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Abstract

Creating artificial beings with human like capabilities is a long dream of
humanity. While humanity already got closer to this goal, there is still a long
way to go. A major problem preventing robots to be deployed in our day to
day lives is the fact that robots can not be programmed for every situation
they might encounter. This problem can be addressed by equipping robots
with the capability to learn new tasks. The ability to learn is an important
human social skill. Although what robots can and could accomplish focusing
on manipulating their environment is already quite impressive, their social
skills can be described as, if anything, rather basic. While there are already
interactive robot learning approaches (e.g. reinforcement learning and learning
from demonstration), usually these approaches do not consider explicit teaching.
Furthermore, usually they exploit actions that either accomplish the task or
serve a social purpose. However, human behavior allows for actions that
combine task and social aspects in one action. Human-Robot Interaction (HRI)
has not yet sufficiently addressed these combined actions.

In this thesis we focus on actions that combine task and social actions. We
are interested in how humans use these type of actions in HRI settings, how
teaching influences this behavior and how these actions can be used to to
augment robot learning.

We conducted a user study investigating how humans behave when teaching
how to solve a task to a robot in contrast to just solving the task. The
study consisted of two experiments. In the first experiments the participants
were first asked to solve a continuous maze task and to teach how to solve
it to a robot afterwards. Furthermore, the participants could give negative
demonstrations that demonstrated how the task should not be solved. In the
second experiments the demonstrations collected in the first experiment were
shown to new participants. The participants were asked how informative they
perceive these demonstrations. The results show that significantly more negative
than positive demonstrations were perceived as informative. Furthermore,
significantly more demonstrations from the phase where the participants taught
to a robot were perceived as informative than from the phase where the
participants just solved the task.



We address the augmentation of robot learning with exploitation of task- and
social channels by introducing a framework based on Reinforcement Learning
(RL). In this framework we augment the reward from the environment with
feedback how an observer might perceive the actions taken by the agent.
We do this by proposing three different algorithms to model the observer
perception as interactive RL scheme and compare with one non-interactive
RL algorithm as baseline. In order to model the observer we vary the method
how the observer estimates how likely the agent is going for the real goal.
We evaluate our approach on five environments and calculate the legibility
of the learned trajectories. Legibility is a scalar metric measuring how well
goals can be inferred from actions. The results show that the legibility of the
learned trajectories is significantly higher while integrating the feedback from
the observer compared with a standard Q-Learning algorithm not using the
observer feedback.

From these results we conclude that humans use combined actions in HRI
settings to enrich the communication, but also perceive these actions as infor-
mative. Further, that combined actions can be learned with a RL framework
by integrating reasoning about potential observers to enrich the actions with
social aspects. While the research presented in thesis is limited to specific
cases, it demonstrates the promising potential of combined actions in HRI
settings.

Keywords: human-robot interaction, reinforcement learning, interactive robot
learning, learning-from-demonstration, sensorimotor communication, legibil-
ity



Résumé (French Abstract)

Créer des êtres artificiels dotés de capacités humaines est un long rêve de
l’humanité. Alors que l’humanité s’est déjà rapprochée de cet objectif, il
reste encore un long chemin à parcourir. Un problème majeur empêchant
le déploiement de robots dans notre vie de tous les jours est le fait que les
robots ne peuvent pas être programmés pour chaque situation qu’ils pourraient
rencontrer. Ce problème peut être résolu en dotant les robots de la capacité
d’apprendre de nouvelles tâches. La capacité d’apprendre est une compétence
sociale humaine importante. Bien que ce que les robots peuvent et pourraient
accomplir en se concentrant sur la manipulation de leur environnement soit
déjà assez impressionnant, leurs compétences sociales peuvent être décrites
comme plutôt basiques. Bien qu’il existe déjà des approches interactives
d’apprentissage par robot (par exemple, l’apprentissage par renforcement et
l’apprentissage par démonstration), ces approches ne prennent généralement
pas en compte l’enseignement explicite. De plus, ils exploitent généralement
des actions qui accomplissent la tâche ou servent un objectif social. Cependant,
le comportement humain permet des actions qui combinent tâches et aspects
sociaux en une seule action. L’Interaction Homme-Robot (HRI) n’a pas encore
suffisamment abordé ces actions combinées.

Dans cette thèse, nous nous concentrons sur les actions qui combinent tâches et
actions sociales. Nous nous intéressons à la façon dont les humains utilisent ce
type d’actions dans les environnements HRI, comment l’enseignement influence
ce comportement et comment ces actions peuvent être utilisées pour augmenter
l’apprentissage du robot.

Nous avons mené une étude utilisateur sur le comportement des humains
lorsqu’ils enseignent à un robot comment résoudre une tâche, contrairement à
la simple résolution de la tâche. L’étude consistait en deux expériences. Dans
les premières expériences, les participants ont d’abord été invités à résoudre une
tâche de labyrinthe continu et à enseigner ensuite comment la résoudre à un
robot. De plus, les participants pouvaient faire des démonstrations négatives
démontrant comment la tâche ne devrait pas être résolue. Dans la deuxième
expérience, les démonstrations recueillies dans la première expérience ont été
présentées à de nouveaux participants. On a demandé aux participants dans
quelle mesure ils percevaient ces démonstrations informatives. Les résultats



montrent que significativement plus de démonstrations négatives que positives
ont été perçues comme informatives. De plus, beaucoup plus de démonstra-
tions de la phase où les participants ont enseigné à un robot ont été perçues
comme informatives que de la phase où les participants viennent de résoudre la
tâche.

Nous abordons l’augmentation de l’apprentissage des robots avec l’exploitation
des tâches et des canaux sociaux en introduisant un cadre basé sur l’apprentissage
par renforcement (RL). Dans ce cadre, nous augmentons la récompense de
l’environnement avec une rétroaction sur la façon dont un observateur pourrait
percevoir les actions entreprises par l’agent. Pour ce faire, nous proposons trois
algorithmes différents pour modéliser la perception de l’observateur en tant que
schéma RL interactif et comparer avec un algorithme RL non interactif comme
référence. Afin de modéliser l’observateur, nous varions la méthode de la façon
dont l’observateur estime la probabilité que l’agent se dirige vers l’objectif réel.
Nous évaluons notre approche sur cinq environnements et calculons la lisibilité
des trajectoires apprises. La lisibilité est une métrique scalaire mesurant dans
quelle mesure les objectifs peuvent être déduits des actions. Les résultats mon-
trent que la lisibilité des trajectoires apprises est significativement plus élevée
tout en intégrant le feedback de l’observateur par rapport à un algorithme
Q-Learning standard n’utilisant pas le feedback de l’observateur.

À partir de ces résultats, nous concluons que les humains utilisent des actions
combinées dans les environnements HRI pour enrichir la communication, mais
perçoivent également ces actions comme informatives. De plus, que les actions
combinées peuvent être apprises avec un cadre RL en intégrant le raisonnement
sur les observateurs potentiels pour enrichir les actions avec des aspects sociaux.
Bien que la recherche présentée dans la thèse se limite à des cas spécifiques,
elle démontre le potentiel prometteur des actions combinées dans les milieux
HRI.

mots-clés: interaction homme-robot, apprentissage par renforcement,
apprentissage robotique interactif, apprentissage à partir de la dé-
monstration, communication sensorimotrice, lisibilité
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1 Introduction

Chapter

Contents
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Research Approach . . . . . . . . . . . . . . . . . . 10

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 The Animatas Project . . . . . . . . . . . . . . . . 14

1.1 Motivations

The vision of creating artificial beings that can interact with humans and their
environment like real humans is at least as old as human civilization. Nowadays,
we refer to these artificial beings as robots, originating from the Czech word
robota meaning ‘forced labour’.

While the world pictured in modern science fiction (e.g. Asimov, 1988) is often
heavily populated by different types of robots ranging from small little helpers
to sophisticated humanoid robots, the idea of robots is actually much older.
The idea already appears in classical Greek mythology where Hephaistos - the
God of metallurgy and crafts - created automatons to work for him. At the
end of the 17th century clockmaker build purely mechanically automatons with

7



1.1. MOTIVATIONS

a clockwerk. These automatons where not quite able to work yet, but were
already able for example to write, draw or even perform magic tricks.

In modern times we progressed significantly from these automatons performing
rather simple tasks to much more sophisticated robots. Nowadays robots are
especially widely deployed in industrial environments to automate processes.
Yet, we have not seen the wide deployment of robots "in the wild", namely
the deployment of robots in unknown environments and structures. This
deployment is difficult, since it is infeasible to program robots to cope with
every possible scenario they might encounter beforehand.

From this fact arises the need to equip robots with the capability to learn how
to solve new tasks. Another reason why robots have not been deployed in our
day to day life is that they still lack the functionality to properly interact with
humans in various situations.

In order to get to these capabilities it is useful to take inspiration from humans,
as technology often has been inspired from nature. Robotics in particular
has hugely been influenced by humans (appearance, behaviors, sensory input
processing, etc.).

One crucial difference between humans and other species is the capability to
share goals and intentions (Tomasello et al., 2005). This idea, namely the
capacity of attributing a mental state to other people i.e. to infer observ-
able beliefs, desires and intentions and interpret actions in relations to these
mind state is called Theory of Mind (ToM) (Meltzoff, 1995; Dennett,
1987; Csibra and Gergely, 2007). ToM plays an important role in human
communication.

Usually, humans communicate intentionally. In this context intentionally
means that their goal is not to only say a certain thing, but rather that
their communication partner understands a certain thing. This specific thing
might be literal meaning of what is being said, but might as well require the
communication partner to infer the meaning from what is being said and the
global or specific context.

One special case of communication that is quite relevant to speed up a learning
process is teaching. Humans adapted to teach ideas to conspecifics (Csibra

and Gergely, 2006) and it’s a powerful mechanisms for humans to learn

8



1.1. MOTIVATIONS

new skills that has not yet been extensively investigated in the context of
Human-Robot interaction (HRI).

Another aspect important to communication is how the communication channels
are used. The channel is the medium used to transmit the signal from source
to destination (Shannon and Weaver, 1949). These channels could either
be task channel or social channel (Sigaud et al., 2021). When for example
humans teach to each other how to solve a certain task they can use these
different channels to communicate what to do. When they show how to solve
the task in question, this corresponds to using the task channel to communicate
how to solve the task. Additionally they can explain how to solve the task using
speech, here this explanation corresponds to using the social channel.

However, using different dedicated channels as task channel and social channel
is not the only possibility to communicate something. It is also possible that
only one channel is used to serve as combined task and social channel, meaning
that one channel fulfills both their respective purposes. If humans, for example,
teach a language they could use speech to teach the pronunciation of new
vocabulary, but also to explain in which context it could be used.

If they teach how to solve a sensorimotor task this mean could be achieved by
exaggerating certain aspects that are either particularly relevant to the task or
were previously not executed by the learner. This leads us to the concept of
Sensorimotor Communication (SMC). Pezzulo, Donnarumma, and Dindo

(2013) introduce SMC as a communication that uses the same channel to execute
an action and additionally convey information. The sensorimotor channel is of
special interest for robotics, since the capability to interact with the real world
is the most striking difference that differentiates robots from virtual agents.
However, these actions that combine fulfilling a certain task and communicate
additional information have not been extensively researched in the context of
HRI.

9



1.2. RESEARCH APPROACH

1.2 Research Approach

Problem and Approach

Robots learning on their own by using different machine learning techniques
like Reinforcement Learning (RL) is not new and has resulted in robots learning
a variety of tasks, e.g. autonomous helicopter flight (Bagnell and Schnei-

der, 2001), cart-pole swing-up (Deisenroth and Rasmussen, 2011) and
jumping behavior for a robot dog (Kolter and Ng, 2009). However, the
approach of humans explicitly teaching robots how to solve new tasks is less
well developed.

The closest approach that has a well developed research body is Learning-from-
Demonstration (LfD) (Argall et al., 2009; Calinon, 2019) that even combines
well with RL (Kormushev, Calinon, and Caldwell, 2010; Mülling et al.,
2013). However, in LfD the demonstrator is only demonstrating how to solve a
task, solving the task them self. Usually, teaching something includes more than
just solving the task in question. In this context we could also imagine that
the teacher is including additional information. This aspect has been neglected
so far, yet there is a difference between solving a task and teaching how to
solve a task (Ho, Littman, MacGlashan, et al., 2016). This difference can
be used to speed up the learning process (Ho, Littman, Cushman, et al.,
2018). Therefore it’s quite worthwhile to investigate this difference further. The
difference between solving and teaching in HRI is the first aspect we address in
our research.

The aspect that humans have intentions in their communication that goes
beyond what is literally been communicated, has widely been neglected in
research on robot learning. If we want to imitate human capability it is
necessary to integrate the fact that both interaction partners usually have
intentions. Interpretation of the intentions requires the interaction partner
to mutually maintain a ToM. One impactful intention is the intention to
teach. Further, in the context of robotics, the sensorimotor channel is of great
importance since the practical values of robots stems from the fact that they
can interact with the real world. Therefore, in this thesis, we focus on teaching
intentions in combination with SMC. A simplified communication model we
assume for our research is shown in Fig. 1.1.
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intentions

beliefs
desires

intentions

beliefs
desires

human
 robotenvironment
modify

social signals

combined task and social channel


task signals

modify

Figure 1.1: Simplified communication model integrating ToM and focusing
on a combined task and social channel. We investigate how the task- and
social channel characteristics of the combined task and social channel are used
by humans when teaching robots. Furthermore, we investigate how these
characteristics can beneficiary be used in HRI, and in particular in robot
learning.

Research Questions

In our work we identified the following research questions that we address in
this thesis:

1. Do humans make use of social channel characteristics when teaching
robots a sensorimotor task? (Q1)

(a) Does human behavior change when teaching a robot how to solve a
task as opposed to just solving the task? (Q1a)

(b) Do humans perceive this teaching behavior as more informative than
the the solving behavior? (Q1b)

2. Are negative demonstrations useful to enrich approaches that use demon-
strations to learn? (Q2)

(a) Do humans perceive negative demonstrations as informative?

3. How can we integrate actions that make use of social channel characteris-
tics into RL? (Q3)

11
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1.3 Thesis Outline

This thesis consists of nine chapters. In the first chapter we introduce the
domain of our research and our research approach. The next four chapters
present the background and related research that relates and inspired the work in
this thesis. The next chapter describes the general and specific communication
model we assume for our research. The following two chapters describe the
research we have implemented. The last chapter discusses our contribution and
gives perspectives.

In the second chapter we present fundamental topics of cognition and commu-
nication that are, due to its multidisciplinary nature, important concepts for
HRI in general and in particular for the work we present in this thesis. These
include approaches to conceptualize communication processes between between
humans and machines and insights on human reasoning in communication
processes.

In the third chapter we give an overview of approaches to robot learning, and
present important approaches like LfD and RL in more detail. Further, we
discuss the particularities that distinguish robots from (virtual) agents.

In the fourth chapter we present approaches that explicitly focus on teaching.
We present approaches that address formalizing teaching with mathematical
frameworks, as well as research focusing on HRI settings where a human teaches
a robot.

In the fifth chapter we introduce the idea of observer related metrics. The
focus lies on predictability, and especially legibility, as these are two interesting,
but fundamentally different metrics. Furthermore, we use legibility in our
implementation in Chapter 8.

In the sixth chapter we propose a general communication model for HRI settings
allowing for task signals, social signals, as well as combined task and social
signals. Further, we present our specific model for communication focusing on
combined signals, and how this model relates to our implemented research.

12
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In the seventh chapter we present our user study investigating the difference of
human behavior when they solve a sensorimotor task in contrast to teaching
how to solve the task to a robot. In this chapter we address our first two
research questions (Q1 & Q2).

In the eighth chapter we address the third research question (Q3). We present
our RL base framework that we augmented with observer feedback in order to
learn actions that communicate additional information to a potential observer
at the same time.

In the last chapter, we conclude this thesis by discussing our research, the
aspects that could be improved and give a perspective on future work.

1.4 Contributions

The three main contributions presented in this thesis can be summarized as
follows:

• As a first contribution we present a model for communication that is,
while still technical, better suited to account for human behavior in HRI
than, for example, the code model (see Chapter 6). While we do not
claim novelty of the ideas used in the model, we argue that having an
explicit model is useful to position and guide further research focusing
on communication aspects in HRI.

• The second contribution consists of insights on human behavior while
teaching a robot how to solve a sensorimotor task, as well on human
perception on this behavior (see Chapter 7). We show that when humans
teach a robot how to solve a sensorimotor task, they communicate ad-
ditional information via their actions as opposed when they just solve
the task. We show further, that humans perceive these actions as more
informative.

• Our third contribution is the proposition of a framework that integrates
reasoning of a potential observer into the RL approach. We use the
framework to compare different approaches implementing the reasoning
process of the observer and show that they achieve higher legibility values
than a classical RL baseline.

13
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1.5 Publications

The results in this thesis have been published in the following publications:

• Chapter 7: Bied, Manuel and Mohamed Chetouani (2020). “Exploring
the Difference between Solving and Teaching in Sensorimotor Tasks”. In:
Companion of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction. HRI ’20. Cambridge, United Kingdom: Association
for Computing Machinery, pp. 139–141. ISBN: 9781450370578. DOI:
10.1145/3371382.3378284.

• Chapter 8: Bied, Manuel and Mohamed Chetouani (2020). “Integrat-
ing an Observer in Interactive Reinforcement Learning to Learn Legible
Trajectories”. In: 2020 29th IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), pp. 760–767. DOI:
10.1109/RO-MAN47096.2020.9223338.

1.6 The Animatas Project

The research in this thesis was conducted within the EU project ANIMATAS.
The aim of the project was to advance intuitive human-machine interaction with
human-like social capabilities for education in schools. For this 15 early-stage
researchers (ESRs) conducted research on three main research topics:

1. Perception

2. Social learning

3. Personalized adaptation

The research in this thesis can be localized within the social learning topic.
While we do not propose applications that can directly be used in schools to
foster learning, pedagogical situations (see Section 4.2) play an important role
in our research. Thus, our contribution is more theoretical focused work that
might be extended in the future to more practical applications that can be used
in schools. For further information on the project please frequent the website
at http://www.animatas.eu.
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2.1 Introduction

HRI as a research field lies at the intersection of multiple disciplines like
cognitive science, robotics, A.I. and social science (Kennedy et al., 2021). A
variety of interaction protocols and algorithms in HRI have been influenced
by concepts and ideas coming from fields that originally did not have any
application with robotics in mind. While robotics has always drawn inspiration
from nature (e.g. humanoids and bionics) often it is less important, if the
robotic implementation behaves as the original, as long the implementation
achieves what it is supposed to do. Often computer science and robotics can
also inform social- and cognitive sciences (Brooks et al., 2002; Chaminade

and Cheng, 2009; Wykowska, Chaminade, and Cheng, 2016; Sciutti

et al., 2015).
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In particular research on cognition and communication appears to be an
important factor influencing HRI. In this chapter we present concepts of
cognition and communication that are relevant to HRI in general and in
particular to this thesis.

We start with the code model in Section 2.2, as it provides a great concep-
tualization of a communication process that is not only useful to understand
communication better, but also to implement communication between electrical
devices or a human and an electrical device as a robot.

Next, we continue with ToM in Section 2.3. ToM is an important foundation
for more sophisticated communication and interaction in general. Furthermore,
one important role within ToM plays goal attribution. This research motivates
the metrics we present in Section 5, particularly a metric called legibility that
we use in on of our experiments Chapter 8.

One essential part of the code model is the channel. In social interactions
it is useful to differentiate between different channel types. In this context
the social- and task channel seem to be particularly useful, as we present in
Section 2.4. This differentiation plays also an important role in the general
model we propose in Chapter 6.

Next, in Section 2.5 we present the concept of ostensive-inferential communi-
cation that introduces inference as an explicit factor into communication and
addresses a major shortcoming of the code model.

SMC, as we present in Section 2.6 combines characteristics of task- and social
channel in one channel proving a promising way to enrich communication in
HRI.

2.2 The Code Model

The code model provides a conceptualized way to describe communication and
had a great influence on technical implementation of communication systems.
It was introduced by Shannon and Weaver (1949), and is also known as the
Shannon-Weaver model.

A code enables two information-processing devices (organism or machine) to
communicate. This mean is achieved by pairing messages with signals. A signal
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source encoder channel decoder destination

noise

message signal
received

signal

received
message


Figure 2.1: The code model after Shannon and Weaver. A message is trans-
mitted from source to destination. The message itself can not travel, it has
to encoded into a signal. The signal travels over the channel. The decoder
reconstructs the original message from the signal. Recreation from (Sperber
and Wilson, 1995).

is the modification of the environment by one device and recognizable by the
other. A message is an internal representation to the device (Sperber and
Wilson, 1995).

The model consists essentially of five parts:

1. An information source originates a message that is internal to the com-
municating devices. The message can not directly travel.

2. The encoder transforms the message into a signal that can be transmitted
trough the channel.

3. The channel is the medium used to transmit the signal from source to
destination. The channel can be influenced by noise disturbing the signal.

4. The decoder reverses the operation performed by the encoder to recon-
struct the original message from the signal.

5. The destination is the information-processing device (organism or ma-
chine) for which the message is intended.

The code model provides a great technical description to implement a communi-
cation system, but can not account for the full range of human communication.
An important factor missing is inference. While in rather artificial conditions
inference can mimic encoding and decoding can mimic inference, these two types
are essentially distinct, as Sperber and Wilson (1995) put forward. The con-
cept of ostensive-inferential communication, described in Section 2.5, provides
solutions to the shortcomings of the code model by introducing inference as an
explicit factor.
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While for electrical devices the encoding and decoding process can be explicitly
implemented, it is clear that humans are no machines and these processes
are not as explicit. Thus, in order to advance HRI it is necessary to better
understand human behavior in interactions on the sending and the receiving end
of communication. Research on ToM, as we see in the next section, can provide
useful insights to better understand this behavior. In Section 6.3 we present a
model that moves toward better integrating insights on human behavior.

2.3 Theory of Mind

ToM (also referred to as folk psychology) is the capacity of attributing a mental
state to other people, reason about them and respond to their mental state
(Meltzoff, 1995; Premack and Woodruff, 1978; Baker, Saxe, and
Tenenbaum, 2009). This capacity includes inference of unobservable beliefs,
desires and intentions and interpret actions in relations to these mind state.
Fig. 2.2 illustrates mutual ToM of two people. Young children demonstrate
these relatively sophisticated strategies by the age of five (Gergely et al.,
1995). These sophisticated strategies develop over time, while less sophisticated
subskills contributing to a ToM already develop earlier.

Interaction

...intentions

beliefs

goals desires

...
intentions

beliefs
goals desires

Figure 2.2: Two people having a mutual theory of mind. They mutually reason
about the mental state of the other person and interpret actions in relation to
these mind states.

One important aspect is the ’intentional stance’ (Dennett, 1987). Intentions
link desires and beliefs to actions. The object of an intention is always an
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action, as opposed to desires that can have outcomes as objective (Malle and
Knobe, 1997). The intentional stance approaches the explanation of other
agents behavior by attributing intentional states (beliefs, desires, goals) as
causes for their actions. The intentional stance can be found in quite young
infants, i.e. Gergely et al. (1995) show that infants at the age of 12-month can
already take the intentional stance. One important special case of intentional
states can be found in teaching situations where the teacher intents the learner
to understand a certain concept. We will have a closer look onto these situations
in Section 4.2. However, as Csibra and Gergely (2006) put forward, while
teaching (and learning) is assisted by ToM, the ability to teach is a primary
ability that does not depend on ToM.

Type of inference
Primary
function

Action-to-Goal Goal-to-Action

On-line
Prediction

Goal prediction: Predicting
the likely effect of an ongoing
action

Action anticipation: Predictive
tracking of dynamic actions
in real time

Social
Learning

Discovering novel goals
and artifact functions

Acquiring novel means
actions by evaluating their
causal efficacy in bringing
about the goal

Table 2.1: Types of goal inferences and their respective functions. Recreation
from Csibra and Gergely (2007).

Another important aspect within ToM are goals. Goals play a particular impor-
tant role, since humans interpret observed behaviors as goal-directed actions
(Meltzoff, 1995; Johnson, 2000; Csibra and Gergely, 2007; Carter,
Hodgins, and Rakison, 2011). While goal-directed action understanding
does not require any knowledge about the actor’s mental state, these two types
of knowledge are integral parts to form a building block for intention under-
standing (Carter, Hodgins, and Rakison, 2011). Csibra and Gergely

(2007) identify two basic functions of goal attribution. Firstly, goal attribution
allows for goal prediction and action anticipation. Secondly, goal attribution
can enable long-term social learning.

Csibra and Gergely (2007) further identify two types of inference: "action-
to-goal" and "goal-to-action". The first type of inference, the action-to-goal
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2.4. SOCIAL- AND TASK CHANNEL

inference, answers the question What is the function of this action? by pre-
dicting a future goal state from interpreting an ongoing action. Whereas the
second type of inference, the goal-to-action inference, answers the question
What action would achieve that goal?.

We see that intentions play an important role in human interaction, thus we
integrate them in the model we present in Section 6.3. Further, in Chapter 8
we use the legibility metric (Section 5.2) measuring action-to-goal inference to
evaluate how well an observer could interpret learned actions of an agent.

2.4 Social- and Task Channel

tutor learner
social channel

task channel

provider/
recipient


provider/
recipient


Figure 2.3: Mutual signal exchange using two channels. The task channel
transmits task signals, e.g. demonstrations. Both participants can provide as
well as receive both kind of signals. The social channel is used to transmit
social signals such as feedback, requests, commitment signals, etc. Recreation
from Sigaud et al. (2021).

According to the Shannon-Weaver model (see Section 2.2), the channel is an
essential part of communication. While the channel definition of the Shannon-
Weaver model is rather technical, it is also useful in a social context. Thus, it
is useful to have a closer look onto the properties of the available channels in a
human robot interaction, in particular in a learning setting. In this section the
focus is more on a theoretical point of view of the channels.

Sigaud et al. (2021) conceptualize social learning processes (Bandura and
McClelland, 1977), more specifically interactions between a tutor and a
learner as a mutual exchange process using two main communication channels.
These two channels are the social channel and the task channel as shown in
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Fig. 2.3. The exchange of signals is mutual, both participants can send and
receive signals on both channels. In order to use both channels to its full extend,
the tutor and the learner need to maintain a mental model of the interaction
partner as described in ToM. (see Section 2.3).

Interaction from the task channel includes recognizing pedagogical signals
(see Section 4.2), learning from demonstration (see Section 3.5), observational
learning (Varni et al., 1979; Meltzoff, 1999; Burke et al., 2010) and
inference from indirect goal-related signals (Bobu et al., 2020; Reddy et
al., 2021). Except for tasks that explicitly include speech these signals are
nonverbal.

Interaction from the social channel include feedback, instructions (see Sec-
tion 3.3) and gaze (Nomikou et al., 2016; Fournier, Sigaud, and Chetouani,
2017).

Even if it is not necessarily called a channel, the idea of relying on task- as
well as on social dimensions in an interaction is present in other work too. For
example in Castellano, Pereira, et al. (2009) children play chess with
a robot companion called iCat. The user engagement is detected using task
features (e.g. the game state) as well as social features (e.g. the user smiling or
looking at the iCat and the iCat displaying affective reactions). Similarly, in
Leclère et al. (2016) task- and social features are used to distinguish, in the
context of a mother-infant interaction, dyads that are at high-risk of showing
neglect from dyads that are at low risk. In Ivaldi et al. (2014) related ideas
are used in an interaction of a human with an iCub, a humanoid robot. In this
work a social cue (gaze) is combined with task information (color of an object)
to teach the color of objects to the robot. The participants indicated that they
would like to see improved behaviors even if they were not task related.

A concept that explicitly combines pedagogical intentions on the task channel
is SMC (see Section 2.6). Interaction from the social channel includes learning
from feedback, instructions, joint attention and engagement. These signals can
be verbal, i.e. feedback, or non-verbal like joint attention by gaze following.
While research on robot learning usually uses these channels, research explicitly
on the channel usage is rather sparse.

While not explicitly calling it a channel, Ho, Littman, Cushman, et al. (2015)
and Ho, Cushman, et al. (2019) provide research on how people use evaluative
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feedback, namely rewards and punishment. They investigate if evaluative
feedback should be interpreted as reinforcement to shape the learner or as
communication to signal to the learner to reason about the tutor’s pedagogical
goals. They come to the conclusion that people have a strong bias to use
evaluative feedback as communication rather than as reinforcement.

Interesting insides on how people use the available channel for giving feedback
to robots can be found in Thomaz and Breazeal (2008) and Thomaz and
Breazeal (2006b). These works introduce the Sophie’s kitchen framework,
where people were asked to teach a reinforcement agent how to bake a cake.
The works show that people are using the reward channel not only for rewards,
but also for future directed guidance. The introduction of an explicit guidance
channel speeded up the learning.

We see that social- and task dimensions play an important role in HRI research
and we integrate this idea in our work in form of the task channel, social
channel, and combined task and social channel (see Section 6).

2.5 Ostensive-Inferential Communication

As already explained in Section 2.2, the code model fails to account for the
full range of human communication. The main defect of the code model is
its descriptive inadequacy: there is more to communication than coding and
decoding.

A good example for that is language. The same sentence can express a variety of
thoughts, depending on the context and the relation between the communication
partners. Comprehension of what is being said requires more than just the
decoding of a linguistic signal. Take for example the utterance "Do you know
what time it is?" could be a genuine question to get to know what time it
is. The utterance could likewise be used to express that the speaker is quite
annoyed about being called very late in the night. Thus, the meaning of the
utterance depends on the context.

Grice (1957) provides an analysis that can be used as starting point for an
inferential model of communication (Sperber and Wilson, 1995): "[S] meant
something by x’ is (roughly) equivalent to ’[S] intended the utterance of x to
produce some effect in an audience by means of recognition of this intention".
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Thus, the communication succeeds when the hearer not only infers the linguistic
meaning, but also what the speaker wants to convey.

While this approach has been criticized (e.g. Searle, 1969) that understanding
intention can be just included in the decoding step, this critic misses an
important point: communication can happen without any code (Sperber

and Wilson, 1995). For example if Mary asks Bob how he is doing and he
shows her his packet of painkillers in response. The conveyed message is that
he is in pain, without the explicit presence of a code. Thus, the concept of
inferential communication can be used for cases the code model can not account
for. Consequently, the two models complement each other.

Sperber and Wilson (1995) extend the concept of inferential communica-
tion to ostensive-inferential communication. They put forward that ostension
provides two layers of information: the informative intention and the commu-
nicative intention.

The informative intention is the information itself that has been pointed out.
The communicative intention is to mutually manifest that the communicator
has the informative intention. Thus, the communicative intention can be seen
as "meta" intention. While in some cases the informative intention could
be recognized without recognizing the communicative intention, in general
failing to recognize the communicative intention might lead to missing relevant
intention.

In the next section we will turn to SMC, a certain type of ostensive-inferential
communication that we consider promising for HRI and we investigate further
in Chapter 7.

2.6 Sensorimotor Communication

A specific type of ostensive-inferential communication that we identify as
particularly interesting for HRI is SMC. While human communication has
been the focus in many different disciplines. Several studies have focused
on verbal and non-verbal communication like linguistic, gesturing and facial
expressions. All these communication forms have in common that the channel
used for communication is different to the channel used for execution of the
action.
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In contrast to these other forms of communication, in Pezzulo, Donnarumma,
and Dindo (2013), the authors use the term SMC for a communication that
uses the same channel to execute an action and additionally convey information.
Thus, to explain it differently, SMC uses the sensorimotor channel as task- and
social channel.

Later work (Pezzulo, Donnarumma, Dindo, et al., 2019) provides the work-
ing definition of SMC as "signal that has a dual nature, and which combines a
pragmatic action and a communicative action". In Pezzulo, Donnarumma,
and Dindo (2013), the authors formalize signaling in a computational frame-
work in terms of parametrizable deviations for the optimal trajectory in order
to be informative about the action choice while still achieving its pragmatic
goal. They define signaling as the process of altering one’s own behavior to
facilitate its recognition by other persons.

For this they introduce probabilistic models, whereas the signaling distribution
should be as close as possible to the original distribution, while at the same
time offering a high discriminating power.

The starting point of the approach is inspired by a theory in computational
motor control that each particular instantiating of an action can be associated to
an internal model in the central nervous system (Wolpert and Ghahramani,
2000; Shadmehr, Smith, and Krakauer, 2010). In this approach, each
model mi is associated to a goal-directed action (e.g. reaching for an object
to the left or right) mapping to a probabilistic trajectory. The evolution of a
model is represented as p(xt|mi) with xt as the state of the system at time t,
the entire sequence of states of the system resulting in following model mi is
denoted as p(x|mi). The perceiver’s goal during interaction is to infer which
model miML

has most likely generated the observed data where the index of
the most likely model iML is given with:

iML = argmaxip(mi|x1:t), i ∈ 1, 2, ..., n (2.1)

with n the number of available models. In this interaction, the performer’s task
is to facilitate this inferential process. Therefore, samples from the signaling
distribution psig need a high probability of being sampled from the original
distribution and a low probability of being sampled from a distribution belonging
to another model. This mean can be achieved by using a modified rejection
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sampling (Bishop, 2006) leading to the formal definition of the signaling
distribution for the continuous case:

psig(xt|mi;w) ∝ wi · p(xt|mi)
∏
j 6=i

(1− wjp(xt|mj)/p
max
j ), (2.2)

with pmaxj the maximum value for the distribution p(xt|mj) and w a weight
vector modulating the contribution of individual models to the signaling distri-
bution. Finding the signaling distribution can then be seen as optimization
problem where the weight vector needs to minimize the following:

wi(t) = argminw(t)[KL[psigi (w(t)), pi] + λS(θ − psimulatedi )] (2.3)

with:

• the Kullback-Leibler divergence between the signaling distribution and
the original one KL(·, ·),

• a parameter to control the amount of signaling λ,

• the perceiver’s posterior probability of correctly recognizing the model
mi denoted as psimulatedi . This posterior requires the assumption that the
internal models are mutually known.

• an experimentally fixed threshold used by the receiver during model
recognition θ,

• the logistic function S.

This formulation also permits to modulate the amount of signaling during the
task, e.g. only for the first part of the action. They evaluate this model in
three experiments, the first two experiments on synthetic data sets and the
third experiment on real human data.

Summarizing the first experiment on synthetic data shows that signaling permits
the perceiver to recognize a performed action faster while choosing between
two possible actions, the second experiment on real human data shows that
their proposed computational framework can successfully model the behavior
shown by the real humans. In the third experiment they extend the model to
incorporate three possible actions instead of only two.

Dockendorff, Sebanz, and Knoblich (2019) published a comment that
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compares Pezzulo et al.’s newer work (Pezzulo, Donnarumma, Dindo,
et al., 2019) with the previous work (Pezzulo, Donnarumma, and Dindo,
2013), and criticizes that the newer work leaves out the aspect about how
co-actors distinguish action that are used for purely pragmatic goals from
actions that combine pragmatic and communicative goals. Furthermore, in
the comment they argue that "the key distinguishing feature is that actions
combining pragmatic and communicative goals will always involve deviations
from efficient action performance". This earlier work and the comment point
in a direction which features to use to recognize communicative goals.

We see that SMC provides a rich human communication method. Further,
the possibility to combine task signals with social signals on the sensorimotor
channel seems to be a promising direction for HRI. Thus, in Chapter 7 we
study how humans use SMC to teach to a robot how to solve a sensorimotor
task.
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3.1 Introduction

The need for approaches that enable robots to learn new tasks is motivated by
the fact that robots can not be programmed in advance to solve all possible
tasks they could encounter. The relevant algorithms and approaches will not
always be clearly distinguishable from approaches where only a virtual agent
is learning. Robot learning will integrate common approaches from machine
learning that are not necessarily dependent on a physical agent. However, robots
come with their own problems and challenges making it worthwhile looking
into the problem of learning robots as its own domain (Kober, Bagnell, and
Peters, 2013).

One possibility to approach robot learning is to have the robot learn fully
autonomously. The most famous implementation for this approach is reinforce-
ment learning, an approach inspired by trial-and-error learning first observed
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by Thorndike (1898) in animals. Reinforcement learning is an approach well
covered in literature as we present in Section 3.4.

Another possibility is to have the robot learn in interaction which a human.
Chernova and Thomaz (2014) identify useful design elements that should
be considered when designing robots that learn from interacting with hu-
mans:

• Social interaction: How can social aspects of the interaction can be
leveraged? Which social cues can be leveraged to aid learning? Which
social cues are most informative for task learning and which social cues
are favored by the user.

• Motivation for learning: How initiates the interaction, will all learning
be directed by the human or does the robot have an intrinsic motivation.

• Transparency: In order to guide the learning process in the best way
possible, the teacher needs to maintain a model of the learner’s knowledge.
Therefore, it is an important question how the robot can make it’s internal
state transparent to the teacher. This transparency could be achieved
by mimicking human communication or by the use of artificial interfaces
that are not part of natural human communication.

• Question asking: Asking questions is an integral part of human learning.
How can we implement question asking for robots? How do we provide
the possibility for the human to answer the question in a way the robot
can interpret? How can the gained information used to improve the
underlying model? If multiple questions could be asked, how to decide
which question to ask?

• Scaffolding: Scaffolding is the process of breaking the learning of a
new skill into simpler sub-skills. This process often allows for greater
efficiency, since the sub-skills can be reused. How can the scaffolding
process leveraged in an interaction with the user?

• Directing attention: In the context of learning, similar to feature
selection in machine learning, attention directing can be used to focus
learning. It is an essential mechanism that contributes to the learning
process.

• Online vs. Batch learning: This choice reflects an important aspect of
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the interactive learning protocol and determines the flow of the interaction.

This idea has been implemented with a variety of approaches and we present
an overview of commonly employed approaches in Section 3.3.

Some of these approaches are designed with particularly robots in mind, however
some are designed for learning agents in general. Robots are a specific type of
agents with certain properties. They are embodied agents with the capability
to interact with the real world. Before turning to the learning approaches, we
discuss these properties in more detail in the next section (Section 3.2).

3.2 Robots as Embodied Agents

In this section we have a closer look on characteristics that define a robot,
because these characteristics are important when addressing the question how
we can enable robots to learn. Robots can be considered as a special type of
agents. An agent is an identity that is capable of making decisions. While
theoretically these decisions could be random, in most cases these decisions
will somehow be based on information gathered by or provided to the agent.
Rational agents will try achieve the best outcome based on some objectives.
While there might be useful applications of non-rational agents, we will consider
agents as rational.

Following this definition robots are certain type of agent - robots are embodied
agents. Technically a robot could be considered as a (software) agent reading and
processing information coming from sensors and controlling certain hardware.
However, we will consider all these parts together as integral parts making up
one robot identity. In this sense, a robot is more than just an agent that comes
with its own problems and advantages.

The most obvious and striking difference between a robot and a virtual agent
is the fact that the robot can interact with the real world. The capability of
interacting and manipulating objects in the environments has been used to
learn different interesting tasks such as locomotion (Jun Nakanishi et al.,
2004), the game "ball in a cup" (Kober, Mohler, and Peters, 2008) and
table tennis (Muelling, Kober, and Peters, 2010)). The capability to
interact with the real world makes robots well suited to automate tiring or
even dangerous tasks that otherwise would need to be executed manually by
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humans. Thus, these kinds of robots are widely deployed in industry.

However, robots can not only be used for automation, but also in a social
context. Thus, research on social robots, robots that are able to communicate
and engage in social interactions with humans has recently got more attention
(Fong, Nourbakhsh, and Dautenhahn, 2003; Bütepage and Kragic,
2017; Dautenhahn, 2007). While most striking, the capability to physically
interact is not the only advantage of using robots over virtual agents. Already
the physical presence of a robot can yield its advantages. The work of Leyzberg

et al. (2012) shows that the use of a robot increased learning gains for a human
learner in comparison with a pure virtual system. Furthermore, a review on
social robots for education (Belpaeme et al., 2018) identifies three advantages
of robots over virtual systems. The first two already mentioned advantages
are the capability to interact with the real world and increased learning gains
for the human learner. The third advantage is that users show more social
behavior beneficial for learning.

While using robots over virtual systems comes with advantages, it also comes
with its own challenges and problems. These problems can be of two different
types. The first type contains problems that directly concern the hardware. The
second type contains restrictions on the software. These restrictions derive from
the fact that hardware is used, but does not concern the hardware directly.

One considerable aspect concerning the hardware directly is the financial aspect:
robotic systems are usually considerably more expensive than virtual systems.
Not only the acquisition cost are higher, but also maintenance, since robots
are exposed to wear and tear. They can break and malfunction for mechanical
reasons, and unfortunately they often do in inappropriate moments. Even
if they function properly, conducting robot experiments is time consuming.
Somebody has to be around to ensure a smooth execution and verify that
nothing goes wrong. Ensuring that multiple experiments in a row have the
exact same conditions is difficult, even more so running multiple experiments in
parallel. Furthermore, depending on the robot, malfunctions can be physically
dangerous to humans interacting with or operating the robot.

On the software side we have the problem that typical assumptions that are
often made in machine learning do not hold in robotics. Usually, it can neither
be assumed that the true state is fully observable nor that the data is noise free.
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Also the high-dimensional continuous state and action space is rather large
(Kober, Bagnell, and Peters, 2013). While it is possible to simulate the
robot, it is quite unrealistic that the robot will match this behavior in the real
world, as a consequence, the algorithms that are being used need to be robust
with respect to models not capturing all details of the real system correctly
(Kober, Bagnell, and Peters, 2013).

3.3 Overview of Approaches to Robot Learning

Reward
function

Evaluative
Feedback


Corrective
Feedback
 Guidance Instruction Demonstration

human controlautonomous exploration

Figure 3.1: Approaches to robot learning can be located on a spectrum ranging
from approaches where the robot learns fully autonomously to approaches
where the human has full control of what is being learned. Recreation from
Najar and Chetouani (2021).

After having a better understanding of the characteristics of a robot, we
now turn to an overview of commonly used approaches to enable robots to
learn. These approaches can be located on the exploration-control spectrum
(Najar and Chetouani, 2021; Breazeal and Thomaz, 2008) as shown in
Fig. 3.1. On the left side of the spectrum we find approaches where the agent
learns autonomously like RL (Sutton and Barto, 1998). RL provides a
mathematical framework to implement the idea of trial-and-error learning that
has a broad corpus of research, particularly in robotics (Kober, Bagnell,
and Peters, 2013). Classical reinforcement learning relies purely on the agent
to explore the effects of its action on the environment. On this side of the
spectrum the agent has a high autonomy and learns by itself.

When moving towards the right of the spectrum, the control influence of the
human on the learning process increases. Coming from classical reinforcement
learning we move to approaches that integrate feedback that the agent receives
on taken action from a human tutor. These approaches are often combined
with RL. However, how to integrate the feedback into the learning algorithms
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needs research on its own (e.g. Knox and Stone, 2012b; Li et al., 2019).

If we move further on the spectrum, we find guidance and instruction. These
approaches limit the set of possible actions or suggest optimal actions (Thomaz

and Breazeal, 2006a). On the right corner of the spectrum we find the idea of
demonstrations. This idea is implemented with the LfD framework (Argall et
al., 2009; Calinon, 2019). The LfD approach is a commonly applied approach
for robots learning new skills from humans, where the human demonstrator
demonstrates how to solve a certain task to the robot. The robot learns from
these demonstrations how to solve this particular task.

Except for classical reinforcement learning, all approaches on the spectrum
can be counted toward interactive learning methods. In interactive learning
approaches the teaching signals to an agent can be achieved via a variety of
teaching channels like natural language (Paléologue et al., 2018; Cruz et al.,
2015; Kuhlmann et al., 2004), computer vision (Atkeson and Schaal, 1997;
Najar, Sigaud, and Chetouani, 2019, computer code (Maclin et al., 2005;
Torrey et al., 2006, artificial interfaces (Abbeel, Coates, and Ng, 2010;
Suay and Chernova, 2011; Knox, Stone, and Breazeal, 2013) or physical
interaction (Akgun et al., 2012). Najar and Chetouani (2021) identify two
main categories of teaching signals based on how they are produced: advice and
demonstration. While these teaching signals could use the same channel, they
are fundamentally different as the demonstration requires task execution and
advice does not. In other words, demonstrations rely mainly (if not exclusively)
on the task channel characteristics of the communication channel, while advice
relies mainly on social channel characteristics (see Section 2.4).

Furthermore, Najar and Chetouani (2021) define advice as: "teaching
signals that can be communicated by the teacher to the learning system without
executing the task". Based on these considerations Najar and Chetouani,
2021 propose the following taxonomy of advice:

• General advice can be used to provide prior information on the task
before the learning starts. It can be split into general constraints and
general instructions.

• General constraints include information about the task such as domain
concepts, behavioral constraints and performance heuristics.
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• General instructions explicitly specify what actions to perform. It can
either be provided in form of if-then rules or as detailed action plans.

• Contextual advice is provided during the task. It is dependent on the
current state of the teacher-agent setting. It can be split into guidance
and feedback.

• Guidance informs about future actions. In the most specific sense, it
aims at limiting the set of all possible actions to a sub-set that is favored
by the teacher.

• Contextual instructions are a particular type of guidance where only
one action is suggested by the teacher.

• Feedback informs about past actions taken by the agent. It can be split
into corrective and evaluative feedback.

• Corrective feedback can consist of either a corrective instruction or a
corrective demonstration.

• Evaluative feedback can be provided in different forms. These include
scalar values, binary values, positive reinforcer or categorical information.
Also preferences between alternatives can be counted towards evaluative
feedback.

It is difficult to clearly structure and separate all approaches used in interactive
learning. For example, one problem with this taxonomy is that that Najar

and Chetouani (2021) include demonstrations (e.g. Subramanian, Isbell,
and Thomaz, 2016) in guidance. This makes sense, since demonstrations
can be used to guide the learning process, however it does not go along with
the previous definition of not executing the task. While this taxonomy is not
perfect, it gives a good overview about applied techniques in the middle of the
spectrum.

In the next two sections we present the two approaches on both ends of the
spectrum, LfD (Section 3.5) and RL (Section 3.4).
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3.4 Reinforcement Learning

RL implements an approach that is inspired by trial-and-error learning first
observed by Thorndike (1898) in animals. An agent (the learner and deci-
sion maker) explores the space of possible strategies by interacting with the
environment that comprises everything outside the agent’s control. The agent
receives feedback on the outcome of the chosen action. This information is
used to improve the strategy and finally find the optimal strategy.

Markov Decision Process

The standard way of formalizing reinforcement learning problems is the use of a
Markov Decision Process (MDP). The Markov property states that the current
state information includes all relevant information concerning the environment.
The next state after taking an action does only depend on the action and the
current state and not, for example, on the history of previous states. While most
of theoretical guarantees only hold if the requirements of the Markov property
are fulfilled, many approaches work well in practice even if the problems do not
fulfill these requirements (Kober, Bagnell, and Peters, 2013). Further, a
MDP is defined as tuple (S,A, T , R, γ):

• S is the set of possible states (also called the state-space),

• A is the set of possible actions (also called the action-space),

• T : S ×A× S → P (s′ | s, a) defines the state-transition probability func-
tion, with P (s′|s, a) representing the probability that the agent transitions
to state s′ when taking the action a,

• R : S × A× S → R defines the reward r(s, a, s′) that the agent receives
when transitioning from state s to the new state s′ while taking action a,

• γ → [0, 1] is the discount factor describing how much rewards for the
recent decision are taking into account.

Interaction loop

The interaction loop for a RL problem (Fig. 3.2) can be described as follows.
At each time step, the agent receives the current state st ∈ S. Based on the
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Agent

Environment

action
at

reward
rt
state

st

rt+1

st+1

Figure 3.2: The interaction of the agent with the environment. The agent
knows that the environment is in state st, takes an action at at the time step t
and receives the corresponding reward rt. The environment transitions to the
next state st+1. Recreation from Sutton and Barto (1998).

current state it executes action at ∈ A. The environment transitions to the
next state st+1 and provides the reward rt+1 to the agent.

Agent’s objective

The agent’s objective is to maximize the cumulative received reward J while
executing a certain policy π. A policy is a mapping from state to action that
can either be deterministic or stochastic:

• π : S → A for deterministic policies and

• π : S × A→ [0, 1] for stochastic policies.

The cumulative reward for a certain policy is denoted as:

J =
∞∑
k=0

γkr(st+k, π(st+k), st+k+1). (3.1)

Value functions

In order to evaluate a certain policy usually two value functions are used. These
functions are called state-value function and action-value function and are used
to evaluate how good a certain state is, respectively how good it is to perform
certain actions in a certain state.
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State-value function

The state-value function V π(s) is the expected return when the agent starts in
state s and follows the policy π. There is a relationship between the value of
state and the values of its successor states. This relationship can be expressed
with the Bellman equation for V π(s) (Sutton and Barto, 1998):

V π(s) =
∑
a

π(s, a)
∑
s′

P (s’|s, a)[r(s, a, s’) +γV π(s′)] (3.2)

The agent now needs to find the optimal policy π∗, respectively one of the
optimal policies if there are multiple optimal policies. The return of π∗ is
greater (or at least as great for multiple optimal policies) than all other policies.
The state-value function can now be used to express the relationship between
two policies, a policy π is better than or equal to a policy π′ if and only
if V π(s) ≥ V π′

(s) for all s ∈ S The optimal state-value function is defined
as:

V ∗(s) = max
π

V π(s), (3.3)

for all s ∈ S leading to the Bellman optimality equation:

V ∗(s) = max
a

∑
s′

P (s’|s, a)[r(s, a, s’) +γV ∗(s′)] (3.4)

Action-value function

The value of taking an action a while being in state s and following the policy
π can be described with the action-value function for policy π denoted as
Qπ:

Qπ(s, a) =
∑
s′

P (s’|s, a)[r(s, a, s’) +γV π(s′)] (3.5)

Approaches to find the optimal policy

Approaches to find the optimal policy include value-based approaches, policy
search and actor-critic methods. Value-based algorithms obtain the optimal
policy by iteratively optimizing the value function. Popular approaches for value-
based RL that are often used as benchmarks include Q-Learning (Watkins

and Dayan, 1992) and SARSA (Sutton, 1996). The main difference between
these two approaches is that Q-learning learns off-policy and SARSA learns
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on-policy. Off-policy learning means that the policy being updated differs from
the policy being followed. On-policy means that the algorithm estimates the
value of the policy that is actually being followed.

A simple one-step Q-learning, where Q directly approximates the optimal
action-value function Q∗, is defined by:

(3.6)Q(st, at)← Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]

The step size α with 0 < α < 1 defines how strongly to move towards the new
estimate at each iteration, the larger α, the larger the step towards the new
estimate. The discount factor γ with 0 ≤ γ ≤ 1 determines how strongly to take
future rewards into account. When γ is 0 the agent will only consider current
rewards and with increasing γ the agent takes future rewards more strongly
into account. The SARSA algorithm only differs in the update function:

(3.7)Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

Different approaches can be used for deriving the policy π from the Q-function
at decision time. Typical approaches include the ε-greedy and softmax action
selection strategy. The ε-greedy strategy uses the exploration rate ε and selects
the optimal action w.r.t. the Q function most of the time and with a small
probability ε a random action:

at =

maxa∈A Q(st, a) with probability 1− ε

random action with probability ε
(3.8)

The softmax strategy assigns the highest probability to the optimal action w.r.t.
the Q function and lower probabilities to all other actions. The lower the value
of the action the lower the probability that is assigned to that action. A typical
choice is a Gibbs (also called Boltzmann) distribution:

π(s, a) = Pr(at = a|st = t) =
eQt(a)/τ∑

a′∈A e
Q(s,a′)/τ

(3.9)

where τ can be used to modulate how sharp the probability distribution
peaks around the optimal value. Policy search approaches directly search in
the policy space to find the optimal policy. Policy search deals better with
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typical challenges encountered at robot reinforcement learning (e.g. high-
dimensional continuous action space) (Deisenroth, Neumann, and Peters,
2013; Kober, Bagnell, and Peters, 2013). Policy search approaches
can be divided into two main categories: evolutionary methods (Moriarty,
Schultz, and Grefenstette, 1999) and policy gradient methods (Sutton,
Mcallester, et al., 2000; Ng and Jordan, 2000).

A hybrid method of policy gradient and value-based methods offer actor-critic
based approaches (Barto, Sutton, and Anderson, 1983; Grondman et al.,
2012). These approaches combine advantages of both methods by learning a
parameterized policy called the actor and the value function called the critic at
the same time.

Shaping methods integrating advice

Advice can be integrated into RL systems at different levels. These levels are
the reward function, the value function, the policy or the decision making. Thus,
the four main strategies can be identified as reward shaping, value shaping,
policy shaping and decision biasing (Najar and Chetouani, 2021).

An important model to mention in the context of interactive RL is TAMER
(Knox and Stone, 2008; Knox and Stone, 2009). TAMER directly models
the human rewards and myopically learns from this model. TAMER itself
is not a RL technique. However, further work introduces an approach called
TAMER+RL (Knox and Stone, 2010; Knox and Stone, 2011; Knox and
Stone, 2012b) that integrates TAMER with RL. Furthermore, other models
that integrate human feedback into RL use concepts borrowed from TAMER
(e.g. COACH (Celemin and Ruiz-del-Solar, 2015; Celemin, Ruiz-del-

Solar, and Kober, 2019)) or extend it (e.g. ACTAMER Vien, Ertel, and
Chung, 2013).

Knox and Stone (Knox and Stone, 2010; Knox and Stone, 2011; Knox

and Stone, 2012b) propose different approaches to integrate a human given
reward Ĥ with traditional RL.

For reward shaping they propose to replace the reward with the sum of itself
and a weighted human given reward defined as follows:

R′(s, a) = R(s, a) + βĤ(s, a) (3.10)
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Note that this approach does not fulfill the requirement to be a potential-
based reward function (Ng, Harada, and Russell, 1999), and can lead to
positive circuits (Ho, Littman, Cushman, et al., 2015; Knox and Stone,
2012a).

Value shaping methods modify directly the Q-function instead of the reward.
Q-Augmentation also proposed by (Knox and Stone, 2010; Knox and Stone,
2011; Knox and Stone, 2012b) modifies the Q-function as follows:

Q′(s, a) = Q(s, a) + βĤ(s, a) (3.11)

However, augmenting the Q-function like this can lead to convergence problems
when used with evaluative feedback. This problem can occur since the Q-
function also informs about the proximity to goal, while this information might
not be included in the evaluative feedback (Najar and Chetouani, 2021; Ho,
Littman, Cushman, et al., 2015).

Policy shaping (Griffith et al., 2013) does not manipulate the reward, but
affects the policy directly. Action biasing and control sharing as proposed by
(Knox and Stone, 2010; Knox and Stone, 2011; Knox and Stone, 2012b),
fall into this category.

Action biasing also uses Eq. 3.11, but only during action selection and does
not change the Q-function directly. Thus, the action is determined with:

a∗ = argmaxx[Q(s, a) + βĤ(s, a)] (3.12)

Control sharing directly guides exploration toward human favored state-action
pairs. The decision is taken according to Ĥ with the following probability:

Pr(a = argmaxa[Ĥ(s, a)] (3.13)

and according to agents action selection mechanism otherwise. β is used as
threshold to set the probability.

Decision biasing is similar to policy shaping, however the policy is not corrupted
and the advice is not modeled (Najar and Chetouani, 2021). Rosenstein

and Barto (2003) use the provided instruction to bias the decision as fol-
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lows:
a← kaE + (1− k)aS, (3.14)

with the actor’s exploratory action, the supervisor’s action and an interpolation
parameter k.

We have now covered the approaches on the left to the middle of the exploration-
control spectrum (see Section 3.3), we see that there is a variety of possibilities to
integrate advice into RL that come with different advantages and disadvantages.
In Chapter 8 we use reward shaping to integrate observer feedback into our RL
framework and Q-Learning as baseline comparison.

In the next section we turn the approach that is located most to the right on
the spectrum: LfD.

3.5 Learning from Demonstration

LfD, also referred to as Programming by Demonstration or Learning by Imita-
tion, is a popular approach to transfer new skills to agents, and particularly
robots, in a user-friendly and intuitive manner (Argall et al., 2009; Billard

et al., 2008). LfD draws its inspiration from imitation learning in humans
and animals. In this context, there are four important questions to answer:
what-to-imitate, how-to-imitate, when-to-imitate and who-to-imitate (Nehaniv

and Dautenhahn, 1999; Calinon, Guenter, and Billard, 2007).

LfD research usually focuses on the questions what and how to imitate. The
question what to imitate corresponds to learning a skill and the question how
to imitate corresponds to the encoding of the skill (Billard et al., 2008).

The typical LfD process can be summarized as follows (Pais Ureche and
Billard, 2015): First, data is demonstrated and recorded. Subsequently, the
data is analyzed and encoded into a model of the task. The last step is to
execute the task while using the learned model of the task.

The first step, namely capturing the data can be achieved in various forms,
for example with motion sensors (Steffen et al., 2010) or a visual motion
capture system (Lioutikov et al., 2015). Demonstrations have a fundamental
problem when using these forms, since the body of the teacher and the robot
differ. This is known as the correspondence problem (Dautenhahn and
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Nehaniv, 2002). In order to solve this problem a mapping from the body of
the human to the body of the robot has to be found. Another approach to
circumvent this problem is to directly execute the demonstrations on the robot.
A popular approach for this is kinesthetic teaching (Calinon and Billard,
2007). Within kinesthetic teaching the teacher guides the motions of the robot
directly to solve the task at hand. However, this process can get difficult when,
for example, multiple joints of the robot have to be controlled at the same
time.

The details of the second step, analyzing the data and encoding into a model,
depends highly on the chosen model. Popular approaches are biological inspired
basic elementary movements called movement primitives (Bizzi et al., 2002;
Flash and Hochner, 2005). Popular implementations include Dynamic Move-
ment Primitives (DMP) (Ijspeert, Nakanishi, and Schaal, 2002; Ijspeert,
Jun Nakanishi, et al., 2012), Probabilistic Movement Primitives (ProMP)
(Paraschos et al., 2013; Paraschos et al., 2018) and Task-Parameterized
Gaussian mixture models (TP-GMM) (Calinon, 2015a; Calinon, 2015b).
There are also approaches that combine movement primitives with neural
networks like Variational Autoencoded Dynamic Movement Primitives (VAE-
DMP) (Chen, Bayer, et al., 2015; Chen, Karl, and van der Smagt, 2016;
Chaveroche et al., 2018).

The last step, the reproduction, corresponds to the what-to-imitate problem.
Reproduction, requires a controller able to execute the learned model on the
robot. The model needs to be robust to errors (i.e. tracking error) during
execution. This step corresponds to the what-to-imitate problem.

Usually, the LfD approach either assumes an expert user that is giving (nearly)
perfect demonstrations, or a novice (also called naïve) user that might give
flawed demonstrations. While the work of Breazeal, Berlin, et al. (2006)
presents an approach in the spirit of the saying "Do as I say, not as I do", this
approach assumes a naïve user giving flawed or ambiguous demonstrations and
provides a mechanism for the robot to infer the humans goals even if the human
is not achieving these goals. However, the existing research usually assumes
that the user is just solving the task, giving the best solution they are capable
of.

There exists little research with the assumption that the demonstrator is not
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only solving (doing) the task, but explicitly teaching the robot how to solve the
task. Thus, in Chapter 7 we implement the demonstration phase of the LfD
pipeline focusing on human teaching behavior. Since in our work we combine
LfD with the idea of teaching, we present approaches that explicitly focus on
teaching in the next chapter.
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Chapter
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4.1 Introduction

In this chapter we present approaches that explicitly focus on teaching that
either provide a possibility to express the teaching process in a mathematical
framework, investigate human teaching behavior towards robots (respectively
virtual agents) or a mixture of both.

Note that approaches where a robot learns from human signals might not
always be clearly separable from approaches where a human explicitly teaches
a robot. In principal both approaches can be combined. However, since
"humans are adapted to transfer knowledge to, and receive knowledge from,
conspecifics through teaching" as Csibra and Gergely (2006) put forward in
their pedagogy hypothesis, not benefiting from explicit teaching misses out on
a great opportunity to improve approaches where robots learn from humans.
Pedagogy plays an important aspect in human teaching as we present in
Section 4.2.
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The idea of teaching a robot, or a machine in general, is not new. Already
Alan Turing expressed this idea as: "It can also be maintained that it is best to
provide the machine with the best sense organs that money can buy, and then
teach it to understand and speak English. That process could follow the normal
teaching of a child. Things would be pointed out and named, etc" (TURING,
1950). One way to formalize the teaching idea in a mathematical framework
offers machine teaching as we present in Section 4.3. This framework is also
useful to evaluate human teaching behavior towards robot.

While research focusing on how humans are teaching robots is sparse (Vollmer

and Schillingmann, 2018), within the last few years there has been an
increased research interest in this direction. We present this kind of research in
Section 4.4.

4.2 Pedagogy

Pedagogy plays an important role in human social learning. As already pointed
out in the section on ToM (see Section 2.3), intentions play an important role
in human communication in general. A specific type of intentions important for
social learning are pedagogical intentions. Pedagogical intentions are intentions
that link desires and beliefs to actions that help the learner to acquire new
knowledge.

Another important concept is natural pedagogy, a term introduced by Csibra

and Gergely, 2009 for a social communicative learning mechanism, where
the knowledgeable teacher selectively manifests ’for’ the learner the relevant
information in order to acquire new knowledge. Natural pedagogy is a form of
ostensive communication. For example, a demonstration becomes more than
just the solution of a task, but can yield additional information about the
task.

Similarly, Shafto, Goodman, and Griffiths (2014) introduce the concept
of pedagogical situations. These are defined as "situations are settings in
which one agent is choosing information to transmit to another agent for the
purpose of teaching a concept." In a pedagogical situation the (optimal) teacher
selects the data to present to the learner maximizing its belief in the correct
hypothesis. The authors formalize pedagogical reasoning as a Bayesian model.
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Figure 4.1: Schematic depiction of pedagogical reasoning. The teacher (left)
knows the correct hypothesis and tries to choose data that is most helpful to
the learner to infer the true hypothesis. The learner (right) observers the data
and tries to infer from the data the hypothesis the teacher wants to convey.
Recreation from Shafto, Goodman, and Griffiths (2014).

While these equations requires recursion, pedagogical reasoning is the outcome
of a psychological process that might not require explicit recursion. In this
model the probability that the teacher selects the data d given the hypothesis
h is given with:

Pteacher(d|h) ∝ Plearner(h|d)α (4.1)

and the probability that the learner infers the correct hypothesis h given the
data d is given with

Plearner(h|d) =
Pteacher(d|h)P (h)∑
h′ Pteacher(d|h′)P (h′)

. (4.2)

The parameter α modulates how pedagogical the teacher chooses their examples,
α = 1 corresponds to a maximum of pedagogical intentions and α = 0 to random
sampling. These two equations are mutually dependent and plugging Eq. 4.2
into Eq. 4.1 leads to:

Pteacher(d|h) ∝ (
Pteacher(d|h)P (h)∑
h′ Pteacher(d|h′)P (h′)

)α (4.3)

The model was tested with human participants in different experiments with
a teacher and a learner. One of the experiments was on rule-based concepts.
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In this experiment the teacher had to chose examples given a rectangle, and
the learner had to guess the rectangle given the examples. There were three
conditions: Teaching-Pedagogical Learning, Pedagogical Learning and Non-
Pedagogical Learning. In the Teaching-Pedagogical condition the participants
first had the role as teacher and as learner afterwards. In the Pedagogical
Learning condition the participants had the role of the learner, but knew there
was a (not present) teacher choosing the examples. In the Non-Pedagogical
Learning only had the role as learner and knew that the examples where not
selected by a teacher. The results show that their model predicts human data
quite well. As predicted by the pedagogical model, people chose overwhelmingly
examples in the corner as predicted for the Teaching-Pedagogical Learning and
Pedagogical Learning condition. For the Non-Pedagogical Learning condition
the examples were nearly evenly split between corners and non-corners. Nev-
ertheless, the authors point out that the learning cases in their experiments
are much simpler than cases that may be encountered in educational contexts.
They see their work as first step to understand how learning is affected by
pedagogical situations, and present a new framework to explore implications
for education.

Similarly, Ho, Littman, MacGlashan, et al. (2016) investigate the difference
between doing and showing. Showing corresponds to pedagogical situation
and doing to a non-pedagogical situation. In their experiments, they used two
conditions: in the Do condition they promised the participants a bonus based
on their performance on the task, in the Show condition they promised the
participants a bonus based on how well a randomly matched partner who was
shown their response would perform on the task.

In the first experiment the task consisted in showing a trajectory from a start
position to different possible goal positions in a 2-dimensional grid world. The
participants in the Show condition tended to choose paths that disambiguate
their goal as compared to the participants in the Do condition.

The grid world in the second experiment consisted of different colored fields.
Each color indicated a different reward for passing this field. Some colors
indicated dangerous fields that yielded a negative reward. The participants in
the Do condition took the most efficient routes, the Show participants took
paths that led through multiple safe field types, showing that their exists a
difference between teaching and solving a task.
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The authors further modelled the behavior in the two conditions by using similar
Bayesian models as before presented. They show that an Inverse Reinforcement
Learning (IRL) algorithm can beneficially learn from the Show condition. In
Ho, Littman, Cushman, et al. (2018) they extend their previous work by
integrating communicative goals of a showing demonstrator into the reasoning
of the observer, improving the confidence of the model.

Milli and Dragan (2019) use the data of Ho, Littman, Cushman, et al.
(2018) to investigate if it’s safer to assume that the human behaves literal
or pedagogical. The authors find that on the empirical data the assumption
of a literal human achieves better performance even when people try to be
pedagogic. They improve the performance in comparison to models that assume
either a literal- or a pedagogical human model by introducing a mixture model
integrating the literal- and pedagogical human model. However, they also
state that the problem in assuming a pedagogical human are the unforeseen
deviations of human behavior in the behavior model that render the model
unstable and thus conclude it’s safer to use the literal human model even when
people try to be pedagogic.

We see that in the recent years there has been upcoming research to approach
pedagogy from a computational point of view. Nevertheless, the applications
are still quite limited and further research needs to be done in this area. Thus,
in Chapter 7 we conduct a similar experiment as Ho, Littman, MacGlashan,
et al. (2016) to investigate the difference between a solving a sensorimotor task
and teaching the task to a robot.

4.3 Machine Teaching

Machine Teaching (MT) is an interesting field to look at in the context of
Human-Robot Interaction and robot learning, since it offers a formal framework
to capture a problem where a task or concept is taught to one agent by another
agent. While the aim of machine learning is to optimize a model given a data
set, the aim of machine teaching is to optimize a data set given the algorithm
and the model that should be learned while minimizing the cost. This aim is
very closely related to the aim of Algorithmic Teaching (AT) (Goldman and
Kearns, 1995; Bengio et al., 2009; Cakmak and Lopes, 2012a), which is to
minimize the number of demonstrations required to train an agent. However,
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MT does not simply try to reduce the number of required demonstrations, but
associates ’costs’ to the teaching.

X. Zhu et al. (2018) give the following formal definition of MT:

minD,θ̂ TeachingRisk(θ̂) + ηTeachingCost(D)

s.t. θ̂ = MachineLearning(D)

Here D denotes the data set, θ̂ denotes the parameter that is learned by a
given machine learning algorithm. The TeachingRisk(θ̂) describes the cost of
the error between the learned model and the optimal model that should be
learned, while ηTeachingCost(D) describes the weighted costs associated with
providing the data set D to learn from. While these terms are generic in the
definition, they offer a possibility to adapt them to the learning task.

AT usually follows two prominent threads: the teaching dimension (Goldman

and Kearns, 1995) and curriculum learning. The teaching dimension is the
smallest teaching set size to acquire the concept to be learned. Curriculum
learning follows a strategy that starts with clear examples and continues with
more ambiguous examples (Bengio et al., 2009).

Applied to a 1-dimensional discrete classification task with positive examples
on one side of a decision boundary and negative examples on the other side,
as it can be seen in Fig. 4.2, the teaching dimension approach predicts a set
of two demonstrations, one left to the decision boundary and one right to
the decision boundary. The curriculum approach predicts a strategy that
starts with examples most to the right and most to the left and then gradually
approaches the decision boundary.
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Figure 4.2: Exemplary 1-dimensional discrete classification task with positive
examples on the right side and negative examples on the left side. Recreation
from Khan, Mutlu, and X. Zhu, 2011.

In this thesis, we pickup on the idea of having costs of teaching in Chapter 7 by
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introducing different conditions that only vary in the number of demonstrations
the participants can give to teach a sensorimotor task to a robot.

4.4 Humans Teaching Robots

Vollmer and Schillingmann (2018) provide a review over studies presenting
teaching interactions with a robot learner and a human teacher that also report
on the human teaching behavior. This research is sparse and while the authors
did not claim exhaustiveness, they only found 18 papers matching these criteria.
While all of these papers studied teaching interactions, only in five (28%) of
the studies the robot actually learned something. They mention two possible
reasons: the high implementation effort of a suitable learning algorithm and
the introduction of undesired variability into the study.

In Khan, Mutlu, and X. Zhu (2011), the authors investigate how humans
choose examples to teach a task that corresponds to a 1-dimensional classi-
fication task (as explained in Section 4.3) to a robot. The task consists of
ordering pictures of objects along a line of how graspable they are, and then
provide examples to teach this graspability to a robot. The authors found the
three following strategies: The extreme strategy that corresponds to curriculum
learning (examples on both extreme sides), the positive only strategy, where
people only gave positive examples and the linear strategy, where people moved
from left to right (or vice-versa). Furthermore, the work mentions the boundary
strategy, examples on both sides close to the decision boundary corresponding
to the strategy predicted by the teaching dimension, however they authors
could not find empirical evidence for this strategy.

Cakmak and Lopes (2012b) extends AT to an optimally teaching sequential
decision tasks. In this work an IRL agent learns from human demonstrations.
The authors find that the natural teaching behavior is normally sub-optimal,
but that spontaneous optimal teaching is possible. Furthermore, they find that
providing instructions to people on how to provide optimal examples improves
teaching behavior. The improvement shows in the reduction of the uncertainty
in the estimation of the rewards.

Similarly, the work of Cakmak and Thomaz (2014) investigates human
teaching behavior in three classification tasks: faces, animals and gestures.
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The authors find that natural teaching is not optimal and hypothesize that
because human teaching is largely optimized for human learning, they might not
understand the inner working of an artificial learner. To improve the teaching
behavior they propose teaching guidance and they show that their system
guiding the human how to select teaching examples increases the learning
performance of the artificial learner by increasing the accuracy.

The work of Sena, Zhao, and Howard (2018) also addresses the problem
of how to provide a set of good quality demonstrations by giving teaching
guidance to the human. In this work the authors apply teaching guidance to a
task, where the robot has to learn a trajectory from a starting zone to a goal.
They furthermore give visual feedback on the learner model after the teaching
phase. Their approach improves the teaching efficiency that they determine
by the ratio of generalisation performance against the required number of
demonstrations by approximately 180%.

While we see that there is upcoming research on human teaching behavior to
robots or virtual agents, this research is still sparse and limited to simple tasks.
Some of this research focuses on teaching humans how to be better teachers,
and the research aiming for understanding human behavior and how to better
learn from it is even more sparse. In Chapter 7 we address this by investigating
human teaching behavior to a robot for a sensorimotor task.
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5 Observer Related Metrics

Chapter

5.1 Introduction

Terms like explicability (Kulkarni et al., 2019; Zhang et al., 2017), legibility
(Dragan, Lee, and Srinivasa, 2013), transparency (MacNally et al., 2018;
Broekens and Chetouani, 2019) and predictability (Fisac et al., 2018)
have become popular in recent research on artificial agents. These terms
describe, depending on their definition, similar or contradicting concepts. A
comprehensive overview of different concepts is presented in (Chakraborti

et al., 2018) and (Wallkotter et al., 2020). All concepts have in common
that they assume some kind of observer that tries to infer the intentions of the
agent. This idea goes along with the concept of ToM (Section 2.3).

In order to implement these concepts with robots it is important to formalize
these kind of concepts. A framework to formalize goal-to-action inference
and action-to-goal inference (see Section 2.3) of trajectories is presented by
Dragan, Lee, and Srinivasa (2013). Despite predictability and legibility
not being the only observer related metrics proposed in literature, here we will
present these two in more detail, matching the scope of the thesis.

While predictable (goal-to-action) and legible (action-to-goal) motion trajecto-
ries can correlate, they are "fundamentally different and often contradictory
properties of motion" (Dragan, Lee, and Srinivasa, 2013). While legibility
requires the knowledge of possible goals: "Plan legibility reduces ambigu-
ity over possible goals that might be achieved" (Chakraborti et al., 2018),
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predictability requires the knowledge of a goal/planning problem: "Plan pre-
dictability reduces ambiguity over possible plans, given a goal/planning problem"
(Chakraborti et al., 2018).

Both concepts have in common that some kind of observer of the actions of the
robot exists. Consider the example shown in Fig. 5.1 to illustrate the concepts.
The left side depicts a predictable movement, if it’s known that the robot’s
gripper is moving for the green (to the right) goal the shown trajectory is the
trajectory one would expect. The right side depicts a legible movement. In this
case the goal the robot is aiming for is not known beforehand, but if the robot’s
gripper moves in the shown way, it’s very likely early on that it’s moving for
the green goal (to the right).

goal to action action to goal

Figure 5.1: Example for a predictable (left) and predictable (right) trajectory
for a robot gripper grasping for the green goal. For the legible trajectory
(corresponding to action to goal inference) the likelihood that the gripper is
going for the green object increases faster than for the predictable (corresponding
to goal to action inference) trajectory. Partial recreation from Dragan, Lee,
and Srinivasa (2013).
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5.2 Legibility

As previously mentioned, legibility implements the idea of action-to-goal infer-
ence, thus a legible motion needs to enable the observer to infer the correct
goal with high confidence. Here we present the legibility metric as proposed
by Dragan, Lee, and Srinivasa (2013). The inference function IL maps
(snippets of) trajectories from all trajectories Ξ to the set of goals G and can
be denoted as:

IL = Ξ→ G (5.1)

The inference needs to happen as fast as possible with high confidence. These
properties of legibility are captured by the following equation:

λ(ξ) =

´
P (g∗|ξs0→st)f(t)dt´

f(t)dt
(5.2)

We integrate over the probability to infer the correct goal (the target) given
the current trajectory P (g∗|ξs0→st). Therefore, higher inference probability of
the target will result in a higher legibility.

The second requirement is that this inference should happen as fast as possible.
f(t) provides a simple function to give higher weights to earlier parts of the
trajectory, achieving this goal. The following equation provides a simple
implementation of f(t):

f(t) = T − t (5.3)

with T as duration of the trajectory as suggested. As a next step the probability
P (g|ξs0→q) needs to be calculated. This step can be done starting of with Bayes’s
Rule:

P (g|ξs0→q) ∝ P (ξs0→q|g)P (g) (5.4)

P (g|ξs0→q) is the probability that the agent follows ξs0→q when the agent targets
a possible goal g ∈ G. q can be any intermediate point. The prior probability
of a goal P (g) is assumed to be known, otherwise a uniform prior can be
used.

P (ξs0→q|g) can be computed as the ratio of all trajectories from s0 to g that
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pass through ξs0→q to all trajectories from s0 to g:

P (ξs0→q|g) =

´
ξq→g

P (ξs0→q→g)´
ξs0→g

P (ξs0→g)
(5.5)

Following the assumption that trajectories are separable (Ziebart et al., 2008),
i.e. P (ξs0→q→g) = P (ξs0→q)P (ξq→g), leads to:

P (ξs0→q|g) =
P (ξs0→q)

´
ξq→g

P (ξq→g)´
ξs0→g

P (ξs0→g)
(5.6)

At this point, a model is required to express the probability of a trajectory
in the eyes of an observer P (g|ξs0→q). The principle of maximum entropy as
suggested by (Ziebart et al., 2008) is adopted to model this probability as
P (ξ) ∝ exp(−C(ξ)).

C(ξ) is the cost associated with trajectory ξ, therefore the probability of a
trajectory decreases exponentially with increasing costs, leading to:

P (ξs0→q|g) ∝
exp(−C(ξs0→q)

´
ξq→g

exp(−C(ξ∗q→g))´
ξs0→g

exp(−C(ξ∗S→G))
(5.7)

These integrals are computationally challenging and Dragan and Srinivasa

(2012) derive an approximation with the assumptions that C is quadratic and
its Hessian is constant. Under these assumptions according to Laplace’s method
we have

´
exp(−C(ξs0→q))) ≈ k exp(−C(ξ∗s0→q)), with the constant k and ξ∗s0→q

as the optimal trajectory from s to q w.r.t. C.

Using a normalization factor z calculated with:

z =
∑
G

P (g|ξs0→q) (5.8)

and plugging this expression into Eq. 5.7 leads to:

P (g|ξs0→q) =
1

z

exp(−C(ξs0→q)− C(ξ∗q→g))

exp(−C(ξ∗s0→g))
P (g) (5.9)

Approximating the cost C with the quadratic trajectory length in workspace
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punishes the agent from unnecessarily long paths:

C =
∑
t

‖ξs0→st+1 − ξs0→st‖2 (5.10)

Using C as stated in Eq. 5.10 can only serve as rough approximation, since
knowing the real cost function the observer will associate with the movement
is a major challenge.

In situations with multiple goals, an agent can make trajectories more and
more legible and never reaching a score of one while increasing the cost w.r.t
to C more and more. In order to prevent the agent to go to far away from the
observer’s expectation, a regularizer L(ξ):

L(ξ) = λ(ξ)− µC(ξ) (5.11)

can be used.

The legibility metric was not only derived theoretically, but Dragan, Lee,
and Srinivasa (2013) show furthermore in an experiment with real humans
that for legible trajectories the participants were faster able to infer the target
goal with higher probability correctly.

Dragan and Srinivasa (2013) extend the work and use the framework to
generate legible (motion) trajectories by introducing constrained legibility
optimization. This framework is also used in Holladay, Dragan, and
Srinivasa (2014) to create legible pointing trajectories.

5.3 Predictability

Predictability captures the idea of the goal-to-action inference. In this case
the goal is known a priori. Before the robot moves the observer will create
an expectation how the robot will move, thus infer a trajectory given the
goal.

The more the robot moves like the observer expects, the more predictable
the trajectory is. This inference can be denoted as a mapping from goals to
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trajectories as follows:

IP : G → Ξ

Predictable motion is then formalized as motion for which the trajectory ξS→G
matches this inference:

IP (G) = ξS→G

It seems like a reasonable assumption that agents (humans or agents) will try
to minimize their costs while executing an action, thus the most predictable
trajectory is the one associated with the lowest cost C:

IP = arg min
ξ∈ΞS→G

C(ξ) (5.12)

A predictability score that is normalized from 0 to 1 can then be calculated
with:

predictability(ξ) = exp(−C(ξ)) (5.13)

Thus maximizing this score is equivalent to minimizing the cost function.
As already mentioned in Section 5.2, knowing the real cost function that is
assumed by the observer is difficult, and depending on the actual function the
minimization can also be challenging.

While we do not use predictability, we use legibility and the goal probability as
presented here in Chapter 8 to model observer feedback to an RL agent and
legibility as proxy how well a potential observer might reason about the goals
of the agent.

58



Part III

Implementation of Research
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6 Communication Model

Chapter
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6.1 Introduction

In this chapter we start by proposing a general communication model for HRI
settings. The model builds on common ideas found in HRI research, and as such
does not provide novel ideas. However, explicitly introducing a model is useful
to position research that focus on the channel usage in HRI settings. While a
similar model has been proposed by Sigaud et al., 2021 (see Section 2.4), the
model does not take signals we are mainly interested in into account. These
signals are namely signals that combine social and task signals in one signal.
After introducing the general model, we present our specific approach focusing
on only one channel that combines social and task signals, while not having any
other channels. Furthermore, we present how the model relates to our research
questions and the implemented research presented in later chapters.
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6.2 General Communication Model

combined task and social channel










robot

channel 1

channel 2
role: e.g.
teacher

role: e.g. teacher

channel N

social channel

task channel

intentions

beliefs
desires

intentions

beliefs
desires

General Communication Model











human





role: e.g. learner

Figure 6.1: Proposed general communication model. The communication
happens over any number of channels N. These channels can either be task
channel, social channel or combined channel. The communication partner
mutually reason about the mind state of the other partner.

Based on related research as presented in Section 2.4 we propose a model to
conceptualize communication in HRI settings as shown in Fig. 6.1. While the
general model is useful to describe the general setting, in this thesis we focus
on communication that combines social and task oriented information in one
signal (e.g. SMC Section 2.6).

An important key idea of the model is that the interaction can have social-
as well as task aspects (Castellano, Pereira, et al., 2009; Castellano,
Leite, and Paiva, 2017; Leclère et al., 2016; Ivaldi et al., 2014) (see
Section 2.4). This idea is represented by having a social- and a task channel,
as already present in the model proposed by Sigaud et al. (2021). In our
general model the communication can happen over any (probably small) number
of channels. The channels can either be a task channel, social channel or a
combined task and social channel. The combined channel is used to transmit
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signals that combine social information as well as information on the task, thus
it is important that the receiver recognizes the communicative intent of the
sender (see ostensive-inferential communication Section 2.5).

The channel usage is influenced by ToM (see Section 2.3). Both parties
reason about the behavior of the communication partner and assume that the
communication partner reasons about them too. The beliefs, intentions and
desires of the communication partners influence the use of the communication
channel.

One important influence factor on the model is if the communication happens
in a pedagogical situation (see Section 4.2) or not. In a pedagogical situation
one communication partner will have the role of a teacher and the other
communication partner the role of the learner. The teacher is the communication
partner that selects information to help the learner acquire new knowledge.

6.3 Specific Approach

6.3.1 Specific Model

In our specific approach we limit ourselves to only only one channel that
combines task and social signals as shown in Fig. 1.1. As research on SMC shows
(see Section 2.6) people take advantage of task- and social channel properties
when using the sensorimotor channel. Thus, SMC is good representative for
such a channel.

Furthermore, we distinguish between different types of goals, actions and
intentions as defined in the following. While we define our own terminology,
similar (yet slightly different) definitions can be found in Ho, Cushman, et al.
(2021) and Shafto, Goodman, and Frank (2012).

The objective of a communicative goals is that the interaction partner has
certain information or knowledge. Communicative actions aim to communica-
tive information to an interaction partner. Communicative intentions link
communicative goals to communicative actions.

Instrumental goals have a different state of the environment as an objective.
Instrumental actions aim to influence the state of the environment. Instrumental
intentions link instrumental goals to instrumental actions. Instrumental actions
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Figure 6.2: Different types of goals are linked to the corresponding actions via
the corresponding types of intentions. Depending on the type of action, the
actions provide different types of signals.

provide task channel signals when observed by an observer.

Pedagogical intentions combine instrumental goals and communicative goals
and link them to pedagogical actions. Pedagogical actions serve two purposes:
they modify the environment to achieve task goals and communicate additional
information to the interaction partner. The relation between the different types
of goals, actions and intentions is illustrated in Fig. 6.2.

The specific model we propose for a pedagogical situation where the teacher
only uses one combined task and social channel to communicate to the learner
is shown in Fig. 6.3. The teacher has instrumental goals w.r.t. the state of the
environment and communicative goals w.r.t. to a certain hypothesis they want
to communicate to the learner. The pedagogical intentions of the teacher link
the instrumental- and communicative goals to pedagogical actions. The teacher
reasons about the state of mind of the learner and chooses pedagogical actions
accordingly. The pedagogical actions modify the environment and provide
task signals as well as social signals to the learner. The learner reasons about
the state of mind of the teacher and infers from the pedagogical actions the
(ideally true) hypothesis. The learner can then communicate task- and social
signals back. Note that we depict the back channel from learner to teacher in a
simple manner, however in general this communication could make use of rich
communication features.

63



6.3. SPECIFIC APPROACH
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Communication Model for Pedagogical Situation


Figure 6.3: Model for communication in a pedagogical situation. The teacher
(either robot or human) has instrumental goals to bring the environment into a
certain state, as well as communicative goals to communicate certain hypothesis
to the learner. The pedagogical intentions of the teacher link both type of
goals to pedagogical actions. These actions provide task signals by modifying
the environment and provide social signals to the learner at the same time.
The learner uses the signals to infer the hypothesis and gives feedback to the
teacher.

6.3.2 Model Application to Implemented Research

In the previous section we described our full specific model having a full
interaction loop. In this section we describe how the specific model relates
to our research questions and how we (partially) apply it in our implemented
research.

Application to the User Study

In our user study (see Chapter 7), we focus on the human side of the commu-
nication by addressing the questions Do humans make use of social channel
characteristics when teaching robots a sensorimotor task? (Q1) and Are neg-
ative demonstrations useful to enrich approaches that use demonstrations to
learn? (Q2).

In the first experiment of the user study (see Chapter 7) we address the
question Does human behavior change when teaching a robot how to solve a
task as opposed to just solving the task? (Q1a). We do this by comparing
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Solving Condition

instrumental goals environment
modify task  


signals robothuman
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channel

Figure 6.4: Specific model for the solving condition in our user study (see
Chapter 7) according to our hypothesis. The robot learns from the task
signals, but the human is not an explicit teacher and does not have pedagogical
intentions. Thus, the human will only modify the environment providing only
task signals to the learner.

Teaching Condition
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Figure 6.5: Specific model for the teaching condition in our user study (see
Chapter 7) according to our hypothesis. The human is the (explicit) teacher
and the robot is the learner. The human human will provide task signals by
modifying the environment and additional social signals to the learner robot.

two conditions with each other: In the first condition we ask humans solve a
sensorimotor task, and in the second condition we ask humans to teach how to
solve a sensorimotor task to the robot.

According to our hypothesis, in the solving condition, humans will use sensori-
motor actions just to modify the environment and will not try to communicate
anything else to the learner (here the robot). The communication model for
the solving condition is shown in Fig. 6.4.

In the teaching condition humans will make use of task- as well of social
channel characteristics. The specific model for the teaching condition is shown
in Fig. 6.5. In order to address Q2, the teaching condition included negative
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examples as well.
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Figure 6.6: Specific model when investigating human perception. The humans
does not know from which condition (solving or teaching) the examples came
from. The perception on informativeness is used to decide if social signals are
present in the actions or not.

In the second experiment of our user study (see Chapter 7) we address the
question Do humans perceive this teaching behavior as more informative than
the the solving behavior? (Q1b). We do this by showing the demonstrations
we collected in the first experiment to new participants. In this setting the
human becomes the learner, but does not know from which condition the data
came from. However, the teacher here is not a robot, since the participants
knew that they were shown data created by humans. The model for the human
perception is shown in Fig. 6.6.

Application to the Simulated Experiment

In our third experiment (see Chapter 8) we address the question How can we
integrate actions that make use of social channel characteristics into RL? (Q3).
While the in this experiment the robot learns autonomously without a real
human present. The robot has the role of the teacher, the learner is a simulated
observer.

During the learning process the robot aims to maximize the goal inference of the
observer. The social signal corresponds to the part of the action that aims to
maximize the goal inference of the observer. The observer gives feedback about
its goal inference to the robot that is integrated into the learning process.
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Figure 6.7: Specific model with robot as the teacher in our RL framework (see
Chapter 8). When we focus on the robot communicating additional information,
the robot becomes the teacher and the human the learner. The robot uses the
sensorimotor channel as task- and as social channel.

While we do not use a full ToM, the we use the legibility metric (Section 5.2)
as a simplified approximation how well the observer understands the (goal)
intentions of the robot. The corresponding model for this experiment is shown
in Fig. 6.7.
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7.1 Introduction

LfD is a popular approach to transfer new skills to an agent (e.g. robot) in an
intuitive manner (Argall et al., 2009; Billard et al., 2008) (see Section 3.5).
LfD research usually assumes an expert giving correct demonstrations, or novice
user giving (possibly) flawed demonstrations. The common assumption is that
the user just solves the task, giving her best possible solution. However, we could
also imagine that the user includes additional information in a demonstration,
than simply solving the task alone. Following the pedagogy hypothesis (see
Section 4.2) this assumption seems reasonable. A context like this corresponds
to a pedagogical situation (see Section 4.2).
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Figure 7.1: Environment of the continuous maze task. Humans have to solve
the continuous maze task (Solving) or teach how to solve it (Teaching) with
the possibility to provide negative demonstrations.

The interesting question here is whether people change their demonstrations in
these pedagogical situations, and if so, how do they change such demonstrations?
The work of Ho, Littman, MacGlashan, et al. (2016) shows that there is a
difference between people solving and showing how to solve a 2-dimensional grid
world task Section 4.2. In the context of physical interaction, SMC (Pezzulo,
Donnarumma, and Dindo, 2013; Pezzulo, Donnarumma, Dindo, et al.,
2019) is closely related to this question (see Section 2.6).

Calinon (2019) identifies the exploitation of the social interaction as future
direction of LfD research, and gives learning from counterexamples as example.
Further, the work of Osa et al. (2018) identifies the learning from different
instruction types as a challenge for LfD research.

Similarly to counterexamples, we propose to allow teachers to provide negative
demonstrations as one approach to address this challenge. Negative demonstra-
tions are demonstrations that explicitly demonstrate what not to do. Related
research (e.g. Breazeal, Berlin, et al., 2006; Mueller, Venicx, and
Hayes, 2018; Cui and Niekum, 2018) integrates possibilities to learn from
sub-optimal and flawed demonstrations, but does not offer the possibility to
purposefully demonstrate what not to do.

In our study we are interested in how humans use sensorimotor communication
to teach a sensorimotor task. We are interested in the the difference between
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solving and teaching, furthermore we explore how humans use the possibility
of using negative demonstrations to teach the task. Further, by varying the
number of demonstrations people could give we introduce a notion of costs for
a demonstration related to the ideas of MT (see Section 4.3).

We had three hypotheses:

1. Humans modify their behavior when teaching how to solve a sensorimotor
task in comparison to solving it.

2. Humans perceive the use of negative demonstrations as informative.

3. The teaching behavior depends on the number of demonstrations people
are allowed to give.

This chapter relates to the bigger picture of this thesis by focusing on the
human side of the communication and address the questions Do humans make
use of social channel characteristics when teaching robots a sensorimotor task?
(Q1) and Are negative demonstrations useful to enrich approaches that use
demonstrations to learn? (Q2).

The results presented in this chapter have (partially) been published in Bied

and Chetouani (2020a).

7.2 Study

7.2.1 Overview

We designed and conducted a study to investigate the difference between
humans solving and teaching a task using the sensorimotor channel. The
study was conducted at the INSEAD-Sorbonne Université Behavioural Lab
(INSEAD). Further, it was reviewed by INSEAD’s Institutional Review Board
(IRB) under the reference number 201913. The IRB approval letter is attached
in Appendix A.1.

The texts of the study were designed in English and translated by INSEAD in
dialogue with us to French. Both parts of the study were conducted in French.
Also the participants were recruited by INSEAD. We briefed and debriefed
the participants before and after each of the two experiments. Further, the
participants were thanked and compensated for their time according to standard
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rates. The consent- and debriefing document for experiment 1 are attached in
Appendix A.2 and Appendix A.3, the consent- and debriefing document for
experiment 2 are attached in Appendix A.4 and Appendix A.5-A.6.

The study consisted of two experiments:

1. We asked participants first to solve a sensorimotor task, and afterwards
to teach how to solve it to a robot.

2. We asked new participants to rate the demonstrations from the first
experiment.

Our specific communication model corresponding to the solving condition is
shown in Fig. 6.4. We hypothesize that in the solving condition, humans will
use sensorimotor actions just to modify the environment and will not try to
communicate additional information to the robot.

Our specific communication model for the teaching condition is shown in
Fig. 6.5. We hypothesize that in the teaching condition humans will make use
of the combined task and social channel by modifying the environment and
including additional social signals. Negative demonstrations are included to
address Q2.

Furthermore, we are interested in human perception to address the question Do
humans perceive this teaching behavior as more informative than the the solving
behavior? (Q1b). We address this by asking questions to the participants
about their perception. Further, by asking the participants of experiment 2
about their perception on the collected examples from experiment 1. Our
corresponding model for the human perception is shown in Fig. 6.6.

7.2.2 Experiment 1

Description

The first experiment was conducted with 42 participants (21 female, 21 male,
Ø of age = 23.76 years, σ2 of age = 18.65). We asked the participants to
teach how to solve a continuous maze task to a robot. In order to add the
sensorimotor dimension the task was solved on tablet with a digital pen.

The task consists of going from a start zone to a goal zone. The environment
has impassable terrain in black, and unsafe terrain in yellow. The impassable
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Figure 7.2: Introduction of the pepper robot to the participants. They were
explained that they would not directly interact with the robot, but would give
demonstrations that the robot could later use to learn how to solve the task.

terrain can not be crossed. The unsafe terrain could be crossed, but is as the
name states; unsafe. An instance of the maze task can be seen in Fig. 7.1.

The experiment includes a Solving- and a Teaching-phase, in order to show that
there is a difference between solving and teaching (similar to Ho, Littman,
MacGlashan, et al., 2016). In the Solving-phase, the participants were just
asked to solve the task correctly. In the Teaching-phase, the participants were
asked to give positive and negative demonstrations. Positive demonstrations
are correct solutions to the task. Negative demonstrations go through the
unsafe zone, but were also required to start at the goal zone and end in the end
zone. The Solving- and Teaching-phase was repeated for 15 different instances
of the task in an alternating manner. The environments used in the experiment
are attached in Appendix B.

The participants where randomly split into three conditions that differed in the
number of demonstrations they were allowed to give in the Teaching-phase. In
the first condition they were allowed to give any number of demonstrations, in
the second condition they could only give one demonstrations, and in the third
condition they were asked to give three demonstrations. The conditions did
not differ in the Solving-phase where the participants were asked to solve the
task exactly once. These different conditions were implemented to introduce a
notion of cost with MT (see Section 4.3) in mind.
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The participants did not directly interact with a robot, but were introduced to
the pepper robot with a picture and a description as shown in Fig. 7.2. Addi-
tionally, they were told that the robot would learn from their demonstrations
later.

After completing the Solving- and Teaching phase for all environments, the par-
ticipants were asked to answer the following four questions on a 5-point-Likert scale:

1. How useful are negative demonstrations?

2. How difficult was it to give negative demonstrations?

3. How useful are positive demonstrations?

4. How difficult was it to give positive demonstrations?

Results

(a) Number of occurrences for positive
demonstrations.

(b) Number of occurrences for negative
demonstrations.

Figure 7.3: Number of occurrences for different counts of positive and negative
demonstrations given in the first condition.

The participants in the first condition could give any number of demonstrations
in the Teaching-phase. On average, the participants gave 2.76 (σ2 = 5.62)
positive demonstrations and 1.99 (σ2 = 3.24) negative demonstrations for each
environment. Thus, on average, the number of given demonstrations is higher
for positive- than for negative demonstrations, while also the number of positive
demonstrations varies more for positive demonstrations. The bar plot showing
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the number of occurrences plotted against the number of given demonstrations
in a singular demonstration is shown in Fig. 7.3.

(a) Answers on the usefulness of positive
demonstrations.

(b) Answers on the usefulness of negative
demonstrations.

Figure 7.4: Occurrences of the answers (on a likert-scale) for the question how
useful negative, respectively positive demonstrations are.

The results for the question on the usefulness of negative- respectively positive
demonstrations are shown in Fig. 7.4. A majority of participants consider
positive demonstrations as well as negative demonstrations as useful. However,
the picture is clearer for the positive demonstrations. While 95% of the partici-
pants consider positive demonstrations as useful, only 71% of the participants
consider negative demonstrations as useful.

(a) Answers on the difficulty of negative
demonstrations.

(b) Answers on the difficulty of positive
demonstrations.

Figure 7.5: Occurrences of the answers (on a likert-scale) for the question how
difficult it is to give negative, respectively positive demonstrations.
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The results for the question on the difficulty of negative- respectively positive
demonstrations are shown in Fig. 7.5. Similarly to the results on the previous
questions, a majority of participants considers giving positive demonstrations as
well as negative demonstrations as easy. The tendency here is also stronger for
the positive demonstrations. While 83% of participants consider giving positive
demonstrations as easy, only 71% of participants consider giving negative
demonstrations as easy.

7.2.3 Experiment 2

Description

In the second experiment we asked 72 (38 female, 32 male, 2 none of the before
mentioned, Ø of age = 23.65 years, σ2 of age = 12.23) new participants to rate
the collected demonstrations, discarding the demonstrations that did not fulfill
the requirements of a correct positive, respectively negative demonstration. A
condition for the recruitment for this experiment was that the participants did
not already participate in the previous experiment.

The participants received a description of the maze task from the previous
task. Then they were explained how the teaching process works. Afterwards,
they were asked to rate the statement: "The demonstrator deviates from
the simplest way of solving to convey to you other information about the
task" on a 5-point-Likert scale from strongly disagree to strongly agree. Each
demonstration was rated by at least 6 participants. The Graphical User
Interface (GUI) used for the experiment is shown in Appendix C.1-C.3.

Results

The ratings clustered, whereas ratings of 1 and 2 were counted as Non-
informative, ratings of 3 as neutral and ratings of 4 and 5 as Informative.
Each demonstration was classified according to a majority voting between all
participants that gave a rating on a particular demonstration, demonstrations
that did not have a majority for neither Non-informative nor Informative were
counted as Not-clear.

The absolute numbers of the classified demonstrations are reported in Table 7.1.
In the Solving-phase there were no negative demonstrations possible (N/A),
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Table 7.1: Absolute values of the results of the majority votes how informative
an example is.

Non-informative Not-clear Informative
positive demonstrations Solving 499 48 44

Teaching 851 132 206
negative demonstrations Solving N/A N/A N/A

Teaching 198 174 513

Table 7.2: Relative numbers for Solving (in %).

Non-informative Not-clear Informative
positive demonstrations 84.43 8.12 7.45

the relative numbers for the Solving-phase can be seen in Table 7.2 and for the
Teaching-phase in Table 7.3. In the set of positive demonstrations, the relative
portion of informative demonstrations in the Teaching-phase (17.33%) is higher
than in the Solving-phase (7.43%).

This difference between the Solving- and Teaching-phase is significant consid-
ering the columns for Non-informative, Not clear and Informative, χ2(2, N =

1780) = 39.52, p<.01, as well when only considering the columns for Non-
informative and Informative, χ2(1, N = 1600) = 34.42, p<0.01.

In the Teaching-phase, the relative portion of informative demonstrations
is significantly higher for the negative demonstrations (57.97%) than for the
positive demonstrations (17.33%). This difference between positive and negative
demonstrations is significant considering the rows for Non-informative, Not-
clear and Informative, χ2(2, N = 2074) = 509.73, p<0.01, as well when only
using the row for Non-informative and Informative, χ2(1, N = 1768) = 486.39,
p<0.01.

Table 7.4 shows the absolute numbers divided after the three conditions for

Table 7.3: Relative numbers for Teaching (in %).

Non-informative Not-clear Informative
all demonstrations 50.58 14.75 34.67
positive demonstrations 71.57 11.1 17.33
negative demonstrations 22.37 19.66 57.97
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Table 7.4: Results of the classification divided after conditions for positive
demonstrations (Teaching) in absolute numbers.

# of demonstrations Non-informative Not-clear Informative
any (Ø=2.76, σ2 = 5.62) 529 88 130
1 329 19 25
3 492 73 95

Table 7.5: Results of the classification divided after conditions for positive
demonstrations (Teaching) in relative numbers (in %).

# of demonstrations Non-informative Not-clear Informative
any (Ø=2.76, σ2 = 5.62) 70.82 11.78 17.40
1 88.2 5.09 6.70
3 74.55 11.06 14.39

the positive demonstrations, the corresponding relative numbers are shown in
Table 7.5. We see that the portion of Informative demonstrations is with 6.7%
the lowest for condition 2 (1 demonstration), with 14.39% a little higher for
condition 3 (3 demonstrations) and with 17.40% the highest for condition 1
(any number of demonstrations). This difference is significant when considering
all columns (χ2(4, N = 1780) = 42.545, p<0.01), as well when omitting the
Not-clear column (χ2(1, N = 1600) = 28.238, p<0.01).

Table 7.6 shows the absolute numbers divided after the three conditions for
the negative demonstrations, the corresponding relative numbers are shown in
Table 7.7. We see that the portion of Informative demonstrations in condition
2 (1 demonstration) is with 53.79% only a little lower than for condition 3 (3
demonstrations) with 58.33% and condition 1 (any number of demonstrations)
with 59.24%. This difference is neither significant when considering all columns
(χ2(4, N = 885) = 1.338, p>0.05) nor significant when omitting the Not-clear

Table 7.6: Results of the classification divided after conditions for negative
demonstrations (Teaching) in absolute numbers.

# of demonstrations Non-informative Not-clear Informative
any (Ø=1.99, σ2 = 3.24) 80 70 218
1 35 32 78
3 83 72 217
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Table 7.7: Results of the classification divided after conditions for negative
demonstrations (Teaching) in relative numbers (in %).

# of demonstrations Non-informative Not-clear Informative
any (Ø=1.99, σ2 = 3.24) 21.74 19.02 59.24
1 24.14 22.07 53.79
3 22.31 19.35 58.33

column (χ2(2, N = 711) = 0.704, p>0.05).

Condition 1 (any number of demonstrations) and condition 3 (3 demonstrations)
look quite similar. When omitting the row of condition 2 (1 demonstration),
the difference between condition 1 and condition 3 is neither significant for the
positive demonstrations (χ2(2, N = 1407) = 2.814, p>.05), nor significant for
the negative demonstrations (χ2(2, N = 740) = 0.064, p>.05).

7.3 Conclusion

In this study we showed that there is a difference between people solving
and teaching a sensorimotor task to a robot confirming our first hypothesis.
However, even when the difference between the Teaching- and Showing-phases
is significant, for the positive demonstrations only a relatively small portion
(7.43% and 17.33%) are in the Informative category, making it difficult to
predict from which phase a single demonstration was taken.

The novelty of this work is that we show that people perceive a significant
higher portion of negative than positive demonstrations as informative. Further,
58% of the negative demonstrations are informative, indicating that our second
hypothesis is also verified. Our third hypothesis, that the teaching behavior
depends on the number of demonstrations people are allowed to give is partially
confirmed for positive demonstrations, but not for negative demonstrations.
One reason could be that, since negative demonstrations are already perceived
as rather informative, people do not see the need to increase the informativeness
further.

Since we were able to verify our first two hypotheses we conclude that the specific
models presented in Chapter 6 for this study are accurate to conceptualize the
communication process.

78



7.3. CONCLUSION

One possibility to extend this work is to train classifiers to automatically detect
between Teaching and Solving or training generative models to solve the task.
This work also shows that aiming for integrating negative demonstrations into a
LfD framework is promising. Another promising future direction shown by this
work is the integration of negative demonstrations. Another direction extends
into a direction of predictability and legibility (Dragan, Lee, and Srinivasa,
2013) (see Chapter 5).
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8.1 Introduction

Humans and robots working together - so called Human-Robot cooperation -
has recently become a popular area of research. This cooperation can allow
robots and humans to accomplish more sophisticated tasks. When it comes
to cooperation, one crucial difference between humans and other species is
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Figure 8.1: Setup of the observer RL framework. As in a regular RL setting the
agent interacts with the environment and receives a reward after each taken
action. The observer gives an additional reward as feedback to the agent based
on how well the observer can infer which of multiple possible goals the agent is
targeting. This additional feedback results in the agent learning more legible
trajectories.

the capability to share goals and intentions (Tomasello et al., 2005) (see
Section 2.3).

In order to mimic these capabilities in Human-Robot collaboration, it is neces-
sary to equip the robot with the capability of shared goals and intentions. One
important aspect to achieve this intention sharing is that the robot understands
what the human is doing, for example to predict human motions (Mainprice,
Hayne, and Berenson, 2015).

Another important aspect is to enrich the robot with behavior that can be
well understood by humans. In general, this problem requires the robot to
behave more transparently or with explainability (see Chapter 5). Depending
on the task, this constraint on the robot’s behavior requires the robot’s motion
trajectories to be either predictable or legible.

This observer reasons about the possible intentions, either possible goals or
plans, of the robot. Aforementioned concepts are rarely studied in combination
with machine learning. A suitable candidate to use machine learning in this
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context is RL Section 3.4.

The classical RL approach does not offer the possibility to add a human to
the loop, depriving the framework of integrating valuable task knowledge from
the human. This gap has already been addressed in research on interactive RL
investigating different models of human-feedback (Thomaz and Breazeal,
2008; Knox and Stone, 2012b; Griffith et al., 2013; MacGlashan et al.,
2017; Celemin, Ruiz-del-Solar, and Kober, 2019) (see Section 3.4).

Usually, these approaches have the goal to speed up the learning process of the
agent or enable it to find better solutions. To the best of our knowledge, none of
the work on interactive RL explores the role of an observer that reasons about
the intent of the agent in an interactive RL framework. However, integrating
such an observer into interactive RL is an important step towards using RL for
human-robot collaboration.

Some similar ideas to our approach can be found in Qi and S. Zhu (2018),
where the agents in a multi-agent RL setting integrate the intent of the other
agents when calculating the optimal action, but do not express their intent
themselves.

Further, Huang et al. (2017) employs different approximate-inference IRL
variations to model how humans infer an agent’s objective function and use an
AT approach (see Section 4.3) to generate a set of environments to increase the
probability of inferring the correct objective function. For each environment
the optimal trajectory according to the objective function is shown, therefore
it’s not about comparing different trajectories in one environment like in our
approach.

Pezzulo, Donnarumma, and Dindo (2013) proposes to use a signaling
distribution of a trajectory in order to facilitate its recognition by another
person (see Section 2.6).

The work of Ho, Littman, MacGlashan, et al. (2016) and Ho, Littman,
Cushman, et al. (2018) combines the idea of IRL and communication via the
means of pedagogical reasoning (Shafto, Goodman, and Griffiths, 2014)
(see Section 4.2). However, no other work uses an interactive RL scheme to
learn more legible behavior.

Thus, in this chapter we explore how to integrate observer feedback into RL
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algorithms to learn legible (motion) trajectories. We add an observer that
gives feedback to the agent to improve the legibility (see Section 5.2) of the
learned policy. The interaction scheme of our proposed system is illustrated in
Fig. 8.1.

This chapter relates to the bigger picture of this thesis by addressing our
research question How can we integrate actions that make use of social channel
characteristics into RL? (Q3). In our model the robot acts as teacher trying to
communicate the goal as fast as possible opposed to only solving the task by
executing pedagogical actions. The simulated observer acts as learner trying
to infer the additional social signals provided by the pedagogical actions (see
Fig. 6.7). The results presented in this chapter have been published in Bied

and Chetouani (2020b).

8.2 Integrating Observer Feedback on Legibility

into Interactive RL

In this work we are interested in the combination of a RL system with an
observer that reasons about the goals of the learner to increase the legibility of
the learned trajectories. In order to achieve this we use a MDP (see Section 3.4)
in combination with reward shaping (see Section 3.4) to model the learning
problem. We add the observer to the equation by modeling the observer with
different strategies to estimate how likely the agent is going for the target
goal.

8.2.1 Interactive RL

We formalize our problem by using a MDP defined as (S,A, T , R, γ) (see
Section 3.4). A standard approach to solve problems formulated like this is
Q-Learning. Q-Learning will also serve us as baseline to compare to. For
Q-Learning we use a simple one-step Q-learning as defined by Eq. 3.6. For
action taking we use the exploration rate ε, i.e. with a probability of ε the
agent takes a random agent and the reward maximizing action of the current
policy otherwise (see Section 3.4).

We add the observer to the system by using reward shaping Ng, Harada, and
Russell (1999) (see Section 3.4). The original MDP reward is replaced by
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R′(s, a) by adding the weighted reward from the observer Ô to it.

R′(s, a) = R(s, a) + β · Ô(s, a) (8.1)

The reward from the environment and the reward from the observer are of
different nature and can, in general, differ in scale. The weighting factor β can
be used to accommodate for this fact.

We will compare different algorithms for Ô to model different observer strategies.
These algorithms will be presented in Section 8.2.3.

While other (more sophisticated) methods like policy shaping and value shaping
(Knox and Stone, 2010; Knox and Stone, 2012b; Griffith et al., 2013;
Najar, Sigaud, and Chetouani, 2019) (see Section 3.4) to integrate human
feedback into the classical RL formulation exist, reward shaping will suffice as
proof of concept for the feasibility of our approach.

Ng, Harada, and Russell (1999) describe the necessary requirements for
reward shaping to preserve the optimal policy, if these requirements are not
met positive-reward cycles can occur. Note that the way we are employing
reward shaping does not meet these requirements.

8.2.2 Legibility

In this framework legibility serves as proxy how well the observer (learner) can
understand the intentions of the agent (teacher) (see Fig. 6.3). In order to
formally evaluate the legibility λ(ξ) of a trajectory ξ, we use the legibility metric
proposed by Dragan, Lee, and Srinivasa (2013) (see Section 5.2).

Following this line of work the observer needs to be able to confidently infer the
correct (=the target) goal g∗ after only observing a part of the whole trajectory
to the goal ξs0→st starting at s0 and ending at the intermediate point st. The
trajectory is more legible the faster this confident inference happens.

Imagine an observer watching an agent acting in the environment shown in
Fig. 8.1 in the observer model part. The observer tries now to infer as fast as
possible for which goal the agent is going for. The right trajectory (solid blue
line) is more legible than the left trajectory (dashed grey line), because for the
right trajectory it seems more likely that the agent is going for the target goal
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on the right. For the left trajectory it is still not clear for which goal the agent
is going for, the next step could either be to the left or to the right.

Fig. 8.2 illustrates the concept of legibility in a discrete environment. The
agent is aiming for the goal to the right (blue circle). There is an alternative
goal on the left side (orange square). The more the trajectories go to the right
side the higher is the resulting legibility. We will use this environment in our
first experiment and refer to it as environment 1.

Figure 8.2: Different example trajectories with corresponding legibility (λ) in
environment 1. The start position is marked with ’S’, the target goal is marked
with a blue circle and the alternative goal is marked with an orange square.

8.2.3 Modeling the Observer

We compare four algorithms: Q-Learning (Q-L), Q-OBS-D, Q-OBS-P and
Q-OBS-L. These algorithms differ in the strategy the observer Ô implements.
An overview of the ideas for the used functions for Ô is shown in Table 8.1.

The algorithms only differ in the choice of Ô inserted in Eq. 8.1. The main
difference is between Q-Learning as baseline algorithm which we consider non-
interactive and the other three algorithms which we consider interactive.

The main purpose of implementing different versions of the interactive methods
is to explore how to integrate an observer that reasons about the possible
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Table 8.1: The different used observer functions.

alg. observer function idea

Q-L
Non-interactive baseline algorithm

using no observer function

Q-OBS-D
Interactive algorithm using softmax
of goal distance as observer function

Q-OBS-P

Interactive algorithm using the cost
of the observed trajectory in comparison
with the cost of the optimal trajectory

as observer function

Q-OBS-L
Interactive algorithm using the

legibility of the observed trajectory
as observer function

goals of the agent in interactive RL. In the following we explain the proposed
algorithms.

Q-L

Using the trivial equation for Ô:

Ô = 0 (8.2)

is equivalent to plain Q-Learning. Q-Learning does not use any information
from the observer and is therefore not interactive. Since Q-Learning only
takes the rewards from the environment into account, it has no information on
legibility.

However, this does not mean that the learned trajectories can not be legible,
we can expect that some trajectories more legible than others. Therefore,
Q-Learning will serve us as comparison to have a baseline how legible the
trajectories are just by chance.

Q-OBS-D

Ô(s, a, s′) =
1

z
exp(−σd(s′, g∗)) (8.3)

d is the distance from s’ to the goal using the Manhattan distance. z is partition
function of the softmax distribution in order to normalize the probability to
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one. σ is the temperature parameter to adjust how sharp the distribution peaks
around the maximum.

Eq. 8.3 only depends on the current state s′ and not on the observed trajectory
snippet. We consider this approach as a naive approach to estimate goal
probability and expect it to work in some cases, as it gives an incentive to
reduce the distance to the target goal early on.

However, in more complex configurations, e.g. when the target goal is behind
another goal, this approach might not work. Therefore, we expect it to work
at least as good as Q-L, and in some cases even better.

Q-OBS-P

For Q-OBS-P we use the probability to reach a goal given a snippet of trajectory
given with Eq. 5.9:

Ô(ξs0→q) = P (g∗|ξs0→q) (8.4)

Since this method uses a goal probability that has successfully been employed
in previous research (Dragan, Lee, and Srinivasa, 2013; Dragan and
Srinivasa, 2013; Holladay, Dragan, and Srinivasa, 2014) it seems like a
more suitable candidate to estimate the goal probability than Q-OBS-D and
we expect it to perform better.

Q-OBS-L

For Q-OBS-L we directly use the legibility as feedback from the observer. For
the discrete case with K as the number of steps for reaching q and sk as the
state after k steps Eq. 5.2 becomes:

Ô(ξs0→q) =
ΣK
k=0P (g|ξs0→sk)f(k)

ΣK
k f(k)

(8.5)

Using directly the legibility is not a goal probability, since it does not sum up
to one for all goals, nevertheless it contains by definition information on how
confident the observer is that the agent is going for the target goal. Therefore,
we also expect this method to also perform better than Q-OBS-D.
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8.3 Experiments

The goal of the experiments is to evaluate the ability of the algorithms presented
in Section 8.2.3 to increase the legibility of the learned trajectories.

Q-Learning will serve as non-interactive baseline to compare to. Q-OBS-D, Q-
OBS-P and Q-OBS-L integrate information information on the goal probability
into the model and are expected to perform better.

We evaluated the approach on five different environments. For the first environ-
ment there are only two possible goals, and we use it to illustrate the approach.
For the environments 2 – 5 we use three goals and changed the configuration
of these goals relative to each other.

The parameters were set intuitively. First we set the parameters that Q-
Learning performed reasonable well and kept these parameters for the interactive
algorithms. The parameters specific to the interactive algorithms were then
set to perform reasonable well, but not tweaked to achieve the best possible
performance. The parameters were kept for all environments.

For the rewards from the environment we used: reaching the target goal rg = 0,
penalty for unvisited state different from the target goal rp = −0.1, penalty for
already visited state different from the target goal rp2 = −0.2.

For the Q-Learning relevant parameters we used: α = 0.9, γ = 0.9 and ε = 0.1.
The q-table was initialized with random values from 0 to 2.

For Q-OBS-D we set σ = 0.3. For implementation reasons, to address the
problem of positive loops we use β = β1β2, with β1 = −rp and β2 = 2. By
setting the parameters like this, we assure that agent does not achieve a net
gain larger than 0 by cycling back and forth. However, the possible looping
behavior drastically limits the choice to set β.

The used parameters are compactly shown in Table 8.2. Each algorithm was
trained in 100 sessions for 120 episodes on each environment.
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parameter value
rg 0
rp -0.1
rp2 -0.2
α 0.9
γ 0.9
ε 0.1
β β1β2

β1 −rp
β2 2

Table 8.2: Parameter and corresponding values used in the experiments.

8.3.1 Environment 1

Description

The first environment (see Fig. 8.2) was used to check the feasibility of the
approach and includes only two goals: the target goal and one alternative goal.
The size of the grid of the first environment is 9x9 and is visualized in Fig. 8.2
alongside with four example trajectories and the corresponding legibility.

The first trajectory (from left to right) is sup-optimal in terms of steps towards
the target goal and the legibility is low, the second and the third trajectory are
both optimal, however the third trajectory yields a higher legibility because
one can infer earlier for which goal the agent is aiming. The fourth trajectory
is sup-optimal but the legibility is the highest of the shown trajectories.

There are multiple optimal trajectories, when using Q-Learning, there is no
reason for the agent to prefer one optimal trajectory over another optimal
trajectory. Since the learning is stochastic, we expect the agent to sometimes
learn an optimal trajectory with a higher legibility and other times with a lower
legibility.

We do not expect to learn with Q-Learning trajectories with a even higher
legibility. When integrating the observer feedback, we expect the learned
trajectories to be more legible and sometimes to even learn trajectories that are
sub-optimal, but more legible than the most legible optimal trajectory. While
we show only two possible optimal trajectories to the goal, there are more
possible optimal trajectories to the goal than these two. These trajectories
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only differ in the legibility. Since the Q-table is randomly initialized and an
ε-greedy exploration strategy is used the learning process is stochastic.

Note that technically we are not learning trajectories, but policies - once a
policy is learned the trajectory generated by that policy are deterministic.
When speaking about the learned trajectories, we are strictly speaking about
the trajectories that are generated by the learned policies.

Results

As aforementioned, even when only considering only the optimal trajectories
there is a large number of possible trajectories. During the training processes
of the different algorithms a large number of different trajectories have been
learned. It is not possible to visualize the differences of the different algorithms
in only one graph. Therefore we will use different methods to illustrate the
occurred differences.

First, we will have a look into the five best and five worst trajectories w.r.t.
the legibility as illustrated in Fig. 8.3.

Figure 8.3: The five best (solid blue lines) and five worst (dashed grey lines)
learned trajectories w.r.t. λ for the different algorithms of environment 1.

If we now have a look at the legibility of the best and worst trajectories (w.r.t.
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λ) learned by Q-Learning, we see that these values are lower than legibility of
the best and worst trajectories learned by the interactive algorithms.

From Fig. 8.2 we know that the more legible trajectories tend to go to the right
earlier on and are more on the right side of the grid in general. We can see
that the trajectories of the interactive algorithms also tend to lie more on the
right side of the grid world.

Next, we will have a look onto the heatmap of the learned trajectories in Fig. 8.4.
We can see that not only the best and worst trajectories for the interactive
algorithms lie more to the right, but also in the heatmap the interactive
algorithms are ’hotter’ in the regions of the more legible trajectories.
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Figure 8.4: Heat map of the learned trajectories for the different algorithms in
environment 1.

The legibility of the different algorithms averaged over 100 runs for environment
1 is reported in Fig. 8.5. All algorithms that integrate a non-zero observer
reward perform significantly better than plain Q-Learning. Q-OBS-P performs
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best regarding the legibility of the learned trajectories.

Figure 8.5: Mean of the legibility for the different algorithms in environment 1.
The significance level was calculated using the Mann-Whitney U test.

8.3.2 Environments 2 – 5

While we showed in environment 1 that all interactive algorithms perform better
than Q-Learning, we tested the approach on four additional environments to
test the limits of our approach. This time we included an additional alternative
goal. The grid size for tasks 2 – 5 is 9x9 as in environment 1.

All tasks have three goals, the target goal and two alternative goals. The differ-
ent environments can be seen in Fig. 8.6. We varied the relative configuration of
the goals to evaluate the influence on the performance of the algorithms.

In environment 2 – 4 the position of the alternative goals stays the same, we
only vary the position of the target goal. In environment 5 there is no obvious
more legible trajectory, so we do not expect including the observer feedback to
perform better.
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Figure 8.6: Environment 2 – 5, for the environments 2 – 4 only the position of
the target goal was varied, for environment 5 there is no legible path from a
human point of view.The target goal is marked as a blue circle, the alternative
goals as orange squares and the start with ’S’.

Results

The legibility of the different algorithms averaged over 100 runs for environment
2 – 5 is reported in Fig. 8.7. While Q-OBS-D significantly improved the
legibility of the learned trajectory for environment 1, there is no significant
difference for environment 2 and 4.

As for environment 1, Q-OBS-P is the best performing algorithm for all en-
vironments with a significant higher legibility in comparison to Q-Learning.
Q-OBS-P performs significantly better than Q-Learning for environments 2 –
4, but not for environment 5.

For environment 5, from a human perspective, there is no more legible trajectory
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Figure 8.7: Mean of the legibilities for Task 2 – 5 for the different algorithms.
The significance level was calculated using the Mann-Whitney U test.

than the (only) optimal trajectory i.e. just going straight from start to the
target goal. The only optimal trajectory has a legibility of λ = 0.388. In
Fig. 8.8 we see the five best and five worst trajectories for environment 5. We
see that in terms of the metric that all algorithms generated some trajectories
with λ > 0.388.
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Figure 8.8: The five best (solid blue lines) and five worst (dashed grey lines)
learned trajectories w.r.t. λ for the different algorithms of environment 5.

8.4 Discussion

The results show that the interactive algorithms perform better than Q-Learning.
Our main focus is on showing that the interactive approaches are useful in
comparison to the non-interactive approaches. In order to support our main
message it is not really important which of the interactive algorithm performs
best.

A major limitation is the use of reward shaping and a next step will be to
replace it with a better suited method like policy shaping. Therefore it is not
useful to put effort into analyzing differences in the approaches based on reward
shaping, especially since the parameters were not tuned for every algorithm to
perform to its best.

In our approach we simulated the observer giving additional rewards to the
agent. One possible idea is to employ a real human in the loop giving the
observer feedback. Research on human feedback in RL (e.g. Thomaz and
Breazeal, 2006a; Thomaz and Breazeal, 2008; Ho, Littman, Cushman,
et al., 2015; Ho, Cushman, et al., 2019) suggests that probably real humans
will behave differently than our models, therefore the framework might not
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work.

However, our model might be useful even when no observer giving feedback
is present. Since the agent has all the information the observer has, we could
integrate the observer model internally into the agent. The agent could improve
it’s behavior by expecting to being watched. An approach like this would
emphasize the idea of ToM for the agent.

One downside of our approach is that the observe needs to know all the present
goals in the setting to infer the goal probability. In robotics this is a strong
assumption. An interesting problematic arises in this context: the robustness
of the legibility if the observer has only partial knowledge of the goals.

Also interesting is that in environment 5 there are more legible trajectories than
the trajectory that goes directly from start to the target goal. From a human
point of view there are arguably no more legible trajectories. For the legibility
metric this happens, because for example going to the right after passing the
level of the two alternative goals, drastically decreases the probability of the
left goal and increases the probability of the right goal, therefore the target
goal probability also increases. Simultaneously the length of the trajectory
increases leading to a change of the weights for each part of the distribution.
These two changes together can lead to an increase in legibility.

It is not clear, if this will be a relevant problem, for longer continuous trajectories.
That’s another limitation we did not address in this work - scaling the approach
up to a more complex task than just a grid world, possibly also using a robot
with multiple degrees of freedom instead of just a point robot.

8.5 Conclusion

In this work, we were interested in integrating observer feedback into RL to
increase the legibility of the learned trajectories. We proposed three interactive
RL algorithms by integrating observer feedback and compared them to the
non-interactive Q-Learning. We showed that the interactive RL approaches
learn trajectories with a significantly higher legibility and that even a simple
approach can perform at least as good as Q-Learning.

From that, we conclude that when it comes to Human-Robot cooperation it is
useful to integrate reasoning about the goal probabilities in order to increase
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the legibility of the trajectories. While we used reward shaping as a simple
mechanism to integrate the feedback, the problem of positive-reward cycle is
limiting the power of the approach.

Furthermore, the research in this chapter serves as answer to our research
question How can we integrate actions that make use of social channel charac-
teristics into RL? (Q3). By learning to produce more legible trajectories, the
agent augments its actions with a part that communicates the goal as social
signal. Thus, we have shown, how to integrate actions that use social channel
characteristics into RL.

The work presented in this chapter could be extended by considering other
shaping mechanisms, as for example policy shaping, as it will probably work
better in experiments with real humans. Possible directions include more
complex environments and experiments with humans.
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9.1 Summary of Contributions

In this thesis we are interested how signals that combine task and social signals
in one signal can be used in HRI settings. We focus on the sensorimotor
channel, since it is meaningful for robotics and allows to combine task and
social signals.

More specific, we are interested in pedagogical situations, where a teacher has
the intention to communicate additional information to a learner. We are
interested in the human side, as well in the robot side of the HRI.

We are interested in how humans are using the sensorimotor channel when
solving a task in contrast to teaching the task to a robot, but also how
sensorimotor actions are perceived by humans. Further, we are interested in
how these kind of actions can be implemented on the robot side.

In order to give more structure to research focusing on channel usage in the
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context of HRI and put our own research into perspective we propose a general
communication model for HRI that explicitly distinguishes between task-, social-
and combined signals, as well as specific model describing the combined channel
usage in pedagogical situations in more detail. The first contribution are the
proposed models for communication in HRI. While we do not claim that the
ideas implemented in these models are novel, combining them in an explicit
models contributes by providing a base to guide future research on the channel
usage in HRI.

The second contribution are the insights on human behavior and perception of
sensorimotor actions in the context of HRI. Namely, humans use the possibility
to include additional information in their actions when teaching a robot how
to solve a task in contrast to just solve it. The demonstrations coming from a
teaching setting are perceived as more informative than when the task is just
solved. Additionally, humans perceive the use of negative demonstrations as
more informative than positive demonstrations. Further, when humans are only
given the possibility to teach the task via only one demonstration they tend to
just solve the task, as opposed to when they can give multiple demonstrations
where they tend to include additional information in the demonstrations.

The third contribution is the proposition of a framework based on RL that
integrates reasoning about a potential observer into the learning process. The
framework allows to learn trajectories that are more legible for an observer.
Here a higher legibility serves a an approximation for a higher level of social
signals apart from the task signals provided by the actions. Further, we compare
different algorithms to implement the observer reasoning and show that all
algorithms that include reasoning about the observer achieve higher legibility
than classical RL baseline.

9.2 General Limitations of the Approach

A general limitation of this approach is that by focusing only on one channel we
do not now the influence of adding other channels. Adding other communication
channel might strongly impact how humans use the sensorimotor channel.
For example in work using the Sophie’s kitchen framework (Thomaz and
Breazeal, 2008; Thomaz and Breazeal, 2006b), humans used the feedback
channel to also give motivational feedback. This effect vanished as soon as an
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explicit channel to give motivational feedback was added.

Thus, already changing even small things in the interaction protocol might have
strong influences on the human channel usage. Adding additional channels
might completely change the usage of the already present channels in a protocol.
This change in channel usage can be a disadvantage as well as an advantage.
A disadvantage is that research results found while investigating only a single
channel isolation might be invalidated when adding another channel. An
advantage would be when an overlay of how humans use a channel is detected
that is difficult to untangle. In this case the introduction of a new channel
explicit for the function how humans overlaid the original channel can solve
the problem.

Another problem that comes with the inference of intentions is that the inference
might only be partially correct or fail completely. Humans have the capability
(at least so some extend) to recognize if their intentions were correctly under-
stood. If not they have plenty of mechanisms recover when their intentions are
not understood. They have the capability of changing the interaction protocol
during an ongoing interaction and modify as they see it fit. If the new behavior
is not understood again and the interaction partner reacts in way they have
not foreseen they can adapt again.

However, the problem that applies to HRI in general, and to our approach
in particular, is that the protocol of the interaction loop, has to be well
defined prior the interaction. The protocol can not ’completely change’ during
an interaction. These protocols can integrate reaction options for foreseen
communication problems, but they can not completely change.

9.3 Perspectives

The reflections that revolve around the various contributions of our research
work and the resulting perspectives can be summarized as follows:

• Goal inference instead of obstacle inference: In our user study, we
designed the task in a way that the goal was known and an obstacle in
the way should be learned. In our RL framework, we changed to goal
inference instead of obstacle inference, because legibility provided us a
theoretical metric that has already been tested in HRI. In hindsight it
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would make sense to conduct the user study where the learning task
consists of inferring the goal instead of the obstacle. This would not only
increase consistency, but likely generate additional interesting insights.

• Learning from human data: As a first step of the LfD pipeline we
collected human demonstrations in our user study. However, we did
not implement the subsequent steps and did not use the data to learn a
generative model. Since we did an exploratory study to get insights how
different aspects (number of demonstrations, positive/negative demon-
strations, different task instances) influence the behavior in combination
that human behavior differs from person to person even if all variables are
kept the same, we could not collect enough data to learn from it. While
approaches that focus on one shot learning (e.g. DMP), we would need
to integrate the different variable aspects as prior knowledge. Integrating
this prior knowledge of different kind is not a simple task.

• Automatic classification: Similar to the before mentioned reason,
while we collected enough data to show a statistical significant difference
between examples from the solving and teaching condition, we could
not train a classifier to automatically distinguish between the conditions.
An interesting direction for a data set collected in a less exploratory
manner would be to train classifiers to automatically detect data from
the teaching condition.

• User study with a real robot: In our user study, the task was to be
executed on a tablet. The user did not directly interact with a real robot,
but were introduced to a pepper robot with a picture and told that this
robot should later learn from their demonstrations. Human teaching
behavior will most likely be influenced by how capable humans consider
the robot. Thus, interacting with a real robot might have an influence on
the results. However, executing a study where participants with little to
no knowledge about robots teach physical tasks to a real robot increases
the complexity of the experiment by a lot.

• Negative demonstrations: In our work we did not continue in the
direction of implementing learning from negative demonstrations into LfD,
since we worked on RL instead. However, this is a promising direction, as
we showed that negative demonstrations are perceived as informative and
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useful by humans. While for example Cakmak and Thomaz (2011) and
Calinon (2019) mention negative demonstrations as a good direction,
this approach has not really been addressed in LfD research.

• Learning from humans with pedagogical intentions: We showed
that humans include additional information in their demonstrations when
teaching a robot. Thus, it seems reasonable that demonstrations from
teaching conditions can be helpful to support the learning of a robot.
However, this might not be straight forward: as Milli and Dragan

(2019) show, even when humans try to be pedagogical in terms of learning
it’s safer to assume that they give literal demonstrations.

• Employ the RL framework with a more complex task and a real
robot: We applied our approach to a small discrete task and used a point-
robot. An extension of the work could investigate how the approach to
integrate reasoning about a potential observer can be applied with a real
robot for a task that is closer to a real life application. However, for this
the value-based approach does not seem appropriate, since value-based
approaches tend to do not deal well with high-dimensionality.

• User study employing the RL framework: In our RL framework we
did not interact with a real human, but only with a simulated observer.
To measure success we used the legibility metric as proxy how well an
observer can infer the goals of the actions. Further directions include
either replacing the simulated observer with human participants or testing
how fast human participants can infer the agents goals, respectively a
combination of both. However, the first approach seems unfeasible, as
the number of interactions will be too high.

• Advancing to more sophisticated shaping methods: In order to
integrate the observer feedback into RL we used reward shaping a simple
method. Reward shaping can lead to infinite loops, while we did not
encounter infinite loops, it restricted the choice of our parameters. Imple-
menting a more sophisticated method like policy shaping could solve this
problem. Moreover, in an interaction with humans, policy shaping might
be better suited in interactions with humans.
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9.4 Conclusion

In this thesis we conducted research on actions that provide combined task and
social signals in one signal in the context of HRI. We showed that these kind
of actions are used by humans when teaching a robot how to solve a task, and
that humans perceive these actions as informative in HRI.

Further, we showed that by integrating reasoning about the interaction part-
ner we can integrate actions that provide combined signals into RL to learn
trajectories that are more legible to an observer.

We applied our research only to a small set of task, and thus could only con-
tribute with one step towards robots that can emulate human-like capabilities.
However, the results of our research indicate that advancing research into a
direction of exploiting combined actions, in particular sensorimotor actions, is
a promising direction to go for HRI.

Nevertheless, in order to fulfill a long time human vision and release robots
into the wild and have them interact with humans and their environment will
require a lot more research to be done that can only be done step by step.
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FEUILLE DE CONSENTEMENT 

 
Etude SU - Apprentissage dans une interaction Humain-Robot 

 
Bienvenue au Centre Multidisciplinaire des Sciences Comportementales Sorbonne 
Université-INSEAD. Les chercheurs de l'étude à laquelle vous allez participer sont :  
   - Mohamed Chetouani (Professeur à Sorbonne université)  
   - Manuel Bied (Doctorant à Sorbonne université)  
 
Dans cette étude, vous donnerez des exemples sur la façon de résoudre des labyrinthes en 2 
dimensions sur une tablette. Les exemples doivent être donnés de manière à ce qu'un robot 
puisse apprendre à partir de ces exemples comment résoudre ces labyrinthes. Votre 
participation durera environ 40 minutes. 
 
Si vous terminez cette étude, vous recevrez 8 euros. 
 
Nos études sont à visées académiques, et les résultats seront accessibles dans des 
publications scientifiques. Nous ne réalisons pas d'études pour le compte d'entreprises 
privées. Il n'existe aucun risque lié à cette étude autre que ceux de la vie de tous les jours. 
 
Par ailleurs, vous pourrez recevoir des informations sur les conclusions de l'étude si vous le 
souhaitez, ainsi que des références concernant le type de recherche auquel vous avez 
participé. Cependant, parce que vos réponses sont anonymes, nous ne pourrons vous 
renseigner que sur les résultats agrégés de l'étude, et non sur votre performance ou les 
performances de n'importe qui d'autre ayant participé. 
 
Les données concernant cette étude seront conservées sous clé ou protégées par un mot de 
passe, et seront détruites dès lors qu'elles ne seront plus utilisées. 
 
Votre participation à l'étude doit être entièrement volontaire, et vous avez la possibilité de 
vous retirer de l'étude à tout moment sans aucune pénalité. 
 
Je déclare être majeur(e), et ayant lu et parfaitement compris les paragraphes ci-dessus, 
accepte de mon plein gré de participer à cette étude.    
 
 
DATE : 
 
NOM : 
 
PRÉNOM : 
 
SIGNATURE :  

Figure A.2: Consent form of the first experiment of the user study.
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DEBRIEFING 

Étude « Apprentissage dans une interaction Humain-Robot » 
 
Explication de ce type de recherche 
 
La programmation des robots demande souvent beaucoup de temps et cela ne leur 
permet que de résoudre des tâches spécifiques. De ce fait, nous nous intéressons à la 
capacité qu’on les robots d’apprendre des gens. La plupart des approches précédentes 
portaient principalement sur le robot et son apprentissage et peu de recherches se sont 
intéressé aux aspects relatifs à l'humain. Afin de déployer des robots dans des 
environnements de la vie quotidienne, il est important de comprendre comment les 
humains interagissent avec des robots ou des agents virtuels afin d'intégrer leurs 
besoins et de prendre en compte leurs comportements. 
 
Description plus détaillée de l’étude 
 
L’étude d’aujourd’hui visait à déterminer comment les gens donnent des exemples de 
solutions pour résoudre un labyrinthe. Nous nous attendons à ce que les gens aient 
différentes stratégies d'enseignement qui, pour certaines, pourraient conduire à de 
meilleurs résultats d'apprentissage que d'autres. Nous nous attendons à ce que des 
participants fassent de meilleures démonstrations après avoir deviné quelle est la 
position du terrain dangereux.  
Les données collectées seront utilisées pour évaluer le fonctionnement d'algorithmes 
de pointe pour identifier d'éventuels défauts de ces algorithmes et identifier l’impact 
que peut avoir le fait que des personnes enseignent à un robot sans avoir reçu de 
formation sur l’enseignement à un robot ou à un agent virtuel. 
 
Vous pouvez trouver plus d'informations concernant ce type d'études à l'aide de la 
référence ci-dessous : 
 

 Khan, Mutlu, & Zhu. “How do humans teach: On curriculum learning and 
teaching dimension”. In: Advances in Neural Information Processing Systems 
(2011), pp. 1449–145. 

 Cakmak & Thomaz. “Eliciting good teaching from humans for machine learners”. 
In: Artificial Intelligence 217 (2014), pp. 198–215 

 
Si vous avez des questions concernant cette étude, vous pouvez contacter : 

Mohamed Chetouani : mohamed.chetouani@sorbonne-universite.fr 
 
Courte présentation du chercheur 
 
Mohamed Chetouani est à la tête de l'équipe IMI2S (interaction, intégration 
multimodale et Social Signal) à l’Institut de Systèmes Intelligents et de Robotique 
(CNRS UMR 7222), Sorbonne Université. Il est actuellement professeur titulaire en 
traitement du signal, reconnaissance des formes et en machine-learning. 

Figure A.3: Debriefing form of the first experiment of the user study.
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FEUILLE DE CONSENTEMENT

Etude SU - Apprentissage dans une interaction Humain-Robot 2 

Bienvenue au Centre Multidisciplinaire des Sciences Comportementales Sorbonne Université-
INSEAD. Les chercheurs de l'étude sont Mohamed Chetouani  (mohamed.chetouani@sorbonne-
universite.fr) et Manuel Bied (bied.manuel@gmail.com) 

Dans cette étude, il vous sera montré des démonstrations que des participants précédents ont
donné à un robot pour résoudre une tâche dans un labyrinthe à deux dimensions. Il vous sera
demandé  d’évaluer  la  simplicité  de  ces  démonstrations  et  s’il  y  a  des  informations
supplémentaires  dans  la  démonstration.  Votre  participation  durera  approximativement  60
minutes.

Nos études sont à visées académiques, et les résultats seront accessibles dans des publications
scientifiques. Nous ne réalisons pas d'études pour le compte d'entreprises privées. Il n'existe
aucun risque lié à cette étude autre que ceux de la vie de tous les jours.

Si vous terminez cette étude, vous recevrez 10 euros. 

Par ailleurs, vous pourrez recevoir des informations sur les conclusions de l'étude si vous le
souhaitez, ainsi que des références concernant le type de recherche auquel vous avez participé.
Cependant, parce que vos réponses sont anonymes, nous ne pourrons vous renseigner que sur
les résultats agrégés de l'étude, et non sur votre performance ou les performances de n'importe
qui d'autre ayant participé.

Les données concernant cette étude seront conservées sous clé ou protégées par un mot de
passe, et seront détruites dès lors qu'elles ne seront plus utilisées.

Votre participation à l'étude doit être entièrement volontaire, et vous avez la possibilité de vous
retirer de l'étude à tout moment sans aucune pénalité.

Je  déclare  être  majeur(e),  et  ayant  lu  et  parfaitement  compris  les  paragraphes  ci-dessus,
accepte de mon plein gré de participer à cette étude.   

DATE :

NOM :

PRÉNOM :

Figure A.4: Consent form of the second experiment of the user study.
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Explication du domaine de recherche général

Programmer des robots prend beaucoup de temps et leur permet seulement de résoudre des tâches
spécifiques. Par conséquent, il est important de les enrichir avec la capacité d’apprendre des autres.
La  plupart  des  approches  précédentes  se  concentrent  surtout  sur  le  robot  et  comment  il  peut
apprendre.  Le côté de l’homme est  souvent  négligé.  Pour pouvoir  déployer  des  robots dans des
environnements de la vie de tous les jours, il  est important de comprendre comment les humains
interagissent avec les robots ou les agents virtuels pour intégrer leurs besoins et représenter leurs
comportements. Un domaine spécial d’intérêt est l’apprentissage et l’enseignement de compétences
sensorimotrices. Les hommes peuvent exagérer leurs mouvements pour signaler leurs intentions aux
autres  humains.  Les  mécanismes  intervenants  dans  l’interaction  homme-robot  ont  besoin  d’être
explorés, en particulier la façon d’apprendre des compétences aux robots.

Description détaillée de l’étude

L’étude d’aujourd’hui a besoin d’être vue dans le contexte de l’étude de l’utilisateur précédent, où
l’on a demandé aux personnes d’enseigner comment résoudre un labyrinthe à un robot. De plus, on
leur a demandé de résoudre seulement la tâche. 

De sorte à avoir plus d’idées à propos des démonstrations, l’étude d’aujourd’hui a été menée pour
évaluer les perceptions des individus sur celles-ci. Ces perceptions seront utilisées pour comprendre
les différences des démonstrations en terme de qualité de l’enseignement, de qualité de résolution et
pour permettre la création de ‘clusters’ de différents types de démonstrations.
Pour finir, les informations collectées sur les études précédentes et sur cette étude devraient être
utilisées pour comprendre les comportements d’enseignement envers des robots et pour permettre
la  construction  d’algorithmes  qui  ‘comprennent’  différentes  intensions  d’enseignement  des
hommes. 

Vous pouvez trouver plus d’informations concernant l’étude ci-dessous: 

 Faisal Khan, Bilge Mutlu, and Xiaojin Zhu. “How do humans teach: On curriculum learning and teaching
dimension”. In:Advances in Neural Information Processing Systems (2011), pp. 1449–145

 Maya Cakmak and Andrea L. Thomaz. “Eliciting good teaching from humans for machine learners”. In:
Artificial Intelligence 217 (2014), pp. 198–215

 Human  Sensorimotor  Communication:  A  Theory  of  Signaling  in  Online  Social  Interactions 
Pezzulo G, Donnarumma F, Dindo H (2013) Human Sensorimotor Communication: A Theory of Signaling in
Online Social Interactions. PLOS ONE 8(11): e79876.

Si vous avez plus de questions, vous pouvez contacter : 
Manuel BIED (manuel.bied@isir.upmc.fr),   Mohamed CHETOUANI (mohamed.chetouani@sorbonne-
universite.fr)

Figure A.5: Debriefing form of the second experiment of the user study (page
1).
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Le chercheur
Mohamed Chetouani est directeur de l'équipe IMI2S (Interaction, intégration multimodale et Social
Signal) à l’Institut de Systèmes Intelligents et de Robotique (CNRS UMR 7222), Sorbonne Université. Il
est actuellement professeur en traitement du signal, reconnaissance des formes et machine-learning.

Figure A.6: Debriefing form of the second experiment of the user study (page
2).
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Appendix

Figure B.1: Environment 1 of the user study.
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Figure B.2: Environment 2 of the user study.

Figure B.3: Environment 3 of the user study.
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Figure B.4: Environment 4 of the user study.

Figure B.5: Environment 5 of the user study.
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Figure B.6: Environment 6 of the user study.

Figure B.7: Environment 7 of the user study.
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Figure B.8: Environment 8 of the user study.

Figure B.9: Environment 9 of the user study.
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Figure B.10: Environment 10 of the user study.

Figure B.11: Environment 11 of the user study.
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Figure B.12: Environment 12 of the user study.

Figure B.13: Environment 13 of the user study.
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Figure B.14: Environment 14 of the user study.

Figure B.15: Environment 15 of the user study.
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Figure C.1: GUI of experiment 2 (part 1).
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Figure C.2: GUI of experiment 2 (part 2).
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Figure C.3: GUI of experiment 2 (part 3).

139


	List of Figures
	List of Tables
	List of Acronyms
	I Introduction
	Introduction
	Motivations
	Research Approach
	Thesis Outline
	Contributions
	Publications
	The Animatas Project


	II Background and Related Work
	Cognition and Communication
	Introduction
	The Code Model
	Theory of Mind
	Social- and Task Channel
	Ostensive-Inferential Communication
	Sensorimotor Communication

	Approaches to Robot Learning
	Introduction
	Robots as Embodied Agents
	Overview of Approaches to Robot Learning
	Reinforcement Learning 
	Learning from Demonstration

	Teaching Machines and Robots
	Introduction
	Pedagogy
	Machine Teaching
	Humans Teaching Robots

	Observer Related Metrics
	Introduction
	Legibility
	Predictability


	III Implementation of Research
	Communication Model
	Introduction
	General Communication Model
	Specific Approach
	Specific Model
	Model Application to Implemented Research


	User Study on Human Teaching Behavior Towards Robots in a Sensorimotor Task
	Introduction
	Study
	Overview
	Experiment 1
	Experiment 2

	Conclusion

	Augmenting RL with Social Channel Usage
	Introduction
	Integrating Observer Feedback on Legibility into Interactive RL
	Interactive RL
	Legibility
	Modeling the Observer

	Experiments
	Environment 1
	Environments 2 – 5

	Discussion
	Conclusion

	Discussion and Conclusion
	Summary of Contributions
	General Limitations of the Approach
	Perspectives
	Conclusion

	Bibliography
	User Study Forms
	Environments Experiment 1 (User Study)
	GUI of Experiment 2 (User Study)


