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Résumé

Nous étudions la régularité et la structure topologique d'un ensemble minimisant la fonctionnelle de p-compliance avec une pénalisation de longueur. La caractéristique clé de notre travail est que nous étudions la régularité des minimiseurs pour certains problèmes de type frontière libre avec un ensemble de frontière libre de grande codimension.

Nous prouvons qu'en toute dimension spatiale N ≥ 2 pour chaque p ∈ (N -1, +∞), si Σ est un minimiseur de la fonctionnelle de p-compliance avec une pénalisation de longueur, alors Σ ne peut pas contenir de boucles fermées (c.-à.-d., des images homéomorphes du cercle S 1 ), Σ est C 1,α régulier en presque tout point (par rapport à la mesure de Hausdorff unidimensionnelle) qui est dans un ensemble borné ouvert donné Ω, Σ∩Ω ne peut pas contenir de points quadruples, ce qui signifie qu'il n'y a pas de boule centrée sur Σ et contenue dans Ω telle que Σ dans cette boule soit une union de quatre arcs distincts de classe C 1 , dont chacun rencontre exactement l'un des trois autres à un angle de 180 degrés, et chacun des deux autres à un angle de 90 degrés. Nous montrons également qu'en dimension 2 et pour chaque p ∈ (1, +∞), si Σ est un minimiseur de la fonctionnelle de p-compliance avec une pénalisation de longueur et Σ contient au moins deux points, alors Σ est Ahlfors régulier jusqu'à la frontière d'un domaine lipschitzien. Enfin, nous fournissons une preuve de l'importance de l'hypothèse de connexité dans l'énoncé du problème de p-compliance avec pénalisation de la longueur et dans l'énoncé de la forme contrainte de ce problème pour l'existence de solutions sous les hypothèses optimales.

Les résultats de cette thèse généralisent certains des résultats obtenus dans [CLLS], mais contiennent également de meilleurs résultats en dimension 2 et pour le cas particulier p = 2. Aussi, dans un certain sens et en dimension 2, le résultat de cette thèse peut être considéré comme faisant un lien entre le résultat dans [CLLS] et le résultat dans [Sle].
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Chapter 1 Introduction (version française)

1.1 Énoncé du problème et discussion générale

Dans cette thèse, nous considérons le problème de trouver un ensemble optimal de frontière libre Σ dans une région donnée Ω soumise à une charge appliquée (par exemple, une force externe) afin de minimiser la compliance de la configuration. Dans notre contexte, la classe K(Ω) de frontières libres admissibles, parmi lesquelles nous cherchons un optimum, est constituée de tous les sous-ensembles propres connexes fermés de la fermeture de Ω. En dimension 2, l'ensemble Ω peut être interprété comme une membrane qui est attachée le long de sa frontière et le long de Σ ∈ K(Ω) à une base fixe empêchant le déplacement. Une force s'exerce sur Ω. En variant Σ dans K(Ω), nous voulons trouver un Σ optimal afin que Ω puisse mieux résister à cette force, en tenant compte de la longueur (c.-à.-d., la mesure de Hausdorff unidimensionnelle) de Σ . Une manière possible de mesurer la rigidité de Ω est de calculer le travail total de la force à l'équilibre et d'essayer d'optimiser la forme de Σ afin de minimiser ce travail, à savoir de trouver la compliance minimale ou la rigidité globale maximale, en tenant compte de la longueur de Σ . Dans cette thèse, nous travaillons principalement avec une fonctionnelle qui est la somme du travail pondéré de la force externe exercée sur la membrane et de la longueur pondérée de l'ensemble de frontière libre le long duquel cette membrane est fixée. L'hypothèse de connexité, ainsi que la borne sur la longueur des frontières libres, parmi lesquelles nous cherchons un minimiseur de cette fonctionnelle, donne la compacité nécessaire pour prouver qu'un tel minimiseur existe. Ce problème d'optimisation de forme peut être défini en dimension spatiale arbitraire N ≥ 2 toujours avec une pénalisation avec la mesure de Hausdorff unidimensionnelle. Nous étudions la régularité et la structure topologique des solutions à ce problème. Disons-le plus précisément. Une dimension spatiale N ≥ 2 et un exposant p ∈ (1, +∞) sont donnés. Soit Ω un ensemble borné ouvert de R N et soit f ∈ L q 0 (Ω) avec q 0 = (p * ) si 1 < p < N, q 0 > 1 si p = N, q 0 = 1 si p > N, (1.1.1) où p * = N p/(N -p) et (1/p * ) + (1/(p * ) ) = 1. Nous définissons la fonctionnelle d'énergie

E f,Ω sur W 1,p 0 (Ω) comme suit E f,Ω (u) = 1 p Ω |∇u| p dx - Ω f u dx.
Grâce aux plongements de Sobolev (voir [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Théorème 7.10]), la fonctionnelle E f,Ω est finie sur W 1,p 0 (Ω). Pour chaque sous-ensemble propre fermé Σ de Ω, E f,Ω admet un minimiseur unique u f,Ω,Σ sur W 1,p 0 (Ω\Σ), qui est une solution unique du problème de Dirichlet

     -∆ p u = f dans Ω\Σ u = 0 sur Σ ∪ ∂Ω, (1.1.2) ce qui signifie que u f,Ω,Σ ∈ W 1,p 0 (Ω\Σ) et Ω |∇u f,Ω,Σ | p-2 ∇u f,Ω,Σ , ∇ϕ dx = Ω f ϕ dx ∀ϕ ∈ W 1,p 0 (Ω \ Σ), (1.1.3) où •,
• désigne le produit scalaire euclidien (voir Lemme 3.10.1). Si un ensemble fermé Σ ⊂ Ω est de p-capacité nulle (pour la définition de la capacité, voir Section 3.7), alors u f,Ω,Σ = u f,Ω,∅ (voir Remarque 3.7.11). La dépendance de u f,Ω,Σ sur p est négligée et dans la suite, quand c'est approprié, pour alléger la notation, nous écrirons simplement u Σ au lieu de u f,Ω,Σ . Pour chaque sous-ensemble propre fermé Σ de Ω nous définissons la fonctionnelle de p-compliance à Σ par

C f,Ω (Σ) = -E f,Ω (u Σ ) = 1 p Ω |∇u Σ | p dx = 1 p Ω f u Σ dx.
En dimension 2, comme mentionné précédemment, Ω peut être interprété comme une membrane qu'est attachée le long de Σ ∪∂ Ω à une base fixe et soumise à une force f donnée. L'espace W 1,p 0 (Ω\Σ) est constitué de tous les champs de déplacement cinématiquement admissibles. La forme linéaire d'énergie

l u Σ (ϕ) = Ω |∇u Σ | p-2 ∇u Σ , ∇ϕ dx
représente le travail de la membrane à l'équilibre u Σ et pour un déplacement arbitraire admissible ϕ ∈ W 1,p 0 (Ω\Σ). La valeur E f,Ω (u Σ ) est l'énergie potentielle totale à l'équilibre u Σ , qui, selon l'équation d'équilibre (1.1.3), est égale à -1

p Ω f u Σ dx. La rigidité de la membrane est mesurée à travers la fonctionnelle de p-compliance qui est égale au produit du coefficient 1 p et du travail Ω f u Σ dx effectué par la force f . En variant Σ dans la classe de tous les sous-ensembles propres connexes fermés de Ω, nous voulons trouver la rigidité globale maximale de la membrane, à condition que la mesure de Hausdorff unidimensionnelle pondérée de Σ soit prise en compte. Ainsi, nous devons résoudre le problème d'optimisation de forme suivant, que nous formulons en dimension spatiale arbitraire N ≥ 2. Problème (A). Soit p ∈ (N -1, +∞). Étant donné λ > 0, trouver un ensemble Σ ⊂ Ω minimisant la fonctionnelle F λ,f,Ω définie par

F λ,f,Ω (Σ ) = C f,Ω (Σ ) + λH 1 (Σ )
parmi tous les ensembles Σ dans la classe K(Ω) de tous les sous-ensembles propres connexes fermés de Ω.

Dans la Proposition 3.13.3, il sera prouvé qu'il existe une solution au Problème (A). Nous verrons au Chapitre 4 que la connexité des ensembles admissibles dans l'énoncé du Problème (A) est nécessaire pour l'existence d'une solution à ce problème.

Il est à noter que le Problème (A) peut être formulé en termes de contraintes. En effet, en exprimant -E f,Ω (u Σ ) en termes du principe dual, on obtient la formulation duale suivante

(A * ) min Σ∈K(Ω) min σ∈S(Σ) 1 p Ω |σ| p dx + λH 1 (Σ)
du Problème (A) (voir Proposition 3.15.1). Ici la minimisation par rapport aux contraintes σ est reprise sur l'ensemble S(Σ) des champs de contraintes statiquement admissibles, à savoir

S(Σ) = {σ ∈ L p (Ω; R N ) : div(σ) + f = 0 in D (Ω\Σ)}.
Plus d'informations sur les formulations de compliance minimale que le lecteur peut trouver dans la monographie [Ben].

Expliquons maintenant pourquoi dans l'énoncé du Problème (A) nous ne considérons que l'intervalle (N -1, +∞) pour l'exposant p. Notons que tout ensemble fermé Σ ⊂ Ω avec H 1 (Σ ) < +∞ est tel que W 1,p 0 (Ω) = W 1,p 0 (Ω\Σ ) si p ∈ (1, N -1] (voir Théorème 3.7.2 et Remarque 3.7.11), et cela implique que C f,Ω (Σ ) = C f,Ω (∅). Ainsi, en définissant le Problème (A) pour un exposant p ∈ (1, N -1], nous n'obtiendrions que des solutions triviales à ce problème: chaque point x 0 de Ω et l'ensemble vide. Par contre, si Σ ⊂ Ω est un ensemble fermé tel que Σ ∩ Ω est de dimension de Hausdorff un et tel que H 1 (Σ ) < +∞, alors W 1,p 0 (Ω\Σ ) = W 1,p 0 (Ω) si et seulement si p ∈ (N -1, +∞) (voir Corollaire 3.7.4 et Remarque 3.7.11). Par conséquent, le Problème (A) n'est intéressant que dans le cas où p ∈ (N -1, +∞).

Nous supposons également que f = 0 dans L q 0 (Ω), car sinon la fonctionnelle de pcompliance C f,Ω (•) serait réduite à zéro, et alors chaque solution au Problème (A) serait soit un point x 0 ∈ Ω, soit l'ensemble vide.

La question fondamentale sur les minimiseurs du Problème (A) est la question de savoir si un minimiseur contenant au moins deux points est une union finie de courbes C 1 . En dimension 2 et pour p = 2 dans [CLLS], par analogie avec la fonctionnelle de Mumford-Shah, A. Chambolle, J. Lamboley, A. Lemenant et E. Stepanov ont établi que localement dans Ω un minimiseur du Problème (A), contenant au moins deux points est une union finie de courbes C 1,α qui ne peuvent se rencontrer qu'à leurs extrémités, par ensembles de trois et avec des angles de 120 degrés. Les auteurs ont prouvé que si Σ est un minimiseur du Problème (A) et Σ est suffisamment proche, dans une boule B r (x 0 ) telle que B r (x 0 ) ⊂ Ω et dans la distance de Hausdorff, à un diamètre de B r (x 0 ), alors il existe une constante a ∈ (0, 1) telle que Σ ∩ B ar (x 0 ) est un arc C 1,α . Ensuite, ils ont introduit la notion de minimiseur global pour le Problème (A) (dans le cas où N = p = 2) et ont prouvé qu'en tout point x ∈ Σ ∩ Ω, où Σ est un minimiseur du Problème (A) avec diam(Σ) > 0, toute suite d'explosion convergente converge vers un minimiseur global. Ensuite, en utilisant la formulation duale (A * ) du Problème (A), les auteurs ont prouvé que si ( u, Σ) est un minimiseur global pour le Problème (A), alors u admet un conjugué harmonique v dans R 2 \ Σ et (v, Σ) est un minimiseur global de Mumford-Shah dans le sens de A. Bonnet (voir [Bon]). Ainsi, les auteurs ont obtenu la liste complète des minimiseurs globaux, à savoir, jusqu'à une rotation et une translation (voir la Figure 1.1.1): 1) u = 0 et Σ est une ligne; 2) u = 0 et Σ est une hélice, c'.-à.-d., une union de trois demi-lignes émanant d'un point et formant des angles de 120 degrés; 3) u est la fonction "Dirichlet crack-tip" qui en coordonnées polaires est donnée par u(r, ϕ) = 2r π cos ϕ 2 , (r, ϕ) ∈ [0, +∞) × [0, 2π], et Σ = {(t, 0) : t ∈ [0, +∞)}. L'outil principal qui a été utilisé dans [CLLS] pour prouver le théorème de ε-régularité (si le minimiseur Σ est assez proche, dans une boule B r (x 0 ) telle que B r (x 0 ) ⊂ Ω, et dans la distance de Hausdorff, à un diamètre de B r (x 0 ), alors il existe une constante a ∈ (0, 1) telle que Σ ∩ B ar (x 0 ) est un arc C 1,α ) est une prétendue formule de monotonie (voir Chapitre 6) qui a été inspirée par A. Bonnet sur la fonctionnelle de Mumford-Shah (voir [Bon]). Cette formule de monotonie a également été un outil clé dans la classification des limites d'explosion (dans le cas où N = p = 2), car elle implique que pour tout point x 0 ∈ Σ il existe la limite

lim r→0+ 1 r Br(x 0 ) |∇u Σ | 2 dx = e(x 0 ) ∈ [0, +∞).
Selon [CLLS], toutes les limites d'explosion en tout x 0 ∈ Σ ∩ Ω sont du même type: soit e(x 0 ) > 0 et toutes les limites d'explosion en x 0 doivent être une demi-ligne, soit e(x 0 ) = 0. Dans ce dernier cas, soit il y a une limite d'explosion en x 0 qui est une ligne, puis toutes les autres limites d'explosion en x 0 doivent également être une ligne, soit il n'y a pas de ligne, puis toutes les limites d'explosion en x 0 sont des hélices. Plus précisément, étant donné un point x 0 ∈ Σ ∩ Ω nous n'avons qu'une des trois possibilités suivantes:

(i) x 0 appartient à l'intérieur d'un seul arc lisse; dans ce cas x 0 est appelé un point régulier ou plat.

(ii) x 0 est une extrémité commune de trois arcs distincts qui forment en ce point trois angles égaux de 120 degrés; dans ce cas x 0 est appelé un point triple.

(iii) x 0 est l'extrémité d'un et un seul arc; dans ce cas x 0 est appelé un crack-tip.

Cependant, l'approche de [CLLS] ne fonctionne pas pour les cas où p = 2. Le principal obstacle à une généralisation complète du résultat établi dans [CLLS] est l'absence d'une bonne formule de monotonie, lorsque l'énergie de Dirichlet n'est pas quadratique (p = 2). Notons qu'en deux dimensions et pour p = 2 une formule de monotonie peut encore être établie pour la p-énergie (voir Chapitre 6), mais la puissance résultante du rayon dans cette formule de monotonie n'est pas assez grande (voir Remarque 6.2.4), et cette formule ne peut pas être utilisée pour prouver les estimations C 1,α comme dans le cas N = p = 2. En revanche, nous ne savons pas s'il existe une formule de monotonie similaire pour la p-énergie en dimension N ≥ 3, mais nous supposons qu'il n'y en a pas. Ainsi, nous ne disposons pas d'outil permettant d'établir une classification des limites d'explosion dans le cas où p = 2. C'est la raison pour laquelle dans cette thèse nous ne prouvons que le résultat de régularité C 1,α partiel pour les solutions au Problème (A). Néanmoins, nous supposons que si Σ est une solution au Problème (A) et Σ a au moins deux points, alors Σ est une union finie de courbes C 1,α .

Le problème de compliance optimale peut également être formulé sous des contraintes de longueur. À savoir, considérons le problème suivant. Problème (B). Soit p ∈ (N -1, +∞). Étant donné L > 0, trouver un ensemble Σ ⊂ Ω minimisant la fonctionnelle de p-compliance C f,Ω parmi tous les ensembles Σ dans la classe A L (Ω) de tous les sous-ensembles connexes fermés de Ω satisfaisant la contrainte 0 < H 1 (Σ ) ≤ L.

Ce problème a été étudié dans [START_REF] Buttazzo | Asymptotical compliance optimization for connected networks[END_REF][START_REF] Nayam | Asymptotics of an optimal compliance-network problem[END_REF][START_REF] Nayam | Constant in two-dimensional p-compliance-network problem[END_REF], et dans [START_REF] Buttazzo | Asymptotical compliance optimization for connected networks[END_REF] il a été prouvé qu'il admet une solution. Cependant, la question de savoir si chaque solution à ce problème est une union finie de courbes C 1 est toujours ouverte même en dimension 2 et pour le cas linéaire p = 2. Compte tenu de la particularité du Problème (B), il semble que la principale difficulté pour résoudre cette question réside dans le fait que pour le Problème (B) nous n'avons pas une sorte de "minimisation locale" de la mesure de Hausdorff unidimensionnelle, contrairement au Problème (A). Néanmoins, en établissant le résultat de régularité pour les solutions au Problème (A), nous établissons automatiquement le même résultat pour certaines solutions au Problème (B). En effet, si Σ ⊂ Ω est une solution au Problème (A) telle que diam(Σ) > 0, alors Σ résout le Problème (B) à condition que L = H 1 (Σ).

D'après le résultat de Γ-convergence établi dans [START_REF] Buttazzo | Asymptotical compliance optimization for connected networks[END_REF], dans un certain sens, la limite du Problème (A) lorsque p → +∞ correspond à la minimisation de la fonctionnelle suivante

K(Ω) Σ → Ω dist(x, Σ ∪ ∂Ω)f (x) dx + λH 1 (Σ),
qui, ainsi que sous sa forme contrainte, a été largement étudiée dans la littérature (voir, par exemple, [START_REF] Buttazzo | Optimal transportation problems with free Dirichlet regions[END_REF][START_REF] Buttazzo | Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem[END_REF][START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in R N[END_REF][START_REF] Santambrogio | Blow-up of optimal sets in the irrigation problem[END_REF][START_REF] Stepanov | Partial geometric regularity of some optimal connected transportation networks[END_REF][START_REF] Buttazzo | Stationary configurations for the average distance functional and related problems[END_REF][START_REF] Tilli | Some explicit examples of minimizers for the irrigation problem[END_REF][START_REF] Lemenant | About the regularity of average distance minimizers in R 2[END_REF][START_REF] Slepčev | Counterexample to regularity in average-distance problem[END_REF]). Il est connu que les minimiseurs de cette fonctionnelle peuvent ne pas être C 1 réguliers (voir [Sle]).

Rappelons que le sujet principal de cette thèse est l'étude de la régularité et de la structure topologique des solutions au Problème (A). Soulignons maintenant nos contributions à cette étude.

Principaux résultats

Plusieurs de nos résultats tiendront sous certaines conditions d'intégrabilité sur la source f . À savoir, nous définissons

q 1 = N p N p -N + 1 si 2 ≤ p < +∞, q 1 = 2p 3p -3 si 1 < p < 2,
(1.2.1) et nous remarquons que q 1 ≥ q 0 , où q 0 est défini dans (1.1.1). La condition f ∈ L q 1 (Ω) pour p ∈ [2, +∞) est naturelle, puisque q 1 semble dans ce cas être le bon exposant ce qui implique une estimation de type Br(x 0 ) |∇u| p dx ≤ Cr pour la solution u du problème de Dirichlet

-∆ p v = f dans B r (x 0 ), v ∈ W 1,p 0 (B r (x 0 ))
(voir Lemme 5.1.1), le type d'estimation que nous recherchons pour établir des propriétés de régularité sur un minimiseur Σ du Problème (A). Le principal résultat de régularité établi dans cette thèse est le suivant.

Théorème. Soit Ω ⊂ R N ouvert et borné, p ∈ (N -1, +∞), f ∈ L q (Ω) avec q > q 1 , où q 1 est défini dans (1.2.1). Alors il existe une constante α ∈ (0, 1) telle que ce qui suit est vrai. Soit Σ une solution au Problème (A). Alors pour H 1 -presque tout point x ∈ Σ ∩Ω nous pouvons trouver un rayon r 0 > 0 dépendant de x tel que Σ ∩B r 0 (x) est une courbe C 1,α .

Dans le théorème ci-dessus, quand nous disons qu'une solution Σ au Problème (A) est C 1,α régulière en H 1 -presque tout point x ∈ Σ ∩ Ω, nous voulons dire que l'ensemble des points Σ ∩ Ω autour desquels Σ n'est pas une courbe C 1,α a la mesure H 1 nulle. Ainsi, ce théorème n'est intéressant que dans le cas où diam(Σ) > 0, ce qui se trouve être vrai au moins pour toutes les valeurs suffisamment petites de λ. À savoir, nous avons prouvé ce qui suit.

Proposition. Soit Ω ⊂ R N ouvert et borné, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0 et q 0 est défini dans (1.1.1). Alors il existe un nombre λ 0 = λ 0 (N, p, f, Ω) > 0 tel que si le Problème (A) est défini pour λ ∈ (0, λ 0 ], alors chaque solution Σ à ce problème vérifie la condition diam(Σ) > 0. De plus, si p > N et le Problème (A) est défini pour un λ > 0 arbitraire, alors l'ensemble vide ne sera pas une solution au Problème (A).

Nous avons également établi des propriétés topologiques et qualitatives pour les minimiseurs du Problème (A).

Théorème. Soit Ω ⊂ R N ouvert et borné, p ∈ (N -1, +∞) et f ∈ L q (Ω) avec q > q 1 , où q 1 est défini dans (1.2.1). Soit Σ une solution au Problème (A). Alors Σ ne peut pas contenir de boucles fermées (c.-à.-d., des images homéomorphes du cercle unité S 1 ) et, par conséquent, Σ est topologiquement un arbre.

Dans le théorème suivant la condition d'intégrabilité sur la source f semble être optimale, mais nous ne savons pas si la restriction sur les domaines lipschitziens est nécessaire pour prouver qu'en dimension 2 et pour chaque p ∈ (1, +∞), si Σ est une solution au Problème (A) ayant au moins deux points, alors Σ est Ahlfors régulière.

Théorème. Soit Ω ⊂ R 2 un domaine borné avec une frontière localement lipschitzien, p ∈ (1, +∞) et f ∈ L 2p 2p-1 (Ω). Soit Σ une solution au Problème (A) avec diam(Σ) > 0. Alors Σ est Ahlfors régulier.

Rappelons que l'Ahlfors régularité d'un ensemble fermé connexe Σ implique la rectifiabilité uniforme de Σ, qui fournit plusieurs propriétés analytiques utiles de Σ, voir, par exemple, [DS].

De plus, nous avons prouvé que si Σ est une solution au Problème (A), alors Σ∩Ω ne peut pas contenir des points quadruples, c.-à.-d., qu'il n'y a pas de point x ∈ Σ ∩ Ω tel que pour un rayon assez petit r > 0, l'ensemble Σ ∩ B r (x) est une union de quatre arcs C 1 distincts, dont chacun rencontre au point x exactement l'un des trois autres à un angle de 180 degrés, et chacun des deux autres à un angle de 90 degrés.

Proposition. Soit Ω ⊂ R N ouvert et borné, p ∈ (N -1, +∞) et f ∈ L q (Ω) avec q > q 1 , où q 1 est défini dans (1.2.1). Si Σ est une solution au Problème (A), alors Σ ∩ Ω ne peut pas contenir des points quadruples dans Ω.

Il convient de mentionner que l'importance de la connexité des ensembles admissibles dans les énoncés du Problème (A) et du Problème (B) pour l'existence de solutions à ces problèmes n'avait pas été prouvée, mais il a été simplement mentionné comme une remarque sans preuve dans [CLLS] pour le cas particulier N = p = 2. Dans cette thèse, nous fournissons une preuve détaillée dans une dimension spatiale arbitraire N ≥ 2 pour tout p ∈ (N -1, +∞) et pour l'hypothèse d'intégrabilité optimale sur la source f ∈ L q 0 (Ω).

Théorème. Soit Ω ⊂ R N ouvert et borné, λ > 0, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0, q 0 est défini dans (1.1.1). Alors l'existence de minimiseurs pour la fonctionnelle F λ,f,Ω sur la classe de tous les sous-ensembles propres fermés de Ω échoue.

Théorème. Soit Ω ⊂ R N ouvert et borné, L > 0, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0, q 0 est défini dans (1.1.1). Alors l'existence de minimiseurs pour la fonctionnelle de p-compliance C f,Ω sur la classe Σ ⊂ Ω : Σ est fermé, 0 < H 1 (Σ ) ≤ L échoue.

Ces résultats généralisent certains des résultats de [CLLS] pour N ≥ 2 et p > N -1, mais contiennent également de meilleurs résultats dans le cas particulier N = p = 2. En effet, notre condition q > q 1 sur l'intégrabilité de la source f pour le cas particulier N = p = 2 donne q > 4 3 pour que les résultats de ε-régularité, l'absence de boucles et l'absence de points quadruples soient vrais, ce qui est meilleur que celui de [CLLS] pour lequel q > 2 était requis. Selon notre résultat de l'Ahlfors-régularité en dimension 2, il est vérifié sous l'hypothèse d'intégrabilité q = 2p 2p-1 qui semble être optimale et il est prouvé jusqu'à la frontière d'un domaine lipschitzien, ce qui généralise le "résultat interne" précédent de [CLLS]. Rappelons également que l'existence de solutions non triviales au Problème (A) et l'importance de l'hypothèse de connexité dans son énoncé n'ont pas été établies dans [CLLS].

Cette thèse a fourni le matériel pour trois articles [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF][START_REF] Bulanyi | On the importance of the connectedness assumption in the statement of the optimal p-compliance problem[END_REF][START_REF] Bulanyi | Partial regularity for the optimal p-compliance problem with length penalization, to appear in Calc[END_REF]. L'article [BL] a été coécrit avec A. Lemenant.

Discussion des preuves

Décrivons les preuves de nos principaux résultats par ordre croissant du numéro de chapitre.

Importance de l'hypothèse de connexité.

Comme cela a été mentionné comme une simple remarque dans [CLLS], il est assez intuitif d'admettre que, sans aucune hypothèse de connexité, le Problème (A) et le Problème (B) deviennent triviaux, dans le sens que l'infimum est égal à 0. L'idée est que l'ensemble optimal non connexe Σ essaierait de " remplir " Ω afin de diminuer autant que possible l'énergie, mais en même temps en gardant la longueur totale aussi petite que possible. Notre résultat est optimal et il répond complètement à la remarque qui a été suggérée dans [CLLS], et va même au-delà, puisqu'il est valide dans toute dimension spatiale N ≥ 2 pour chaque exposant p ∈ (N -1, +∞) et pour l'hypothèse d'intégrabilité optimale sur la source f . La preuve utilise des estimations explicites de la p-capacité d'un segment pour dériver des inégalités de type Poincaré pour les fonctions de Sobolev dans un cube N -dimensionnel s'annulant sur un petit segment à l'intérieur de ce cube. La preuve utilise également les formulations duales des problèmes afin d'obtenir une estimation globale sur une famille de N -cubes disjoints qui ont été " collés " ensemble. En additionnant toutes les estimations et en passant à la limite de la " taille " des N -cubes (allant vers zero), nous obtenons la conclusion souhaitée.

Ahlfors régularité en dimension 2.

Rappelons tout d'abord qu'un ensemble Σ ⊂ R N est dit Ahlfors régulier de dimension 1, s'il existe des constantes c > 0, C > 0 et r 0 > 0 telles que pour tout r ∈ (0, r 0 ) et tout x ∈ Σ, cr ≤ H 1 (Σ ∩ B r (x)) ≤ Cr.

(1.3.1)

Notons que si Σ ⊂ R N est un ensemble connexe avec diam(Σ) > 0, alors pour chaque x ∈ Σ et chaque r ∈ (0, diam(Σ)/2), Σ ∩∂B r (x) = ∅ et donc

H 1 (Σ ∩ B r (x)) ≥ r
(voir Lemme 3.5.4). Ainsi, la preuve de l'Ahlfors régularité pour un minimiseur Σ du Problème (A) de diamètre positif, se réduit à montrer qu'il existe des constantes r 0 > 0 et C > 0 telles que la borne supérieure dans (1.3.1) soit vérifiée pour chaque point x ∈ Σ et chaque rayon r ∈ (0, r 0 ). Pour obtenir cette borne supérieure, pour chaque point x ∈ Σ et chaque rayon suffisamment petit r > 0, nous pourrions essayer de construire un compétiteur Σ x,r , satisfaisant la condition suivante C f,Ω (Σ x,r ) -C f,Ω (Σ) + λH 1 (Σ x,r ) -λH 1 (Σ\B r (x)) ≤ Cr, (1.3.2) où C > 0 est une constante fixe indépendante du choix de x et r. En effet, en utilisant l'optimalité de Σ, à savoir le fait que C f,Ω (Σ) + λH 1 (Σ) ≤ C f,Ω (Σ x,r ) + λH 1 (Σ x,r ), et aussi en utilisant (1.3.2), nous obtiendrions la borne supérieure de (1.3.1). Il convient de souligner deux difficultés principales qui se posent lors nous essayons majorer la valeur de C f,Ω ( Σ) -C f,Ω (Σ), où Σ est un compétiteur du minimiseur Σ tel que Σ∆ Σ ⊂ B r (x).

La première est un comportement non local de la fonctionnelle de p-compliance. À savoir, en modifiant Σ dans un petit voisinage d'un point x ∈ Σ pour que l'ensemble résultant Σ soit un compétiteur de Σ, nous changeons u Σ dans tout Ω et il semble difficile d'essayer d'estimer directement C f,Ω ( Σ) -C f,Ω (Σ) sans connaître le comportement de Σ à une échelle suffisamment grande. Une manière possible de surmonter cette difficulté est d'utiliser la formulation duale du Problème (A), qui nous donne le Problème (A * ) "localisé". La deuxième difficulté principale est que la fonctionnelle C f,Ω est décroissante par rapport à l'inclusion d'ensemble.

En dimension 2 et dans le cas où B r (x) ⊂ Ω, comme dans [START_REF] Miranda | On one-dimensional continua uniformly approximating planar sets[END_REF]Théorème 5.1], nous prenons Σ x,r = (Σ\B r (x)) ∪ ∂B r (x). Ensuite, comme dans [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF]Remarque 7.3], nous définissons σ x,r ∈ L p (Ω; R N ) par

σ x,r =      |∇u Σ | p-2 ∇u Σ dans Ω\(Σ x,r ∪ B r (x)), |∇u| p-2 ∇u dans B r (x), u ∈ W 1,p 0 (B r (x)) résout -∆ p u = f dans B r (x).
Ce choix particulier de σ x,r donne que 

1 p Ω |∇u Σ | p dy + λH 1 (Σ) ≤ 1 p Ω |σ x,r | p dy + λH 1 (Σ x,r ) (1.3.3) ≤ 1 p Ω\Br(x)
|∇u Σ | p dy + Cr + λH 1 (Σ\B r (x)) + λH 1 (∂B r (x)).

D'où H 1 (Σ ∩ B r (x)) ≤ Cr. Afin d'obtenir le même type d'estimation dans le cas où B r (x) ∩ ∂Ω = ∅, nous supposons que Ω est un domaine lipschitzien. Cette hypothèse donne qu'il existe δ > 0 et r ∂Ω > 0 tels que pour chaque s ∈ (0, r ∂Ω ) et chaque z ∈ ∂Ω, l'ensemble ∂Ω ∩ B s (z) jusqu'à une rotation de coordonnées est contenu dans le cône

K δ = {y ∈ R 2 : y = 0 ou angle(y, e 1 ) ∈ [0, arctan(δ)] ∪ [π -arctan(δ), π]}, où e 1 = (1, 0) ∈ R 2 .
Cela nous permet de construire un compétiteur Σ x,r , qui est donné par (Σ\R) ∪ (∂R ∩ Ω), où R est un rectangle ouvert approprié centré sur une projection de x sur ∂Ω, ayant une largeur de 4r et une longueur de 4 max{1, δ}r, et contenant la boule B r (x). 

Ensuite, nous pouvons définir σ

x,r ∈ L p (Ω; R N ) par σ x,r =      |∇u Σ | p-2 ∇u Σ dans Ω\(Σ x,r ∪ R), |∇u| p-2 ∇u dans R ∩ Ω, u ∈ W 1,p 0 (R ∩ Ω) résout -∆ p u = f dans R ∩ Ω. Puisque (σ x,r , Σ x,r ) est un compétiteur pour (|∇u Σ | p-2 ∇u Σ , Σ) et Ω |σ x,
= C 0 (p, q 0 , f (2p) , λ) > 0 et r 0 = r 0 (Ω , Ω) > 0 telles que si Σ est un minimiseur du Problème (A), alors H 1 (Σ ∩ B r (x)) ≤ C 0 r chaque fois que x ∈ Σ ∩ Ω et 0 < r ≤ r 0 .
En revanche, la question de l'Ahlfors régularité en dimension N ≥ 3 semble difficile et intéressante. Comme nous l'avons déjà vu ci-dessus, dans notre démonstration de l'Ahlfors régularité des minimiseurs du Problème (A) en dimension 2, nous utilisons, par exemple, dans le " cas interne " l'ensemble (Σ\B r (x)) ∪ ∂B r (x) comme un compétiteur pour le minimiseur Σ. Mais en dimension N ≥ 3 nous ne pouvons pas utiliser efficacement un tel compétiteur, parce que ∂B r (x) est de mesure H 1 infinie dans ce cas. Néanmoins, sous certaines hypothèses supplémentaires, nous prouverons au Chapitre 10 une sorte d'estimation de l'Ahlfors régularité pour les minimiseurs du Problème (A) dans chaque dimension spatiale N ≥ 2.

Décroissance de la p-énergie sous contrôle de planéité.

Pour prouver le résultat de régularité partielle C 1,α et l'absence de boucles fermées, nous établissons d'abord un comportement de décroissance de la p-énergie r → Br(x 0 ) |∇u Σ | p dx sous contrôle de planéité sur Σ à x 0 ∈ Ω, à savoir, nous prouvons d'abord ce qui suit: sous certaines conditions (dépendant de N et p, où p > N -1) sur l'intégrabilité de la source f , il existe des constantes b ∈ (0, 1)

et C > 0 telles que si Σ ∩ B r (x 0 ) reste assez plat pour tout r ∈ [r 0 , r 1 ], B r 1 (x 0 ) ⊂ Ω, r 1 est suffisamment petit, r 0 > 0 est assez petit par rapport à r 1 , alors Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ∀r ∈ [r 0 , r 1 ]
(voir Lemme 7.2.5). Pour cela, nous utilisons la stratégie suivante composée de quatre étapes.

Étape 1. Nous montrons qu'il existe α, δ ∈ (0, 1) et C > 0, ne dépendant que de N et p, tels que pour toute solution faible u à l'équation de p-Laplace dans B 1 (0)\({0} N -1 × (-1, 1)) s'annulant p-quasi partout sur {0} N -1 × (-1, 1), l'estimation

Br(0) |∇u| p dx ≤ Cr 1+α B 1 (0)
|∇u| p dx est vraie pour tout r ∈ (0, δ] (voir Lemme 7.1.1, Corollaire 7.1.5). En dimension 2, nous pouvons utiliser une méthode de réflexion pour estimer une solution faible de l'équation de p-Laplace dans B 1 (0)\({0} × (-1, 1)), qui s'annule p-quasi partout sur {0} × (-1, 1) (voir Lemme 7.1.3). Cette méthode n'est plus valable pour une solution faible de l'équation de p-Laplace dans B 1 (0)\({0} N -1 × (-1, 1)), qui s'annule p-quasi partout sur {0} N -1 × (-1, 1) si N ≥ 3. Dans toute dimension spatiale N ≥ 2, nous utilisons d'abord une certaine fonction barrière que nous avons construite nous-mêmes (voir Lemme 3.9.11), mais qui est dans un certain sens plus faible et plus simple que celles de [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF][START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF], afin d'estimer une fonction p-harmonique positive dans B 1 (0)\({0} N -1 × (-1, 1)), continue dans B 1 (0) et s'annulant sur {0} N -1 × (-1, 1). Cela nous permet d'obtenir le même type d'estimation pour simplement une solution faible de l'équation de p-Laplace dans B 1 (0)\({0} N -1 × (-1, 1)) s'annulant p-quasi partout sur {0} N -1 × (-1, 1). Étape 2. En raisonnant par l'absurde et compacité, nous établissons une estimation similaire à celle d' Étape 1 pour une solution faible de l'équation de p-Laplace dans B r (x 0 )\Σ qui s'annule sur Σ ∩ B r (x 0 ) dans le cas où Σ ∩ B r (x 0 ) est assez proche dans la distance de Hausdorff à un diamètre de B r (x 0 ). Rappelons que la distance de Hausdorff pour deux ensembles non vides

A, B ⊂ R N est définie par d H (A, B) = max sup x∈A dist(x, B), sup y∈B dist(y, A) .

Pour chaque ensemble non vide

A ⊂ R N , nous convenons immédiatement de définir d H (∅, A) = d H (A, ∅) = +∞ et d H (∅, ∅) = 0.
Soit α, δ, C comme à l' Étape 1. Nous montrons que pour chaque ∈ (0, δ] il existe ε 0 ∈ (0, ) tel que si u est une solution faible de l'équation de p-Laplace dans B r (x 0 )\ Σ s'annulant p-quasi partout sur Σ ∩B r (x 0 ), où Σ est un ensemble fermé tel que

(Σ ∩ B r (x 0 )) ∪ ∂B r (x 0 ) est connexe et 1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0 pour une certaine ligne affine L ⊂ R N passant par x 0 , alors l'estimation suivante est vraie B r (x 0 ) |∇u| p dx ≤ (C ) 1+α Br(x 0 )
|∇u| p dx (voir Lemme 7.2.1). Étape 3. Rappelons que nous voulons établir une estimation de décroissance pour la solution

u Σ du problème de Dirichlet -∆ p u = f dans Ω\Σ, u ∈ W 1,p 0 (Ω\Σ)
dans une boule B r (x 0 ) ⊂ Ω chaque fois que Σ est suffisamment proche, dans B r (x 0 ) et dans la distance de Hausdorff, à un diamètre de B r (x 0 ). Pour cela, nous contrôlons d'abord la différence entre u Σ et son remplacement de p-Dirichlet dans B r (x 0 )\Σ, où par le remplacement de p-Dirichlet de u Σ dans B r (x 0 )\Σ nous entendons la solution w ∈ W 1,p (B r (x 0 )) au problème du Dirichlet

-∆ p u = 0 dans B r (x 0 )\Σ, u -u Σ ∈ W 1,p 0 (B r (x 0 )\Σ).
Ensuite, pour un certain a = a(N, p) ∈ (0, 1) suffisamment petit, en utilisant l'estimation de l'énergie locale Bar(x 0 ) |∇w| p dx provenant de l' Étape 2 et également l'estimation de la différence entre u Σ et w dans B r (x 0 )\Σ, nous arrivons à l'estimation de décroissance suivante pour u Σ : ,p,q) , où γ(N, p, q) ∈ (0, 1) à condition que q > q 1 et f ∈ L q (Ω), où q 1 est défini dans (1.2.1) (voir Lemmes 7.2.2 et 7.2.4). Étape 4. Enfin, en itérant le résultat de l' Étape 3 dans une suite de boules {B a l r 1 (x 0 )} l , nous obtenons le comportement de décroissance souhaité de la p-énergie r → Br(x 0 ) |∇u Σ | p dx sous contrôle de planéité sur Σ à x 0 ∈ Ω. À savoir, il existe b ∈ (0, 1) et C > 0 tels que si Σ ∩ B r (x 0 ) reste assez plat pour tout r dans [r 0 , r 1 ], B r 1 (x 0 ) ⊂ Ω, r 1 est suffisamment petit, r 0 > 0 est assez petit par rapport à r 1 , alors l'estimation suivante est vraie

1 ar Bar(x 0 ) |∇u Σ | p dx ≤ 1 2 1 r Br(x 0 ) |∇u Σ | p dx + Cr γ(N
Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ∀r ∈ [r 0 , r 1 ]
(voir Lemme 7.2.5). Ainsi, si x 0 ∈ Σ ∩ Ω et Σ ∩ B r (x 0 ) reste assez plat pour tout r > 0 suffisamment petit, alors l'énergie r → 1 r Br(x 0 ) |∇u Σ | p dx converge vers zéro pas plus lentement que Cr b pour certains b ∈ (0, 1) et C > 0. Ceci sera utilisé pour prouver le résultat C 1,α souhaité, et le même type d'estimation sera également utilisé pour prouver l'absence de boucles fermées.

Absence de boucles.

Si un minimiseur Σ du Problème (A) contenait une image Γ homéomorphe du cercle S 1 , alors il existerait un point x 0 ∈ Γ ∩ Ω tel qu'il y aurait une suite d'ensembles relativement ouverts

D n ⊂ Σ satisfaisant: x 0 ∈ D n pour tout n suffisamment grand; Σ \D n sont connexes pour tout n; diam D n 0 lorsque n → +∞; D n sont connexes pour tout n; il existe la ligne affine T x 0 telle que x 0 ∈ T x 0 et 1 r d H (Σ ∩ B r (x 0 ), T x 0 ∩ B r (x 0 )) → 0 lorsque r → 0+
(voir Lemmes 8.1.1 et 8.1.2). Nous pourrions donc "découper" D n pour lequel la condition H 1 (D n ) ≥ diam(D n ) est vérifiée, et estimer la variation résultante de la p-compliance en termes de (diam(D n )) 1+b , où b ∈ (0, 1) est une constante fixe, à savoir, obtenir que

C f,Ω (Σ\D n ) -C f,Ω (Σ) ≤ C(diam(D n )) 1+b
pour une constante positive C indépendante de n, ce qui conduirait à une contradiction avec l'optimalité de Σ.

Remarque sur les points singuliers.

Si nous supposons qu'une solution Σ au Problème (A) contient un quadruple point x 0 ∈ Σ∩Ω, alors pour un rayon ∈ (0, diam(Σ)/2) suffisamment petit, l'ensemble Σ∩B (x 0 ) se compose d'exactement quatre arcs C 1 distincts, dont chacun rencontre en x 0 exactement l'un des trois autres à un angle de 180 degrés, et chacun des deux autres à un angle de 90 degrés. Il existe donc une croix K passant par x 0 (l'ensemble K est constitué de deux lignes affines perpendiculaires entre elles passant par x 0 ) telle que

1 r d H (Σ ∩ B r (x 0 ), K ∩ B r (x 0 )) → 0 lorsque r → 0 + .
Puisque Σ ∩ B (x 0 ) est Ahlfors régulier, il existe une constante positive C 0 > 0 telle que, sans perte de généralité,

H 1 (Σ ∩ B r (x 0 )) ≤ C 0 r ∀r ∈ (0, ].
(1.3.4) D'autre part, en utilisant l'inégalité de la coaire (voir Corollaire 3.4.2), pour chaque rayon r ∈ (0, /2], nous obtenons que

H 1 (Σ ∩ B 2r (x 0 )) ≥ 2r 0 H 0 (Σ ∩ ∂B t (x 0 )) dt > 2r r H 0 (Σ ∩ ∂B t (x 0 )) dt.
Alors il existe t ∈ [r, 2r] tel que

H 0 (Σ ∩ ∂B t (x 0 )) ≤ 1 r H 1 (Σ ∩ B 2r (x 0 )) (1.3.4) ≤ 2C 0 .
Nous pouvons donc construire un bon compétiteur pour Σ. À savoir, soit D t = K ∩ ∂B t (x 0 ) et soit S 4 (D t ) ⊂ B t (x 0 ) un ensemble fermé de la mesure H 1 minimale dans la boule B t (x 0 ) reliant les quatre points de D t (comme dans [BOS], nous l'appellerons une connexion de Steiner de ces points; pour plus de détails sur les connexions de Steiner, voir par exemple [GP, Pol, DHST]). Pour chaque point z i ∈ Σ ∩ ∂B t (x 0 ), notons par γ i la géodésique dans ∂B t (x 0 ) reliant z i au point de l'ensemble D t le plus proche de z i . Soit G l'union de tous les arcs γ i . Définissons un compétiteur Σ t par

Σ t = (Σ\B t (x 0 )) ∪ G ∪ S 4 (D t ).
Sans perte de généralité, nous pouvons supposer que Σ est suffisamment proche, dans B (x 0 ) et dans la distance de Hausdorff, à K. Alors il existe une constante positive C > 0 indépendante de t telle que

H 1 (Σ) -H 1 (Σ t ) ≥ Ct, où les faits que H 1 (Σ ∩ B t (x 0 )) ≥ 4t, H 1 (G) ≤ δt pour un δ ∈ (0, 1) assez petit et que H 1 (S 4 (D t )) = √ 2( √ 3 + 1)t ≈ 3.86t ont été utilisés. Au total, il existe des suites (r n ) n∈N et (Σ n ) n∈N telles que: r n > 0 et r n → 0 lorsque n → +∞; Σ n est un compétiteur pour Σ; H 1 (Σ) -H 1 (Σ n ) ≥ Cr n et C f,Ω (Σ n ) -C f,Ω (Σ) ≤ Cr 1+b
n , où C, C > 0 et b ∈ (0, 1) sont des constantes indépendantes de n. Par conséquent, en laissant n tendre vers +∞, nous obtenons une contradiction avec l'optimalité de Σ.

Preuve de régularité partielle.

Nous allons maintenant essayer d'expliquer comment nous utilisons la décroissance de la pénergie sous contrôle de planéité pour prouver la régularité partielle C 1,α des minimiseurs à l'intérieur de Ω. La première étape de la preuve est de montrer que chaque minimiseur Σ du Problème (A) avec diam(Σ) > 0 est un presque minimiseur pour la longueur en tout point dans Σ ∩ Ω autour duquel Σ est suffisamment plat et reste assez plat à plus grande échelle. Plus précisément, il faut prouver qu'il existe β ∈ (0, 1) tel que pour tout compétiteur Σ étant τ r-proche, dans une boule B r (x 0 ) ⊂ Ω et dans la distance de Hausdorff, à un diamètre de B r (x 0 ) pour un petit τ ∈ (0, 1) et satisfaisant Σ ∆Σ ⊂ B r (x 0 ), nous avons

H 1 (Σ ∩ B r (x 0 )) ≤ H 1 (Σ ∩ B r (x 0 )) + Cr 1+β
chaque fois que x 0 ∈ Σ ∩ Ω, Σ est suffisamment plat dans B r (x 0 ) et reste assez plat à plus grande échelle. Dans notre contexte, le terme Cr 1+β ne peut provenir que de la partie p-compliance de la fonctionnelle F λ,f,Ω . Ainsi, nous devons prouver que

C f,Ω (Σ ) -C f,Ω (Σ) ≤ Cr 1+β
chaque fois que x 0 ∈ Σ ∩ Ω, Σ est suffisamment plat dans B r (x 0 ) et reste assez plat à plus grande échelle, Σ ∈ K(Ω) est τ r-proche, dans B r (x 0 ) ⊂ Ω et dans la distance de Hausdorff, à un diamètre de B r (x 0 ) pour un certain τ ∈ (0, 1) suffisamment petit et Σ ∆Σ ⊂ B r (x 0 ). Dans la suite de cette section, C désigne une constante positive qui ne peut dépendre que de N, p, q 0 , q, f q , |Ω| (q 0 est défini dans (1.1.1), q ≥ q 0 , f ∈ L q (Ω)) et peut être différente d'une ligne à l'autre. Notons à nouveau que l'une des difficultés pour obtenir l'estimation ci-dessus est un comportement non local de la fonctionnelle de p-compliance. À savoir, en changeant Σ localement dans Ω, nous changeons u Σ dans tout Ω. Cela peut être surmonté en utilisant un argument de cut-off. En fait, nous avons montré que si Σ est un compétiteur pour

Σ et Σ ∆Σ ⊂ B r (x 0 ), alors C f,Ω (Σ ) -C f,Ω (Σ) ≤ C B 2r (x 0 ) |∇u Σ | p dx + Cr N +p -N p q
(voir Corollaire 3.10.4). Cependant, la partie droite de l'estimation ci-dessus dépend du compétiteur Σ , ce qui nous incite à introduire la quantité

w τ Σ (x 0 , r) = sup Σ ∈K(Ω), Σ ∆ Σ⊂Br(x 0 ), H 1 (Σ )≤100H 1 (Σ), β Σ (x 0 ,r)≤τ 1 r Br(x 0 ) |∇u Σ | p dx, où β Σ (x 0 , r) est la planéité définie par β Σ (x 0 , r) = inf L x 0 1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )),
où l'infimum est pris sur l'ensemble de toutes les lignes affines L dans R N passant par x 0 . La quantité w τ Σ (x 0 , r) est une variante de celle introduite dans [CLLS]. Notons également que l'hypothèse H 1 (Σ ) ≤ 100H 1 (Σ) dans la définition de w τ Σ (x 0 , r) est plutôt optionnelle, cependant, elle garantit que si Σ est un maximiseur dans cette définition, alors il est connexe par arcs. Donc, si

Σ ∈ K(Ω), Σ ∆Σ ⊂ B r (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) et β Σ (x 0 , 2r) ≤ τ , nous arrivons à l'estimation C f,Ω (Σ ) -C f,Ω (Σ) ≤ Crw τ Σ (x 0 , 2r) + Cr N +p -N p q .
Ensuite, en appliquant l'estimation de décroissance établie à l' Étape 4 ci-dessus à la fonction u Σ , où Σ est un maximiseur dans la définition de w τ Σ (x 0 , 2r), nous obtenons le contrôle suivant

w τ Σ (x 0 , 2r) ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b , à condition que β Σ (x 0 , ) reste assez petit pour chaque ∈ [2r, r 1 ], r 1 > 0 est suffisamment petit, B r 1 (x 0 ) ⊂ Ω et r > 0 est suffisamment petit par rapport à r 1 (voir Proposition 10.1.7). Remarquant que b < N -1 + p -N p /q, au total nous obtenons H 1 (Σ ∩ B r (x 0 )) ≤ H 1 (Σ ∩ B r (x 0 )) + Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b chaque fois que Σ est un minimiseur du Problème (A), β Σ (x 0 , ) reste assez petit pour tout ∈ [r, r 1 ], r 1 > 0 est suffisamment petit, B r 1 (x 0 ) ⊂ Ω, r > 0 est suffisamment petit par rapport à r 1 , Σ ∈ K(Ω) est τ r-proche, dans B r (x 0 ) et dans la distance de Hausdorff, à un diamètre de B r (x 0 ), Σ ∆Σ ⊂ B r (x 0 ) et H 1 (Σ ) ≤ 100H 1 (Σ).
L'étape suivante est de trouver un bon compétiteur Σ pour le minimiseur Σ. Plus précisément, supposons que x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r est suffisamment petit, β Σ (x 0 , r) est assez petit et reste assez petit à plus grande échelle. La tâche est de trouver un compétiteur Σ tel que Σ ∆Σ ⊂ B r (x 0 ), Σ est τ r-proche, dans B r (x 0 ) et dans la distance de Hausdorff, à un diamètre de B r (x 0 ) pour un certain petit τ ∈ (0, 1) et, en plus, la longueur de Σ ∩ B r (x 0 ) est assez proche de la longueur d'un diamètre de B r (x 0 ). En dimension 2, nous pouvons prendre

Σ = (Σ\B r (x 0 )) ∪ (∂B r (x 0 ) ∩ {x : dist(x, L) ≤ β Σ (x 0 , r)r}) ∪ (L ∩ B r (x 0 )) à condition β Σ (x 0 , r) = d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 ))/r.
Mais en dimension N ≥ 3, nous ne pouvons pas utiliser efficacement un tel compétiteur, puisqu'il a la dimension de Hausdorff N -1 ≥ 2. Remarquons que la principale difficulté qui se pose dans la construction d'un bon compétiteur en dimension N ≥ 3 est que nous ne savons pas si la quantité H 0 (Σ ∩ ∂B (x 0 )) est uniformément bornée pour x 0 ∈ Σ et > 0. Cependant, d'après l'inégalité de la coaire (voir Corollaire 3.4.2), nous savons que pour tout > 0,

H 1 (Σ ∩ B (x 0 )) ≥ 0 H 0 (Σ ∩ ∂B t (x 0 )) dt.
Si, de plus, < diam(Σ)/2, alors Σ ∩ ∂B t (x 0 ) = ∅ pour tout t ∈ (0, ], puisque x 0 ∈ Σ et Σ est connexe par arcs (voir Corollaire 3.5.7). Ainsi, en supposant que < diam(Σ)/2 et κ ∈ (0, 1/4], pour tout s ∈ [κ , 2κ ] on en déduit ce qui suit

H 1 (Σ ∩ B (x 0 )) ≥ 0 H 0 (Σ ∩ ∂B t (x 0 )) dt > (1+κ)s s H 0 (Σ ∩ ∂B t (x 0 )) dt.
Cette dernière inégalité ci-dessus implique qu'il existe t ∈ [s, (1 + κ)s] pour lequel

H 0 (Σ ∩ ∂B t (x 0 )) ≤ 1 κ 2 θ Σ (x 0 , ), où θ Σ (x 0 , ) = 1 H 1 (Σ ∩ B (x 0 )). Donc si κ ∈ (0, 1/4], x 0 ∈ Σ, r > 0 est suffisamment petit et B r (x 0 ) ⊂ Ω, alors pour tout s ∈ [κr, 2κr] nous pouvons construire le compétiteur suivant Σ = (Σ\B t (x 0 )) ∪   H 0 (Σ∩∂Bt(x 0 )) i=1 [z i , z i ]   ∪ (L ∩ B t (x 0 )), où t ∈ [s, (1+κ)s] est tel que H 0 (Σ∩∂B t (x 0 )) ≤ θ Σ (x 0 , r)/κ 2 , L est une ligne affine réalisant l'infimum dans la définition de β Σ (x 0 , t), z i ∈ Σ ∩ ∂B t (x 0 ) et z i désigne la projection de z i sur L ∩ B t (x 0 ). La planéité β Σ (x 0 , t) est inférieure ou égale à β Σ (x 0 , t) par construction.
En supposant en plus que β Σ (x 0 , r) est assez petit et θ Σ (x 0 , r) est aussi assez petit, pour le compétiteur Σ construit au-dessus nous avons:

β Σ (x 0 , t) est suffisamment petit, puisque β Σ (x 0 , t) ≤ β Σ (x 0 , t) et β Σ (x 0 ,
) reste petit pour tout dans (0, r) qui ne sont pas trop éloignés de r (voir Proposition 10.1.2); la longueur de Σ ∩ B t (x 0 ) est assez proche de la longueur d'un diamètre de B t (x 0 ); l'estimation suivante est vraie

H 1 (Σ ∩ B s (x 0 )) ≤ H 1 (Σ ∩ B t (x 0 )) ≤ H 1 (Σ ∩ B t (x 0 )) + Ct t r b w τ Σ (x 0 , r) + Ct 1+b .
Ceci nous permet de prouver le fait suivant: il existe ε, κ ∈ (0, 1/100) tels que si Σ est un minimiseur du Problème (A), x 0 ∈ Σ, r > 0 est suffisamment petit, B r (x 0 ) ⊂ Ω et la condition suivante est vraie

β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, θ Σ (x 0 , r) ≤ 10µ (C)
avec µ étant une solution positive unique à l'équation µ = 5 + µ 1-1 N (nous expliquerons un peu plus tard pourquoi nous prenons cette borne particulière), alors il existe s ∈ [κr, 2κr] pour lequel H 0 (Σ ∩ ∂B s (x 0 )) = 2 (voir Proposition 10.2.1 (i)), les deux points {ξ 1 , ξ 2 } de Σ ∩ ∂B s (x 0 ) appartiennent à deux différents composants connexes de

∂B s (x 0 ) ∩ {x : dist(x, L) ≤ β Σ (x 0 , s)s}
(voir Proposition 10.2.1 (ii-1)), où L est une ligne affine réalisant l'infimum dans la définition de β Σ (x 0 , s), Σ ∩ B s (x 0 ) est connexe par arcs (voir Proposition 10.2.1 (ii-2)). De plus, (Σ\B s (x 0 )) ∪ [ξ 1 , ξ 2 ] est un bon compétiteur pour Σ (voir Proposition 10.2.1 (ii-3)). En utilisant ce résultat avec le comportement de décroissance de l'énergie locale w τ Σ , nous prouvons qu'il existe une constante a ∈ (0, 1/100) telle que si x 0 ∈ Σ, r > 0 est suffisamment petit, B r (x 0 ) ⊂ Ω et que la condition (C) est satisfaite avec un ε > 0 suffisamment petit, alors

β Σ (x 0 , ar) ≤ C(w τ Σ (x 0 , r)) 1 2 + Cr b 2 et w τ Σ (x 0 , ar) ≤ 1 2 w τ Σ (x 0 , r) + C(ar) b
(voir Proposition 10.3.2 (i), (ii)). Ensuite, nous devons majorer la densité θ Σ à plus petite échelle par sa valeur à plus grande échelle. Comme déjà mentionné, nous ne prouvons pas l'Ahlfors régularité pour un minimiseur du Problème (A) dans la dimension spatiale N ≥ 3. Cependant, en adaptant certaines des approches de E. Paolini et E. Stepanov dans [PS1], nous prouvons le fait suivant: pour chaque a ∈ (0, 1/20] il existe ε ∈ (0, 1/100) tel que si

x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r > 0 est suffisamment petit et β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, alors θ Σ (x 0 , ar) ≤ 5 + θ Σ (x 0 , r) 1-1 N
(voir Proposition 10.2.4). Remarquons que si θ Σ (x 0 , r) ≤ 10µ, alors, en utilisant l'estimation ci-dessus, nous obtenons

θ Σ (x 0 , ar) ≤ 5 + (10µ) 1-1 N ≤ 10(5 + µ 1-1 N ) = 10µ.
Le facteur 10 dans l'estimation θ Σ (x 0 , r) ≤ 10µ est assez important, il apparaît dans la preuve du Corollaire 10.3.4. Au total, nous prouvons qu'il existe des constantes a, ε

∈ (0, 1/100), b ∈ (0, 1) telles que si x 0 ∈ Σ, r > 0 est suffisamment petit, B r (x 0 ) ⊂ Ω et la condition (C) est satisfaite avec ε, alors pour tout n ∈ N, β Σ (x 0 , a n+1 r) ≤ C(w τ Σ (x 0 , a n r)) 1 2 +C(a n r) b 2 et w τ Σ (x 0 , a n+1 r) ≤ 1 2 w τ Σ (x 0 , a n r)+C(a n+1 r) b
(voir Proposition 10.3.2). Cela implique que

β Σ (x 0 , ) ≤ C α
pour certains α ∈ (0, 1), C = C(N, p, q 0 , q, f q , |Ω|, r) > 0 et pour tout > 0 suffisamment petit par rapport à r (voir Proposition 10.3.3). Enfin, nous arrivons au théorème dit "ε-régularité" qui dit ce qui suit: il existe des constantes τ, a, ε, α, r 0 ∈ (0, 1) telles que chaque fois que x ∈ Σ, 0 < r < r 0 , B r (x) ⊂ Ω,

β Σ (x, r) + w τ Σ (x, r) ≤ ε et θ Σ (x, r) ≤ µ,
alors pour une certaine constante positive C = C(N, p, q 0 , q, f q , |Ω|, r), β Σ (y, ) ≤ C α pour chaque point y ∈ Σ ∩ B ar (x) et chaque rayon ∈ (0, ar) (voir Corollaire 10.3.4). En particulier, nous pouvons trouver t ∈ (0, 1) tel que Σ ∩ B t (x) est une courbe régulière C 1,α (voir Proposition A.0.3). D'autre part, les ensembles connexes fermés de mesure H 1 finie sont H 1 -rectifiables (voir Théorème 3.5.5). Donc

β Σ (x, r) → 0 lorsque r → 0+ en H 1 -presque tout x ∈ Σ. Cela implique qu'en H 1 -presque tout x ∈ Σ ∩ Ω, w τ Σ (x, r) → 0 lorsque r → 0+.
De plus, compte tenu du Théorème de ,

θ Σ (x, r) → 2 lorsque r → 0 + en H 1 -presque tout x ∈ Σ.
À la fin, en observant que pour chaque N ≥ 2, la solution positive unique µ à l'équation µ = 5 + µ 1-1 N est strictement supérieur à 5, nous prenons toutes les estimations nécessaires et prouvons que chaque minimiseur Σ du Problème (A) est C 1,α régulier en H 1 -presque tout point x ∈ Σ ∩ Ω.

Perspectives

1. Pour commencer, restreignons notre attention au cas N = p = 2. L'une des perspectives est d'étudier la régularité des solutions au Problème (A) jusqu'à la pointe d'un point terminal et jusqu'au point de branchement pour un point triple. Nous rappelons que dans [CLLS] il a été prouvé ce qui suit.

(A) Il existe une constante α ∈ (0, 1) telle que la suivante est vraie. Soit Σ une solution au Problème (A). Alors si Σ est assez proche, dans une boule B r (x 0 ) telle que B r (x 0 ) ⊂ Ω et dans la distance de Hausdorff, à un diamètre de B r (x 0 ), alors il existe une constante a ∈ (0, 1) telle que Σ ∩ B ar (x 0 ) c'est un arc C 1,α .

Le but est de prouver les deux affirmations suivantes.

(B) Il existe une constante α ∈ (0, 1) telle que la suivante est vraie. Soit Σ une solution au Problème (A). Alors si Σ est assez proche, dans une boule B r (x 0 ) telle que B r (x 0 ) ⊂ Ω et dans la distance de Hausdorff, à une hélice centrée sur x 0 , alors il existe une constante a ∈ (0, 1) telle que Σ ∩ B ar (x 0 ) est une union de trois arcs C 1,α se rencontrant à des angles de 120 degrés en un point y 0 ∈ B ar/2 (x 0 ).

(C) Il existe une constante α ∈ (0, 1) telle que la suivante est vraie. Soit Σ une solution au Problème (A). Alors si Σ est assez proche, dans une boule B r (x 0 ) telle que B r (x 0 ) ⊂ Ω et dans la distance de Hausdorff, à un seul rayon de B r (x 0 ), alors Σ ∩ B ar (x 0 ) se compose d'un seul arc qui joint un point y 0 ∈ B ar/2 (x 0 ) avec ∂B ar (x 0 ) et qui est lisse dans B ar (x 0 ).

Il est probable qu'en suivant l'approche que G. David a fait dans [START_REF] David | Singular Sets of Minimizers for the Mumford-Shah Functional[END_REF]Section 53] pour les minimiseurs de la fonctionnelle de Mumford-Shah, on peut essayer d'adapter le résultat de ε-régularité (A) pour obtenir (B). Quant à (C), le résultat récent de C. De Lellis, M. Focardi et S. Ghinassi [DLFG] prouve un résultat similaire à celui de (C) mais pour les minimiseurs de la fonctionnelle de Mumford-Shah. On peut essayer d'adapter l'approche dans [DLFG] pour prouver (C). 2. Notons qu'en dimension N ≥ 3 le Problème (A) est très original, car tout minimiseur pour ce problème qui a au moins deux points est de dimension de Hausdorff 1, mais dans R N . Question 2.1. Est-ce que chaque solution Σ au Problème (A) avec diam(Σ) > 0 dans chaque dimension spatiale N ≥ 2 et pour tout p ∈ (N -1, +∞) est Ahlfors régulière? Question 2.2. Supposons que Σ est une solution au Problème (A) avec diam(Σ) > 0, S ⊂ Σ est tel que chaque x ∈ S n'est pas un point plat, et Σ\S est localement C 1,α régulier pour un certain α ∈ (0, 1). Est-il vrai que dim H (S) < 1? Question 2.3. Nous avons prouvé que si Σ est une solution au Problème (A), alors Σ ne peut pas contenir de boucles fermées. Cependant, en codimension 2, nous nous inquiétons de l'existence de noeuds. En codimension 2, une solution au Problème (A) peut-elle avoir un noeud?

Question 2.4. Dans le cas où p = 2 nous ne disposons pas d'un bon outil qui nous permettrait d'établir la classification des limites d'explosion. Ainsi, l'une des principales perspectives est de trouver un tel outil s'il existe.

Question 2.5. Définir la notion de minimiseur global pour le Problème (A) dans le cas général. Si Σ est un minimiseur du Problème (A) avec diam(Σ) > 0, est-il vrai qu'en tout point x ∈ Σ ∩ Ω, tout suite d'explosion convergente converge vers un minimiseur global? 3. Étudier la régularité et la structure topologique des solutions à la version contrainte suivante du problème de p-compliance optimale

(Q) min{C f,Ω (Σ) : Σ ⊂ Ω est fermé et connexe, 0 < H 1 (Σ) ≤ L}.
Pour ce problème, nous n'avons pas une sorte de "minimisation locale" de la mesure de Hausdorff unidimensionnelle à cause de la contrainte. À cet effet, la régularité d'un minimiseur semble difficile à prouver. Cependant, nous avons déjà établi des résultats de régularité pour certains minimiseurs de ce problème. En fait, notons que si Σ ⊂ Ω est une solution au Problème (A) telle que diam(Σ) > 0, alors Σ résout le problème (Q) à condition que L = H 1 (Σ).

4.

Ici, nous avons défini "tout" en termes de fonctions p-harmoniques. Récemment, dans [START_REF] David | Harmonic measure on sets of codimension larger than one[END_REF][START_REF] David | Dahlberg's theorem in higher co-dimension[END_REF][START_REF] David | Elliptic theory for sets with higher codimensional boundaries[END_REF][START_REF] David | Elliptic theory in domains with boundaries of mixed dimensions[END_REF][START_REF] David | Harmonic measure is absolutely continuous with respect to the Hausdorff measure on all low-dimensional uniformly rectifiable sets[END_REF][START_REF] Feneuil | A ∞ absolute continuity of the harmonic measure on low dimensional rectifiable sets[END_REF], les auteurs se sont interrogés sur d'autres équations, comme des équations elliptiques dégénérées avec des coefficients qui tendent vers l'infini comme la distance à un ensemble à une puissance. Ici aussi, la question initiale concerne la taille de la dérivée des solutions; y a-t-il une chance qu'il y ait des variantes de l'équation de compliance qui aient un sens dans de tels contextes?

Chapter 2

Introduction

Problem statement and general discussion

The problem of finding an optimal free boundary set Σ in a given region Ω subjected to an applied load (for instance, an external force) in order to minimize the compliance of the configuration is considered. In our context, the class K(Ω) of all admissible free boundaries, among which we look for an optimum, consists of all closed connected proper subsets of the closure of Ω. In dimension 2, Ω can be interpreted as a membrane which is fixed along its boundary and along Σ ∈ K(Ω) to some fixed base preventing displacement. A force is exerted on Ω. Varying Σ in K(Ω), we want to find an optimal Σ so that Ω can best resist this force, taking into account the length (i.e., the one-dimensional Hausdorff measure) of Σ . A possible way to measure the stiffness of Ω is to compute the total work of the force at equilibrium and try to optimize the shape of Σ in order to minimize this work, namely to find the minimum compliance or maximum global stiffness, taking into account the length of Σ . In this dissertation, we mainly work with a functional which is the sum of the weighted work of the external force exerted on the membrane and the weighted length of the free boundary set along which this membrane is fixed. The connectedness assumption, together with the bound on the length of the free boundaries, among which we look for a minimizer of this functional, gives the necessary compactness to prove that such a minimizer exists. This shape optimization problem can be defined in any spatial dimension N ≥ 2 still with a penalization with the one dimensional Hausdorff measure. We study the regularity and topological structure of solutions to this problem. Let us put it more precisely.

A spatial dimension N ≥ 2 and an exponent p ∈ (1, +∞) are given. Let Ω be an open bounded set in R N and let f belong to L q 0 (Ω) with

q 0 = (p * ) if 1 < p < N, q 0 > 1 if p = N, q 0 = 1 if p > N, (2.1.1)
where p * = N p/(N -p) and (1/p * ) + (1/(p * ) ) = 1. We define the energy functional E f,Ω over W 1,p 0 (Ω) as follows

E f,Ω (u) = 1 p Ω |∇u| p dx - Ω f u dx.
Thanks to the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10]), E f,Ω is finite on W 1,p 0 (Ω). For each closed proper subset Σ of Ω, E f,Ω admits a unique minimizer u f,Ω,Σ over W 1,p 0 (Ω\Σ), which is a unique solution to the Dirichlet problem 

     -∆ p u = f in Ω\Σ u = 0 on Σ ∪ ∂Ω, (2.1.2) which means that u f,Ω,Σ ∈ W 1,p 0 (Ω\Σ) and Ω |∇u f,Ω,Σ | p-2 ∇u f,Ω,Σ , ∇ϕ dx = Ω f ϕ dx ∀ϕ ∈ W 1,p 0 (Ω \ Σ), ( 
C f,Ω (Σ) = -E f,Ω (u Σ ) = 1 p Ω |∇u Σ | p dx = 1 p Ω f u Σ dx.
In dimension 2, as mentioned earlier, Ω can be interpreted as a membrane which is attached along Σ ∪∂ Ω to some fixed base and subjected to a given force f . The space W 1,p 0 (Ω\Σ) consists of all kinematically admissible displacement fields. The energy linear form

l u Σ (ϕ) = Ω |∇u Σ | p-2 ∇u Σ , ∇ϕ dx
represents the work of the membrane at the equilibrium u Σ and for an arbitrary displacement ϕ ∈ W 1,p 0 (Ω\Σ). The value E f,Ω (u Σ ) is the total potential energy at the equilibrium u Σ , which, according to the equilibrium equation (2.1.3), is equal to -1 p Ω f u Σ dx. The stiffness of the membrane is measured through the p-compliance functional which is equal to the product of the coefficient 1 p and the work Ω f u Σ dx performed by the force f . Varying Σ in the class of all closed connected proper subsets of Ω, we want to find the maximal global stiffness of the membrane, provided that the weighted one-dimensional Hausdorff measure of Σ is taken into account. Thus, we need to solve the following shape optimization problem, which we formulate in any spatial dimension N ≥ 2. Problem (A). Let p ∈ (N -1, +∞). Given λ > 0, find a set Σ ⊂ Ω minimizing the functional F λ,f,Ω defined by

F λ,f,Ω (Σ ) = C f,Ω (Σ ) + λH 1 (Σ )
among all sets Σ in the class K(Ω) of all closed connected proper subsets of Ω.

In Proposition 3.13.3 it will be proved that there is a solution to Problem (A). Also in Chapter 4 it will be proved that the connectedness of admissible sets in the statement of Problem (A) is necessary for the existence of a solution to this problem.

It is worth mentioning that Problem (A) can be formulated in terms of stresses. Indeed, expressing -E f,Ω (u Σ ) in terms of the dual principle, we obtain the following dual formulation

(A * ) min Σ∈K(Ω) min σ∈S(Σ) 1 p Ω |σ| p dx + λH 1 (Σ)
of Problem (A) (see Proposition 3.15.1). Here the minimization with respect to the stresses σ is taken over the set S(Σ) of all statically admissible stresses fields, namely

S(Σ) = {σ ∈ L p (Ω; R N ) : div(σ) + f = 0 in D (Ω\Σ)}.
More information about minimum compliance formulations the reader may find in the monograph [Ben].

Let us now explain why in the statement of Problem (A) we consider only the interval (N -1, +∞) for the exponent p. Notice that any closed set Σ ⊂ Ω with H 1 (Σ ) < +∞ is removable for the Sobolev space W 1,p 0 (Ω) if p ∈ (1, N -1] (see Theorem 3.7.2 and Remark 3.7.11), namely W 1,p 0 (Ω\Σ ) = W 1,p 0 (Ω) and this implies that C f,Ω (Σ ) = C f,Ω (∅). Thus, defining Problem (A) for some exponent p ∈ (1, N -1], we would get only trivial solutions to this problem: every point x 0 in Ω and the empty set. On the other hand, if Σ ⊂ Ω is a closed set such that Σ ∩ Ω is of Hausdorff dimension one and with finite H 1 -measure, then Σ is not removable for W 1,p 0 (Ω) if and only if p ∈ (N -1, +∞) (see Corollary 3.7.4 and Remark 3.7.11). Therefore, Problem (A) is interesting only in the case when p ∈ (N -1, +∞).

We also assume that f = 0 in L q 0 (Ω), because otherwise the p-compliance functional C f,Ω (•) would be reduced to zero, and then each solution to Problem (A) would be either a point x 0 ∈ Ω or the empty set.

The fundamental question about minimizers of Problem (A) is the question of whether a minimizer containing at least two points is a finite union of C 1 curves. In dimension 2 and for p = 2 in [CLLS], by analogy with the Mumford-Shah functional, A. Chambolle, J. Lamboley, A. Lemenant and E. Stepanov established that locally inside Ω a minimizer of Problem (A), containing at least two points, is a finite union of C 1,α curves that can only meet at their ends, by sets of three and with 120 • angles. The authors proved that if a minimizer Σ of Problem (A) is sufficiently close, in a ball B r (x 0 ) such that B r (x 0 ) ⊂ Ω and in the Hausdorff distance, to a diameter of B r (x 0 ), then there exists a constant a ∈ (0, 1) such that Σ ∩ B ar (x 0 ) is a C 1,α arc. Next, they introduced the notion of a global minimizer for Problem (A) (in the case when N = p = 2) and proved that at any point x ∈ Σ ∩ Ω, where Σ is a minimizer of Problem (A) with diam(Σ) > 0, any convergent blow-up sequence converges to a global minimizer. Then, using the dual formulation (A * ) of Problem (A), the authors proved that if ( u, Σ) is a global minimizer for Problem (A), then u admits a harmonic conjugate v in R 2 \ Σ and (v, Σ) is a Mumford-Shah global minimizer in the sense of A. Bonnet (see [Bon]). Thus, the authors obtained the complete list of global minimizers, namely, up to a rotation and a translation (see Figure 2.1.1): 1) u = 0 and Σ is a line; 2) u = 0 and Σ is a propeller, i.e., a union of three half-lines emanating from one point and making 120 • angles; 3) u is the "Dirichlet crack-tip" function which in polar coordinates is given by u(r, ϕ) = 2r π cos ϕ 2 , (r, ϕ) ∈ [0, +∞) × [0, 2π], and Σ = {(t, 0) : t ∈ [0, +∞)}. The main tool that was used in [CLLS] to prove the ε-regularity theorem (if the minimizer Σ is close enough, in a ball B r (x 0 ) such that B r (x 0 ) ⊂ Ω, and in the Hausdorff distance, to a diameter of B r (x 0 ), then there exists a constant a ∈ (0, 1) such that Σ ∩ B ar (x 0 ) is a C 1,α arc) is a so-called monotonicity formula (see Chapter 6) that was inspired by A. Bonnet on the Mumford-Shah functional (see [Bon]). This monotonicity formula was also a key tool in the classification of blow-up limits (in the case when N = p = 2), because it implies that for any point x 0 ∈ Σ there exists the limit

lim r→0+ 1 r Br(x 0 ) |∇u Σ | 2 dx = e(x 0 ) ∈ [0, +∞).
According to [CLLS], all blow-up limits at any x 0 ∈ Σ ∩ Ω are of the same type: either e(x 0 ) > 0 and all blow-up limits at x 0 must be a half-line, or e(x 0 ) = 0. In the latter case, either there is a blow-up at x 0 which is a line, and then all other blow-ups at x 0 must also be a line, or there is no line, and then all blow-ups at x 0 are propellers. More precisely, given any point x 0 ∈ Σ ∩ Ω we only have one of the following three possibilities:

(i) x 0 belongs to the interior of a single smooth arc; in this case x 0 is called a regular (or flat) point.

(ii) x 0 is a common endpoint of three distinct arcs which form at x 0 three equal angles of 120 • ; in this case x 0 is called a triple point.

(iii) x 0 is the endpoint of one and only one arc; in this case x 0 is called a crack-tip.

However, the approach in [CLLS] does not work for the cases when p = 2. The main obstruction to a full generalization of the result established in [CLLS] is the lack of a good monotonicity formula, when the Dirichlet energy is not quadratic (p = 2). Notice that in two dimensions and for p = 2 some monotonicity formula can still be established for the p-energy (see Chapter 6), but the resulting power of the radius in this monotonicity formula is not large enough (see Remark 6.2.4), and this formula cannot be used to prove C 1,α estimates as in the case N = p = 2. On the other hand, we do not know if there is a similar monotonicity formula for the p-energy in dimension N ≥ 3, but we guess that there is no. Thus, we do not have a tool that would allow us to establish a classification of blow-up limits in the case when p = 2. For this reason, in this dissertation we prove only partial C 1,α regularity result for the solutions to Problem (A) in any spatial dimension N ≥ 2 for every p ∈ (N -1, +∞). Nevertheless, we guess that any minimizer of Problem (A) with at least two points is a finite union of C 1,α curves.

The optimal compliance problem can also be formulated under length constraints. Namely, consider the following problem.

Problem (B). Let p ∈ (N -1, +∞). Given L > 0, find a set Σ ⊂ Ω minimizing the p-compliance functional C f,Ω among all sets Σ in the class A L (Ω) of all closed connected subsets of Ω satisfying the constraint 0 < H 1 (Σ ) ≤ L.
This problem was studied in [START_REF] Buttazzo | Asymptotical compliance optimization for connected networks[END_REF][START_REF] Nayam | Asymptotics of an optimal compliance-network problem[END_REF][START_REF] Nayam | Constant in two-dimensional p-compliance-network problem[END_REF], and in [START_REF] Buttazzo | Asymptotical compliance optimization for connected networks[END_REF] it was proved that it admits a solution. However, the question of whether every its solution is a finite union of C 1 curves is still open even in dimension 2 and for the linear case p = 2. It seems that the main difficulty in solving this question consists in the fact that for Problem (B) we have no some kind of "the local minimization" of the one-dimensional Hausdorff measure because of the constraint, in contrast to Problem (A). Nevertheless, by establishing the regularity result for the solutions to Problem (A), we automatically establish the same result for some solutions to Problem (B). Indeed, if Σ ⊂ Ω is a solution to Problem (A) such that diam(Σ) > 0, then Σ solves Problem (B) provided that L = H 1 (Σ).

According to the Γ-convergence result established in [START_REF] Buttazzo | Asymptotical compliance optimization for connected networks[END_REF], in some sense the limit of Problem (A) as p → +∞ corresponds to the minimization of the functional

K(Ω) Σ → Ω dist(x, Σ ∪ ∂Ω)f (x) dx + λH 1 (Σ),
which, as well as in its constrained form, was widely studied in the literature (see, for instance, [START_REF] Buttazzo | Optimal transportation problems with free Dirichlet regions[END_REF][START_REF] Buttazzo | Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem[END_REF][START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in R N[END_REF][START_REF] Santambrogio | Blow-up of optimal sets in the irrigation problem[END_REF][START_REF] Stepanov | Partial geometric regularity of some optimal connected transportation networks[END_REF][START_REF] Buttazzo | Stationary configurations for the average distance functional and related problems[END_REF][START_REF] Tilli | Some explicit examples of minimizers for the irrigation problem[END_REF][START_REF] Lemenant | About the regularity of average distance minimizers in R 2[END_REF][START_REF] Slepčev | Counterexample to regularity in average-distance problem[END_REF]). It is known that minimizers of this functional may not be C 1 regular (see [Sle]).

Recall that the main topic of this dissertation is the study of the regularity and topological structure of solutions to Problem (A). Let us now emphasize our contributions to this study.

Main results

Several of our results will hold under some condition on the integrability of the source f . Namely we define

q 1 = N p N p -N + 1 if 2 ≤ p < +∞, q 1 = 2p 3p -3 if 1 < p < 2, (2.2.1)
and we notice that q 1 ≥ q 0 , where q 0 is defined in (2.1.1). The condition f ∈ L q 1 (Ω) for p ∈ [2, +∞) is natural, since q 1 in this case seems to be the right exponent which implies an estimate of the type Br(x 0 ) |∇u| p dx ≤ Cr for the solution u to the Dirichlet problem

-∆ p v = f in B r (x 0 ), v ∈ W 1,p 0 (B r (x 0 ))
(see Lemma 5.1.1), the kind of estimate we are looking for to establish regularity properties on a minimizer Σ of Problem (A). The main regularity result established in this dissertation is the following.

Theorem.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Then there exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem (A). Then for H 1 -a.e. point x ∈ Σ ∩Ω one can find a radius r 0 > 0 depending on x such that Σ ∩B r 0 (x) is a C 1,α regular curve.

Notice that in the above theorem, when we say that a solution Σ to Problem (A) is C 1,α regular at H 1 -a.e. point x ∈ Σ ∩ Ω, we mean that the set of points Σ ∩ Ω around which Σ is not a C 1,α regular curve has zero H 1 -measure. Thus, this theorem is interesting only in the case when diam(Σ) > 0, which happens to be true at least for all sufficiently small values of λ. Namely, we have proved the following.

Proposition.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0 and q 0 is defined in (2.1.1). Then there exists a number λ 0 = λ 0 (N, p, f, Ω) > 0 such that if Problem (A) is defined for λ ∈ (0, λ 0 ], then every solution to this problem has positive H 1 -measure. Moreover, if p > N and Problem (A) is defined for an arbitrary λ > 0, then the empty set will not be a solution to Problem (A).

We have also established some topological and qualitative properties for minimizers of Problem (A).

Theorem.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Let Σ be a solution to Problem (A). Then Σ cannot contain closed loops (i.e., homeomorphic images of the unit circle S 1 ) and, therefore, topologically, Σ is a tree.

In the following theorem, the assumption on the integrability of the source f seems to be sharp, but we do not know whether a restriction on Lipschitz domains is necessary to prove that in dimension 2 and for every p ∈ (1, +∞), every solution to Problem (A) with at least two points is Ahlfors regular.

Theorem.

Let Ω ⊂ R 2 be a bounded domain with locally Lipschitz boundary, p ∈ (1, +∞), and f ∈ L 2p 2p-1 (Ω). Let Σ be a solution to Problem (A) with diam(Σ) > 0. Then Σ is Ahlfors regular.

Recall that the Ahlfors regularity of a closed connected set Σ implies the uniform rectifiability of Σ, which provides several useful analytical properties of Σ, see, for example, [DS].

Furthermore, we have proved that if Σ is a solution to Problem (A), then Σ ∩ Ω cannot contain quadruple points, namely, there is no point x ∈ Σ ∩ Ω such that for some fairly small radius r > 0 the set Σ ∩ B r (x) is a union of four distinct C 1 arcs, each of which meets at point x exactly one of the other three at an angle of 180 degrees, and each of the other two at an angle of 90 degrees.

Proposition.

Let Ω ⊂ R N be open and bounded, p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). If Σ is a solution to Problem (A), then Σ ∩ Ω cannot contain quadruple points.

It is worth mention that the importance of the connectedness of admissible sets in the statements of Problem (A) and Problem (B) for the existence of solutions to these problems had not been proved, but it was simply mentioned as a remark without proof in [CLLS] for the special case N = p = 2. In this dissertation, we provide a detailed proof in any spatial dimension N ≥ 2 for every p ∈ (N -1, +∞) and for the sharp integrability assumption on the source f ∈ L q 0 (Ω).

Theorem.

Let Ω ⊂ R N be open and bounded, λ > 0, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0, q 0 is defined in (2.1.1). Then the existence of minimizers for the functional F λ,f,Ω over the class of all closed proper subsets of Ω fails.

Theorem. Let Ω ⊂ R N be open and bounded, L > 0, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0, q 0 is defined in (2.1.

1). Then the existence of minimizers for the p-compliance

functional C f,Ω over the class Σ ⊂ Ω : Σ is closed, 0 < H 1 (Σ ) ≤ L fails.
These results generalize some of the results of [CLLS] for N ≥ 2 and p > N -1, but also contain better results in the special case N = p = 2. Indeed, our condition q > q 1 on the integrability of the source f for the particular case N = p = 2 yields q > 4 3 for the results of ε-regularity, the absence of loops and the absence of quadruple points to hold, which is better than the one in [CLLS] for which q > 2 was required. According to our Ahlfors-regularity result in 2d, it holds under the mild integrability assumption q = 2p 2p-1 and is proved up to the boundary of a Lipschitz domain Ω, which generalizes the earlier "internal result" in [CLLS]. Also, recall again that the existence of nontrivial solutions to Problem (A) and the importance of the connectedness assumption in its statement were not established in [CLLS].

This dissertation provided the material for three papers [START_REF] Bulanyi | Regularity for the planar optimal p-compliance problem[END_REF][START_REF] Bulanyi | On the importance of the connectedness assumption in the statement of the optimal p-compliance problem[END_REF][START_REF] Bulanyi | Partial regularity for the optimal p-compliance problem with length penalization, to appear in Calc[END_REF]. The paper [BL] was written jointly with A. Lemenant.

Discussion of the proofs

Let us outline the proofs of our main results in ascending order of the chapter number.

Importance of the connectedness assumption.

As was mentioned as a simple remark in [CLLS], it is quite intuitive to admit that, without any connectedness assumption, Problem (A) and Problem (B) become trivial, in the sense that the infimum is equal to 0. The idea is that the non-connected optimal set Σ would try to "fill" the whole Ω in order to decrease the energy as much as possible, but at the same time keeping the total length as small as possible. Our result is sharp and it completely answers to the remark that was suggested in [CLLS], and goes even beyond, since it is valid in any spatial dimension N ≥ 2 for every exponent p ∈ (N -1, +∞) and for the sharp assumption on the integrability of the source f . Our proof uses some explicit estimates on the p-capacity of a segment to derive some Poincaré-type inequalities for the Sobolev functions in a N -dimensional cube vanishing on a small segment inside this cube. Our proof also uses the dual formulations of the problems in order to obtain a global estimate on a family of disjoint N -dimensional cubes that have been "glued" together. Summing all the estimates and passing to the limit in the "size" of the N -cubes (going to zero), one gets the desired conclusion.

Ahlfors regularity in 2d.

First, let us recall that a set Σ ⊂ R N is said to be Ahlfors regular of dimension 1, if there exist constants c > 0, C > 0 and r 0 > 0 such that for every r ∈ (0, r 0 ) and every x ∈ Σ,

cr ≤ H 1 (Σ ∩ B r (x)) ≤ Cr.
(2.3.1)

Notice that if Σ ⊂ R N is a connected set with diam(Σ) > 0, then for every x ∈ Σ and every r ∈ (0, diam(Σ)/2), Σ ∩∂B r (x) = ∅ and hence

H 1 (Σ ∩ B r (x)) ≥ r
(see Lemma 3.5.4). Thus, the proof of the Ahlfors regularity for a minimizer Σ of Problem (A) with positive diameter, reduces to showing that there exist constants r 0 > 0 and C > 0 such that the upper bound in (2.3.1) holds for each point x ∈ Σ and each radius r ∈ (0, r 0 ). To obtain this upper bound, for each point x ∈ Σ and each sufficiently small radius r > 0, we could try to construct a competitor Σ x,r , satisfying the following condition

C f,Ω (Σ x,r ) -C f,Ω (Σ) + λH 1 (Σ x,r ) -λH 1 (Σ\B r (x)) ≤ Cr, (2.3.2)
where C > 0 is some fixed constant independent of the choice of x and r. Indeed, using the optimality of Σ, namely the fact that

C f,Ω (Σ) + λH 1 (Σ) ≤ C f,Ω (Σ x,r ) + λH 1 (Σ x,r ),
and also using (2.3.2), we would obtain the upper bound in (2.3.1). It is worth highlighting two main difficulties that arise when estimating from above the value of

C f,Ω ( Σ) -C f,Ω (Σ),
where Σ is a competitor for the minimizer Σ such that Σ∆ Σ ⊂ B r (x). The first is a nonlocal behavior of the p-compliance functional. Namely, changing Σ in a small neighborhood of a point x ∈ Σ so that the resulting set Σ would be a competitor for Σ, we change u Σ in the whole Ω and it seems difficult to try to directly estimate C f,Ω ( Σ) -C f,Ω (Σ) without knowing the behavior of Σ at a sufficiently large scale. A possible way to overcome this difficulty is to use the dual formulation of Problem (A), which gives us Problem (A * ) which is "localized" in some sense. The second main difficulty is that the functional C f,Ω is nonincreasing with respect to set inclusion.

In dimension 2 and in the case when B r (x) ⊂ Ω, as in [START_REF] Miranda | On one-dimensional continua uniformly approximating planar sets[END_REF]Theorem 5.1], we take Σ x,r = (Σ\B r (x)) ∪ ∂B r (x). Next, as in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF]Remark 7.3], we define σ x,r ∈ L p (Ω; R N ) by

σ x,r =      |∇u Σ | p-2 ∇u Σ in Ω\(Σ x,r ∪ B r (x)), |∇u| p-2 ∇u in B r (x), u ∈ W 1,p 0 (B r (x)) solves -∆ p u = f in B r (x).
This particular choice of σ x,r yields that

Ω |σ x,r | p dy = Ω\Br(x) |∇u Σ | p dy + Br(x) |∇u| p dy ≤ Ω\Br(x) |∇u Σ | p dy + Cr, (2.3.3)
where C is a positive constant independent of x and r. Hereinafter in this explanation of the proof of Ahlfors regularity, C denotes a positive constant that is independent of the choice of x and r, and can be different from line to line. Since (|∇u Σ | p-2 ∇u Σ , Σ) is a minimizer of Problem (A * ) and (σ x,r , Σ x,r ) is its competitor,

1 p Ω |∇u Σ | p dy + λH 1 (Σ) ≤ 1 p Ω |σ x,r | p dy + λH 1 (Σ x,r ) (2.3.3) ≤ 1 p Ω\Br(x) |∇u Σ | p dy + Cr + λH 1 (Σ\B r (x)) + λH 1 (∂B r (x)).
Hence H 1 (Σ ∩ B r (x)) ≤ Cr. In order to obtain the same kind of estimate in the case when B r (x) ∩ ∂Ω = ∅, we assume that Ω is a Lipschitz domain. This assumption yields that there exist δ > 0 and r ∂Ω > 0 such that for each s ∈ (0, r ∂Ω ) and each z ∈ ∂Ω, the set ∂Ω ∩ B s (z) up to a rotation of coordinates is contained in the cone

K δ = {y ∈ R 2 : y = 0 or angle(y, e 1 ) ∈ [0, arctan(δ)] ∪ [π -arctan(δ), π]},
where e 1 = (1, 0) ∈ R 2 . It allows us to construct a nice competitor Σ x,r , which is given by (Σ\R) ∪ (∂R ∩ Ω), where R is an appropriate open rectangle centered at some projection of x to ∂Ω, having a width of 4r and a length of 4 max{1, δ}r, and containing the ball B r (x).

Then we can define σ x,r ∈ L p (Ω; R N ) by

σ x,r =      |∇u Σ | p-2 ∇u Σ in Ω\(Σ x,r ∪ R), |∇u| p-2 ∇u in R ∩ Ω, u ∈ W 1,p 0 (R ∩ Ω) solves -∆ p u = f in R ∩ Ω. Since (σ x,r , Σ x,r ) is a competitor for (|∇u Σ | p-2 ∇u Σ , Σ) and Ω |σ x,r | p dy = Ω\R |∇u Σ | p dy + Ω∩R |∇u| p dy ≤ Ω\R |∇u Σ | p dy + Cr,
as in the "internal case" above we obtain that H 1 (Σ ∩ B r (x)) ≤ Cr. Altogether we obtain that Σ is Ahlfors regular of dimension 1. We do not know whether the restriction on Lipschitz domains is needed to prove the Ahlfors regularity in dimension 2 of minimizers of Problem (A) that have at least two points. However, we can always ensure that for each open set Ω ⊂⊂ Ω, there exist constants

C 0 = C 0 (p, q 0 , f (2p) , λ) > 0 and r 0 = r 0 (Ω , Ω) > 0 such that if Σ is a minimizer of Problem (A), then H 1 (Σ ∩ B r (x)) ≤ C 0 r whenever x ∈ Σ ∩ Ω and 0 < r ≤ r 0 .
On the other hand, the question about the Ahlfors regularity in dimension N ≥ 3 seems difficult and interesting. As we have already seen above, in our proof of the Ahlfors regularity of the minimizers of Problem (A) in dimension 2, we use, for instance, in the "internal case" the set (Σ\B r (x)) ∪ ∂B r (x) as a competitor for the minimizer Σ. But in dimension N ≥ 3 we cannot effectively use such a competitor, because ∂B r (x) has infinite H 1 -measure. Nevertheless, under some additional assumptions, we shall prove in Chapter 10 some kind of the Ahlfors regularity estimate from above for the minimizers of Problem (A) in any spatial dimension N ≥ 2.

Decay of the p-energy under flatness control.

To prove the partial C 1,α regularity result and the absence of closed loops, we first establish a decay behavior of the p-energy r → Br(x 0 ) |∇u Σ | p dx under flatness control on Σ at x 0 ∈ Ω, namely, we first prove the following: under some conditions (depending on N and p, where p > N -1) on the integrability of the source f , there exist constants b ∈ (0, 1) and C > 0 such that if Σ ∩ B r (x 0 ) remains fairly flat for all r ∈ [r 0 , r 1 ], B r 1 (x 0 ) ⊂ Ω, r 1 is sufficiently small, r 0 > 0 is small enough with respect to r 1 , then

Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ∀r ∈ [r 0 , r 1 ]
(see Lemma 7.2.5). For this we use the following strategy consisting of four steps.

Step 1. We prove that there exist α, δ ∈ (0, 1) and C > 0, depending only on N and p, such that for any weak solution u to the p-Laplace equation in B 1 (0)\({0} N -1 × (-1, 1)) vanishing p-q.e. on {0} N -1 × (-1, 1), the estimate

Br(0) |∇u| p dx ≤ Cr 1+α B 1 (0)
|∇u| p dx holds for all r ∈ (0, δ] (see Lemma 7.1.1, Corollary 7.1.5).

In dimension 2, we can use a reflection method to estimate a weak solution to the p-Laplace equation in B 1 (0)\({0} × (-1, 1)), which vanishes p-q.e. on {0} × (-1, 1) (see Lemma 7.1.3). This method is no more valid for a weak solution to the p-Laplace equation in B 1 (0)\({0} N -1 ×(-1, 1)), which vanishes p-q.e. on {0} N -1 ×(-1, 1) if N ≥ 3. In any spatial dimension N ≥ 2, we use a certain barrier function, that we constructed in Lemma 3.9.11, but which is in some sense weaker and slightly simpler than those that were constructed in [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF][START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF], to estimate a nonnegative p-harmonic function in B 1 (0)\({0} N -1 × (-1, 1)), continuous in B 1 (0) and vanishing on {0} N -1 × (-1, 1). Then we deduce the same kind of estimate for merely a weak solution to the p-Laplace equation in B 1 (0)\({0} N -1 × (-1, 1)) vanishing p-q.e. on {0} N -1 × (-1, 1).

Step 2. Arguing by contradiction and compactness, we establish a similar estimate as in Step 1 for a weak solution to the p-Laplace equation in B r (x 0 )\Σ that vanishes on Σ ∩ B r (x 0 ) in the case when Σ ∩ B r (x 0 ) is fairly close in the Hausdorff distance to a diameter of B r (x 0 ).

Recall that the Hausdorff distance for any two nonempty sets

A, B ⊂ R N is defined by d H (A, B) = max sup x∈A dist(x, B), sup y∈B dist(y, A) .
For each nonempty set A ⊂ R N , we immediately agree to define d H (∅, A) = d H (A, ∅) = +∞ and d H (∅, ∅) = 0. Let α, δ, C be as in Step 1. We prove that for each ∈ (0, δ] there exists ε 0 ∈ (0, ) such that if u is a weak solution to the p-Laplace equation in B r (x 0 )\ Σ vanishing p-q.e. on Σ ∩B r (x 0 ), where Σ is a closed set such that

(Σ ∩ B r (x 0 )) ∪ ∂B r (x 0 ) is connected and 1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0
for some affine line L ⊂ R N passing through x 0 , then the following estimate holds

B r (x 0 ) |∇u| p dx ≤ (C ) 1+α
Br(x 0 )

|∇u| p dx (see Lemma 7.2.1).

Step 3. Recall that we want to establish a decay estimate for the solution u Σ to the Dirichlet problem

-∆ p u = f in Ω\Σ, u ∈ W 1,p 0 (Ω\Σ) in a ball B r (x 0 ) ⊂ Ω whenever Σ is sufficiently close, in B r (x 0
) and in the Hausdorff distance, to a diameter of B r (x 0 ). To this end, we first control the difference between u Σ and its p-Dirichlet replacement in B r (x 0 )\Σ, where by the

p-Dirichlet replacement of u Σ in B r (x 0 )\Σ we mean the solution w ∈ W 1,p (B r (x 0 )) to the Dirichlet problem -∆ p u = 0 in B r (x 0 )\Σ, u -u Σ ∈ W 1,p 0 (B r (x 0 )\Σ).
Then, for some sufficiently small a = a(N, p) ∈ (0, 1), using the estimate for the local energy

Bar(x 0 ) |∇w| p dx coming from Step 2 and also the estimate for the difference between u Σ and w in B r (x 0 )\Σ, we arrive at the following decay estimate for u Σ : ,p,q) , where γ(N, p, q) ∈ (0, 1) provided that q > q 1 and f ∈ L q (Ω), where q 1 is defined in (2.2.1) (see Lemmas 7.2.2 and 7.2.4).

1 ar Bar(x 0 ) |∇u Σ | p dx ≤ 1 2 1 r Br(x 0 ) |∇u Σ | p dx + Cr γ(N
Step 4. Finally, by iterating the result of Step 3 in a sequence of balls {B a l r 1 (x 0 )} l , we obtain the desired decay behavior of the p-energy r → Br(x 0 ) |∇u Σ | p dx under flatness control on Σ at x 0 ∈ Ω. Namely, there exist b ∈ (0, 1) and C > 0 such that if Σ ∩ B r (x 0 ) remains fairly flat for all r in [r 0 , r 1 ], B r 1 (x 0 ) ⊂ Ω and r 1 is sufficiently small, r 0 > 0 is small enough with respect to r 1 , then the following estimate holds

Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ∀r ∈ [r 0 , r 1 ]
(see Lemma 7.2.5). Thus, if x 0 ∈ Σ ∩ Ω and Σ ∩ B r (x 0 ) remains fairly flat for all sufficiently small r > 0, then the energy r → 1 r Br(x 0 ) |∇u Σ | p dx converges to zero no slower than Cr b for some b ∈ (0, 1) and C > 0. This will be used to prove the desired C 1,α result, and the same kind of estimate will also be used to prove the absence of closed loops.

Absence of loops.

If a solution Σ to Problem (A) contained a homeomorphic image Γ of the circle S 1 , then there would exist a point x 0 ∈ Γ ∩ Ω such that there would be a sequence of relatively open sets D n ⊂ Σ satisfying: x 0 ∈ D n for all sufficiently large n; Σ \D n are connected for all n; diam(D n ) 0 as n → +∞; D n are connected for all n; there exists the affine line T x 0 such that x 0 ∈ T x 0 and

1 r d H (Σ ∩ B r (x 0 ), T x 0 ∩ B r (x 0 )) → 0 as r → 0+
(see Lemmas 8.1.1 and 8.1.2). So we could "cut out" D n , for which

H 1 (D n ) ≥ diam(D n ),
and estimate the resulting variation of the p-compliance in terms of (diam(D n )) 1+b , where b ∈ (0, 1) is some fixed constant, namely, obtain that

C f,Ω (Σ\D n ) -C f,Ω (Σ) ≤ C(diam(D n )) 1+b
for some positive constant C independent of n, which would lead to a contradiction with the optimality of Σ.

Remark about singular points.

If we assume that a solution Σ to Problem (A) contains a quadruple point x 0 ∈ Σ ∩ Ω, then for some sufficiently small radius ∈ (0, diam(Σ)/2), Σ ∩ B (x 0 ) consists of exactly four distinct C 1 arcs, each of which meets at point x 0 exactly one of the other three at an angle of 180 degrees, and each of the other two at an angle of 90 degrees. So there exists a cross K passing through x 0 (K consists of two mutually perpendicular affine lines passing through

x 0 ) such that 1 r d H (Σ ∩ B r (x 0 ), K ∩ B r (x 0 )) → 0 as r → 0 + . Since Σ ∩ B (x 0 ) is Ahlfors regular, there exists a positive constant C 0 > 0 such that, without loss of generality, H 1 (Σ ∩ B r (x 0 )) ≤ C 0 r ∀r ∈ (0, ]. (2.3.4)
On the other hand, using the coarea inequality (see Corollary 3.4.2), for each r ∈ (0, /2],

H 1 (Σ ∩ B 2r (x 0 )) ≥ 2r 0 H 0 (Σ ∩ ∂B t (x 0 )) dt > 2r r H 0 (Σ ∩ ∂B t (x 0 )) dt.
Then there exists t ∈ [r, 2r] such that

H 0 (Σ ∩ ∂B t (x 0 )) ≤ 1 r H 1 (Σ ∩ B 2r (x 0 )) (2.3.4) ≤ 2C 0 .
So we can construct a nice competitor Σ t for Σ. Namely, let D t = K ∩ ∂B t (x 0 ) and let S 4 (D t ) ⊂ B t (x 0 ) be a closed set of minimum H 1 -measure in the ball B t (x 0 ) which connects the all four points of D t (as in [BOS], we shall call it a Steiner connection of the points of D t ;

for more details on Steiner connections, see, for instance [GP, Pol, DHST]). Without loss of generality, we can also assume that Σ is fairly close, in B (x 0 ) and in the Hausdorff distance to K. For each point z i ∈ Σ ∩ ∂B t (x 0 ), denote by γ i the geodesic in ∂B t (x 0 ) connecting z i with the point of the set D t closest to z i . Let G denote the union of all arcs γ i , and let us define a competitor Σ t by

Σ t = (Σ\B t (x 0 )) ∪ G ∪ S 4 (D t ).
Then there exists a constant C > 0 independent of t such that

H 1 (Σ) -H 1 (Σ t ) ≥ Ct,
where the facts that

H 1 (Σ ∩ B t (x 0 )) ≥ 4t, H 1 (G) ≤ δt for some fairly small δ ∈ (0, 1) and that H 1 (S 4 (D t )) = √ 2( √ 3 + 1)t ≈ 3.86t
were used. Altogether there exist sequences (r n ) n∈N and (Σ n ) n∈N such that: r n > 0 and r n → 0 as n → +∞; Σ n are competitors for Σ;

H 1 (Σ) -H 1 (Σ n ) ≥ Cr n and C f,Ω (Σ n ) -C f,Ω (Σ) ≤ Cr 1+b n ,
where C > 0 and b ∈ (0, 1) are constants independent of n. Therefore, letting n tend to +∞, we obtain a contradiction with the optimality of Σ.

Proof of partial regularity.

We shall now try to explain how we use the decay of the p-energy under flatness control to prove the partial C 1,α regularity of the minimizers inside Ω. The first step in the proof is to show that every minimizer Σ of Problem (A) with diam(Σ) > 0 is an almost minimizer for the length at any point in Σ ∩ Ω around which Σ is flat enough and remains fairly flat on a large scale. More precisely, we need to prove that there exists β ∈ (0, 1) such that for any competitor Σ being τ r-close, in a ball B r (x 0 ) ⊂ Ω and in the Hausdorff distance, to a diameter of B r (x 0 ) for some small τ ∈ (0, 1) and satisfying Σ ∆Σ ⊂ B r (x 0 ), it holds

H 1 (Σ ∩ B r (x 0 )) ≤ H 1 (Σ ∩ B r (x 0 )) + Cr 1+β whenever x 0 ∈ Σ ∩ Ω, Σ is flat enough in B r (x 0
) and remains fairly flat on a large scale. In our framework, the term Cr 1+β may only come from the p-compliance part of the functional F λ,f,Ω . Thus, we need to prove that

C f,Ω (Σ ) -C f,Ω (Σ) ≤ Cr 1+β whenever x 0 ∈ Σ ∩ Ω, Σ is flat enough in B r (x 0
) and remains fairly flat on a large scale,

Σ ∈ K(Ω) is τ r-close, in B r (x 0 )
⊂ Ω and in the Hausdorff distance, to a diameter of B r (x 0 ) for some small τ ∈ (0, 1) and Σ ∆Σ ⊂ B r (x 0 ). Hereinafter in this explanation of the partial regularity, C denotes a positive constant that can only depend on N, p, q 0 , q, f q , |Ω| (q 0 is defined in (2.1.1), q ≥ q 0 , f ∈ L q (Ω)) and can be different from line to line. Notice again that one of the difficulties in obtaining the above estimate is a nonlocal behavior of the p-compliance functional. Namely, changing Σ locally in Ω, we change u Σ in the whole Ω. This can be overcome, using a cut-off argument. Actually, we have shown that if Σ is a competitor for Σ and Σ ∆Σ ⊂ B r (x 0 ), then

C f,Ω (Σ ) -C f,Ω (Σ) ≤ C B 2r (x 0 ) |∇u Σ | p dx + Cr N +p -N p q
(see Corollary 3.10.4). However, the right-hand side in the above estimate depends on the competitor Σ , which pushes us to introduce the quantity

w τ Σ (x 0 , r) = sup Σ ∈K(Ω), Σ ∆ Σ⊂Br(x 0 ), H 1 (Σ )≤100H 1 (Σ), β Σ (x 0 ,r)≤τ 1 r Br(x 0 ) |∇u Σ | p dx,
where β Σ (x 0 , r) is the flatness defined by

β Σ (x 0 , r) = inf L x 0 1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )),
where the infimum is taken over the set of all affine lines (1-dimensional planes) L in R N passing through x 0 . The quantity w τ Σ (x 0 , r) is a variant of the one introduced in [CLLS]. Also notice that the assumption

H 1 (Σ ) ≤ 100H 1 (Σ) in the definition of w τ Σ (x 0 , r) is rather optional, however, it guarantees that if Σ is a maximizer in this definition, then it is arcwise connected. Thus, if Σ ∈ K(Ω), Σ ∆Σ ⊂ B r (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) and β Σ (x 0 , 2r) ≤ τ , we arrive at the estimate C f,Ω (Σ ) -C f,Ω (Σ) ≤ Crw τ Σ (x 0 , 2r) + Cr N +p -N p q .
Next, applying the decay estimate established in Step 4 above to the function u Σ , where Σ is a maximizer in the definition of w τ Σ (x 0 , 2r), we obtain the following control

w τ Σ (x 0 , 2r) ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b , provided that β Σ (x 0 , ) remains fairly small for every ∈ [2r, r 1 ], r 1 > 0 is small enough, B r 1 (x 0 )
⊂ Ω and r > 0 is sufficiently small with respect to r 1 (see Proposition 10.1.7). Since b < N -1 + p -N p /q, altogether we get

H 1 (Σ ∩ B r (x 0 )) ≤ H 1 (Σ ∩ B r (x 0 )) + Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b whenever Σ is a minimizer of Problem (A), β Σ (x 0 , ) remains fairly small for all ∈ [r, r 1 ], r 1 > 0 is small enough, B r 1 (x 0 ) ⊂ Ω, r > 0 is sufficiently small with respect to r 1 , Σ ∈ K(Ω) is τ r-close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ), Σ ∆Σ ⊂ B r (x 0 ) and H 1 (Σ ) ≤ 100H 1 (Σ).
The next step is to find a nice competitor Σ for the minimizer Σ. More precisely, assume that x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r is sufficiently small, β Σ (x 0 , r) is small enough and remains fairly small on a large scale. The task is to find a competitor Σ such that Σ ∆Σ ⊂ B r (x 0 ), Σ is τ r-close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ) for some small τ ∈ (0, 1) and, in addition, the length (i.e., H 1 -measure) of Σ ∩ B r (x 0 ) is fairly close to the length of a diameter of B r (x 0 ). In two dimensions we can take

Σ = (Σ\B r (x 0 )) ∪ (∂B r (x 0 ) ∩ {x : dist(x, L) ≤ β Σ (x 0 , r)r}) ∪ (L ∩ B r (x 0 )) provided β Σ (x 0 , r) = d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 ))/r. But in dimension N ≥ 3, we cannot effectively use such a competitor, since it has Hausdorff dimension N -1 ≥ 2.
Notice that the main difficulty arising in the construction of a nice competitor in dimension N ≥ 3 is that we do not know whether the quantity H 0 (Σ ∩ ∂B (x 0 )) is uniformly bounded from above for x 0 ∈ Σ and > 0. However, according to the coarea inequality (see Corollary 3.4.2), we know that for all > 0,

H 1 (Σ ∩ B (x 0 )) ≥ 0 H 0 (Σ ∩ ∂B t (x 0 )) dt.
If, moreover, < diam(Σ)/2, then Σ ∩ ∂B t (x 0 ) = ∅ for all t ∈ (0, ], since x 0 ∈ Σ and Σ is arcwise connected (see Corollary 3.5.7). Thus, assuming that < diam(Σ)/2 and κ ∈ (0, 1/4], for any s ∈ [κ , 2κ ] we deduce the following

H 1 (Σ ∩ B (x 0 )) ≥ 0 H 0 (Σ ∩ ∂B t (x 0 )) dt > (1+κ)s s H 0 (Σ ∩ ∂B t (x 0 )) dt.
The latter inequality above implies that there exists t ∈ [s, (1 + κ)s] for which

H 0 (Σ ∩ ∂B t (x 0 )) ≤ 1 κ 2 θ Σ (x 0 , ), where θ Σ (x 0 , ) = 1 H 1 (Σ ∩ B (x 0 )).
So if κ ∈ (0, 1/4], x 0 ∈ Σ, r > 0 is sufficiently small and B r (x 0 ) ⊂ Ω, then for all s ∈ [κr, 2κr] we can construct the following competitor

Σ = (Σ\B t (x 0 )) ∪   H 0 (Σ∩∂Bt(x 0 )) i=1 [z i , z i ]   ∪ (L ∩ B t (x 0 )), where t ∈ [s, (1 + κ)s] is such that H 0 (Σ ∩ ∂B t (x 0 )) ≤ θ Σ (x 0 , r)/κ 2 , L is an affine line realizing the infimum in the definition of β Σ (x 0 , t), z i ∈ Σ ∩ ∂B t (x 0 ) and z i denotes the projection of z i to L ∩ B t (x 0 ). The flatness β Σ (x 0 , t) is less than or equal to β Σ (x 0 , t) by construction.
Assuming in addition that β Σ (x 0 , r) is fairly small and θ Σ (x 0 , r) is also small enough, for the competitor Σ constructed above it holds: β Σ (x 0 , t) is sufficiently small, since β Σ (x 0 , t) ≤ β Σ (x 0 , t) and β Σ (x 0 , ) remains small for all in (0, r) which are not too far from r (see Proposition 10.1.2); the length of Σ ∩ B t (x 0 ) is fairly close to the length of a diameter of B t (x 0 ); the following estimate holds

H 1 (Σ ∩ B s (x 0 )) ≤ H 1 (Σ ∩ B t (x 0 )) ≤ H 1 (Σ ∩ B t (x 0 )) + Ct t r b w τ Σ (x 0 , r) + Ct 1+b .
This allows us to prove the following fact: there exist ε, κ ∈ (0, 1/100) such that if Σ is a minimizer of Problem (A), x 0 ∈ Σ, r > 0 is sufficiently small, B r (x 0 ) ⊂ Ω and the following condition holds

β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, θ Σ (x 0 , r) ≤ 10µ (C)
with µ being a unique positive solution to the equation µ = 5 + µ 1-1 N (we shall explain a bit later why we take this particular bound), then there exists s ∈ [κr, 2κr] for which

H 0 (Σ ∩ ∂B s (x 0 )) = 2 (see Proposition 10.2.1 (i)), the two points {ξ 1 , ξ 2 } of Σ ∩ ∂B s (x 0 ) belong to two different connected components of ∂B s (x 0 ) ∩ {x : dist(x, L) ≤ β Σ (x 0 , s)s} (see Proposition 10.2.1 (ii-1)), where L is an affine line realizing the infimum in the definition of β Σ (x 0 , s), Σ ∩ B s (x 0 ) is arcwise connected (see Proposition 10.2.1 (ii-2)). Moreover, (Σ\B s (x 0 )) ∪ [ξ 1 , ξ 2 ]
is a nice competitor for Σ (see Proposition 10.2.1 (ii-3)). Using this result together with the decay behavior of the local energy w τ Σ , we prove that there exists a constant a ∈ (0, 1/100) such that if x 0 ∈ Σ, r > 0 is small enough, B r (x 0 ) ⊂ Ω and the condition (C) holds with some sufficiently small ε > 0, then

β Σ (x 0 , ar) ≤ C(w τ Σ (x 0 , r)) 1 2 + Cr b 2 and w τ Σ (x 0 , ar) ≤ 1 2 w τ Σ (x 0 , r) + C(ar) b (see Proposition 10.3.2 (i), (ii))
. Next, we need to control the density θ Σ from above on a smaller scale by its value on a larger scale. As already mentioned, we do not prove the Ahlfors regularity for a minimizer of Problem (A) in the spatial dimension N ≥ 3. However, adapting some of the approaches of E. Paolini and E. Stepanov in [PS1], we prove the following fact: for each a ∈ (0, 1/20] there exists ε ∈ (0, 1/100) such that if

x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r > 0 is sufficiently small and β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, then θ Σ (x 0 , ar) ≤ 5 + θ Σ (x 0 , r) 1-1 N (see Proposition 10.2.4). Notice that if θ Σ (x 0 , r) ≤ 10µ, then, using the above estimate, we get θ Σ (x 0 , ar) ≤ 5 + (10µ) 1-1 N ≤ 10(5 + µ 1-1 N ) = 10µ.
The factor 10 in the estimate θ Σ (x 0 , r) ≤ 10µ is rather important, it appears in the proof of Corollary 10.3.4. Altogether we prove that there exist constants a, ε ∈ (0, 1/100), b ∈ (0, 1) such that if x 0 ∈ Σ, r > 0 is sufficiently small, B r (x 0 ) ⊂ Ω and the condition (C) holds with ε, then for all n ∈ N,

β Σ (x 0 , a n+1 r) ≤ C(w τ Σ (x 0 , a n r)) 1 2 +C(a n r) b 2 and w τ Σ (x 0 , a n+1 r) ≤ 1 2 w τ Σ (x 0 , a n r)+C(a n+1 r) b
(see Proposition 10.3.2). This, in particular, implies that the estimate β Σ (x 0 , ) ≤ C α holds for some α ∈ (0, 1), C = C(N, p, q 0 , q, f q , |Ω|, r) > 0 and for all sufficiently small > 0 with respect to r (see Proposition 10.3.3).

Finally, we arrive to the so-called "ε-regularity" theorem, which says the following: there exist constants τ, a, ε, α, r 0 ∈ (0, 1) such that whenever x ∈ Σ, 0 < r < r 0 , B r (x) ⊂ Ω,

β Σ (x, r) + w τ Σ (x, r) ≤ ε and θ Σ (x, r) ≤ µ,
then for some positive constant C = C(N, p, q 0 , q, f q , |Ω|, r), β Σ (y, ) ≤ C α for each point y ∈ Σ ∩ B ar (x) and each radius ∈ (0, ar) (see Corollary 10.3.4). In particular, there exists t ∈ (0, 1) such that Σ ∩ B t (x) is a C 1,α regular curve (see Proposition A.0.3).

On the other hand, closed connected sets with finite H 1 -measure are H 1 -rectifiable (see Theorem 3.5.5). So

β Σ (x, r) → 0 as r → 0+ at H 1 -a.e. x ∈ Σ and hence at H 1 -a.e. x ∈ Σ ∩ Ω, w τ Σ (x, r) → 0 as r → 0+. Moreover, in view of Besicovitch-Marstrand-Mattila Theorem (see Theorem 3.3.24), θ Σ (x, r) → 2 as r → 0 + at H 1 -a.e. x ∈ Σ.
At the end, observing that for each N ≥ 2, the unique positive solution µ to the equation µ = 5 + µ 1-1 N is strictly greater than 5, we bootstrap all the estimates and prove that every minimizer

Σ of Problem (A) is C 1,α regular at H 1 -a.e. point x ∈ Σ ∩ Ω.

Perspectives

1. To begin with, let us narrow our attention to the case N = p = 2. One of the perspectives is to study the regularity of solutions to Problem (A) up to the tip of an endpoint and up to the branching point for a triple point. We recall that in [CLLS] it was proved the following.

(A) There exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem (A). Then if Σ is fairly close, in a ball B r (x 0 ) such that B r (x 0 ) ⊂ Ω and in the Hausdorff distance, to a diameter of B r (x 0 ), then there exists a constant a ∈ (0, 1)

such that Σ ∩ B ar (x 0 ) is a C 1,α arc.
The purpose is to prove the following two statements.

(B) There exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem (A). Then if Σ is fairly close, in a ball B r (x 0 ) such that B r (x 0 ) ⊂ Ω and in the Hausdorff distance, to a propeller centered at x 0 , then there exists a constant a ∈ (0, 1) such that Σ ∩ B ar (x 0 ) is a union of three C 1,α arcs meeting at 120 • angles at some point y 0 ∈ B ar/2 (x 0 ).

(C) There exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem (A). Then if Σ is fairly close, in a ball B r (x 0 ) such that B r (x 0 ) ⊂ Ω and in the Hausdorff distance, to a single radius of B r (x 0 ), then there exists a constant a ∈ (0, 1) such that Σ ∩ B ar (x 0 ) is a single arc which joins some point y 0 ∈ B ar/2 (x 0 ) with ∂B ar (x 0 ) and which is smooth in B ar (x 0 ).

Probably, following the approach that G. David did in [START_REF] David | Singular Sets of Minimizers for the Mumford-Shah Functional[END_REF]Section 53] for Mumford-Shah minimizers, one can try to adapt the ε-regularity result (A) to obtain (B).

As for (C), the recent result of C. De Lellis, M. Focardi and S. Ghinassi [DLFG] proves a similar result as (C) but for Mumford-Shah minimizers. One can try to adapt the approach in [DLFG] to prove (C). 2. Notice that in dimension N ≥ 3 Problem (A) is very original, because every minimizer for this problem which has at least two points is of Hausdorff dimension 1, but in R N .

Question 2.1. Is every solution Σ to Problem (A) with diam(Σ) > 0 Ahlfors regular in any spatial dimension N ≥ 2 for every p ∈ (N -1, +∞)? Question 2.2. Assume that Σ is a solution to Problem (A) with diam(Σ) > 0, S ⊂ Σ is such that any x ∈ S is not a flat point, and Σ\S is locally C 1,α regular for some α ∈ (0, 1). Is it true that dim H (S) < 1? Question 2.3. We have proved that if Σ is a solution to Problem (A), then Σ cannot contain closed loops. However, in codimension 2 we worry about existence of knots. In codimension 2, can a solution to Problem (A) have a knot? Question 2.4. In the case when p = 2 we do not have a good tool that would allow us to establish a classification of blow-up limits. Thus, one of the main perspectives is to find such a tool if it exists.

Question 2.5. Define the notion of global minimizer for Problem (A) in the general case. If Σ is a minimizer of Problem (A) with diam(Σ) > 0, is it true that at any point in Σ ∩ Ω any convergent blow-up sequence converges to a global minimizer (in the general case)?

3. Study the regularity and topological structure of solutions to the following constrained version of the optimal p-compliance problem

(Q) min{C f,Ω (Σ) : Σ ⊂ Ω is closed and connected, 0 < H 1 (Σ) ≤ L}.
For this problem, we have no some kind of "the local minimization" of the one-dimensional Hausdorff measure because of the constraint. So the regularity of a minimizer of this problem seems difficult to prove. However, some regularity results for some minimizers of this problem we have already established. In fact, notice that if

Σ is a solution to Problem (A) such that diam(Σ) > 0, then Σ solves problem (Q) provided that L = H 1 (Σ).

4.

Here we defined "everything" in terms of p-harmonic functions. Recently, in [START_REF] David | Harmonic measure on sets of codimension larger than one[END_REF][START_REF] David | Dahlberg's theorem in higher co-dimension[END_REF][START_REF] David | Elliptic theory for sets with higher codimensional boundaries[END_REF][START_REF] David | Elliptic theory in domains with boundaries of mixed dimensions[END_REF][START_REF] David | Harmonic measure is absolutely continuous with respect to the Hausdorff measure on all low-dimensional uniformly rectifiable sets[END_REF][START_REF] Feneuil | A ∞ absolute continuity of the harmonic measure on low dimensional rectifiable sets[END_REF], the authors have been wondering about other equations, like degenerate elliptic equations with coefficients that tend to infinity as the distance to some set to a power. Here too the initial question is about the size of the derivative of solutions; is there a chance that there are variants of the compliance equation that make sense in such contexts?

Chapter 3

Preliminary results

Conventions and Notation

Conventions: Euclidean spaces are endowed with the Euclidean inner product •, • and the induced norm | • |. Terms such as positive and increasing are always understood in their strict sense. For instance, a value is positive if it is strictly greater than zero, and a value is nonnegative if it is greater than or equal to zero. By N we denote an integer greater than or equal to 2. By Ω, unless otherwise stated, we denote an open bounded set in R N .

Notation: we denote by B r (x), B r (x), and ∂B r (x), respectively, the open ball, the closed ball, and the N -sphere with center x and radius r. If the center is at the origin, we write B r , B r and ∂B r the corresponding balls and the N -sphere. For each set E ⊂ R N , the sets int(E), E c , E, and ∂E denote, respectively, the interior of E, the complement of E, the closure of E, and the topological boundary of E in R N . We denote by d(x, E), diam(E), E∆F , and |E|, respectively, the Euclidean distance from x ∈ R N to E ⊂ R N , the diameter of E, the symmetric difference of E and F ⊂ R N , and the N -dimensional Lebesgue measure of E.

Let U be a Lebesgue measurable set in R N . For p ∈ [1, +∞) ∪ {+∞}, L p (U ) denotes the space consisting of all real measurable functions on U that are p th -power integrable on

U if p ∈ [1, +∞) and are essentially bounded if p = +∞; L p (U ; R N ) is the respective space of functions with values in R N . The norm on L p (U ) (L p (U ; R N )) is denoted by • L p (U ) ( • L p (U ;R N ) ) or • p when it is appropriate.
Let E be a subset of R l , l ≥ 1. We denote by C 0 (E) (C 0,α (E), where α ∈ (0, 1]) the space of all real continuous (α-Hölder continuous) functions on E. We shall use C 0 (E, R N ) to denote the class of all continuous functions u :

E → R N defined on E whose coordinate functions belong to C 0 (E). Assume now that U ⊂ R N is open. We denote by C ∞ (U ) the space of all infinitely differentiable real functions in U . The space C ∞ (U ) consists of all functions ϕ ∈ C ∞ (U ) for which there exist an open set V ⊂ R N and a function ψ ∈ C ∞ (V ) such that U ⊂ V and ϕ = ψ on U . We denote by W 1,p (U ) the Sobolev space of functions u ∈ L p (U ) whose distributional gradient belongs to L p (U ; R N ). The space W 1,p 0 (U ) is the closure of C ∞ 0 (U ) in the Sobolev space W 1,p (U ), where C ∞ 0 (U ) is the space of functions in C ∞ (U ) with compact support in U . The space W -1,p (U ) is the dual of W 1,p 0 (U ). On W 1,p 0 (U ) we consider the norm u p W 1,p 0 (U ) = U |∇u| p dx,
and W -1,p (U ) is endowed with the corresponding dual norm. Recall that W 1,p loc (U ) is the space of functions u such that u ∈ W 1,p (V ) for all V ⊂⊂ U . The space D (U ) is the space of distributions in U .

We shall denote by H d (A) the d-dimensional Hausdorff measure of A, the definition of which is recalled in Section 3.3. The d-dimensional Lebesgue measure will be denoted by L d .

We shall sometimes write points of

R N as x = (x , x N ) with x ∈ R N -1 and x N ∈ R.

Hausdorff distance

In this section, we first recall the definition of the Hausdorff distance. Then we show the equivalence of convergence in the Hausdorff distance and in the sense of Kuratowski for a sequence of nonempty closed sets contained in some compact subset of R N . Finally, we prove the Blaschke theorem, which says that if X is a nonempty compact subset of R N , then the collection of all nonempty closed subsets of X is a compact metric space, when endowed with the Hausdorff distance.

Definition 3.2.1. The Hausdorff distance for any two nonempty sets A, B ⊂ R N is defined by

d H (A, B) = max sup x∈A d(x, B), sup y∈B d(y, A) .
For each nonempty set A ⊂ R N , we immediately agree to define

d H (∅, A) = d H (A, ∅) = +∞ and d H (∅, ∅) = 0.
Remark 3.2.2. It is easy to check that for any two nonempty sets

A, B ⊂ R N , d H (A, B) = inf{ε > 0 : B ⊂ A ε and A ⊂ B ε },
where

A ε = {x ∈ R N : d(x, A) ≤ ε} and B ε = {x ∈ R N : d(x, B) ≤ ε}.
Proposition 3.2.3. Let X be a nonempty compact set in R N and let (K n ) n∈N be a sequence of nonempty compact subsets of X. Then K n converges to some compact set K ⊂ X in the Hausdorff distance if and only if the following two properties hold (this is also known as convergence in the sense of Kuratowski):

any x ∈ K is the limit of a sequence (x n ) n with x n ∈ K n ; (P.1) if x n ∈ K n , any limit point of (x n ) n belongs to K. (P.2) Proof. Assume that d H (K n , K) → 0 as n → +∞. (3.2.1) Fix an arbitrary x ∈ K. Since K n is compact, there is y n ∈ K n such that |x-y n | = d(x, K n ). Observing that |x -y n | = d(x, K n ) ≤ d H (K n , K)
and using (3.2.1), we conclude that y n → x as n → +∞. Thus, (P.1) holds. Assume now that x n ∈ K n and that up to a subsequence still denoted by n,

|x n -x| → 0 as n → +∞ (3.2.2) for some x ∈ R N . Choose a sequence ( x n ) n∈N ⊂ K such that |x n -x n | = d(x n , K).
We deduce the following

| x n -x| ≤ |x n -x n | + |x n -x| ≤ d H (K n , K) + |x n -x|,
which, together with (3.2.1) and (3.2.2), implies that x ∈ K, since K is compact. Thus, (P.2) holds.

It remains to show that if (P.1) and (P.2) hold, then d H (K n , K) → 0 as n → +∞. Assume by contradiction that (P.1) and (P.2) hold, but for some ε > 0 there exists a subsequence (n(l)) l∈N such that d H (K n(l) , K) ≥ ε for each l ∈ N. Using this, Definition 3.2.1 and the compactness of K n(l) and K, we deduce that for each l ∈ N there exist

x n(l) ∈ K n(l) and y n(l) ∈ K such that d(x n(l) , K) + d(y n(l) , K n(l) ) ≥ ε. (3.2.3)
Next, using the compactness of X together with (P.2), and also using the compactness of K, we extract a subsequence (which we shall still denote by (n(l)) l∈N ) such that for some x, y ∈ K, x n(l) → x and y n(l) → y. Then, (P.1) says that there exists a sequence

(z n(l) ) l∈N with z n(l) ∈ K n(l) such that z n(l) → y. This implies that d(x n(l) , K) + d(y n(l) , K n(l) ) ≤ |x n(l) -x| + |y n(l) -y| + |z n(l) -y| → 0 as l → +∞,
which leads to a contradiction with (3.2.3) and completes the proof of Proposition 3.2.3. Now we prove the Blaschke theorem (compare with [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 6.1]).

Theorem 3.2.4. Let X be a nonempty compact subset of R N and (K n ) n∈N be a sequence of nonempty closed subsets of X. Then we can find a nonempty compact set K ⊂ X and a subsequence (K n(k) ) k∈N converging in the Hausdorff distance to K.

Proof. For each n ∈ N and x ∈ X, define d n (x) = d(x, K n ). Notice that |d n (x) -d n (y)| ≤ |x -y| ∀x, y ∈ X, (3.2.4)
and diam(X) < +∞ because X is a compact set. Thus, the sequence of functions

d n : X → [0, diam(X)]
is equibounded and equicontinuous. Then, according to the Arzelà-Ascoli theorem, there exists a subsequence (d n(k) ) k∈N , uniformly converging to some continuous function d on X.

Define K = {x ∈ X : d(x) = 0}. Assume that x n(k) ∈ K n(k)
and up to a subsequence still denoted by

(x n(k) ) k∈N , x n(k) → x in X. Since d(x) = lim k→+∞ d n(k) (x) = lim k→+∞ (d n(k) (x) -d n(k) (x n(k) )) (3.2.4) ≤ lim k→+∞ |x -x n(k) | = 0,
we get that x ∈ K, and hence property (P.2) of Proposition 3.2.3 holds. Next, fix an arbitrary 

x ∈ K. Choose x n(k) in K n(k) such that |x n(k) -x| = d n(k) (x). Since d n(k) (x) → d(x) = 0, we deduce that x n(k) → x,

Some basic notions and results of geometric measure theory

In this section, we give a characterization of rectifiability of sets and measures based on the existence of the approximate tangent spaces. One implication of this characterization is that

H 1 -rectifiable sets E ⊂ R N have density 1 H 1 -a.e. on E.
We begin with the definition of the d-dimensional Hausdorff measure.

Definition 3.3.1. Let d ∈ [0, +∞). For each δ > 0 and E ⊂ R N , define

H d δ (E) = ω d 2 d inf i∈I (diam(E i )) d : diam(E i ) < δ, E ⊂ i∈I E i ,
where

ω d = π d 2 Γ(1+ d
2 ) (where Γ(t) = +∞ 0 s t-1 e -s ds is the usual Gamma function) and the infimum is taken over all finite or countable covers (E i ) i∈I of E, with the convention diam(∅) = 0.

Notice that, since δ → H d δ (E) is nonincreasing, there exists the limit of H d δ (E) as δ → 0+ which is finite or infinite. Now we can define the d-dimensional Hausdorff measure.

Definition 3.3.2. Let d ∈ [0, +∞) and E ⊂ R N . The d-dimensional Hausdorff measure of E is defined by H d (E) = lim δ→0+ H d δ (E).
Note that H 0 is the counting measure, i.e., H 0 (E) is equal to the number of elements of E.

Remark 3.3.3. The factor ω d /2 d in the definition of H d δ is used to ensure that H N coincides with the outer N -dimensional Lebesgue measure (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.53]), and [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.71]).

if d ∈ [1, N ) is integer, to ensure that H d (B) coincides with the classical d-dimensional area of a ball B ⊂ R N (see
Definition 3.3.4. A set V ⊂ R N is said to be H d -measurable if H d (V ) = H d (V ∩ E) + H d (V ∩ E c ) ∀E ⊂ R N .
We recall some properties of Hausdorff measures (compare to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Proposition 2.49]).

Proposition 3.3.5. The measure H d in R N has the following properties.

(i) The measure H d is an outer measure in R N and, in particular, is σ-additive on the Borel σ-algebra B(R N ).

(ii) H d has the following behavior with respect to translations and homotheties:

H d (x + E) = H d (E) ∀x ∈ R N , H d (λE) = λ d H d (E) ∀λ > 0 for any E ⊂ R N , and is identically zero if d > N . (iii) Assume that d > d ≥ 0. If H d (E) is positive, then H d (E) = +∞. (iv) If f : R N → R m is a k-Lipschitz function, then H d (f (E)) ≤ k d H d (E) ∀E ⊂ R N .
Proof. Let us first prove (i). Let (E i ) i∈N be a cover of E. For each i ∈ N, fix an arbitrary cover

(V i(j) ) j∈N of E i . The fact that (V i(j) ) (i,j)∈N 2 is a cover of E implies that H d δ (E) ≤ ∞ i=0 H d δ (E i ).
Hence H d δ is σ-subadditive for each δ > 0. Since the supremum of σ-subadditive set functions is σ-subadditive, the same holds for H d . This, together with the fact that H d δ (∅) = 0, proves that H d is an outer measure in R N . To prove that H d is σ-additive on B(R N ), according to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 1.49], we need only to show that

H d (E ∪ V ) = H d (E) + H d (V ) if d E,V = inf{|x -y| : x ∈ E, y ∈ V } > 0, namely to prove that H d is a metric outer measure. Assume that d E,V > 0 and δ ∈ (0, d E,V ).
Notice that any set intersecting E ∪ V with diameter less than or equal to δ intersects only one of the sets E, V . This implies that

H d δ (E ∪ V ) ≥ H d δ (E) + H d δ (V ),
and since H d δ is subadditive, finally yields the following

H d δ (E ∪ V ) = H d δ (E) + H d δ (V ).
Letting δ tend to 0+ in the above equality, we deduce that

H d (E ∪ V ) = H d (E) + H d (V ).
This completes the proof of (i).

Next, notice that the invariance under translations and the behavior under homotheties of H d follow from the analogous properties of the set function E → (diam(E)) d . Assume that d > N . Observing that each cube Q ⊂ R N with sides equal to 1 can be covered by n N cubes with sides equal to 1/n, we deduce that

H d δ (Q) ≤ ω d √ N 2 d n N -d with δ > √ N /n.
Letting n tend to +∞, we obtain that H d (Q) = 0. This, together with the σ-additivity of H d and the translation invariance, implies that H d is identically 0. Thus, (ii) is proved.

The property (iii) follows from the inequality

2 d ω d H d δ (E) ≤ δ d-d 2 d ω d H d δ (E) 0 < δ < +∞.
The property (iv ) follows from the inequality diam(f (E)) ≤ k diam(E).

With property (iii) of Proposition 3.3.5 at hand, we are ready to recall the definition of Hausdorff dimension. 

Definition 3.3.6. For all E ⊂ R N the number dim H (E) = sup{s ∈ [0, +∞) : H s (E) = +∞} = inf{t ∈ [0, +∞) : H t (E) = 0}
Θ * d (µ, x) = lim sup →0+ µ(B (x)) ω d d , Θ * d (µ, x) = lim inf →0+ µ(B (x)) ω d d . If Θ * d (µ, x) = Θ * d (µ, x), then their common value is denoted by Θ d (µ, x).
For every Borel set E ⊂ U , we also define

Θ * d (E, x) = lim sup →0+ H d (E ∩ B (x)) ω d d , Θ * d (E, x) = lim inf →0+ H d (E ∩ B (x)) ω d d
and, if they agree, we denote the common value of these densities by Θ d (E, x).

Notice that Θ * d (E, x) = Θ * d (H d E, x) and Θ * d (E, x) = Θ * d (H d E, x). Also functions x → Θ * d (µ, x) and x → Θ * d (µ, x)
are Borel, this follows from their definitions and the fact that the function → µ(B (x)) is right continuous.

The following theorem says how the upper density Θ * d (µ, x) can be used to estimate from below and from above µ with H d (compare with [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.56]).

Theorem 3.3.8. Let U ⊂ R N be an open set and µ a nonnegative Radon measure in U . Then, for any t ∈ (0, +∞) and any Borel set B ⊂ U the following assertions hold.

(i) If Θ * d (µ, x) ≥ t for all x ∈ B, then µ B ≥ tH d B. (ii) If Θ * d (µ, x) ≤ t for all x ∈ B, then µ B ≤ 2 d tH d B.
Proof. Without loss of generality, assume that t = 1, d > 0 and B ⊂⊂ U . First, let us prove (i). We fix δ ∈ (0, 1), an open set V ⊂⊂ U containing B and consider all the open balls C in V with centers in B and with diameters strictly less than δ, such that

µ(C) ≥ 1 -δ 2 d ω d (diam(C)) d .
By the Besicovitch covering theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.18]), we obtain a sequence (C i ) i of these balls whose union covers B and every point of this union belongs to at most A N different balls C i . In particular,

H d δ (B) ≤ i ω d 2 d (diam(C i )) d ≤ i 1 1 -δ µ(C i ) ≤ A N 1 -δ µ(V ).
Letting δ tend to 0+, we obtain that H d (B) < +∞. Thus, replacing in the above-mentioned cover of B the open balls by closed balls, we can apply the Besicovitch-Vitali theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.19]) to this cover and obtain a pairwise disjoint family

(C i ) which covers H d -almost all (hence H d δ -almost all) of B. As a consequence, H d δ (B) ≤ i ω d 2 d (diam(C i )) d ≤ i 1 1 -δ µ(C i ) ≤ 1 1 -δ µ(V ),
and the arbitrariness of δ and V gives H d (B) ≤ µ(B). This argument can be repeated for any Borel subset of B. The proof of (i) is now complete. Now we prove (ii). Given any τ > 1, we define

B n = x ∈ B : µ(B (x)) ω d d < τ ∀ ∈ 0, 1 n
for any integer n > 1/ dist(B, ∂Ω). The sequence (B n ) n is increasing and its union is B. Let (C i ) i be sets with diameters strictly less than 1/n, having at least one point x i belonging to B n , whose union contains B n and satisfying

i ω d d i < H d 1/n (B n ) + 1 n with i = 1 2 diam(C i ).
The sets

C i = B 2 i (x i ) still cover B n , hence µ(B n ) ≤ i µ(C i ) ≤ τ i ω d (2 i ) d < τ 2 d H d (B) + 1 n .
Letting n tend to +∞ and τ tend to 

Θ d (µ, x) = 0 for H d -a.e. x ∈ B. (3.3.2)
Proof of Corollary 3.3.9. For each Borel set B ⊂⊂ {x ∈ U : Θ * d (µ, x) = +∞}, according to Theorem 3.3.8 (i), µ(B) ≥ tH d (B) for each t > 0, which implies that H d (B) = 0, since µ(B) < +∞. This, together with the σ-subadditivity of H d , yields (3.3.1).

Next, assume that µ(B) = 0 for some Borel set B ⊂ U . For each integer n ≥ 1, define

B n = {x ∈ B : Θ * d (µ, x) ≥ 1 n }.
Using the assertion (i) of Theorem 3.3.8, we get

0 = µ(B n ) ≥ 1 n H d (B n ), hence H d (B n ) = 0. Observing that ∞ n=1 B n = {x ∈ B : Θ * d (µ, x) > 0}
and using the σ-subadditivity of H d , we deduce (3.3.2). This completes the proof of Corollary 3.3.9.

Hereinafter in this section, we assume that d ∈ [0, N ] is an integer. [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Corollary 2.23]). However, if 0 < d < N , then, we only know that

E (x) of the set E (1 E (x) = 1 if x ∈ E and 1 E (x) = 0 if x ∈ E) for H d -a.e. x ∈ R N (for d = N this follows from
Θ d (E, x) = 0 for H d -a.e. x ∈ R N \E (3.3.3) and 2 -d ≤ Θ * d (E, x) ≤ 1 for H d -a.e x ∈ E. (3.3.4) In fact, (3.3.3) follows from (3.3.2) with µ = H d E.
On the other hand, Theorem 3.3.8 says that

H d E(A t ) ≤ 2 d tH d E(A t ) with A t = {x ∈ E : Θ * d (E, x) ≤ t}, t < 2 -d and H d E(B t ) ≥ tH d E(B t ) with B t = {x ∈ E : Θ * d (E, x) ≥ t}, t > 1, which yields (3.3.4).
We also note that Theorem 3.3.8 gives no lower bound on Θ * d (E, x), hence no information on the existence of Θ d (E, x) on E.

It is worth noting that the existence of Θ d (E, x) on E is related to a mild regularity property of E known as (local) H d -rectifiability. To observe this fact, we recall several important definitions and tools. Definition 3.3.11. Let E ⊂ R N be an H d -measurable set. We say that E is countably d-rectifiable if there exist countably many Lipschitz functions

f i : R d → R N such that E ⊂ ∞ i=0 f i (R d ).
We say that E is countably H d -rectifiable if there exist countably many Lipschitz functions The class of all d-rectifiable measures consists of all purely atomic measures if d = 0 and all measures absolutely continuous with respect to

f i : R d → R N such that H d E\ ∞ i=0 f i (R d ) = 0. Finally, we say that E is H d -rectifiable if E is countably H d -
H N if d = N .
In Theorem 3.3.23 it will be proved that if µ is a nonnegative Radon measure and is d-rectifiable, then the function θ(x) coincides µ-a.e. with Θ d (µ, x).

Next, following [AFP], we recall the definition of the cone with axis P and opening M .

Definition 3.3.13. Let P ⊂ R N be a d-plane passing through the origin and M ≥ 0. The cone K M (P ) with axis P and opening M is defined by

K M (P ) = {x ∈ R N : |π ⊥ x| ≤ M |πx|},
where π denotes the orthogonal projection onto P .

Remark 3.3.14. We can characterize subsets of Lipschitz d-graphs as those sets S such that there exist a d-plane P passing through the origin and a constant M satisfying S ⊂ x+K M (P ) for any x ∈ S. In fact, assume that there exists a cone K M (P ) such that for any x ∈ S, S ⊂ x

+ K M (P ). If x 1 , x 2 ∈ S, then |π ⊥ (x 1 -x 2 )| ≤ M |π(x 1 -x 2 )|.
Hence πx 1 = πx 2 implies x 1 = x 2 . This proves that for every y ∈ π(S) there exists a unique z ∈ P ⊥ such that y + z ∈ S. Defining z = ϕ(y), we obtain that the Lipschitz constant of ϕ is less than or equal to M . The converse implication is trivial.

We now recall an important formula that can be used to compute the d-dimensional Hausdorff measure of sets parameterized by a Lipschitz mapping f : R d → R N . But first, let us recall the definition of the d-dimensional Jacobian. Definition 3.3.15. Let V, W be Hilbert spaces with dim(V ) = d, dim(W ) = N and let L : V → W be a linear map. The d-dimensional Jacobian is defined by

J d L = det(L * • L) where L * : W * → V * is the transpose of L.
Notice that J d L = 0 if and only if the rank of L is strictly less than d.

Remark 3.3.16. Using a polar decomposition of a linear map L :

R d → R N , it is easy to see that J d L is the H d -measure of the d-simplex S = L(Q) ⊂ W , where Q ⊂ V is an arbitrary unit cube (for a proof, see
Step 1 in the proof of Theorem 2.71 in [AFP]). Now we are ready to recall the area formula (for a proof, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.71]).

Theorem 3.3.17. Let f : R d → R N be a Lipschitz function with N ≥ d. Then for any L d -measurable set E ⊂ R N the multiplicity function H 0 (E ∩ f -1 (y)) is H d -measurable in R N and R N H 0 (E ∩ f -1 (y)) dH d (y) = E J d df x dx.
Remark 3.3.18. According to the Rademacher theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.14]), for each

L d -measurable set E ⊂ R N and each Lipschitz function f : E → R N , the value J d df x is well defined at L d -a.e. x ∈ E. Remark 3.3.19. Notice that the set f (E) is H d -measurable, being the support of the mul- tiplicity function. If f is one-to-one on E, then H d (f (E)) = E J d df x dx.
It is also worth noting that representing any Borel function g : E → [0, +∞) ∪ {+∞} as a series of indicator functions (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Exercise 2.12]), we obtain the general change of variables formula

R N x∈E∩f -1 (y) g(x) dH d (y) = E g(x)J d df x dx.
Now we study the density properties of d-rectifiable measures. In Theorem 3.3.23, as in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.83], we shall first prove that these measures admit an approximate tangent space for almost every point x, since they are asymptotically concentrated near x on an affine d-plane. Then we shall prove that if µ is a nonnegative Radon measure which is concentrated on a Borel set S and which admits an approximate tangent space with multiplicity θ(x) > 0 for µ-a.e. x ∈ S, then S is countably d-rectifiable and µ = θH d S.

In order to analyze the local behavior of a Radon measure µ in an open set U ⊂ R N around x ∈ U , following [AFP], we use the rescaled measures

µ x, (B) = µ(x + B), where B ⊂ R N is a Borel set, B ⊂ U -x ,
and we study the behavior of -d µ x, as → 0+. 

P in R N as → 0+.
Since µ x, is the push-forward measure of µ, i.e., µ x, (•) = µ(T -1 (•)) with T : U → U -x defined by T y = y-x , the approximate tangent space P to µ with multiplicity θ exists if and only if

lim →0+ -d U ϕ y -x dµ(y) = θ P ϕ(y) dH d (y) ∀ϕ ∈ C ∞ 0 (R N ). (3.3.5)
The above formula makes sense, since for fairly small > 0, the support of the function y → ϕ((y -x)/ ) is contained in U . Also, using (3.3.5), it is not difficult to see that the following implication holds

Tan d (µ, x) = σ, |µ -ν|(B (x)) = o( d ) ⇒ Tan d (ν, x) = σ. (3.3.6)
Also notice that the set of points in U where Tan d (µ, x) is defined is a Borel set, and that both the multiplicity and the approximate tangent space are Borel functions in U .

Remark 3.3.21. Let E be an H d -measurable subset of R N with locally finite H d -measure and let µ = H d E. By Proposition 3.3.5 (ii), 

-d µ x, (B) = -d H d E(x + B) = H d (B) ∀B ⊂ E -x . Thus -d µ x, corresponds to H d E x, with E x, = (E -x)/
lim →0+ µ(B (x)) d = lim →0+ 1 d µ x, (B 1 ) = θH d P (B 1 ) = θω d .
This proves that

Tan d (µ, x) = θH d P ⇒ Θ d (µ, x) = θ. (3.3.7)
On the other hand,

lim →0+ -d µ(B (x)\(x + K M (P ))) = lim →0+ -d µ x, (B 1 \K M (P )) = θH d P (B 1 \K M (P )) = 0,
where K M (P ) is the cone with axis P and opening M (see Definition 3.3.13). Hence

µ(B (x)\(x + K M (P ))) = o( d ) ∀M > 0. (3.3.8)
This proves that the approximate tangent space is the unique d-plane P on which the measures [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Corollary 2.23]). This, together with Proposition 3.3.5 (iv ), implies that for H d -a.e. y in S, f -1 (y) is a Lebesgue point of ψ. Altogether, we can assume that for H d -a.e. y in S, J

ψ(•) = θ(f (•))J d f (•) ∈ L 1 (K; L d ) (see Remark 3.3.19). Hence L d -a.e. point x in K is a Lebesgue point of ψ (see, for instance,
d df f -1 (y) > 0, Θ d (K, f -1 (y)) = 1 and lim →0+ -d B (f -1 (y)) |θ(f (z))J d df z -θ(y)J d df f -1 (y) | dz = 0. (3.3.9)
The set of such points we denote by S. Let y 0 ∈ S and ϕ ∈ C ∞ 0 (R N ). Setting x 0 = f -1 (y 0 ) and using the area formula (see Theorem 3.3.17 and Remark 3.3.19), we deduce the following

-d R N ϕ(y) dµ y 0 , (y) = -d R N ϕ y -y 0 dµ(y) = -d S θ(y)ϕ y -y 0 dH d (y) = -d K θ(f (x))ϕ f (x) -f (x 0 ) J d df x dx = K θ(f (x 0 + z))ϕ f (x 0 + z) -f (x 0 ) J d df x 0 + z dz,
where K = (K -x 0 )/ . Since ϕ has compact support and df x 0 has rank d, it can be easily seen that the supports of the functions z → ϕ((f (x 0 + z) -f (x 0 ))/ ) are equibounded for sufficiently small. Hence by (3.3.6), the convergence of 1 K in L 1 loc (R d ) to 1 and the Vitali dominated convergence theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Exercise 1.18]), we deduce that

lim →0+ -d R N ϕ(y) dµ y 0 , (y) = θ(y 0 )J d df x 0 R d ϕ( df x 0 (z)) dz = θ(y 0 ) P 0 ϕ(y) dH d (y),
where P 0 = df x 0 (R d ). This proves that θ(y 0 )H d P 0 = Tan d (µ, y 0 ). So Tan d (θH d f (K), y) exists with multiplicity θ(y) for H d -a.e. y ∈ f (K). In general case, by [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Proposition 2.76], we can write H d -almost all of S as a disjoint union of a countable family of compact sets S i parameterized by Lipschitz injective maps of d variables. Defining µ i = µ S i , we know that Tan d (µ i , x) exists with multiplicity θ(x) for H d -a.e. x ∈ S i . Furthermore, (3.3.3) gives

Θ d (µ (S\S i ), x) = 0 for H d -a.e. x ∈ S i .
Hence, since µ = µ i + µ (S\S i ), using (3.3.6), we deduce that Tan d (µ, x) exists with multiplicity θ(x) for H d -a.e. x ∈ S i . Since S = ∪ i S i , it follows that Tan d (µ, x) exists for H d -a.e. x ∈ S and, according to (3.3.7), Θ d (µ, x) = θ. (ii) For each integer n ≥ 1, we define

S n = x ∈ S : µ(B (x)) ≥ d n ∀ ∈ 0, 1 n .
Since, by (3.3.7) and the fact that θ > 0 µ-a.e. in S, the union of the S n is µ-almost all of S. Thus, by proving that all sets S n are countably d-rectifiable, we shall prove that S is countably H d -rectifiable. To this end, according to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.61], it suffices to prove that for every x ∈ S n there exist (x) > 0, M (x) ≥ 0 and a d-plane P (x) ⊂ R N passing through the origin such that

S n ∩ B (x) (x) ⊂ x + K M (x) (P (x)).
We claim that each S n satisfies the above condition with M (x) = 2, fairly small (x) > 0 and P (x) being the approximate tangent space to µ at x. Assume by contradiction that

(x m ) m∈N ⊂ S n \(x + K 2 (P (x))) converges to x ∈ S n . Then, since |π(x) ⊥ (x m -x)| ≥ 2|π(x)(x m -x)| and |x m -x| 2 = |π(x) ⊥ (x m -x)| 2 + |π(x)(x m -x)| 2 ,
where π(x) is the orthogonal projection onto P (x), it follows that

|π(x) ⊥ (x m -x)| ≥ 2 √ 5 |x m -x|. A simple computation shows that B m (x m ) does not intersect x + K 1 (P (x)) provided that m = |x m -x|/(2 √ 5), because for y ∈ B m (x m ) we have |π(x) ⊥ (y -x)| > |π(x) ⊥ (x m -x)| - |x m -x| 2 √ 5 ≥ 1 2 |π(x) ⊥ (x m -x)| + |x m -x| 2 √ 5 ≥ |π(x)(x m -x)| + |x m -x| 2 √ 5 > |π(x)(y -x)|.
Therefore, for α = 1 + 2 √ 5 and m < 1/n, the definition of S n gives

µ(B α m (x)\(x + K 1 (P (x)))) ≥ µ(B m (x m )) ≥ d m n .
This leads to a contradiction with (3. We conclude this section by recalling the following classical rectifiability criteria based on density properties of a set.

Theorem 3.3.24. Let E ⊂ R N be a Borel set with H d (E) < +∞. Then, E is H d -rectifiable if and only if Θ d (E, x) = 1 for H d -a.e. x ∈ E. Proof. Assume that E is H d -rectifiable. Applying Theorem 3.3.23 (i) with µ = H d E, we deduce that Θ d (E, x) = 1 for H d -a.e.
x ∈ E. For a proof of the opposite implication, see [Bes] for k = 1 and [Mat] for the general case.

It should be noted that in the sequel, for our purposes, we shall only use that each

H d - rectifiable set E ⊂ R N has density Θ d (E, x) = 1 for H d -a.e. x ∈ E.

Coarea inequality

The following result is a so-called coarea inequality, which actually holds in any metric space (compare with [PS2, Theorem 2.1]; see also [EH]).

Theorem 3.4.1. Let A be a nonempty L 1 -measurable subset of R N and let f : R N → R be a 1-Lipschitz function. Then

H 1 (A) ≥ R H 0 (A ∩ f -1 (t)) dt.
Proof. Fix δ > 0. According to the definition of H 1 , for each ε > 0 there exists a cover

(A i ) i∈N of A such that diam(A i ) < δ for each i ∈ N and H 1 δ (A) ≥ ∞ i=0 diam(A i ) -ε. (3.4.1) For each t ∈ R, define A t = A ∩ f -1 (t). Notice that the collection of sets A i such that t ∈ f (A i ) is a cover of A t . Let 1 f (A i ) denote the indicator function of the set f (A i ), i.e., 1 f (A i ) (t) = 1 if t ∈ f (A i ) and 1 f (A i ) (t) = 0 otherwise. Then we have that H 0 δ (A t ) ≤ ∞ i=0 1 f (A i ) (t).
For the proof of the fact that t → H 0 (A t ), t → H 0 δ (A t ), are H 1 -measurable, the reader may consult the proof of Theorem 7.1 in [EH]. On the other hand, since f is 1-Lipschitz, for every x, y

∈ A i we have that |f (x) -f (y)| ≤ diam(A i )
and hence sup f

(A i ) -inf f (A i ) ≤ diam(A i ). Altogether we have R H 0 δ (A t ) dt ≤ ∞ i=0 R 1 f (A i ) (t) dt ≤ ∞ i=0 sup f (A i ) inf f (A i ) dt ≤ ∞ i=0 diam(A i ) (3.4.1) ≤ H 1 δ (A) + ε.
Letting ε and then δ tend to 0+ in the last estimate, by the monotone convergence theorem, we get

H 1 (A) ≥ R H 0 (A t ) dt.
This completes the proof of Theorem 3.4.1.

Corollary 3.4.2. Let Σ ⊂ R N be L 1 -measurable, x 0 ∈ R N and r > 0. Then H 1 (Σ ∩ B r (x 0 )) ≥ r 0 H 0 (Σ ∩ ∂B t (x 0 )) dt.
Proof of Corollary 3.4.2. It suffices to apply Theorem 3.4.1 with f (x) = |x -x 0 |.

Compact connected sets

In this section, we recall some well-known results on the existence of rectifiable arcs in connected sets with finite H 1 -measure. The proofs in this section are taken mainly from [Fal].

Recall that an arc Γ is the image of a continuous injection ψ : [a, b] → R N . Any arc is a compact connected set, since the continuous image of any compact connected set is compact and connected. Thus, any arc is a Borel set and is H 1 -measurable.

The length of an arc Γ is defined by

L(Γ) = sup m i=1 |ψ(t i ) -ψ(t i-1 )|, (3.5.1)
where the supremum is taken over all dissections a = t 0 < t 1 < .. 

: [0, 1] → R N by ψ 0 (z) = x if f -1 (z) = I x for some I x ∈ A and by ψ 0 (z) = ψ(f -1 (z)) otherwise.
It is easy to see that ψ 0 is a continuous injection with ψ 0 (0) = ψ(a) and ψ 0 (1) = ψ(b). This completes the proof of Lemma 3.5.1.

Remark 3.5.2. It is always possible to parameterize an arc Γ with L(Γ) < +∞ by arc length, that is, to present Γ as the image of a function ψ 0 : [0, L(Γ)] → R N in such a way that the length of ψ 0 ([0, t]) is t. In fact, we can define ψ 0 (t) as the unique point ψ(u) for which L(ψ([a, u])) = t. If ψ represents the arc Γ with L(Γ) < +∞ by arc length, then from (3.5.1) it follows that

|ψ(t 1 ) -ψ(t 2 )| ≤ |t 1 -t 2 |. (3.5.2) Lemma 3.5.3. If Γ is an arc, then H 1 (Γ) = L(Γ).
Proof. Let Γ be an arc connecting z and w. Let π denote the orthogonal projection from R N onto the straight line through z and w, then

|π(x) -π(y)| ≤ |x -y| ∀x, y ∈ R N , (3.5.3)
since the orthogonal projection on a closed nonempty convex set is a 1-Lipschitz mapping. Using Proposition 3.3.5 (iv ), (3.5.3) and the fact that [z, w] ⊂ π(Γ), we obtain

H 1 (Γ) ≥ H 1 (π(Γ)) ≥ H 1 ([z, w]) = |z -w|. (3.5.4)
Now suppose that Γ is defined by ψ : [a, b] → R N . Using (3.5.4), we deduce that

H 1 (ψ([t, u])) ≥ |ψ(t) -ψ(u)| ∀t, u ∈ [a, b], t ≤ u. Then if a = t 0 < t 1 < ... < t m = b is an arbitrary dissection of [a, b], m i=1 |ψ(t i ) -ψ(t i-1 )| ≤ m i=1 H 1 (ψ([t i-1 , t i ])) = H 1 (Γ), since the arcs ψ([t i-1 , t i ]) of Γ are disjoint except for endpoints. Thus L(Γ) ≤ H 1 (Γ).
Finally, assume that L(Γ) < +∞ and let ψ parameterize Γ by arc length. Using the fact that ψ([0, L(Γ)]) = Γ, (3.5.2) and Proposition 3.3.5 (iv ), we obtain the following

H 1 (Γ) ≤ H 1 ([0, L(Γ)]) = L(Γ),
which concludes the proof of Lemma 3.5.3. Lemma 3.5.4. Let E ⊂ R N be a compact connected set containing x and y.

If |x -y| = , then H 1 (E ∩ B (x)) ≥ . In particular, H 1 (E) ≥ diam(E). Proof. Let f : R N → [0, +∞) be defined by f (z) = |z -x|. Then f is 1-Lipschitz, that is |f (z) -f (w)| ≤ |z -w| ∀z, w ∈ R N . (3.5.5)
The set f (E ∩ B (x)) contains [0, ), because otherwise for some t ∈ (0, ),

E = (E ∩ B t (x)) ∪ (E\B t (x))
would be a decomposition of E into disjoint closed sets. Using Proposition 3.3.5 (iv) and (3.5.5), we get

H 1 (E ∩ B (x)) ≥ H 1 (f (E ∩ B (x))) ≥ H 1 ([0, )) = ,
which concludes the proof of Lemma 3.5.4.

The following theorem says that each compact connected set with finite length in R N is H 1 -rectifiable (compare with [START_REF] David | Analysis of and on uniformly rectifiable sets[END_REF]Theorem 1.8]).

Theorem 3.5.5. There is a constant

C = C(N ) > 0 such that, whenever E ⊂ R N is compact, connected and such that 0 < H 1 (E) < +∞, there is a positive number L and a Lipschitz function f : [0, L] → R N such that E = f ([0, L]), H 1 (E) ≤ L ≤ CH 1 (E) and |f (u)| = 1 L 1 -a.e. on [0, L].
The following result from graph theory is one of the main points in the proof of Theorem 3.5.5. Lemma 3.5.6. Let G be a connected graph with only finitely many edges. Then there is a path that traverses each edge of G exactly twice (once in each direction).

This can be easily proved by induction on the number of edges.

Proof of Theorem 3.5.5. Since H 1 (E) > 0, E contains at least two different points and hence diam(E) > 0. Given ∈ (0, diam(E)/10), let X be a maximal subset of E with the property that |x -y| ≥ 2 whenever x, y are two distinct points of X . Let us prove that such a collection exists. Notice that E ⊂ B r 0 , where r 0 = d(0, E) + diam(E). Consider the family F of all sets A ⊂ E such that for each different points x, y ∈ A, |x -y| ≥ 2 . We observe that for each

A ∈ F , x∈A B 2 (x) ⊂ B r 0 +2
and hence H 0 (A) ≤ (1 + r 0 /2 ) N . This implies that there exists A ∈ F (A = X ) which has the maximum cardinality among all elements of F .

Next, let E be the set that we obtain by connecting every pair of points x and y in X such that |x -y| ≤ 4 by a line segment. Then E can be associated to an abstract graph in the obvious way. We claim that E is connected. Otherwise, we could write X = Y ∪ Z, where Y and Z are disjoint, nonempty and satisfy |y -z| > 4 for all y ∈ Y and z ∈ Z. Then E would be disconnected because E ∩ y∈Y B 2 (y) and E ∩ z∈Z B 2 (z) would be nonempty disjoint closed subsets of E whose union contains E. The last assertion follows from the fact that X is maximal.

Hereinafter in this proof, C denotes a positive constant that can only depend on N and can be different from line to line. Let n = H 0 (X ). Then H 1 (E ) ≤ C n . Also, by Lemma 3.5.4, H 1 (E ∩ B (x)) ≥ for all x ∈ X . Since the E ∩ B (x), x ∈ X are disjoint, we get n ≤ H 1 (E), and therefore

H 1 (E ) ≤ CH 1 (E). Now let G = ϕ([0, 1]), where ϕ ∈ C 0 ([0, 1]; R N
), be a path given by Lemma 3.5.6. Notice that the total length of the path traversed by the point along G is 2H 1 (E ). For each t ∈ [0, 1], we can define γ (t) as the position of the point in G that has traversed a path of length 2tH 1 (E ) from ϕ(0) along G . Then we have

|γ (t 1 ) -γ (t 2 )| ≤ 2H 1 (E )|t 1 -t 2 | ≤ CH 1 (E)|t 1 -t 2 | ∀t 1 , t 2 ∈ [0, 1]. (3.5.6) So γ is a Lipschitz mapping such that γ ([0, 1]) = E and γ ≤ CH 1 (E).
Notice that the family of functions {γ } is uniformly bounded and, by (3.5.6), is equicontinuous. By the Arzelà-Ascoli theorem, such a family is sequentially compact, that is, there is a sequence (j) → 0 and a continuous function γ : [0, 1] → R N such that γ (j) converges to γ uniformly on [0, 1]. From (3.5.6), it follows that γ is Lipschitz with Lipschitz norm at most CH 1 (E). Furthermore, if x ∈ γ([0, 1]), then, given δ > 0, we may find (j) < δ/10 such that {y} ⊂ E (j) ∩ B δ (x). Then, by the definition of E (j) , there exists y j ∈ X (j) such that |y -y j | ≤ 4 (j), which implies that |y j -x| ≤ 4 (j) + δ < 2δ. Letting δ tend to 0+ and using the fact that E is closed, we obtain that x ∈ E. Hence γ([0, 1]) ⊂ E. Next, fix an arbitrary x ∈ E. Using the maximality of X (j) , we may find a sequence (x j ) with x j ∈ X (j) such that x j → x. Fix a sequence (t j ) ⊂ [0, 1] such that x j = γ (j) (t j ). Up to a subsequence, which we still denote by the same index, we can assume that t j → t. Then, observing that

|γ (j) (t j ) -γ(t)| ≤ |γ (j) (t j ) -γ(t j )| + |γ(t j ) -γ(t)| ≤ γ (j) -γ ∞ + CH 1 (E)|t j -t|, we deduce that x = γ(t). This implies that E ⊂ γ([0, 1]). Therefore E = γ([0, 1]).
The desired mapping f is obtained by reparameterizing γ by arc length (a similar reasoning as in Remark 3.5.2). It is easy to see that f has the required properties. This completes the proof of Theorem 3.5.5.

The following corollary is a direct consequence of Theorem 3.5.5 and Lemma 3.5.1.

Corollary 3.5.7. Let E ⊂ R N be a compact connected set such that H 1 (E) < +∞. Then E is arcwise connected.

Go lab's theorem

In this section, we recall Go la ¸b's theorem in R N . This theorem actually holds in any complete metric space (see, for instance, [START_REF] Paolini | Existence and regularity results for the Steiner problem[END_REF]Theorem 3.3]). For the sake of completeness, we provide its proof in the same way as in [START_REF] Paolini | Existence and regularity results for the Steiner problem[END_REF]. We shall use the following two lemmas, the proofs of which are the same as for [PS2, Lemma 3.1] and [PS2, Lemma 3.2], respectively. Lemma 3.6.1. Let C ⊂ R N be an arcwise connected set containing three points {x, y, z} ⊂ C.

Then H 1 (C) ≥ 1 2 (|x -y| + |x -z| + |y -z|).
Proof. Let γ 1 and γ 2 be arcs connecting x with y and z with x, respectively. Let ω be the first point of the arc γ 2 in common with γ 1 . Then

H 1 (C) ≥ |x -ω| + |y -ω| + |z -ω|. (3.6.1)
By the triangle inequality,

|x -y| ≤ |x -ω| + |ω -y| |x -z| ≤ |x -ω| + |ω -z| |y -z| ≤ |y -ω| + |ω -z|.
Then, summing up, we get

|x -y| + |x -z| + |y -z| ≤ 2(|x -ω| + |y -ω| + |z -ω|) (3.6.1) ≤ 2H 1 (C).
This completes the proof of Lemma 3.6.1.

Lemma 3.6.2. Let x 0 ∈ R N , r > 0, ε ∈ (0, r). Let γ : [-r + ε, r -ε] → R N be a Lipschitz curve with γ(0) = x 0 and such that |t -s| -ε ≤ |γ(t) -γ(s)| ≤ |t -s| + ε ∀t, s ∈ [-r + ε, r -ε]. Let C be a compact subset of B r (x 0 ) such that for each t ∈ [-r + ε, r -ε] one has d(γ(t), C) ≤ ε and such that every connected component of C touches ∂B r (x 0 ). Then H 1 (C) ≥ 2r -9ε. Proof. Let C 1 be a connected component of C such that d(γ(0), C 1 ) ≤ ε. We define T 1 = {t ∈ [-r + ε, r -ε] : d(γ(t), C 1 ) ≤ ε}. Notice that 0 ∈ T 1 . Choose s 1 , s 3 , t 1 , t 2 such that -s 1 -ε < -s 3 < -s 1 ≤ 0 ≤ t 1 < t 2 < t 1 + ε while [-s 1 , t 1 ] ⊂ T 1 and -s 3 ∈ T 1 , t 2 ∈ T 1 . Let x 1 , y 1 ∈ C 1 be such that |x 1 -γ(t 1 )| ≤ ε and |y 1 -γ(-s 1 )| ≤ ε. Let x 2 , x 3 ∈ C be such that |x 2 -γ(t 2 )| ≤ ε and |x 3 -γ(-s 3 )| ≤ ε,
and let C 2 , C 3 be connected components of C containing x 2 and x 3 , respectively. If t 1 = r -ε, there is no x 2 as above and in this case we take C 2 = ∅. Similarly, let

C 3 = ∅ if s 1 = r -ε.
By the choice of t 2 and s 3 we have that x 2 , x 3 ∈ C 1 and hence

C 1 = C 2 and C 1 = C 3 , but we might have C 2 = C 3 . Let z i ∈ C i ∩ ∂B r (x 0 ) for i ∈ {1, 2, 3}. The following estimates hold |x 1 -y 1 | ≥ |γ(t 1 ) -γ(-s 1 )| -2ε ≥ t 1 + s 1 -3ε, |x 2 -x 3 | ≥ |γ(t 2 ) -γ(-s 3 )| -2ε ≥ t 2 + s 3 -3ε ≥ t 1 + s 1 -5ε, |x 1 -z 1 | ≥ |γ(t 1 ) -z 1 | -ε ≥ |z 1 -x 0 | -|γ(t 1 ) -x 0 | -ε ≥ r -t 1 -2ε, |y 1 -z 1 | ≥ |γ(-s 1 ) -z 1 | -ε ≥ |z 1 -x 0 | -|γ(-s 1 ) -x 0 | -ε ≥ r -s 1 -2ε, |x 2 -z 2 | ≥ |γ(t 2 ) -z 2 | -ε ≥ |z 2 -x 0 | -|γ(t 2 ) -x 0 | -ε ≥ r -t 2 -2ε ≥ r -t 1 -3ε, |x 3 -z 3 | ≥ |γ(-s 3 ) -z 3 | -ε ≥ |z 3 -x 0 | -|γ(-s 3 ) -x 0 | -ε ≥ r -s 3 -2ε ≥ r -s 1 -3ε, |x 3 -z 2 | ≥ |γ(-s 3 ) -z 2 | -ε ≥ |z 2 -x 0 | -|γ(-s 3 ) -x 0 | -ε ≥ r -s 3 -2ε ≥ r -s 1 -3ε.
Assume that C 2 ∩ C 3 = ∅. Thus, using Lemma 3.5.4 and the above estimates, we get

H 1 (C 1 ) ≥ |x 1 -y 1 | ≥ t 1 + s 1 -3ε H 1 (C 2 ) ≥ |x 2 -z 2 | ≥ r -t 1 -3ε H 1 (C 3 ) ≥ |x 3 -z 3 | ≥ r -s 1 -3ε. (3.6.2)
The above inequalities hold even when C 2 = ∅ or C 3 = ∅. For instance, C 2 = ∅ when t 2 > r -ε which implies that t 1 > r -2ε, hence r -t 1 -3ε < 0, and the case C 3 = ∅ is similar. Summing the inequalities from (3.6.2), we have

H 1 (C) ≥ H 1 (C 1 ) + H 1 (C 2 ) + H 1 (C 3 ) ≥ 2r -9ε.
If C 2 = C 3 = ∅, applying Lemma 3.6.1, we get

H 1 (C 1 ) ≥ 1 2 (|x 1 -y 1 | + |x 1 -z 1 | + |y 1 -z 1 |) ≥ r - 7 2 ε, H 1 (C 2 ) ≥ 1 2 (|x 2 -x 3 | + |x 2 -z 2 | + |x 3 -z 2 |) ≥ r - 11 2 ε.
Therefore,

H 1 (C) ≥ H 1 (C 1 ) + H 1 (C 2 ) ≥ 2r -9ε,
which concludes the proof of Lemma 3.6.2. Now we prove Go la ¸b's theorem, which actually holds in any complete metric space (compare with [START_REF] Paolini | Existence and regularity results for the Steiner problem[END_REF]Theorem 3.3]).

Theorem 3.6.3. Let C n be compact connected subsets of R N . Assume that the sequence C n converges in the Hausdorff distance to a compact set C ⊂ R N . Then C is connected and

H 1 (C) ≤ lim inf n→+∞ H 1 (C n ).
(3.6.3)

Moreover, if (K n ) n∈N is a sequence of closed subsets of R N converging in the Hausdorff distance to a closed set K ⊂ R N , then H 1 (C\K) ≤ lim inf n→+∞ H 1 (C n \K n ).
(3.6.4) Remark 3.6.4. The claim (3.6.4) is the generalization of the classical Go la ¸b's lower semicontinuity theorem.

Proof. Without loss of generality, we can assume that C = ∅. We prove first that C is connected. Assume by contradiction that there exist two relatively closed subsets

G 1 and G 2 of C such that G 1 ∩ G 2 = ∅, G 1 = ∅, G 2 = ∅ and C = G 1 ∪ G 2 . Since C is closed, G 1
and G 2 are closed subsets of R N . This, together with the facts that

G 1 = ∅, G 2 = ∅ and G 1 ∩ G 2 = ∅, implies that = inf{|x -y| : x ∈ G 1 , y ∈ G 2 } > 0. Let ε ∈ (0, /2) and let G i,ε = {x ∈ R N : d(x, G i ) ≤ ε} for i ∈ {1, 2}.
Choose

n 0 ∈ N such that for all n ≥ n 0 , d H (C n , C) ≤ ε/4. By construction, G 1,ε and G 2,ε are closed subsets of R N , G 1,ε ∩ G 2,ε = ∅, C n ∩ G i,ε = ∅ and C n ⊂ G 1,ε ∪ G 2,ε
for each n ≥ n 0 and i ∈ {1, 2}. This leads to a contradiction with the fact that C n is connected. Therefore, C is connected. Now we prove (3.6.4), and we note that (3.6.3) is its particular case with K = K n = ∅. Without loss of generality, we can assume that L = lim n→+∞ H 1 (C n \K n ) exists and is finite, that H 1 (C n \K n ) < L + 1 for all n, and that the C n are nonempty for all n. Consider the set

X = n∈N C n .
Since (C n ) n∈N is a Cauchy sequence with respect to the Hausdorff distance, for all ε > 0 there exists n 0 ∈ N such that all C n with n ≥ n 0 are contained in

C n 0 ,ε = {x ∈ R N : d(x, C n 0 ) ≤ ε}.
We observe that

X ⊂ n 0 n=0 C n ∪ C n 0 ,ε .
Hence X is bounded. We conclude that X is a compact subset of R N which contains all C n and C. Let

d n = diam(C n ), d = diam(C). Then d n → d as n → +∞. If d = 0, then H 1 (C) = 0 and the proof is completed. Assume that d > 0. For each n ∈ N, define the measures µ n by µ n (B) = H 1 (B ∩ C n \K n )
for every Borel set B ⊂ X and observe that µ n is a finite Borel measure. Up to a subsequence, which we still denote by the same index, µ n weakly* converges to some finite Borel measure µ on X. It is well known (see, for instance, [EG, Section 1.9]) that the weak* convergence of Borel measures is equivalent to the following two inequalities

µ(F ) ≥ lim sup n→+∞ µ n (F ), µ(G) ≤ lim inf n→+∞ µ n (G) whenever F is closed and G is open. Now choose x ∈ C\K (if C\K = ∅, the proof is completed) and r < min{d/2, d(x, K)/2}. We have µ(B r (x)) ≥ lim sup n→+∞ µ n (B r (x)) = lim sup n→+∞ H 1 (C n ∩ B r (x)).
(3.6.5)

To obtain the last inequality, we have used the fact that for n sufficiently large,

r < d(x, K n ) because lim n→+∞ d(x, K n ) = d(x, K) > 2r and hence K n ∩ B r (x) = ∅.
On the other hand, by Proposition 3.2.3, there exists

x n ∈ C n such that x n → x as n → +∞. Then H 1 (C n ∩ B r (x)) ≥ d(x n , ∂B r (x)) ≥ r -|x -x n |
for all sufficiently large n. Thus, lim sup n→+∞ H 1 (C n ∩ B r (x)) ≥ r which, together with (3.6.5), implies that µ(B r (x)) ≥ r for every x ∈ C\K and every r sufficiently small. Hence Θ * 1 (µ, x) ≥ 1 2 and by Theorem 3.3.8 (i),

H 1 (C\K) ≤ 2µ(X) ≤ 2 lim inf n→+∞ µ n (X) = 2 lim inf n→+∞ H 1 (C n \K n ) = 2L < +∞.
Notice that, according to Theorem 3.5.5, H 1 -a.e. x ∈ C\K can be represented as γ(0), where γ is a 1-Lipschitz arc with values in C\K defined in some open interval containing 0, γ is differentiable at 0 and |γ (0)| = 1. We can also suppose that for each ε > 0 we can find some fairly small r > 0 such that

|t -s| -rε ≤ |γ(t) -γ(s)| ≤ |t -s| ∀t, s ∈ (-r, r).
Then Lemma 3.6.2 says that for all sufficiently large n,

µ n (B r (x)) = H 1 (B r (x) ∩ C n \K) ≥ 2r -9rε.
Letting r and then ε tend to 0+, we get that Θ * 1 (µ, x) ≥ 1 and hence

H 1 (C\K) ≤ µ(X) ≤ lim inf n→+∞ µ n (X) = lim inf n→+∞ H 1 (C n \K n ) = L.
This completes the proof of Theorem 3.6.3.

Capacities

In this section, we introduce the notion of the Bessel capacity and recall several important facts related to this notion (see e.g. [AH], [Zie]).

Definition 3.7.1.

For p ∈ (1, +∞), the Bessel (1, p)-capacity of a set E ⊂ R N is defined as Cap p (E) = inf f p L p (R N ) : g * f ≥ 1 on E, f ∈ L p (R N ), f ≥ 0
, where the Bessel kernel g is defined as that function whose Fourier transform is

ĝ(ξ) = (2π) -N 2 (1 + |ξ| 2 ) -1 2 .
We say that a property holds p-quasi everywhere (abbreviated as p-q.e.) if it holds except on a set A where Cap p (A) = 0. It is worth mentioning that by [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Corollary 2.6.8], for every p ∈ (1, +∞), the notion of the Bessel capacity Cap p is equivalent to the following

Cap p (E) = inf u∈W 1,p (R N ) R N |∇u| p dx + R N |u| p dx : u ≥ 1 on some neighborhood of E
in the sense that there exists C = C(N, p) > 0 such that for any set

E ⊂ R N , 1 C Cap p (E) ≤ Cap p (E) ≤ C Cap p (E).
The notion of capacity is crucial in the investigation of the pointwise behavior of Sobolev functions.

For convenience, we recall the next theorems and propositions.

Theorem 3.7.2.

Let E ⊂ R N and p ∈ (1, N ]. Then Cap p (E) = 0 if H N -p (E) < +∞.
Conversely, if Cap p (E) = 0, then H N -p+ε (E) = 0 for every ε > 0.

Proof. For a proof of the fact that Cap p (E) = 0 if H N -p (E) < +∞, we refer the reader to [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 5.1.9]. The fact that if Cap p (E) = 0, then H N -p+ε (E) = 0 for every ε > 0 follows from [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 5.1.13]. 

Σ ⊂ R N , x 0 ∈ R N , 0 ≤ r 0 < r 1 and p ∈ (1, N ]. Assume that Σ ∩ ∂B r (x 0 ) = ∅ for all r ∈ (r 0 , r 1 ).
Then there exists a constant C > 0, possibly depending only on N and p, such that

Cap p ({0} N -1 × [0, r 1 -r 0 ]) ≤ CCap p (Σ ∩ B r 1 (x 0 )).
Proof. The proof is straightforward if p ∈ (1, N -1], since in this case [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 5.2.1], there exists

Cap p ({0} N -1 × [0, r 1 -r 0 ]) = 0 according to Corollary 3.7.4. Assume that p ∈ (N -1, N ]. Let A(x 0 , r 0 ) = B r 0 (x 0 ) if r 0 > 0 and A(x 0 , r 0 ) = {x 0 } if r 0 = 0. For each x ∈ Σ ∩ (B r 1 (x 0 )\A(x 0 , r 0 )), we define Φ(x) = ({0} N -1 , |x -x 0 |). Since Φ is 1-Lipschitz, by
C = C(N, p) > 0 such that Cap p ({0} N -1 × (r 0 , r 1 )) = Cap p (Φ(Σ ∩ (B r 1 (x 0 )\A(x 0 , r 0 )))) ≤ CCap p (Σ ∩ (B r 1 (x 0 )\A(x 0 , r 0 ))). Notice that Cap p ({0} N -1 ×[r 0 , r 1 ]) ≤ Cap p ({0} N -1 ×(r 0 , r 1 )), since Cap p (•) is a subadditive set function (see, for instance, [AH, Proposition 2.3.6]) and Cap p ({0} N -1 × {r i }) = 0 for i = 0, 1 by Theorem 3.7.2. So Cap p ({0} N -1 × [r 0 , r 1 ]) ≤ CCap p (Σ ∩ (B r 1 (x 0 )\A(x 0 , r 0 )))
for some C = C(N, p) > 0. Then, using the fact that the Bessel capacity is nondecreasing with respect to set inclusion and, if necessary, the fact that it is invariant under translations, we recover the desired estimate. This completes the proof of Proposition 3.7.5.

Corollary 3.7.6.

Let Σ ⊂ R N , x 0 ∈ R N , 0 ≤ r 0 < r 1 and p ∈ (1, N ]. Assume that Σ ∩ B r 0 (x 0 ) = ∅ if r 0 > 0 and x 0 ∈ Σ if r 0 = 0. Assume also that (Σ ∩ B r 1 (x 0 )) ∪ ∂B r 1 (x 0 ) is connected.
Then there exists a constant C > 0, possibly depending only on N and p, such that

Cap p ({0} N -1 × [0, r 1 -r 0 ]) ≤ CCap p (Σ ∩ B r 1 (x 0 )).
Proof of Corollary 3.7.6. According to the conditions of Corollary 3.7.6, Σ ∩ ∂B r (x 0 ) = ∅ for all r ∈ (r 0 , r 1 ). Then it only remains to use Proposition 3.7.5. This completes the proof of Corollary 3.7.6.

Proposition 3.7.7. Let r ∈ (0, 1] and

A r = {0} N -1 × [0, r].
The following assertions hold.

(i) If p ∈ (N -1, N ), then there exists a constant C = C(N, p) > 0 such that r N -p ≤ CCap p (A r ). (ii) If p = N , then there exists a constant C = C(N ) > 0 such that log C r 1-p ≤ CCap p (A r ).
Proof. Since diam(A r ) ≤ 1, (i) and (ii) follows from [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Corollary 5.1.14].

Corollary 3.7.8. Let p ∈ (N -1, N ] and Σ = ({0} N -1 × (-1, 1)) ∪ ∂B 1 . Then there exist r 0 , C 0 > 0 such that Cap p (Σ ∩ B r (x 0 )) Cap p (B r (x 0 )) ≥ C 0 (3.7.1)
whenever 0 < r < r 0 and x 0 ∈ Σ.

Proof of Corollary 3.7.8. Since Σ is arcwise connected and diam(Σ) = 2, setting r 0 = 1, we observe that Σ ∩ ∂B r (x 0 ) = ∅ whenever 0 < r < r 0 and x 0 ∈ Σ. Then Proposition 3.7.5 says that for some

C = C(N, p) > 0, Cap p ({0} N -1 × [0, r]) ≤ CCap p (Σ ∩ B r (x 0 ))
whenever 0 < r < r 0 and x 0 ∈ Σ. Then, using this, together with Proposition 3.7.7, [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 5.1.2], [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 5.1.3] and [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 5.1.4], we obtain that there exists a constant C 0 > 0 such that the desired estimate (3.7.1) holds for C 0 whenever 0 < r < r 0 and x 0 ∈ Σ. This completes the proof of Corollary 3.7.8.

Definition 3.7.9. Let the function u be defined p-q.e. on R N or on some open subset. Then u is said to be p-quasi continuous if for every ε > 0 there is an open set A with Cap p (A) < ε such that the restriction of u to the complement of A is continuous in the induced topology. Proof. Let x 0 ∈ Y and let

{ϕ i : i ∈ N, i ≥ 1} be a sequence of C ∞ 0 (Y ) functions such that ϕ i = 1 in Y i = {x ∈ Y : dist(x, ∂Y ) > 1 i } ∩ B i (x 0 ). Observe that uϕ i belongs to W 1,p (R N ) and uϕ i = u in Y i .
Then by [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 6.1.2] there exist p-quasi continuous functions v i ∈ W 1,p (R N ) such that v i = uϕ i a.e. in R N . Notice that if j > i, then v i and v j coincide a.e. in Y i , but this implies (see [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 6.1.4]) that they coincide p-q.e. in Y i . Now fix an arbitrary ε > 0 and let

V i ⊂ R N be such that v i restricted to R N \V i is continuous and Cap p (V i ) < 2 -i ε. Set u(x) = v i (x) for every x ∈ Y , where i ∈ N, i ≥ 1 is the smallest number with x ∈ B i (x 0 ) and dist(x, ∂Y ) > 1 i . We deduce that u = u a.e. in Y , u restricted to Y \ i V i is continuous and using [AH, Proposition 2.3.6], we get Cap p i V i ≤ i Cap p (V i ) ≤ ε.
Thus u is a p-quasi continuous representative for u, which by [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 6.1.4] is uniquely defined up to a set of Cap p -capacity zero. This completes the proof of Theorem 3.7.10. Remark 3.7.11. Notice that a Sobolev function u ∈ W 1,p (R N ) belongs to W 1,p 0 (Y ) if and only if its p-quasi continuous representative u vanishes p-q.e. on Y c (see [START_REF] Bagby | Quasi topologies and rational approximation[END_REF]Theorem 4] and [START_REF] Hedberg | Non-linear potentials and approximation in the mean by analytic functions[END_REF]Lemma 4]). Thus, if Y is an open subset of Y and u ∈ W 1,p 0 (Y ) such that u = 0 p-q.e. on Y \Y , then the restriction of u to Y belongs to W 1,p 0 (Y ) and conversely, if we extend a function u

∈ W 1,p 0 (Y ) by zero in Y \Y , then u ∈ W 1,p 0 (Y ). It is worth mentioning that if Σ ⊂ Y and Cap p (Σ) = 0, then W 1,p 0 (Y ) = W 1,p 0 (Y \ Σ). Indeed, u ∈ W 1,p 0 (Y ) if and only if u ∈ W 1,p (R N
) and u = 0 p-q.e. on Y c that is equivalent to say u ∈ W 1,p (R N ) and u = 0 p-q.e. on Y c ∪ Σ (since Cap p (Σ) = 0 and Cap p (•) is a subadditive set function, see, for example, [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 2.3.6]) or u ∈ W 1,p 0 (Y \ Σ). In the sequel we shall always identify u ∈ W 1,p (Y ) with its p-quasi continuous representative u.

Poincaré inequality

In this section, we prove the Poincaré inequality for Sobolev functions vanishing on a crack set with positive Cap p -capacity.

First, we recall the following well-known result (see [START_REF] Ziemer | Weakly differentiable functions[END_REF]Corollary 4.5.3,p. 195]).

Proposition 3.8.1. Let D ⊂ R N be a bounded extension domain and let u ∈ W 1,p (D).

Consider E = D ∩ {x : u(x) = 0}. If Cap p (E) > 0, then there exists C = C(N, p, D) > 0 such that D |u| p dx ≤ C(Cap p (E)) -1 D |∇u| p dx.
Now we prove the desired inequality.

Proposition 3.8.2. Let Σ ⊂ R N , ξ ∈ R N and r > 0 be such that Σ ∩ ∂B s (ξ) = ∅ for every s ∈ (r, 2r). Let p ∈ (N -1, +∞) and u ∈ W 1,p (B 2r (ξ)) satisfying u = 0 p-q.e. on Σ ∩ B 2r (ξ). Then there exists a constant C = C(N, p) > 0 such that

B 2r (ξ) |u| p dx ≤ Cr p B 2r (ξ) |∇u| p dx. Proof. We define v(y) = u(ξ + 2ry), y ∈ B 1 . Then v ∈ W 1,p (B 1 ), v = 0 p-q.e. on ( 1 2r (Σ -ξ)) ∩ B 1 and ( 1 2r (Σ -ξ)) ∩ ∂B s = ∅ for every s ∈ (1/2, 1). Next, if p ∈ (N -1, N ]
, by Proposition 3.8.1 and Proposition 3.7.5, for some C = C(N, p) > 0,

B 1 |v| p dy ≤ C(Cap p ({0} N -1 × [0, 1/2])) -1 B 1 |∇v| p dy. If p ∈ (N, +∞), by Remark 3.7.3, Cap p (( 1 2r (Σ -ξ)) ∩ B 1 ) ≥ Cap p ({0}) > 0.
Next, using Proposition 3.8.1, we get

B 1 |v| p dy ≤ C(Cap p ({0})) -1 B 1 |∇v| p dy.
Then, changing the variables, we recover the desired inequality.

Several results for p-harmonic functions

In this section, we recall several important facts about weak solutions to the p-Laplace equation

∆ p u = div(|∇u| p-2 ∇u) = 0.
Definition 3.9.1. Let U ⊂ R N be open and bounded, p ∈ (1, +∞). We say that u is a weak subsolution (supersolution) to the p-Laplace equation in U provided u ∈ W 1,p loc (U ) and U |∇u| p-2 ∇u, ∇ϕ dx ≤ (≥)0, (3.9.1)

whenever ϕ ∈ C ∞ 0 (U ) is nonnegative.
A function u is a weak solution to the p-Laplace equation if it is both a subsolution and a supersolution. If u is a continuous weak solution to the p-Laplace equation in U , then we say that u is p-harmonic in U .

Remark 3.9.2. We read |0| p-2 0 as 0 also when 1 < p < 2. It is also worth noting that (3.9.1) holds for all ϕ ∈ W 1,p 0 (U ) with compact support in U if it holds for all ϕ ∈ C ∞ 0 (U ). Finally, notice that if u ∈ W 1,p (U ), then (3.9.1) holds for all ϕ ∈ W 1,p 0 (U ), provided that it holds for all ϕ ∈ C ∞ 0 (U ).

The following inequalities for vectors in R N are useful in the study of weak solutions to the p-Laplace equation, and the inequalities (3.9.2), (3.9.4) will be used explicitly further. For a proof the reader may consult [Lin].

For each x, y ∈ R N , |x| p-2 x -|y| p-2 y, x -y ≥ 2 2-p |x -y| p , (3.9.2)

||x| p-2 x -|y| p-2 y| ≤ (p -1)(|x| + |y|) p-2 |x -y| (3.9.3) if 2 ≤ p < +∞, while |x| p-2 x -|y| p-2 y, x -y ≥ (|x| + |y|) p-2 |x -y| 2 , (3.9.4) ||x| p-2 x -|y| p-2 y| ≤ 2 2-p |x -y| p-1 (3.9.5) if 1 < p ≤ 2.
We now recall the following basic result for weak solutions (see [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.7]).

Theorem 3.9.3. Let U be a bounded open set in R N and let u ∈ W 1,p (U ). The following two assertions are equivalent.

(i) u is minimizing:

U |∇u| p dx ≤ U |∇v| p dx, when v -u ∈ W 1,p 0 (U ).
(ii) the first variation vanishes:

U |∇u| p-2 ∇u, ∇ζ dx = 0, when ζ ∈ W 1,p 0 (U ).

Proof. (i)⇒ (ii).

Fix ϕ ∈ C ∞ 0 (U ) and for each t ∈ (-1, 1), define

J(t) = U |∇(u + tϕ)| p dx.
The above function attains its minimum at t = 0. Then J (0) = 0, which yields (ii). (ii)⇒ (i). Since the function x → |x| p is convex and differentiable (1 < p < +∞),

|x| p ≥ |y| p + p |y| p-2 y, x -y ∀x, y ∈ R N . (3.9.6) Indeed, let x, y ∈ R N . If x = y, (3.9.6) is trivial. Assume that x = y. For each t ∈ [0, 1], define g(t) = |tx + (1 -t)y| p .
Then g is convex and g is nondecreasing on [0, 1]. This yields the following

g(1) -g(0) = 1 0 g (t) dt ≥ g (0).
But observing that g(1) = |x| p , g(0) = |y| p and g (0) = p |y| p-2 y, x -y , we deduce (3.9.6). Next, using (3.9.6), for all v ∈ W 1,p (U ), we get

U |∇v| p dx ≥ U |∇u| p dx + p U |∇u| p-2 ∇u, ∇v -∇u dx.
If v -u ∈ W 1,p 0 (U ) and (ii) holds, then the last integral vanishes, which yields (i). This completes the proof of Theorem 3.9.3.

Next, we recall Caccioppoli's inequality.

Lemma 3.9.4. If u is a nonnegative weak subsolution to the p-Laplace equation in an open

set U ⊂ R N , then U ϕ p |∇u| p dx ≤ p p U u p |∇ϕ| p dx
(3.9.7)

for each nonnegative ϕ ∈ C ∞ 0 (U ). In particular, if B 2r (x 0 ) ⊂ U , then Br(x 0 ) |∇u| p dx ≤ p p r -p B 2r (x 0 )
u p dx.

(3.9.8)

Proof. Define η = ϕ p u. Then η ∈ W 1,p 0 (U ) with compact support in U and ∇η = ϕ p ∇u + pϕ p-1 u∇ϕ.

By Definition 3.9.1,

U |∇u| p-2 ∇u, ∇η dx ≤ 0 and hence U ϕ p |∇u| p dx ≤ -p U uϕ p-1 |∇u| p-2 ∇u, ∇ϕ dx ≤ p U uϕ p-1 |∇u| p-1 |∇ϕ| dx ≤ p U ϕ p |∇u| p dx 1 p U u p |∇ϕ| p dx 1 p
, where the last estimate comes by using Hölder's inequality. This yields the estimate (3.9.7). If B 2r (x 0 ) ⊂ U , we may choose ϕ as radial function satisfying ϕ = 1 in B r (x 0 ), |∇ϕ| ≤ 1/r and ϕ = 0 on B c 2r (x 0 ). This completes the proof of Lemma 3.9.4. Now we recall the Comparison Principle, which is crucial in estimating weak solutions to the p-Laplace equation. (3.9.9) for all y ∈ ∂U , and if both sides of the above inequality are not simultaneously +∞ or -∞, then v ≤ u in U .

Proof. For each ε > 0, define ϕ ε = max{v -u -ε, 0}. According to (3.9.9), ϕ ε ∈ W 1,p 0 (U ) with compact support in U . By Definition 3.9.1 and Remark 3.9.2,

U |∇v| p-2 ∇v -|∇u| p-2 ∇u, ∇ϕ ε dx ≤ 0.
(3.9.10)

Since ∇ϕ ε = (∇v -∇u)1 {v-u+ε>0} , using (3.9.10), (3.9.2) and (3.9.4), we get

U |∇v| p-2 ∇v -|∇u| p-2 ∇u, ∇ϕ ε dx = 0,
which is possible only if ∇ϕ ε = 0 a.e. in U . Since ϕ ε ∈ W 1,p 0 (U ) and ∇ϕ ε = 0 a.e. in U , by [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]Lemma 1.17], ϕ ε = 0 a.e. in U . Hence ϕ ε = 0 in U because ϕ ε is continuous. Letting ε tend to 0+, we get that v ≤ u in U . This completes the proof of Lemma 3.9.5.

Next, we recall Harnack's inequality. Lemma 3.9.6. Let p ∈ (1, +∞) and let x 0 ∈ R N , r ∈ (0, +∞) and u be a nonnegative p-harmonic function in B 2r (x 0 ). Then there exists C = C(N, p) such that sup

Br(x 0 ) u ≤ C inf Br(x 0 ) u.
J. Moser's idea behind the proof of Harnack's inequality (see [Mos]) consists in first proving that if v is a nonnegative weak subsolution in a ball B, then

ess sup 1 2 B v ≤ C 1 |B| B v q dx 1 q
(3.9.11) for all q > 0, where C = C(N, p) > 0. The next step consists in proving that if u is a nonnegative weak supersolution in a ball B, then the following weak Harnack inequality holds

1 |B| B u s dx 1 s ≤ C ess inf 1 2 B
u (3.9.12) for all 0 < s < s 0 , where s 0 = s 0 (N, p) > 0 and C = C(N, p) > 0. The key argument leading to the inequalities (3.9.11), (3.9.12) is the so-called Moser iteration.

For nonnegative weak solutions, (3.9.11) together with (3.9.12) yields the Harnack inequality, for a proof of which the reader may consult, for instance, Chapter 3 and Theorem 6.2 in [HKM] or Chapter 3 in [Lin].

Corollary 3.9.7. A nonconstant p-harmonic function in a domain U cannot attain its supremum or infimum.

Proof of Corollary 3.9.7. Assume that for some x 0 ∈ U , u(x 0 ) = max x∈U u(x) = M . Then the function v = M -u is nonnegative and p-harmonic in U . Since v(x 0 ) = 0, it follows from Harnack's inequality that v ≡ 0 in U . The minimum is treated similarly.

The Harnack inequality can be iterated to obtain the local Hölder continuity of p-harmonic functions (compare with [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]Theorem 6.6]). Recall that if u :

A → R, then osc(u, A) = sup A u -inf A u. Theorem 3.9.8. Suppose that u is p-harmonic in an open set U ⊂ R N . If 0 < r < R < +∞ are such that B R (x 0 ) ⊂ U , then osc(u, B r (x 0 )) ≤ 2 α r R α osc(u, B R (x 0 )),
where α ∈ (0, 1] depends only on N and p. (3.9.14)

To achieve (3.9.14), suppose that

m 2 -m( ) ≤ C -1 (M ( ) -m( )). (3.9.15) Then osc u, B 2 = M 2 -m( ) + m( ) -m 2 (3.9.13) ≤ (C -1) m 2 -m( ) (3.9.15) ≤ a osc (u, B ) . Also, if m 2 -m( ) > C -1 (M ( ) -m( )), then osc u, B 2 ≤ M ( ) -m( ) -m 2 -m( ) < a(M ( ) -m( )).
Thus (3.9.14) always holds. To complete the proof, we iterate (3.9.14). Choose the integer m ≥ 1 such that 2 m-1 ≤ R/r < 2 m . Then (3.9.14) implies

osc(u, B r ) ≤ a m-1 osc (u, B 2 m-1 r ) ≤ a m-1 osc(u, B R ). Set α = -ln(a)/ ln(2) ≤ 1 and obtain r R α > 2 -α (2 m-1 ) -α = 2 -α a m-1 , whence osc(u, B r ) ≤ 2 α r R α osc(u, B R ),
which is the desired estimate.

Corollary 3.9.9. If u is a bounded p-harmonic function in R N , then u is constant.

Corollary 3.9.10. If u is a nonnegative p-harmonic function in R N , then u is constant.

In the next lemma, we construct a barrier function that we shall use to estimate nonnegative weak subsolutions to the p-Laplace equation in B r (x 0 )\L, where L is an affine line passing through x 0 , continuous in B r (x 0 ) and vanishing on L ∩ B r (x 0 ).

Recall that we write points of R N as x = (x , x N ) with x ∈ R N -1 and x N ∈ R.

Lemma 3.9.11. Let p ∈ (N -1, +∞), β = (p -N + 1)/(p -1) and γ ∈ (0, β). There exists δ ∈ (0, 1), depending only on N, p and γ, such that û

(x) = |x | γ + x 2 N is a supersolution to the p-Laplace equation in {0 < |x | < δ} ∩ {|x N | < 1}.
Proof. To simplify the notation, we denote

{0 < |x | < δ} ∩ {|x N | < 1} by C o δ,1
. We need to prove that there exists δ = δ(N, p, γ) ∈ (0, 1) such that

∆ p û = ∆û|∇û| p-2 + (p -2)|∇û| p-4 ∆ ∞ û ≤ 0 in C o δ,1 , (3.9.16)
where ∆û = ∆ 2 û := N i=1 ûx i ,x i and ∆ ∞ û := N i,j=1 ûx i ûx j ûx i ,x j . Since |∇û| = 0 in C o δ,1 , (3.9.16) is equivalent to the following

∆p û := ∆û|∇û| 2 + (p -2)∆ ∞ û ≤ 0 in C o δ,1 .
Calculating the partial derivatives of û in C o δ,1 , we have:

ûx i = γx i |x | γ-2 , i ∈ {1, ..., N -1}; ûx N = 2x N ; ûx i ,x j = γ(γ -2)x i x j |x | γ-4 + δ ij γ|x | γ-2
, where i, j ∈ {1, ..., N -1} and δ i,j is the Kronecker delta; ûx N ,x N = 2. Next, we deduce that

∆û = γ(γ+N -3)|x | γ-2 +2, |∇û| 2 = γ 2 |x | 2γ-2 +4x 2 N and ∆ ∞ û = γ 3 (γ-1)|x | 3γ-4 +8x 2 N in C o δ,1 . This yields the following ∆p û = a|x | 3γ-4 + 4γ(γ + N -3)|x | γ-2 x 2 N + 2γ 2 |x | 2γ-2 + (p -1)8x 2 N in C o δ,1 , (3.9.17)
where a = γ 3 (γp -p -γ + N -1). Since 0 < γ < β, a < 0 and 3γ -4 < γ -2 < 0. Thus, analyzing (3.9.17), we deduce that there exists δ = δ(N, p, γ) ∈ (0, 1) such that ∆p û ≤ 0 in C o δ,1 . This completes the proof.

The following two results will be used to estimate a nonnegative weak subsolution u to the p-Laplace equation in B r (x 0 )\L (where L is an affine line passing through x 0 ), continuous in B r (x 0 ) and with u = 0 on L ∩ B r (x 0 ). Lemma 3.9.12. Let p ∈ (N -1, +∞). Then there exists a positive integer q = q(N, p) such that the following holds. Let x 0 ∈ R N , r > 0 and L ⊂ R N be an affine line passing through x 0 . Then for any nonnegative p-harmonic function u in B r (x 0 )\L, continuous in B r (x 0 ) and satisfying u = 0 on L ∩ B r (x 0 ), the following estimate holds

max x∈B 2 -q r (x 0 ) u(x) ≤ 1 2 max x∈Br(x 0 ) u(x).
Proof. Since the p-Laplacian is invariant under scalings, rotations and translations, we can assume that B r (x 0 ) = B 1 and L ∩ B r (x 0 ) = {0} N -1 × (-1, 1). To lighten the notation, we denote {0} N -1 × (-1, 1) by S. Let γ = p-N +1 2p-2 . Then, by Lemma 3.9.11, there exists

δ = δ(N, p) ∈ (0, 1/2) such that û(x) = |x | γ + x 2
N is a weak supersolution to the p-Laplace equation in {0 < |x | < 2δ} ∩ {|x N | < 1}, and is continuous in R N . Hereinafter in this proof, C denotes a positive constant that can only depend on N, p and can be different from line to line. Since

û(x) = δ γ + x 2 N ≥ δ γ if |x | = δ and û(x) = |x | γ + δ 2 ≥ δ 2 if |x N | = δ, the estimate u ≤ C max B 1 u û holds on ∂ ({|x | < δ} ∩ {|x N | < δ}). Furthermore, u(x) ≤ C max B 1 u û(x) if x ∈ S.
Then the comparison principle (Lemma 3.9.5) says that

u ≤ C max B 1 u û in {|x | ≤ δ} ∩ {|x N | ≤ δ}.
This implies that u(x) ≤ C max B 1 u |x| γ for all x ∈ B δ , since |x | γ + x 2 N ≤ 2|x| γ for all x ∈ B δ . Next, choosing q = q(N, p) ∈ N such that 2 -q ∈ (0, δ) and C2 -qγ ≤ 1/2, we obtain the following

max B 2 -q u ≤ 1 2 max B 1 u,
which concludes the proof of Lemma 3.9.12.

We now prove the following Carleson estimate.

Lemma 3.9.13. Let p ∈ (N -1, +∞). Then there exist ε = ε(N, p) ∈ (0, 1) and C = C(N, p) > 0 such that the following holds. Let x 0 ∈ R N , r > 0 and L ⊂ R N be an affine line passing through x 0 . Then for any nonnegative p-harmonic function u in B r (x 0 )\L, continuous in B r (x 0 ) and satisfying u = 0 on L ∩ B r (x 0 ), the following estimate holds max

x∈Bεr(x 0 ) u(x) ≤ Cu(A εr (x 0 )),
where A εr (x 0 ) denotes a point such that d(A εr (x 0 ), L) = εr and A εr (x 0 ) ∈ ∂B εr (x 0 ).

Proof. We follow the same strategy as in the proof of [START_REF] Caffarelli | Boundary behavior of nonnegative solutions of elliptic operators in divergence form[END_REF]Theorem 1.1]. Since the p-Laplacian is invariant under scalings, rotations and translations, we can assume that B r (

x 0 ) = B 1 , L ∩ B r (x 0 ) = {0} N -1 × (-1, 1
). To simplify our notation, we denote the set {0} N -1 × (-1, 1) by S. Let q = q(N, p) be the positive integer of Lemma 3.9.12. Define ε = 2 -q-2m with m ∈ N to be determined. Fix an arbitrary A ε such that d(A ε , S) = ε and A ε ∈ ∂B ε . Notice that if u(A ε ) = 0, then by the Harnack inequality (Lemma 3.9.6), u(x) = 0 for all x ∈ B 1 and the proof follows. Without loss of generality, we can assume that u(A ε ) = 1. By Lemma 3.9.12, for each x 0 ∈ S and r ∈ (0, d(x 0 , ∂B 1 )), max

B 2 -q r (x 0 ) u ≤ 1 2 max Br(x 0 )
u.

On the other hand, by the Harnack inequality, there exists M = M (N, p) > 1 such that

u(x , x N ) ≤      M u(2x , x N ) for x ∈ B 1/4 \S M u(A ε ) = M for x ∈ {|x | ≥ ε/2} ∩ B 1/2 .
Suppose that there exists y 0 ∈ B ε such that u(y 0 ) ≥ M n+2 with n ∈ N to be determined. Then

d(y 0 , S) ≤ 2 -n ε, because otherwise u(y 0 ) ≤ M n+1 u(A ε ) = M n+1
. Let y 0 be the projection of y 0 to S. Then we have max

B 2 -n+qm ε ( y 0 ) u ≥ 2 m max B 2 -n ε ( y 0 ) u ≥ 2 m M n+2 .
We now choose and fix m so that 2 m ≥ M 2 . Hence

u(y 1 ) = max B 2 -n+qm ε ( y 0 ) u ≥ M n+4 ,
where

y 1 ∈ B 2 -n+qm ε ( y 0 ). Therefore d(y 1 , S) ≤ 2 -n-2 ε and max B 2 -n-2+qm ε ( y 1 ) u ≥ 2 m max B 2 -n-2 ε ( y 1 ) u ≥ M n+6 ,
where y 1 is the projection of y 1 to S. Clearly, there exists

y 2 ∈ B 2 -n-2+qm ε ( y 1 ) such that u(y 2 ) ≥ M n+6 . So d(y 2 , S) ≤ 2 -n-4 ε and max B 2 -n-4+qm ε ( y 2 ) u ≥ 2 m max B 2 -n-4 ε ( y 2 ) u ≥ M n+8 ,
where y 2 is the projection of y 2 to S. Once again there exists

y 3 ∈ B 2 -n-4+qm ε ( y 2 ) such that u(y 3 ) ≥ M n+8 , d(y 3 , S) ≤ 2 -n-6 ε and max B 2 -n-6+qm ε ( y 3 ) u ≥ 2 m max B 2 -n-6 ε ( y 3 ) u ≥ M n+10 .
We obtain by induction a sequence of points (y k ) such that

d(y k , S) ≤ 2 -n-2k ε, y k ∈ B 2 -n-2(k-1)+qm ε ( y k-1 ) and u(y k ) ≥ M n+2(k+1) , k = 1, 2, ... .
We shall obtain a contradiction if we can make sure that each y k belongs to some closed ball contained in B 1 . For each k ≥ 1,

|y k | ≤ |y k -y k-1 | + | y k-1 -y k-1 | + |y k-1 | ≤ 2 -n+qm ε k l=1 2 -2(l-1) + 2 -n ε k-1 l=0 2 -2l + |y 0 | ≤ (2 -n+qm + 2 -n )ε ∞ l=0 2 -2l + ε.
By choosing n large depending on N and p, we can make |y k | ≤ 3 2 ε. This completes the proof of Lemma 3.9.13.

We shall also use the following classical lemma. Lemma 3.9.14. Let p ∈ (1, +∞), Σ ⊂ R N be a closed set and u ∈ W 1,p (B 1 ) be a pharmonic function in B 1 \Σ, continuous in B 1 with u = 0 on Σ ∩ B 1 . Then u + = max{u, 0} and u -= -min{u, 0} are continuous weak subsolutions to the p-Laplace equation in B 1 .

Proof. Since u -= (-u) + and (-u) is p-harmonic in B 1 \Σ, it is enough to prove that the function u + is a continuous weak subsolution in B 1 . Let us fix an arbitrary nonnegative function ϕ ∈ C ∞ 0 (B 1 ) and for all ε, η ∈ (0, 1) define

ϕ η,ε = ((η + (u -ε) + ) ε -η ε )ϕ. Since u ∈ W 1,p (B 1 ) is p-harmonic in B 1 \Σ and ϕ η,ε ∈ W 1,p 0 (B 1 \Σ), B 1 |∇u| p-2 ∇u, ∇ϕ η,ε dx = 0.
This implies that

B 1 ((η+(u-ε) + ) ε -η ε ) |∇u + | p-2 ∇u + , ∇ϕ dx+ε B 1 ∩{u>ε} |∇u + | p (η+(u-ε) + ) ε-1 ϕ dx = 0 and hence B 1 ((η + (u -ε) + ) ε -η ε ) |∇u + | p-2 ∇u + , ∇ϕ dx ≤ 0.
(3.9.18)

Letting η and then ε tend to 0+ in (3.9.18), by Lebesgue's dominated convergence theorem, we get

B 1 |∇u + | p-2 ∇u + , ∇ϕ dx ≤ 0,
which concludes the proof.

Estimate for

E f,Ω (u Σ ) -E f,Ω (u Σ )
We begin this section, by proving the following classical result.

Lemma 3.10.1. Let p ∈ (1, +∞) and f ∈ L q 0 (Ω), where q 0 is defined in (2.1.1). Let Σ be a closed proper subset of Ω. Then E f,Ω admits a unique minimizer u f,Ω,Σ over W 1,p 0 (Ω\Σ) which is a unique weak solution to the equation ( 2

.1.2).

Proof. First, notice that the functional E f,Ω is lower semicontinuous, coercive and strictly convex. Since E f,Ω (0) = 0, inf{E f,Ω (u) : u ∈ W 1,p 0 (Ω\Σ)} < +∞. So we can extract a minimizing sequence (u n ) n . From coercivity of E f,Ω it follows that the sequence (u n ) n is bounded in W 1,p 0 (Ω\Σ). Since W 1,p 0 (Ω\Σ) is reflexive (1 < p < +∞; see [Ada]), there exists u f,Ω,Σ ∈ W 1,p 0 (Ω\Σ) such that up to a subsequence (not relabeled),

u n u f,Ω,Σ weakly in W 1,p 0 (Ω\Σ).
We claim that u f,Ω,Σ is the minimizer sought for. It is well known that for convex functions the lower semicontinuity property with respect to the normed topology of considered normed space is equivalent to the weak (or weak sequential) lower semicontinuity. Then, by the weak (sequential) lower semicontinuity,

E f,Ω (u f,Ω,Σ ) ≤ lim inf n→+∞ E f,Ω (u n ).
Therefore u f,Ω,Σ is a minimizer of E f,Ω over W 1,p 0 (Ω\Σ). The uniqueness of u f,Ω,Σ follows from the strict convexity of E f,Ω . Now fix an arbitrary ϕ ∈ W 1,p 0 (Ω\Σ). For each t ∈ (-1, 1), define

J(t) = E f,Ω (u f,Ω,Σ + tϕ).
The above function attains its minimum at t = 0. Hence J (0) = 0, which yields

Ω |∇u f,Ω,Σ | p-2 ∇u f,Ω,Σ , ∇ϕ dx = Ω f ϕ dx.
Since ϕ was arbitrarily chosen, we deduce that u f,Ω,Σ is a weak solution to the equation (2.1.2).

Next, we prove the following "localization lemma".

Lemma 3.10.2. Let p ∈ (1, +∞) and f ∈ L q 0 (Ω) with q 0 defined in (2.1.1). Let Σ and Σ be closed proper subsets of Ω and x 0 ∈ R N . Assume that 0 < r 0 < r 1 and Σ ∆ Σ ⊂ B r 0 (x 0 ). Then there exists C = C(p) > 0 such that for any ϕ ∈ Lip(R N ) satisfying ϕ = 1 over B c r 1 (x 0 ), ϕ = 0 over B r 0 (x 0 ) and ϕ ∞ ≤ 1 on R N , one has

E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ 2 p-1 p Br 1 (x 0 ) |∇u Σ | p dx + 2 p-1 p Br 1 (x 0 ) |u Σ | p |∇ϕ| p dx + Br 1 (x 0 ) f u Σ (1 -ϕ) dx. Proof. Since u Σ ϕ ∈ W 1,p 0 (Ω\ Σ) and u Σ is a minimizer of E f,Ω over W 1,p 0 (Ω\ Σ), then E f,Ω (u Σ ) ≤ E f,Ω (u Σ ϕ), and hence, E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ E f,Ω (u Σ ϕ) -E f,Ω (u Σ ) = 1 p Ω |∇u Σ ϕ + u Σ ∇ϕ| p dx - Ω f u Σ ϕ dx - 1 p Ω |∇u Σ | p dx + Ω f u Σ dx = 1 p Br 1 (x 0 ) |∇u Σ ϕ + u Σ ∇ϕ| p dx + 1 p B c r 1 (x 0 ) |∇u Σ | p dx + Br 1 (x 0 ) f u Σ (1 -ϕ) dx - 1 p Ω |∇u Σ | p dx ≤ 2 p-1 p Br 1 (x 0 ) |∇u Σ | p |ϕ| p dx + 2 p-1 p Br 1 (x 0 ) |u Σ | p |∇ϕ| p dx - 1 p Br 1 (x 0 ) |∇u Σ | p dx + Br 1 (x 0 ) f u Σ (1 -ϕ) dx ≤ 2 p-1 p Br 1 (x 0 ) |∇u Σ | p dx + 2 p-1 p Br 1 (x 0 ) |u Σ | p |∇ϕ| p dx + Br 1 (x 0 ) f u Σ (1 -ϕ) dx,
which concludes the proof.

Lemma 3.10.3. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (2.1.1). Assume that Σ is a closed arcwise connected proper subset of Ω such that for some

x 0 ∈ R N and 0 < 2r 0 ≤ r 1 ≤ 1 it holds Σ ∩B r 0 (x 0 ) = ∅, Σ \B r 1 (x 0 ) = ∅.
(3.10.1)

Then for any r ∈ [r 0 , r 1 /2], for any ϕ ∈ Lip(R N ) such that ϕ ∞ ≤ 1, ϕ = 1 over B c 2r (x 0 ), ϕ = 0 over B r (x 0
) and ∇ϕ ∞ ≤ 1/r, the following assertions hold.

(i) There exists C = C(N, p) > 0 such that

B 2r (x 0 ) |u Σ | p |∇ϕ| p dx ≤ C B 2r (x 0 ) |∇u Σ | p dx. ( 3 

.10.2)

(ii) There exists C = C(N, p, q 0 , q, f q ) > 0 such that

B 2r (x 0 ) f u Σ (1 -ϕ) dx ≤ C B 2r (x 0 ) |∇u Σ | p dx + Cr N +p -N p q .
(3.10.3)

Proof. Thanks to (3.10.1), Σ ∩ ∂B s (x 0 ) = ∅ for all s ∈ [r, 2r]. Then, since u Σ = 0 p-q.e. on Σ and u Σ ∈ W 1,p (B 2r (x 0 )), we can use Proposition 3.8.2, which says that there exists C = C(N, p) > 0 such that

B 2r (x 0 ) |u Σ | p dx ≤ Cr p B 2r (x 0 ) |∇u Σ | p dx.
(3.10.4) Therefore,

B 2r (x 0 ) |u Σ | p |∇ϕ| p dx ≤ 1 r p B 2r (x 0 ) |u Σ | p dx ≤ C B 2r (x 0 ) |∇u Σ | p dx.
This proves (3.10.2).

Let us now prove (3.10.3). First, notice that thanks to (3.10.4) and the fact that 2r ≤ 1, there exists

C 0 = C 0 (N, p) > 0 such that u Σ W 1,p (B 2r (x 0 )) ≤ C 0 ∇u Σ L p (B 2r (x 0 )) .
(3.10.5)

Next, using the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.26]) together with (3.10.5) and the fact that u Σ = 0 p-q.e. on Σ, we deduce that there exists C = C(N, p, q 0 ) > 0 such that u Σ L q 0 (B 2r (x 0 )) ≤ Cr β ∇u Σ L p (B 2r (x 0 )) , (3.10.6)

where

β = 0 if N -1 < p < N, β = N q 0 if p = N, β = 1 - N p if N < p < +∞.
Thus, using the fact that |f u Σ (1 -ϕ)| ≤ |f u Σ |, Hölder's inequality, the estimate (3.10.6) and Young's inequality, we get

B 2r (x 0 ) f u Σ (1 -ϕ) dx ≤ f L q 0 (B 2r (x 0 )) u Σ L q 0 (B 2r (x 0 )) ≤ |B 2r (x 0 )| 1 q 0 -1 q f L q (Ω) u Σ L q 0 (B 2r (x 0 )) ≤ Cr N ( 1 q 0 -1 q )+β ∇u Σ L p (B 2r (x 0 )) = Cr N p +1-N q ∇u Σ L p (B 2r (x 0 )) ≤ Cr N +p -N p q + C ∇u Σ p L p (B 2r (x 0 )) ,
where C = C(N, p, q 0 , q, f q ) > 0. This concludes the proof of Lemma 3.10.3.

The following corollary follows directly from Lemma 3.10.2 and Lemma 3.10.3, thus, we omit the proof. Corollary 3.10.4. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (2.1.1). Let Σ and Σ be closed arcwise connected proper subsets of Ω and let

x 0 ∈ R N . Suppose that 0 < 2r 0 ≤ r 1 ≤ 1, Σ ∆ Σ ⊂ B r 0 (x 0 ) and Σ ∩ B r 0 (x 0 ) = ∅, Σ \B r 1 (x 0 ) = ∅. Then for every r ∈ [r 0 , r 1 /2], E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C B 2r (x 0 ) |∇u Σ | p dx + Cr N +p -N p q , (3.10.7)
where C = C(N, p, q 0 , q, f q ) > 0.

Uniform boundedness of u f,Ω,Σ with respect to Σ

In this section, we prove a uniform estimate from above, with respect to Σ, for a unique solution u f,Ω,Σ to the Dirichlet problem -∆ p u = f in Ω\Σ, u ∈ W 1,p 0 (Ω\Σ). Notice that we can extend u f,Ω,Σ by zero outside Ω\Σ to an element of W 1,p (R N ), we shall use the same notation for this extension as for u f,Ω,Σ .

We begin with the following lemma on the global boundedness of weak solutions to the p-Poisson equation, which is the refined version of the classical result [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 8.15]. Lemma 3.11.1. Let U ⊂ R N be open and bounded, p ∈ (1, +∞) and let f ∈ L q (Ω) with q > N p if p ∈ (1, N ] and q = 1 if p > N . Let u be a unique solution to the Dirichlet problem

     -∆ p v = f in U v = 0 on ∂U,
which means that u ∈ W 1,p 0 (U ) and

U |∇u| p-2 ∇u, ∇ϕ dx = U f ϕ dx ∀ϕ ∈ W 1,p 0 (U ). (3.11.1)
Then there exists a constant C = C(N, p, q, f q , |U |) > 0 such that

u L ∞ (R N ) ≤ C. (3.11.2)
Proof. Assume that f q = 0, because otherwise u = 0 and (3.11.2) holds. Recall that we can extend u by zero outside U to an element that belongs to W 1,p (R N ) and we shall use the same notation for this extension as for the function u. If p > N , then by [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10] and since u = 0 on R N \U , there exists

C = C(N, p, |U |) > 0 such that u L ∞ (R N ) ≤ C ∇u L p (R N ) . (3.11.3)
Using u as a test function in (3.11.1), we get

R N |∇u| p dx = R N f u dx (3.11.3) ≤ C U |f | dx R N |∇u| p dx 1 p and then R N |∇u| p dx ≤ C p f p 1
, which together with (3.11.3) implies (3.11.2). Now let p ∈ (1, N ] and let k = f q . For β ≥ 1 and b > k, define the function Observing that |∇w| p G (w) = |∇H(w)| p and G(t) ≤ tG (t), and by using Hölder's inequality, we get

H ∈ C 1 ([k, +∞)) by setting H(s) = s β -k β if s ∈ [k
U |∇H(w)| p dx ≤ U k p-1 k p-1 |f |wG (w) dx ≤ U 1 k p-1 |f |w p G (w) dx = U 1 k p-1 |f ||wH (w)| p dx ≤ U 1 k (p-1)q |f | q dx 1 q U |wH (w)| pq q-1 dx q-1 q
and then ∇H(w) p ≤ C 0 wH (w) pq/(q-1) (3.11.4)

with C 0 = C 0 (p, f q ) > 0. Since H(w) ∈ W 1,p 0 (U ), we may apply the Sobolev inequality [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10] where

C = C(N, p, f q , |U |) > 0.
Recalling the definition of H and letting b tend to +∞ in the latter estimate, we deduce that for all β ≥ 1 the inclusion w ∈ L βpq q-1 (U ) implies the stronger inclusion, w ∈ L β N p N -p (U ) (since N < qp). Thus, setting q * = pq/(q -1), and χ = N (q -1)/q( N -p) > 1, we obtain (3.11.6) where C = C(N, p, q, f q , |U |) > 0. Let us take β = χ m , m ∈ N, m ≥ 1, so that by (3.11.6),

w βχq * ≤ (Cβ) 1 β w βq * ,
w χ m+1 q * ≤ m i=0 (Cχ i ) χ -i w q * ≤ C σ χ τ w q * , σ = χ/(χ -1), τ = χ/(χ -1) 2 .
Letting m tend to +∞, we obtain

w ∞ ≤ C σ χ τ w q * . (3.11.7)
Hereinafter in this proof, C denotes a positive constant that can only depend on N, p, q, f q , |U | and can be different from line to line. Notice that since q * < N p/( N -p) and since u ∈ W 1,p 0 (U ), using again the Sobolev inequality [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10], we get

u + q * ≤ C ∇u + p .
(3.11.8) Thus, observing that w q * = u + +k q * ≤ u + q * +k|U | 1 q * and using (3.11.7) and (3.11.8), we have

u + ∞ ≤ C ∇u + p + C.
(3.11.9)

Now, using u + as a test function in the equation (3.11.1) and using Hölder's inequality, we get

∇u + p = U f u + dx 1 p ≤ C u + 1 p ∞.
This, together with (3.11.9), yields

u + ∞ ≤ C u + 1 p ∞ + C
and then by Young's inequality,

u + ∞ ≤ 1 p u + ∞ + C. (3.11.10) Therefore u + ∞ ≤ A
where A = A(N, p, q, f q , |U |) > 0. Observing that the same estimate can be obtained by replacing u + with u -, we recover (3.11.2). This completes our proof of Lemma 3.11.1.

Proposition 3.11.2. Let Σ be a closed proper subset of Ω, p ∈ (1, +∞) and f ∈ L q 0 (Ω) with q 0 defined in (2.1.1). Then there exists a constant C > 0, possibly depending only on N, p and q 0 , such that (3.11.11) where

Ω |∇u f,Ω,Σ | p dx ≤ C| Ω | α f β L q 0 (Ω) ,
(α, β) =            (0, p ) if 1 < p < N, N q 0 , N if p = N, p-N N (p-1) , p if p > N.
(3.11.12)

Moreover, if f ∈ L q (Ω) with q > N p if p ∈ (1, N ] and q = 1 if p > N , then there exists a constant C = C(N, p, q, f q , | Ω |) > 0 such that u f,Ω,Σ L ∞ (R N ) ≤ C.
(3.11.13) Proof. To establish the estimate (3.11.13), we use Lemma 3.11.1 with U = Ω\Σ, which provides a constant C = C(N, p, q, f q , |U |) > 0 such that u f,Ω,Σ L ∞ (R N ) ≤ C, but observing that C is increasing with respect to |U |, we recover (3.11.13). Now let f ∈ L q 0 (Ω).

Using u f,Ω,Σ as a test function in (2.1.3), we get (3.11.14) where the above estimate comes by using Hölder's inequality. Next, recalling that by the Sobolev inequalities (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10]) there is C = C(N, p) > 0 such that

Ω |∇u f,Ω,Σ | p dx = Ω f u f,Ω,Σ dx ≤ f L q 0 (Ω) u f,Ω,Σ L q 0 (Ω) ,
u f,Ω,Σ L q 0 (Ω) ≤ C|Ω| γ ∇u f,Ω,Σ L p (Ω)
,

where γ = 0 if 1 < p < N, γ = 1 N - 1 p if p > N,
and using (3.11.14), we recover (3.11.11) in the case when p = N . If p = N and 1 < q 0 ≤ N , then for ε ∈ (0, N -1] such that 1

q 0 = 1 N -ε -1 N , we get u f,Ω,Σ L q 0 (Ω) ≤ C ∇u f,Ω,Σ L N -ε (Ω) (by the Sobolev inequality) ≤ C| Ω | 1 q 0 ∇u f,Ω,Σ L N (Ω) (by Hölder's inequality).
The latter estimate together with (3.11.14) yields (3.11.11) in the case when p = N and 1 < q 0 ≤ N . Assume now that p = N and q 0 > N . Then q 0 < N ≤ N . Using Hölder's inequality and the fact that

u f,Ω,Σ L N (Ω) ≤ C| Ω | 1 N ∇u f,Ω,Σ L N (Ω) ,
which was proved above, we obtain that

u f,Ω,Σ L q 0 (Ω) ≤ |Ω| 1 q 0 -1 N u f,Ω,Σ L N (Ω) ≤ C|Ω| 1 q 0 ∇u f,Ω,Σ L N (Ω) .
This, together with (3.11.14), yields (3.11.11) in the case when p = N and q 0 > N , and completes the proof of Proposition 3.11.2.

The continuous dependence on f of u f,Ω,Σ

In this section, we prove that the continuous dependence on f of u f,Ω,Σ is uniform with respect to Σ.

We begin with the following lemma.

Lemma 3.12.1. Let U be an open set in R N and let

u 1 , u 2 ∈ W 1,p (U ). Define z = u 1 -u 2 . If 2 ≤ p < +∞, then U |∇u 1 -∇u 2 | p dx ≤ c 0 U |∇u 1 | p-2 ∇u 1 -|∇u 2 | p-2 ∇u 2 , ∇z dx, (3.12.1)
where c 0 depends only on p.

If 1 < p < 2, then U |∇u 1 -∇u 2 | p dx 2 p ≤ K(u 1 , u 2 ) U |∇u 1 | p-2 ∇u 1 -|∇u 2 | p-2 ∇u 2 , ∇z dx, (3.12.2)
where K(u 1 , u 2 ) stands for

K(u 1 , u 2 ) = 2 U |∇u 1 | p dx + U |∇u 2 | p dx 2-p p .
Proof. Case 1: 2 ≤ p < +∞. The estimate (3.12.1) follows from the monotonicity condition (3.9.2).

Case 2: 1 < p < 2. Using the monotonicity condition (3.9.4), Hölder's inequality, and also using the inequality for nonnegative numbers (a + b) p ≤ 2 p-1 a p + 2 p-1 b p , we obtain the following

U |∇z| p dx = U (|∇u 1 | + |∇u 2 |) (2-p)p 2 (|∇u 1 | + |∇u 2 |) (p-2)p 2 |∇z| p dx ≤ U (|∇u 1 | + |∇u 2 |) p dx 2-p 2 U (|∇u 1 | + |∇u 2 |) p-2 |∇z| 2 dx p 2 ≤ 2 (p-1)(2-p) 2 U |∇u 1 | p dx + U |∇u 2 | p dx 2-p 2 • U |∇u 1 | p-2 ∇u 1 -|∇u 2 | p-2 ∇u 2 , ∇z p 2 . Since 2 (p-1)(2-p) p < 2, we obtain U |∇z| p dx 2 p ≤ K(u 1 , u 2 ) U |∇u 1 | p-2 ∇u 1 -|∇u 2 | p-2 ∇u 2 , ∇z dx.
This completes the proof of Lemma 3.12.1. Now we prove the desired dependence on f of u f,Ω,Σ (compare with [START_REF] Maso | Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators[END_REF]Theorem 2.3]).

Theorem 3.12.2. Let f 1 , f 2 ∈ L q 0 (Ω), where q 0 is defined in (2.1.1). Let Σ be a closed proper subset of Ω. If 2 ≤ p < +∞, then (3.12.4) where C = C(N, p) > 0.

u f 1 ,Ω,Σ -u f 2 ,Ω,Σ p W 1,p 0 (Ω) ≤ C f 1 -f 2 p L q 0 (Ω) , (3.12.3) where C = C(N, p, q 0 , |Ω|) > 0. If 1 < p < 2, then u f 1 ,Ω,Σ -u f 2 ,Ω,Σ p W 1,p 0 (Ω) ≤ C( f 1 p L q 0 (Ω) + f 2 p L q 0 (Ω) ) 2-p f 1 -f 2 p L q 0 (Ω) ,
Proof. To simplify the notation, define u i = u f i ,Ω,Σ , i ∈ {1, 2} and z = u 1 -u 2 . Next, using z as a test function in (2.1.3) with u f,Ω,Σ = u i , i ∈ {1, 2} and subtracting the corresponding equalities, we get

Ω |∇u 1 | p-2 ∇u 1 -|∇u 2 | p-2 ∇u 2 , ∇z dx = Ω (f 1 -f 2 )z dx ≤ f 1 -f 2 L q 0 (Ω) z L q 0 (Ω) ≤ C f 1 -f 2 L q 0 (Ω) z W 1,p 0 (Ω)
(3.12.5)

for C = C(N, p, q 0 , |Ω|) > 0 if 2 ≤ p < +∞ and for C = C(N, p) > 0 if N -1 < p < N ,
where we have used Hölder's inequality and [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.10]. Now we need to distinguish between two further cases.

Case 1: 2 ≤ p < +∞. From (3.12.1) and (3.12.5) we obtain (3.12.3).

Case 2: 1 < p < 2. Hereinafter in this proof, C denotes a positive constant that can only depend on N, p and can be different from line to line. Using (3.12.2), (3.12.5) and (3.11.11), we obtain

z 2 W 1,p 0 (Ω) ≤ C( u 1 p W 1,p 0 (Ω) + u 2 p W 1,p 0 (Ω) ) 2-p p f 1 -f 2 L q 0 (Ω) z W 1,p 0 (Ω) ≤ C( f 1 p L q 0 (Ω) + f 2 p L q 0 (Ω) ) 2-p p f 1 -f 2 L q 0 (Ω) z W 1,p 0 (Ω) ,
which implies (3.12.4). This completes the proof of Theorem 3.12.2.

Existence of a solution to Problem (A)

In this section, we prove that Problem (A) admits a solution.

We begin by recalling the following continuity result (see [ Šv] for the case N = p = 2 and [BT] for the general case).

Theorem 3.13.1. Let p ∈ (N -1, +∞) and f ∈ L q 0 (Ω) with q 0 defined in (2.1.1). Let

(Σ n ) n ⊂ K(Ω) be a sequence converging to Σ ∈ K(Ω) in the Hausdorff distance. Then u Σn -→ n→+∞ u Σ strongly in W 1,p (Ω).
Remark 3.13.2. Following [BT], we say that a sequence (Ω n ) n of open subsets of a fixed ball B γ p -converges to Ω if for any f ∈ W -1,p (B) the solutions to the Dirichlet problem

-∆ p u n = f in Ω n , u n ∈ W 1,p 0 (Ω n )
converge strongly in W 1,p 0 (B), as n → +∞, to the solution of the corresponding problem in Ω. It can be shown that the γ p -convergence is equivalent to the convergence in the sense of Mosco of the associated Sobolev spaces (see [BT]). A sequence of Sobolev spaces W 1,p 0 (Ω n ) converges in the sense of Mosco to W 1,p 0 (Ω) if the following two conditions hold

(1) ∀u ∈ W 1,p 0 (Ω) ∃u n ∈ W 1,p 0 (Ω n ) such that u n → u strongly in W 1,p (R N ); (2) ∀u n(k) ∈ W 1,p 0 (Ω n(k) ) u n(k) u weakly in W 1,p (R N ) we have u ∈ W 1,p 0 (Ω).
In [BT], the authors established a γ p -compactness result in N dimensions and for p > N -1 analogous to the result established in [ Šv] in dimension 2 for p = 2. The continuity and compactness were obtained by limiting the number of the connected components of the complementaries of admissible domains. Let us recall this compactness result. For a fixed bounded open ball B ⊂ R N , denote

O l (B) = {Ω ⊂ B|#Ω c ≤ l},
where # denotes the number of connected components. Assume that p > N -1. Consider (Ω n ) n ⊂ O l (B) and assume that Ω n converges in the Hausdorff complementary topology to Ω, which means that

d H c (Ω n , Ω) = sup x∈R N |d(x, Ω c n ) -d(x, Ω c )| → 0 as n → +∞.
Then Ω ∈ O l (B) and Ω n γ p -converges to Ω (see [START_REF] Bucur | Shape optimisation problems governed by nonlinear state equations[END_REF]Theorem 1.2]). Notice that the Hausdorff complementary topology, denoted by H c and generated by the distance d H c , has some nice properties, namely the space of the open subsets of B is compact with respect to this topology. Now observe that one cannot directly apply the above compactness result to prove Theorem 3.13.1, because apriori one does not know how much connected components Ω\Σ n has. However, one could proceed as follows: let (Σ n ) n ⊂ K(Ω) be a sequence converging to Σ ∈ K(Ω) in the Hausdorff distance. Fix a ball B ⊂ R N such that Ω ⊂ B. Then, according to the above compactness result, the sequence (B\Σ n ) n γ p converges to B\Σ. This implies that the sequence of Sobolev spaces W 1,p 0 (B\Σ n ) converges in the sense of Mosco to the Sobolev space W 1,p 0 (B\Σ). Next, since the sequence (u Σn ) n is bounded in W 1,p (R N ) (see Proposition 3.11.2), up to a subsequence (not relabeled), u Σn u weakly in W 1,p (R N ). By the Mosco convergence and the fact that W 1,p 0 (Ω\Σ n ) ⊂ W 1,p 0 (B\Σ n ) and W 1,p 0 (Ω) is weakly closed, it follows that u ∈ W 1,p 0 (Ω\Σ). On the other hand, by [START_REF] Bucur | Shape optimisation problems governed by nonlinear state equations[END_REF]Proposition 3.7],

Ω |∇ u| p-2 ∇ u, ∇ϕ dx = Ω f ϕ dx ∀ϕ ∈ W 1,p 0 (Ω\Σ).
Then, by the uniqueness of the solution to the equation (2.1.2), u = u Σ . This implies that

u Σn u Σ weakly in W 1,p (R N ).
(3.13.1)

Now, using the equation on Ω\Σ n and Ω\Σ, we have

lim n→+∞ u Σn p W 1,p 0 (Ω) = lim n→+∞ Ω f u Σn dx = Ω f u Σ dx = u Σ p W 1,p 0 (Ω) .
(3.13.2)

Since W 1,p 0 is uniformly convex (see [Ada]), by (3.13.1) and (3.13.2), u Σn → u Σ strongly in W 1,p 0 (Ω) as desired.

Proposition 3.13.3. Problem (A) admits a solution.

Proof. Let (Σ n ) n ⊂ K(Ω) be a minimizing sequence for Problem (A). We can assume that

Σ n = ∅ and C f,Ω (Σ n ) + λH 1 (Σ n ) ≤ C f,Ω (∅)
at least for a subsequence still denoted by n, because otherwise the empty set would be a minimizer. Then, by Blaschke's theorem (Theorem 3.2.4), there exists Σ ∈ K(Ω) such that, up to a subsequence still denoted by the same index, Σ n converges to Σ in the Hausdorff distance as n → +∞. Furthermore, by Theorem 3.13.1, u Σn converges to u Σ strongly in W 1,p 0 (Ω) and hence C f,Ω (Σ n ) → C f,Ω (Σ) as n → +∞. Then, using Go la ¸b's theorem (Theorem 3.6.3), we deduce that Σ is a solution to Problem (A).

Existence of nontrivial solutions to Problem (A)

In this section, we prove that, at least for some range of values of λ > 0, solutions to Problem (A) are nontrivial.

Proposition 3.14.1. Let p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0 and q 0 is defined in (2.1.1). Then there exists a number λ 0 = λ 0 (N, p, f, Ω) > 0 such that if Problem (A) is defined for λ ∈ (0, λ 0 ], then every solution to this problem has positive H 1 -measure. Moreover, if p > N and Problem (A) is defined for an arbitrary λ > 0, then the empty set will not be a solution to Problem (A).

Proof. Case 1: p ∈ (N -1, N ]. By Theorem 3.7.2, for each x ∈ Ω, Cap p ({x}) = 0, which implies that W 1,p 0 (Ω) = W 1,p 0 (Ω\{x}) (see Remark 3.7.11). We claim that there is a closed connected set Σ 0 ⊂ Ω such that 0 < H 1 (Σ 0 ) < +∞ and C p (Σ 0 ) < C p (∅). Otherwise, for any Σ ∈ K(Ω) such that H 1 (Σ) < +∞, since the functional C p (•) is nonincreasing with respect to set inclusion, we would have that C p (Σ) = C p (∅), that thanks to the uniqueness of u ∅ and to the fact that u Σ ∈ W 1,p 0 (Ω), implies that u Σ = u ∅ . Thus, u ∅ = u Σ = 0 p-q.e. on Σ and varying Σ in Ω we deduce that u ∅ = 0 as an element of W 1,p 0 (Ω). Then, by using the weak formulation of the p-Poisson equation which defines u ∅ , we get

0 = Ω |∇u ∅ | p-2 ∇u ∅ , ∇ϕ dy = Ω f ϕ dy for all ϕ ∈ C ∞ 0 (Ω),
but this implies that f = 0 (see, for instance, [START_REF] Kinnunen | Sobolev spaces. Lecture notes[END_REF]Corollary 1.5]) and leads to a contradiction. Thus, taking

λ 0 = Cp(∅)-Cp(Σ 0 ) 2H 1 (Σ 0 )
, for each λ ∈ (0, λ 0 ] we get C p (Σ 0 ) + λH 1 (Σ 0 ) < C p (∅) and therefore each minimizer of Problem (A) defined for such λ should have positive H 1 -measure.

Case 2: 2 < p < +∞. In this case the empty set will not be a minimizer of Problem (A). In fact, assume by contradiction that there exists λ > 0 such that the empty set is a minimizer of Problem (A). Then for an arbitrary point x 0 ∈ Ω, we have that C p ({x 0 }) = C p (∅), since ∅ is a minimizer and C p (•) is nonincreasing. But by the uniqueness of u ∅ and since u {x 0 } ∈ W 1,p 0 (Ω), the fact that C p ({x 0 }) = C p (∅) implies that u {x 0 } = u ∅ . Recalling that by the embedding theorem of Morrey, W 1,p 0 (Ω) ⊂ C 0,α (Ω), where α = 1 -2/p, we get u {x 0 } (x 0 ) = u ∅ (x 0 ) = 0. Varying x 0 in Ω we deduce that u ∅ = 0, that, as in Case 1, contradicts the fact that f = 0 in L q 0 (Ω). Thus each minimizer Σ contains at least one point.

Next, let us consider the minimization problem

(P ) min x∈Ω C p ({x}).
It is easy to check that a minimizer for (P ) exists. Indeed, taking a minimizing sequence (x n ) n , since Ω is compact, there exists x ∈ Ω such that x n → x and then, by Theorem 3.13.1, C p (x) = min x∈Ω C p ({x}). We claim that x ∈ Ω and, actually, it belongs to a connected open component U of Ω such that ∂U ⊂ ∂ Ω and f | U = 0 in L q 0 (U ). Indeed, if x would lie on ∂ Ω, then C p ({x}) = C p (∅) and since x is a minimizer for (P ) and C p (•) is nonincreasing, C p (∅) = C p ({x 0 }) for all x 0 ∈ Ω that as before would contradict the fact that f = 0 in L q 0 (Ω). Now, assume that f

| U = 0 in L q 0 (U ). Since U is an open connected component of Ω, ∂U ⊂ ∂ Ω, we have that u ∅ ∈ W 1,p
0 (U ) and using the weak formulation of the p-Poisson equation which defines u ∅ , we get

U |∇u ∅ | p dy = U f u ∅ dy = 0
and hence u ∅ = 0 on U . Thus, u ∅ ∈ W 1,p 0 (Ω \{x}) and since C p ({x}) ≤ C p (∅), we deduce that C p ({x}) = C p (∅), but this, as before, contradicts the fact that f = 0 in L q 0 (Ω). Finally, we claim that there exists a closed connected set

Σ 0 ⊂ U such that x ∈ Σ 0 , 0 < H 1 (Σ 0 ) < +∞ and C p (Σ 0 ) < C p ({x}).
Because otherwise, we would have for all such Σ that C p (Σ) = C p ({x}) that would lead to the fact that u {x} = 0 p-q.e. on Σ and since U is arcwise connected, because it is open and connected, varying Σ in U , one would obtain u {x} = 0 in U , but this would contradict the fact that f | U = 0 in L q 0 (U ). Thus, taking

λ 0 = Cp({x})-Cp(Σ 0 ) 2H 1 (Σ 0 )
, for each λ ∈ (0, λ 0 ] we get C p (Σ 0 ) + λH 1 (Σ 0 ) < C p ({x}). This shows that each minimizer of Problem (A) defined for such λ should have positive H 1 -measure.

Dual formulation of Problem (A)

In this section, expressing -E f,Ω (u Σ ) in termes of the dual principle, we obtain the dual formulation of Problem (A).

Proposition 3.15.1. Let p ∈ (N -1, +∞) and f ∈ L q 0 (Ω) with q 0 defined in ( 2

.1.1). Then Problem (A) is equivalent to the minimization problem

(A * ) min (σ,Σ)∈B 1 p Ω |σ| p dx + λH 1 (Σ), (3.15.1)
where

B = {(σ, Σ) : Σ ∈ K(Ω) and σ ∈ L p (Ω; R N ), -div(σ) = f in D (Ω\Σ)},
in the sense that the minimum value of the latter is equal to that of Problem (A), and once (σ, Σ) ∈ B is a minimizer for (A * ), then Σ solves Problem (A). Moreover, for a given closed proper subset Σ of Ω, σ = |∇u Σ | p-2 ∇u Σ is a solution to the following problem

min σ∈L p (Ω;R N ) 1 p Ω |σ| p dx : -div(σ) = f in D (Ω \ Σ) .
The proof of Proposition 3.15.1 is a direct consequence of the following lemma.

Lemma 3.15.2. Let U ⊂ R N be open and bounded, p ∈ (1, +∞) and f ∈ L q 0 (U ), where q 0 is defined in (2.1.1). Let u be a weak solution to the equation

     -∆ p v = f in U v = 0 on ∂U,
which means that u ∈ W 1,p 0 (U ) and

U |∇u| p-2 ∇u, ∇ϕ dx = U f ϕ dx ∀ϕ ∈ W 1,p 0 (U ). (3.15.2)
Then σ = |∇u| p-2 ∇u solves the problem

min σ∈L p (U ;R N ) 1 p U |σ| p dx : -div(σ) = f in D (U ) .
Moreover, the following equality holds

max w∈W 1,p 0 (U ) {-E f,U (w)} = min σ∈L p (U ;R N ) 1 p U |σ| p dx : -div(σ) = f in D (U ) . (3.15.3) Proof. For a given Sobolev function v ∈ W 1,p (U ), let us show that 1 p U |∇v| p dx = max σ∈L p (U ;R N ) U ∇v, σ dx - 1 p U |σ| p dx =: max σ∈L p (U ;R N ) Ψ(v, σ) (3.15.4)
and the maximum is reached at σ = |∇v| p-2 ∇v. By the fact that σ is a competitor,

sup σ∈L p (U ;R N ) Ψ(v, σ) ≥ Ψ(v, σ) = 1 p U |∇v| p dx.
(3.15.5)

Since for any σ ∈ L p (U ; R N ), using Hölder's inequality, one has

Ψ(v, σ) ≤ U |∇v| p dx 1 p U |σ| p dx 1 p - 1 p U |σ| p dx
and since the maximum of the function 

g(t) = ∇v L p (U ) t 1 p -1 p t, t ∈ [0; +∞) is reached at the point t max = ∇v p L p (U ) , sup σ∈L p (U ;R N ) Ψ(v, σ) ≤ ∇v L p (U ) • ∇v p p L p (U ) - 1 p ∇v p L p (U ) = 1 p U |∇v| p dx
{-E f,U (w)} = max w∈W 1,p 0 (U ) min σ∈L p (U ;R N ) U f w dx -Ψ(w, σ) .
Now we want to exchange the max and min in the above formula. Clearly,

max w∈W 1,p 0 (U ) min σ∈L p (U ;R N ) U f w dx -Ψ(w, σ) ≤ inf σ∈L p (U ;R N ) sup w∈W 1,p 0 (U ) U f w dx -Ψ(w, σ) = inf σ∈D 1 p U |σ| p dx,
where D stands for the space of σ ∈ L p (U ;

R N ) satisfying U σ, ∇φ dx = U f φ dx for all φ ∈ C ∞ 0 (U ),
otherwise the supremum in w would be +∞. This implies that

max w∈W 1,p 0 (U ) {-E f,U (w)} ≤ inf σ∈D 1 p U |σ| p dx.
We observe that the equilibrium equation (3.15.2) yields |∇u| p-2 ∇u ∈ D and then

1 p U |∇u| p dx = max w∈W 1,p 0 (U ) {-E f,U (w)} ≤ inf σ∈D 1 p U |σ| p dx ≤ 1 p U |∇u| p dx.
Therefore (3.15.3) holds and σ = |∇u| p-2 ∇u is the minimizer.

Chapter 4

Importance of the connectedness assumption

In this chapter, we provide a detailed proof in any spatial dimension N for every p > N -1 and for the sharp integrability assumption on the source f of the importance of the connectedness assumption in the statement of Problem (A) and in the statement of Problem (B) for the existence of solutions. It is quite intuitive to admit that, without any connectedness assumption, Problem (A) and Problem (B) become trivial, in the sense that

inf F λ,f,Ω (Σ) : Σ Ω is closed = inf C f,Ω (Σ) : Σ Ω is closed, 0 < H 1 (Σ) ≤ L = 0.
The idea is that the non-connected optimal set Σ would try to "fill" the whole Ω in order to decrease the energy as much as possible, but at the same time keeping a total length as small as possible; see Figure 4.2.1.

Preparatory results

For convenience, we first recall the following proposition.

Proposition 4.1.1. Let t ∈ (0, 1] and A t = [0, t] × {0} N -1 . Then the following assertions hold.

(i) If p ∈ (N -1, N ), then there exists a constant C = C(N, p) > 0 such that t N -p ≤ CCap p (A t ). (ii) If p = N , then there exists a constant C = C(N ) > 0 such that log C t 1-p ≤ CCap p (A t ).
Proof. Since diam(A t ) ≤ 1, (i) and (ii) follows from [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Corollary 5.1.14].

In order to prove the importance, we need the following two lemmas.

Lemma 4.1.2. Let p ∈ (N -1, +∞), a ∈ (0, 1), δ > 0 and u ∈ W 1,p ((0, δ) N ) satisfying u = 0 p-q.e. on δ/2 -aδ/2, δ/2 + aδ/2 × δ/2 N -1

. Then there exists C = C(N, p) > 0 such that

(0,δ) N |u| p dx ≤ Cδ p (Cap p ([0, a] × {0} N -1 )) -1 (0,δ) N |∇u| p dx. Proof. Define a function v ∈ W 1,p ((0, 1) N ) by v(•) = u(δ(•)). Then we observe that v = 0 p-q.e. on 1/2 -a/2, 1/2 + a/2 × 1/2 N -1
. By Proposition 3.8.1 and the fact that the Bessel (1, p)-capacity is invariant under translations and is nondecreasing with respect to set inclusion, there exists a constant C = C(N, p) > 0 such that

(0,1) N |v| p dy ≤ C(Cap p ([0, a] × {0} N -1 )) -1 (0,1) N |∇v| p dy.
Finally, using the change of variables x = δy, we recover the desired estimate.

Lemma 4.1.3. Let Σ be a closed proper subset of Ω, p ∈ (1, +∞) and f 1 , f 2 ∈ L q 0 (Ω), where q 0 is defined in (2.1.1). Let z : [0, +∞) → [0, +∞) be defined by

z(t) = t p if 2 ≤ p < +∞, z(t) = f 1 p L q 0 (Ω) + f 2 p L q 0 (Ω) 2-p t p if 1 < p < 2.
Then there exists a constant A = A(N, p, q 0 , |Ω|) > 0 such that

C f 1 ,Ω (Σ) ≤ 2 p-1 C f 2 ,Ω (Σ) + Az( f 1 -f 2 L q 0 (Ω) ).
Proof. According to Theorem 3.12.2, there exists C = C(N, p, q 0 , |Ω|) > 0 such that

Ω |∇u f 1 ,Ω,Σ -∇u f 2 ,Ω,Σ | p dx ≤ Cz( f 1 -f 2 L q 0 (Ω) ).
Since for any nonnegative numbers c and d, (c + d) p ≤ 2 p-1 (c p + d p ), we deduce that

1 p Ω |∇u f 1 ,Ω,Σ | p dx ≤ 2 p-1 p Ω |∇u f 2 ,Ω,Σ | p dx + 2 p-1 p Ω |∇u f 1 ,Ω,Σ -∇u f 2 ,Ω,Σ | p dx ≤ 2 p-1 p Ω |∇u f 2 ,Ω,Σ | p dx + 2 p-1 Cz( f 1 -f 2 L q 0 (Ω) ).
Thus, defining A = 2 p-1 C, we complete the proof of Lemma 4.1.3.

Proofs of the importance of the connectedness assumption in the statements of Problem (A) and Problem (B)

We now prove the importance of the connectedness assumption in the statement of Problem (A) for the existence of solutions.

Theorem 4.2.1. Let λ > 0, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0, q 0 is defined in (2.1.1).

Then the existence of minimizers for the functional F λ,f,Ω over the class of all closed proper subsets of Ω fails.

Proof. Since Ω is bounded, there exists R > 0 such that Ω is contained in the N -cube Q = (-R, R) N . For convenience, we denote the set of all closed proper subsets of Ω by C(Ω).

Step 1. We start by proving that for any g

∈ L p (Q), inf {F λ,g,Ω (Σ) : Σ ∈ C(Ω)} = 0. First of all, notice that inf {F λ,g,Ω (Σ) : Σ ∈ C(Ω)} is equal to inf (σ,Σ)∈AS 1 p Ω |σ| p dx + λH 1 (Σ) , (4.2.1)
where

AS = (σ, Σ) : Σ ∈ C(Ω), σ ∈ L p (Ω; R N ), -div(σ) = g in D (Ω\Σ) ,
which is a direct consequence of Lemma 3.15.2. Fix an arbitrary ε ∈ (0, 1). We construct a sequence {(σ n , S n )} n∈N * of admissible pairs for problem (4.2.1) such that

lim sup n→+∞ 1 p Ω |σ n | p dx + λH 1 (S n ) ≤ λ2 N Rε.
For each integer n ≥ 1 and each point ξ n in the set jR/n : j ∈ -n, ..., n -1

N , we define the open "local N -cube" Q(ξ n ) ⊂ Q by Q(ξ n ) =   ξ n + 0, R n N   , the "crack" set S(ξ n ) ⊂ Q(ξ n ) by S(ξ n ) =   ξ n + R 2n - εR 2n N , R 2n + εR 2n N × R 2n N -1  
(see Figure 4.2.1), and the space W ξ n consisting of the Sobolev functions w ∈ W 1,p (Q(ξ n )) vanishing p-q.e. on S(ξ n ), that is, Notice that

W ξ n = w ∈ W 1,p (Q(ξ n )) : w = 0 p-q.e. on S(ξ n ) .
W ξ n is closed in W 1,p (Q(ξ n )). Indeed, assume that (w m ) m∈N ⊂ W ξ n and w m → w in W 1,p (Q(ξ n )). We fix a function χ ∈ C ∞ 0 (Q(ξ n )) such that χ = 1 on S(ξ n ). For each m ∈ N, we have w m χ ∈ W 1,p (Q(ξ n )) and w m χ = 0 p-q.e. on (Q(ξ n )) c ∪ S(ξ n ). Then, according to Remark 3.7.11, (w m χ) m∈N ⊂ W 1,p 0 (Q(ξ n )\S(ξ n )). In addition, w m χ → wχ in W 1,p 0 (Q(ξ n )\S(ξ n ))
and hence wχ = 0 p-q.e. on (Q(ξ n )) c ∪ S(ξ n ) (see Remark 3.7.11). But this implies that w = 0 p-q.e. on S(ξ n ) and therefore w ∈ W ξn . For convenience, we define the set

A ε,n = 0, ε n N -1 × 0 N -1 .
Next, changing variables if necessary and applying Lemma 4.1.2 with a = ε/n N -1 and δ = R/n, we deduce that for each w ∈ W ξ n , the inequality

Q(ξ n ) |w| p dx ≤ C n p (Cap p (A ε,n )) -1 Q(ξ n ) |∇w| p dx (4.2.2) holds for some C = C(N, p, R) > 0. Since (W ξ n , • W 1,p (Q(ξ n ))
) is a reflexive Banach space and the functional F ξ n : W ξ n → R defined by

F ξ n (w) = 1 p Q(ξ n ) |∇w| p dx - Q(ξ n )
gw dx is lower semicontinuous, coercive (thanks to (4.2.2)) and strictly convex, using the direct method in the Calculus of Variations, we deduce that F ξ n admits a unique minimizer u ξ n over W ξ n . It should be noted that the same is true in the case when g ∈ L q 0 (Q) thanks to the Sobolev embeddings, but we shall use, in particular, the fact that g ∈ L p (Q) to derive some nice estimates below. It follows from the minimality of u ξ n that lim

t→0+ 1 t (F ξ n (u ξ n +tw)-F ξ n (u ξ n )) ≥ 0 and lim t→0+ 1 t (F ξ n (u ξ n -tw)-F ξ n (u ξ n )) ≥ 0 ∀w ∈ W ξ n .
This implies that

Q(ξ n ) |∇u ξ n | p-2 ∇u ξ n , ∇w dx = Q(ξ n ) gw dx ∀w ∈ W ξ n (4.2.3)
and, in particular,

Q(ξ n ) |∇u ξ n | p dx = Q(ξ n ) gu ξ n dx.
Applying Hölder's inequality to the right-hand side of the latter formula and then the inequality (4.2.2) to u ξ n , we obtain that

Q(ξ n ) |∇u ξ n | p dx ≤ C 1 p n (Cap p (A ε,n )) -1 p   Q(ξ n ) |g| p dx   1 p   Q(ξ n ) |∇u ξ n | p dx   1 p
and hence (4.2.4) where C = C(N, p, R) > 0. Here we have used the fact that g ∈ L p (Q). For each n ∈ N * , let σ n ∈ L p (Q; R N ) be defined as follows

Q(ξ n ) |∇u ξ n | p dx ≤ C n p (Cap p (A ε,n )) 1-p Q(ξ n ) |g| p dx,
σ n | Q(ξ n ) := |∇u ξ n | p-2 ∇u ξ n for each Q(ξ n ) ⊂ Q. Also, for each n ∈ N * , define the compact set Σ n ⊂ Q by Σ n := S(ξ n ), where the union is taken over all S(ξ n ) in Q. Then Q |σ n | p dx = Q(ξ n ) |∇u ξ n | p dx (4.2.4) ≤ C n p (Cap p (A ε,n )) 1-p Q(ξ n ) |g| p dx = C n p (Cap p (A ε,n )) 1-p Q |g| p dx, (4.2.5)
where the summations are taken over all N -cubes Q(ξ n ) ⊂ Q. On the other hand,

H 1 (Σ n ) = 2 N Rε. (4.2.6)
Let us now fix an arbitrary function ϕ ∈ C ∞ 0 (Ω\Σ n ). We extend ϕ by zero outside Ω\Σ n and keep the same notation for this extension. It is clear that the restriction of ϕ on each Q(ξ n ) ⊂ Q belongs to W ξ n . Then, using the optimality condition (4.2.3) and the fact that

ϕ = 0 on Ω c ∪ Σ n , we get Ω σ n , ∇ϕ dx = Q(ξ n ) |∇u ξ n | p-2 ∇u ξ n , ∇ϕ dx = Q(ξ n ) gϕ dx = Ω gϕ dx,
where the summations are taken over all

N -cubes Q(ξ n ) ⊂ Q. This implies that -div(σ n ) = g in D (Ω\Σ n ).
So for each n ∈ N * , defining S n by S n = Σ n ∩ Ω, we observe that (σ n , S n ) is an admissible pair for problem (4.2.1). Let us consider the next three cases.

Case 1: p ∈ (N -1, N ). By Proposition 4.1.1 (i) applied with t = ε/n N -1 , there exists

C 0 = C 0 (N, p) > 0 such that ε N -p n (N -1)(N -p) ≤ C 0 Cap p (A ε,n ) and hence (Cap p (A ε,n )) 1-p ≤ Cn (N -1)(N -p)(p -1)
for some C = C(ε, p, N ) > 0. Since p ∈ (N -1, N ), we observe that

(N -1)(N -p)(p -1) < p .
Case 2: p = N. By Proposition 4.1.1 (ii) applied with t = ε/n N -1 , there exists a constant

C 0 = C 0 (N ) > 0 such that log C 0 n N -1 ε 1-p ≤ C 0 Cap p (A ε,n ) and hence (Cap p (A ε,n )) 1-p ≤ C log(Cn) for some C = C(ε, N ) > 0.
Case 3: p > N . In this case, by Remark 3.7.3, there exists C = C(N, p) > 0 such that

(Cap p (A ε,n )) 1-p ≤ C.
Thus, returning to the estimate (4.2.5), we can now conclude that for any fixed p > N -1 there exists a nonnegative function ψ, defined on (0, +∞), such that ψ(n) → 0 as n → +∞ and

Q |σ n | p dx ≤ ψ(n).
Letting n tend to +∞ in the above estimate, taking into account the fact that

H 1 (S n ) ≤ H 1 (Σ n )
and the estimate (4.2.6), we get that the infimum in problem (4.2.1) is less than or equal to λ2 N Rε and hence inf {F λ,g,Ω (Σ) : Σ ∈ C(Ω)} ≤ λ2 N Rε.

As ε ∈ (0, 1) was arbitrarily chosen, inf {F λ,g,Ω (Σ) : Σ ∈ C(Ω)} = 0.

Step 2. We prove that inf {F λ,f,Ω (Σ) :

Σ ∈ C(Ω)} = 0. Fix a sequence (f m ) m∈N ⊂ L p (Q) such that f m → f in L q 0 (Ω).
Next, using Lemma 4.1.3 and if p ∈ (1, 2), then using also the fact that the sequence ( f m L q 0 (Ω) ) m∈N is bounded, we deduce that there exist a constant

A = A(N, p, q 0 , |Ω|) > 0 and a nonnegative function z ∈ C 0 ([0, +∞)) satisfying z(0) = 0 such that for all m ∈ N, inf Σ∈C(Ω) F λ,f,Ω (Σ) ≤ 2 p-1 inf Σ∈C(Ω) F λ,fm,Ω (Σ) + Az( f -f m L q 0 (Ω) ) = Az( f -f m L q 0 (Ω) ),
where we have used the result of Step 1. Next, letting m tend to +∞ in the above estimate, we deduce that inf F λ,f,Ω (Σ) : Σ ∈ C(Ω) = 0.

Step 3. Assume by contradiction that there is a solution Σ to the problem

inf F λ,f,Ω (Σ) : Σ ∈ C(Ω) . From Step 2 it follows that C f,Ω ( Σ) = H 1 ( Σ) = 0. Then u f,Ω, Σ = 0 as an element of W 1,p (Ω). By the minimality of u f,Ω, Σ (recall that u f,Ω, Σ is a unique minimizer of E f,Ω over W 1,p 0 (Ω\ Σ)) and the fact that u f,Ω, Σ = 0, for each ζ ∈ C ∞ 0 (Ω\ Σ), 0 = lim t→0+ 1 t E f,Ω u f,Ω, Σ + tζ -E f,Ω u f,Ω, Σ = lim t→0+ 1 t E f,Ω (tζ) = - Ω f ζ dx,
which implies that f = 0 a.e. in Ω (see, for instance, [START_REF] Kinnunen | Sobolev spaces. Lecture notes[END_REF]Corollary 1.5]) and leads to a contradiction. This completes our proof of Theorem 4.2.1.

Next, we prove the importance of the connectedness assumption in the statement of Problem (B) for the existence of solutions.

Theorem 4.2.2. Let L > 0, p ∈ (N -1, +∞), f ∈ L q 0 (Ω), f = 0, q 0 is defined in (2.1.1). Then the existence of minimizers for the p-compliance functional C f,Ω over the class

Σ ⊂ Ω : Σ is closed, 0 < H 1 (Σ ) ≤ L fails. Proof. There exists R > 0 such that Ω ⊂ (-R, R) N . Fix an arbitrary g ∈ L p ((-R, R) N ). This is a direct consequence of Lemma 3.15.2 that inf C g,Ω (Σ) : Σ ⊂ Ω is closed, 0 < H 1 (Σ) ≤ L = inf σ Σ ∈AS 1 p Ω |σ Σ | p dx,
where

AS = {σ Σ : Σ ⊂ Ω is closed, 0 < H 1 (Σ) ≤ L, σ Σ ∈ L p (Ω; R N ), -div(σ Σ ) = g in D (Ω\Σ)}.
Then, proceeding in the same way as in Step 1 in the proof of Theorem 4.2.1, we can construct a sequence

(σ Σn ) n∈N * ⊂ L p (Ω; R N ) such that for each n ∈ N * , Σ n ⊂ Ω is closed, 0 < H 1 (Σ n ) ≤ L, -div(σ Σn ) = g in D (Ω\Σ n ) and, in addition, lim n→+∞ Ω |σ Σn | p dx = 0. Thus inf C g,Ω (Σ) : Σ ⊂ Ω is closed, 0 < H 1 (Σ) ≤ L = 0. Now let (f m ) m∈N ⊂ L p ((-R, R) N ) be a sequence such that f m → f in L q 0 (Ω). We already know that for each m ∈ N, inf C fm,Ω (Σ) : Σ ⊂ Ω is closed, 0 < H 1 (Σ) ≤ L = 0.
This, together with Lemma 4.1.3 and the fact that f -

f m L q 0 (Ω) → 0 as m → +∞, implies that inf C f,Ω (Σ) : Σ ⊂ Ω is closed, 0 < H 1 (Σ) ≤ L = 0.
Suppose now by contradiction that there is a solution Σ to the above problem. Since C f,Ω ( Σ) = 0, we have u f,Ω, Σ = 0 as an element of W 1,p (Ω). Then, using the minimality of u f,Ω, Σ , we deduce that

Ω f ζ dx = 0 ∀ζ ∈ C ∞ 0 (Ω\ Σ),
which implies that f = 0 a.e. in Ω (see, for instance, [START_REF] Kinnunen | Sobolev spaces. Lecture notes[END_REF]Corollary 1.5]) and leads to a contradiction. This completes the proof of Theorem 4.2.2.

Lemma 5.1.1. Let a i > 0, i ∈ {1, ..., N }, r > 0 and U ⊂ r N i=1 [-a i , a i ] be an open set. Let p ∈ (1, +∞) and f ∈ L q (U ) with q = N p N p-N +1 , and let u be a unique weak solution to the Dirichlet problem

-∆ p u = f in U, u ∈ W 1,p 0 (U ),
which means that

U |∇u| p-2 ∇u, ∇ϕ dx = U f ϕ dx ∀ϕ ∈ W 1,p 0 (U ).
(5.1.3)

Then there exists a constant C = C(a 1 , ..., a N , p, q 0 , q, f q ) > 0, where q 0 is defined in (2.1.1), such that U |∇u| p dx ≤ Cr.

(5.1.4)

Proof. Assume that f ∈ L q (U ) with q ≥ q 0 , where q 0 is defined in (2.1.1). Then u is well defined. By (3.11.11) with u Σ replaced by u and Ω by U , there exists C = C(N, p, q 0 ) > 0 such that

U |∇u| p dx ≤ C|U | α f β L q 0 (U ) ,
where (α, β) is defined in (3.11.12). Using Hölder's inequality and the fact that

U is a subset of r N i=1 [-a i , a i ], we get U |∇u| p dx ≤ C N i=1 2a i r α+β 1 q 0 -1 q f β L q (U ) .
Thus, in order for the estimate (5.1.4) to hold, one should take the exponent q such that N (α+β( 1 q 0 -1 q )) = 1. Having carefully performed the calculations, one gets q = N p N p-N +1 .

To prove that in dimension 2 the minimizer Σ is Ahlfors regular "near" ∂ Ω, we shall assume some Lipschitz regularity on Ω. Here is a precise definition. Definition 5.1.2. A bounded domain Ω ⊂ R N and its boundary ∂ Ω are locally Lipschitz if there exists a radius r ∂ Ω and a constant δ > 0 such that for every point x ∈ ∂Ω and every radius s ∈ (0, r ∂ Ω ) up to a rotation of coordinates, it holds

Ω ∩ B s (x) = {(y , y N ) ∈ R N : y N > ϕ(y )} ∩ B s (x) for some Lipschitz function ϕ : R N -1 → R satisfying ∇ϕ L ∞ (R N -1 ) ≤ δ.
One deduces that for every radius s ∈ (0, r ∂ Ω ) in the above definition, the set ∂ Ω ∩B s (x), up to a rotation of coordinates, is contained in the cone K δ (P 0 ), where P 0 R N -1 × {0} (see Definition 3.3.13 and Remark 3.3.14).

Proof of Ahlfors regularity in dimension 2

Theorem 5.2.1. Let Ω ⊂ R 2 be a bounded domain with locally Lipschitz boundary (see Definition 5.1.2), p ∈ (1, +∞) and f ∈ L 2p 2p-1 (Ω). Let Σ be a solution to Problem (A) with diam(Σ) > 0. Then Σ is Ahlfors regular. Remark 5.2.2. By Proposition 3.14.1 we know that the assumption diam(Σ) > 0 is fulfilled at least when λ ∈ (0, λ 0 ], where λ 0 = λ 0 (p, f, Ω).

Proof of Theorem 5.2.1. Let r ∂ Ω and δ be positive constants as in Definition 5.1.2. We set

r 0 = min{r ∂ Ω /3 √ 1 + δ 2 , diam(Σ)/2}
and let x ∈ Σ and r ∈ (0, r 0 ). Consider the next two cases.

Case 1: B r (x) ⊂ Ω. By Corollary 3.5.7, Σ is arcwise connected. Then the set

Σ r = (Σ \B r (x)) ∪ ∂B r (x) (5.2.1)
is a closed arcwise connected proper subset of Ω, that is a competitor for Σ (a similar competitor was previously used in the proof of Theorem 5.1 in [MPS]). Let us now recall that

(σ, Σ) = (|∇u Σ | p-2 ∇u Σ , Σ
) is a minimizer for problem (A * ) in the formulation (3.15.1). As was suggested in [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF]Remark 7.3], consider the pair (σ r , Σ r ), where

σ r =      |∇u Σ | p-2 ∇u Σ in Ω\(Σ r ∪ B r (x)), |∇u| p-2 ∇u in B r (x), u ∈ W 1,p 0 (B r (x)) solves -∆ p u = f in B r (x).
Notice that for any function ϕ ∈ C ∞ 0 (Ω\ Σ r ) the support of ϕ is contained in the union of two disjoint open sets Ω\(Σ r ∪ B r (x)) and B r (x), and then, we can represent ϕ as ϕ

= ϕ 1 + ϕ 2 with ϕ 1 ∈ C ∞ 0 (Ω\(Σ r ∪ B r (x))) and ϕ 2 ∈ C ∞ 0 (B r (x)
) which are test functions for the weak formulations of the p-Poisson equations that define u Σ and u respectively. Thus, we deduce that

Ω σ r , ∇ϕ dy = Ω\Br(x) |∇u Σ | p-2 ∇u Σ , ∇ϕ 1 dy + Br(x) |∇u| p-2 ∇u, ∇ϕ 2 dy = Ω\Br(x) f ϕ 1 dy + Br(x) f ϕ 2 dy = Ω f ϕ dy.
Therefore (σ r , Σ r ) is a competitor for (σ, Σ). By the optimality of (σ, Σ),

1 p Ω |∇u Σ | p dy + λH 1 (Σ) ≤ 1 p Ω |σ r | p dy + λH 1 (Σ r ) ≤ 1 p Ω\Br(x) |∇u Σ | p dy + 1 p Br(x) |∇u| p dy + λH 1 (Σ\B r (x)) + λH 1 (∂B r (x)).
Then

λH 1 (Σ ∩ B r (x)) ≤ 2λπr + 1 p Br(x) |∇u| p dy.
Next, recalling that by Lemma 5.1.1 one has

Br(x)

|∇u| p dy ≤ Cr,

where C = C(p, q 0 , f (2p) ) > 0 with q 0 defined in (2.1.1), we deduce that

H 1 (Σ ∩B r (x)) ≤ Cr, (5.2.2)
where C = C(p, q 0 , f (2p) , λ) > 0.

Case 2: B r (x)∩∂ Ω = ∅. In this case we use the fact that locally ∂ Ω is a graph of a δ-Lipschitz function. Let x ∂ Ω be an arbitrary projection of x to ∂ Ω. Recalling that r < r ∂ Ω /3 √ 1 + δ 2 , up to a rotation of coordinates one has

Ω ∩B 3 √ 1+δ 2 r (x ∂ Ω ) = {(y 1 , y 2 ) ∈ R 2 : y 2 > ϕ(y 1 )} ∩ B 3 √ 1+δ 2 r (x ∂ Ω ) (5.2.3)
for some Lipschitz function ϕ : R → R satisfying ∇ϕ L ∞ (R) ≤ δ. In addition, the set

∂ Ω ∩B 3 √ 1+δ 2 r (x ∂ Ω ) is contained in the cone K δ (P 0 )
, where P 0 R × {0} (see Definition 3.3.13). Notice that the ball B 2r (x ∂ Ω ) in the (y 1 , y 2 ) coordinates is represented as B 2r (0). Let us define ξ -= ϕ(-2r) and ξ + = ϕ(2r). Now we need to distinguish between two further cases. Case 2a: δ ∈ (0, 1]. Define the points h -and h + by h -= 2r(e 2 -e 1 ) and h + = 2r(e 1 + e 2 ). Case 2b: δ > 1. Define h -and h + by h -= 2r(δ e 2 -e 1 ) and h + = 2r(e 1 +δ e 2 ).

At this point observe that the open rectangle R with vertices -h + , h -, h + and -h - contains the ball B 2r (0). Furthermore, by (5.2.3) and since

∂ Ω ∩B 3 √ 1+δ 2 r (x ∂ Ω ) ⊂ K δ (P 0 ), the union of the segments γ r = [ξ -, h -] ∪ [h -, h + ] ∪ [ξ + , h + ] is a curve lying in Ω such that γ r ∪ (∂ Ω ∩R) is a closed simple curve (i.e., homeomorphic image of the circle S 1 into R 2 ) lying in Ω and ∂(R ∩ Ω) = γ r ∪ (∂ Ω ∩R). Thus, it is clear that Σ r = (Σ \R) ∪ γ r is closed arcwise connected proper subset of Ω, namely, it is a competitor for Σ. Let us now recall that (σ, Σ) = (|∇u Σ | p-2 ∇u Σ , Σ
) is a minimizer for problem (A * ) in the formulation (3.15.1). Then, consider the pair (σ r , Σ r ), where

σ r =      |∇u Σ | p-2 ∇u Σ in Ω\(Σ r ∪ R), |∇u| p-2 ∇u in R ∩ Ω, u ∈ W 1,p 0 (R ∩ Ω) solves -∆ p u = f in R ∩ Ω. Observe that if ϕ ∈ C ∞ 0 (Ω \ Σ r ), then because γ r ∪ (∂Ω ∩ R
) is a closed simple curve, the support of ϕ is contained in the union of two open disjoint sets Ω\(Σ r ∪ R) and R ∩ Ω, and then we can write ϕ

= ϕ 1 + ϕ 2 , where ϕ 1 ∈ C ∞ 0 (Ω\(Σ r ∪ R)) and ϕ 2 ∈ C ∞ 0 (R ∩ Ω). Thus, we have that Ω σ r , ∇ϕ dz = Ω\R |∇u Σ | p-2 ∇u Σ , ∇ϕ 1 dz + Ω∩R |∇u| p-2 ∇u, ∇ϕ 2 dz = Ω\R f ϕ 1 dz + Ω∩R f ϕ 2 dz = Ω f ϕ dz,
where we have used that ϕ 1 and ϕ 2 are test functions for the weak formulations of the p-Poisson equations that define u Σ and u respectively. Therefore (σ r , Σ r ) is a competitor for the minimizer (σ, Σ). Moreover, since

∂ Ω ∩B r (x) = ∅, one has |x -x ∂ Ω | < r and then B r (x) ⊂ B 2r (x ∂ Ω ) ⊂ R.
Thus, by the optimality of (σ, Σ),

1 p Ω |∇u Σ | p dz + λH 1 (Σ) ≤ 1 p Ω |σ r | p dz + λH 1 (Σ r ) ≤ 1 p Ω\R |∇u Σ | p dz + 1 p Ω∩R |∇u| p dz + λH 1 (Σ\B r (x)) + λH 1 (γ r ),
where we have used that B r (x) ⊂ R. Notice that H 1 (γ r ) ≤ 4r + 8 max{1, δ}r. Then we deduce that

λH 1 (Σ ∩B r (x)) ≤ 4λr + 8λ max{1, δ}r + 1 p Ω∩R |∇u| p dz
and recalling that by Lemma 5.1.1, Ω∩R |∇u| p dz ≤ Cr for some positive constant C depending only on δ, p, q 0 , f (2p) , we finally get the estimate

H 1 (Σ ∩B r (x)) ≤ Cr
where C = C(δ, p, q 0 , f (2p) , λ) > 0. This together with (5.1.2) and (5.2.2) implies the Ahlfors regularity of Σ.

Remark 5.2.3. We do not know whether the restriction on Lipschitz domains is needed to prove the Ahlfors regularity in dimension 2 of minimizers of Problem (A) that have at least two points. However, according to the proof of Theorem 5.2.1 (see Case 1), for each open set Ω ⊂⊂ Ω, there exist

C 0 = C 0 (p, q 0 , f (2p) , λ) > 0 and r 0 = r 0 (Ω , Ω) > 0 such that if Σ is a minimizer of Problem (A), then H 1 (Σ ∩ B r (x)) ≤ C 0 r whenever x ∈ Σ ∩ Ω and 0 < r ≤ r 0 .
Remark 5.2.4. It seems that the question about the Ahlfors regularity of the minimizers of Problem (A) in dimension N ≥ 3 is difficult and interesting. Notice that in our proof of the Ahlfors regularity of the minimizers of Problem (A) in dimension 2, we use, for instance, in the internal case (see Case 1 above) the set (Σ\B r (x))∪∂B r (x) as a competitor for the minimizer Σ. But in dimension N ≥ 3 we cannot effectively use such a competitor, because ∂B r (x) has infinite H 1 -measure. Nevertheless, we shall prove in Chapter 10 some kind of the Ahlfors regularity estimate from above for the minimizers of Problem (A) in any spatial dimension N , namely that for each a ∈ (0, 1/20] there exists ε ∈ (0, 1/100) such that if Σ is a minimizer of Problem (A), x 0 ∈ Σ, B r (x 0 ) ⊂ Ω, r > 0 is sufficiently small and β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε, where

β Σ (x 0 , r) = inf 1 r d H (Σ ∩ B r (x 0 ), L ∩ B r (x 0 )) : L ⊂ R N is an affine line, x 0 ∈ L and w τ Σ (x 0 , r) = sup Σ ∈K(Ω), Σ ∆ Σ⊂Br(x 0 ), H 1 (Σ )≤100H 1 (Σ), β Σ (x 0 ,r)≤τ 1 r Br(x 0 ) |∇u Σ | p dx, then 1 ar H 1 (Σ ∩ B ar (x 0 )) ≤ 5 + 1 r H 1 (Σ ∩ B r (x 0 )) 1-1 N .
Chapter 6

Monotonicity of the p-energy in dimension 2

In this chapter, in dimension 2, under some assumptions about the data and the minimizer Σ, we study the monotonicity of the function

r → 1 r a Br(x 0 ) |∇u Σ | p dx + Cr b ,
where a, b, C > 0 are some constants that will depend on our assumptions. As will be seen, if Σ is flat enough around x 0 , then in the case when p = 2, under the appropriate assumptions, the constants a and b can be made strictly greater than 1. But in the case when p = 2, the constant a is always strictly less than 1, provided that Σ is flat enough around x 0 . We shall establish two versions of the monotonicity formula for the p-energy in dimension 2 separately for the general case and separately for the case when p = 2. In the first version, we shall assume that f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (2.1.1), and we shall estimate Br(x 0 ) f u Σ dx using first Hölder's inequality and then using the Sobolev inequalities in order to estimate u Σ L q 0 (Br(x 0 )) . In the second version, we shall assume that f ∈ L ∞ (Ω), and we shall estimate Ω f u Σ dx using the L ∞ estimates for f and u Σ .

Preliminary results

We shall need the following integration by parts formula for a weak solution to the p-Poisson equation.

Lemma 6.1.1. Let U ⊂ R N be open and bounded, p ∈ (1, +∞) and f ∈ L q 0 (U ) with q 0 defined in (2.1.1). Let u be a unique solution to the Dirichlet problem

-∆ p v = f in U, v ∈ W 1,p 0 (U ),
which means that u ∈ W 1,p 0 (U ) and

U |∇u| p-2 ∇u, ∇ϕ dx = U f ϕ dx ∀ϕ ∈ W 1,p 0 (U ). (6.1.1)
Then for every x 0 ∈ R N and a.e. r > 0 we have

Br(x 0 ) |∇u| p dx = ∂Br(x 0 ) u |∇u| p-2 ∇u, ν dH N -1 + Br(x 0 ) f u dx,
where ν stands for the outward pointing unit normal vector to ∂B r (x 0 ).

Proof. Every ball in this proof is centered at x 0 . We extend u by zero outside U to an element that belongs to W 1,p (R N ). Let us fix an arbitrary ε ∈ (0, r) and define

g ε (t) =            1 if t ∈ [0, r -ε] -1 ε (t -r) if t ∈ [r -ε, r] 0 if t ∈ [r, +∞). Since g ε ∈ Lip(R + ), the function ϕ(x) = g ε (|x -x 0 |)u is an element of W 1,p 0 (U )
. Thus, using ϕ as a test function in (6.1.1), we get

U |∇u| p g ε (|x -x 0 |) dx+ U ug ε (|x -x 0 |) |∇u| p-2 ∇u, x -x 0 |x -x 0 | dx = U f ug ε (|x -x 0 |) dx.
Letting ε tend to 0+, we have

U |∇u| p g ε (|x -x 0 |) dx → Br |∇u| p dx U f ug ε (|x -x 0 |) dx → Br f u dx. (6.1.2)
On the other hand, using the integration in the polar coordinates system (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]3.4.4]), which is the special case of the coarea formula, we get

U ug ε (|x -x 0 |) |∇u| p-2 ∇u, x -x 0 |x -x 0 | dx = - 1 ε Br\B r-ε u |∇u| p-2 ∇u, x -x 0 |x -x 0 | dx = - 1 ε r r-ε dρ ∂Bρ u |∇u| p-2 ∇u, x -x 0 ρ dH N -1 (x) → - ∂Br u |∇u| p-2 ∇u, ν dH N -1 , (6.1.3) as ε → 0+, for a.e. r > 0, because since u ∈ W 1,p (R N ), the function r ∈ (0, +∞) → Ψ(r) = r 0 dρ ∂Bρ u |∇u| p-2 ∇u, ν dH N -1
is absolutely continuous on every compact subinterval of (0, +∞) and hence for a.e. r > 0 there is Ψ (r) = ∂Br u |∇u| p-2 ∇u, ν dH N -1 and Ψ ∈ L 1 (0, r). From (6.1.2) and (6.1.3) we deduce the desired formula.

Also we shall need the following L p version of the Poincaré-Wirtinger constant

λ p = min g L p (0,1) g L p (0,1) : g ∈ W 1,p 0 (0, 1)\{0} . (6.1.4)
The value of λ p was computed explicitly in e.g. [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger[END_REF]Corollary 2.7] and [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]Inequality (7a)], where the following equality was established

λ p = 2 1 p 1 p 1 p 1 p Γ 1 p Γ 1 p , (6.1.5)
in which Γ is the usual Gamma function.

Remark 6.1.2. Analyzing the behavior of λ p via the formula (6.1.5), we observe that (i) λ p ∈ (2, π] for all p ∈ (1, +∞);

(ii) λ p = π if and only if p = 2;

(iii) p → λ p is increasing on (1, 2];

(iv) p → λ p is decreasing on (2, +∞).

Finally, we shall need the following Poincaré inequality.

Lemma 6.1.3. Let p ∈ (1, +∞) and Σ be a subset of R 2 with Cap p (Σ) > 0. Assume that u ∈ W 1,p (R 2 ) and u = 0 p-q.e. on Σ. Then for every ξ ∈ R 2 and for a.e. r > 0 such that Σ ∩ ∂B r (ξ) = ∅, the following version of the Poincaré inequality holds ∂Br(ξ)

|u| p dH 1 1 p ≤ κr ∂Br(ξ) |∇ τ u| p dH 1 1 p
, where ∇ τ denotes the tangential derivative, and κ is defined by

κ = 1 λ p sup H 1 (S) r : S is a connected component of ∂B r (ξ)\Σ ,
where λ p is defined in (6.1.4).

Proof. Notice that for every ξ ∈ R 2 and for a.e. r > 0 such that Σ ∩ ∂B r (ξ) = ∅, u = 0 on Σ ∩ ∂B r (ξ), otherwise we would obtain a contradiction with the fact that u = 0 p-q.e. on Σ. Next, employing polar coordinates (r, θ), we can identify the function u| ∂Br(ξ) with the function u r,ξ (θ) = u(r cos(θ) + ξ 1 , r sin(θ) + ξ 2 ), where (ξ 1 , ξ 2 ) = ξ. Then, according to the standard theory of slicing properties of Sobolev functions (see e.g. [EG, Section 4.9]), for a.e. r > 0 the function u r,ξ belongs to W 1,p ([0, 2π]) and for a.e. θ ∈ [0, 2π],

u r,ξ (θ) = ∇u(r cos(θ) + ξ 1 , r sin(θ) + ξ 2 ), re θ
where e θ = (-sin(θ), cos(θ)). Thus, taking r > 0 such that u r,ξ belongs to W 1,p ([0, 2π]) and u = 0 on ∂B r (ξ) ∩ Σ = ∅, for every connected component S of ∂B r (ξ)\Σ, we have

S |u| p dH 1 = r H 1 (S)/r 0 |u r,ξ (θ + θ 0 )| p dθ ≤ r H 1 (S) rλ p p H 1 (S)/r 0 |u r,ξ (θ + θ 0 )| p dθ = H 1 (S) λ p p S |∇ τ u| p dH 1 where θ 0 ∈ [0, 2π] is such that S = {(r cos(t) + ξ 1 , r sin(t) + ξ 2 ) : t ∈ [θ 0 , H 1 (S)/r]}. Thus S |u| p dH 1 ≤ (κr) p S |∇ τ u| p dH 1 . (6.1.6)
Then, summing (6.1.6) over all connected components of ∂B r (ξ)\Σ, we get the desired inequality. This completes our proof of Lemma 6.1.3.

Monotonicity of the p-energy

In the next lemma, we establish the first version of the monotonicity formula for the p-energy for every p ∈ (1, +∞).

Lemma 6.2.1. Let p ∈ (1, +∞) and f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (2.1.1). Let ε ∈ (0, 1) and Σ be a closed proper subset of Ω. Assume that x 0 ∈ Ω, 0 ≤ 2r 0 < r 1 ≤ 1 and γ ∈ [γ Σ (x 0 , r 0 , r 1 ), 2π]\{0}, where

γ Σ (x 0 , r 0 , r 1 ) = sup H 1 (S) r : r ∈ (2r 0 , r 1 ) and S is a connected component of ∂B r (x 0 )\(Σ ∪ ∂ Ω) .
Assume also that

(Σ ∪ ∂ Ω) ∩ ∂B r (x 0 ) = ∅ ∀r ∈ (r 0 , r 1 ) (6.2.1)
and that 2 + p -2p q > λp(1-ε) γ
, where λ p denotes the Poincaré-Wirtinger constant defined in (6.1.4). Then the function

G(r) = 1 r α Br(x 0 ) |∇u Σ | p dx + Cr 2+p -2p q -α (6.2.2)
is nondecreasing on (2r 0 , r 1 ), where α = λp(1-ε) γ and C = C(p, q 0 , q, λ p , f L q (Ω) , ε, γ) > 0.

Proof. Every ball and every circle in this proof is centered at x 0 . We extend u Σ by zero outside Ω \Σ to an element that belongs to W 1,p (R 2 ). To simplify the notation, denote u Σ by u. Using Lemma 6.1.1 and Hölder's inequality, for a.e. r ∈ (2r 0 , r 1 ), we obtain

Φ(r) := Br |∇u| p dx = ∂Br u |∇u| p-2 ∇u, ν dH 1 + Br f u dx ≤ ∂Br |u| p dH 1 1 p ∂Br |∇u| p dH 1 1 p + Br f u dx. (6.2.3)
Next, thanks to (6.2.1) and Lemma 6.1.3, we get

∂Br |u| p dH 1 1 p ≤ γr λ p ∂Br |∇ τ u| p dH 1 1 p ≤ γr λ p ∂Br |∇u| p dH 1 1 p . (6.2.4)
On the other hand, due to (6.2.1), (Σ ∪ ∂Ω) ∩ ∂B s = ∅ for all s ∈ [r/2, r]. Then, since u = 0 p-q.e. on Σ ∪ ∂Ω and u ∈ W 1,p (B r ), by Proposition 3.8.2 and the fact that r 1 ≤ 1, there is a constant

C 0 = C 0 (p) > 0 such that u W 1,p (Br) ≤ C 0 ∇u L p (Br) . (6.2.5)
Using the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.26]) together with (6.2.5), we deduce that there exists

C = C(p) > 0 such that u L q 0 (Br) ≤ Cr β ∇u L p (Br) , (6.2.6)
where

β = 0 if 1 < p < 2, β = 2 q 0 if p = 2, β = 1 - 2 p if 2 < p < +∞. (6.2.7)
Notice that in the case 2 < p < +∞ we have used that u(ξ) = 0 for some ξ ∈ (Σ ∪ ∂Ω) ∩ B r yielding the following: for all x ∈ B r we have |u(

x)| = |u(x) -u(ξ)| ≤ C 1 (2r) 1-2 p u W 1,p (Br) for some C 1 = C 1 (p) > 0.
Thus, using Hölder's inequality, we get

Br f u dx ≤ f L q 0 (Br) u L q 0 (Br) ≤ |B r | 1 q 0 -1 q f L q (Ω) u L q 0 (Br) (6.2.6) ≤ Cr 2 1 q 0 -1 q +β ∇u L p (Br) (2.1.1),(6.2.7) = Cr 3-2 p -2 q (Φ(r)) 1 p
≤ C ε r 2+p -2p q + εΦ(r) (by Young's inequality), (6.2.8)

where C = C(p, q 0 , q, f L q (Ω) ) > 0 and C ε = C ε (p, q 0 , q, f L q (Ω) , ε) > 0. By (6.2.3), (6.2.4) and (6.2.8),

Φ(r) ≤ γr λ p ∂Br |∇u| p dH 1 1 p ∂Br |∇u| p dH 1 1 p + C ε r 2+p -2p q + εΦ(r) = γr λ p ∂Br |∇u| p dH 1 + C ε r 2+p -2p q + εΦ(r) = γr λ p Φ (r) + C ε r 2+p -2p q + εΦ(r),
where in the last formula we have used the fact that the function r → Φ(r) is absolutely continuous on every compact subinterval of (0, +∞) and for a.e. r > 0 its derivative is equal to

∂Br |∇u| p dH 1 . Then Φ(r) ≤ γr λ p (1 -ε) Φ (r) + C ε 1 -ε r 2+p -2p q
and we deduce that

Φ (r)r α -αr α-1 Φ(r) r 2α + αC ε 1 -ε r 2+p -2p q -α-1 ≥ 0, where α = λp(1-ε) γ . This gives that r → Φ(r) r α + Cr 2+p -2p q -α is nondecreasing on (2r 0 , r 1 ), where C = α C ε (2 + p -2p /q -α)(1 -ε)
(recall that, by the assumption, 2 + p -2p /q -α > 0), since for a.e. r ∈ (2r 0 , r 1 ),

d dr Φ(r) r α + Cr 2+p -2p q -α = Φ (r)r α -αΦ(r)r α-1 r 2α + αC ε 1 -ε r 2+p -2p q -α-1 ≥ 0.
This completes our proof of Lemma 6.2.1.

Corollary 6.2.2. Let p ∈ (1, +∞) and f ∈ L q (Ω) with q ≥ q 0 , where q 0 is defined in (2.1.1).

Let ε ∈ (0, 1) and Σ be a closed arcwise connected proper subset of Ω. Assume that

x 0 ∈ Ω, 0 < 2r 0 < r 1 ≤ 1 satisfy Σ ∩B r 0 (x 0 ) = ∅, Σ \B r 1 (x 0 ) = ∅. Assume also that γ Σ (x 0 , r 0 , r 1 ) ∈ [π -ε, π + ε] and 2 + p -2p q > λp(1-ε) π+ε . Then there exists a constant C = C(p, q 0 , q, λ p , f L q (Ω) , |Ω|, ε, r 1 ) > 0 such that Br(x 0 ) |∇u Σ | p dx ≤ Cr λp(1-ε) π+ε (6.2.9) for all r ∈ [2r 0 , r 1 ].
Proof of Corollary 6.2.2. In this proof, C denotes a positive constant that can only depend on p, q 0 , q, λ p , f L q (Ω) , |Ω|, ε, r 1 and can be different from line to line. Using Lemma 6.2.1, Proposition 3.11.2 and the fact that r 1 ≤ 1, we obtain

Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 λp(1-ε) π+ε Br 1 (x 0 ) |∇u Σ | p dx + Cr λp(1-ε) π+ε r 2+p -2p q - λp(1-ε) π+ε 1 ≤ C r r 1 λp(1-ε) π+ε + Cr λp(1-ε) π+ε ≤ Cr λp(1-ε) π+ε
for every r ∈ [2r 0 , r 1 ]. This completes the proof of Corollary 6.2.2. Now we establish the second version of the monotonicity formula for the p-energy for every p ∈ (1, +∞).

Lemma 6.2.3. Let p ∈ (1, +∞), f ∈ L ∞ (Ω) and Σ be a closed proper subset of Ω. Assume that x 0 ∈ Ω, 0 ≤ r 0 < r 1 ≤ 1 and γ ∈ [γ Σ (x 0 , r 0 , r 1 ), 2π]\{0}, where γ Σ (x 0 , r 0 , r 1 ) = sup H 1 (S) r : r ∈ (r 0 , r 1 ) and S is a connected component of ∂B r (x 0 )\(Σ ∪ ∂ Ω) .
Assume also that

(Σ ∪ ∂ Ω) ∩ ∂B r (x 0 ) = ∅ ∀r ∈ (r 0 , r 1 ) (6.2.10)
and that 2 > λ p /γ, where λ p denotes the Poincaré-Wirtinger constant defined in (6.1.4).

Then the function r ∈ (r 0 , r 1 ) →

1 r α Br(x 0 ) |∇u Σ | p dx + Cr 2-α (6.2.11) is nondecreasing with α = λ p /γ and C = C(p, λ p , f ∞ , |Ω|, γ) > 0.
Proof. Every ball and every circle in this proof is centered at x 0 . We extend u Σ by zero outside Ω \Σ to an element that belongs to W 1,p (R 2 ). To simplify the notation, denote u Σ by u. Using Lemma 6.1.1 and Hölder's inequality, for a.e. r ∈ (r 0 , r 1 ), we obtain

Φ(r) := Br |∇u| p dx = ∂Br u |∇u| p-2 ∇u, ν dH 1 + Br f u dx ≤ ∂Br |u| p dH 1 1 p ∂Br |∇u| p dH 1 1 p + Br f u dx. (6.2.12)
Next, thanks to (6.2.10) and Lemma 6.1.3, we get

∂Br |u| p dH 1 1 p ≤ γr λ p ∂Br |∇ τ u| p dH 1 1 p ≤ γr λ p ∂Br |∇u| p dH 1 1 p . (6.2.13)
On the other hand, due to Proposition 3.11.2, (6.2.14) where

u ∞ ≤ C,
C = C(p, f ∞ , |Ω|) > 0.
Hereinafter in this proof, C denotes a positive constant that can only depend on p, f ∞ , |Ω|. Using (6.2.14) and the fact that f ∈ L ∞ (Ω), we get Br f u dx ≤ Cr 2 . (6.2.15) By (6.2.12), (6.2.13) and (6.2.15),

Φ(r) ≤ γr λ p ∂Br |∇u| p dH 1 1 p ∂Br |∇u| p dH 1 1 p + Cr 2 = γr λ p ∂Br |∇u| p dH 1 + Cr 2 = γr λ p Φ (r) + Cr 2 ,
where in the last formula we have used the fact that the function r → Φ(r) is absolutely continuous on every compact subinterval of (0, +∞) and for a.e. r > 0 its derivative is equal to

∂Br |∇u| p dH 1 . Then Φ (r)r α -αΦ(r)r α-1 r 2α + αCr 1-α ≥ 0,
and we deduce that

r → Φ(r) r α + α 2 -α Cr 2-α
is nondecreasing on (r 0 , r 1 ), where α = λp γ , since for a.e. r ∈ (r 0 , r 1 ),

d dr Φ(r) r α + α 2 -α Cr 2-α = Φ (r)r α -αΦ(r)r α-1 r 2α + αCr 1-α ≥ 0.
This completes our proof of Lemma 6.2.3. So we conclude that the resulting power of r in the formulas (6.2.2) and (6.2.11) is not large enough and these formulas cannot be directly used to prove C 1,α estimates. But notice that, for instance, one can employ the estimate (6.2.9) in the proofs of the absence of loops and the partial regularity in dimension 2 for the case 1 < p < 2, in order to improve the assumption on the integrability of the source f . Remark 6.2.5. When p = 2, the exponent α in (6.2.2) and (6.2.11) can be increased by 2 times. Indeed, denoting u Σ by u and using Young's inequality, for each δ > 0, we have

Remark 6.2.4. Notice that if B r 1 (x 0 ) ⊂ Ω and Σ ∩ B r 1 (x 0 ) is a diameter of B r 1 (x 0 ), then γ Σ (x 0 , 0, r 1 ) = π,
∂Br(x 0 ) u |∇u| p-2 ∇u, ν dH 1 ≤ δ p p ∂Br(x 0 ) |u| p dH 1 + δ -p p ∂Br(x 0 ) |∇ ν u| p dH 1 ≤ δ p p γr λ p p ∂Br(x 0 ) |∇ τ u| p dH 1 + δ -p p ∂Br(x 0 ) |∇ ν u| p dH 1
where ∇ ν denotes the normal derivative, and the last estimate comes by using Lemma 6.1.3.

Next, choosing δ = λp γr 1 p , we have that δ p γr λp p = δ -p = γr λp and hence

∂Br(x 0 ) u |∇u| p-2 ∇u, ν dH 1 ≤ γr λ p 1 p ∂Br(x 0 ) |∇ τ u| p dH 1 + 1 p ∂Br(x 0 ) |∇ ν u| p dH 1 . If p = 2, then ∂Br(x 0 ) u ∇u, ν dH 1 ≤ γr λ 2 1 2 ∂Br(x 0 ) |∇ τ u| 2 dH 1 + 1 2 ∂Br(x 0 ) |∇ ν u| 2 dH 1 = γr 2λ 2 ∂Br(x 0 ) |∇u| 2 dH 1 .
Next, proceeding in the same way as in the proof of Lemma 6.2.1, one obtains α = 2λ 2 (1-ε) γ . Also, if one then proceeds in the same way as in Lemma 6.2.3, one obtains α = 2λ 2 γ . Notice that such an improvement is valid only in the case p = 2, where the crucial argument is the use of the equality

|∇u| 2 = |∇ τ u| 2 + |∇ ν u| 2 .
The following two lemmas are a direct consequence of Lemma 6.2.1, Lemma 6.2.3, and Remark 6.2.5, so we omit their proofs. Also we use below that λ 2 = π (see Remark 6.1.2). Lemma 6.2.6. Let f ∈ L q (Ω) with q > 1. Let ε ∈ (0, 1) and Σ be a closed proper subset of Ω. Assume that x 0 ∈ Ω, 0 ≤ 2r 0 < r 1 ≤ 1 and γ ∈ [γ Σ (x 0 , r 0 , r 1 ), 2π]\{0}, where

γ Σ (x 0 , r 0 , r 1 ) = sup H 1 (S) r : r ∈ (2r 0 , r 1 ) and S is a connected component of ∂B r (x 0 )\(Σ ∪ ∂ Ω) .
Assume also that

(Σ ∪ ∂ Ω) ∩ ∂B r (x 0 ) = ∅ ∀r ∈ (r 0 , r 1 )
and that 4 q > 2π(1-ε)

γ

. Then the function

G(r) = 1 r α Br(x 0 ) |∇u Σ | p dx + Cr 4 q -α
is nondecreasing on (2r 0 , r 1 ), where α = 2π(1-ε)

γ and C = C(q, f L q (Ω) , ε, γ) > 0. Lemma 6.2.7. Let f ∈ L ∞ (Ω) and Σ be a closed proper subset of Ω. Assume that x 0 ∈ Ω, 0 ≤ r 0 < r 1 ≤ 1 and γ ∈ [γ Σ (x 0 , r 0 , r 1 ), 2π]\{0}, where γ Σ (x 0 , r 0 , r 1 ) = sup H 1 (S) r : r ∈ (r 0 , r 1 ) and S is a connected component of ∂B r (x 0 )\(Σ ∪ ∂ Ω) .
Assume also that

(Σ ∪ ∂ Ω) ∩ ∂B r (x 0 ) = ∅ ∀r ∈ (r 0 , r 1 )
and that 2 > 2π/γ. Then the function

r ∈ (r 0 , r 1 ) → 1 r α Br(x 0 ) |∇u Σ | p dx + Cr 2-α is nondecreasing with α = 2π/γ and C = C( f ∞ , |Ω|, γ) > 0.
Chapter 7

Decay of the p-energy under flatness control

In this chapter, we prove that if p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1), then there exist ε 0 , b, r ∈ (0, 1) and C = C(N, p, q 0 , q, f q , |Ω|) > 0, where q 0 is defined in (2.1.1), such that the following holds. Assume that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r 0 ≤ r 1 ≤ r, B r 1 (x 0 ) ⊂ Ω and that for each r ∈ [r 0 , r 1 ] there exists an affine line

L = L(r) passing through x 0 such that d H (Σ ∩B r (x 0 ), L∩B r (x 0 )) ≤ ε 0 r. Assume also that Σ \ B r 1 (x 0 ) = ∅. Then for all r ∈ [r 0 , r 1 ], Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b .
We begin by establishing a control for the functional r → Br |∇u| p dx, where u is a weak solution to the p-Laplace equation in B 1 \({0} N -1 × (-1, 1)) vanishing p-q.e. on {0} N -1 × (-1, 1).

Notice that in dimension 2, in order to estimate a weak solution to the p-Laplace equation in B 1 \({0} × (-1, 1)), which vanishes p-q.e. on {0} × (-1, 1), one can employ a reflection method. This method is no more valid for a weak solution to the p-Laplace equation in

B 1 \({0} N -1 × (-1, 1)), which vanishes p-q.e. on {0} N -1 × (-1, 1) if N ≥ 3.
In [START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF] it was shown that if u is a positive p-harmonic function in

B 1 \({0} N -1 ×(-1, 1)), continuous in B 1 with u = 0 on {0} N -1 × (-1, 1), then there exists δ = δ(N, p) ∈ (0, 1) such that u ∈ C 0,β (B δ )
, where β = (p -N + 1)/(p -1). Furthermore, β is the optimal Hölder exponent for u. In fact, comparing the function u with the p-superharmonic and psubharmonic functions constructed in [START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF]Lemma 3.4], [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF]Lemma 3.7], it was shown that there exists C = C(N, p) > 0 and δ = δ(N, p) ∈ (0, 1) such that

C -1 d(x, {0} N -1 × (-1, 1)) β ≤ u(x) u(A 1/2 ) ≤ Cd(x, {0} N -1 × (-1, 1)) β (7.0.1) whenever x ∈ B δ , where A 1/2 is a point in {|x | = 1/2} ∩ ∂B 1/2
. The upper bound in (7.0.1) implies that u ∈ C 0,β (B δ ) (see [START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF]Corollary 3.7]), and the lower bound proves that β is optimal.

However, for our purposes, the optimal regularity for a positive p-harmonic function in B 1 \({0} N -1 ×(-1, 1)), continuous in B 1 and vanishing on {0} N -1 ×(-1, 1) is not necessary. In fact, in Lemma 3.9.11, for every exponent p ∈ (N -1, +∞), we have constructed a barrier function (which is in some sense weaker than those constructed in [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF][START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF]) to estimate a p-subharmonic function vanishing on a 1-dimensional plane. Namely, for each γ ∈ (0, β) and some δ = δ(N, p, γ) ∈ (0, 1), we constructed a p-superharmonic function in Lemma 3.9.11, such that comparing this function with a nonnegative p-subharmonic function u in B 1 \({0} N -1 × (-1, 1)), continuous in B 1 and with u = 0 on {0} N -1 × (-1, 1), we obtain the following control

u(x) ≤ Cu(A 1/2 )d(x, {0} N -1 × (-1, 1)) γ ,
where x ∈ B δ and C = C(N, p, γ) > 0. If γ is close enough to β, using the above control, we deduce the estimate (7.1.1) which is sufficient to obtain the desired decay behavior of the p-energy under flatness control. Finally, since our barrier function is slightly simpler than those constructed in [START_REF] Lundström | Phragmén-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes[END_REF]Lemma 3.4] and [START_REF] Lundström | Estimates for p-harmonic functions vanishing on a flat[END_REF]Lemma 3.7] and in order to make the presentation self contained, we shall use it in the proof of Lemma 7.1.1.

For the reader's convenience, in dimension 2 we shall also estimate a weak solution to the p-Laplace equation in B 1 \({0} × (-1, 1)), which vanishes p-q.e. on {0} × (-1, 1), using a reflection method. We shall obtain that such a solution is Lipschitz continuous on B 1/2 .

Estimates for weak solutions vanishing on a diameter or on two perpendicular diameters of a ball

In this section, we establish a control for the functional r → Br |∇u| p dx, where u is a weak solution to the p-Laplace equation in B 1 \E vanishing p-q.e. on E in the case when E = {0} N -1 × (-1, 1) or E = ((-1, 1) × {0} N -1 ) ∪ ({0} N -1 × (-1, 1)).

Lemma 7.1.1. Let p ∈ (N -1, +∞). There exist α, δ ∈ (0, 1) and C > 0, depending only on N and p, such that if u ∈ W 1,p (B 1 ) is a weak solution to the p-Laplace equation in B 1 \({0} N -1 × (-1, 1)) satisfying u = 0 p-q.e. on {0} N -1 × (-1, 1), then Proof. To simplify the notation, we denote {0} N -1 × (-1, 1) by S.

Step 1. We prove the estimate (7.1.1) in the case when u is continuous and nonnegative in B 1 with u = 0 on S.

Let γ = 1 2 p-N +1 p + p-N +1 p-1
. By Lemma 3.9.11, there exists

δ 0 = δ 0 (N, p) ∈ (0, 1) such that û(x) = |x | γ + x 2
N is a weak supersolution to the p-Laplace equation in {0 < |x | < δ 0 } ∩ {|x N | < 1}. Notice that û ∈ C 0 (R N ). On the other hand, according to Lemma 3.9.13, there exists ε = ε(N, p) ∈ (0, 1) and 

C = C(N, p) > 0 such that u ≤ Cu(A ε ) in B ε , where A ε denotes a point with d(A ε , {0} N -1 × R) = ε and A ε ∈ ∂B ε .
∂ |x | < δ 0 √ 2 ∩ |x N | < δ 0 √ 2 a nonnegative p-harmonic function u in B 1 \({0} N -1 × (-1, 1)), continuous in B 1 with u = 0 on {0} N -1 × (-1, 1).
Without loss of generality, we can assume that δ 0 ≤ ε. Hereinafter in this proof, C denotes a positive constant that can only depend on N, p and can be different from line to line. Using Harnack's inequality (see Lemma 3.9.6), we deduce that u(A ε ) ≤ Cu(A 1/2 ) and hence

u ≤ Cu(A 1/2 ) in B δ 0 for a point A 1/2 ∈ {|x | = 1/2} ∩ ∂B 1/2 . Next, since û(x) = δ 0 √ 2 γ + x 2 N ≥ δ 0 √ 2 γ if |x | = δ 0 √ 2 and û(x) = |x | γ + δ 2 0 2 ≥ δ 2 0 2 if |x N | = δ 0 √ 2 , the estimate u ≤ Cu(A 1/2 )û holds on ∂({|x | < δ 0 / √ 2}∩{|x N | < δ 0 / √ 2} 
); see Figure 7.1.1. Notice also that u(x) ≤ Cu(A 1/2 )û(x) if x ∈ S. Thus, using the comparison principle (see Lemma 3.9.5), we obtain

u ≤ Cu(A 1/2 )û in {|x | < δ 0 / √ 2} ∩ {|x N | < δ 0 / √ 2}. (7.1.2)
Now we set δ := δ 0 /10. According to Lemma 3.9.14, u is a continuous weak subsolution in B 1 . Then, using Caccioppoli's inequality (see Lemma 3.9.4), and also using (7.1.2), for all r ∈ (0, δ], we deduce that (7.1.3) where α = γp -p + N -1 is positive, since γ > (p -N + 1)/p. On the other hand, by Harnack's inequality, u(A 1/2 ) ≤ Cu(x) for all x ∈ B 1/4 (A 1/2 ) and then (7.1.4) where we have used Proposition 3.8.2. Gathering together (7.1.3) and (7.1.4), we deduce (7.1.1).

Br |∇u| p dx ≤ p p r -p B 2r u p dx ≤ Cu p (A 1/2 )r -p B 2r ûp dx ≤ Cu p (A 1/2 )r -p B 2r (r γ + r 2 ) p dx ≤ Cu p (A 1/2 )r γp+N -p = Cu p (A 1/2 )r 1+α ,
u p (A 1/2 ) = 1 |B 1/4 | B 1/4 (A 1/2 ) u p (A 1/2 ) dx ≤ C B 1/4 (A 1/2 ) u p dx ≤ C B 1 u p dx ≤ C B 1 |∇u| p dx,
Step 2. We prove (7.1.1) in the case when u ∈ W 1,p (B 1 ) and u = 0 p-q.e. on S. Let us fix a sequence (ϕ n ) n∈N ⊂ C ∞ (B 1 ) such that for each n ∈ N, ϕ n = 0 on S and, furthermore, ϕ n → u in W 1,p (B 1 ). Let us briefly explain why such a sequence exists. For an arbitrary open set U with B 1 ⊂⊂ U , according to [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.25], there exists u ∈ W 1,p 0 (U ) such that u = u a.e. in B 1 . By [START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 6.1.4], u = u p-q.e. in B 1 and hence u = 0 p-q.e. on S. Then u ∈ W 1,p 0 (U \S) (see Remark 3.7.11). So there exists a sequence

(ϕ n ) n ⊂ C ∞ 0 (U \S) such that ϕ n → u in W 1,p (U ). It remains to note that ϕ n → u in W 1,p (B 1 ). Next, for each n ∈ N, let u n be a unique solution to the Dirichlet problem      -∆ p v = 0 in B 1 \S v = ϕ n on S ∪ ∂B 1 , which means that u n -ϕ n ∈ W 1,p 0 (B 1 \S) and B 1 |∇u n | p-2 ∇u n , ∇ζ dx = 0 for all ζ ∈ W 1,p 0 (B 1 \S).
The existence of such a solution follows from [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.16] and Theorem 3.9.3. Notice that the result of Lemma 3.9.8 would remain valid if we replaced the p-harmonic function in its formulation with merely a weak solution (see, for instance, [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.19]). This implies that u n is continuous in B 1 \S. On the other hand, since ϕ n is continuous in B 1 , according to [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]Theorem 6.27], we can show that u n is continuous in B 1 if we can prove that there exist constants C 0 > 0 and r 0 > 0 such that

Cap p ((S ∪ ∂B 1 ) ∩ B r (x)) Cap p (B r (x)) ≥ C 0 (7.1.5)
whenever 0 < r < r 0 and x ∈ S ∪ ∂B 1 . However, the estimate (7.1.5) in the case when p ∈ (N -1, N ] follows from Corollary 3.7.8; in the case when p > N , using Remark 3.7.3 and the fact that the Bessel capacity is invariant under translations and is nondecreasing with respect to set inclusion, it is easy to see that (7.1.5) holds for C 0 = Cap p ({0})/Cap p (B 1 ) whenever x ∈ S ∪ ∂B 1 and 0 < r < 1. Thus, for each n ∈ N, u n is continuous in B 1 . Then, by Lemma 3.9.14, u + n = max{u n , 0} and u - n = -min{u n , 0} are nonnegative continuous weak subsolutions in B 1 such that u + n = u - n = 0 on S. Now let v n be a unique solution to the Dirichlet problem

     -∆ p v = 0 in B 1 \S v = u + n on S ∪ ∂B 1 .
As before, by [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.19] and [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]Theorem 6.27], v n is continuous in B 1 and also v n = u + n on S ∪ ∂B 1 . Then, by the comparison principle, u + n ≤ v n in B 1 . Let δ, α be the constants from Step 1. Next, applying Caccioppoli's inequality to u + n , using the fact that u + n ≤ v n in B 1 and applying the result of Step 1 to v n , for all r ∈ (0, δ] we deduce that (7.1.6) where the last estimate comes from the fact that v n minimizes the functional v → B 1 |∇v| p dx among all v ∈ W 1,p (B 1 ) such that v -u + n ∈ W 1,p 0 (B 1 \S) (see Theorem 3.9.3) and u + n is a competitor. Arguing by the same way as for u + n , we deduce that for all r ∈ (0, δ],

Br |∇u + n | p dx ≤ p p r -p B 2r u +p n dx ≤ p p r -p B 2r v p n dx ≤ Cr 1+α B 1 |∇v n | p dx ≤ Cr 1+α B 1 |∇u + n | p dx,
Br |∇u - n | p dx ≤ Cr 1+α B 1 |∇u - n | p dx. (7.1.7) Next, since ϕ n → u in W 1,p (B 1
) and u solves the Dirichlet problem -∆ p v = 0 in B 1 \S with its own trace on S ∪ ∂B 1 , by [START_REF] Bucur | Shape optimisation problems governed by nonlinear state equations[END_REF]Theorem 3.5], u n → u in W 1,p (B 1 ) and hence u + n → u + , u - n → u -in W 1,p (B 1 ). This, together with (7.1.6) and (7.1.7), implies that for all r ∈ (0, δ],

Br |∇u| p dx = Br |∇u + -∇u -| p dx ≤ 2 p-1 Br |∇u + | p dx + 2 p-1 Br |∇u -| p dx ≤ Cr 1+α B 1 |∇u + | p dx + Cr 1+α B 1 |∇u -| p dx ≤ Cr 1+α B 1 |∇u| p dx.
This completes the proof of Lemma 7.1.1.

The proof of the following lemma is essentially the same as the proof of Lemma 7.1.1. Proof. First, notice that adapting the proof of Lemma 3.9.13, one easily proves that there exist ε = ε(N, p) ∈ (0, 1) and C = C(N, p) > 0 such that for any nonnegative p-harmonic function v in B 1 \E, continuous in B 1 and satisfying v = 0 on E, the following estimate holds

max x∈Bε v(x) ≤ Cv(A ε ), (7.1.9)
where

A ε is a point in ∂B ε such that d(A ε , E) = ε.
Next, assuming, as in Step 1 in the proof of Lemma 7.1.1 that u is continuous and nonnegative in B 1 , by virtue of (7.1.9) and the fact that we add an additional boundary condition for u (i.e., u = 0 on (-1, 1)×{0} N -1 ) compared with the situation in Lemma 7.1.1, we observe that all the estimates established at Step 1 of Lemma 7.1.1 for a nonnegative p-harmonic function in B 1 \({0} N -1 × (-1, 1)) that is continuous in B 1 and vanishes on {0} N -1 × (-1, 1) are also valid for u.

In the case when u ∈ W 1,p (B 1 ) is merely a Sobolev function vanishing p-q.e. on E, we can proceed in the same way as in Step 2 in the proof of Lemma 7.1.1 changing {0} N -1 × (-1, 1) by E. These observations complete our proof of Lemma 7.1.2.

In the following lemma, employing a reflection method, we derive an estimate for a weak solution to the p-Laplace equation in B 1 \({0} × (-1, 1)) vanishing p-q.e. on {0} × (-1, 1).

Lemma 7.1.3. Let p ∈ (1, +∞). Then there exists C = C(p) > 0 such that for all u ∈ W 1,p (B 1 ), u = 0 p-q.e. on {0} × (-1, 1) being a weak solution to the p-Laplace equation in B 1 \({0} × (-1, 1)), ess sup

B 1/2 |∇u| p ≤ C B 1 |∇u| p dx.
Proof. Consider the restrictions of u on B E = B 1 ∩ {x 1 ≥ 0} and on B W = B 1 ∩ {x 1 ≤ 0} and extend them on B 1 using the Schwarz reflection. We show that each of the obtained functions is a weak solution to the corresponding p-Laplace equation in B 1 . Thus we define

ũ(x 1 , x 2 ) =      u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B E -u(-x 1 , x 2 ) if (x 1 , x 2 ) ∈ B W , u(x 1 , x 2 ) =      -u(-x 1 , x 2 ) if (x 1 , x 2 ) ∈ B E u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B W .
It is clear that ũ, u ∈ W 1,p (B 1 ) and ũ = u = 0 p-q.e. on {0} × (-1, 1). We claim that ũ 123 and u are weak solutions in B 1 . Indeed, for an arbitrary test function ϕ ∈ C ∞ 0 (B 1 ) we have

B 1 |∇ũ| p-2 ∇ũ, ∇ϕ dx = int(B E )
|∇u| p-2 ∇u, ∇ϕ dx

+ int(B W ) |∇u( -x 1 , x 2 )| p-2 (∂ 1 u(-x 1 , x 2 ), -∂ 2 u(-x 1 , x 2 )), ∇ϕ(x 1 , x 2 ) dx 1 dx 2 = int(B E ) |∇u| p-2 ∇u, ∇ϕ dx - int(B E ) |∇u(x 1 , x 2 )| p-2 ∇u(x 1 , x 2 ), (-∂ 1 ϕ(-x 1 , x 2 ), ∂ 2 ϕ(-x 1 , x 2 )) dx 1 dx 2 = int(B E )
|∇u| p-2 ∇u, ∇ψ dx, (7.1.10)

where

ψ(x 1 , x 2 ) = ϕ(x 1 , x 2 ) -ϕ(-x 1 , x 2 ), (x 1 , x 2 ) ∈ int(B E ). Since ũ| int(B E ) ≡ u| int(B E )
is a weak solution in int(B E ) and since ψ ∈ W 1,p 0 (int(B E )), using (7.1.10), we get that

B 1 |∇ũ| p-2 ∇ũ, ∇ϕ dx = 0.
As ϕ ∈ C ∞ 0 (B 1 ) was arbitrarily chosen, we deduce that ũ is a weak solution in B 1 . The proof of the fact that u is a weak solution in B 1 is similar. Then, by [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF]Proposition 3.3

], there is C = C(p) > 0 such that ess sup B 1/2 |∇ũ| p ≤ C B 1 |∇ũ| p dx ess sup B 1/2 |∇u| p ≤ C B 1 |∇u| p dx. Therefore, ess sup B 1/2 |∇u| p ≤ ess sup B 1/2 |∇ũ| p + ess sup B 1/2 |∇u| p ≤ C B 1 |∇ũ| p dx + B 1 |∇u| p dx ≤ 2C B 1 |∇u| p dx.
This completes the proof of Lemma 7.1.3. Corollary 7.1.4. Let u be a weak solution to the p-Laplace equation in B 1 \({0} × (-1, 1)) and let u = 0 p-q.e. on {0} × (-1, 1). Then u is Lipschitz continuous on B 1/2 . Corollary 7.1.5. There is a constant C 0 = C 0 (p) > 2 such that if u is a weak solution to the p-Laplace equation in B 1 \({0} × (-1, 1)) and u = 0 p-q.e. on {0} × (-1, 1), then

Br |∇u| p dx ≤ C 0 r 2 B 1 |∇u| p dx ∀r ∈ (0, 1/2].
Proof of Corollary 7.1.5. By Lemma 7.1.3 we know that for some C = C(p) > 1, ess sup

B 1/2 |∇u| p ≤ C B 1 |∇u| p dx.
We deduce that for r ≤ 1/2,

Br |∇u| p dx ≤   ess sup B 1/2 |∇u| p   πr 2 ≤ πCr 2 B 1 |∇u| p dx.
Employing a reflection method in dimension 2 also gives the following result.

Lemma 7.1.6. Let p ∈ (1, +∞). Then there is a constant C = C(p) > 0 such that for all u ∈ W 1,p (B 1 ), u = 0 p-q.e. on E = ((-1, 1) × {0}) ∪ ({0} × (-1, 1)) being a weak solution to the p-Laplace equation in B 1 \E, ess sup

B 1/2 |∇u| p ≤ C B 1 |∇u| p dx.
Proof. To simplify the notation, we denote the sets

B 1 ∩ {x 2 ≥ 0}, B 1 ∩ {x 2 ≤ 0}, B 1 ∩ {x 1 ≥ 0}, B 1 ∩ {x 1 ≤ 0}, B 1 ∩ {x 1 ≤ 0} ∩ {x 2 ≥ 0}, B 1 ∩ {x 1 ≥ 0} ∩ {x 2 ≥ 0}, B 1 ∩ {x 1 ≥ 0} ∩ {x 2 ≤ 0}, B 1 ∩ {x 1 ≤ 0} ∩ {x 2 ≤ 0}, respectively by B N , B S , B E , B W , B N W , B N E , B SE , B SW .
Next, reproducing the arguments of the proof of Lemma 7.1.3, we observe that the Sobolev functions u, u ∈ W 1,p (B 1 ) defined by

u(x 1 , x 2 ) =      u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B N -u(x 1 , -x 2 ) if (x 1 , x 2 ) ∈ B S , u(x 1 , x 2 ) =      -u(x 1 , -x 2 ) if (x 1 , x 2 ) ∈ B N u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B S
are weak solutions to the p-Laplace equations in B 1 \({0} × (-1, 1)) vanishing p-q.e. on {0} × (-1, 1), and, in addition, the Sobolev functions v, w, v, w ∈ W 1,p (B 1 ) defined by

v(x 1 , x 2 ) =      u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B W -u(-x 1 , x 2 ) if (x 1 , x 2 ) ∈ B E , w(x 1 , x 2 ) =      -u(-x 1 , x 2 ) if (x 1 , x 2 ) ∈ B W u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B E , v(x 1 , x 2 ) =      u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B W -u(-x 1 , x 2 ) if (x 1 , x 2 ) ∈ B E , w(x 1 , x 2 ) =      -u(-x 1 , x 2 ) if (x 1 , x 2 ) ∈ B W u(x 1 , x 2 ) if (x 1 , x 2 ) ∈ B E
are weak solutions to the p-Laplace equations in B 1 . Then, by [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF]Proposition 3.3], there is

C = C(p) > 0 such that for each ζ ∈ { v, w, v, w}, ess sup B 1/2 |∇ζ| p ≤ C B 1 |∇ζ| p dx, which implies that for each U ∈ {int(B N W ), int(B N E ), int(B SE ), int(B SW )}, ess sup U ∩B 1/2 |∇u| p ≤ 4C U |∇u| p dx.
Thus, we can conclude that ess sup

B 1/2 |∇u| p ≤ 4C B 1 |∇u| p dx,
which completes the proof.

We claim that v is a weak solution to the p-Laplace equation in B 1 \S, that is,

B 1 |∇v| p-2 ∇v, ∇ϕ dx = 0 for all ϕ ∈ C ∞ 0 (B 1 \S). (7.2.7)
In order to get the above equality, it suffices to show that |∇v n | p-2 ∇v n |∇v| p-2 ∇v weakly in L p (B 1 ; R N ). In fact, if ϕ ∈ C ∞ 0 (B 1 \S), then {ϕ = 0} ⊂⊂ B 1 \S and thanks to (7.2.1), for all n large enough, {ϕ = 0} ⊂⊂ B 1 \Σ n , so we can write the following

B 1 |∇v n | p-2 ∇v n , ∇ϕ dx = 0.
Next, letting n tend to +∞ in the above equality and using that |∇v n | p-2 ∇v n |∇v| p-2 ∇v weakly in L p (B 1 ; R N ), we would obtain (7.2.7). We first prove that, at least for a subsequence, ∇v n → ∇v a.e. in B 1 . For each integer m ≥ 10, we define

Ω m := {x ∈ B 1 : d(x, S) > 1/m}.
Notice that v n v weakly in W 1,p (Ω m ) and for all n large enough (with respect to m), v n is a weak solution in Ω m . Then, according to [START_REF] Boccardo | Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations[END_REF]Theorem 2.1], there exists a subsequence (v n(m,k) ) k∈N such that ∇v n(m,k) → ∇v a.e. in Ω m . For each m as above, let (v n(m+1,k) ) k∈N be a subsequence of (v n(m,k) ) k∈N satisfying ∇v n(m+1,k) → ∇v a.e. in Ω m+1 . Thus, for the diagonal subsequence (v n(m,m) ) m∈N , ∇v n(m,m) → ∇v a.e. in B 1 . So, at least for a subsequence, ∇v n → ∇v a.e. in B 1 . On the other hand, since (v n ) n is bounded in W 1,p (B 1 ), there exists w ∈ L p (B 1 ; R N ) such that, up to a subsequence still denoted by the same index, |∇v n | p-2 ∇v n w weakly in L p (B 1 ; R N ). Then, using the fact that, up to a subsequence, |∇v n | p-2 ∇v n → |∇v| p-2 ∇v a.e. in B 1 (we read |0| p-2 0 as 0 also when 1 < p < 2) and using Mazur's lemma (see [START_REF] Yosida | Functional analysis[END_REF]Theorem 2,p.120]), we deduce that w = |∇v| p-2 ∇v. We can now conclude that |∇v n | p-2 ∇v n |∇v| p-2 ∇v weakly in L p (B 1 ; R N ). This proves the claim. We now want to prove the strong convergence of ∇v n to ∇v in L p (B δ ; R N ). Since L p (B δ ; R N ) is uniformly convex (1 < p < +∞) and ∇v n ∇v weakly in L p (B δ ; R N ), we only need to prove that ∇v n L p (B δ ;R N ) tends to ∇v L p (B δ ;R N ) . By the weak convergence, we already have that

B δ |∇v| p dx ≤ lim inf n→+∞ B δ |∇v n | p dx.
Thus, it remains to prove the reverse inequality with a limsup. To this end, for an arbitrary ε ∈ (δ, 1), we fix

χ ε ∈ C ∞ 0 (B 1 ) such that 0 ≤ χ ε ≤ 1, χ ε = 1 on B δ , χ ε = 0 on B c ε and ∇χ ε ∞ ≤ 2/(ε -δ). Notice that v n χ ε ∈ W 1,p 0 (B 1 \Σ n ). Then, since v n ∈ W 1,p (B 1 ) is a weak solution in B 1 \Σ n and χ ε = 0 on B c ε , Bε χ ε |∇v n | p dx = - Bε v n |∇v n | p-2 ∇v n , ∇χ ε dx.
On the other hand, from the fact that ∇χ ε ∞ ≤ 2/(ε -δ), (7.2.4), ( 7 Now we want to establish an estimate for a weak solution to the p-Poisson equation in B r (x 0 )\Σ that vanishes on Σ ∩ B r (x 0 ) in the case when Σ is sufficiently close, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ). For that purpose, in the following lemma we control the difference between a weak solution to the p-Poisson equation and its p-Dirichlet replacement in a ball with a crack. Lemma 7.2.2. Let p ∈ (N -1, +∞) and f ∈ L q (B r 1 (x 0 )) with q > q 0 , where q 0 is defined in (2.1.1). Let Σ be a closed arcwise connected set in R N and 0 < 2r 0 ≤ r 1 ≤ 1 satisfy

Σ ∩B r 0 (x 0 ) = ∅, Σ \B r 1 (x 0 ) = ∅ and B r 1 (x 0 )\Σ = ∅.
(7.2.9)

Let u ∈ W 1,p (B r 1 (x 0 )) satisfying u = 0 p-q.e. on Σ ∩B r 1 (x 0 ) be a unique solution to the Dirichlet problem

-∆ p v = f in B r 1 (x 0 )\ Σ, which means that Br 1 (x 0 ) |∇u| p-2 ∇u, ∇ϕ dx = Br 1 (x 0 ) f ϕ dx ∀ϕ ∈ W 1,p 0 (B r 1 (x 0 )\ Σ).
(7.2.10)

Let w ∈ W 1,p (B r 1 (x 0 )) satisfying w = 0 p-q.e. on Σ ∩B r 1 (x 0 ) be a unique solution to the Dirichlet problem

     -∆ p v = 0 in B r 1 (x 0 )\ Σ v = u on (Σ ∩B r 1 (x 0 )) ∪ ∂B r 1 (x 0 ),
which means that w -u ∈ W 1,p 0 (B r 1 (x 0 )\ Σ) and (7.2.12) where C = C(N, p, q 0 , q, f q ) > 0. (7.2.13) where C = C(p, q 0 , q, f q ) > 0 and

Br 1 (x 0 ) |∇w| p-2 ∇w, ∇ϕ dx = 0 ∀ϕ ∈ W 1,p 0 (B r 1 (x 0 )\ Σ). (7.2.11) If 2 ≤ p < +∞, then Br 1 (x 0 ) |∇u -∇w| p dx ≤ Cr N +p -N p q 1 ,
If 1 < p < 2, then Br 1 (x 0 ) |∇u -∇w| p dx ≤ C(I(u)) p (r p-1 1 ) 2+p -2p q ,
I(u) = 2 2 p Br 1 (x 0 ) |∇u| p dx 2-p p .
Remark 7.2.3. Observe that for any p ∈ (N -1, +∞), N + p -N p /q is positive if q > q 0 , where q 0 is defined in (2.1.1).

Proof. First, notice that according to [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.16] and Theorem 3.9.3, w exists. For convenience, we define z = u -w. Thanks to (7.2.9) and the fact that z = 0 p-q.e. on Σ ∩ B r 1 (x 0 ), by Proposition 3.8.2, there exists C 0 = C 0 (N, p) > 0 such that z L p (Br 1 (x 0 )) ≤ C 0 r 1 ∇z L p (Br 1 (x 0 )) .

Since r 1 ≤ 1, the above estimate leads to the following (7.2.14) where C = C(N, p) > 0. Then, using the Sobolev embeddings (see [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 7.26]) together with (7.2.14) and in the case when N < p < +∞ using also that z(ξ) = 0 for some (7.2.15) where C = C(N, p, q 0 ) > 0 and

z W 1,p (Br 1 (x 0 )) ≤ C ∇z L p (Br 1 (x 0 )) ,
ξ ∈ Σ ∩ B r 1 (x 0 ), yielding that |z(x)| = |z(x) -z(ξ)| ≤ C (2r 1 ) 1-N p z W 1,p (Br 1 (x 0 )) for some C = C (N, p) > 0, we deduce the following z L q 0 (Br 1 (x 0 )) ≤ Cr α 1 ∇z L p (Br 1 (x 0 )) ,
α = 0 if N -1 < p < N, α = N q 0 if p = N, α = 1 - N p if N < p < +∞.
Let us consider the next two cases. Case 1: 2 ≤ p < +∞. By (3.12.1), there exists c 0 = c 0 (p) > 0 such that,

Br 1 (x 0 ) |∇z| p dx ≤ c 0 Br 1 (x 0 )
|∇u| p-2 ∇u -|∇w| p-2 ∇w, ∇z dx, and, since z is a test function for (7.2.10) and (7.2.11), we get

Br 1 (x 0 ) |∇z| p dx ≤ c 0 Br 1 (x 0 ) |∇u| p-2 ∇u -|∇w| p-2 ∇w, ∇z dx = c 0 Br 1 (x 0 ) f z dx.
Applying Hölder's inequality to the right-hand side of the above formula and using (7.2.15), we obtain

Br 1 (x 0 ) |∇z| p dx ≤ c 0 f L q 0 (Br 1 (x 0 )) z L q 0 (Br 1 (x 0 )) ≤ c 0 |B r 1 (x 0 )| 1 q 0 -1 q f L q (Br 1 (x 0 )) z L q 0 (Br 1 (x 0 )) ≤ Cr N ( 1 q 0 -1 q )+α 1 Br 1 (x 0 ) |∇z| p dx 1 p
for some C = C(N, p, q 0 , q, f q ) > 0. Therefore,

Br 1 (x 0 ) |∇z| p dx ≤ C p r N p ( 1 q 0 -1 q )+p α 1 = C p r N +p -N p q 1
, which proves (7.2.12). Case 2: 1 < p < 2. Using (3.12.2), and the fact that z is a test function for (7.2.10) and (7.2.11), we get

Br 1 (x 0 ) |∇z| p dx 2 p ≤ K(u, w) Br 1 (x 0 ) |∇u| p-2 ∇u -|∇w| p-2 ∇w, ∇z dx = K(u, w) Br 1 (x 0 ) f z dx,
where K(•, •) is defined in Lemma 3.12.1 with U = B r 1 (x 0 ). Next, using Hölder's inequality and then (7.2.15), we obtain

Br 1 (x 0 ) |∇z| p dx 2 p ≤ K(u, w) f L q 0 (Br 1 (x 0 )) z L q 0 (Br 1 (x 0 )) ≤ K(u, w)|B r 1 (x 0 )| 1 q 0 -1 q f L q (Br 1 (x 0 )) z L q 0 (Br 1 (x 0 )) ≤ CK(u, w)r 2 q 0 -2 q 1 Br 1 (x 0 ) |∇z| p dx 1 p ≤ CK(u, u)r 2 q 0 -2 q 1 Br 1 (x 0 ) |∇z| p dx 1 p
for some C = C(p, q 0 , q, f q ) > 0, where the last estimate comes from the fact that w minimizes the energy Br 1 (x 0 ) |∇v| p dx among all v satisfying v -u ∈ W 1,p 0 (B r 1 (x 0 )\Σ) (see Theorem 3.9.3) and u is a competitor for w. Notice that K(u, u) = I(u). Therefore,

Br 1 (x 0 ) |∇z| p dx ≤ C p (I(u)) p r 2p q 0 -2p q 1 = C p (I(u)) p r 3p-2-2p q 1 = C p (I(u)) p (r p-1 1 ) 2+p -2p q ,
which yields (7.2.13).

Using together Lemma 7.2.1 and Lemma 7.2.2, we obtain the following estimate for the solution u Σ to the Dirichlet problem -∆ p u = f in Ω\Σ, u ∈ W 1,p 0 (Ω\Σ). Notice that in the following statement the definition of γ(p, q) also depends on N , but we decided not to mention it explicitly to simplify the notation. Lemma 7.2.4. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 0 , where q 0 is defined in (2.1.1). Then there exist a ∈ (0, 1/2), ε 0 ∈ (0, a) and C = C(N, p, q 0 , q, f q , |Ω|) > 0 such that the following holds. Let Σ ⊂ Ω be a closed arcwise connected set, 0

< 2r 0 ≤ r 1 ≤ 1, B r 1 (x 0 ) ⊂ Ω, Σ ∩B r 0 (x 0 ) = ∅ and Σ \B r 1 (x 0 ) = ∅.
In addition, suppose that there exists an affine line L ⊂ R N passing through x 0 such that (7.2.16)

d H (Σ ∩B r 1 (x 0 ), L ∩ B r 1 (x 0 )) ≤ ε 0 r 1 .
Then 1 ar 1 Bar 1 (x 0 ) |∇u Σ | p dx ≤ 1 2 1 r 1 Br 1 (x 0 ) |∇u Σ | p dx + Cr γ(p,q) 1 , (7.2.17) where γ(p, q) =      N -1 + p -N p q if 2 ≤ p < +∞ 3p -3 -2p q if 1 < p < 2.
(7.2.18)

Proof. Let w ∈ W 1,p (B r 1 (x 0 )) be a unique solution to the Dirichlet problem

     -∆ p u = 0 in B r 1 (x 0 )\ Σ u = u Σ on (Σ ∩B r 1 (x 0 )) ∪ ∂B r 1 (x 0 ), which means that w -u Σ ∈ W 1,p 0 (B r 1 (x 0 )\ Σ) and Br 1 (x 0 )
|∇w| p-2 ∇w, ∇ϕ dx = 0 for all ϕ ∈ W 1,p 0 (B r 1 (x 0 )\ Σ).

(7.2.19)

Notice that w exists according to [START_REF] Lindqvist | Notes on the stationary p-Laplace equation[END_REF]Theorem 2.16] and Theorem 3.9.3. Let I(•) be as in Lemma 7.2.2. Using (3.11.11) and Hölder's inequality, we obtain that

I(u Σ ) ≤ C 1 (7.2.20)
for some C 1 = C 1 (N, p, q 0 , q, f q , |Ω|) > 0. Then, applying Lemma 7.2.2 and using (7.2.20), we get .2.21) where C = C(N, p, q 0 , q, f q , |Ω|) > 0 and γ(p, q) is defined in (7.2.18). Let α, δ ∈ (0, 1) and C > 1, depending only on N and p, be as in Lemma 7.1.1, where C is such that the estimate (7.1.1) holds with C replaced by C. Define a = min δ, (2 -p C -1-α ) 1 α . For each N ≥ 2 and p ∈ (N -1, +∞), the constant a is fixed. Applying Lemma 7.2.1 with r = r 1 and = a, we obtain some ε 0 ∈ (0, a) such that under the condition (7.2.16), (7.2.22) Hereinafter in this proof, C denotes a positive constant that can only depend on N, p, q 0 , q, f q , |Ω| and can be different from line to line. Since for any nonnegative numbers c and d, (c + d) p ≤ 2 p-1 (c p + d p ), we have

Br 1 (x 0 ) |∇u Σ -∇w| p dx ≤ Cr 1+γ(p,q) 1 , ( 7 
1 a Bar 1 (x 0 ) |∇w| p dx ≤ C 1+α a α Br 1 (x 0 ) |∇w| p dx ≤ 2 -p Br 1 (x 0 ) |∇w| p dx.
1 a Bar 1 (x 0 ) |∇u Σ | p dx ≤ 2 p-1 a Bar 1 (x 0 ) |∇w| p dx + 2 p-1 a Bar 1 (x 0 ) |∇u Σ -∇w| p dx ≤ 1 2 Br 1 (x 0 ) |∇w| p dx + 2 p-1 a Br 1 (x 0 ) |∇u Σ -∇w| p dx ≤ 1 2 Br 1 (x 0 ) |∇w| p dx + Cr 1+γ(p,q) 1 ≤ 1 2 Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+γ(p,q) 1
, where we have used (7.2.22), (7.2.21), and to obtain the last estimate, Theorem 3.9.3. Dividing the resulting inequality by r 1 , we complete our proof of Lemma 7.2.4.

Finally, by iterating Lemma 7.2.4 in a sequence of balls {B a l r 1 (x 0 )} l , we obtain the desired decay behavior of the p-energy r → Br(x 0 ) |∇u Σ | p dx under flatness control on Σ at x 0 when x 0 ∈ Ω. Lemma 7.2.5. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Then there exist ε 0 , b, r ∈ (0, 1) and C = C(N, p, q 0 , q, f q , |Ω|) > 0 such that the following holds. Assume that Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r 0 ≤ r 1 ≤ r, B r 1 (x 0 ) ⊂ Ω and that for each r ∈ [r 0 , r 1 ] there exists an affine line L = L(r) passing through

x 0 such that d H (Σ ∩B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0 r. Assume also that Σ \ B r 1 (x 0 ) = ∅. Then for all r ∈ [r 0 , r 1 ], Br(x 0 ) |∇u Σ | p dx ≤ C r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b . (7.2.23)
Proof. Let a ∈ (0, 1/2), ε 0 ∈ (0, a) and C = C(N, p, q 0 , q, f q , |Ω|) > 0 be the constants given by Lemma 7.2.4. The definition of q 1 and the assumption q > q 1 have been made in order to guarantee that γ(p, q) > 0, where γ(p, q) is defined in (7. .

Notice that for all t ∈ (0, r],

1 2 t b + t γ(p,q) ≤ (at) b . (7.2.24)
Indeed, since 0 < 2b ≤ γ(p, q), b ≤ ln(3/4)/ ln(a) and a, r ∈ (0, 1), t γ(p,q) ≤ t 2b ≤ r b t b and 3/4 ≤ a b , so

1 2 t b + t γ(p,q) ≤ 1 2 t b + r b t b ≤ 3 4 t b ≤ (at) b .
It is worth noting that Σ ∩ B r 0 (x 0 ) = ∅, which comes from the assumption

d H (Σ ∩ B r 0 (x 0 ), L(r 0 ) ∩ B r 0 (x 0 )) ≤ ε 0 r 0 .
Under the assumptions of Lemma 7.2.5, we can apply Lemma 7.2.4 in all the balls B a l r 1 (x 0 ), l ∈ {0, ..., k}, where k ∈ N is such that a k+1 r 1 < r 0 ≤ a k r 1 . Next, for each r ∈ (0, r 1 ], we define Ψ(r) = 1 r Br(x 0 ) |∇u Σ | p dx, and we prove by induction that for each l ∈ {0, ..., k},

Ψ(a l r 1 ) ≤ 1 2 l Ψ(r 1 ) + C(a l r 1 ) b . (7.2.25)
Clearly (7.2.25) holds for l = 0. Assume that (7.2.25) holds for some l ∈ {0, ..., k -1}.

Then, applying Lemma 7.2.4 and using the induction hypothesis, we get p,q) .

Ψ(a l+1 r 1 ) ≤ 1 2 Ψ(a l r 1 ) + C(a l r 1 ) γ(p,q) ≤ 1 2 1 2 l Ψ(r 1 ) + C(a l r 1 ) b + C(a l r 1 ) γ(
Thanks to (7.2.24), we finally conclude that

Ψ(a l+1 r 1 ) ≤ 1 2 l+1 Ψ(r 1 ) + C(a l+1 r 1 ) b .
Thus (7.2.25) is proved. Now let r ∈ [r 0 , r 1 ] and l ∈ {0, ..., k} be such that a l+1 r 1 < r ≤ a l r 1 . Then

Ψ(r) ≤ 1 a Ψ(a l r 1 ) ≤ 1 a 1 2 l Ψ(r 1 ) + C a (a l r 1 ) b ≤ 2 a (a l+1 ) b Ψ(r 1 ) + C (a l+1 r 1 ) b ≤ C r r 1 b Ψ(r 1 ) + C r b ,
where C = C (a, N, p, q 0 , q, f q , |Ω|) > 0. But a is fixed for each N and p ∈ (N -1, +∞). So we can assume that C depends only on N, p, q 0 , q, f q and |Ω|. This completes our proof of Lemma 7.2.5. where

T x = {x + λg (t) : λ ∈ R}, x = g(t). Let Σ 0 = {x ∈ Σ : t ∈ (0, L), g (t) exists and |g (t)| = 1 whenever g(t) = x}, Σ 1 = {x ∈ Σ 0 : g -1 (x) is finite}, Σ 2 = {x ∈ Σ 1 : if g(t) = g(s) = x then g (t) = ±g (s)}.
By the definition of g, H 1 (Σ\Σ 0 ) = 0. Also H 1 (Σ 0 \Σ 1 ) = 0 because otherwise, applying [START_REF] Federer | Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften[END_REF]Theorem 2.10.43] together with Theorem 3.3.17, we would have

L = L 0 |g (t)| dt = Σ H 0 (g -1 (x)) dH 1 (x) ≥ Σ 0 \Σ 1 H 0 (g -1 (x)) dH 1 (x) = +∞.
Finally, we claim that H 1 (Σ 1 \Σ 2 ) = 0. In fact, for all x ∈ Σ 1 \Σ 2 , in a sufficiently small neighborhood of x there are two different arcs Γ 1 and Γ 2 such that Γ 1 ∩ Γ 2 = {x} and x is an internal point both of Γ 1 and of Γ 2 . Thus one has for the upper density

Θ * 1 (Σ, x) = lim sup →0+ H 1 (Σ ∩ B (x)) 2 ≥ 2.
On the other hand, by Theorem 3.3.24, Θ * 1 (Σ, x) = 1 for H 1 -a.e. x ∈ Σ. Let now x ∈ Σ 2 be given and let {t 1 , ..., t n } = g -1 (x). We define

T x = {x + λg (t i ) : λ ∈ R},
which, by the definition of Σ 2 , does not depend on i ∈ {1, ..., n}. Let I 1 , ..., I n be compact neighborhoods of the points t 1 , ..., t n such that I 1 ∪ ... ∪ I n = [0, L] and such that t i ∈ I j if and only if i = j. Setting Σ i = g(I i ), we obtain that

max y∈Σ∩Br(x) 1 r d(y, T x ∩ B r (x)) = max i∈{1,...,n} max y∈Σ i ∩Br(x) 1 r d(y, T x ∩ B r (x)).
Hence, applying [START_REF] Miranda | On one-dimensional continua uniformly approximating planar sets[END_REF]Lemma 3.2], we find that

max y∈Σ∩Br(x) 1 r d(y, T x ∩ B r (x)) → 0 r→0+ .
This is true for all x ∈ Σ 2 and hence for H 1 -a.e. x ∈ Σ.

Thus, if 2r n /ε 0 < δ/2, we can apply Lemma 7.2.5 to Σ n for the interval [2r n /ε 0 , δ], which says that

Br(x 0 ) |∇u Σn | p dx ≤ C r δ 1+b B δ (x 0 ) |∇u Σn | p dx + Cr 1+b ∀r ∈ 2r n ε 0 , δ ,
where C = C(N, p, q 0 , q, f q , |Ω|) > 0. Hereinafter in this proof, C denotes a positive constant that does not depend on r n and can be different from line to line. Next, using the above estimate for r = 2r n /ε 0 and using also (3.11.11), we get

B 2rn ε 0 (x 0 ) |∇u Σn | p dx ≤ Cr 1+b n for each n ∈ N such that 2r n /ε 0 < δ/2.
Recall that the exponent b given by Lemma 7.2.5 is positive provided q > q 1 , which is one of our assumptions. Now, since Σ is a minimizer of Problem (A) and Σ n is a competitor for Σ, we get the following

0 ≤ F λ,f,Ω (Σ n ) -F λ,f,Ω (Σ) ≤ E f,Ω (u Σ ) -E f,Ω (u Σn ) -λr n ≤ C B 2rn (x 0 ) |∇u Σn | p dx + Cr N +p -N p q n
-λr n (by Corollary 3.10.4)

≤ C B 2rn ε 0 (x 0 ) |∇u Σn | p dx + Cr N +p -N p q n -λr n ≤ Cr 1+b n + Cr N +p -N p q n -λr n .
Notice that N + p -N p /q > 1 if and only if q > N p/(N p -N + 1), which is always true under the assumption q > q 1 . Therefore, letting n tend to +∞, we arrive to a contradiction. This completes the proof of Theorem 8.0.1.

proofs of these lemmas, such a reproduction is possible thanks to Lemma 7.1.2 (see also Lemma 7.1.6 and Corollary 7.1.8).

Every solution to Problem (A) cannot contain quadruple points

We are now ready to prove our remark about singular points of solutions to Problem (A).

Proposition 9.2.1. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 defined in (2.2.1).

Let Σ be a solution to Problem (A). Then Σ ∩ Ω cannot contain quadruple points.

Proof. Assume by contradiction that for some λ > 0 a minimizer Σ of Problem (A) contains a quadruple point x 0 ∈ Σ ∩ Ω. Let ε 0 , b, r, C be the constants of Lemma 9.1.1 and let B t 0 (x 0 ) ⊂ Ω with t 0 < min{r, diam(Σ)/2}. Without loss of generality, we can assume that the set Σ ∩ B t 0 (x 0 ) consists of exactly four distinct C 1 arcs, each of which meets at point x 0 exactly one of the other three at an angle of 180 degrees, and each of the other two at an angle of 90 degrees. Then there exists a cross K passing through x 0 such that for each ε > 0 there exists δ = δ(ε) ∈ (0, t 0 ] such that for all r ∈ (0, δ],

d H (Σ ∩ B r (x 0 ), K ∩ B r (x 0 )) ≤ εr. (9.2.1)
It is also worth noting that each C 1 arc is Ahlfors regular of dimension 1, which can be easily seen using its local parameterization. This implies that Σ ∩ B t 0 (x 0 ) is Ahlfors regular of dimension 1. Therefore, without loss of generality, we can also assume that there exists a positive constant C 0 such that

H 1 (Σ ∩ B r (x 0 )) ≤ C 0 r ∀r ∈ (0, t 0 ]. (9.2.2)
Let us now fix r ∈ (0, t 0 /2]. By the coarea inequality (see Corollary 3.4.2),

H 1 (Σ ∩ B 2r (x 0 )) ≥ 2r 0 H 0 (Σ ∩ ∂B (x 0 )) d > 2r r H 0 (Σ ∩ ∂B (x 0 )) d ,
where the latter estimate comes from the fact that H 0 (Σ ∩ ∂B (x 0 )) ≥ 1 for all ∈ (0, 2r], since x 0 ∈ Σ, Σ is arcwise connected and 2r < diam(Σ)/2. Then there exists ∈

[r, 2r] such that 1 r H 1 (Σ ∩ B 2r (x 0 )) ≥ H 0 (Σ ∩ ∂B (x 0 )).
This, together with (9.2.2), implies that

H 0 (Σ ∩ ∂B (x 0 )) ≤ 2C 0 . (9.2.3)
Let (r n ) n∈N be a sequence of radii such that: 2r n+1 < r n for each n ∈ N; r n → 0 as n → +∞; 2r 0 < δ = δ(ε), where ε ∈ (0, 1) to be determined. By virtue of (9.2.3), there exists n ∈ [r n , 2r n ] such that H 0 (Σ ∩ ∂B n (x 0 )) ≤ 2C 0 . Following [BOS], for each n ∈ N, Due to the condition (9.2.1), each arc γ i,n has H 1 -measure less than or equal to arcsin (ε) n . On the other hand,

H 1 (Σ ∩ B n (x 0 )) ≥ 4 n and H 1 (S 4 (D n )) = √ 2( √ 3 + 1) n ,
where we have used that H (thanks to (9.2.3) and the fact that H 1 (γ i,n ) ≤ arcsin(ε) n ) and √ 2( √ 3 + 1) ≈ 3.86, by choosing ε ∈ (0, ε 0 /2) small enough, we can conclude that there is a constant C > 0 independent of n such that for each n ∈ N,

1 (S 4 (D n )) = H 1 (S 4 (K 0 ∩ ∂B 1 )) n = √ 2( √ 3 + 1) n . Observing that H 1 (G n ) ≤ 2C 0 arcsin(ε) n
H 1 (Σ ∩ B n (x 0 )) -H 1 (Σ n ∩ B n (x 0 )) ≥ C n .
(9.2.4)

Now we want to apply Lemma 9.1.1 to Σ n . If n ≤ ε 0 r 2 and r ∈ (0, δ], then

d H (Σ n ∩ B r (x 0 ), K ∩ B r (x 0 )) ≤ d H (Σ n ∩ B r (x 0 ), Σ ∩B r (x 0 )) + d H (Σ ∩ B r (x 0 ), K ∩ B r (x 0 )) ≤ n + ε 0 r 2 ≤ ε 0 r 2 + ε 0 r 2 = ε 0 r,
where we have used (9.2.1) and the fact that ε ∈ (0, ε 0 /2). So we can apply Lemma 9.1.1 to Σ n , for the interval [ 2 n ε 0 , δ], provided that 2 n ε 0 ≤ δ 2 , and we obtain that

Br(x 0 ) |∇u Σn | p dx ≤ C r δ 1+b B δ (x 0 ) |∇u Σn | p dx + Cr 1+b ∀r ∈ 2 n ε 0 , δ .
Hereinafter in this proof, C denotes a positive constant that does not depend on n and can be different from line to line. Thus, applying the above estimate for r = 2 n ε 0 and using (3.11.11), we have

B 2 n ε 0 (x 0 ) |∇u Σn | p dx ≤ C 1+b n (9.2.5) for all n ∈ N such that 2 n ε 0 ≤ δ 2 .
Recall that the exponent b given by Lemma 9.1.1 is positive provided q > q 1 . Now, using the fact that Σ is a minimizer and Σ n is a competitor for Σ, the estimate (9.2.4), Corollary 3.10.4 and the estimate (9.2.5), we deduce the following

0 ≤ F λ,f,Ω (Σ n ) -F λ,f,Ω (Σ) ≤ E f,Ω (u Σ ) -E f,Ω (u Σn ) -λ C n ≤ C B 2 n (x 0 ) |∇u Σn | p dx + C N +p -N p q n -λ C n ≤ C B 2 n ε 0 (x 0 ) |∇u Σn | p dx + C N +p -N p q n -λ C n ≤ C 1+b n + C N +p -N p q n -λ C n for all n ∈ N such that 2 n ε 0 ≤ δ 2 . Notice that N + p -N p q > 1 if and only if q > N p N p-N +1
, which is fulfilled under the assumption q > q 1 . Finally, letting n tend to +∞, we arrive to a contradiction. This completes our proof of Proposition 9.2.1.

Chapter 10

Proof of partial regularity

In this chapter, we prove the following theorem.

Theorem 10.0.1. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Then there exists a constant α ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem (A). Then for H 1 -a.e. point x ∈ Σ ∩Ω one can find a radius r 0 > 0 depending on x such that Σ ∩B r 0 (x) is a C 1,α regular curve.

We recall that K(Ω) is the class of all closed connected proper subsets of Ω. It is worth noting that the factor λ in the statement of Problem (A) affects the shape of an optimal set minimizing the functional F λ,f,Ω over K(Ω), and, according to Proposition 3.14.1, we know that there exists a number λ 0 = λ 0 (N, p, f, Ω) > 0 such that if λ ∈ (0, λ 0 ], then each minimizer Σ of the functional F λ,f,Ω over K(Ω) has positive H 1 -measure. Throughout this chapter, we assume that λ = λ 0 = 1 for simplicity. This is not restrictive regarding to the regularity theory.

Control on defect of minimality

We begin with the definition of the flatness. Definition 10.1.1. For each closed set Σ ⊂ R N , each point x ∈ R N and each radius r > 0, we define the flatness of Σ in B r (x) as follows

β Σ (x, r) = inf L x 1 r d H (Σ ∩B r (x), L ∩ B r (x)),
where the infimum is taken over the set of all affine lines (1-dimensional planes) L passing through x.

Notice that if β Σ (x, r) < +∞, then there exists a minimizing sequence (L n ) n∈N , and, by Blaschke's theorem (Theorem 3.2.4), there exists an affine line L ⊂ R N passing through x such that up to a subsequence (not relabeled),

d H (L n ∩ B r (x), L ∩ B r (x)) → 0 as n → +∞. Then, since d H (Σ ∩ B r (x), L ∩ B r (x)) ≤ d H (Σ ∩ B r (x), L n ∩ B r (x)) + d H (L n ∩ B r (x), L ∩ B r (x)),
L is a minimizer. Thus, if β Σ (x, r) < +∞, then the infimum above is actually the minimum, and, furthermore, it is easy to see that in this case β

Σ (x, r) ∈ [0, √ 2] and β Σ (x, r) = √ 2 if and only if Σ ∩ B r (x) is a point in ∂B r (x). Proposition 10.1.2. Let Σ ⊂ R N be a closed set, x ∈ R N , r > 0 and κ ∈ (0, 1). If β Σ (x, κr) < +∞, then β Σ (x, κr) ≤ 2 κ β Σ (x, r). (10.1.1) Proof. Since β Σ (x, κr) < +∞, β Σ (x, κr) and β Σ (x, r) belong to [0, √ 2]. Notice that if β Σ (x, r) ≥ κ √ 2
2 , then (10.1.1) becomes trivial. Now let L be an affine line realizing the infimum in the definition of β Σ (x, r). Since Σ ∩ B κr (x) ⊂ Σ ∩ B r (x), the following inequality holds max

y∈Σ∩Br(x) d(y, L ∩ B r (x)) ≥ max y∈Σ∩Bκr(x) d(y, L ∩ B κr (x)). (10.1.2) Let x 0 ∈ L ∩ B κr (x) be a point such that r 0 := d(x 0 , Σ ∩ B κr (x)) = max y∈L∩Bκr(x) d(y, Σ ∩ B κr (x)).
We now distinguish two cases.

Case 1: r 0 = 0. By (10.1.2) and Definition 3.2.1, it follows that

d H (Σ ∩ B r (x), L ∩ B r (x)) ≥ d H (Σ ∩ B κr (x), L ∩ B κr (x)).
Thus

1 κ β Σ (x, r) = 1 κr d H (Σ ∩ B r (x), L ∩ B r (x)) ≥ 1 κr d H (Σ ∩ B κr (x), L ∩ B κr (x)) ≥ β Σ (x, κr)
and therefore in this case (10.1.1) holds. Case 2: r 0 > 0. Since β Σ (x, κr) < +∞, namely Σ ∩ B κr (x) = ∅, by the definitions of x 0 and r 0 , we get that r 0 ≤ |x 0 -x| + κr, because B κr (x) ⊂ B |x 0 -x|+κr (x 0 ). Then, there is a point x 1 ∈ ∂B r 0 (x 0 ) ∩ L ∩ B κr (x), because otherwise r 0 would be greater than |x 0 -x| + κr.

Setting x = x 0 + 1 2 (x 1 -x 0 ) ∈ L ∩ B κr (x), we observe the following: | x -x 0 | = r 0 2 and B r 0 2 ( x) ⊂ B κr (x) ∩ B r 0 (x 0 )
. This, again by the definitions of x 0 and r 0 , implies that B r 0 2 ( x) ∩ Σ = ∅ and therefore 

max y∈L∩Br(x) d(y, Σ ∩ B r (x)) ≥ r 0 2 . ( 10 
(Σ ∩ B r (x), L ∩ B r (x)) ≥ d H (Σ ∩ B κr (x), L ∩ B κr (x)),
leading to (10.1.1). Now we introduce the following notions of the local energy and the density, which will play a crucial role in the proof of partial regularity.

Definition 10.1.3. Let Σ ∈ K(Ω) and τ ∈ [0, √ 2]. For each x 0 ∈ Ω and each r > 0, we define .1.4) Notice that the condition H 1 (Σ ) ≤ 100H 1 (Σ), together with the facts that H 1 (Σ) is finite, Σ ∈ K(Ω), in the definition of w τ Σ above, guarantees that Σ is arcwise connected (see Corollary 3.5.7).

w τ Σ (x 0 , r) = sup Σ ∈K(Ω), Σ ∆ Σ⊂Br(x 0 ) H 1 (Σ )≤100H 1 (Σ), β Σ (x 0 ,r)≤τ 1 r Br(x 0 ) |∇u Σ | p dx. ( 10 
Definition 10.1.4. Let Σ ⊂ R N be H 1 -measurable. For each x 0 ∈ Σ and each r > 0, we define

θ Σ (x 0 , r) = 1 r H 1 (Σ ∩ B r (x 0 )). Remark 10.1.5. Assume that Σ ∈ K(Ω), τ ∈ [0, √ 2], x 0 ∈ Ω and β Σ (x 0 , r) ≤ τ .
Then there exists a solution to problem (10.1.4). Indeed, Σ is a competitor in the definition of w τ Σ (x 0 , r). Thus, according to Proposition 3.11.2, w τ Σ (x 0 , r) ∈ [0, +∞). Let (Σ n ) n∈N be a maximizing sequence in the definition of w τ Σ (x 0 , r). By Theorem 3.2.4, up to a subsequence (which we still denote by the same index), Σ n → Σ in the Hausdorff distance, where Σ ∈ K(Ω). We claim that Σ∆Σ ⊂ B r (x 0 ) and Σ n ∩ B r (x 0 ) → Σ ∩ B r (x 0 ) in the Hausdorff distance. By Proposition 3.2.3, Σ n → Σ in the sense of Kuratowski, because Ω is bounded. Then (P.2) says that Σ\B r (x 0 ) ⊂ Σ\B r (x 0 ), since Σ n \B r (x 0 ) = Σ\B r (x 0 ) for each n ∈ N. Furthermore, if Σ would contain a point x ∈ R N \(Σ ∪ B r (x 0 )), then there would be > 0 such that B (x) ⊂ R N \(Σ ∪ B r (x 0 )) but this would contradict (P.1). Therefore, Σ∆Σ ⊂ B r (x 0 ). On the other hand, (P.2) says that if x n ∈ Σ n ∩ B r (x 0 ), any limit point of (x n ) n belongs to Σ∩B r (x 0 ). Assume by contradiction that for some ξ ∈ Σ∩B r (x 0 ) there is no sequence (x n ) n with x n ∈ Σ n ∩ B r (x 0 ) converging to ξ. According to (P.1), ξ should not belong to B r (x 0 ). So assume that ξ ∈ ∂B r (x 0 ). Again, by (P.1), there exists a sequence (x n ) n converging to ξ such that x n ∈ Σ n \B r (x 0 ) = Σ\B r (x 0 ). But then, since Σ n is closed, ξ ∈ Σ n for all n ∈ N, which yields a contradiction. Thus, Σ ∩ B r (x 0 ) → Σ ∩ B r (x 0 ) in the sense of Kuratowski. This, according to Proposition 3.2.3, proves that Σ n ∩ B r (x 0 ) → Σ ∩ B r (x 0 ) in the Hausdorff distance, which completes the proof of our claim. Now let L n realize the infimum in the definition of β Σn (x 0 , r). By Theorem 3.2.4, possibly passing to a subsequence still denoted by n, for some affine line L passing through x

0 , d H (L n ∩ B r (x 0 ), L ∩ B r (x 0 )) → 0 as n → +∞.
Summing up, we have

Σ n ∩ B r (x 0 ) d H -→ Σ ∩ B r (x 0 ) L n ∩ B r (x 0 ) d H -→ L ∩ B r (x 0 ). (10.1.5) Since for each n ∈ N, β Σn (x 0 , r) ≤ τ , that is 1 r d H (Σ n ∩ B r (x 0 ), L n ∩ B r (x 0 )) ≤ τ,
using (10.1.5), we deduce that β Σ (x 0 , r) ≤ τ . Also, according to Theorem 3.6.3 and the fact that H 1 (Σ n ) ≤ 100H 1 (Σ) for all n ∈ N, H 1 ( Σ) ≤ 100H 1 (Σ). So, Σ is an admissible set for (10.1.4). Furthermore, by Theorem 3.13.1, ∇u Σn converges strongly to ∇u Σ in L p (R N ), and Σ is therefore a maximizer.

We shall use the following proposition in order to establish a decay behavior for w τ Σ (x 0 , r) whenever Σ is flat enough in all balls B r (x 0 ) ⊂ Ω with r ∈ [r 0 , r 1 ].

Proposition 10.1.6. Let Σ ⊂ Ω be closed and arcwise connected, x ∈ Ω, τ ∈ [0, 1/10] and let β Σ (x, r 1 ) ≤ ε for some ε ∈ [0, τ ]. In addition, assume that 0 On the other hand, (10.1.9) where the latter inequality comes because Σ ∆ Σ ⊂ B r and β Σ (x, r 1 ) ≤ ε. In addition, Denote by γ the geodesic in the circle Π ∩ ∂B r connecting y with ξ. Then

< r 0 < r 1 , β Σ (x, r) ≤ τ for all r ∈ [r 0 , r 1 ] and Σ\B r 1 (x) = ∅. If r ∈ [r 0 , r 1 ], then for any closed arcwise connected set Σ ⊂ Ω such that Σ ∆ Σ ⊂ B r (x) and β Σ (x, r) ≤ τ we have that (i) β Σ (x, r 1 ) ≤ 5τ r r 1 + ε, (10.1.6) (ii) β Σ (x, s) ≤ 6τ for all s ∈ [r, r 1 ]. ( 10 
d H (Σ ∩ B r 1 , L 1 ∩ B r 1 ) ≤ d H (Σ ∩ B r 1 , Σ ∩B r 1 ) + d H (Σ ∩B r 1 , L 1 ∩ B r 1 ) ≤ d H (Σ ∩ B r , Σ ∩B r ) + εr 1 ,
d H (Σ ∩ B r , Σ ∩B r ) ≤ d H (Σ ∩ B r , L ∩ B r ) + d H (L ∩ B r , L ∩ B r ) + d H (Σ ∩B r , L ∩ B r ) ≤ 2τ r + d H (L ∩ B r , L ∩ B r ), ( 10 
H 1 (γ) ≤ arcsin(β Σ (x, r))r ≤ arcsin(τ )r ≤ 3 2 τ r,
where we have used the assumption β Σ (x, r) ≤ τ and the fact that arcsin

(t) ≤ 3t/2 for all t ∈ [0, 1/10]. Notice that if y ∈ L , then d H (L ∩ B r , L ∩ B r ) ≤ H 1 (γ), otherwise let ξ ∈ L ∩ ∂B r be such that |y -ξ | = d(y, L ∩ ∂B r
) and let γ be the geodesic in the circle Π ∩ ∂B r connecting y and ξ , where Π is the 2-dimensional plane passing through L and y.

Then, using the assumption β Σ (x, r) ≤ τ and proceeding as before, we get

H 1 (γ ) ≤ 3 2 τ r.
Finally, we can conclude that

d H (L ∩ B r , L ∩ B r ) ≤ H 1 (γ) + H 1 (γ ) ≤ 3τ r.
This, together with (10.1.10), gives the following .1.11) Using (10.1.9) and (10.1.11), we get

d H (Σ ∩ B r , Σ ∩ B r ) ≤ 5τ r. ( 10 
d H (Σ ∩ B r 1 , L 1 ∩ B r 1 ) ≤ 5τ r + εr 1 .
Thus, we have proved (i). Now let s ∈ [r, r 1 ] and let L s be an affine line realizing the infimum in the definition of β Σ (x, s). As in the proof of (i), we get

d H (Σ ∩ B s , L s ∩ B s ) ≤ d H (Σ ∩ B s , Σ ∩B s ) + d H (Σ ∩B s , L s ∩ B s ) ≤ d H (Σ ∩ B r , Σ ∩B r ) + d H (Σ ∩B s , L s ∩ B s ).
This, together with (10.1.11) and the fact that β Σ (x, s) ≤ τ , implies

d H (Σ ∩ B s , L s ∩ B s ) ≤ 5τ r + τ s ≤ 6τ s,
concluding the proof of Proposition 10.1.6.

Hereinafter in this chapter, τ is a fixed constant such that τ ∈ (0, ε 0 /6], where ε 0 is the constant of Lemma 7.2.5. Notice that ε 0 is fairly small. Now we establish a decay behavior for w τ Σ (x, •), provided that β Σ (x, •) is small enough.

Proposition 10.1.7. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Let ε 0 , b, r ∈ (0, 1), C > 0 be the constants of Lemma 7.2.5. Assume that Σ ∈ K(Ω), H 1 (Σ) < +∞, 0 < r 0 ≤ r 1 /10 and B r 1 (x 0 ) ⊂ Ω with r 1 ∈ (0, min{r, diam(Σ)/2}). Assume also that β Σ (x 0 , r) ≤ τ /2 for all r ∈ [r 0 , r 1 ]. Then, for all r ∈ [r 0 , r 1 /10],

w τ Σ (x 0 , r) ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b .
(10.1.12)

Proof. According to Corollary 3.5.7, Σ is arcwise connected. From Remark 10.1.5 it follows that there is Σ r ∈ K(Ω) realizing the supremum in the definition of w τ Σ (x 0 , r) which, by Corollary 3.5.7, is arcwise connected. Furthermore, Proposition 10.1.6 says that β Σr (x 0 , r 1 ) ≤ τ and β Σr (x 0 , s) ≤ 6τ ≤ ε 0 for all s ∈ [r, r 1 ].

Thus, we can apply Lemma 7.2.5 to u Σr , which yields

w τ Σ (x 0 , r) = 1 r Br(x 0 ) |∇u Σr | p dx ≤ C r r 1 b 1 r 1 B r 1 (x 0 ) |∇u Σr | p dx + Cr b ≤ C r r 1 b w τ Σ (x 0 , r 1 ) + Cr b .
Notice that to obtain the last estimate we have used the definition of w τ Σ (x 0 , r 1 ) and the fact that β Σr (x 0 , r 1 ) ≤ τ . Now we are in position to control a defect of minimality via w τ Σ .

Proposition 10.1.8. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1), and let ε 0 , b, r ∈ (0, 1) be the constants of Lemma 7.2.5. Assume that

Σ ∈ K(Ω), H 1 (Σ) < +∞, 0 < r 0 ≤ r 1 /10, B r 1 (x 0 ) ⊂ Ω with r 1 ∈ (0, min{r, diam(Σ)/2}). Assume also that β Σ (x 0 , r) ≤ τ /2
for all r ∈ [r 0 , r 1 ]. Then there exists a constant C > 0, possibly depending only on N, p, q 0 , q, f q , |Ω|, such that if r ∈ [r 0 , r 1 /10], then for any .1.13) Proof. According to Corollary 3.5.7, Σ and Σ are arcwise connected and by Corollary 3.10.4, .1.14) where C = C(N, p, q 0 , q, f q ) > 0. On the other hand, by Proposition 10.1.6,

Σ ∈ K(Ω) satisfying Σ ∆Σ ⊂ B r (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) and β Σ (x 0 , r) ≤ τ , E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b . ( 10 
E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C B 2r (x 0 ) |∇u Σ | p dx + Cr N +p -N p q , ( 10 
β Σ (x 0 , r 1 ) ≤ τ and β Σ (x 0 , s) ≤ ε 0 for all s ∈ [r, r 1 ].
Thus, applying Lemma 7.2.5 to u Σ , we obtain that (10.1.15) where C = C(N, p, q 0 , q, f q , |Ω|) > 0. Hereinafter in this proof, C denotes a positive constant that can only depend on N, p, q 0 , q, f q , |Ω| and can be different from line to line. Using (10.1.14),(10.1.15) and the fact that r N +p -N p q < r 1+b (because r ∈ (0, 1) and 0 < b < N -1 + p -N p /q), we deduce the following chain of estimates

B 2r (x 0 ) |∇u Σ | p dx ≤ C 2r r 1 1+b Br 1 (x 0 ) |∇u Σ | p dx + C(2r) 1+b ,
E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C r r 1 1+b B r 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ≤ Cr r r 1 b 1 r 1 Br 1 (x 0 ) |∇u Σ | p dx + Cr 1+b ≤ Cr r r 1 b w τ Σ (x 0 , r 1 ) + Cr 1+b ,
where the last estimate is obtained using the definition of w τ Σ (x 0 , r 1 ) and the fact that β Σ (x 0 , r 1 ) ≤ τ . This completes the proof of Proposition 10.1.8.

Density control

The following proposition says that there exists a constant κ ∈ (0, 1/100) such that if Σ is a solution to Problem (A), β Σ (x 0 , r), w τ Σ (x 0 , r) are fairly small provided that B r (x 0 ) ⊂ Ω with x 0 ∈ Σ, and if θ Σ (x 0 , r) is also small enough, then there exists t ∈ [κr, 2κr] such that H 0 (Σ ∩ ∂B t (x 0 )) = 2. This allows to construct a nice competitor for Σ and derive the estimate (10.2.4) leading to the regularity. Proposition 10.2.1. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Then there exist δ, ε, κ ∈ (0, 1/100) and C = C(N, p, q 0 , q, f q , |Ω|) > 0, where q 0 is defined in (2.1.1), such that the following holds. Assume that Σ is a solution to Problem (A), x 0 ∈ Σ, 0 < r < min{δ, diam(Σ)/2}, B r (x 0 ) ⊂ Ω and

β Σ (x 0 , r) + w τ Σ (x 0 , r) ≤ ε. (10.2.1) Assume also that θ Σ (x 0 , r) ≤ 10µ, (10.2.2)
where µ is a unique positive solution to the equation µ = 5 + µ 1-1 N . Then the following assertions hold.

(i) There exists t ∈ [κr, 2κr] such that

H 0 (Σ ∩ ∂B t (x 0 )) = 2. (10.2.3) (ii) Let t ∈ [κr, 2κr] be such that H 0 (Σ ∩∂B t (x 0 )) = 2. Then (ii-1) the two points of Σ ∩∂B t (x 0 ) belong to two different connected components of ∂B t (x 0 ) ∩ {y : d(y, L) ≤ β Σ (x 0 , t)t},
where L is an affine line realizing the infimum in the definition of β Σ (x 0 , t). (10.2.4) where b ∈ (0, 1) is the constant given by Lemma 7.2.5.

(ii-2) Σ ∩B t (x 0 ) is arcwise connected. (ii-3) If {z 1 , z 2 } = Σ ∩∂B t (x 0 ), then H 1 (Σ ∩B t (x 0 )) ≤ |z 2 -z 1 | + Ct t r b w τ Σ (x 0 , r) + Ct 1+b ,
Remark 10.2.2. If the situation of item (ii-1) occurs, we say that the two points lie "on different sides".

Proof. Let ε 0 , b, r ∈ (0, 1) be the constants of Lemma 7. (10.2.9) where the latter estimate comes from the fact that H 0 (Σ ∩ ∂B (x 0 )) ≥ 1 for all ∈ (0, r], since x 0 ∈ Σ, Σ is arcwise connected and r < diam(Σ)/2. Then there exists ∈ [s, (1 + κ)s] such that 1 κs H 1 (Σ ∩ B (1+κ)s (x 0 )) ≥ H 0 (Σ ∩ ∂B (x 0 )).

This, together with (10.2.8) and the fact that s ∈ [κr, 2κr], implies that Then Σ ∈ K(Ω), Σ ∆Σ ⊂ B (x 0 ) and from (10.2.7) it follows that β Σ (x 0 , ) ≤ 2ε/κ. Furthermore, using (10.2.8) and the facts that Σ is arcwise connected and r < diam(Σ)/2, it is easy to see that H 1 (Σ ) ≤ 100H 1 (Σ). Since Σ is a competitor,

H 1 (Σ) ≤ H 1 (Σ ) + E f,Ω (u Σ ) -E f,Ω (u Σ ),
and then, using Proposition 10.1.8, we get

H 1 (Σ ∩ B s (x 0 )) ≤ H 1 (Σ ∩ B (x 0 )) ≤ 2 + H 1 (W ) + C r b w τ Σ (x 0 , r) + C 1+b
≤ 2(1 + κ)s + 10(1 + κ) 2 µ κ 2 β Σ (x 0 , )s (10.2.11)

+ C(1 + κ)s (1 + κ)s r b w τ Σ (x 0 , r) + C((1 + κ)s) 1+b ,
where we have used that H 1 (W ) ≤ (H 0 (Σ ∩ ∂B (x 0 )))β Σ (x 0 , ) , (10.2.10) and the fact that ≤ (1 + κ)s. Now we define the next three sets We claim that either E 1 = ∅ or E 1 ⊂ (0, κr/200). Assume by contradiction that there exists some t ∈ [κr/200, 2κr] such that H 0 (Σ ∩∂B t (x 0 )) = 1. Then the set Σ = Σ\B t (x 0 ) would be arcwise connected, Σ ∆ Σ ⊂ B t (x 0 ), H 1 (Σ ) < H 1 (Σ) and β Σ (x 0 , r) ≤ 2κ + ε < τ.

(10.2.12)

Since Σ is a competitor, H 1 (Σ) ≤ H 1 (Σ ) + E f,Ω (u Σ ) -E f,Ω (u Σ ). On the other hand, we observe that t ≤ H 1 (Σ ∩ B t (x 0 )), because t < diam(Σ)/2, x 0 ∈ Σ and Σ is arcwise connected (see Lemma 3.5.4). Thus

t ≤ H 1 (Σ ∩ B t (x 0 )) ≤ E f,Ω (u Σ ) -E f,Ω (u Σ ).
(10.2.13) Notice that, by assumption, the estimate (10.1.13) holds with C, but looking at the proof of Proposition 10.1.8, we observe that (3.10.7) in Corollary 3.10.4 also holds with C. Then, using (10.2.13), Corollary 3.10.4, the fact that t N +p -N p q < t 1+b (because t ∈ (0, 1) and 0 < b < N -1 + p -N p /q) and (10.2.12) together with the definition of w τ Σ (x 0 , r), we obtain the following chain of estimates This completes the proof of (i).

t ≤ H 1 (Σ ∩ B t (x 0 )) ≤ E f,Ω (u Σ ) -E f,Ω (u Σ ) ≤ C B 2t (x 0 ) |∇u Σ | p dx + Ct N +p -N p q ≤ C Br(x 0 ) |∇u Σ | p dx + Cr 1+b
Step 2. We prove (ii). Let t ∈ E 2 ∩ [κr, 2κr]. Assume that (ii-1) does not hold for t. Let L be an affine line realizing the infimum in the definition of β Σ (x 0 , t), {P 1 , P 2 } = L ∩ ∂B t (x 0 ) and {z 1 , z 2 } = Σ ∩ ∂B t (x 0 ). Assume that d(z i , {P 1 , P 2 }) = d(z i , P 2 ), i = 1, 2. Then we can take as a competitor the set

Σ = (Σ \B t (x 0 )) ∪ γ z 1 ,P 2 ∪ γ z 2 ,P 2 ,
where γ z i ,P 2 is the geodesic in ∂B t (x 0 ) connecting z i and P 2 for i = 1, 2. So H 1 (Σ ∩B t (x 0 )) ≤ H 1 (γ z 1 ,P 2 ) + H 1 (γ z 2 ,P 2 ) + E f,Ω (u Σ ) -E f,Ω (u Σ ).

Arguing as in the proof of the fact that E 1 ⊂ (0, κr/200) in Step 1, we obtain the estimate E f,Ω (u Σ ) -E f,Ω (u Σ ) < κr 200 .

In addition, thanks to (10.2.7) and to the fact that arcsin(s) ≤ 2s for all s ∈ [0, 1/10],

H 1 (γ z 1 ,P 2 ) + H 1 (γ z 2 ,P 2 ) ≤ 2t arcsin(β Σ (x 0 , t)) ≤ 8εt κ .

Proof. Let ε 0 , b, r ∈ (0, 1) be the constants of Lemma 7.2.5 and let C > 0 be the constant of Proposition 10.1.8. Recall that τ ∈ (0, ε 0 /6]. We define δ, ε ∈ (0, 1) as follows (10.2.20) where c 0 > 0 is a constant that will be fixed later for the proof to work. It is worth noting that, according to (10.1.1) and (10. where the latter inequality comes from the fact that for all ∈ (0, r], H 0 (Σ ∩ ∂B (x 0 )) ≥ 1, since Σ is arcwise connected (see Corollary 3.5.7), x 0 ∈ Σ and r < diam(Σ)/2. Then there exists ∈ [ar, 2ar] such that H 0 (Σ ∩ ∂B (x 0 )) ≤ 1 a θ Σ (x 0 , r).

δ = min    r, 1 4C 1 b    , ε = a 2 c 0 τ 10 7 ,
(10.2.22)

Next, we construct the competitor Σ for Σ such that Σ ∆Σ ⊂ B (x 0 ), H 1 (Σ ) ≤ 100H 1 (Σ) and β Σ (x 0 , ) ≤ β Σ (x 0 , ). Let L ⊂ R N be an affine line realizing the infimum in the definition of β Σ (x 0 , ). We denote by A 1 and A 2 the two points in ∂B (x 0 ) ∩ L and denote by G n the set of all points (x , x N ) in [-1, 1] N such that nx i ∈ Z for all i = 1, ..., N except for at most one (i.e., G n is a uniform 1-dimensional grid of step 1/n in [-1, 1] N ). Notice that G n is arcwise connected and 10.2.23) for all y ∈ [-1, 1] N . Let h : R N → R N be the rotation around the origin such that h(Re N ) = L -x 0 , where {e 1 , ..., e N } is the canonical basis for R N . Next, we define

H 1 (G n ) ≤ 2 N N (n + 1) N -1 , dist(y, G n ) ≤ √ N 2n ( 
Q i n := A i + β Σ (x 0 , ) h(G n ), i = 1, 2.
In addition, we observe that

Σ∩∂B (x 0 ) ⊂ ∂B (x 0 )∩ x ∈ R N : d(x, L) ≤ β Σ (x 0 , ) ⊂ 2 i=1 A i +β Σ (x 0 , ) h [-1, 1] N .
For each point z j ∈ Σ ∩ ∂B (x 0 ), we denote by z n j an arbitrary projection of

z j to Q 1 n ∪ Q 2 n
and by [z j , z n j ] the segment connecting these two points. Then the set

S n = Q 1 n ∪ Q 2 n ∪   H 0 (Σ∩∂B (x 0 )) j=1 [z j , z n j ]  
contains all the points of Σ ∩ ∂B (x 0 ), S n ∪ (L ∩ B (x 0 )) is arcwise connected, and, using (10.2.23), we have that

H 1 (S n ) ≤ 2 N +1 N (n + 1) N -1 β Σ (x 0 , ) + √ N 2n H 0 (Σ ∩ ∂B (x 0 ))β Σ (x 0 , ) .
Let S n be the projection of S n to {x ∈ R N : d(x, L) ≤ β Σ (x 0 , ) } ∩ B (x 0 ). Since the projection onto a nonempty closed convex set is a 1-Lipschitz mapping, by Proposition 3.3.5 (iv ), H 1 ( S n ) ≤ H 1 (S n ). Moreover, notice that S n ∪ (L ∩ B (x 0 )) is arcwise connected. Thus, defining Σ = (Σ\B (x 0 )) ∪ S n ∪ (L ∩ B (x 0 ))

and choosing n = (H 0 (Σ ∩ ∂B (x 0 )))

1 N , where • denotes the integer part, we observe that H 1 ( S n ) ≤ M 0 (H 0 (Σ ∩ ∂B (x 0 ))) 1-1 N β Σ (x 0 , ) , (10.2.24)

where M 0 = M 0 (N ) > 0. Now we can set (10.2.25) Thanks to (10.2.22) and (10.2.24), we obtain

c 0 = (M 0 C) -1 .
H 1 ( S n ) < M 0 1 a θ Σ (x 0 , r) 1-1 N β Σ (x 0 , ) .
This, together with (10.2.21), (10.2.20), (10.2.25) and the fact that 2 ≤ 4ar < diam(Σ) ≤ H 1 (Σ), implies the following H 1 (Σ ) < 100H 1 (Σ).

Also notice that Σ ⊂ Ω is closed, arcwise connected, Σ ∆Σ ⊂ B (x 0 ),

β Σ (x 0 , ) ≤ β Σ (x 0 , ) ≤ 2ε a < τ
(see (10.2.21), (10.2.20)). So we can apply Proposition 10.1.8 to Σ and Σ . Thus, by the optimality of Σ and Proposition 10.1.8,

H 1 (Σ) ≤ E f,Ω (u Σ ) -E f,Ω (u Σ ) + H 1 (Σ ) ≤ C r b w τ Σ (x 0 , r) + C 1+b + H 1 (Σ ). Altogether we have H 1 (Σ ∩ B ar (x 0 )) ≤ H 1 (Σ ∩ B (x 0 )) ≤ C r b w τ Σ (x 0 , r) + C 1+b + 2 + M 0 1 a θ Σ (x 0 , r) 1-1 N β Σ (x 0 , ) .
Next, recalling that ∈ [ar, 2ar], r < δ, (2a) b < 1 and (10.2.21), we obtain θ Σ (x 0 , ar) ≤ 2C w τ Σ (x 0 , r) + δ b + 4 + 4εM 0 a 1 a θ Σ (x 0 , r)

1-1 N .
However, this, together with (10.2.18), (10.2.20) and (10.2.25), yields the estimate θ Σ (x 0 , ar) ≤ 5 + θ Σ (x 0 , r) 1-1 N and completes the proof of Proposition 10.2.4.

Control of the flatness

The following result is a refined version of [START_REF] Chambolle | Regularity for the optimal compliance problem with length penalization[END_REF]Lemma 5.14] and will be used to establish a control on β Σ via w τ Σ .

Lemma 10.3.1. Let γ : [0, 1] → R N be a curve such that Γ := γ([0, 1]) ⊂ B r (x 0 ). Assume that ξ 1 = γ(0) ∈ ∂B r (x 0 ) and ξ 2 = γ(1) ∈ ∂B r (x 0 ). Then On the other hand, H 1 (Γ) ≥ 2|z -ξ 2 |. Then, using the Pythagorean theorem, we get

h 2 = |z -ξ 2 | 2 - |ξ 1 -ξ 2 | 2 4 = |z -ξ 2 | - |ξ 1 -ξ 2 | 2 |z -ξ 2 | + |ξ 1 -ξ 2 | 2 ≤ H 1 (Γ) 2 - |ξ 1 -ξ 2 | 2 (3r + r) = 2r(H 1 (Γ) -|ξ 1 -ξ 2 |).
This completes the proof of Lemma 10.3.1.

In the following proposition, we prove that if β Σ (x, r) and w τ Σ (x, r) are pretty small and θ Σ (x, r) is controlled from above by 10µ, where µ is a unique positive solution to the equation µ = 5 + µ 1-1 N , then β Σ , w τ Σ stay small and θ Σ remains controlled from above by 10µ on smaller scales, and, in addition, in some sense w τ Σ controls the square of β Σ .

Proposition 10.3.2. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Then there exist constants a, r 0 ∈ (0, 1/100), b ∈ (0, 1), 0 < δ 1 < δ 2 < 1/100 and C = C(N, p, q 0 , q, f q , |Ω|) > 0 with q 0 defined in (2.1.1) such that the following holds. Assume that Σ is a solution to Problem (A), x ∈ Σ, 0 < r < min{r 0 , diam(Σ)/2}, B r (x) ⊂ Ω, w τ Σ (x, r) ≤ δ 1 , β Σ (x, r) ≤ δ 2 and θ Σ (x, r) ≤ 10µ, (10.3.1)

where µ > 0 is a unique positive solution to the equation µ = 5 + µ 1-1 N . Then (10.3.4) Proof. Let C 0 be the constant such that the estimate (7.2.23) holds with C 0 , and let C 1 be the constant such that the estimate (10.2.4) holds with C 1 . Without loss of generality, we can assume that C 0 < C 1 . Let b ∈ (0, 1) be the constant of Lemma 7.2.5, and let a, δ, ε, κ ∈ (0, 1/100) be such that δ, ε, κ are the constants of Proposition 10. where the latter estimate holds because ((4κrM )

1 2 + M )/t < 1/10 and arcsin(s) ≤ 2s for all s ∈ [0, 1/10]. Using (10.3.7) together with (10.3.8) and (10.3.9), we obtain that d H (Σ ∩B t (x), L ∩ B t (x)) ≤ 3((4κrM )

1 2 + M )
and hence β Σ (x, t) ≤ 3((4κrM ) 1 2 + M )/t. Next, since t ∈ [κr, 2κr] and a ∈ (0, κ], if ar = λt for some λ ∈ (0, 1], then 2/λ ≤ 4κ/a and, thanks to (10.1.1), 0 , (10.3.1) and (10.3.6). We have proved the assertions (i), (ii) and that w τ Σ (x, ar) ≤ δ 1 , β Σ (x, ar) ≤ δ 2 .

β Σ (x, ar) = β Σ (x, λt) ≤ 4κ a β Σ (x, t) ≤ 12 ar ( (4κrM ) 
Step 2. We prove (iii). Recall that a, δ, ε ∈ (0, 1/100) are the constants of Proposition 10.2.4 and, by definition, δ 1 < δ 2 = aε/2. Then, according to (10.3.1), β Σ (x, r) + w τ Σ (x, r) ≤ ε.

Thus, applying Proposition 10.2.4 and using again (10.3.1), we get θ Σ (x, ar) ≤ 5 + θ Σ (x, r) 1-1 N ≤ 5 + (10µ) 1-1 N ≤ 10 5 + µ 1-1 N = 10µ.

At this point, we have shown that (10.3.1) holds with r replaced by ar. So, repeating the arguments above, we observe that (10.3.1) holds with r replaced by a 2 r. Therefore, iterating, we deduce (iii). This completes the proof of Proposition 10.3.2. Now we prove that there exist a critical threshold δ 0 ∈ (0, 1/100) and an exponent α ∈ (0, 1) such that if β Σ (x, r) + w τ Σ (x, r) falls below δ 0 and if θ Σ (x, r) is small enough for x ∈ Σ ∩Ω and fairly small r > 0, then β Σ (x, ) ≤ C α for all sufficiently small > 0, where C > 0 is a constant independent of x but depending on r. This leads to the C 1,α regularity.

Proposition 10.3.3. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Let a ∈ (0, 1/100) be the constant of Proposition 10.3.2. Then there exist constants δ 0 , r 0 ∈ (0, 1/100) and α ∈ (0, 1) such that the following holds. Assume that Σ is a solution to Problem (A). If x ∈ Σ and 0 < r < min{r 0 , diam(Σ)/2} satisfy B r (x) ⊂ Ω, and for some constant C = C(N, p, q 0 , q, f q , |Ω|, r) > 0, where q 0 is defined in (2.1.1).

Proof. Let a, δ 1 , r 0 ∈ (0, 1/100), b ∈ (0, 1) and C > 0 be as in Proposition 10.3.2. We define It is easy to check that for all t ∈ (0, r 0 ], (10.3.15) Indeed, since 0 < 2γ ≤ b, γ ≤ ln(3/4)/ ln(a) and a, r 0 ∈ (0, 1), t b ≤ t 2γ ≤ r γ 0 t γ and 3/4 ≤ a γ , so

1 2 t γ + t b ≤ (at) γ .
1 2 t γ + t b ≤ 1 2 t γ + r γ 0 t γ ≤ 3 4 t γ ≤ (at) γ .
We prove by induction that for all n ∈ N, (10.3.16) Clearly, (10.3.16) holds for n = 0. Suppose (10.3.16) holds for some n ∈ N. Then, applying (10.3.3) with r replaced by a n r and using the induction hypothesis, we get

w τ Σ (x, a n r) ≤ 1 2 n w τ Σ (x, r) + C(a n+1 r) γ .
w τ Σ (x, a n+1 r) ≤ 1 2 w τ Σ (x, a n r) + C(a n+1 r) b ≤ 1 2 n+1 w τ Σ (x, r) + C 2 (a n+1 r) γ + C(a n+1 r) b ≤ 1 2 n+1 w τ Σ (x, r) + C(a n+2 r) γ ,
where the last estimate comes by using (10.3.15). This proves (10.3.16). Now let ∈ (0, ar) and let l ≥ 1 be the integer such that a l+1 r < ≤ a l r. Then, using if necessary (10.1.1), we see that β Σ (x, ) ≤ 2β Σ (x, a l r)/a. Furthermore, Proposition 10.3.2 (i) says that β Σ (x, a l r) ≤ C(w τ Σ (x, a l-1 r))

1 2 + C(a l-1 r) b 2 .
On the other hand, using (10.3.16) and the fact that w τ Σ (x, r) < 1, we get

w τ Σ (x, a l-1 r) ≤ 1 2 l-1 w τ Σ (x, r) + C(a l r) γ ≤ C 3 4 l+1 + C (a l+1 r) γ ≤ C a γ(l+1) + C γ ≤ C r γ + C γ
for some C = C (N, p, q 0 , q, f q , |Ω|) > 0. So we can control β Σ (x, ) as follows β Σ (x, ) ≤ 2 a β Σ (x, a l r) ≤ 2C a (w τ Σ (x, a l-1 r))

1 2 + 2C a (a l-1 r) b 2 ≤ C r γ 2 + C γ 2 + C b 2 ≤ C γ 2 (γ ≤ b/2),
where C = C(N, p, q 0 , q, f q , |Ω|, r) > 0. where C = C(N, p, q 0 , q, f q , |Ω|, r) > 0. In particular, there exists t 0 ∈ (0, 1) such that Σ ∩B t 0 (x) is a C 1,α regular curve. (10.3.19) Thus β Σ (y, r/10) ≤ δ 0 /2. Next, let Σ realize the supremum in the definition of w τ Σ (y, r/10). Such Σ exists due to the condition β Σ (y, r/10) ≤ δ 0 /2 ≤ τ (see Remark 10.1.5). Let us prove that β Σ (x, r) ≤ τ . First, notice that β Σ (y, r/10) ≤ τ . Let L be an affine line realizing the infimum in the definition of β Σ (y, r/10). We have that where we have used the fact that δ 0 is small enough with respect to τ . This, together with (10.3.20), gives the following

d H (Σ ∩ B r (x), L 0 ∩ B r (x)) ≤ τ r,
where we again used the fact that δ 0 is small enough with respect to τ . So β Σ (x, r) ≤ τ . Then we have that On the other hand, θ Σ (y, r/10) ≤ 10θ Σ (x, r) ≤ 10µ. Then, according to Proposition 10.3.3, β Σ (y, ) ≤ C α for all ∈ (0, ar/10). Since the point y was arbitrarily chosen in Σ ∩B ar/10 (x), by Proposition A.0.3, there exists t 0 ∈ (0, ar/10) such that Σ ∩B t 0 (x) is a C 1,α regular curve.

10.4 Proof of Theorem 10.0.1

In this short section, we finally prove our main theorem.

Proof of Theorem 10.0.1. Let ε 0 , b, r ∈ (0, 1), C > 0 be the constants of Lemma 7.2.5. Since closed connected sets with finite H 1 -measure are H 1 -rectifiable (see Theorem 3. We claim that w τ Σ (x, r) → 0 as r → 0+. Indeed, by (10.4.3), for any ε ∈ (0, ε 0 ) there is t ε ∈ (0, r) such that β Σ (x, r) ≤ ε for all r ∈ (0, 

λ i v i = v 1 + k i=2 λ i (v i -v 1 )
and hence affine span({v 1 , ..., v k }) ⊂ (v 1 + span({v i -v 1 , i ∈ {2, ..., k}})).

(A.1.9)

To prove the reverse inclusion, fix an arbitrary v ∈ span({v i -v 1 , i ∈ {2, ..., k}}). Then there exist λ 2 , ..., λ k ∈ R such that v = k i=2 λ i (v i -v 1 ). Setting λ 1 = 1 -k i=2 λ i , we get that k i=1 λ i = 1 and k i=1 λ i v i = v 1 + v. Then v 1 + v ∈ affine span({v 1 , ..., v k }) and, since v was arbitrarily chosen in span({v i -v 1 , i ∈ {2, ..., k}}), (v 1 + span({v i -v 1 , i ∈ {2, ..., k}})) ⊂ affine span({v 1 , ..., v k }).

This, together with (A.1.9), implies that affine span({v 1 , ..., v k }) = (v 1 + span({v i -v 1 , i ∈ {2, ..., k}})).

Therefore affine span({v 1 , ..., v k }) is closed. λ i v i = 0, then λ i = 0 ∀i ∈ {1, ..., k}.

The following two characterizations of an affinely independent collection of vectors in R N hold.

Figure 1

 1 Figure 1.1.1: Trois cas pour Σ ∩ B 1 si ( u, Σ) est un minimiseur global pour le Problème (A) dans le cas où N = p = 2.

Ω

  |σ x,r | p dy = Ω\Br(x) |∇u Σ | p dy + Br(x) |∇u| p dy ≤ Ω\Br(x) |∇u Σ | p dy + Cr, (1.3.3) où C est une constante positive indépendante de x et r. Dans la suite de cette explication de la preuve de l'Ahlfors régularité, C désigne une constante positive indépendante de x et r, qui peut être différente d'une ligne à l'autre. Puisque (|∇u Σ | p-2 ∇u Σ , Σ) est un minimiseur du Problème (A * ) et (σ x,r , Σ x,r ) est son compétiteur,

Figure 2

 2 Figure 2.1.1: Three cases for Σ ∩ B 1 if ( u, Σ) is a global minimizer for Problem (A) in the case when N = p = 2.

  is called the Hausdorff dimension of E. In the following, for each H d -measurable set E ⊂ R N , we denote the restriction of H d to E by H d E. Definition 3.3.7. Let µ be a nonnegative Radon measure in an open set U ⊂ R N and d ≥ 0. The upper and lower d-dimensional densities of µ at x are respectively defined by

  Remark 3.3.10. Let E ⊂ R N be H d -measurable set with H d (E) < +∞. If d = 0 or d = N , then the density Θ d (E, x) exists and coincides with the indicator function 1

  . < t m = b of [a, b]. Lemma 3.5.1. Let ψ : [a, b] → R N be a continuous such that ψ(a) = ψ(b). Then ψ([a, b]) contains an arc connecting ψ(a) with ψ(b).

  Let p ∈ (N, +∞). Then there exists C = C(N, p) > 0 such that for any nonempty set E ⊂ R N , Cap p (E) ≥ C. We can take C = Cap p ({0}), which is positive by[START_REF] Adams | Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften[END_REF] Proposition 2.6.1 (a)], and use the fact that the Bessel (1, p)-capacity is invariant under translations and is nondecreasing with respect to set inclusion.Corollary 3.7.4. Let p ∈ (1, +∞), E ⊂ R N , dim H (E) = 1 and H 1 (E) < +∞. Then Cap p (E) > 0 if and only if p ∈ (N -1, +∞).Proof of Corollary 3.7.4. If p > N , then by Remark 3.7.3, Cap p (E) > 0. Assume by contradiction that Cap p (E) = 0 for some p ∈ (N -1, N ]. Taking ε = (p -N + 1)/2 so that 0 < N -p + ε < 1, by Theorem 3.7.2 we get, H N -p+ε (E) = 0, but this leads to a contradiction with the fact that dim H (E) = 1. On the other hand, if p ∈ (1, N -1], then H N -p (E) < +∞ and by Theorem 3.7.2, Cap p (E) = 0. This completes the proof of Corollary 3.7.4. Proposition 3.7.5. Let

  Let Y ⊂ R N be an open set and p ∈ (1, +∞). Then for each u ∈ W 1,p (Y ) there exists a p-quasi continuous function u ∈ W 1,p (Y ), which is uniquely defined up to a set of Cap p -capacity zero and u = u a.e. in Y .

  Let p ∈ (1, +∞) be given and suppose that u is a continuous weak supersolution to the p-Laplace equation in a bounded open set U ⊂ R N , and v is a continuous weak subsolution to the p-Laplace equation in U . If lim sup x→y v(x) ≤ lim inf x→y u(x)

Proof.

  Let 0 < ≤ R. Every ball in this proof is centered at x 0 . We shall use the notation M ( ) = sup B u and m( ) = inf B u. By applying the Harnack inequality to the p-harmonic function u -m( ), we get M 2 -m( ) ≤ C m 2 -m( ) , (3.9.13) where C = C(N, p) > 2. Set a = (C -1)/C. We claim that osc u, B 2 ≤ a osc(u, B ).

  , b] and for s ≥ b define H to be linear. Next, we set w = u + + k and take v = G(w) = w k |H (s)| p ds in the equality (3.11.1). By the chain rule, [GT, Theorem 7.8], v is a legitimate test function in (3.11.1) and on substitution we obtain U |∇w| p G (w) dx = U f G(w) dx.

  to get H(w) N p/( N -p) ≤ Ĉ ∇H(w) p (3.11.5) where N = N , Ĉ = Ĉ(N, p) > 0 if N > p and N < N < qp, Ĉ = Ĉ(N, p, |U |) > 0 if N = p. By (3.11.4) and (3.11.5), H(w) N p/( N -p) ≤ C wH (w) pq/(q-1)

Figure 4

 4 Figure 4.2.1: Construction of the N -cubes Q(ξ n ) and the crack sets S(ξ n ) in the proof of Theorem 4.2.1.

  and λ p /γ is strictly less than one for all γ ∈ [γ Σ (x 0 , 0, r 1 ), 2π] if p ∈ (1, 2) ∪ (2, +∞); see Figure6.2.1.

Figure 6

 6 Figure 6.2.1: The blue curve is the graph of p → λp π for p ∈ (1, 10 5 ]. The orange curve is the graph of p → 1 for p ∈ (1, 10 5 ]. The blue curve touches the orange curve only at one point (2, 1), i.e., when p = 2.

Br

  |∇u| p dx ≤ Cr 1+α B 1 |∇u| p dx for all r ∈ (0, δ].(7.1.1)

Figure 7

 7 Figure 7.1.1: In the proof of Lemma 7.1.1 we estimate on ∂ |x | < δ 0

  Let p ∈ (N -1, +∞). There exist α, δ ∈ (0, 1) and C > 0, depending only on N and p,such that if u ∈ W 1,p (B 1 ) is a weak solution to the p-Laplace equation in B 1 \E, where E = ((-1, 1) × {0} N -1 ) ∪ ({0} N -1 × (-1, 1)), satisfying u = 0 p-q.e.on E, then Br |∇u| p dx ≤ Cr 1+α B 1 |∇u| p dx for all r ∈ (0, δ]. (7.1.8)

  we define the set D n = K ∩ ∂B n (x 0 ) which consists of exactly four points. Denote by S 4 (D n ) ⊂ B n (x 0 ) a closed set of minimum H 1 -measure in the ball B n (x 0 ) which connects the all four points of D n (as in[BOS], we shall call it a Steiner connection of the points of D n ; for more details on Steiner connections, see, for instance[GP, Pol, DHST]); see Figure9.2.1.

Figure 9

 9 Figure 9.2.1: Steiner's connection of the vertices of a square.

Figure 9

 9 Figure 9.2.2: The set Σ n ∩ B δ (x 0 ) in dimension 2.

  .1.7)Proof. Every ball in this proof is centered at x. Let L 1 , L and L realize the infimum, respectively, in the definitions of β Σ (x, r 1 ), β Σ (x, r) and β Σ (x, r). Notice that d H (Σ ∩B r , L ∩ B r ) ≤ τ r.(10.1.8)

  .1.10) where we have used (10.1.8) and the assumption β Σ (x, r) ≤ τ . Notice that, since Σ∩B r = ∅, Σ\B r 1 = ∅ and Σ is arcwise connected, there is a sequence (x n ) n ⊂ Σ\B r converging to some point y ∈ ∂B r . We conclude that y ∈ Σ ∩ Σ ∩ ∂B r because Σ ∆Σ ⊂ B r and Σ , Σ are closed. If y ∈ L ∩ L , then L = L . Assume that y ∈ L. Let Π be the 2-dimensional plane passing through L and y, and let ξ ∈ L ∩ ∂B r be such that |y -ξ| = d(y, L ∩ ∂B r ).

  δ ∈ (0, r) such that δ b ≤ ε and hencew τ Σ (x 0 , r) + δ b ≤ 2ε. (10.2.6)Step 1. Let us first prove (i). Thanks to (10.1.1) and (10.2.1), for all s ∈ [κr, r], it holdsβ Σ (x 0 , s) hand, for all s ∈ [κr, r],θ Σ (x 0 , s) estimate is due to (10.2.2). Fix an arbitrary s ∈[κr, 2κr]. By the coarea inequality (see Corollary 3.4.2),H 1 (Σ ∩ B (1+κ)s (x 0 )) ≥ (1+κ)s 0 H 0 (Σ ∩ ∂B (x 0 )) d > (1+κ)s s H 0 (Σ ∩ ∂B (x 0 )) d ,

  L realize the infimum in the definition of β Σ (x 0 , ) and let{ξ 1 , ξ 2 } = ∂B (x 0 ) ∩ L. For each z i ∈ Σ ∩ ∂B (x 0 ), let z i denote the projection of z i to [ξ 1 , ξ 2 ]. Define W and Σ by W := H 0 (Σ∩∂B (x 0 )) i=1 [z i , z i ], Σ := W ∪ [ξ 1 , ξ 2 ] ∪ (Σ\B (x 0 )).

E 1 :

 1 = {t ∈ (0, 2κr] : H 0 (Σ ∩ ∂B t (x 0 )) = 1}, E 2 := {t ∈ (0, 2κr] : H 0 (Σ ∩ ∂B t (x 0 )) = 2}, E 3 := {t ∈ (0, 2κr] : H 0 (Σ ∩ ∂B t (x 0 )) ≥ 3}.

0 H 0

 00 2.18), for all s ∈ [ar, r], it holds β Σ (x 0 , s) inequality (see Corollary 3.4.2), we getH 1 (Σ ∩ B r (x 0 )) ≥ r (Σ ∩ ∂B (x 0 )) d > 2ar ar H 0 (Σ ∩ ∂B (x 0 )) d ,

  , [ξ 1 , ξ 2 ]) ≤ (2r(H 1 (Γ) -|ξ 2 -ξ 1 |)) Let z ∈ argmax y∈Γ d(y, [ξ 1 , ξ 2 ]). Assume that h := d(z, [ξ 1 , ξ 2 ]) > 0 and |ξ 1 -ξ 2 | > 0, otherwise the proof follows. Let z ∈ R N be a point making (ξ 1 , z , ξ 2 ) an isosceles triangle such that d(z , [ξ 1 , ξ 2 ]) = h. Notice that h ≤ 2r, |ξ 1 -ξ 2 |/2 ≤ r and hence |z -ξ 2 | ≤ h + |ξ 1 -ξ 2 | 2 ≤ 3r.

  (i) β Σ (x, ar) ≤ C(w τ Σ (x, r)) (x, r) + C(ar) b ; (10.3.3) (iii) w τ Σ (x, a n r) ≤ δ 1 , β Σ (x, a n r) ≤ δ 2 , θ Σ (x, a n r) ≤ 10µ for all n ∈ N.

  hand, since κ, w τ Σ (x, r), r ∈ (0, 1/100) and b ∈ (0, 1), we can conclude the following r)+ C 1 t 1+b ≤ C 1 r(w τ Σ (x, r)) 1 2 + C 1 r 1+ b 2 .(10.3.12) By (10.3.10)-(10.3.12), β Σ (x, ar) ≤ C(w τ Σ (x, r)) 24C 1 /a. Using (10.3.1), the above estimate, (10.3.5) and (10.3.6), we get β Σ (x, ar) ≤ C(δ 1 ) that a < 1/100 and β Σ (x, s) is fairly small for all s ∈ [ar, r], so we can apply Proposition 10.1.7 with r 0 = ar and r 1 = r to get the followingw τ Σ (x, ar) ≤ C 0 a b w τ Σ (x, r) + C 0 (ar) b ≤ 1 2 w τ Σ (x,r) + C(ar) b ≤ where we have used that a ≤ (1/2C 0 ) 1 b , C 0 (ar) b < C(ar) b < Cr b 2

  β Σ (x, r) + w τ Σ (x, r) ≤ δ 0 and θ Σ (x, r) ≤ 10µ (10.3.13) with µ being a unique positive solution to the equation µ = 5 + µ 1-1 N , then β Σ (x, ) ≤ C α for all ∈ (0, ar) (10.3.14)

  Setting α = γ/2 and C := C, we complete the proof of Proposition 10.3.3. Corollary 10.3.4. Let Σ be a solution to Problem (A) and a, α, δ 0 , r 0 , µ be the constants as in the statement of Proposition 10.3.3. Assume that x ∈ Σ, 0 < r < min{r 0 , diam(Σ)/2}, B r (x) ⊂ Ω, β Σ (x, r) + w τ Σ (x, r) ≤ ε and θ Σ (x, r) ≤ µ with ε := δ 0 /200. Then for any point y ∈ Σ ∩B ar/10 (x) and radius ∈ (0, ar/10) the following estimate holds β Σ (y, ) ≤ C α ,

  Proof ofCorollary 10.3.4. Recall that a ∈ (0, 1/100). Let y ∈ Σ ∩B ar/10 (x) and L 0 realize the infimum in the definition of β Σ (x, r). Let L be the affine line passing through y and collinear to L 0 ; see Figure10.3.1.

Figure 10

 10 Figure 10.3.1: The geometry in B r (x).

  d H (Σ ∩ B r (x), L 0 ∩ B r (x)) ≤ d H (Σ ∩ B r (x), Σ ∩ B r (x)) + d H (Σ ∩ B r (x), L 0 ∩ B r (x)) ≤ d H (Σ ∩ B r 10 (y), Σ ∩ B r 10 (y)) + d H (Σ ∩ B r (x), L 0 ∩ B r (x)) ≤ d H (Σ ∩ B r 10 (y), L ∩ B r 10 (y)) + d H (L ∩ B r 10 (y), L ∩ B r 10 (y)) + d H (Σ ∩ B r 10 (y), L ∩ B r 10 (y)) + d H (Σ ∩ B r (x), L 0 ∩ B r (x)) ≤ τ r 10 + 5εr + d H (L ∩ B r 10 (y), L ∩ B r 10 (y)),(10.3.20) where we have used (10.3.19) and the facts that β Σ (y, r/10) ≤ τ andβ Σ (x, r) ≤ ε. Notice that, since Σ ∩ B r/10 (y) = ∅, Σ\B r (x) = ∅, B r/10 (y) ⊂ B r (x) and Σ is arcwise connected, there is a sequence (x n ) n ⊂ Σ\B r/10 (y) converging to some point z ∈ ∂B r/10 (y). We conclude that z ∈ Σ ∩ Σ ∩ ∂B r/10 (y) because Σ ∆Σ ⊂ B r/10 (y) and Σ , Σ are closed. If z ∈ L ∩ L , then L = L . Assume that z ∈ L. Let Π be the 2-dimensional plane passing through L and z, and let ξ ∈ L ∩ ∂B r/10 (y) be such that |z -ξ| = d(z, L ∩ ∂B r/10 (y)). Denote by γ the geodesic in the circle Π ∩ ∂B r/10 (y) connecting z with ξ. Then H 1 (γ) ≤ arcsin β Σ yused that β Σ (y, r/10) ≤ δ 0 /2 and that arcsin(t) ≤ 2t for all t ∈ [0, 1/10]. If z ∈ L , then d H (L ∩ B r/10 (y), L ∩ B r/10 (y)) ≤ H 1 (γ), otherwise let ξ ∈ L ∩ ∂B r/10 (y) be such that |z -ξ | = d(z, L ∩ ∂B r/10 (y)) and let γ be the geodesic in the circle Π ∩ ∂B r/10 (y) connecting z and ξ , where Π is the 2-dimensional plane passing through L and z. Then, using that β Σ (y, r/10) ≤ τ , we get H 1 (γ ) ≤ arcsin β Σ ycan conclude that d H (L ∩ B r 10 (y), L ∩ B r 10 (y)) ≤ H 1 (γ) + H 1 (γ ) ≤ τ r 3 ,

  |∇u Σ | p dz ≤ 10 r Br(x) |∇u Σ | p dz ≤ 10w τ Σ (x, r) < δ 0 2 ,where we have used the fact that Σ is a competitor in the definition of w τ Σ (x, r). Thus β

  5.5), then (see Lemma 8.1.2) for H 1 -a.e. point x in Σ there exists the affine line T x passing throughx such that 1 r d H (Σ ∩B r (x), T x ∩ B r (x))for H 1 -a.e. x ∈ Σ, in view of Theorem 3.3.24. Let x ∈ Σ ∩ Ω be such a point that (10.4.1) and (10.4.2) hold with x. According to (10.4.1), β Σ (x, r)

  t ε ]. (10.4.4)We assume that B tε (x) ⊂ Ω, t ε < diam(Σ)/2 and ε < τ /2. Recall that τ ∈ (0, ε 0 /6]. Then, by Proposition 10.1.7, for all r ∈ (0, t ε /10t ε ) + Cr b .(10.4.5)On the other hand, by Remark 10.1.5 and Proposition 3.11.2, w τ Σ (x, t ε ) < +∞. Thus, letting r tend to 0+ in (10.4.5), we getw τ Σ (x, r) → 0 r→0+ . (10.4.6)For each k ≥ 0 and j ∈ J k , denote by π j,k the orthogonal projection from R N onto P (x j,k , 10r k ) and setσ k (x) = x + j∈J k θ j,k (x)(π j,k (x) -x) for x ∈ R N . Atthis point a definition of the sequences σ k and s k is complete. Let us now prove that s : S 0 → Σ 0 is continuous and |s(x) -x| ≤ Cε 0 on S 0 . To begin with, recall a few definitions. Definition A.1.2. The affine span of vectors v 1 , ..., v k in R N is the set affine span({v 1 , ..., v k }) = k i=1 λ i v i : λ i ∈ R for i ∈ {1, ..., k} and Notice that affine span({v 1 , ..., v k }) is a closed subset in R N . Indeed, for each collection {λ 1 , ..., λ k } ⊂ R such that λ 1 + ... + λ k = 1, we have that k i=1

  Vectors v 1 , ..., v k in R N are called affinely independent if whenever k i=1 λ i v i = 0 with k i=1 λ i = 0, then λ i = 0 ∀i ∈ {1, ..., k}. Definition A.1.5. Vectors v 1 , ..., v k in R N are called linearly independent if whenever k i=1

  

  Au total, nous obtenons que Σ est Ahlfors régulier de dimension 1. Nous ne savons pas si la restriction sur les domaines lipschitziens est nécessaire pour prouver l'Ahlfors régularité en dimension 2 des minimiseurs du Problème (A) qui ont au moins deux points. Cependant, nous pouvons toujours nous assurer que pour chaque ensemble ouvert Ω ⊂⊂ Ω, il existe des constantes C 0

r | p dy = Ω\R |∇u Σ | p dy + Ω∩R |∇u| p dy ≤ Ω\R |∇u Σ | p dy + Cr, comme dans le " cas interne " ci-dessus, nous obtenons que H 1 (Σ ∩ B r (x)) ≤ Cr.

  The dependence of u f,Ω,Σ on p is neglected and in the sequel, when it is appropriate, in order to simplify the notation, we shall write u Σ instead of u f,Ω,Σ . For each closed proper subset Σ of Ω we define the p-compliance functional at Σ by

	2.1.3)
	where •, • denotes the Euclidean inner product (see Lemma 3.10.1). If a closed set Σ ⊂ Ω
	has zero p-capacity (for the definition of capacity, see Section 3.7), then u f,Ω,Σ = u f,Ω,∅ (see
	Remark 3.7.11).

  and hence property (P.1) of Proposition 3.2.3 holds. Therefore, by Proposition 3.2.3, d H (K n(k) , K) → 0. This completes the proof of Theorem 3.2.4.

  rectifiable and H d (E) < +∞. For d = 0 countably d-rectifiable and countably H d -rectifiable sets correspond to finite or countable sets, while H d -rectifiable sets correspond to finite sets. According to Proposition 3.3.5, rectifiable sets are stable under Lipschitz transformations. Notice that a set E ⊂ R N is countably H d -rectifiable if and only if H d -almost all of E can be covered by a sequence of Lipschitz d-graphs (see [AFP, Proposition 2.76]).

Now we introduce the class of d-rectifiable measures. Definition 3.3.12. Let µ be a Radon measure in R N . We say that µ is d-rectifiable if there exist a countably H d -rectifiable set S and a Borel function θ : S → R such that µ = θH d S.

  Let µ be a nonnegative Radon measure in an open set U ⊂ R N and x ∈ U . We say that µ has approximate tangent space P with multiplicity θ ∈ R at x, and we write Tan d (µ, x) = θH d P,if P is a d-plane passing through the origin and -d µ x, locally weakly* converges to θH d

	Definition 3.3.20.

  . So P is the approximate tangent space to H d E at x with multiplicity 1 if and only if

	lim →0+ Ex,	ϕ(y) dH d (y) =	P	ϕ(y) dH d (y)	∀ϕ ∈ C ∞ 0 (R N ).

Remark 3.3.22. Assume that µ is a nonnegative Radon measure in an open set U ⊂ R N and also that -d µ x, locally weakly* converges to θH d P in R N as → 0+. Then, using

[START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] Proposition 1.62 (b)

], we obtain that

  -d µ x, are asymptotically concentrated. Now we present a characterization of the rectifiability of sets and measures based on the existence of the approximate tangent spaces (compare with [AFP, Theorem 2.83]). Let µ be a nonnegative Radon measure in an open set U ⊂ R N .

	Theorem 3.3.23.

(i) If µ = θH d S

and S is countably H d -rectifiable, then µ admits an approximate tangent space with multiplicity θ(x) for H d -a.e. x ∈ S. In particular θ(x) = Θ d (µ, x) for H d -a.e. x ∈ S. (ii) If µ is concentrated on a Borel set S and admits an approximate tangent space with multiplicity θ(x) > 0 for µ-a.e. x ∈ S, then S is countably H d -rectifiable and µ = θH d S. Proof. (i) We first assume that S = f (K) for some Lipschitz injective function f : R d → R N , where K ⊂ R d is a compact set. According to Rademacher's theorem and [AFP, Lemma 2.73], J d df f -1 (y) exists and is positive at H d -a.e. y ∈ S. On the other hand, since S is compact (because K is compact, f (K) = S and f is continuous) and µ(S) < +∞, we have that

  3.8) and proves that all sets S n are countably d-rectifiable. Therefore, S is countably H d -rectifiable. Next, since µ is concentrated on S, θ(x) = Θ d (µ, x) < +∞ for µ-a.e. x ∈ S, using Theorem 3.3.8, we deduce that µ vanishes on Borel H d -negligible subsets of S, hence on any Borel H d S-negligible set. Since H d S is σ-finite and µ H d S, the Radon-Nikodým theorem shows that µ is d-rectifiable.

  Proof. For each point x in ψ([a, b]) for which there exist t 1 , t 2 ∈ [a, b] such that t 1 = t 2 and ψ(t 1 ) = ψ(t 2 ), let I x be the largest closed interval [t 1 , t 2 ] with ψ(t 1 ) = ψ(t 2 ) = x. Let A denote the collection of such intervals that are contained in no others (passing the interval[a, b] from a to b, fix the first interval [t 1 , t 2 ] such that [t 1 , t 2 ] = I x for some x ∈ ψ([a, b]), next fix the second interval [t 3 , t 4 ] such that [t 1 , t 2 ] ∩ [t 3 , t 4 ] = ∅ and [t 3 , t 4 ] = I y for some y ∈ ψ([a, b]), etc.). Then A consists of countably many disjoint proper closed intervals. Thus we may construct a continuous surjection f : [a, b] → [0, 1] such that f (a) = 0, f (b) = 1, and such that if t 1 ≤ t 2 , then f (t 1 ) ≤ f (t 2 ) with equality if and only if t 1 and t 2 lie in a common interval of A. Define ψ 0

  .2.6) and since |∇v n | p-2 ∇v n weakly converges to |∇v| p-2 ∇v in L p (B ε ; R N ), it follows that lim where to get the latter equality we have used that v ∈ W 1,p (B 1 ) is a weak solution to the p-Laplace equation in B 1 \S, vχ ε ∈ W 1,p 0 (B 1 \S) and χ ε = 0 on B c ε . So we obtain that Thus, we have proved the strong convergence of ∇v n to ∇v in L p (B δ ; R N ).

	lim sup n→+∞ B δ	|∇v n | p dx ≤ lim sup n→+∞ Bε	χ ε |∇v n | p dx =	Bε	χ ε |∇v| p dx.
	Next, letting ε tend to δ+ and using Lebesgue's dominated convergence theorem, we get
		lim sup n→+∞ B δ	|∇v n | p dx ≤	B δ	|∇v| p dx.
						Using (7.2.2),
	(7.2.3) and passing to the limit, we therefore arrive at
		|∇v| p dx ≥ (C ) 1+α .	(7.2.8)
		B			
	However, Lemma 7.1.1, together with (7.2.4) and (7.2.5), says the following
			|∇v| p dx ≤ C 1+α ,
		B			
	which leads to a contradiction with (7.2.8), since α, > 0 and C > 1. This completes the
	proof of Lemma 7.2.1.				

n→+∞ -Bε v n |∇v n | p-2 ∇v n , ∇χ ε dx = -Bε v |∇v| p-2 ∇v, ∇χ ε dx = Bε χ ε |∇v| p dx,

  Lemma 8.1.2. Let Σ be a closed connected set in R N with 0 < H 1 (Σ) < +∞. Then for H 1 -a.e. point x ∈ Σ there exists the "tangent" line T x to Σ at x in the sense that x ∈ T x and 1 r d H (Σ ∩B r (x), T x ∩ B r (x)) → 0

				r→0+	.
	Proof. By Theorem 3.5.5, there exist a constant C = C(N ) > 0, a positive number L > 0
	and a Lipschitz mapping g : [0, L] → R N such that H 1 (Σ) ≤ L ≤ CH 1 (Σ) and |g (t)| = 1
	for a.e. t ∈ [0, L]. Arguing in the same way as in [MPS, Proposition 3.4], let us prove that
	for H 1 -a.e. x ∈ Σ,	max y∈Σ∩Br(x)	1 r	d(y, T x ∩ B r (x)) → 0 r→0+ ,	(8.1.1)

≤

  Crw τ Σ (x 0 , r) + Cr 1+b , leading to a contradiction with the fact that κr/200 ≤ t, since Crw τ Σ (x 0 , r) + Cr 1+b ≤ 2Crε < κr/200 by (10.2.6) and (10.2.5). Thus, either E 1 = ∅ or E 1 ⊂ (0, κr/200).(10.2.14)Next, by the coarea inequality (see Corollary 3.4.2),H 1 (Σ ∩ B 2κr (x 0 )) ≥Also, applying (10.2.11) with s = 2κr and using (10.2.5), (10.2.6) and the fact that β Σ (x 0 , ) ≤ 2ε/κ, we get the following estimateH 1 (Σ ∩ B 2κr (x 0 )) ≤ 4κr + (E 1 ) + 2H 1 (E 2 ) + 3H 1 (E 3 ) ≥ H 1 (E 1 ) + 2(2κr -H 1 (E 1 ) -H 1 (E 3 )) + 3H 1 (E 3 ) = 4κr -H 1 (E 1 ) + H 1 (E 3 )

					0	2κr	H 0 (Σ ∩ ∂B t (x 0 )) dt.	(10.2.15)
						κr 200	.	(10.2.16)
	Then, (10.2.14), (10.2.15) and (10.2.16) together imply
	4κr +	κr 200	≥ H 1 > 4κr -	κr 200	+ H 1 (E 3 )
	and hence			H 1 (E 3 ) <	κr 100	.	(10.2.17)
	Notice that (10.2.14) and (10.2.17) yield the following estimate
			H 1 (E 2 ∩ [κr, 2κr]) >	κr 2	.

  2.1 and, at the same time, a, δ, ε are the constants of Proposition 10.2.4 withStep 1. Let us first prove (i). By Proposition 10.2.1, there exists t ∈ [κr, 2κr] such that Σ ∩∂B t (x) = {z 1 , z 2 }, z 1 and z 2 lie "on different sides" (see Remark 10.2.2). According to Proposition 10.2.1 (ii-3), we getH 1 (Σ ∩B t (x)) ≤ |z 1 -z 2 | + C 1 t t rRecall that, by Proposition 10.2.1 (ii-2), Σ ∩ B t (x) is arcwise connected. Let Γ ⊂ Σ ∩B t (x) be an arc connecting z 1 with z 2 . Then, using Lemma 10.3.1, we obtainmax Since Σ ∩B t (x) is arcwise connected, Σ ∩ ∂B t (x) = {z 1 , z 2 } and H 1 (Γ) ≥ |z 1 -z 2 |, Γ) ≤ H 1 (Σ ∩B t (x)\Γ) ≤ H 1 (Σ ∩B t (x)) -|z 1 -z 2 | ≤ M. B t (x) is arcwise connected and Σ escapes ∂B t (x) either through z 1 or through z 2 . Without loss of generality, assume that [z 1 , z 2 ] is not a diameter of B t (x), otherwise we can pass directly to the estimate (10.3.10). So let L be the line passing through x and collinear to [z 1 , z 2 ]. Now observe that if Π is the 2-dimensional plane passing through L and [z 1 , z 2 ], then the intersection of Π with ∂B t (x) is the circle S on Π with center x and radius t. Then, denoting by ξ 1 and ξ 2 the two points in L ∩ ∂B t (x) in such a way that d(ξ i , {z 1 , z 2 }) = d(ξ i , z i ) for i = 1, 2, we get d H ([z 1 , z 2 ], L ∩ B t (x)) ≤ H 1 (γ z 1 ,ξ 1 ) = H 1 (γ z 2 ,ξ 2 ),(10.3.8) where γ z i ,ξ i is the geodesic in S connecting z i with ξ i . Since d(x, [z 1 , z 2 ]) ≤ (4κrM )

	a = min aε 2 , δ 1 :=    κ, aδ 2 2C 0 1 50C 1 2 Cr b 2 0 ≤ δ 1 2 . max δ 2 := and fix r 0 ∈ (0, δ) such that Now we can set sup y∈(Σ ∩Bt(x))\(Γ∩Bt(x)) d(y, Thus y∈Σ ∩Bt(x) d(y, [z 1 , z 2 ]) ≤ (4κrM ) 1 b    . , C := 1 2 + M 24C 1 a 1 2 ≤ (4κrM ) but this yields the following estimate d H (Σ ∩B t (x), [z 1 , z 2 ]) ≤ (4κrM ) 1 2 + M, (see (10.3.7)), because Σ ∩ 1 (10.3.5) (10.3.6) 1 2 . (10.3.7) 2 + M H 1 (γ z 1 ,ξ 1 ) ≤ arcsin (4κrM ) 1 2 + M t t ≤ 2((4κrM ) 1 2 + M ), (10.3.9)

b w τ Σ (x, r) + C 1 t 1+b := |z 1 -z 2 | + M. y∈Γ d(y, [z 1 , z 2 ]) ≤ (2t(H 1 (Γ) -|z 1 -z 2 |))
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Chapter 5

Ahlfors regularity in dimension 2

In this chapter, we shall prove that in dimension 2 every solution to Problem (A) with at least two points is Ahlfors regular up to the boundary of a Lipschitz domain.

Definitions and preliminary results

A set Σ ⊂ R N is said to be Ahlfors regular of dimension 1, if there exist constants c > 0, r 0 > 0 and C > 0 such that for every r ∈ (0, r 0 ) and for every x ∈ Σ, cr ≤ H 1 (Σ ∩B r (x)) ≤ Cr.

(5.1.1)

The notion of Ahlfors regularity is a quantitative and scale-invariant version of having Hausdorff dimension one. It is known that the Ahlfors regularity of a closed connected set Σ implies uniform rectifiability of Σ, which provides several useful analytical properties of Σ, see [DS].

For a connected set Σ with at least two points, the lower bound in (5.1.1) is trivial. Indeed, for each x ∈ Σ and for each r ∈ (0, diam(Σ)/2), we have Σ ∩∂B r (x) = ∅, and then, according to Lemma 3.5.4, H 1 (Σ ∩B r (x)) ≥ r.

(5.1.2)

In order to prove the Ahlfors regularity for such Σ it suffices to prove that there exists r 0 > 0, independent of x, such that the upper bound in (5.1.1) holds for all x ∈ Σ and for all r ∈ (0, r 0 ). Before starting to prove the Ahlfors regularity of Σ in dimension 2, let us focus on the following basic question: to which class L q (U ) should the function f belong so that the solution u to the Dirichlet problem

satisfies U |∇u| p dx ≤ Cr, where C = C(a 1 , ..., a N , p, q 0 , q, f q ) with q 0 defined in (2.1.1)? Using Proposition 3.11.2, we can state that it is enough to take q = N p N p-N +1 , as explained in the following lemma, which will also appear in the proof of Theorem 5.2.1.

Corollary 7.1.7. Let u be a weak solution to the p-Laplace equation in B 1 \E, where E = ((-1, 1) × {0}) ∪ ({0} × (-1, 1)), and let u = 0 p-q.e. on E. Then u is Lipschitz continuous on B 1/2 . The proof of the following corollary is the same as the proof of Corollary 7.1.5, so we omit it.

Corollary 7.1.8. There is a constant C 0 = C 0 (p) > 2 such that if u is a weak solution to the p-Laplace equation in B 1 \E and u = 0 p-q.e. on E = ((-1, 1) × {0}) ∪ ({0} × (-1, 1)), then

The desired decay behavior

We begin this section by establishing an estimate for a weak solution to the p-Laplace equation in B r (x 0 )\Σ that vanishes on Σ ∩ B r (x 0 ) in the case when Σ is close enough, in B r (x 0 ) and in the Hausdorff distance, to a diameter of B r (x 0 ).

Lemma 7.2.1. Let p ∈ (N -1, +∞) and let α, δ ∈ (0, 1), C > 1 be as in Lemma 7.1.1. Then for each ∈ (0, δ] there exists ε 0 ∈ (0, ) such that the following holds. Let Σ ⊂ R N be a closed set such that (Σ ∩B r (x 0 )) ∪ ∂B r (x 0 ) is connected and assume that for some affine line L passing through x 0 , d H (Σ ∩B r (x 0 ), L ∩ B r (x 0 )) ≤ ε 0 r. Then for any weak solution u ∈ W 1,p (B r (x 0 )) to the p-Laplace equation in B r (x 0 )\ Σ vanishing p-q.e. on Σ ∩B r (x 0 ), the following estimate holds Proof. Since the p-Laplacian is invariant under scalings, rotations and translations, we can assume that B r (x 0 ) = B 1 and L ∩ B r (x 0 ) = {0} N -1 × [-1, 1]. To simplify the notation, we denote {0} N -1 × [-1, 1] by S. By contradiction, suppose that for some ∈ (0, δ] there exist sequences

u n is a weak solution to the p-Laplace equation in B 1 \ Σ n , u n = 0 p-q.e. on Σ n ∩B 1 and

Notice that v n = 0 p-q.e. on Σ n ∩B 1 and

On the other hand, for each n ∈ N, Σ n ∩ B δ = ∅. This, together with the fact that (Σ n ∩ B 1 ) ∪ ∂B 1 is connected, according to Corollary 3.7.6 and Proposition 3.7.7 in the case when p ∈ (N -1, N ], and according to Remark 3.7.3 in the case when p ∈ (N, +∞), implies that there exists a constant C > 0 (independent of n) such that for each n ∈ N,

Using the above estimate together with Proposition 3.8.1 and with (7.2.4), we conclude that the sequence (v n ) n is bounded in W 1,p (B 1 ). Hence, up to a subsequence still denoted by n, we have

for some v ∈ W 1,p (B 1 ). Let us now show that v = 0 p-q.e. on S ∩ B 1 . For each t ∈ (0, 1), we fix a function ψ ∈ C 1 0 (B 1 ) such that ψ = 1 on B t and 0 ≤ ψ ≤ 1. Since (Σ n ∩B 1 ) ∪ ∂B 1 is connected for each n ∈ N and d H (Σ n ∩B 1 , S) → 0 as n → +∞, it follows (see Section 6 in [BT]) that the sequence of Sobolev spaces

and by (7.2.5), v n ψ vψ weakly in W 1,p (R N ). Then, using the definition of limit in the sense of Mosco, we deduce that vψ ∈ W 1,p 0 (B 1 \S). This implies that v = 0 p-q.e. on {0} N -1 × [-t, t] (see Remark 3.7.11). As t ∈ (0, 1) was arbitrarily chosen, v = 0 p-q.e. on S ∩ B 1 .

Chapter 8

Absence of loops

In this chapter, we prove the following theorem.

Theorem 8.0.1. Let p ∈ (N -1, +∞) and f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Let Σ be a solution to Problem (A). Then Σ cannot contain closed loops (i.e., homeomorphic images of the circle S 1 ).

A consequence of Theorem 8.0.1 is that if Σ is a nontrivial solution to Problem (A), then, topologically, Σ is a tree.

Preparatory lemmas

The following two lemmas will be used in the proof of Theorem 8.0.1. (iii) diam D n 0 as n → +∞;

(iv) D n are connected for all n.

Proof. By [START_REF] Paolini | Existence and regularity results for the Steiner problem[END_REF]Lemma 5.6], H 1 -a.e. point x ∈ Γ is a noncut point for Σ (i.e., a point such that Σ \{x} is connected). Then, by [START_REF] Paolini | Qualitative properties of maximum distance minimizers and average distance minimizers in R N[END_REF]Lemma 5.3], it follows that for each noncut point there are connected neighborhoods D n that can be cut leaving the set connected and diam(D n ) 0, so (i)-(iv ) are satisfied for a suitable sequence D n . This completes our proof of Lemma 8.1.1.

In order to prove that

we shall follow the same approach as in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]Proposition 2.2]. Observe that for all x ∈ Σ 2 there exists a mapping h → ξ(h) such that ξ(h) → 0 when h → 0 and, in addition, g(t + h) = g(t) + hg (t) + hξ(h) when |h| > 0 is small enough, where g(t) = x. Next, let δ ∈ (0, 1) be given. We can choose a sufficiently small r 0 > 0 such that |ξ(h)| < δ/2 for all h ∈ (-r 0 , r 0 )\{0}. Then for each r ∈ (0, r 0 ) and each z ∈ 

Proof of Theorem 8.0.1

We are now ready to prove Theorem 8.0.1.

Proof of Theorem 8.0.1. For the sake of contradiction, assume that for some λ > 0 a minimizer Σ of F λ,f,Ω over K(Ω) contains a simple closed curve Γ ⊂ Σ. Notice that there is no a relatively open subset in Σ contained in both Γ and ∂Ω, because otherwise, according to Lemma 8.1.1, there would be a relatively open subset D ⊂ Σ such that D ⊂ ∂Ω and Σ\D would remain connected, but, observing that in this case u Σ\D = u Σ and H 1 (D) > 0, we would obtain a contradiction with the optimality of Σ. Thus, by Lemma 8.1.1 and Lemma 8.1.2, there is a point x 0 ∈ Γ ∩ Ω which is a noncut point for Σ and such that Σ is flat at x 0 . Therefore for x 0 there exist the sets D n ⊂ Σ as in Lemma 8.1.1 and the tangent line T x 0 to Σ at x 0 as in Lemma 8.1.2. Let ε 0 , b, r, C be the constants of Lemma 7.2.5 and let B t 0 (x 0 ) ⊂ Ω with t 0 < r. We define r n := diam D n so that D n ⊂ Σ ∩B rn (x 0 ). The flatness of Σ at x 0 implies that for any given ε > 0 there is δ ∈ (0, t 0 ] such that

For each n ∈ N, we define Σ n := Σ \D n , which, by Lemma 8.1.1, remains closed and connected. We fix ε = ε 0 /2 and r ∈ (0, δ]. Next, we want to apply Lemma 7.2.5 to Σ n , but we have to control the Hausdorff distance between Σ n ∩ B r (x 0 ) and a diameter of B r (x 0 ). We already know that Σ is εr-close, in B r (x 0 ) and in the Hausdorff distance, to

Chapter 9

Remark about singular points

In this chapter, we shall prove that if Σ is a solution to Problem (A), then Σ ∩ Ω cannot contain quadruple points, namely, there is no point x ∈ Σ ∩ Ω such that for some fairly small radius r > 0 the set Σ ∩ B r (x) is a union of four distinct C 1 arcs, each of which meets at point x exactly one of the other three at an angle of 180 degrees, and each of the other two at an angle of 90 degrees.

Energy decay when Σ is locally close enough to a cross centered on Σ

We shall say that a set K ⊂ R N is a cross passing through a point x ∈ R N if K consists of two mutually perpendicular affine lines passing through x. For convenience, we denote the cross (R × {0} N -1 ) ∪ ({0} N -1 × R) passing through the origin by K 0 .

The following lemma says that if Σ ⊂ Ω is a closed arcwise connected set, 0 < 2r 0 ≤ r 1 , r 1 is sufficiently small, B r 1 (x 0 ) ⊂ Ω and for each r ∈ [r 0 , r 1 ] there exists a cross K passing through x 0 such that Σ is close enough, in B r (x 0 ) and in the Hausdorff distance, to

Proof. The proof follows by reproducing the proofs of Lemma 7.2.1, Lemma 7.2.4 and Lemma 7.2.5 with a minor modification, namely, replacing the affine line by a cross in the But then

)) < κr 100 and this leads to a contradiction because H 1 (Σ ∩B t (x 0 )) ≥ t ≥ κr (see Lemma 3.5.4). Therefore (ii-1) holds. Next, assume that Σ ∩B t (x 0 ) is not arcwise connected. Then, from Lemma 10.2.3, it follows that Σ \B t (x 0 ) is arcwise connected. Thus, taking the set Σ \B t (x 0 ) as a competitor, by analogy with Step 1, we get

which, as before, leads to a contradiction. Thus (ii-2) holds. Since

where z 1 , z 2 lie "on different sides", the set

] is a competitor for Σ, moreover, it fulfills the conditions of Proposition 10.1.8 and hence (10.2.4) holds. This proves (ii) and completes the proof of Proposition 10.2.1.

there exists an arc γ ⊂ Σ\B r (x 0 ) connecting x with z 1 or with z 2 . Assume by contradiction that for some x ∈ Σ\B r (x 0 ) there is no arc γ ⊂ Σ\B r (x 0 ) connecting x with z i , where i ∈ {1, 2}. Let

Since Σ is arcwise connected, there is an arc γ ⊂ Σ connecting x with z i . We can conclude that γ = γ ext ∪ γ int , where γ ext ⊂ Σ\B r (x 0 ) is an arc connecting x with z i and γ int ⊂ Σ ∩ B r (x 0 ) is an arc connecting z i with z i . On the other hand, if y ∈ Σ ∩ B r (x 0 ), then there exists an arc in Σ ∩ B r (x 0 ) connecting y with z i or with z i . Therefore, Σ ∩ B r (x 0 ) is arcwise connected, which leads to a contradiction. This completes our proof of Lemma 10.2.3. Now our purpose is to control the density θ Σ from above on a smaller scale by its value on a larger scale, provided that on a larger scale β Σ and w τ Σ are small enough. Adapting some of the approaches of Stepanov and Paolini in [PS1], we prove the following proposition. Proposition 10.2.4. Let p ∈ (N -1, +∞), f ∈ L q (Ω) with q > q 1 , where q 1 is defined in (2.2.1). Then there exists δ ∈ (0, 1) and for each a ∈ (0, 1/20] there exists ε ∈ (0, 1) such that the following holds. Let Σ be a solution to Problem (A). Assume that x 0 ∈ Σ, r ∈ (0, min{δ, diam(Σ)/2}), B r (x 0 ) ⊂ Ω and

Then the following estimate holds

By (10.4.3) and (10.4.6),

This, together with (10.4.2), Corollary 10.3.4 and the fact that for each integer N ≥ 2, the unique positive solution µ to the equation µ = 5 + µ 1-1 N is strictly greater than 5, completes the proof of Theorem 10.0.1.

Appendices Appendix A

The flatness determines regularity

Throughout this chapter, m and N are integers such that N ≥ 2 and m ∈ (0, N ).

Definition A.0.1. Let Σ be a closed set of dimension m in R N . For each point x ∈ R N and each radius r > 0, we define the flatness of Σ in B r (x) by

where the infimum is taken over all affine m-planes P passing through x.

Definition A.0.2. For each point x ∈ R N , each m-plane P passing through x and each radius R > 0, we define the box D(x, P, R) by

where P ⊥ denotes the (N -m)-dimensional vector space orthogonal to P .

In this chapter, our purpose is to prove the following proposition.

Proposition A.0.3. Let 0 < α ≤ 1 be given. Assume that Σ is a closed set of dimension m in R N which contains the origin. Assume also that there exist a constant C 0 > 0 and a radius > 0 such that

Then there exist an m-plane P passing through the origin and a radius r 0 ∈ (0, ) such that Σ ∩ D(0, P, r 0 ) is the graph over P ∩ B r 0 of a C 1,α function.

The chapter is organized as follows: in the Section A.1, we recall Reifenberg's topological disk theorem (see [Rei]) and present a Reifenberg parameterization. In the Section A.2, we first prove some preparatory lemmas needed to prove Proposition A.0.3, and then we prove Proposition A.0.3. The presentation and proofs in this chapter are pretty close to those in [DKT] and [DT].

A.1 A Reifenberg parameterization

We recall a local statement for Reifenberg's theorem.

Theorem A.1.1. ([Rei]) For all choices of integers 0 < m < N and 0 < τ < 10 -1 , we can find ε > 0 such that the following holds. Let E ⊂ R N be a closed set that contains the origin, and suppose that for x ∈ E ∩ B 10 and 0 < r ≤ 10, we can find an m-dimensional affine subspace P (x, r) of R N that contains x such that

Then there is a bijective mapping g :

for x, y ∈ R N such that |x -y| ≤ 1 and, if we set P = P (0, 10),

For generalizations of the above theorem, we refer to [DDPT, DT]. Let us now make some comments. First, notice that the estimate (A.1.1) can be weakened, namely the following estimate would be enough d(y, P (x, r)) ≤ εr for y ∈ E ∩ B r (x) and d(y, E) ≤ εr for y ∈ P (x, r) ∩ B r (x).

Next, observe that we can obtain the mapping g : R N → R N to be bi-Hölder with any exponent less than 1, provided that ε = ε(m, N, τ ) is small enough (ε tends to 0 as τ approaches 0). The constant 10 is not optimal here, and usually g coincides with the identity map far away from the origin. Furthermore, the constants 1/4 and 3 in (A.1.2) could be replaced with the constants that are arbitrarily close to 1 (see, for instance, [DDPT]; for the proof of (A.1.2) in the case when x, y ∈ P (0, 10), see [START_REF] David | Reifenberg parameterizations for sets with holes[END_REF]Proposition 8.1], where the constants 1/4 and 3 are replaced with the constants that can be arbitrarily close to 1). It is worth noting that in general we cannot hope to get a bi-Lipschitz mapping g, because very flat snowflake curves in R 2 can satisfy (A.1.1) with arbitrarily small values of ε, but have Hausdorff dimension greater than 1 (see [Tor]). The main part of Theorem A.1.1 is presented in Sections 3-5 in [DT]. Also, [START_REF] David | Reifenberg parameterizations for sets with holes[END_REF]Lemma 7.1] is essentially all we need to prove bi-Hölder estimates in (A.1.2) for x, y ∈ P (0, 10) (see Sections 7 and 8 in [DT]). For the proof of the fact that E ∩ B 1 ⊂ g(P ) ∩ B 1 , the reader may consult [START_REF] David | Asymptotically optimally doubling measures and reifenberg flat sets with vanishing constant[END_REF]Section 5,. For the construction of the mapping g on the whole R N , we refer to Section 10 in [DT]; for bi-Hölder and even bi-Lipschitz (under some additional conditions on Σ) properties of g on R N , see Section 11 in [DT].

To prove Proposition A.0.3, we shall use the fact that if Σ ⊂ R N is a closed set of dimension m which contains the origin and such that for each x ∈ Σ ∩ B 10 0 and r ∈ (0, 10 0 ] there exists an m-plane P (x, r) passing through x such that (A.1.1) holds, then there exists a continuous mapping s : B 9 0 ∩ P (0, 10 0 ) → Σ which is very close to the identity.

Let us now recall how to construct a bi-Hölder parameterization of a piece of a closed m-dimensional set Σ ⊂ R N which is well approximated by m-dimensional affine spaces in the Hausdorff distance sense.

Suppose that Σ ⊂ R N is a closed set of dimension m which contains the origin and that

where ε = ε(m, N ) > 0 is a fairly small constant and 0 ∈ (0, 1]. For convenience, set

and, for each x ∈ Σ 0 and 0 < r ≤ 10 0 , choose an affine m-plane P (x, r) passing through x such that

Now our purpose is to define a parameterization (which turns out to be bi-Hölder)

The function s is obtained as a limit of a sequence of functions s k defined on S 0 , where s k is defined by induction as follows

for some σ k whose main role is to push points near Σ 0 in the direction of Σ. In order to define σ k , we set

For each k ≥ 0, choose a finite maximal collection {x j,k : and hence H 0 (A) ≤ (1 + 10 0 /r k ) N . This implies that there exists {x j,k : j ∈ J k } ∈ F which has the maximum cardinality among all elements of F .

Hereinafter in this section, C denotes a positive constant that can only depend on N and can be different from line to line. Let us now construct a partition of unity adapted to

for j ∈ J k and y ∈ R N . Observe that

We also need to cover R N \ j∈J k B 3r k (x j,k ). To this end we choose (by induction) a maximal collection

Of course, the balls B r k

for l ∈ L k and y ∈ R N . We obtain that 

Then

) with an x l,k that lies out of j∈J k B 3r k (x j,k ). Summing up, we obtain a local partition of unity {θ j,k } j∈J k , near Σ 0 such that

where

Then the following assertions hold.

(i) The vectors v 1 , ..., v k are affinely independent if and only if for each i ∈ {1, ..., k}, d(v i , affine span({v l , l = i})) > 0.

(A.1.10)

(ii) The vectors v 1 , ..., v k are affinely independent if and only if for each j ∈ {1, ..., k}, the vectors v l -v j , l = j are linearly independent.

Proof. First, let us prove (i). Assume that v 1 , ..., v k are affinely independent. Fix an arbitrary j ∈ {1, ..., k}. Assume by contradiction that d(v j , affine span({v l , l = j})) = 0.

Then v j ∈ affine span({v l , l = j}), because affine span({v l , l = j}) is a closed set in R N (see Remark A.1.3). So there exist numbers λ l ∈ R, l ∈ {1, ..., k}, l = j such that

Setting λ j = -1, we deduce that Assume by contradiction that there exists j ∈ {1, ..., k} such that λ j = 0. From (A.1.12) it follows that

Next, for each l ∈ {1, ..., k}, l = j, define λ l = -λ l /λ j . By (A.1.13),

This implies that v j ∈ affine span({v l , l = j}) and leads to a contradiction. Thus v 1 , ..., v k are affinely independent and (i) holds.

Let us now prove (ii). Assume that v 1 , ..., v k are affinely independent. Fix an arbitrary j ∈ {1, ..., k}. Let l =j λ l (v l -v j ) = 0 for some λ l ∈ R, l ∈ {1, ..., k}, l = j. Define λ j =l =j λ l . Then This implies that λ l = 0 for each l ∈ {1, ..., k}, since v 1 , ..., v k are affinely independent. Therefore, the vectors v l -v j , l = j are linearly independent. Now fix some j ∈ {1, ..., k} and assume that the vectors v l -v j , l = j are linearly independent. Let λ 1 , ..., λ k ∈ R be such that

This implies that λ l = 0 for each l ∈ {1, ..., k}, since v l -v j , l = j are linearly independent and k l=1 λ l = 0. Thus v 1 , ..., v k are affinely independent. Our proof of Lemma A.1.6 is now complete.

We recall the following useful fact, which we shall use further.

Lemma A.1.7. Let A be a real matrix with d rows and n columns. Let A T be the transpose matrix of A, namely A T (i, j) = A(j, i). Then the following holds .1.15) Notice that the matrices A T A and AA T are symmetric, namely (A T A) T = A T A and (AA T ) T = AA T . Recall that if M is a symmetric real matrix with l rows and l columns, then

x T M x = max{λ : M x = λx for some x ∈ R l with |x| = 1}. (A.1.16) Indeed, using a Lagrange multiplier λ and differentiating x T M x -λ(|x| 2 -1) with respect to x, we obtain that if x maximizes x T M x among all x with |x| = 1, then M x -λ x = 0.

On the other hand, if M x = λx for some x with |x| = 1, then x T M x = λ. At this point the proof of (A.1.16) is complete. Now observe that if A T Ax = λ 1 x and AA T y = λ 2 y, then AA T (Ax) = λ 1 Ax and A T A(A T y) = λ 2 A T y. Therefore, A T A and AA T have the same nonzero eigenvalues. This, together with (A.1.16), (A.1.15) and (A.1.14), completes the proof of Lemma A.1.7.

We are now ready to prove the following lemma.

Lemma A.1.8. Set

Proof. Fix arbitrary i, j in J k (x). Next, choose an orthonormal basis {e 1 , ..., e m } of the vector space P (x i,k , 10r k ) -x i,k and for each l ∈ {1, ..., m}, set y l = x i,k + r k e l . Also set y 0 = x i,k .

Recall that β k ≤ ε and ε is fairly small. By the definition of P (x i,k , 10r k ) and (A.1.17), for each l ∈ {0, ..., m}, there exists

where we have used (A.1.19) and (A.1.17). Then, by (A.1.17), for each l ∈ {0, ..., m}, there exist z l,1 ∈ P (x i,k , 10r k ) and z l,2 ∈ P (x j,k , 10r k ) such that .1.20) for n ∈ {1, 2}. To simplify the notation, we denote the vector spaces P (x i,k , 10r k ) -z 0,1 and P (x j,k , 10r k ) -z 0,2 by P 1 and P 2 , respectively. Since β k ≤ ε and ε is small enough, using (A.1.19), we deduce that d(z j , affine span({z l , l = j})) > 0 for each j ∈ {0, ..., m}. By (A.1.20), the same thing holds for the collections {z l,n } 0≤l≤m , n ∈ {1, 2}. Then, by Lemma A.1.6, the vectors u l,n = z l,n -z 0,n , l = 0 are linearly independent for each n ∈ {1, 2}. So we conclude that {u l,n } 1≤l≤m is a basis for the subspace P n . For each l ∈ {1, ..., m},

where the last estimate comes by using (A.1.20). On the other hand, for each l ∈ {1, ..., m} and n ∈ {1, 2},

where we have used (A.1.19), (A.1.20) and (A.1.17). The estimate (A.1.22) implies that the vectors u 1,n , ..., u m,n are almost orthogonal and each of them has the length fairly close to r k for each n ∈ {1, 2}. Then, applying the Gram-Schmidt process to {u l,n } 1≤l≤m for each n ∈ {1, 2} and using (A.1.21), we obtain the orthonormal basis { u l,n } 1≤l≤m for P n such that for each l ∈ {1, ..., m},

For each ξ ∈ P 1 with |ξ| = 1, there exist λ 1 , ..., λ m ∈ R such that |λ l | ≤ 1 for l ∈ {1, ..., m} and ξ = m l=1 λ l u l,1 . Then

where to obtain the last estimate we have used (A.1.23). Arguing by the same way as above, for each ξ ∈ P 2 with |ξ| = 1, we deduce that

Now denote by Id the identity map and by π n the orthogonal projection from R N onto P n . It is worth noting that for each n ∈ {1, 2},

where w(n) = 2 if n = 1 and w(n) = 1 if n = 2. Furthermore, if A n and A ⊥ n are the matrices representing π n and π ⊥ n , respectively, then from the symmetry of orthogonal projectors it follows that

This, together with Lemma A.1.7, implies that for each n ∈ {1, 2},

where we have used (A.1.24)- (A.1.27). This completes the proof of Lemma A.1.8. Lemma A.1.9. Set

and

. Using (A.1.31), (A.1.18) and (A.1.32), we deduce that

is the orthogonal projection of x on P (x i,k , 10r k ). This, together with (A.1.28), implies that

Thus, using (A.1.33) and (A.1.34), we deduce that

which proves (A.1.29). Next, observe that the closest point of Σ to x lies in B 8r k (x i,k ), (since x i,k ∈ Σ and |x -x i,k | < 4r k ), which, together with (A.1.28), yields the following estimate

The estimate (A.1.30) follows from (A.1.33) and (A.1.35), since

At this point the proof of Lemma A.1.9 is complete.

For each k ≥ 0, we denote s k (S 0 ) by S k . According to (A.1.4),

Proof. We prove that S k ⊂ V k+1 for all k ≥ 0 by induction. If k = 0, using the fact that S 0 = P (0, 10 0 ) ∩ B 9 0 , (A.1.3) and that ε is small enough, we observe that for each x ∈ S 0 ,

Hence S 0 ⊂ V 1 . Now assume that S k ⊂ V k+1 for some k ≥ 0. Fix an arbitrary x ∈ S k and choose j ∈ J k+1 such that |x -π j,k+1 (x)| < 4r k+1 . Such j exists, since d(x, Σ 0 ) < r k+1 and, by maximality of {x j,k+1 } j∈J k+1 , the balls B r k+1 (x j,k+1 ), j ∈ J k+1 cover Σ 0 . Then, using (A.1.33) and the fact that ε is small enough, we get

Hence S k+1 = σ k+1 (S k ) ⊂ V k+2 . This completes the proof of Lemma A.1.10. Now we are ready to define a continuous mapping s : S 0 → Σ 0 and prove that it is very close to the identity map. For each x ∈ S 0 , Lemma A.1.9 and Lemma A.1.10 ensure the following

Then, for each x ∈ S 0 and 0 ≤ j ≤ l, .1.37) This implies that {s j } j∈N is a Cauchy sequence in C 0 (S 0 , R N ). Thus we can define a continuous mapping s on S 0 by s(x) = lim l→+∞ s l (x) for x ∈ S 0 .

Also, letting l tend to +∞ in (A.1.37), we obtain

In particular, |s(x) -x| ≤ Cε 0 on S 0 . (A.1.38)

Using Lemma A.1.10 and (A.1.38), we deduce that s(x) ∈ Σ 0 for all x ∈ S 0 . For the proofs of the facts that s is bi-Hölder and s(S 0 ) ⊃ Σ ∩ B 1 , see, for instance, [DT, DKT].

We now provide a proof of the fact that π(s(S 0 )) contains S 0 ∩ B 8 0 , where π denotes the orthogonal projection from R N onto P (0, 10 0 ). We shall use this fact in the proof of Proposition A.0.3. Lemma A.1.11. Let π denotes the orthogonal projection from R N onto P (0, 10 0 ). For each x ∈ S 0 , define h(x) = π(s(x)). Then S 0 ∩ B 8 0 ⊂ h(S 0 ). .1.39). Then |h(x) -ξ| does not vanish for x ∈ ∂S 0 , and we can define

Observe that u ξ is a continuous mapping from ∂S 0 to ∂B 1 which is homotopic, among mappings from ∂S 0 to ∂B 1 , to v ξ , where .1.40) allows to use the linear path from h(x) to x, namely, we can set

to connect u ξ with v ξ . So, moving ξ continuously to 0 (where 0 denotes the origin of R N ) along the segment [ξ, 0] and observing that [ξ, 0] ∩ ∂S 0 = ∅, we deduce that v ξ is homotopic to ϕ

The mapping ϕ is of degree 1, and hence v ξ and u ξ are of degree 1 (see, for instance, Chapter XVI of [Dug]). Therefore, ξ ∈ h(S 0 ), because otherwise we could define a homotopy from u ξ to a constant, by setting

This completes the proof of Lemma A.1.11.

A.2 Proof of Proposition A.0.3

Recall that we are given a number α ∈ (0, 1], a constant C 0 > 0, a radius > 0 and a closed set Σ ⊂ R N of dimension m which contains the origin, and such that for each x ∈ Σ ∩ B and r ∈ (0, ] there exists an m-plane P (x, r) passing through x such that

We want to prove that there exists 0 ∈ (0, ) and an m-plane P passing through the origin such that Σ ∩ D(0, P, 0 ) (see Definition A.0.2) is the graph over P ∩ B 0 of a C 1,α function.

Based on this, without loss of generality, we can assume that

where ε ∈ (0, 1) is small as we want. Following [DKT], let us establish some control on the oscillation of the P (x, r)'s in terms of x and r. To this end, we define the angle between two affine m-planes P 1 and P 2 in R N , angle(P 1 , P 2 ) ∈ [0, π/2], by

where π i denotes the orthogonal projection onto the vector space parallel to P i . Hereinafter, C denotes a positive constant that can only depend on α, C 0 , N and and can be different from line to line.

Proof. Choose an orthonormal basis {e 1 , ..., e m } of the vector space P (x 1 , t 1 ) -x 1 and set y l = x 1 + t 1 e l /10 for each l ∈ {1, ..., m}. Also set y 0 = x 1 . By (A.2.1), (A.2.2) and because ε is small enough, for each l ∈ {0, ..., m}, there exists z l ∈ Σ ∩ B t 1 /5 (x 1 ) such that

Using (A.2.5) and (A.2.4), we get that z l ∈ B t 1 (x 1 ) ∩ B t 2 (x 2 ) for each l ∈ {0, ..., m}. Then, according to (A.2.1), for each l ∈ {0, ..., m} and j ∈ {1, 2}, we can find points z l,1 ∈ P (x 1 , t 1 ) and z l,2 ∈ P (x 2 , t 2 ) such that

where we have used (A.2.4). Since ε is small enough, (A.2.7), (A.2.8) and (A.2.2) imply that d(z l,j , affine span({z i,j , i = l})) > 0 for each j ∈ {1, 2}. Then, by Lemma A.1.6, the vectors u l,j = z l,j -z 0,j , l = 0 are linearly independent for each j ∈ {1, 2}. Thus {u l,j } 1≤l≤m is a basis for the subspace P (x j , t j ) -z 0,j for each j ∈ {1, 2}. Using (A.2.8), we deduce that

(A.2.9) Also, using (A.2.8), (A.2.2) and (A.2.7), we get

The estimate (A.2.10) implies that the vectors u 1,j , ..., u m,j are almost orthogonal and each of them has the length fairly close to t 1 /10. Then, applying the Gram-Schmidt process to {u l,j } 1≤l≤m and using (A.2.9), we obtain the orthonormal basis { u l,j } 1≤l≤m for P (x j , t j )-z 0,j such that for each l ∈ {1, ..., m}, where π j denotes the orthogonal projection from R N onto the subspace P (x j , t j ) -z 0,j . By (A.2.3) and (A.2.12)

sin(angle(P (x 1 , t 1 ), P (x 2 , t 2 ))) ≤ 200N C 0 t α 1 .

(A.2.13)

Recall that, by (A.2.2), C 0 t α 1 ≤ ε and ε is fairly small. Then, using (A.2.13) and the fact that arcsin(t) ≤ 2t for all t ∈ (0, 1/10], we obtain (A.2.6). This completes the proof of Lemma A.2.1.

Let x ∈ Σ ∩ B and 0 < t 2 ≤ t 1 ≤ . Choose k ≥ 0 such that 2 -k-1 t 1 < t 2 ≤ 2 -k t 1 . Set P (x, 2 -k+j t 1 ) = P j for j ∈ {0, ..., k}. Using Lemma A.2.1, we deduce that angle(P (x, t 2 ), P (x, t 1 )) ≤ angle(P (x, t 2 ), P 0 ) + k-1 j=0 angle(P j , P j+1 )

Consequently, for each x ∈ Σ ∩ B , there exists where we have used the fact that arcsin(t) ≤ 2t for t ∈ [0, 1/10], (A.2.1), (A.2.2) and (A.2.19). From (A.2.20) and (A.2.21) it follows that there exists a Cε-Lipschitz function A : P 0 ∩ B 8 0 → P ⊥ 0 whose graph is Σ 1 . From (A.2.18) it follows that A is differentiable and then (A.2.17) implies that A ∈ C 1,α (P 0 ∩ B 8 0 ). Therefore, Σ 1 is the graph over P 0 ∩ B 8 0 of a C 1,α function. This completes the proof of Proposition A.0.3.