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Résumé

Les accélérometres a poutre vibrante ont démontré leur capacité a atteindre un
niveau de bruit inférieur au pg, auparavant réservé aux accélérometres
macroscopiques. Ces systemes microélectromécaniques (dits MEMS, leur
acronyme en anglais) sont des candidats prometteurs pour les applications
commerciales de haute précision en raison de leur faible codt, de leur petite taille et
de leur possibilité de fabrication en série. Dans la grande majorité des capteurs
inertiels commerciaux, la masse sismique et les éléments de détection sont graves
dans la méme couche de silicium. Dans le cas particulier ou I'élément de détection
est une poutre résonante, l'utilisation d'une seule couche de silicium implique un
compromis entre la sensibilité et la bande passante de l'accélérométre. Pour
contourner ce compromis nous proposons ici d’utiliser une technologie bicouche,
dite M&NEMS, qui permet de concevoir des capteurs beaucoup plus sensibles, et
ouvre le champ a de nouvelles applications nécessitant des capteurs intégrés de
haute performance. L'accélérometre proposé combine ainsi une masse d'épreuve
micromeétrique avec des poutres vibrantes de taille nanométrique pour une détection
de haute sensibilité. De plus, une détection piézorésistive des nanorésonateurs est
proposée, permettant de mesurer leur fonctionnement a haute fréquence dans des
conditions plus optimales qu’avec une détection classique capacitive.

Ce travail est la premiére preuve de concept d'un accélérometre résonant basé sur
la détection d'un nanorésonateur piézorésistif. D'abord, la modélisation, la
conception et la fabrication de la premiére génération de capteur sont présentées.
Comme le nanorésonateur congu fonctionne au-dela du MHz, une électronique de
lecture dédiée a été congue en partenariat avec le laboratoire du Prof. Langfelder du
Politecnico di Milano. La deuxieme partie de ce travail se concentre sur la
caractérisation des accélérometres. L'utilisation du procédé multicouche M&NEMS
permet d'atteindre la plus haute sensibilité de I'état de I'art pour une empreinte de
masse de 0,18 mm2 : 100 000 ppm/g avec <1% de non-linéarité sur la gamme £1 g.
L'analyse du bruit montre que la limite de détection du nanorésonateur est de 1,75
ug/NHz de bruit de fond, sur une bande passante de 1 kHz. La derniére partie
propose des améliorations de l'architecture de I'accélérometre et des
nanorésonateurs afin de surmonter les limites de fonctionnement mises en évidence
par les premiers résultats expérimentaux. Le processus de fabrication étant
compatible avec des capteurs gyroscopiques et des accéléromeétres hors plan, la
détection par nanorésonateurs proposee représente une alternative de haute
sensibilité pour les unités de mesure inertielle (IMU) a 6 axes, ainsi que pour
d’autres dispositifs comme des capteurs de pression ou des magnétomeétres.




Abstract

Resonant beam accelerometers have demonstrated their ability to achieve sub-ug
resolutions previously reserved for macroscopic accelerometers. These
microelectromechanical systems (MEMS) are promising candidates for high-
precision commercial applications due to their low cost, small size, and batch
manufacturability. In the vast majority of commercial MEMS inertial sensors, the
proof mass and sensing elements are defined in the same silicon layer. When the
sensing element is a resonant beam, the use of a single layer of silicon imposes a
trade-off between the sensitivity and the bandwidth of the accelerometer. In order
to circumvent this trade-off, we propose here to use a bi-layer technology, so-called
M&NEMS, which results in sensors that are more sensitive and would open the field
to new applications requiring high-performance integrated sensors. The proposed
accelerometer combines a micrometric proof mass with the high detection
sensitivity of a nanoresonator. In addition, we propose to employ a piezoresistive
detection that provides a performance transduction at high frequency, unlike
capacitive detection.

This work represents the first proof of concept of a resonant accelerometer based
on a piezoresistive nanoresonator detection. First, the modelling, design and
fabrication of the first generation of sensors is presented. Because the designed
nanoresonator operates at several MHz, a dedicated readout electronics was
designed in partnership with the group of Prof. Langfelder from the Politecnico di
Milano. The second part of this work focuses on the characterization of the
accelerometers. The use of the M&NEMS multi-layer process allows reaching the
highest sensitivity of the state of the art for a 0.18 mm?2 mass footprint, i.e. 100,000
ppm/g with <1% nonlinearity over the +1g range. The noise analysis shows a noise

floor of 1.75ug/V/Hz over a 1-kHz bandwidth. The last part deals with the
improvement of the accelerometer and nanoresonator architecture in order to
overcome the operating limitations highlighted by the first experimental results.
Because the manufacturing process is compatible with gyros and out-of-plane
accelerometers, the proposed nanoresonator-based detection represents a high-
sensitivity alternative for 6-axis inertial measurement units (IMU), as well as other
devices such as pressure sensors or magnetometers.




1 Introduction
1.1 General approach

An accelerometer is a sensing device that measures acceleration in one, two or three
orthogonal axes. The device consists of a proof body that translates acceleration
into a variation of a physical quantity, and of a sensing element that measures this
variation. The first accelerometer in the modern sense of the term was developed in
the early 1920s [1] and consisted of a macroscopic proof mass that produced a stress
variation on the sensing elements. Because of the piezoresistive nature of these
sensing elements, the stress variation could then be measured by a voltage variation
across a Wheatstone bridge. This was the first acceleration measurement that was
exploited for specific applications. However, the size of these devices, presented in
Figure 1-1 (a), posed a problem for integration in embedded applications. The
development of the bonded resistance strain gauge (Figure 1-1 (b)) around 1938 [2]
made it possible to reduce the size of the sensing elements considerably, which
facilitated the integration of the accelerometers in many applications. As a result,
the volume and price of the device decreased and the commercialization of
accelerometers increased dramatically. It was in 1979 that the first micromachined
accelerometer (Figure 1-1 (c)) based on piezoresistive properties was produced [3].
The large commercial diffusion of MEMS started ten years later with the
introduction of accelerometers in airbags for automotive applications. Since then,
the market for inertial MEMS has continued to grow, constantly encompassing new
applications and encouraging the development of more powerful and compact
Sensors.

(a.1) END APLATE (a.2)

Figure 1-1 History of the first accelerometers: (a) is the first commercialized accelerometer
(a.1) its sensing element based on a piezoresistive carbon ring, (a.2) its working principle
architecture and (a.3) the integration of the accelerometer in a system. (b) Is the first bonded
resistance strain gauge and (c) is the first produced micro-machined accelerometer.




1.2 Accelerometer applications

The MEMS market continues to grow due to the increasing number of electronic
devices, but also due to new applications. According to Yole Development [4],
inertial MEMS production is expected to grow from $3.4 billion in 2020 to $4
billion in 2026. This growth is mainly due to the increasing demand for inertial
measurement units and the advancement of co-integration of MEMS sensors in their
specific integrated circuit (ASIC), which represents a new step of integration of the
sensor in an embedded system. Besides, the automotive market is making ever more
intensive use of accelerometers with the advent of autonomous cars. The consumer
market has taken a significant share of total revenues with the introduction of
inertial sensors in smartphones and game consoles. Moreover, with the emergence
of new consumer applications such as augmented reality and the Internet of Things
(1oT), this field is expected to grow in the coming years. Although the defence
market represents only a small portion of the MEMS market, the increasing reliance
on high technology of warfare is driving the development of the latest disruptive
technologies in accelerometers, which is improving performance in the aeronautics
and industrial markets.

Whatever the market, the applications of accelerometers can be grouped into three
main families. From missile guidance systems to directional drilling and
smartphone tracking, navigation is the most widespread application of the
measurement of acceleration, where it is exploited to calculate the position in real
time. Acceleration can also be used to measure vibrations. This allows for
geological studies, such as seismometers, which detect earthquakes, and the
gravimeter, which measures fluctuations in gravity. In addition, vibration
measurement is used to control the operation of industrial machinery, but also has
medical applications such as monitoring heart rate for pacemakers. More
commonly, the accelerometer is used to measure shock, such as for airbag
deployment, crash testing, or smart munitions. The use of acceleration measurement
varies widely across markets and need different specifications. Table 1 shows the
diversity of the three applications across major markets.

Markets Applications
Consumer Remote control / camera stabilization / drop protection
Automotive  Integrated GPS / active suspension / airbag sensor

Medical Motion study and rehabilitation / ballistocardiology

Industrial Directional drilling / seismometer / shock monitoring for safety
Aeronautics  Inertial navigation / vibration monitoring

Defense Missile guidance / defence stabilization system / smart munitions

Table 1 Examples of accelerometer applications in different markets. In blue: inertial
navigation, where position is deduced from the acceleration. In black: vibration monitoring.
In red: shock monitoring.




1.2.1 Accelerometer specifications

s(t)

Ko + As

Ko

0 ty t

Figure 1-2 Accelerometer signal variation due to an acceleration step.

A sensor is a device that measures an input physical phenomenon by generating a
change in an output quantity, usually in the form of an electrical signal.
Accelerometers are sensors that generate a temporal signal s(t) in order to measure
an acceleration a in real time. In practice, the accelerometer generates initial signal
of magnitude K, and the acceleration is deduced from the variation of this signal
As. Figure 1-2 represents the accelerometer signal s(t) when an acceleration step
of magnitude Aa is applied at t = t;. The initial signal K, is shifted to K, + As.
The scale factor of the accelerometer is the ratio of the applied acceleration to the
signal variation K; = As/Aa. In practice, the scale factor is determined within a
range to ensure linearity of the signal variation as a function of the applied
acceleration. Then, the acceleration is deduced from the accelerometer signal
measurement.

s(t) = Ko + Kya(t) 11

The main specifications of an accelerometer are the dynamic range, which
represents the ratio of maximum to minimum measurable acceleration, and the
bandwidth that represents the maximum measurable acceleration frequency. Figure
1-3 represents the operation ranges, both in amplitude and frequency, of the
acceleration measurement.

la] Operating ranges

amax /

Bandwidth | Dynamic range

Amin

fmin fmax  [Hz]

Figure 1-3 Representation of the operating ranges of an accelerometer. In blue, the
bandwidth bounded by a minimum and maximum measurable frequency. In red, the
dynamic range bounded by a minimum and a maximum measurable acceleration
magnitude.




In practice, the bandwidth is the frequency at which the output signal is reduced by
3dB with regards to the in-band signal. The bandwidth is related to both the
resonance frequency of the mechanical structure, the accelerometer, and the sensing
element operation, response time and electronics readout. High bandwidth requires
high output data rate, which increases the power consumption of the system. The
dynamic range is usually limited by the maximum acceleration signal that can be
detected with a linearity error smaller than the limit set by the application: the Full
Scale Range (FSR). The dynamic range is also limited by the minimum measurable
acceleration: the resolution. Again, the resolution is determined by the intrinsic
limits of the accelerometer set by the integrated noise density over the desired
bandwidth. It is often expressed in pg. By definition, 1 pg represents 9.81e =6 m/s2,
The noise density is the noise spectral density expressed in terms of acceleration.
The noise can have a mechanical origin, such as the thermomechanical noise of the
mechanical structure, or an electrical origin, such as the noise added by the sensing
element and by the electronics readout. The noise density is usually expressed in

Hg/VHz that is an ideal representation for a system dominated by white noise.
However, depending on the noise source, which may differ from white noise, the
noise spectral density can be expressed over a 1Hz-bandwidth to compare its rms
value. In this way, the noise deviation is expressed in pg rms. In the field of
accelerometers, it is common to express the smallest resolution that the sensor can
achieve: the bias stability. Bias stability is used to compare the resolution of
accelerometers in different applications and it is expressed from the variance in
terms of pg.

One might think that dynamic range and bandwidth are sufficient specifications to
address an application. In other words that the intrinsic parameters of the
accelerometer are the only considerations. In practice, this is insufficient. One must
also consider its operating environment, and thus how the acceleration
measurement is affected by extrinsic parameters. The stability of the measurement
is one indicator of the performance of the accelerometer. Stability represents the
sensitivity to extrinsic parameters and can be characterized by three sources of
measurement error: the bias error §K,, the scale factor error §K; and the linearity
error K, represented in Figure 1-4.

v
v

S=K0+5K0+K1a S:K0+(K1+5K1)a S=K0+K1a+K2a2

Figure 1-4 Comparison of the ideal scale factor (dotted line) with the different errors (color
lines) : (a) Bias error; (b) scale factor error, (c) linearity error.
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In practice, sensors are calibrated in order to minimize the initial bias offset K,. The
bias error 5K, is then the measured signal variation in absence of acceleration. The
origins of bias error are mainly due to temperature drifts and aging of the sensor. In
this way, the bias error can be expressed respectively by a temperature coefficient,
usually expressed in mg/°C and by long-term repeatability, usually expressed in
mg. The scale factor error §K; represents a measurement error proportional to the
input acceleration. Here too, the origins of scale factor error are mainly due to
temperature and aging. In practice the scale factor error is expressed as ratio of the
scale factor. In this way, the scale factor error can be expressed by a temperature
coefficient, usually in ppm/°C, and long-term repeatability, usually expressed in
ppm. Moreover, bias and scale factor errors can also be induced by cross-axis
acceleration or shock. The linearity error K,, expressed usually in pg/g?, represents
a measurement error proportional to the square of acceleration that can be induced
by environmental vibrations. It is important not to confuse the linearity error
induced by extrinsic parameters with the sensor nonlinearity induced by intrinsic
parameters, which is induced by a physical phenomenon that links the change in
physical quantity to the acceleration. The nonlinearity corresponds to the relative
error of the scale factor for the full scale. Typically, accelerometers are designed to
operate in a linear range and have a nonlinearity of less than 1%.

In conclusion, the main specifications of the accelerometer depend both on the
application and the market, i.e. the specific conditions under which the application
will be performed. Table 2 highlights these requirements: navigation is an
application that requires a relatively high resolution in order to provide a good
accuracy on the position measurement, but it does not generally require a bandwidth
larger than 400 Hz and a dynamic range larger than 140 dB. However, the stability
of the measurement is a key parameter for this application. In the case of
smartphone navigation (Consumer Grade), high stability measurements are not
required due to GPS recalibration. However, in the military market, submarine
navigation (Strategic Grade) requires long-term high stability to cover long
immersions. On the contrary, the guidance of a missile (Tactical Grade), because
of its very short flight time, does not require long-term stability. Here the conditions
under which the application is performed impose different stability requirements
for the same application. In general, accelerometers can be classified into four
families: high-resolution for accuracy needs, high-g for high FSR and shock
resistance needs, high-bandwidth for large frequency range needs such as vibration
control , and high stability for slow measurement, long-term durability needs

High-res High-g High-BW High-stability*

Smartphone navigation ~1luyg ~10g < 400Hz > mg
Submarine navigation <lpyg ~1g < 400Hz < ug
Missile guidance ~1lpg ~10g < 400Hz <mg

Table 2 Comparison of the specifications required for navigation applications as a function of
the the conditions under which the application is performed. * Here High-stability represents
long-term bias stability (6K,) but can be also due to thermal environment [5],[6].

11



1.2.2 Accelerometer architectures

The main accelerometer architectures are discussed in terms of advantages and
drawbacks. The majority of accelerometers transform acceleration into a physical
quantity using a proof mass, except for thermal accelerometers where the proof
body is a volume of gas [7]. For proof mass-based accelerometers, the sensors can
be classified according to the measured physical quantity. On one hand, motion-
measuring accelerometers measure the movement of the proof mass due to
acceleration. On the other hand, force-measuring accelerometers measure
mechanical stress resulting from the acceleration’s inertial force.

The most common motion-measuring accelerometers are capacitive
accelerometers. The principle is to take advantage of the modification of the
capacitive coupling between a movable mass and fixed electrodes (Figure 1-5 (a)).
The vast majority of MEMS accelerometers on the market use capacitive sensing
[8], [9], [10], [11] because it can be implemented using a relatively simple process.
In addition, the ability to integrate signal conditioning circuitry near the sensor
allows for highly sensitive and compensated devices [12]-[14]. The main drawback
is that capacitive sensors are sensitive to electromagnetic fields in their
environment, so they must be carefully shielded. An alternative to current motion-
measuring accelerometers are optomechanical accelerometers. The principle is to
take advantage of the proof mass motion to modify the optical properties of an
optical resonator (Figure 1-5 (b)). The optomechanical transduction method offers
superior displacement resolution and shows promising performance [15], [16], in
terms of resolution and bandwidth. However, optical sensing does not yet allow for
chip-scale integration, but some devices are already fabricated with large VLSI
process [17] and could lead to a new generation of sensors. There are other, less
conventional, motion-measuring accelerometers such as electrostatic levitation [18]
or tunneling [19] accelerometers, but they are not discussed here.

A
e N -

Optical
= disk resonator
|

motion
measurement

1 =

|:| Sensing element

Figure 1-5 Presentation of (a) in-plane capacitive accelerometer [9] and (b) in-plane
optomechanical accelerometer [14], both based on motion measurement.
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An example of force-measuring accelerometers are piezoresistive accelerometers.
The principle is to take advantage of the resistance variation of one or more
piezoresistive elements loaded by the suspended poof mass (Figure 1-6 (a)). This
reading technique allows reducing size of the sensing elements, which can be small
piezoresistive layers [20],[21] or piezoresistive gauges [22]. This technology offers
a large dynamic range but suffers from Johnson noise and 1/f noise, which limit its
achievable resolution. Thus, piezoresistive accelerometers are mostly used for high-
g applications [23]. A second family of force-measuring accelerometers are
piezoelectric accelerometers, where the stress induces a charge variation on the
piezoelectric material [24], [25]. The advantage of this approach is its low power
consumption due to intrinsic charge generation. However, charge losses due to the
dielectric layer limit the use of these devices for low frequency signals. Therefore,
piezoelectric accelerometers are better suited for high-bandwidth measurements.
Because of the complexity of depositing piezoelectric materials on micromachined
accelerometers, the use of this technology is limited for the MEMS market and most
available piezoelectric accelerometers are macroscopic [26]. Resonant
accelerometers are another class of force-measuring accelerometers. The principle
is to take advantage of the stiffness modulation of an oscillating structure, caused
by acceleration, to measure the induced frequency shift. The oscillating structure
consists in a beam [27]-[29] or the vibrating proof mass itself, usually kept in
oscillation by an electrostatic drive. The proof mass motion causes either a stress
on the vibrating beam or a change in the distance to fixed electrodes. In both cases,
this results in a change in the frequency of the oscillating structure, respectively due
to the modulation of the beam stiffness by axial stress (Figure 1-6 (b)) or a change
in electrostatic stiffness [30]-[33]. The detection of a frequency shift is
advantageous because the output is less sensitive to spurious or parasitic effects
than static capacitive or piezoresistive sensing methods [34]. The relatively high
complexity of the electronic systems required to maintain the structure oscillating
represents the main drawback of this type of sensor, but the design of low-power
oscillators and accurate frequency-to-digital converters makes it an interesting
alternative to existing commercial devices. In the next section, the resonant
accelerometer based on vibrating beams are discussed.

Resonant
beam

Axial stress I
measurement |

Figure 1-6 Presentation of resonant accelerometers based on force measurements. (a) Out-
of-plane piezoresistive accelerometer [20]. (b) In-plane vibrating beam accelerometer [29].
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1.3 Resonant detection

In the past, the development of analog control systems was accompanied by the
development of electrical sensors that detect the measurand with an analog voltage
or current. However, these sensors are less suitable for digital control due to the
added penalty in terms of reliability, cost and speed induced by an analog-to-digital
conversion step between the sensor and the control circuit. Therefore, the
development of sensors that provide an inherently digital output has an advantage
for their integration into systems. Figure 1-7 compares static detection with
resonant detection. Temporal sensors, whose outputs are based on frequency or
phase, can be measured directly in digital systems by pulse counting and thus have
a natural advantage. The most common resonant sensing techniques involve
modulating either the spring constant, typically for force sensing [35], or the mass
of the resonant element, typically for mass sensing [36]. In addition to the resonance
frequency, other parameters depending on the temporal properties of mechanical
resonators can be used: for example, by selecting an appropriate oscillating
structure, a viscosity sensor can be constructed due to the dependence of the decay
time of a mechanical resonator on viscosity [37]. When a mechanical resonator is
immersed in a moving fluid, the flow of the fluid causes phase differences in the
motion of the resonator between one point and another. Therefore, the flow velocity
can be measured with the time difference between the signals of displacement
sensors fixed at different points [38].

Static detection Vour N N

| Tension # | Nombre

Amplitude-modulated

Digital output

signal
Analog input
| Vour Frequency N P
Resonant detection Tension| COUNEr | Nombre

Frequency-modulated
signal

Digital output

Figure 1-7 Comparison between static detection and resonant detection. For static
detection, the analog input signal coming from the measurand is transduced as an
amplitude-modulated signal by the sensor. An Analog-to-Digital-Converter allows sampling
the signal and transferring it as digital output signal. For a resonant detection, the analog
input signal coming from the measurand is transduced as frequency-modulated signal by
the sensor. A frequency counter allows generating a digital output signal based on the
counting frequency.
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1.3.1 Resonators at the nanoscale

Over the last three decades, the evolution of microelectronic technologies has made
it possible to fabricate mechanical structures of increasingly smaller dimensions.
Manufacturing technology has finally allowed the fabrication of sub-micrometer
size structures, thus opening the field of Nanoelectromechanical Systems (NEMS).
This miniaturization offers mechanical advantages such as high surface-to-volume
ratios, lower masses, and higher resonant frequencies. Nanobeam resonators are
specific NEMS structures based on a beam with at least two dimensions smaller
than a micrometer. The frequency response of nanobeams is well-known as it is
described by the standard theory of elasticity. Nanobeams resonators can be
implemented with graphene [39] or carbon nanowires [40], but silicon nanowires
(NWs) are the most widely used technology because some of them are compatible
with large VLSI processes [41]. Nano beam resonators, named nanoresonators
afterwards, consist of a mechanical element and transducers that interact with it.
The actuation transducer is in charge of transforming an input signal into
mechanical stimuli to drive the mechanical element. Then, the sensing transducer
measures its mechanical response and converts it into signals. One of the most
commonly used actuators is the capacitive actuation (Figure 1-8), but there are also
other alternatives such as the piezoelectric actuation [42]. Capacitive transduction
is very inefficient at the nanoscale because the coupling area of the electrodes is
proportional to the size of the device. Other detection methods, such as
optomechanical transduction [43] or piezoresistive detection [44], have
demonstrated high performance by routinely measuring the detection limit of the
nanoresonator: its thermomechanical noise. Due to their exceptionally low masses
and high resonance frequencies, nanoresonators have exceptional qualities as mass
sensors [45]. The inertial mass of molecules landing on a nanoresonator can be
deduced from the variation of its resonance frequency. This variation of the
resonance can be due to either a change in the effective mass or the effective
stiffness depending on the location of the deposit. Moreover, nanoresonators have
been used as force sensors [46] due to their high sensitivity to force which
modulates their effective stiffness and thus their resonance frequency.

. b .
Electr0§tatlc (b) N Piezoresitive Nano-beam
actuation detection @ resonator
1
Optomechanical
detection

; 2
Electrostatic g Y K
detection JaA
\ M,

y.

4

Electrostatic
actuation

Electrostatic
actuation

Nano-beam
resonator

5um

Figure 1-8 Examples of nanoresonator using (a) capacitive actuation and optomechanical
detection [43], (b) capacitive actuation and piezoresistive detection [44] and (c) capacitive
actuation and detection.

15



1.3.2 Resonant beam accelerometer

Resonant beam accelerometers (RBAS) are accelerometers based on the frequency
modulation of their sensing element. Historically, it was the use of single-crystal
quartz that made it possible to produce the first resonant beam accelerometer [27]
because of the stable properties of this material. In the late 1980s, ONERA decided
to produce the first resonant beam accelerometer from the same quartz substrate in
order to avoid performance-limiting assemblies and to allow easier miniaturization
[47]. Subsequently, the emergence of MEMS technologies in the 1990s enabled the
fabrication of micromachined resonant accelerometers from a single-crystal silicon
structure [48], opening up the possibility of larger-scale fabrication processes.
However, resonant MEMS accelerometers suffer from effects such as temperature
sensitivity, the need for vacuum packaging, as well as the complexity of closed-
loop readout interfaces. Today, many significant improvements have been made on
these topics: improved on-chip vacuum packaging allows for high quality factor
resonators, which are needed for sub-pg resolution [49], and open the possibility of
gravimetric or seismic applications previously reserved for macroscopic sensors. In
addition, specialized high-performance circuits have been developed to realize
resonance detection with an integrated readout architecture [50], which allows for
reduced power consumption and system size for integration into embedded systems.
While the ONERA accelerometer architecture has an isolation system that insulates
the vibrating beam from thermal stresses, the impact of temperature is a critical
issue in conventional resonant beam accelerometers. However, many accelerometer
architectures have demonstrated resistance to thermal stress [51]-[53] by
optimizing the position of the anchors and using a specially-shaped substrate.

The classical architecture of a resonant beam accelerometer is shown in Figure 1-9.
The resonant beam accelerometer consists in a moving mass guided in one
direction, a lever arm and one or several resonant beams. The lever arm, consisting
of one (Figure 1-9 (a)) or two stages (Figure 1-10 (b)), receives the acceleration
force of the proof mass as an input and transmits it as an axial stress into the
resonant beam. Under the effect of this stress, the resonance frequency of the
resonant beam changes. The performance of the accelerometer is directly related to
the intrinsic stability of the frequency of the resonant beam, since any variation in
frequency is considered as a measurement of acceleration. In general, a differential
configuration with two resonant beams, identical but subject to opposite axial
forces, is used. In the literature, there are mainly two ways to design resonant
beams. The most classical is to use a simple beam in its first bending mode [54], or
its second mode [55], but this architecture has the disadvantage of having a low
quality factor due to thermoelastic damping at the anchors. Thus, another common
approach is the use of Double Ended-Tuning Fork (DETFs), i.e., two parallel
vibrating beams, for which the angular moments of the two beams cancel each other
out and thus no energy is lost in the support, which implies a higher quality factor.
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Figure 1-9 Resonant beam accelerometers with capacitive transduction. (a) The resonant
beam is a simple beam [56]. The acceleration force of the proof mass is transmitted as an
input force in the lever arm. The resonant beam receives the amplified output at the end of
the lever arm. (b) The resonant beam is a DETF [57], and the amplification mechanism is
similar.

In general, there are two ways to transduce the resonant micro-beam motion. The
first is to use conventional capacitive sensing, as shown in Figure 1-9, to measure
the resonance frequency of the vibrating beam. This transduction has the advantage
of being easily implemented in industrial manufacturing processes. However, it
suffers from parasitic capacitances that can be problematic at the working
frequencies of resonant beams and require suitable readout electronics. Another less
common method is the piezoelectric transduction presented in Figure 1-10. The
piezoelectric material make it easy to actuate/detect useful vibrations at high
working frequencies. However, this technology is still largely incompatible with
large-scale manufacturing processes. In conclusion, the resonant beam
accelerometer has the advantage of presenting a very good scale factor, but they
require materials with excellent mechanical quality and the control of the resonant
beam size by micromechanical fabrication.
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Figure 1-10 Resonant beam accelerometer with piezoresistive transduction. (a) The
resonant beam is a simple beam. The ONERA architecture acts out-of-plane. A thickness
reduction of its mass in its center gives it a pivot characteristic that allows to axially stress
the resonant beam under the effect of an acceleration [47]. (b) The resonant beam isa DETF
and the accelerometer is based on double lever arm mechanism [58].
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1.3.3 Single-layer trade-offs

To illustrate the single layer trade-offs of resonant beam accelerometers, a
comparison with capacitive accelerometers is presented. In the simplest
representation, an accelerometer consists of a suspended mass M guided by bending
elements represented by a stiffness K., and associated with the damping coefficient

b,, (Table 3). In this configuration, the accelerometer can be associated with a
resonance frequency w,,, and an intrinsic acceleration resolution imposed by the
thermomechanical noise of the system a,,;, . Already, the accelerometer suffers
from a trade-off between resolution and bandwidth imposed by these accelerometer
characteristics. If the bandwidth of the accelerometer is increased, its
thermomechanical noise is also augmented (section 2.4.2). On the other hand, the
increase of the proof mass allows reducing the thermomechanical noise at the cost
of the bandwidth and the footprint. However, in recent years, sub-pg accelerometers
have been developed [59] thanks to improved wafer-level packaging and a closed-
loop control system that guarantee high quality factors and stability, respectively.
In this way, the thermomechanical noise of the accelerometer a,;,;,, , is reduced and
the resolution of the accelerometer is fixed by its transduction method. However,
the sensitivity of the displacement (or, equivalently, force) to an acceleration S, is
the ratio of the effective proof mass M to the effective stiffness K, . Thus, there is
a trade-off here between the displacement (force) sensitivity and the bandwidth of
the accelerometer.

Architecture General
a
Schematic P
Ke‘l X
Accelerometer Keq
resonance Wom = [T
Thermomechanical Wom
- . OC —
resolution Amin,m M
Accelerometer _ox_ M
sensitivity “ 0da K

Table 3. General characteristics of an accelerometer. The accelerometer can be represented
as a damped spring-mass system where the effective stiffness depends on the suspension
stiffness and stiffness added by transduction method. The proof mass is guided on the x axis
when an axial acceleration ais applied. The natural resonance frequency wg,,, the
thermomechanical resolution a,,;, ., and the accelerometer sensitivity S, depend on the
effective stiffness K., and effective proof mass M.
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The transduction method consists in using a sensitive element to transform the
displacement of the standard mass into a physical quantity. The sensitivity of the
physical quantity to the displacement S, as well as the minimum measurable
physical quantity, i.e. the detection limit, are characteristics of the method. The
detection limit of the sensing element can be related to the acceleration resolution
amins DY the two system sensitivities S, and S;. In addition, the transduction
method has an impact on the mechanical system, including its stiffness. The
equivalent stiffness of the accelerometer is then expressed as a function of the
stiffness of the suspension element k., and the stiffness added by the sensing
element. In Table 4 and Table 5, the impact of two different transduction methods
Is discussed.

The capacitive transduction method consists in measuring the capacitance change
dC due to the displacement change dx, i.e. S, = dC/dx. The capacitive sensitivity
depends on the coupling area S, and the electrode gap g.. In addition, the capacitive
coupling adds a negative stiffness k, to the system. In this case, the equivalent
stiffness consists of the bending stiffness of the suspension element k¢ reduced by
k.. In general, the ratio of k. to k¢ is negligible and thus the equivalent stiffness
K.q is proportional to k. The equivalent resolution of the acceleration imposed by
the sensitive element a,;,, ; is due to the minimum measurable capacitance Cy,;,
and the sensitivities S, and S;. In this configuration, the bandwidth and resolution
of the accelerometer are proportional to the ratio of k¢, to M (Table 5). In theory,
the resolution can be improved independently of the bandwidth through the
capacitive transduction parameters S, and g.. However, the minimum gap is
usually imposed by the technological process and maximizing the coupling area is
usually at the expense of the footprint. In this way, the single-layer capacitive
accelerometer suffers from a trade-off between footprint and resolution.

Architecture  Capacitive accelerometer Resonant beam accelerometer

Effective k,
stiffness a %Ky <1 B E) a < Kry <1 * kffLA2>
i E)C S do 1

Sensing S, = Sy = — o
sensitivity ax ge ox S, LA
Sensing —_ Crmin 0. = Jmin
resolution S T8, S, TS 84S

Table 4. Comparison between capacitive and resonant beam accelerometers. The capacitive
transduction induces a small negative stiffness (k. < ksr) and presents a minimum
measurable capacitance C,,;, due to electronic noises. Resonant beam detection induces a high
compressive stiffness, which is generally balanced by the leverage effect k,./LA? « kgp. It
presents a minimum measurable stress a,,;, due to electronic and mechanical noises.
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Architecture  Capacitive accelerometer Resonant beam accelerometer

Accelerometer Ky ke
Wom = |77 Wom X |[=—
resonance M M
Sensing ker |92 ks
resolution mins = s Amin,s X 37~ [S-LA]

Table 5. Comparison of capacitive accelerometers and resonant beam accelerometers
neglecting the noise contribution of the proof mass. For the capacitance accelerometer the
resonance frequency and sensing resolution depend both on the suspension stiffness ks and
the effective proof mass M. But sensing resolution can be set by the capacitive transduction
parameters g and S,. Similarly, for a resonant beam accelerometer the accelerometer
resonance and sensing resolution depend both on the suspension stiffness ks and the effective

proof mass M. But sensing resolution can be set by the lever arm mechanism LA and the
resonant beam cross-section S,..

Alternatively, the resonant beam transduction method consists in measuring the
stress variation do due to the displacement variation dx, i.e. S¢ = da/dx. The stress
sensitivity depends on the sensing element’s cross-section S, and the lever arm
mechanism LA. In addition, the sensing element adds its compressive stiffness
balanced by the lever arm effect in parallel to the stiffness of the suspended element
kgr. In general, the ratio of k.. /LA? to kg is negligible thus the equivalent stiffness
K.q is proportional to k. The equivalent acceleration resolution imposed by the
sensing element a,,;, ¢ is limited by the minimum measurable stress o,,;,, and the
sensitivities S, and S,. In this configuration, the bandwidth and resolution of the
accelerometer are proportional to the ratio of ks to M (Table 5). In theory, the
resolution can be improved independently of the bandwidth through the mechanical
transduction parameters S, and LA. However, the minimum cross section S, is
usually imposed by the technological process and maximizing the lever arm
mechanism is usually at the expense of the footprint. In this way, the single-layer
resonant beam accelerometer also suffers from a trade-off between footprint and
resolution.

In conclusion, Single-layer accelerometers suffer from fabrication limitations
imposed by critical dimensions (CD), which limit the sensitivity of sensing element
(electrode gap and resonant beam cross-section). Thus, sub-pg accelerometers
achieve high resolution by increasing their mass or softening their structure at the
cost of their bandwidth. This is the first trade-off of single layer accelerometers.
However, there are mechanisms to overcome this, such as multiple electrode combs
or lever arm mechanisms. However, these mechanisms are costly in terms of space
and impose a second compromise between resolution and footprint.

Sub-pg resonant beam accelerometers are mainly based on a single-layer
fabrication process. Figure 1-11 (a) and (b) represent respectively the resolution-
bandwidth and resolution footprint trade-off for 8 recent sub-pg resonant beam
accelerometers based on a single-layer fabrication process.
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The ability to measure acceleration is highlighted by the Bandwidth / Noise density
ratio, while integrability is defined by the sensor footprint. The performance of
these sub-pg resonant beam accelerometers are detailed in Table 6 and can be
highlighted by the figure of merit (FOM,,;) :

FOM.... = Bandwidth Hz 1.2
t°¢ ™ Noise density X Footprint ug/vVHz x mm? )

The resonant beam architecture is a promising candidate for a high performance
integrated sensor. Because the scale factor depends on the cross section of the
resonator, a reasonable mass can be used to achieve high performance. Currently,
sub-pg resonant beam accelerometers are mainly made of millimetric masses (>1
mm?) and low bandwidth (<1 kHz) which makes them promising candidates for
gravimetry in particular. However, high-frequency applications, such as condition
monitoring, or small footprints for consumer applications are excluded. Sub-ug
resonant beam accelerometers are therefore reserved for a very limited range of
applications. Our objective here is to extend the use of these accelerometers by
proposing more sensitive structures using a multi-layer manufacturing process.
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Figure 1-11. Representation of the trade-offs of sub-ug resonant beam accelerometers based
on a single-layer fabrication process. (a) Resolution-bandwidth trade-off. (b) Footprint-
resolution trade-off. VBA accelerometers (blue) are based on a single resonant beam while
DETF accelerometers (red) are based on a double-ended tuning fork. Both FOMs are
improved for low resolution, high bandwidth and small footprint.

Noise Bandwidth Footprint
Ref & Type (ugVAZ] [Hz] [mm?] FOM,,,

[54] Kenny at al. VBA-2017 0.6 500 1 833

[60] sSMG-gen2VBA-2022 0.5 200 ~1.13 353
[52] Han at al. DETF-2019 0.18 500 35 79

[55] zaho at al. VBA-2019 0.098 5 >1 51
[49] Seshia at al. VBA-2021 0.01 5 64 7.81
[61] Seshia at al. DETF-2015 3.22 100 8.68 3.57
[62] Seshia at al. DETF-2020 0.025 1 <100 0.4

Table 6. Comparison of the state of the art of sub-ug resonant beam accelerometers based on
single-layer fabrication process.
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1.4 M&NEMS technology

All the sensors designed in this thesis are based on the so-called ‘M&NEMS
technology'. Based on a multi-layer fabrication process, the concept is to create a
sensor with mechanical parts of very different dimensions using two different
silicon thicknesses: a thin layer allows defining nanogauges with piezoresistive
properties, and a thick layer that constitutes the proof mass and the flexible
elements. This approach has been presented as new solution for low-cost inertial
sensors in 2009 [22] and has allowed to overcome single-layer trade-offs for
capacitive accelerometers [63].

The use of nanogauges allows for a high stress concentration, which in this case
transforms the stress into resistance changes due to the piezoresistive properties.
The use of high stress concentration is also a particular advantage for the use of the
resonant beam as a force sensor. Indeed, the sensitivity of the resonant sensing S
increases with decreasing resonant beam cross-section, as shown in Table 4. This
concept thus enables high-sensitivity sensors with a small mechanical footprint. In
addition, it is compatible with large-scale VLSI processes, which could extend the
applications of resonant beam accelerometers to industrial needs for low-cost
inertial sensors.

Moreover, the uncentred position of the thin layer relative to the thick layer allows
the development of out-of-plane accelerometers as well as pressure sensors [64]. In
addition, the compatibility of the technology with gyroscopes [65] and
magnetometers [66] makes this technology a promising solution towards compact
inertial units

The development of the first generation of resonant nano-beam accelerometer aims
at proposing a sub-pg accelerometer with high bandwidth and small footprint. On
one hand, the high sensitivity of the nanogauge-based accelerometer coupled with
a pendular architecture allows to address structures smaller than mm2 and with high
bandwidth [67]. On the other hand, the piezoresistive properties of the thin film
allow to build high-performance nanoresonators, as presented in section 1.3.1,
which ensures a high-performance accelerometer. Indeed, nanoresonators work at
high frequencies and have small surfaces that make capacitive detection difficult.
Piezoresistive nanogauges take advantage of the small cross-sectional and are
therefore the ideal transducer for this type of application.

22



4y

/
V" 4
Resonant /
. beam = =

Nanoresonator

o e

Figure 1-12. Representation of the capabilities of the M&NEMS technology. (a) Static
accelerometer realized with M&NEMS technology is composed of a micrometric proof mass
and a nanogauge sensing element. (b) A nanoresonator-based mass sensor consists of a
resonant beam and nanogauges. Here, both are etched on the nanometric layer. (c)
combination of M&NEMS proof mass with piezoresistive nanoresonators.
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2 Electromechanical modelling

Resonant accelerometers detect the acceleration through variations of resonance
frequency. This chapter presents the theoretical principles of accelerometers using
a resonant beam as force sensor. In this configuration, the resonant beam is the
sensing element that transduces the acceleration into a variation of resonance
frequency. This resonant accelerometer architecture is called resonant beam
accelerometer. In this work resonant beams are of nanometric dimensions, and
therefore they are called nanoresonators.

Figure 2-1 represents the operation of this inertial sensor. The resonant beam is the
hub of the acceleration detection. On one hand, an actuation force F,.; maintains
the resonant beam oscillation at its first bending mode frequency w,., and its motion
is transduced into an output voltage V,,;. On the other hand, the accelerometer
modulates the beam resonance frequency through an axial stress o, induced by an
acceleration a. The measurement of the output voltage allows detecting resonance
frequency variations, thus measuring the acceleration.

The accelerometer transforms an acceleration into an axial stress on the
nanoresonator.

The nanoresonator used as force sensor undergoes a variation of resonance
frequency caused by that axial stress (see above).

In our particular case, the nanoresonator is electrostatically actuated and its
resulting mechanical motion is piezoresistively detected. A resonance frequency
measurement is performed in real time to track its variations, in particular the ones
induced by the acceleration-related axial stress (goal / principle of the sensor).

a
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» Force sensor
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Figure 2-1 Principle of resonant beam accelerometers using nanoresonators as force
Sensors.
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2.1 Transduction chain of the accelerometer
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Figure 2-2 Principle of the accelerometer transduction chain: the acceleration generates a
force, which is transduced into a stress on the nanoresonator.

This section provides the theoretical notions of the accelerometer’s transduction
chain. It aims at understanding the transduction of the acceleration into stress on
the nanoresonator. Figure 2-2 shows the block diagram of the accelerometer
transduction. The proof mass M, put into motion by an acceleration a, generates a
force F,. The mechanical response of the accelerometer is represented by the
transfer function H,, dependent on the acceleration pulsation w,,. The input force
applied on the system is transformed into a proof mass displacement u,,. The
mechanical gain n, represents the transduction of the proof mass displacement to
an axial stress applied on the nanoresonator.

An example of a simplified accelerometer architecture is described on Figure 2-3
(@. A proof mass is suspended by flexible springs and connected to a
nanoresonator. Here the flexible springs consist of bending beams to allow
movement in the desired direction (x) and block unwanted movement in the
orthogonal directions (y,z). The nanoresonator consists of a beam used in
compression / tension, and is used to detect the proof mass movement.

The accelerometer can be represented by a damped spring-mass system. Because
the mechanical response of the system is studied before its first resonance mode,
the strain energy is concentrated in the flexible elements while the kinetic energy is
concentrated in the proof mass. On this configuration, Figure 2-3 (b) reduces the
system stiffness to the flexural stiffness of the flexible springs ks, and the
compressive stiffness of the nanoresonator k,... The effective mass M is represents
the proof mass and the damping coefficient b,,, represents the losses associated to
the accelerometer environment.

Flexible springs (b)
\‘/’ krf 2

Proof mass \ } § WAW -------------- ,

9’

Figure 2-3 (a) Architecture of the accelerometer. (b) Schematic representation of the
accelerometer as a damped spring-mass system.
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The dynamics of the equivalent damped spring-mass model can be expressed by
the Newton Principle:

Mily, + byt + (ke + ke )um = Fy 2-1

From the equation of motion of the accelerometer, the transfer function of the
accelerometer can be expressed as a function of the acceleration pulsation:

1 1 m
H = —
WomUm Wom

where w§,, = (kgs + kyc)/M is the fundamental pulsation of the system, called the
resonance, and Q,,, = Mwy,,/b,, represents the energy lost per cycle, called the
quality factor. At resonance (w,, = wg,,) the output displacement is the static gain
amplified by the quality factor H,, = Qp,/(kss + k;c). The resonance of the
accelerometer has interesting properties but is not used here as a detection
mechanism, and it is considered to depend weakly on the acceleration. The
frequency range higher than resonance (w,, > wqy,) IS not efficient for
performance transduction, due to the filtering of the output signal. Thus, the ideal
frequency operation is the quasi-static regime (w,, < wqy,;,) Where the output
displacement is expressed by the static gain H,, = 1/(kss + k,.). The resonance
frequency of the system (wy,,) iIs therefore defined as the bandwidth of the
accelerometer.

The nanoresonator performs the measurement of the displacement of the proof
mass. In fact, one of its extremities is fixed to the proof mass and the other one is
clamped to the substrate, so that the sensing element is deformed by the
displacement of the proof mass. Because the beam is oriented parallel to the
direction of motion, the deformation causes an axial stress along the nanoresonator.
The mechanical gain

Koyc N]

=_rc | 2-3
No s, |m3

describes this effect, where S,. is the section of the nanoresonator. The static gain
between acceleration and axial stress on the nanoresonator is given by:

= Ptm [5 kaf n krcl [%l 24

where t,,,, S,, and p are respectively the proof mass thickness, footprint and density.
Therefore the nanoresonator has several effects on the properties of the
accelerometer: a large area ratio S,,, /S, improves the accelerometer’s sensitivity at
the detriment of its bandwidth w,,,. The next part is focused on the internal
dynamics of the sensing element, and especially how it is affected by the axial stress
caused by the acceleration.
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2.2 Nanoresonator used as force sensor
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Figure 2-4 Principle of the nanoresonator used as force sensor. The driven nanoresonator
undergoes an input axial stress.

This section describes the modelling of a doubly-clamped beam affected by an axial
stress. Figure 2-4 schematizes the different parameters of the nanoresonator
dynamics. The mechanical response H,. of a doubly-clamped beam transforms the
actuation force F,.; applied on the beam into a displacement at the central node of
the beam v. The transfer function depends on the actuation frequency w,. The axial
stress o,- applied on the beam affects the mechanical response of the structure.

The nanoresonator is a passive system that requires an energy input. Once loaded,
the nanoresonator cyclically transforms elastic energy into Kinetic energy. Its
effective stiffness and mass represent respectively the amount of kinetic energy and
strain energy stored by the system. The duration of the cycle, characterised by the
resonance frequency of the system, depends on its stiffness and mass. The principle
of the nanoresonator used as a force sensor is to take advantage of the applied stress
to modify the stiffness of the structure and therefore its resonance frequency. By
monitoring the resonance frequency variations, the stress applied on the beam can
be measured. Here the nanoresonator is an ideal double clamped beam. The force
sensing mechanism is modelled with the damped spring-mass system of Figure 2-5
(a) where the spring k,.r (a,.) is the bending stiffness of the beam modulated by the
axial stress g, and m,. its effective mass. In reality, the presence of losses dissipates
the energy initially supplied to the nanoresonator that is represented by damping
coefficient b,..
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Figure 2-5 Modelling of a doubly clamped beam. (a) Equivalent damped spring-mass
system. (b) Transfer function of a nanoresonator used as force sensor.
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The transfer function of a doubly-clamped beam can be reduced to familiar
harmonic resonator expressed as a function of the actuation frequency w,:

1 1 m
Hr(a)a)=k—rfl+j wé +(-ﬁ)2 [ﬁ] 2.5
(‘)‘r T

Wy

where w? = k,/m, is the fundamental pulsation of the system, called the
resonance, and Q,, = m,.w,./b,. is the quality factor of the system that represents the
energy lost per cycle. In a conceptual approach, Figure 2-5 (b) represents the
operation of doubly-clamped beam used as force sensor. Because compressive
stress reduces effective stiffness and tensile stress increases it, the resonance
frequency follows the same behaviour.

The objective of using a nanoresonator as force sensor is to measure the axial stress
applied on the beam. Similarly to the accelerometer system, the frequency range
higher than resonance (w, > w,) is not efficient for performance measurement, due
to the filtering of the frequency response. The frequency range lower than resonance
(w, < w,) has interesting properties because the static gain H, = 1/k,f(w,) is
modulated by the axial stress. In our case, the use of amplitude measurement as a
detection mechanism is not considered efficient because the signal to noise ratio is
not very high. However, the measurement of the resonance frequency (w, = w,)
has interesting properties for the measurement. In addition to having an amplitude
amplification H, = Q,/k,r(w,) of the signal, the phase-frequency relationship can
be linearized as dw = [wo,/2Q,] ¢ in a limited frequency range around the
resonance. Around this operating point, resonance frequency variations can be
directly deduced from phase variations when driving the nanoresonator with a fixed
actuation frequency. Figure 2-6 shows the impact of axial stress on the phase. When
the nanoresonator is driven at a fixed frequency close to resonance, axial stress
induces a phase shift proportional to +f,./2Q,, where w, = 2nf,, Having pre-
measured the quality factor of the system, the frequency measurement can be
deduced from the phase measurement.
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Figure 2-6 Phase response of a nanoresonator as a function of axial stress. Because the
resonance frequency of the system shifts, phase measurements at a fixed actuation
frequency can be processed to deduce the resonance frequency variations.
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2.2.1 Formulation of the equation of motion

The equation of motion of a stressed beam is studied in this section. The variational
approach considerably simplifies the analytical formulation of the equation of
motion. It is appropriate to begin by a kinematic description of the bending motion
in order to express the kinetic energy (1). Then, to express the strain energy of the
system, the elasticity theory for small deformations is necessary (2). In order to
illustrate the beam used as force sensor, the case of an initial stress is treated
separately to complement the strain energies of the system (3). The actuation forces
that maintain the oscillation of the system are considered as external forces (4).
Finally, to complete the equation of motion, the boundary conditions are defined.

First, the description of the bending motion must be defined according to the beam
theory: for negligible length-width ratios in the beam (w,./L, «< 1), with w,. and L,
respectively the beam width and length, its cross-section is not deformable, so it
remains orthogonal to the neutral axis. This assumption is equivalent to neglecting
the shear deformation of the material. These assumptions, called the Bernoulli
assumptions, are illustrated in Figure 2-7 by the kinematic description: the flexural
motion v,.(x) depends on the position along the neutral axis and has a maximum in
the central node of the beam v,.(L,/2) = v. This neutral axis is defined for a null
orthogonal position y = 0. The rotation of the cross-section is the derivative of
flexural motion 8(x) = dv, /dx. The axial displacement results from the rotation
of the cross-section and the distance y from the neutral axis, u,.(x,y) = —y 6,.(x).

(1) In accordance with these assumptions, the rotational inertia of the cross-section
is negligible. It is consistent that the kinetic energy for vertical translation describes
the Kkinetic energy of the system:

1 av,

Ly 2
== - 2-6
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where p is the density of the beam material.
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Figure 2-7 Kinematic description of the bending motion of a doubly clamped beam
according to the Bernoulli’s assumptions.
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(2) In the small deformation regime, the linear term in the displacement is sufficient
to define the axial strain €, = du,./dx . In addition, the linear theory of elasticity
completes the kinematic description. This theory assumes that the stress remains
proportional to the strain. Thus, according to the elasticity coefficients of an
anisotropic material, the elastic energy V;,; can be expressed as:

1 (b (921
nt == 2-7
Vine =5 fo EI( 6x2> dx [J]

where E is the Young modulus of the anisotropic material, and I is the quadratic
moment of the beam section.

(3) In our case, the beam undergoes a stress, which has to be taken into account. In
this configuration, the strain definition is supplemented by an initial strain €,., due
to the initial stress, and therefore the small deformation regime no longer describes
the movement. For large initial strain, it is necessary to take into account the
nonlinear effects induced by the main quadratic term in the displacement: €, =
€, + 0u,/0x + (0v,/0x)?. The Geradin’s description [68] completes the elastic
energy by an additional energy V, when the beam is submitted to initial axial stress

Or
Ly ov,
Vg = —fo GrSr (E) dx U] 2-8

(4) In order to compute the potential energy of the external force F,.;, the beam is
subjected to a distributed vertical load F,,., per unit length. When the force operates
on the whole beam, the potential energy of external load is

Lr
Vext = _J Foce vy dx U] 2-9
0

(5) The problem can now be discussed reduced to an in-plane description. The
rotation and transverse motion are the degrees of freedom of the anchors. The
reaction forces associated to the anchors are localized at both sides of the beam x =
0 and x = L,.. The work developed by the reaction forces associated to their degrees
of freedom, respectively the moment M and transverse force T, are:

W = [T(x)vr(x)]x=O,Lr + [M(x)er(x)]x=O,Lr U] 2-10

The problem of a pre-stressed beam can be described in its entirety by the previous
potentials and works. The description of the dominant potential allows expressing
the Lagrangian L = T + Vi, + 7V, + V. Of the system. The degrees of freedom
allow expressing the work of the reaction force W for generic boundary
conditions. The description of the Lagrangian and works aims at implementing the
variational principle. In the final part, this approach, called Hamilton’s principle, iS
used to formulate the global equations of motion of the system.
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The strength of Hamilton's principle is that it deals with all aspects of the system in
a single equation. The derivative of the equilibrium equation is detailed in [68]. The
resulting formulation allows discerning two physics of a beam in bending: on one
hand, the internal dynamics of the element, on the other hand, the impact of the
boundary conditions. The first one highlights the equation of motion of stressed
beams. Here it is relevant to add a damping term to this equation, which comes from
the losses represented by b, introduced in the damped spring-mass system in Figure
2-5:

S 0%v,(x, t) b dv, (x, t) Bl 0*v,(x,t) N 0%v,(x,t) _

gunt) 2-11
" acr L, ot axt T gx2 act

This formulation allows observing the contributions of the different terms involved
in the equation. The first term represents the Kinetics of the system, the second term
represent the losses of the system and the last two terms represents the elasticity of
the system. Then, the modal analysis of the homogeneous equation, developed in
section 2.2.2, allows identifying the modulated stiffness from the elasticity block
and thus, to reduce the equation of motion to a characteristic equation of a damped
spring-mass system.

Because the equation of motion has an infinite number of solutions, boundary
conditions are necessary to solve the modal analysis. The Hamilton’s principle
allows expressing the equation of motion and the reaction to the boundaries. In
other words, it considers at the same time how the degrees of freedom affect the
bending motion or how the bending motion affects the associated reactions. From
the same derivative of the equilibrium equation (detailed in [68]), the boundary
conditions based on the kinematic description of the Eq. 2-10 are:

% s g
vr(x =0, Lr) =7V, or 0x3 t oy ra — —0Ly 212
0,(x=0,L,) = HO,LT azvr
EI axz = iMO,Lr

These boundary equations allow determining a unique solution of the equation of
motion for specific boundary conditions. The boundary conditions can be
introduced in two ways. (i) The degrees of freedom can be associated to the
boundary, v, and 6, . The beam is then free and it does not have reactions at its
borders (T, = 0 and M,,_ = 0), but it has a unique solution of its equation of
motion. (ii) The boundaries are fixed, v,, = 0 and 6,, = 0. Here the beam is
clamped and reaction terms appear at its borders (T, . and M, ;, ), setting a unique
solution of its equation of motion.

With the global equations (equation of motion + boundary conditions), the modal
analysis can be tackled in order to express the closed-form expression of the
resonance frequency of a stressed-beam.
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2.2.2 Modal analysis

The aim of this section is to determine a closed-form expression for the first in-
plane bending mode as a function of stress. In this way, a closed-form expression
of the bending stiffness can be deduced. This will allow introducing the stress-
induced frequency and amplitude variations as a modulated stiffness in the model
of Figure 2-5. The expression of the eigenfrequency as a function of the axial stress
can be solved numerically using an eigenvector approach [69]. However, a closed-
form expression of the frequencies can be expressed using an energy approach
under certain assumptions. This closed-form expression is compared with the
numerical approach in order to express the validity of these assumptions.

The eigenvector approach starts by separating the equation of motion into two
equations: one temporal, the other spatial. The separation of variables allows
defining v, as the product of a normalized spatial function W, (x) associated to the
first bending mode and a temporal function v(t). Substituting this equation in Eq.
2-11 gives an egality between two equation of the different function: v(t) and
W, (x). Itis usual for this technique to set each function equal to —w? [70] in order
to express the two ordinary differential equations of the first in-plane mode

fd2v+[ by ]dv_l_[ 2y =0 (4

Jdt2 pS, L.l dt orlv=0(4) 213
aw, | AW,

ldx4 —2a—=2—k{Wo =0 (B)

where a = ¢,.S,L2/2EI and kg = pS,w?L%/EI are respectively the eigenfunction
and eigenvector associated to the eigenfrequency w,. The temporal equation (A) is
the frequency response of the system associated to the eigenfrequency w,. The
spatial equation (B) represents the normalized deformation of the beam associated
with its eigenfrequency. Finding the solutions of the spatial equation for a specific
set of boundary conditions allows deducing the associated eigenfrequency. The
function Wy(x) = Aeto* + Be~40X 4 Celo¥ 4+ De~HoX  with p, = [[a® +
k3% +a'/?] and 1y = [[a® + k§]Y/? — al/?], is the general solution of the
spatial equation. For doubly-clamped beams, the boundary condition W,(0,1) =
0 and W (0,1) = 0 allow expressing the characteristic equation as detailed in [71].
The solution of this characteristic equation is a specific set of eigenvectors as a
function of the stress k,(a,). These eigenvectors allow the natural frequency to be
approximated as a function of stress. Figure 2-8 (a) plots the characteristic equations
as a function of different values of stress. The first intersection with zero represents
the eigenvector associated to the first in-plane mode. Moreover, for these specific
eigenvectors, non-trivial eigenfunctions, i.e (4,B,C,D) # (0,0,0,0), are solutions
of the spatial equation. In Figure 2-8 (b), the eigenfunction W, is numerically
estimated using the eigenvectors k,(o,-). Thus, the eigenfunctions also depend on
stress.
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Figure 2-8. Representation of the characteristic equations and eigenfunctions for different
axial stresses. (a) Characteristic equations as a function of the eigenvectors. The first zero
of the equation is the eigenvector associated to the first in-plane mode. The Eigenvector is a
unidimensional value. (b) Eigenfunctions as a function of relative position normalized by
the unstressed eigeinfunction.

By numerically solving the characteristic equations, the eigenvector and thus the
natural frequency can be expressed as a function of the axial stress:

(1),2~ (Gr) k4(0r) [HZ] 2-14

SL“‘

As detailed in the introduction, this numerical method is not efficient to provide a
closed-form expression of the eigenfrequency as a function of the stress. That is
why an approximate method, called the Rayleigh’s method [70], is employed to
express a closed-form of the natural frequency. This method is based on the
assumption that the dynamic response of the beam of Eq. 2-13 (A) is not subject to
damping (b,- = 0). Thus, the system vibrates sinusoidally at its natural frequency
under the form V(t) = |V|sin(w,t). In such an undamped spring-mass system, the
conversion of mechanical energy takes place perfectly from elastic energy to kinetic
energy. In other words, elastic energies are equal to kinetic energy V, + Vi, = 7.
On the separation of variables approach, the beam motion v, is the product of the
eigenfunction W,(x) and a temporal function v(t). For an undamped system,
substituting these terms in the energy equality allows expressing a closed form of
the first in-plane eigenfrequency as a function of stress:

5 . El S, L2
Wy (O'r) = Qy m 1+ ﬁoﬁa}- [HZ] 2-15
where a, and f3, are coefficients depending on the eigenfunctions W, (x):
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This frequency expression is not a closed form neither. Indeed, the eigenfunction
W, (x) used to express the coefficients depends on the stress. Thus, coefficients
themselves need a numerical approach to be expressed as a function of the stress.
This energetic method is not effective neither to reach a closed-form of
eigenfrequency.

However, supposing that the eigenfunction of a stressed beam is close to the
eigenfunction of an unstressed beam solves the problem. In other words, it is
assumed that the Duncan function is the general solution of the spatial equation. In
this case, the coefficients do not depend on the stress and the closed-form
expression of the eigenfrequency is reached. This approximate method raises a
problem of validity: to what extent can it be assumed that a stress does not modify
the beam function. Figure 2-9 compares the eigenfrequency as a function of stress
for the three previous methods. The resonance frequency is normalized by the
natural frequency wg, = w, (o, = 0). The stress is normalized by the maximum
allowable stress gy, defined in Eq. 2-18. As both the numerical method (1) and
the Rayleigh’s method (2) are based on the real spatial solution, they match
perfectly and are considered to be the most realistic case. Because the Duncan’s
method (3) is based on an unstressed spatial solution, disparities appear for large
values of stress. The inset quantifies the validity of Duncan's method (3) compared
to the numerical method (1). The frequency vs stress function of Eq. 2-17, expressed
from EQ. 2-15 and Duncan’s method, is valid for a stress below +80% of
Opuck DeCcause the approximation remains close to the most realistic case (<5%).
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Figure 2-9. Relative frequency dependence upon relative axial stress, for a doubly-clamped
beam. The inset shows the relative error between numerical method and Duncan’s method.
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Therefore, by using Duncan’s method, the closed-form expression of the
approximate eigenfrequency can be expressed as a function of the coefficient a2 =
22.37 and B,=0.0246 calculated from the Equation 2-16. The resonance frequency
can then be expressed as:

w,(0,) = wor/1+ yo, [Hz] 2-17
where w,, = a2[EI/pS,L*]*/? is the natural frequency in absence of stress and
y = B,S,L%/EI is the coefficient multiplying the stress o,.. In order to provide tools

for further analysis, this closed-form expression can be used to express the stress
value that cancels the resonance frequency (i.e. the buckling limit):

Opuck = —1/y [Pa] 2-18

As well as the sensitivity to stress of the resonance frequency:

dw, 1 wor/Ohuck [Pa
S = = — [ _
70(97) do, 2. /1+ 0r [ Obuck Hz 19

which is dependant on the applied stress o,.. It should be noted that, in the case of a
nanoresonator, the square root term is not negligible because the input stress can be
important with regards to o;,,,.,. In order to understand the origin of this maximum
stress oy,,ck, the closed-form of the eigenfrequency is decomposed from the
definition given by the Rayleigh’s method. The modulated stiffness k,.r(o,) and
the effective mass m,. can be respectively identified from the potential and Kkinetic
energy:
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where the integrals, dependant on the eigenfunction, are calculated for the boundary
conditions of a doubly-clamped beam. The flexural stiffness appears as the
dominant effect of the frequency modulation. Thus, the stress for which the
frequency is null is the stress for which the stiffness is cancelled, i.e. the buckling
limit. Now, the mechanical transfer function of the pre-stressed doubly-clamped
beam is completed. Amplitude and frequency variations are known and the
acceptable stress range is defined. The next section defines how the movement of
the beam is transduced into an electrical signal.
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2.3 Transduction chain of the nanoresonator

VAC Fact v Vout
— Na i Hr (wr) > Ns — >
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Figure 2-10 Block diagram of the nanoresonator’s transduction: the actuation voltage
generates a force to actuate the resonant element and its motion is transduced back into an
output voltage.

This section aims at understanding the transduction of the beam motion. Figure 2-10
shows the block diagram of the nanoresonator transduction. The actuation gain ny,
powered by an input voltage V,, generates a force F,.,. Because the nanoresonator
operates at its resonance frequency, the mechanical response (H,(w,) =
Qr/k;f(0y)) transforms the actuation force to a displacement v at the centre of the
beam. The sensing gain ng represents the transduction of the beam displacement
into an output voltage V,,,;.

The nanoresonator architecture used in this work is described in Figure 2-11. The
actuation is performed on the resonant beam by a fixed electrode. The resonant
beam is fixed at one extremity to the accelerometer. Piezoresistive gauges are
orthogonally placed at the other extremity of the resonant beam in order to
transduce the beam motion. When the resonant beam vibrates, one gauge is
elongated and the other one is compressed. As the gauges are piezoresistive, the
mechanical strain induces a variation in resistance. The ends of the gauges are
clamped to polarisation pins which are used to bias the system to take advantage of
the change in resistance to induce a motional current. The beam-end is the
continuity of the resonant beam, which measures the motional current from the
gauges through the reading pin.

Electrode Polarisation pin (—)

\ Compressed
uge hy Beam-end
Resonant beam

Elongated
gauge ~

Pin anchored to
the accelerometer

Polarisation pin (+)

Figure 2-11 Architecture of a piezoresistive nanoresonator that consists of four parts: the
actuation electrode, the resonant beam, the piezoresistive gauges and the beam end.
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2.3.1 Electrostatic actuation

The actuation of resonant beam consists in using electrostatic forces to induce a
mechanical motion. There are numerous transduction mechanisms, for instance the
piezoelectric actuation [58] that induce mechanical motion. Here, the sub-section
aims at expressing the actuation gain n4 of an electrostatic actuation and its domain
of validity by assuming that the resonant beam is equivalent to a double-clamped
beam. The description begins by the definition of the capacitive force applied on
the resonant beam (1). The expression is projected on the first bending mode of the
beam in order to determine the actuation gain (2). Finally, the linear limit of the
actuation is defined (3).

(1) Figure 2-12 describes the operation of electrostatic actuation. The beam and its
facing electrode, separated by an initial air gap g(x,t) modulated by the beam
motion v, (x, t), form a capacitance:

SOSe
a =
gx,t)

[F] 2-21

where S, is the electrode area facing the beam, g(x,t) = g — v.(x,t) is the
modulated gap and ¢, the vacuum permittivity. The input voltage V,.; applied from
the fixed electrode to the movable beam is composed of an AC signal with a DC
offset V.t (t) = Vpc + Vyccos (w,t), Where w, is the actuation frequency. The
actuation force can be derived from the stored energy on the capacitor C,V2../2,

F _ &S [Vic V2. 4 2V,.V Vic 2 2-22
act (X, 1) = 29,07 — T Voc + 2VncVac cos(wgt) +7COS( wgt) -

and it is distributed along the beam facing the electrode. The induced electrostatic
force has three harmonics: the static harmonic, proportional to V2. + V2./2, the
2w, harmonic, proportional to VZ./2 and the w, harmonic, proportional to
2V, Vp . Here the nanoresonator is assumed to operate in its first bending mode at
a frequency close to w,, so only this is considered in the analysis.

2 4 Ca
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Figure 2-12. Description of the electrostatic actuation of a doubly-clamped beam. The
electrostatic force is distributed on the length facing the beam [a, b]L,.
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(2) The capacitive force F,..(x,t) depends on the beam displacement v, (x,t) =
v ()W, (x), which in our case is supposed to be far smaller than the air gap (v, <
g)- Thus, it can be approximated by a Taylor series expansion:

€poe
Fact(x; t) =

In the capacitive force distribution, the mode shape is correlated to the electrode
position. Indeed, the capacitive force induced by an electrode centred at the central
node of the beam is efficient to actuate the first bending mode but unable to operate
the second mode. By projecting the actuation force onto the first bending mode,
F,.:(x,t) can be expressed in terms of the normalized mode shape of the beam
W, (x), integrated along its relative length facing the electrode [a, b].

2-24
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where the first order of the limited development o = | P Wy (x)dx is associated to
the capacitive driving force Fy (t) = ¢ £0S.V2.:(t)/2g? of the first bending mode,
and the second order of the limited development ny, = fa W, (x)dx Is associated

to the negative stiffness k., = 1y, €0S.V2:(t)/g>. Then, the temporal Equation
2-13 (A) is completed by the capacitive actuation:

2

my illTZ + b, % + [krf (o,) — kelv(t) = F_O(t) 2-25
In conclusion, the capacitive actuation has two effects on the dynamics of the beam.
First, the negative stiffness affects the global stiffness of the system, thus affecting
its gain H,. at resonance. However, the stiffness modulation by capacitive actuation
is proportional to the beam area facing the electrode: close to 0.001 N/m for the
DC actuation used experimentally. The modulation of the stiffness by axial stress
is inversely proportional to the beam section: more than 1 N /m for the axial stress
applied experimentally. Because of the small sections of the nanoresonators, the
negative stiffness is thus negligible in front of the modulation stiffness by axial
stress. Then, the actuation gain of the first harmonic of 1w actuation:

2-26

o €05e¢Vpc [ﬂ]
A 0 gz
depends on the coefficient n, that is equal to 0.41 for an electrode centred at the
middle of the beam and whose length is half the beam’s one. The actuation gain
shows the linearity of the beam displacement as a function of the applied voltage.
Of course, the linearity comes from a limited development, and it is only valid for
small displacements with regards to the initial air gap. That is why, in the last sub-
section, the non-linearity is defined in order to fix the system limit of displacement.
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(3) As detailed in Figure 2-6, in the linear regime of a stressed doubly-clamped
beam we can track its resonance frequency using the relation between phase and
frequency. However, nonlinear spring forces on the nanoresonator induce a
nonlinear regime that make it difficult to maintain a linear phase-frequency
relationship at resonance. This part aims at determining the upper limit of the linear
regime in terms of bending motion. In general, the nonlinear spring force can be
written as:

F, = —kqv — kiv? — k,v3 + 0(v*) [N] 2-27

where k, is the linear spring constant, k; and k, are first and second order
corrections. When the higher-order terms become important with regards to the
linear spring constant, the system cannot be considered linear anymore. In doubly-
clamped beams using capacitive actuation, there are mainly two origins for the
nonlinear spring coefficients: the electrostatic stiffness modulation, and the
dependence of the stiffness of the beam on it elongation. As detailed in Eq. 2-25,
the linear spring constant depends on the modulated flexural stiffness and the
negative electrostatic stiffness k, = k,.s(o,) — k.. In practice, there are two main
actors to the correction factors: the spring hardening due to large elongation of the
beam that induces an increase of rigidity, and the spring softening due to the
gradient of the electric field that induces decrease of its spring constant. When the
rigidity in the beam is induced by bending and axial stress, as detailed in [72], the
critical vibration amplitude before reaching the spring hardening, calculated from
the method described in [73], can be expressed as a function of axial stress a,., the
beam width w,. and its quality factor Q,.:

Vrmax = 0.745 ZWr \/(1 + O-r/o-buck) 2.28

3 30, m]

For a beam width of 250 nm and a quality factor close to 1000, the critical amplitude
before the spring hardening effect is less than 10 nm. Moreover, as explained in
[74], the spring softening effect appears for a beam movement up to 1/3 of the air
gap, here for v(t) > 500/3 nm, thus after the spring hardening effect. As the
nanoresonator must operate in linear regime, the spring hardening effect is
considered in the following as the dominant effect.

In conclusion, the critical amplitude has two important dependences. The first one
is on the axial stress: the larger the compressive stress imposed on the resonant
beam, the smaller the critical amplitude. This implies that the maximum permissible
stress must be set to define the minimum critical amplitude. The second one is that
the quality factor of the system limits the linear regime for losses in low-damping
regime. Thus, for a good vacuum environment, a very low driving power rapidly
brings the nanoresonator into a non-linear regime. Therefore, it is important to
efficiently transduce a signal from even a very low driving power. The next section
presents an efficient scheme for the motion transduction of a nanoresonator based
on piezoresistive nanogauges.
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2.3.2 Piezoresistive transduction
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Figure 2-13 Description of the piezoresistive transduction of the nanoresonator of Figure
2-11.

The objective of this section is to present the transduction of the nanoresonator's
motion. Microresonators make efficient use of electrostatic detection because of
their relatively large area facing the electrode, thus benefiting from a long length
and thickness [75]. In contrast, piezoresistive nanogauges take advantage of the
small cross-sectional area due to their nanoscale size. This is an efficient
transduction scheme for appropriately designed nanoresonators, as demonstrated in
[44].

Figure 2-13 describes the principle of such piezoresistive transduction scheme. The
displacement gain n,, represents the transduction from the motion of the resonant
beam v to the gauges’ strain €,. Due to the strain gain 7., the gauges motion induces
a differential strain on the two gauges t¢,. As the gauges are piezoresistive, a linear
gauge factor GF transduces the applied strain to a relative resistance variation §R,;.
By polarising the gauges in voltage, the resistance variation generates a motional
current. The readout pin is used to measure this current through an output voltage
V,ue- The readout gain 7, depends on the method used to measure the motional
current. Figure 2-14 shows a schematic of piezoresistive transduction in the
nanoresonators used in this work. The principle consists in a transduction of the
resonant beam motion v to displacement at the central node of the gauge vy.
Because the gauge are clamped at their other sides, displacement v, induces
differential strain +¢,. From the piezoresistive properties of the gauges, the induced
strain is transformed to resistance variation R, (1 &+ 8R). At the end the motional
current iy, caused by gauges polarisation +V), is measured through the output
voltage V-

Vout

Pe
<]
€g F

Ry(1+68R,)

+Vp

Figure 2-14 lllustration of the piezoresistive transduction scheme of the nanoresonators.
The resonant beam displacement v induces displacement at the central node of the gauges
v, that causes differential axial strain €, = v, /L, with L, the gauges’ length
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This part covers the transduction of motion inside the nanoresonator. The objective
is to express the displacement gain as a closed-form expression depending on of the
nanoresonator’s geometry. A 1D-assembly model is used to obtain a linear function
of the displacement gain that depends only on the nanoresonator geometry. This
methodology, based on a static approach, assumes that the dynamics of the intrinsic
elements, mainly the gauges and the beam-end, do not influence the motion
transduction. This assumption is based on the fact that the transducing elements are
smaller than the resonant beam, so their dynamics appear at a higher frequency than
those of the nanoresonator, i.e. the operation frequency of the system. Moreover,
the motion transduction is assumed to be linear for a resonant beam motion limited
by the critical amplitude of Eq. 2-27. This assumption is validated by 3D finite
element method (COMSOL-FEM) simulations over the amplitude range of the
system. Figure 2-15 illustrates the 1D model of the nanoresonator as an assembly
of elementary flexible beams. The geometry of the transduction (gauges and beam-
end) are expressed as form factor («, 8, y) of the resonant beam geometry (w,., L,.).
The discretization of the system allows expressing the mechanical equilibrium of
an element according to its degrees of freedom. The degrees of freedom of several
elements can be associated on a given node. Thus, the mechanical balance of the
central element (the resonant beam) can be expressed as the equivalent mechanical
balance of the whole system. In practice, this results in a stiffness matrix associating
the degrees of freedom of the central element with an external load. The coefficients
of this matrix are derived from the coefficients of each associated element. This
methodology, detailed in Appendix A, gives a displacement gain between the
displacement of the central node of the beam and the displacement of the central
node of the gauges:

= 4 AU
Ny =—""3 [ ] 2-29

B+(5}—Tr)

where A and B depend on the form factor parameters a, 8 and y. Appendix A
shows that the displacement gain can be optimized, depending on the geometry of
the resonant beam, with an ideal form factor. This optimization is used in Chapter
3 for the design of the nanoresonator.

0
Central node of  Central element
the beam \ BL,
I. L) ® /Lg [
| | Ly al,
WT
Central node of —||«— yw,
the gauge

[T
Figure 2-15 Decomposition of the nanoresonator in elementary beams. The model is
reduced to the central element in order to express v, /v from its stiffness matrix.

41



The resonant beam motion causes the displacement v, and the rotation 6, of the
gauge. According to the small deformation regime, the axial strain of the gauge
€xx,g = 0Vy/0y + 08,/20y is affected by the cross-section rotation 6,. But for a
small length-to-width ratio of the gauges, it is confirmed by the 3D FEM
simulations that the effect of the rotation is negligible, so we can consider that the
strain depends only on the axial displacement v,. Thus, the deformation gain is:

_ l] i
e =g [m 2-30

(2) The resistance variation of the nanogauges caused by the axial strain results in
two effects: the variation of the nanogauges’ geometry (length and section), and the
deformation of its atomic lattice. On piezoresistive conductors, the electrical carrier
mobility modulation is the major contributor to the resistivity gauge factor GF. The
relative resistance variation §R is proportional to its gauge factor and axial strain:

SRy = GFe, [A.U] 2-31

As shown in Figure 2-14, we place the nanogauges so that when one of them is in
elongation, the other one is in compression. Their resistance variations are therefore
of opposite sign, and the piezoresistive signal is differential.

(3) This last part presents how from the differential resistance variation, the
piezoresistive transduction results in an output voltage. The gauges are equivalent
to a resistor bridge where the output voltage node is in-between two gauges
experiencing opposite resistance variations. VVoltages of opposite sign applied to the
two gauges bias the resistance bridge. The currents flowing through the gauges are
modulated by the resistances’ variations. A balance of the currents on the output
voltage, detailed in section 2.5, shows that output voltage is proportional to the bias
voltage and the resistance variation:

Vue  VydR, [V] 2-32

The gain between the resonant beam motion and V,,,; is:

1%
Ns X NyNGFV), [E] 2-33

In conclusion, the piezoresistive gauges are a highly linear mechanism to read out
the motion of the resonant beam. According to the nanoresonator transduction
chain, the nanoresonator’s signal is maintained at resonance by an electrostatic
actuation and it is detected as an output voltage using piezoresistive transduction.
The next section presents how the frequency measurement is performed from a
modulated output voltage, but also how an output voltage limits the frequency
measurement. In addition, the specific case of this nanoresonator’s frequency
measurement is presented taking into account the most important contributors of a
real voltage readout.

42



2.4 Frequency measurement

The sensing element of resonant beam accelerometer is the nanoresonator, which
traduces an applied acceleration to a resonance frequency shift. Thanks to the
piezoresistive transduction, the bending motion of the nanoresonator is converted
into an AC signal that can be detected to measure its frequency. However, the
nanoresonator is a passive system. First, due to the losses associated with the
damping of the system, the AC signal must be maintained at its resonance by an
actuation. In addition, due to the frequency variations of the system, the actuation
must follow the resonance so that the nanoresonator always operates at this
frequency. In order to have a sensor application, i.e. to be able to measure the
frequency variations in real time, the nanoresonator must be associated with an
electronic circuit. Therefore the goal of the global system is to generating the
periodic signal necessary to maintain the resonance frequency. Some electronic
systems, such as PLLs or oscillators, maintain the operating frequency at the
resonance frequency by correcting the phase shift measured in the system. Section
3.2 discusses the design of such electronic circuits adapted to the piezoresistive
nanoresonators used here. In practice, the frequency of an AC signal V,,.(t) =
|Vouelcos (w,t + ¢,) is measured by counting the number of zero crossings over a
given time period. Figure 2-16 illustrates how the frequency measurement can be
limited.

e Aw, @D Ar
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Figure 2-16 Representation of the impact of noise on the frequency measurement. A noise
on the resonance frequency (a.l) is equivalent to a frequency modulation on the output
signal of the nanoresonator (a.2). A noise in phase induces a measurement error on the
frequency of the output signal of the nanoresonator (b.2). However, the phase noise does
not affect the resonance frequency of the nanoresonator (b.1).
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To illustrate how noises affect the frequency measurement, the signal is assumed to
be modulated, as detailed in [76]. As the focus is on frequency, only the cases of
frequency modulation (FM) and phase modulation (PM) are illustrated. On one
hand, the resonance frequency can be modulated as w,.(t) = w, + Aw, cos(w,t),
where w,, is the modulation frequency, as illustrated on Figure 2-16 (a). Thus, the
frequency count can be affected by the induced delay At,, « 1/Aw,. On the other
hand, the phase can be modulated as ¢,-(t) = ¢, + A@,-cos (w,,t). Figure 2-16 (b)
shows that the PM does not affect the resonance frequency but induces a delay
At, < Ap,/w,. Both effects can degrade the stability of the frequency
measurement: a modulation of the resonance frequency, equivalent to the frequency
noise, or a measurement error of the resonance frequency, caused by a modulation
of the phase (for example by electronic noise), equivalent to the phase noise. It is
important however not to mix the frequency of the output signal of the system with
the resonance frequency of the resonator: though both terms are linked, they can be
considered equivalent only in specific closed-loop systems and under certain
conditions.

The stability of the frequency measurement can be illustrated by the minimum
measurable frequency deviation. This minimum depends on the integration time,
i.e. the rate at which the frequency is measured. Depending on the integration time,
several limiting phenomena can be observed. In this work we will define the long
term stability, which is the minimum measurable frequency for a long acquisition
time (tau > 1s); the short term stability, which is the minimum measurable
frequency for a short acquisition time (tau < 1s); and the bias instability, which is
the minimum measurable frequency arising from 1/f noise in the system, and which
represents the detection floor for any integration time.

In practice, the Allan variance or(7) is used to characterize the stability of the

frequency measurement. The Allan variance is a method of representing the root
means square (RMS) random drift error as a function of averaging time t [77]. This
specific variance of a frequency signal is widely used in the field of sensors, as it
makes it possible to highlight the different sources of noise affecting the signal and
allows to plot the frequency stability (or resolution of the sensor) as a function of
the measurement time. Figure 2-17 represents the colour of the main noise sources
that can affect the frequency stability of a nanoresonator. White noises manifest in
the Allan variance by a slope of T=/2. They are dominant for short integration
times and fix the short term stability of the sensor. Flicker noise manifests as a
plateau (%) on the Allan variance and often fixes the bias stability of the
measurement. Frequency drifts are long timescale variations of the resonance
frequency caused by environmental fluctuations such as the temperature drifts.
They generally appear at integration times above a few seconds and are represented
by 71/2 slope on the Allan variance. The Allan variance represents the stability of
the frequency fluctuations measurement. l.e. the stability of the nanoresonator
output signal: its frequency. Reducing the noise of the system (white noise and
flicker noise) and limiting the drifts due to the environment is the first way to
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improve the nanoresonator’s limit of detection. However, the accelerometer signal
is originated by the nanoresonator’s signal transduced in acceleration by the
sensitivity S,,,. In this way, the second improvement of the limit of detection of the
accelerometer consists in increasing its sensitivity.
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Figure 2-17 Allan variance expressed in terms of acceleration from the frequency
measurement and the accelerometer scale factor. The dashed curves represent the type of
noises highlighted by the Allan Deviation based on their integration on the measurement
time 1. The solid line represents an improvement of the accelerometer’s scale factor §,,, =
SasSse- The bias stability can be identified as the minimum of Allan variance.
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2.4.1 Phase noise
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Figure 2-18 Block diagram of the nanoresonator transduction with additive noise sources:
Sy is the power spectral density of the thermomechanical noise of the nanoresonator, S is
the power spectral density of the Johnson noise of the nanogauges.

For piezoresistive nanoresonators, various noise sources can affect the frequency
stability. Among them, 1/f noise generated by resistance fluctuations is the main
noise source in a piezoresistor (Hooge noise). Yet, nanoresonators are weakly
affected by it because they operate at relatively high frequency (>10 MHz). The
extraction of Hooge’s constant from similar nanogauges [44] yielded an estimated
noise smaller than 1 nV/+/Hz at the operating frequency, negligible with respect to
other sources of noise. The following analysis is focused on these other noise
sources, especially additive white noises and their effects on frequency stability.

By definition, an additive white noise is a noise that is added to a signal. Figure
2-18 represents the block diagram of the nanoresonator transduction. V,,,; is the
nanoresonator output signal where the frequency is counted. This signal is affected
by additive white noises: the nanogauges of the nanoresonator add Johnson-Nyquist
noise arising from the thermal agitation of electrical carriers in these resistors. For
such piezoresistive nanogauges disposed in bridge configuration, the Johnson-
Nyquist noise depends on the equivalent resistance at the output node of the
nanoresonator R, = R, + Ry/2, where R, is the beam-end resistance and R, the
gauge resistance. The Power Spectral Density (PSD) of this additive noise can be
expressed as voltage noise on the nanoresonator output voltage:

VZ
S],V = 4kaRout [El 2'34

where kg is the Boltzmann’s constant and T the temperature.

Thermomechanical noise comes from the coupling of the nanoresonator with its
environment by a stochastic force accounting for its thermalization. It derives from
the theorem of fluctuation-dissipation that states that any system dissipating energy
is noisy. As shown on Figure 2-5 (a) the nanoresonator is represented by a damped
spring-mass system where the dissipation is associated to its damping coefficient
b, = m,w,/Q,. From [78] the definition of the force spectral density of
thermomechanical noise is S,y = 4kgTh,. The transduction chain of
nanoresonator (H,(w,) = Q,/m,w? & ns) allows expressing the PSD of
thermomechanical noise as white noise on the nanoresonator output voltage:
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The thermomechanical noise is here considered as white noise on the output voltage
because the mechanical response of the nanoresonator w, /2Q, is larger than the
measurement bandwidth, defined by the quasistatic regime of the accelerometer
wom- These noise sources originate from the nanoresonator itself. But the
electronics used to maintain the nanoresonator at its resonance frequency add an
additional external noise Sg . In practice, the components used for the readout of
nanoresonator output signal add dominant noise sources. For instance Zurcih
Instrument's Lock In Amplifier (UHF) as well as the high-performance front-end
amplifier (ADA4817) add 4nV/v/Hz of noise, which is not negligible compared to
the noise of nanoresonators. Because these noise sources are not correlated, the PSD
of additive noises on the nanoresonator output is Sy =S;, + Spry + Sgy.
According to the phase noise theory [79], additive white noise is distributed both
on the amplitude and the phase of the signal. The phase noise induced by the
additive noise is proportional to the ratio between its PSD and the power carrier of
the signal V,,;

* T WVouel?/2

S 2-36

Hz

radzl

For a system resonating at w,- and dominated by additive white noises, the angular
resonance frequency spectral density is given by 2-37 and the phase-to-frequency
relationship of the resonator of Figure 2-6:

w, \2 S, [Hz?
o (L) -
20,) P, |Hz

The effect of additive noises on the stability of the resonance frequency
measurement can be quantified through wpi e, the minimum measurable

frequency shift, which depends on the measurement bandwidth BW, the output
signal amplitude |V,,¢| and the additive white noise Sy,

w, /SyBW H.] 538

Cmind = 0 Wowel "7

In other words, w,,;, ¢ is proportional to the inverse of the Signal-to-Noise-Ratio

(SNR) with SNR = |V,.|/+/SyBW. Reducing the additive noise or increasing the
output signal allow improving the effect of additive noise on the stability of the
resonance frequency measurement.
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2.4.2 Frequency noises
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Figure 2-19 Block diagram of the accelerometer transduction including the noise sources
affecting the resonance frequency: Sp,y is the force spectral density of the
thermomechanical noise of the accelerometer, S, is the frequency spectral density of the
intrinsic frequency fluctuations of the nanoresonator.

Figure 2-19 presents the accelerometer transduction chain from the input
acceleration a to the resulting nanoresonator resonance frequency w, (a). Like the
nanoresonator, the MEMS accelerometer can be modelled as a damped mass-spring
system where the dissipation is associated to its damping coefficient b,, =
Mwym/Qm. In this case the force spectral density of thermomechanical noise
affecting the proof mass is Sy, y = 4kzTb,, [80]. This force spectral density is
filtered by the mechanical response of the accelerometer H,,(w,,), transduced as
an axial stress on the nanoresonator by the transduction gain n,, and then to a
resonance frequency shift Aw, in the same way as an acceleration. In other words,
the resonance frequency w,. is affected by resonance frequency noise coming from
the thermomechanical noise of the accelerometer. This frequency noise is not white
noise such as its origin (S,,y) because the mechanical response of the
accelerometer filters it. But, considering that the measurements are performed in
the quasi-static regime of the accelerometer, i.e. H,,(w,, < BW) = 1/Mw3,,, the
thermomechanical noise of the accelerometer can be expressed as white noise on
the resonance frequency w, with the frequency spectral density

4T s, 12 HZz? 239

bmw — ngQO Novow Hz

This is a resonance frequency noise as presented on Figure 2-16 (a). Similarly to
the phase noise, the frequency noise limits the achievable frequency stability. But
in contrast to phase noise, this is not an uncertainty on the measurement of the
resonance frequency, but fluctuations of the resonance frequency itself, which still
affect the limit of detection of the sensor. Therefore, in this case, the stability of the
resonance frequency wy, , in a specific bandwidth BW does not depend on the
measurement signal’s SNR

Wpm,w = 4/ Sbm,wBW [Hz] 2-40

In practice, 1/f noise independent of SNR eventually limits the bias instability of
the nanoresonator. Several teams, among them the Leti, have shown that
nanoresonators suffer from intrinsic resonance frequency fluctuations [81] that
represent a bias instability limit. These frequency fluctuations are represented on
the Figure 2-19 as frequency spectral density S, .
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In conclusion, the resolution of the nanoresonator w,,;,, i.e. the minimum
frequency measurable for short integration time can be calculated from the
frequency resolutions wyin,¢ and w.y;xn .. Because these noises are not correlated,

the resolution of the nanoresonator is

Winin = J Wiing T Ominw, [HZ] 2-41

In practice, for short integration time, the frequency stability is dominated by white
noise, thus the resolution can expressed as resonance frequency spectral density
(Hz/\/Hz) by dividing w,,, by the measurement instrument’s integration
bandwidth. The minimum measurable resonance frequency fluctuations are limited
by the additive noises, which induce an uncertainty in the measurement w.y;, 4, and
by resonance frequency noise, which induces an uncertainty affecting the sensing
application w.y;y ., . Noise sources can be dissociated (1) by improving the SNR of
the system, because only w.,;, ¢ is improved, and (2) by integrating the output
signal on large bandwidth BW > w,,, because wm;n,,, Is filtered by the
accelerometer’s resonance. In any case, both are dependant of the integration
bandwidth. i.e. by reducing the bandwidth, the frequency stability can be improved,
as both of them are white noises. Because the accelerometer sensitivity links the
resonance frequency variation and the acceleration, the acceleration stability can be
deduced from the frequency stability.
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2.5 Voltage readout

In this section, the actuation and detection signals are studied by building an
equivalent circuit of the nanoresonator. The physical analysis of section 2.3
assumes that the actuation voltage only causes a mechanical force on the beam.
Thus, due to a static polarisation, the resistance variation generates a useful output
voltage in the central node of the gauge bridge. However, electrostatic actuation
also generates a feedthrough current through the resonant beam, which is added to
the signal from the gauge variation. The challenge is to perform a voltage readout
in the central node of the gauge bridge to measure only the useful signal without
losses. This section presents the analysis of an equivalent circuit of the
nanoresonator, which allows understanding the elements involved in the output
voltage.

Figure 2-20 describes the equivalent circuit of the nanoresonator. The actuation
voltage V4. generates a feedthrough current I, that flows through the actuation
impedance Z,. This impedance is composed of an actuation capacitance C, in series
with the resonant beam resistance R,. The useful currents I, that flows through the
modulated resistances Ry = R, (1 + 8R,) are due to the differential bias voltage

+V,. A load impedance Z; is plugged at the beam-end in order to measure the
output voltage V,. The current I,,,; flows through the beam-end resistor R, before
reaching the load impedance, thus the output voltage V,,,,; is a fraction of V,,. From
a balance of currents on the 1, node, and applying the Kirchhoff law to the voltage
divider bridge, the output voltage of the nanoresonator is given by:

1 SR,V Vac

2-42
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Figure 2-20. Equivalent circuit of the nanoresonator. (a) Scanning electron microscope
(SEM) image of the nanoresonator and nanogauges, with the electrical equivalent circuit
superposed. (b) Equivalent electrical model of the readout of the nanogauges.
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The factorized term of Eq. 2-42 corresponds to the losses associated to voltage
readout. The term proportional to §R, V), = VacnaH,ns corresponds to the useful
(i.e. motionally-induced) part of the output voltage. The term proportional to V.
corresponds to the part of the output voltage proportional to feedthrough current
(i.e. from a purely electrical origin). The voltage transfer function of the system can
be more clearly expressed as:

|4
H(wg) =7
AC

= HR (wa)GL (wa) + HA (wa) [A U] 2-43

where Hy = n4H,n; is the ideal transfer function of the nanoresonator, G;* =
[1+R./Z,][1+R,/2(Z, + R,)] is the loss associated to the voltage readout,

which assumes (Z, + R,)~! » Z; ! because the actuation capacitance C,~fF, the
beam resistance R,~kQ and the operation frequency w, > 10 MHz. H;! =
[1+R./Z,)[1+ Z4(1/[Z, + R.] + 2/R,)] is the transfer function associated to
the feedthrough current. The influence of these different phenomena is discussed
for an output voltage operating at a frequency close to the MHz. The load
impedance is usually a high-impedance resistor (>1 MQ) in parallel with a
capacitance, thus behaving similarly to a low-pass filter. Figure 2-21 (a) shows the
impact of these different phenomena on the voltage transfer function of the system:

The reference transfer function (black) is an ideal case where the load impedance
has no parasitic capacitances and the actuation capacitance does not affect the
readout (C, = 0). In this configuration, the losses and the background signal are
negligible (G, = 1 & Hy = 0).

The intermediate transfer function (blue) considers the parasitic capacitances of the
load impedance but still neglects the background signal from the actuation. At the
operation frequency close to the MHz, the load impedance has already started to
cut off the nanoresonator signal, thus introducing losses |G, | < 1 and a phase offset.

The real transfer function (red) considers the previous phenomena and the impact
of the background signal. Although the reference transfer function is no more
affected by output losses, the feedthrough current adds a background signal H, on
the useful signal H; = HiG,. The background signal has an impact on the phase
measurement that is discussed in Figure 2-21 (b).
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Figure 2-21 Representation of the nanoresonator’s transfer functions in three different
scenarios of parasitic coupling. (a) Bode diagrams, normalized to the actuation frequency,
comparing the different effects that influence the transfer function. (b) Complex
representation of the voltage transfer function comparing the influence of the background
signal.

Figure 2-21 (b) shows the complex representation of the voltage transfer function
Hy + H, for a w sweep close to the resonance frequency. The transfer function of
the background signal H, is represented as constant vector because even though it
comes from a capacitive source the frequency sweep is performed in a very small
range around the resonance. However, the transfer function of the useful signal Hy
makes a circle in the complex domain characteristic of the resonance of a second
order system. For the ideal second order system Hy, the circle is centred to zero
thus, at resonance the ideal phase shift ¢ = 90°.

Without background signal, the circle is shifted by the vector H,, thus at resonance
the phase shift ¢, < 90°. The higher the background (thus the vector Hy), the lower
the phase shift at resonance. Due to this effect, the ratio between phase noise and
phase shift at resonance is lower. In conclusion, the phase shift at resonance
depends on the Signal-to-Background ratio (SBR), i.e. the ratio between H, and Hp.
In practice, a useful signal deteriorated by a background signal deteriorates the
nanoresonator’s measurement due to a lower phase shift at resonance. A PLL, such
as that shown in Figure 4-22, can still be used to maintain the oscillation with the
deteriorated signal.

Chapter 2 has described the tools to model force transduction accelerometers based
on piezoresistive nanoresonators as force sensors. Using this knowledge, Chapter 3
exploits the analytical models in order to design these resonant accelerometers.
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3 Electromechanical design of
resonant accelerometers

This chapter aims at developing a design strategy of the MEMS structure and the
electronics that keep the nanoresonator in resonance. The system consisting of a
MEMS structure and dedicated electronics is called a sensor. The design of the
MEMS structure is described in the first section. The discussion begins by
presenting the fabrication process. Then, the MEMS design aims at optimizing the
performance of the system in terms of resolution and bandwidth. The strategy is to
translate the target specifications into the main geometrical parameters for a specific
MEMS geometry (Figure 3-1 a). After proposing the implementation of the MEMS
structure, an electronic readout dedicated to its operation is designed. The objective
is to design an oscillator architecture that allows measuring the acceleration in real
time and does not degrade the performance of the MEMS (Figure 3-1c).
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Figure 3-1 Overview of the elements of an acceleration sensor based on resonant detection.
(a) MEMS structure that translates the acceleration into a resonance frequency variation.
(b) Silicon chips regrouping several design of accelerometer and packaging in ceramic
socket, (c) Readout electronics compatible with the ceramic socket and comprising an
oscillator in order to measure acceleration in real time.
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3.1 Design of the MEMS structure

The objective of the design process is to optimize the performance in terms of both
resolution and bandwidth: for this, a co-design of the nanoresonator and the
accelerometer is necessary. On one hand, the overall stiffness of the accelerometer
Is determined by the compressive stiffness of the nanoresonator and the bending
stiffness of the suspension elements, which determine its bandwidth together with
the proof mass. On the other hand, the resolution is limited by the frequency
resolution of the nanoresonator but also by the frequency noise generated by the
accelerometer, thus by the design of the nanoresonator and the accelerometer.
Figure 3-2 presents the design strategy of the MEMS structure. The analysis begins
by presenting the "M&NEMS" manufacturing technology that fixes certain
technological parameters. The detection limit of the nanoresonator is generally
limited by the piezoresistive transduction. However, by improving the transduction
efficiency one can improve the signal-to-noise ratio (SNR) until reaching the
detection limit set by the thermomechanical noise of the nanoresonator, which
represents the ultimate nanoresonator resolution. Through the sensitivity of the
accelerometer, the thermomechanical noise of the accelerometer is matched with
the resolution of the nanoresonators. If the sensitivity is higher than this optimal
value, the bandwidth is reduced (because of the larger proof mass), as is the
thermomechanical noise of the proof mass, and the resolution of the nanoresonator
becomes dominant.

| M&NEMS Technology ]

Accelerometer resolution Accelerometer bandwidth
|
! |
— Resonator SNR Accelerometer sensitivity |+«
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by |
Resonator design Proof mass design

} |

Implementation

Figure 3-2 Design strategy used to optimise the resolution / bandwidth trade-off of the
accelerometer. The sensitivity of the accelerometer and the SNR of the vibrating beams are
central to the design process.
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3.1.1 M&NEMS fabrication process

SOl substrate

Doped Si

Si

.

Figure 3-3 Composition of the initial wafer used in the fabrication of the nano-beam
resonant accelerometer. A silicon (Si) substrate is separated from the nanoscale active layer
by a sacrificial oxide (SiO2). The active layer is then doped to give it piezoresistive
properties.

M&NEMS technology is manufacturing process that allows combining a
micrometric active layer with a nanometric active layer. The advantage of this
technology is the association of two mobile mechanical objects of different sizes
offering a high sensitivity and the possibility to integrate out-of-plane
accelerometers. In addition, the M&NEMS technology has a wafer-level packaging
step allowing the mechanical structures to operate in vacuum environment.

Figure 3-3 presents the initial steps of the M&NEMS technology, which define the
nanometric active layer. The manufacturing process starts with a Silicon-on-
Insulator (SOI) wafer. The Si device layer is doped to make it conductive and give
it piezoresistive properties. It is then thinned to a thickness of 250 nm.

Figure 3-4 shows the etching and protection of the nanoscale patterns. First, the
nanoresonator are patterned and etched (Figure 3-4-a). Then, an oxide layer is
deposited to protect the nanoscale elements (Figure 3-4-b). This oxide layer is then
partially etched away to leave only a localized protective layer on the nanoresonator
(Figure 3-4-c).

Figure 3-5 shows the growth and etching of the micrometric active layer. First a
micrometric epitaxy is performed (Figure 3-5-a), then the micrometric patterns are
etched by reactive ion etching (DRIE) to the oxide layer (Figure 3-5-b). Finally the
release of the micrometric and nanometric patterns is achieved by HF wet etching
(Figure 3-5-c) of this oxide layer. In addition to have stress gradient on the device
due to the SOI process, this release generates additional compressive pre-stress in
the nanoresonator of about 150 MPa.
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Etching of NEMS patterns

nanowire

SiO2 NEMS protection deposition

SiO2 NEMS protection partial etching
Nanowire protection

Figure 3-4 Fabrication of the nano-patterns. The resonant beams are first etched (a) and
then covered by an oxide (b). The oxide is then partially etched to provide localised
protection for the nano beams (c).
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DRIE etching

Release holes
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HF release nanoresonator

|
/
/
Proof mass Anchorage
Si

Figure 3-5 Fabrication of the micrometric patterns. The micrometric layer is epitaxially
grown (a) and then the micrometric patterns are etched (b). The sacrificial oxide is then
etched away by HF vapour to release the entire structure (c).
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3.1.2 Nanoresonator design
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Figure 3-6 Block diagrams representing the dynamic range of a nanoresonator used as a
force sensor. On the right the transduction of the bending motion, limited by the critical
amplitude before non-linearity and by the Johnson and thermomechanical noises. On the
left the force transduction, limited by the buckling stress and the SNR of the additive noises.

This subsection presents the design of a nanoresonator used as a force sensor.
Because the nanoresonator measures axial stress by the variation of its resonance
frequency, the minimum detectable frequency is equivalent to a minimum
detectable stress o,,,;,, - The objective of the nanoresonator design is to minimise
Omin,r IN Order to optimise the resolution of the accelerometer.

Figure 3-6 presents the two transduction chains of a nanoresonator that allow
expressing the minimum measurable stress o,,;,,. On the left, the frequency
transduction chain, where the phase-frequency relationship and the sensitivity of
the frequency to the stress S;,, allow expressing op,in» = [0 /2Q+S5w AP minr-
On the right, the nanoresonator readout transduction chain where the inverse of
Signal to Noise Ratio (SNR) sets the minimum measurable phase A@,in, =
1/SNR. The SNR is limited by the critical amplitude before nonlinearity v,,,, as
well as by the additive noises of the system (the output voltage V,,,; suffers from
Johnson noise S;,, and the actuation force F,. suffers from thermomechanical
noise Sy, y). Considering the pre-stress ops as an initial stress imposing an

operating point (Sow % Wor/[20pucky/ 1 + ps/Tpuck] and W, =

a)om/l + 0ps/0puck), the minimum stress detectable by the nanoresonator is thus
proportional to the inverse of the SNR

oo :LA . :O-buck-l'O-PS [Pa
T T T N

3-1

The buckling stress gy, is the maximum allowable stress on the nanoresonator
which must be added the pre-stress opg. Therefore the dynamic range is

DR « Q,SNR [dB] 3-2
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Figure 3-7 Geometrical description of the piezoresistive nanoresonator. The nanoresonator
is composed of 3 parts: a resonant beam, two nanogauges orthogonal to the resonant beam
and a beam-end, which is the extension of the resonant beam.

The improvement of the measurement of the nanoresonator in terms of SNR allows
improving dynamic range and resolution of the accelerometer (o,,i,,). The
nanoresonator design aims at improving the SNR due to the different additive
noises. Figure 3-7 presents the nanoresonator geometry. In order to reduce the
system parameters, the dimensions of the nanogauges providing the piezoresistive
transduction are expressed as a function of the dimensions of the resonant beam.
Each element of the nanoresonator has the same thickness t,. The resonant beam
has a length and width of L,. and w,. respectively. The beam-end has the same width
as the resonant beam and a length aL,.. The gauges have length and width SL, and
yw, respectively. The piezoresistive transduction parameters («, ,y) are called
PTP afterwards.

The SNR is expressed between parameters of the same nature. The critical
amplitude v,,4, IS then expressed in terms of output voltage through the
transduction gain ng in order to be compared to the Johnson noise. Similarly,
Umax 1S €Xpressed in terms of force through the actuation gain to be compared to
the thermomechanical noise:

NsVmax _
SNR, = ———— [rad™1
1 /S yBW [ :
wimy

—U%] [rad=1]

The SNRs are expressed as a function of the integration bandwidth BW. In this
case, the thermomechanical noise is equivalent to white noise defined to Eq. 2-35.

3-3

SNR,, =
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The mechanical limits (maximum linear amplitude of vibration and the
thermomechanical noise) depend on both geometric parameters (w,, L,,t,) and
manufacturing process parameters (Q,., gps)

( 2
Wy ( Ops )
v < |—|[1+ m
max \/Qr Obuck [ ]
{ 3-4
N Qr ]o( l L; l Qr [ m ]
bT,N w"gmr W#tr (1 + O-PS )% \/HZ
\ Obuck

The electrical limits depend on the geometrical parameters (w,., L,., t,-) but also on
the PTP (a,B,y). From its definition (Eqg. 2-33), the transduction gain ns is a
function of resonant beam geometry and PTP. Moreover S, ,, (Eq. 2-34) is a function
of the nanoresonator output resistance R, thus, (w,, L., t,.) and (a, 8, v):

([ g [
L,

5 <l L

SNR optimization is first discussed for a fixed PTP deduced from previous
nanoresonator designs: («, B,¥)=(0.15,0.2,1). Only the design of the resonant beam
(w,, L, t,.) is optimised to maximise SNRs. In order to simplify the design process,
some design rules are proposed. The designer must choose the working frequency
of the nanoresonator w,- in order to fix the length of the nanoresonator according
to its width: L, o« +/w,. The nanoresonator buckling is the minimum allowable
stress before out-of-plane or in-plane buckling, respectively proportional to the
nanoresonator thickness and width. To reduce resonant beam design parameters,
the two dimensions of the beam are equalized by w,. = t,.. For the fixed the PTP
and expected pre-stress (ops = —150 MPa) the SNRs depend only on the width of
the beam, the vacuum level of the working environment (represented by Q,) and
the integration bandwidth:

3-5

{SNRminJ < wt25Q75VBW [rad™!] 26

SNRmin,br X WrZ'ZSQr_l vVBW [rad‘l]

With the thickness-width equality design rule oy, < w, thus, from Eg. 3-1 and
3-6 the minimum detectable stress, in terms of stress spectral density, are

{Umm,] o w;075Q;7%5 [Pa/VHz] 3.7

Ominpr X Wy 125 [Pa/VHz]
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Figure 3-8 Power spectral density of stress fluctuations as a function of nanoresonator width
for a pre-stress ops = —150 MPa, a working frequency f,, = 20 MHz and the initial PTP
(a,B,y) = (0.15,0.2,1). (a) In red the minimum stress imposed by Brownian noise, in
blue the minimum stress imposed by Johnson noise as a function of different quality factors.
(b) Improvement of the minimum detectable stress though the optimization of the Johnson
noise. In red the minimum stress imposed by the Brownian noise, in blue the minimum
stress imposed by the Johnson noise for a quality factor Q,. = 500. The solid line for the
initial PTP, the other for an optimized PTP as a function of nanoresonator width wi,..

Figure 3-8 (a) shows that the minimum detectable stress for different noise sources
IS optimised for large nanoresonators. As expected from Eq. 3-7, the minimum
stress set by the Johnson noise is inversely proportional to the vacuum level of the
environment. For low quality factors, the Johnson noise limits the resolution of the
nanoresonator. For high quality factors, it is the thermomechanical noise that limits
the resolution of the nanoresonator. This mechanical limit represents the maximum
achievable resolution for a given nanoresonator.

From the definition of SNR, (Eq. 3-3), the definition of its terms (Eq. 3-5) and the
reduction of resonant beam parameters (w,., t,, L) = (w;.), the improvement of the
minimum stress set by the Johnson noise can be discussed through the SNR,
optimization

-1

W1.25
4 £ +al| n, [rad1] 3-8

SNR, «
7B 2y

Besides, we can observe that: (1) In addition to the dependence of SNR, express in
Eq. 3-6, the displacement gain n,, (Eq.2-29) is also improved by increasing w;,.. (2)
the deformation gain n,. can be improved by decreasing nanogauge length, i.e. 5.
(3) The Johnson noise S; , can be reduced by increasing the nanogauge section, i.e.
y and decreasing the nanogauge length, i.e. f and a. (4) As detailed on the
Appendix A, the displacement gain n, can be improved by increasing the
nanogauge length S and decreasing the nanogauge section y. Moreover, for each
resonant beam width, n,, has an optimum value for specific beam-end length, i.e.
Q= yp.
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In conclusion, the optimization of SNR, starts with the choice of a beam width.
Once w, is fixed, two phenomena are in competition. On one hand the Johnson
noise S; , must be reduced (a {, 8 i,y T). On the other hand, the sensing gain must
be maximized. For this purpose, the deformation gain n. must be improved (S 1)
as well as the displacement gain (8 1,y |, @ = a,,). Thus, there is an optimum set
of PTP (@op, Bops Yop) Where the SNR; is optimized. Thanks to an optimization
algorithm, the best PTP are calculated for each value of resonant beam width.
Figure 3-8 (b) shows the minimum detectable stress on the nanoresonator for the
worst case (Q,- = 500). The dashed curve shows that for the initial PTP (a, 8,y) =
(0.15,0.2,1) the Johnson noise dominated the resolution of the nanoresonator. The
continuous curve shows that for an optimal PTP, calculated as a function of the
nanoresonator width, Johnson noise is not limiting over the size range of the
nanoresonator width.

In order to go on with the global design of the accelerometer, here is a summary of
the important points of the nanoresonator design:

- The designer decides on a working frequency of the nanoresonator and
estimates its quality factor. For a nanoresonator operating in vacuum 500 <
Q, < 5000. The bandwidth of the nanoresonator must be higher than the
bandwidth of the accelerometer, w, /2Q, > wq,, in order to consider Sy, v
as white noise and avoid the problem related to the Leeson effect presented
in section 3.2.2.

- The designer decides on a suitable nanoresonator width for the targeted
application. Considering that the resolution of the nanoresonator (o, ,-) is
optimized with wide nanoresonators while the sensitivity of the
accelerometer (Eq. 3-9) is optimized with thin nanoresonators.

- The designer optimizes the piezoresistive transduction of the nanoresonator
according to the chosen width and taking into account the etching limits of
the manufacturing process. In our specific case the gauge and beam-end
lengths are limited to a,in Ly = Bminlg = 500 nm and the gauge width is

limited to y,,,;,w, = 250 nm.
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3.1.3 Accelerometer design
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Figure 3-9 Block diagram of the transduction of a pendulum accelerometer. The dynamic
range is limited by the maximum axial stress (red) and by the different noise sources (blue).

This subsection presents the design of an in-plane accelerometer. In order to benefit
from increased sensitivity, a pendulum accelerometer architecture (Figure 3-10) is
used. It takes advantage of a lever arm effect while reducing the sensor footprint by
grouping the anchor points of the different elements in a reduced space. The first
generation of nano-beam resonant accelerometers based on lever-arm architecture
allows grouping 3-axis accelerometers on 12.5 mm2-chips. However, the pendulum
architecture is not adapted to large mass-low bandwidth accelerometers.

Figure 3-9 describes the sensitivity S, of the axial stress on the nanoresonators to
the input acceleration. The acceleration force F, generated by the proof mass
(characterized by a mass and density, pt,,S,,) is amplified by a lever arm of length
L. The motor torque I is then transmitted into a torque on the nanoresonator I;..
Under the assumption of a small mass rotation 8, this input torque is proportional
to the axial stress o, experienced by the nanoresonators. The gain n between the
input torque and the torque experienced by the nanoresonators reflects the
distribution of the deformation energies between the flexible elements: On one hand
the hinges represented by a torque C;, and on the other hand the torque stiffness of
the nanoresonators k,.I? positioned at a distance I from the centre of thrust of the
hinges. The sensitivity of a pendulum accelerometer is then proportional to the ratio
between the mass area S,,, and the cross-sectional area of the nanoresonators S,., the
lever arm effect and the deformation energy distribution:

s 2]t 2]

The design of the accelerometer starts with the expression of the main specifications
as a function of the sensitivity. On one hand, the bandwidth of the accelerometer,
limited by the resonance frequency of the proof mass w,y,, is inversely proportional
to the square root of the sensitivity. On the other hand, because it is intended that
the resolution of the accelerometer is fixed by the resolution of the nanoresonators,
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the resolution of the accelerometer a,,;,, is proportional to the inverse of the
sensitivity.

(a — O—mln T O—mln rlS
min,r o-a S Lr]r
3-10
TC r rad

craL L S er"

Since the design objective is to maximise the bandwidth while minimising the
resolution of the sensor, the ratio between bandwidth and resolution represents the
figure of merit (FOM) of the accelerometer

A S Sm dvH
FOM — C‘)Om e oa 771" [ra 3_11
Aminr  Ominr Gmm r | LrSr

Optimising the accelerometer FOM is achieved by maximising the gain n between
the motor torque and the torque on the nanoresonators, maximising the ratio S,,, /S,
and minimising the detection limit of the nanoresonator gy, ,.

Figure 3-10 shows the different geometrical parameters of the pendulum
accelerometer architecture. The proof mass is composed of a square with side L,,
completed by a triangle for a total mass footprint of S,, = 5/4L,,, and a lever arm
of length L = 13/15L,,,. This proof mass is suspended by two orthogonal hinges of
length L, width w;, and thickness t,,, which form a pivot point at their intersection.
The nanoresonators, with compressive stiffness k,.., are placed at a distance [ from
the centre of thrust of the pivot.

o

Figure 3-10 Presentation of the architecture of a pendulum accelerometer. (a) The geometry
of the accelerometer and (b) its equivalent mechanical diagram. In blue the seismic mass,
in red the nanoresonators and in black the flexible suspension elements.
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For a pendulum accelerometer, the gain between the motor torque and the torque
experienced by the nanoresonator depends on the ratio between the hinge angular
stiffness relative C,, and the nanoresonator equivalent angular stiffness 12k,..

Nr = 1_|_—Ch [A- U] 3-12
12k,

Maximising the gain between the motor torque and the torque experienced by the
nanoresonator (nr — 1) is equivalent to softening the hinge’s angular stiffness
relative to the nanoresonator’s equivalent angular stiffness (C), < k,.1?). For this
purpose it is necessary to increase the length of the hinges L, (because C,
wit,/Lp), 1o increase the compressive stiffness of the nanoresonator k,.. or to
increase the distance between the nanoresonator and the pivot point [.

On one hand, if L, or k,. are increased, the equivalent nanoresonator stiffness
becomes non-negligible with regards to the hinge’s compression stiffness, and
therefore the rotation center moves towards the nanoresonator. In other words, the
arm compresses the hinge to turn around the nanoresonator. In this case, since the
axis of rotation is closer to the nanoresonator than expected, the distance between
the nanoresonator and the axis of rotation [ is smaller. Thus, the lever arm force
gain does not benefit from this increase in displacement gain. This is purely a loss
of efficiency. Moreover, increasing Ly, is a risky strategy because the out-of-plane
sensitivity of the accelerometer is proportional to L3. On the other hand, if the
nanoresonator distance [ increases, the theorical lever arm gain L/l decreases.

Another solution is to reduce the distance [ of the nanoresonators by placing them
closer to the hinge in order to increase the theoretical lever arm gain L/I. In this
case, the lever arm force gain L/l X n increases because the benefit of the ideal
gain is bigger than loss of n-. However, for small [, n — 0, and the lever arm force
gain is null. There is a maximum of L/l X n when n = 1/2, i.e. when the hinge
angular stiffness is equal to the nanoresonator equivalent angular stiffness (C; =
k,.[?). In other words, when there is a balanced strain energy distribution between
the hinge and the nanoresonator. This balance is achieved for a specific geometry.
In order to match the accelerometer design to the previous nanoresonator design,
the specific geometry is set by the hinge geometry. In this way, the nanoresonator
geometrical parameters S, L, and [, respectively cross section, length and position
are used to define the optimal hinge length :

2tmWiL,
Lh,op = SIZSr — [m] 3-13
Here, the hinge thickness t,, is fixed by the manufacturing process and the hinge
width w;,, must be minimized to reduce the hinge length and thus the out-of-plane
stiffness of the accelerometer (o L3).
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Maximising the area ratio between the footprint of the proof mass and the cross-
section of the nanoresonator (S, « S,,) is the main advantage of the M&NEMS
technology. It is essential to keep a large aspect ratio between these two surfaces to
propose a FOM that exceeds that of conventional micrometric architectures as well
as to maintain the possibility of a three-axis sensor (this is also due to the uncentred
position of NEMS layer relative to MEMS layer).

On one hand, given the properties and dimensions of the nanoresonator, i.e.
Sy Ominr Ly and 1, an equivalent minimum acceleration imposed by the
nanoresonator can be expressed as ,inr = Ominr/Ssq. ON the other hand, given
the properties and dimensions of the accelerometer, i.e. S,;, Sy and t,,, an
equivalent minimum acceleration measurable imposed by the thermomechanical
noise of the accelerometer can be expressed as a,iy m = m /Pt Sm: this will
be named MEMS noise. There exists an optimum characteristic length of the mass
in which the MEMS noise is equal to the noise of the nanoresonator a,,;,, =

4,
Linop X Ominr SELr Qm!l [m] 3-14

Figure 3-11 presents the strategy to set this optimum point. In order to show the
trend in a 2D plane, the position of the nanoresonator is fixed at [ = 5 pm. But this
strategy is applicable to all nanoresonator positions. Figure 3-11 (a) shows the
acceleration resolutions limited by the nanoresonator and the MEMS noise as a
function of the proof mass length: a,;in & L2 and apmin m & LyZ. The optimum
proof mass length L, o, is the length where ap,in = aminm- If Ly < Ly op the
noise of the nanoresonator dominates the MEMS noise (@minr > Aminm) and the
opposite if L, > Ly, o, In practice, increasing the length of the mass reduces both
the nanoresonator noise and the MEMS noise. In addition, Figure 3-11 (b) shows
that the accelerometer bandwidth is proportional to w,,, o L,?, so it decreases in
the same way as @i, . Figure 3-11 (c) shows that the FOM limited by the
nanoresonator’s noise is proportional to L,, while the FOM limited by the MEMS
noise is constant with respect to L,,,.

Aminm-

Since the accelerometer noise is set by the dominating noise source, the
accelerometer’s FOM is therefore the minimum FOM of the two noise sources. In
Figure 3-11 (c), the FOM of the accelerometer is represented by the black dashed
line. The optimum FOM is then the constant plateau reached after the optimum
proof mass length L,, ,,,. In other word, for each proof mass length L, > Ly, ,,, the
FOM is maximized. Here, the resolution/bandwidth trade-off can be set with L,,
according to the required specifications. However, it is important to note that the
proof mass should not exceed a specific size as the out-of-plane sensitivity of the
pendulum architecture is proportional to it (L,,, < 750 um).
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Furthermore, it is important to note that the improvement in wafer-level packing,
i.e. increase in Q,,, can be represented as an increase in the constant plateau of the
FOM bounded by @i, - In this way, the FOM of the accelerometer can reach a
better value due to better resolution. The best case being when Q,,, > 1000 which
implies that the FOM of the accelerometer is no longer limited by the FOM of the
MEMS noise but by the FOM of the nanoresonator noise.

Based on previous analysis of the M&NEMS accelerometer [67], [82]-[84], the
damping of the accelerometer is assumed to be limited by the squeeze-film damping
due to the packing-induced vacuum level at the wafer (~mBar) and the 5 um gap
surrounding the proof mass. In this way, the value of the accelerometer quality
factor is fixed to Q,,, < 1000 for the first design. In conclusion, to avoid out-of-
plane issues due to a large mass as well as to have the highest bandwidth for optimal
FOM, the most optimal length of the proof mass is L,, = Ly, op.
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Figure 3-11 Optimization of the resolution/bandwidth ratio of the accelerometer as a
function of L,,. (a) Accelerometer resolutions set by the noise of the MEMS and the noise of
the nanoresonator as a function of proof mass length. (b) Accelerometer bandwidth as a
function of proof mass length. (c) Accelerometer FOM as a function of proof mass length.
The analytical model is done for I = 5um and Q,,, = 250.
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3.1.4 Design strategy

In this section | propose a design strategy based on the study of the designs of the
resonator and the accelerometer, and then | use it to propose designs for the first
generation of nano-beam resonant accelerometers. Figure 3-12 summarizes the
previous design rules step by step in order to have an overview of the design
strategy. The process is explained thanks to proportionality functions. The complete
functions are detailed on Appendix A.

From a set of requested specifications and initial assumptions, the nanoresonator
geometry (w,,t,,L,) is reduced to the nanoresonator width w,. Then, the
nanoresonator optimisation, based on the improvement of piezoresistive
transduction, allows expressing the nanoresonator resolution o,,,;,, - as a function of
w,.. In parallel, the energy balance condition allows expressing the hinge length as
a function of w,. and [ and the accelerometer sensitivity S, as a function of w,., [
and L,,,. Through the sensitivity and the nanoresonator resolution, the acceleration
resolutions a,in - and a,;n m s Well as the accelerometer resonance wg,, can be
expressed as a function of geometric parameters (L,,,, w,- and [). The objective of
this design strategy is to match the acceleration resolutions (MEMS and
nanoresonator) in order to reduce the geometric parameters by expressing L,,, as a
function of [ and w,., and then setting the accelerometer specifications and other
geometric parameters (L, and L,,).

After fixing the accelerometer noise equality, the design of the accelerometer (L,
and L) as well as the accelerometer performance (a,,;,) can be set by the
nanoresonator width w,. and the nanoresonator position [. As a consequence of the
accelerometer noise equality, the accelerometer bandwidth is fixed (Figure 3-11

(©)).

In conclusion, the design strategy based on the energy balance and accelerometer
noise equality reduces the design to the choice of the nanoresonator width (w,.) and
position (1) at the cost of fixing only the resolution of the accelerometer (a,,;») and
not its bandwidth (w,,,). This strategy is applied in our case because pendulum
architecture ensures an accelerometer with a large bandwidth and a small footprint.
If the strategy is to look for a high-resolution accelerometer, the equality of the
acceleration noise is not necessary and the length of the proof mass must be larger
than the optimal value L,, > Ly, o, This case is not implemented to ensure the
operation of the pendulum architecture (a large mass results in out-of-plane
sensitivity).
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Figure 3-12 Block schematic of the design strategy: the requested specifications and initial
assumptions are the beginning of the design proves, and they allow choosing ideal
nanoresonator parameters. An optimization of the nanoresonator dimensions can be
performed from these parameters in order to maximize its resolution. The energy balance
ensures an equitable energy distribution and allows extracting the accelerometer sensitivity.
The accelerometer optimization uses this sensitivity to match the nanoresonator resolution
with the resolution imposed by thermomechanical noise of the accelerometer. This last step
fixes the accelerometer resolution and its bandwidth.
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The specifications of the first generation of nano-beam resonant accelerometers are:
- Maintain the small footprint of the M&NEMS piezoresistive accelerometer
(footprint <1 mm?2) and the possibility of three axis accelerometers.
- High-bandwidth accelerometer (BW > 1kHz).
- Resolution as high as possible (ideally, a,,;,, < 1png/VHz).
The following is a proposed methodology to achieve the requested specifications.

The initial assumptions on the quality factors are based on analysis of squeeze film
damping [85] and quality factor of piezoresistive nanoresonators used as mass
sensors [86]-[88]. Our nanoresonators are actuated with electrode with a gap of 500
nm. The proof mass is surrounded by a gap of 5 um in average. Under the expected
pressure level, the mean free path of the molecules is assumed to depopulate the
electrostatic gap of the nanoresonator and thus limit its damping. However, the
proof mass is still subject to this damping source because of its larger gap. We will
assume here a ratio of 10 between the two effects: the expected accelerometer and
nanoresonator quality factors are respectively Q,, =250 and Q, = 2000.
Additionally the initial pre-stress imposed on the nanoresonator iS opg =
—150 MPa.

The design starts with the consequences of the choice of the sensor bandwidth. For
this first generation of accelerometer, the nanoresonator must be mechanically
capable of responding to the sensor bandwidth (BW). l.e. w,/2Q,>BW. To be
large, the inverse of the nanoresonator time response (w,-/2Q,) is set to 4 kHz

wy(0ps)
41tQ,

=4kHz & w,(0ps)/2m =16 MHz 3-15

Thus, the nanoresonator frequency is set to 16 MHz. The impact of pre-stress in the
resonance of nanoresonator is not negligible and must be taken into account in the
setting of the nano-resonator response time (w, /41Q,). For nanoresonators, quality
factors above 5000 are unlikely, but even for Q,, = 5000 the nanoresonator time
response remains superior to the accelerometer bandwidth.

Because the footprint is an important specification, accelerometer sensitivity must
be maximized by minimizing the nanoresonator’s cross-section. Although the
nanoresonator resolution (Eq. 3-7) is inversely proportional to its width, the
nanometric layer is thinned to t, = 250 nm and the nanoresonator width is chosen
to the etching limit: w,. = 250 nm. On this configuration, the ratio between mass
footprint and nanoresonator’s cross-section is maximized, minimizing the mass
footprint.

Next, the resonant beam length is fixed to obtain the resonance frequency (16 MHz)
as L, = 10um. On this configuration, nanoresonator has an initial resonance
frequency of w,,./2m = 20 MHz, decreased to 16 MHz due to the initial pre-stress.
As mentioned above, the pre-stress phenomenon is not negligible and lowers the
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resonance frequency by 20%. In addition to the frequency reduction, the pre-stress
phenomenon reduces the full scale of allowable stress. For this nanoresonator
geometry, buckling appears for a compressive stress of oy, = 350 MPa. With
the expected prestress opg, the maximal operating stress range is 200 MPa. The
prediction of this parameter is one of the most critical points of the design, as if the
usable stress range of the resonator is not large enough the nanoresonators can be
buckled after their release or under acceleration operation and thus be unusable.

After the choice of resonant beam geometry, the piezoresistive transduction can be
optimized. The dimensions of this particular resonant beam do not allow a complete
optimization of the nanogauges. Indeed, for w,. = 250 nm, the optimal PTP are
(L¢, Ly, w,) = (500 nm, 875 nm, 250 nm) that is close to the fabrication process
limit (minimum nanowire length and width are respectively 500 nm and 250 nm
and nanogauge length cannot be reduced under 1 um due to the pads contacts). For
the first generation of devices, safer PTP are implemented to ensure the functioning
of the piezoresistive transduction. The nanoresonator geometries and performances
are summarized on Table 7 and Table 8:

w, 250 nm
t, 250 nm
L, 10 ym
wg 250 nm
L, 2 um

Table 7 Nanoresonator geometries

for(ops) 16 MHz
Ny, 4.4nV /VHz
Ny pr 1.99 nV /VHz
Umax 2.78 nm
Obuck 357 MPa
Ss0(Ops) 0.041 Hz/Pa
Omin 18.39 Pa/VHz
O min,br 8.3 Pa/\/m
O min 20 Pa/VHz

Table 8 Nanoresonator performances

The hinge width is reduced as much as possible, to the limit of fabrication process
wy, = 1 wm, in order to propose short hinges. The micrometric thickness layer is
fixed to t,, = 20 pm. Once the nanoresonator geometry is fixed, the equitable
energy distribution (n = 1/2) can be set by Eq. 3-13. In this case the hinge length
is only fixed by the future nanoresonator position [. Because we chose to implement
accelerometer noise equality, the length of the proof mass also becomes a function
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of the future position of the nanoresonator [. As a result, the accelerometer
bandwidth is set higher the desired bandwidth (1450 Hz) regardless of the position
of the nanoresonator, and the resolution of the accelerometer also became a function
of the future position of the nanoresonator 1.

The last step consists in defining the position of the nanoresonator in order to obtain
the best resolution a,,;, taking into account a reasonable design of the
accelerometer geometries (L,,, and Lj,). Figure 3-13 shows an analytical simulation
of ain, wom, Ly and L,, as a function of the nanoresonator position [. According
to the energy balance, the nanoresonator position must be far from zero but not too
large, thus [ is swept from 2.5 pm to 10 wm. The model considers Q,,, = 250, Q, =
2000 and ops = —150MPa and it is based on the nanoresonator specifications of
Table 7 and Table 8. As expected, Figure 3-13 (a) shows that the bandwidth is not
a function of L. Figure 3-13 (b) shows the resolution is close to the resolution range

(~1 ug/v/Hz). Thus the choice of the nanoresonator position I considers mainly
the critical accelerometer geometries (L,, and Ly). Figure 3-13 (c) shows that, in
order to satisfy the energy balance condition, the length of the hinges increase when
the nanoresonator position decreases. On the other hand, Figure 3-13 (d) shows the
accelerometer noise equality imposes a large proof mass length for a large
nanoresonator position. To ensure the operation of the pendulum accelerometer, a
short hinge length of 51 pum is chosen for a reasonable proof mass of 380 pum.

’ (a) - (b) |
BW = 1450Hz ] ]
— N Amin = 0,8ng/VHz
g e
=1 S 1
> =
&) 8
g
8]
O L L L L L L L L L L L L
3 5 7 9 073 5 7 9
I [um] 1 [um]
> T © N )
A c) | I 1
180t 1 600¢ Ly, = 380pum ]
— 120! | I //
5§77 Ly = 50pm | £ 400 :
= 80 / L
a0l 1 200
s 7 e 03 5 7 9
I [um] ! [um]

Figure 3-13 Final setting of accelerometer performances and geometries as a function of
L. The bandwidth is fixed due to the accelerometer noise equality, so the resolution can be
set by positioning the nanoresonator. However, due to the energy balance condition and the
accelerometer noise equality the hinge and proof mass lengths depend on the nanoresonator
position.
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l 5um
Ly, 380 um
tn 20 um
L, 51.41 pm
Wh 1um
Table 9 Accelerometer geometry.
fom 1450 Hz
Ssa 21.99 MPa/g
Saw 0.89 MHz/g
Aax 9.44 g
Amin,r 0.8 ug/\/m
Qminm 0.79 ug/\/m
DR, (ops) 139 dB

Table 10 Predicted accelerometer performance.

This first subsection focuses on the mechanical design of the resonant beam
accelerometer. The initial consideration of the manufacturing process and the
strategy due to the high-performance integrated sensor allows the design of the first
generation sensor. Based on the analytical modeling of the mechanical structure, a
readout electronics dedicated to the measurement of the piezoresistive
nanoresonator is developed. The second sub-section presents the co-design of this

electronics.
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3.2 Design of the electronic readout

By driving the nanoresonator at its initial resonance frequency, an open loop
electronic architecture can be used together with the phase-frequency relationship
to measure frequency variations. However, this phase-frequency relationship is
defined over a very small relative frequency band for nanoresonators (>
1/2Q,~0.01%). It is therefore impossible to measure the relative frequency
variation of a nanoresonator induced by an acceleration (~10%). It is thus essential
to employ a closed loop to keep the nanoresonator in resonance and track its
frequency in real time. Nanoresonators are passive systems that require energy
input to oscillate at their resonance frequency. However, due to energy losses
present in the system, the oscillation is damped so an energy input must be
maintained. Oscillators are active systems that transform a DC input signal into an
oscillating output signal. In combination with a feedback system, a nanoresonator
forms an oscillator. In practice, it is the thermomechanical noise of the
nanoresonator or other noise sources in the system that initiate the oscillations. This
section aims at designing an oscillator to maintain the nanoresonator at resonance
and thus to be able to measure frequency variations due to acceleration.

When the signal to be maintained operates at high frequency (>10 MHz), NEMS
based heterodyne self-oscillators [89] allow diminishing the filtering of the signal
by down-mixing its frequency. In this type of setup, the down-mixed signal (at
frequency Aw) is multiplied by the source oscillator polarising the gauges (at
frequency w, + Aw) in order to be reinjected on the feedback path. In a resonant
accelerometer the down-mixed signal is modulated by the frequency variation
induced by the acceleration (>1 MHz), which significantly degrades the advantages
of this technique. A force feedback loop on the mass [90]-[92] or a PLL-based
architecture [50], [93] avoid problems at the cost of expensive electronics. For these
reasons, a classical homodyne oscillator is implemented here. This architecture is
not very costly in terms of electronics and requires only amplification and phase
shifting circuits to reach self-oscillation. The design starts with the choice of low-
noise readout electronics that avoid the effect of high frequency filtering. The
architecture of the oscillator is then constructed to satisfy the self-oscillation
conditions (Barkausen). In parallel, the background signal due to the electrostatic
actuation is compensated by a correction stage.
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3.2.1 Adapted readout

+Vb +Vb

Figure 3-14 Comparison of two readout electronic schemes for a nanoresonator with
piezoresistive detection. The readout suffers from filtering due to a parasitic load
capacitance C;. (a) Voltage readout implemented by a load R;,, in parallel with the parasitic
capacitance. (b) Current readout performed by a Transimpedance Amplifier (T1A) which
transforms the input current into an output voltage through the impedance Z.

The design of the oscillator starts with the choice of the readout electronics adapted
to the piezoresistive nanoresonator presented on section 2.5. The transduction
architecture consists of two piezoresistive gauges R, = R, (1 + SR) differentially
modulated by the motion of the resonant beam. These gauges are differentially
biased by a DC bias voltage +V},. The modulated current i,,, flows through the
load resistor R;. The equivalent resistance of the strain gauge bridge R,,,,; observed
from the output node is

R
Rout = 7{] + R; ['Q] 3-16

Figure 3-14 (a) shows a voltage readout architecture where the output node of the
NEMS is loaded by a resistor R;,, through which the current i, will be transformed
into a voltage V,,,;. However, this type of measurement architecture suffers directly
from the parasitic capacity C; that filters the output signal. Because the system
operates at high frequency (w,/2m > 10MHz) and R;;, > R,y

Vout — Rout
iout 1+ jRoutCLw

3-17

Figure 3-14 (b) represents a current readout architecture where the output pin of the
nanoresonator is connected to the input of a transimpedance Amplifier (T1A). The
amplifier inverses the input current into an output voltage through its feedback
impedance Z¢

= -7 [q] 3-18
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The advantage of this type of detection is that the readout is free from the influence
of the parasitic capacitance C, and can therefore operate at high frequencies with
controlled filtering effects.

The current readout offers the best operation for the homodyne detection. An
equivalent model of the nanoresonator must be defined in order to integrate its
impedance into the overall architecture of the oscillator. Usually, series RLC
circuits are used to model the behaviour of the nanoresonator. However, this series
circuit is not suitable for a piezoresistive transducing nanoresonator. For example,
a DC voltage applied to the NEMS induces an unbalance of the gauge bridge and
thus an output current, and the series capacitance of the conventional RLC model
does not model this static behaviour. A more accurate model in this case is shown
in Figure 3-15, where the capacitance is connected to ground. In this configuration,
the impedance of the nanoresonator is expressed as a function of the equivalent
capacitance, resistance and inductance Cq, Roq and L, :

iout 1/Req
YnEms = Vac =

(2] 3-19

L
1+ R—eqja) + Lo Coq (jw)?
eq

Figure 3-16 compares Yygys With classic RCL series circuit admittance: Yg (.
Figure 3-16 (a) is the frequency response of the admittance that shows Yygus
behaves like second order low-pass filter, where the static gain |Yyzus(0)| = Rz
corresponds to the unbalance of the bias voltage, whereas Yz, - does not have a static
gain |Yz.c(0)| = 0. Figure 3-16 (b) is a complex representation that allows having
clearer picture of the frequential behaviour of Yy gys: At resonance, Yygus IS purely
imaginary. From Eq. 3-19 and Eq. 3-21, |Yygus(w,)| = [1/jLeq wr| = Qr/Req-
The admittance at resonance is named equivalent motional admittance Y,, =
Qr/R.q. While the equivalent resistance R, is due to the unbalance of the bias
voltage, the motional admittance represents the impedance of the nanoresonator at
resonance, and it is due to the unbalance of the bias voltage amplified by the
resonance phenomenon (Q,.).

Figure 3-15 Equivalent electrical diagram of the piezoresistive nanoresonator using current
readout.
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Figure 3-16 Comparison between a classic RLC circuit admittance Yg;. and the model
developed here Y ypus- (@) Frequency response of the admittance as a function of normalized
frequency. (b) Complex representation of the admittance: the red circle is Yg; ¢ that starts
and ends at |Y g, | =0 for @ = (0, ) and which is real for @ = w,.. The blue circle is ¥ ygus
that starts by real |Yygus| = R;ql for w = 0, has an imaginary impedance |Y ygus| = Q,-/

R, for w = w, and ends by |Y ygys| = 0 for w = o.

From the electromechanical modelling of the nanoresonator (Figure 2-10)

6_R _ n/krf [V_l]
Vac jw jw\?
. Vp
lout = R_6R (4]
out

3-20

where 7 is the product of actuation gain 1, and sensing gain ng, and k, is the
flexural stiffness of the nanoresonator. Then, the RLC equivalent parameters can

be identified with Eq. 3-20 from Eqg. 3-19:

( krfRout

Ryy = —/—— [Q

krfRout Req
< = = H 3-21
“ T]warQr wrQr [ ]
%
Ceq — n er — Qr [F]

\ krfRoutwr Reqwr

In conclusion, the nanoresonator can be considered as an equivalent impedance
Znems = 1/Ynems. In addition, current readout allows avoiding filtering effect of
Eg. 3-17 due to the voltage reading performed in parallel on the parasitic

capacitor C;,.
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The current readout is represented in Figure 3-17 where the actuation voltage V.

is transformed to output voltage V,,,; through the impedance ratio between Zygys
and Z; :
f

V, Z
o — 7 Yyems [A.U.] 3-22
VAC ZNEMS

Because the filtering effect is avoided, the parasitic capacitance C, is not
represented on the next representation of electronics readout.

Zs

out
YnEms > . \
Eem /
+
VAC Vout

iy

—

Figure 3-17 Electrical diagram of a current readout. The nanoresonator current produced
by the input voltage V4 is injected to the input of the TIA. The feedback impedance of the
TIA transforms the input current to an output voltage V ;.
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3.2.2 Oscillator architecture

Nanoresonator Phase shifter Amplifier

YNEms - > \
lout /
VAC Vout

Figure 3-18 The oscillator architecture consists of three parts: the nanoresonator of
impedance Zygys, the phase shifter implemented by a TIA and the amplifier realised by a
saturation stage.

This subsection describes the implementation of an amplification stage as well as a
phase shift stage in order to satisfy the oscillation conditions of the system. As a
reminder, the Barkausen conditions are met when the total gain of the closed loop
is |[H¢c| = 1 and the phase shift between the input and output of the oscillator is
Arg(H¢p) = 360°. Figure 3-18 represents the architecture of the oscillator, which
consists of a nanoresonator (i,,:/Vac = Ynems), @ phase shifter (the TIA) and an
amplification stage (G,,;). Because the nanoresonator operates at resonance, the
current i,,,; is shifted with respect to the drive voltage V,. by -90° and amplified
by the inverse of the motional admittance Y,,. The phase shift stage inverts the
output voltage V,,; with respect to the nanoresonator current i,,;, which induces
an initial phase shift of -180°. The feedback impedance is a parallel RC Z; =
R¢//Cs where the cut-off frequency is well below the working angular frequency
wy » 1//R; C;. Thus, the impedance Z; behaves as a low-pass filter to add the
missing phase shift of -90°. Finally, the saturation stage satisfies |H.,| = 1 with
Gsat > Rm Cr w,. The saturation stage consists in using the non-linear regime
(saturation) of the components, in practice the gain G,; is fixed by the supply of
these components.

Stage Nanoresonator Phase shifter Amplifier
i |4 v
OUtpUt/lnpUt O_Ut == YNEMS ,Out = — f i = Gsat
VAC Lout Vout
. -1
Gain(wcy) Y, (Crar) Gsat
o(wcr) -90° —180° —90° 0°

Table 11 Summary of the operation of each stage when the oscillation frequency is equal to
the resonance frequency of the nanoresonator w¢;, = w,..
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Figure 3-19 Block diagram of the oscillator completed with the different noise sources.

As explained in Section 2.4, the main limitation on the frequency stability of a short-
term oscillator comes from the noise of the amplifier. It is the case here, as the noise
of the Transimpedance Amplifier (TIA) is not negligible compared to that of the
nanoresonator. Besides, the noise introduced by the saturation stage (amplifier) is
negligible compared to the output voltage V,,,; of the TIA, so its induced phase
noise is negligible. The block diagram in Figure 3-19 is equivalent to the oscillator
architecture showing the considered noise sources: the thermomechanical noise of
the nanoresonator S, can be modeled as a noise source on the actuation voltage
V4. In addition, the output current i,,; of the nanoresonator suffers from several
sources of current noise S;. The first one is the gauge-intrinsic Johnson noise S, ; =
4kgT /R,y eXpressed as output current noise. Then the TIA input current noise
Stia1, Which is in practice chosen negligible compared to the output current noise
of the nanoresonator. The Johnson noise of the feedback resistor R, which is in
practice neglected because Ry >> R,,,;. Finally, the referenced voltage noise of the
TIA, which is the limiting noise added by the TIA. It is expressed as a voltage noise
at the input of the phase shifter Sy, but must be integrated into the system with
the TIA transfer function Ty (w,)~C, /C; in order to be expressed as a noise source
on the TIA output. The phase noise induced by these additive noises is expressed
on the V,. node of the oscillator using these transfer functions at
resonance Yyeys(wy), Zs(w,) Tr(w,) and using Ggqe = Ry Cr ;-

( o - Spry [rad?®
¢ Tz /2 | Hz
) o S;1Ym? [rad? 3.23
/¢ vZ/2 | Hz
S _ STIA,VchwTYrr_Lllz rad?
A VZ./2 Hz

Consequence of the Barkhausen phase condition is that any perturbation phase A8
in the loop is directly compensated by a phase variation A@ in the resonator causing
a variation in the frequency of the oscillator output signal. Considering wg the
frequency of the fluctuation, if these fluctuations are faster than the response time
of the nanoresonator they are filtered. Thus the power spectral density of these
phase fluctuations S, are equal to the power spectral density of the phase of the
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oscillator signal S,,. If the fluctuations are slower than the response time of the
nanoresonator (ws < w,/2Q,), the nanoresonator corrects them by inducing a

2
frequency variation of the oscillator signal. The consequence is S, = Sy (2%) %

Both regimes are represented in the Leeson formula [94]:

S, =S 1+(wr)21
L 20,) w?

The consequence of the Leeson formula is illustrated in Figure 3-20. The power
spectral density of the oscillator signal frequency S, = S(,,a)s2 is calculated from the
nanoresonator’s mechanical noise, the detection noise S, = (Sbw + S,,(p)a)f and
the electronics noise, especially from the input voltage noise source of the TIA
Stiaw = ST,A,(pwf. The noise spectral density shows the impact of phase noise is
amplified after the cut off frequency w,/2Q,. This is a disadvantage of the
oscillator architecture but is not problematic here because the operation bandwidth
of the sensor is lower than the cut-off frequency. Figure 3-20 represents the noise
spectral density of the oscillator signal frequency for the specific accelerometer
designed in section 3.1.4. For this accelerometer architecture, the accelerometer
resolution is dominated by Johnson noise (main contributor of S,. ,,). By choosing
a low-noise transimpedance amplifier (/Sz;4y = 4 nV /V/Hz), the detection limit
imposed by the electronics overcomes the detection limit imposed by the
nanoresonator if C;, > 5pF.
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Hz
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Figure 3-20 Frequency spectrum of the dominant frequency noises of the oscillator, in terms
of power spectral density of frequency fluctuations. The output noises of the nanoresonator
(Johnson and voltage noise of the TIA) have a corner frequency characteristic of the Leeson
formula.
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3.2.3 Feedthrough correction

[ 1
Cye iy
Leq Req
Vac —A\N\NN\—>-
iOut‘H-I

Figure 3-21 Equivalent electrical diagram of the piezoresistive nanoresonator using current
readout. Because of the electrostatic actuation, the feedthrough capacitance Cy, between
drive and sense induces a feedthrought current is,.

As explained in section 2.5, the electrostatic actuation causes a feedthrough current
to flow from the actuation to the output of the nanoresonator. This current is added
to the useful current and degrades the output signal measurement. Figure 3-21
represents the equivalent circuit of nanoresonator including a feedthrough
capacitance Cr, to model this effect. Due to the actuation voltage V,, the output

current is the sum of the useful current i,,, and the background current is.. As

shown in Figure 2-21, the SBR impacts the measurement. The feedthrough
modelling aims at estimating the degradation due to the expected feedthrough
capacitances and implementing a correction stage on the oscillator to suppress the
background signal.

The admittance of the equivalent nanoresonator model including the feedthrough
capacitance is

1/R . _
Ynems,fe = T = + jCrrw [Q o 3.95
1+ R—equ + LegCoq(jw)?
eq

Besides, the closed-loop transfer function of the oscillator can be expressed as a
function of the open loop transfer function Hy;, = Yygums, e ZfGsar @S

HOL
1-— HOL

HCL = [A U] 3'26
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Figure 3-22 Frequency response of the close-loop transfer function as a function of
normalized frequency. Different values of feedthrough capacitance are considered, the
smallest from the electrostatic actuation design, the largest considering a worst case where
silicon design, socket and bonding add capacitances.

Figure 3-22 shows the close-loop transfer function of the oscillator. The black curve
considers H.; without feedthrough capacitance. The increasing feedthrough
capacitance doesn’t affect the phase at resonance Arg[H.;(w,)] = 0°. However,
the Signal to Background Ratio (SBR) is deteriorated by the high feedthrough
capacitance. With a self-oscillator, the oscillation condition cannot be met with a
degraded SBR.

In order to avoid the SBR degradation due to the feedthrough capacitance, a
correction stage must be implemented. The objective an equivalent feedthrough
current of opposite sign on the output of the nanoresonator. Figure 3-23 shows the
correction stage architecture. An inverting amplifier with correction capacitance
Cr. are connected in parallel to the nanoresonator. The actuation voltage induces a
current from the nanoresonator i, + if, and a current from the correction stage
Irc.. The advantage of this architecture is to compensate feedthrough current
independently of the frequency of operation, as irs = w.CrVye and ip, =
—w,CrVyc. The feedthrough capacitance must match perfectly Cre = Cy. to fully
correct the feedthrough current in terms of amplitude and phase. However, the
amplifier might filter the signal due to the high working frequency (>10 MHz),
which is equivalent to a reduction of the feedthrough capacitance. In any case, as
long as the SBR allows achieving the oscillation conditions, the amplitude
mismatch is acceptable. It is essential to control precisely the phase shift Agg,
induced on the feedthrough current because it affects the phase condition

(Arg[Hcp (wr)])-

83



Nanoresonator Phase shifter Amplifier
i Cfc -Zf i

Figure 3-23 The oscillator architecture is completed by a correction stage in parallel to the
nanoresonator admittance. The correction stage is composed of an inverting amplifier and
a correction capacitance.
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3.2.4 Implementation of the oscillator

Vac Vbc Vact  Vbias Vout
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>
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Figure 3-24 Schematic of the global oscillator architecture. Switches and connectors are
included on the design to test the operation of the different stages.

This last subsection presents the implementation of the oscillator architecture. In
order to validate the operation of the different stages, the architecture must allow
measuring the different functional blocks separately.

Figure 3-24 presents the global architecture of the oscillator, which allows
validating the main function of the oscillator in open loop. The current readout can
be validated by directly actuating the nanoresonator, with V,.; = V¢ + Vp and
Viias,» and reading the Phase shifter output on V... The actuation stage can be tested
by driving the nanoresonator through V,. and V. Likewise, the correction stage
can be connected or not. After setting an operation point, the feedback path can be
closed in order to allow self-oscillation, and the output signal is measured on the
V4c node.

100MQ 1000 1.4k
AAAY H—V\
i+ ifc | 1nF z Vour
A
[ | | 3
L00pF 1 500

5v 500 LMH6703MA
100MQ ADA4817

Figure 3-25 Electronic schematics of the Phase shifter composed of the transimpedance
amplifier (ADA4817) and a non-inverting amplifier (LMH6703MA).
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Figure 3-25 presents the electronic schematics of the Phase shifter. The stage aims
at transforming an input current to an output voltage while adding a -270° phase
shift at resonance. This stage is composed of two blocks: The first one is a TIA
which converts the input current (with i, = iy, + if;) to output voltage. The
feedback of the TIA has a gain and a phase shift close to the operation frequency
|Z;(15MHz)| = 3600 and Ap = —90.23° due to a 500 Hz cut-off frequency. A
low-noise (/Syr1a = 4nV/VHz and /S, ;4 = 2.5 fA/V/Hz) and large bandwidth
(> 100 MHz) amplifier is chosen for the TIA. The next non-inverting amplifier has
a gain of 15 due to its feedback resistance. This is also a large bandwidth amplifier
(> 100 MHZz). Then, the impedance of the Phase shifter is

Vour 15R,

i +i.  1+jCRrw 3-21

In practice, passive components must be integrated on the electronics. 500
resistances are plugged to the amplifier outputs to adapt their impedances to the
next blocks. A 100M(Q resistance is plugged to the “+” input of the TIA in order to
compensate the high feedback resistance (Rf). A 100pF capacitance is connected
between the nanoresonator and the “—"" input of the TIA in order to filter the DC
offset due to unbalanced gauges. A high pass filter (1nF /501) is connected to the
non-inverting amplifier in order to filter the DC offset on the TIA output. The
supply voltage of the amplifier is also clean by a capacitance.

500 7500
500 7500 H—AAN
5V
4|8
nF 1nF = .
n —N\WN—
| , 3
R NI —VW\—] * 500
v I - 50Q Sve
o . ;;7031“ 500 LMH6703MA
500
1000 1000
InF
| F—1—vW\
400
400 400

LMH6703MA
LMH6703MA

Figure 3-26 Electronic schematics of the saturation stage, composed of a non-inverting
amplifier, one inverting amplifier and an adjustable non-inverting amplifier.
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Figure 3-26 presents the schematic of the saturation stage. The operating frequency
w, presents large shifts during the accelerometer’s operation, spanning several
MHz. In practice, the gain is adjusted superior to the Barkausen condition G, >
RinCr @y max, With @y mq, the maximum expected frequency, in order to amplify
the signal until the saturation of the amplifier. The last non-inverting amplifier is
adjustable in order to set the desired V,. actuation. The two first non-inverting
amplifiers have a gain of 16, the inverting amplifier has a gain of -35 and the
adjustable non-inverting amplifier has a gain of 2(1 — x) where 0 < x < 1 is set
by a 50Q-trimmer resistance. Because the high bandwidth of the amplifier
LMH6703MA, the saturation stage does not induce a phase shift at the operation
frequency and its total gain is

VA Cc

=17920(1 — x) [A.U.] 3-28

out

Figure 3-27 (a) presents how V. is used to actuate the nanoresonator thanks to an
AC+DC actuation. The previous saturation stage allows tuning the AC component
of the drive voltage, in order to set the desired amplitude. Then, the actuation stage
aims at adding a DC offset. The actuation amplitude is

Vact = —Vac + Vpe) [V] 3-29

Figure 3-27 (b) presents the background compensation circuit. Because the
feedthrough capacitance Cy, is not known beforehand, a large value is used for the
correction capacitance Cr.. Then, the division of V,. on the input of the non-
inverting amplifier allows tuning the correction current through a trimmer
resistance x as

ire = [j2(1 = x)Crew]Vye [A] 3-30

50Q 50Q

(b)

50Q

500 LMH6703MA 1k LMH6703MA

Vpc

Figure 3-27 Electronic schematics of (a) the actuation stage composed of an inverting
amplifier and (b) the correction stage composed of a non-inverting amplifier with an
adjustable gain.
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4 Experimental characterization

This chapter presents the characterization results of nano-beam resonant
accelerometers. The objective is to prove the concept of this type of accelerometer,
measure its performance and identify issues in this first generation of devices. To
this end, the characterisation chapter focuses on measurements of the piezoresistive
nanoresonators acting of the sensing element of the accelerometer. These
nanoresonators are tested to validate their piezoresistive transduction independently
of the accelerometer, their use as force sensor and their integration with their
readout electronics. In order to be consistent between each characterisation step, the
nanoresonators are tested on the same measurement set-up and with the same
measuring instrumentation.

The measurement setup is shown in Figure 4-1. The main challenge in the
development of the set-up was the minimization of acoustic noise and vibrations
that interfere with the measurements of the accelerometers, as well as to have the
most stable environment possible in terms of temperature. The packaged chips
containing the nanoresonators are wire-bonded to LCC48 ceramic sockets and then
integrated into a dedicated support on a PCB, which can be a test board or the
electronic oscillator board. The PCBs are mounted in a closed metal box that
provides a stable thermal environment, avoids acoustic wave interference and
provides electromagnetic shielding. The housing is attached to a rotating table to
adjust the applied acceleration by changing its orientation. The rotating table is
attached to a stabilising table that filters out low frequency disturbances. Then, the
PCB is connected to the measuring instrument by short SMA cables that minimise
parasitic capacitances. However, these cables transmit high frequency acoustic
harmonics from the external environment to the PCB. Therefore, these cables are
attached to a clamp that acts as a low-pass filter.

Measuring
instrument
S
Packaged

 accelerometer

Figure 4-1 Measurement set-up of nano-beam resonant accelerometers.
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The measurements of the piezoresistive nanoresonator are performed by an FPGA-
based lock-in amplifier (LIA) which allows implementing a large number of
functionalities. To begin with, this measuring instrument is used to perform
different detection methods such as homodyne or heterodyne detection.
Furthermore, this tool allows implementing a Phase-Locked Loop (PLL) to
continuously drive the nanoresonator at its resonance frequency under acceleration.
Finally, some extension tools can be used to realize a current reading similar to the
one used in the oscillator electronics.

In general, a LIA measures a signal by demodulating it with a reference oscillator.
This principle can be used for the homodyne detection of nanoresonators (Figure
4-2 (a)). A source oscillator generates the electrostatic drive V,-(w,) at one output.
Another output generates a static voltage +V, to bias the gauges. In this
configuration, the nanoresonator’s output voltage is therefore modulated at the
source oscillator frequency V,,:(w,) by the motion of the resonant beam, and the
measured at the input of the LIA. The demodulation of the nanoresonator voltage
using the source oscillator is shown in Figure 4-2 (b). The objective is to measure
the phase ¢, and the amplitude |V,,.| of the nanoresonator’s voltage. Indeed, the
lock-in detection is performed by mixing the voltage V,,: = |Vouelcos(wgt + @,),
with in-phase (cosw,t) and out-of-phase (sinw,t) components of the source
oscillator. Thus, the real part Vy and the imaginary part V,, after demodulation are

{VX = |Voutl €05 g + |[Voyel| cosQwgt + @g) [V] 4-1
Vy = WVouel sin @q + [Vouel sinQwgt + @) [V]

A low-Pass Filter (LPF) rejects the unwanted signals (2w,). Only the real and
imaginary part of the phasor are retained, respectively X = |V,,;|cos@ and Y =
|V,.t| sin @. These static terms are sampled and transferred to the workstation in
order to calculate the magnitude and phase of the signal based on its real and
imaginary parts: |V,,¢|?> = X? + Y2 and ¢, = arctan (Y/X).

LPF

= Vour (wq) ’—|l|7 Vac(wg) [

Nanoresonator

(b)

Figure 4-2 Homodyne detection of a piezoresistive resonator implemented by a Lock In
Amplifier. (a) Measurement set-up. (b) Demodulation principle.
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4.1 Isolated nanoresonators

Figure 4-3 Scanning electron microscope (SEM) images of the nanoresonator. In blue, the
micrometric layer, in red, the nanometric layer. (a) The nanoresonators are fixed to an
unreleased proof mass equivalent to a clamped anchor. (b) Zoom on the nanoresonator
where gauges, beam-end and electrode are clamped.

In this first section, the nanoresonators are attached to an unreleased proof mass in
order to clamp each sensing element anchor. In practice, they are then tested as a
pre-stressed doubly-clamped beams. Figure 4-3 shows a SEM of the 20 MHz
nanoresonators: they are defined on a 250 nm thick layer, with a length and width
of 10 um and 250 nm respectively. The length and width of the gauges are 2 um
and 250 nm respectively. The length and width of the beam-end are 1.5 pum and 250
nm respectively.

A previous study of the M&NEMS manufacturing process quantified the standard
deviation of the nanowire geometries. It was found that the standard deviation of
the 250nm-nanowire widths, on 72 samples, follows a normal distribution. The
error on the nanowire width can then be expressed as 3o: Aw,. = £13.5 nm. In
addition, a study of 306 samples shows that the standard deviation of the nanowire
thickness does not follow a normal distribution. Therefore, the error on the
thickness of the nanowires is expressed as 1o: At, = +£10 nm. Moreover, a pre-
stress induced by the release of the nanoscale patterns is expected to be in the order
of 100 MPa.

In this section, the transfer function of the nanoresonator is studied to validate the
model of the piezoresistive transduction. Then a noise analysis is performed to
study the frequency stability of the system. Finally, a measurement of the non-
linearities is made to optimize the performance of the nanoresonators. These
measurements serve as a reference for the intrinsic performance limits of the
nanoresonator.
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As presented in section 2.5, the homodyne detection with voltage readout suffers
from two parasitic effects. First, the high-frequency output voltage of the
nanoresonator is filtered by parasitic capacitances on the load. Second, the direct
current caused by the electrostatic actuation induces a background signal on the
output voltage. In contrast, heterodyne detection helps overcoming the
impossibility of isolating the motional signal from the background signal and to
avoid high frequency filtering. This method, used commonly for the measurement
of piezoresistive nanoresonators [44], [89], can be implemented with the LIA.

The heterodyne measurement is presented on Figure 4-4. Here, two reference
oscillators are used on the LIA: one at the actuation angular frequency w,, the other
at the fixed "down-mixed" angular frequency Aw. These reference signals are
mixed to generate the gauge bias signal at the frequency w, + Aw. The reference
signal w, is used to drive the nanoresonator. Due to the modulation between
Vac (wg) and Vy, (w, + Aw), the output voltage of the nanoresonator is composed
of two harmonics : one at Aw, the other one at 2w, + Aw. The reference signal Aw
is used to demodulate the harmonic Aw of the output voltage, which is proportional
to the motion of the nanoresonator, as in the case of homodyne detection. The same
principle of Figure 4-2 is used to demodulate the Aw harmonic of V,,,,;.

_________________________________________________________

reference oscillators ‘

/N =

X
LPF
Y
LIA Voue (Aw) Nanoresonator
__________________________ J L |

Figure 4-4 Heterodyne measurement implemented by Lock-In Amplifier for piezoresistive
nanoresonators. Here the nanogauges are differentially polarized by a signal at angular
frequency (w, + Aw). The nanoresonator is actuated at w,. The mixing of the nanogauge
resistance variation and polarization creates the nanoresonator output voltage with angular
frequency components at 2w, + Aw and Aw. By mixing the nanoresonator output voltage
with the reference oscillator at angular frequency Aw, Vx and Vy are measured.
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4.1.1 Frequency response

Here, the frequency response of the nanoresonator is characterized to study its
resonance frequency and the amplitude at resonance. The measurement of the
amplitude at resonance allows validating the transduction model of the
nanoresonator. The measurement of the resonance frequency allows validating the
modal analysis of a pre-stressed doubly-clamped beam, and then quantify the pre-
stress due to the fabrication process. As a reminder (Chapter 2)

{ Wy (O'PS) = wOr\/l + 0ps/Opuck [rad] 4-2

Vout(a)r(aPS)) = VACUAHr(wr(GPs))US V]

In order to measure the transfer function of the nanoresonator, the detection method
of Figure 4-4 is implemented by sweeping w, around the resonance frequency.
Figure 4-5 plots the measured (blue) and modelled (red) transfer function. As
expected, the measured resonance frequency is not the natural unstressed frequency
of a doubly clamped beam. The standard deviation of the fabrication process cannot
explain this frequency mismatch which would correspond to w, = 190 nm. In
order to match the experimental resonance frequency a compressive pre-stress of
190 MPa is applied on the analytical modelling. Moreover, the experimental
amplitude at resonance is lower than the value predicted analytically by a
factor ~2.5. The mismatch is probably due to losses on the transduction gain as
explained on Table 12 and Table 15. Table 11 compares the analytical modelling,
FEM (COMSOL) simulations and experimental results.

Analytical model FEM simulation Experimental
w,.(ops)/2m 14.74+0.17 MHz 13.8 MHz 14.8 MHz
Vout (@, (aps)) 4.4440.5 pVv — 1.9 pv

Table 11 Comparison of the resonance properties. The analytical model supposes an actuation
Vic =2.5mV, Vpe=3.5V and Vy;,s = 1.25 V, the measured quality factor Q,, = 8700 is
fitted from phase measurement, the standard deviation of the nanometric layer and 190MPa
of pre-stress (for FEM simulation too).
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Figure 4-5 Measurement of the nanoresonator’s transfer function. (a) Magnitude
measurement and (b) phase measurement. The actuation is: V¢ = 2.5mV Vp =3.5V
and Vp;.s = 1.25 V. The measured quality factor is Q,. = 8700.
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4.1.2 Noise analysis
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Figure 4-6 Representation of the nanoresonator’s output voltage. (a) Frequency domain
representation. (b) Complex representation.

This section aims at measuring the stability of nanoresonator frequency
measurement. Here, the nanoresonator is not coupled to the proof mass. As
explained in section 2.4, the stability measurement is usually limited by additive
noise in short timescales and by intrinsic frequency drifts in long timescales. In
order to compare this noise analysis with the one of the whole accelerometer
(section 4.2.2), the short-term stability must be studied up to the accelerometer
bandwidth (>1 kHz). Closed-loop measurements, for instance with a PLL or a self-
oscillator, suffer from trade-offs between resolution and speed [95], so the most
effective way to perform this noise analysis is an open-loop frequency
measurement. In open loop, the maximum speed are fixed by the nanoresonator
response time, superior to the target bandwidth, and the measurement’s integration
time. In practice, the nanoresonator is driven at its resonance angular frequency
(wg, = w,) and the open loop measurement is performed thanks to the method
presented in Figure 4-4.

Figure 4-6 (a) shows a representation of the spectrum of the nanoresonator output
voltage at resonance in the frequency domain. The signal contains additive white
noise Sy distributed in frequency. Figure 4-6 (b) is the complex representation of
the nanoresonator output voltage where the amplitude |V,,;| and the phase ¢z with
regards to an ideal reference signal. As detailed on the operation of the lock-in
detection, both parameters can be processed from the real part (X) and imaginary
part (Y) of the signal. Thus, in order to measure resonance frequency fluctuations
Aw,, the phase fluctuations A¢,. are computed as a function of X and Y:

Y
A@, = arctan (§> [rad] 4-3

Because the resonance properties of Figure 2-6, the frequency fluctuations Aw, can
be processed from the phase fluctuations Ag;..
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Wy

20;

Aw, = [ ]A(pr [rad] 4-4

During the measurements, the low-pass filtering of X and Y results in an integration
of the nanoresonator output voltage (magnitude and phase) on specific bandwidth,
which is represented in blue on Figure 4-6.

In other words, the open-loop measurement is based on the measurement over time
of the output voltage of the nanoresonator operated close to resonance. The
operation close to the resonance ensures a known and linear phase-frequency
relationship [78], [95]. Because the calculation of frequency fluctuations is deduced
from this linear relationship, the open-loop measurement cannot measure frequency
fluctuations that would fall outside this linear range. This is why open-loop
measurements are performed over short times (100 s) in order to study short-term
stability. Longer measurements are carried out in section 4.2.4 in order to study the
long-term stability.

When acquiring the signal at resonance, the phase as well as the amplitude of the
signal are computed through X and Y measurements. In section 2.4.1 the
relationship between additive noises and phase noise is explained. The noise
analysis aims at identifying phase noise coming from additive noise and other noise
sources by representing amplitude noise and phase noise from the measurement.
There are several representations that can be used to plot the noise in a signal. FFT-
based signal analysis allows the power spectral density (PSD) of amplitude and
phase signals to be determined. Because the nanoresonator operates in resonance,
the PSD of the phase signal has an equivalence in terms of resonance frequency.
The expected noise sources are characterized on the PSD by constant plateaus that
indicate white noise and 1/f slopes that indicate flicker noise.

Noise analysis begins by the measurement of the additive noises S, on the output
voltage V,,;. The measurement conditions are a 1 kHz bandwidth and 10 kHz of
sampling frequency. The down-mixed frequency is Af = 161753 Hz. The
expected noises are the Johnson noise, thermomechanical noise of the
nanoresonator, and readout electronics noise. The signal is proportional to V. and
Vyc (for a fixed Vpc). The thermomechanical noise Sy, y can be modelled by an
actuation force on the resonant beam. Projected to the output signal V,,;, the
thermomechanical noise Sy, is proportional to Vj,;,. In the limited operation range
of V45, the influence of temperature due to Joule heating is neglected. In other
words, the Johnson noise imposes the SNR& Vp;4sVac-
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Figure 4-7 shows the measured PSD of V,,,;, representative of noise originating
from additive noise sources. First, the LIA performs the open-loop measurement
using a 50 Ohms plug at its input, so it demodulates the signal consisting only of its
intrinsic electronic noise S;;,y. Then, the input of the LIA is connected to the
output of the nanoresonator and the outputs of the LIA are connected to the gauges
with bias voltage of 0 Volt. In this configuration, the LIA demodulates the signal
composed of the quadratic sum of the electronic noise Sy, and the Johnson noise
S; v of the gauges. Finally, the bias voltage is turned on, which allows to transduce
the motion of the resonant beam coming from its thermomechanical noise. Thus,
the L1A demodulates, in addition to the other noise sources, the thermomechanical
noise of the resonant beam reported as additive noise on the output voltage S, .

Table 12 allows comparing the measured additive noise with the analytical
modelling. The modelled thermomechanical noise S,,., is larger than the
experimental one, but Figure 4-5 shows a similar mismatch on the output signal that
can probably be explained by losses on the sensing gain ng

Analytical model Experimental

N - 1nV/VHz
Sy 4.4nV NHz 3.97 nV /VHz
JSorv 3.84 nV /NHz < 1nV/VHz

Table 12 Comparison of the measured white noise with analytical modelling.
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Figure 4-7 Power spectral density (PSD) of the nanoresonator output voltage.
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Figure 4-8 (a) Power spectral density of the additive noise for different bias voltage values.
(a-inset) Nanoresonator magnitude for different bias voltages. (b) Power spectral density of
resonance frequency fluctutions for different bias voltages. The actuation set is V¢ =
2.5mVandVy,=3.5V.

In a first step, the nanoresonator is driven. The AC actuation is V. = 2.5 mV/, the
DC actuation is Vp = 3.5V and bias voltage V;, IS swept. Figure 4-8 (a-inset)
shows that the magnitude increases with the bias actuation and Figure 4-8 (a) shows
that additive white noise is not affected by the bias actuation. Thus, the
thermomechanical noise, which should be proportional to V,;,, is negligible.
However, the white noise level has increased compared to the expected value
measured in Figure 4-7 (from 5 nV/v/Hz to 8 nV/7/Hz), which could be explained
by Joule heating. The quality factor Q,, = 8700 is not affected in this polarisation
range. However, the resonance frequency decreases with increasing bias voltage,
again probably due to the temperature increase caused by heat dissipation from the
nanogauges to the resonant beam. The resonant element is then eager to expand but
its double anchoring imposes a fixed condition that causes a compressive axial
stress (03,;45), hence a frequency down.

For each bias voltage, the resonance frequency fluctuations Aw,. /27 are deduced
from phase fluctuations A¢,.. The PSD of Aw, is then plotted in Figure 4-8 (b). The
PSD curves show a 1/f behaviour at low frequency (<10 Hz) which is not affected
by the bias polarisation. A constant plateau that decreases with the improvement of
the SNR, probably due to additive noises. Table 13 presents the consistency of the

white noise of Aw, (S,,) as a function of the measurement SNR (Vout/\/S—V).

Vbias Vout \/S—V \/S_w / 2m

1.15V 1.5uV 8nV/VHz 456 Hz/VHz
1.2V 1.65 pV 8nV/VHz 413 Hz/VHz
1.25V 1.75 pv 8nV/VHz 3.88Hz/VHz

Table 13 Consistence with the noise of the resonance frequency fluctuations S, and the SNR =
V put/+/ Sy deduced from Eqg. 2-37.
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Figure 4-9 (a) Power spectral density of the additive noise for different AC actuations. (a-
inste) Nanoresonator magnitude for different AC actuations. (b) Power spectral density of
resonance frequency fluctuations for different AC actuations.

In a second step, the AC actuation amplitude V. is swept. The bias polarisation is
Vpias = 1.25 V and the DC actuation is V. = 3.5 V. Figure 4-9 (a-inset) shows the
nanoresonator magnitude increase with the AC actuation and the Figure 4-9 (a)
shows that the additive white noise remains constant.

For each amplitude, we measured the corresponding relative frequency fluctuations.
The PSD of these signals is then plotted in Figure 4-9 (b). The PSD curves show a
1/f behaviour at low frequency (<10 Hz) which is not affected by the AC actuation,
and a constant plateau, representative of the white noise, which decreases with the
improvement of the SNR as expected.

Table 14 compares the additive white noise Sy, the magnitude at resonance V,,;
and the white noise plateau S,,. The experimental additive white noise Sy, is higher

than the analytical model. Because phase is proportional to V,,./+/Sy, the
experimental white noise plateau S, is higher than its analytical model.

Analytical model Experimental
JSv 5.95nV /NHz 8 nV /VHz
Vout 1.9 ul = 1.9V
JSo/2m 2.6 Hz/NHz 3.5 Hz/VHz

Table 14. Comparison between experimental and analytical model of the SNR and S, /2.
The experimental additive noise is higher than the analytical model but the Sy is coherent with
this mismatch. The open-loop frequency measurement is performed with V4, = 2.5 mV,
Vyias = 1.25V and V. = 3.5 V. * For the model, the measured output voltage is used for
calculation.
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The PSD highlights the white noise S,, of the resonance frequency fluctuations
measurements at short timescales (>10 Hz). However, in the relatively short term
(<10 Hz), the 1/f noise and long term drifts are difficult to discern. In order to
provide complementary measurements, the resonance frequency fluctuations
Aw, /21 can be represented in terms of Allan deviation from the same set of data.
The Allan deviation is a well-known statistical tool to characterise the frequency
stability of oscillators. It was developed to compensate for the weaknesses of the
standard deviation, which does not converge for some noise sources [96]. The Allan
deviation o (7) is the root mean square of the frequency difference between two

successive frequency samples:

M-1
1 - _
O-f(T) = Z(M _ 1) i§=1 (fl+1 - fl)z [A U] 4-5

where M is the number of samples, T the integration time and f,.the averaged
relative frequency. A slope 7=1/2 on the Allan variance, shown in Figure 4-10,
corresponds to the plateau of white noise on the PSD. Therefore, by increasing the
AC actuation or the bias of the polarisation, the offset of the slope 7~/ decreases
for short integration times. The slope of 1/f noise identified on the PSD corresponds
to a plateau on the Allan variance [97]. This representation allows identifying the
bias instability of the measurement. On one hand, the V,. sweep does not affect the
noise in 1/f so, improving the SNR by increasing V. induces better white noise S,
(improving the position of the slope 7~/2) but does not improve the bias instability
(Allan deviation plateau) of the measurement. This behaviour is consistent with
resonance frequency fluctuations, as presented in section 2.4. On the other hand,
the V4 Sweep affects the white and 1/f noises: increasing Vy,;,s induces better
white noise S, (by improving the SNR, i.e. the position of the slope T=%/2) but
somewhat degrades the bias instability (Allan deviation plateau) of the
measurement. This effect could be induced by the heating of the nanoresonator at
large bias voltages, which changes its resonance frequency and quality factor.

[ [ [ [ [ [

» — Vbias = 1.25V 2 — Vac =2.5mV
s —— Vhias = 1.2V = ———Vac = 2.25mV
b —— Vbias = 1.15V = —— Vac =2mV
3 1E-5 — i *5 1E-5 = -
S N\ 2/ O\
(&] [
[ D
(5] >
= o
L 1E-6 L 1E-6
LL

1E-4 0.001 0.01 0.1 1 1E-4 0.001 0.01 0.1 1

(a) 7(s) (b) 7(s)

Figure 4-10 Allan deviation of the open-loop frequency measurement (a) for different bias
voltages; (b) for different AC actuation voltages.
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4.1.3 Non linearity

Considering only the additive noise sources (Johnson + thermomechanical +
electrical) imposed by the design, an efficient way to improve frequency resolution
(short-term stability) is to improve the SNR. When the thermomechanical noise
becomes larger than the Johnson noise, especially at high polarisation V};,s, the
SNR is not improved. The only way to robustly improve the SNR without
increasing the additive noise is to maximise V,. actuation. However, the AC
actuation has a maximum value V,,,, that corresponds to the critical amplitude
before nonlinearity v,

Figure 4-11 shows the magnitude response of the nanoresonator for several AC
actuation voltages. The bias voltage is V};,s = 1.25V and the DC actuation is
Vpe = 3.5 V. The critical amplitude is due to a large elongation of the beam that
induces an increase of rigidity as explained in [73]. We expected a resonance
frequency shift due to the presence of nonlinear terms in the stiffness but not of the
order of the offset observed for V,. = 7.5mV. This could be explained by
environment-induced drifts (ex. temperature) of the resonance frequency. The
formulation of Eq. 2-28 allows the critical amplitude to be modelled. In the
measurement, the amplitude of the vibration at the bifurcation point, i.e. the infinite
slope in magnitude, is almost reached. Table 15 compares the measured critical
magnitude with the analytical model.

Analytical model Characterization
Critical magnitude 9.8 uv >5.5 uv

Table 15 Comparison of the measured critical amplitude and corrected analytical modelling.
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Figure 4-11 Measurement of the nanoresonator’s transfer function as a function of AC
actuation. The bias polarization is V;,s = 1.25V and the DC actuation is Vp, = 3.5 V.
The magnitude shape appearing for V,c = 7.5mV is typical of the geometrical non-
linearity.
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4.2 Accelerometer
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Figure 4-12 Scanning electron microscope (SEM) images of the accelerometer. (a)
Nanoresonators are fixed to a proof mass. (b) Zoom on the nanoresonators. In blue the
micrometric released proof mass. In red the nanoresonators coupled to the proof mass.

In this second section, the nanoresonators are tested as clamped pre-stressed beams
used as force sensors. Here, they are attached to a micrometric released proof mass
that affects the anchoring conditions on one side of the nanoresonator. Figure 4-12
shows the design of the 20 MHz nanoresonators shown in Figure 4-3, but coupled
to an accelerometer with the following geometrical characteristics: proof mass
length: L,, =380 um, hinges length L, =51pum and position of the
nanoresonator [ = 5 um (i.e. the design presented in Figure 3-10).

A previous study of the M&NEMS fabrication process quantified the standard
deviation of the nanowire geometries and micrometric geometries. The nanowires
are subject to the above standard deviations defined in section 4.1. The 1um width
of micrometric patterns, over 153 samples, was found to follow a normal
distribution. The standard deviation on the micrometric width can then be expressed
as 30: Aw, = +75 nm. Furthermore, a study on 306 samples, shows that the
standard deviation of 20um micrometric thickness follows a normal distribution.
Therefore, the error on the micrometric thickness is expressed as 3o: At,, =
+1.5um

Here, the measurements consist in measuring the nanoresonators under acceleration
and comparing the results to the operation of the doubly-clamped nanoresonator
studied in Section 4.1. In addition, the operation of a nano-beam resonant
accelerometer features some unexpected issues that were analysed in order to solve
them.
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4.2.1 Frequency response

Here, the frequency response of the nanoresonators are studied in terms of
resonance frequency and amplitude at resonance as a function of acceleration. The
measurement of the resonance amplitude aims at validating the modelling of the
transduction of the nanoresonator. The measurement of the resonance frequency is
used to validate the modal analysis of the clamped pre-stressed beam. In contrast to
subsection 4.1, the analytical modelling allows the prediction of the resonance
properties through the previously studied pre-stress opg and the acceleration-
induced stress o,.. In order to validate the proof of concept of the accelerometer, the
resonances’ properties are measured using the detection principle of Figure 4-4 for
several applied accelerations set by the angle of the rotation table described in
Figure 4-1.

Figure 4-13 shows the measurement of the resonance properties of the coupled
nanoresonator for an acceleration from -1g to 1g. The conditions for the Og
nanoresonator are f,.(ops) = 14.25 MHz and Q,(ops) = 750. The low quality
factor indicates a degraded vacuum environment. The nanoresonators are actuated
by Vye =02V, Vpe =3.5V and V,;,s = 1.5 V. Figure 4-13 (a) shows that the
resonance frequencies depend on the applied acceleration, as expected. The
resonance frequency at Og is close to but not equal to the resonance frequency of
Figure 4-5. The mismatch is probably caused by a close but not equal a,g, another
compressive stress g;;,5 caused by a higher bias polarisation, and/or the uncertainty
on the nanoresonator dimensions as explained on Table 11.

The blue dotted-line of Figure 4-13 (b) shows the measured quality factor as a
function of the applied acceleration. If the damping coefficient b, comes only from
to squeeze film, the quality factor could be increased by the resonance frequency
Q,(0,) x w,(a,)/b,. In practice, the quality factor increases well with resonance
frequency, but the increase is not linear, which could be explained by the anchoring
conditions changing with the applied acceleration.
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Figure 4-13 Resonance properties of nanoresonator used as force sensor. (a) The transfer
functions of accelerometer for applied accelerations from -1g (red plot) to 1g (blue plot)
with steps of 0.2g. (b) Measured quality factor and magnitude as a function of resonance
frequency compared to the analytical predictions.
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The red dotted-line of Figure 4-13 (b) shows the measured output voltage as a
function of the applied acceleration. The magnitude of the nanoresonator should be
decreased by the resonance frequency V,,: % Q,(0,)/w?(c,) x 1/w,(0,)b;.
However, the magnitude of the nanoresonator increases with the resonance
frequency and presents the same nonlinearity of the quality factor. Anchoring
conditions likely have a dominant effect on both quality factor and magnitude.

The 0 g resonance frequency of the nanoresonators is mapped across the wafer,
when the accelerometers are subjected to -1g out of plane. Figure 4-14 presents a
mapping of a wafer containing 37 samples. Figure 4-14 (a) shows that 4
nanoresonators do not work while 34 do, which indicates an operating rate of over
90%. Figure 4-14 (b) shows that the distribution of Og resonance frequencies spans
from 13.5 MHz to 16.2 MHz with an average resonance frequency of 15.02 MHz
and a standard deviation of 0.67 MHz. The distribution of resonance frequencies on
the wafer could be due to a stress gradient generated by the fabrication process. The
yield on a wafer is sometimes lower than 90% due to the fact that the geometry is
not adapted to the protection of the nanoresonators, which can be destroyed by
mechanical or electrostatic shocks.
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& Number of samples
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13 MHz

Figure 4-14 Mapping of the 0g-frequency of nanoresonators coupled to the accelerometers.
The wafer consists in 37 chips that are named from 1 to 7 for the column and from A to G
for the line.
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After mapping, the wafers are cut and the individual chips are packaged and tested
under acceleration. The new measured Og frequencies of the nanoresonators
presented in Figure 4-15 are reduced by a few hundred kilohertz, which could be
due to strain relaxation during cutting.

The frequency sensitivity to axial stress (thus acceleration) is then measured for
five sensors representative of the mean results in the wafer. Figure 4-15 (a) plots
the open-loop sensitivity measurement performed on both nanoresonators coupled
to the same accelerometer (Figure 4-12). The differential measurement shows the
Og-resonance frequencies are not matched between the nanoresonators. This
mismatch is probably due to an initial proof mass rotation caused by residual shear
deformation of the proof mass anchor, which induces differential 0g-stress o, as
discussed in Figure 4-24. In first order, both sensitivities are equivalent
+1.4MHz/g. This is because for small o, the resonance frequencies are close to
~14.5 MHz, so their frequency sensitivity are equivalent. Moreover, some chips,
which are randomly distributed on the wafer, have a higher o.. For instance, one
nanoresonator can operate at 13MHz while the other operates at 16 MHz. In these
particular cases the two sensitivities are not equivalent and the differential
measurement should be less effective. The previous mapping performed in the
whole wafer allow identifying low o, accelerometers.

Figure 4-15 (b) plots the frequency as a function of applied acceleration on five
different sensors with and low o, and the design of Figure 4-12. Sensors are named
5C, 5F, 5D, 5G and 3E due to their position on the wafer. Each sensitivity is
measured under the same conditions using the measurement setup of Figure 4-1.

16.0 :
155 - ——5C
15.0 N bl 1551 —sF
N S o N'150}——5D /
L s . e T ——3E / e
= - = 45| s e
>14.0 S > ——Analytical /f' /"
O N $'14.0 &
g PN g / 54
S 135 s ~ S 135
o o~ . o //;/
L 130 : L 13.0
LL '/ '\-\ LL /
125 ——Resonator 1| "« 125
—— Resonator 2
12.0 : 12.0
-1 0 1 b -1 0 1
a . .
(@) Acceleration [g] (b) Acceleration [g]

Figure 4-15 Experimental characterization of the accelerometer. Five similar sensors are
tested on the same conditions: using a rotating table from -1g to 1g. (a) Differential
frequency sensitivities of both nanoresonators of one accelerometer. (b) Single frequency
sensitivities of the five accelerometers compared to analytical modelling.
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Value Minimum Maximum
Resonance frequency 13.62 MHz 14.2 MHz
Frequency sensitivity 1.21 MHz/g 1.39 MHz/g

Table 16 Experimental resonance frequency and frequency sensitivity of the measured
accelerometers. The minimum and maximum of their value are indicated in order to compare
them with the assumed dispersion sources.

Considering the nanoresonator geometries shown in Figure 4-3, the resonance
frequency and frequency sensitivity are calculated from an analytical modelling and
FEM (COMSOL) simulations. The initial stress is involved in the resonance
frequency and frequency sensitivity. It consists of the initial pre-stress opg, the
stress induced by the bias voltage ay,;,5, and the 0g-stress which is close to o, = 0.
Here, the initial stress of the nanoresonator is taken as ;,,;; = —190MPa in order
to match the analytical modelling.

Methods Resonance frequency Frequency sensitivity
FEM simulations 11.75 MHz 1.18 MHz/g
Analytical modelling 14.06 MHz 1.05MHz/g

Table 17 Expression of the resonance frequency and frequency sensitivity from analytical
modelling and FEM simulation. The initial stress is 6;,;; = —190MPa.

However, an initial stress does not allow to fit both the resonance frequency and the
frequency sensitivity. Here, the mismatch is discussed as a combination of pre-
stress and the standard deviation of the fabrication process. The nanoresonator
width is the only geometrical parameter that can affect both the resonance
frequency and the frequency sensitivity because it affects the in-plane bending
mode of the nanoresonator (Eq. 2-17), the frequency to stress sensitivity of the
nanoresonator (Eq. 2-19) and the rigidity of the accelerometer. The other
parameters t,,,, wy, and t,. affect the accelerometer rigidity, thus the accelerometer
sensitivity (Eq. 2-4). Table 18 presents the minimum and maximum resonance
frequency and frequency sensitivity as a function of the standard deviations of the
fabrication process presented in section 4.1 and 4.2.

Standard deviation Resonance frequency Frequency sensitivity
parameters [min, max] [min, max]
w,.(+£30) [12.21 —15.91] MHz  [1.03 — 1.33] MHz/g
tm(+30) - [1.13 — 1.23] MHz/g
wy(£+30) - [1.07 — 1.29] MHz/g
t,(+10) - [1.16 — 1.2] MHz/g

Table 18 Expression of the maximum and minimum value of the resonance frequency and
frequency sensitivity as a function of the standard deviation of the fabrication process The
initial stress is 6,;; = —190MPa
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4.2.2 Noise analysis

In this subsection, a noise analysis is performed using the heterodyne detection
scheme of Figure 4-4. The noise in terms of resonance frequency fluctuations is
deduced from the open-loop frequency measurement scheme presented in section
4.1.2, by measuring the phase fluctuation A¢,. around the resonance frequency and
deducing the resonance frequency fluctuations using the linear phase-frequency
relationship. The measurement conditions used in the next experiment are an
integration bandwidth of 10 kHz and a sampling rate of 100 kHz. In this experiment,
two different accelerometers are tested. Both are the design presented in Section
4.2, but one operates at a high pressure level while the other operates at a low
pressure level. They are named low-Q accelerometer and high-Q accelerometer
respectively.

Figure 4-16 shows noises analysis of low-Q accelerometer for different values of
AC actuation. The DC actuation and bias polarisation voltages are kept constant at
3.5V and 1.5 V respectively. Here, the coupled nanoresonator has low quality
factor Q,- = 1000. Figure 4-16 (a-inset) shows that the magnitude of |V, | depends
on the AC actuation. The PSD of |V,,;|, presented in Figure 4-16 (a), shows that
additive white noise Sy, is not affected by the AC actuation, as expected. Figure
4-16 (b) shows the PSD of resonance frequency fluctuations Aw,.. After 1 kHz, the
PSD of Aw, is consistent with the phase noise because its noise level is inversely
proportional to the SNR. However, the PSD of Aw, before 1 kHz is not consistent
with the phase noise because the noise level is not dependant of the SNR. Here,
there are two source of noise that affect the frequency fluctuation measurement
Aw,: the effect of additive noise on the frequency measurement, called phase noise,
and the effect of thermomechanical noise of the accelerometer on the resonance
frequency, called frequency noise. These effects are detailed in Figure 4-17.
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Figure 4-16 Open-loop frequency measurement of a nanoresonator coupled to a low-Q
accelerometer. The bias actuation is Vy;,s = 1.5V and the DC actuation is Vp = 3.5V. (a)
PSD of |V,,:| as a function of different AC actuation voltages. (a-inset) Magnitude of |V .|
as a function of AC actuation. (b) PSD of Aw, calculated from the phase fluctuations A¢,.
and the phase-frequency relationship. This PSD can be divided in two parts, the frequency
noise, which is the variation of resonance frequency due to thermomechanical noise of the
accelerometer, and the phase noise, due to the additive noise of the nanoresonator.
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Figure 4-17 shows how the different noise sources affect the frequency fluctuation
measurement. On one hand, Figure 4-17 (a.1) represents the PSD of the
thermomechanical noise of the accelerometer S,,,,, 5. This force spectral density is
a white noise. Sy, v is transmitted to the nanoresonator as an axial stress spectral
density through the mechanical response of the accelerometer H,,, represented in
Figure 4-17 (a.2), and the transduction gain n,. As mentioned in section 2.2, an
axial stress applied on nanoresonator induces resonance frequency shift through the
frequency sensitivity to the stress S,,. Then, the force spectral density Sy, v,
equivalent to white noise, is transduced to a resonance frequency noise Sp, «»
represented on the PSD of w, (Figure 4-17 (a.3)). This frequency noise has the
shape of the transfer function of accelerometer. In the next S,,, , is considered only
before the accelerometer resonance (<1 kHz). When the open loop measurement of
section 4.1.2 is performed, the noise of the resonance frequency w, is equivalent to
the noise on the frequency fluctuations Aw,.. On the other hand, Figure 4-17 (b.1)
represents the PSD of the additive noises S, of the nanoresonator output voltage
expressed in section 2.4.1. Figure 4-17 (b.2) represents the output voltage of the
nanoresonator close to the resonance for different AC actuations. As detailed on
Eq. 2-36, half of the additive noise is distributed as phase noise and it is inversely
proportional to |V,,.|. At resonance, the phase-frequency relationship allows
expressing the effect of additive noises on the frequency fluctuation measurement,
represented by S,, (Eq. 2-37). Figure 4-17 (b.3) represents the impact of additive
noise on the frequency fluctuations measurement as a function of the output voltage
of Figure 4-17 (b.2).

In conclusion, the output signal of the sensor is the measurement of the resonance
frequency fluctuations of the nanoresonator Aw,. The open loop frequency
measurement allows measuring the PSD of Aw,- (Figure 4-17 (c)). This PSD can be
dissociated in two parts: The noise called “frequency noise” comes from the noise
of the resonance frequency S, .,- The noise called “phase noise” comes from the
additive noise of the nanoresonator distributed as phase fluctuations and thus as an
uncertainty in the measurement of w,.. In our case, the frequency noise is dominant
in the target bandwidth (1 kHz). In the section 3.1.3, the accelerometer is designed
in order to match the noise coming from the thermomechanical noise of the
accelerometer with the additive noises of the nanoresonator. This noises equality is
performed under the assumptions of Q,, = 250 and wy,, = 1.5 kHz. However,
using Figure 4-16 (b), these accelerometer parameters are fitted to Q,, = 2 and
wom = 1 kHz. Under these experimental conditions, the measurement results fit
the analytical modelling as shown in Table 19.

Analytical modelling Experimental
VSbmw 12.9 Hz/VHz 10 Hz/vVHz

Table 19 Comparison of analytical modelling and experimental results of S, ,,. The noise of
the frequency fluctuations is expressed as white noise (Hz/v Hz) because only the noise under

“%” = 1kHz is considered.
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Figure 4-17 Comparison of the different noise sources of the frequency measurement. Left
figures (a) represent the frequency noise of the nanoresonator’s resonance coming from the
thermomechanical noise of the proof mass. Right figures (b) represent the effect of additive
noise on the frequency measurement. (c) Represents the PSD of the resonance frequency
fluctuations arising from a combination of both sources.
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The PSD of the frequency fluctuations Aw, gives the short term stability (>1 Hz)
of the nanoresonator signal, i.e. its frequency. Because the accelerometer is
designed to operate before its resonance (wy,,), frequency fluctuations must be
integrated below 1 kHz. For the low-Q accelerometer, the short-term stability of
Aw, 1s then dominated by the thermomechanical noise of the accelerometer. Under
these conditions increasing the nanoresonator output voltage does not improve the
short-term stability of the frequency fluctuations, because the fluctuations of the
resonance frequency themselves are more important than the measurement
uncertainty induced by phase noise. Increasing the quality factor of the
accelerometer by improving the level of vacuum is a solution to reach the
nanoresonator detection limit. Figure 4-18 shows an equivalent noise analysis on
samples with an improved packaging at wafer-level, in particular in terms of
vacuum. Here, the coupled nanoresonator has high quality factor Q,, = 5600. On
this measurement, AC actuation sweep is performed in open-loop frequency
measurements. The measurement conditions are 5 kHz of integration bandwidth
and 50 kHz of sampling frequency. Figure 4-18 (a-inset) shows that the
nanoresonator magnitude is proportional to the AC actuation voltage. Figure 4-18
(a) shows the additive white noise is not affected by the AC actuation, as expected.
There are some residual harmonics (70 Hz) on the PSD of V,,,; probably due to the
experimental environnement. Figure 4-18 (b) shows the PSD of the frequency
fluctuations. Here, the accelerometer resonance can be identified at 1 kHz too but
with an higher quality factor (Q,, > 2). Before the accelerometer resonance (<1
kHz) the PSD of resonance frequency fluctuations is affected by the AC actuation
in the same way as after the accelerometer resonance, indicating that the
contribution from thermomechanical noise of the accelerometer is negligible in
regard to the effect of the additive noises of the nanoresonator. Indeed, Sy, ,, is
inversely proportional to Q,,,, which depends on the level of vacuum. Moreover, the
1/f behaviour at low frequency (<10Hz) shows that the bias instability of
nanoresonator is reached similarly to Figure 4-8.
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Figure 4-18 Open-loop frequency measurement of a nanoresonator coupled to a high-Q
accelerometer. The bias actuation voltage is V,;,s = 1.25V and the DC actuation is V¢ =
3.5V. (a) PSD of |V,,.| as a function of different AC actuation voltages. (a-inset) Magnitude
of |V,.:| as a function of AC actuation voltage. (b) PSD of Aw, calculated from the phase
fluctuations A¢, and the phase-frequency relationship. This PSD can be divided in two
parts, before and after the resonance frequency of the accelerometer (1 kHz). In both cases,
the noise of Aw,. is dominated by the additive noise of the nanoresonator.
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In Figure 4-18 (b), the short-term stability of the frequency measurements can be
represented as white noise from 50 Hz to 1 kHz. On this bandwidth, the noise

density of Aw, is inversely proportional to V,. and ranges from 4 Hz/v/Hz to 2
Hz/v/Hz. However, from 1 Hz to 50 Hz, the noise density is dominated by 1/f noise.
That is why the Allan deviation is used in order to calculate the bias instability of
both low-Q accelerometers and high-Q accelerometers.

Here the Allan deviation is then expressed in terms of acceleration: from the
frequency fluctuations measurement Aw,., o¢(7) is processed from Eg. 4-5, and
expressed in acceleration by using the accelerometer sensitivity S, as g,(7) =
[wy/Saw] 0 (r). Figure 4-19 (a) shows the Allan deviation of the low-Q
accelerometer (Q,, = 1000) as a function of the measurement time . On the 1 kHz-
bandwidth (t € [1ms — 1s]), the Allan deviation has T=%/2 slope typical of white
noise. The noise level on this range is not affected by the AC actuation, suggesting
that this limit corresponds to the thermomechanical noise of the accelerometer,
which is a frequency noise and therefore independent of SNR. After 1 s of
integration time, the Allan deviation reaches a plateau, probably due to long-term
drifts induced by the fluctuation of environmental parameters. Figure 4-19 (b)
shows the Allan deviation of the high-Q accelerometer (Q,- = 5600). For 7 €
[1ms — 0.1s], the Allan deviation presents again a t='/2 slope representative of
white noise. However, in this case the deviation is affected by the AC actuation:
this suggests that the dominating noise source in this case is additive noise, which
is proportional to the SNR. After 0.1 s of integration time the Allan deviation
reaches a plateau probably caused by the same detection limit as the nanoresonator
presented in Figure 4-10. In conclusion, the improvement of wafer level packaging
allows reaching the detection limit of the nanoresonator: the equivalent acceleration
noise on 1 kHz-bandwidth ranges from to 7.14 pg/vHz for the low-Q
accelerometer to 1.75 pg/vHz for high-Q accelerometer. The bias instability
ranges from 10 pg at 1s of integration for low-Q accelerometer to 5 pg at 1s of
integration for the low-Q accelerometer.
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Figure 4-19 Allan deviation of acceleration as a function of the driving voltage of the
nanoresonator V.. (@) The Allan deviation of low-Q accelerometer is dominated by the
thermomechanical noise of the proof mass Sy, ,. (b) The Allan deviation of the high-Q
accelerometer is dominated by additive phase noise (section 2.4.1).
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4.2.3 Non linearities

Here the critical amplitude is studied on coupled nanoresonators. Eq. 2-28 shows
that the critical amplitude depends on the quality factor Q,- and the axial stress
applied on the beam. The subsequent analysis compares the critical amplitude v,
of two different coupled nanoresonators as a function of applied stress and quality
factor. Figure 4-20 shows the frequency response of coupled nanoresonators with
Q, < 1000 for several AC actuation voltages. The bias polarisation is V,;,s =
1.5V and the DC actuation is V. = 3.5 V. The critical amplitude is probably
limited by spring hardening as expected. Table 20 compares the nanoresonator
critical amplitude for different accelerations. The resonance properties (f,- and Q,-)
depend on the acceleration and have been taken into account on the analytical
modelling.

acceleration Vmax VmaxMls Vimax
; o 059 4.1nm 34.7 pV < 40wV
. = 14.
Qr = 443 1g 458nm 3877V <40V

fr=12.92MHz

Table 20 Comparison of the analytical modelling of v,,,, , the analytical modelling of critical
magnitude v,,,,ns and the measured critical amplitude V4.

Because the quality factor depends on the operating frequency of the nanoresonator
(Figure 4-13 (b)), so does the critical amplitude, the operating AC actuation must
be fixed by the minimum critical amplitude of the frequency range. For low-Q,
nanoresonators, the operation limit (in terms of critical amplitude) is relatively
uniform for the whole working frequency range. Thus, the actuation voltage can be
set for an initial position and ensures the linear response over the whole operating
frequency range of the nanoresonator.
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Figure 4-20 Measurement of the transfer function of coupled nanoresonator as a function

of AC actuation voltage. The DC actuation is Vp = 3.5 V. The shape of the magnitude
response suggests that the spring hardening appears for V4 > 0.5V. (a) Coupled
nanoresonator operating under 0.5 g of acceleration. (b) Coupled nanoresonator operating
under -1 g of acceleration.
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Figure 4-21 shows the frequency response of coupled nanoresonator, with Q, >
4000, in terms of magnitude and phase for several AC actuation voltages. The bias
polarisation is Vy;,s = 1.25 V and the DC actuation is Vp. = 3.5 V. In the case of
the nanoresonator of Figure 4-21 (b) operating at 12.5 MHz, the critical amplitude
is probably limited by spring hardening. However, on Figure 4-21 (a) another non-
linearity appears before the expected critical amplitude, which is not understood for
the moment. Therefore, the maximum AC voltage ensuring the linearity of the
nanoresonator response over the frequency operation range is lower than the one
required to achieve spring hardening effect. The SNR will not be maximised under
these conditions. Table 21 compares the analytically modelled nanoresonator’s
critical amplitude for different accelerations.

acceleration Vmax Vinaxlls Vinax
y e ‘;ZOB‘;HZ 059  166nm  141pV <5up
=14,
Q- = 6300 g 118nm  9.98 uV <10V

fr=12.47 MHz

Table 21 Comparison of the analytical modelling of v,,,, , the analytical modelling of critical
magnitude v,,,,ns and the measured critical amplitude V4.

Several experiments yield the following conclusions with respect to the unexpected
non-linear phenomenon of high-Q resonators: (1) This non-linearity is reproducible
on every coupled nanoresonator with Q, > 4000. (2) Figure 4-11 shows that
uncoupled nanoresonators operating at the same frequency do not suffer from this
effect. (3) The applied acceleration has an impact on this non-linearity for coupled
nanoresonators with Q,- > 4000 but not for Q,- < 1000. A first hypothesis is that
when the nanoresonator damping is not dominated by its air environment but by
dissipation on the anchor (Q>4000), the coupling to the proof mass changes these
anchor conditions as a function of the applied acceleration.
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Figure 4-21 Measurement of the transfer function of a coupled nanoresonator as a function
of AC actuation voltage. The DC actuation is V. = 3.5 V. The shape of the magnitude
response suggests that the spring hardening appears for V4c > 0.5V. (a) Coupled
nanoresonator operating under 0.5 g of acceleration. (b) Coupled nanoresonator operating
under -1 g of acceleration.
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4.2.4 Closed loop operation

A closed-loop measurement method to track the resonance frequency in real time
is mandatory in order to be able to monitor large frequency variations. It is well-
established that resonators with high quality factors offer a better phase-frequency
relationship at the expense of a slow mechanical response. For the nanoresonators
studied here, their mechanical response is larger than the desired bandwidth of the
accelerometer (wo,, < w,/2Q,). Therefore, a self-oscillating circuit is chosen to
implement the closed-loop operation. However, this oscillating circuit only works
optimally if the feedthrough capacitance is corrected, as explained in section 3.2.3.
Here, a first closed-loop measurement is implemented to study the behaviour of
nanoresonators used as force sensors, in particular (1) their thermal drift and (2)
their frequency variations under acceleration.

To do this, the heterodyne detection presented in Figure 4-4 is combined with a
PLL using the LIA (Figure 4-22). Unlike the open-loop frequency measurement,
the resonator always operates at its resonance in a closed loop. The resonance
frequency is monitored by a PLL which adjusts the frequency of the actuation signal
to correct the phase error with respect to a reference. A variable-frequency oscillator
at frequency w,. is used to actuate nanoresonator. The fixed-frequency oscillator at
frequency Aw is used to demodulate the nanoresonator’s output in order to process
its phase (tan~1(Y/X)). This phase is compared with a previously-measured phase
at resonance ¢, then a phase error is generated and fed into a PI controller. In this
specific case, these coefficients are calculated using the previously calculated linear
frequency/phase relationship and the desired PLL response time tp;,. Finally, the
PI controller calculates the correction to the frequency of the oscillator w, as a
function of this phase error.
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Controlled oscillator Resonator
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Figure 4-22 PLL-based closed loop of nanoresonator using heterodyne detection. The
controlled oscillator frequency is initially set to wy, and then maintained to w,. The
heterodyne part of the PLL (bias voltages at w,. + Aw angular frequency and output at Aw
angular frequency) is omitted in this figure.
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4.2.4.1 Thermal drift

Using a PLL-based closed loop, long-term frequency measurements are made on
accelerometers with two measurable nanoresonators in differential configuration.
The specificity of their nanoresonators is that they have 1 pum-long nanogauges. In
this configuration, the transduction is less efficient in the sense that the Johnson
noise is higher than in the previously tested nanoresonators. This does not matter
because the purpose of these measurements is to quantify the long-term stability of
the frequency measurement, especially due to the thermal environment. The
expected behaviour is that the thermal drift will induce a common mode signal on
the sensing elements that can be compensated by a differential measurement.

Figure 4-23 (a) shows the differential closed-loop frequency measurement as a
function of time. The frequency fluctuations of both nanoresonators, Aw, (t) and
Aw, (t), are normalized by their initial resonance frequencies, respectively w,, and
woy. The temperature is acquired in real time as close as possible to the
accelerometer. Relative frequencies are measured in real time during 1800 seconds.
Contrary to the expected behaviour, the nanoresonators are differentially affected
by the temperature drift: when the temperature increases, Aw; decreases whereas
Aw, increases. These results are reproducible on three similar accelerometers. The
hypothesis is the one nanoresonator is compressed when the temperature increase
whereas the other one is elongated, such as during an acceleration. As the
differential effect is indistinguishable from an acceleration, it is not possible to
compensate temperature fluctuations with this architecture. Indeed, Figure 4-23 (b)
shows the Allan deviation of each frequency measurement and the processed Allan
deviation of their differential measurement. Because both nanoresonators are
measured in real time, differential measurement consists in the subtraction of their
frequency Awg;rr(t) = |[Aw,(t) — Aw,(t)|. As expected from the differential
closed-loop measurement, the long-term frequency stability is degraded by the
differential measurement because temperature drift is differential.
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Figure 4-23 Differential closed loop measurement. (a) Frequency measurements of both
nanoresonators and temperature acquisition. (b) Allan deviation of the frequency response
of each nanoresonator, and Allan deviation of their differential response.
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Assuming a steady state is reached, the increase of temperature of the environment
induces an increase of the temperature of the silicon structure as well as of the
packaging. The measurements are performed on the accelerometer design of Figure
4-24 (a.1). The silicon structure is perfectly symmetrical except for the proof mass
anchor which has a slight asymmetry. The silicon chip is initially glued (Figure
4-24 (c)) to its ceramic substrate with a rigid adhesive under its entire surface.
Considering the whole system comprising the integrated accelerometer, several
hypotheses can be made about the origin of this differential drift.

In practice, the dilatation of the proof mass induces compressive stress on both
nanoresonators. This effect is reproduced by FEM (COMSOL) simulations (Figure
4-24-(a.2)), where an increase of AT = 100°C is applied to the accelerometer and
induces a common-mode stress on both nanoresonators. The first hypothesis is that
the asymmetry of the proof mass anchor induces, in addition to the expected
common mode, a differential mode. In order to quantify this effect by FEM
simulations, the axial stress induced in both nanoresonators, o, g1 and o g,, and
differential stress oy 4irf = [Oxr1 — Oxr2|, are compared to the maximum
allowable stress a,,,,,. The maximum stress corresponds to the stress applied on the
nanoresonator when the proof mass reaches the stoppers. Table 22 compares these
stress ratio and shows the relative differential stress oy 4;rr/0max is Negligible to

the relative common-mode stress oy p1/0max-

The second assumption is that the difference in the coefficient of thermal expansion
(CTE) between the ceramic substrate and the silicon generates a shear effect on the
chip, which is transmitted to all accelerometer anchors due to die-attach [98]-[100].
This effect, called package stress, has been known for a long time [101] and can be
limited by using single anchor [103]. Due to the need of pads for piezoresistive
transduction, the current design is not based on a single anchor architecture. The
base strain sensitivity is a specification of the entire accelerometer (silicon chip +
packaging) that is typically expressed for a hundred microstrain [23] for strain-
critical application. In order to quantify the phenomenon on our design, a FEM
simulation reproduces the effect of shear deformation on the accelerometer anchors.
In Figure 4-24-(c), where a shear deformation of exy = 100 ppm is applied to all
accelerometer anchors and induces differential stress on both nanoresonators. In
order to compare this effect, the same criterion is used than the previous hypothesis.
Table 22 compares these stress ratio and shows the relative differential stress
Oy aif £/ Omax 1S IMportant in regards to the one of AT = 100°C.

ax,Rl/ O max Gx,RZ/ O max ax,Dif f / O max
€xy = 100 ppm 26.59% -26.59% 53.18%
AT =100°C -120.46% -119.96% 0.51%

Table 22 Comparison of axial stresses (o,) calculated from FEM simulations for the two
hypothesis (AT = 100°C) and ( exy = 100ppm). The stress is normalized by full-scale stress

Gmax "
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As exy = 100 ppm is the dominant effect of this FEM comparison, different gluing
strategies are proposed, shown in Figure 4-24 (d). The aim is to minimize the shear
effect induced by the difference in CTE between the substrate and the chip. Soft
glue (d.1) should absorb the shear stress better than a rigid glue (c) and a silicon
buffer (d.2) allows matching the CTE between the buffer and the substrate to avoid
the shear deformation. The comparison of these different packages through
simulation and experimentation is an important pending task for the future
development of such accelerometers. However, efforts to be more robust against
thermal drift have rather focused on improving the architecture of the
accelerometers in the second generation to be presented in section 5.2.2.
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Dissymmetric ol S [ Silicon chip
. 0.8 (<))
anchorage s Q % Soft adhesive
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| Ox Cx Silicon chip
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Differential mode €xy ?8 (d.2) Substrate

Figure 4-24 (a.1) FEM simulations of AT = 100°C. The displacement in the “x” direction
induced by thermal dilatation has a small dissymmetry due to proof mass anchor’s
dissymmetry. (a.2) Common-mode stress induced by thermal dilatation. For an increase of
temperature, the stress is in compression. (b.1) FEM simulations of a shear stress in the
substrate exy = 100ppm. The displacement in the “x” direction induced by the shear effect
shows that the proof mass tilts, similarly than under an acceleration. (b.2) The whole proof
mass tilts in one direction induces a differential axial stress. (c) Current packaging used for
experimental results. (d) Proposed new packaging to avoid package stress. (d.1) The soft
adhesive helps to absorb some of the shear strain induced by the CTE mismatch, and
positioning the adhesive on only one corner reduces the contact area, and thus the shear
strain. (d.1) Adding a silicon buffer helps absorb the ceramic-induced shear stress and
matches the CTE of the buffer stage with that of the silicon chip.
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4.2.4.2 Spurious mode coupling

Next, a PLL-based closed loop allows performing a measurement of the sensitivity
of the accelerometer, in other words, to measure in real time the frequency shift due
to the acceleration. For this measurement, the accelerometer is integrated in the
measurement set-up of Figure 4-1. The PLL-based closed loop of Figure 4-22 is
implemented. The actuation parameters are Vye = 0.2V [ Viyigs = 1.5V [ Ve =
3.5 V. The rotating bench sets a varying rotation angle, hence an acceleration, from
-1g to 1g during a 10s period.

Figure 4-25 compares the open-loop sensitivity measurement with the closed-loop
sensitivity measurement. In general, both sensitivities are perfectly matched. The
magnitude and quality-factor variations shown on Figure 4-13 do not affect the
operation of the PLL. Close to the Og position, the resonance frequencies of both
nanoresonators should cross, but we observe no evidence of coupling between
nanoresonators. However, at two specific positions, -0.5g and 0.75g, at frequencies
13.68MHz and 15.41MHz respectively, the PLL apparently loses tracking of the
resonance frequency. This is a major issue affecting the accelerometer because it
reduces the useful working frequency range of the nanoresonator and thus the
acceleration range (here -0.5g to 0.75g).
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Figure 4-25 Comparison between open-loop sensitivity measurement and closed-loop
sensitivity measurement from -1 to +1g. The closed-loop sensitivity measurement hints at a
coupling phenomenon of the nanoresonator’s first bending mode.
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Figure 4-26 shows the transfer function of the nanoresonator around the specific
position of 0.75 g for different accelerations. The magnitude shape suggests that the
nanoresonator is subject to mode coupling. In its most basic form, the mode
coupling is represented by a damped spring-mass, like on Figure 6-3. Its operation
assumes a stiffness coupling. In this configuration, one spring-mass system
represents the nanoresonator used as force sensor, where the flexural stiffness is
modulated by the acceleration. The other one represents the other resonator of
unknown origin. A spring coupling both elements represents the coupling in
stiffness. From the basic form of the mode coupling, the shape of the
nanoresonator’s resonance is discussed in order to find the origin of the mode
coupling. The different springs of the systems are supposed, one after the other, to
be modulated by the acceleration in order to match the shape of the basic form with
the shape of Figure 4-26. The different cases are discussed in Appendix C. The most
likely case is that only the spring representing the flexural stiffness of the
nanoresonator is modulated by the acceleration. The spring coupling and the spring
of the unknown system are not modulated by the acceleration. This case can
represent mode coupling originating from modes of the MEMS structure that are
not affected by the acceleration.

Mode-coupled resonators have been the subject of several works [104], [105] and
a recent work takes advantage of coupling control to implement a resonator-based
mode-localized accelerometer [106]-[108]. On resonant beam accelerometers
using nanoresonators, the mode-localized coupling is not desired. But the MEMS
structure (accelerometer) is composed of micrometric elements (proof mass and
hinge), and therefore its first resonance frequencies are close to the kHz. The
nanoresonator operates at the MHz and its resonance frequency sweeps a large
several-MHz frequency range during operation. It is therefore very probable that
the working mode of the nanoresonator intersects with higher modes of the MEMS
structure, for instance the n-th mode of flexible elements.
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Figure 4-26 Transfer function of a nanoresonator as a function of applied acceleration.
Around 15.41 MHz, the transfer function shows a dominant coupling and two “soft”
couplings at 15.39 MHz and 15.46 MHz that affect the closed loop measurement less
importantly than the dominant one. The actuation parameters are Ve = 0.2V / Vyjps =
1.5V /Vpc=3.5V.
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The challenge is then to identify the origin of the coupled modes. An investigation
is first carried out in order to rule out certain hypotheses, and then a tool to identify
parasitic modes is implemented using FEM (COMSOL) simulations. Figure 4-27
compares mode-coupling measurements for different accelerometer architectures.
The objective is to relate features of the mode-coupling phenomena to differences
in the accelerometer structures. The two versions of accelerometer are: the one of
Figure 4-26, named MZ1-accelerometer because its proof mass length is L,, =
380um, another one with proof mass length L,, = 600um, named M2-
accelerometer. Two specific coupled modes appear at the same frequency
(13.68MHz and 15.41MHz) and have the same insensitivity to acceleration, as
described in Figure 4-26. In Figure 4-27 another coupled mode appears at 15.5 MHz
for the M2 accelerometer. This difference will be an evidence for the FEM
simulation identification method. The geometrical features shared by the two
accelerometer structures are the resonant beam length (L, =10 pm), the
nanoresonator position (I = 5 um) and the hinges’ geometries (L, = 51.41 pum,
t, =20 um and wy, =1 pum). The geometrical difference between the three
accelerometer structures is the proof mass characteristic length L,,. The M1
accelerometer allows differential measurements and shows that coupled modes
appear at the same frequencies for both nanoresonators, named respectively Resl
and Res2 on the Figure 4-27.
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Figure 4-27 Transfer functions of nanoresonators coupled to different MEMS structures.
(a) Measurement of mode coupling of the 13.68 MHz-mode. (b) Measurement of mode
coupling of the 15.41 MHz-mode and 15.5 MHz. On the M1-accelerometer the differential
measurement is allowed and coupled modes are measured on both nanoresonators,
respectively Resl and Res2. The M2-accelerometer has an additional coupling at 15.5 MHz.

What can be deduced from the above information is that: (1) The out-of-plane mode
is close but not superposed with the in-plane mode and both are affected by
acceleration. It is therefore unlikely that the coupling is due to the interaction
between different nanoresonator modes. (2) For a differential structure with a low
initial stress (o,), the two nanoresonators operate in a similar frequency range and
they have equal resonance frequency for a certain acceleration value. However, at
this frequency intersection, there is no evidence of coupling. On the contrary, the
coupled modes appear at the extreme ends of the frequency range, when the
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frequencies are far apart as shown in Figure 4-15 (a). It could be that the out-of-
plane mode of one resonator intersects the in-plane mode of the other at these
positions. In this case, the mode coupling would be dependent on the acceleration,
and that is not the case. In conclusion, the behaviour does not seem consistent with
a coupling between resonance modes of two nanoresonators. (3) As predicted by
the analytical modelling of the problem, the coupling is probably induced by the
interaction between the MEMS structure and the nanoresonators. As the change of
the proof mass does not affect the position of the coupling, the coupled modes are
probably due to the flexible elements of the MEMS structure, in particular the pivot:
Two hinges, placed at 45 degrees of the sensitive direction, allow the mass to rotate
around a central node. The nanoresonators are placed at [ = 5 pm from the central
node of the pivot that connects all the flexible elements to the proof mass.

A FEM simulation method is developed to validate the hypothesis that the hinges
are responsible for these coupled modes. The objective is to identify the modes of
the MEMS structure that are coupled to the in-plane mode of the nanoresonators.
The identification method is detailed in Appendix C. Here, the identification
method is applied to the M1 and M2-accelerometer architecture but it can be applied
to any other design. Figure 4-28 and Figure 4-29 show the results of the
identification method used for the M1l-accelerometer and M2-accelerometer
architectures respectively. For each figure, sub-figure (a) shows the evolution of all
the accelerometer modes as a function of acceleration. It can be seen that the
resonator modes vary with acceleration while the MEMS modes are not affected.
Here only the in-plane mode of one nanoresonator is studied because the problem
is symmetric. Some crossings between the nanoresonator modes and the MEMS
modes are circled. These are the likely couplings observed experimentally named
m-X, where X is the mode number. In order to highlight the coupling, the method
studies the relative modal mass, which is calculated from the FEM simulation. It
consists in a ratio between the integrated modal mass of the nanoresonator and the
integrated modal mass of the whole accelerometer. For the in-plane mode of the
nanoresonator, this fraction must be equal to 1 because all the modal mass must be
concentrated on the nanoresonator. When the in-plane mode of nanoresonator
crosses coupled modes, part of the nanoresonator modal mass is displaced
somewhere else on the accelerometer. Sub-figure (b) represents the relative modal
mass of the in-plane mode of the right-nanoresonator. The relative modal mass is
represented as a function of frequency because the in-plane mode of the
nanoresonator is a function of acceleration. For this nanoresonator, the relative
modal mass is calculated over the entire operating range of the nanoresonator mode
[12.5 MHz to 16 MHz] corresponding to an acceleration [-1g to +1g]. It can be
clearly seen that for certain frequencies, sub-figure (b) shows a black peak that
means the relative modal mass is distributed outside the nanoresonators: these are
the couplings.
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As identified on the sub-figures (a) and (b) of Figure 4-28 and Figure 4-29, there is
an important population of MEMS modes that could be identified as coupled modes
thanks to the identification criterion. Comparison between FEM simulations and
measurements allows identifying, in this population of MEMS modes, which are
the observed coupled modes. The comparison is based on the relative frequency
difference between these modes. The experimental frequencies of the coupled
modes are extracted from sub-figures (m-x.1) where the shape of the nanoresonator
magnitude highlights the coupling modes. The corresponding modal deformation,
calculated by the FEM simulation, is shown in sub-figures (m-x.2). This modal
deformation represents the MEMS mode shape when the nanoresonator mode is far
from the coupling frequency. The sub-figures (m-x.3) show the modal deformation
of the MEMS mode shape when the nanoresonator mode is close to the coupling
frequency. In this configuration, the MEMS mode shape has the shape of the in-
plane mode shape of the nanoresonator, which is representative of the mode
coupling. This is because the coupling mode shape is a linear combination of the
nanoresonator bending mode and the MEMS structure mode, which are normalized
by the maximum vibration amplitude of the whole structure. Since the amplitude of
vibration of the nanoresonator is much higher than that of the MEMS, so it is
normalized and we do not see the MEMS.

Table 23 compares the relative frequency difference between these modes. The
experimental modes at 13.68 MHz and 15.41 MHz have quasi-equivalent
frequencies on both M1-accelerometer and M2-accelerometer’s FEM simulations.
A frequency mismatch of Af;,;; = 200 kHz is found, which can be due to the
absence of release holes on the FEM simulation model. The other modes are
identified thanks to this frequency mismatch. Looking at the shape of the identified
modes, the hinges seem to be at the origin of the coupling.

In conclusion, the developed FEM method will be able to predict such coupling
phenomena in advance. The first identification criterion predicts more coupled
modes than the ones observed experimentally. Based on these first experimental
results, the method must be completed by other criteria in order to identify the most
probable coupled mode and to reject the others. However, efforts have been focused
on the development of mechanical structures to avoid mode coupling.

M1-accelerometer M2-accelerometer
fexp fFEM ‘Sf fexp fFEM Sf
13.68MHz 13.2MHz 2.4 13.68MHz 13.3MHz 1.9
14.1MHz 13.62MHz 2.4
14.5MHz 14.28MHz 1.1
14.7MHz 14.22MHz 2.4
15.4MHz 15.19MHz 1.05 15.41MHz 15.21MHz 1
15.5MHz 15.36MHz 0.7

Table 23 Comparison of the measured coupled modes f.,, and the probable MEMS modes
frem found by the FEM simulation method. The mismatch §f correspond to the relative

frequency error |fex, — frem|/Af inic:
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Figure 4-28 FEM identification method for the M1 accelerometer. (a) Frequencies as a
function of the acceleration of the MEMS and nanoresonator modes. (b) Relative modal
mass as a function of frequency of the in-plane nanoresonator mode. (m-x.1) Measurement
of the nanoresonator magnitude close to mode coupling. (m-x.2) Shape of the corresponding
MEMS mode when the nanoresonator mode is far from the coupling frequency and (m-x.3)
when the nanoresonator mode is close to the coupling frequency.
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Figure 4-29 FEM identification method for the M2 accelerometer. (a) Frequencies as a
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4.3 Self-oscillating circuit

Figure 4-30 Photo of the self-oscillator circuit. The packaged accelerometer is integrated on
the PCB by a specific socket. SMA connectors are used to apply an AC+DC actuation
voltage and a gauge polarization voltage. A variable trigger resistance is used to tune the
correction stage and an output SMA connector allows measuring the output voltage after
the readout TIA.

The objective of this section is to present the first results of the readout electronics
dedicated to the measurement of a resonant accelerometer based on nanoresonators.
The operation of several stages of the system presented in Figure 3-24 has been
demonstrated: the actuation stage that combines the DC and AC actuation signals,
the polarization stage that provides a static differential bias on the gauges, and the
compensation stage that allows a large part of the feedthrough signal to be removed.
Because the feedthrough capacitance is larger than expected, the oscillation
conditions at resonance are not met and we are not able to close the loop, so the
saturation stage is not tested. Therefore, with the current sensors, we could not
perform a demonstration of the complete system.
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Before testing the readout circuit, feedthrough capacitance measurements are
performed for several configurations on the test PCB, i.e. with direct
activation/readout of the nanoresonator. The objective is to successively add the
different elements to the system and thus quantify the sources of capacitance
between the actuation and readout.

Figure 4-31 shows a schematic of the measurement setup: a transimpedance
amplifier (TIA) is used to achieve a current reading similar to the operation of the
readout circuit. The TIA’s gain, fixed by G, and R, ensures a flat bandwidth of 50
MHz [109]. The feedthrough capacitances are quantified on the test PCB between
two connectors named V. and I,,;. Vac 1S connected to the output of the LIA for
AC drive application while V,,,; is connected to the input of the TIA to perform
current sensing. The output of the TIA is then connected to the 50-Ohms input of
the LIA. The parasitic capacitance at the output of the LI1A is neglected here because
its impedance is low (50-Ohms). An AC frequency sweep is performed at the V.
node from 10 kHz to 50 MHz, and measured at V,,,; with the homodyne detection
scheme presented in Figure 4-2. Because the expected impedance between V. and
Ve 1S capacitive, the logarithmic representation of the measurement can be used
to calculate the capacitance value.

LIAOUTPUT ’
VWV

Figure 4-31 Measurement set-up of the feedthrough capacitance. The feedthrough
capacitance is measured between V4. and I,,,, two specific connectors on the PCB used for
the nanoresonator’s actuation and sensing.
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Finally, the accelerometer chip is integrated on the PCB thanks to a ceramic support
LCC48 where it is wire-bonded. The support is connected to its dedicated socket
soldered on the PCB. Thus, there are three possible elements contributing to the
feedthrough capacitance: (1) the PCB and the LCC48 socket, mainly due to the
soldering of the socket’s pads (2) the ceramic, and (3) the wire bonding of the
accelerometer chip and the intrinsic feedthrough capacitance of the chip. In order
to quantify separately these three contributors, 3 different test structures are
implemented. Figure 4-32 (a) represents the measured V,,; as a function of the
actuation frequency (from 10 kHz to 50 MHz) for the different structures. The
filtering at 50 MHz represents the bandwidth limit of the LIA. The capacitance
value can be extracted from the slope of the measurement.

The Figure 4-32 (p.x) shows the different test structures: (p.1) represents the initial
one where only the PCB and socket are used. Here a small feedthrough capacitance
of 16 fF is measured, probably due to the soldering of the socket. In an early version
of the PCB, capacitances of 300 fF were measured due to the fact that the actuation
and readout paths were too close. Therefore, the input and output of the
nanoresonator should be as far apart as possible on the PCB. (p.2) represents the
second structure where the PCB, the socket and the support are connected. Here a
feedthrough capacitance of 28 fF is measured. (p.3) represents the third structure
where the PCB, the socket and the support with a wire-bonded accelerometer chip
are used. Here, the bias voltage of the nanoresonator is turned off so as not to
transduce its mechanical response. A large feedthrough capacitance of 320 fF is
measured. The main source of parasitic capacitance is induced by the accelerometer
chip itself, probably due to the long contact paths and the floating potential present
around the device. An electrostatic FEM simulation could be performed to validate
this hypothesis and propose an optimized design. In addition, the capacitance
originated by the carrier and socket can be avoided by directly connecting the
accelerometer chip to the PCB.

(a) = Socket
10000
o (pl)
A

1000
A/Support

VA Cc

Vout

>’
=
8 100
=
5 (-2)
g A
1)L Chip
EEZ; Wire-bonding — ‘ PCB
“(P3) | Condxuctor
1

0,01 0.1 1 10 100 (1 3)
Frequency [MHZz]

Figure 4-32 Measurement of the feedthrough capacitance originating from different
elements of the packaging. The AC actuation is V¢ = 0.1 V. The slope of £%° in logarithmic
scale is representative of a capacitance measurement. The resonance and filtering after 50
MHz are due to the TIA.
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4.3.1 Adapted readout analysis

In order to validate the benefits of current readout over voltage readout (section
3.2.1), both detection systems are implemented. The current readout is first based
on the TIA presented in the previous section to have a reference to the designed
electronics.

For the current readout presented in the Figure 4-33, the measurement is similar to
one performed in Figure 4-32 (p.3) but the bias voltage is turn on and the sweep is
performed around the nanoresonator resonance. In other words, in the equivalent
schematic of Figure 4-33 (a), the nanoresonator admittance Yyguys (EQ. 3-19) is
added in parallel to the previous measured feedthrough capacitance Cy, ~ 320 fF.
The measurement is performed on the nanoresonator presented in section 4.1.
However, the actuation is Ve = 25mV /[ Ve =035V [ Vpigs = 1.25V to be
consistent with the electronic circuit measurement. In practice, having an lower
AC/DC ratio allows reducing the background signal (proportional to V,.) while
keeping the nanoresonator actuation (proportional to V,-Vp.). The blue curve of
Figure 4-33 (b) shows the frequency response, in phase and magnitude, of the
nanoresonator. According the TIA’s gain (R, X G,), the previous quality factor
(Qr = 8700) and the impedance Yygys, ¢ Of Eq. 3-25, the analytical model of V,,;
(red curve) allows adjusting the measurement by fitting the capacitance values to
Cre = 339 fF. The mismatch with the previous value could be due to the fact that
the bias voltage path is no longer floating. The phase shift at resonance Ag is
smaller than expected due to the large feedthrough capacitance. From the frequency
response, the signal can be characterized by its SBR detailed in Table 24:

Signal Background SBR Ap
13 pv 2.77 mV 0.0047 0.4°

Table 24 Experimental results of current readout.
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Figure 4-33 Measurement of the response of the nanoresonator using a current readout. (a)
Schematic of the measurement using homodyne detection and a TIA. (b) Comparison of the
experimental results (blue) with the analytical modelling (red).
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For the voltage readout presented in the Figure 4-34, the measurement is similar to
one performed in Figure 4-2. Here, the measurement is performed at high frequency
(homodyne detection) and therefore the associated loss must be taken into account.
The equivalent schematic of Figure 4-34 (a) uses the transfer function H(w) shown
in Eq. 2-43 which considers both the losses associated with the high-frequency
voltage readout as well as the feedthrough capacitance. To be consistent with the
current readout, the voltage readout is performed with the actuation V. = 25 mV' /
Vpe = 0.35V [ Vpias = 1.25 V. The blue curve plotted in Figure 4-34 (b) represents
the frequency response, in phase and magnitude, of the nanoresonator. The
analytical modelling considers both the feedthrough capacitance measured
previously (Cr, =339 fF) and the parasitic capacitance C,. The analytical
modelling of V,,,; (red curve) allows adjusting the measurement with C;, = 112 pF.
In this case, the loss associated to the voltage readout, represented by the gain G,
in Eq. 2-43, is G, (15 MHz) = 0.07, i.e. more than 90% of losses. The phase shift
at resonance A¢ is smaller than expected due to the large feedthrough capacitance.
From the frequency response, the signal can be characterized by its SBR detailed
in Table 25.

Signal Background SBR Ag
0.4 pv 81 uv 0.0049 04°

Table 25 Experimental results of voltage readout.

Although current readout is free from the high-frequency losses that appear in the
voltage readout, both suffer from the effect of feedthrough capacitance. Indeed, the
Signal-to-Background Ratio (SBR) imposes the phase shift at resonance as
explained in Figure 2-21. In the case of the voltage readout, the filtering due to C;,
is performed both in the signal and in the background, so the SBR is not changed.
The results presented on Table 24 and Table 25 are consistent with this theory. In
the end, the current readout is more efficient to operate at high frequencies but still
requires electronics to compensate for the feedthrough capacitance.
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Figure 4-34 Measurement of the response of the nanoresonator using a voltage readout. (a)
Schematic of the measurement using homodyne detection and TIA. (b) Comparison of the
experimental results (blue) with the analytical modelling (red).
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4.3.2 Feedthrough correction

In order to avoid the feedthrough phenomenon, the electronic circuit presented in
section 3.2.4 is partially tested, only in open loop configuration. The measurement
results are presented in Figure 4-35 (a): the output of the LIA is connected to V,,
which supplies the actuation stage and correction stage. Static voltages
corresponding to the DC actuation and the gauges polarisation are respectively
connected to V. and V,;,s. The bias stage provides differential polarization of the
gauges. The actuation stage combines an AC voltage and a DC voltage to provide
a lo actuation on the nanoresonator, which induces a motional current as well as a
feedthrough current to the phase shifter. In parallel, the AC voltage supplies the
correction stage, which theoretically injects an opposite feedthrough current to the
phase shifter. A variable resistance allows setting the magnitude of the correction
current in order to match the magnitude of the feedthrough current. A switch allows
deactivating the correction stage to compare its operation. The 50-Ohms input of
the LIA is connected to the output of the phase shifter to read the corrected output
current of the nanoresonator.

In practice, the bias stage has no problem providing a differential polarization
voltage in the required amplitude range. However, the actuation stage starts to be
unstable for large DC supplies (Vp > 1V). For this reason, the AC/DC ratio has
been increased. The actuation stage must be redesigned to minimize the background
signal by minimizing the AC/DC ratio. In order to validate the operation of the
correction stage, the open loop measurements are performed with the actuation
parameters : Vye =20mV | Vp = 0.16 V and V;,s = 1.25 V. Figure 4-35 (b)
shows the frequency response of the nanoresonator for a corrected (red) and not
corrected (blue) feedthrough current. Both measurements are compared in the Table
26. The correction stage allows improving the SBR by on order of magnitude, as
well as the phase shift at resonance, but is not sufficient to allow self-oscillation in
the electronics (Ap~4°).
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Figure 4-35 Open loop homodyne measurement implemented with the electronic circuit. (a)
Schematics of the open-loop measurement. (b) Experimental frequency response of the
nanoresonator with (red) and without (blue) the feedthrough correction stage.
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Signal Background SBR Ag
Corrected 1.25 uv 19.25 uv 0.065 4°
Not corrected 1.41 pv 222.15 uv 0.0063 0.4°

Table 26 Comparison of the open loop homodyne measurement implemented with the
electronics circuit with the correction stage (correction) and without the correction stage (not
corrected).

A phase shift of several degrees between the feedthrough current and the
nanoresonator current is observed by independently measuring the output of the
correction stage and the nanoresonator (using the two TIA inputs shown in Figure
4-31). The delay is likely due to the limit of ideal operation of the AOPs used in
these stages.

In conclusion, the readout electronic shows its capabilities to drive and detect the
nanoresonator as well as to correct the feedthrough current. However, due to several
issues, such as the instability of the actuation stage and the delay of the correction
stage, a closed-loop operation cannot be implemented. Therefore, the architecture
of the oscillator needs to be redesigned. However, efforts have been focused on
minimizing the feedthrough capacitance, especially in the silicon design by
proposing a push-pull actuation where differential actuation should cancelled the
feedthrough current.
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5 Towards next generations of
resonant accelerometers

As explained in section 1.3.3, sub-pg resonant beam accelerometers suffer from
single-layer trade-offs between noise density, bandwidth and footprint. The
objective of this work is to overcome this trade-off by using two active layers. The
experimental results presented in chapter 4 showed the proof of concept of the
accelerometer, especially through the highest sensitivity of the state of the art
(100,000 ppm/g) obtained with a small mass footprint (0.18 mm?). This made
possible to address at the same time a large bandwidth and a low noise. The PSD
of Figure 4-18 (b) highlights the high-Q accelerometer is dominated by a noise
density of 1.75 pg/v/Hz under 1kHz-bandwidth. Figure 5-1 compares these results
to those of single layer accelerometers. Although the first generation of Nano-beam
Resonant Pendulum-Accelerometer (NRPA-gen1) does not surpass the resolution-
bandwidth trade-off set by [52], it does reach the resolution-footprint trade-off set
by [55]. Therefore, it achieves the best FOM,,, (Table 27) defined in Eq. 1-2,
opening the field to extend the sub-pg resonant beam accelerometer to larger
applications. Leveraging the results and experience gained with the first-generation

accelerometers, this chapter aims at discussing the perspectives of improvement of
nano-beam resonant accelerometers.
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Figure 5-1 Representation of the trade-offs of sub-pg resonant beam accelerometers. (a)
Resolution-bandwidth trade-off held by DETF-2019. (b) Footprint-resolution trade-off held

by VBA-2019 and achieved by the first generation of nano-resonant beam accelerometer
(NRA-2018).

Noise Bandwidth Footprint
Ref & Type (ug/VHZ] [Hz] [mm?] FOM,,,;
[110] Miani at al. NRPA-genl 1.75 1000 0.18 3174
[55] zaho at al VBA-2019 0.098 5 >1 51
[52] Han atal. DETF-2019 0.18 500 35 79

Table 27 Comparison of the state of the art of sub-ug resonant beam accelerometers and the
first generation of nano-beam resonant accelerometer.
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5.1 Mode-decoupling solution

The main drawback of the first generation of accelerometers is mode coupling, as
it significantly reduces the frequency operating range by unlocking the closed-loop
resonance frequency, as shown in Figure 4-25. The acceleration range is then
reduced in the frequency range between two coupling modes. In this subsection, a
mechanical decoupling structure is presented to avoid the coupling effect.

Figure 5-2 summarizes the principle of the mode coupling. The coupling is
represented by two damped spring-mass systems coupled by a stiffness k. in the
Figure 5-2 (a). The first system represents a MEMS mode of the accelerometer. The
second system represents the first in-plane mode of the nanoresonator. Figure 5-2
(b) illustrates the coupling of the nano-beam resonant accelerometer: the
transduction path (solid line) shows the transformation of the applied acceleration
y to axial stress o on the nanoresonator bending stiffness k, (o). The dotted line
represents the path that maintains the bending motion of the nanoresonator x,
thanks to an actuation force F,. The nanoresonator is driven at its resonance
frequency « k, (o). The coupling path (dashed line), through the stiffness k.,
induces the movement of the MEMS mode x; according to the motion of the
nanoresonator x,. This has an impact on the nanoresonator as illustrated in graph
(c) which plots the frequency response of the nanoresonator (x,/F,) as a function
of the applied acceleration. Here, the nanoresonator resonance is close to the
coupling frequency and the stiffness k.. is sensitive to this coupling (k. # 0). Under
these conditions, the nanoresonator frequency response is not Lorentzian anymore,
so the methods employed to track the resonance frequency are not valid for this
range of frequencies.

o Acceleration
(b) [y Sva ky (0)
Accelerometer  Coupling : Nanoresonator (¢) —1 0 41
------------- ----------- {rape{r]
(5]
=
F. F. =
(a) kl ! kc ’ k2 g;
A A A N g 0.1
N1 2 —E—§ X2/ Fy
1 X X, C2 % 1 2

Relative frequency

Figure 5-2 Principle of the mode coupling between the resonance modes of the
nanoresonator and the MEMS accelerometer. The damped spring mass model (a) describes
the mechanical problem of coupling. The schematic (b) represents the different elements
involved in the coupling phenomenon. The graph (c) illustrates the frequency response of
the coupling model as a function of acceleration.
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5.1.1 Presentation and modelling of the decoupling

mechanism
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Figure 5-3 Principle of the decoupling solution between the resonance modes of the
nanoresonator and the MEMS accelerometer. The schematic (a) represents the different
elements that act during the decoupling phenomenon. (b) A damped spring mass system
(with coefficient k., c. and m,) models the mechanical solution of decoupling.

The main issue of the coupling between the nanoresonator and the MEMS structural
modes is that there is a large amount of MEMS modes within the working frequency
range of the nanoresonator, and it is difficult to identify which MEMS modes are
receptive to the actuation of the nanoresonator (k. # 0). The proposed solution is
to control the stiffness coupling by implementing a mechanical decoupling
structure. Figure 5-3 (a) shows that this mechanical structure acts as a low-pass
filter that prevents the nanoresonator actuation F, from driving the structural mode
x; through the motion of the nanoresonator x2. Figure 5-3 (b) represents this
mechanical structure added to the damped spring mass system used to describe the
coupling phenomenon. Here, the damped spring mass system 1 (in red) represents
the MEMS mode coupled to the nanoresonator. The damped spring mass system 2
(in blue) represents the in plane mode of the nanoresonator. The system “c” (in
black) represents the decoupling mechanical structure. The decoupling mechanical
structure consists in a damped spring mass system of mass m., spring k. and
damping coefficient c., in addition to two springs that are added to connect the
mechanical decoupling structure to systems 1 and 2, respectively k., and k.,. The
objective is to be able to adjust the cut-off frequency f, of the low-pass filter in
order to make the filtering operate in the targeted bandwidth. Here the designer
controls the cut-off frequency through the design of the mass m, and the flexible
elements k. k., and k.. The tuning of the parameters of the mechanical
decoupling structure requires special attention. The general strategy is to design a
decoupling mechanism that allows a coupling between the MEMS and the
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nanoresonator at the range of frequencies of the acceleration, but decouples them at
higher frequencies. Figure 5-4 represents the transfer function (x,/F,) of the
coupled nanoresonator as a function of the acceleration, extracted from the solution
of the coupled equations of the global system of Figure 5-3 (b) (described in
Appendix C). In this system with three inputs (F;, F., F,) and three outputs
(x1, x¢, x2), only the output of interest (x,) as a function of the input of interest (F,)
is plotted. Figure 5-4 (a) shows the frequency response of the nanoresonator
coupled to a structural mode of the accelerometer, when the cut-off frequency £, is
a decade higher than the operating frequency of the nanoresonator £, (y). Here, the
frequency of the MEMS mode f; is equal to the frequency of the nanoresonator
mode f,(y = 0) as in Figure 5-3 (c). Thus, the shift of the nanoresonator’s
resonance frequency due to acceleration cannot be measured properly. In contrast,
Figure 5-4 (b) shows the frequency response of the nanoresonator, with the MEMS
mode of the accelerometer such that f; = f,(y = 0), but for a cut-off frequency f
a decade lower than the operating frequency of the nanoresonator f£,(y). In this
configuration, the MEMS mode is not actuated anymore, and the frequency
response of the nanoresonator recovers its Lorentzian shape. Thus, the shift of the
nanoresonator’s resonance frequency due to acceleration can be properly measured.

In conclusion, the first requirement for the mechanical decoupling structure to work
Is to set its cut-off frequency at list a decade lower than the frequency range of the
nanoresonator to be sure that all of the MEMS structural modes are filtered out.
However, this is not a sufficient condition. In order not to add new sources of
coupling, it is important to consider the internal dynamics of the mechanical
decoupling structure. Each flexible elements (k., k.4, kc2) must be tuned to avoid
that their modes also cross the operating frequency range of the nanoresonator. An
example is implemented in the next subsection.
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Figure 5-4 Working principle of the mechanical decoupling structure. The resonance
frequency of the MEMS mode is represented by the f; line. The resonance frequency of the
nanoresonator’s in-plane mode by f,(y), where y is the applied acceleration. The cut-off
frequency of the mechanical decoupling structure is represented by the f. vertical line. (a)
Nano-resonator response (x,/F;) when f. > f,(y): mode coupling is not avoided. (b)
Nanoresonator response (x,/F;) when f. < f,(y): mode coupling is avoided.
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5.1.2 Implementation

The implementation of the mechanical decoupling structure is performed for the
pendulum accelerometer structure presented in Figure 5-5 (a). Its equivalent
damped spring-mass system is presented in Figure 5-5 (b). Here, the mechanical
decoupling structure consists of a small test mass (m,) supported by bending beams
(ks,) and connected to the lever arm by a compression beam (k.;). In the spring-
damped mass system that represents the nanoresonator (Figure 5-2 (a)), k,
represents the bending stiffness of the resonant beam. In the spring-damped mass
system that represents the accelerometer, the nanoresonator is represented by a
compressive stiffness k,, (# k,) that is clamped to the mechanical decoupling
structure. l.e. the spring that connects the mechanical decoupling structure to the
nanoresonator is considered as infinite (k., — ).

Figure 5-5 Implementation of mechanical decoupling structure for the pendulum
accelerometers. The transduction of the accelerometer is similar to the first generation of
devices: the proof mass m, is coupled to a lever arm L/l and the hinges are represented by
their rotating stiffness C,. The motion of the proof mass is represented by x; and the
acceleration force by F;. The axial force on the nanoresonator is represented by F, and its
displacement by x,.
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The design of a mechanical coupling structure must take into consideration two
effects induced by this structure on the accelerometer. The first one is the need to
have a correct operation of the structure, i.e. to set the cut-off frequency and the
internal dynamics of the structure. The second one, discussed in section 5.2.2, is the
impact of the mechanical coupling structure on the global stiffness of the
accelerometer K., = F;/x,. In other words, the mechanical coupling structure
reduces the sensitivity of the accelerometer and increases its bandwidth, by
increasing K. Itis therefore important to find a trade-off between the operation of
the mechanical decoupling structure and not increasing the global stiffness of the
accelerometer too much.

For the pendulum accelerometer architecture, the global stiffness of the
accelerometer is

2 kcl(krz + kfz)
. Koy + kg + kg [N 5-1
eq — x_z 12 "

Cp + 1

m

The details of the calculation are explained in Appendix D. In practice, k., is the
compressive stiffness of the coupling micrometric beams, kg, is the bending
stiffness of micrometric beams of the decoupling structure and k,, is the
compressive stiffness of the nanoresonator. In order to minimize the impact of the
mechanical decoupling stage, i.e. to reach the equivalent stiffness of the first
generation of pendulum accelerometers (Eq. 6-18), the most optimal way is to
maximize the stiffness in series with the nanoresonator k., > k,., and to minimize
the stiffness in parallel with the nanoresonator k.., > kg,. In other words:

3 sz 5
kip > ke o L > [, L [m]
r2 5-2

S
key »kp, © 14K — L, [m]
SrZ

where Sg,, S¢1 and S, are respectively the cross section of the beams associated to
the stiffness k¢, k., and k., respectively. In this way Kz, = (Cy + [?k,,) /L2,
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The cut-off frequency of the mechanical decoupling structure can be evaluated from
the equivalent stiffness of the structure, i.e. k,,, ks, and k., in parallel, and the
mass of the structure m,:

A ——— [rad] 5-3

~ — X
m, kc1>kr2>krr | My /L%nzlcl

Where L,,, is the length of the square mass m,. Here, the cut-off frequency of the
mechanical decoupling structure can be set by the flexible element k., in addition
to the proof mass m,. In a first approach, the internal dynamics of the mechanical
decoupling structure consist in bending modes of the flexible elements associated
t0 kfp and kq:

jkfz + kyz + keq ka 1
(1)2 =

k
f.cl
We1 = mos [ E [rad]
) 5-4
k 1
a)fz = f.12 X TR [rad]
L me U

where kf 4 and m; are respectively the bending stiffness and the effective mass
of the beams associated to k., while k¢ s, and my, are respectively the bending
stiffness and the effective mass of the beams associated to k. In practice, for the
second generation of nano-beam accelerometers, the operating frequency range of
the nano-resonator is chosen from 10 MHz to 20 MHz. Thus, the cut-off frequency
must be close to w,/2m =1 MHz. As the operating frequency range must be free
of the internal resonance modes of the mechanical decoupling structure, it is
appropriate to anticipate the harmonics of the flexible elements k., and kg, by
imposing the conditions wy /2T wg,/2m > 20 MHz. To minimize the stiffness in
parallel with the nanoresonator and maximize the stiffness in series with the
nanoresonator, it is effective to fix the beam widths at their minimum wy, = w¢; =
1 um. The thickness of the micrometric layer is fixed by the fabrication process to
tr, = teg = 20 pm. Depending on the chosen nanoresonator, which sets [, and
Sy2, the requirements of the mechanical decoupling structure (Eq. 5-4), can be
achieved by tuning the lengths ¢, and [,. In addition, the cut-off frequency can be
defined separately by setting the proof mass length L,,, (Eg. 5-3). A design
proposal that meets the requirements of the mechanical decoupling structure,
especially adapted to a nanoresonator with [., = 10.5umand w,, =t,, =
250 mn, is Ly, = 70 um, ly, = 20 wm and Iy = 20 ym. Table 28 compares the
analytical modelling of the dynamics of the mechanical decoupling structure for
this specific design with FEM simulations.
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w3 Wcq Wgrr

Analytical 4.36MHz 22MHz 22MHz
modelling
. FEM 4.11MHz 21.5MHz 21.12MHz
Simulations
Mode Shape

|

Table 28 Internal dynamics (resonance modes) of the mechanical decoupling structure
designed for the pendulum accelerometer.

The mechanical decoupling structure has a drawback. Indeed, to achieve
wg,/2m>20 MHz, the minimum length of 20 pm results in kg, = 422 N/m that is
not much lower than k,, =1 kN/m. In other words, part of the acceleration energy
is consumed as strain energy in kg,. To match k.; > k,, and w,/2m ~ 1 MHz it
is easier to set w.,/2m > 20 MHz. With ., = 20 uym, k., = 169 kN /m which is
much higher than k,,. In practice, no deformation energy is consumed in k.,. In
the whole accelerometer, the k., and k,, springs are represented by two beams in
compression and the kg, springs are represented by 2 x 4 flexural beams. In this
way:

( Eweiteq

k. =2 =338kN/m
lcl
Ew.,t
) kyp = 2% = 1965 N/m 5.5
r2
AEwW3 t
f2tr2
kr, = ZT = 3380 N/m
\ f2

Then, from Eq. 5-1, we obtain that the equivalent stiffness of the accelerometer K,
is 2.3 time superior to the ideal equivalent stiffness Kz, = (Cy, + 1%k.;)/L?. In other

words, the mechanical decoupling structure costs half the sensitivity. However, this
cost is necessary and overcomes the limited acceleration range of the nanoresonator
due to mode coupling.

K., - decoupling K, - no decoupling
215N/m 0.93N/m

Table 29 Comparison of the equivalent stiffness for a pendulum accelerometer with a
mechanical decoupling structure and the ideal case corresponding to the same accelerometer
without mechanical decoupling structure.
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5.1.3 FEM simulations method

In order to validate the operation of the mechanical decoupling structure, the
method based on FEM simulations [presented in section 4.2.4.2] is implemented to
identify the coupling modes in the designs of the second generation of pendulum
accelerometers. The results of the FEM simulation method are presented in Figure
5-6.

Figure 5-6 (a) shows a plot of the frequencies as a function of acceleration of all the
resonance modes of the accelerometer between 9 MHz and 21 MHz. The MEMS
modes are shown as black dotted lines and they are not dependent on the
acceleration. The density of modes in this frequency range is significant.
Nanoresonator modes are represented by blue and red lines. Because the
nanoresonator modes are acceleration-dependent, they intersect with all the MEMS
modes in the frequency range at some value of acceleration. The risk of mode
coupling is then important.

However, the relative modal mass of the left nanoresonator (blue line), presented
in Figure 5-6 (b), shows that there is no coupling mode from 9 MHz to 20 MHz, as
intended by the design of the mechanical decoupling structure. This is an
encouraging sign of the effectiveness of the mechanical decoupling structure. The
relative mass modal highlights a coupling of two modes at 20.3 MHz and 9.3 MHz.

Figure 5-6 (m1.1) shows the modal deformation, calculated by FEM simulations,
of the 20.3 MHz when the in-plane mode of the nanoresonator is far from the
coupling frequency. From the mode shape, it can be deduced that it is a combination
of the torsion modes of the mechanical decoupling structure around the two in-plane
axis (X and Y). Figure 5-6 (m1.2) shows the modal deformation of the 20.3 MHz
when the in-plane mode of the nanoresonator is close to the coupling frequency. In
this configuration, the MEMS mode shape has the shape of the in-plane mode shape
of the nanoresonator, which is representative of the mode coupling. Figure 5-6
(m2.1) and (m1.2) represent the modal deformation of the 9.3 MHz mode when the
nanoresonator’s in plane mode is respectively far from and close to the coupling
frequency. Here the MEMS mode is the torsion mode of the mechanical decoupling
structure around the out-of-plane axis (Z).

In conclusion, the mechanical decoupling structure is able to reject the mode
coupling between the MEMS modes and the nanoresonator’s in-plane mode.
However, the internal dynamics of the mechanical decoupling structure needs
further modal analysis in order to predict the main mode of the structure. The next
step is to experimentally verify the operation of the mechanical decoupling
structure, which will be the subject of future research.
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Figure 5-6 Study of the mode-decoupling structure using the FEM method for second
generation of pendulum accelerometers. (a) Frequencies as a function of the acceleration of
the MEMS and nanoresonator modes. (b) Relative modal mass as a function of frequency
of the in-plane nanoresonator mode. (m-x.1) Shape of the corresponding MEMS mode when
the nanoresonator mode is far from the coupling frequency and (m-x.2) when the
nanoresonator mode is close to the coupling frequency.
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5.2 Design of the second generation of
resonant accelerometers

In this subsection, new designs of nano-beam resonant accelerometers are
presented. Each design implements the mechanical decoupling structure to avoid
mode coupling in the frequency operation of the nanoresonators. The designs aim
at overcoming the issues encountered in the characterization of the first generation
of accelerometers and addressing other applications beyond high-bandwidth
accelerometers. These designs were implemented in a second layout and they will
be fabricated with two variants of nanolayer thickness (250 nm and 500 nm) to
compare wider nanoresonator advances, which is one of the goals of the batch.

As a reminder, the first generation of accelerometers is based on a pendulum
architecture. These accelerometers take advantage of the lever effect achieved by
hinges, which allows addressing a mass with small footprint. The use of a small
mass allows addressing 1 kHz-bandwidth applications and the lever effect ensures
a high measurement stability close to 1 pg. To improve this measurement stability,
it is more difficult to design a large-mass sensor with a pendulum architecture. This
is because the lever arm is proportional to the mass footprint that also acts out of
plane: a large test mass causes a large out-of-plane deformation, which may cause
the out-of-plane stoppers to be reached and prevent in-plane operation. In addition,
the pendulum architecture has shown sensitivity to shear deformation induced by
the package stress (Section 4.2.4.1). This makes it a poor candidate for harsh
environments, requiring a costly integration of temperature-compensation
electronics to avoid thermal drifts. The objective for the second generation of
designs is to improve the robustness of the sensors to thermal drifts and their cross-
axis sensitivity. In this way, two new accelerometer architectures are proposed to
reach both lower measurement stability (<1 pg) and higher bandwidth (>1 kHz).

As a reminder, the first design of the nanoresonators is based on the thinnest cross-
section allowed by the manufacturing process (250 nm x 250 nm) in order to
achieve the highest sensitivity of the accelerometer. However, the reduction of the
nanoresonators width reduces its dynamic range and thus that of the accelerometer.
The piezoresistive transduction of these nanoresonators is not optimized and their
electrostatic actuation induces a problematic feedthrough current. Moreover, for
nanoresonators with a high quality factor (Q, > 4000), the critical amplitude
before nonlinearity imposed a rather low output voltage of the nanoresonator
(Vinax < 10 pV). The objective of the second design of the nanoresonators is to
improve the piezoresistive transduction in order to reach their detection limit and
to implement a push-pull actuation to avoid the feedthrough current. In addition,
the dynamic range of the nanoresonators is improved by increasing their cross-
section and pinned anchors are proposed to increase the critical amplitude of
vibration before non-linearity.
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5.2.1 Second generation of nanoresonators

In order to be consistent with the first generation of nanoresonators, the new designs
target the same operating frequency (20 MHz) and are equipped with a push-pull
actuation architecture.

The first nanoresonator, called RCGC-250 for Resonator Clamped-Gauged-
Clamped 250nm, is presented in Figure 5-7 (a). This version is based on the same
geometry as the first generation: the resonant beam width and length are
respectively w, = 250nm and L, = 10um, that ensures a 20MHz-operation
frequency. But here, the piezoresistive transduction is improved through the
transduction gain ns by reducing the length of the beam-end to L,=500 nm. As
detailed in section 3.1.2, the optimum design of 250 nm-wide nanoresonators is to
use a nanogauge length and width of respectively L, = 875 nm and w, = 250 nm.
However, Figure 5-7 (a) shows the critical dimension of the nanogauges length
(Lg,min)- Here, the beam-end optimisation (L, = 500nm), is sufficient to reach the
detection limit of the nanoresonator fixed by thermomechanical noise, as detailed
in Table 30. Reducing the beam-end length has several benefits: the transduction
gain is doubled and the Johnson noise is reduced, improving the minimum
measurable strain o,,;, .. Moreover, the effective length of the nanoresonator («
L, + L;) is reduced, thereby increasing its buckling stress (o3,c)- In conclusion,
the dynamic range (X oyyck/Omin ) 1S improved but the critical amplitude before
nonlinearity is not improved. This nanoresonator represents an intermediate
optimisation step, sharing some features with both generations of accelerometers in

order to study the optimizations separately.
Pinned (b)
anchor

Push-pull
actuation

Clamped
anchor
RCGC-250

Figure 5-7 Second generation of nanoresonators with a beam width of 250 nm. The
nanoresonators are composed of piezoresistive nanogauges (wg,Lg Ly =
(250 nm, 2 pym, 500 nm), the resonant beam (w,, L,.)) = (250 nm, 10 um) and push pull
actuation. (a) Design of a clamped nanoresonator. (b) Design of a pinned nanoresonator
with a pin anchors size of (L,in, Wpin) = (1 pm, 500 nm).

RPGC-250
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The first variant focuses on the pin anchor: the RPGC-250, for Resonator Pinned-
Gauged-Clamped 250nm, has the same geometry as the RCGC-250 but the anchor
of the resonant beam (that is fixed to the proof mass) is pinned. Pin anchors have
been shown to improve the detection limit of nanoresonators, for instance in mass
spectrometry applications [111], [112], by increasing the critical amplitude arising
from nonlinearity. The principle is to add a degree of freedom (rotation) at the
anchors to push back the geometrical effects of spring hardening presented in
section 2.3.1. The pin anchors consist in not fixing the end of the resonant beam
directly on the proof mass, but in fixing the end of the resonant beam to two smaller
orthogonal beams, with length and width respectively L,;, and w,;,, themselves
fixed to the proof mass. These anchors are illustrated in Figure 5-7 (b). For
nanoresonators used as force sensors, the effects of pin anchors are more
complicated. This is because the frequency sensitivity to axial stress (S,,,) depends
on how the input force is distributed as axial stress in the resonant beam. In the case
of pin anchors, part of the input force is distributed in the bending deformation of
the pin anchors and part in the axial deformation of the resonant beam. Moreover,
as detailed in the modal analysis in section 2.2.2, the buckling stress depends on the
coefficient S, that comes from the boundary conditions. For pin anchors, the
buckling stress is higher than with clamped anchors. As a first approach, the
buckling stress and S, are calculated from FEM simulations. Based on CEA-LETI
team’s experience, the critical amplitude of resonant beams using pin anchors is
roughly twice the critical amplitude (v,,4,) Of resonant beams using clamped
anchors.

The second variant consists in increasing the nanoresonator width. The RCGC-500,
for Resonator Clamped-Gauged-Clamped 500 nm, is the first design of 500 nm-
width nanoresonator (w,, = 500 nm). For this specific design, the thickness of the
nanolayer must be increased to 500 nm, otherwise the out-of-plane buckling stress
would limit the dynamic range of the nanoresonator. In order to be consistent with
the 20 MHz-operation frequency, the length of the nanoresonator is adapted to L, =
15 wm. Here too, the piezoresistive transduction is improved through by setting the
beam-end to L,=500 nm, the nanogauges dimensions to w, = 250 nm and L, =

2 um. The possibility to reduce the nanogauge width to 250 nm with respect to a
resonant beam width of 500 nm allows improving the transduction gain n, by a
factor 2. By increasing the nanoresonator width, the critical amplitude before
nonlinearity is improved, as well as the minimum measurable stress oy, . In
addition the buckling limit is higher, thus the dynamic range is larger. An equivalent
pinned version (RPGC-500), for Resonator Pinned-Gauged-Clamped 500 nm, is
also implemented in order to compare the trade-off of using this type of anchor.
Figure 5-8 (a) represents the RCGC-500 and Figure 5-8 (b) represents the RPGC-
500.
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Figure 5-8 Second generation of nanoresonators with a beam width of 500 nm. The
nanoresonators are composed of piezoresistive nanogauges (wg,Lg L;) =

(250 nm, 2 pm, 500 nm), the resonant beam (w,., L,.) = (500 nm, 15 um) and push pull
actuation. (a) Design of a clamped nanoresonator. (b) Design of a pinned nanoresonator
with the pin anchors size of (Lpin, Wpin) = (1pm, 500nm).

Table 30 compares the expected performances of the second generation of
nanoresonators. Each nanoresonator reaches their detection limit (6, < Gmin,br)
thanks to their optimized piezoresistive transduction. Increasing the nanoresonator
width improves both the buckling stress and the detection limit imposed by the
thermomechanical noise of the nanoresonator (o, 5-). The pinned anchors
increase both the critical amplitude before non-linearity and the buckling stress.

R-vl**  RCGC-250 RPGC-250 RCGC-500 RPGC-500

S../2m [Hz/Pa]  0.041 0.044 0.04* 0.02 0.02*
Ominy |Pa/VHz]  18.39 7.08 35 2 1
Ominor [Pa/VHZ] 8.3 8.3 4.15 3.35 1675
O min [PA/VHZ] 20 10.9 5.45 3.92 1.96
Omax IMPa] 207 207 252% 488 596*
DR [dB] 140 145 153 161 169

Table 30. Comparison of the second generation of nanoresonators. The performances are
calculated from analytical modelling with fixed parameters: Q,. = 2000, ops = —150MPa.
For the pinned version, the critical amplitude before nonlinearity is considered as twice the
clamped one. The maximum allowable stress consists of the pre-stress in addition to the
buckling stress o,,qx = Gpuck — Fps- *FoOr the pin anchors, the buckling stress and S, are
calculated from FEM simulations. ** Analytical model of first nanoresonator (hamed R-v1)
from Table 8

In conclusion, the four new nanoresonator designs can be compared with each other
and with the previous nanoresonator design. The objective is to quantify the gain of
the piezoresistive optimization, the nanoresonator enlargement and the pin anchor.
In the next subsection, three new accelerometer architectures are presented. Each
of them will be adapted to the use of each new design of nanoresonators
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5.2.2 Second generation of accelerometers

In addition to improving the operation of the high-sensitivity accelerometer, the
second generation of accelerometers is focused on addressing different
applications. The second fabrication batch includes three different accelerometer
architectures. Each design incorporates the mechanical decoupling structure of
section 5.1.

Among the architectures, there are the second-generation pendulum
accelerometers, called Nano-Resonant beam Pendulum Accelerometer (NRPA-
gen2). These accelerometers take advantage of a lever effect that allows them to
address small footprints, 1 kHz bandwidths and low noise level, but suffer from
increased thermal sensitivity. This type of architecture is a good candidate for
inertial sensor requiring high-integration and high-performance

The second design, called Nano-Resonant beam Translation Accelerometer
(NRTA-gen2) consist in using the movement of a mass in translation, without
amplification effect, to compress the nanoresonator. In fact, this architecture offers
a low sensitivity, thus a high bandwidth and high full-scale at the expense of
degraded noise level. However, it is a promising architecture for accelerometers
requiring bandwidths larger than 10 kHz such as vibration measurement, where it
can offer a good noise level compared to similar devices in the state of the art.

The third design, called Nano-Resonant beam Lever arm Accelerometer (NRLA-
gen2) consist in using the movement of a mass in translation, with amplification
effect, to compress the nanoresonator. Unlike the pendulum accelerometer, this
architecture is suitable for large proof masses and allows addressing high-
sensitivity accelerometers. The use of a nanoresonator allows maintaining a proof
mass footprint lower than 1 mm?, which allows keeping a wide bandwidth (>500
Hz). These accelerometers are candidates for very high-resolution applications such
as seismometers.
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5.2.2.1 Pendulum accelerometer (NRPA-gen2)

Figure 5-9 shows the architecture of the second generation of the pendulum
accelerometer (NRPA-gen2). The accelerometer consists of a rotating proof mass,
mechanical decoupling structures and nanoresonators. The proof mass is suspended
by hinges and connected to the mechanical decoupling structure by a compressive
beam. The mechanical decoupling structure is guided in translation by bending
beams. Here, the mechanical decoupling structure has the advantage of transmitting
only an axial compression to the nanoresonator where the first generation also
induced a rotation. In this way, the mechanical decoupling structure is also useful
to reject transverse sensitivities. In addition, the mechanical decoupling structure
can be used to set a maximum allowable axial stress in the nanoresonator when the
rotating mass reaches the stoppers, in other words, taking advantage of the decrease
of sensitivity caused by the mechanical decoupling structure to protect the
nanoresonator. Four version of NRPA-gen2, with the same proof mass, are adapted
to the four types of nanoresonators. Table 31 compares the expected performances
of these accelerometers. Such accelerometers take advantage of 500 nm-
nanoresonators dynamic range to increase their full scale.

RCGC-250 RPGC-250 RCGC-500 RPGC-500

Scale Factor [MPa/g] 12 9.2 5.6 4.6
Full scale* [g] + 13 + 10 + 50 + 50
Noise [ug/VHz] 0.9 0.59 0.7 0.42
Bandwidth [kHz] 2 2 2.4 2.4

Table 31. Comparison of NRPA-gen2 relying on various hanoresonator designs. * Full scale is
limited by half the buckling stress ( greater than scale factor nonlinearity)

Compressive beam

Rotating
Proof mass : Nanoresonator |

Mechanical
decoupling
structure

G—

N

/

Bending beams

Figure 5-9 Second generation of pendulum accelerometer. The proof mass under
acceleration rotates by means of hinges. The rotation is transmitted as a translation to the
decoupling stage which transmits it in compression to the nanoresonators.

145



5.2.2.2 Translation accelerometer (NRTA-gen2)

Figure 5-10 shows the architecture of the translation accelerometer (NRTA-gen2).
This accelerometer consists of a translational proof mass, mechanical decoupling
structures and nanoresonators. The proof mass is held by a guiding structure and
connected to the mechanical decoupling structure by a compression structure. Here,
the compression and the guiding structures are made of flexural folded beams.
These beams are particularly good at rejecting the effect of unwanted disturbances
on the nanoresonator, such as shear deformation, thermal expansion, or transverse
sensitivity. Because this architecture does not benefit from the lever arm effect, it
can address a large full-scale acceleration. The small proof mass (<1 mm?)
guarantees a large bandwidth (>10 kHz). It is a candidate for vibration applications
that require immunity to repetitive shocks, insensitivity to temperature
environments and a flat frequency response from DC to 10 kHz. Table 32 compares
the expected performance of these accelerometers adapted to the second generation
of nanoresonators.

RCGC-250 RPGC-250 RCGC-500 RPGC-500

Scale Factor [MPa/g] 0.35 0.3 0.17 0.15
Full scale [g] + 380 + 400 + 2500 + 2500

Noise [ug/VHz] 31 18 23 13

Bandwidth [kHz] 10 10 25 25

Table 32 Comparison of NRTA-gen2 relying on various nanoresonator designs.
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Figure 5-10 First generation of translation accelerometers. The proof mass under

acceleration is guided by means of translation beams. The translation is transmitted to the
decoupling stage which transmits it in compression to the nanoresonators.
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5.2.2.3 Lever arm accelerometer (NRLA-gen2)

Figure 5-11 shows the architecture of the first generation of the lever arm
accelerometer (NRLA-gen2). The accelerometer consists of a proof mass in
translation, lever arm mechanisms, mechanical decoupling structures, and
nanoresonators. The proof mass is guided by translational structure and connected
to the lever arm mechanism by a connecting structure. The lever arm mechanism
consists of an arm rotated around hinges and connected to the mechanical
decoupling structure by a compressive structure. Guiding structure, composed of
bending folded beams, are ideal to reject shear deformations, additionally the
connecting structure helps reduce transverse sensitivity. Because this architecture
benefits from the lever arm effect, it allows addressing high-resolution applications.
In addition, the small mass footprint (<1 mm?) due to the use of nanoresonators,
allows to address a bandwidth higher than 500 Hz. These characteristics make
NRLA-gen2 a good candidate for high-resolution applications in harsh
environments, such as seismometers. Table 33 compares the expected performance
of these accelerometers adapted to the second generation of nanoresonators.

RCGC-250 RPGC-250 RCGC-500 RPGC-500

Scale factor [MPa/g] 50 42 29 24
Full scale * [g] +2 +2 +5 +5
Noise [ug/VHz] 0.21 0.11 0.14 0.08

Bandwidth [kHz] 750 Hz 750 Hz 950 Hz 950 Hz

Table 33 Comparison of NRLA-gen2 relying on various nanoresonator designs. * Full scale is
limited by half the buckling stress (greater than scale factor nonlinearity). The version RCGC-
250 and RPGC-250 take advantage of 125 lever arm ratio whereas the version RCGC-500 and
RPGC-500 take advantage of 85 lever arm ratio. The FEM simulation highlights the
compressive beams consumes a part of the inertial energy as strain energy. This loss is take
into account in the analytical modelling presented on this Table.

Compressive beam | | Mechanical
decoupling
structure

Translation
beams

Bending beams| |Nanoresonator

Figure 5-11 First generation of lever arm accelerometer. The proof mass under acceleration
is translated by means of translation beams. The resulting force is amplified by lever arm
effect. The amplified force is transmitted to the decoupling stage which transmits it in
compressive stress in the nanoresonators.
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In conclusion, the main characteristics of the second generation of accelerometers
are compared to the first generation of accelerometer (NRA-2018) in Table 34. To
be consistent with NRA-2018, only the versions with the RCGC-250
nanoresonator are mentioned. In addition to the different targeted applications
(determined by the bandwidth and noise targets), the dynamic range of the second
generation is higher because the improved nanoresonator allows reaching the
detection limit of the nanoresonator (o, »,-) and because the decoupling stage
allows using a larger frequency range (coupling mode are rejecting from 10 MHz
to 20 MHz), thus acceleration range.

NRPA-genl1 NRPA-gen2 NRTA-gen2  NRLA-gen2

Sensitivity

[MPa/g] 20 12 0.35 50
Bandwidth 1.000 2.000 10.000 750
[Hz]
Noise
1.75 3 13 0.5
[Ho/VHZz]
Full scale [g] 0.5 13 380 2
Dynamic
range [dB] 109 133 131 132

Table 34 Comparison of the main performance of the nano-beam resonant accelerometer. The
NRPA-genl shows experimental results that considers coupling phenomenon in the full scale
whereas the second generation of accelerometer considers analytical modelling. Here, the
dynamic range of the accelerometer is less than the dynamic range of the RCGC-250, because
the proof mass stoppers are set before reaching the buckling stress.

In order to begin a more in-depth analysis of the accelerometers, several
simulations, detailed in Appendix D, were performed to benchmark the designs.
The first simulation evaluates the sensitivities of the transverse axis in-plane (cross-
axis Y) and the transverse axis out-of-plane (cross-axis Z) by comparing them to
the sensitivity of the accelerometer. The results are expressed as a ratio between
both sensitivities in Table 35. The second generation of accelerometer is less
sensitive to cross-axis due to the mechanical decoupling stage that is designed to
transmit only the axial strain to the nanoresonator in addition to the use of folder
beams for guiding proof mass.

NRPA-genl NRPA-gen2 NRTA-gen2 NRLA-gen2

Cross-axis Y

[% Sensitivity] 3.14 0.00006 0.0015 0.0014
Cross-axis Z
[% Sensitivity] 3.14 0.00023 0.00075 0.00044

Table 35 Comparison of the cross-axis sensitivity ratio of the nano-beam resonant
accelerometers, simulated by FEM.
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Since the nanoresonator has a low buckling limit due to its nanoscale size, in
addition to the pre-stressing phenomenon that reduces the allowable axial stress,
the protection of the nanoresonator is important. The second simulation consists in
evaluating the robustness of the nanoresonator against the motion of the proof mass.
Here, the simulation, detailed in Appendix D, consists in moving the proof mass
towards its 3-axis stoppers in order to evaluate the axial stress induced on the
nanoresonators. In the first generation of accelerometers, the stoppers in the X
direction are set to have a maximum allowable stress close to the buckling limit
(~250 MPa). Due to the high pre-stress, the second generation of sensors takes a
larger margin and sets the maximum allowable stress at ~150 MPa. The simulations
of the NRTA-gen2 show that a 20,000 g shock is needed to reach the Z stoppers,
and those on the NRPA-gen2 show that a shock of 5,000,000 g is needed to reach
the Y stoppers. Both values are due to the high stiffness of the mechanical structure
in these directions. Table 36 compares the maximum stress induced in the
nanoresonator by the maximum allowed proof mass motion.

NRPA-genl1  NRPA-gen2 NRTA-gen2 NRLA-gen2

X-stopper [MPa] 265 162 151 112
Y-stopper [MPa] 14 294 0.26 0.0005
Z-stopper [MPa] 0.16 7.9 184 1.5

Table 36 FEM simulations of the stress on the nanoresonator at the maximum displacement
of the proof mass, limited by the position of the stoppers.

The pendulum accelerometer (NRPA type) showed significant sensitivity to
temperature during the experimental characterizations. The most likely hypothesis
is that the thermal package stress induces a tilt of the proof mass, which induces
differential stress on the nanoresonators (such as in section 4.2.4.1). Here, we
perform FEM simulations, detailed in Appendix D, applying a shear deformation
and an increase in temperature to compare the impact on the different accelerometer
architectures. Because the accelerometers are based on a differential measurement
architecture, the differential stress on the nanoresonators is compared. Even with a
mechanical decoupling structure, the NRPA-gen2 shows sensitivity to shear
deformation. However, having a translational proof mass in both the NRTA-gen2
and NRLA-gen2 induces a better compensation of the thermal effect through the
differential measurement. In other words, the shear deformation induces a common-
mode stress when the proof mass is in translation. Table 37 compares the
compensation of thermal effects by differential measurements in the different
geometries.

NRPA-genl NRPA-gen2 NRTA-gen2 NRLA-gen2
AT = 100°C [% FS] 53.2 38 0.1 0.01
€xy = 100ppm [% FS] 0.5 0.35 0.78 0.61

Table 37 Comparison of the differential strain on the nanoresonators caused by thermal effect.
This strain is modelled using FEM simulations when submitting the accelerometer to
temperature variations or a shear deformation of the substrate. The differential
measurements are expressed as a fraction of the full-scale acceleration.
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Figure 5-12 Representation of the trade-offs of sub-ug resonant beam accelerometer. (a) the
resolution bandwidth trade-off. (b) the footprint resolution trade-off. Combination of both
trade-off are held by VBA-2017. The analytical modelling of the second generation of nano-
resonant beam accelerometer are compared to the state of the art.

In conclusion, the expected performances of the next generation of nano-resonant
beam accelerometers are illustrated in Figure 5-12and compared in Table 38 to the
resonant beam accelerometer that achieves the best FOM;,; [54]. The pendulum
accelerometer (NRPA-gen2) provides the best FOM,,,, making this type of
architecture an ideal solution for sub-pg accelerometers with high bandwidth and
small footprint. The VBA-2017 is also based on a pendulum architecture and
presents an interesting thermal robustness for this type of architecture that could be
the next evolution of the NRPA type.

Noise Bandwidth Footprint

el & Tvpe woiHz]  [Hz)  fmmg  FOMer
[110] Miani at al. NRPA-genl 1.75 1000 0.18 3174
NRPA-gen2 0.42 2400 0.3 19047
NRTA-gen2 13 25000 0.25 7692
NRLA-gen2 0.08 950 1 11875
[54] Kenny at al. VBA-2017 0.6 500 1 833

Table 38 Comparison of the analytical performance of the next generation of nano-resonant
beam accelerometers with the state of the art of sub-ug resonant beam accelerometers.

As a new approach, we could imagine a different implementation of a multilayer
process to achieve a resonant beam accelerometer. As demonstrated for NRPA-
genl and predicted for NRPA-gen2, the pendular architecture is the best candidate
to realize a sub-pg accelerometer with high bandwidth and small footprint.
However, the proposed pendular architecture suffers from high thermal sensitivity
due to the large amount of anchors (7 in total) required to realize the piezoresistive
transduction of the nanoresonator. An efficient solution to conserve the pendular
architecture and the resonant beam detection was developed in [54] and showed the
previous highest current FOM,,; in addition to being robust against thermal drifts.
This accelerometer is particularly robust against thermal fluctuations because the
proof mass and the two resonant beams are connected to a single anchor. Because
this accelerometer is based on a single-layer manufacturing process, the
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electrostatic transduction are both efficient due to the large capacitive area and
allows single anchor accelerometer. In contrast, in piezoresistive nanoresonators,
the nanogauges are mechanically linked to the resonant beam, which makes it an
inappropriate method for the single anchor. The nanoresonator has a poor capacitive
surface due to its nanoscale making it unsuitable for electrostatic detection. In order
to combine the use of a similar structure with the use of nanoresonators to overcome
the compromise of monolayers, it would be judicious to imagine an efficient
transduction at the nanoscale that would not mechanically affect the nanoresonators
and thus allow the implementation of a pendular accelerometer with a single anchor.
Optomechanical transduction has shown its capabilities in high precision
measurement of the nanoresonator [113]. Here the optomechanical transduction,
presented consists in a ring resonator that transduces 11 MHz-resonance frequency
of a nanobeam. The nanobeam has the similar dimensions (L Xw Xt =
5um X 160 nm x 220 nm) as nanoresonator used as force sensor , so it seems
realistic to use this transduction in the measurement of the nanoresonator resonance.
In addition, optomechanical transduction [17], [114], [115] has demonstrated the
capability to measure wide bandwidth signals. Therefore, an optomechanical
transduction could be a good candidate to measure the large frequency variation
induced by using the nanoresonator as a force sensor. However, the thermal stability
of silicon optical properties can be a challenge for optomechanical transduction and
requires feedback to operate in a temperature environment. In conclusion, it may be
appropriate to combine the accelerometer of Figure 5-13 (a) using a nanobeam
instead of a microbeam. In addition, the optomechanical transduction of Figure 5-13
(b) should be implemented for the transduction of the nanoresonator, as shown in
Figure 5-13 (c).

(a) e Proof Mass
ing Electrodes “(Logarithmic Spiral )

Angled trenc
allow greater motion‘z

| Spring Loaded Bump
| Stopwith Isolation

A ncapsulatlo =

Optomechanlcal
j transduction

Cap
== Device (
| Handle Wafer 2 j Elect tati
S— —— ; ectrostatic
=1 HV Spot| WD |Det|Mag Date HFW T
2KV 3 |6.7 mm|SE |65 x11/30/12, 15:041.9 mm actuation

Figure 5-13  Proposition of pendulum accelerometer using a nanoresonator and
optomechanical detection. (a) Pendulum architecture with a single anchor. Extracted from
[54] (b) Optomechanical transduction of a nanoresonator. Extracted from [113]. (c)
Proposed design, combining the pendulum architecture with an optomechanical detection.
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Conclusions

In this work, a novel bilayer concept for resonant MEMS inertial sensors was
presented and demonstrated for the first time with a single-axis accelerometer. This
approach enables the realization of resonant beam accelerometers with high
resolution, while keeping a large bandwidth and a small footprint thanks to the
coupling between a micrometic-size accelerometer with an ultra-sensitive
piezoresistive nanoresonator-based detection.

A first sensor design was performed by analytical modeling and FEM simulations.
A force-measuring pendulum accelerometer and a piezoresistive nanoresonator
were first studied separately and then combined to design the complete sensor. The
sensors were then fabricated with a 200-mm fabrication process in Leti’s clean
room, using the M&NEMS technology. Measurements were performed at chip level
in order to implement a proof of concept of in-plane accelerometer, and to validate
the analytical models. These first devices demonstrated the best sensitivity in the
state of the art, of 100,000 ppm/g, and a noise density of 1.75 pg/\ Hz over a 1 kHz
bandwidth, in a footprint of only 0.18 mmz2. A dedicated electronic oscillator circuit
was developed in parallel with the MEMS design, but issues in some individual
modules prevented us to demonstrate its full operation. Globally, the first
generation of devices show the advantages of the bilayer technology to
simultaneously achieve pg resolution, wide bandwidth, and a small footprint.

However, these first designs also highlight several issues related to the use of the
nanoresonators as force sensors, and of the pendulum architecture: (1) The high
vacuum level provided by the wafer-level packaging induces high quality factors in
the nanoresonator, and therefore a rapid apparition of nonlinearities. (2) A mode-
coupling phenomenon between the nanoresonator and the MEMS modes reduces
the dynamic range of the accelerometer. (3) The pendulum architecture showed an
important sensitivity to thermal drifts. For this reason, a new generation of
accelerometers that address these issues was designed and implemented in a
subsequent tape-out (the corresponding lots are being fabricated). These devices
present several advantages with respect to the first generation of designs: (1) while
maintaining a high thickness ratios between the two active layers, larger
nanoresonators with pinned anchors were designed to push the nonlinearities of the
nanoresonators and to reach their detection limit. (2) Mechanical decoupling
structures were developed to avoid mode-coupling phenomena. (3) Temperature
stability has been taken into account in the specifications of the new designs,
resulting in robust sensors against packaging-induced stress.
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6 Appendix
Appendix A

In a resonant beam accelerometer, the resonant beam is both the sensing element
and the mechanical actor of the entire structure. In order to be able to optimize the
design of the whole structure it is necessary to model the intrinsic behavior of the
resonant beam and its impact on the environment. For piezoresistive
nanoresonators, the mechanical transduction of the resonant beam motion into a
strain on the gauges is so far modelled using FEM simulation. Because it is an
expensive modelling, it is time consuming to optimize both the piezoresistive
transduction and the use of the nanoresonator as a force sensor for each
accelerometer design. Therefore, a closed form of the piezoresistive transduction is
proposed here to be implemented in the analytical modelling of the nanoresonator.

Because piezoresistive nanoresonator is here mainly used in its in-plane bending
mode and consists in an assembling of nano-beams, we develop here a tool for
assembling different 1D-elementary beam in order to study the static mechanical
behaviour of the whole structure. This model assumes that each beam constituting
the nanoresonator can be considered as ideal beams, i.e. that they have a sufficient
length to width ratio, and that each beam has similar dimensions, i.e. that we do not
model the assembly of a micrometric beam with a nanometric beam. A 1D
elementary beam is composed of two nodes named N, and N, to which are
associated (1) 3 degrees of freedom vy, ,, u ,, and 6, ,, corresponding respectively
to the translation perpendicular and parallel to the neutral fibre of the beam as well
as to the rotation of its cross section. (2) 3 reactions Ty, ,,, Fy ,, and M, ,, which are
respectively the reactions associated to the degree of freedom, namely the
transverse reaction, the compressive reaction and the reaction moment.
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Figure 6-1 Decomposition of the nanoresonator on elementary beam: the resonant beam is
decomposed in two element Ey; and E;,. The nanogauges are represented by E,; and E,,
and the beam end is represented by E,5. (inset) Description of the degrees of freedom and
associated reaction on a node.
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Because we looking for simple closed form of the displacement gain, we represent
the mechanical equilibrium of 1D-elementary beam in quasi-static regime under the
Bernoulli assumption:

(

i

0%u
YS— =0

0x?
VI 2%y B
dx*

& <
0

(u ((—1)k E) = Ug

v ((—1)" %) =v, pour k={12} 6-1

(Vx ((‘Dkg) = 0Ok

Where Y,S,Land | are respectively the Young modulus, the cross section, the
length and the quadratic moment of the 1D-elementary beam. By naming w, t and
L respectively the beam width thickness and length, we have S = wt and I =
w3t/12. Moreover u and v are respectively the beam’s displacement perpendicular
and parallel to the neutral axis.

The displacement vector of the 1D-elementary beam X (x) = {u(x), v(x),0(x)}
can be calculated in function of the characteristic length L and the degrees of
fFEEdom X = {ul, V4, 91, Uy, Uy, 62} . X(X) = A(X)X

1 x 1 x
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2L I3 L
We can then expressed the stiffness matrix K of the beam in the base X by using
the definition of strain energy V;,; and the elasticity matrix H [68]. As the same
manner we can express the load matrix in the base X by using the definition of

external energy V,,; and assuming axial load F = {0, f, 0}
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We can then express the mechanical equilibrium of an elementary 1D beam in a
matrix way F = KX. For the following, we name the mechanical equilibrium of the
element E12: F12 = KlZE

Using the 1D elementary beam stiffness matrix, the nanoresonator assembly can be
realized. To begin, we defined a projection basis where all degrees of freedom are
brought back. For simplicity, we use the base of the element E;,. Then, for each
element associated with E; ,, that is to say each element that shares the node N, and
N,, we associate a rotation matrix that allows us to express the reactions associated
with the blocked degree of freedom. From a matrix point of view this operation is
illustrated by the report of element E,5 in the base of E,,:
Fi; — KipX15 = T23F23 — 772,3K2T3 7T2T,3X_23 6-4

This operation is repeated for each element associated to E;, . The stiffness matrix
K of the nanoresonator element must consider the width, thickness and length
defined in Figure 6-1. l.e. considering the resonant beam length L, and w,. and the
associated ratio a, # and y.The final assembling stiffness matrix is K :

4twY 2twY

—_— 0 0 —_— 0 0
L L
16tw3Y 8tw3Y 2tw3Y
0 e 0 0 - —
0 0 4twdy 0 2twdy twdy
3L 12 3L
2twyY 0 2twyY + twY  2tw3vy? 0 0 6-5
L L La 1363
8twdy  2twdy 0 8tw3Y + tw3yY N 2twYy 2tw3yY + tw3Y
L3 12 I3 L3a3 LB 12 212a?
2tw3yY tw3Y 0 2tw3Y N tw3Y 2tw3yY N tw3y  2twdyy?
12 3L 12 212a? 3L 3La 3LB

The mechanic equilibrium of the reduced nanoresonator is then F;, = K,..X;, with
XT, = {uy,vy,0,u,,1,,0,}. The problem can be return by X, = Fj,Kjk.
Assuming that F;, results in a linear load on the beam, the transduction of the
displacement is n,, = v, /v,

A
Ny = (‘f‘v_:)z 3 6-6
With
4 B((11 + 52a + 41a?)B + 104a?y°)
2ay((8 + 192)8 + 16ay?) 6.7

B((2 + 19a + 73a* + 112a° + 56a*)B + 16a(1 + 14a%)y*)
B 2a3y((8 + 192) 8 + 16ay?)

B
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The closed form of displacement gain 7, is compared with FEM simulation in
Figure 6-2. ere, only 3 geometric parameters are swept in order to validate the
consistency of the analytical model over a specific geometric range. We fix the
resonant beam length L, = 10 wm and y = 1. Nanoresonator width w, are swept
from 250 nm to 750 nm. The Figure 6-2 (a) shows nanogauge length sweep from 0
pum to 2um. The analytical modelling has ratio two with FEM simulation. The
Figure 6-2 (b) shows beam-end length sweep from 0 um to 2um. The analytical
modelling is closed to FEM simulation for w,, = 250 nm but shows ratio 1.5 for
w, = 750 nm. Moreover, the optimal position of the gauge a,, has mismatch that

increase with the nanoresonator width.

However, for a 1D modelling with only 5 elements, the static behaviour of the
nanoresonator is close enough to the FEM simulations in our geometry range. It
will therefore be integrated into our model analytic to provide a tool for transduction
optimization (section 3.1.2).

This method could be applied to the assembly of resonators with pin terminations
for example. Moreover, the initial beam description (Eq. 6-1) could be completed
by a more precise description (Timoshenko [68]) and the number of elements could
be doubled to reach more precision.

However, this technique aims at improving the computation time for design
optimization tools. If the equation of closed form becomes too laborious, this
method loses its interest. This is why a dynamic analysis of the assembly has not
been developed to express for example a closed form resonance frequency of the
assembled nanoresonator.
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Figure 6-2 Comparison of the analytical model and FEM simulation of the displacement
transduction for several nanoresonator width (w,). The nanoresonator length is L, =
10 wm. The dash line represent the analytical model and the full line the FEM simulation.
(a) the B parameter (gauge length) is swept for ¢ = 0.15 and y = 1. (b) the a parameter is
sweptfor g =0.2andy = 1.
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Appendix B

In this section, the design strategy of the MEMS structure (section 3.1) is
developed.
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(1) Accelerometer parameters (1) Nanoresonator parameters
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Table 2 Analytical modelling of the optimisation of a nano-beam resonant accelerometer
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Appendix C

In this section, an analytical model and an FEM-based model are developed to
study the coupling of the nanoresonator mode. In addition, the analytical model of
the decoupling stage developed in the second generation of the accelerometer
(section 5.1.1) is developed.
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Coupling modelling
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Figure 6-3 Principle of the coupling between nanoresonator and structural mode. (blue) the
nanoresonator. (black) the coupling stiffness. (red) an MEMS mode coupled to
nanoresonator.

The coupling concept between the nanoresonator and the MEMS mode can be
modelled by two damped spring mass systems associated by a spring k.. Here the
first system represents the MEMS mode with m, its effective mass, k; its effective
stiffness and ¢, its damping coefficient. F; represents the force that drives the
effective mode and x, its natural displacement. Similarly, the second system
represents the nanoresonator with m,, its effective mass, k,, its bending stiffness and
c, its damping coefficient. F, represents the actuation force of the nanoresonator
and x, its flexural displacement. The system of Figure 6-3 can be calculated from

o)) (6 D)) )@= () e
(0 m)\5,) o & )\6,) T =k, K, +k, () = F) &8

Here, the problem is addressed with the state space approach discussed in [116].
The principle is to reduce two second degree equations to four first degree
equations. From a matrix point of view:
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The solution of Eq. 6-10 can be modelled in Matlab as Two-Input-Two-Output
system. Here, the input / output of interest are F, and x,. The Figure 6-4 plots the
magnitude of coupled nanoresonator as a function of frequency. The aims at
identifying the origin of the stiffness k; and k.. The characterization in Figure 4-26
shows the coupling frequency is not a function of the acceleration. Using the model
with two coupled spring mass system, several cases are simulated. The first case
(d) is the one where the two stiffnesses k; and k., are differentially modulated by
the acceleration. This configuration may correspond to the case where coupling
appears between the two nanoresonators. The second case (c) is the one where the
two stiffnesses k, and k, are modulated in common mode by the acceleration. This
configuration may correspond to the case where coupling appears between two
modes in the nanoresonator (in plane and out of plane for instance). The third case
(b) is the one where the two stiffnesses k. and k, are modulated in common mode
by the acceleration. This configuration may correspond to the case where coupling
appears between the nanoresonators and another MEMS mode of the accelerometer
that is affected by the acceleration. In these first three cases, the coupling frequency
is a function of the acceleration, so they cannot represent the coupling. The last case
(@) is the one where only the nanoresonator stiffnesses k, is modulated by the
acceleration. This configuration may correspond to the case where the structural
mode of the accelerometer coupled to the nanoresonator is not affected by the
acceleration. This is the most likely configuration because the coupling frequency
Is not a function of the acceleration.
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Figure 6-4 Magnitude of coupled nanoresonator as a function of acceleration. The coupling
frequency is modulated by the acceleration in the first three cases (b), (c) and (d). The most
likely case is the (a) because the coupling frequency is not modulated by acceleration.
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FEM-simulation identification method

The objective of the FEM simulation method is to observe which MEMS modes are
likely to couple to nanoresonator modes.

To achieve this, the proposed method allows: (1) to identify by a numerical criterion
the modes of the nanoresonator. (2) to reproduce the operation of nanoresonator
used as force sensor, i.e. its frequency variations under the effect of acceleration,
by considering the whole structure of the accelerometer. (3) to quantify the coupling
effects by the variation of this numerical criterion. (4) to visually observe the
MEMS modes responsible for the variation of the numerical criterion and conclude.

In order to reproduce the behaviour of the accelerometer, and in particular the
coupling phenomenon, a modal analysis of the complete structure of the
accelerometer must be achieved. This modal analysis focuses the frequency range
of interest, i.e. the operating frequency range of the nanoresonators. Then all the
eigenmodes of the structure, i.e. the MEMS modes and the nanoresonator modes,
are calculated.

Because the large frequency range (>MHz) and the different sizes of the elements
involved (MEMS structure + nanoresonator), the simulation will find large number
of eigenmodes. The first challenge is to focus on the modes of nanoresonators. In
order to identify precisely this mode, we rely on the definition of a resonator: a
resonator is a passive system that, at resonance, exchanges Kinetic energy to strain
energy. In other words, the eigenmode of the nanoresonator can be identified by its
effective mass and its effective stiffness. We choose to base our numerical criterion
on the effective mass because the evaluation of the effective stiffness in our case
will be time consuming due to the non-linearity of the strain energies. According to
its definition [68], the Kinetic energy E), can be evaluated for a specific eigenmode
wy, inavolume V:

1
(Ek.n)y = E (iwn)z fff psi(uz +v? + WZ)dV 6-11
14
By simulation, we evaluate the effective mass of the mode w,, on a given volume

(Ek;n)v 2 5 2
(meff,n)v = Z(jw _)2 = fff pgi(u + ve +w?)dV 6-12
n
14

It is interesting to parameterize the FEM simulation tool in such a way as to project
the w, mode on a normalized base, i.e. where the maximum amplitude of each
eigenmodes is equal to 1. In this way, the evaluation of m,fr, on the
nanoresonator’s volume, represented on Figure 6-5 (a), allows identifying the
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nanoresonator’s mode among all the modes w,,. Indeed, for the normalized base,
the effective mass of the nanoresonator’s mode is 0.39 (Eq. 2-20).

To go further, we base our numerical criterion on a relative value. Then, for each
mode w,, we evaluate the effective mass on the volume of the nanoresonator,
named V., as well as on the total volume of the accelerometer, named V. Thus, the
nanoresonator’s mode is then identify by 100%. Indeed, when the mode w,, is
different of the nanoresonator’s mode, part of its effective mass is distributed out
of the nanoresonator, thus, the Relative Mass Modal (RMM) is less than 100%. On
the other hand, if the eigenmode w,, is the nanoresonator’s mode, the RMM should
be closed to 100%. We define our numerical criterion as the ratio:

(meff'")vr ~ ffer p(u? + v +w?)dv

RMM = =
(meff,n)va fﬂVa p(u? + v2 + w2)dv

6-13

where u,v and w are the displacement in the three direction and p the density of the
material.

In conclusion, the RMM is a numerical value that allows quantifying the
distribution of effective mass in the whole structure. In this specific case the ratio
highlights the distribution in the nanoresonator, but we can define other ratio to
quantify the distribution in other part of the structure. If we evaluate the RMM for
each eigenmodes, the maximum value (close to 100%) corresponds to the
nanoresonator’s mode.

(b)

Accelerometer
volume

Nanoresonator
l ’ volume

Figure 6-5 Illustration of the both volumes used in the calculation of the Relative Mass
Modal. Here the structure is the first pendulum accelerometer architecture but it can be
any other accelerometer architecture. (a) represents the nanoresonator’s volume and (b)
represents the accelerometer’s volume.

163



For the moment, the RMM doesn’t allow identifying the coupling. We must first
reproduce the operation of the accelerometer by FEM simulation. I.e. the frequency
variation of the nanoresonator due to acceleration. In this way, the modal analysis
Is completed by initial step that introduces load before the modal analysis. This load
consists in applied acceleration in the sensitive direction to the accelerometer. In
order to observe variation of nanoresonator’s mode, we consider the non-linearity
in the initial step of the FEM simulation (because the modulation of flexural
stiffness by axial stress is due to second order deformation terms). The nonlinear-
modal analysis must be repeated for each acceleration in the operation range, i.e.
the acceleration range necessary to shift nanoresonator’s mode in the defined
frequency range. The simulation generates 2D array of results that consists in the
evaluation of RMM for each eigenmodes (on the frequency range) for each
accelerations (on the acceleration range). In order to illustrate the FEM simulation
results, the Table 39 shows arbitrary example of 2D array of results:

aq a, as a,
wq 0.5% 0.5% 0.5% 0.5%
wy 100 % 7% 771 % 77 %
w3 77 % 100 % 0.005 % 0.005 %
Wy 0.005 % 0.005 % 100 % 17%
ws 17% 17% 17% 100 %
we 59 % 59 % 59 % 59 %

Table 39 Example of RMM calculated on frequency range of 6 eigenmodes and acceleration
range of 4 accelerations.

By identification, we can extracted the nanoresonator mode for each acceleration
by researching the maximum value of the FMM. In practice the FMM is not always
equal to 100% but still the maximum value for the nanoresonator’s mode. In order
to have an idea of the interest of the FMM, Table 40 presents the same simulation
results but where the frequency is evaluated.

aq a, as a,
wq 11.5 MHz 11.5 MHz 11.5 MHz 11.5 MHz
Wy 12.5 MHz 12.9 MHz 12.9 MHz 12.9 MHz
w3 12.9 MHz 14.5 MHz 15 MHz 15 MHz
Wy 15 MHz 15 MHz 16.5 MHz 18.1 MHz
ws 18.1 MHz 18.1 MHz 18.1 MHz 18.5 MHz
wWg 20.5 MHz 20.5 MHz 20.5 MHz 20.5 MHz

Table 40 Example of frequency calculated on frequency range of 6 eigenmodes and
acceleration range of 4 accelerations

Because the FEM simulation cannot isolate the nano-resonator mode by itself, it
always presents the frequencies in increasing order. Thus, FMM allows to post-
process the FEM simulation results in an efficient way to classify the modes into
two families: the modes that vary with the acceleration, i.e. the nanoresonator’s
modes and the modes that do not, i.e. the MEMS modes.
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The Figure 6-6 (a) represents the two families of mode classified in function of the
acceleration. Here, the results come from to real simulations performed in the
second generation of pendulum architecture (section 5.2.2.1). We can identify
properly the variation of nanoresonator’s modes as a function of acceleration
whereas the MEMS modes are not affected by acceleration. The Figure 6-6 (b) plots
the RMM of the Left resonator: If we imagine Table 39 and Table 40 represent real
results of FEM simulation, the x axis represents the RMM, i.e. the red values of
Table 39 and the y axis its associated frequency i.e. the red values of Table 40.
Here, there are two "black peaks™ that represent the degraded value of the RMM
(<100%). In other words there are acceleration values where the modal mass of the
nanoresonator’s mode is distributed out of the nanoresonator. This is unusual
because the RMM ensure that the eigenmode is the nanoresonator’s mode (because
he keeps the maximum RMM). Looking at the position of these peaks in Figure 6-6
(@), the ~9MHz peak corresponds to an acceleration where nanoresonator’s mode
crosses the MEMS mode named “m2”. At the intersection, the RMM is close to
50%, i.e. the modal mass of the nanoresonator is half distributed in the
nanoresonator and half out of the nanoresonator. At this step, we can conclude that
the mode “m2” is likely to be a coupling mode. But we need to study the FEM
simulation results further to conclude.
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Figure 6-6. Post-processed FEM simulation results. (a) Eigenmodes classified into two
families: nanoresonator modes (blue and red) and MEMS modes (black). The
nanoresonator modes are acceleration dependent while the MEMS modes are not. (b) The
calculated RMM for the left resonator as a function of acceleration. The white area
represents the relative modal mass in the resonator and the black area represents the
relative modal mass out of the resonator. The black peaks are probably indicative of
coupling.
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The last step consists in investigating more closely the specific suspect mode, here
"m2". We choose to focus on the mode shape to validate the mechanism involved.
The objective is to determine if the mode of the structure is really likely to couple
to the mode of the resonator. The shape of the MEMS mode and the nanoresonator
mode is first represented away from the coupling, i.e., for an acceleration where the
nanoresonator resonance is far from the MEMS mode frequency. The Figure 5-13
(m2.1) represents the MEMS mode shape that is the z-torsion mode of the
mechanical decoupling structure. Its frequency is 9.18 MHz. The Figure 5-13
(mR.1) represents the nanoresonator mode shape at 20 MHz, thus far to the MEMS
mode. In both case the scale is normalized by the maximal displacement. Since
these modes are identified structure modes (mechanical decoupling structure and
nanoresonator), a fitted view above these structures allows to clearly identify the
displacements involved. The Figure 5-13 (m2.2) and (mR.2) represents respectively
the MEMS mode and nanoresonator mode for matched frequency (i.e. for
acceleration position where the both modes are crossed). Their frequency are
respectively 9.18 MHz and 9.17 MHz. his configuration corresponds to the likely
coupling of the "m2" mode with the nanoresonator mode identified in Figure 6-6.
Remember in this configuration the modal mass of the nanoresonator is half
distributed in the nanoresonator and half out of the nanoresonator. When we
observe the shapes of the modes, both resemble the bending mode of the
nanoresonator. In fact, this is due to the fact that the scale is normalized by the
maximum displacement. Because of the large size difference between the
nanoresonator and the mechanical decoupling structure, the displacement of the
MEMS mode is not perceptible. The Figure 5-13 (m2.3) and (mR.3) shows the
mode shapes for scale amplification of 1000. Here we can clearly identify both
mode are the linear combination of the MEMS mode and nanoresonator mode.

In this particular case, we can conclude that both the numerical and visual criteria
are realistic and that coupling is very likely to happen. This visual criterion takes
time but is still necessary to ensure the validity of the coupling.

As explained in Section 4.2.4.2, the identification of the most likely coupling modes
is based on the numerical criterion, the visual criterion and the experimental results.
The experimental results allow to validate or not that a coupling identified by the
FEM method happen.

It is now necessary to develop the method based on the experimental results. The
objective would be to find the combination of numerical criteria that are sufficient
to demonstrate why one coupling happen and not another.

We can start by establishing new ratios based on the structures most likely to be
coupled in order to quantify where the effective mass is distributed during coupling
(e.g. from the nanoresonator to the hinge for stiffness coupling).
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Figure 6-7 Representation of the "'m2" coupling that could happen in the second generation
of the pendulum accelerometer at 9.18 MHz. The MEMS mode consists of a z-torsion mode
of the mechanical decoupling structure. When this coupling happens, both the MEMS mode
and the nanoresonator mode are a linear combination of the bending mode of the beam and
the z-torsion mode of the mechanical decoupling structure.
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Decoupling modelling
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Figure 6-8 Schematic of the mechanical solution of decoupling.

The mechanical decoupling structure can be modelized by the schematic of Figure
6-8. Its dynamics can be modelled by three second order equations

m; 0 0\ /) c; 0 0\ /% ky+ ke —k¢y 0 X1 F;
( 0 me 0 > (xc> + (0 Ce 0 ) (xc> + ( _kcl kc + kcl + ka _ka ><XC> = <FC> 6'14
0 0 my \% 0 0 o/ \x 0 —key ky + k,p/ \X2 F,

or reduced to six first-order equations:

0 wal) kO 0 0 0 g 0 0
U, —w, _ c1 0 0 O uy — 0 0
2] | @ ma o 00 21 [ o |
u | 0 0 0 U 0 10 0 Fi
1= k k ¢
17.(: <l 0 —We _& 2 0 Ve + 0 — 0 l 56
U, mewy Q. mw; \uZ/ 0 rr(;C 0 2
0 0 0 0 0 W, v,
v ke, w3 ’ i 6-15
0 0 0 —wy; —— 0 0
myWc Q; m;
1 U
S 0 0 O v
X1 wl 0 0 0\ /F
0 0 O U,
Xc | = 1 +10 0 0 F;:
0 0 — o 0 Ve
XZ wc w_z uZ 0 0 0 FZ
0 0 0 v,
With
_ o 2 _ kl _ wimq
U = W1X1, V1 = Xq, W] = —_ and Q; = T
_ o 2 _ k¢ __ Wwcmg
Ue = WeXe, Vo = X, WE = m—cand Q; = e
WMy

_ o 2 _ k2 _
Uy = WX, Vy = Xp, w5 = —and Q, =
ms C2

The matrix system can be solve as the same manner of Eq. 6-9 using the state space
approach [116].
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Appendix D

In this section there is a methodology to model and quantify the performances of
different accelerometers. The method follows the following steps:

(1) Presentation of the design geometry and reduced damped spring mass

model.

(2) Expression of motions equation in the form of second order matrix system

(3) Reduction to first order matrix systems

(4) Expression of equivalent stiffness of the accelerometer

(5) Expression of the dynamics of the accelerometer

Resonance frequency of the accelerometer
Cut-off frequency of the mechanical decoupling structure
Internal dynamics of the mechanical decoupling structure

(6) Example of geometry

(7) Comparison of analytical model and FEM simulation

For the accelerometer sensitivity
For the different dynamics

(8) Simulation of the structure stability/robustness

Cross axis simulation : 1g of acceleration are applied on each axis. The axial
strain are evaluated on both nanoresonator (oz,; and oy,). The differential
sensitivity Ao = |og, — 0z, | is compared with the in plane sensitivity 5o =
Ao /Aoy.

Shocks simulation: the proof mass is move to the 3-axis stoppers. The axial
strain are evaluated on both nanoresonator (o5, and o,). The stress average
Ao = (ogy + 0g3)/2 is evaluated and compared with the Full scale stress
(FS)

Package stress simulations: strain eyy, €yy Or €xy 0f 100ppm are applied at
all the accelerometer anchors in order to reproduce package stress due to
thermal effect. The axial strain are evaluated on both nanoresonator (oz,
and oy,). The differential sensitivity Ac = |og; — 0g2| 1S compared as a
ratio of the Full Scale stress.
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Pendulum accelerometer generation 1

(b) |

Figure 6-9 Presentation of the first generation of pendulum accelerometer. (a) is the reduced
damped spring mass system and (b) is the design of the accelerometer

The first generation of pendulum accelerometer can be modelled by the schematic
of Figure 6-9 (a). Its dynamics can be modelled by a second order equations

Lo 0, Chtkyl?
= m1x1 + L_le + L—le

l
— 6-16
F I

or reduced to two first-order equations by posing u; = w x;, v; = X;, w3 =
Keq/my and Qq = wymyL?/cq

() (o )L )

Q0 Lm, 6-17
1 Uy
G = (5= 0) () + @
With K., = F;/x; the equivalent stiffness of the accelerometer:
Cp + ke l?
="z — 6-18
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The accelerometer resonance can be estimated

Keq 6-19

0)0 =

Here the analytical modelling is compared to FEM simulation for this pendulum
accelerometer (generation 1) geometry:

Geometry Value
L, 2 um
L; 0.5 um
L, 10 ym
w;, 250 nm
L 379.8 ym
Ly 51.41 pm

Table 41 Geometry of the pendulum accelerometer

Parameters Analytics modelling COMSOL
Sea = ME/KoyL, 22.97MPa/g 22.42MPa/g
Wom 1.6kHz 1.3kHz

Table 42 Comparison between analytical modeling and FEM simulation of accelerometer
parameters

The next part is based only on the FEM simulation and allows quantify the cross-
axis sensitivities, the thermal effect and the protection of the nanoresonator by
stoppers.

acceleration Or1[MPa] ogr1[MPa] Ac[MPa] 60[%]

ay =1g 22.442 —22.453 44.895 100
ay =1g 0.71 —-0.71 1.41 3.14
a; =1g 0.703 —0.708 1.41 3.14

Table 43 Differential sensitivities as a function 1g-acceleration applied on each directions.

displacement Or1[MPa] Or1[MPa] Ac[MPa]
x =1uym 265.14 —265.27 FS = 265.2
y =1um 13.91 —-13.9 13.9

z=0.8um —-0.14 —0.18 0.16

Table 44 Maximum stress applied on the nanoresonator when proof mass contacts stoppers.
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effect Or1[MPa] or1[MPal] Ac[MPa] %FS

€xx = 100ppm 3.56 3.59 0.03 0.01

eyy = 100ppm 119.25 118.72 0.53 0.2

exy = 100ppm 70.52 —70.52 141.04  53.184
AT = 100°C 319.47 —318.13 1.34 0.5

Table 45 Differential sensitivities as a function of substrate deformation (eyy, €yy, €xy) and
thermal expansion (AT).

disp

Table 46 Displacement profile induced by substrate deformation (exy, €yy, €xy) and thermal
expansion (AT).
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Pendulum accelerometer generation 2
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Figure 6-10 Presentation of the first generation of pendulum accelerometer. (a) is the
reduced damped spring mass system and (b) is the design of the accelerometer

The second generation of pendulum accelerometer can be modelled by the
schematic of Figure 6-10 (a). Its dynamics can be modelled by two second order
equations

N €1 . Cp + ket l? 12 Fl
m; 0\ /x; — 0\/% _ T X\ [— )
¢ mz)<x‘z>+<L§ ><x2>+< A L (xz)—<1§2> 6-20
C

kfz + kCZ + kCl
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or reduced to four first-order equations by posing u; , = w1 21 2; V12 = X1 ,, W} =
Cp + ke 1?/mi L%, w5 = (kpy + kez + k1) /my, Q= wymyl?/c; and Q, =
wamy /¢y

( 0 N 0 0 0 0
U Lo, - Keil Uy e
Ui | _ Q1 w,myL 2 + myL (Fl)
Uy 0 0 0 W, U 0 o0 F,
[ kcl _ _ & V2 \ 0 i
) w1m,; “2 Q: m; 6-21

i \0 0 — o / S
\ W, U,
The equivalent stiffness of the accelerometer K., = x,/F; consists in k., in parallel
with k¢,, all in series with k. This equivalent stiffness integrated in the lever arm:

ke (kcz + kfz)
kep +kep + kfz 6-22

LZ

Cp + 17
Keq =

Considering m,; > m, the accelerometer resonance can be estimated
Keq
Way = |—F 6-23
om m,

The dynamics of the mechanical decoupling structure can be estimated by

e
kaz +key + kex
(1)2 == m
2
k
f.f2
X 2= o 6-24
_ kf,cl
Wep = m
\ cl

where w, is the cut-off frequency of the mechanical decoupling structure. wg, is
the bending mode of the beam represented by the stiffness ky,, with k; ¢, and my,,
which are respectively its flexural stiffness and effective mass. w,; is the bending
mode of the beam represented by the stiffness k.q, with k¢ .4 and m,,, which are
respectively its flexural stiffness and effective mass.
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Here the analytical modelling is compared to FEM simulation for this pendulum
accelerometer (generation 2) geometry:

Geometries Values
L, 2 um
L; 0.5 um
L, 10pum
w;, 250 nm

L1 600 um
L1z 500 ym
Ly 20 pm
Lo 60 um
lg, 20 um
I 20 um

Table 47 Geometry of the pendulum accelerometer

Parameters Analytics modelling FEM simulation
Sea = M1E/K4L, 17 MPa/g 12.43 MPa/g
Wom 2.1 kHz 2kHz

Table 48 Comparison between analytical modeling and FEM simulation of accelerometer
parameters.

(0)) Wc1 Wy
Analytic 4.36 MHz 22 MHz 22 MHz
FEM Simulation 4.11 MHz 21.5 MHz 21.12 MHz

"

Mode shape

|

Table 49 Comparison between analytical modeling and FEM simulation of mechanical
decoupling structure.

The next part is based only on the FEM simulation and allows quantify the cross-
axis sensitivities, the thermal effect and the protection of the nanoresonator by
stoppers.

acceleration Ogr1[MPa] ogr1[MPa] Acg[MPa] 60[%]

ay =1g 12.433 —12.438 24.871 100
ay = 1g 54E -5 6.8E —5 14E -5 6E —5
a; =1g 0.06993 0.06999 6E —5 23E -4

Table 50 Differential sensitivities as a function 1g-acceleration applied on each directions.
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displacement Or1[MPa] Og1[MPa] Ao[MPa]

x =1pm 161.99 —161.32 FS = 161.655
y =1upm 295.56 292.6 294.08
z=0.8um 7.71 8.04 7.87

Table 51 Maximum stress applied on the nanoresonator when proof mass contacts stoppers.

effect og1[MPa]l opi[MPa] Ac[MPa] %FS

exx = 100ppm -1.07 —1.03 0.05 0.02
e€yy = 100ppm 202.46 202.63 0.17 0.1

€xy = 100ppm —30.58 30.80 61.38 37.96
AT =100°C —523.61 —524.18 0.57 0.35

Table 52 Differential sensitivities as a function of substrate deformation (eyy, €yy, €xy) and
thermal expansion (AT).

Table 53 Displacement profile induced by substrate deformation (eyy, €yy, €xy) and thermal
expansion (AT).
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Translation accelerometer
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Figure 6-11 Presentation of the first generation of translation accelerometer. (a) is the
reduced damped spring mass system and (b) is the design of the accelerometer

The translation accelerometer can be modelled by the schematic of Figure 6-11 (a).
Its dynamics can be modelled by two second order equations

T o)) D) (T ) (=) e
< 0 mz x.z + 0 C2 .x:z + _kcl kfz + kCZ + kCl (xz) - Fz 6 25

or reduced to four first-order equations by posing u; , = wy 2%y, V15 = X1 2, W? =
(kpy + key) /My, w; = (kfz + kep + ke1)/my, Q1 = wymy/cq and Q; = woam, /¢y

0 @ 0 0 0 0
U —w, _41 ka 0| /M /i 0\
v | _ Q wymy Vi | ™ (F1>
iy 0 0 0 w |[\w o o |\f
; 4 w 1% 1
v, cl 2 2
o — _*2 0 —
w1My “2 Q my 6-26
L o0 0\
(2 () o
X,) = 1 U 0 0/\F;
0 0 o 0 v,
2
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The equivalent stiffness of the accelerometer K., = x,/F; consists in k., in parallel
with kg, all in series with k.,. The equivalent stiffness in parallel with kg,

kcl (kfz + kcz)

Keg = kpq + 6-27
R T
Considering m; > m, the accelerometer resonance can be estimated
Keq
= | 6-28
Wom my
The dynamics of the mechanical decoupling structure can be estimated by
(
\/kfz + ke +kea
Wy, =
m;
k
{0 wp = |22 6-29
mfz
k
f,cl
We1 = <
L Mcq

where w, is the cut-off frequency of the mechanical decoupling structure. wg, is
the bending mode of the beam represented by the stiffness ky,, with k¢ ¢, and m,,
which are respectively its flexural stiffness and effective mass. w,; is the bending
mode of the beam combination represented by the stiffness k.q, with k¢ .; and m4,
which are respectively its flexural stiffness and effective mass. Here the analytical
modelling is compared to FEM simulation for this translation accelerometer:

Geometries Values
L, 2 um
Lt 0.5 pm
L, 10 ym
W, 250 nm

L1 1mm

L1z 500 pm
L1 70 um
lfz 20 ym
I 50 um
Lo 20pm

Table 54 Geometry of the translation accelerometer
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Parameters Analytics modelling COMSOL
Sga = ME/K4L, 0.54 MPa/g 0.39 MPa/g
®om 10.4 kHz 9.95 kHz

Table 55 Comparison between analytical modeling and FEM simulation of accelerometer
parameters

w; W2 Wc1
Analytic 1.7 MHz 22 MHz 0.48 MHz
Simulation 1.63 MHz 21.42 MHz 0.65 MHz

Mode shape i ﬁ ~ _1 —m
[ — = —m i -

=
L

Table 56 Comparison between analytical modeling and FEM simulation of mechanical
decoupling structure.

The next part is based only on the FEM simulation and allows quantify the cross-
axis sensitivities, the thermal effect and the protection of the nanoresonator by
stoppers.

acceleration or1[MPa] og1[MPa] Ac[MPa] é0(%]

ay =1g 0.39 —0.39 0.78 100
ay = 1g 8.8E — 6 2.1E -5 1.18E — 5 0.0015
a; =1g 0.01 0.01 6E — 6 7.5E — 4

Table 57 Differential sensitivities as a function 1g-acceleration applied on each directions.

displacement Or1[MPa] Or1[MPa] O mean|MPa]
x=1um 151.76 —151.76 FS =151.79
y =1um 0.365 0.17 0.26

z=0.8uym 184.58 184.62 184.6

Table 58 Maximum stress applied on the nanoresonator when proof mass contacts stoppers.

effect ogr1[MPa] ogr1[MPa] Ac[MPa] %FS

€xx = 100ppm —31.78 —32.27 0.49 0.32
€yy = 100ppm 49.46 49.49 0.03 0.02
€xy = 100ppm —0.18 —0.02 0.16 0.1
AT =100°C —45.97 —44.79 1.19 0.78

Table 59 Differential sensitivities as a function of substrate deformation (exy, €yy, €xy) and
thermal expansion (AT).
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Table 60 Displacement profile induced by substrate deformation (exy, €yy, €xy) and thermal
expansion (AT).
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Lever arm accelerometer

Figure 6-12 Presentation of the first generation of lever arm accelerometer. (a) is the
reduced damped spring mass system and (b) is the design of the accelerometer

The translation accelerometer can be modelled by the schematic of Figure 6-12 (a).
Its dynamics can be modelled by two second order equations

. . L
F1 = m1X1 + C1X1 + (kfl + kcl)x1 - XZ Tk(,‘l

. Ca (Cp + PPhey + LPky) l 12 6-30
F2Z=m2x2 +L_2x2 Zz s x2_xlzkcl_x3L_2k62

F3 = m3f3 + C3Jé3 + (kf3 + kC3 + kcz)x3 - xzkcz

or reduced to four first-order equations by posing u; , 3 = w1 23%1, V123 = X123,

0 e 0 0 00 90 00
. wy L ke 0 0 0 ~ 0 0
BT TG Ty ty |
v 1W2 W, 0 0 v 1
u.1 0 0 0 “ 0 00 F,
17'2 - keql o LW, kepl? v; + 0 l 0 <F2>
u’; myw,L 2 Q myL%w; Us m,L F3
. 0 0 0 0 0 w3 v 0 0 0
” o o ke o |y s L 6-31
o s T m
392 3
! 0 0 0 0 O o
— v
X1 [N 0 0 0 u; 0 0 0\ /F
X2 | = 0 0 1 1 v, +{0 0 0][F:
X3 w_z 0 w—3 0 Ug 0 0 O F3
0 0 0 vy
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2 2
(w% _ kfl + kCl w% _ Ch + kClL + kCZZ w?z) _ kf3 + kC3 + kCZ
my & L?m, & ms 6-32
€1 W1 ) €3 Wy
my Qq myl?2  Q, ms Qs

The equivalent stiffness of the accelerometer K., = x,/F; consists in k. in parallel
with kg3, all in series with k.,. This equivalent stiffness integrated in the lever arm
in series with kg; and k4

h kep + kes + kg3

L2 6-33
Cr 412 kcz(kc3 + kf3)
h key + ko3 + kf3

LZ

ke, +

Considering m; >» m, > m4 the accelerometer resonance can be estimated

K
Wom = |- 6-34
1

The dynamics of the mechanical decoupling structure can be estimated by

p
\/@“3 + kez + ke3
(1)3 = m
3
k
\ o wp= 2P 6-35
3
_ kf,cz
Wer = m
\ c2

where w3 is the cut-off frequency of the mechanical decoupling structure. w5 is
the bending mode of the beam represented by the stiffness k3, with k¢ (3 and my3,

which are respectively its flexural stiffness and effective mass. w., is the bending
mode of the beam represented by the stiffness k.,, with k¢ ., and m,, which are

respectively its flexural stiffness and effective mass.
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Here the analytical modelling is compared to FEM simulation for this lever arm
accelerometer geometry:

Geometries Values
L, 2 um
L; 0.5 um
L, 10 ym
w;, 250 nm

L1 1250 um

L2 800 um
L1 70 um
Lo 60 um
lg, 20 um
I 50 um

Table 61 Geometry of the translation accelerometer

Parameters Analytics modelling COMSOL
Soa = ME/K 4L, 58.3 MPa/g 56 MPa/g
Wom 867 Hz 755 Hz

Table 62 Comparison between analytical modeling and FEM simulation of accelerometer
parameters

(0 )) We2 @2
Analytic 3.57 MHz 2.44 MHz 22 MHz
Simulation 3.48 MHz 2.48 MHz 21.4 MHz

Mode shape —_—

Table 63 Comparison between analytical modeling and FEM simulation of mechanical
decoupling structure

The next part is based only on the FEM simulation and allows quantify the cross-
axis sensitivities, the thermal effect and the protection of the nanoresonator by
stoppers.

acceleration or1[MPa] og1[MPa] Ac[MPal] é0[%]

ay =1g 56.85 —-56.78 113.63 100
ay = 1g 8.5E — 4 —8.1E — 4 1.6E -3 0.0014
a; =1g —-0.3 -0.3 S5E — 4 44E — 4

Table 64 Differential sensitivities as a function 1g-acceleration applied on each directions.
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displacement Or1[MPa] Og1[MPa] O mean|MPal]

x =1pm 112.09 —111.96 FS =112.025
y =1upm 442E — 4 5.42E — 4 49E — 4
z=0.8um 1.53 1.523 1.526

Table 65 Maximum stress applied on the nanoresonator when proof mass contacts stoppers.

effect or1[MPa] og[MPa] Ac[MPa] %FS

exx = 100ppm 2.26 2.37 0.12 0.1
eyy = 100ppm 316.01 315.63 0.38 0.33
€xy = 100ppm —0.03 —0.04 0.01 0.01
AT =100°C —827.5 —826.81 0.69 0.61

Table 66 Differential sensitivities as a function of substrate deformation (eyy, €yy, €xy) and
thermal expansion (AT).

Table 67 Differential sensitivities as a function of substrate deformation (exy, €yy, €xy) and
thermal expansion (AT).
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Additional work

This work has been communicated in two international conferences and has led to
the development of three patents. In addition, a journal article is in progress:

- At the 34th IEEE International Conference on Microelectromechanical
Systems (MEMS) in 2021, the proof-of-concept of the first generation of
sensors was presented [110] and awarded the "Outstanding student paper”
prize. The main result is the highest scaling factor in the state of the art,
made possible by the bilayer fabrication process.

- The advanced results of the first generation of sensors will be presented at
the 9th IEEE International Symposium on Inertial Sensors and Systems
(2022). Noise analysis highlights improved wafer-level conditioning that
overcomes the thermomechanical noise of the proof mass, the previous
limitation of the inertial sensor.

- Anaccelerometer architecture based on an electrostatic decoupling structure
was developed and patented during this work. A prototype has been
designed with the latest generation of accelerometer.

- An accelerometer architecture allowing two different pressure
environments has been patented. Its objective is to provide a vacuum
environment for the nanoresonator and an atmospheric environment for the
proof of concept.

- The mechanical decoupling structure proposed on the latest generation of
accelerometers has been patented.

The experimental method to characterize the coupling, the tool to identify
the coupled modes (FEM simulation) as well as the solution of the
mechanical decoupling structure and its validation by the identification tool
are being written for a journal article.
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Abstract:

Resonant beam accelerometers have demonstrated their ability to
achieve sub-pg resolutions previously reserved for macroscopic
accelerometers. These microelectromechanical systems (MEMS) are
promising candidates for high-precision commercial applications due
to their low cost, small size, and batch manufacturability. In the vast
majority of commercial MEMS inertial sensors, the proof mass and
sensing elements are defined in the same silicon layer. When the
sensing element is a resonant beam, the use of a single layer of silicon
imposes a trade-off between the sensitivity and the bandwidth of the
accelerometer. In order to circumvent this trade-off, we propose here
to use a bi-layer technology, so-called M&NEMS, which results in
sensors that are more sensitive and would open the field to new
applications requiring high-performance integrated sensors. The
proposed accelerometer combines a micrometric proof mass with the
high detection sensitivity of a nanoresonator. In addition, we propose
to employ a piezoresistive detection that provides a performance
transduction at high frequency, unlike capacitive detection.

This work represents the first proof of concept of a resonant
accelerometer based on a piezoresistive nanoresonator detection.
First, the modelling, design and fabrication of the first generation of
sensors is presented. Because the designed nanoresonator operates at
several MHz, a dedicated readout electronics was designed in
partnership with the group of Prof. Langfelder from the Politecnico di
Milano. The second part of this work focuses on the characterization
of the accelerometers. The use of the M&NEMS multi-layer process
allows reaching the highest sensitivity of the state of the art for a 0.18
mm2 mass footprint, i.e. 100,000 ppm/g with <1% nonlinearity over

the +1g range. The noise analysis shows a noise floor of 1.75ug/v/Hz
over a 1-kHz bandwidth. The last part deals with the improvement of
the accelerometer and nanoresonator architecture in order to
overcome the operating limitations highlighted by the first
experimental results. Because the manufacturing process is
compatible with gyros and out-of-plane accelerometers, the proposed
nanoresonator-based detection represents a high-sensitivity
alternative for 6-axis inertial measurement units (IMU), as well as
other devices such as pressure sensors or magnetometers.




