
HAL Id: tel-03710828
https://theses.hal.science/tel-03710828

Submitted on 1 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Une nouvelle architecture d’automatisation des réseaux :
de la détection d’anomalie à la reconfiguration

dynamique
Alessio Diamanti

To cite this version:
Alessio Diamanti. Une nouvelle architecture d’automatisation des réseaux : de la détection d’anomalie
à la reconfiguration dynamique. Performance et fiabilité [cs.PF]. HESAM Université, 2021. Français.
�NNT : 2021HESAC036�. �tel-03710828�

https://theses.hal.science/tel-03710828
https://hal.archives-ouvertes.fr

École doctorale Sciences des Métiers de l’Ingénieur

Centre d’études et de recherche en informatique
et communications

THÈSE

présentée par : Alessio DIAMANTI
soutenue le : 21 Décembre 2021

pour obtenir le grade de : Docteur d’HESAM Université

préparée au : Conservatoire National des Arts et Métiers

Discipline : Informatique

Spécialité : Informatique

Une nouvelle architecture d’automatisation des réseaux : de

la détection d’anomalie à la reconfiguration dynamique

Jury
M. Philippe OWEZARSKI Professeur, CNRS Rapporteur

M. Adrien LEBRE Professeur, IMT Atlantique Rapporteur
Mme Thi-Mai-Trang
NGUYEN

Mâıtre de conférences, Sorbonne Uni-
versité

Présidente

M. Keun-Woo LIM Mâıtre de conférences, Telecom Paris-
tech

Examinateur

M. Roberto RIGGIO Professeur associé, Università
politecnica delle Marche

Examinateur

M. Nikaein NAVID Professeur, Eurecom Examinateur
M. Stefano SECCI Professeur, CNAM Directeur de thèse

M. José Manuel SÁNCHEZ
VÍLCHEZ

Ingénieur de recherche, Orange Co-encadrant

M. Laurent CIAVAGLIA Ingénieur de recherche, Rakuten Invité
M. Bertrand DECOCQ Team and Program Manager, Orange Invité

Affidavit

Je soussigné , Alessio Diamanti, déclare par la présente que le travail présenté dans ce manuscrit
est mon propre travail, réalisé sous la direction scientifique de Stefano Secci et de José Manuel Sanchez
Vilchez, dans le respect des principes d’honnêteté, d’intégrité et de responsabilité inhérents à la mission
de recherche. Les travaux de recherche et la rédaction de ce manuscrit ont été réalisés dans le respect
de la charte nationale de déontologie des métiers de la recherche. Ce travail n’a pas été précédemment
soumis en France ou à l’étranger dans une version identique ou similaire à un organisme examinateur.

Fait à Paris, le 27/10/2021

Signature

Affidavit

I, undersigned, Alessio Diamanti, hereby declare that the work presented in this manuscript is
my own work, carried out under the scientific direction of Stefano Secci and of José Manuel Sanchez
Vilchez, in accordance with the principles of honesty, integrity and responsibility inherent to the
research mission. The research work and the writing of this manuscript have been carried out in com-
pliance with the French charter for Research Integrity. This work has not been submitted previously
either in France or abroad in the same or in a similar version to any other examination body.

Paris, date 27/10/2021

Signature

3

To my Family

5

6

Résumé

Les technologies de softwarisation des réseaux entrâınent de nouvelles architectures de réseau

qui remettent en question les systèmes de gestion des défaillance existants et la caractérisation de

la résilience. En effet, la coordination entre les différents composants logiciels pour, par exemple,

l’orchestration, la commutation et la gestion des machines virtuelles et des conteneurs, implique dif-

férents points de supervision et de nouvelles sources de défaillance et de bogues. Dans cette thèse,

nous proposons un framework d’automatisation de réseau qui détecte les anomalies et caractérise l’état

de résilience d’un service de réseau virtualisé. Un algorithme basé sur les Long Short Term Memory

Autoencoder analyse une série temporelle multidimensionnelle construite à partir de centaines de

métriques collectées au niveau des couches physique, virtuelle et de service. Il apprend les conditions

de fonctionnement nominales de l’infrastructure, sur la base desquelles les déviations (anomalies) par

rapport à la référence apprise sont détectées et analysées. Le framework produit une caractérisation

des déviations utilisée pour élaborer le graphe d’état et la visualisation sous forme de radiographie.

Tandis que cette dernière visualise de manière compacte la propagation des anomalies à travers les

trois couches composant un réseau virtualisé, le graphe d’état vise à établir l’état de résilience de la

plateforme comme base d’un algorithme de réorchestration qui s’appuie sur une nouvelle technique

de gestion de la résilience basée sur la réputation. Le framework est implémenté et validé par des

tests expérimentaux sur la plateforme Kubernetes hébergeant un services de cœur de réseau virtualisé

conteneurisé et open-source.

Mots-clés : Automatisation des réseaux, détection d’anomalies , reconfiguration , NFV, machine

learning, réputation

7

RESUME

8

Abstract

Legacy and novel network services are expected to be migrated and designed to be deployed in

fully virtualized environments which lead to novel network architectures that challenge legacy fault

management systems and resilience characterization. Indeed, the coordination among the different

software components for, e.g., orchestration, switching, and virtual machine and container management

creates different monitoring points, besides novel sources of faults and bugs. In this thesis, we propose

a network automation framework that detects anomalies and characterizes the resiliency state of a

virtualized network service. A Long-Short-Term-Memory-Autoencoder-based algorithm analyzes a

multidimensional time-series built from hundreds of metrics collected at the physical, virtual, and

service layers. It learns the nominal working conditions of both the infrastructure and the service,

and for each type of resource (i.e., CPU, network, memory, and disk); it then detects and analyzes

deviations (anomalies) from the learned reference. The produced deviations characterization is finally

used to generate both the transition state graph and the innovative radiography visualization. The

latter compactly visualizes the propagation of anomalies across all the layers down from the physical

and up to the service, highlighting the temporal evolution as well. The former aims at establishing the

virtualized platform state as the basis for a re-orchestration algorithm that leverages a novel reputation-

based resiliency management technique. We implement and validate the proposed framework through

experimental tests on the Kubernetes platform hosting a containerized, open-source, and virtualized

network core service.

Keywords : Network automation, anomaly detection, reconfiguration, NFV, machine learning,

reputation

9

ABSTRACT

10

Contents

1 Resumé 21

1.1 Détection et caractérisation des anomalies des systèmes virtualisés 23

1.2 Évaluation de l’état du système virtualisé . 26

1.3 Méthode de reconfiguration automatisée . 27

1.4 Remarques conclusives et perspectives . 27

2 Introduction 31

2.1 Background and motivation . 32

2.2 Contributions and thesis outline . 34

2.3 Publications . 35

3 Related Work 37

3.1 Network softwarization . 38

3.1.1 Network Function Virtualization . 38

3.1.2 NFV Management and Orchestration . 43

3.1.3 Software Defined Networking . 47

3.1.4 Cloud Computing for networking . 50

3.1.5 Fully softwarized networks . 52

3.2 Network resilience . 53

3.2.1 Cognitive closed loop automation for resiliency management 58

11

CONTENTS

3.2.1.1 Network state assessment . 62

3.2.1.2 Network baseline and anomaly detection for telecommunication networks 64

3.2.1.3 Machine Learning methods . 65

3.2.1.4 Anomaly diagnosis and characterization 68

3.2.1.5 Fault mitigation and automatic reconfiguration 69

3.3 Reputation assessment modeling . 72

3.4 Machine learning techniques . 74

3.4.1 Machine learning and Deep Learning . 74

3.4.2 AutoEncoders . 75

3.4.3 Long-Short-Term Memory . 76

3.4.4 Reinforcement Learning . 79

4 Virtualized System Anomaly Detection and Characterization 83

4.1 Introduction . 84

4.2 Virtual IP Multimedia Subsystem (vIMS) testbed . 85

4.2.1 Platform architecture and traffic simulation . 87

4.2.2 Dataset . 89

4.3 The SYRROCA framework . 90

4.3.1 Metrics collection and pre-processing . 91

4.3.2 Training . 93

4.3.3 Anomaly detection and characterization . 95

4.3.4 Radiographies . 98

4.4 Experimental results . 99

4.4.1 Training on a nominal scenario . 99

4.4.2 Test phase on degraded conditions . 101

4.4.3 Time-windowed radiography . 103

12

CONTENTS

4.5 Conclusion . 105

5 Virtualized system state assessment 107

5.1 Introduction . 108

5.2 System State Inference . 109

5.3 Experimental results . 111

5.3.1 Training - known state characterization . 111

5.3.2 Test on degraded conditions . 113

5.3.2.1 CPU stress test . 113

5.3.2.2 Packet-loss injection test . 115

5.3.2.3 Call overload test . 116

5.3.3 Performance comparison . 119

5.4 Conclusion . 122

6 Automated reconfiguration method 123

6.1 Anomaly remediation . 124

6.2 RL-based remediation policy learning . 125

6.2.1 Agent . 127

6.2.2 Reward . 128

6.2.3 Actions . 131

6.3 Resiliency management and reputation . 134

6.4 Conclusion . 137

7 Concluding remarks and perspectives 139

A Collected metrics 145

B Going beyond diffserv in IP traffic classification 149

13

CONTENTS

B.1 Introduction . 149

B.2 Machine Learning Methodology . 150

B.2.1 The L-DiffServ architecture . 151

B.2.2 Dataset and Features . 152

B.2.3 Pre Processing . 153

B.2.4 Oversampling . 154

B.2.5 Dimensionality Reduction . 155

B.2.6 Clustering . 156

B.2.7 Classification . 158

B.3 Numerical Analysis . 158

B.4 Conclusions . 159

C Performance Comparison of ONOS and ODL controllers 161

C.0.1 Topology discovery . 165

References 167

14

List of tables

4.1 Number of features per layer and resource type . 90

4.2 Best-fit distributions per resource group . 92

4.3 LSTM cell hyper-parameter . 94

4.4 Table of notations . 96

5.1 Table of notations . 109

5.2 Couples (g,u) of resource group (g) and computing units (u) impacted in each degraded

state . 118

5.3 Comparison between RNN and LSTM autoencoders training epochs 119

5.4 Anomaly detection evaluation metrics . 120

6.1 Table of notations . 127

A.1 Physical layer metrics . 146

A.2 Virtual layer metrics . 147

B.1 Mapping between DSCP and class labels, from: [1] . 153

B.2 Linear Discriminant Components . 156

15

LIST OF TABLES

16

List of figures

1.1 Billions of IoT devices [2] . 21

1.2 North America network automation market size from 2016 to 2027 (USD Billion) [3] . 23

1.3 SYRROCA framework functional diagram . 25

1.4 Testbed . 26

1.5 SYRROCA closed loop automation on ETSI NFV architecture 28

2.1 Billions of IoT devices [2] . 32

2.2 North America network automation market size from 2016 to 2027 (USD Billion) [3] . 34

3.1 NFV-FG composed of two FSP [4] . 39

3.2 The functional NFV architectural framework [4] . 40

3.3 Container and VM based virtualization [5]. 41

3.4 Monitoring Parameter information element from ETSI specification [6] 43

3.5 ETSI MANO architecture [4] . 43

3.6 Kubernetes architecture [7] . 45

3.7 Software Defined Networking architecture . 48

3.8 Fault-error-failure chain . 55

3.9 Sterbenz resiliency space [8] . 56

3.10 ETSI NFV fault correlation framework [9] . 57

3.11 MAPE control loop [10] . 59

17

LIST OF FIGURES

3.12 Cognitive cycle from Mitola [8] . 60

3.13 Trust and reputation model . 73

3.14 Artificial Neuron . 74

3.15 Fully connected Deep Neural Network . 75

3.16 Autoencoder architecture . 76

3.17 Feed Forward and Recurrent Neural Network architectures 77

3.18 Long Short Term Memory Recurrent Neural Network architecture 78

3.19 Reinforcement Learning framework . 80

3.20 Model-based Reinforcement Learning . 81

4.1 IP Multimedia Subsystem architecture . 86

4.2 Testbed . 87

4.3 Call CallFlow . 88

4.4 VoIP call distributions emulated in the experiments 88

4.5 SYRROCA framework functional diagram . 90

4.6 LSTM tensor . 94

4.7 SYROCCA deep Autoencoder architecture. 95

4.8 Training MSE for each metrics group. 100

4.9 Time evolution of the MSE for virtual CPU-related metrics group, under an increasing

CPU stress. 101

4.10 vIMS system radiographies under packet loss injection. 102

4.11 vIMS system radiographies under call overload injection. 103

4.12 Radiography time evolution for the CPU stress test case 104

5.1 State graph obtained during the training phase . 112

5.2 SYRROCA output visualizations for the CPU stress test case 114

5.3 State graph obtained during the packet loss test case 116

18

LIST OF FIGURES

5.4 State graph obtained during the overload test case . 116

5.5 RNN and LSTM based autoencoders reconstruction error compared to mean physical

CPU frequency . 120

6.1 Reward computation on radiography . 128

6.2 Reward computation on radiography . 130

6.3 Possible values for coefficient ml,g
x̂′ + ml,g

ŷ′ . 131

6.4 Nominal region within a radiography of physical and virtual layers. 132

6.5 Example radiographies and system state evolution for a given group of resource. . . . 133

6.6 Reputation computation example . 135

7.1 SYRROCA closed loop automation on ETSI NFV architecture 139

B.1 L-DiffServ Workflow Overview. 151

B.2 DSCP Distribution in the considered MAWI dataset. 154

B.3 Silhouette as a function of the number of centroids. 157

B.4 Silhouette Coefficient & 3D K-Means. 158

B.5 L-Diffserv Dynamical Behaviour. 159

C.1 Test case network topology . 162

C.2 Distribution of reaction time (Treact) for ONOS and ODL controllers. 163

C.3 Distribution of the reaction times for ODL at two distinct intervals 163

C.4 Distribution of the reaction times for ONOS . 163

C.5 Boxplot statistics of the reaction times. A boxplot shows the minimum, first quartile,

median in red, third quartile and maximum values. 164

C.6 Number of mode switches as a function of the number of tests – ODL 165

C.7 Topology discovery volume for both PACKET IN and PACKET OUT messages . . . 166

19

LIST OF FIGURES

20

Chapter 1

Resumé

Les infrastructures de réseaux de communication connaissent aujourd’hui une profonde évolution

avec la “softwarisation”de tous leurs composants de base, à partir des fonctions du cœur de réseau

à celles de l’accès radio, en passant par les dispositifs mobiles et les objets connectés : fonctions

de contrôle d’accès, transport, routeurs, commutateurs et terminaux, notamment les dispositifs de

l’Internet des objets (IoT). Comme le montre la figure 2.1, le nombre de dispositifs mobiles et IoT

explose déjà, avec des applications liées à la surveillance d’une multitude d’objets allant des services de

sécurité, de santé et de contrôle industriel aux maisons intelligentes, aux villes et aux services agricoles.

Figure 1.1: Billions of IoT devices [2]

Ces appareils sont de plus en plus conçus comme une composition fonctionnelle de briques logicielles

modulaires, qui peuvent chacune suivre des modèles de conception et de développement indépendants,

21

mais qui doivent finalement fonctionner dans une infrastructure composite qui doit être la plus fiable et

la plus efficace possible. Les opérateurs de réseaux doivent donc concevoir des infrastructures flexibles

qui doivent simultanément (i) être adaptables en fonction du nombre de dispositifs [1], (ii) garantir le

respect des accords de niveau de service (SLA), (iii) être rentables et (iv) assurer une haute disponibilité

et une faible latence des services de communication. Pour les services à faible latence et à haute fiabilité,

en particulier ceux liés à la sécurité publique, la gestion des SLAs est fondamentale pour pouvoir faire

la distinction entre les slices de réseau offrant différents niveaux de service. Puisque les technologies

de virtualisation des réseaux et de softwarisation promettent une exploitation rentable des services de

réseau avec des SLA garantis, les opérateurs de réseau ont commencé à virtualiser en profondeur les

composants de leur infrastructure, ce qui conduit au déploiement de ressources virtuelles sur des plates-

formes basées sur des machines virtuelles (VM), des conteneurs et/ou server-less. Essentiellement, la

virtualisation des fonctions de réseau (NFV) met en œuvre des fonctions de réseau par le biais de

techniques de virtualisation logicielle et les exécute sur du matériel commun (c’est-à-dire des serveurs,

du stockage et des commutateurs standard), en découplant le logicielle des fonctions de réseau du

matériel sous-jacent. Cela permet d’améliorer la flexibilité des services tout en réduisant le délai de

commercialisation d’un nouveau service qui peut être rapidement adapté aux besoins du client grâce

à de nouveaux cycles d’innovation comme, par exemple, le DevOps (développement de logiciels, Dev,

et les opérations informatiques, Ops).

Malgré cette complexité accrue, les réseaux du futur devront être facilement maintenables et leurs

capacités devront être continuellement améliorées et mises à l’échelle en dépendant le moins possible de

l’intervention humaine [11]. En ce sens, l’apprentissage automatique (ML) et l’intelligence artificielle

(AI) en général, ainsi que la virtualisation et la softwarisation, sont l’un des principaux moteurs de

l’automatisation des réseaux. Grâce à la facilité d’accès à des ressources de traitement massives (CPU

et GPU), que ce soit sur du matériel on-premise à faible coût ou par le biais de ressources en Cloud

à la demande, chaque secteur d’activité peut aujourd’hui optimiser ses processus commerciaux grâce

aux algorithmes de Machine Learning (ML). En outre, les plus grands acteurs du cloud privé, comme

Amazon et Google, permettent aux entreprises d’exploiter des modèles et algorithmes ML sous la

forme de bôıtes noires instanciées et utilisées à la demande, sans pratiquement aucun investissement

dans la conception et la mise en œuvre. Ainsi, l’accès facile et généralisé au ML ouvre la voie à

l’automatisation cognitive des réseaux, pour laquelle la softwarisation fournit les interfaces nécessaires

22

1.1. DÉTECTION ET CARACTÉRISATION DES ANOMALIES DES SYSTÈMES
VIRTUALISÉS

aux composants du réseau.

Figure 1.2: North America network automation market size from 2016 to 2027 (USD Billion) [3]

Selon l’étude Market Research Future [3] la taille du marché mondial de l’automatisation des

réseaux était de 4,00milliardsdedollarsen2019etdevraitatteindre22, 58 milliards de dollars d’ici 2027,

affichant un taux de croissance annuel composé (TCAC) de 24, 2% au cours de la période de prévision.

De même, la recherche sur les algorithmes d’automatisation des réseaux est aujourd’hui dans une large

mesure un domaine vert, sans bonnes pratiques établies et sans même un état de l’art suffisant. Des

études récentes se sont concentrées sur la conception de ce que l’on appelle la ”boucle cognitive”, qui

fait référence à une boucle de processus composée des phases de détection, d’apprentissage, de décision,

de politique et d’action CN1,CN2. Néanmoins, à notre connaissance, il n’existe aucun travail mature

qui conçoit une boucle cognitive complète pour les infrastructures de réseau virtualisées.

Dans les sections suivantes, nous résumons brièvement le contenu des chapitres qui composent

cette thèse. Pour plus de détails, veuillez vous référer aux chapitres correspondents en anglais.

1.1 Détection et caractérisation des anomalies des systèmes virtualisés

Les anciens et nouveaux services réseau seront migrés et conçus pour être déployés dans des envi-

ronnements entièrement virtualisés. À partir de la 5G, le NFV devient une brique formellement requise

dans les spécifications, pour les services intégrés dans les réseaux des fournisseurs d’infrastructures.

Cette évolution conduit au déploiement de ressources virtuelles sur des plates-formes basées sur des

machines virtuelles (VM), des conteneurs et/ou des serveurs sans serveur, ce qui nécessite une vir-

tualisation profonde des composants de l’infrastructure. Une telle “softwarisation”du réseau entrâıne

également une virtualisation plus poussée du réseau logique, facilitant les services multicouches, multi-

23

1.1. DÉTECTION ET CARACTÉRISATION DES ANOMALIES DES SYSTÈMES
VIRTUALISÉS

acteurs et multi-accès, de manière à pouvoir répondre aux exigences de haute disponibilité, de sécurité,

de confidentialité et de résilience. Cependant, l’hétérogénéité accrue des composants rend la détection

et la caractérisation des anomalies difficiles, et de même maniere la relation entre la détection des

anomalies et la reconfiguration correspondante de la pile NFV pour atténuer les anomalies.

L’automatisation des réseaux est un domaine de recherche dynamique qui vise à déployer de nou-

velles solutions dans les réseaux opérationnels au cours des prochaines années. Bien que les premières

recherches sur l’automatisation des réseaux remontent en fait à quelques décennies, la véritable au-

tomatisation des réseaux alimentée par l’intelligence artificielle (IA) et l’apprentissage automatique

(ML) n’est devenue que récemment une possibilité tangible pour les services opérationnels, grâce no-

tamment aux nouvelles technologies liées au Software Defined Networking (SDN) - avec la spécification

d’interfaces de configuration ouvertes - et à la Network Functions Virtualization (NFV) - qui rompt

le couplage entre les fonctions réseau et le matériel d’hébergement.

Au cours des dernières décennies, la communauté a relevé des défis liés à la manière de laisser

des ensembles distribués d’agents s’auto-organiser, découvrir automatiquement les états du réseau et

opérer la reconfiguration nécessaire du réseau. Cela a été l’objet de nombreux projets de recherche

dans le domaine des réseaux autonomes [161]. Nous pouvons également citer les activités de nor-

malisation liées à l’automatisation des réseaux, comme par exemple celles liées aux protocoles de

signalisation autonomes entre les agents décisionnels distribués [162]. Néanmoins, il manquait à ces

activités de recherche pionnières une architecture technique de référence stable à partir de laquelle

un framework décisionnel pourrait être développé et déployé à grande échelle, par exemple pour ré-

soudre des problèmes d’optimisation du routage ou de l’allocation des ressources. Avec l’avènement

des technologies de virtualisation des réseaux, les éléments de référence pour les infrastructures 5G,

et au-delà, sont aujourd’hui clairement spécifiés et adoptés. D’une part, la maturité relative des sys-

tèmes NFV-SDN a concentré les efforts de spécification de l’industrie sur les interfaces requises pour

l’automatisation des réseaux, répondant en quelque sorte à l’attente des anciennes recherches sur les

réseaux autonomes, mais avec désormais un environnement opérationnel prêt pour leur intégration.

Les groupes Zero-Touch Network and Service Management et Experiential Networked Intelligence

de l’ETSI répondent à ce besoin et ont récemment produit un ensemble de spécifications [163, 164].

D’autre part, des plates-formes d’automatisation des réseaux ont récemment vu le jour, notamment

l’Open Network Automation Platform, choisie par de nombreux opérateurs comme plate-forme de

24

1.1. DÉTECTION ET CARACTÉRISATION DES ANOMALIES DES SYSTÈMES
VIRTUALISÉS

référence pour l’automatisation des réseaux [165, 166, 167]. Plus récemment que pour le segment du

cœur, le segment radio subit une softwarisation croissante, avec de nouvelles plateformes comme l’Open

Radio Access Network one ORAN,ONAP. Ces activités ouvrent la voie à des décisions d’orchestration

pour lesquelles il existe un besoin critique d’algorithmes et de méthodes d’automatisation pour (i)

déterminer comment l’état d’une infrastructure entièrement virtualisée et programmable, composée

d’une variété de modules logiciels, doit être modélisé, (ii) inférer en temps d’exécution, et (iii) supporter

l’orchestration automatisée du réseau.

Dans ce chapitre, nous présentons la première brique dans cette direction et proposons une méthodolo-

gie pour détecter des anomalies dans l’espace d’état du réseau plutôt non identifié, composé d’un très

grand nombre de composants logiciels. Ces composants peuvent être caractérisés par un grand nombre

de métriques, changeant en nombre et en comportement dans le temps, qui peuvent être corrélées ou

non entre elles, selon les conditions du réseau. Cet environnement indéfini et variable nous motive

à proposer un framework d’apprentissage automatique non supervisé pour la détection d’anomalies

dans les infrastructures NFV. Le framework a été appelé SYRROCA (SYstem Radiography and Root

Cause Analysis). La figure 4.5 visualise le framework de manière schématique.

Figure 1.3: SYRROCA framework functional diagram

Nous avons effectué des tests dans une architecture virtualisée Ip Multimedia Subsystem IP (IMS)

visualisé dans la figure 4.2, le framework traditionnel utilisé pour le routage et le traitement du trafic de

la voix sur IP. Les distributions d’appels simulées et les ensembles de données utilisés sont disponibles

25

1.2. ÉVALUATION DE L’ÉTAT DU SYSTÈME VIRTUALISÉ

à l’adresse suivante [170].

Figure 1.4: Testbed

1.2 Évaluation de l’état du système virtualisé

La softwarisation des réseaux facilite l’adoption d’approches dites ”cognitives”, c’est-à-dire d’un

processus en boucle fermée composé de phases de détection, d’apprentissage, de décision, de politique

et d’action [12, 13]. Les observations capturées par les capteurs (sense) aident à construire un modèle

à partir des observations utiles (learn), qui est à son tour utilisé par un module de décision pour choisir

(decide) les actions à entreprendre sur la base des mouvements possibles et de l’expérience acquise.

Les actions potentielles, c’est-à-dire les stratégies stockées dans le module de politique (policy), sont

présélectionnées par le module de planification, de sorte que, finalement, les actionneurs exécutent

(act) les reconfigurations sélectionnées [11]. Les politiques développées par la boucle cognitive visent à

atteindre un objectif final de bout en bout dicté par les exigences de l’entreprise et/ou de l’utilisateur,

comme le maintien d’une certaine qualité de service (QoS) pour respecter un accord de niveau de

service (SLA). Construire un modèle suffisamment précis de l’état du réseau à partir des données

détectées est une étape primordiale dans la boucle cognitive/automatique. Dans un environnement

logiciel, des outils de surveillance avancés récents (par exemple, Prometheus) permettent de récupérer

des milliers de métriques à différents niveaux pour détecter une plateforme connectée composée de

composants informatiques et de réseaux. Cependant, l’extraction automatique de caractéristiques

pertinentes à partir d’une telle quantité de données pour évaluer l’état du système est un défi que nous

avons abordé dans le chapitre précédent, où nous avons posé les bases du framework SYRROCA. Dans

ce chapitre, nous développons davantage le framework SYROCCA, en proposant une caractérisation

de l’état du système à travers les couches. Nous montrons comment cette nouvelle analyse permet de

26

1.3. MÉTHODE DE RECONFIGURATION AUTOMATISÉE

caractériser les anomalies à n’importe quelle couche et leur propagation à travers les couches. Nous

effectuons des tests dans la même architecture vIMS conteneurisée que nous avons présentée dans

le chapitre précédent. Nous proposons également une formalisation du problème de remédiation des

anomalies autonomes sous la forme d’un algorithme d’apprentissage par renforcement. Enfin, nous

proposons un modèle de confiance et de réputation pour quantifier la contribution des entités MANO

à la résilience des systèmes autonomes.

1.3 Méthode de reconfiguration automatisée

Dans les chapitres précédents, nous avons présenté le framework SYRROCA qui couvre la phase

de détection de la boucle d’automatisation du réseau en détectant et en caractérisant les anomalies à

travers les couches physiques et virtuelles. Cette phase consiste à apprendre les conditions de l’état

nominal pour ensuite identifier et caractériser quelles ressources du réseau (groupe de ressources, unité

de calcul) et dans quelle mesure sont déviées. Dans la section suivante, nous présentons l’architecture

d’une méthodologie de récupération automatisée capable de compenser la déviation en s’appuyant

sur l’évaluation de l’état du système SYRROCA. L’approche proposée est basée sur un algorithme

d’apprentissage par renforcement (RL) qui apprend à sélectionner les actions de remédiation les plus

appropriées en ciblant les ressources dont la caractérisation de l’état est la plus éloignée des conditions

de travail nominales. Nous montrerons comment SYRROCA, enrichi d’un modèle de réputation et

d’un agent RL, complète le framework d’automatisation cognitive en boucle fermée. Ce chapitre décrit

principalement le brevet et la conception possible du système.

1.4 Remarques conclusives et perspectives

Dans cette thèse, nous avons présenté et évalué expérimentalement une boucle de contrôle autonome

complète pour la gestion de la résilience des réseaux virtualisés.

La figure 7.1 résume notre proposition sous forme de différents blocs appliqués à l’architecture fonc-

tionnelle NFV. Le cœur de notre proposition est le framework SYRROCA, qui est une approche basée

sur un LSTM-autoencodeur pour détecter (B) et caractériser (C) les anomalies d’une série temporelle

multivariée composée de centaines de métriques collectées aux niveaux physique et de virtualisation

(A) d’une plateforme logicielle supportant un service de réseau virtualisé. Nous avons montré com-

27

1.4. REMARQUES CONCLUSIVES ET PERSPECTIVES

Figure 1.5: SYRROCA closed loop automation on ETSI NFV architecture

ment les métriques brutes peuvent être agrégées et prétraitées pour constituer un jeu de données

d’entrâınement sur lequel les autoencodeurs profonds LSTM peuvent apprendre une représentation

compacte des conditions nominales de fonctionnement du système softwarisé. En effet, grâce aux pro-

priétés de compression des auto-codeurs, la série temporelle d’entrée de haute dimension est comprimée

dans un sous-espace de plus faible dimension (l’espace latent) où les échantillons anormaux semblent

significativement différents des échantillons nominaux. Pour améliorer les performances de l’auto-

codeur, nous divisons l’ensemble de données d’entrée en groupes de mesures par type de ressource et

nous alimentons chaque groupe avec un auto-codeur dédié. En considérant les types de ressources

CPU, réseau, mémoire et disque, nous avons un ensemble de quatre AE pour la couche physique et

quatre autres pour la couche de virtualisation. Pour analyser correctement les métriques à croissance

monotone et celles de forme arbitraire, nous ne conservons que les incréments des premières tout en

normalisant à une gamme uniforme les deux catégories de métriques. Nous avons choisi les RNN LSTM

comme cellules d’auto-codage de base car ils permettent de traiter des séries temporelles arbitraire-

ment longues sans perdre la mémoire des échantillons loin dans le passé comme cela se produit dans les

RNN standard. Nous avons comparé les auto-codeurs SYRROCA basés sur les LSTM avec un RNN

de base et une approche de forêt d’isolement (ISF), prouvant que les auto-codeurs RNN améliorent à

la fois le rappel et les scores F2 par rapport aux ISF, qui ne parviennent pas à extraire d’informations

sur les données non étiquetées. Nous avons également montré que les LSTM augmentaient encore les

performances des auto-codeurs par rapport aux RNN grâce à leur capacité à stocker des dépendances

28

1.4. REMARQUES CONCLUSIVES ET PERSPECTIVES

à long terme.

Ensuite, nous avons montré comment exploiter l’EQM des AE pour caractériser les anomalies

détectées à la fois par l’ensemble des métriques les plus déviantes et par la visualisation du roman

radiographique. En particulier, nous avons démontré comment l’EQM des auto-codeurs est corrélée

à l’intensité de l’anomalie, ce qui permet à notre framework d’évaluer la gravité de l’anomalie. Nous

avons ensuite expliqué comment les radiographies peuvent visualiser les anomalies de réseau sur un

espace euclidien bi-dimensionnel où la densité des fonctions bi-variées f(MSEl, g, MSEl+1,g) de deux

couches consécutives AE erreurs quadratiques moyennes, repère l’état du système le plus récurrent sous

la fenêtre temporelle considérée. Nous avons présenté deux versions d’un ensemble de radiographies

(L−1)×G pour G groupes de ressources d’un système composé de L couches. La version de radiogra-

phie à fenêtre glissante met en évidence l’évolution de l’anomalie dans le temps tandis que la version

à fenêtre croissante montre la propagation de l’anomalie à travers des couches consécutives. Dans

les deux versions, les seuils des AE identifient une zone rectangulaire qui correspond aux conditions

normales de fonctionnement.

La détection d’anomalies basée sur l’autoencodeur et la caractérisation de l’état du système ont

toutes deux été évaluées expérimentalement sur une plateforme vIMS gérée par Kubernetes. Nous

avons injecté un trafic réaliste basé sur des profils d’appels réels extraits d’un LAC (Location Area

Code) donné du réseau 3G d’Orange. Nous avons également injecté trois types d’anomalies pour

évaluer les performances de détection et de caractérisation de SYRROCA. Le jeu de données généré

est disponible à l’adresse [170].

Nous avons ensuite proposé une méthodologie pour évaluer l’état de fonctionnement du système

logiciel (C) en se basant sur la caractérisation des anomalies produite à l’étape B. La méthodolo-

gie produit un graphe d’état qui est destiné à alimenter un moteur de décision dans un système

d’automatisation en boucle fermée : comme chaque état dégradé est caractérisé par l’ensemble des

métriques les plus déviées, les politiques d’orchestration peuvent être adaptées à ces déviations. Selon

En effet, l’apprentissage par renforcement correspond parfaitement au processus cognitif qu’un réseau

autonome devrait mettre en œuvre, et les diverses entités logicielles qui composent la pile SDN/NFV

constituent une accroche idéale pour le processus cognitif. En conséquence, l’agent RL intègre toutes

les entités actives du système dans un agent de niveau supérieur qui gère la résilience du système

softwarisé par le biais d’intentions de haut niveau, mises en œuvre avec une ou plusieurs actions

29

1.4. REMARQUES CONCLUSIVES ET PERSPECTIVES

d’entités. L’état de l’agent RL est obtenu par le bloc C d’évaluation de l’état du SYRROCA, qui

calcule également la récompense des intentions à partir des radiographies à fenêtre coulissante comme

une évaluation de la qualité de l’intention. Plus précisément, la récompense est obtenue comme la

somme des contributions de chacune des (L − 1) × G radiographies. Chaque contribution est inverse-

ment proportionnelle à la distance de la région à haute densité par rapport à l’origine de l’espace

euclidien de la radiographie et directement proportionnelle à un facteur ml,g
x̂′ + ml,g

ŷ′ .

30

Chapter 2

Introduction

Content

2.1 Background and motivation . 32

2.2 Contributions and thesis outline . 34

2.3 Publications . 35

31

2.1. BACKGROUND AND MOTIVATION

2.1 Background and motivation

Communication network infrastructures are nowadays experiencing a deep evolution with the soft-

warization of all their basic components, from core network functions to radio access ones, including

mobile devices and connected objects: access control functions, transport, routers, switches, and ter-

minals in particular Internet of Things (IoT) devices. As depicted in figure 2.1, the number of mobile

and IoT devices is already exploding, with usages on the monitoring of endless examples of objects

wearable or not varying from security, health, and industry-related control services to smart homes,

cities, and farming services.

Figure 2.1: Billions of IoT devices [2]

These end-devices are more and more designed as a functional composition of modular software

bricks, each of them potentially following independent design and development patterns but eventu-

ally having to work in a composite infrastructure that must be as reliable and efficient as possible.

Thereby, network operators need to design flexible infrastructures that simultaneously have (i) to be

scalable with the number of devices [1], (ii) to guarantee Service Level Agreement (SLA) compli-

ance, (iii) to be cost-effective and (iv) to ensure high availability and low latency to communication

services. For low-latency and high-reliability services, especially those related to public safety, SLA

management is fundamental to be able to discriminate among network slices offering different grades of

service. As network virtualization and softwarization technologies promise a cost-effective operation of

32

2.1. BACKGROUND AND MOTIVATION

network services with guaranteed SLAs, network operators started deep virtualization of their infras-

tructure components which leads to the deployment of virtual resources Virtual-Machine (VM)-based,

container-based and/or server-less platforms. Essentially, Network Function Virtualization (NFV) im-

plements network functions through software virtualization techniques and runs them on commodity

hardware (i.e., industry-standard servers, storage, and switches), decoupling the software implemen-

tation of network functions from the underlying hardware. This brings improved flexibility of service

provisioning while decreasing the time to market of a new service that can be rapidly tailored to

customer needs thanks to novel innovation cycles like, for instance, software development (Dev) and

IT operations (Ops).

In spite of the increased complexity, future networks should be easily maintainable and their

capabilities should be continuously improved and upgraded by relying as little as possible on human

intervention [11]. In that sense, machine learning (ML) and artificial intelligence (AI) in general, along

with virtualization and softwarization, are one of the key enabler for network automation. Thanks to

easy access to massive processing resources (CPU and GPU) both on low-cost on-premise hardware or

through on-demand cloud resources, every industry can nowadays optimize its business process through

ML algorithms. Furthermore, recently the largest private cloud players like Amazon and Google, allow

companies to take advantage of ML models and algorithms in the form of black-boxes instantiated and

used on-demand with almost no investment in design and implementation. Thereby, widespread and

easy access to ML paves the way to cognitive network automation for which softwarization provides

the necessary interfaces to network components. Indeed, according to the Market Research Future [3]

the global network automation market size was USD 4.00 billion in 2019 and is projected to reach USD

22.58 billion by 2027, exhibiting a Compound annual growth rate (CAGR) of 24.2% during the forecast

period.

Likewise, research in network automation algorithms is today to a large extent a green field, with

no established good practices and not even sufficient state-of-the-art. Recent studies focused on the

conception of the so-called ‘cognitive loop’, which refers to a process loop consisting of sense, learn,

decide,policy and act phases [12, 13]. Nonetheless, to the best of our knowledge, there is no mature

work that conceives a full cognitive loop for virtualized network infrastructures.

33

2.2. CONTRIBUTIONS AND THESIS OUTLINE

Figure 2.2: North America network automation market size from 2016 to 2027 (USD Billion) [3]

2.2 Contributions and thesis outline

This manuscript is organized as follows.

In Chapter 3 we first introduce all the concepts, background and related work fundamental to

understanding network automation closed loops for resiliency management. We first present network

virtualization with reference to network function virtualization, software defined network and cloud

computing, outlining the synergy among the three technologies as network operators envision it for the

networks of the future. We then define network resiliency as long as presenting a brief overview of the

state of the art modeling efforts with a focus on automated resiliency management loops requirements.

After introducing the concept of reputation, we conclude the chapter with a brief overview of machine

learning techniques used in the dissertation.

In Chapter 4 we describe the proposal for the first brick towards a fully automated network re-

siliency management framework. We detail the machine learning pipeline we proposed to process raw

datasets composed of network metrics collected at any layer composing a softwarized network infras-

tructure. We also showcase the anomaly detection algorithm we designed to characterize deviation

from the learned nominal working conditions. The novel radiography visualization is also introduced

as a tool to visualize anomalies propagation among layers.

Chapter 5 is dedicated to the network system state assessment we proposed in [14]. The virtualized

system state is classified whether nominal or degraded. In the latter case, it is characterized through

the most deviated computation units and resources.

In Chapter 6 we describe the mechanism we propose to master distributed decision process of multi-

34

2.3. PUBLICATIONS

agent resiliency management of softwarized infrastructures. We formalize the anomaly remediation

action selection as a reinforcement learning problem, which is then used to build the reputation

assessment system. We deposited patent [15] for this proposal.

Chapter 7 concludes the dissertation with perspectives for future work improvements of the pre-

sented solutions.

Annexes A presents the dataset metric names we used for the thesis work. Annexes B and C report

a study on traffic classification conducted during the thesis and a technical report on ONOS and ODL

Software Defined controllers performance comparison.

2.3 Publications

Journals

Diamanti A., Vilchez J.M.S. and Secci S.,“An AI-empowered framework for cross-layer softwarized

infrastructure state assessment”. IEEE Transactions on Network and Service Management, Major

revision.

Conferences

Diamanti A., Sanchez Vilchez J.M. and Secci S., “LSTM-based radiography for anomaly detection

in softwarized infrastructures ”in 32nd International Teletraffic Congress, 2020.

Diamanti A., Sanchez Vilchez J.M. and Secci S.,“The SYRROCA AI-empowered network automa-

tion platform.”in 24th Conference on Innovation in Clouds, Internet and Networks and Workshops,

2021.

Aureli D., Cianfrani, A., Diamanti A., Sanchez Vilchez J.M. and Secci, S.,“Going beyond diffserv

in ip traffic classification”. In IEEE/IFIP Network Operations and Management Symposium, 2020.

Technical reports

Secci S., Diamanti A., Sanchez Vilchez J.M., et al., “Security and Performance Comparison of

ONOS and ODL controllers.”, Open Networking Foundation, Informational Report, September 2019.

35

2.3. PUBLICATIONS

Patents

Diamanti A., Sanchez Vilchez, J.M. and Secci S., “Procédé de contrôle d’ une entité d’orchestration

dans un réseau logiciel ”. French Patent, 2021. Submitted under number FR2107239.

36

Chapter 3

Related Work

Content

3.1 Network softwarization . 38

3.1.1 Network Function Virtualization . 38

3.1.2 NFV Management and Orchestration . 43

3.1.3 Software Defined Networking . 47

3.1.4 Cloud Computing for networking . 50

3.1.5 Fully softwarized networks . 52

3.2 Network resilience . 53

3.2.1 Cognitive closed loop automation for resiliency management 58

3.3 Reputation assessment modeling . 72

3.4 Machine learning techniques . 74

3.4.1 Machine learning and Deep Learning . 74

3.4.2 AutoEncoders . 75

3.4.3 Long-Short-Term Memory . 76

3.4.4 Reinforcement Learning . 79

This chapter introduces the concepts, the background, and the related work that are fundamentally

correlated to virtualized network resiliency management. We describe the main virtualization tech-

niques used by network operators focusing on the introduced architectural novelties and challenges.

We then review state-of-the-art closed-loop automation paradigms focusing on crucial challenges of

cognitive resiliency management. Trust and reputation are then introduced according to the state

of the art definition and models. To conclude, we outline an overview of the main machine learning

techniques used in this manuscript.

37

3.1. NETWORK SOFTWARIZATION

3.1 Network softwarization

The idea of virtualizing physical resources through a software-based abstraction in order to op-

timize available resources utilization was first introduced in the late 60s by IBM with the CP/CMS

(Control Program/Cambridge Monitor System) discontinued time-sharing operating system [16]. The

OS allowed the sharing of the available computing resources, dividing the activity of the CPU into

time intervals. Since then, virtualization greatly evolved to encompass plenty of different paradigms

which allow the abstraction of several hardware types other than classic computing resources.

In the context of telecommunications operators, three virtualization paradigms mainly shaped

the evolution of network infrastructures: the Network Function Vritualization (NFV), the Software

Defined Networking (SDN) and the Cloud Computing. In the following paragraphs we detail each of

the three paradigms.

3.1.1 Network Function Virtualization

Traditionally, the provisioning of a telecommunication network service was based on the deployment

of proprietary and vendor-locked specialized hardware according to a chain of functions specifically

tailored to each service. This lack of elasticity in network infrastructures coupled with highly demand-

ing service quality, security and stability impose heavy deployment and reconfiguration process which

in turn bring high CApital EXpenses (CAPEX) and OPerating EXpenses (OPEX). Nevertheless, in

the last decade, the demand for broadband network connectivity has been increasing dramatically

not only because of the increase in the number of Internet-connected mobile devices but also for new

(short-lived) services with high data rates, like in sensor networks and machine-to-machine (M2M)

connectivity.

To cope with all of these challenges, in October 2012, a group of telecom operators proposed a

Call for Action [17] which led to the creation of the Network Functions Virtualization (NFV) Industry

Specification Group (ISG) within the European Telecommunications Standards Institute (ETSI). This

ISG was initiated by several leading telecommunication carriers, including AT&T, BT, China Mobile,

Deutsche Telekom, Orange, Telefónica, and Verizon. It has quickly attracted broad industry support,

and had over 150 members and participants by the end of 2013, ranging from network operators to

equipment vendors and IT vendors. NFV, as intended by the ISG, leverages virtualization technology,

38

3.1. NETWORK SOFTWARIZATION

such as Virtual Machines (VM) and containers, to decouple physical equipment from the functions

that run on them. This way, a given Network Service (NS) can be decomposed into a set of Virtual

Network Functions (VNFs) which are deployed as plain software on commodity off-the-shelf hardware

which could be located in data centers, distributed network nodes or at end-user premises. A VNF

can be further decomposed into multiple components (VNFC) when the different functionalities of a

VNF feature specific performance, security, availability or scalability requirements.

Figure 3.1: NFV-FG composed of two FSP [4]

To describe an end-to-end NS, the NFV ETS ISG introduced the concept of Network Function

Forwarding Graph (VNF-FG); as depicted in figure 3.1 the graph is composed of nodes representing

the VNFs and edges for the logical links defining the existing connection between VNFs. As different

packet flows may need to be processed according to specific policies, the same VNF-FG may include

multiple sets of function chains, referred as Forwarding Service Paths (FSP). Classifiers are thus used

to match incoming packets with pre-defined rules in order to map them to the correct FSP.

To operate virtual network services with the required flexibility, VNF should run on a frame-

work that includes dynamic initiation and orchestration of VNF instances [18]. Therefore, the ETSI

NFV ISG defined the functional NFV architectural framework, using functional entities and reference

points, without any indication of a specific implementation. As depicted at figure 3.2, the architecture

leverages on two main blocks:

39

3.1. NETWORK SOFTWARIZATION

Figure 3.2: The functional NFV architectural framework [4]

� Network Function Virtualization Infrastructure (NFVI): represents the infrastructure of an NFV

environment, i.e. it provides all the hardware and software resources for the instantiation of

network functions. Managed resources may be both virtualized and non-virtualized, supporting

partially VNFs as well;

� NFV MANagement and Orchestration (NFV MANO): encloses all the entities that have the role

to manage the NFVI and orchestrate the allocation of resources needed by the Network Services

(NS) and VNFs.

When deploying VM-based VNFs, the NFVI virtualization software is the hypervisor, which is the

piece of software in charge of abstracting the host physical resources to guest operating systems [19].

However, this flexibility of hardware usage comes at a price. Firstly, VM creation and instantiation

require a non-negligible amount of time: after the hypervisor allocates resources to the VM and the

desired OS is installed on the VM, the entire boot process needs to be performed, like for a bare-

metal machine. Furthermore, run-time performance not only depends on the amount of allocated

resources, but each operation, whether an I/O or any instruction, needs to be translated by the

40

3.1. NETWORK SOFTWARIZATION

hypervisor in order to be correctly mapped to the host hardware. Even using dedicated hardware to

accelerate virtualization or directly access some host components like it happens with network card in

Single Root I/O Virtualization (SR-IOV), VNF scalability and portability are greatly impacted by the

heavy virtualization burden. On the contrary, as depicted in figure 3.3, container-based virtualization

provides a different level of abstraction: rather than executing a full OS on top of the virtualized

hardware, containers implement isolation of processes at the OS kernel level [20]. In particular, Linux

containers are implemented through control groups (cgroups [21]) and namespaces [22] kernel features.

While the latter provides a mechanism to restrict the view of certain resources to the container, the

former feature allows processes to be organized into hierarchical groups whose usage of resources can

be limited and monitored. Due to that, containers instantiation time is greatly reduced compared to

VM, code can execute as if it was run on the host machine and I/O devices are directly accessed.

Nonetheless, containers do not isolate resources as hypervisors do because the host kernel is exposed

to the containers, which can be an issue for multi-tenant security [23].

Figure 3.3: Container and VM based virtualization [5].

As the virtualization principle stimulates a multi-vendor ecosystem where the different compo-

nents of NFVI, VNF software, and NFV-MANO architectural framework entities are likely to follow

different lifecycles (e.g. on procurement, upgrading, etc.), ETSI proposed a set of interoperable and

standardized interfaces to let the different entities intercommunicate. Furthermore, as NFV-MANO

alone cannot deliver all the NFV business benefits, the architecture also includes an interface to in-

tegrate and inter-work with Operations support systems and Business support systems (OSS/BSS).

While the OSS is responsible for maintaining the Quality of Service (QoS) in accordance with the

41

3.1. NETWORK SOFTWARIZATION

Service Level Agreement (SLA) and provides assistance to the customer in case of problems, the BSS

deals with business-related issues such as customer order processing and payment. Communications

among those interfaces are facilitated through a shared resource abstraction model that is built up

leveraging on five different descriptors [24]:

� VNF Descriptor (VNFD): characterizes the identification details of the VNF (e.g., Name, ID,

Provider), its connection points, and any resource requirements for its execution;

� Virtual Link Layer Descriptor (VLD): describes links between VNFs, end-points and VNFCs;

� VNF Forwarding Graph Descriptor (VNFFGD): models the Forwarding Service Paths (FSP)

and the classifiers used to define a chain of VNFs;

� Physical Network Function Descriptor (PNFD): describes the Physical Network Functions (PNFs)

regarding their interconnection and performance requirements;

� NS Descriptor (NSD): models the end-to-end NS as an aggregation of the others type of descrip-

tors.

As proposed by ETSI NS descriptors (NSD) and VNF Descriptors (VNFD) should also contain

a set of N monitoring parameter that describe the different metrics that should be collected. In

particular, for each VNFD, three attributes require the specification of related monitoring metrics:

Virtual Deployment Unit (VDU), VNF Virtual Link Descriptor (VnfVirtualLinkDesc) and VNF De-

ployment Flavour (VNDF). The VDU is a construct supporting the description of the deployment

and operational behavior of a VNFC mapping it to to a single virtualization container (e.g. a VM).

Hence, the monitored parameter covers the single VFC. The VnfVirtualLinkDesc information element

supports providing information about the internal VNF Virtual Links (VLs); monitoring parameters

concern then metrics about intra-VNF and intra-VNFC virtual links. The VnfDf describes a specific

deployment version of a VNF, thus the monitoring parameters concern the virtualized resource-related

performance metrics to be tracked by the VNFM. Similarly, at the service level, each NSD defines

for each Network Service Deployment Flavour (NsDf) the set of performance metrics to be moni-

tored on an NS level (e.g. calls-per-second, number-of-subscribers, no-of-rules, flows-per-second, etc.).

Figure 3.4 depicts the structure of the monitoring parameter attribute we find in the descriptors.

42

3.1. NETWORK SOFTWARIZATION

Figure 3.4: Monitoring Parameter information element from ETSI specification [6]

3.1.2 NFV Management and Orchestration

The MANagement and Orchestration (MANO) components of the ETSI NFV architecture are

in charge to coordinate network resources for cloud-based applications and the lifecycle management

of virtual network functions (VNFs) and network services. As such, it is crucial for ensuring rapid,

reliable NFV deployments at scale.

Figure 3.5: ETSI MANO architecture [4]

As depicted in Figure 3.5, the main MANO functional component are:

� NFV Orchestrator (NFVO): it is in charge of managing NS life-cycle instantiating, scaling,

43

3.1. NETWORK SOFTWARIZATION

modifying and terminating NS. It is composed of two sub-components: the Resource Orchestrator

(RO) and the Network Service Orchestrator (NSO). While the former communicates with the

VNFM[s] (through the Or-Vnfm interface) to correctly compose the VNF to obtain the desired

NS, the latter communicates with the VIM[s] (through Or-Vi interface) to orchestrate the NVFI

resources;

� VNF Manager (VNFM): it manages the life-cycle (that is setup, configuration, maintenance and

tearing down) of a single VNF or a set of multiple VNFs. In some implementations, it also pro-

vides FCAPS (Fault, Configuration, Accounting, Performance and Security) functions generally

provided by a dedicated component called Element Management System (EMS). When VNFs

require proprietary interfaces to fulfill FCAPS operations, the EMS is functionally separated

from the VNFM and it is provided by the VNF vendor. In this case, the VNFM features two

standard open interface/reference points, one to communicate with the EMS (Ve-Vnfm-em) and

another with the VNF (Ve-Vnfm-vnf);

� Virtualized Infrastructure Manager (VIM): it manages the association of the virtualized resources

to the physical compute, storage and networking resources of the NFVI. Furthermore, it collects

and forwards to the NFVO performance measurements and events.

It is worth noticing that the ETSI MANO architecture also includes the databases that are used

to store the information and data models which define both deployment as well as life-cycle properties

of functions, services, and resources. With an effective MANO architecture, service onboarding is

straightforward and can be performed by a telco operator relying on template specification and onto

an automated mechanism to translate specification in the desired deployment. As we will see in

the next paragraphs, this automation pattern is an essential enabler and a driver towards future

autonomous cognitive networks.

In both the industry and academia, there exist several projects closed or open-source which try

to implement the elements of the MANO software stack. Open Source MANO (OSM) [25] is an

ETSI-hosted open source community delivering a production-quality MANO stack for NFV, capable

of consuming openly published information models, available to everyone, suitable for all VNFs and

VIM-independent (API interaction). OSM is aligned to NFV ISG information models while provid-

ing first-hand feedback based on its implementation experience. Similarly, Tacker [26] is an official

44

3.1. NETWORK SOFTWARIZATION

OpenStack [27] project building a Generic VNFM and an NFVO to deploy and operate NS and VNFs

on an NFVI platform like OpenStack. While OpenStack is a set of interrelated software components

that control diverse, multi-vendor hardware pools of processing, storage, and networking resources

throughout a data center, Tacker completes the stack with a VNFM and a NFVO. Open Baton [28]

is another similar effort that supports several VNFM and VIM solutions. It provides a generic VIM

(combined with its own Generic EM System) which can be used for managing VNF Packages. Fur-

thermore, it is built to be extensible either over a message bus using the pub/sub mechanism or using

a RESTFul API to support additional external VNFMs.

The Kubernetes container orchestrator

Kubernetes is an open-source container-orchestration system that aims to provide a platform for

automating deployment, scaling, and operations of application containers across clusters of hosts. It

implements the pattern of multiple cooperating processes which form a cohesive unit of service through

the ‘Pod’ abstraction, which constitute a group of containers sharing storage and network.

Figure 3.6: Kubernetes architecture [7]

As depicted in figure 3.6, the Kubernetes control plane expose an API server that provides the

front-end to the cluster’s shared state and the interface for the users and the other components

to manage, create, and configure Kubernetes clusters resources and workloads. A workload is an

application running on Kubernetes that can be composed a set of workload resources:

� Deployment. The former is a good fit for managing a stateless application workload on the

45

3.1. NETWORK SOFTWARIZATION

cluster, where any Pod in the Deployment is interchangeable and can be replaced if needed;

� StatefulSet lets users run one or more related Pods that do track state somehow. For example, if

your workload records data persistently, you can run a StatefulSet that matches each Pod with

a PersistentVolume. Your code, running in the Pods for that StatefulSet, can replicate data to

other Pods in the same StatefulSet to improve overall resilience;

� DaemonSet defines Pods that provide node-local facilities. These might be fundamental to the

operation of the cluster, such as a networking helper tool, or be part of an add-on. Every time

you add a node to your cluster that matches the specification in a DaemonSet, the control plane

schedules a Pod for that DaemonSet onto the new node;

� Job and CronJob define tasks that run to completion and then stop. Jobs represent one-off

tasks, whereas CronJobs recur according to a schedule.

Their specification and desired state are expressed in a declarative fashion, through either .yaml

configuration files or the kubectl command line tool, and they are set through API calls. A distributed

key-value store called etcd stores resources desired state and specification into Kubernetes objects,

which also records the actual state for the resource the object describes. Desired state enforcement is

performed through the so-called controllers, which implements several core control loops all of them

managed by the kube-controller-manager. A controller tracks at least one object and issues command

towards the API server to make the actual state as close as possible to the desired state. For instance,

the Node Controller is responsible for node life-cycle managements which encompass nodes CIDR

block assignment, health monitoring, available resource tracking etc... When deploying pods on the

physical nodes composing the cluster, Kubernetes relies on a component called scheduler which finds

feasible nodes for a Pod selecting the optimal one. When a pod is created on a node, the kubelet node

agent daemon uses probes to ensures that the containers in it run healthy. A probe describes a health

check to be performed against a container to determine whether it is alive or ready to receive traffic. If

the associated user-defined conditions are not meet, the kubelet daemon can react to restart, replace

or kill containers.

Networking among cluster pods is strictly regulated by a fixed model which is stated through

the Container Network Interface (CNI) specification. CNI is a Cloud Native Computing Foundation

project, consists of a specification and libraries for writing plugins to configure network interfaces in

46

3.1. NETWORK SOFTWARIZATION

Linux containers. CNI promotes interoperability among container runtimes and orchestrators pro-

viding a common interface between the network plugins and container execution. The CNI imposes

that pods on a node can communicate with all pods on all nodes without NAT and agents on a node

(e.g. system daemons, kubelet) can communicate with all pods on that node. Those two fundamen-

tal requirements enable low-friction porting of apps from VMs to containers. Another fundamental

principle that the CNI imposes is the “IP-per-pod” model, in which containers within a Pod share

their network namespaces, including their IP and MAC addresses. This means that containers within

a Pod can all reach each other’s ports on localhost and that thus they must coordinate port usage,

as it happens for processes in a VM. In the context of Kubernetes, there exists plenty of CNI plugins

which implements those specifications in a number of way and leveraging on different technologies,

like for example Linux bridges (Calico), openVSwitches (ovs-cni) or AWS/GCP/Azure virtual routers.

External pod exposure as a network service is instead managed by the service abstraction. Pods are

inherently ephemeral, which means that the set of Pods running in one moment in time could be differ-

ent from the set of Pods running that application a moment later. Accordingly, the service abstraction

constitutes a single entry-point for a logical set of Pods and a policy by which to access them. The

set of Pods targeted by a Service is determined by a selector. The kube-proxy network proxy which

runs on each node, is the control-plane component in charge to load-balance traffic that is destined for

services to the correct back-end pods. To do that, it can rely on three different technologies (userspace,

iptables and IPVS) which may require the CNI plugin to make the traffic accessible to them.

3.1.3 Software Defined Networking

Despite their widespread adoption, traditional IP networks are complex and hard to manage [29].

In fact, the implementation of a given network policy requires a low-level configuration of the vendor-

closed network devices. Furthermore, the decision on how to route traffic and the mechanism used

to forward packets according to the desired policies, are bundled together inside the network devices.

This inherent rigidity of the network makes challenging to implement any kind of automation or

auto-reconfiguration while hindering innovation and evolution of the infrastructure [30].

Software Defined Networking (SDN) was then proposed to bring more elasticity breaking the verti-

cal integration of control and data planes through the software-based Controllers (SDNC) which runs

on a commodity server and centralize the management into a logical layer separated from the data

47

3.1. NETWORK SOFTWARIZATION

Figure 3.7: Software Defined Networking architecture

forwarding function. Figure 3.7 depicts a high level architecture as it was conceived by a research

collaboration between Stanford and the University of California at Berkeley [31] which proposed the

OpenFlow southbound Application Programming Interface (API) and protocol as a way for the SDNC

to control the flow of traffic over a network. The key idea of OpenFlow is to program the forward-

ing hardware to match incoming data-plane packets against the forwarding rules that the controller

pushes through the OpenFlow itself. Each rule associates to the match conditions certain actions

(like dropping, forwarding, modifying, etc...) that are performed on the matching traffic (flow). Rules

are organized in tables, which can be chained in order to implement different forwarding policies and

make the hardware devices behave like different network components (like firewalls, routers, switches

etc..). Even though OpenFlow is the first and probably the most used southbound API specification

and protocol, there exists other southbound protocols and associated APIs like the Network Configu-

ration Protocol (NetConf) which uses an Extensible Markup Language (XML) to communicate with

the forwarding hardware. In general, a southbound API not only enables control over the forwarding

operations but also lets the switching hardware exposing event notifications, statistical reporting and

advertise the capabilities of the network. An SDN controller also exposes a northbound API which

allows programming SDN Applications to access an abstraction of network functions, to consume the

network services and dynamically configure the network. SDN applications can for example implement

enable basic network functions like path computation, loop avoidance or put in place more sophisti-

48

3.1. NETWORK SOFTWARIZATION

cated services like load balancers, software defined security and orchestration applications across cloud

resources [32].

Even thought SDN holds great promise in terms of simplifying network deployment, maintenance

and evolution, many challenges remain to be addressed. When using general-purpose forwarding

hardware, high-level programming language enables fast development and the highest level of design

abstraction [33]. But this flexibility comes at a price: CPUs are indeed limited to several tens of Gb/s

of throughput when processing network packets [34]. Optimized processor architectures for network

processing, like Network flow processors (NPUs/NFPs), were introduced to increase processing speed

up to 200 Gb/s; however, the flexibility of implementation is reduced as the definition of the processing

functions requires detailed knowledge of the device architecture. Further, less flexible but more energy

efficient and performing, Application-specific Integrated Circuits (ASICs) are also broadly used as

forwarding hardware, mainly along with NPUs/CPUs to compose a hybrid architecture that provides

a desirable programmability/performance trade-off [35]. Additionally, the SDN controller software

implementation may also affect the processing performance: for example, in [36] authors showed how

the Open Network Operating System (ONOS) controller turns out to be more efficient at processing

Openflow packets than the OpenDayLight controller.

Other broadly discussed challenges that arise from the centralization of the control plane in one

logical node, concern the security and the high-availability/resilience of the SDN controller. Despite

SDN controllers can be clustered through the east-west API to assure availability in case of one node

fault, the softwarized nature of the SDN controller opens the way for new types of faults and threats

that did not exist in legacy hardware-based networks. At the controller-application level, questions

have been raised around authentication and authorization mechanisms for applications and users as

without proper securing an attacker may masquerade as a controller and carry out malicious activities.

Furthermore, the adoption of open interfaces and protocols allows a complete knowledge of the same

by eventual attackers [37].

The flexibility and the network programmability offered by of the SDN paradigm, pave the way to

the so-called intent-based networking [38]. Firstly introduced by the ONOS and OpenDayLight open

source projects, intents should allow a network application to declare the desired network behavior

in plain natural language without being responsible for implementing that behavior itself [39]. The

actual intent rendering, that is the translation into device-specific rules and courses of action, should

49

3.1. NETWORK SOFTWARIZATION

be automatically managed by the SDN controller. Even though the paradigm was conceived for

the SDN, it is particularly interesting with reference to network automation and declarative network

configuration as it allows the specification of policies rather than mechanisms. For example, when

a given service request is received, the VNF-MANO framework has to convert that request into a

suitable service graph and pass it to the relevant VIMs involved in the SFC composition. In this

context, intents allow to provide an abstracted yet flexible definition of the requested service graph,

without knowledge of the technology-specific details [40]. Furthermore, intents can be useful to express

all the goals – including those that may have been considered “common sense” in human-operated

systems- that a cognitive loop needs to target at: intents, indeed, give the system the flexibility to

explore various solution options and find the optimal one through learning [41].

3.1.4 Cloud Computing for networking

With the advent of the Internet and the progressive development of computing resource virtual-

ization, the locus of computation shifted outward to distant data centers [42]. Consequently, cloud

computing was at first intended as the possibility for users to rent virtual computer resources to exe-

cute their own applications. Since then, the concept of cloud computing greatly evolved to encompass

other service models, which demonstrated to be the best candidate that offers a chance of achieving

the efficiency and expense reduction that are motivating TSPs towards NFV [43]. In particular cloud

computing offers three service models [44]:

� Software as a Service (SaaS): users can access and exploit applications through a web browser

or a programming interface. The software is hosted and fully managed by the cloud provider;

� Platform as a Service (PaaS): customers are provided with a complete cloud platform—hardware,

software, and infrastructure—for developing, running, and managing applications without the

cost, complexity, and inflexibility that often comes with building and maintaining that platform

on-premises;

� Infrastructure as a Service (IaaS): users can access compute, network, and storage resources

on-demand, over the internet, and on a pay-as-you-go basis.

As IaaS is the most open-ended cloud service providing access to virtual and general-purpose

computing, networking and storage resources, it constitutes a cost-effective approach for telecommu-

50

3.1. NETWORK SOFTWARIZATION

nication operators to implement the NFVI layer. Fully managed cloud infrastructures not only relieve

the operators from the burden to set up and maintain the whole virtualization infrastructure, but it

gives a cost-effective way to shrink and scale resources to meet the variable business requirements,

eliminating up-front capital expenditures or unnecessary owned infrastructure. Similarly, the PaaS

model will push even further the possibility for telco operators to deploy and maintain services, pro-

viding all the required software to instantiate, maintain, reconfigure, aggregate and monitor network

services.

Even if both IaaS and PaaS seem to be suitable to facilitate the migration to fully virtualized net-

works, cloud environments still need an adaption so as to obtain carrier-class behavior. In fact, telecom-

munication networks call for very strict performance requirements like low data-plane latency [45] and

infrastructure five-nine availability and reliability [46], among others, which are not inherently granted

by a generic cloud environment. For example, one of the architectural tenets of cloud platforms is that

both scalability and reliability are achieved via massive horizontal scale [47]. This pushes the High

Availability (HA) requirement from the infrastructure itself as in old-fashioned network, up to the

application: recognizing that failures are bound to occur, an application with many instances across

many hosts in a distributed cloud can grant the five-nine availability requirements.

When it comes to design and develop cloud-native scalable applications in dynamic environments

such as public, private, and hybrid cloud, technologies such as containers, service meshes, microser-

vices, immutable infrastructure, and declarative APIs are commonly adopted [48]. These techniques

enable loosely coupled systems traditionally designed according to Service Based Architectures (SBA)

like microservices or Service-Oriented Architecture (SOA). SBA patterns place a heavy emphasis on

services as the primary architecture component used to implement and perform business functional-

ity [49]. SOA promotes the reuse of services which are accessed through synchronous RESTFull APIs

and synchronously obtain and alter data directly at its primary source. Microservices instead are a

specialization of an implementation approach for SOA used to build flexible, independently deployable

software systems [50]: code reuse is preferred, accepting duplicate data to help improve decoupling.

Furthermore interaction patterns based on asynchronous communication, like publish/subscribe event

sourcing, are adopted to enable a microservices component to remain up to date on changes happening

to the data in another component. Following the introduction of DevOps, which combines a set of

best practices of software development (Dev) with IT operations (Ops), microservices begun the most

51

3.1. NETWORK SOFTWARIZATION

popular architecture for building continuously deployed systems [51]. In fact, as experienced in IT,

when developing several units potentially deployable to any environment, Continuous Delivery (CD)

and Continuous Integration (CD) DevOps best practices, among others, are of paramount impor-

tance to decrease the time between changing a system and transferring that change to the production

environment [51].

3.1.5 Fully softwarized networks

By allowing network functions to be virtualized and run on commodity hardware, NFV enables

cloud-native service models, like SBA, to be applied to operators network services. In this direction,

the 3rd Generation Partnership Project (3GPP) standardized 5g as a service-based architecture in

order to conceive the future operator core network as a cloud-native framework. As mentioned in

the previous section, cloud-like environments are particularly suited to implement SBA since VMs

and containers provide a perfectly suited abstraction to deploy independent services. Furthermore,

the cloud management and orchestration schemes coupled with SBA provide all the elasticity that

NFV requires for the instantiation, migration and reconfiguration of VMs running specific network

services according to the VNFM policies. In that sense, the cloud management and orchestration

fulfill the functionality expected from a VIM and thus integrates into the NFV architecture. Likewise,

SDN seems to be the natural solution to obtain a coherent fully softwarized infrastructure where each

VNF is managed by the NFV MANO through the cloud orchestrator and the connectivity among the

different cloud nodes and tenants that hosts the virtualization units (container or VMs) is configured

through the SDN controller. Furthermore, NFV and the cloud provide the SDN with the possibility

of implementing network functions through the software on commodity servers. Accordingly, the SDN

controller can be virtualized so that it can be easily maintained, extended and integrated in the MANO

pipeline.

As the future of all network services is directed towards fully softwarized architectures both at the

level of network functions and at the level of connectivity management, an open research question is

how to manage these infrastructures in order to ensure the same quality of the service as traditional

networks while providing all those functionalities that the future networks, such as 5G, require. As

we will show in the following paragraphs, one of the methods that have been hypothesized is to build

a self-conscious network, that is therefore, able to self-regulate starting from a consciousness of its

52

3.2. NETWORK RESILIENCE

state that uses as a base to understand autonomously how to reconfigure itself in case of anomalies or

fluctuations of the service in order to guarantee the desired level of service.

3.2 Network resilience

Definitions

Service continuity is not only a customer expectation but often a regulatory requirement, as

telecommunication networks are considered to be part of critical national infrastructure. Moreover,

system failure not only results in loss of revenue for the provider, but it can seriously damage its

reputation. A Highly Available (HA) network is one that ensures that the network and its services

are nearly always accessible. An HA of five nines (99.999%, meaning that on average, the service is

never down for more than five minutes in a one-year period) or six nines is the minimum requirement

that telco operators often want to enforce. However, it is not enough: a network and its services also

need to be Resilient. Resilience stems from the Latin resilio, which literally means “jump backwards”,

accordingly a resilient network has the ability to provide and maintain an acceptable level of service

recovering from various faults and challenges to normal operation [52]. It is also seen as a combination

of HA and the ability to maintain QoS Service Level Agreement (SLA). Consider a routing service

that can grant a level of 99.9999% HA but which is not resilient: it will not go down for more than 31.5

seconds a year but if it does it may not capable of restoring active sessions without any degradation.

On the contrary, a resilient routing system will manage faults and continue the service without any

disruption or degradation in performance, maintaining the minimum level of service as defined in the

SLA. Networks resiliency is a very broad property, widely studied both in the research community and

in the industrial environment, winch is in turn defined as a composition of several sub-properties:

• Survivability: The capability of a system to fulfill its mission, in a timely manner, in the presence

of threats such as attacks or large-scale natural disasters [53, 54];

• Disruption tolerance represents the capability of tolerating episodic loss of connectivity among

its components;

• Traffic tolerance as the ability of the system to to tolerate traffic beyond the design parameters

without a significant drop in carrier load;

53

3.2. NETWORK RESILIENCE

• Reliability: is the probability that a system or service remains operable for a specified period of

time. It is mathematically defined as the probability of the system or service to stay operational

at time t and it is expressed as: R(t) = exp −(
∫︁ t

0 λ(τ)dτ), where λ(τ) is the instantaneous failure

rate. Through the reliability it is possible to compute the Mean Time Between Failure (MTBF),

i.e. the predicted elapsed time between inherent failures, as MTBF = E(TBF) =
∫︁ +∞

0 R(t)dt.

When the instantaneous failure rate is a constant λ(t) = λ, the reliability is R(t) = e−λt; hence

the MTBF = 1/λ. Similarly, given a constant repair rate µ, the Mean Time To Repair (MTTR)

is defined as MTTR = 1
µ [55].

• Availability: readiness for correct service [56], i.e., delivery of service in compliance with the

service specification. Measured as the probability of the readiness to provide service compliant

with the requirements. It is mathematically defined as A(t) = MT BF
MT BF +MT T R = µ

λ+µ ;

• Security, declined as the property of a system, and the measures taken such that it protects

itself from unauthorized access or change, subject to policy [57];

• Performability: is the property of a system to deliver the service according to specification [58].

To correctly define system resilience, it is important to understand how challenges can impact its

working condition. In particular, a fault is a flaw in the system that can cause an error. This can

either be an unforeseen design flaw (such as a software bug), or a foreseeable flaw due to constraints

that permit an external challenge to cause an error (such as not designing a sufficiently robust system

due to cost constraints). On the other end, an error is a deviation between an observed value or state

and its specified correct value or state that may lead to a subsequent service failure. A service failure

(frequently shortened to failure) is a deviation of the service from the desired system functioning such

that it does not meet its specification or expectation. Accordingly, a fault may be triggered to cause

an observable error, which may result in a failure if the error is manifest in a way that causes the

system not to meet its service specification.

Resiliency modeling

Effectively and comprehensively modeling the resiliency of a network is an open state of the art

challenge. The major complexities come from the varied nature of services that the network provides,

the numerous layers and their parameters over which these services depend, and the plethora of

54

3.2. NETWORK RESILIENCE

Figure 3.8: Fault-error-failure chain

adverse events and conditions that present challenges to the network as a whole. For instance, [59]

formalizes the notion of Level-of-Resilience (LoR) in IP network. This measure was based on the

Level-of-Stability-Reduction (LoSR), as measured by the percentage of IP traffic dropped, the Level-

of-Performance-Reduction (LoPR) as measured by the percentage of reduction in application Quality-

of-Service (QoS) latency, and the network Recovery-Time (RT) as measured by convergence time

under various attack scenarios. Gertsbakh et al. [60] formalizes the notion of probabilistic resilience

in a network N with n components as the largest number of component failures such that N is still

operational with probability 1 − β.

Authors in [52, 61, 62] model networks resilience as a function of the deviation between two

network states caused by anomalies. The network state Sk is represented as a tuple (Nk,Pk) where Nk

represents the operational state of the network derived from a set of operational M metrics {p1, ..., pl}

(e.g. number of link failures, link capabilities or congestion etc..). Pk, instead, characterizes the service

delivered by that layer (e.g. IP connectivity) and is obtained from the set {n1, ..., Ns} of service related

metrics (e.g. delay, jitter, etc.). Accordingly, they defined the bi-dimensional state space depicted in

figure 3.9. For the seek of simplicity, they divided the Service dimension in Acceptable, Impaired

and Unacceptable regions, while the Operational states are divided in Normal Operation, Partially

Degraded and Severely Degraded. In this space, network resilience is then characterized as a function

of the deviation between the nominal state S0, which represents the normal working conditions for

the network, and a degraded state Sc, which results from an anomaly. In particular, they defined a

resiliency score as R = 1−A(Sn, Sd), where A(Sn, Sd) is the area under the resilience trajectory S0ßSc

depicted in figure 3.9 as a the shaded triangle.

What is particularly interesting about this model is its multi-layer nature: considering all the

layers composing a network, it is possible to obtain a resiliency state-space like the one of figure 3.9

for each boundary Bi,j between layers i and j. The service parameters at the boundary Bi,j become

55

3.2. NETWORK RESILIENCE

Figure 3.9: Sterbenz resiliency space [8]

the operation metrics at boundary Bi+1,j+1. By beginning at the bottom level and progressing up the

service layers, the overall multilevel resilience value can be computed, and by composing these across

all scenarios of interest for a given network architecture, it may be possible to derive a single resilience

value.

Resilience considerations for NFV

Resiliency is one of the central topic studied by the e ETSI NFV ISG which produced a docu-

ments [9] to define the requirements a resilient NFV virtualized network environment needs to fulfill,

and a Proof of Concept (PoC) [63] to demonstrates how virtualized network functions (VNFs) from

multiple vendors can be easily deployed in a highly resilient software infrastructure environment.

According to ETSI, there are a number of alternative means by which the virtualized applications

can achieve their resiliency objectives: on the one end, relying totally on the capabilities of the NFV-

MANO entities to detect errors and effect remediation, or the resiliency could be managed by the

virtualized application itself and relies only partly or not at all on the NFV-MANO functionality.

In both cases, as the NFV-MANO entities could be in turn virtualized, they need to be at list HA

(they should support recreation to original state prior to failure). In fact, as they are involved in

orchestrating the infrastructure as well as managing the VNF lifecycle, they need to be always at least

available.

56

3.2. NETWORK RESILIENCE

As each NS could require a different degree of resiliency, the network service descriptors and

the VNF descriptors should specify the reliability, availability and scalability SLAs to be supported.

Furthermore, when onboarding NS and setting up the related VNFs, it is expected the Orchestrator

and/or the VNF Manager set up monitoring and register for notifications to the VIM. The monitoring

should span the whole stack, down from the physical service, passing through the virtualized resources

and VNFs, and up to the NS. Indeed, in the event of faults, monitoring triggers should either activate

VIM remedial actions or report to the NFVO. Thereby, anomalies affecting an NFV system may trigger

fault notifications at different levels, several of which could have causal relationships to one or more

faults (for example, a low memory condition in a virtual machine could lead to several faults at the

application level). To avoid individual handling of the single notifications that may led to unnecessary

concurrent actions, ETSI propose a fault correlation framework (figure 3.10) composed of system-wide

(SC) and local correlators (LC). The latter runs at different layers in the system and collect failure

Figure 3.10: ETSI NFV fault correlation framework [9]

information occurring at different components within that layer. They apply well-defined correlation

rules to select one or more root cause candidates that might have caused all other errors reported

at that layer. The former, collect reports of LCs and other SCs to apply correlation rules based on

a common fault precedence graph. One of the main limitations of this proposal is how to define

57

3.2. NETWORK RESILIENCE

correlation rules for LCs and the fault precedence graph. In spite of that, the important takeaway

is that ETSI highlighted the need for coordination in analyzing errors and/or anomalies detected at

each layer to perform a joint analysis. As we will se in the next chapter, this is design specification is

important for cognitive control loops as well.

To the best of our knowledge, there exist only very few works that try to implement the ETSI

NFV recommendations. For example, the OPNFV Doctor [64] project aims at building a fault man-

agement and maintenance framework for the high availability of Network Services on top of virtualized

infrastructure. The key feature is immediate notification of unavailability of virtualized resources from

VIM, to process recovery of VNFs on them. However, the project does not provide for any automatic

recovery mechanism. Similarly, the Open Network Automation Platform (ONAP) is a software plat-

form for the orchestration, management, and automation of network and edge computing services

for network operators, cloud providers, and enterprises. Its real-time, policy-driven orchestration and

automation of physical and virtual network functions enables rapid automation of new services and

complete lifecycle management critical for 5G and next-generation networks. It integrates with Open-

stack, Kubernetes and other different public clouds. Cloudify [65] is an open source cloud orchestration

framework that allows you to model applications and services, automate their entire life cycle, monitor

and detect issues and failure.

3.2.1 Cognitive closed loop automation for resiliency management

In spite of the future networks increased complexity we highlighted in the previous paragraphs

which appears to be approaching the limits of human capability, they are expected to be easily main-

tainable with as little as possible of human intervention. In March 2001 during a keynotem Paul Horn

introduced the idea of Autonomic Computing referring to computing systems that can manage them-

selves given high-level objectives from administrators [10]. As depicted in figure 3.11, an autonomic

manager was presented as a component that continually executes a Monitor-Analyze-Plan-Execute

(MAPE) loop in which it observes sensor readings, analyzes and plans an appropriate management

decision, and then executes that them via effectors. The model encompasses a central knowledge base

as well: it contains an explicit system model, which estimates how the management decisions would

affect subsequent states of the managed element and their effectiveness in achieving the manager

objectives.

58

3.2. NETWORK RESILIENCE

Figure 3.11: MAPE control loop [10]

Inspired by this publication, the research community applied the autonomic computing concept to

several domains and further developed a set of properties, referred to as self-*, that are associated to

autonomic systems [66]:

� self-protecting: refers to the capability of defending the system against correlated failures such

as external attacks, massive disasters, or cascading effects. Supports self-healing systems when

those are not able to deal with such problems;

� self-healing: it is the capability of detecting abnormalities, diagnose them and identify the root

cause, i.e. the element or elements origin of the abnormality. The abnormality may imply a

service failure, a simple fault having non-disastrous consequences on the service layer, or even a

mismatch in a given operational parameter that could evolve in a service failure;

� self-configuring: it regards the automatic configuration of the network equipment by means of

high-level policies. This implies that, when new equipment is connected to the network, it should

self-advertise by sending its capabilities and the system should configure it automatically as well

as providing its capabilities to the rest of network equipment to be aware of this new equipment;

� self-optimizing: the automatic setting of parameters of the equipment installed in the network

in order to optimize the global behavior of the network.

In the context of networking, autonomic computing was first studied by Mitola [8] which proposed

the so-called cognitive radio architecture, depicted in figure 3.12. The cognitive loop enables the radio

59

3.2. NETWORK RESILIENCE

system to sense the external environment, learn from history and make intelligent decisions to adjust

its transmission parameters according to the current state of the environment. Likewise, a general

cognitive closed loop automation refers to a closed-loop process consisting of sense, learn, decide,

policy and act phases [12, 13]. The observations captured by the sensors (sense) help to build a model

from the useful observations (learn), which is in turn used by a decision-making module to choose

(decide) the actions to be taken based on possible moves and learned experience. Potential actions,

i.e. strategies stored in the policy module (policy), are shortlisted by the planning module, so that,

finally, the actuators execute (act) selected re-configurations [67].

Figure 3.12: Cognitive cycle from Mitola [8]

One of the key concepts of a generic cognitive closed loop is its cross-layer design referred to as the

ability to share information among layers and actively exploiting the dependence between the protocol

layers to obtain performance and achieve high adaptivity [68]. Classic computer networks have been

designed following the principle of protocol layering, so network functionalities are designed in isolation

of each other (separate layers) and interfaces between layers. Each layer uses the services provided

by the layer below it and provides services to the layer above it. Inter-layer communication happens

only between adjacent layers and is limited to procedure calls and responses. When implementing a

cognitive control loop each layers parameters need to be aggregated and analyzed as a whole to help

the loop determine the best adaptation rules with regard to the current network state. For networks

that employ a wide variety of layers and protocols, a cognitive loop can provide a mechanism to view

60

3.2. NETWORK RESILIENCE

and learn from the network as a whole [69].

Since Mitola first proposed an application of autonomic computing to networks, more demanding

new applications and services have been introduced, which in turn pushed the growth of the com-

plexity and heterogeneity of network and equipment. In this regard, autonomics is seen as the next

generation of management solutions for telco operators, mainly for its self-healing property which en-

ables discovery of malfunctions through fault-detection, diagnosis and appropriate actions triggering to

prevent disruptions. The idea to build a control loop to manage the resilience of the network operator

system, is not novel in the literature. In [52] Sterbenz et. al. propose a double control-loop, known

as D2R2 + DR: Defend, Detect, Remediate, Recover, and Diagnose and Refine. The framework is

based on two strategies: first to heal the net-work at run-time with short-term measures (D2R2) and

to refine and improve the network with medium-term or long-term measures by a background loop

(DR). Those long-term measures may be architectural changes or the inclusion of new mechanisms

and algorithms, or new protocols to face new vulnerabilities and challenges. Both control loops are

continuously interacting in order to take into account the feedback of the D2R2 control loop to foresee

new updates and upgrades of the resilience system. Similarly, [70] describes an integrated framework

for the design, evaluation, and deployment of network resilience strategies. These strategies describe

the management behavior of a number of federated, policy-controlled resilience mechanisms, such as

monitoring and detection systems. The framework allows the generalization of the most effective

policy configurations into reusable management patterns, which can then be rapidly deployed in the

network infrastructure. The proposed framework leverages on four main abstractions: (i) a challenge

analysis component which outputs challenge events indicating that a new challenge has been identified;

(ii) The resilience manager, which realizes a policy-driven feedback control-loop, which is based on

the challenges observed and mechanism instances available; (iii) a Policy-based RESilience simulaTor

(PReSET) which allows the modeling of resilience strategies, facilitates the off-line analysis of a range

of anomalies and attack behaviors, and permits the evaluation of resilience policies to detect and miti-

gate security threats; (iv) management patterns which can be seen as a generalized resilience strategy

that is used to address a particular type of network challenges, and consists of a policy configuration

between a set of resilience mechanisms and their relationships.

[71] presents the BioRAC (Biologically-inspired Resilient Autonomic Cloud) framework which em-

ploys biologically inspired techniques and multi-level tunable redundancy techniques to increase attack

61

3.2. NETWORK RESILIENCE

and exploitation resilience in cloud computing. The solution leverage on a Cooperative Autonomic

Manager (CAM), which is assigned to a cluster of resources and is in charge of setting up, running

and maintain the cloud service on its cluster as defined at the organization and functional levels. Fur-

thermore, the CAM is able to self-adapt in a timely manner to the security policies and re-configure

the cloud resources in order to eliminate newly discovered threats and stop their propagation.

When it comes to implementing a cognitive loop on existing and future networks, on of the hin-

drance than make challenging to implement a MAPE-like control loop, is the complexity in engineering

a sufficiently accurate knowledge module that can achieve acceptable performance in deployed sys-

tems. Recent advances in network softwarization and programmability through SDN and NFV, the

proliferation of new sources of data, and the availability of low-cost and seemingly infinite storage and

compute resources from the cloud are paving the way for the adoption of ML to realize this cognitive

network management in support of autonomic networking. Cognitive control loops are then generally

empowered with machine learning algorithms [72, 73]. Regardless of the implementation, not only

the agent needs to observe the result of the chosen action, but also to learn from that result and

optimize his behavior in such a way as to achieve a final end-to-end goal dictated by the business

and/or user requirements such as maintaining a certain Quality of Service (QoS) to fulfill a Service

Level Agreement (SLA).

3.2.1.1 Network state assessment

In cognitive network approaches the sensing of the environment and learning the state is the prelim-

inary step to inference. Network monitoring has always been the simplest way for network operators

to understand the current behavior of a network from heterogeneous data related to the various sub-

systems at stake. When moving to softwarized or cloud-like environments, monitoring is inherently

supported by the management and orchestration which normally expose several performance measure-

ments metrics regarding the different managed resources, like computing units, network, and storage.

In an ETSI NFV compliant architecture, the VIM should collect and aggregate metrics and events

from physical and virtual resources and communicate these metrics to the Orchestrator. Considering

for example OpenStack, most of the VIM monitoring functionalities can be realized leveraging Open-

Stack’s Ceilometer module which reliably collects measurements of the utilization of physical and

virtual resources [74]. In addition to computing resources, the network assets of the NFVI (physical

62

3.2. NETWORK RESILIENCE

and virtual switches and routers) need to be monitored as well [75]. Generally, networking in NFVI

is assumed to be based on SDN; in this case, metrics can be retrieved directly either from the SDN

elements themselves or by the SDN controller. For example, Prometheus [76], one of the most com-

monly used monitoring framework, features an OpenFlow metrics collector while in the OpenDaylight

controller the Statistics API exposed metrics for the managed switches. Finally, a comprehensive

snapshot of the system state requires service metrics as well: aiming to maintain an acceptable level

of service, its quality must be perceived through some performance indicators. Depending on the type

of the service, telco operators define a set of Key Performance Indicators (KPI) and a threshold on

each KPI above which the quality of the service is considered degraded. In general, the continuous

collection of metrics results in the so-called Time-Series (TS), which is defined as a sequence taken at

successive equally spaced points in time. When the TS has more than one time-dependent variable,

it is called Multivariate Time-Series (MTS).

TS analysis is a very broad topic that encompass several statistic and machine learning techniques

appropriate for different purposes. For example, one of the most known TS parametric forecasting

technique is the Autoregressive Integrated Moving Average (ARIMA) models, which are widely recog-

nized as an accepted framework to build traffic forecast model [77]. These univariate models are used to

better understand a single stationary TS and to predict future data points of variables. Extensions of

these classes to deal with vector-valued data are available under the heading of multivariate time-series

models and sometimes the preceding acronyms are extended by including an initial “V” for “vector”.

Parametric approaches can achieve good performance when traffic shows regular variations, but the

forecast error is obvious when the traffic shows irregular variations. Non-parametric regression [78]

and machine learning approaches are usually used for irregular time series.

No matter what source of knowledge the closed-loop leverages to sense the environment, the ob-

tained TS needs to be studied to extract knowledge about the system state. The notion of system

‘state’ can be declined in different ways according to the addressed problem. In our dissertation, we

are interested in a closed cognitive loop that aims to manage the resiliency of a softwarized network

to reconfigure the system in case of deviations from the nominal working conditions. Consequently,

the knowledge that we need to extract from the monitoring metrics is two-folded: first, the loop needs

to build up a representation of the nominal working conditions; then, it needs to be able to detect

a deviation from the nominal state. In the state of the art, the problem of finding patterns in data

63

3.2. NETWORK RESILIENCE

that do not conform to expected behavior is commonly addressed as Anomaly Detection (AD). Ad is

at the basis of reactive diagnosis, which aims at understanding which fault caused the given failure

observed at present time and only act once the service failure has occurred. Conversely, proactive

diagnosis mechanisms are in charge of identifying faults and errors in order to predict and avoid any

future service failure. For example, in [79] Bayes networks are exploited to learn about old failures so

that future subtle changes can be detected before the actual failure occurs. In the following section,

we introduce state of the art techniques for network baseline creation and AD.

3.2.1.2 Network baseline and anomaly detection for telecommunication networks

Before a system can detect anomalies and make adjustments necessary to restore itself to the

normal working conditions, the nominal state has to be identified. For very complex and multi-layered

systems, not only it is challenging to model nominal conditions for each component but also the

standards of what constitutes acceptable behavior in a system may vary both with time and from

one user to another [80]. When the system is coupled with a monitoring solution, one of the biggest

challenges is the establishment of a nominal baseline range for each/group of monitored metrics.

According to the classic approach, the upper and lower baseline limits for a metric are chosen by

the network administrator through manual observation over a given time and using the observed

maximum or minimum values. As networks become more complex and dynamic, manual observations

and re-calibrations of baselines are not feasible. For this reason, some network baselines are either only

determined at network element installation or set using vendor default values, and are not changed

throughout the lifetime of the element leading to not up-to-date settings [81]. Another well-known

approach consists of the application of a set of association rules and frequent episode patterns to classify

events as an anomaly or normal. While rules tend to be intuitive, they are difficult to maintain, and

in some cases, are inadequate to represent many types of anomalies, as is the case for softwarized

networks due to the immense variety of faults and threatens. Inductive rule generation algorithms

have been proposed to overcome this limitation, as for example genetic algorithms [82].

Statistical theory outcomes are also widely used to detect anomalies. For example, in [83] the chi-

square (χ2) test statistic value is used as a distance measure to detect anomalies: when an observation

chi-square value is greater than a fixed threshold, the observation is tagged as an anomaly. In [84]

multivariate correlation analysis (MCA) is used to extract the geometrical correlations between a

64

3.2. NETWORK RESILIENCE

baseline network traffic profile and generic features. In [85] authors present the Statistical Packet

Anomaly Detection Engine (SPADE) as is a statistical anomaly detection system. A simple frequency-

based approach is used to calculate the ’anomaly score’ of a packet: the fewer times a given packet was

seen, the higher was its anomaly score. Once the anomaly score crossed a threshold, the packets were

forwarded to a correlation engine that was designed to detect port scans. [86] uses Markov models to

characterize the “normal” behavior of the sensor network. In particular, a series of Markov models are

developed and for each model, an anomaly-free probability law is estimated from past traces. Then,

recent observations are studied with the Large deviations theory [87] to understand if the empirical

measure takes very unlikely values.

3.2.1.3 Machine Learning methods

With the growth in availability and in the amount of monitoring data that characterize the latest

and future networks, machine learning (ML) started to be applied to anomaly detection as well. Even

though most of the ML AD techniques first profile normal instances and then identifies anomalies as

instances that do not conform, Liu et al. [88] proposed the Isolation Forest (IF) method that explicitly

isolates anomalies using binary trees. They observed that anomalous instances in a dataset are easier

to separate from the rest of the sample compared to normal points. In order to isolate a data point,

the algorithm recursively generates partitions on the sample by randomly selecting a dimension and a

split value between its minimum and maximum values. From a mathematical point of view, recursive

partitioning can be represented by a tree structure named Isolation Tree. The number of partitions

required to isolate a point can be interpreted as the length of the path, within the tree, to reach

a terminating node starting from the root. Consequently, the anomalous points are those with the

smaller path length (easier to isolate, hence). The algorithm has a linear time complexity with a low

constant and a low memory requirement, which works well in high dimensional problems that have a

large number of irrelevant attributes, and in situations where the training set does not contain any

anomalies. Authors in [89] leverage IF and Spark parallel computing capabilities to construct multiple

trees simultaneously aiming to detect anomalies on network traffic traces.

When dealing with high dimensional data, one of the most widely used approaches is to project the

data into a lower dimensionality sub-space, spot in this sub-space spontaneous clusters of data and then

tag as anomaly those data which fall apart from the clusters. Principal Component Analysis (PCA) and

65

3.2. NETWORK RESILIENCE

K-Means are the most used algorithms respectively for dimensionality reduction and clustering [90, 91].

For example, authors in [92] trained a k-mean algorithm on unlabeled flow records to cluster normal

traffic. Then the distance from clusters centroids is used to affect to samples an anomaly score.

Similarly, authors in [93] develop a two-stage anomaly detection algorithm based on feature selection

and Density Peak-Based Clustering to handle large-scale, high dimensional, and unlabeled network

data. In [94] instead, first PCA is applied to the KDD99 dataset for network IDS, and then a Support

Vector Machine (SVM) is used to classify anomalous and nominal samples. However, clustering-based

algorithms showed to be sub-optimal, mainly for a high false-positive rate [95]. Furthermore, PCA is

recognized to fail in capturing temporal correlation [96] and in analyzing non-linear correlated metrics.

Even though several non-linear approaches were proposed in the literature, it is broadly recognized

that Deep Neural Networks (DNN) are very flexible and they can introduce a theoretically infinite

level of non-linearities by using non-linear activation functions [97].

The main reason for their great success comes from their proven ability to approximate a very wide

range of continuous functions, that is almost all the functions of interest [98]. Furthermore, early work

showed that standard NN cannot be a universal classifier, but that a DNN with at least one hidden layer

of unbounded width can [99]. DNNs are used in a wide range of problems (speech/text recognition,

natural language processing, recommendation systems, mobile advertising, fraud detection, etc...) and

many variants on the standard architecture there exist for each problem. In anomaly detection, one

of the most widely used architecture is the Deep Autoencoder (AE) one [100, 101, 102].

When training AEs with anomaly-free data, anomalous samples projected into the latent space

look significantly different from nominal samples; as a result, their reconstruction error is greater

when compared to nominal samples. Leveraging that, authors in [101] demonstrated that AEs clearly

outperform PCA in terms of accuracy and computation time. They also showed that autoencoders

learn the normal state properly in the hidden layers and that they activate differently with anomalous

input. Stacking several encoder and decoder layers to build the so-called Deep AE (DAE) is commonly

proposed in the literature to extract more general properties of data than a single layer [103]. Even

though DAE are employed to compress high dimensional vectors, several studies showed that it can

struggle to efficiently learn with high-dimensional input vectors [104, 105, 106]

Standard AE architecture is also used in combination with other techniques: in [107] authors

propose a model consists of two stages, an Unsupervised Feature Learning (UFL) stage using sparse

66

3.2. NETWORK RESILIENCE

AEs, followed by a classification stage that uses the learned features with soft-max regression (SMR).

The 2-class classification achieves a higher accuracy of 88.39% compared to 78.06% of SMR, and

outperforms SMR with respect to recall and F-measure. However, SMR outperforms STL in precision.

AEs are considered as an auto-supervised neural network, as the target value used to train is the input

itself, so no labels are required in the training phase. For this reason, AEs are particularly suitable for

anomaly detection in softwarized network infrastructures: labeling anomalies for such an environment

is a time-consuming and error-prone task, due to the great extent of faults and threats that can affect

NFV environments [108, 109].

It is worth mentioning that Variational AEs (VAEs) have emerged as another popular unsupervised

learning approach for heterogeneous input distributions [110]. VAEs are generative models, which aim

is to learn how the data is generated: they use a variational approach for latent representation learning,

which results in an additional loss component and a specific estimator for the training algorithm,

called the Stochastic Gradient Variational Bayes (SGVB) estimator [111]. It assumes that the data

is generated by a directed graphical model and that the encoder is learning an approximation to the

posterior distribution [112]

As already said, AE is just a specific composition of two specular groups of NN; thereby, several

types of NN can be used according to the type of data the AE works on. We already pointed out

that the monitoring component of a cognition control loop generally produces a multivariate time

series. Consequently, when designing an AE-based anomaly detection system for state assessment

of softwarized networks, it is important that the NNs composing the AEs catch both the time dy-

namics of each variable, and the cross-dependencies among variables, to effectively grasp knowledge

from the input data. When analyzing MTS, in the literature, Recurrent neural networks (RNNs) are

generally widely recognized as a suitable method to capture both the temporal and spatial evolution

of the TS [113]. In particular, the Long-Short-Term Memory (LSTM) RNN showed the ability to

learn long term correlations in complex multivariate data sequences [114], thus they have been used

in a wide range of applications including speech/handwriting recognition [115, 116], forecasts [117]

and time-series prediction/anomaly detection [118]. In network traffic and load forecasting, LSTMs

demonstrated to outperform non-ML and other DNN approaches [119, 120, 121, 122]. In [123] authors

propose a mechanism to scale 5G core resources by anticipating traffic load changes through LSTM

and deep neural networks forecasting. They show that LSTM-based anomaly detection can be more

67

3.2. NETWORK RESILIENCE

accurate, thanks to its ability to store data patterns without degradation over time. Authors in [114]

propose a stacked LSTM architecture to detect anomalies within time series data by evaluating the

deviation of predicted outputs based on variance analysis. In [124], a compound architecture is pre-

sented. Here, the LSTM network predicts regular system dynamics and a support vector machine is

applied as a classifier for anomalies to realize an adaptable and self-learning detection mechanism.

3.2.1.4 Anomaly diagnosis and characterization

The advantage of learning the nominal working condition is that any deviations from it, even

unforeseen ones, can be easily detected. On the other hand, not all deviations imply a degradation,

some deterioration could be more severe than others and each deviation require a different remediation

action. Furthermore, it is important to define the criteria for a“healthy”system and identify thresholds

indicative of the need to initiate a healing process. In general, the distinction between a healthy and

a faulty system is indistinct and fuzzy, as the transition between these two states is gradual. It is

important that a self-healing system discern this progressive decline and that it identifies a definite

threshold to initiate remediation. Therefore, a diagnosis function is required to characterize the

detected anomalies and further analyze the discovered symptoms.

To this end, authors in [125] propose to use a set of KPIs to classify anomalies according to specific

combinations of their values, the so-called anomaly patterns. Then, the observed anomaly pattern is

compared against the already analyzed and labeled anomalies stored in the diagnosis knowledge-base.

The label specifies the type of the anomaly for each KPI pattern. The closest matching labeled

anomaly pattern or patterns are found and given as the most likely automated diagnosis. Labeling

of anomaly patterns is performed by a human expert. In [126] authors pointed out that for each

detected anomaly, the severity level of the consequences should be diagnosed first: critical anomalies

in fact should be quickly handled, in order to avoid serious outages of the service. In particular, they

estimate that the magnitude of the deviation from the nominal state is directly proportional to the

reaction speed. They also propose the use of Naive Bayes Classifier to infer the possible consequences

of the deviations and maps each classifier outputs to a prescription, that is the remediation action.

The classifier is re-trained after each action execution to improve its accuracy. Ciocarlie et. al. [127]

propose a framework consists of an anomaly detector and a diagnosis component for telecommunication

cells. The former monitors a group of cells using topic modeling. The diagnosis component, in turn,

68

3.2. NETWORK RESILIENCE

uses Markov Logic Networks (MLNs) to generate probabilistic rules that distinguish between different

causes. Likewise, [128] uses PCA for dimension reduction and kernel-based semi-supervised fuzzy

clustering with an adaptive kernel parameter for proactive network anomaly detection.

Zhang et. al. [129] propose a Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED),

to perform anomaly detection and diagnosis in multivariate time series data. Specifically, MSCRED

first constructs multi-scale (resolution) signature matrices to characterize multiple levels of the system

statuses in different time steps. Subsequently, given the signature matrices, a convolutional encoder

is employed to encode the inter-sensor (time series) correlations and an attention-based Convolutional

Long-Short Term Memory (ConvLSTM) network is developed to capture the temporal patterns. Fi-

nally, based upon the feature maps which encode the inter-sensor correlations and temporal infor-

mation, a convolutional decoder is used to reconstruct the input signature matrices and the residual

signature matrices are further utilized to detect and diagnose anomalies.

3.2.1.5 Fault mitigation and automatic reconfiguration

A cognitive loop allows to cover from the sensing of the network state to the self-healing (SH)

phase, that is the application of a set of actions (policies) to recover from a malfunction. In its

simplest form, action selection for SH is a purely reactive strategy that implies a set of alternative

actions corresponding to distinct classes from which the agent can choose based on descriptions of the

current system state. This is the case of [130] where repair strategies form a sequence of preconditioned

tactics that execute an appropriate repair script. Similarly, Valetto et al. [131] propose the utilization

of high-level repair action plans coupled with a feedback control loop. Other works instead, like [132],

formulate the anomaly compensation problem as a network utility maximization problem. A support

vector data description approach (SVDD) is used to detect cell outages in ultra-dense small cell

networks; then a reactive distributed compensation algorithm redistributes resources guaranteeing

load balancing.

Furthermore, some works advocate that due to the extreme complexity of networking systems,

fault mitigation should also encompass the learning from a human system administrator. In this case,

the interaction could be either direct like in adaptive interface [133] or indirect, that is by means of

historical data recorded during the human intervention, like in behavioral cloning [134].

Nonetheless, one key idea of cognitive control loops is that the reconfiguration policies would

69

3.2. NETWORK RESILIENCE

be learned over time, adapting to problems evolution, tune its operation accordingly and generally

increase its reliability and robustness. The learning process should aim at an abstract goal dictated

by the business or user technical requirements such as maintaining a certain Quality of Service (QoS)

to fulfill a Service Level Agreement (SLA). As highlighted in the chapter introduction, this suggests

the incorporation of concepts and methods from machine learning [135]. One of the ML techniques

that seem to be particularly suitable is Reinforcement Learning (RL) [136], where an agent carries

out actions in the environment and receives some reward signal that indicates the desirability of the

resulting states. Because many steps may be necessary before the agent reaches a desirable state, the

reward associated to each action leading to a new state is ‘cumulated ’in the sense that it is computed

to take into consideration for the future actions and associated rewards. Accordingly, an RL agent is

designed to maximize the so-called cumulative reward [137], sacrificing the immediate gains for long-

term rewards. In its most commonly studied form, RL aims to learn effective management policies in

the absence of explicit system models, with little or no domain-specific initial knowledge. This type of

approach attempts to circumvent the unfeasibility of modeling very complex systems, like softwarized

networks.

In the context of SDN/NFV systems, reinforcement learning has been used to solve different

problems, like VNF placement, optimal chaining of VNFs, VNFs scaling and resource management,

routing and anomaly detection, among the others.

For what concern SFC [138] proposes a deep RL approach for VNF placement problem in SDN/NFV-

enabled networks according to forecasted SFC Requests (SFCr) in a future time interval. In their pro-

posal, the agent has to put in place an SFC request according to the current state modeled through the

available resource ratios of links, nodes and VNF instances, in each part of the network. The reward

depends on the VNF placement cost, the penalty of rejecting the SFC requests and the VNFI running

cost. Similarly, [139]proposes a Q-learning algorithm for the service placement on SDN switches to

minimize the service costs for end-users. The network is modeled with a graph, where the nodes

are SDN switches connected via undirected links. A weight is associated with each link to capture

service access cost and a penalty cost of service access between the SDN controller and switches is

associated to each switch. Q-learning agent state is modeled as the currently available services, the

actions correspond to the add/removal of a new service and the reward depends on both the service

cost and its penalty.

70

3.2. NETWORK RESILIENCE

Concerning resource management, in [140] authors propose a reinforcement learning algorithm for

resource management for cloud-based applications. They address the problem of Virtual Machines

(VMs) horizontal scaling when an application processes a single type of user request. The proposed

approach is using a fuzzy Q-learning method to deal with a continuous workload. The agent has to

decide which scaling action to perform from the actual state modeled as fuzzified workload (“low”,

“medium”, “high”) and the number of machines. The reward is computed as a fixed revenue minus

the cost for using capacity and the penalty for violating the service level agreement on response time.

[141] addresses instead the scaling of VNFs in the virtual Evolved Packet Core (vEPC). Authors

propose a mechanism to scale virtualized MME to respond to user service request variation. They

combine Q-Learning with Gaussian Processes-based system models aiming at maintaining the Mean

Response Time (MRT) of the EPC control plane less than a threshold. The agent state is a vector

containing the current number of instances and a performance indicator. The action corresponds to

horizontal scaling and the reward depends on the performance target (e.g., MRT less than 1 ms) and

the utilization factor that is the proportion of time that a server is busy on average.

DQN has been instead used to o target Quality-of-Service (QoS)-aware routing. In [142] a DQN

agent is trained to optimize the flow routing in a network where the state is represented through the

Traffic Matrix (TM) of the current network load, the actions consist in choosing the path to route the

new incoming flow and the reward is related to the QoS parameters that are latency, rate and packet

Loss.

Concerning anomaly detection, [143] tackles the stealthy DoS attacks in SDN-based networks. This

type of attack is characterized by periodic requests with a low rate with respect to classical attacks. In

their proposal, a Q-learning is used to select the optimal features for an ML classification algorithm.

The state is a vector composed by the precision, the recall, the F-score, the accuracy, and the false

alarm rate of the classifier. The actions are all the possible combinations of feasible features (e.g.,

average packets per flow, average packet size per flow, packet change ratio and flow change ratio) and

possible AI/ML algorithms for traffic classification (e.g., Support Vector Machine, Random forest).

The reward depends on the value of the components of the state vector. Similarly, [144] widens the

analysis of the problem to various types of anomalies, having as objective to promote resilience in

SDN. In particular, the authors consider two profiles: (i) load balancing and server replication. For

each profile, that deals with a specific anomaly there is a set of possible actions that can be chosen to

71

3.3. REPUTATION ASSESSMENT MODELING

mitigate the anomaly. At each time stepm only one profile is chosen and a specific SARSA algorithm

is considered. SARSA is a modified version of the Q-learning where the main function for updating

the Q-value depends on the current state of the agent S1, the action the agent chooses a1, the reward r

the agent gets for choosing this action, the state s2 that the agent enters after taking that action, and

finally the next action a2 the agent chooses in its new state. In the load balancing profile the possible

overflow of the switch input queue is tackled. Here, the state is the load of the route. The actions are

to change the route, use the shortest path or modify the route. The reward is negative value if there

are links with high traffic, positive otherwise. In the server application profile, the SARSA algorithm

instead deals with the vertical scaling problem due to overloading. Here the state is a combination of

(i) the traffic in the access link between server and switch, (ii) the set of servers or replicated VNFs,

and (iii) the paths to the servers or replicas. The reward associated with scaling actions is negative if

there are links with high traffic, positive otherwise.

3.3 Reputation assessment modeling

Trust and Reputation Management (TRM) systems are generally used to reduce the impact of

misbehaving or faulty entities in multi-agent systems. The notions of trust and reputation originate

from the social sciences which study the dynamics of human societies

As depicted in figure 3.13b reputation is an abstract property defined as public knowledge and

represents the collective opinion of members of a community. It is a function of the trust, which

is instead the perception and entity (trustor) has on another entity (trustee). It is based on past

collaboration and it is specific to a particular task and is is not reciprocal. Trust is useful only in an

environment characterized by uncertainty and where the participants need to depend on each other

to achieve their goals [145]. Trust maybe also indirect, when an trustor base its trust assessment on

a third entity witness.

In the state of the art, TRM systems are mainly used to assess the risk of a given interaction between

two elements (a trustor and a trustee) within a system and manage security aspects of computer

systems. For instance, in [146] WSN (Wireless Sensor Networks) network nodes use reputation to

decide where to send their packets to optimize routing. When applying TRM in this context, the

nodes are assumed to be noncooperative, i.e., a node is not willing to relay a message/packet of

72

3.3. REPUTATION ASSESSMENT MODELING

(a) Trust

(b) Reputation

Figure 3.13: Trust and reputation model

another node unless it can derive some potential benefit. Similarly, [147] presents a framework of

web services where a reputation system is incorporated for tracking and predicting users satisfaction.

Presented reputation systems operate in an environment of composite services that integrate client

and server-side. The approach aims at maximizing user experience for specific customer profiles when

the service and network resources are shared.

TRM systems are also adopted in wireless communication systems which include a framework

containing both a trust and reputation evaluation model and the protocol for nodes to interact.

The protocol includes means for rewarding good behavior and penalizing bad (selfish or malicious)

behavior. Trustworthiness is viewed as social capital which can be earned or lost. For instance, the

SORI scheme [148] seeks to use the reputation information of nodes in a MANET as a punitive measure

to deter selfish behavior during the collaborative forwarding of transmitted packets. The reputation of

each node is computed as r = RFH(X)/HFN (X), where RFH(X) is the total number of packets node

N has transmitted to node X for forwarding and HFN (X) is the total number of packets that have

been forwarded by node X (including packets from other nodes) and noticed by node N. The nodes

probabilistically refuse to relay packets from other nodes with probability 1 − r. In [149] authors

propose a model for calculating trust and reputation for blockchain-based online payment systems

which have a characteristic of immutability by preventing data manipulation. The model normalizes

user evaluations based on each user’s personal evaluation criteria that change over time. In addition,

73

3.4. MACHINE LEARNING TECHNIQUES

the model derives reputation of, and trust between, users by applying psychological factors.

Integration of such TRM in softwarized networks is a new topic, but there are some works as the

one of Isong et al in [150] where reputation is used to certify how trustable are SDN applications

controlling the controller to establish real-time and on demand connexions. TRM models can be

also used for automating the decisions regarding the choice made by a user of a virtual network over

multiple virtual networks claiming to cater for a given level of service to that user [151]. Betge-Brezetz

et al. in [152] propose a trust-oriented controller proxy that intermediates between the controllers and

the data plane by making sure the flows sent by different controllers are correct.

3.4 Machine learning techniques

In this section we outline the basic properties of the machine learning algorithms used along this

thesis work. We will not fully detail the mathematical background, giving just some elements to

understand the intuition about the strength of each technique.

3.4.1 Machine learning and Deep Learning

Figure 3.14 depicts the architecture of the basic component of most used machine learning tech-

niques , the artificial neuron [153].

Figure 3.14: Artificial Neuron

A neuron is a mathematical function conceived as a model of biological neurons. It takes n

inputs (x1, x2, ..., xn) , multiplies each with a specific weight (w1, w2, ..., wn), adds a bias (b) and

then passes the result to a nonlinear function called the activation function to produce an output.

A neural network combines multiple neurons by stacking them vertically/horizontally to create a

74

3.4. MACHINE LEARNING TECHNIQUES

network of neurons. Theoretically, there is no restriction on the selected activation function; however

when the activation function is non-linear, then a two-layer neural network can be proven to be a

universal function approximator [154]. Furthermore, in order to enable the learning process through

the Gradient Descent (GD) algorithm, the activation function should be continuously differentiable.

Indeed, typically a neural network model is trained using the stochastic gradient descent optimization

algorithm and weights are updated using the backpropagation of the error algorithm. Here the gradient

refers to an error gradient: the NN with a given set of weights is used to make predictions and the

error for those predictions is calculated. The gradient descent algorithm seeks to change the weights

of the NN so that the next evaluation reduces the error; to do that the optimization algorithm is

navigating down the gradient (or slope) of error.

Horizontally stacking several layers of NN it is possible to obtain an arbitrarily complex NN called

Deep NN.

Figure 3.15: Fully connected Deep Neural Network

As shown in figure 3.15, the first layer of DNN is called the input layer, and the number of nodes

depends on the number of features composing the analyzed dataset. The final layer of the neural

network is called the output layer, and the number of used neurons depends on the problem: for

regression and binary classification tasks, a single node is used while for multi-class problems, an

output node is used for each class. All the other layers are called hidden.

3.4.2 AutoEncoders

A standard AE is a multi-layer Neural Network (NN), composed of two blocks, an encoder and a

decoder. The typical architecture of an AE is shown in Fig. 3.16.

The encoder reduces the F dimensions of the input X to a ‘latent-space’ composed of s < F

75

3.4. MACHINE LEARNING TECHNIQUES

Figure 3.16: Autoencoder architecture

dimensions, while the decoder takes those s dimensions back to reconstruct the input. The autoencoder

is trained to learn to reproduce the input vector X of F features ∈ IRF by optimization of:

minimize
f,g

|I − g ◦ f(I)| (3.1)

where f : I ∈ IRF ↦→ Y ∈ IRs with s < F is the function representing the encoder, and g : Y ∈ IRs ↦→

Z ∈ IRF is the function representing the decoder. During the learning phase, weights and biases are

tuned to minimize the reconstruction error on I.

3.4.3 Long-Short-Term Memory

Unlike Feed Forward (FF) NN, where each element is processed independently from the others,

RNNs apply a recurrent relation at every time step to process a sequence in order to take into account

past inputs, like a sort of memory. Figure 3.17 outlines both FFNN and RNN architecture: at each

time-step t the RNN outputs a value yt̂ which depends on both the actual input xt and the so-called

cell state ht. The latter is obtained through a non linear function fW , generally known as transfer

function, which is parameterized by a a weight Matrix W and a set of biases and is applied to both

the current input and the previous step cell state ht−1 Consequently, ht = fW (ht−1, xt) where, for

instance, fW could be a tanh function giving ht = tanh(Whhht−1+, Wxhxt + bhh + bxh). Note that as

we have two inputs, we also have one couple of weights and biases for the input and another for the

old hidden cell state; furthermore, it is worth noticing that for each time-step t the set of weights and

biases is the same, which is crucial for sequence modeling.

The output vector yt̂ is then obtained as a transformed version of the internal state: yt̂ = Whyht.

76

3.4. MACHINE LEARNING TECHNIQUES

Figure 3.17: Feed Forward and Recurrent Neural Network architectures

Despite being able to deal with sequential data, RNNs suffer from the vanish gradient problem [155],

which prevents long-term relations to be learned. The problem arises from a chain of subsequent small

valued matrix multiplications that takes place during the back-propagation of the error which makes

the gradient of long-term past samples smaller and smaller, which in turn makes the network learning

mostly on fresh samples. As a solution to that, authors in [156] propose the use of the so-called Long-

Short-Term-Memory (LSTM) RNN that enforces constant error flow through the internal states of

special ‘memory cells’ units by employing the gates. Unlike standard RNN, LSTMs feature two cell

state: an internal cell state (ct) and the output cell state (ht). It is thanks to this separation of internal

cell state and outputted cell state that the gradient can backpropagate without any risk of vanishment

unlike in RNN. Another key takeaway of LSTM is the filtering information capability obtained through

gates: they are composed of a Sigmoid NN layer which caps the input information between 0 and 1,

which respectively means forgot everything and remember everything.

Figure 3.18 depicts the four steps through which an LSTM cell process the information:

1 Forget: this steps computes what to forget about the irrelevant history of previous layer state

ht−1 and the current input xt. This decision is made through the sigmoid layer which is

characterized by a weights matrix Wf and a set of biases bf . The produced output is then

ft = σ(Wf · [ht−1, xt] + bf) which is a value between 0 and 1 for each dimension of the cell state.

A 1 represents ‘completely keep’ while a 0 ‘completely forgot ’;

77

3.4. MACHINE LEARNING TECHNIQUES

Figure 3.18: Long Short Term Memory Recurrent Neural Network architecture

2 New Information: here a computation is performed to identify relevant parts of new information.

First the input (actual input and previous layer cell state) is gated to identify what values we

should update it = σ(Wi · [ht−1, xt] + bi). Then, the tanh layer generates a new vector of

candidates values (C̃t) that could be added to the state C̃t = tanh(WC · [ht−1, xt]) + bC ;

3 Update: this step takes ‘forget’ and ‘new information’ output to selectively update cell state.

It multiplies the old cell state ct−1 with the forget gate output ft to forget what we decided to

forget. Then, it adds the new set of candidates values scaled by how much we decided to update

each state value (it). Then new internal cell state becomes then Ct = ft ∗ Ct−1 + it ∗ C̃t;

4 Output: here we finally generate the output deciding what information encoded in the internal

cell state is sent as output, which is also the input to the next time-step cell. First ot is computed

through a sigmoid layer applied to the old cell state and the actual input ot = σ(Wo·[ht−1, xt]+bo).

Then it is used to decided which part of the updated cell internal state we are going to output

ht = yt = ot ∗ tanh(Ct). The tanh layer pushes the values of the internal cell state to be between

−1 and 1.

The key implementation design choice which avoid the vanishing gradient problem is the separation

of cell internal state from the outputted state: the back-propagation through time algorithm is com-

78

3.4. MACHINE LEARNING TECHNIQUES

puted on the cell internal state and it dose not involve repeated small valued matrix multiplications.

Doing that, the gradient of samples far away in the past is still appreciable and it is consequently

relevant in deciding the optimization direction in the gradient descent learning algorithm.

3.4.4 Reinforcement Learning

Traditional machine learning approaches are either characterized as supervised or unsupervised,

whether the input data are labeled or not. While supervised learning models tend to be more accu-

rate than unsupervised ones, they require upfront human intervention to label the data appropriately.

Unsupervised learning models, in contrast, work on their own to discover the inherent structure of

unlabeled data. Even if widely used to solve plenty of problems, both categories fail when the problem

requires learning from the interaction between an agent and the environment. Indeed, in interactive

problems it is often impractical to obtain examples of desired behavior which are both correct and

representative of all the situations in which the agent has to act. Furthermore, decisions may happen

rapidly and time constraints may be involved. The system may evolve so quickly that often fixed learn-

ing rules designed to payoff-optimization on the interactive system might be quickly out of date [137].

On the contrary, the agent has to experience himself with the environment in order to learn from

its own experience so that, at some point, it can overcome unseen situations as well. The learning

process is guided by the reward signal, which quantifies the actions goodness to approach the agent

to its goal state and which the agents always try to maximize. Thereby, one of the challenges that

arise in reinforcement learning, and not in other kinds of learning, is the trade-off between exploration

and exploitation: in order to gather enough feedback from the environment, the agent should explore,

with a certain probability, new actions for winch the reward is unknown.

As depicted in figure 3.19, basic reinforcement is generally modeled as a Markov decision process

(MDP), where at each time step t, the agent receives some representation of the environment’s state,

St ∈ S where S is the set of possible states, and on that basis selects an action, At ∈ A(St), where

A(St) is the set of actions available in state St. One time step later, as a consequence of its action,

the agent receives a numerical reward, Rt+1 ∈ R ⊂ R, and finds itself in a new state, St+1 with a

probability P . The agent goal is to maximize the sum of the rewards
∑︁N

i=0 Ri it will obtain so that

to reach the goal state through the optimal path.

At each time step, the agent implements a mapping from states to probabilities of selecting each

79

3.4. MACHINE LEARNING TECHNIQUES

Figure 3.19: Reinforcement Learning framework

possible action. This mapping is called the agent’s policy and is denoted πt, where πt(a|s) is the

probability that At = a if St = s. The way in which the agent changes its policy as a result of

its experience depends on the specific RL algorithm used. In general, algorithms are classified as

model-based or model-free.

Model-free directly learn both the policy and the value function from interactions with the real

world scenario. One of the most known model-free algorithm is the Q-learning [157] which aims at

maximizing the expected value of the total reward over any and all successive steps, starting from

the current state. The “Q” refers to the function that the algorithm computes, which is the expected

rewards for an action taken in a given state (Bellman Equation):

Q(St, at) = E[Rt+1 + γRt+2 + γ2Rt+3 + ...|St, at] (3.2)

In particular, the algorithm stores in the so-called Q-Table the value for the Q-function for each

action at each state. At the beginning the table is initialized with tentative values (for example all

0). Then, according to a specific policy, an action at is selected, executed and the result is observed.

According to the received reward, the Q-value Q(St, at) is updated following the formula:

Qt+1(St, at) = Q(St, at) + α[Rt + γ max
at

{Q(St+1, at)} − Q(St, at)] (3.3)

where α is a learning rate which regulates at what extent newly acquired information overrides

old information, γ is the discount factor which determines the importance of future rewards and

maxat{Q(St+1, at)} is an estimate of the optimal future value. Concerning the action selection policy,

there exists several types but the most used in the Q-learning is the ϵ-greedy strategy. It consists

into exploit the knowledge, selecting, with a high probability of 1 − ϵ, the “best” action, i.e. the one

with the highest Q-value and with a small probability ϵ to uniformly select one of the other action.

80

3.4. MACHINE LEARNING TECHNIQUES

Figure 3.20: Model-based Reinforcement Learning

A popular variant of the classic Q-learning algorithm is the Deep-Q-Learning (DQL) which replaces

the Q-table with a DNN. The only difference from the architecture point of view is that Q-learning

algorithm takes as input the couple state-action while DQN takes as input only the state; thus the

output is the Q-value for each action. However, both DQN and Q-learning suffer of overestimation as

they use the same values both to select and to evaluate an action. To prevent this [158] propose the

Double Deep q-Networks (DDQN) which levereage two set of weights θ and θ′, one to determine the

greedy policy, and the other to determine its value. This reduces the correlations between the target

and estimated Q-values, stabilizing the algorithm.

Unlike model-free algorithms, model-based learn a model from experience and plan the policy

and/or the goodness of a state (value function) from the model. The agent can use a single prediction

from the model of next reward and next state (a sample), or it can ask the model for the expected next

reward, or the full distribution of next states and next rewards. These predictions can be provided

entirely outside of the learning agent or they can be learned by the agent, in which case they will be

approximate. In particular, given a MDP M = [S, A, P, R], it is generally assumed that the states

space S and the set of actions A(St) for each state St are known; a model M ′ of the MDP M is then

[S, A, P ′, R′]. Learning P ′ is modeled as a density estimation problem while learning R′ is a regression

problem that in this case can be handled as supervised-learning problems. Once the model is built,

it is used to generate samples, that is used as the real world scenario for a model-free RL algorithm

which implies an update of the value functions and policies from samples. Figure 3.20 summarizes

those steps.

81

3.4. MACHINE LEARNING TECHNIQUES

82

Chapter 4

Virtualized System Anomaly Detection and
Characterization

Content

4.1 Introduction . 84

4.2 Virtual IP Multimedia Subsystem (vIMS) testbed . 85

4.2.1 Platform architecture and traffic simulation . 87

4.2.2 Dataset . 89

4.3 The SYRROCA framework . 90

4.3.1 Metrics collection and pre-processing . 91

4.3.2 Training . 93

4.3.3 Anomaly detection and characterization . 95

4.3.4 Radiographies . 98

4.4 Experimental results . 99

4.4.1 Training on a nominal scenario . 99

4.4.2 Test phase on degraded conditions . 101

4.4.3 Time-windowed radiography . 103

4.5 Conclusion . 105

In this chapter we propose an unsupervised machine-learning data-driven approach based on Long-

Short-Term-Memory (LSTM) autoencoders to detect and characterize anomalies in virtualized net-

working services. With a radiography visualization, this approach can spot and describe deviations

from nominal parameter values of any virtualized network service by means of a lightweight and it-

erative mean-squared reconstruction error analysis of LSTM-based autoencoders. We implement and

validate the proposed methodology through experimental tests on a vIMS proof-of-concept deployed

using Kubernetes. This chapters reports contents of publications [159, 160].

83

4.1. INTRODUCTION

4.1 Introduction

Legacy and novel network services are expected to be migrated and designed to be deployed in

fully virtualized environments. Starting with 5G, NFV becomes a formally required brick in the

specifications, for services integrated within the infrastructure provider networks. This evolution

leads to deployment of virtual resources Virtual-Machine (VM)-based, container-based and/or server-

less platforms, all calling for a deep virtualization of infrastructure components. Such a network

softwarization also unleashes further logical network virtualization, easing multi-layered, multi-actor

and multi-access services, so as to be able to fulfill high availability, security, privacy and resilience

requirements. However, the derived increased components heterogeneity makes the detection and

the characterization of anomalies difficult, hence the relationship between anomaly detection and

corresponding reconfiguration of the NFV stack to mitigate anomalies.

Network automation is a vibrant research area targeting the deployment of novel solutions in

operational networks in the coming few years. Even though initial network automation research

actually dates back up to a few decades ago, true network automation fueled by artificial intelligence

(AI) and machine learning (ML) has only recently become a tangible possibility for operational services,

thanks in particular to novel technologies related to Software Defined Networking (SDN) - with the

specification of open configuration interfaces - and Network Functions Virtualization (NFV) - breaking

the coupling between network functions and the hosting hardware.

In the past few decades, the community has addressed challenges related to how to let distributed

sets of agents self-organize, automatically discover themselves the network states, and operate neces-

sary reconfiguration of the network. This was for the focus of many research projects in the area of

autonomic networks [161]. We can also cite standardization activities related to network automation,

as for instance the ones related to the autonomic signaling protocols among distributed decision-making

agents [162]. Nonetheless, these pioneering research activities did lack a stable reference technical ar-

chitecture on top of which a decision-making framework could be developed and deployed at large

scale, for instance to solve routing or resource allocation optimization problems. With the advent of

network virtualization technologies, the reference building blocks for 5G infrastructures, and beyond,

are today clearly specified and adopted. On the one hand, the relative maturity of NFV-SDN sys-

tems has focused the industry specification efforts on the interfaces required for network automation,

84

4.2. VIRTUAL IP MULTIMEDIA SUBSYSTEM (VIMS) TESTBED

somehow meeting the expectation of former autonomic networking research, but now with an oper-

ational environment ready for their integration. The Zero-Touch Network and Service Management

and Experiential Networked Intelligence groups at ETSI are addressing this need and recently pro-

duced a set of specifications [163, 164]. On the other hand, network automation platforms recently

emerged, notably the Open Network Automation Platform, chosen by many operators as a reference

platform for network automation [165, 166, 167]. More recently than for the core segment, the radio

one is undergoing an increasing softwarization, with new platforms as the Open Radio Access Net-

work one [168, 169]. These activities are opening the way to orchestration decisions for which there

is a critical need for automation algorithms and methods to (i) determining how the state of a fully

virtualized and programmable infrastructure, composed of a variety of software modules, should be

modeled, (ii) inferred in runtime, and (iii) to support automated network orchestration.

In this chapter, we present the first brick in this direction and proposes a methodology to detect

anomalies in the rather unidentified network state space composed of a very large number of software

components. These components can be characterized by a large number of metrics, changing in

number and behavior in time, that can be correlated or not to each other, depending on network

conditions. This undefined and varying environment motivates us to propose an unsupervised machine

learning framework for anomaly detection of NFV infrastructures. We run tests in a virtualized IP

Multimedia Subsystem (IMS) architecture, the legacy framework used for voice-over-IP traffic routing

and processing. Simulated call distributions and used datasets are available at [170].

4.2 Virtual IP Multimedia Subsystem (vIMS) testbed

vIMS is the virtual solution of the classical Ip Multimedia Subsystem (IMS), which is an IETF and

3GPP standard for Voice over IP (VoIP) for 4G and 5G, and an architectural framework for delivering

IP multimedia services such as voice, video calling, and messaging applications. IMS multimedia

services are delivered through SIP. SIP is the standard protocol for the telecommunication multimedia

services signaling [171]. IMS provides efficient use of spectrum, eliminating the need to separate voice

and data in two different networks while allowing the interoperability of multimedia services across

operators. The virtualization of the IMS brings scalability, programmability and flexibility of services

as well. Figure 4.1 depicts IMS base architecture

85

4.2. VIRTUAL IP MULTIMEDIA SUBSYSTEM (VIMS) TESTBED

Figure 4.1: IP Multimedia Subsystem architecture

The architecture of an IMS is depicted in figure 4.1 and is composed by:

• HSS (Home Subscriber Server): database containing subscriber’s profiles performing authenti-

cation and authorization;

• P-CSCF (Proxy Call Session Control Function): the SIP proxy server that is the first point of

contact for the users;

• S-CSCF (Serving-CSCF): SIP server and session controller, it is the central node of the signaling

plane;

• I-CSCF (Interrogating-CSCF): the SIP function located at the edge of an administrative domain;

it assigns an S-CSCF to a user performing SIP registration;

• MRFs (Multimedia Resource Function): enhances multimedia application provided by the AS

providing advanced video conferencing features and supporting new audio and videos CODECs

for conferencing and streaming. It is decomposed in the Multimedia Resource Function Con-

troller (MRFC) and in the Multimedia Resource Function Processor (MRFP);

• Application Server: host and execute services

• Breakout Gateway Control Function (BGCF) interrconnects the IMS with the Public Switched

Telephone Network (PSTN);

86

4.2. VIRTUAL IP MULTIMEDIA SUBSYSTEM (VIMS) TESTBED

• Media Gateway Control Function (MGCF): is responsible for the interworking with the PSTN

converting SIP messages to ISDN User Part (ISUP) PSTN signaling.

Several open-source implementations exist in the community, most of them based on the opensource

OpenIMSCore IMS [172] project. In our tests we used the opensource OpenIMSCore IMS [172]

functions, deployed as separated containers managed by Kubernetes [173].

4.2.1 Platform architecture and traffic simulation

Figure 4.2 depicts vIMS pods and containers location across both physical servers composing our

deployment.

Figure 4.2: Testbed

Each physical server is equipped with an Intel (R) Xeon (R) CPU E5-2620 v4 @2.10GHz with

384 GB of RAM, connected to the same network through a 1-Gbps port physical switch. All the

vIMS functions are deployed in dedicated Pods located in the server 1 (srv1), while Kubernetes core

components are deployed in the server 2 (srv2). Server 2 hosts the SIPp [174], a traffic simulator used

to inject SIP and RTP traffic into the platform as two pods representing the caller and the callee. In

particular, we used SIPp to simulate a nominal scenario where several SIP clients get first registered

to the vIMS core and then start a call according to a custom call-flow specified to SIPp through an

XML scenario which details the messages and their order across a call.

To simulate realistic traffic, we used real call traffic profiles extracted from a given LAC (Location

Area Code) from Orange 3G network. We injected three weeks (March 16-29, 2020) of this traffic

distribution onto the vIMS containerized platform under test. As shown in figure4.3, we set the

average call duration to 3 min according to [175]. Both RTP data traffic and SIP signaling traffic are

transported over UDP. Moreover, the vIMS containerized platform is tailored to correctly process this

87

4.2. VIRTUAL IP MULTIMEDIA SUBSYSTEM (VIMS) TESTBED

Figure 4.3: Call CallFlow

traffic load. Figure 4.4 reports mean call distribution for the first and the second week as well as an LAC

distribution used for testing purpose. Call distributions and obtained datasets are available at [170].

It is worth highlighting that virtualized network services, differently than legacy transport network

services, are tailored to a particular traffic, which can be isolated first and then chained through

dedicated functions thanks to the possibility to program virtual switches along the network path. This

is the reason why we focus on a particular traffic and related virtualized network service architecture,

as we believe this is a more realistic application than an application applied to an aggregate with

undifferentiated traffic. In particular, we focus on VoIP traffic because it still today represents an

important portion of ISPs revenues and as it requires QoS guarantees also in terms of availability.

Figure 4.4: VoIP call distributions emulated in the experiments

We evaluate the SYRROCA ability to detect and characterize anomalies, we disrupt the normal

88

4.2. VIRTUAL IP MULTIMEDIA SUBSYSTEM (VIMS) TESTBED

working conditions injecting anomalies following three different scenarios. In the first scenario we

tested how stressing the physical CPU in the PCSCF container is perceived by the autoencoders and

how this stress propagates from the physical to the container layer. We injected a persistent physical

CPU stress which increases over time in evenly time distributed increments of 10% during one hour

across 32 CPUs, starting from 10% up to 80% of single CPU capacity. Each stress cycle is repeated

ten times. The second scenario consists in injecting packet loss to generate calls failures.SIPp allows

simulating packet loss by simply blocking outgoing messages or discarding received messages. In

particular, we alter the call distribution of March 16, 2020, blocking 50% of INVITE (SIP message)

acknowledgments, causing at least 50% of calls to fail. In the third scenario instead we stress the

vIMS core with a call profile exceeding the resources available to the vIMS network functions. To do

that, we chose to inject the call distribution of March 22, 2020 from a different LAC than the one

used for training, serving more users (Figure 4.4). Actually, even though in our deployment each pod

can theoretically use as much memory as the physical server has (best-effort mode), the scripts used

to launch IMS services impose a hard-coded memory limit. Nevertheless, we observed that although

this script-level limit is not reached, it is possible to overload the vIMS core with a higher amount of

traffic as in the selected test LAC. Unfortunately, the SIPp traffic simulation tool showed a limitation

on the total number of the simultaneous emulated calls, therefore we could simulate only the first peak

of the LAC depicted in Figure 4.4, but in any case not invalidating the correctness of the test.

4.2.2 Dataset

The whole platform is monitored through Prometheus node-exporter [176] for the physical level,

while Pods and containers are monitored through Kubernetes embedded CAdvisor [177] agent. Both

exporters are compliant with Prometheus data model and architecture so that metrics can be exported

through GET requests at a specific polling frequency. Furthermore, collected metrics are explicitly

typed as counters or gauges, so that pre-processing becomes easier. In our deployment metrics are

directly collected from both CAdvisor and NodeExporter with a Java script that stores metrics in a

column-like format every 5 s, forming time-series of 17280 values per feature and per day during 21

days. We downsampled the series to a 30 s frequency (2880 samples/day) to keep a good trade-off

between time complexity and training error.

Tables A.1 and A.2 list the names of considered metrics for the physical and the virtual layer

89

4.3. THE SYRROCA FRAMEWORK

CPU Network Memory Disk Total

Physical 370 290 40 260 960

Virtual 60 80 160 230 530

Table 4.1: Number of features per layer and resource type

respectively. Note that each metric name is repeated several times in the dataset, as it can refer to

different, pod, container, network interfaces etc... Table 4.1 instead details the number of features per

layer and resource group, showing the important magnitude in the number of features that justifies

our choice of using deep autoencoders to effectively compress high dimensional inputs vectors.

4.3 The SYRROCA framework

In this section, we detail the architecture of the framework we proposed with a particular at-

tention to the anomaly detection and characterization phases. The framework is called SYRROCA

SYstem Radiography and ROot Cause Analysis. Figure 4.5 shows a simplified diagram of the proposed

framework. The architecture represented here is split by layer, duplicated to analyze separately both

physical and virtual layer metrics to comprehensively analyze the whole stack.

Figure 4.5: SYRROCA framework functional diagram

90

4.3. THE SYRROCA FRAMEWORK

4.3.1 Metrics collection and pre-processing

In order to monitor a softwarized network platform to infer its state, we can collect heterogeneous

data related to the various subsystems in stake. Metrics include categorical information in a text

shape (alarms, logs) or in a numerical shape, encompassing metrics and KPIs (Key Performance

Indicators). In this work we focus our analysis on numerical metrics, leaving out other textual data

that requires other type of pre-processing such as semantic text processing capabilities like in log

analysis [178, 179]. The continuous collection of metrics results in a set of time series at different time

intervals given by a scraping frequency. Depending on the metric source, each time series may exhibit

different properties which requirs pre-processing to make the analysis more effective. For instance,

the number of sent/received packets inherently encompasses a monotonically increasing trend, which

makes the associated time series a cumulative counter. On the contrary, other time series, generally

referred to as gauge, may arbitrarily describe increasing/decreasing metrics without an inherent trend;

e.g., the frequency values taken by a computing processing unit or its temperature. Thereby, to analyze

a dataset containing several heterogeneous time series, we pre-process data as follows:

◦ De-trending . Counters-based time series, if not properly pre-processed, are non-stationary,

which tends to produce unreliable and spurious results leading to poor understanding and fore-

casting capabilities [180]. Furthermore, counter metrics evolution is rather characterized by its

increments rather than the absolute cumulative value. On the other hand, gauges-like metrics

do not exhibit an a-priori trend and are characterized by each instantaneous value. Therefore we

keep the raw values for gauges-like metrics while we only maintain their increments for counters

like metrics;

◦ Re-sampling . Depending on the monitoring scraping frequency, the temporal resolution of

each metric may be different and in some cases so fine-grained that spurious outliers spikes

could worsen data quality. Furthermore, high time-series resolution would make the training set

huge, which proportionally increases training duration without any quality increase guarantee.

In our conditions, we found 30 s to be a good frequency value considering how fast anomalies

should be detected;

◦ Re-scaling . Since some metrics values may have a relatively big magnitude while others may

have a small one, it is important to re-scale the input data into a uniform range. Indeed, when

91

4.3. THE SYRROCA FRAMEWORK

CPU Network Memory Disk

Levy (15%) PowerLaw (25%) Alpha (14 %) Betaprime (34 %)

Net (15 %) Alpha (20 %) Net (12 %) Jhonsonsu (26 %)

Table 4.2: Best-fit distributions per resource group

training a NN with a gradient descend algorithm, the learning rate is proportional to the magni-

tude of the inputs, which means that if the inputs are of different scales, the weights connected

to some inputs will be updated much frequently than other ones, biasing the learning [181]. This

is especially important for LSTMs, which are sensitive to the scale of the input data when the

(default) sigmoid or tanh activation functions are used.

In the state of the art two techniques are proposed to re-scale data: standardization and normal-

ization; the former assumes that observations fit a Gaussian distribution (with a well behaved mean

and standard deviation) and consists in shifting the distribution of each metric to have a mean of zero

and a standard deviation of one (unit variance), while the latter consists in transforming the original

metrics range so that all values fall within the [0, 1] range. To decide which feature re-scaling approach

to use we analyzed metrics distributions. We use the chi-squared Pearson’s cumulative test [182, 183]

to characterize the goodness of fit of different statistical distributions. The chi-squared statistic, χ2,

is a normalized sum of squared deviations between observed and theoretical frequencies. The χ2 bins

data into n bins based on percentiles so that each bin contains approximately an equal number of

values; for each fitted distribution the expected count of values in each bin is predicted from the

distribution. The chi-squared value is the sum of the relative squared error for each bin.

Table 4.2 represents the distributions obtained for the four resource groups after the application of

the χ2 test. We can observe that none of the analyzed metrics fit a Gaussian distribution; we therefore

select normalization as the re-scaling technique.

During the training phase, SYRROCA learns the nominal conditions from the metrics character-

izing a given layer and a resources group involved in a virtualized network service. Autoencoders are

trained with a dataset composed of metrics collected during the normal working conditions, so that

they can learn a compact representation of the nominal state. It is worth noting that both the quality

and the extent of the data used for the training phase greatly affect the representation. Indeed, during

the training phase, autoencoders are fed with anomaly-free samples during a sufficient period of time

92

4.3. THE SYRROCA FRAMEWORK

to learn the dynamics for each metrics group and layer to be characterized. Our framework uses ded-

icated deep autoencoders for each group of resources (CPU-related, memory-related, network-related,

and file-disk-related) and layer (physical and virtual) in order to characterize anomalies occurring in a

softwarized service in a fine-grained manner. Consequently, we used a total of 8 deep autoencoders, 4

to analyze virtual layer metrics and 4 more to handle physical layer metrics (i.e. a single autoencoder

per resource group). It is worth noting that, for future possible applications of SYRROCA to other

applications, additional metric sources and groups can be added with no restriction. As mentioned in

the previous section, neural networks struggle to learn with high-dimensional inputs. Hence splitting

the dataset per resource group streamlines learning. Additionally, it reduces training time. In fact, as

described in [156] the LSTM cell epoch update complexity is O(Wi), where Wi is the number of cell’s

weights. For a standard implementation of an LSTM cell, Wi = 4hi × (hi + hi−1) where hi is the num-

ber of hidden units and hi−1 is the dimension of the layer input, which is the previous layer’s output.

When using LSTMs in deep autoencoders, the number of hidden units depends on compression level

ci ∈ R. Thus Wi = 4Nci × (Nci +Nci−1) where N is the number of considered metrics. Subsequently,

each cell update complexity is O(N2). Assuming a deep autoencoder composed of M encoding and

M decoding levels, the training complexity of the entire deep autoencoder is O(M · N2) for each

training epoch. In contrast, if input metrics are split into ng different groups (resources groups in the

remainder of the manuscript), the deep autoencoder training complexity is reduced to O(M · N2/ng)

for each epoch.

4.3.2 Training

Whatever library is used to implement the LSTM model, the input to every LSTM layer must be

a three-dimensional tensor, which can be seen as three-dimensional array. As shown in Figure 4.6,

LSTM tensor dimensions are the number of samples, the number of time steps we want to observe

each sample and the number of features/metrics the LSTM layer has to analyze.

Because of that, before training the AEs, we rework the dataset structure to match figure 4.6

structure. We use two time-steps per sample, which ensure fast learning, and overlapping sequences,

which preserve the temporal correlation among the various samples. Even though an LSTM cell can

theoretically store into its internal memory an infinite sequence of samples, actual implementation

requires imposing a limit on the growth of the memory [184]. This is generally achieved with internal

93

4.3. THE SYRROCA FRAMEWORK

Figure 4.6: LSTM tensor

Hyper-parameter Value

Batch Size 64

Epoch 600

LSTM activation function elu

LSTM recurrent activation function sigmoid

Dropout rate 0.2

Table 4.3: LSTM cell hyper-parameter

memory reset after each batch of samples. According to the mini-batch training technique [185, 186],

accumulating NNs weight changes over some number u (the batch size) of instances before actually

updating the weights, helps to achieve a fast training convergence. Thereby, the batch size value has

to be tuned to limit the memory usage and speed the learning while preserving the ability of AEs to

learn on a meaningful temporal dynamic. As the training dataset spans three weeks of simulated calls,

it is inherently characterized by a one-day pattern. We thereby set the batch size equal to the size of

a daily dataset so that the LSTM internal memory cell is only erased after working on an entire day,

learning daily metrics interdependencies.

To run an effective AI/ML model, AEs architecture and hyper-parameters must be tuned; even

if there exists some rules of thumb or some widely recognized best practices, the brute force ap-

proach, which consist of testing several combinations of hyper-parameters and architectures, is the

most commonly used and accepted method. Table 4.3 reports some insights about chosen values for

some most meaningful hyper-parameters and figure 4.7, instead, depicts the architecture of each deep

autoencoder.

Encoder and decoder are composed of two LSTM layers which reduces the input vector dimension

by 20% each. One dropout regularization layer is used to prevent over-fitting, which particularly

affects Deep neural networks [187]. According to the state of the art, over-fitting can be reduced by

94

4.3. THE SYRROCA FRAMEWORK

Figure 4.7: SYROCCA deep Autoencoder architecture.

fitting all possible different neural networks architectures on the same dataset and then averaging the

predictions from each model [188]. However, this is not feasible in practice. With dropout, during

training, some layer outputs are randomly “dropped out”; therefore some layers look like one with a

different number of nodes and links to the prior layer, mimicking different architectures.

4.3.3 Anomaly detection and characterization

Table 4.4 summarizes the notation used throughout the chapter.

N Number of total analyzed metrics

G = {g1, ..., gs} Set of considered s resources groups

L = {lr, ..., lr} Set of considered r layers

N l,g Number of metrics referring to resources group g at layer l

τ Dataset time length

X l,g
j (t) = [xl,g

j (1), ..., xl,g
j (τ)] time-series of the jth metric in input to the AE operating on re-

sources group g and layer l metrics

X̃
l,g
j (t) = [x̃l,g

j (1), ..., x̃l,g
j (τ)] time-series of the jth metric produced by the AE operating on

resources group g and layer l metrics

D Set of detected deviations

dt deviation at time-step t

T l,g MSE threshold for resources group g at layer l

SEl,g
j (t) = [xl,g

j (t) − x̃l,g
j (t)]2 Feature-wise reconstruction squared error

pl,g
j (t) jth feature MSE contribution rate

95

4.3. THE SYRROCA FRAMEWORK

F l,g
t most deviated feature index set for deviation dt of resources group

g, layer l

Table 4.4: Table of notations

Reconstruction error design

In SYRROCA, an anomaly is meant as a meaningful deviation from nominal conditions. The

framework is based on LSTM AEs wich allow to detecting anomalies when their reconstruction error

exceed e fixed threshold. Indeed, when nominal conditions significantly deviate, the autoencoder fails

in reconstructing those conditions and the reconstruction error increases.

In general, depending on the problem, it is possible to choose among several types of reconstruction

error. In the state of the art, the most used ones are the Mean Squared Error(MSE), the Root MSE

(RMSE), the Mean Absolute Percentage Error (MAPE), the Mean Absolute Error (MAE).

The MAE it is defined as the mean of the absolute error MAE = 1
n

∑︁
||xt − xt̂||, where xt is

the actual value and xt̂ is the forecasted one at time t. It is, in general, used when outliers are not

expected to be frequent and it is therefore not suitable for anomaly detection [189]. In our case, as

we do not have negative values, the MAE boils down to the Mean Bias Error (MBE).

The MAPE is defined as MAPE = 1
n

∑︁
||xt−xt̂

xt
||, and it is in general used to compare different

models. However it cannot be used if actual values might contain zeros [190], which is the case for our

dataset.

The Mean Squared Error(MSE) and the Root MSE (RMSE) are generally the most used loss

functions for anomaly detection: the former is defined as MSE = 1
n

∑︁
(xt − xt̂)2 while the latter is the

root of the MSE, RMSE =
√

MSE. Since the RMSE gives a relatively higher weight to large errors

compared to smaller ones, it is generally preferred when larger errors are considered much worse than

smaller ones [191].

In SYRROCA, AE inputs are re-scaled to the [0, 1] range, thus the training reconstruction error is

always lower than 1. Thereby, as
√

x > x for x ∈ R ∧ x < 1, the RMSE always produces greater error

values than MSE. As the threshold is computed to be the 99.9% quantile of the reconstruction error

distribution, the threshold also is always greater in the RMSE case. Accordingly, using the RMSE

only produces a re-scaled version of the same information we can compute with the MSE, leading to

96

4.3. THE SYRROCA FRAMEWORK

identical anomaly detection outcome; we could also verify this aspect experimentally, with the same

accuracy, recall, precision and F1 score for two sets of RMSE and MSE-based AEs.

As a conclusion on the choice of the type of reconstruction error we chose the MSE because

computationally less heavy than the RMSE, which requires in addition to the MSE computation, also

the computation of the squared root (of the MSE) with identical results (with only the MSE).

Anomaly characterization

An autoencoder is trained to reconstruct the nominal conditions with low error. However, when

nominal conditions significantly deviate, the autoencoder fails in reconstructing those conditions and

the error increases.

For an AE trained with N l,g inputs and outputs the MSE is defined as:

MSEi,g(t) = 1
N l,g

N l,g∑︂
j=1

[X̃ l,g
j (t) − X l,g

j (t)]2 (4.1)

where X̃
l,g
j (t) = [x̃l,g

j (1), ..., x̃l,g
j (T)] ∈ IRT and X l,g

j (t) = [xl,g
j (1), ..., xl,g

j (T)] ∈ IRτ are respectively

the output and the input vectors of the autoencoder working on group g, where τ is the size of the

considered time-window.

Even though the MSE provides an efficient way to detect anomalies on a big set of metrics, it is a

global metric not rich enough to characterize the anomaly. We therefore design an approach to start

from the MSE to determine the causes that contribute the most to the anomaly, as follows.

Let D and dt ∈ D be the set of ‘deviations’ and a given deviation at time t, such that the MSE of

a resources group exceeds a threshold value T l,g. We use the 99.9% quantile as the threshold for each

metrics group, i.e., 0.1% of the training samples are marked as raw anomalies by each autoencoder;

note that, depending on the scales involved, this statistical threshold may be increased at will.

To characterize anomalies using autoencoders we propose to compute the contribution of each

feature to the MSE, computed as the feature-wise reconstruction squared error SEl,g
j (t) = [xl,g

j (t) −

x̃l,g
j (t)]2 over the sum of the squared errors across all the features in a given resources group:

pl,g
j (t) =

SEl,g
j (t)∑︁N l,g

j=1 SEl,g
j (t)

(4.2)

The closer pl,g
j (t) is to 1, the stronger is the contribution of feature l in group g to the MSE of that group

97

4.3. THE SYRROCA FRAMEWORK

(MSEl,g). Let us define Bl,g(t) = {bl,g
1 (t), bl,g

2 (t), ..., bl,g
n (t)} as the set of decreasingly ordered pl,g

j (t).

Thus, taking bl,g
1 (t), ..., bl,g

k (t) ∈ B with k ≤ N l,g so that
∑︁k

j=1 bl,g
j ≥ 0.9 the features corresponding to

these first k values of pl,g
j (t) ∈ B are those that are reconstructed with the highest error and jointly

contribute to at least the 90% of the MSE. Consequently the set:

F l,g
t = {j : bl,g

j (t) ∈ Bl,g(t), 1 ≤ j ≤ k} (4.3)

contains the indices of the features that deviated the most from their nominal dynamics on layer l,

group g; therefore, it gives an insight of symptoms to analyze the root cause.

4.3.4 Radiographies

Depending on the type of anomaly impacting the system, it may be contained in a single layer or

may propagate to other layers. For instance, a process inside a container intensively using assigned

CPU may be seen as an anomaly at the virtual/container level, while not affecting the quality of the

delivered service. To understand how anomalies propagate across layers and impact the service, we

propose to combine the reconstruction error MSEl,g and MSEl+1,g of two consecutive layers to obtain

a 2D density plot, referred in the remainder of the paper as radiography, given its visual similarity

with common radiographies.

We can have two types of radiographies:

� Service cross-layer view: this view correlates the MSEvirt,g of the virtual layer with the MSEservice,g

metrics characterizing the delivered service. For simplicity, in this chapter we treat the case of

a single service metric. Hence, let f(MSEvirt,g, < service metric >) be the bi-variate function

joining the MSEvirt,g of virtual layer and group g to values of the selected service metric (e.g.,

number of failed calls in the vIMS use-case).

� Infrastructure Cross-layer view: this view correlates the MSE of the physical and virtual layers,

for a given features group. Let g(MSEphy,g, MSEvirt,g) be a bi-variate function describing how

the MSE from the two layers of a given group are related to each other.

In practice, a radiography is a 2D density plot, computed through the Kernel Density Estimation

(KDE), which is used to estimate the density of the f and g bi-variate functions. In particular, the

density estimator is defined as f̂(x, H) = 1
n

∑︁n
i=1 KH(x − Xi), where (X1, ..., Xn) are the bi-variate

98

4.4. EXPERIMENTAL RESULTS

function samples, K is the used Gaussian kernel and H is a bandwidth parameter, chosen with a well

known rule of thumb [192]. A color/grey scale mapping density from high to low with colors from black

to white, is used to visualize the computed KDE, obtaining the so-called radiography. Accordingly,

the KDE-based radiography represents the density for each function for a chosen time window: the

higher the density of a given point area is, the darker the color; darker regions represent most observed

conditions. Density zones along the space bisector denote a direct propagation across variables/layers,

while density zones near any of the two axes denote an impact affecting only one variable/layer hence

with no propagation among the two. We later showcase radiographies for the vIMS use-case showing

how to spot and characterize anomalies.

4.4 Experimental results

4.4.1 Training on a nominal scenario

Figure 4.10 depicts MSEvirt,g(t) for the four AEs fed with the virtual CPU, network, memory and

file system metrics groups respectively. Note that it is not required to have an MSE equal to zero for

time-stamps representing nominal conditions. Nonetheless, we are interested in MSE differences be-

tween points to get an insight on the deviations. Through the methodology proposed in section 4.3.3,

we found out that in the memory metrics group MSE (4.10 (c)), 57.4% of samples crossing the threshold

are characterized by the set of features F =[memory failures total{pod=hss, type=pgfault,

scope=hierarchy}, memory failures total {pod=hss, type=pgfault, scope=container}].

However, for CPU, network and file system groups there is no predominant type of features F char-

acterizing those deviations. Therefore, we can conclude that the dynamics of the memory usage of

the HSS during normal activity is characterized by a repeated fixed pattern. This pattern has to be

taken into consideration when analyzing test datasets as something somehow belonging to nominal

operating conditions. It is worth noting that the MSE trend for the virtual CPU group clearly follows

the call distribution (Figure 4.4), which confirms our AEs being able to carefully characterize the

learning dataset.

99

4.4. EXPERIMENTAL RESULTS

(a) Virtual CPU group (b) Virtual network group

(c) Virtual memory group (d) Virtual file system group

Figure 4.8: Training MSE for each metrics group.

100

4.4. EXPERIMENTAL RESULTS

4.4.2 Test phase on degraded conditions

We evaluate the SYROCCA ability to detect and characterize anomalies under three different

degraded scenarios. Please refer to Section 4.2.1 for a detailed explanation of the three different test

scenarios.

First test scenario

Fig. 4.9 shows that: (i) the AE for the virtual CPU metrics group detects at all times those CPU

stress at the physical level as deviations above the threshold at the virtual level, (ii) the MSEg=vCP U (t)

increases according to the injected increasing physical CPU load with the same trend. This confirms

that the AE can detect deviations at physical and virtual layers and characterize relative intensities

of those deviations. This experiment is extensible to virtual network and virtual memory, or other

data sources groups. Furthermore, when the 1 hour physical CPU stress ends, that MSE behavior

falls back to the nominal region under the threshold (diamond points).

Applying the methodology described in Section 4.3.3 to get an insight on the features describing

the anomaly, it turns out that features characterizing anomalies correspond to CPU group F =[CPU

user seconds total{pod=pcscf}, CPU usage seconds total{pod=pcscf}]. This confirms

SYROCCA’s ability to recognize sets of resources that most deviate for any type of anomaly.

Figure 4.9: Time evolution of the MSE for virtual CPU-related metrics group, under an increasing
CPU stress.

Second test scenario

Figures from 4.10a to 4.10d depict the obtained radiography for the test case plotting only anoma-

lous data points. The horizontal axis is the MSE for the analyzed group of metrics while the vertical

101

4.4. EXPERIMENTAL RESULTS

(a) vCPU-related group (b) vnetwork-related group

(c) vmemory-related group (d) vfilesystem-related group

Figure 4.10: vIMS system radiographies under packet loss injection.

one is the number of failed calls. Darker zones denote high-density regions (MSEg, failed calls)

while colors from green to white indicate less dense regions. It is worth recalling that the values asso-

ciated with the color scale correspond to an estimate of the probability density function via KDE, and

therefore do not represent a physical density value but only a measure proportional to density. Since

Figures 4.10c, 4.10b and 4.10d present high-density zones only for small values of failed calls, one can

conclude that CPU, memory and file system are not behind the service degradation. On the contrary,

Figure 4.10b clearly depicts two high-density zones, one of them corresponding to more than 250 failed

calls, which clearly indicates that anomalies detected from the network metrics group directly impact

vIMS service. Indeed, 90% of detected network anomalies are only characterized by metrics related

to sent/received packets from/by SCSCF and PCSF. In fact, when a call fails, the SCSCF generates

a Failed call message that is redirected to the PCSCF, and then to the user. Moreover, Figure 4.10a

depicts a moderate density zone (light orange) for more than 250 failed calls, highlighting that the

anomaly slightly impacts the CPU. Similarly, in Figures 4.10c and 4.10d two slighter low density

zones (light violet) corresponding to more than 250 failed calls points out an even slighter impact on

memory and file system related metrics.

102

4.4. EXPERIMENTAL RESULTS

Third test scenario

(a) vCPU-related group (b) vnetwork-related group (c) vmemory-related group

Figure 4.11: vIMS system radiographies under call overload injection.

As expected, radiographies from Figures 4.11a to 4.11c show that the introduced anomaly evenly

impacts CPU, network and memory metric groups, mainly seen as high-density zones corresponding

to at most 15 failed calls. Furthermore, file system-related metrics are nearly not impacted as only a

few samples are recognized as anomaly making it impossible to produce a radiography.

4.4.3 Time-windowed radiography

SYRROCA can characterize the state of a physical or virtual layer and its time evolution. We

can analyze this evolution through time-windowed radiographies. In practical usage, SYRROCA is

meant to receive test datasets in batches of arbitrary time duration. Instead, to accumulate the

features collected within each batch and analyze the whole sequence of batches at once, it is possible

to separately analyze each batch. So doing, produced radiographies and state graph describe only the

latest evolution of the system and not the whole evolution since the beginning of metrics collection.

Figure 4.12 shows an example of time-windowed radiographies about the system evolution for the

CPU stress test case. We show three consecutive radiographies computed with a time window of 40

samples to represent the last 20 minutes. The dark high-density region in the leftmost radiography

completely exceeds the threshold on the virtual layer, but is partially exceeded in the physical layer:

the stress is immediately perceived as an anomaly at the virtual layer, while at the physical layer

the stress starts to be recognized as an anomaly. As the simulation continues, the anomaly starts

getting more and more deviated for both virtual and physical layers. This behavior can be seen in

the middle radiography, where the high-density zone spreads around the space bisector, thus denoting

simultaneous stress and direct propagation across physical and virtual layers. During the last 20-

minute radiography the system reaches the greatest level of deviation but it remains focused on a very

103

4.4. EXPERIMENTAL RESULTS

Figure 4.12: Radiography time evolution for the CPU stress test case

concrete region located to the rightmost side of the radiography.

104

4.5. CONCLUSION

4.5 Conclusion

In this chapter we proposed a LSTM autoencoder-based methodology to detect and characterize

network deviations in softwarized environments. LSTM AEs are fueled with time series composed of

hundreds of metrics collected from the physical and the virtual layer composing a virtualized infras-

tructure. A set of 8 AEs is used to better profile the CPU, network, disk and memory metrics for

both the physical and virtual layers. A threshold on AEs mean squared error is exploited to detect

the deviations from the learned nominal working conditions.

The Radiography representation is proposed to detect and visualize anomaly propagation through

layers. The proposal is validated with a proof-of-concept based on a vIMS deployed using Kubernetes.

In the following chapter, we demonstrate how to leverage AEs reconstruction error to comprehen-

sively assess the virtualized system state.

105

4.5. CONCLUSION

106

Chapter 5

Virtualized system state assessment

Content

5.1 Introduction . 108

5.2 System State Inference . 109

5.3 Experimental results . 111

5.3.1 Training - known state characterization . 111

5.3.2 Test on degraded conditions . 113

5.3.3 Performance comparison . 119

5.4 Conclusion . 122

To cope with the high heterogeneity and number of software components, in the previous chapter

we proposed an AI approach to detect anomalies. Here we extend the framework to assess the running

state and the state deviations of a softwarized infrastructure making use of containerized services.

Our framework learns the nominal working conditions of the infrastructure, based on which deviations

from the learned reference are detected and analyzed. We detail how characterizing state deviations

can explain the root causes of service failures. We implement and validate the proposed framework

through experimental tests on a containerized voice-over-IP IMS platform managed by Kubernetes.

This chapter reports the content of publication [14].

107

5.1. INTRODUCTION

5.1 Introduction

Network softwarization eases the adoption of so-called ‘cognitive network’ approaches, e.g. refer-

ring to a closed-loop process consisting of sense, learn, decide, policy and act phases [12, 13]. The

observations captured by the sensors (sense) help to build a model from the useful observations (learn),

which is in turn used by a decision-making module to choose (decide) the actions to be taken based on

possible moves and learned experience. Potential actions, i.e. strategies stored in the policy module

(policy), are shortlisted by the planning module, so that, finally, the actuators execute (act) selected

re-configurations [11]. The policies developed by the cognitive loop aim to achieve a final end-to-end

goal dictated by the business and/or user requirements such as maintaining a certain Quality of Service

(QoS) to fulfill a Service Level Agreement (SLA). Build a precise enough model of the network state

from the sensed data is a paramount step in the cognitive/automation loop.

In a softwarized environment, recent advanced monitoring tools (e.g., Prometheus) allow retrieving

thousands of metrics at different levels to sense a connect-compute platform composed of both com-

puting and networking components. However, automatically extracting relevant features from such

a massive amount of data to assess the system state is a challenge that we firstly addressed in the

previous chapter, where we pose the bases of the so-called SYRROCA (System Radiography and Root

Cause Analysis) framework. In this chapter, we further develop the SYROCCA framework, proposing

a cross-layer state characterization of the system. We show how this novel analysis allows characteriz-

ing anomalies at any layer and their propagation across layers. We run tests in the same containerized

vIMS architecture we introduced in the previous chapter. We also propose a formalization for the

autonomic anomaly remediation problem as a Reinforcement Learning algorithm. Finally, we propose

a trust and reputation model to quantify MANO entities contribution to softwarized system resilience.

Table 5.1 summarizes the notation used across the first part of the chapter.

N Number of total analyzed metrics

G Set of resources groups

L Set of layers

U Set of considered v computational units

N l,g Number of metrics referring to resources group g at layer l

D Set of detected deviations

108

5.2. SYSTEM STATE INFERENCE

dt deviation at time-step t

T l,g MSE threshold for resources group g at layer l

F l,g
t most deviated feature index set for deviation dt of resources group

g

Θ : F l,g
t ↦→ {(g1, u1),, (gk, uk)} Function associating to F l,g

t the couples (g, u) corresponding to

features in F l,g
t

Table 5.1: Table of notations

5.2 System State Inference

In cognitive network approaches [67, 11, 193] the sensing of the environment and learning the state

is the preliminary step to inference. Optimal decision-making processes in orchestration concern the

capability to identify with low uncertainty the state of network resources to know where to apply

those remediation actions, so that they are effective enough to revert the deviated conditions towards

normalcy.

The notion of system ‘state’ can be declined in different ways according to the addressed problem.

In SYRROCA, we distinguish among three types of states:

� Nominal State: the system is in normal working condition when the MSE does not deviate for

each group of resource metrics.

� Training Degraded State: the system is in an anomalous but known-in-advance working condi-

tion. In these cases, the MSE falls above the threshold for at least one group of resource metrics

in a given layer.

� Test Degraded State: the system is in an anomalous and unknown working condition during the

run-time test when the MSE falls above the threshold for at least one group of resource metrics

in a given layer.

While the anomalous unknown states are meant to be detected in the testing phase, the nominal state

and the known degraded states can be ex-ante characterized for a given use-case.

Let a layer, whether physical or virtual, be fully characterized by two element sets:

109

5.2. SYSTEM STATE INFERENCE

◦ the set of resources groups, denoted as G = {g1, ..., gs}, where each gk can for instance denote

CPU, memory, network and file-system related metrics;

◦ the set of computing units, denoted as U = {u1, ..., uv}, where each unit may represent a virtual

machine, a container, or a server in the case of a physical layer.

In order to provide an insight on the deviation that leads the system to a degraded and anomalous

state, we would like to compute the partition of the set containing all the known degraded states

D = {dt1 , ..., dtk
} in a specific layer. Indeed, according to the partition set definition, part(D) groups

all elements in D into non-empty subsets, i.e. equivalence classes, in such a way that every element is

included in exactly one subset. The simplest way to obtain such a partition is to define an equivalence

relation for which the set of its equivalence classes is a partition of D. The simplest equivalence

relation R one could imagine would group together deviated states which are characterized by the

same sets F l,g
t of most deviated feature indexes. Nonetheless, depending on the number of features

composing the multivariate time series collected from the monitored softwarized infrastructure, the

number of possible classes, defined by |part(D|R)|, could be huge. For instance, it is common to

have at least n=200 metrics for a physical layer, which gives: |part(D|R)| =
∑︁n

k=1
(︁200

k

)︁ ∼= 1.67e60

possible deviated states. Moreover, remediation actions may not have sufficient granularity to act on

a single metric, rather they may act on a specific resource and computational unit. Hence, we propose

to further group anomalies with respect to the impacted resource (e.g. CPU, memory, disk) and

the computational unit (e.g. container, VM, server), so that deviations referring to the same sets of

resources and computational units belong to the same equivalence class. This helps in narrowing down

the choice of possible mitigation actions to those that act on the identified resources and computational

units.

Let’s Θ : F l,g
t ↦→ {(g1, u1),, (gk, uk)} be a function mapping the features indexes set F l,g

t to the

corresponding network resources and computation units. We define then the relation R′:

R′ := {dta ∼ dtb
if Θ(F l,g

ta
) ≡ Θ(F l,g

tb
)∀g ∈ G, l ∈ L} (5.1)

which is simply verified to be an equivalence relation as it is:

◦ Reflexive, as Θ(F l,g
ta

) ≡ Θ(F l,g
ta

);

◦ Symmetric, because if Θ(F l,g
ta

) ≡ Θ(F l,g
tb

) then Θ(F l,g
tb

) ≡ Θ(F l,g
ta

);

110

5.3. EXPERIMENTAL RESULTS

◦ Transitive, since if Θ(F l,g
ta

) ≡ Θ(F l,g
tb

) and Θ(F l,g
tb

) ≡ Θ(F l,g
tc

) then Θ(F l,g
ta

) ≡ Θ(F l,g
tc

).

Thereby, R′ correctly induces the desired partition on D. Given a deviation dta the class C(dta)

of similar deviations through R′ is defined as :

C(dta) = {dtk
, ∀k|Θ(F g

tk
) ≡ Θ(F g

ta
)∀g ∈ G, l ∈ L} (5.2)

For example, given the deviation dta characterized by F virt,CP U
ta

= {21 : container cpu load average

10s{dns}} and F phy,mem
tA

= {33 : node memory MemFree bytes{server1}}, Θ(F virt,CP U
ta

)∪Θ(F phy,mem
ta

)

= {(CPU, DNS), (memory, server1)} thus C(dta) contains dta along with every other degraded state

characterized by a deviation on both the CPU of the DNS and the memory of the server1. Therefore,

we define the system states as:

St =
{︄

Nominal if MSEl,g(t) < T l,g ∀g ∈ G ∧ ∀ l ∈ L

{(g1, u1), ..., (gk, uk)} if ∃ g ∈ G ∧ ∃ l ∈ L | MSEl,g(t) ≥ T l,g
(5.3)

It is worth noticing that through R′
the cardinality of part(D|R′) is greatly reduced with respect

to the cardinality of part(D|R). Indeed, for the container level we have |part(D|R′)| =
∑︁s

k=1
(︁s

k

)︁
×∑︁v

k=1
(︁v

k

)︁
, where s is the number of resources and v is the number of the computational units the

features refer to. Considering the set of resources {CPU, memory, network, filesystem} and a set of

5 containers |part(D|R′)| = 465, which is then the total number of possible deviated states. For a

physical layer composed by 3 physical servers, using the same set of resources we have |part(DT |R′)| =

217 possible deviated states.

5.3 Experimental results

In this section we report the results of the experimental analysis conducted on the same testbed

presented in the previous chapter. We will refer to the same three test scenarios defined at 4.2.1.

5.3.1 Training - known state characterization

The aim of the learning phase is to acquire a characterization of the nominal states as well as known

degraded states with respect to the nominal conditions, so as to be able to detect future deviations

from both nominal and known degraded states during the run-time usage for testing.

111

5.3. EXPERIMENTAL RESULTS

The nominal scenario is simulated through several SIP clients that first register to the vIMS core

and then start a call. The vIMS containerized platform is tailored to correctly process the previously

mentioned emulated VoIP traffic load.

Figure 5.1: State graph obtained during the training phase

Figure 5.1 represents the states learned during the training phase; they are obtained as explained in

Section 5.2. States are connected within a directed graph, where an edge indicates any state transition

that occurred during the learning phase. The nominal state (or reference) is tagged as S0, while the

degraded states are tagged as SX, where X is a unique identifier to unequivocally characterize each

degraded state. Table 5.2 summarizes the taxonomy of all degraded states detected across our tests.

The thickness of the edge transition between states is proportional to the number of times it occurs.

Under each state label, it is quoted the percentage of time-steps the infrastructure sojourned in the

given state during the simulation.

In order to report only on relevant transitions, we omit the states in which the system stays less

than three time-steps (1 minute and 30 seconds). Some state transitions may not appear, such as

outgoing edges from the state S7 to S0 in Figure 5.1. Full states graphs are available at [170]. As

each AE threshold is set to the 99.9 quantile of the training MSE distribution, each AE inherently

detects 0.1% of the training samples as anomalies. Consequently, when each of the eighth AEs detects

anomalies at different time-steps the maximum amount of detected anomalies is 8% over the training

dataset.

As shown in Figure 5.1, the most frequent transitions in the virtual layer are from/to the nominal

state S0 to/from S8, that is a degraded file-system state related to anomalous DNS, HSS, ISCSCF and

112

5.3. EXPERIMENTAL RESULTS

SCSCF features behavior. Similarly, the most frequent transitions in the physical layer are from/to

the nominal state towards/from S9, S10, S14 and S15 which respectively represent CPU, network,

memory and disk deviated feature states. Additionally, it is worth mentioning that in the physical

layer states describing more than one type of degraded resource at the same time, i.e. S3, S4 and S5,

only occur few times, while in the virtual layer none of the degraded states describe a simultaneous

degradation for more than one resource type. This means that degraded states perceived in the training

phase only represent occasional events that temporarily affect only one type of resource and that do

not simultaneously impact the entire infrastructure (probably outliers). Nonetheless, a considerable

amount of degraded states concern DNS and HSS features, meaning that AEs struggle in modeling

associated metrics likely due to barely predictable behavior. Finally, note that some states appear to

describe an amplified deviation of other states, as it happens for S13 which adds a further deviation

on (net,srv1) with respect to S12.

5.3.2 Test on degraded conditions

We evaluate the SYRROCA ability to detect and characterize anomalies under three different

anomaly scenarios. For each test case, SYRROCA provides a state graph and a set of different

radiographies allowing in-depth root cause analysis. Due to space constraints, for each test case we

only show the most relevant representations (omitted ones can be found in [170]).

5.3.2.1 CPU stress test

In the first scenario we tested how stressing the physical CPU in the PCSCF container is perceived

by the autoencoders and how this stress propagates from the physical to the container layer. We in-

jected a persistent physical CPU stress which increases over time in evenly time distributed increments

of 10% during one hour across 32 CPUs, starting from 10% up to 80% of single CPU capacity. Each

stress cycle is repeated ten times.

Figure 5.2a depicts the stress pattern perceived by the autoencoders working respectively on the

CPU group metrics for the physical layer (in blue) and the virtual layer (in orange). As expected, the

most frequently visited state is S26 characterized by a deviation on the PCSCF and physical CPU,

as seen in Figure 5.2d. Interestingly, SYRROCA detects other less frequent deviations on the CPU

group of other containers as a consequence of that deviation, such as the states S27, S28 and S29.

113

5.3. EXPERIMENTAL RESULTS

(a) autoencoder MSE for the CPU metrics groups in
physical and virtual layers

(b) PCSCF memory stress radiography

(c) PCSCF CPU stress radiography (d) State graph obtained during the CPU stress
test case

Figure 5.2: SYRROCA output visualizations for the CPU stress test case

Indeed, those deviated states were not observed in the training phase, thus they do not refer to known

occasional deviations. We can suppose then non-perfect isolation of containers CPU lets the stress

inside PCSCF occasionally get through other containers.

The third most frequent state is S32, which is the result of a stronger deviation from the state S26.

This state is characterized by a deviation in the physical memory in addition to that of those deviated

resources of state S26. This state is likely due to the high amount of memory used by the stressing

script. Figure 5.2b depicts the radiography showing how the deviations evolve through time across the

10 stress episodes. Red dotted horizontal and vertical lines represent the autoencoders thresholds for

the memory group of virtual and physical layers, respectively. Accordingly, the bottom left rectangle

represents the nominal region, where a dark high-density region. For instance, 5.2b shows that most

of the time the system is in nominal conditions for both physical and virtual layers metrics. It can be

observed that the memory deviation remains contained in the physical layer. This can be evidenced

by the horizontal medium density region exceeding only the physical layer threshold but not exceeding

114

5.3. EXPERIMENTAL RESULTS

the vertical threshold.

Figure 5.2c instead depicts how the injected anomaly behaves for the CPU metrics group. While

region A represents a deviation affecting only the virtual layer (vertical axis threshold is not exceeded),

regions B and C represent deviations perceived at both layers. In particular, as depicted in Figure 5.2a,

at the beginning of each stress episode, the anomaly is first perceived only at the virtual layer (A).

Then as the stress increases, the deviation increases for both physical and virtual layer (B). Finally,

when the stress episode terminates, the virtual layer deviation immediately decreases, while at the

physical layer a residual deviation is still perceived (C). Note that across the 10 stress episodes time

window, region C is the most frequent one: this is probably due to the effect of cumulative metrics

which represent the physical CPU load across the last 5 and 10 minutes. Indeed, metrics representing

the CPU load for the virtual layer are only instantaneous.

5.3.2.2 Packet-loss injection test

The second scenario consists in injecting packet loss to generate calls failures.SIPp allows simulat-

ing packet loss by simply blocking outgoing messages or discarding received messages. In particular, we

alter the call distribution of March 16, 2020, blocking 50% of INVITE (SIP message) acknowledgments,

causing at least 50% of calls to fail.

Looking at Figure 5.3 system state graph, it is interesting to point out that almost all the degraded

states only refer to network-related metrics, except S16 and S14, rarely visited. This means that the

injected anomaly does not propagate across different resource types. In particular, the most recurrent

deviated state is S17 which represents a degradation on the network metrics of the ICSCF and PCSCF

containers, thus a virtual-layer only anomaly. Similarly, state S10 is only characterized by a deviation

on the physical network metrics. As collected virtual layer metrics only belong from vIMS containers,

a deviation like the one of state S10, which is only detected at the physical layer, describes something

related to Kubernetes pods or to any underlying Linux system-level process. Consequently, we can

infer that deviated state S10 does not depend on the packet loss we imposed. Similarly, as no degraded

state is characterized by metrics from both the physical and virtual layer, we can conclude that the

detected anomalies never propagate through physical and virtual layers for any kind of resource.

115

5.3. EXPERIMENTAL RESULTS

Figure 5.3: State graph obtained during the packet loss test case

Figure 5.4: State graph obtained during the overload test case

5.3.2.3 Call overload test

The third scenario consists in stressing the vIMS core with a call profile exceeding the resources

available to the vIMS network functions. To do that, we chose to inject the call distribution of

March 22, 2020 from a different LAC than the one used for training, serving more users (Figure 4.4).

Actually, even though in our deployment each pod can theoretically use as much memory as the physi-

cal server has (best-effort mode), the scripts used to launch IMS services impose a hard-coded memory

limit. Nevertheless, we observed that although this script-level limit is not reached, it is possible to

overload the vIMS core with a higher amount of traffic as in the selected test LAC. Unfortunately,

the SIPp traffic simulation tool showed a limitation on the total number of the simultaneous emulated

calls, therefore we could simulate only the first peak of the LAC depicted in Figure 4.4, but in any

116

5.3. EXPERIMENTAL RESULTS

case not invalidating the correctness of the test.

The state graph in Figure 5.4 shows that the most frequent degraded state, S21, is characterized

by deviations on SCSCF network and CPU-related metrics, and only network metrics of the PCSCF

IMS virtual function. Similarly, the state S5, which is the second most frequent state, points out

a deviation on the same resource/container, but on the SCSCF CPU. Furthermore, all the other

most frequent states only point out deviations on CPU and/or networks metrics of different vIMS

containers. Consequently, we can conclude that the simulated call overload generally produces a

deviation on network-related metrics and occasionally generates an additional load on the SCSCF

CPU. Contrarily, no deviation is detected in any physical level resource, meaning that the anomaly

does not propagate from the virtual to the physical layer.

S1 { (cpu,dns), (cpu,icscf)}

S2 { (cpu,hss)}

S3 { (net,dns), (net,hss), (net,icscf)}

S4 { (net,dns), (net,hss), (net,icscf), (net,scscf)}

S5 { (net,pcscf), (net,scscf)}

S6 { (mem,dns), (mem,hss)}

S7 { (mem,hss), (mem,pcscf), (mem,pcscf), (mem,scscf)}

S8 { (disk,dns), (disk,hss), (disk,pcscf), (disk,scscf)}

S9 { (cpu,srv1)}

S10 { (net,srv1)}

S11 { (cpu,srv1), (net,srv1), (mem,srv1), (disk,srv1)}

S12 { (cpu,srv1), (disk,srv1)}

S13 { (cpu,srv1), (net,srv1), (disk,srv1)}

S14 { (mem,srv1)}

S15 { (disk,srv1)}

S16 { (cpu,scscf), (cpu,pcscf), (cpu,pcscf)}

S17 { (net,pcscf), (net)}

S18 { (net,pcscf), (net,pcscf), (net,scscf)}

S19 { (net,srv1), (net,pcscf), (net,pcscf)}

S20 { (net,pcscf)}

S21 { (cpu,scscf), (net,pcscf), (net,scscf)}

117

5.3. EXPERIMENTAL RESULTS

S22 { (net,scscf)}

S23 { (cpu,pcscf), (cpu,scscf), (net,pcscf), (net,scscf)}

S24 { (cpu,dns), (cpu,scscf), (net,pcscf), (net,pcscf)}

S25 { (cpu,pcscf)}

S26 { (cpu,pcscf), (cpu,srv1)}

S27 { (cpu,srv1), (cpu,dns), (cpu,hss), (cpu,icscf), (cpu,pcscf), (cpu,scscf)}

S28 { (cpu,srv1), (cpu,hss), (cpu,pcscf)}

S29 { (cpu,srv1), (cpu,dns), (cpu,pcscf)}

S30 { (cpu,srv1), (cpu,pcscf), (net,srv1)}

S31 { (cpu,srv1), (net,srv1)}

S32 { (cpu,srv1), (cpu,pcscf), (mem,srv1)}

S33 { (cpu,srv1), (mem,srv1)}

S34 { (cpu,srv1), (net,srv1), (mem,srv1)}

S35 { (cpu,pcscf), (mem,srv1)}

Table 5.2: Couples (g,u) of resource group (g) and computing units (u) impacted in each degraded
state

Recurrent system states

Degraded states from the training phase, marked with labels from S1 to S15, refer to anomalous

but known-in-advance working conditions that may be found at the test phase as well. In our tests

we observed that training degraded state S5 occurred also during call overload injection, state S14

during packet loss injection and state S9 in the CPU stress test case. As S14 and S9 are characterized

by a deviation on server-wide metrics that are influenced by all the running processes, those states

are quite likely to occur in a generic test case as autoencoders are not completely robust to outliers

or state fluctuations. Furthermore, there could be several reasons for the CPU to deviate from the

nominal learned state, which can make a degraded state characterized by only one deviated physical

resource quite likely to appear. On the other hand, the state S5 characterizes a fine-grain deviation

on PCSCF and SCSCF IMS components. The intuition could suggest that this state may be due to a

sort of background noise, but this is not actually the case as S5 covers 16.25% of the total call overload

test case time-stamps.

118

5.3. EXPERIMENTAL RESULTS

CPU Network Memory Disk

Model Virt Phys Virt Phys Virt Phys Virt Phys

RNN 140 249 160 233 492 359 103 359

LSTM 379 191 269 184 382 275 166 270

Table 5.3: Comparison between RNN and LSTM autoencoders training epochs

5.3.3 Performance comparison

As seen in 3.4.2, autoencoders proved to be effective in detecting and characterizing anomalies

thanks to the inherent capability to encode and compress inputs. Likewise, our LSTM NN design

demonstrated to be effective in learning long-term sequence correlations and to model complex mul-

tivariate sequences. In this section we compare our SYRROCA LSTM-based autoencoder with both

Isolation Forest (ISF) - a well-known unsupervised anomaly detection baseline - and RNN-based au-

toencoders - RNNs are also a good baseline, not storing long-term dependencies.

First, we compared a set of eight LSTM-based autoencoders with its equivalent RNN-based version:

both autoencoder neuron architectures are identical, and the difference remains at unit-level (RNN unit

and LSTM-unit). We trained both sets of autoencoders with the same dataset setting the maximum

number of training epochs at 2000. Looking to use the framework in real environments, we stop the

learning process if the MSE remains steady at least 10 epochs.

We can observe that LSTM autoencoders need fewer epochs than an RNN to reach the early

stopping condition when analyzing physical layer metrics, as shown in Table 5.3. On the contrary,

results show that when working with fewer metrics such as in the virtual layer, RNNs reach the early

stopping condition faster.

We compare the performance of LSTM-based autoencoders (AE) with RNN-based autoencoders

and a conventional unsupervised Isolation Forest (ISF) to detect deviations on the CPU group at the

physical layer when analyzing the CPU stress test dataset. We labeled as 1 (positive samples) the

anomalous samples while nominal ones are labeled with 0 (negative samples). The obtained results

are summarized in Table 5.4. On one hand, ISF could not correctly detect most anomalous samples

as it classifies most of the samples as nominal giving a perfect precision score but very low accuracy

and recall (0.007% of anomalies are detected). A well-performing anomaly detection algorithm should

119

5.3. EXPERIMENTAL RESULTS

Accuracy Recall Precision F1-Score F2-Score

ISF 0.145 0.007 1 0.014 0.089

RNN AE 0.166 0.053 0.714 0.098 0.065

LSTM AE 0.826 0.866 0.927 0.895 0.877

Table 5.4: Anomaly detection evaluation metrics

be able to catch all the anomalies; in our experiments we labeled anomalies with 1, thus a properly

working anomaly detection algorithm should have a Recall value close to 1. In order to account also for

its ability to not label as an anomaly (positive) a sample which is nominal (negative), we computed the

F-2 score [194]. In fact, based on the F-beta score that is the weighted harmonic average of precision

and recall, the F-2 score lowers the importance of precision and doubles the importance of recall. As

depicted in Table 5.4, RNN-based autoencoders slightly improve F-2 score with respect to IF, mainly

due to a slightly increased recall score. However, LSTM-based autoencoders clearly outperform both

ISF and RNN-based autoencoders as they maintain a high precision score as long as greatly increasing

the recall score.

Figure 5.5: RNN and LSTM based autoencoders reconstruction error compared to mean physical CPU
frequency

Finally, Figure 5.5 depicts RNN and LSTM autoencoders output reconstruction errors for the first

4 cycles of the CPU stress test case. While the LSTM-based autoencoders produce an MSE that closely

mimics the average CPU frequency, the RNN-based autoencoders can only detect the deviation at the

very first start, but it fails in tracking the CPU stress during the rest of the cycle as its reconstruction

120

5.3. EXPERIMENTAL RESULTS

error systematically tends to plummet below the threshold in contrast to LSTM-based approach. In

conclusion, the RNN approach would be good enough to detect the anomaly at its very start, which is

useful to immediately react; however, in our case, to both detect and characterize the anomaly along

its entire life, we need also to track it down through time, therefore LSTM-based is substantially more

appropriate as it allows meeting this requirement.

121

5.4. CONCLUSION

5.4 Conclusion

In this chapter we proposed and experimentally evaluated a methodology to assess the system state

of a virtualized network service through the detection of deviations from a nominal state, learned from

known history, for each type of resource and layer. The described state characterization methodology

is visualized through directed state graphs which summarize the evolution of the system across the

nominal and the degraded states. The state assessment pinpoints the most deviated resource group(s)

and computing unit(s) for a given anomaly. We showed how radiographies and system state assessment

allow a comprehensive view of the resiliency state of the virtualized platform.

We tested SYRROCA for a vIMS environment with the goal to detect and characterize deviations

and degradation on compute units and network resources in order to suggest the appropriate orches-

tration actions. Experimental results show that LSTM autoencoders are able to model the nominal

state of a virtualized platform by analyzing a multivariate time series composed of metrics collected

by a monitoring system. We showed how to exploit the MSE of AEs to characterize system states

that deviate from the nominal working conditions. Furthermore, we compared SYRROCA LSTM

based autoencoders with a baseline RNN and an isolation forest (ISF) approach, proving that RNN

autoencoders improve both the recall and the F2-scores compared to the ISFs, which fail to extract

any information on unlabeled data. We also showed that LSTM further increased the autoencoder

performance compared to RNN thanks to their ability to store long-term dependencies.

The state graph analysis methodology we proposed is meant to fuel a decision engine within a

closed-loop automation system: as each degraded state is characterized by the set of most deviated

metrics, remediation policies can be tailored to these deviations. In the following chapter, we explore

a possible formalization of such a closed-loop automation engine.

122

Chapter 6

Automated reconfiguration method

Content

6.1 Anomaly remediation . 124

6.2 RL-based remediation policy learning . 125

6.2.1 Agent . 127

6.2.2 Reward . 128

6.2.3 Actions . 131

6.3 Resiliency management and reputation . 134

6.4 Conclusion . 137

In the previous chapters we presented the SYRROCA framework which covers the sense phase of the

network automation loop by detecting and characterizing anomalies across physical and virtual layers.

This phase involves learning the nominal state conditions to later identify and characterize which

network resources (resource group, computing unit) and to what extent are deviated. In the following

section, we present the architecture of an automated recovery methodology able to compensate for

the deviation leveraging SYRROCA system state assessment. The proposed approach is based on a

Reinforcement Learning (RL) algorithm which learns how to select the most appropriated remediation

actions targeting at those resources the state characterization points as most deviated ones from the

nominal working conditions. We will show how SYRROCA enriched with a reputation model and

an RL-based agent complete the cognitive closed-loop automation framework. This chapter mainly

describes the patent [15] and its possible system design.

123

6.1. ANOMALY REMEDIATION

6.1 Anomaly remediation

A cognitive loop allows to cover from the sensing of the network state to the act phase, that is the

application of a set of actions (policies) to recover from a malfunction. Those policies are dynamically

learned aiming to achieve an abstract goal dictated by the business or user technical requirements

such as maintaining a certain Quality of Service (QoS) to fulfill a Service Level Agreement (SLA).

Furthermore, the cognition should be implemented through an algorithm that improves its performance

through experience gained over a period of time [67]. Regardless of the implementation, not only the

process needs to observe the network state transition resulting from the remediation actions, but it also

has to learn from that result. In the event of any degradation due to an incorrectly chosen remediation

action, the process should receive negative feedback discouraging it to take the same action given the

same conditions that led to that new state. Conversely, if the remediation action correctly mitigates

the detected anomaly, positive feedback should reward the process.

When implementing a closed-loop for cognitive resiliency management of softwarized networks,

softwarization provides natural hooks for the cognition plan. In fact, as we already pointed out in past

chapters, virtualized networks rely on several active entities which provide the configuration flexibil-

ity and scalability network operator need. For example, the Kubernetes container Orchestrator 3.1.2

continuously tries to enforce the desired state; to do so it can execute actions like horizontal/vertical

scaling or pod migration. Since each entity is only able to operate on a subset of the virtualized

resources, entities are intrinsically organized in a hierarchy that reflects the layered structure of soft-

warized networks. Thereby, remediation actions may also target different layers of the infrastructure

and their realization could entail lower layer sub-actions. For instance, when a Kubernetes orches-

trator performs a container migration to a new compute node, other lower-level sub-actions may be

required, like for example the instantiation or the Docker container and the computation of a new

path to it performed by an SDN controller. Furthermore, each action could potentially be performed

by different entities spanning different levels of the virtualized platform stack (e.g. SDN, NFVO, or-

chestrator, etc...). Due to the network complexity, it is not possible to anticipate the side effects of

remediation actions across all layers.

Reputation models have as main goal to drive system interactions based on previous experi-

ence [145]. This is very relevant to the multi-partner and multi-layer softwarized systems. Indeed,

124

6.2. RL-BASED REMEDIATION POLICY LEARNING

several new business models arise in 5G systems, as pointed by NGMN (Next Generation Mobile

Networks) consortium in [195] such as “operator offer enriched by partner” where an operator can

offer an enriched service with additional functionalities developed by a third party. In this context, a

reputation model can foster trustful collaboration among different management agents in the network,

where each agent has the freedom to choose which to cooperate with based on a historical record

of past collaborations. Although the NFV framework analyses resilience aspects of network services

implemented with VNFs from the scope of reliability, it does not answer two paramount questions:

◦ how MANO entities coordinate in case of mismanagement of one of those entities;

◦ how the decisions taken by MANO entities may impact the infrastructure as well as the services.

Indeed, within the NFV architecture, alarm correlation is proven to be challenging, as there are

several resources to be managed by different MANO entities such as VIM (Virtual Infrastructure

Manager) at the infrastructure level, the VNFM (VNF Manager) at the level of a VNF (Virtual

Network Function), or at network service level by the NFVO (NFV Orchestrator). Furthermore, when

SDN controllers are used to establishing interconnections among VNFs, they may also react to faults

by rerouting traffic among VNFs. This scenario seems to make difficult action coordination among

agents because each different MANO entity sees different expressions of the same anomaly and may

try to act upon the problem, which may worsen the original fault consequences itself. Each entity

may decide to act unilaterally (in case local information is enough to make an effective decision) or to

delegate the decision by triggering alarms to upper layers entities.

6.2 RL-based remediation policy learning

Learning from past experience is what drives the cognition process every human being rely on to

learn across their life. The reinforcement learning paradigm is inspired by this process and it thereby

seems a good fit for whatever cognition loop. Nonetheless, the adoption of RL algorithms as the

implementation of a resiliency management cognition cycle, poses several challenges, such as:

◦ Given the complexity of virtualized networks we already pointed out in this dissertation, the

resiliency system state assessment is a very brought concept that can be modeled in different

ways;

125

6.2. RL-BASED REMEDIATION POLICY LEARNING

◦ The resilience notion is a system-wide property, which should be translated into a goal state

towards which the RL algorithm tries to make the agent converge;

◦ The reward function design should produce feedback on the quality of the actions. It should

assess whether the system transitioned towards an improved state or a worsened one. In both

cases, it should also quantify the improvement, such for example the distance from the goal

state.

As introduced in section 3.4.4, regardless of the RL algorithm used to produce and update the

agent policy, the RL agent needs to retrieve from the environment its actual state St, the list of

possible actions in that state A(St), the state towards which it moves performing the selected action

a ∈ A(St) and the associate reward rt+1. In the previous chapter, we showed how leveraging the

SYRROCA framework it is possible to obtain the current system state and its characterization as

deviated state from the nominal learned working conditions. We also showed how each deviation can

be associated with a particular class of deviations, containing anomalous states of the same type, i.e

which are characterized by a relevant deviation on the same set of couples (g, u). In this chapter, we

propose to leverage these features to formalize the RL problem as follows.

Table 6.1 summarizes the notation we use throughout the following formalization:

G Set of considered resource groups

L Set of considered layers

Ω(St) Set of possible remediation intents ω on state St

E = {e1, ..., ei, ..., ez} Set of considered z active entities

Aei
t = {ωj} Set of all intents ω ∈ πt the entity ei took part in

Ψl,g
t Radiography between layers l and l + 1 of resource group g

C l,g
t Center of the high-density region of Ψl,g

t

w Radiography sliding window width

x̂l,g and ŷl,g base vectors of Ψl,g
t Euclidean space

St SYRROCA system state at time-step t

ϵ number of time-step required for intent execution

dl,g
t Vector from Ψl,g

t axes origin to C l,g
t

nl,g Difference vector of dl,g
t and dl,g

t+ϵ

x̂′
l,g and ŷ′

l,g Base vectors of the Euclidean sub-space centered at C l,g
t

126

6.2. RL-BASED REMEDIATION POLICY LEARNING

nl,g
x̂′ nl,g projection on x̂′

l,g

Rt+ϵ(St, ω) RL agent reward for intent ι from state St

πt = {ω1, ..., ωt} Policy the RL agent performed at time t

Table 6.1: Table of notations

6.2.1 Agent

SDN/NFV virtualized infrastructures encompass several resource controllers, i.e. where each con-

troller is able to act on specific resources (i.e. link, computing, radio) composing the end-to-end

systems. Those resource controllers provide a perfect hook for an RL agent. Even though they are

in general scoped to act on a sub-set of the system resources and not all the entities are always in-

volved in the anomaly recovery process, we propose to model all resource controller as a unique RL

agent. Consequently, each RL-level action is rendered by one or more resource controller-level actions,

eventually executed by distinct resource controllers. To avoid confusion, from now on we denote RL

agent actions as “intent”ω, while action a refers to resource controllers-level actions. In the state

of the art, an intent is a declaration of high-level operational goals that are to be achieved by the

network, without specifying how to achieve them and holds for the network as a whole, not individual

devices [39].

System state St

As stated in 5.3, the SYRROCA framework is able to assess whether the system is in its Nominal

state or in a degraded one. In the latter case, the framework characterizes the state with reference to

the set of most deviated (g, u) couples. Thereby system states are defined as:

St =
{︄

Nominal if MSEl,g(t) < T l,g ∀g ∈ G ∧ ∀ l ∈ L

{(g1, u1), ..., (gk, uk)} if ∃ g ∈ G ∧ ∃ l ∈ L | MSEl,g(t) ≥ T l,g
(6.1)

Note that states as defined in 6.1 encompass all the groups of resources and all the layers to

produce an overall view of the system resiliency state. As we will show later, this is particularly useful

to narrow down candidate remediation actions.

127

6.2. RL-BASED REMEDIATION POLICY LEARNING

(a) Radiography Ψl,g
t computed on a sliding-

window [t − w; t]
(b) Radiography Ψl,g

t+ϵ computed on a sliding-
window [t + ϵ − w; t + ϵ]

Figure 6.1: Reward computation on radiography

6.2.2 Reward

While SYRROCA state graph is useful to characterize the system state with reference to the most

deviated resources and computation units, it does not provide any insight about the deviation extent.

On the contrary, in section 5.3.2.1 we showed that the MSE proportionally increases with the anomaly

intensity, which in turn makes the radiographies high-density region move across the resiliency state

space. Thereby, we propose to leverage the high-density region position within the state to estimate

the deviation intensity as the distance of its center from the axis origin, which represents the optimal

working condition. Indeed, even if AEs MSE is not likely to go down to exactly 0, the smaller the

reconstruction error the closer the actual state is to the nominal operating conditions.

Let us take a virtualized system made up of L layers and G resource groups and let us suppose

that C l,g
t is the center of the higher density region of the radiography Ψl,g

t between layers l and l + 1,

for the group of resource g for the deviation dt occurring at time-step t. The radiography is computed

on a sliding-window [t − w; t]. Figure 6.1a shows a simplified version of a sample radiography where

we omitted low density regions and colors are chosen just to recall real radiography colors. x̂l,g and

ŷl,g are the base vectors of the Euclidean space associated with the radiography Ψl,g
t . For example,

given the radiography between the physical and the virtual layers for the CPU group, x̂l,g is the

128

6.2. RL-BASED REMEDIATION POLICY LEARNING

base vector representing the physical layer reconstruction error MSEphy,CP U dimension and ŷl,g the

base vector representing the virtual layer reconstruction error MSEvirt,CP U dimension. Called St the

system state retrieved from the SYRROCA system state graph, let us then suppose the RL agent

selects a remediation intent ω ∈ Ω(St) which makes the system transitioning to St+ϵ, where ϵ accounts

for the execution delay of the intent. Thereby, C l,g
t+ϵ is the new center of the higher density region in

the radiography Ψl,g
t+ϵ between layers l and l + 1 for the time-window [t + ϵ − w; t + ϵ].

Let us then call dl,g
t+ϵ and dl,g

t the vectors from the origin of the radiography Euclidean plan to,

respectively, C l,g
t and C l,g

t+ϵ. Note that as each MSEl,g could have widely different magnitudes, each

dl,g
t+ϵ may have widely different length. Thus, in order to fairly compare each radiography contribution

to the reward computation, we need to re-scale on the same scale all the MSEl,g. To do that, we can

for example take the wider range MSE l̄,ḡ and normalize all the other MSEl,g its range.

We propose then to compute the reward Rt+ϵ of the intent ω ∈ Ω(St) which makes the system

transitioning from St to St+ϵ as:

Rt+ϵ(St, ω) =
∑︂
l∈L

∑︂
g∈G

1
||dl,g

t+ϵ||
(6.2)

According to 6.2, the reward is computed as the sum of all contributions across each radiography,

where each contribution is inversely proportional to the module of the vector dl,g
t+ϵ, which is the

distance from the axis origin (i.e. the ideal nominal working conditions) of the new center of high-

density. Therefore, the reward associated with an intent ω is always positive and increases the closer

the centers of maximum density of each radiography are to their respective axes origins.

Nonetheless, this reward definition does not account for state St positions of radiographies high-

density region centers, which makes the reward not completely well defined.

As depicted in figure 6.2a, let us then call nl,g the difference vector between dl,g
t+ϵ and dl,g

t obtained

with the parallelogram low. According to this low nl,g is centered on dl,g
t tip and ends on dl,g

t+ϵ tip.

Let us call x̂′
l,g and ŷ′

l,g the base unit vectors of the Euclidean state space centered in C l,g
t and with

both axis parallel to the ones of x̂l,g and ŷl,g. Let us also call nl,g
x̂′ and nl,g

ŷ′ the nl,g projection on x̂′
l,g

and ŷ′
l,g (figure 6.2b). We then define two coefficient ml,g

x̂′ and ml,g
ŷ′ as:

ml,g
x̂′ =

⎧⎪⎪⎨⎪⎪⎩
−α if nl,g

x̂′ > 0
+α if nl,g

x̂′ < 0
0 if nl,g

x̂′ = 0
(6.3)

129

6.2. RL-BASED REMEDIATION POLICY LEARNING

(a) nl,g computation on radiography Ψl,g
t+ϵ

(b) nl,g projections computation on radiogra-

phy Ψl,g
t+ϵ

Figure 6.2: Reward computation on radiography

ml,g
ŷ′ =

⎧⎪⎪⎨⎪⎪⎩
−β if nl,g

ŷ′ > 0
+β if nl,g

ŷ′ < 0
0 if nl,g

ŷ′ = 0
(6.4)

where α < β and α ∈ R+ and β ∈ R+. When summed up, those coefficients account for the the sense

and the directions of the movement associated with ω. Indeed, consider α = 1 and β = 4, figure 6.3

depicts the possible values of ml,g
x̂′ + ml,g

ŷ′ . Note that the condition α < β makes the agent prefer

improving both layer conditions when possible but giving a greater reward to a movement towards an

improvement over the y axis. Indeed, whatever layers we consider, layer l provides a service to layer

l+1 and in a service-centric logic it is preferable to keep upper layers service in the best state possible.

Accordingly, the reward is properly defined as:

Rt+ϵ(St, ω) =
∑︂
l∈L

∑︂
g∈G

1
||dl,g

t+ϵ||
· (ml,g

x̂′ + ml,g
ŷ′) (6.5)

where each radiography contribution will both take into account the improvement or the worsening

of state St+ϵ with respect to state St and the distance from the goal state. Therefore, a movement over

the negative sense of both direction results in a positive reward, while a movement along the positive

sense of both directions results in a negative reward (i.e. punishment.). Likewise, a movement towards

130

6.2. RL-BASED REMEDIATION POLICY LEARNING

the first and second sectors of the Euclidean plan gives a negative reward, while the third and fourth

sectors results in a positive reward.

Figure 6.3: Possible values for coefficient ml,g
x̂′ + ml,g

ŷ′

Finally, it is worth noticing that as each radiography shares one axis with another radiography, ra-

diography contributions for a given g are not completely unrelated. For example, a leftward movement

on radiography corresponds to a downward movement on the upper layer one.

6.2.3 Actions

As already pointed out, the origin of radiographies axis represents an ideal situation where the

current state is perfectly aligned with the one learned by the AEs. However, in real settings, this case

never occurs. Indeed, AEs rely on thresholds on reconstruction MSE to tag a sample as anomaly or

nominal. The nominal learned state is in fact characterized by the compact representation the AEs

extract from the training set, not by single and specific values for each metric. Thereby, thresholds

can be used to identify the maximum value of the MSE of each group of resources and for each level

for which the state of the system can be considered nominal with respect to the metrics composing

the MSE.

As depicted in figure 6.4 thresholds define a sort of tolerance region, where the system state can

131

6.2. RL-BASED REMEDIATION POLICY LEARNING

Figure 6.4: Nominal region within a radiography of physical and virtual layers.

still be considered nominal. In the example of figure 6.4 the radiography between physical and virtual

layers highlights a deviation on both layers as the high-density region Ct exceeds both the physical

layer threshold T phy and the virtual layer one T virt. Then at time-step t + 1 a remediation intent

pushes the high-density region towards the bottom left corner: even if the high-density region is not

completely within both thresholds, its center falls into both. In that case, other remediation intents

could further approach the high-density region to the axis origin, but those improvements would be

pointless as the MSEs for both groups and layers are already within the nominal range. Hence, when

deciding which remediation intent to put in place, those performed by entities acting on physical and

virtual layers should be discarded.

Accordingly, we propose to narrow down the set I(St) of possible orchestration intents from where

the RL agent has to choose the remediation intent according to the system state characterization

proposed in 6.2. This characterization is indeed particularly suited as it clearly points out the resources

and the computation units a remediation action should act on, rather than the specific metric on which

an action could not directly act on. Accordingly, given the deviated state St = {(g1, u1), .., (gk, uk)},

Ω(St) is populated by the network administrator with intents that only directly affects one, a subset,

or all the computation units and resources listed in St. When populating Ω(St) with recovery intents,

the network administrator expertise is crucial to avoid listing pointless intents so that to maximize

132

6.2. RL-BASED REMEDIATION POLICY LEARNING

the RL agent performance. Nonetheless, the network administrator should provide the RL agent with

a sufficient degree of freedom in order to explore non-obvious intents.

(a) Virtual-Service layers radiography
(b) Physical-Virtual layers radiography

(c) SYRROCA system state graph

Figure 6.5: Example radiographies and system state evolution for a given group of resource.

Consider for instance the example of figure 6.5 where the system starts in the deviated state S1.

As it can be deduced from high-density region centers Cvirt,CP U
1 and Cphy,CP U

1 of radiographies 6.5a

and 6.5b, S1 is characterized by a deviation on the service, the virtual and the physical layers, which

is clearly summarized by the S1 characterization obtained through the SYRROCA framework. In that

case, Ω(St) could contains several remediation intents like for example

{scale container 5, move container 5, increase container 5 cpu, move others containers}. Sup-

133

6.3. RESILIENCY MANAGEMENT AND REPUTATION

pose that move container 5 intent is selected and that the container is moved to server 2. This

could then trigger, for instance, a path re-computation for the SDN controller which would also re-

configure some vSwitches to correctly route the traffic towards container5 now located at server 2.

Imagine that this intent is called I1 and that it brings the system to the new state S2, where Cphy,CP U
2

high-density region center fall into the nominal region and Cvirt,CP U
2 highlight a persisting deviation

on the service layer. Looking at S2 characterization, is it now clear that the following remediation

intent, should try to ameliorate the service quality.

6.3 Formalizing resiliency management through the notion of reputation

Even though we model all the active entities in a softwarized platform as one unique RL agent,

each remediation intent is in general rendered as at least one specific entity action. As showed in

figure 6.5, for a given deviated state there cloud be a set of RL agent remediation intents related to

the state characterization, and each RL action may be performed by one/more entity level actions,

eventually executed by distinct entities. Thereby, each entity during the execution of a remediation

policy, i.e. multiple recovery intents, may contribute to all positive, all negative or mixed rewarded

intents. We show hereafter how we propose to leverage all of this to compute a reputation value for

each entity. The reputation value is intended as a quantification of the contribution of each entity

to the resilience of the softwarized system. Therefore, in order to compare each entity contribution,

entity reputation at time t is computed as a real number Repei
t ∈ [−1, 1], where values close to −1

suggest a poor contribution to resilience while values close to 1 highlight a good contribution.

Considering an entity ei among the set of all entities involved in a softwarized network system

E = {e1, ..., ei, ..., ez}. For each policy πt = {ω1, ..., ωt}, we can build the set Aei
t = {ωj} of all intents

ωj ∈ πt the entity ei takes part in. Note that a intent ωj could be rendered as more than one entity

action, thus ωj could belong to more than one Aei
t . We propose to define the entity reputation Repei

t

as:

Repei
t = χ(

∑︂
ωj∈Aei

t

ζ(Rt+ϵ(·, ωj))) (6.6)

where ζ : IR ↦→ {+µ, −λ} function is defined as:

ζ(x) =
{︄

+µ if Rt+ϵ(·, ωj) > 0
−λ if Rt+ϵ(·, ωj) < 0

(6.7)

134

6.3. RESILIENCY MANAGEMENT AND REPUTATION

and χ(x) : IR ↦→ [−1, 1] as:

χ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if x < 0
0 if x = 0
+1 if x > 0
x otherwise

(6.8)

Accordingly, after each intent execution, resource controllers reputation can either increment by

+µ or decrement by λ. Choosing a value of λ >> µ|λ, µ ∈ (0, 1), it is possible to make the reputation

suddenly drop when a wrong remediation intent is performed (negative reward) while slightly increasing

if a positive rewarded intent is executed. χ, instead, is a step function we use to clip the reputation

between −1 and 1. Indeed, without the clipping, the reputation could grow, negatively or positively,

so much that at a given point the updates would turn out useless preventing also a comparison among

entities reputation. According to section 3.3, Repei
t is a properly defined reputation values as it is

computed as an aggregation of trust values: trust depends in fact on punctual interactions, that in

our case are each action the entity performs for each intent ωj and the reputation is thus a global

view of the entity goodness across different actions. Consequently, the reputation value can be used

by the RL agent as a discriminator value to further guide the decision-making process. Indeed, a low

Figure 6.6: Reputation computation example

135

6.3. RESILIENCY MANAGEMENT AND REPUTATION

reputation score indicates a recent history of sub-optimal actions which suggests the entity should be

prevented to take any other action on the system, waiting for a check on its functioning. Figure 6.6

visualizes an example of Rei
t computation where the reputation increases for five consecutive intents

ω but suddenly drops due to a wrong remediation intent.

136

6.4. CONCLUSION

6.4 Conclusion

In this chapter we outlined an analytical development of the patent [15]. We showed how Reinforce-

ment Learning naturally fulfills the requirements for a cognitive closed-loop automation mechanism

for resiliency management of virtualized networks. We modeled all NFV resource controllers as one

unique RL agent, which enforces high-level operational goals, intents, to recover from anomalous state.

The RL agent current state is obtained through the SYRROCA systems state assessment outlined in

the previous chapter. Intents are rendered with one or more resource controller-level actions; a list of

possible recovery intents are statically assigned to each deviated state according to its characteriza-

tion. The agent reward is computed on the SYRROCA radiographies and accounts for the distance

of the current state from the Goal state, identified as the origin of radiography euclidean space. We

finally proposed to quantify each resource controller contribution to the system resilience through a

reputation value.

As the vIMS platform we previously introduced does not allow active recovery intents realization,

we are currently developing an ad-hoc 5g-core-based platform. As future work, we will test and validate

both the proposed RL formalization and the reputation system.

137

6.4. CONCLUSION

138

Chapter 7

Concluding remarks and perspectives

In this dissertation we presented and experimentally evaluated a completed autonomic control loop

for virtualized networks resilience management.

Figure 7.1: SYRROCA closed loop automation on ETSI NFV architecture

Figure 7.1 summarizes our proposal as different blocks applied to the NFV functional architecture.

The core of our proposal is the SYRROCA framework, which is an LSTM-autoencoder based approach

to detect (B) and characterize (C) anomalies from a multivariate time series composed of hundreds

of metrics collected at physical and virtualization levels (A) of a softwarized platform supporting a

virtualized network service. We showed how raw metrics can be aggregated and pre-processed to con-

stitute a training dataset on which LSTM Deep autoencoders can learn a compact representation of

the nominal working conditions of the softwarized system. Indeed, thanks to the compression proper-

139

ties of autoencoders the high dimensional input time series is compressed into a lower dimensionality

sub-space (the latent space) where anomalous samples look significantly different from nominal ones.

To improve the autoencoder performance, we further split the input dataset into per-resource-type

groups of metrics and we feed each group to a dedicated autoencoder. Considering CPU, network,

memory and disk resource types, we have a set of four AEs for the physical layer and four more for

the virtualization layer. To properly analyze both monotonically increasing and arbitrarily shaped

metrics, we only keep increments of the former while normalizing to a uniform range both categories

of metrics. We select LSTM RNN as base autoencoder cells since they allow handling of arbitrarily

long time series not losing memory of samples far in the past as it happens in standard RNNs. We

compared SYRROCA LSTM based autoencoders with a baseline RNN and an isolation forest (ISF)

approach, proving that RNN autoencoders improve both the recall and the F2-scores compared to the

ISFs, which fail to extract any information on unlabeled data. We also showed that LSTM further

increased the autoencoder performance compared to RNN thanks to their ability to store long-term

dependencies.

Then, we showed how to exploit the MSE of AEs to characterize detected anomalies both through

the set of most deviated metrics and with the radiography novel visualization. In particular, we demon-

strated how autoencoders MSE is correlated with the anomaly intensity which enables our framework

to assess anomaly severity. We then explained how radiographies can visualize network anomalies on

a bi-dimensional euclidean space where the density of the bi-variate functions f(MSEl, g, MSEl+1,g)

of two consecutive layers AE mean square errors, spots the most recurrent system state under the

considered time-window. We presented two versions of a set of (L − 1) × G radiographies for G groups

of resources of a system composed of L layers. The sliding-window radiography version highlights

anomaly evolution through time while the growing-window version shows anomaly propagation across

consecutive layers. In both versions, AEs thresholds identify a rectangular area that corresponds to

the normal functioning conditions.

Both the Autoencoder-based anomaly detection and system state characterization were experimen-

tally evaluated on a vIMS platform managed by Kubernetes. We injected realistic traffic based on real

call profiles extracted from a given LAC (Location Area Code) from the 3G Orange network. We also

injected three anomalies types to evaluate SYRROCA detection and characterization performance.

The generated dataset is available at [170].

140

We then proposed a methodology to assess softwarized system running state (C) basing on the

anomaly characterization produced at step B. The methodology produces a state graph that is meant

to fuel a decision engine within a closed-loop automation system: as each degraded state is character-

ized by the set of most deviated metrics, orchestrations policies can be tailored to these deviations.

Following autonomic computing guidelines, we proposed a Reinforcement Learning based remedia-

tion mechanism (B) which aims at recovering the system state back to the nominal learned working

conditions. RL, indeed, perfectly matches the cognitive process that an autonomous network should

implement, and the various softwarized entities that make up the SDN/NFV stack constitute an ideal

hook for the cognitive process. Accordingly, the RL agent embeds all the system active entities in

a higher level agent which manages the softwarized system resilience through high-level intents, im-

plemented with one/several entities actions. RL agent state is obtained through SYRROCA state

assessment block C, which also computes intents reward from sliding-window radiographies as a qual-

ity rating for the intent. Specifically, the reward is obtained as the sum of contributions of each of

the (L − 1) × G radiographies. Each contribution is inversely proportional to the distance of the high-

density region from the origin of radiography Euclidean space and directly proportional to a factor

ml,g
x̂′ + ml,g

ŷ′ . While the distance accounts for intent resulting state deviation from the nominal working

conditions, the ml,g
x̂′ + ml,g

ŷ′ coefficient model the relative positions of pre and post-intent high-density

region location within the radiography.

We finally proposed a Trust and Reputation model (E) to quantify the contribution to resilience

for each orchestration entity. We interpreted the intents reward as an estimation of its goodness,

which is used to quantify the trust the RL agent has about each entity on the execution of a specific

remediation action. Thereby, we proposed to aggregate reward values so that each entity reputation

is evaluated on a range between −1, i.e low reputation, and 1 which stands for the high level of

reputation. In particular, remediation actions associated with good recovery intents slightly increase

the entity reputation while remediation actions associated with wrong recovery intents drastically

decrease the reputation.

A straightforward extension of this work is to test the proposed RL autonomic recovery approach on

a realistic virtualized service. However, the community lacks of virtualized network service projects

that fully support automatic recovery through remediation actions like scaling. A promising open

source project is open5gs [196] which implements all the network functions of a 5G core easily decom-

141

posable into micro-services.

On a practical note, the dataset splitting into per-resource sub-datasets implies a small loss of

information regarding the interdependence between the metrics of the various resource groups. One

possible solution to investigate would be to pick each AEs latent space representation and further

encode them in a dedicated AE which will work on all the compact representation.

Another line of research consists in applying SYRROCA to other VoIP platforms, such as enterprise

Telephone over IP infrastructures, as well as other NFV use cases such as the 4G and 5G core networks,

also using more sophisticated NFV/SDN platforms such as OpenCord, OMEC, OPNFV, OSM and

related software component logs.

Nous avons enfin proposé un modèle de confiance et de réputation (E) pour quantifier la contribu-

tion à la résilience de chaque entité d’orchestration. Nous avons interprété la récompense des intentions

comme une estimation de son goodness, qui est utilisée pour quantifier la confiance que l’agent RL

a envers chaque entité lors de l’exécution d’une action de remédiation spécifique. Nous avons donc

proposé d’agréger les valeurs des récompenses de manière à ce que la réputation de chaque entité soit

évaluée sur une plage comprise entre −1, c’est-à-dire une faible réputation, et 1, qui représente le

niveau élevé de réputation. En particulier, les actions de remédiation associées à de bonnes intentions

de récupération augmentent légèrement la réputation de l’entité, tandis que les actions de remédiation

associées à de mauvaises intentions de récupération diminuent radicalement la réputation.

Une extension directe de ce travail consiste à tester l’approche de récupération autonome RL

proposée sur un service virtualisé réaliste. Cependant, la communauté manque de projets de ser-

vices de réseaux virtualisés qui supportent pleinement la récupération automatique par des actions de

remédiation comme le redimensionnement. Un projet open source prometteur est open5gs [196] qui

implémente toutes les fonctions réseau d’un noyau 5G facilement décomposable en micro-services.

D’un point de vue pratique, la division de l’ensemble de données en sous-ensembles de données par

ressource implique une petite perte d’informations concernant l’interdépendance entre les métriques

des différents groupes de ressources. Une solution possible serait de choisir la représentation de l’espace

latent de chaque AE et de les encoder dans un AE dédié qui travaillera sur toutes les représentations

compactes.

Une autre ligne de recherche consiste à appliquer SYRROCA à d’autres plateformes VoIP, telles que

142

les infrastructures de téléphonie sur IP d’entreprise, ainsi qu’à d’autres cas d’utilisation NFV tels que

les réseaux centraux 4G et 5G, en utilisant également des plateformes NFV/SDN plus sophistiquées

telles que OpenCord, OMEC, OPNFV, OSM et les registres de composants logiciels connexes.

143

144

Appendix A

Collected metrics

Name Counter/Gauge

cpu seconds total mode idle G

cpu seconds total mode iowait G

cpu seconds total mode irq G

cpu seconds total mode nice G

cpu seconds total mode softirq G

cpu seconds total mode steal G

cpu seconds total mode system G

cpu seconds total mode user G

cpu core throttles total G

cpu package throttles total G

cpu frequency max hertz C

cpu frequency min hertz C

cpu guest seconds total mode nice G

cpu guest seconds total mode user G

cpu scaling frequency hertz C

cpu scaling frequency max hrts C

cpu scaling frequency min hrts C

context switches total G

disk io now C

disk io time seconds total C

145

APPENDIX A

disk io time weighted seconds tota C

disk read bytes total C

disk read time seconds total C

disk reads completed total C

Table A.1: Physical layer metrics

Name Counter/Gauge

cpu load average 10s C

cpu load average 10s C

cpu system seconds total G

cpu usage seconds total G

cpu user seconds total G

fs inodes free C

fs inodes total C

fs io current C

fs io time seconds total G

fs io time weighted seconds total G

fs limit bytes C

fs reads bytes total G

fs read seconds total G

fs reads merged total G

fs reads total G

fs sector reads total G

fs sector writes total G

fs usage bytes C

fs writes bytes total G

fs write seconds total G

fs writes merged total G

fs writes total G

memory cache C

memory failcnt G

146

APPENDIX A

memory failures total G

memory mapped file C

memory max usage bytes C

memory rss C

memory swap C

memory usage bytes C

memory working set bytes C

network receive bytes total G

network receive errors total G

network receive packets dropped total G

network receive packets total G

network transmit bytes total G

network transmit errors total G

network transmit packets dropped total G

network transmit packets total G

Table A.2: Virtual layer metrics

147

APPENDIX A

148

Appendix B

Going beyond diffserv in IP traffic
classification

Quality of Service (QoS) management in IP networks today relies on static configuration of classes

of service definitions and related forwarding priorities. Packets are actually classified according to

the DiffServ architecture based on the RFC 4594, typically thanks to static configuration or filters

matching packet features, at network access equipment. In this annex, we propose a dynamic classifi-

cation procedure, referred to as Learning-powered DiffServ (L-DiffServ), able to detect the distinctive

characteristics of traffic and to dynamically assign service classes to IP packets. The idea is to apply

semi-unsupervised Machine Learning techniques, such as Linear Discriminant Analysis (LDA) and

K-Means, with a proper customization to take into account the issues related to packet-level analysis,

i.e. unbalanced distribution of traffic among classes and selection of proper IP header related features.

The performance evaluation highlights that L-DiffServ is able to change dynamically the classification

outcome, providing a higher number of classes than DiffServ. This last result represents the first step

toward a more granular differentiation of IP traffic.

B.1 Introduction

Quality of Service (QoS) technologies commonly address the network link bottleneck issue by

introducing protocols to support priority packets to pass first. Differentiated Services (DiffServ) is the

de-facto QoS protocol used in IP networks, in most of Internet Service Provider (ISP) networks as well

as in layer-3 operated data-center and entreprise networks. Once packets are classified into classes of

services at a network access point or router, they can get dropped or delayed in the queuing system

149

B.2. MACHINE LEARNING METHODOLOGY

of core routers according to class priority. DiffServ was proposed as a stateless alternative to the

stateful Integrated Services (IntServ) [197] architecture, suffering from scalability issues by following

an end-to-end layer-4 flow virtual circuit resource reservation approach.

Indeed, IntServ revealed to be not well suited for heterogeneous systems as it requires support

at the source terminal, destination terminal, all intermediate routers and at the application as well,

which made it practically difficult to happen. In addition, IntServ-enabled routers to maintain an

internal state for each virtual circuit opened by the resource reservation protocol [198], which makes

them vulnerable to failures. Therefore, the community turned to DiffServ as a lighter and stateless

approach, not touching at terminals nor applications, and not requiring all routers on the way to

implement it. User traffic is mapped by edge routers or access points into the appropriate forwarding

class, encoded into the packet header. This information is then used by the intermediate routers to

differentiate packet processing, as forwarding classes indicate drop and resource priorities.

In this annex, we propose to go beyond the legacy DiffServ policy of manually setting QoS classes,

in order to be able to dynamically learn the appearance of new classes worth being differentiated. Our

proposal, called Learning-powered DiffServ (L-DiffServ), is to dynamically refine the set of classes in

order to increase the granularity of the macro service classes. We propose a machine learning method-

ology for determining valuable sub-classes for actual packet classification. Our solution is composed of

three main building blocks: i) data pre processing, performing features extraction and oversampling);

ii) dimensionality reduction by means of the Linear Discriminant Analysis (LDA) procedure; and iii)

clustering and classification, exploiting the K-Means algorithm. We run our experiments against real

data from the MAWI dataset [199], containing daily IP traces of a transpacific backbone link.

The annex is structured as follows. In Section B.3 we report the numerical result. Finally, Sec-

tion B.4 concludes the annex.

B.2 Machine Learning Methodology

This section details our Learning-powered DiffServ (L-DiffServ) solution for dynamic refinement

of DiffServ classes of services, including dataset processing, oversampling, dimensionality reduction,

clustering and classification steps.

150

B.2. MACHINE LEARNING METHODOLOGY

B.2.1 The L-DiffServ architecture

Our proposal consists in generating a new set of service classes through a hybrid semi-unsupervised

machine learning technique that automatically assesses the new number of service classes, identifying

the sub-classes within existing pre-set classes, based on features extracted from IP packet flows. Figure

B.1 depicts the L-DiffServ workflow.

Figure B.1: L-DiffServ Workflow Overview.

Data preparation is accomplished through Pre-processing, Oversampling and Dimensionality Re-

duction. In the pre-processing phase the numeric values from captured packet features are normalized,

while the categorical ones are transformed into binary; at the end of these operations, we delete the

features with zero variance because they have not information for the differentiation between classes.

In the oversampling phase, we generate artificial samples of the minoritary class (the one with less

occurrences) to balance the data set. It is worth noting that we choose to oversample the information

of the less numerous classes rather than undersampling the best effort class because undersampling

could lead to significant information losses [200]. Finally, we reduce the space dimensionality maximiz-

ing the variance between service classes and projecting the starting dataset into the new dimensional

space.

The goal of the Clustering step is to produce a new set of classes, so that the proposed classification

is based on a grouping done according to the clustering method outcome. First, we evaluate the clusters

obtained through the Silhouette Coefficient index of goodness [201]; it measures the magnitude between

cohesion (intra-cluster distance) and dispersion (inter-cluster distance) for each group. Once we obtain

the maximum Silhouette value we establish the optimal number of clusters. In this way we can assign

a new label for each observation and train the model based on our classification. The end of the

151

B.2. MACHINE LEARNING METHODOLOGY

Clustering step coincides with the beginning of Classification one. We can reclassify a test trace, with

the same structure, applying the transformations used in our methodology, evaluating the minimum

euclidean distance between the packet and centroids extracted from the Clustering step.

We validate this methodology on a public dataset provided by MawiLab [199] described hereafter.

B.2.2 Dataset and Features

The WIDE project publishes daily IP traces of a transpacific link, called the MAWI Archive [199].

Each file contains 15 minutes of traffic flows, captured between 14:00:00 and 14:15:00 local time. This

represents usually between 10 and 20 GB of traffic for one file. Before being released, traces are

anonymized to hide any personal information (removing application data and scramble IP addresses

with the Crypto-PAn Algorithm [202] following collision-free and prefix-preserving principles). As of

our knowledge, there is no other equivalent public dataset, spanning many months, we could exploit.

In our analysis, we work on traces of multiple days across multiple weeks for training and classifica-

tion. We consider the trace belonging to the period which goes from 3rd April 2019 to 10th May 2019,

considering only Wednesday. The average size of the traces is 19240.36 MB and the average number

of packets is 252,046,154. In the traffic analysis, we work only with IPv4 packets along one forwarding

direction by filtering packets through the MAC address. We consider for each trace 3,000,000 packets

of the total trace because of memory limits; we make a random sample splitting the trace with 200,000

packets maintaining the percentage of packets for each service classes. We focus the attention on a

specific day in this section (April 3, 2019).

The following characteristics are the features extracted from every packet header: Internet Header

Length (IHL), Differentiated Services Code Point (DSCP), Explicit Congestion Notification (ECN),

Total Length, Flags, Fragment Offset, Time To Live (TTL), Protocol, Source address, Destination

address, and from the TCP header part we extract Source Port and Destination Port.

In Table B.1 we report the mapping between the DSCP value and the service class name we adopt

during the analysis as packet labels. Observing the column Class Label, clearly we unify the CS

class of service both with the AF and with EF because there are few observation for the backward

compatibility classes.

In the following we show each step of our methodology.

152

B.2. MACHINE LEARNING METHODOLOGY

DSCP Value DSCP Class Class Label

48, 56 CS6, CS7 Network and Internetwork Control

40, 46 CS5, EF Critical RTP Voice

32, 34, 36, 38 CS4, AF4 Flash Override

24, 26, 28, 30 CS3, AF3 Flash Voice

16, 18, 20, 22 CS2, AF2 Immediate

8, 10, 12, 14 CS1, AF1 Priority

0 CS0 Best Effort

Table B.1: Mapping between DSCP and class labels, from: [1]

B.2.3 Pre Processing

We process the dataset composed of the packet features with the DSCP marking as label. We

do not to consider the features with zero variance because not important for packets differentiation.

Such features revealed to be the Internet Header Length (IHL), the Flags except for the DF (Do-not-

Fragment) flag, and the Fragment Offset.

For the four categorical variables, i.e., Source and Destination Address and Source and Destination

Port, [202] uses a different key for each day to anonymize the trace, so we cannot include IP addresses

in our model; instead, we can handle the Source and Destination Port - our idea is to determine

an identification port for each packet, trying to cover a high-density of information. We cover the

ports that allow to keep 90% of packet volume, while the remaining ports with a small occurrence

are transformed into an artificial port of number 0. Moreover for the packets whose protocol has

no defined port, as ICMP packets, we assign the port number −1; the values −1 and 0 have not

a numerical importance but they affect the presence or the absence of such port within the packet.

In this way we create the summary variable called Heavy Port. Finally, in the data Pre-Processing

we transform the categorical variables into binary variables applying One-Hot Encoding [203] (it

transforms a variable with n observations and d values, to d binary dichotomous variables with n

observations, each observation indicating the presence with 1 or absence with 0 of the variable) while

the numerical variables are normalized. For data normalization we use the MinMaxScaler function,

153

B.2. MACHINE LEARNING METHODOLOGY

Figure B.2: DSCP Distribution in the considered MAWI dataset.

with the following formula:

xi − min(x)
max(x) − min(x) (B.1)

However, until now, our methodology considers all packets in an undifferentiated way regarding

the DSCP marking. Nevertheless, observing the service class occurrences there is a great imbalance

in favour of the 0 DSCP label (best-effort class). Thus, we apply the analysis for the Source and

Destination Port and the normalization part splitting the beginning data frame into two components:

the first one with only the best-effort data, while in the second one we consider everything not marked

as 0 for DSCP value. In this way we maintain the information related to best-effort and non best-

effort classes, otherwise the few observations of the non best-effort classes could disappear under the

magnitude of the best-effort packets. This last consideration opens the door to the main challenge for

our analysis, the data unbalance.

B.2.4 Oversampling

Let us comment on the the DSCP distribution from our trace, focusing on the percentage of packets

for each service class in Figure B.2. More than 97% of the traffic is best-effort traffic, the other services

covering the remaining 3%. We report in the histogram the label Not Known, not listed in the Table

B.1; it corresponds to DSCP values not recommended by RFC 4594 [1], most of them being values

154

B.2. MACHINE LEARNING METHODOLOGY

between 0 and 8. This traffic is known as Scavenger, i.e., traffic with lower priority than the best-effort

class and to which is allocated the lowest amount of bandwidth.

Furthermore it is interesting to observe the percentage of packets related to the other service

classes, to have a complete picture of the available information. The Scavenger class is the second

service with the greatest usage 2.63%. The Expedited Forwarding (CS5, EF) class and Network &

Internetwork Control (CS6 and CS7) have a good percentage of occurrences: the first with 0.14% and

the second with 0.21%. However, the four Assured Forwarding (AF) classes have almost no packets.

In fact the packets related to the Priority (CS1, AF1), Immediate (CS2, AF2), Flash Voice (CS3,

AF3) and Flash Override (CS4, AF4) are only the 0.0008%.

Such unbalanced data distribution represents one of the most discussed problems in the Machine

Learning literature, as it strongly influences the behaviour of classification algorithms in favour of a

specific class. This problem is known as the Paradox of Accuracy [204]. In fact, if we limit ourselves

to identify best-effort packets from non best-effort, any classification algorithm trained on this data

will classify everything as best-effort getting always more than 90% of Accuracy.

To countermeasure this issue, we exploit the Smote oversampling technique presented in [205].

The Smote algorithm can oversample the service classes for which we have very few samples, without

losing information from the best-effort class. In this way we obtain a balanced dataset, where each

service class has the same number of occurrences of the best-effort class, hence we can extract the

characteristics which maximize the differentiation between service classes.

B.2.5 Dimensionality Reduction

The dataset matrix after the over-sampling procedure has 10, 611, 286 rows, representing the pack-

ets, and 42 columns, as number of features (including the DSCP label). Our purpose is to reduce the

features only to the ones that allow to identify the service class each packet belongs to. We reduce the

dimensionality of the space working with the LDA (Linear Discriminant Analysis) technique [206]: it

allows to specify the number of axis for the new space, thus obtaining a 3D graphic distribution of the

packets. Moreover it works in a supervised way, being also a classification algorithm; in this way it

can maximize the variance between classes of services; in fact, we set it to use a variance of 97.8%. In

Table B.2, for each one of the new 3 LDA axis, we report the rate of correlation between the original

features and the corresponding axis; for each axis, we report only the top ten components.

155

B.2. MACHINE LEARNING METHODOLOGY

Variable Value

Port 123 30.6%

Protocol 17 20.3%

Port 443 6.5%

Protocol 47 2.6%

Protocol 97 1.9%

Protocol 6 1.8%

Protocol 89 1.7%

Port 22 1.7%

Protocol 80 1.6%

Port 8080 1.6%

Variable Value

Port 123 27.1%

Protocol 47 10.6%

Protocol 97 4.6%

Protocol 4 3.2%

Protocol 6 3.1%

Protocol 17 3.0%

Port 22 2.8%

Port 53855 2.8%

Port 53469 2.8%

Port 8080 2.7%

Variable Value

Protocol 47 12.5%

Protocol 97 6.1%

Protocol 4 5.9%

Protocol 17 5.2%

Protocol 6 4.9%

Port 22 4.9%

Port 53855 3.7%

Port 443 3.2%

Port 89 2.9%

Port 8080 2.9%

Table B.2: Linear Discriminant Components

B.2.6 Clustering

At this point, the dataset space is projected into the new dimensional space defined by LDA, and

the classification step begins. We have to cluster packets even if they have already an assigned label.

Our purpose is to increase the granularity of the current service classes. The starting point is the

recommended classification in RFC 4594 [1], which represents the macro-classification currently used

for the DSCP marking:

� Best-Effort (BE);

� Not Known;

� Assured Forwarding (AF);

� Expedited Forwarding (EF);

� Network & Internetwork Control.

The problem we are going to face is a clustering problem, where data do not have a label and

we cannot observe the correctness of the results obtained. However, it is essential to analyze the

results according to an index of goodness about the clustering. Therefore, the fundamental tools are

the clustering algorithm and the measure to evaluate the results. These tools lead us to determine

the optimal number of centroids (k), which are the new available service classes. For the clustering

algorithm we work with the well-known K-Means [207], while for the evaluation index we use the

Silhouette Coefficient [201].

156

B.2. MACHINE LEARNING METHODOLOGY

Figure B.3: Silhouette as a function of the number of centroids.

The Silhouette index is a measure of how similar a cluster is to its own cluster (Cohesion) compared

to other ones (Separation). The Silhouette ranges from −1 to +1, where a high value indicates that the

object is well matched to its own cluster and poorly matched to neighbouring clusters. The formula

and notations used to compute the Silhouette index are as follows:

S(i) = b(i) − a(i)
max{a(i), b(i)} if |C(i)| > 1 (B.2)

� S(i): Silhouette index for cluster C(i);

� a(i): Cohesion;

� b(i): Separation;

� |C(i)|: Number of elements in C(i).

We evaluate the optimal number of clusters (k) to establish our final proposal for the service classes.

The analysis considers a range of possible values for k, from 5 to 75 with a step of 5. Figure B.3 shows

the results of the Silhouette Coefficient.

In each k we compute (B.2) 100 times for each possible sample size; in this way we capture the

real behaviour of our packets population without considering all the packets. In Figure B.3 we show

the trend according to the variation of the sample size. At the beginning we have a dramatic increase

for the Silhouette Index passing from 5 to 25 centroids. Then there is a decrease until 35 centroids

and then, for the remaining part of the line chart, we have a steady behaviour around 0.825. So we

select 25, the peak of our analysis, as the new number of service classes. It is interesting to check the

157

B.3. NUMERICAL ANALYSIS

Figure B.4: Silhouette Coefficient & 3D K-Means.

association among subclasses and macro classes. In the Figure B.4 we show the result of K-Means

with 25 centroids; analyzing each cluster according to the Silhouette index. In the upper plot, on the

left side, the dotted red line identifies the average value between all the clusters for the Silhouette

Coefficient, equal to 0.908. In the right side we have the legend related to the 3D-plot about K-Means

clustering. In this legend we can see the sub-classes identified within the main classes. The best-effort

class is differentiated into 11 sub-categories, while the Not Known service is divided into 7 different

sub-classes. For both Assured Forwarding (AF) and Critical Voice RTP (EF) we see that our clustering

algorithm finds only one subclass, without sub-divisions.

B.2.7 Classification

For classification we use the K-means algorithm, exploiting the centroids built during the clustering

analysis: in this way we can obtain the reclassification in real time. The low complexity of this step is

proven by the following result: the time to reclassify 1 million packets is about 0.51 seconds. In this

way, we can obtain any part of the trace used as a test reclassified according to our new distribution

in service classes.

B.3 Numerical Analysis

We can summarize the results in terms of generated sub-classes fragmentation, for the whole period

considered (Apr. 3 to May 8, 2019, one day per week), through the bar chart in Figure B.5. For each

of the given 5 classes, we report the number of subclasses generated - the total number of subclasses

is given by the first column for each date. It is relevant to observe that the best effort service class

158

B.4. CONCLUSIONS

Figure B.5: L-Diffserv Dynamical Behaviour.

is always the most differentiated one in subclasses, followed by the Scavenger class. The other service

classes, especially AF and EF, show a low fragmentation; traffic from these classes is therefore not

showing specific behaviors within the class, likely because existing features are already used in general

to distinguish them (e.g., Port number or Protocol) from the other classes.

An important aspect to highlight is that the number of subclasses generated for the best effort

and Scavenger classes have a high variability in time - e.g., the number of best effort subclasses in

Apr. 4 is twice the same number in Apr. 24, 2019. This shows that L-DiffServ is able to capture the

dynamicity in traffic patterns and to adapt traffic aggregation in subclasses.

The capacity to aggregate traffic flows in subclasses can be beneficial in bottleneck management;

large amount of traffic (of best effort and Scavenger classes) that by default would all be assigned

to two priority levels, can instead by discriminated by L-DiffServ in up to 23 priority levels, while

being reassured that subclasses are ordered with respect to each other based on L-DiffServ ordering.

Hence traffic loss can be concentrated to few flows of few subclasses instead of a high number of flows

spanning a large number of subclasses.

B.4 Conclusions

This work aims to provide a methodology, named L-DiffServ, for reaching dynamic class of service

generation in IP networks. In fact, L-Diffserv differentiates further the traffic based on an existing

159

B.4. CONCLUSIONS

high-grain classification, giving us advices to improve the resource allocation (buffer and bandwidth)

according to this new service classification. As further work, we want to test the behavior of L-

DiffServ in real-time systems, increasing the amount of packets analyzed. Finally we want to evaluate

the behaviour of the network under congestion according to the different service classification methods,

describing advantages and disadvantages of our proposal and the current DiffServ method. We do also

envision extending the methodology for service-level agreement management in network slicing.

160

Appendix C

Performance Comparison of ONOS and
ODL controllers

In the following, we report on control-plane reactivity to topology changes and discovery events,

comparing ONOS and ODL behaviors. Topology update reactivity SDN controllers are expected to

maintain an updated view of the network in a semi-real time fashion in order to let applications work

with a consistent view. Generally speaking, the topology update is implemented following an event

driven pattern logic. When some specific packets sent by SDN switches are received or some expected

packets are not received by the controller, an event is raised in the controller’s core. This event is

received and held by subscribed listeners, which will in turn solicit topological representation changes

in a database, eventually distributed. We focus in particular on what happens in ONOS and ODL

controllers when a OFPT PORT STATUS packet is received from a switch to notify a change in a

port’s status after a link disruption event or after a link is established/re-established.

Supposing that a path computation application is activated in the controller, the controller has to

react to this change in the topology, eventually installing new flows to circumvent the disruption and

finally ensure communications.

In this section, we evaluate how fast and promptly ONOS and ODL controllers perform these

update actions when reacting to a topological change. To perform this comparison, we analyze a very

basic test case (as in C.1): two hosts, H1 and H2, connected by a single path composed of 6 links and

5 SDN switches (OVS switches), and exchanging UDP packets through an Iperf [16] session. We use

Quali version for ONOS and Oxygen version for ODL.

During tests, the configuration shown in Figure C.1 was deployed through a developed python

161

APPENDIX C

Figure C.1: Test case network topology

module that simulates complex network topologies with redundant links and alternative paths among

hosts. The simulator also provides a fault injection module that is capable of injecting faults and

degradations on each of the simulated network elements. To ensure connectivity between the hosts,

“org.onosproject.fwd” and“org.onosproject.openflow”apps were activated in ONOS and“odl-l2switch-

all” was activated in ODL. In order to gather sufficient data, we iterate the test case 1400 times,

cleaning both topology and controller state between iterations. Supposing the i-th iteration starts at

time t0 when the Iperf session is started, at timet0+=Tstart a failure in the link between switches S2

and S3 is introduced and finally after T seconds the link is restored. To monitor the traffic flowing

along the path, at t0 a tshark [17] capture is started on the link between S3 and S4. In particular,

from this capture, it is possible to extract the time at which the first UDP packet appears on link

S3-S4, defined as Tfirst. Knowing that the link is restored at time t0++T=Tstop, the controller’s

reaction time can be computed as Treact=Tfirst-Tstop . Let us note that Iperf is configured in UDP

mode in order to remove all synchronization overhead specific to TCP that would have biased the

reaction time. Furthermore, in the topology, no alternative path from H1 to H2 was created so that

the controller will not perform actions other than those described.

Figure C.2 reports the empirical probability distribution function (PDF) of the reaction time

(Treact) for the 1400 tests and for both ONOS and ODL. For a number of tests both controllers react

in a similar way. However, ODL shows two different modes: in 30.1% of the tests, the reaction times

fall into the interval [0, 0.04], while in the remaining 69.9% of cases values are in [3, 10]. Thus, in

Figure C.3, we represent the dynamics of the reaction times in two split PDF plots for the two modes.

Equivalent results for ONOS are in Figure C.4, in a single plot, for the sake of clarity.

ONOS appears to be significantly more stable than ODL. Note that ONOS also shows two separate

162

APPENDIX C

Figure C.2: Distribution of reaction time (Treact) for ONOS and ODL controllers.

(a) [0,0.04] seconds (b) [3,10] seconds

Figure C.3: Distribution of the reaction times for ODL at two distinct intervals

Figure C.4: Distribution of the reaction times for ONOS

163

APPENDIX C

modes, similar to ODL, yet they are much closer than with ODL; while the distance between the modes

is approximately 6 seconds for ODL, it is approximately 20 ms for ONOS with no occurrences gap.

ONOS is also much faster in reacting to topology event updates, with a median reaction time of

36 ms; that is two orders of magnitude less than ODL that has a median of 5.45 seconds, as shown in

the boxplot statistics in Figure C.5.

Figure C.5: Boxplot statistics of the reaction times. A boxplot shows the minimum, first quartile,
median in red, third quartile and maximum values.

To better understand the reasons for the detected unstable ODL behavior, we tried to capture the

variability across tests characterizing how frequently the reaction time switches from the first mode

(Figure C.3a) to the second one (Figure C.3b) in subsequent tests. To do so, we use a metric that

is incremented by one each time a switch from the first mode to the second one is detected, when

considering i-th and i+1-th tests. The result is shown in Figure C.6. A controller whose reaction

times in subsequent tests would flip among the modes, i.e., fall in the other mode each time, would

have produced the first quadrant bisector line in such a plot. However, it is quite close to the bisector,

which means that ODL is very unstable as it is reacting in very different ways across subsequent tests.

In order to search for possible correlations, we also computed the empirical probability that at the i-th

test the reaction time is in the first [second] mode while in the subsequent i+1-th test the reaction time

falls in the second [first] mode. We found no difference, with an empirical probability to switch from

164

APPENDIX C

Figure C.6: Number of mode switches as a function of the number of tests – ODL

the first to the second of 0.2075, while the reverse is 0.2083 (very close to the former). Summing these

probabilities, we obtain a probability of 0.4158 to switch from one class to another, which confirms

the unpredictability of the ODL controller.

An aspect that remains unclear from the test is the origin of the large gap between the two working

modes in ODL. Further work might inspect openflow messages exchanged between the controller and

the switches to identify the ODL core mechanism triggered by those messages.

C.0.1 Topology discovery

We analyze the amount of control traffic required for ONOS and ODL to discover and update the

topology over time. Both controllers use Link Layer Discovery Protocol (LLDP) to infer links con-

necting switches. Basically, the controller sends a PACKET OUT message to each switch containing

as many LLDP frames as active ports in the corresponding switch. Each switch then sends out LLDP

frames in designated ports, forwarding to the controller, through a PACKET IN message, each LLDP

frame it receives. Consequently, the controller can infer links binding the port where the packet was

sent (inside LLDP frame) and the port where the packet was received (a field in the PACKET IN

packet). This procedure is repeated periodically in order to maintain an up-to-date topology; every 3

seconds in ONOS and every 5 seconds in ODL, by default.

To test the implementation of LLDP in ONOS and ODL, we simply record for a given period

all PACKET IN and PACKET OUT messages exchanged since the first topology discovery using a

topology such as that in Figure C.1. In order to fairly estimate the amount of traffic, we manually set

the LLDP cycle in both controllers to 5 seconds.

165

APPENDIX C

Figure C.7: Topology discovery volume for both PACKET IN and PACKET OUT messages

Figure C.7 shows the obtained results. ONOS produces a larger amount of control traffic in terms

of PACKET OUT and thus PACKET IN with respect to ODL, as each PACKET OUT will result

in a PACKET IN if there is an active link on the related port. We attribute this difference in the

amount of exchanged packets to an optimized implementation of LLDP in ODL, e.g. OFDPV2.

166

References

[1] J. Babiarz, K. H. Chan, and F. Baker, “Configuration guidelines for diffserv service classes,”

RFC 4594, 2006.

[2] Ericsson, “Ericsson mobility report,” https://www.ericsson.com/en/press-

releases/2020/11/more-than-1-billion-people-will-have-access-to-5g-coverage-by-the-end-of-

2020.

[3] “Global network automation market research report,”https://www.marketresearchfuture.com/reports/network-

automation-market-5852, accessed on 15/10/2021.

[4] ETSI GS NFV 002 V1.2.1, “Network functions virtualisation (nfv): Architectural framework,”

December 2014.

[5] “Docker vs Virtual Machines (VMs) : A Practical Guide to Docker Contain-

ers and VMs,” https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-

containers-and-vms, accessed on 15/10/2021.

[6] ETSI GS NFV-IFA 011 V3.3.1, “Network functions virtualisation (nfv) release 3; management

and orchestration; vnf descriptor and packaging specification,” September 2019.

[7] “Kubernetes architecture,” https://kubernetes.io/it/docs/concepts/overview/components/, ac-

cessed on 15/10/2021.

[8] J. Mitola, “Cognitive radio. an integrated agent architecture for software defined radio.” Ph.D.

dissertation, Royal Institute of Technology, 2000.

[9] ETSI GS NFV-REL 001 V1.1.1, “Network function virtualisation (nfv)-resiliency requirements,”

January 2015.

167

REFERENCES

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”Computer, vol. 36, no. 1,

pp. 41–50, 2003.

[11] C. Fortuna and M. Mohorcic, “Trends in the development of communication networks: Cognitive

networks,”Computer Networks, vol. 53, no. 9, pp. 1354–1376, 2009.

[12] D. D. Clark et al., “A knowledge plane for the internet,” in Proceedings of the 2003 conference

on Applications, technologies, architectures, and protocols for computer communications, 2003,

pp. 3–10.

[13] Q. Mahmoud, Cognitive networks: towards self-aware networks. John Wiley & Sons, 2007.

[14] A. Diamanti, J. M. Sanchez Vilchez, and S. Stefano, “An ai-empowered framework for cross-layer

softwarized infrastructure state assessment,” in Transactions on Network and Service Manage-

ment, major revision.

[15] A. Diamanti, J. M. S. Vilchez, and S. Secci, “Procédé de contrôle d’ une entité d’orchestration

dans un réseau logiciel.” Patent FR2 107 239, 2021.

[16] S. E. Madnick, “Time-sharing systems: Virtual machine concept vs. conventional approach,”

Modern Data, vol. 2, no. 3, pp. 34–36, 1969.

[17] M. Chiosi et al., “Network functions virtualisation.introductory white paper,” SDN and Open-

Flow World Congress, 2012.

[18] H. Hawilo et al., “Nfv: state of the art, challenges, and implementation in next generation mobile

networks (vepc),” IEEE Network, vol. 28, no. 6, pp. 18–26, 2014.

[19] A. Desai et al., “Hypervisor: A survey on concepts and taxonomy,” International Journal of

Innovative Technology and Exploring Engineering, vol. 2, no. 3, pp. 222–225, 2013.

[20] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization: a perfor-

mance comparison,” in 2015 IEEE International Conference on Cloud Engineering, 2015, pp.

386–393.

[21] “Linux cgroups,” https://man7.org/linux/man-pages/man7/cgroups.7.html, accessed on

15/10/2021.

168

REFERENCES

[22] “Linux namespaces,” https://man7.org/linux/man-pages/man7/namespaces.7.html, accessed on

15/10/2021.

[23] T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967, 2015.

[24] ETSI GS NFV-MAN 001 V1.1.1, “Network function virtualisation (nfv); management and or-

chestration,” December 2014.

[25] “Open source mano(osm),” https://osm.etsi.org/, accessed on 15/10/2021.

[26] “Tacker,” https://wiki.openstack.org/wiki/Tacker, accessed on 15/10/2021.

[27] “Openstack,” https://wiki.openstack.org/, accessed on 15/10/2021.

[28] “Open baton,” https://openbaton.github.io/cases.html, accessed on 15/10/2021.

[29] T. Benson, A. Akella, and D. A. Maltz, “Unraveling the complexity of network management.” in

Prc. of the 6th USENIX Symposium on Networked Systems Design and Implementation, 2009,

pp. 335–348.

[30] D. Kreutz and otehrs, “Software-defined networking: A comprehensive survey,” Proceedings of

the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[31] N. McKeown et al., “Openflow: enabling innovation in campus networks,” ACM SIGCOMM

computer communication review, vol. 38, no. 2, pp. 69–74, 2008.

[32] S. Azodolmolky, Software defined networking with OpenFlow. Packt Publishing, 2013.

[33] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao, “Are we ready for sdn? implementation challenges for software-defined

networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[34] R. Ozdag, “Intel® ethernet switch fm6000 series-software defined networking,” See goo. gl/An-

vOvX, vol. 5, 2012.

[35] R. Amin, M. Reisslein, and N. Shah, “Hybrid sdn networks: A survey of existing approaches,”

IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3259–3306, 2018.

169

REFERENCES

[36] S. Secci, A. Diamanti, J. Sanchez, M. Vilchez et al., “Security and performance comparison of

onos and odl controllers,”Open Networking Foundation, Informational Report, September 2019.

[37] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,” in Proc. of the IEEE

SDN For Future Networks and Services, 2013, pp. 1–7.

[38] E. Zeydan and Y. Turk, “Recent advances in intent-based networking: A survey,” in Proc. of the

IEEE 91st Vehicular Technology Conference, 2020, pp. 1–5.

[39] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, “Intent-based networking-concepts and

overview,” Internet Engineering Task Force, Internet-Draft, 2019.

[40] F. Callegati, W. Cerroni, C. Contoli, and F. Foresta, “Performance of intent-based virtualized

network infrastructure management,” in Proc. of the IEEE International Conference on Com-

munications, 2017, pp. 1–6.

[41] J. Nı̈emöller, L. Mokrushin, S. K. Mohalik, M. Vlachou-Konchylaki, and G. Sarmonikas, “Cog-

nitive processes for adaptive intent-based networking,” Ericsson Technology Review, 2020.

[42] B. Hayes, “Cloud computing,”Communications of the ACM, vol. 51, no. 7, pp. 9–11, July 2008.

[43] R. Mijumbi et al., “Network function virtualization: State-of-the-art and research challenges,”

IEEE Communications surveys & tutorials, vol. 18, no. 1, pp. 236–262, 2015.

[44] P. Mell and T. Grance,“The NIST definition of cloud computing,”Special Publication, September

2011.

[45] I. a. Parvez, “A survey on low latency towards 5g: Ran, core network and caching solutions,”

IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3098–3130, 2018.

[46] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in software-defined networks,” in

Proc. of the the third workshop on Hot topics in software defined networking, 2014, pp. 31–36.

[47] R. Bryant et al., “Accelerating nfv delivery with open-stack,” OpenStack Foundation Report,

2016.

170

REFERENCES

[48] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications after 10 years of cloud

computing-a systematic mapping study,” Journal of Systems and Software, vol. 126, pp. 1–16,

2017.

[49] M. Richards, Microservices vs. service-oriented architecture. O’Reilly Media, 2015.

[50] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis, “Microservices in prac-

tice, part 1: Reality check and service design,” IEEE software, vol. 34, no. 01, pp. 91–98, 2017.

[51] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables devops: Mi-

gration to a cloud-native architecture,” Ieee Software, vol. 33, no. 3, pp. 42–52, 2016.

[52] J. P. Sterbenz et al., “Resilience and survivability in communication networks: Strategies, prin-

ciples, and survey of disciplines,”Computer networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[53] R. J. Ellison et al., “Survivable network systems: An emerging discipline,”Carnegie-mellon Univ

Pittsburgh PA Software Engineering Inst, Tech. Rep., 1997.

[54] P. E. Heegaard and K. S. Trivedi, “Network survivability modeling,”Computer Networks, vol. 53,

no. 8, pp. 1215–1234, 2009.

[55] “Analysis techniques for dependability - Reliability block diagram method,” Standard, 1991.

[56] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of

dependable and secure computing,” IEEE transactions on dependable and secure computing,

vol. 1, no. 1, pp. 11–33, 2004.

[57] N. F. Doherty, L. Anastasakis, and H. Fulford, “The information security policy unpacked: A

critical study of the content of university policies,” International journal of information man-

agement, vol. 29, no. 6, pp. 449–457, 2009.

[58] A. A. Lazar and G. Pacifici, “Control of Resources in Broadband Networks with Quality of

Sen/ice Guarantees,” IEEE Communications Magazine, 1991.

[59] M. W. Ibrahim, “Level of resilience measure for communication networks,” Journal of Informa-

tion and Communication Technology, vol. 17, no. 1, pp. 115–139, 2017.

171

REFERENCES

[60] W. Najjar and J.-L. Gaudiot, “Network resilience: a measure of network fault tolerance,” IEEE

Transactions on Computers, vol. 39, no. 2, pp. 174–181, 1990.

[61] A. Jabbar, “A framework to quantify network resilience and survivability,” Ph.D. dissertation,

University of Kansas, 2010.

[62] D. Zhang and J. P. Sterbenz, “Measuring the resilience of mobile ad hoc networks with human

walk patterns,” in 2015 7th International Workshop on Reliable Networks Design and Modeling

(RNDM). IEEE, 2015, pp. 161–168.

[63] “Etsi poc 35,” http://nfvwiki.etsi.org/index.php?title=Availability Management with Stateful

Fault Tolerance, accessed on 15/10/2021.

[64] “Project Doctor,” https://wiki.opnfv.org/display/doctor, accessed on 15/10/2021.

[65] “Cloudify,” https://cloudify.co/, accessed on 15/10/2021.

[66] M. A. Khan and H. Tembine, “Meta-learning for realizing self-x management of future networks,”

IEEE Access, vol. 5, pp. 19 072–19 083, 2017.

[67] R. W. Thomas et al., “Cognitive networks,” pp. 17–41, 2007.

[68] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road ahead,” IEEE commu-

nications magazine, vol. 43, no. 12, pp. 112–119, 2005.

[69] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross-layer design,” IEEE Wireless

communications, vol. 12, no. 1, pp. 3–11, 2005.

[70] A. Schaeffer-Filho, P. Smith, A. Mauthe, and D. Hutchison, “Network resilience with reusable

management patterns,” IEEE Communications Magazine, vol. 52, no. 7, pp. 105–115, 2014.

[71] S. Hariri, M. Eltoweissy, and Y. Al-Nashif, “Biorac: biologically inspired resilient autonomic

cloud,” in Proc. of the Seventh Annual Workshop on Cyber Security and Information Intelligence

Research, 2011, pp. 1–1.

[72] T. M. Mitchell, S. Mabadevan, and L. I. Steinberg, “Leap: A learning apprentice for vlsi design,”

in Machine learning. Elsevier, 1990, pp. 271–289.

172

http://nfvwiki.etsi.org/index.php?title=Availability_Management_with_Stateful_Fault_Tolerance
http://nfvwiki.etsi.org/index.php?title=Availability_Management_with_Stateful_Fault_Tolerance

REFERENCES

[73] P. Langley, “Relevance and insight in experimental studies,” IEEE Expert, vol. 11, no. 5, pp.

11–12, 1996.

[74] “Celiometer,” https://wiki.openstack.org/wiki/Telemetry, Accessed on 12/08/2021.

[75] G. Gardikis et al., “An integrating framework for efficient nfv monitoring,” in Proc. of the IEEE

NetSoft Conference and Workshops (NetSoft), 2016, pp. 1–5.

[76] “Promethues,” https://prometheus.io/, accessed on 15/10/2021.

[77] C. Liu and otehrs, “Online arima algorithms for time series prediction,” in Proc. of the Thirtieth

AAAI conference on artificial intelligence, 2016.

[78] J. J. Faraway, Extending the linear model with R: generalized linear, mixed effects and nonpara-

metric regression models. CRC press, 2016.

[79] C. S. Hood and C. Ji, “Proactive network-fault detection [telecommunications],” IEEE Transac-

tions on reliability, vol. 46, no. 3, pp. 333–341, 1997.

[80] M. Shaw, “Self-healing: softening precision to avoid brittleness: position paper for woss’02:

workshop on self-healing systems,” in Proc. of the first workshop on Self-healing systems, 2002,

pp. 111–114.

[81] R. Mijumbi et al., “Darn: Dynamic baselines for real-time network monitoring,” in Proc. of the

4th IEEE Conference on Network Softwarization and Workshops, 2018, pp. 37–45.

[82] M. Crosbie, G. Spafford et al., “Applying genetic programming to intrusion detection,” in Work-

ing Notes for the AAAI Symposium on Genetic Programming, 1995, pp. 1–8.

[83] N. Ye and Q. Chen, “An anomaly detection technique based on a chi-square statistic for detecting

intrusions into information systems,” Quality and reliability engineering international, vol. 17,

no. 2, pp. 105–112, 2001.

[84] Z. Tan et al., “A system for denial-of-service attack detection based on multivariate correlation

analysis,” IEEE transactions on parallel and distributed systems, vol. 25, no. 2, pp. 447–456,

2013.

173

https://wiki.openstack.org/wiki/Telemetry
https://prometheus.io/

REFERENCES

[85] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated detection of stealthy

portscans,” Journal of Computer Security, vol. 10, no. 1-2, pp. 105–136, 2002.

[86] I. C. Paschalidis and Y. Chen, “Statistical anomaly detection with sensor networks,” ACM

Transactions on Sensor Networks (TOSN), vol. 7, no. 2, pp. 1–23, 2010.

[87] S. S. Varadhan, “Asymptotic probabilities and differential equations,”Communications on Pure

and Applied Mathematics, vol. 19, no. 3, pp. 261–286, 1966.

[88] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. of the eighth IEEE interna-

tional conference on data mining, 2008, pp. 413–422.

[89] X. Tao et al., “A parallel algorithm for network traffic anomaly detection based on isolation for-

est,” International Journal of Distributed Sensor Networks, vol. 14, no. 11, p. 1550147718814471,

2018.

[90] W. Zhang, Q. Yang, and Y. Geng, “A survey of anomaly detection methods in networks,” in

Proc. of the International Symposium on Computer Network and Multimedia Technology, 2009,

pp. 1–3.

[91] H. Ringberg et al., “Sensitivity of pca for traffic anomaly detection,” in Proc. of the ACM

SIGMETRICS international conference on Measurement and modeling of computer systems,

2007, pp. 109–120.

[92] R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N. Singh,“Anomaly detection in network traffic

using k-mean clustering,” in Proc. of the 3rd International Conference on Recent Advances in

Information Technology, 2016, pp. 387–393.

[93] D. He et al., “Software-defined-networking-enabled traffic anomaly detection and mitigation,”

IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1890–1898, 2017.

[94] A. George and A. Vidyapeetham,“Anomaly detection based on machine learning: dimensionality

reduction using pca and classification using svm,” International Journal of Computer Applica-

tions, vol. 47, no. 21, pp. 5–8, 2012.

174

REFERENCES

[95] I. Syarif, A. Prugel-Bennett, and G. Wills, “Unsupervised clustering approach for network

anomaly detection,” in Proc. of the International conference on networked digital technologies,

2012, pp. 135–145.

[96] D. Brauckhoff, K. Salamatian, and M. May, “Applying pca for traffic anomaly detection: Prob-

lems and solutions,” in Proc. of the International Conference on Computer Communications.

IEEE, 2009, pp. 2866–2870.

[97] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural net-

works,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[98] Z. Lu et al., “The expressive power of neural networks: A view from the width,” in Proc. of the

31st International Conference on Neural Information Processing Systems, 2017, pp. 6232–6240.

[99] J. Schmidhuber, “Deep learning in neural networks: An overview,”Neural networks, vol. 61, pp.

85–117, 2015.

[100] J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruction prob-

ability,” Special Lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[101] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear dimensionality

reduction,” in Proc. of the MLSDA 2nd workshop on machine learning for sensory data analysis,

2014, pp. 4–11.

[102] D. Gong et al., “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder

for unsupervised anomaly detection,” in Proc. of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 1705–1714.

[103] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proc.

of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining,

2017, pp. 665–674.

[104] M. Verleysen and D. Francois, “The curse of dimensionality in data mining and time series

prediction,” in Proc. of the International work-conference on artificial neural networks. Springer,

2005, pp. 758–770.

175

REFERENCES

[105] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest neighbor: Towards removing the

curse of dimensionality,”Theory of computing, vol. 8, no. 1, pp. 321–350, 2012.

[106] G. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory,

vol. 14, pp. 55–63, 1968.

[107] A. Jain, A. Karandikar, and R. Verma, “An adaptive prediction based approach for congestion

estimation in active queue management (apace),” in GPorc. of the IEEE Global Telecommuni-

cations Conference, 2003, pp. 4153–4157.

[108] A. Gulenko et al., “A system architecture for real-time anomaly detection in large-scale nfv

systems,” Procedia Computer Science, vol. 94, pp. 491–496, 2016.

[109] M. Kourtis et al., “Statistical-based anomaly detection for nfv services,” in Proc. of the IEEE

Conference on Network Function Virtualization and Software Defined Networks, 2016, pp. 161–

166.

[110] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.

[111] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[112] ——, “An introduction to variational autoencoders,” arXiv preprint arXiv:1906.02691, 2019.

[113] R. J. Williams, “Learning representations by back-propagating errors,” Nature, p. 533–536, 10

1986.

[114] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term memory networks for anomaly

detection in time series,” in Proc. ogf the 23rd European Symposium on Artificial Neural Net-

works, Computational Intelligence and Machine Learning, 2015, pp. 89–94.

[115] A. Graves, S. Fernández, M. Liwicki, H. Bunke, and J. Schmidhuber, “Unconstrained online

handwriting recognition with recurrent neural networks,” in Proc. of the Advances in Neural

Information Processing Systems, 2008.

[116] S. Fernández, A. Graves, and J. Schmidhuber, “An application of recurrent neural networks to

discriminative keyword spotting,” in Proc. of the International Conference on Artificial Neural

Networks, 2007, pp. 220–229.

176

REFERENCES

[117] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “Lstm network: a deep learning approach for

short-term traffic forecast,” IET Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.

[118] D. Wierstra, J. Schmidhuber, and F. Gomez, “Evolino: Hybrid neuroevolution/optimal linear

search for sequence learning,” in Proc. of the 19th International Joint Conference on Artificial

Intelligence, 2005, pp. 853–858.

[119] Z. Cui et al., “Deep bidirectional and unidirectional lstm recurrent neural network for network-

wide traffic speed prediction,” arXiv preprint arXiv:1801.02143, 2018.

[120] Z. Zhao et al., “Lstm network: a deep learning approach for short-term traffic forecast,” IET

Intelligent Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.

[121] X. Ma et al., “Long short-term memory neural network for traffic speed prediction using remote

microwave sensor data,” Transportation Research Part C: Emerging Technologies, vol. 54, pp.

187–197, 2015.

[122] A. Dalgkitsis, M. Louta, and G. T. Karetsos, “Traffic forecasting in cellular networks using the

lstm rnn,” in Proc. of the 22nd Pan-Hellenic Conference on Informatics, 2018, pp. 28–33.

[123] I. Alawe et al., “Improving traffic forecasting for 5g core network scalability: A machine learning

approach,” IEEE Network, vol. 32, no. 6, pp. 42–49, 2018.

[124] T. Ergen and S. S. Kozat, “Unsupervised anomaly detection with lstm neural networks,” IEEE

transactions on neural networks and learning systems, vol. 31, no. 8, pp. 3127–3141, 2019.

[125] J. Ali-Tolppa et al., “Self-healing and resilience in future 5g cognitive autonomous networks,” in

Proc. of the ITU Kaleidoscope: Machine Learning for a 5G Future, 2018, pp. 1–8.

[126] Y. Dai, Y. Xiang, and G. Zhang, “Self-healing and hybrid diagnosis in cloud computing,” in

Proc. of the IEEE International Conference on Cloud Computing, 2009, pp. 45–56.

[127] G. Ciocarlie et al., “On the feasibility of deploying cell anomaly detection in operational cellular

networks,” in Proc of the IEEE Network Operations and Management Symposium), 2014, pp.

1–6.

177

REFERENCES

[128] Q. Liao and S. Stanczak, “Network state awareness and proactive anomaly detection in self-

organizing networks,” in Proc. of hte IEEE Globecom Workshops, 2015, pp. 1–6.

[129] C. Zhang et al., “A deep neural network for unsupervised anomaly detection and diagnosis in

multivariate time series data,” in Proc. of the AAAI Conference on Artificial Intelligence, 2019,

pp. 1409–1416.

[130] S.-W. Cheng et al., “Software architecture-based adaptation for grid computing,” in Proc. of the

11th IEEE International Symposium on High Performance Distributed Computing, 2002, pp.

389–398.

[131] G. Valetto and G. Kaiser, “A case study in software adaptation,” in Proc. of the first workshop

on Self-healing systems, 2002, pp. 73–78.

[132] M. Qin et al., “Machine learning aided context-aware self-healing management for ultra dense

networks with qos provisions,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp.

12 339–12 351, 2018.

[133] P. Langley and H. A. Simon, “Applications of machine learning and rule induction,”Communi-

cations of the ACM, vol. 38, no. 11, pp. 54–64, 1995.

[134] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,” in Machine Learning Pro-

ceedings 1992. Elsevier, 1992, pp. 385–393.

[135] T. M. Mitchell, S. Mabadevan, and L. I. Steinberg, “Leap: A learning apprentice for vlsi design,”

in Machine learning. Elsevier, 1990, pp. 271–289.

[136] G. Tesauro, “Reinforcement learning in autonomic computing: A manifesto and case studies,”

IEEE Internet Computing, vol. 11, no. 1, pp. 22–30, 2007.

[137] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[138] J. Pei et al., “Optimal vnf placement via deep reinforcement learning in sdn/nfv-enabled net-

works,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 2, pp. 263–278, 2019.

[139] Z. Zhang, et al., “Q-placement: Reinforcement-learning-based service placement in software-

defined networks,” in Proc. of the IEEE 38th International Conference on Distributed Computing

Systems, 2018, pp. 1527–1532.

178

REFERENCES

[140] Y. Jin, M. Bouzid, D. Kostadinov, and A. Aghasaryan, “Model-free resource management of

cloud-based applications using reinforcement learning,” in Proc. of hte 21st Conference on In-

novation in Clouds, Internet and Networks and Workshops, 2018, pp. 1–6.

[141] C. H. T. Arteaga, F. Risso, and O. M. C. Rendon, “An adaptive scaling mechanism for managing

performance variations in network functions virtualization: A case study in an nfv-based epc,”

in Proc. of the 13th International Conference on Network and Service Management, 2017, pp.

1–7.

[142] E. H. Bouzidi, A. Outtagarts, and R. Langar, “Deep reinforcement learning application for

network latency management in software defined networks,” in Proc. of the IEEE Global Com-

munications Conference, 2019, pp. 1–6.

[143] T. V. Phan et al., “Q-mind: Defeating stealthy dos attacks in sdn with a machine-learning based

defense framework,” in Proc. of the IEEE Global Communications Conference, 2019, pp. 1–6.

[144] L. S. Sampaio et al., “Using nfv and reinforcement learning for anomalies detection and miti-

gation in sdn,” in Proc. of the IEEE Symposium on Computers and Communications, 2018, pp.

00 432–00 437.

[145] H. Yu et al., “A survey of trust and reputation management systems in wireless communications,”

Proceedings of the IEEE, vol. 98, no. 10, pp. 1755–1772, 2010.

[146] H. Chen et al., “Reputation-based trust in wireless sensor networks,” in Proc. of the International

Conference on Multimedia and Ubiquitous Engineering, 2007, pp. 603–607.

[147] T. Ciszkowski et al., “Towards quality of experience-based reputation models for future web

service provisioning,”Telecommunication Systems, vol. 51, no. 4, pp. 283–295, 2012.

[148] Q. He, D. Wu, and P. Khosla,“Sori: A secure and objective reputation-based incentive scheme for

ad-hoc networks,” in Proc. of the IEEE Wireless Communications and Networking Conference,

vol. 2, no. 1, 2004, pp. 825–830.

[149] J. Ahn, M. Park, H. Shin, and J. Paek, “A model for deriving trust and reputation on blockchain-

based e-payment system,”Applied Sciences, vol. 9, no. 24, p. 5362, 2019.

179

REFERENCES

[150] B. Isong et al., “Trust establishment framework between sdn controller and applications,” in

Proc. of the 18th IEEE/ACIS International Conference on Software Engineering, Artificial In-

telligence, Networking and Parallel/Distributed Computing, 2017, pp. 101–107.

[151] L. Wen et al., “Distributed bayesian network trust model in virtual network,” in Proc. of the

Second International Conference on Networks Security, Wireless Communications and Trusted

Computing, 2010, pp. 71–74.

[152] S. Betgé-Brezetz, G.-B. Kamga, and M. Tazi, “Trust support for sdn controllers and virtualized

network applications,” in Proc. of the 2015 1st IEEE Conference on Network Softwarization,

2015, pp. 1–5.

[153] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”

The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[154] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”Mathematics of control,

signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[155] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent

is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[156] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”Neural computation, pp. 1735–80,

12 1997.

[157] C. J. Watkins and P. Dayan, “Q-learning,”Machine learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[158] H. Hasselt, “Double q-learning,” Advances in neural information processing systems, vol. 23,

no. 1, pp. 2613–2621, 2010.

[159] A. Diamanti, J. M. S. Vilchez, and S. Secci, “Lstm-based radiography for anomaly detection in

softwarized infrastructures,” in Proc. of the 32nd International Teletraffic Congress, 2020, pp.

28–36.

[160] ——, “The syrroca ai-empowered network automation platform,” in 2021 24th Conference on

Innovation in Clouds, Internet and Networks and Workshops (ICIN), 2021, pp. 140–142.

180

REFERENCES

[161] J. Rubio-Loyola et al., “Scalable service deployment on software-defined networks,” IEEE Com-

munications Magazine, vol. 49, no. 12, pp. 84–93, 2011.

[162] M. Behringer et al., “A reference model for autonomic networking,” IETF Internet Draft, May

2018.

[163] “Zero-touch network and service management requirements,”

https://www.etsi.org/technologies/zero-touch-network-service-management.

[164] ETSI GR ENI 004 V1.1.1, “Experiential networked intelligence; terminology for main concepts,”

October 2019.

[165] A. a. Boubendir, “Network slice life-cycle management towards automation,” in Proc. of the

IFIP/IEEE Symposium on Integrated Network and Service Management, 2019, pp. 709–711.

[166] V. Q. Rodriguez, F. Guillemin, and A. Boubendir, “5g e2e network slicing management with

onap,” in Proc. of the 23rd Conference on Innovation in Clouds, Internet and Networks and

Workshops, 2020, pp. 87–94.

[167] A. Boubendir et al., “5g edge resource federation: Dynamic and cross-domain network slice

deployment,” in Proc. of the th IEEE Conference on Network Softwarization and Workshops,

2018, pp. 338–340.

[168] “The open radio access network (oran) alliance,”https://www.o-ran.org, accessed on 15/10/2021.

[169] “Open network automation platform (onap),” https://www.onap.org., accessed on 15/10/2021.

[170] “Syrroca github repositery,” https://github.com/SYRROCA.

[171] A. Packet, “Session initiation protocol (sip) info method and package framework,” 2011.

[172] “Openimscore,” http://openimscore.sourceforge.net/, accessed on 15/10/2021.

[173] “Kubernetes,” https://github.com/kubernetes/kubernetes/, accessed on 15/10/2021.

[174] “Sipp,” http://sipp.sourceforge.net/, accessed on 15/10/2021.

181

https://www.o-ran.org
https://www.onap.org.
https://github.com/SYRROCA
http://openimscore.sourceforge.net/
https://github.com/kubernetes/kubernetes/
http://sipp.sourceforge.net/

REFERENCES

[175] P. O. V. De Melo et al., “Surprising patterns for the call duration distribution of mobile phone

users,” in Proc. of the Machine Learning and Knowledge Discovery in Databases, European

Conference, 2010, pp. 20–24.

[176] “Nodeexporter,” https://github.com/prometheus/node exporter, accessed on 15/10/2021.

[177] “Cadvisor,” https://github.com/google/cadvisor, accessed on 15/10/2021.

[178] K. Fokianos and B. Kedem, “Regression theory for categorical time series,” Statistical science,

vol. 18, no. 3, pp. 357–376, 2003.

[179] G. M. Davis and K. B. Ensor, “Multivariate time-series analysis with categorical and continuous

variables in an lstr model,” Journal of Time Series Analysis, vol. 28, no. 6, pp. 867–885, 2007.

[180] W. W. Wei, Time series analysis. Pearson College Div, 2006.

[181] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[182] K. Pearson, “X. on the criterion that a given system of deviations from the probable in the case

of a correlated system of variables is such that it can be reasonably supposed to have arisen from

random sampling,”The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, vol. 50, no. 302, pp. 157–175, 1900.

[183] R. L. Plackett, “Karl pearson and the chi-squared test,” International Statistical Review, no. 1,

pp. 59–72, 1983.

[184] J. Brownlee, Deep learning for time series forecasting: predict the future with MLPs, CNNs and

LSTMs in Python. Machine Learning Mastery, 2018.

[185] D. R. Wilson and T. R. Martinez, “The general inefficiency of batch training for gradient descent

learning,”Neural networks, vol. 16, no. 10, pp. 1429–1451, 2003.

[186] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” in Proc. of hte International conference on machine learning, 2015, pp.

448–456.

[187] G. E. Hinton et al., “Improving neural networks by preventing co-adaptation of feature detectors,”

arXiv preprint arXiv:1207.0580, 2012.

182

https://github.com/prometheus/ node_exporter
https://github.com/google/cadvisor

REFERENCES

[188] N. Srivastava et al., “Dropout: a simple way to prevent neural networks from overfitting,” The

journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[189] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (mae) over the root

mean square error (rmse) in assessing average model performance,” Climate research, vol. 30,

no. 1, pp. 79–82.

[190] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” International

journal of forecasting, vol. 22, no. 4, pp. 679–688, 2006.

[191] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute error (mae)?–

arguments against avoiding rmse in the literature,”Geoscientific model development, vol. 7, no. 3,

pp. 1247–1250, 2014.

[192] N.-B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection for kernel density esti-

mation: a review of fully automatic selectors,” AStA Advances in Statistical Analysis, vol. 97,

no. 4, pp. 403–433, 2013.

[193] L. Song, “Cognitive networks: standardizing the large scale wireless systems,” in Proc. of the 5th

IEEE Consumer Communications and Networking Conference, 2008, pp. 988–992.

[194] H. a. Alaiz-Moreton, “Multiclass classification procedure for detecting attacks on mqtt-iot pro-

tocol,”Complexity, vol. 1, 2019.

[195] NGMN, “5g white paper,” vol. 1, February 2015.

[196] “Open5gs,” https://github.com/open5gs/open5gs, accessed on 15/10/2021.

[197] D. Clark, R. Braden, and S. Shenker, “Integrated services in the internet architecture: An

overview,”RFC 1633, 1994.

[198] L. Z. al., “Resource reservation protocol (rsvp)–version 1 functional specification,” RFC 2205,

1997.

[199] C. S. L. Sony and K. Cho, “Traffic data repository at the wide project,” In Proc. of the USENIX

Annual Technical Conference: FREENIX Track, pp. 263–270, 2000.

183

[200] A. F. al., SMOTE for learning from imbalanced data: progress and challenges, marking the

15-year anniversary. Journal of artificial intelligence research, 2018.

[201] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Journal of computational and applied mathematics, 1987.

[202] J. F. al., “Prefix-preserving ip address anonymization,” In Computer Networks 46, pp. 253–272,

2004.

[203] S. Raschka, Python machine learning. Packt Publishing Ltd, 2015.

[204] T. Afonja, Accuracy Paradox. Towards Data Science, 2017.

[205] N. V. C. al., “Smote: synthetic minority over-sampling technique,” Journal of artificial intelli-

gence research 16, pp. 321–357, 2002.

[206] A. T. al., “Linear discriminant analysis: A detailed tutorial,”AI communications 30, vol. 2, pp.

169–190, 2017.

[207] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in In Pro-

ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007, pp.

1027–1035.

Alessio DIAMANTI

A novel network automation architecture:
from anomaly detection to dynamic

reconfiguration

Résumé : Les technologies de softwarisation des réseaux entrâınent de nouvelles architectures
de réseau qui remettent en question les systèmes de gestion des défaillance existants et la
caractérisation de la résilience. En effet, la coordination entre les différents composants logiciels
pour, par exemple, l’orchestration, la commutation et la gestion des machines virtuelles et des
conteneurs, implique différents points de supervision et de nouvelles sources de défaillance et
de bogues. Dans cette thèse, nous proposons un framework d’automatisation de réseau qui
détecte les anomalies et caractérise l’état de résilience d’un service de réseau virtualisé. Un
algorithme basé sur les Long Short Term Memory Autoencoder analyse une série temporelle
multidimensionnelle construite à partir de centaines de métriques collectées au niveau des
couches physique, virtuelle et de service. Il apprend les conditions de fonctionnement nominales
de l’infrastructure, sur la base desquelles les déviations (anomalies) par rapport à la référence
apprise sont détectées et analysées. Le framework produit une caractérisation des déviations
utilisée pour élaborer le graphe d’état et la visualisation sous forme de radiographie. Tandis
que cette dernière visualise de manière compacte la propagation des anomalies à travers les
trois couches composant un réseau virtualisé, le graphe d’état vise à établir l’état de résilience
de la plateforme comme base d’un algorithme de réorchestration qui s’appuie sur une nouvelle
technique de gestion de la résilience basée sur la réputation. Le framework est implémenté et
validé par des tests expérimentaux sur la plateforme Kubernetes hébergeant un services de
cœur de réseau virtualisé conteneurisé et open-source.

Mots clés :Automatisation des réseaux, Détection d’anomalies, Reconfiguration, NFV,
Machine learning

REFERENCES
Abstract : Legacy and novel network services are expected to be migrated and designed
to be deployed in fully virtualized environments which lead to novel network architectures
that challenge legacy fault management systems and resilience characterization. Indeed, the
coordination among the different software components for, e.g., orchestration, switching, and
virtual machine and container management creates different monitoring points, besides novel
sources of faults and bugs. In this thesis, we propose a network automation framework that
detects anomalies and characterizes the resiliency state of a virtualized network service. A
Long-Short-Term-Memory-Autoencoder-based algorithm analyzes a multidimensional time-
series built from hundreds of metrics collected at the physical, virtual, and service layers.
It learns the nominal working conditions of both the infrastructure and the service, and for
each type of resource (i.e., CPU, network, memory, and disk); it then detects and analyzes
deviations (anomalies) from the learned reference. The produced deviations characterization
is finally used to generate both the transition state graph and the innovative radiography
visualization. The latter compactly visualizes the propagation of anomalies across all the
layers down from the physical and up to the service, highlighting the temporal evolution
as well. The former aims at establishing the virtualized platform state as the basis for a
re-orchestration algorithm that leverages a novel reputation-based resiliency management
technique. We implement and validate the proposed framework through experimental tests on
the Kubernetes platform hosting a containerized, open-source, and virtualized network core
service.

Keywords : Network automation, Anomaly detection, Reconfiguration, NFV, Machine
learning

186

	Resumé
	Détection et caractérisation des anomalies des systèmes virtualisés
	Évaluation de l'état du système virtualisé
	Méthode de reconfiguration automatisée
	Remarques conclusives et perspectives

	Introduction
	Background and motivation
	Contributions and thesis outline
	Publications

	Related Work
	Network softwarization
	Network Function Virtualization
	NFV Management and Orchestration
	Software Defined Networking
	Cloud Computing for networking
	Fully softwarized networks

	Network resilience
	Cognitive closed loop automation for resiliency management
	Network state assessment
	Network baseline and anomaly detection for telecommunication networks
	Machine Learning methods
	Anomaly diagnosis and characterization
	Fault mitigation and automatic reconfiguration

	Reputation assessment modeling
	Machine learning techniques
	Machine learning and Deep Learning
	AutoEncoders
	Long-Short-Term Memory
	Reinforcement Learning

	Virtualized System Anomaly Detection and Characterization
	Introduction
	Virtual IP Multimedia Subsystem (vIMS) testbed
	Platform architecture and traffic simulation
	Dataset

	The SYRROCA framework
	Metrics collection and pre-processing
	Training
	Anomaly detection and characterization
	Radiographies

	Experimental results
	Training on a nominal scenario
	Test phase on degraded conditions
	Time-windowed radiography

	Conclusion

	Virtualized system state assessment
	Introduction
	System State Inference
	Experimental results
	Training - known state characterization
	Test on degraded conditions
	CPU stress test
	Packet-loss injection test
	Call overload test

	Performance comparison

	Conclusion

	Automated reconfiguration method
	Anomaly remediation
	RL-based remediation policy learning
	Agent
	Reward
	Actions

	Resiliency management and reputation
	Conclusion

	Concluding remarks and perspectives
	Collected metrics
	Going beyond diffserv in IP traffic classification
	Introduction
	Machine Learning Methodology
	The L-DiffServ architecture
	Dataset and Features
	Pre Processing
	Oversampling
	Dimensionality Reduction
	Clustering
	Classification

	Numerical Analysis
	Conclusions

	Performance Comparison of ONOS and ODL controllers
	Topology discovery

	References

