural networks for approximating the toy case of M++ through
an initial random search. The random search is based on 1000 different hyperparameter
configurations uniformly sampled in the hyperparameter space. This space is described in
Appendix B. Figure 6.3 plots the histogram of the errors obtained after this random search.

1https://github.com/serizba/cppflow

138

https://github.com/serizba/cppflow


CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

(a) η1 (b) Sη2 (c) η3 (d) P

(e) T (f) Cp (g) Cv (h) c

Figure 6.4: Predictions of the neural network (top) and predictions of M++ (bottom).

This histogram once again demonstrates the impact of hyperparameters on neural networks
performances: the best error (normalized L2) is 9.37× 10−8, but it goes up to orders of 1010.
The neural network that yield the best error has n_layers = 9 and n_units = 191 units,
which is close to the upper boundary of the search space for these hyperparameters.

We keep this neural network for our first experiments and provide a visualization of its
predictions against the input space of M++ in Figure 6.4. For each output physical observable,
the predictions are compared to the ground truth values computed by M++. No differences
can be seen visually, which is a good point. Note that for Cp and Cv, there are artifacts in
the predictions of M++ at the top of the domain, while there is none for the neural network.
This may come from numerical instabilities of M++ that may disturb the computation. The
neural network does not seem to be subject to such instabilities. This point is also illustrated
in section 6.5. In the next section, we assess how these predictions are reflected in the hybrid
code.

139



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

0.2

0.4

0.6

0.8

1.0

1e7

1

2

3

4

5

6

7

8
1e6

(a) MPP

0.2

0.4

0.6

0.8

1.0

1e7

1

2

3

4

5

6

7

8
1e6

(b) NN

0.2

0.4

0.6

0.8

1.0

1e7

1

2

3

4

5

6

7

8
1e6

(c) PG

Figure 6.5: Pressure field for MPP_high, NN_high and PG_high, with the scale defined by the
minimum/maximum pressure values obtained by PG (top) and MPP (bottom).

6.4.2.2 Accuracy and performances of the hybrid code

After a first run of the three codes, MPP, NN, and PG, with different resolutions, we assess
the predictions on the pressure. Figure 6.5 gathers the pressure field for the three codes
executed in the high-resolution mesh, with different scales constructed from the minimum
and maximum pressure values obtained by GP and MPP. Figure 6.6 gathers the prediction of
the codes for the pressure profile and the shock distance projected on the wall of the object.
The L2 and L∞ normalized errors for these curves are gathered in Tables 6.2 and 6.3. The
tables also display the execution times of the different codes.

On Figure 6.5 and 6.6, it is visually clear that the PG code yields erroneous predictions. This
shift justifies taking the chemistry of the phenomenon into account for this simulation. The
origin of this error, namely the model error, is mentioned in Section 6.5. Furthermore, no
visual differences can be detected between MPP and NN, which is a good point. To assess
the prediction error of NN, we have to look at more quantitative results.

140



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.2

0.4

0.6

0.8

1.0

1.2
p

1e7
MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

0.04 0.05 0.06 0.07 0.08 0.09 0.10
x wall

7.80

7.85

7.90

7.95

8.00

8.05

8.10

8.15

8.20

p

1e6
MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.004

0.006

0.008

0.010

0.012

0.014

0.016

sh
oc

k 
di

st
an

ce

MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96
x wall

0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

0.0150

sh
oc

k 
di

st
an

ce

MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

(b) Shock distance

Figure 6.6: Pressure profile and shock distance projected on the wall of the object. In the bottom
line, zoom of the curves in the highest error area.

Table 6.2 displays the errors of NN and PG when compared to MPP for each resolution.
They emphasize that the error of NN in each resolution is far lower than that of PG, for a
significantly reduced computational time with respect to MPP. The time reduction factor is
approximately the same for each resolution.

In Table 6.3, we compile the previous results, but we evaluate the L2 and L∞ errors and the
time improvement factor with respect to MPP_high only. This comparison exhibits the error
of MPP_low due to the lower resolution and enables its comparison with the error of both
NN codes. Several points can be made regarding these results. The errors obtained with both
NN codes are close to those of MPP_low. For the shock distance, the estimation obtained
with NN_high is even better than with MPP_low. For the PG code, the prediction error is
at least one decade higher than NN and MPP, regardless of the resolution. However, NN is
closer to PG in terms of execution time, with 531 and 1209 for NN and 81 and 211 for PG,
against 4090 and 9086 for MPP. To sum up, on the one hand, MPP and NN are comparable
in terms of error, and on the other hand, NN is almost one decade faster than MPP. These
results are comforting and motivate us to go further in the study of the method.

141



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

MPP_low (ref) NN_low PG_low
Time (s) 4090 531 81

Impr. (×) - 8.9 58.5

Pressure
L2 - 6.06× 10−7 7.74× 10−2

L∞ - 1.13× 10−3 4.64× 10−1

Shock dist.
L2 - 7.85× 10−7 1.70× 10−3

L∞ - 4.85× 10−3 9.89× 10−2

MPP_high (ref) NN_high PG_high
Time (s) 9478 1209 211

Impr. (×) - 7.8 44.9

Pressure
L2 - 1.20× 10−6 7.65× 10−2

L∞ - 2.00× 10−3 4.62× 10−1

Shock dist.
L2 - 8.54× 10−6 1.65× 10−3

L∞ - 1.06× 10−2 1.08× 10−1

Table 6.2: Execution times, with improvement factor with respect to the ref, and normalized L2 and
L∞ errors for the different codes in the low and high resolution meshes.

MPP_high (ref) MPP_low NN_high NN_low PG_high PG_low
Time (s) 9478 4090 1209 531 211 81

Impr. (×) - 2.3 7.8 17.9 44.9 117

Pressure
L2 - 3.19× 10−5 1.20× 10−6 3.23× 10−5 7.65× 10−2 8.15× 10−2

L∞ - 9.07× 10−3 2.00× 10−3 9.35× 10−3 4.62× 10−1 4.75× 10−1

Shock dist.
L2 - 9.14× 10−5 8.54× 10−6 9.18× 10−5 1.65× 10−3 1.29× 10−3

L∞ - 3.60× 10−2 1.06× 10−2 3.60× 10−2 1.08× 10−1 9.00× 10−2

Table 6.3: Execution times and normalized errors for the different codes.

6.4.3 Effect of HSIC analysis and Variance based sampling

In this section, we study the thesis methodology, i.e. the effect of HSIC based sensitivity
analysis and variance-based sampling/weighting on the results of neural network and on the
hybrid code NN.

To that end, we include a new categorical hyperparameter that we call local_variance ∈
{vbs, vbsw, None}, where vbs, vbsw and None respectively denote the cases where we sample
from the local variance, we weight the data using VBSW and we do not perform any sampling
or weighting. When local_variance ∈ {vbs, vbsw}, two conditional hyperparameters are
involved: k, the number of points used to estimate the local variance, and m, the ratio used
to construct the new distribution. The value vbs also comes with another hyperparameter
: sample_split ∈ [0, 1], which is the percentage of points to replace by samples of the new
distribution.

142



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

6.4.3.1 Effect on the neural network

In order to perform the sensitivity analysis, an initial random search has to be conducted
in order to evaluate the HSIC of each hyperparameter. Since 1000 points have already
been sampled without vbs or vbsw, we sample 1000 additional points for each new value of
local_variance. As a result, 3000 points are used to assess the HSIC. Their estimation for
the main hyperparameters is illustrated in Figure 6.7.

Figure 6.7: HSIC of the hyperparameters for L2 error.

After this initial random search, the best neural network obtained has n_layers = 8 and
n_units = 193, is trained with VBSW and reaches a validation L2 error of 1.13× 10−8. It is
almost one decade better than the previous best error, which illustrates the benefits of VBSW.
The hyperparameters optimizer, learning_rate, activations, n_layers, n_units and
loss_function seems to be the most impactive.

We carry on with the application of our previous work and apply the TS-GPBO methodology
(see Chapter 4, Section 4.5). The obtained neural network reaches a L2 error of 8.48× 10−8,
with n_layers = 5 and n_units = 20. This network has a competitive error for far less
FLOPs and parameters.

Remark. The obtained neural network is trained with local_variance = None. It is not
contradictory with the previous results and is easily explained by the stochastic nature of deep
learning, the sampling schemes and Bayesian optimization.

6.4.3.2 Effect on the hybrid code

We now plug this neural network into the hybrid code to assess its prediction and to illustrate
the benefits of HSIC and VBSW. To apply HSIC analysis and VBSW, we conduct the
algorithm TS-GPBO described in Section 5, and we include variance-based sampling and
weighting as hyperparameters. We compare the obtained network with the previous one. The

143



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

MPP_high (ref) MPP_low NN_high NN_low NN_high NN_low
method. - - thesis thesis vanilla vanilla
Time (s) 9478 4090 529 220 1209 531

Impr. (×) - 2.3 17.9 43.1 7.8 17.9

Pressure
L2 - 3.19× 10−5 1.13× 10−6 4.00× 10−5 1.20× 10−6 3.23× 10−5

L∞ - 9.07× 10−3 2.22× 10−3 9.82× 10−3 2.00× 10−3 9.35× 10−3

Shock dist.
L2 - 9.14× 10−5 6.55× 10−6 9.19× 10−5 8.54× 10−6 9.18× 10−5

L∞ - 3.6× 10−2 1.08× 10−2 3.6× 10−2 1.06× 10−2 3.6× 10−2

Table 6.4: Execution times and normalized errors for the different codes after TS-GPBO, compared
to random search (RS).

results are gathered in Table 6.4. We managed to obtain a ×2 speed-up for comparable and
sometimes better prediction error, which illustrates the benefits of TS-GPBO.

6.4.4 Is the error acceptable?

We obtained satisfying results both with the vanilla and the thesis methodologies. However,
the prediction of NN was assessed by computing its error with respect to the target obtained
using MPP_high. The error of NN was comparable to that of MPP_low on this prediction,
but it was on one single prediction. This evaluation process is not sufficient to state if the
error is acceptable or not. In order to ensure prediction guarantees, which are mandatory for
using codes in production, we have to go deeper into the analysis.

6.5 Guarantees for the hybrid code

In this section, we introduce two ways of obtaining prediction guarantees for NN. The
first ensures to have exactly the same prediction accuracy as MPP but brings additional
computations. The second compares the error with other sources of error to assess if it is
acceptable, which allows using NN at full speed if it does.

6.5.1 Zero error guarantee using initialization

As we mentioned earlier, the solver used in MPP is iterative. It is initialized with a guess
solution, which is usually uninformative - usually the same value over the entire mesh - and

144



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

iterations are made until a certain convergence criterion is reached. It is possible to first
execute the hybrid code NN and to use its prediction as initialization for MPP. Then, MPP
converges in fewer iterations, since the initialization is supposed to be close to the convergence
point.

For the MPP_low code, once the prediction of NN_low is given as input to the original
code, it reaches convergence in 163 seconds. If we add the execution time of the NN code,
NN+MPP takes 383 seconds which is 10.6 times faster than MPP_low alone, for a prediction
whose accuracy is ensured by the original code. In that case, there is no need to compare the
pressure profile or the shock distance since the prediction is exact. In other words, we
obtained an acceleration of a factor 10.6 for the exact same accuracy.

Remark. Generality of the approach: This approach is not specific to our test case but
can be applied to any simulations that involve iterative solvers and whose iterations are not of
interest as simulation outputs. Such instances can be simulations of stationary phenomenon.

6.5.2 Acceptable error guarantee using error analysis

Using a neural network to design hybrid codes implies to add an error coming from the neural
network approximation. However, there are several external, classical sources of error in the
conception of the simulation codes. In this section, we compare the error of the hybrid code
with these other errors.

We denote the original code MPP by M and the hybrid code NN by M̂, with Mhigh denoting
the model of MPP_high, and so on for the other MPP and NN codes. The models take
parameters x as input and output a prediction M(x) and M̂(x). In our case, the input
vector x contains the upstream pressure, temperature, and speed. The error of the predictions
can be decomposed as

{
eM(x) = |δ∆,M(x) + δx,M(x)|,
eM̂(x) = |δ∆,M̂(x) + δx,M̂(x) + δθ,M̂(x)|. (6.6)

Equation (6.6) emphasizes three different types of errors :

• The discretization errors δ∆,M and δ∆,M̂. The choice of the mesh used to run the
simulation has an impact on the prediction error. A low mesh resolution may degrade
the error, as we saw with MPP_low, but the geometry of the mesh also has its impact.

• The parameters’ errors δx,M and δx,M̂. In practice, we conduct numerical simulations
because we are interested in the output of a phenomenon under specific conditions of
interest. Nonetheless, we may have imperfect knowledge of these conditions of interest.
This translates into uncertainties on the input vector x, which contains the values of

145



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.2

0.4

0.6

0.8

1.0

1.2

p

1e7
low

high

low

high

PG_low
PG_high

0.04 0.06 0.08 0.10 0.12 0.14 0.16
x wall

6.5

7.0

7.5

8.0

8.5

9.0

p

1e6

low

high

low

high

PG_low
PG_high

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.004

0.006

0.008

0.010

0.012

0.014

0.016

di
st

an
ce

low

high

low

high

PG_low
PG_high

0.84 0.86 0.88 0.90 0.92 0.94 0.96
x wall

0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

0.0140

0.0145

di
st

an
ce

low

high

low

high

PG_low
PG_high

(b) Shock distance

Figure 6.8: Pressure profile and shock distance projected on the wall of the object, for 40 different
values of the upstream speed. In the bottom line, zoom of the curves in the highest error area.

the parameters that define the conditions of the simulation. These uncertainties have
an impact on the model prediction, and therefore on their prediction error.

• The neural network approximation error δθ,M̂. In the hybrid code, NN, the neural
network approximates M++ with a certain error. This error propagates through the
hybrid code, thereby affecting its prediction error.

In order to ensure that NN yields reliable predictions neural network approximation error
must be compared with parameters’ and discretization errors. If the former is at most similar
to the latter, NN could be used safely.

Remark. Another type of error is often specified when decomposing the error of numerical
codes. This error is called modeling error and refers to the error that stems from modeling
choices. In our case, the model error would be the error between PG and MPP, coming from
the choice not to simulate the chemistry in PG. Another model error could come from the
choice to simulate the chemistry with not more than three species.

146



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

6.5.2.1 Parameters’ error

To assess parameters’ error, we introduce a perturbation in x, modeling the uncertainty on
the upstream speed. Let x = (x, y, z), with x ∼ U(0.95x, 1.05x), x = 4930.83 (the nominal
value of the initial test case). The random variable x traduces the uncertainty on the speed of
the upstream field, and the values of y and z are the upstream pressure and temperature. We
simulate the random variable x on N = 40 Gauss quadrature points {x1, ..., xN}, with xi ∈
[0.95x, 1.05x], that are used to evaluate E[M(x)] with M ∈ {Mlow,Mhigh,M̂low,M̂high}.
The mean E[M(x)] and each of the 40 curves are plotted in Figure 6.8. These plots are quite
loaded, but they emphasize that the variability induced by parameters uncertainty is much
higher than that coming from approximation, and even discretization errors.

Benefits of NN+MPP

To conduct this experiment, we never executed Mlow and Mhigh entirely, but always
used an initialization from the prediction of M̂low and M̂high (NN+MPP, as described
in Section 6.5.1). The advantages were twofold. First, the study was much faster
(approximately by a factor of 10). Second, for some {x1, ..., xN}, MPP did not converge,
perhaps because of numerical instabilities. Initializing MPP using the hybrid code solved
this problem. This echoes the remark of Section 6.4.2.1 on the artefacts in predictions
of Cp and Cv by M++.

6.5.2.2 Discretization error

Comparing discretization and neural network approximation errors is more subtle because it
is not clear-cut in Figure 6.8. To do so, we directly compare the discretization error of Mlow

with the approximation error of M̂low and M̂high under parameters uncertainty. First, we
plot ||Mlow −Mhigh|| and ||M̂low −Mhigh|| for the 40 values of xi in Figure 6.9. Here, ||.|| is
the normalized absolute difference evaluated point-wise in the pressure profile and the shock
distance. At first sight, the approximation error seems to be lower, for the pressure profile,
and equivalent, for the shock distance, to the discretization error.

We confirm this observation by plotting ||M̂low −Mlow|| and ||M̂high −Mhigh|| in Figure
6.10. We plot the 40 curves corresponding to each xi and the mean estimated using the Gauss
quadrature. It clarifies the comparison and strengthens the conclusion that approximation
error is lower than both discretization and parameters error. Note that in the pressure profile,
one xi value leads to outlying errors for M̂high, M̂low and Mlow. This value of i is 13, the
famous lucky number, which is worth mentioning. More seriously, we did not explain the
origin of this outlying value, but we can at least say that it does not come from the neural
network approximation error since even the prediction of Mlow is abnormally erroneous.

This error study shows that neural network approximation error can be small when compared
to other types of errors. In this case, the hybrid code is reliable, which is a strong argument

147



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

0.0 0.2 0.4 0.6 0.8 1.0
x wall

10 5

10 4

10 3

10 2

p

|| low high||
|| low high||

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.00

0.01

0.02

0.03

0.04

di
st

an
ce

|| low high||
|| low high||

(b) Shock distance

Figure 6.9: Discretization errors ||Mlow −Mhigh|| and ||M̂low −Mhigh|| for the pressure profile and
the shock distance for each of the 40 different values of the upstream speed.

0.0 0.2 0.4 0.6 0.8 1.0
x wall

10 7

10 6

10 5

10 4

10 3

10 2

p

|| low low||
|| high high||

0.0 0.2 0.4 0.6 0.8 1.0
x wall

10 3

10 2

p

|| low high||
|| low low||
|| high high||

(a) Pressure profile

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.000

0.005

0.010

0.015

0.020

di
st

an
ce

|| low low||
|| high high||

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

di
st

an
ce

|| low high||
|| low low||
|| high high||

(b) Shock distance

Figure 6.10: Top: approximation errors ||M̂low −Mlow|| and ||M̂high −Mhigh|| for the pressure
profile and the shock distance for each of the 40 different values of the upstream speed. Bottom:
comparison of the mean of the discretization and approximation errors

148



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

in favor of the use of hybrid simulation codes.

6.6 Discussion and Perspectives

The perspectives that follow this work are numerous and emphasize the potential of the
presented methodology. These perspectives are twofold. First, the specific test case of
approximating Mutation++ could be explored more thoroughly since this library is used in
many simulation codes. Second, the methodology applied is not specific to Mutation++,
and its success is an argument in favor of more general usage of hybrid simulation codes for
numerical simulations.

6.6.1 Towards a general approximation of Mutation++

In this chapter, the methodology for approximating Mutation++ consists of constructing a
training database and fitting a neural network. However, the neural network is trained for a
fixed output dimension corresponding to the number of species. It cannot be used for test
cases that involve different species. This constraint is an obstacle towards a general usage of
neural networks to approximate Mutation++. Indeed, it requires constructing a new training
database for each different chemical setting.

In order to overcome this problem, it would be interesting to investigate the use of transfer
learning. The idea behind transfer learning is to use a neural network trained for one task
in another similar task. When there is a large training database for the first task but only
limited data for the other task, it allows obtaining good results on the second task despite the
data frugality. It is intensively used in computer vision, and language understanding, where
neural networks pre-trained on Imagenet (with more than one million images and a thousand
classes) or on Wikipedia text database are fine-tuned on more specific tasks. In our case, we
could pre-train a neural network once for a high number of different species and with a large
database constructed out of Mutation++. Then, we could find a simple way to adapt this
neural network for each different test case, for instance, with a simple least-squares linear
regression on the feature space of the pre-trained network (like we did in 3.5), using a smaller
data set.

6.6.2 Possible usages of hybrid simulation codes

This chapter introduced a methodology for constructing hybrid numerical simulation codes,
which brings significant improvements in terms of speed-up. Moreover, the error induced
by the neural network approximation at play when constructing the hybrid code can be
negligible compared to other classical errors of numerical simulations. These results unlock
many perspectives.

149



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

Prediction speed-up. When the neural network approximation error is negligible, which
can be checked with an error analysis similar to Section 6.5, the hybrid code can be used at
its quickest form. In that case, it provides reliable predictions with a similar accuracy than
the original code, for at least a decade lower execution time.

When the error analysis concludes that the approximation error is not negligible and not
acceptable, it is always possible to initialize the numerical simulation code with the prediction
of the hybrid code (NN+MPP). This process yields a prediction whose accuracy is ensured
by the original simulation code. To sum up, constructing hybrid codes almost always grants
a speed-up for a single prediction, which translates into comparable time savings when using
these codes in production.

The benefits of these time savings can go even further. Indeed, some test cases are so
computationally intensive that they simply cannot be executed. Using hybrid codes could
help to close the gap of this infeasibility: finer physics might no longer be out of reach.

Parametric studies. The use for which the prediction speed-ups are the most promising is
parametric studies, like uncertainty quantification, sensitivity analysis and calibration (like in
we demonstrated in Section 6.5). Indeed, using hybrid codes in place of classical surrogate
models could lead to far more accurate estimation since surrogate models are usually trained
on a limited set of data.

Such parametric studies may require an unaffordable number of predictions, even when using
a hybrid code, making the use of surrogate models mandatory. Nonetheless, in these cases, the
hybrid code could be used to generate a more furnished training database, thereby improving
the performances of the surrogate model and the quality of the parametric study.

Finally, numerical simulation codes may be so expensive that even the construction of a
minimal training data set for surrogate modeling would be out of reach, forbidding any
parametric study. Using hybrid codes could enable parametric studies for such test cases.

Decision-making. There is always interest in speeding up a numerical simulation code used
for production or parametric studies. However, a given code is often not a final product, and
research and engineering efforts are continuously produced to improve it. The construction of
hybrid codes may help to make decisions about the orientation of these efforts.

Constructing a hybrid code with our methodology implies approximating a part of the
simulation with a neural network. There may be questions about how to include this part in
the simulation. For instance, in our case, we could wonder if it is worth simulating chemical
equilibrium in the simulation and, if so, to what precision. Comparing the code PG (without
chemical equilibrium) and NN_low shows that simulating chemical equilibrium leads to
significantly different predictions, which answers this question. Still, we could go further
and study how many species this simulation requires to produce accurate predictions. These
conclusions could drive efficient researches towards more and more accurate simulation codes.

150



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

Finally, parametric studies are also intensively used for decision-making. Indeed, the results
of these studies always lead to design choices, which directly impact production.

6.6.3 Concluding remark

We would like to point out that even if the obtained hybrid code no longer uses the code
part that is approximated by a neural network, this part is still crucial for constructing the
hybrid code. Indeed, a good training set is mandatory to ensure neural network accuracy,
and the original code part is key to achieve that. That is why we do not claim supervised
deep learning to replace certain simulation codes. Rather, it should be seen as an additional
step in constructing simulation codes that allows for significant accelerations.

151



CHAPTER 6. EFFICIENT HYBRID NUMERICAL SIMULATIONS (WITH GUARANTEES)

152



Chapter 7
Summary of the thesis/Résumé de la thèse (in
French)

7.1 Introduction

Les innovations récentes en mathématiques, en informatique et en ingénierie ont permis de
réaliser des simulations numériques de plus en plus complexes. Cependant, certaines simula-
tions restent inabordables en termes de temps de calcul, même pour les supercalculateurs les
plus puissants. Récemment, l’apprentissage automatique a démontré sa capacité à améliorer
l’état de l’art dans de nombreux domaines, notamment la vision par ordinateur, la compréhen-
sion du langage et la robotique. Cette thèse s’inscrit dans le domaine émergent et à fort
enjeu de l’apprentissage automatique scientifique, qui étudie l’application de l’apprentissage
automatique au calcul scientifique. Plus précisément, nous nous intéressons à l’utilisation de
l’apprentissage profond pour accélérer les simulations numériques. Ce faisant, nous mettons
en évidence certains liens entre ces deux domaines, en présentant des contributions ayant un
impact sur l’un comme sur l’autre.

153



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.1 L’apprentissage automatique comme réponse aux enjeux de la simu-
lation numérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1.2 Interactions entre simulation numérique et apprentissage profond
supervisé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.3 Organisation de la thèse . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Bases de l’apprentissage profond supervisé . . . . . . . . . . . . . . 156

7.2.1 Les réseaux de neurones . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2.2 L’apprentissage profond supervisé . . . . . . . . . . . . . . . . . . 158

7.3 Construction d’une base de données d’entraînement à partir des
variations locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3.1 Échantillonnage à partir du développement de Taylor . . . . . . . 159
7.3.2 Généralisation par pondération basée sur la variance locale . . . . 160
7.3.3 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.4 Optimisation des hyperparamètres à l’aide de l’analyse de sensi-
bilité globale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4.1 Adaptation du critère d’indépendance de Hilbert-Schmidt . . . . . 163
7.4.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.5 Une analogie entre l’entraînement des réseaux de neurones et la
résolution d’équations aux dérivées partielles . . . . . . . . . . . . 167

7.6 Application à la construction d’un code de simulation hybride . . 169
7.6.1 Description du code . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.6.2 Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.1.1 L’apprentissage automatique comme réponse aux enjeux de
la simulation numérique

Le domaine de la simulation numérique se retrouve toujours soumis à un compromis entre
précision et performances. En effet, le but des simulations est de reproduire des phénomènes
physiques le plus fidèlement possible à l’aide de programmes informatiques. Cependant,
améliorer la fidélité des simulations implique de réaliser des calculs beaucoup plus couteux. Il
est donc nécessaire de trouver un compromis pour que le programme s’exécute en un temps
raisonnable sans trop simplifier le phénomène simulé.

154



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

Dans cette thèse, nous étudions l’utilisation de l’apprentissage profond pour accélérer des
codes de simulation. Bien souvent, ces codes de simulation sont constitués de couplages entre
différents systèmes d’Équations aux Dérivées Partielles (EDP) simulant chacun un phénomène
différent. L’approche retenue consiste à l’approximation d’un de ces systèmes d’EDP avec un
réseau de neurones, puis au couplage du réseau de neurones obtenu avec le reste du code.

Cette méthode présente plusieurs avantages. Premièrement, elle permet d’éviter d’avoir à
réaliser des hypothèses simplificatrices sur la physique du problème. Ensuite, ne procéder à
l’approximation que d’une partie du code, et non du code en entier, permet de constituer une
base d’apprentissage plus fournie, ce qui favorise la précision du réseau de neurones. Enfin,
l’implémentation du réseau de neurones présente beaucoup d’avantages : son exécution revient
à une succession d’opérations vectorielles, ce qui permet de traiter naturellement beaucoup
de données en parallèle; la complexité de son exécution est linéaire avec les dimensions du
problème et ne dépend pas du nombre de points utilisés pour l’entraînement.

7.1.2 Interactions entre simulation numérique et apprentissage
profond supervisé

Dans notre contexte, utiliser la méthode de l’apprentissage profond pour l’approximation de
fonction se fait en trois étapes:

1 construire une base de données d’entraînement,

2 définir l’architecture du réseau de neurones,

3 procéder à son entraînement.

Chacune de ces étapes revêt une importance particulière si elles sont considérées à travers le
prisme du compromis précision-performances. En effet, une base de données d’entraînement
bien construite permet d’améliorer la précision d’un réseau de neurones sans sacrifier les
performances. Ensuite, l’architecture d’un réseau de neurones doit être choisie avec soin
car elle a un fort impact à la fois sur sa précision et ses performances. Enfin, la qualité de
l’entraînement du réseau de neurones conditionne fortement la précision de l’approximation,
sans affecter les performances. Cette thèse propose donc d’étudier chacune de ces étapes.

Les enjeux de ce travail pour la simulation numérique se résument à l’amélioration du
compromis précision-performances. Cependant, aborder la méthodologie de l’apprentissage
profond dans cette optique permet également de tirer des bénéfices pour la pratique de
l’apprentissage profond en général. Les contributions de cette thèse profitent donc à la fois au
domaine de la simulation numérique et au domaine de l’apprentissage profond.

155



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

7.1.3 Organisation de la thèse

Dans un premier temps, nous rappelons les bases de l’apprentissage profond supervisé,
nécessaires à la compréhension des travaux réalisés dans cette thèse. Ensuite, nous abordons
successivement chacune des trois étapes présentées au paragraphe précédent dans des sections
dédiées. Enfin, nous consacrons une dernière section à l’utilisation de ces contributions pour
la construction d’un code hybride dans le cadre d’une simulation d’un écoulement autours
d’un objet prenant en compte des réactions chimiques dans le fluide.

7.2 Bases de l’apprentissage profond supervisé

Cette partie décrit la façon dont sont construits les réseaux de neurones. Il comprend également
des rappels sur l’apprentissage profond supervisé.

7.2.1 Les réseaux de neurones

Un réseau de neurones simple (MLP, pour Multi Layer Perceptron en anglais) consiste en une
succession de couches de neurones. Il peut être complètement décrit par deux ensembles de
paramètres. Le premier décrit sa forme, appelée architecture :

• d la profondeur du réseau,

• nk le nombre de neurones sur la k-ième couche, avec k ∈ {1, d+ 2} (avec nd+1 = nout et
n0 = nin),

• σk la fonction d’activation de la k-ième couche, généralement non linéaire.

Ces paramètres font partie d’un ensemble dont les membres sont appelés hyperparamètres.Cet
ensemble définit l’architecture des réseaux de neurones ainsi que les conditions de leur
entraînement. Le deuxième ensemble de paramètres, correspondant à θ, contient les paramètres
à optimiser pendant le processus d’apprentissage :

• W k = {ωij}, (i, j) ∈ {0, nk+1−1}×{0, nk−1} la matrice des poids entre les (k−1)-ième
et k-ième couches,

• bk = (b0, ..., bnk−1) le vecteur de bais de la k-ième couche.

Soient fk : Rnk → Rnk+1 telle que

156



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

Figure 7.1: Réseau de neurones de profondeur d = 1, avec nin = n1 = 2, n2 = 3 et nout = n3 = 1.
Dans ce cas précis, pour des raisons de lisibilité, le i-ième composant de la sortie de la première
couche est notée σi.

fk
i (x) = σk

( j=nk−1∑
j=0

ωk
ijxj + bki

)
= σk(W

kx+ xk) (7.1)

avec x = (x1, ..., xnk
) ∈ Rnk . Alors, fθ : Rnin → Rnout , la fonction du réseau de neurones peut

s’écrire

fθ(x) = fd ◦ · · · ◦ f 1(x) (7.2)

avec θ = {W k, bk|k ∈ {1, d+ 1}}. L’equation (7.1) et l’equation (7.2) mettent en évidence
qu’un réseau de neurones peut être vu comme une succession de produits matrices-vecteurs.
Sur la figure 7.1 est repréenté un réseau de neurones de profondeur d = 1, avec nin = 2,
nk = 3 et nout = 1. Pour ce réseau de neurones, nous avons


fθ(x) = ω2

0σ(ω
1
00x0 + ω1

10x1 + b10) + ω2
1σ(ω

1
01x0 + ω1

11x1 + b11) + ω2
2σ(ω

1
02x0 + ω1

12x1 + b12) + b2

=
2∑

i=0

ω2
i σ(

1∑
j=0

ω1
jixj + bi) + b2

θ = {ω2
0, ω

1
00, ω

1
10, ω

2
1, ω

1
01, ω

1
11, ω

2
2, ω

1
02, ω

1
12, b

1
0, b

1
1, b

1
2, b

2}

157



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

7.2.2 L’apprentissage profond supervisé

L’apprentissage supervisé consiste à apprendre une fonction reliant des données d’entrée à
des données de sortie. Pour cela, un modèle paramétrique est construit et optimisé pour
reproduire cette fonction le mieux possible.

Plus précisément, nous notons cette fonction f : S ⊂ Rnin → Rnout où S est un sous espace
mesurable de Rnin qui dépend de l’application considérée. L’apprentissage revient donc à
effectuer une approximation de f à l’aide d’un modèle d’apprentissage, noté fθ, où θ ∈ Θ
contient tous les paramètres du modèle. Optimiser fθ pour effectuer une approximation
de f signifie trouver une valeur θ∗ pour θ qui minimise une fonction de coût intégrée
Jx(θ) = E[L(fθ(x), f(x))], où L est une fonction de coût, L : Rno × Rno → R. La variable
aléatoire x ∼ Px traduit la distribution de probabilité des données d’entrée. Pour un réseau
de neurones tel que présenté dans le paragraphe précédent, θ = {W k, bk|k ∈ {0, d}}.

En pratique, nous n’avons pas accès à Px et pour optimiser fθ, Jx est estimé en utilisant N
points {x1, ...,xN} ∈ S qui sont des échantillons de x, et leur image par f {f(x1), ..., f(xN)}.

Le modèle fθ est ensuite entraîné avec un algorithme d’optimisation. Dans le cas des réseaux
de neurones, l’algorithme le plus utilisé est la descente de gradient stochastique (SGD,
Robbins and Monro (1951)), dont l’implémentation est rendue très efficace par l’algorithme
de rétro-propagation du gradient, basée sur la différentiation automatique.

7.3 Construction d’une base de données d’entraînement
à partir des variations locales

Dans cette partie, nous nous intéressons à la construction de la base de données d’entraînement
pour l’apprentissage profond supervisé. En calcul scientifique, le cadre utilisé pour construire
une telle base de données est appelé plan d’expériences. Plusieurs méthodes existent déjà,
comme Latin Hypercube Sampling (McKay et al., 1979), Maximin margins (Johnson et al.,
1990), ou encore plan d’entropie maximum (Shewry and Wynn, 1987), mais elles reposent
principalement sur l’idée de répartir les points d’apprentissage de la manière la plus homogène
possible sur le domaine d’entraînement.

Ici, nous abordons le problème en suivant une autre approche. Nous partons de l’observation
qu’un réseau de neurones aura plus de difficulté dans l’approximation d’une fonction f aux
endroits où cette fonction connaît de fortes variations. Celui-ci aura donc besoin de plus de
points d’apprentissage dans ces régions de l’espace.

158



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

7.3.1 Échantillonnage à partir du développement de Taylor

Nous construisons une nouvelle distribution d’entraînement, dPx̄, qui focalise l’échantillonnage
de la base de données d’entraînement sur les zones où f varie fortement. Il reste à déterminer
comment identifier ces zones. Pour cela, nous utilisons le développement de Taylor de la
fonction f . Ce développement est valable au voisinage d’un point x ∈ S, où S est le domaine de
définition de f , et implique les dérivées de f . Il relie donc les variations de f (via les dérivées)
à une zone précise (le voisinage de x). A partir de ce développement, nous construisons un
indice qui est proportionnel à l’amplitude des variations locales de f dans le voisinage de x.
Cet indice s’écrit

Dfn
ε (x) =

∑
1≤|k|≤n

‖ε‖k · ‖Vect(∂kf(x))‖
k!

, (7.3)

où ∂kf correspond à la notation multi-indices des dérivées d’ordre k de f et ε indique la
taille du voisinage de x considéré. En pratique, nous n’utiliserons que le développement
à l’ordre n = 2, c’est-à-dire Df 2

ε (x). Il est donc possible de construire une méthodologie
d’échantillonnage que nous appelons échantillonnage par développement de Taylor (noté TBS).
Cette méthodologie est récapitulée dans l’Algorithme 6.

Line 1-2: La méthodologie nécessite une initialisation basée sur l’échantillonnage uniforme
de N points. Ensuite, N ′ nouveaux points seront ajoutés à la base d’entraînement. Line 3-5:
La construction de {Dfn

ε (x1), ..., Dfn
ε (xN)} se fait à partir de ces points initiaux. Line 6:

L’échantillonnage à partir de Dfn
ε peut se faire grâce à des méthodes d’approximation de

densité. Dans ce cas, nous avons utilisé un mélange de Gaussiennes. Line 7-8: Il reste à
évaluer l’image de la fonction en les nouveaux points obtenus après l’échantillonnage, pour
compléter la base de données d’entraînement finale comportant N +N ′ points.

Algorithm 6 Taylor Based Sampling (TBS)
1: Entrées: ε, N , N ′

2: Échantillonner {x1, ...,xN} à partir de x ∼ U(S)
3: for 0 ≤ k ≤ n do
4: Calculer {∂kf(x1), ..., ∂

kf(xN)}
5: Calculer {Dfn

ε (x1), ..., Dfn
ε (xN)} en utilisant equation (7.3)

6: Échantillonner {x̄1, ..., x̄N ′} à partir de dPx̄ ∝ Dfn
ε

7: Calculer {f(x̄1), ..., f(x̄N ′)}
8: Ajouter {f(x̄1), ..., f(x̄N ′)} à {f(x1), ..., f(xN)}

Sur la figure 7.2, nous illustrons x → Df 2
ε (x) avec f définie par la fonction de Runge, puis par

la fonction tangente hyperbolique. Nous faisons également figurer les points supplémentaires
échantillonnés à partir de TBS.

Le fait de modifier la distribution d’entraînement ressemble à certaines méthodes employées

159



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
f(x

)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
f2 (

x)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f(x
)

0.0

0.1

0.2

0.3

0.4

0.5

D
f2 (

x)

Figure 7.2: Gauche : (Axe de gauche) fonction de Runge par rapport à x et (axe de droite)
x → Df2

ε (x). Les points échantillonnés selon TBS sont placés sur l’axe des abscisses et projetés sur
f . Droite : Même figure avec la fonction f tangente hyperbolique.

en apprentissage profond, comme l’apprentissage par cursus (Bengio et al., 2009b) ou en-
core la recherche d’exemples complexes (Shrivastava et al., 2016). TBS se démarque par
une caractérisation mathématique de l’échantillonnage, moins heuristique que ces dernières
méthodes.

7.3.2 Généralisation par pondération basée sur la variance locale

Tel quel, TBS ne peut pas être appliqué pour des problèmes génériques d’apprentissage
profond. En effet, en général, la fonction f n’est pas connue. Cela implique qu’il est
impossible d’évaluer ses dérivées, et donc Df 2

ε (x). De plus, même en supposant que l’on
puisse échantillonner de nouveaux points d’apprentissage {x̄1, ..., x̄N ′}, il serait impossible de
calculer {f(x̄1), ..., f(x̄N ′)}.

Pour régler le problème des dérivées, nous définissons de nouveaux indices :

D̂f 2(xi) =
1

k − 1

∑
xj∈Sk(xi)

(
f(xj)−

1

k

k∑
xl∈Sk(xi)

f(xl)
)2
, (7.4)

où Sk(xi) est l’ensemble des k plus proches voisins de x. Cet indice repose sur une estimation
de la variance de f dans le voisinage de x. Il est démontré dans la thèse que lorsque ||ε|| → 0,
la variance locale est un estimateur de Df 2

ε (x).

Enfin, pour palier le problème de l’échantillonnage, nous remplaçons ce dernier par une
pondération. Il s’agit de pondérer chaque point d’entraînement xi par D̂f 2

ε (xi). Cet algorithme
est appelé pondération des points par la variance locale (VBSW, pour Variance based Sample

160



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

Weighting en anglais).

7.3.3 Résultats

Les améliorations découlant de TBS et VBSW sont démontrées sur différents cas d’application.
TBS est étudié sur l’approximation de la résolution d’un système d’équations de Bateman,
décrit en annexe (cf Appendix C) et VBSW est étudié sur des problèmes de classification
d’image et de classification/régression de texte.

7.3.3.1 Équations de Bateman

Pour ce cas test, un simple MLP est utilisé. L’expérience est répétée 50 fois et l’erreur L2

moyenne est affichée avec son erreur standard d’estimation. L’erreur L∞ est aussi représentée.
Les résultats sont rassemblés dans le tableau 7.1.

Sampling L2 error (×10−4) L∞ (×10−1)

Uniforme 1.22± 0.13 5.28± 0.47

TBS 1.14± 0.15 2.96± 0.37

Table 7.1: Comparaison entre l’échantillonnage uniforme et TBS pour les équations de Bateman

7.3.3.2 Classification d’image

Pour ce cas test, les cas d’application retenus sont MNIST et Cifar10, sur lesquels des réseaux
de neurone de type Lenet (Lecun et al., 1998) et Resnet (He et al., 2015) sont respectivement
entraînés. La grandeur d’évaluation considérée est la précision de classification. Celle-ci est
présentée sous la forme : ”précision max, précision moyenne ± erreur standard d’estimation
de la moyenne”. Les résultats sont rassemblés dans le tableau 7.2.

VBSW simple entraînement
MNIST 99.09, 98.87 ± 0.01 98.99, 98.84± 0.01

Cifar10 91.30, 90.64 ± 0.07 91.01, 90.46± 0.10

Table 7.2: Comparaison entre un simple entraînement et un entraînement avec VBSW pour MNIST
et Cifar10

161



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

VBSW simple entraînement
m1 m2 m1 m2

RTE 61.73, 58.46 ± 0.15 - 61.01, 58.09± 0.13 -
STS-B 62.31, 62.20 ± 0.01 60.99, 60.88± 0.01 61.88, 61.87± 0.01 60.98, 60.92 ± 0.01

MRPC 72.30, 71.71 ± 0.03 82.64, 80.72 ± 0.05 71.56, 70.92± 0.03 81.41, 80.02± 0.07

Table 7.3: Comparaison entre un simple entraînement et un entraînement avec VBSW pour RTE,
STS-B et MRPC. Pour RTE, le critère utilisé (m1) est la précision. Pour MRPC, deux critères
sont utilisés : (m1) est la précision et (m2) est le score F1. Pour STS-B, (m1) est la corrélation de
Spearman et (m2) est la corrélation de Pearson.

7.3.3.3 Classification et régression de texte

Pour ce cas test, les cas d’application retenus sont RTE, STS-B et MRPC, des jeux de données
issus du benchmark Glue (Wang et al., 2019). Un réseau de neurones spécialisé dans l’analyse
de données textuelles, Bert (Devlin et al., 2019), est utilisé. Le critère d’évaluation change
pour chaque cas et est précisé dans la légende du tableau 7.3. Les résultats sont rassemblés
dans ce tableau et sont présentés de la même manière que pour la classification d’image.

Ces résultats valident la méthode d’échantillonnage (TBS) et de pondération (VBSW), ainsi
que l’observation initiale sur la difficulté d’apprentissage des réseaux de neurones lorsque f
connaît de fortes variations. Ces conclusions sont intéressantes à la fois pour la simulation
numérique, car il s’agit d’une nouvelle façon d’aborder les plans d’expérience, mais aussi pour
l’apprentissage automatique en général, puisque VBSW peut s’appliquer facilement à un large
panel de problèmes. De plus, cette vision de la difficulté d’apprentissage pourrait motiver
d’autres futurs travaux.

7.4 Optimisation des hyperparamètres à l’aide de l’anal-
yse de sensibilité globale

Dans la partie précédente, nous avons étudié la construction de la base de données d’en-
traînement, qui est la première étape de la méthodologie d’apprentissage profond supervisé.
L’étape suivante est le choix de l’architecture du réseau de neurones, par le choix de ses hyper-
paramètres. Cette étape est cruciale, car les hyperparamètres d’un réseau de neurones ont un
impact significatif sur la précision du réseau de neurones ainsi que sur son coût d’exécution. Or,
les méthodes habituelles d’optimisation d’hyperparamètres (recherche aléatoire (Bergstra and
Bengio, 2012), optimisation Bayesienne (Mockus, 1974), recherche d’architecture neuronale
(Elsken et al., 2019), Hyperband (Li et al., 2018b) ...) ne sont pas naturellement conçues pour
intégrer le coût d’exécution comme critère d’optimisation. De plus, ces méthodes suivent
des approches boîte-noire, et l’utilisateur ne retire aucune interprétation ou justification du

162



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

résultat, ni de connaissances sur le comportement de l’erreur vis-à-vis des hyperparamètres.

Pour palier ce problème, nous introduisons l’utilisation des récentes avancées en analyse de
sensibilité dans le cadre de l’optimisation des hyperparamètres. Plus précisément, nous nous
focalisons sur l’analyse de sensibilité globale et orientée-objectif. Pour cela, nous utilisons un
indice de sensibilité, le critère d’indépendance de Hilbert-Schmidt (HSIC, pour Hilbert-Schmidt
Independance Criterion), et son dérivé adapté à l’analyse de sensibilité orientée-objectif.

7.4.1 Adaptation du critère d’indépendance de Hilbert-Schmidt

Les hyperparamètres des réseaux de neurones se caractérisent par leur diversité et la complexité
de leurs interactions. Un exemple d’hyperparamètres définissant un réseau de neurones et son
entraînement est donné en figure 7.3. Il est donc nécessaire d’adapter les outils d’analyse de
sensibilité existants avant de les appliquer au problème d’optimisation d’hyperparamètres.

NN

activat-
ion

optimizer dropout

batch_
size

n_layers

n_units

weights_
decay

dropout_
rate

conditional hyperparameters
main hyperparameters

adam_
beta

sgd_
momentum

other_
cond

l2_
decay_
rate

other_
main

other_
cond

other_
cond

Figure 7.3: Exemple d’hyperparamètres définissant un réseau de neurones et son entraînement.

7.4.1.1 Définition du HSIC pour l’analyse de sensibilité orientée-objectif

Soient x et y deux variables aléatoires ayant pour distributions de probabilité dPx et dPy. Le
HSIC est construit à partir d’une distance mettant en jeu les projections de dPxy et dPxdPy

dans un espace de Hilbert restreint à noyaux reproductibles (RKHS, pour Reproducing Kernel
Hilbert Space en anglais) de noyau k. Cette distance est appelée divergence maximale de la
moyenne (MMD, pour Maximum Mean Discrepancy). Le HSIC s’écrit

163



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

HSIC(x,y) = γ2
k(Pxy,PyPx), (7.5)

où γk est la MMD. Cet indice est un critère d’indépendance car lorsque x et y sont indépen-
dantes, dPxy = dPxdPy, et donc HSIC(x,y) = 0. Dans le cas où x est un hyperparamètre et
y l’erreur du réseau de neurones. Alors, si HSIC(x,y) est élevé, x a un impact sur l’erreur
et si y est faible, cet impact est limité. Cependant, dans le cadre de l’optimisation des
hyperparamètres, nous ne sommes pas intéressés par la variabilité totale de l’erreur du réseau
de neurones, mais par sa variabilité orientée vers les faibles erreurs. Spagnol et al. (2018)
adapte le HSIC pour prendre en compte ce critère en définissant Y, un quantile d’intérêt
de l’erreur (par exemple le percentile à 10%), puis z = 1y∈Y. En calculant HSIC(x, z), la
dépendance calculée est donc celle entre x et l’appartenance de l’erreur du réseau de neurones
à son percentile à 10%.

Le HSIC de chaque hyperparamètre peut être estimé à partir d’un échantillonnage Monte
Carlo. Soient {x1, ..., xns} ns échantillons d’un hyperparamètre x. Le HSIC peut être estimé
à l’aide de l’estimateur Sx,Y donné par :

Sx,Y = P(z = 1)2

[
1

m2

ns∑
j=1

ns∑
l=1

k(xi,j, xi,l)δ(zj = 1)δ(zl = 1)

+
1

ns
2

ns∑
j=1

ns∑
l=1

k(xi,j, xi,l)

− 2

nsm

ns∑
j=1

ns∑
l=1

k(xi,j, xi,l)δ(zl = 1)

]
,

(7.6)

avec m =
∑ns

k δ(zk = 1) et δ(a) = 1 si a est vrai et 0 sinon. Il est donc possible d’estimer les
HSICs de chaque hyperparamètre après une recherche aléatoire d’hyperparamètres.

7.4.1.2 Adaptation au problème d’optimisation d’hyperparamètres

Jusqu’à présent, nous avons mentionné la possibilité de modéliser un hyperparamètre par une
variable aléatoire x et de calculer son HSIC. La comparaison des valeurs du HSIC permettrait
d’évaluer qualitativement leur importance relative par rapport à l’objectif pour le réseau
de neurones d’atteindre les plus faibles erreurs. Cela serait suffisant si les hyperparamètres
étaient indépendants et tous définis sur le même espace mesurable. Or, ce n’est pas le cas.
En effet :

• certains sont continus, d’autres sont des entiers, catégoriels ou booléens. Il est donc
compliqué de les comparer les uns avec les autres.

164



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

• Ils peuvent interagir les uns avec les autres. Ainsi, il est possible que certains hyper-
paramètres ne soient pas importants lorsque considérés indépendamment, mais que
leurs interactions avec d’autres hyperparamètres soient importante.

• Certains ne sont pas tout le temps impliqués dans un entraînement de réseau de neurones
donné (par exemple le taux de dropout (Srivastava et al., 2014) ne rentre en jeu que s’il
est décidé d’appliquer du dropout au réseau de neurones). Leur présence ou non dans
la configuration d’hyperparamètres dépend de la valeur d’un autre hyperparamètre (la
présence du taux de dropout est conditionné à dropout = Vrai). Ces hyperparamètres
sont appelés conditionnels.

Pour le premier problème, nous proposons d’utiliser non pas les hyperparamètres eux-mêmes,
mais leur image par leur fonction de densité cumulative (CDF, pour Cummulative Density
Function). En effet, soit Φx la CDF de x, alors compte tenu de la définition des CDF, la
variable aléatoire Φx(x) est uniforme entre 0 et 1. En appliquant cet artifice à tous les
hyperparamètres, nous les projetons dans un même espace mesurable. Ils peuvent donc y être
comparés correctement.

Pour le second problème, afin de mesurer l’importance des interactions entre deux hyper-
paramètres x1 et x2, il est possible de calculer HSIC(X, z), avec X = (x1,x2). Lors de
l’évaluation de l’importance relative des hyperparamètres, il convient donc de relever d’abord
les hyperparamètres importants, c’est-à-dire à fort HSIC, puis de relever ensuite, parmi les
paramètres à faible HSIC, les hyperparamètres qui sont rendus importants par leur interaction
avec d’autres hyperparamètres.

Enfin, pour le troisième problème, la méthode retenue consiste à comparer le HSIC au sein
de groupes d’échantillons de configurations d’hyperparamètres comportant les mêmes hy-
perparamètres. Un premier groupe peut être constitué, comportant les hyperparamètres
qui sont impliqués dans toutes les configurations. Ces hyperparamètres sont appelés hy-
perparamètres principaux. L’évaluation de l’importance relative de ces hyperparamètres,
basée sur les HSIC, peut se faire dans un premier temps dans ce groupe. Ensuite, le HSIC
de chaque hyperparamètre conditionnel est calculé, uniquement à partir des échantillons
impliquant cet hyperparamètre conditionnel. Sa valeur est finalement comparée avec celle des
hyperparamètres principaux pour juger de son importance.

7.4.2 Résultats

Dans cette partie, nous appliquons l’analyse de sensibilité basée sur les HSICs à un problème
de recherche d’hyperparamètres. Nous échantillonnons ns = 1000 configurations différentes
de nh hyperparamètres {x1, ..., xnh

} pour trois problèmes différents : MNIST, Cifar10 et
l’approximation de la solution des équations de Bateman (décrites en Annexe C). Les espaces
des hyperparamètres pour chacun de ces problèmes sont décrits en Annexe B. La figure
7.4 regroupe les histogrammes des erreurs ainsi que la comparaison des Sxi,Y pour chaque
problème.

165



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

(a) MNIST (b) Cifar10 (c) Bateman

Figure 7.4: (ligne du haut) Histogramme du critère d’évaluation obtenu après l’échantillonnage aléa-
toire initial des configurations et (ligne du bas) comparaison des Sxi,Y pour chaque hyperparamètre
principal. Pour MNIST et Cifar10, le critère d’évaluation est 1− p, où p ∈ [0, 1] est la précision, et
pour Bateman, l’erreur L2.

Deux remarques peuvent être faites sur ces graphiques. Premièrement, le critère d’évalua-
tion varie énormément avec les différentes configurations d’hyperparamètres. Cela justifie
l’impact des hyperparamètres sur l’erreur des réseaux de neurones. Deuxièmement, les hy-
perparamètres les plus importants varient d’un problème à l’autre, ce qui justifie l’intérêt
d’évaluer qualitativement leur importance relative pour chaque nouveau problème.

À partir des évaluations de Sxi,Y, nous construisons une méthodologie d’optimisation des
hyperparamètres consistant à sélectionner les paramètres les plus importants, appliquer
un algorithme d’optimisation Bayesienne sur ces hyperparamètres, puis à optimiser les
hyperparamètres restants. Ce faisant, la valeur des hyperparamètres les moins importants qui
ont un impact sur le coût d’exécution du réseau de neurones est fixée de manière à favoriser
les performances. Cette méthodologie est appelée TS-GPBO, et est comparée dans le tableau
7.4 à une optimisation Bayesienne classique sur tous les hyperparamètres (full GPBO) et à
une recherche aléatoire (RS).

Ces résultats illustrent le potentiel de l’utilisation de l’analyse de sensibilité dans le cadre
de la recherche d’hyperparamètres. Par exemple, pour le problème ”Bateman”, l’erreur
obtenue avec TS-GPBO est comparable à l’erreur obtenue avec RS et full GPBO, avec un
facteur 453 pour le nombre de paramètres et de FLOPs, ce qui est un résultat important pour
l’appréhension du compromis précision-performances.

La méthode TS-GPBO a été construite à partir de l’analyse de sensibilité, mais n’est qu’un
exemple d’application de cette technique à l’optimisation d’hyperparamètres. L’adaptation

166



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

Problème méthode critère d’évaluation nb. de param. MFLOPs
MNIST RS 98.36 436,147 871 (×3)
- full GPBO 98.42 ± 0.05 10,271,367 20,534 (×67)
- TS-GPBO 98.42 ± 0.02 151,306 307 (×1)
Cifar10 RS 81.8 99,444,880 1,832,615 (×11)
- full GPBO 82.73 ± 1.45 71,111,761 1,441,230 (×8)
- TS-GPBO 79.34 ± 0.15 9,281,258 178,621 (×1)
Bateman RS 1.99 ×10−4 1,259,140 2,516 (×359)
- full GPBO 2.94 ± 0.42 ×10−4 1,588,215 3,173 (×453)
- TS-GPBO 3.49 ± 0.31 ×10−4 3,291 7 (×1)

Table 7.4: Résultats de l’optimisation d’hyperparamètres pour une recherche aléatoire (RS), pour
une recherche basée sur l’optimisation Bayesienne sur tous les hyperparamètres (full GPBO) et sur
l’optimisation Bayesienne en deux étapes (TS-GPBO). La moyenne ± l’écart type pour 5 répétitions
est affiché pour le critère d’évaluation. Pour le nombre de paramètres et les FLOPs, seule la valeur
maximum obtenue au cours des répétitions est reportée. En effet, elle illustre le pire cas qui puisse
arriver pour la rapidité d’exécution, et à quel point notre méthode permet de l’éviter.

des HSICs au contexte de la recherche d’hyperparamètres présente un intérêt en tant que tel,
puisqu’il s’agit d’un outil pouvant être utilisé par la communauté pour concevoir de nouvelles
méthodes de recherche d’hyperparamètres basées sur l’interprétabilité.

7.5 Une analogie entre l’entraînement des réseaux de
neurones et la résolution d’équations aux dérivées
partielles

Dans cette partie, nous abordons la dernière étape de la méthodologie de l’apprentissage
profond supervisé : l’entraînement du réseau de neurones. Cette partie, plus théorique
et fondamentale, dresse un cadre pour l’entraînement des réseaux de neurones basé sur la
résolution d’équations aux dérivées partielles.

L’idée des développements mathématiques de cette partie est de mettre l’équation correspon-
dant à une itération d’un algorithme de Newton sous la forme d’une EDP de drift-diffusion.
Cette EDP peut alors être résolue par des méthodes de résolution stochastique, en simulant
un processus d’Itô.

Finalement, entraîner un réseau de neurones en suivant le cadre EDP revient à simuler le
processus suivant :

167



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

θk+1 = θk +
∆t

N

N∑
i=1

[
αL′(xi,θ

k) + L′′(xi,θ
k)α∇T

θ f(xi,θ
k)(θ∗ − θk)

]
+

√
∆t

N

[
N∑
i=1

Σ(xi,θ
k,α,θ∗ − θk)

]
g,

avec θk les paramètres du réseau de neurones, f(x,θ) le réseau de neurones, L la fonction
de coût, g une Gaussienne multivariée normale, {x1, ...xN} les points d’apprentissage, et α,
(θ∗ − θk), Σ des paramètres à choisir lors de l’implémentation du cadre EDP.

Nous démontrons que la descente de gradient stochastique (SGD), largement utilisée en
optimisation, rentre dans le cadre EDP à condition d’appliquer des hypothèses de modélisation
sur α, (θ∗ − θk) et Σ. En allégeant ces hypothèses, il est possible de construire un nouvel
algorithme d’optimisation, nommé PDESGD.

0 50 100 150 200 250 300 350 400
k

100

101

J(
)

SGD
PDESGD
ADAM

Figure 7.5: La fonction de coût intégrée J tracée en fonction du nombre d’itérations du processus
d’optimisation. Les courbes sont tracées pour 40 initialisation différentes des paramètres du réseau
de neurones, et la moyenne de ces courbes est tracée en gras.

Les propriétés du cadre des EDP permettent de garantir la stabilité du processus, évitant
ainsi les divergences dans l’optimisation du réseau de neurones. De plus, sur un problème
d’optimisation convexe mettant en jeu l’entraînement d’un réseau à deux neurones pour
l’approximation d’une fonction constante, PDESGD converge plus rapidement que la SGD et
qu’Adam (Kingma and Ba, 2015), un autre algorithme d’optimisation largement utilisé pour
l’entraînement des réseaux de neurones. Ce résultat est illustré sur la figure 7.5.

168



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

Ces résultats sont prometteurs, car ils valident l’intérêt du cadre d’entraînement basé sur
les EDPs. De plus, ce cadre présente de nombreuses perspectives. En effet, il permet de
concevoir un grand nombre d’algorithmes d’optimisation par le choix de α, (θ∗ − θk) et Σ.
Tout en incluant cette composante heuristique, il bénéficie cependant de toutes les propriétés
de la théorie de résolution des EDPs.

7.6 Application à la construction d’un code de simula-
tion hybride

Après avoir étudié les différentes étapes de la méthodologie de l’apprentissage profond
supervisé, nous appliquons cette méthodologie à un cas concret consistant à accélérer un
code de simulation numérique hydrodynamique. Cette simulation étudie l’écoulement d’un
fluide autours d’un objet, illustré en figure 7.6. L’application d’un tel code peut être par
exemple la rentrée d’un satellite ou d’une sonde dans l’atmosphère. Ce code est couplé à un
outil, Mutation++ (Scoggins et al., 2020), modélisant l’équilibre entre les espèces chimiques
présentes dans le fluide étudié.

Object

Fluid stream

Shock

Chemical
reactions

Figure 7.6: Illustration de la simulation.

7.6.1 Description du code

Le code global suit une structure de la forme suivante :{
F1(η,u,α) = 0,

F2(η,u,α) = 0,

(7.7a)
(7.7b)

169



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

où F1 correspond aux équations d’Euler, F2 correspond à la minimisation de l’enthalpie
libre, u correspond aux variables conservatives de l’écoulement (densité, pression, vitesse), η
correspond aux fractions molaires des espèces chimiques en jeu et α aux constantes utilisées
dans la simulation. L’opérateur F1 modélise l’écoulement du fluide, et n’est pas coûteux
lorsqu’exécuté seul. Cependant, sa résolution itérative implique l’appel à Mutation ++ à
chaque itération, pour résoudre F2. Au total, l’exécution du code est donc coûteuse à cause
des appels à Mutation++ : même si un appel isolé à Mutation++ n’est pas couteux, la
répétition de cet appel en chaque maille et à chaque itération représente la majeure partie du
temps d’exécution. Il y a donc beaucoup à gagner à tenter de réduire le temps d’exécution
imputable à Mutation++.

Notons avant de poursuivre que la structure décrite dans l’équation 7.7 n’est pas spécifique à
ce code, mais peut se retrouver dans de nombreuses simulations. Par exemple, en neutronique,
F1 peut être l’équation de Boltzman et F2 l’équation de Bateman (Bernède and Poëtte, 2018;
Dufek et al., 2013).

Afin de construire le code hybride, nous entraînons donc un réseau de neurones pour l’approx-
imation de Mutation++. Une fois le réseau de neurones entraîné, il est possible de le coupler
avec le code en l’exportant et en l’utilisant à l’aide de l’API C de Tensorflow (Abadi et al.,
2015).

7.6.2 Résultats

Dans cette partie, nous comparons les résultats du code hybride (NN) avec ceux du code
original (MPP). Nous comparons également ces codes avec une résolution de F1 ne faisant pas
appel à Mutation++ en utilisant l’hypothèse des gaz parfaits (PG). Le réseau de neurones
utilisé pour construire NN est entraîné sur une base de données échantillonnée uniformément
sur le sous espace d’intérêt et ses hyperparamètres sont choisis à l’aide d’une recherche
aléatoire. Sur la Figure 7.7 sont tracés le profil de pression à la paroi ainsi que la distance au
choc, pour NN, MPP et PG exécutés sur un maillage de taille 30× 100.

Cette figure illustre deux points. Premièrement, la différence visuelle entre PG d’une part
et MPP et NN d’autre part illustre l’importance de prendre en compte la chimie dans la
simulation du phénomène. Deuxièmement, les prédictions de MPP et NN ne sont presque pas
distinguable visuellement.

Afin d’illustrer les bénéfices tirés des méthodologies présentées dans les sections précédentes,
nous entraînons le réseau de neurones pour l’approximation de Mutation++ en utilisant la
méthodologie TS-GPBO, basée sur les HSICs avec la possibilité d’utiliser un échantillonnage
de type TBS. Les résultats obtenus sont rassemblés dans le tableau 7.5, où sont évaluées les
erreurs L2 et L∞ de la prédiction sur le profil de pression et la distance au choc. Ces erreurs
sont calculées par rapport à un profil obtenu avec un maillage de taille 90× 100.

Ces résultats illustrent à la fois l’intérêt de la construction d’un code hybride et l’intérêt de la

170



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.2

0.4

0.6

0.8

1.0

1.2
p

1e7
MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x wall

0.004

0.006

0.008

0.010

0.012

0.014

0.016

sh
oc

k 
di

st
an

ce

MPP_low
MPP_high
NN_low
NN_high
GP_low
GP_high

(b)

Figure 7.7: (a) Profil de pression (b) Distance au choc

MPP MPP + NN NN PG
Sélection d’hyp. TS-GPBO - RS TS-GPBO -
Temps (s) 4090 383 531 220 81

Amélioration (×) - 10.5 8.9 18.7 56.5

Pression
L2 1.09× 10−4 - 1.06× 10−4 1.24× 10−4 8.38× 10−2

L∞ 1.48× 10−2 - 1.53× 10−2 1.57× 10−2 4.75× 10−1

Dist. choc
L2 7.40× 10−5 - 6.43× 10−5 7.53× 10−5 1.77× 10−3

L∞ 2.80× 10−2 - 2.79× 10−2 2.79× 10−2 1.02× 10−1

Table 7.5: Temps d’exécution et erreurs normalisées pour les différents types de code

recherche d’hyperparamètres basée sur l’analyse HSIC. En effet, l’erreur obtenue avec NN est
équivalente à celle obtenue avec MPP, pour un facteur d’accélération pouvant aller jusqu’à
18.7. Lorsque la prédiction de NN est donnée en initialisation de MPP (dénoté NN+MPP), le
facteur d’accélération est de 10.5 pour le même résultat que MPP. De plus, utiliser TS-GPBO
permet de réduire le temps total d’exécution par deux sans affecter significativement l’erreur
de prédiction. Il est à noter que le meilleur réseau de neurones obtenu avec RS utilise un
échantillonnage TBS.

Cette application démontre le potentiel de la construction de codes hybrides pour la simulation
numérique. L’erreur provenant de l’approximation de Mutation++ par un réseau de neurones
est limitée, ce qui joue en faveur de leur fiabilité. Le gain de temps induit permettrait
d’accélérer les délais de production et les études paramétriques liées à la conception de
systèmes. Il pourrait également permettre d’évaluer rapidement l’intérêt de prendre en
compte certaines physiques dans un code, accélérant par là les processus de décision liés au

171



CHAPTER 7. SUMMARY OF THE THESIS/RÉSUMÉ DE LA THÈSE (IN FRENCH)

développement du code.

7.7 Conclusion

L’objectif premier de cette thèse était d’étudier l’apprentissage profond supervisé dans
l’optique de l’utiliser pour accélérer des codes de simulation numérique. Par conséquent,
nous avons étudié cette technique à travers le prisme de l’analyse numérique et de l’analyse
d’incertitudes. Cela nous a mené à des contributions ayant un intérêt à la fois pour le domaine
de l’apprentissage automatique et pour celui de la simulation numérique: TBS et VBSW,
des méthodes pour mieux construire sa base d’entraînement; l’utilisation du HSIC pour
sélectionner les hyperparamètres du réseau de neurones en tenant compte du compromis
précision-performances lié à notre premier objectif; l’utilisation de la théorie des EDP pour
optimiser les réseaux de neurones; et enfin l’implémentation d’un réseau de neurones dans un
code de simulation, menant à un code de simulation hybride, plus rapide que le code original
d’un facteur 10 à 20 sans sacrifice de garantie.

172



Chapter 8
Conclusions

The first goal of this work was to study supervised deep learning as a tool to accelerate
numerical simulations. Hence, we carefully investigated the supervised learning methodology
through the prism of numerical and uncertainty analysis, which are strongly related to numer-
ical simulations. It led to contributions of interest for both machine learning and scientific
computing. Finally, we accelerated a CFD simulation code by applying this methodology
and constructing a hybrid numerical simulation based on both deep learning and the original
simulation code.

8.1 Contribution to the methodology of supervised deep
learning

Supervised deep learning can be divided into three steps: the construction of the training
database; the choice of the neural network’s hyperparameters; and its training, or learning,
using optimization algorithms; so do our three first contributions.

8.1.1 Training distribution and local variations

We first studied the training distribution of the neural network. By doing so, we explored a
practical and classical question that naturally arises when performing surrogate modeling
for approximating simulation codes: how to construct the training set? This contribution is
based on the observation that neural networks are more efficient when more data are sampled
where the function to be learnt is steeper.

We motivated this observation with an illustrative generalization bound and constructed
a methodology, Taylor Based Sampling (TBS), to verify it empirically. TBS reduced the

173



CHAPTER 8. CONCLUSIONS

L2 and L∞ errors for the approximation of Runge function, hyperbolic tangent, and the
solution of Bateman equations. We then derived Variance Based Sample Weighting (VBSW)
from alleviating the limitations of TBS, which is not applicable for general machine learning
tasks. We validated VBSW on several applications, such as glue benchmark with bert for
text classification and regression and Cifar10 with ResNet for image classification.

Although VBSW uses theoretically justified approximations concerning TBS, the actual effect
of these approximations should be more thoroughly investigated. For instance, we could
further study the impact of not using px, the data distribution, in the weights definitions; the
convergence of the estimator of Df 2

ε , and in which context it is adequately approximated;
and a more generic derivative-based generalization bound. In addition, VBSW demonstrated
intriguing behaviors, like its impressive synergy with TCL (Hacohen and Weinshall, 2019),
which would deserve more attention.

The results obtained in this chapter are impactful for machine learning in numerical simulations
and machine learning in general. For the former, it can be seen as a new way of constructing
designs of experiments, using the distribution dPx̄ underlying TBS and VBSW, which involves
the derivatives of the function to approximate (f). For the latter, VBSW validates an original
view of the learning problem based on the variations of f , which would be worth investigating
in future works.

8.1.2 Hyperparameter optimization using goal-oriented sensitivity
analysis

Then, we investigated the problem of hyperparameter optimization. This step of supervised
deep learning carries high stakes for numerical simulations because hyperparameters can
impact both the accuracy and the cost efficiency of neural networks.

We adapted HSIC based goal-oriented sensitivity analysis, an approach widely used in
numerical and uncertainty analysis, to the context of hyperparameter analysis. Indeed,
hyperparameters can be of different natures, like continuous, discrete, categorical, or boolean,
and have non-trivial relations, like conditionality or interactions. We designed a two-step
optimization methodology, TS-GPBO, based on feature selection that tackles the performance-
accuracy trade-off by identifying hyperparameters that impact performance but not accuracy.
In our experiments, TS-GPBO yields neural networks with at least ten times less parameters
than those obtained with traditional Bayesian Optimization.

Here, we chose HSIC as a dependence measure. Studying other dependence measures to
test the robustness of the qualitative insights earned by HSIC and characterize them more
precisely could be interesting. We could also study the effect of using different kernels to obtain
other properties (like orthogonality, as done in da Veiga (2021)). In addition, the idea to
transform hyperparameters distribution into uniform could be tested for other hyperparameter
optimization algorithms.

174



CHAPTER 8. CONCLUSIONS

Finally, though TS-GPBO and other presented methodologies can be taken as contributions by
themselves, they should also be understood as demonstrations that HSIC based goal-oriented
sensitivity analysis is interesting and valuable for hyperparameter optimization. In the end,
an essential outcome of this work was to make an insightful tool, HSIC, available to the
community in the context of hyperparameter optimization.

8.1.3 A view of learning from the Partial Differential Equation
theory

We then focused on the optimization step of the supervised deep learning process. We achieved
valuable results by revisiting the optimization at play in machine learning using stochastic
PDE theory. First, we defined a PDE framework that links PDE and optimization algorithms.
This framework is subject to modeling choices (on α and θ∗ − θ) that lead to algorithms
characterized by exploration as well as optimization.

To illustrate the benefits of this framework, we constructed PDESGD, a new optimization
algorithm. We defined an adaptative learning rate to impose stability of the optimization that
allows efficient and stable exploration of the parameter space. We also compared PDESGD
with SGD and Adam in the convex regime, exhibiting faster convergence in the presented test
case.

The work presented in this chapter is mainly theoretical. The experiments with PDESGD are
convincing, but the test case is too simplistic to conclude its relevance for large-scale deep
learning problems. In addition, the analysis only holds for neural networks with scalar output.
Such a study would be in the continuity of this work: it is the closest perspective.

Then, more experimental work could help to elaborate on the choices for α and θ∗ − θ. To
that end, it should be useful to study the properties of the solved PDE for each different
choice. Finally, the PDE framework relies on the assumption that f̂ ∼ 0. There is an interest
in assessing this assumption to improve the optimization. The report of Poëtte et al. (2021)
is an attempt to evaluate this hypothesis using transport PDE theory.

8.2 Application of the methodology to the construction
of a hybrid CFD numerical simulation

We then applied supervised deep learning to approximate chemical equilibrium, initially
computed by Mutation++ (Scoggins et al., 2020), in a CFD code. We embedded the obtained
neural networks in the code and brought a hybrid code significantly faster than the original
one.

We also demonstrated how prediction accuracy could be guaranteed along with this acceleration.

175



CHAPTER 8. CONCLUSIONS

First, by initializing the original code with the prediction of the hybrid code, one can obtain
a factor 10 speed-up for the exact prediction. Second, we showed that neural network
approximation error is negligible compared to classical errors inherent to numerical simulations
(uncertainty, discretization, and model error). Hence, we tend to claim that the hybrid code
alone, with a time improvement factor of 21, could be safely used.

The methodology for approximating Mutation++ can only be used for test cases that involve
a fixed list of species. This constraint is an obstacle towards a general usage of neural networks
to approximate Mutation++ in concerned simulation codes. Indeed, it requires constructing
a new training database for each different chemical setting. This problem should be addressed
because building a neural network approximating Mutation++ for a large number of other
test cases would significantly improve the versatility of the approach and ease its broader
application.

Finally, the formulation of the resolution of coupled equations is quite general and encompasses
many phenomena in addition to our test case. Hence, it would be valuable to test the approach
to simulate other phenomena to challenge its efficiency further.

176



Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque
Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi,
Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza,
Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier
Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe
Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen
Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling,
Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt
Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan
Kane, Konstantin Kanishchev, Przemyslaw Karpinski, Zahari Kassabov, Gaurav Kaul,
Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander
Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon,
Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Helge
Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Meenakshi Narain, Mark
Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel
Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas,
Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie,
David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul
Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen,
Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai,
Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Justin Vasel, Mauro Verzetti, Xavier

177



BIBLIOGRAPHY

Vilasis-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael
Williams, Wenjing Wu, Stefan Wunsch, and Omar Zapata. Machine learning in high energy
physics community white paper. Journal of Physics: Conference Series, 1085:022008, sep
2018.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds
for deep nets via a compression approach. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 254–263, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Javier Arroyo, Samer Hassan, Celia Gutierrez, and Juan Pavon. Re-thinking simulation:
a methodological approach for the application of data mining in agent-based modelling.
Computational and Mathematical Organization Theory, 16(4):416–435, Dec 2010.

Peter Auer, Mark Herbster, and Manfred K. K Warmuth. Exponentially many local minima
for single neurons. In D. Touretzky, M. C. Mozer, and M. Hasselmo, editors, Advances in
Neural Information Processing Systems, volume 8. MIT Press, 1996.

Nathan Baker, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib
Najm, Manish Parashar, Abani Patra, James Sethian, Stefan Wild, Karen Willcox, and
Steven Lee. Workshop report on basic research needs for scientific machine learning: Core
technologies for artificial intelligence. 2 2019.

Ruth E. Baker, Jose-Maria Peña, Jayaratnam Jayamohan, and Antoine Jérusalem. Mechanistic
models versus machine learning, a fight worth fighting for the biological community? Biology
Letters, 14(5):20170660, 2018.

Andrew R. Barron. Approximation and estimation bounds for artificial neural networks.
Machine Learning, 14(1):115–133, Jan 1994.

Peter L. Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc dimension bounds for
piecewise polynomial networks. In Proceedings of the 11th International Conference on
Neural Information Processing Systems, NIPS’98, page 190–196, Cambridge, MA, USA,
1998. MIT Press.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin
bounds for neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 6240–6249. Curran Associates, Inc., 2017.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal of
Machine Learning Research, 20(63):1–17, 2019.

Andrea D. Beck, Jonas Zeifang, Anna Schwarz, and David G. Flad. A neural network based
shock detection and localization approach for discontinuous galerkin methods. Journal of
Computational Physics, 423:109824, 2020.

178



BIBLIOGRAPHY

Sue Becker and Yann L. Cun. Improving the convergence of back-propagation learning
with second order methods. In David S. Touretzky, Geoffrey E. Hinton, and Terrence J.
Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, pages
29–37. San Francisco, CA: Morgan Kaufmann, 1989.

Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett., 98:146401, Apr 2007.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. Trans. Neur. Netw., 5(2):157–166, March 1994.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pages 41–48, New York, NY, USA, 2009a. ACM.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pages 41–48, New York, NY, USA, 2009b. ACM.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, September 1975.

Tristan Bereau, Robert A. DiStasio, Alexandre Tkatchenko, and O. Anatole von Lilienfeld.
Non-covalent interactions across organic and biological subsets of chemical space: Physics-
based potentials parametrized from machine learning. The Journal of Chemical Physics,
148(24):241706, June 2018.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(10):281–305, 2012.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
2546–2554. Curran Associates, Inc., 2011.

Adrien Bernède and Gaël Poëtte. An unsplit monte-carlo solver for the resolution of the
linear boltzmann equation coupled to (stiff) bateman equations. Journal of Computational
Physics, 354:211–241, 02 2018.

M. Bisi and L. Desvillettes. From reactive boltzmann equations to reaction–diffusion systems.
Journal of Statistical Physics, 124(2):881–912, Aug 2006.

Géraud Blatman and Bruno Sudret. Sparse polynomial chaos expansions and adaptive
stochastic finite elements using a regression approach. Comptes Rendus Mécanique, 336(6):
518–523, June 2008.

Bastian Bohn, Jochen Garcke, Rodrigo Iza-Teran, Alexander Paprotny, Benjamin Peherstorfer,
Ulf Schepsmeier, and Clemens-August Thole. Analysis of car crash simulation data with
nonlinear machine learning methods. Procedia Computer Science, 18:621–630, 2013. 2013
International Conference on Computational Science.

179



BIBLIOGRAPHY

E. Borgonovo. A new uncertainty importance measure. Reliability Engineering & System
Safety, 92(6):771 – 784, 2007.

Nick Bostrom. Are you living in a computer simulation? Philosophical Quarterly, 53(211):
243–255, 2003.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2008.

Alexandre Bourriaud, Raphaël Loubère, and Rodolphe Turpault. A Priori Neural Networks
Versus A Posteriori MOOD Loop: A High Accurate 1D FV Scheme Testing Bed. Journal
of Scientific Computing, 84(2):31, August 2020.

Leonid Boytsov and Bilegsaikhan Naidan. Engineering efficient and effective non-metric space
library. In Nieves R. Brisaboa, Oscar Pedreira, and Pavel Zezula, editors, Similarity Search
and Applications - 6th International Conference, SISAP 2013, A Coruña, Spain, October
2-4, 2013, Proceedings, volume 8199 of Lecture Notes in Computer Science, pages 280–293.
Springer, 2013.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Haim Brezis. Function Analysis, Sobolev Spaces and Partial Differential Equations. 01 2010.

Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke, and Klaus-Robert
Müller. Bypassing the Kohn-Sham equations with machine learning. Nature Communica-
tions, 8(1):872, December 2017.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

Richard H. Byrd, Gillian M. Chin, Will Neveitt, and Jorge Nocedal. On the Use of Stochastic
Hessian Information in Optimization Methods for Machine Learning. SIAM Journal on
Optimization, 21(3):977–995, July 2011.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis.
Physics-informed neural networks (pinns) for fluid mechanics: A review, 2021.

José Antonio Carrillo and Mattia Zanella. Monte carlo gpc methods for diffusive kinetic
flocking models with uncertainties. Vietnam Journal of Mathematics, 47(4):931–954, 2019.

Rich Caruana, Steve Lawrence, and C. Giles. Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping. In T. Leen, T. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems, volume 13. MIT Press, 2001.

John I. Castor. Radiation Hydrodynamics. Cambridge University Press, 2004.

180



BIBLIOGRAPHY

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 1002–1012. Curran Associates, Inc., 2017.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha,
Qatar, 2014. Association for Computational Linguistics.

François Chollet. Xception: Deep learning with depthwise separable convolutions. CoRR,
abs/1610.02357, 2016.

J.-F. Clouët and G. Samba. Asymptotic diffusion limit of the symbolic Monte-Carlo method
for the transport equation. Journal of Computational Physics, 195(1):293–319, March 2004.

David A. Cohn. Neural Network Exploration Using Optimal Experiment Design. Neural
Networks, 9(6):1071–1083, August 1996.

P.M. Congedo, C. Corre, and J.-M. Martinez. Shape optimization of an airfoil in a bzt
flow with multiple-source uncertainties. Computer Methods in Applied Mechanics and
Engineering, 200(1):216–232, 2011.

Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. Society
for Industrial and Applied Mathematics, USA, 2000.

I. Csizar. Information-type measures of difference of probability distributions and indirect
observation. Studia Scientiarum Mathematicarum Hungarica, 2:229–318, 1967.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss
based on effective number of samples. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Lucor D., Xiu D., Su C.H., and Karniadakis G.E. Predictability and uncertainty in CFD.
International Journal for Numerical Methods in Fluids, 43:483–505, 2003.

S. Da Veiga, F. Wahl, and F. Gamboa. Local polynomial estimation for sensitivity analysis
on models with correlated inputs. Technometrics, 51:452 – 463, 2009.

Sébastien Da Veiga. Global sensitivity analysis with dependence measures. Journal of
Statistical Computation and Simulation, 85, 11 2013.

Sébastien da Veiga. Kernel-based anova decomposition and shapley effects – application to
global sensitivity analysis, 2021.

Florian Danvin, Marina Olazabal, and Fabio Pinna. Laminar to turbulent transition prediction
in hypersonic flows with neural networks committee. 2021.

181



BIBLIOGRAPHY

M S Day and J B Bell. Numerical simulation of laminar reacting flows with complex chemistry.
Combustion Theory and Modelling, 4(4):535–556, December 2000.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

S. Doerr and G. De Fabritiis. On-the-fly learning and sampling of ligand binding by high-
throughput molecular simulations. Journal of Chemical Theory and Computation, 10(5):
2064–2069, May 2014.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

Jan Dufek, Dan Kotlyar, and Eugene Shwageraus. The stochastic implicit euler method – a
stable coupling scheme for monte carlo burnup calculations. Annals of Nuclear Energy, 60:
295 – 300, 10 2013.

A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing Letters, 82
(1):1–6, 2002. Evolutionary Computation.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter
optimization at scale. volume 80 of Proceedings of Machine Learning Research, pages
1437–1446, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

J. Feng, Q. Teng, X. He, and X. Wu. Accelerating multi-point statistics reconstruction method
for porous media via deep learning. Acta Materialia, 159:296–308, 2018.

Krzysztof J. Fidkowski and Guodong Chen. Metric-based, goal-oriented mesh adaptation
using machine learning. Journal of Computational Physics, 426:109957, 2021.

Jean-Claude Fort, Thierry Klein, and Nabil Rachdi. New sensitivity analysis subordinated to
a contrast. Communications in Statistics - Theory and Methods, 45(15):4349–4364, 2016.

Jerome H. Friedman. Multivariate adaptive regression splines. Ann. Statist, 1991.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29:1189–1232, 2000.

182



BIBLIOGRAPHY

Kenji Fukumizu, Arthur Gretton, Gert R. Lanckriet, Bernhard Schölkopf, and Bharath K.
Sriperumbudur. Kernel choice and classifiability for rkhs embeddings of probability distri-
butions. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta,
editors, Advances in Neural Information Processing Systems 22, pages 1750–1758. Curran
Associates, Inc., 2009.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202,
Apr 1980.

Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image
data. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pages 1183–1192. JMLR.org, 2017.

Saul B. Gelfand and Sanjoy K. Mitter. Recursive Stochastic Algorithms for Global Optimiza-
tion in $\mathbb{R}^d $. SIAM Journal on Control and Optimization, 29(5):999–1018,
September 1991.

Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. Journal of Computational Physics, 22(4):403 – 434, 1976.

Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins studies in
the mathematical sciences. The Johns Hopkins University Press, Baltimore, fourth edition
edition, 2013. OCLC: ocn824733531.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural
networks by enforcing lipschitz continuity. 04 2018.

Robert B. Gramacy. Surrogates: Gaussian Process Modeling, Design and Optimization for
the Applied Sciences. Chapman Hall/CRC, Boca Raton, Florida, 2020. http://bobby.
gramacy.com/surrogates/.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. In Proceedings of the 16th International Conference
on Algorithmic Learning Theory, ALT’05, page 63–77, Berlin, Heidelberg, 2005. Springer-
Verlag.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J. Smola. A
kernel method for the two-sample-problem. In B. Schölkopf, J. C. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 513–520. MIT Press,
2007.

183

http://www.deeplearningbook.org
http://bobby.gramacy.com/surrogates/
http://bobby.gramacy.com/surrogates/


BIBLIOGRAPHY

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow
approximation. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 481–490, New York, NY, USA,
2016. Association for Computing Machinery.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2535–2544. PMLR, 09–15 Jun 2019.

Zhongqing Han, Rahul, and Suvranu De. A deep learning-based hybrid approach for the
solution of multiphysics problems in electrosurgery. Computer Methods in Applied Mechanics
and Engineering, 357:112603, December 2019.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat
local minima. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing
the generalization gap in large batch training of neural networks. In Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS’17, page
1729–1739, Red Hook, NY, USA, 2017. Curran Associates Inc.

J J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359 – 366, 1989.

S. Hosder, R. W. Walters, and R. Perez. A Non Intrusive Polynomial Chaos Method for
Uncertainty Propagation in CFD Simulations. 44th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA 2006-891, 2006.

Jianguo Huang, Haoqin Wang, and Haizhao Yang. Int-Deep: A deep learning initialized
iterative method for nonlinear problems. Journal of Computational Physics, 419:109675,
October 2020.

184



BIBLIOGRAPHY

Jorge E. Hurtado. Neural networks in stochastic mechanics. Archives of Computational
Methods in Engineering, 8(3):303–342, Sep 2001.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In Ricardo Silva,
Amir Globerson, and Amir Globerson, editors, 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018, pages 876–885. Association For Uncertainty in Artificial Intelligence (AUAI),
2018a. Funding Information: Acknowledgements. This work was supported by NSF IIS-
1563887, Samsung Research, Samsung Electronics and Russian Science Foundation grant
17-11-01027. We also thank Vadim Bereznyuk for helpful comments. Funding Information:
This work was supported by NSF IIS-1563887, Samsung Research, Samsung Electronics and
Russian Science Foundation grant 17-11-01027. We also thank Vadim Bereznyuk for helpful
comments. Publisher Copyright: © 34th Conference on Uncertainty in Artificial Intelligence
2018. All rights reserved.; 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018 ; Conference date: 06-08-2018 Through 10-08-2018.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In Ricardo Silva,
Amir Globerson, and Amir Globerson, editors, 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018, pages 876–885. Association For Uncertainty in Artificial Intelligence (AUAI),
2018b. Funding Information: Acknowledgements. This work was supported by NSF IIS-
1563887, Samsung Research, Samsung Electronics and Russian Science Foundation grant
17-11-01027. We also thank Vadim Bereznyuk for helpful comments. Funding Information:
This work was supported by NSF IIS-1563887, Samsung Research, Samsung Electronics and
Russian Science Foundation grant 17-11-01027. We also thank Vadim Bereznyuk for helpful
comments. Publisher Copyright: © 34th Conference on Uncertainty in Artificial Intelligence
2018. All rights reserved.; 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018 ; Conference date: 06-08-2018 Through 10-08-2018.

Daniel Jakubovitz, Raja Giryes, and Miguel R. D. Rodrigues. Generalization error in deep
learning. CoRR, abs/1808.01174, 2018.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperpa-
rameter optimization. In Arthur Gretton and Christian C. Robert, editors, Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of
Proceedings of Machine Learning Research, pages 240–248, Cadiz, Spain, 09–11 May 2016.
PMLR.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann. Self-paced

185



BIBLIOGRAPHY

curriculum learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI’15, page 2694–2700. AAAI Press, 2015.

Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood
ratio policy gradient. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages
1000–1008. Curran Associates, Inc., 2010.

M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance designs.
Journal of Statistical Planning and Inference, 26(2):131–148, October 1990.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. J. of Global Optimization, 13(4):455–492, December 1998a.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998b.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P.
Xing. Neural architecture search with bayesian optimisation and optimal transport. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 2020–2029, Red Hook, NY, USA, 2018. Curran Associates Inc.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. In ICML, 2018.

Marc C. Kennedy and Anthony O’Hagan. Bayesian calibration of computer models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–464, 2001.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp
minima. 2017. 5th International Conference on Learning Representations, ICLR 2017 ;
Conference date: 24-04-2017 Through 26-04-2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015.

G. Kluth, K. D. Humbird, B. K. Spears, J. L. Peterson, H. A. Scott, M. V. Patel, J. Koning,
M. Marinak, L. Divol, and C. V. Young. Deep learning for nlte spectral opacities. Physics
of Plasmas, 27(5):052707, 2020.

Gilles Kluth and Bruno Després. 2d finite volume lagrangian scheme in hyperelasticity and
finite plasticity. In Numerical Mathematics and Advanced Applications 2009, pages 489–496.
Springer, 2010.

Gilles Kluth, Kelli Humbird, Brian Spears, Howard Scott, Mehul Patel, Luc Peterson, Joe
Koning, Marty Marinak, Laurent Divol, and Chris Young. Deep Learning for Non-Local
Thermodynamic Equilibrium in hydrocodes for ICF. In APS Division of Plasma Physics
Meeting Abstracts, volume 2019 of APS Meeting Abstracts, page BO5.009, January 2019.

186



BIBLIOGRAPHY

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from
data. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
4225–4235. Curran Associates, Inc., 2017.

Slawomir Koziel and Leifur Leifsson. Knowledge-based airfoil shape optimization using space
mapping. In 30th AIAA Applied Aerodynamics Conference, 2012.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. In
J. Moody, S. Hanson, and R. P. Lippmann, editors, Advances in Neural Information
Processing Systems, volume 4. Morgan-Kaufmann, 1992.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, March 1964.

M. P. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems 23, pages 1189–1197. Curran
Associates, Inc., 2010.

Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty
quantification using bayesian neural networks in classification: Application to biomedical
image segmentation. Computational Statistics & Data Analysis, 142:106816, 2020.

William Albert Lahoz, Boris Khattatov, and Richard Ménard, editors. Data assimilation:
making sense of observations. Springer, Heidleberg, New York, 2010. OCLC: ocn499067426.

Jouko Lampinen and Aki Vehtari. Bayesian approach for neural networks—review and case
studies. Neural Networks, 14(3):257–274, 2001.

Hunter Lang, Lin Xiao, and Pengchuan Zhang. Using statistics to automate stochastic
optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

O. Le Maitre, M. Reagan, H. Najm, R. Ghanem, and O. Knio. A Stochastic Projection
Method for Fluid Flow. II. Random Process. J. Comp. Phys., 181:9–44, 2002.

O. P. Le Maître and O. M. Knio. Uncertainty Propagation using Wiener-Haar Expansions. J.
Comp. Phys., 197:28–57, 2004.

187



BIBLIOGRAPHY

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018a.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A novel bandit-based approach to hyperparameter optimization. Journal of
Machine Learning Research, 18(185):1–52, 2018b.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting.
IEEE Trans. Pattern Anal. Mach. Intell., 38(3):447–461, March 2016.

Raphaël Loubère, Michael Dumbser, and Steven Diot. A New Family of High Order Un-
structured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of
Hyperbolic Conservation Laws. Communications in Computational Physics, 16(3):718–763,
September 2014.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, Mar 2021.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30, pages 6231–6239. Curran Associates, Inc.,
2017.

D. Lucor, C. Enaux, H. Jourdren, and P. Sagaut. Stochastic design optimization: Application
to reacting flows. Computer Methods in Applied Mechanics and Engineering, 196(49):5047
– 5062, 2007a.

D. Lucor, C. Enaux, H. Jourdren, and P. Sagaut. Multi-Physics Stochastic Design Optimiza-
tion: Application to Reacting Flows and Detonation. Comp. Meth. Appl. Mech. Eng., 196:
5047–5062, 2007b.

D. Lucor, J. Meyers, and P. Sagaut. Sensitivity Analysis of LES to Subgrid-Scale-Model
Parametric Uncertainty using Polynomial Chaos. J. Fluid Mech., 585:255–279, 2007c.

David J. C. MacKay. Information-Based Objective Functions for Active Data Selection.
Neural Computation, 4(4):590–604, July 1992.

Pierre-Henri Maire, Rémi Abgrall, Jérôme Breil, and Jean Ovadia. A cell-centered lagrangian
scheme for two-dimensional compressible flow problems. SIAM Journal on Scientific
Computing, 29(4):1781–1824, 2007a.

188



BIBLIOGRAPHY

Pierre-Henri Maire, Rémi Abgrall, Jérôme Breil, and Jean Ovadia. A Cell-Centered Lagrangian
Scheme for Two-Dimensional Compressible Flow Problems. SIAM Journal on Scientific
Computing, 29(4):1781–1824, January 2007b.

A. Majda. Compressible Fluid Flow and Systems of Conservation Laws in Several Space
Variables, volume 53 of Applied Mathematical Sciences. Springer New York, New York, NY,
1984.

Yu A. Malkov and D. A. Yashunin. Efficient and Robust Approximate Nearest Neighbor
Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(4):824–836, April 2020.

Zhiping Mao, Lu Lu, Olaf Marxen, Tamer A. Zaki, and George Em Karniadakis. Deepm&mnet
for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal
shock using neural-network approximation of operators. J. Comput. Phys., 447:110698,
2021.

Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, June 1963.

A. Marrel, N. Marie, and M. De Lozzo. Advanced surrogate model and sensitivity analysis
methods for sodium fast reactor accident assessment. Reliability Engineering & System
Safety, 138:232–241, 2015.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum
learning, 2017.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec 1943.

M. D. McKay, R. J. Beckman, and W. J. Conover. A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer Code.
Technometrics, 21(2):239, May 1979.

D. Mihalas and B. W. Mihalas. Foundations of radiation hydrodynamics. Oxford University
Press, United States, 1984.

Hossein Mobahi. Training recurrent neural networks by diffusion. arXiv preprint
arXiv:1601.04114, 2016.

Jonas Mockus. On bayesian methods for seeking the extremum. In Proceedings of the IFIP
Technical Conference, page 400–404, Berlin, Heidelberg, 1974. Springer-Verlag.

Letif Mones, Noam Bernstein, and Gábor Csányi. Exploration, Sampling, And Reconstruction
of Free Energy Surfaces with Gaussian Process Regression. Journal of Chemical Theory
and Computation, 12(10):5100–5110, October 2016.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, 29(2):429–443, 1997.

189



BIBLIOGRAPHY

Habib N. Najm, Peter S. Wyckoff, and Omar M. Knio. A Semi-implicit Numerical Scheme for
Reacting Flow. Journal of Computational Physics, 143(2):381–402, July 1998.

Y. Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring
generalization in deep learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5947–5956. Curran Associates, Inc., 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on
Learning Representations, 2018.

Jorge Nocedal and Stephen J. Wright, editors. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer-Verlag, New York, 1999.

Frank Noé, Alexandre Tkatchenko, Klaus-Robert Müller, and Cecilia Clementi. Machine
learning for molecular simulation. Annual Review of Physical Chemistry, 71(1):361–390,
April 2020.

Jeremy E. Oakley and Anthony O’Hagan. Probabilistic sensitivity analysis of complex
models: a bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 66(3):751–769, 2004.

Bernt Oksendal. Stochastic Differential Equations (3rd Ed.): An Introduction with Applications.
Springer-Verlag, Berlin, Heidelberg, 1992.

Michael K. Painter, Madhav Erraguntla, Gary L. Hogg, and Brian Beachkofski. Using
simulation, data mining, and knowledge discovery techniques for optimized aircraft engine
fleet management. In Proceedings of the 2006 Winter Simulation Conference, pages
1253–1260, 2006.

Manolis Papadrakakis, Vissarion Papadopoulos, and Nikos D. Lagaros. Structural reliability
analyis of elastic-plastic structures using neural networks and monte carlo simulation.
Computer Methods in Applied Mechanics and Engineering, 136(1):145–163, 1996.

Lorenzo Pareschi. An introduction to uncertainty quantification for kinetic equations and
related problems. arXiv e-prints, art. arXiv:2004.05072, April 2020.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the
30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 1310–1318, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

190



BIBLIOGRAPHY

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Simon Peluchon. Approximation numrique et modelisation de l’ablation liquide. Theses,
Université de Bordeaux, November 2017.

Benoit Perthame. Transport Equations in Biology. 01 2007.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. volume 80 of Proceedings of Machine Learning Research,
pages 4095–4104, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Nuria Plattner, Stefan Doerr, Gianni De Fabritiis, and Frank Noé. Complete protein–protein
association kinetics in atomic detail revealed by molecular dynamics simulations and Markov
modelling. Nature Chemistry, 9(10):1005–1011, October 2017.

G. Poëtte, B. Després, and D. Lucor. Uncertainty Quantification for Systems of Conservation
Laws. J. Comp. Phys., 228(7):2443–2467, 2009.

Gaël Poëtte, David Lugato, and Paul Novello. An analogy between solving Partial Differential
Equations with Monte-Carlo schemes and the Optimisation process in Machine Learning
(and few illustrations of its benefits). working paper or preprint, April 2021.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, January 1964.

Gaël Poëtte. A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear
Boltzmann equation. Journal of Computational Physics, 385:135–162, May 2019a.

Gaël Poëtte. Contribution to the mathematical andnumerical analysis of uncertain systems
of conservation laws and of the linear and nonlinear boltzmann equation. HDR, Université
de Bordeaux, pages 135–162, 2019b.

Gaël Poëtte. Spectral convergence of the generalized Polynomial Chaos reduced model
obtained from the uncertain linear Boltzmann equation. Mathematics and Computers in
Simulation, 177:24–45, November 2020.

Clémentine Prieur and Stefano Tarantola. Variance-Based Sensitivity Analysis: Theory and
Estimation Algorithms, pages 1–23. Springer International Publishing, Cham, 2016.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

191



BIBLIOGRAPHY

Haifeng Qian and Mark N. Wegman. L2-nonexpansive neural networks. In International
Conference on Learning Representations, 2019.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient langevin dynamics: a nonasymptotic analysis. In Satyen Kale and Ohad Shamir,
editors, Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings
of Machine Learning Research, pages 1674–1703. PMLR, 07–10 Jul 2017.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss,
Emanuele Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William Becker,
Stefano Tarantola, Joseph H.A. Guillaume, John Jakeman, Hoshin Gupta, Nicola Melillo,
Giovanni Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, Stefán Smith, Razi
Sheikholeslami, Nasim Hosseini, Masoud Asadzadeh, Arnald Puy, Sergei Kucherenko, and
Holger R. Maier. The future of sensitivity analysis: An essential discipline for systems
modeling and policy support. Environmental Modelling & Software, 137:104954, 2021.

Markus Reichstein, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno
Carvalhais, and Prabhat. Deep learning and process understanding for data-driven earth
system science. Nature, 566(7743):195–204, Feb 2019.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. CoRR, abs/1803.09050, 2018.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

Ribana Roscher, Bastian Bohn, Marco F. Duarte, and Jochen Garcke. Explainable machine
learning for scientific insights and discoveries. IEEE Access, 8:42200–42216, 2020.

Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven
discovery of partial differential equations. Science Advances, 3(4), 2017.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal repre-
sentations by error propagation. In David E. Rumelhart and James L. Mcclelland, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

192



BIBLIOGRAPHY

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Andrea Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications, 145(2):280 – 297, 2002.

T. J. Santner, Williams B., and Notz W. The Design and Analysis of Computer Experiments,
Second Edition. Springer-Verlag, 2018.

Elia Schneider, Luke Dai, Robert Q. Topper, Christof Drechsel-Grau, and Mark E. Tuckerman.
Stochastic Neural Network Approach for Learning High-Dimensional Free Energy Surfaces.
Physical Review Letters, 119(15):150601, October 2017.

Nicol N. Schraudolph. Fast Curvature Matrix-Vector Products for Second-Order Gradient
Descent. Neural Computation, 14(7):1723–1738, July 2002.

James B. Scoggins, Vincent Leroy, Georgios Bellas-Chatzigeorgis, Bruno Dias, and Thierry E.
Magin. Mutation++: Multicomponent thermodynamic and transport properties for ionized
gases in c++. SoftwareX, 12, 2020.

S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regression: Active data
selection and test point rejection. In Proceedings of the International Joint Conference on
Neural Networks, 2000.

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2012.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104:148–175, 2016.

M. C. Shewry and H. P. Wynn. Maximum entropy sampling. Journal of Applied Statistics, 14
(2):165–170, January 1987.

Abhinav Shrivastava, Abhinav Gupta, and Ross B. Girshick. Training region-based object
detectors with online hard example mining. CoRR, abs/1604.03540, 2016.

Jean-François Sigrist. Numerical Simulation, An Art of Prediction 1. 12 2019.

Jean-François Sigrist. Numerical Simulation, An Art of Prediction 2: Examples. 01 2020.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’12, page 2951–2959, Red Hook, NY,
USA, 2012. Curran Associates Inc.

193



BIBLIOGRAPHY

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization
using deep neural networks. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 2171–2180, Lille, France, 07–09 Jul 2015. PMLR.

Ilya M. Sobol. Sensitivity estimates for nonlinear mathematical models. MMCE, (1):407–414,
1993.

Le Song, Alex Smola, Arthur Gretton, Karsten M. Borgwardt, and Justin Bedo. Supervised
feature selection via dependence estimation. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, page 823–830, New York, NY, USA, 2007.
Association for Computing Machinery.

Adrien Spagnol, Rodolphe Le Riche, and Sébastien Da Veiga. Global sensitivity analysis for
optimization with variable selection. SIAM/ASA J. Uncertain. Quantification, 7:417–443,
2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evol. Comput., 10(2):99–127, June 2002.

Thomas Stecher, Noam Bernstein, and Gábor Csányi. Free Energy Surface Reconstruction
from Umbrella Samples Using Gaussian Process Regression. Journal of Chemical Theory
and Computation, 10(9):4079–4097, September 2014.

Curtis B. Storlie and Jon C. Helton. Multiple predictor smoothing methods for sensitivity
analysis: Description of techniques. Reliability Engineering and System Safety, 93(1):28–54,
January 2008.

Curtis B. Storlie, Laura P. Swiler, Jon C. Helton, and Cedric J. Sallaberry. Implementation and
evaluation of nonparametric regression procedures for sensitivity analysis of computationally
demanding models. Reliability Engineering & System Safety, 94:1735–1763, 2009.

G. Strang. On the construction and the comparison of difference schemes. SIAM, Journal on
Numerical Analysis, 5(3):506–517, 1968.

D.W. Stroock and S.R.S. Varadhan. Multidimensional Diffusion Processes. Grundlehren der
mathematischen Wissenschaften. Springer Berlin Heidelberg, 1997.

Bruno Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability
Engineering & System Safety, 93(7):964–979, July 2008.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6105–6114, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

194



BIBLIOGRAPHY

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet:
Platform-aware neural architecture search for mobile. CoRR, abs/1807.11626, 2018.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students
learn better: On the importance of pre-training compact models. arXiv preprint
arXiv:1908.08962v2, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.,
2017b.

Laura von Rueden, Sebastian Mayer, Rafet Sifa, Christian Bauckhage, and Jochen Garcke.
Combining machine learning and simulation to a hybrid modelling approach: Current and
future directions. In Michael R. Berthold, Ad Feelders, and Georg Krempl, editors, Advances
in Intelligent Data Analysis XVIII, pages 548–560, Cham, 2020. Springer International
Publishing.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding.
In International Conference on Learning Representations, 2019.

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In 1960 IRE WESCON
Convention Record, Part 4, pages 96–104, New York, 1960. IRE.

N. Wiener. The Homogeneous Chaos. Amer. J. Math., 60:897–936, 1938.

Nick Winovich, Karthik Ramani, and Guang Lin. Convpde-uq: Convolutional neural networks
with quantified uncertainty for heterogeneous elliptic partial differential equations on varied
domains. Journal of Computational Physics, 394:263 – 279, 2019.

Dongbin Xiu and George Em Karniadakis. The wiener–askey polynomial chaos for stochastic
differential equations. SIAM J. Sci. Comput., 24(2):619–644, February 2002.

Da Xu, Yuting Ye, and Chuanwei Ruan. Understanding the role of importance weighting for
deep learning. In International Conference on Learning Representations, 2021.

Huan Xu and Shie Mannor. Robustness and generalization. Machine Learning, 86(3):391–423,
Mar 2012.

195



BIBLIOGRAPHY

Lin Yang, Raman Arora, Vladimir braverman, and Tuo Zhao. The physical systems behind
optimization algorithms. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Nanyang Ye, Zhanxing Zhu, and Rafal Mantiuk. Langevin dynamics with continuous tempering
for training deep neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,
2012.

Linfeng Zhang, Jiequn Han, Han Wang, Wissam Saidi, Roberto Car, and Weinan E. End-
to-end symmetry preserving inter-atomic potential energy model for finite and extended
systems. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quan-
tification without labeled data. Journal of Computational Physics, 394:56 – 81, 2019.

Maxwell I. Zimmerman and Gregory R. Bowman. Fast conformational searches by balancing
explorationexploitation trade-offs. Journal of Chemical Theory and Computation, 11(12):
5747–5757, December 2015.

196



Appendices

Appendix A: Demonstrations (Chapter 3)

Illustration of the link using derivatives (Section 3.2.1)

We want to approximate f : x → f(x), x ∈ Rni , f(x) ∈ Rno with a NN fθ. The goal of the
approximation problem can be seen as being able to generalize to points not seen during
the training. We thus want the generalization error Jx(θ) to be as small as possible. Given
an initial data set {x1, ...,xN} drawn from x ∼ dPx and {f(x1), ..., f(xN)}, and the loss
function L being the squared L2 error, recall that the integrated error Jx(θ), its estimation
Ĵx(θ) and the generalization error Jx(θ) can be written:

Jx(θ) =

∫
S

‖f(x)− fθ(x)‖dPx,

Ĵx(θ) =
1

N

N∑
i=1

‖fθ(xi)− f(xi)
∥∥,

Jx(θ) = Jx(θ)− Ĵx(θ),

(8.1)

where ‖.‖ denotes the squared L2 norm. In the following, we find an upper bound for Jx(θ).
We start by finding an upper bound for Jx(θ) and then for Jx(θ) using equation (8.1).

Let Si, i ∈ {1, ..., N} be some sub-spaces of a bounded space S such that S =
⋃N

i=1 Si,⋂N
i=1 Si = Ø, and xi ∈ Si. Then,

197



BIBLIOGRAPHY

Jx(θ) =
N∑
i=1

∫
Si

‖f(x)− fθ(x)‖dPx,

Jx(θ) =
N∑
i=1

∫
Si

‖f(xi + x− xi)− fθ(x)‖dPx.

Suppose that ni = no = 1 (x becomes x and x becomes x) and f twice differentiable. Let
|S| =

∫
S
dPx. The volume |S| = 1 since dPx is a probability measure, and therefore |Si| < 1 for

all i ∈ {1, ..., N}. Using Taylor expansion at order 2, and since |Si| < 1 for all i ∈ {1, ..., N}

Jx(θ) =
N∑
i=1

∫
Si

‖f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 − fθ(x) +O((x− xi)
3)‖dPx.

To find an upper bound for J(θ), we can first find an upper bound for |Ai(x)|, with Ai(x) =
f(xi) + f ′(xi)(x− xi) +

1
2
f ′′(xi)(x− xi)

2 − fθ(x) +O((x− xi)
3).

NN fθ is Kθ−Lipschitz, so since S is bounded (so are Si), for all x ∈ Si, |fθ(x)− fθ(xi)| ≤
Kθ|x− xi|. Hence,

fθ(xi)−Kθ|x− xi| ≤ fθ(x) ≤ fθ(xi) +Kθ|x− xi|,
− fθ(xi)−Kθ|x− xi| ≤ −fθ(x) ≤ −fθ(xi) +Kθ|x− xi|,

f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi(x− xi)

2)− fθ(xi)−Kθ|x− xi|+O((x− xi)
3)

≤ Ai(x) ≤ f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 − fθ(xi) +Kθ|x− xi|+O((x− xi)
3),

Ai(x) ≤ f(xi)− fθ(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 +Kθ|x− xi|+O((x− xi)
3).

And finally, using triangular inequality,

Ai(x) ≤ |f(xi)− fθ(xi)|+ |f ′(xi)||x− xi|+
1

2
|f ′′(xi)||x− xi|2 +Kθ|x− xi|+O(|x− xi|3).

Now, ‖.‖ being the squared L2 norm:

198



BIBLIOGRAPHY

Jx(θ) =
N∑
i=1

∫
Si

‖f(xi) + f ′(xi)(x− xi) +
1

2
f ′′(xi)(x− xi)

2 − fθ(x) +O(|x− xi|3)‖dPx,

Jx(θ) ≤
N∑
i=1

∫
Si

[(
|f(xi)− fθ(xi)|

)
+
(
|f ′(xi)||x− xi|+

1

2
|f ′′(xi)||x− xi|2 +Kθ|x− xi|

)
+O(|x− xi|3)

]2
dPx,

=
N∑
i=1

∫
Si

[
|f(xi)− fθ(xi)|2

+ 2|f(xi)− fθ(xi)|
(
|f ′(xi)||x− xi|+

1

2
|f ′′(xi)||x− xi|2 +Kθ|x− xi|

)
+
[(

|f ′(xi)||x− xi|
)
+
(1
2
|f ′′(xi)||x− xi|2 +Kθ|x− xi|

)]2
+O(|x− xi|3)

]
dPx,

=
N∑
i=1

∫
Si

[
|f(xi)− fθ(xi)|2

+ 2|f(xi)− fθ(xi)|
(
|f ′(xi)||x− xi|+

1

2
|f ′′(xi)||x− xi|2 +Kθ|x− xi|

)
+
[
|f ′(xi)|2|x− xi|2 + 2Kθ|f ′(xi)||x− xi|2 +K2

θ|x− xi|2
]
+O(|x− xi|3)

]
dPx,

=
N∑
i=1

∫
Si

[
|f(xi)− fθ(xi)|2

+ 2|f(xi)− fθ(xi)|
(
|f ′(xi)||x− xi|+

1

2
|f ′′(xi)||x− xi|2 +Kθ|x− xi|

)
+
(
|f ′(xi)|+Kθ

)2
|x− xi|2 +O(|x− xi|3)

]
dPx.

Hornik’s theorem Hornik et al. (1989) states that given a norm ‖.‖p,µ = such that ‖f‖pp,µ =∫
S
|f(x)|pdµ(x), with dµ a probability measure, for any ε, there exists θ such that for a Multi

Layer Perceptron, fθ, ‖f(x)− fθ(x)‖pp,µ < ε,

This theorem grants that for any ε, with dµ =
∑N

i=1
1
N
δ(x− xi), there exists θ such that


‖f(x)− fθ(x)‖11,µ =

N∑
i=1

1

N
|f(xi)− fθ(xi)| ≤ ε,

‖f(x)− fθ(x)‖22,µ =
N∑
i=1

1

N

(
f(xi)− fθ(xi)

)2 ≤ ε.

(8.2)

199



BIBLIOGRAPHY

Let’s introduce i∗ such that i∗ = argmin |Si|. Note that for any i ∈ {1, ..., N}, O(|S∗
i |4) is

O(|Si|4). Now, let’s choose ε such that ε is O(|S∗
i |4). Then, equation (8.2) implies that


|f(xi)− fθ(xi)| = O(|Si|4),(
f(xi)− fθ(xi)

)2
= O(|Si|4),

Ĵx(θ) = ‖f(x)− fθ(x)‖22,µ = O(|Si|4).

Thus, we have Jx(θ) = Jx(θ)− Ĵx(θ) = Jx(θ) +O(|Si|4) and therefore,

Jx(θ) ≤
N∑
i=1

∫
Si

[(
|f ′(xi)|+Kθ

)2
|x− xi|2dPx

]
+O(|Si|4).

Finally,

Jx(θ) ≤
N∑
i=1

(|f ′(xi)|+Kθ)
2 |Si|3

3
+O(|Si|4). (8.3)

We see that on the regions where f ′(xi) +Kθ is higher, quantity |Si| (the volume of Si) has a
stronger impact on the GB. Then, since |Si| can be seen as a metric for the local density of
the data set (the smaller |Si| is, the denser the data set is), the Generalization Bound (GB)
can be reduced more efficiently by adding more points around xi in these regions. This bound
also involves Kθ, the Lipschitz constant of the NN, which has the same impact as f ′(xi). It
also illustrates the link between the Lipschitz constant and the generalization error, which
has been pointed out by several works like, for instance, Gouk et al. (2018), Bartlett et al.
(2017) and Qian and Wegman (2019).

Problem 1: Unavailability of derivatives (Section 3.3.1)

In this paragraph, we consider ni > 1 but no = 1. The following derivations can be extended to
no > 1 by applying it to f element-wise. Let ε ∼ N (0, εIni

) with ε ∈ R+ and ε = (ε1, ..., εni
),

i.e. εi ∼ N (0, ε). Using Taylor expansion on f at order 2 gives

f(x+ ε) = f(x) +∇xf(x) · ε+
1

2
εT ·Hxf(x) · ε+O(‖ε‖32).

With ∇xf and Hxf(x) the gradient and the Hessian of f w.r.t. x. We now compute
V ar(f(X + ε)) and make Df 2

ε (x) = ε‖∇xf(x)‖2F + 1
2
ε2‖Hxf(x)‖2F appear in its expression

to establish a link between these two quantities:

V ar(f(x+ ε)) = V ar
(
f(x) +∇xf(x) · ε+

1

2
εT ·Hxf(x) · ε+O(‖ε‖32)

)
,

= V ar
(
∇xf(x) · ε+

1

2
εT ·Hxf(x) · ε

)
+O(‖ε‖32).

200



BIBLIOGRAPHY

Since εi ∼ N (0, ε), x = (x1, ..., xni
) and with ∂2f

∂xixj
(x) the cross derivatives of f w.r.t. xi and

xj,

∇xf(x) · ε+
1

2
εT ·Hxf(x) · ε =

ni∑
i=1

εi
∂f

∂xi

(x) +
1

2

ni∑
j=1

ni∑
k=1

εjεk
∂2f

∂xjxk

(x),

V ar
(
∇xf(x) · ε+

1

2
εT ·Hxf(x) · ε

)
=V ar

( ni∑
i=1

εi
∂f

∂xi

(x) +
1

2

ni∑
j=1

ni∑
k=1

εjεk
∂2f

∂xjxk

(x)
)
,

=

ni∑
i1=1

ni∑
i2=1

Cov
(
εi1

∂f

∂xi1

(x), εi2
∂f

∂xi2

(x)
)
,

+
1

4

ni∑
j1=1

ni∑
k1=1

ni∑
j2=1

ni∑
k2=1

Cov
(
εj1εk1

∂2f

∂xj1xk1

(x), εj2εk2
∂2f

∂xj2xk2

(x)
)

+

ni∑
i=1

ni∑
j=1

ni∑
k=1

Cov
(
εi
∂f

∂xi

(x), εjεk
∂2f

∂xjxk

(x)
)
,

=

ni∑
i1=1

ni∑
i2=1

∂f

∂xi1

(x)
∂f

∂xi2

(x)Cov
(
εi1 , εi2

)
+

1

4

ni∑
j1=1

ni∑
k1=1

ni∑
j2=1

ni∑
k2=1

∂2f

∂xj1xk1

(x)
∂2f

∂xj2xk2

(x)Cov
(
εj1εk1 , εj2εk2

)
+

ni∑
i=1

ni∑
j=1

ni∑
k=1

∂f

∂xi

(x)
∂2f

∂xjxk

(x)Cov
(
εi, εjεk

)
.

In this expression, three quantities have to be assessed : Cov(εi1 , εi2), Cov(εi, εjεk) and
Cov(εj1εk1 , εj2εk2).

First, since (ε1, ..., εni
) are i.i.d.,

Cov
(
εi1 , εi2

)
=

{
V ar(εi) = ε if i1 = i2 = i,

0 otherwise.
.

To assess Cov(εi, εjεk), three cases have to be considered.

• If i = j = k, because E[ε3i ] = 0,
Cov(εi, εjεk) = Cov(εi, ε

2
i ),

= E[ε3i ]− E[εi]E[ε2i ],
= 0.

201



BIBLIOGRAPHY

• If i = j or i = k (we consider i = k, and the result holds for i = j by commutativity),
Cov(εi, εjεk) = Cov(εi, εiεj),

= E[ε2i εj]− E[εi]E[εiεj],
= E[ε2i ]E[εj],
= 0.

• If i 6= j and i 6= k, εi and εjεk are independent and so Cov(εi, εjεk) = 0.

Finally, to assess Cov(εj1εk1 , εj2εk2), four cases have to be considered:

• If j1 = j2 = k1 = k2 = i,
Cov(εj1εk1 , εj2εk2) = V ar(ε2i ),

= 2ε2.

• If j1 = k1 = i and j2 = k2 = j, Cov(εj1εk1 , εj2εk2) = Cov(ε2i , ε
2
j) = 0 since ε2i and ε2j are

independent.

• If j1 = j2 = j and k1 = k2 = k,
Cov(εj1εk1 , εj2εk2) = V ar(εjεk),

= V ar(εj)V ar(εk),

= ε2.

• If j1 6= k1, j2 and k2,
Cov(εj1εk1 , εj2εk2) = E[εj1εk1εj2εk2 ]− E[εj1εk1 ]E[εj2εk2 ],

= E[εj1 ]E[εk1εj2εk2 ]− E[εj1 ]E[εk1 ]E[εj2εk2 ],
= 0.

All other possible cases can be assessed using the previous results, commutativity and
symmetry of Cov operator. Hence,

V ar
(
∇xf(x) · ε+

1

2
εT ·Hxf(x) · ε

)
=

ni∑
i1=1

ni∑
i2=1

∂f

∂xi1

(x)
∂f

∂xi2

(x)Cov
(
εi1 , εi2

)
+

1

4

ni∑
j1=1

ni∑
k1=1

ni∑
j2=1

ni∑
k2=1

∂2f

∂xj1xk1

(x)
∂2f

∂xj2xk2

(x)Cov
(
εj1εk1 , εj2εk2

)
,

=

ni∑
i=1

ε
∂f 2

∂xi

(x) +
1

2

ni∑
j=1

ni∑
k=1

ε2
∂2f 2

∂xjxk

(x),

=ε‖∇xf(x)‖2F +
1

2
ε2‖Hxf(x)‖2F ,

=Df 2
ε (x).

And finally,

202



BIBLIOGRAPHY

V ar(f(x+ ε)) = Df 2
ε (x) +O(‖ε‖32) (8.4)

If we consider D̂f 2
ε(x) as defined in equation (3.2), on section* 3.2.2 of the main document,

D̂f 2
ε(x) →

k→∞
V ar(f(x+ε)) . Since V ar(f(x+ε)) = Df 2

ε (x)+O(‖ε‖32), D̂f 2
ε(x) is a biased

estimator of Df 2
ε (x), with bias O(‖ε‖32). Hence, when ε → 0, D̂f 2

ε(x) becomes an unbiased
estimator of Df 2

ε (x).

203



BIBLIOGRAPHY

Appendix B: Hyperparameter spaces

Hyperparameters of Chapter 3

The values chosen for the hyperparameters of Chapter 3 experiments are gathered in Table 8.1.
For Adam optimizer hyperparameters, we kept the default values of Keras implementation.
We chose these hyperparameters after simple grid searches.

Experiment m k learning rate batch size epochs optimizer random seeds
double moon 100 20 1× 10−3 100 10000 SGD 50
Boston housing 8 35 5× 10−4 404 50000 Adam 10
Breast Cancer 50 35 5× 10−2 455 250000 Adam 10
MNIST 40 20 1× 10−3 25 25 Adam 40
Cifar10 40 20 1× 10−3 25 25 Adam 50
RTE 20 10 3× 10−4 8 10000 Adam 50
STS-B 30 30 3× 10−4 8 10000 Adam 50
MRPC 75 25 3× 10−4 16 10000 Adam 50

Table 8.1: Hyperparameters values for experiments of Chapter 3

Hyperparameters of Chapter 4

In this section, we describe hyperparameters spaces used for each problem in this chapter.
Note that hyperparameter n_seeds denotes the number of random repetitions of the training
for each hyperparameter configuration. If a conditional hyperparameter Xj is only involved
for some specific values of a main hyperparameter Xi, it is displayed with an indent on tab
lines below that of Xi, with the value of Xi required for Xj to be involved in the training.

Runge and MNIST

For Runge and MNIST, only fully connected Neural Networks are trained, and the width
(n_units) is the same for every layer.

Conditional groups: (see (iii) of Section 4.3.3) G0 and Gdropout_rate

204



BIBLIOGRAPHY

hyperparameter type values for Runge values for MNIST
n_layers integer ∈ {1, ..., 10} same
n_units integer ∈ {7, ..., 512} ∈ {128, ..., 1500}
activation categorical elu, relu, tanh or sigmoid same
dropout boolean true or false same
yes:dropout_rate continuous ∈ [0, 1] same

batch_norm boolean true or false same
weights_reg_l1 continuous ∈ [1× 10−6, 0.1] same
weights_reg_l2 continuous ∈ [1× 10−6, 0.1] same
bias_reg_l1 continuous ∈ [1× 10−6, 0.1] same
bias_reg_l2 continuous ∈ [1× 10−6, 0.1] same
batch_size integer ∈ {1, ..., 11} ∈ {1, ..., 256}
loss_function categorical L2 error or L1 error L2 error or crossentropy
optimizer categorical adam, sgd, rmsprop or adagrad same
n_seeds integer ∈ {1, ..., 40} ∈ {1, ..., 10}

Table 8.2: Hyperparameters values for Runge & MNIST

205



BIBLIOGRAPHY

Bateman

For Bateman, only fully connected Neural Networks are trained, and the width (n_units) is
the same for every layer.

hyperparameter type values for Bateman
n_layers integer ∈ {1, ..., 10}
n_units integer ∈ {7, ..., 512}
activation categorical elu, relu, tanh or sigmoid
dropout boolean true or false
yes:dropout_rate continuous ∈ [0, 1]

batch_norm boolean true or false
learning_rate continuous ∈ [1× 10−6, 1× 10−2]

weights_reg_l1 continuous ∈ [1× 10−6, 0.1]

weights_reg_l2 continuous ∈ [1× 10−6, 0.1]

bias_reg_l1 continuous ∈ [1× 10−6, 0.1]

bias_reg_l2 continuous ∈ [1× 10−6, 0.1]

batch_size integer ∈ {1, ..., 500}
loss_function categorical L2 error or L1 error
optimizer categorical adam, sgd, rmsprop, adagrad or nadam
adam:amsgrad boolean true or false
adam, nadam:1st_moment_decay continuous ∈ [0.8, 1]

adam, nadam:2nd_moment_decay continuous ∈ [0.8, 1]

rmsprop:centered boolean true or false
sgd:nesterov boolean true or false
sgd, rmsprop:momentum continuous ∈ [0.5, 0.99]

n_seeds integer ∈ {1, ..., 10}

Table 8.3: Hyperparameters values for Bateman

Conditional groups: (see (iii) of Section 4.3.3) G0, Gdropout_rate, Gamsgrad, Gcentered, Gnesterov,
Gmomentum and
G(1st_moment,2nd_moment)

206



BIBLIOGRAPHY

Cifar10

For Cifar10, we use Convolutional Neural Networks, whose width increases with the depth
according to hyperparameters stages and stage_mult. The first layer has width n_filters,
and then, stages − 1 times, the network is widen by a factor stage_mult. For instance, a
neural network with n_filters = 20, n_layers = 3, stages = 3 and stage_mult = 2 will
have a first layer with 20 filters, a second layer with n_filters × stage_mult = 40 filters,
and a third layer with n_filters × stage_multstages−1 = 60 filters.

hyperparameter type values for Cifar10
n_layers integer ∈ {3, ..., 12}
n_filters integer ∈ {16, ..., 100}
stages integer ∈ {1, 4}
stage_mult continuous ∈ [1, 3]

kernel_size integer ∈ {1, 5}
pool_size integer ∈ {2, 5}
pool_type categorical max or average
activation categorical elu, relu, tanh or sigmoid
dropout boolean true or false
yes:dropout_rate continuous ∈ [0, 1]

batch_norm boolean true or false
learning_rate continuous ∈ [1× 10−6, 1× 10−2]

weights_reg_l1 continuous ∈ [1× 10−6, 0.1]

weights_reg_l2 continuous ∈ [1× 10−6, 0.1]

bias_reg_l1 continuous ∈ [1× 10−6, 0.1]

bias_reg_l2 continuous ∈ [1× 10−6, 0.1]

batch_size integer ∈ {10, ..., 128}
loss_function categorical L2 error or crossentropy
optimizer categorical adam, sgd, rmsprop, adagrad or nadam
adam:amsgrad boolean true or false
adam, nadam:1st_moment_decay continuous ∈ [0.8, 1]

adam, nadam:2nd_moment_decay continuous ∈ [0.8, 1]

rmsprop:centered boolean true or false
sgd:nesterov boolean true or false
sgd, rmsprop:momentum continuous ∈ [0.5, 0.99]

n_seeds integer ∈ {1, ..., 10}

Table 8.4: Hyperparameters values for Cifar10

207



BIBLIOGRAPHY

Conditional groups: (see (iii) of Section 4.3.3) G0, Gdropout_rate, Gamsgrad, Gcentered, Gnesterov,
Gmomentum and
G(1st_moment,2nd_moment)

208



BIBLIOGRAPHY

Hyperparameters of Chapter 6

for approximating Mutation++, only fully connected Neural Networks are trained, and the
width (n_units) is the same for every layer. The conditional groups are the same as Bateman.

hyperparameter type values
n_layers integer ∈ {1, ..., 10}
n_units integer ∈ {7, ..., 512}
activation categorical elu, relu, tanh or sigmoid
dropout boolean true or false
yes:dropout_rate continuous ∈ [0, 1]

batch_norm boolean true or false
learning_rate continuous ∈ [1× 10−6, 1× 10−2]

weights_reg_l1 continuous ∈ [1× 10−6, 0.1]

weights_reg_l2 continuous ∈ [1× 10−6, 0.1]

bias_reg_l1 continuous ∈ [1× 10−6, 0.1]

bias_reg_l2 continuous ∈ [1× 10−6, 0.1]

batch_size integer ∈ {1, ..., 500}
loss_function categorical L2 error or L1 error
optimizer categorical adam, sgd, rmsprop, adagrad or nadam
adam:amsgrad boolean true or false
adam, nadam:1st_moment_decay continuous ∈ [0.8, 1]

adam, nadam:2nd_moment_decay continuous ∈ [0.8, 1]

rmsprop:centered boolean true or false
sgd:nesterov boolean true or false
sgd, rmsprop:momentum continuous ∈ [0.5, 0.99]

n_seeds integer ∈ {1, ..., 10}

Table 8.5: Hyperparameters values for Mutation++ approximation

209



BIBLIOGRAPHY

Appendix C: Construction of Bateman data set (Chapter
4)

Bateman data set is based on the resolution of the Bateman equations, which is an ODE
system modeling multi species reactions:

∂tη(t) = Σr

(
η(t)

)
· η(t), with initial conditions η(0) = η0,

and η ∈ (R+)M , Σr ∈ RM×M . Here, f : (η0, t) → η(t), and we are interested in η(t), which
is the concentration of each of the species Sk, with k ∈ {1, ...,M}. For physical applications,
M ranges from tens to thousands. We consider the particular case M = 11. Matrix Σr

(
η(t)

)
depends on reaction constants. Here, 4 reactions are considered and each reaction p has
constant σp.


(1) : S1 + S2 → S3 + S4 + S6 + S7,

(2) : S3 + S4 → S2 + S8 + S11,

(3) : S2 + S11 → S3 + S5 + S9,

(4) : S3 + S11 → S2 + S5 + S6 + S10,

with σ1 = 1, σ2 = 5, σ3 = 3 and σ4 = 0.1. To obtain Σr

(
η(t)

)
, the species have to be

considered one by one. Here we give an example of how to construct the second row of
Σr

(
η(t)

)
. The other rows are built the same way. Given the reaction equations :

∂tη2 = −σ1η1η2 + σ2η3η4 − σ3η2η11 + σ4η3η11,

because S2 disappears in reactions (1) and (3) involving S1 and S11 as other reactants at rate
σ1 and σ3, respectively, and appears in reactions (2) and (4) involving S3, S4 and S3, S11 as
reactants, at rate σ2 and σ4 respectively. Hence, the second row of Σr

(
η(t)

)
is

[0, −σ1η1, 0, σ2η3, 0, 0, 0, 0, 0, 0, −σ3η2 + σ4η3],

with η(t) denoted by η to simplify the equation and ηi the i-th component of η.

To construct the training, validation and test data sets, we sample uniformly (η0, t) ∈
[0, 1]12 × [0, 5] 130000 times. We denote these samples (η0, t)i for i ∈ {1, ..., 130000}. Then,
we apply a first order Euler solver with a time step of 10−3 to compute f((η0, t)i). As a result,
neural network’s input is (η0, t) and neural network’s output is f((η0, t)).

210



BIBLIOGRAPHY

Appendix D: HSICs for conditional hyperparameters
(Chapter 4)

MNIST

For MNIST, there is only one conditional hyperparameter, dropout_rate, so only one
conditional group to consider in order to assess the importance of conditional hyperparameters.

Figure 8.1: HSICs for Gdropout_rate of MNIST hyperparameter analysis. Conditional hyperparameter
dropout_rate is not impactful.

211



BIBLIOGRAPHY

Bateman

For Bateman, there are seven conditional hyperparameter, amsgrad, 1st_moment (beta_1),
2nd_moment (beta_2), dropout_rate, centered, momentum, and nesterov. Six conditional
groups, specified in Figure 8.2, have to be considered in order to assess their importance.

(a) Gamsgrad. (b) G(1st_moment,2nd_moment) (c) Gcentered

(d) Gdropout_rate (e) Gmomentum (f) Gnesterov

Figure 8.2: HSICs for conditional groups of Bateman hyperparameter analysis. (a): amsgrad is not
impactful (it is in the estimation noise), (b): 1st_moment is not impactful but 2nd_moment is the
fourth most impactful hyperparameter of this group, (c): centered is the second most impactful
hyperparameter of this group, (d): dropout_rate is not impactful, (e): momentum is not impactful,
(f): nesterov is the most impactful hyperparameter of this group.

212



BIBLIOGRAPHY

Cifar10

For Cifar10, there are seven conditional hyperparameter, amsgrad, 1st_moment (beta_1),
2nd_moment (beta_2), dropout_rate, centered, momentum, and nesterov. Six conditional
groups, specified in Figure 8.3, have to be considered in order to assess their importance.

(a) Gamsgrad (b) G(1st_moment,2nd_moment)
(c) Gcentered

(d) Gdropout_rate (e) Gmomentum (f) Gnesterov

Figure 8.3: HSICs for conditional groups of cifar10 hyperparameter analysis. (a): amsgrad is
not impactful, (b): 1st_moment, 2nd_moment are not impactful, (c): centered is the third most
impactful hyperparameter of this group, (d): dropout_rate is not impactful, (e): momentum is not
impactful, (f): nesterov is not impactful.

213



BIBLIOGRAPHY

214



Titre : Contributions à la combinaison entre apprentissage profond supervisé et calcul scientifique, application
à la simulation de dynamique des fluides.

Mots clés : Apprentissage automatique scientifique, apprentissage profond, calcul scientifique, analyse statistique

Résumé : Dans cette thèse, nous nous interessons a l’utili-
sation de l’apprentissage profond pour accelerer des simu-
lations numeriques. Pour atteindre cet objectif, nous nous
concentrons sur l’approximation de certaines parties des
logiciels de simulation bases sur des Equations Differen-
tielles Partielles (EDP) par un reseau de neurones. La
méthodologie proposée s’appuie sur la construction d’un
ensemble de donnees, la sélection et l’entrainement d’un re-
seau de neurones et son integration dans le logiciel original,
donnant lieu a une simulation numerique hybride. Malgré la
simplicité apparente de cette approche, le contexte des si-
mulations numeriques implique des difficultes specifiques
liées à un compromis ominiprésent entre précisions et per-
formances. Afin de satisfaire ces enjeux, nous etudions en
detail chaque etape de la methodologie d’apprentissage
profond. Ce faisant, nous mettons en evidence certaines si-
militudes entre l’apprentissage automatique et la simulation
numerique, nous permettant de presenter des contributions
ayant un impact sur chacun de ces domaines.
Nous identifions les principales etapes de la methodologie
d’apprentissage profond comme etant la constitution d’un
ensemble de donnees d’entrainement, le choix des hyper-
parametres d’un reseau de neurones et son entrainement.
Pour la premiere etape, nous tirons parti de la possibilite
d’echantillonner les donnees d’entrainement à l’aide du lo-
giciel de simulation initial pour caracteriser une distribution

d’entrainement plus efficace basee sur la variation locale de
la fonction à approcher. Nous generalisons cette observa-
tion pour permettre son application a des problemes variés
d’apprentissage automatique en construisant une methodo-
logie de ponderation des donnees appelee ”Variance Based
Sample Weighting”. Dans un deuxieme temps, nous pro-
posons l’usage de l’analyse de sensibilite, une approche
largement utilisee en calcul scientifique, pour l’optimisation
des hyperparametres des reseaux de neurones. Cette ap-
proche repose sur l’evaluation qualitative de l’effet des hy-
perparametres sur les performances d’un reseau de neu-
rones à l’aide du critère d’indépendance de Hilbert-Schmidt.
Son adaptation au contexte de l’optimisation des hyperpa-
rametres conduit a une methodologie interpretable permet-
tant de construire des reseaux de neurones a la fois perfor-
mants et precis. Pour la troisieme etape, nous definissons
formellement une analogie entre la resolution stochastique
d’EDPs et le processus d’optimisation en jeu lors de l’en-
trainement d’un reseau de neurones. Cette analogie per-
met d’obtenir un cadre pour l’entrainement des reseaux de
neurones base sur la theorie des EDPs, qui ouvre de nom-
breuses possibilites d’ameliorations pour les algorithmes
d’optimisation existants. Enfin, nous appliquons ces metho-
dologies a une simulation numerique de dynamique des
fluides couplée à des réactions chimiques multi-espèces.

Title : Combining supervised deep learning and scientific computing: some contributions and application to
computational fluid dynamics.

Keywords : Scientific machine learning, deep learning, scientific computing, statistical analysis

Abstract : This thesis settles in the high-stakes emerging
field of Scientific Machine Learning which studies the ap-
plication of machine learning to scientific computing. More
specifically, we consider the use of deep learning to ac-
celerate numerical simulations. We focus on approximating
some components of Partial Differential Equation (PDE) ba-
sed simulation softwares by a neural network. This idea
boils down to constructing a data set, selecting and trai-
ning a neural network, and embedding it into the original
code, resulting in a hybrid numerical simulation. Although
this approach may seem trivial at first glance, the context of
numerical simulations comes with several challenges stem-
ming from an accuracy-performances trade-off. To tackle
these challenges, we thoroughly study each step of the
deep learning methodology while considering the aforemen-
tioned constraints. By doing so, we emphasize interplays
between numerical simulations and machine learning that
can benefit each of these fields.
We identify the main steps of the deep learning methodo-
logy as the construction of the training data set, the choice
of the hyperparameters of the neural network, and its trai-
ning. For the first step, we leverage the ability to sample

training data with the original software to characterize a
more efficient training distribution based on the local varia-
tion of the function to approximate. We generalize this ap-
proach to general machine learning problems by deriving a
data weighting methodology called Variance Based Sample
Weighting. For the second step, we introduce the use of
sensitivity analysis, an approach widely used in scientific
computing, to tackle neural network hyperparameter opti-
mization. This approach is based on qualitatively asses-
sing the effect of hyperparameters on the performances of
a neural network using Hilbert-Schmidt Independence Crite-
rion. We adapt it to the hyperparameter optimization context
and build an interpretable methodology that yields compe-
titive and cost-effective networks. For the third step, we for-
mally define an analogy between the stochastic resolution
of PDEs and the optimization process at play when training
a neural network. This analogy leads to a PDE-based fra-
mework for training neural networks that opens up many
possibilities for improving existing optimization algorithms.
Finally, we apply these contributions to a computational fluid
dynamics simulation coupled with a multi-species chemical
equilibrium library.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Notations
	Introduction
	Challenges and stakes of numerical simulations
	Supervised deep learning as a way to speed-up simulation codes
	Supervised deep learning methodology in the eye of numerical and uncertainty analysis
	Contributions
	Training distribution and local variation.
	Hyperparameter optimization using goal-oriented sensitivity analysis.
	A view of learning from the Partial Differential Equation theory
	Efficient hybrid numerical simulations (with guarantees)

	Thesis organization

	Supervised deep learning and numerical simulations
	Supervised machine learning
	Artificial Neural Networks
	Definition
	Architectures as priors on data structure
	Some famous architectures

	Optimization in deep learning
	Importance of the training data, hyperparameters, and optimization
	Importance for supervised learning
	Importance for hybrid numerical simulations

	Discussion

	Training distribution and local variation
	Related works
	Link between local variations and learning
	Illustration of the link using derivatives
	A sampling scheme based on Taylor Approximation
	Application to simple functions
	Application to an ODE system

	Generalization of Taylor based Sampling
	From Taylor expansion to local variance
	From sampling to weighting

	Variance Based Sample Weighting
	Methodology
	Toy experiments & hyperparameter study 
	Cost efficiency of VBSW

	VBSW for deep learning
	Methodology
	Image Classification
	Text Classification and Regression
	Robustness of VBSW
	Complementarity of VBSW

	Discussion and Perspectives
	Impact for numerical simulations
	Impact for machine learning


	Hyperparameter optimization using goal-oriented sensitivity analysis
	Sensitivity analysis as a new approach to hyperparameter optimization
	Challenges of hyperparameter optimization
	Classical hyperparameter optimization techniques
	Benefits of Sensitivity Analysis
	Goal-oriented sensitivity analysis

	HSIC-based goal oriented sensitivity analysis
	From Integral Probability Metrics to Maximum Mean Discrepancy
	The kernel choice
	Hilbert-Schmidt Independence Criterion (HSIC) for goal-oriented sensitivity analysis

	Application of HSIC to hyperparameters space
	Normalization of hyperparameters space
	Interactions between hyperparameters
	Conditionality between hyperparameters
	Summary: evaluation of HSIC in hyperparameter analysis

	Experiments
	Hyperparameter analysis
	Modification of hyperparameters distribution to improve training stability
	Interval reduction for continuous or integer hyperparameters that affect execution speed

	Optimization by focusing on impactful hyperparameters
	Discussion
	Impact for deep learning
	Impact for numerical simulations
	Other comments


	A view of learning from the Partial Differential Equation theory
	The optimization task
	Newton-based algorithms
	Gradient descent-based algorithms
	PDE based optimization

	Stochastic resolution of Partial Differential Equations
	A link between optimization and resolution of PDE
	Background on stochastic resolution of PDE

	Learning task formulated as a stochastic PDE
	The optimization step as a drift-diffusion equation
	Learning by simulating a stochastic process

	A PDE-consistent Stochastic Gradient Descent
	SGD as a stochastic process simulation
	A PDE based SGD
	Toy experiments
	Unbiasing PDESGD and experiments on real-world datasets

	Discussion
	Perspectives
	Interplay between numerical analysis and machine learning


	Efficient hybrid numerical simulations (with guarantees)
	State of the art
	Helping numerical simulations from the outside
	Surrogate modeling: replacing the whole code for parametric studies
	Hybridization of machine learning and numerical simulations

	A general approach for constructing of hybrid simulation codes
	Structure of simulation codes based on coupled equations
	Neural networks as reduced models

	Test case: a CFD code coupled with chemical equilibrium
	Euler equation coupled with Gibbs free energy minimization
	Mutation++
	The computational burden of chemical equilibrium

	Acceleration of the simulation code
	Methodology for designing NN hybrid code
	Application of the vanilla methodology
	Effect of HSIC analysis and Variance based sampling
	Is the error acceptable?

	Guarantees for the hybrid code
	Zero error guarantee using initialization
	Acceptable error guarantee using error analysis

	Discussion and Perspectives
	Towards a general approximation of Mutation++
	Possible usages of hybrid simulation codes
	Concluding remark


	Summary of the thesis/Résumé de la thèse (in French)
	Introduction
	L'apprentissage automatique comme réponse aux enjeux de la simulation numérique
	Interactions entre simulation numérique et apprentissage profond supervisé
	Organisation de la thèse

	Bases de l'apprentissage profond supervisé
	Les réseaux de neurones
	L'apprentissage profond supervisé

	Construction d'une base de données d'entraînement à partir des variations locales
	Échantillonnage à partir du développement de Taylor
	Généralisation par pondération basée sur la variance locale
	Résultats

	Optimisation des hyperparamètres à l'aide de l'analyse de sensibilité globale
	Adaptation du critère d'indépendance de Hilbert-Schmidt
	Résultats

	Une analogie entre l'entraînement des réseaux de neurones et la résolution d'équations aux dérivées partielles
	Application à la construction d'un code de simulation hybride
	Description du code
	Résultats

	Conclusion

	Conclusions
	Conclusions
	Contribution to the methodology of supervised deep learning
	Training distribution and local variations
	Hyperparameter optimization using goal-oriented sensitivity analysis
	A view of learning from the Partial Differential Equation theory

	Application of the methodology to the construction of a hybrid CFD numerical simulation

	Bibliography

	Appendices
	Appendix A: Demonstrations (Chapter 3)
	Appendix B: Hyperparameter spaces
	Appendix C: Construction of Bateman data set (Chapter 4)
	Appendix D: HSICs for conditional hyperparameters (Chapter 4)


